* config/arm/arm.c (TARGET_SETUP_INCOMING_VARARGS): New.
[official-gcc.git] / gcc / combine.c
blob9137076ad30678214af49d16a73be03aa9896565
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
94 #ifndef SHIFT_COUNT_TRUNCATED
95 #define SHIFT_COUNT_TRUNCATED 0
96 #endif
98 /* It is not safe to use ordinary gen_lowpart in combine.
99 Use gen_lowpart_for_combine instead. See comments there. */
100 #define gen_lowpart dont_use_gen_lowpart_you_dummy
102 /* Number of attempts to combine instructions in this function. */
104 static int combine_attempts;
106 /* Number of attempts that got as far as substitution in this function. */
108 static int combine_merges;
110 /* Number of instructions combined with added SETs in this function. */
112 static int combine_extras;
114 /* Number of instructions combined in this function. */
116 static int combine_successes;
118 /* Totals over entire compilation. */
120 static int total_attempts, total_merges, total_extras, total_successes;
123 /* Vector mapping INSN_UIDs to cuids.
124 The cuids are like uids but increase monotonically always.
125 Combine always uses cuids so that it can compare them.
126 But actually renumbering the uids, which we used to do,
127 proves to be a bad idea because it makes it hard to compare
128 the dumps produced by earlier passes with those from later passes. */
130 static int *uid_cuid;
131 static int max_uid_cuid;
133 /* Get the cuid of an insn. */
135 #define INSN_CUID(INSN) \
136 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
138 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
139 BITS_PER_WORD would invoke undefined behavior. Work around it. */
141 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
142 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
144 #define nonzero_bits(X, M) \
145 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
147 #define num_sign_bit_copies(X, M) \
148 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
150 /* Maximum register number, which is the size of the tables below. */
152 static unsigned int combine_max_regno;
154 /* Record last point of death of (hard or pseudo) register n. */
156 static rtx *reg_last_death;
158 /* Record last point of modification of (hard or pseudo) register n. */
160 static rtx *reg_last_set;
162 /* Record the cuid of the last insn that invalidated memory
163 (anything that writes memory, and subroutine calls, but not pushes). */
165 static int mem_last_set;
167 /* Record the cuid of the last CALL_INSN
168 so we can tell whether a potential combination crosses any calls. */
170 static int last_call_cuid;
172 /* When `subst' is called, this is the insn that is being modified
173 (by combining in a previous insn). The PATTERN of this insn
174 is still the old pattern partially modified and it should not be
175 looked at, but this may be used to examine the successors of the insn
176 to judge whether a simplification is valid. */
178 static rtx subst_insn;
180 /* This is the lowest CUID that `subst' is currently dealing with.
181 get_last_value will not return a value if the register was set at or
182 after this CUID. If not for this mechanism, we could get confused if
183 I2 or I1 in try_combine were an insn that used the old value of a register
184 to obtain a new value. In that case, we might erroneously get the
185 new value of the register when we wanted the old one. */
187 static int subst_low_cuid;
189 /* This contains any hard registers that are used in newpat; reg_dead_at_p
190 must consider all these registers to be always live. */
192 static HARD_REG_SET newpat_used_regs;
194 /* This is an insn to which a LOG_LINKS entry has been added. If this
195 insn is the earlier than I2 or I3, combine should rescan starting at
196 that location. */
198 static rtx added_links_insn;
200 /* Basic block in which we are performing combines. */
201 static basic_block this_basic_block;
203 /* A bitmap indicating which blocks had registers go dead at entry.
204 After combine, we'll need to re-do global life analysis with
205 those blocks as starting points. */
206 static sbitmap refresh_blocks;
208 /* The next group of arrays allows the recording of the last value assigned
209 to (hard or pseudo) register n. We use this information to see if an
210 operation being processed is redundant given a prior operation performed
211 on the register. For example, an `and' with a constant is redundant if
212 all the zero bits are already known to be turned off.
214 We use an approach similar to that used by cse, but change it in the
215 following ways:
217 (1) We do not want to reinitialize at each label.
218 (2) It is useful, but not critical, to know the actual value assigned
219 to a register. Often just its form is helpful.
221 Therefore, we maintain the following arrays:
223 reg_last_set_value the last value assigned
224 reg_last_set_label records the value of label_tick when the
225 register was assigned
226 reg_last_set_table_tick records the value of label_tick when a
227 value using the register is assigned
228 reg_last_set_invalid set to nonzero when it is not valid
229 to use the value of this register in some
230 register's value
232 To understand the usage of these tables, it is important to understand
233 the distinction between the value in reg_last_set_value being valid
234 and the register being validly contained in some other expression in the
235 table.
237 Entry I in reg_last_set_value is valid if it is nonzero, and either
238 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
240 Register I may validly appear in any expression returned for the value
241 of another register if reg_n_sets[i] is 1. It may also appear in the
242 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
243 reg_last_set_invalid[j] is zero.
245 If an expression is found in the table containing a register which may
246 not validly appear in an expression, the register is replaced by
247 something that won't match, (clobber (const_int 0)).
249 reg_last_set_invalid[i] is set nonzero when register I is being assigned
250 to and reg_last_set_table_tick[i] == label_tick. */
252 /* Record last value assigned to (hard or pseudo) register n. */
254 static rtx *reg_last_set_value;
256 /* Record the value of label_tick when the value for register n is placed in
257 reg_last_set_value[n]. */
259 static int *reg_last_set_label;
261 /* Record the value of label_tick when an expression involving register n
262 is placed in reg_last_set_value. */
264 static int *reg_last_set_table_tick;
266 /* Set nonzero if references to register n in expressions should not be
267 used. */
269 static char *reg_last_set_invalid;
271 /* Incremented for each label. */
273 static int label_tick;
275 /* Some registers that are set more than once and used in more than one
276 basic block are nevertheless always set in similar ways. For example,
277 a QImode register may be loaded from memory in two places on a machine
278 where byte loads zero extend.
280 We record in the following array what we know about the nonzero
281 bits of a register, specifically which bits are known to be zero.
283 If an entry is zero, it means that we don't know anything special. */
285 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
287 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
288 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
290 static enum machine_mode nonzero_bits_mode;
292 /* Nonzero if we know that a register has some leading bits that are always
293 equal to the sign bit. */
295 static unsigned char *reg_sign_bit_copies;
297 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
298 It is zero while computing them and after combine has completed. This
299 former test prevents propagating values based on previously set values,
300 which can be incorrect if a variable is modified in a loop. */
302 static int nonzero_sign_valid;
304 /* These arrays are maintained in parallel with reg_last_set_value
305 and are used to store the mode in which the register was last set,
306 the bits that were known to be zero when it was last set, and the
307 number of sign bits copies it was known to have when it was last set. */
309 static enum machine_mode *reg_last_set_mode;
310 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
311 static char *reg_last_set_sign_bit_copies;
313 /* Record one modification to rtl structure
314 to be undone by storing old_contents into *where.
315 is_int is 1 if the contents are an int. */
317 struct undo
319 struct undo *next;
320 int is_int;
321 union {rtx r; int i;} old_contents;
322 union {rtx *r; int *i;} where;
325 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
326 num_undo says how many are currently recorded.
328 other_insn is nonzero if we have modified some other insn in the process
329 of working on subst_insn. It must be verified too. */
331 struct undobuf
333 struct undo *undos;
334 struct undo *frees;
335 rtx other_insn;
338 static struct undobuf undobuf;
340 /* Number of times the pseudo being substituted for
341 was found and replaced. */
343 static int n_occurrences;
345 static void do_SUBST (rtx *, rtx);
346 static void do_SUBST_INT (int *, int);
347 static void init_reg_last_arrays (void);
348 static void setup_incoming_promotions (void);
349 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
350 static int cant_combine_insn_p (rtx);
351 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
352 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
353 static int contains_muldiv (rtx);
354 static rtx try_combine (rtx, rtx, rtx, int *);
355 static void undo_all (void);
356 static void undo_commit (void);
357 static rtx *find_split_point (rtx *, rtx);
358 static rtx subst (rtx, rtx, rtx, int, int);
359 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
360 static rtx simplify_if_then_else (rtx);
361 static rtx simplify_set (rtx);
362 static rtx simplify_logical (rtx, int);
363 static rtx expand_compound_operation (rtx);
364 static rtx expand_field_assignment (rtx);
365 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
366 rtx, unsigned HOST_WIDE_INT, int, int, int);
367 static rtx extract_left_shift (rtx, int);
368 static rtx make_compound_operation (rtx, enum rtx_code);
369 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
370 unsigned HOST_WIDE_INT *);
371 static rtx force_to_mode (rtx, enum machine_mode,
372 unsigned HOST_WIDE_INT, rtx, int);
373 static rtx if_then_else_cond (rtx, rtx *, rtx *);
374 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
375 static int rtx_equal_for_field_assignment_p (rtx, rtx);
376 static rtx make_field_assignment (rtx);
377 static rtx apply_distributive_law (rtx);
378 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
379 unsigned HOST_WIDE_INT);
380 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
381 rtx, enum machine_mode,
382 unsigned HOST_WIDE_INT);
383 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
384 enum machine_mode,
385 unsigned HOST_WIDE_INT);
386 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
387 enum machine_mode,
388 unsigned int);
389 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
390 enum machine_mode, unsigned int);
391 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
392 HOST_WIDE_INT, enum machine_mode, int *);
393 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
394 int);
395 static int recog_for_combine (rtx *, rtx, rtx *);
396 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
397 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
417 static enum rtx_code combine_reversed_comparison_code (rtx);
419 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
420 insn. The substitution can be undone by undo_all. If INTO is already
421 set to NEWVAL, do not record this change. Because computing NEWVAL might
422 also call SUBST, we have to compute it before we put anything into
423 the undo table. */
425 static void
426 do_SUBST (rtx *into, rtx newval)
428 struct undo *buf;
429 rtx oldval = *into;
431 if (oldval == newval)
432 return;
434 /* We'd like to catch as many invalid transformations here as
435 possible. Unfortunately, there are way too many mode changes
436 that are perfectly valid, so we'd waste too much effort for
437 little gain doing the checks here. Focus on catching invalid
438 transformations involving integer constants. */
439 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
440 && GET_CODE (newval) == CONST_INT)
442 /* Sanity check that we're replacing oldval with a CONST_INT
443 that is a valid sign-extension for the original mode. */
444 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
445 GET_MODE (oldval)))
446 abort ();
448 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
449 CONST_INT is not valid, because after the replacement, the
450 original mode would be gone. Unfortunately, we can't tell
451 when do_SUBST is called to replace the operand thereof, so we
452 perform this test on oldval instead, checking whether an
453 invalid replacement took place before we got here. */
454 if ((GET_CODE (oldval) == SUBREG
455 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
456 || (GET_CODE (oldval) == ZERO_EXTEND
457 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
458 abort ();
461 if (undobuf.frees)
462 buf = undobuf.frees, undobuf.frees = buf->next;
463 else
464 buf = xmalloc (sizeof (struct undo));
466 buf->is_int = 0;
467 buf->where.r = into;
468 buf->old_contents.r = oldval;
469 *into = newval;
471 buf->next = undobuf.undos, undobuf.undos = buf;
474 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
476 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
477 for the value of a HOST_WIDE_INT value (including CONST_INT) is
478 not safe. */
480 static void
481 do_SUBST_INT (int *into, int newval)
483 struct undo *buf;
484 int oldval = *into;
486 if (oldval == newval)
487 return;
489 if (undobuf.frees)
490 buf = undobuf.frees, undobuf.frees = buf->next;
491 else
492 buf = xmalloc (sizeof (struct undo));
494 buf->is_int = 1;
495 buf->where.i = into;
496 buf->old_contents.i = oldval;
497 *into = newval;
499 buf->next = undobuf.undos, undobuf.undos = buf;
502 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
504 /* Main entry point for combiner. F is the first insn of the function.
505 NREGS is the first unused pseudo-reg number.
507 Return nonzero if the combiner has turned an indirect jump
508 instruction into a direct jump. */
510 combine_instructions (rtx f, unsigned int nregs)
512 rtx insn, next;
513 #ifdef HAVE_cc0
514 rtx prev;
515 #endif
516 int i;
517 rtx links, nextlinks;
519 int new_direct_jump_p = 0;
521 combine_attempts = 0;
522 combine_merges = 0;
523 combine_extras = 0;
524 combine_successes = 0;
526 combine_max_regno = nregs;
528 reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
529 reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
531 reg_last_death = xmalloc (nregs * sizeof (rtx));
532 reg_last_set = xmalloc (nregs * sizeof (rtx));
533 reg_last_set_value = xmalloc (nregs * sizeof (rtx));
534 reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
535 reg_last_set_label = xmalloc (nregs * sizeof (int));
536 reg_last_set_invalid = xmalloc (nregs * sizeof (char));
537 reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
538 reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
541 init_reg_last_arrays ();
543 init_recog_no_volatile ();
545 /* Compute maximum uid value so uid_cuid can be allocated. */
547 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
548 if (INSN_UID (insn) > i)
549 i = INSN_UID (insn);
551 uid_cuid = xmalloc ((i + 1) * sizeof (int));
552 max_uid_cuid = i;
554 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
556 /* Don't use reg_nonzero_bits when computing it. This can cause problems
557 when, for example, we have j <<= 1 in a loop. */
559 nonzero_sign_valid = 0;
561 /* Compute the mapping from uids to cuids.
562 Cuids are numbers assigned to insns, like uids,
563 except that cuids increase monotonically through the code.
565 Scan all SETs and see if we can deduce anything about what
566 bits are known to be zero for some registers and how many copies
567 of the sign bit are known to exist for those registers.
569 Also set any known values so that we can use it while searching
570 for what bits are known to be set. */
572 label_tick = 1;
574 setup_incoming_promotions ();
576 refresh_blocks = sbitmap_alloc (last_basic_block);
577 sbitmap_zero (refresh_blocks);
579 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
581 uid_cuid[INSN_UID (insn)] = ++i;
582 subst_low_cuid = i;
583 subst_insn = insn;
585 if (INSN_P (insn))
587 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
588 NULL);
589 record_dead_and_set_regs (insn);
591 #ifdef AUTO_INC_DEC
592 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
593 if (REG_NOTE_KIND (links) == REG_INC)
594 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
595 NULL);
596 #endif
599 if (GET_CODE (insn) == CODE_LABEL)
600 label_tick++;
603 nonzero_sign_valid = 1;
605 /* Now scan all the insns in forward order. */
607 label_tick = 1;
608 last_call_cuid = 0;
609 mem_last_set = 0;
610 init_reg_last_arrays ();
611 setup_incoming_promotions ();
613 FOR_EACH_BB (this_basic_block)
615 for (insn = BB_HEAD (this_basic_block);
616 insn != NEXT_INSN (BB_END (this_basic_block));
617 insn = next ? next : NEXT_INSN (insn))
619 next = 0;
621 if (GET_CODE (insn) == CODE_LABEL)
622 label_tick++;
624 else if (INSN_P (insn))
626 /* See if we know about function return values before this
627 insn based upon SUBREG flags. */
628 check_promoted_subreg (insn, PATTERN (insn));
630 /* Try this insn with each insn it links back to. */
632 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
633 if ((next = try_combine (insn, XEXP (links, 0),
634 NULL_RTX, &new_direct_jump_p)) != 0)
635 goto retry;
637 /* Try each sequence of three linked insns ending with this one. */
639 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
641 rtx link = XEXP (links, 0);
643 /* If the linked insn has been replaced by a note, then there
644 is no point in pursuing this chain any further. */
645 if (GET_CODE (link) == NOTE)
646 continue;
648 for (nextlinks = LOG_LINKS (link);
649 nextlinks;
650 nextlinks = XEXP (nextlinks, 1))
651 if ((next = try_combine (insn, link,
652 XEXP (nextlinks, 0),
653 &new_direct_jump_p)) != 0)
654 goto retry;
657 #ifdef HAVE_cc0
658 /* Try to combine a jump insn that uses CC0
659 with a preceding insn that sets CC0, and maybe with its
660 logical predecessor as well.
661 This is how we make decrement-and-branch insns.
662 We need this special code because data flow connections
663 via CC0 do not get entered in LOG_LINKS. */
665 if (GET_CODE (insn) == JUMP_INSN
666 && (prev = prev_nonnote_insn (insn)) != 0
667 && GET_CODE (prev) == INSN
668 && sets_cc0_p (PATTERN (prev)))
670 if ((next = try_combine (insn, prev,
671 NULL_RTX, &new_direct_jump_p)) != 0)
672 goto retry;
674 for (nextlinks = LOG_LINKS (prev); nextlinks;
675 nextlinks = XEXP (nextlinks, 1))
676 if ((next = try_combine (insn, prev,
677 XEXP (nextlinks, 0),
678 &new_direct_jump_p)) != 0)
679 goto retry;
682 /* Do the same for an insn that explicitly references CC0. */
683 if (GET_CODE (insn) == INSN
684 && (prev = prev_nonnote_insn (insn)) != 0
685 && GET_CODE (prev) == INSN
686 && sets_cc0_p (PATTERN (prev))
687 && GET_CODE (PATTERN (insn)) == SET
688 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
690 if ((next = try_combine (insn, prev,
691 NULL_RTX, &new_direct_jump_p)) != 0)
692 goto retry;
694 for (nextlinks = LOG_LINKS (prev); nextlinks;
695 nextlinks = XEXP (nextlinks, 1))
696 if ((next = try_combine (insn, prev,
697 XEXP (nextlinks, 0),
698 &new_direct_jump_p)) != 0)
699 goto retry;
702 /* Finally, see if any of the insns that this insn links to
703 explicitly references CC0. If so, try this insn, that insn,
704 and its predecessor if it sets CC0. */
705 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
706 if (GET_CODE (XEXP (links, 0)) == INSN
707 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
708 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
709 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
710 && GET_CODE (prev) == INSN
711 && sets_cc0_p (PATTERN (prev))
712 && (next = try_combine (insn, XEXP (links, 0),
713 prev, &new_direct_jump_p)) != 0)
714 goto retry;
715 #endif
717 /* Try combining an insn with two different insns whose results it
718 uses. */
719 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
720 for (nextlinks = XEXP (links, 1); nextlinks;
721 nextlinks = XEXP (nextlinks, 1))
722 if ((next = try_combine (insn, XEXP (links, 0),
723 XEXP (nextlinks, 0),
724 &new_direct_jump_p)) != 0)
725 goto retry;
727 if (GET_CODE (insn) != NOTE)
728 record_dead_and_set_regs (insn);
730 retry:
735 clear_bb_flags ();
737 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
738 BASIC_BLOCK (i)->flags |= BB_DIRTY);
739 new_direct_jump_p |= purge_all_dead_edges (0);
740 delete_noop_moves (f);
742 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
743 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
744 | PROP_KILL_DEAD_CODE);
746 /* Clean up. */
747 sbitmap_free (refresh_blocks);
748 free (reg_nonzero_bits);
749 free (reg_sign_bit_copies);
750 free (reg_last_death);
751 free (reg_last_set);
752 free (reg_last_set_value);
753 free (reg_last_set_table_tick);
754 free (reg_last_set_label);
755 free (reg_last_set_invalid);
756 free (reg_last_set_mode);
757 free (reg_last_set_nonzero_bits);
758 free (reg_last_set_sign_bit_copies);
759 free (uid_cuid);
762 struct undo *undo, *next;
763 for (undo = undobuf.frees; undo; undo = next)
765 next = undo->next;
766 free (undo);
768 undobuf.frees = 0;
771 total_attempts += combine_attempts;
772 total_merges += combine_merges;
773 total_extras += combine_extras;
774 total_successes += combine_successes;
776 nonzero_sign_valid = 0;
778 /* Make recognizer allow volatile MEMs again. */
779 init_recog ();
781 return new_direct_jump_p;
784 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
786 static void
787 init_reg_last_arrays (void)
789 unsigned int nregs = combine_max_regno;
791 memset (reg_last_death, 0, nregs * sizeof (rtx));
792 memset (reg_last_set, 0, nregs * sizeof (rtx));
793 memset (reg_last_set_value, 0, nregs * sizeof (rtx));
794 memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
795 memset (reg_last_set_label, 0, nregs * sizeof (int));
796 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
797 memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
798 memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
799 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
802 /* Set up any promoted values for incoming argument registers. */
804 static void
805 setup_incoming_promotions (void)
807 unsigned int regno;
808 rtx reg;
809 enum machine_mode mode;
810 int unsignedp;
811 rtx first = get_insns ();
813 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
815 #ifndef OUTGOING_REGNO
816 #define OUTGOING_REGNO(N) N
817 #endif
818 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
819 /* Check whether this register can hold an incoming pointer
820 argument. FUNCTION_ARG_REGNO_P tests outgoing register
821 numbers, so translate if necessary due to register windows. */
822 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
823 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
825 record_value_for_reg
826 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
827 : SIGN_EXTEND),
828 GET_MODE (reg),
829 gen_rtx_CLOBBER (mode, const0_rtx)));
834 /* Called via note_stores. If X is a pseudo that is narrower than
835 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
837 If we are setting only a portion of X and we can't figure out what
838 portion, assume all bits will be used since we don't know what will
839 be happening.
841 Similarly, set how many bits of X are known to be copies of the sign bit
842 at all locations in the function. This is the smallest number implied
843 by any set of X. */
845 static void
846 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
847 void *data ATTRIBUTE_UNUSED)
849 unsigned int num;
851 if (GET_CODE (x) == REG
852 && REGNO (x) >= FIRST_PSEUDO_REGISTER
853 /* If this register is undefined at the start of the file, we can't
854 say what its contents were. */
855 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
856 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
858 if (set == 0 || GET_CODE (set) == CLOBBER)
860 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
861 reg_sign_bit_copies[REGNO (x)] = 1;
862 return;
865 /* If this is a complex assignment, see if we can convert it into a
866 simple assignment. */
867 set = expand_field_assignment (set);
869 /* If this is a simple assignment, or we have a paradoxical SUBREG,
870 set what we know about X. */
872 if (SET_DEST (set) == x
873 || (GET_CODE (SET_DEST (set)) == SUBREG
874 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
875 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
876 && SUBREG_REG (SET_DEST (set)) == x))
878 rtx src = SET_SRC (set);
880 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
881 /* If X is narrower than a word and SRC is a non-negative
882 constant that would appear negative in the mode of X,
883 sign-extend it for use in reg_nonzero_bits because some
884 machines (maybe most) will actually do the sign-extension
885 and this is the conservative approach.
887 ??? For 2.5, try to tighten up the MD files in this regard
888 instead of this kludge. */
890 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
891 && GET_CODE (src) == CONST_INT
892 && INTVAL (src) > 0
893 && 0 != (INTVAL (src)
894 & ((HOST_WIDE_INT) 1
895 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
896 src = GEN_INT (INTVAL (src)
897 | ((HOST_WIDE_INT) (-1)
898 << GET_MODE_BITSIZE (GET_MODE (x))));
899 #endif
901 /* Don't call nonzero_bits if it cannot change anything. */
902 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
903 reg_nonzero_bits[REGNO (x)]
904 |= nonzero_bits (src, nonzero_bits_mode);
905 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
906 if (reg_sign_bit_copies[REGNO (x)] == 0
907 || reg_sign_bit_copies[REGNO (x)] > num)
908 reg_sign_bit_copies[REGNO (x)] = num;
910 else
912 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
913 reg_sign_bit_copies[REGNO (x)] = 1;
918 /* See if INSN can be combined into I3. PRED and SUCC are optionally
919 insns that were previously combined into I3 or that will be combined
920 into the merger of INSN and I3.
922 Return 0 if the combination is not allowed for any reason.
924 If the combination is allowed, *PDEST will be set to the single
925 destination of INSN and *PSRC to the single source, and this function
926 will return 1. */
928 static int
929 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
930 rtx *pdest, rtx *psrc)
932 int i;
933 rtx set = 0, src, dest;
934 rtx p;
935 #ifdef AUTO_INC_DEC
936 rtx link;
937 #endif
938 int all_adjacent = (succ ? (next_active_insn (insn) == succ
939 && next_active_insn (succ) == i3)
940 : next_active_insn (insn) == i3);
942 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
943 or a PARALLEL consisting of such a SET and CLOBBERs.
945 If INSN has CLOBBER parallel parts, ignore them for our processing.
946 By definition, these happen during the execution of the insn. When it
947 is merged with another insn, all bets are off. If they are, in fact,
948 needed and aren't also supplied in I3, they may be added by
949 recog_for_combine. Otherwise, it won't match.
951 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
952 note.
954 Get the source and destination of INSN. If more than one, can't
955 combine. */
957 if (GET_CODE (PATTERN (insn)) == SET)
958 set = PATTERN (insn);
959 else if (GET_CODE (PATTERN (insn)) == PARALLEL
960 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
962 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
964 rtx elt = XVECEXP (PATTERN (insn), 0, i);
966 switch (GET_CODE (elt))
968 /* This is important to combine floating point insns
969 for the SH4 port. */
970 case USE:
971 /* Combining an isolated USE doesn't make sense.
972 We depend here on combinable_i3pat to reject them. */
973 /* The code below this loop only verifies that the inputs of
974 the SET in INSN do not change. We call reg_set_between_p
975 to verify that the REG in the USE does not change between
976 I3 and INSN.
977 If the USE in INSN was for a pseudo register, the matching
978 insn pattern will likely match any register; combining this
979 with any other USE would only be safe if we knew that the
980 used registers have identical values, or if there was
981 something to tell them apart, e.g. different modes. For
982 now, we forgo such complicated tests and simply disallow
983 combining of USES of pseudo registers with any other USE. */
984 if (GET_CODE (XEXP (elt, 0)) == REG
985 && GET_CODE (PATTERN (i3)) == PARALLEL)
987 rtx i3pat = PATTERN (i3);
988 int i = XVECLEN (i3pat, 0) - 1;
989 unsigned int regno = REGNO (XEXP (elt, 0));
993 rtx i3elt = XVECEXP (i3pat, 0, i);
995 if (GET_CODE (i3elt) == USE
996 && GET_CODE (XEXP (i3elt, 0)) == REG
997 && (REGNO (XEXP (i3elt, 0)) == regno
998 ? reg_set_between_p (XEXP (elt, 0),
999 PREV_INSN (insn), i3)
1000 : regno >= FIRST_PSEUDO_REGISTER))
1001 return 0;
1003 while (--i >= 0);
1005 break;
1007 /* We can ignore CLOBBERs. */
1008 case CLOBBER:
1009 break;
1011 case SET:
1012 /* Ignore SETs whose result isn't used but not those that
1013 have side-effects. */
1014 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1015 && ! side_effects_p (elt))
1016 break;
1018 /* If we have already found a SET, this is a second one and
1019 so we cannot combine with this insn. */
1020 if (set)
1021 return 0;
1023 set = elt;
1024 break;
1026 default:
1027 /* Anything else means we can't combine. */
1028 return 0;
1032 if (set == 0
1033 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1034 so don't do anything with it. */
1035 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1036 return 0;
1038 else
1039 return 0;
1041 if (set == 0)
1042 return 0;
1044 set = expand_field_assignment (set);
1045 src = SET_SRC (set), dest = SET_DEST (set);
1047 /* Don't eliminate a store in the stack pointer. */
1048 if (dest == stack_pointer_rtx
1049 /* Don't combine with an insn that sets a register to itself if it has
1050 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1051 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1052 /* Can't merge an ASM_OPERANDS. */
1053 || GET_CODE (src) == ASM_OPERANDS
1054 /* Can't merge a function call. */
1055 || GET_CODE (src) == CALL
1056 /* Don't eliminate a function call argument. */
1057 || (GET_CODE (i3) == CALL_INSN
1058 && (find_reg_fusage (i3, USE, dest)
1059 || (GET_CODE (dest) == REG
1060 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1061 && global_regs[REGNO (dest)])))
1062 /* Don't substitute into an incremented register. */
1063 || FIND_REG_INC_NOTE (i3, dest)
1064 || (succ && FIND_REG_INC_NOTE (succ, dest))
1065 #if 0
1066 /* Don't combine the end of a libcall into anything. */
1067 /* ??? This gives worse code, and appears to be unnecessary, since no
1068 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1069 use REG_RETVAL notes for noconflict blocks, but other code here
1070 makes sure that those insns don't disappear. */
1071 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1072 #endif
1073 /* Make sure that DEST is not used after SUCC but before I3. */
1074 || (succ && ! all_adjacent
1075 && reg_used_between_p (dest, succ, i3))
1076 /* Make sure that the value that is to be substituted for the register
1077 does not use any registers whose values alter in between. However,
1078 If the insns are adjacent, a use can't cross a set even though we
1079 think it might (this can happen for a sequence of insns each setting
1080 the same destination; reg_last_set of that register might point to
1081 a NOTE). If INSN has a REG_EQUIV note, the register is always
1082 equivalent to the memory so the substitution is valid even if there
1083 are intervening stores. Also, don't move a volatile asm or
1084 UNSPEC_VOLATILE across any other insns. */
1085 || (! all_adjacent
1086 && (((GET_CODE (src) != MEM
1087 || ! find_reg_note (insn, REG_EQUIV, src))
1088 && use_crosses_set_p (src, INSN_CUID (insn)))
1089 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1090 || GET_CODE (src) == UNSPEC_VOLATILE))
1091 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1092 better register allocation by not doing the combine. */
1093 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1094 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1095 /* Don't combine across a CALL_INSN, because that would possibly
1096 change whether the life span of some REGs crosses calls or not,
1097 and it is a pain to update that information.
1098 Exception: if source is a constant, moving it later can't hurt.
1099 Accept that special case, because it helps -fforce-addr a lot. */
1100 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1101 return 0;
1103 /* DEST must either be a REG or CC0. */
1104 if (GET_CODE (dest) == REG)
1106 /* If register alignment is being enforced for multi-word items in all
1107 cases except for parameters, it is possible to have a register copy
1108 insn referencing a hard register that is not allowed to contain the
1109 mode being copied and which would not be valid as an operand of most
1110 insns. Eliminate this problem by not combining with such an insn.
1112 Also, on some machines we don't want to extend the life of a hard
1113 register. */
1115 if (GET_CODE (src) == REG
1116 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1117 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1118 /* Don't extend the life of a hard register unless it is
1119 user variable (if we have few registers) or it can't
1120 fit into the desired register (meaning something special
1121 is going on).
1122 Also avoid substituting a return register into I3, because
1123 reload can't handle a conflict with constraints of other
1124 inputs. */
1125 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1126 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1127 return 0;
1129 else if (GET_CODE (dest) != CC0)
1130 return 0;
1132 /* Don't substitute for a register intended as a clobberable operand.
1133 Similarly, don't substitute an expression containing a register that
1134 will be clobbered in I3. */
1135 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1136 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1137 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1138 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1139 src)
1140 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1141 return 0;
1143 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1144 or not), reject, unless nothing volatile comes between it and I3 */
1146 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1148 /* Make sure succ doesn't contain a volatile reference. */
1149 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1150 return 0;
1152 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1153 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1154 return 0;
1157 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1158 to be an explicit register variable, and was chosen for a reason. */
1160 if (GET_CODE (src) == ASM_OPERANDS
1161 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1162 return 0;
1164 /* If there are any volatile insns between INSN and I3, reject, because
1165 they might affect machine state. */
1167 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1168 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1169 return 0;
1171 /* If INSN or I2 contains an autoincrement or autodecrement,
1172 make sure that register is not used between there and I3,
1173 and not already used in I3 either.
1174 Also insist that I3 not be a jump; if it were one
1175 and the incremented register were spilled, we would lose. */
1177 #ifdef AUTO_INC_DEC
1178 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1179 if (REG_NOTE_KIND (link) == REG_INC
1180 && (GET_CODE (i3) == JUMP_INSN
1181 || reg_used_between_p (XEXP (link, 0), insn, i3)
1182 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1183 return 0;
1184 #endif
1186 #ifdef HAVE_cc0
1187 /* Don't combine an insn that follows a CC0-setting insn.
1188 An insn that uses CC0 must not be separated from the one that sets it.
1189 We do, however, allow I2 to follow a CC0-setting insn if that insn
1190 is passed as I1; in that case it will be deleted also.
1191 We also allow combining in this case if all the insns are adjacent
1192 because that would leave the two CC0 insns adjacent as well.
1193 It would be more logical to test whether CC0 occurs inside I1 or I2,
1194 but that would be much slower, and this ought to be equivalent. */
1196 p = prev_nonnote_insn (insn);
1197 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1198 && ! all_adjacent)
1199 return 0;
1200 #endif
1202 /* If we get here, we have passed all the tests and the combination is
1203 to be allowed. */
1205 *pdest = dest;
1206 *psrc = src;
1208 return 1;
1211 /* LOC is the location within I3 that contains its pattern or the component
1212 of a PARALLEL of the pattern. We validate that it is valid for combining.
1214 One problem is if I3 modifies its output, as opposed to replacing it
1215 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1216 so would produce an insn that is not equivalent to the original insns.
1218 Consider:
1220 (set (reg:DI 101) (reg:DI 100))
1221 (set (subreg:SI (reg:DI 101) 0) <foo>)
1223 This is NOT equivalent to:
1225 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1226 (set (reg:DI 101) (reg:DI 100))])
1228 Not only does this modify 100 (in which case it might still be valid
1229 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1231 We can also run into a problem if I2 sets a register that I1
1232 uses and I1 gets directly substituted into I3 (not via I2). In that
1233 case, we would be getting the wrong value of I2DEST into I3, so we
1234 must reject the combination. This case occurs when I2 and I1 both
1235 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1236 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1237 of a SET must prevent combination from occurring.
1239 Before doing the above check, we first try to expand a field assignment
1240 into a set of logical operations.
1242 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1243 we place a register that is both set and used within I3. If more than one
1244 such register is detected, we fail.
1246 Return 1 if the combination is valid, zero otherwise. */
1248 static int
1249 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1250 int i1_not_in_src, rtx *pi3dest_killed)
1252 rtx x = *loc;
1254 if (GET_CODE (x) == SET)
1256 rtx set = x ;
1257 rtx dest = SET_DEST (set);
1258 rtx src = SET_SRC (set);
1259 rtx inner_dest = dest;
1261 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1262 || GET_CODE (inner_dest) == SUBREG
1263 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1264 inner_dest = XEXP (inner_dest, 0);
1266 /* Check for the case where I3 modifies its output, as discussed
1267 above. We don't want to prevent pseudos from being combined
1268 into the address of a MEM, so only prevent the combination if
1269 i1 or i2 set the same MEM. */
1270 if ((inner_dest != dest &&
1271 (GET_CODE (inner_dest) != MEM
1272 || rtx_equal_p (i2dest, inner_dest)
1273 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1274 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1275 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1277 /* This is the same test done in can_combine_p except we can't test
1278 all_adjacent; we don't have to, since this instruction will stay
1279 in place, thus we are not considering increasing the lifetime of
1280 INNER_DEST.
1282 Also, if this insn sets a function argument, combining it with
1283 something that might need a spill could clobber a previous
1284 function argument; the all_adjacent test in can_combine_p also
1285 checks this; here, we do a more specific test for this case. */
1287 || (GET_CODE (inner_dest) == REG
1288 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1289 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1290 GET_MODE (inner_dest))))
1291 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1292 return 0;
1294 /* If DEST is used in I3, it is being killed in this insn,
1295 so record that for later.
1296 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1297 STACK_POINTER_REGNUM, since these are always considered to be
1298 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1299 if (pi3dest_killed && GET_CODE (dest) == REG
1300 && reg_referenced_p (dest, PATTERN (i3))
1301 && REGNO (dest) != FRAME_POINTER_REGNUM
1302 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1303 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1304 #endif
1305 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1306 && (REGNO (dest) != ARG_POINTER_REGNUM
1307 || ! fixed_regs [REGNO (dest)])
1308 #endif
1309 && REGNO (dest) != STACK_POINTER_REGNUM)
1311 if (*pi3dest_killed)
1312 return 0;
1314 *pi3dest_killed = dest;
1318 else if (GET_CODE (x) == PARALLEL)
1320 int i;
1322 for (i = 0; i < XVECLEN (x, 0); i++)
1323 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1324 i1_not_in_src, pi3dest_killed))
1325 return 0;
1328 return 1;
1331 /* Return 1 if X is an arithmetic expression that contains a multiplication
1332 and division. We don't count multiplications by powers of two here. */
1334 static int
1335 contains_muldiv (rtx x)
1337 switch (GET_CODE (x))
1339 case MOD: case DIV: case UMOD: case UDIV:
1340 return 1;
1342 case MULT:
1343 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1344 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1345 default:
1346 switch (GET_RTX_CLASS (GET_CODE (x)))
1348 case 'c': case '<': case '2':
1349 return contains_muldiv (XEXP (x, 0))
1350 || contains_muldiv (XEXP (x, 1));
1352 case '1':
1353 return contains_muldiv (XEXP (x, 0));
1355 default:
1356 return 0;
1361 /* Determine whether INSN can be used in a combination. Return nonzero if
1362 not. This is used in try_combine to detect early some cases where we
1363 can't perform combinations. */
1365 static int
1366 cant_combine_insn_p (rtx insn)
1368 rtx set;
1369 rtx src, dest;
1371 /* If this isn't really an insn, we can't do anything.
1372 This can occur when flow deletes an insn that it has merged into an
1373 auto-increment address. */
1374 if (! INSN_P (insn))
1375 return 1;
1377 /* Never combine loads and stores involving hard regs that are likely
1378 to be spilled. The register allocator can usually handle such
1379 reg-reg moves by tying. If we allow the combiner to make
1380 substitutions of likely-spilled regs, we may abort in reload.
1381 As an exception, we allow combinations involving fixed regs; these are
1382 not available to the register allocator so there's no risk involved. */
1384 set = single_set (insn);
1385 if (! set)
1386 return 0;
1387 src = SET_SRC (set);
1388 dest = SET_DEST (set);
1389 if (GET_CODE (src) == SUBREG)
1390 src = SUBREG_REG (src);
1391 if (GET_CODE (dest) == SUBREG)
1392 dest = SUBREG_REG (dest);
1393 if (REG_P (src) && REG_P (dest)
1394 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1395 && ! fixed_regs[REGNO (src)]
1396 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1397 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1398 && ! fixed_regs[REGNO (dest)]
1399 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1400 return 1;
1402 return 0;
1405 /* Adjust INSN after we made a change to its destination.
1407 Changing the destination can invalidate notes that say something about
1408 the results of the insn and a LOG_LINK pointing to the insn. */
1410 static void
1411 adjust_for_new_dest (rtx insn)
1413 rtx *loc;
1415 /* For notes, be conservative and simply remove them. */
1416 loc = &REG_NOTES (insn);
1417 while (*loc)
1419 enum reg_note kind = REG_NOTE_KIND (*loc);
1420 if (kind == REG_EQUAL || kind == REG_EQUIV)
1421 *loc = XEXP (*loc, 1);
1422 else
1423 loc = &XEXP (*loc, 1);
1426 /* The new insn will have a destination that was previously the destination
1427 of an insn just above it. Call distribute_links to make a LOG_LINK from
1428 the next use of that destination. */
1429 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1432 /* Try to combine the insns I1 and I2 into I3.
1433 Here I1 and I2 appear earlier than I3.
1434 I1 can be zero; then we combine just I2 into I3.
1436 If we are combining three insns and the resulting insn is not recognized,
1437 try splitting it into two insns. If that happens, I2 and I3 are retained
1438 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1439 are pseudo-deleted.
1441 Return 0 if the combination does not work. Then nothing is changed.
1442 If we did the combination, return the insn at which combine should
1443 resume scanning.
1445 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1446 new direct jump instruction. */
1448 static rtx
1449 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1451 /* New patterns for I3 and I2, respectively. */
1452 rtx newpat, newi2pat = 0;
1453 int substed_i2 = 0, substed_i1 = 0;
1454 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1455 int added_sets_1, added_sets_2;
1456 /* Total number of SETs to put into I3. */
1457 int total_sets;
1458 /* Nonzero is I2's body now appears in I3. */
1459 int i2_is_used;
1460 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1461 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1462 /* Contains I3 if the destination of I3 is used in its source, which means
1463 that the old life of I3 is being killed. If that usage is placed into
1464 I2 and not in I3, a REG_DEAD note must be made. */
1465 rtx i3dest_killed = 0;
1466 /* SET_DEST and SET_SRC of I2 and I1. */
1467 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1468 /* PATTERN (I2), or a copy of it in certain cases. */
1469 rtx i2pat;
1470 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1471 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1472 int i1_feeds_i3 = 0;
1473 /* Notes that must be added to REG_NOTES in I3 and I2. */
1474 rtx new_i3_notes, new_i2_notes;
1475 /* Notes that we substituted I3 into I2 instead of the normal case. */
1476 int i3_subst_into_i2 = 0;
1477 /* Notes that I1, I2 or I3 is a MULT operation. */
1478 int have_mult = 0;
1480 int maxreg;
1481 rtx temp;
1482 rtx link;
1483 int i;
1485 /* Exit early if one of the insns involved can't be used for
1486 combinations. */
1487 if (cant_combine_insn_p (i3)
1488 || cant_combine_insn_p (i2)
1489 || (i1 && cant_combine_insn_p (i1))
1490 /* We also can't do anything if I3 has a
1491 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1492 libcall. */
1493 #if 0
1494 /* ??? This gives worse code, and appears to be unnecessary, since no
1495 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1496 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1497 #endif
1499 return 0;
1501 combine_attempts++;
1502 undobuf.other_insn = 0;
1504 /* Reset the hard register usage information. */
1505 CLEAR_HARD_REG_SET (newpat_used_regs);
1507 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1508 code below, set I1 to be the earlier of the two insns. */
1509 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1510 temp = i1, i1 = i2, i2 = temp;
1512 added_links_insn = 0;
1514 /* First check for one important special-case that the code below will
1515 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1516 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1517 we may be able to replace that destination with the destination of I3.
1518 This occurs in the common code where we compute both a quotient and
1519 remainder into a structure, in which case we want to do the computation
1520 directly into the structure to avoid register-register copies.
1522 Note that this case handles both multiple sets in I2 and also
1523 cases where I2 has a number of CLOBBER or PARALLELs.
1525 We make very conservative checks below and only try to handle the
1526 most common cases of this. For example, we only handle the case
1527 where I2 and I3 are adjacent to avoid making difficult register
1528 usage tests. */
1530 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1531 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1532 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1533 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1534 && GET_CODE (PATTERN (i2)) == PARALLEL
1535 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1536 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1537 below would need to check what is inside (and reg_overlap_mentioned_p
1538 doesn't support those codes anyway). Don't allow those destinations;
1539 the resulting insn isn't likely to be recognized anyway. */
1540 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1541 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1542 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1543 SET_DEST (PATTERN (i3)))
1544 && next_real_insn (i2) == i3)
1546 rtx p2 = PATTERN (i2);
1548 /* Make sure that the destination of I3,
1549 which we are going to substitute into one output of I2,
1550 is not used within another output of I2. We must avoid making this:
1551 (parallel [(set (mem (reg 69)) ...)
1552 (set (reg 69) ...)])
1553 which is not well-defined as to order of actions.
1554 (Besides, reload can't handle output reloads for this.)
1556 The problem can also happen if the dest of I3 is a memory ref,
1557 if another dest in I2 is an indirect memory ref. */
1558 for (i = 0; i < XVECLEN (p2, 0); i++)
1559 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1560 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1561 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1562 SET_DEST (XVECEXP (p2, 0, i))))
1563 break;
1565 if (i == XVECLEN (p2, 0))
1566 for (i = 0; i < XVECLEN (p2, 0); i++)
1567 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1568 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1569 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1571 combine_merges++;
1573 subst_insn = i3;
1574 subst_low_cuid = INSN_CUID (i2);
1576 added_sets_2 = added_sets_1 = 0;
1577 i2dest = SET_SRC (PATTERN (i3));
1579 /* Replace the dest in I2 with our dest and make the resulting
1580 insn the new pattern for I3. Then skip to where we
1581 validate the pattern. Everything was set up above. */
1582 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1583 SET_DEST (PATTERN (i3)));
1585 newpat = p2;
1586 i3_subst_into_i2 = 1;
1587 goto validate_replacement;
1591 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1592 one of those words to another constant, merge them by making a new
1593 constant. */
1594 if (i1 == 0
1595 && (temp = single_set (i2)) != 0
1596 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1597 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1598 && GET_CODE (SET_DEST (temp)) == REG
1599 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1600 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1601 && GET_CODE (PATTERN (i3)) == SET
1602 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1603 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1604 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1605 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1606 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1608 HOST_WIDE_INT lo, hi;
1610 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1611 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1612 else
1614 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1615 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1618 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1620 /* We don't handle the case of the target word being wider
1621 than a host wide int. */
1622 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1623 abort ();
1625 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1626 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1627 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1629 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1630 hi = INTVAL (SET_SRC (PATTERN (i3)));
1631 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1633 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1634 >> (HOST_BITS_PER_WIDE_INT - 1));
1636 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1637 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1638 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1639 (INTVAL (SET_SRC (PATTERN (i3)))));
1640 if (hi == sign)
1641 hi = lo < 0 ? -1 : 0;
1643 else
1644 /* We don't handle the case of the higher word not fitting
1645 entirely in either hi or lo. */
1646 abort ();
1648 combine_merges++;
1649 subst_insn = i3;
1650 subst_low_cuid = INSN_CUID (i2);
1651 added_sets_2 = added_sets_1 = 0;
1652 i2dest = SET_DEST (temp);
1654 SUBST (SET_SRC (temp),
1655 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1657 newpat = PATTERN (i2);
1658 goto validate_replacement;
1661 #ifndef HAVE_cc0
1662 /* If we have no I1 and I2 looks like:
1663 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1664 (set Y OP)])
1665 make up a dummy I1 that is
1666 (set Y OP)
1667 and change I2 to be
1668 (set (reg:CC X) (compare:CC Y (const_int 0)))
1670 (We can ignore any trailing CLOBBERs.)
1672 This undoes a previous combination and allows us to match a branch-and-
1673 decrement insn. */
1675 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1676 && XVECLEN (PATTERN (i2), 0) >= 2
1677 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1678 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1679 == MODE_CC)
1680 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1681 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1682 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1683 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1684 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1685 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1687 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1688 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1689 break;
1691 if (i == 1)
1693 /* We make I1 with the same INSN_UID as I2. This gives it
1694 the same INSN_CUID for value tracking. Our fake I1 will
1695 never appear in the insn stream so giving it the same INSN_UID
1696 as I2 will not cause a problem. */
1698 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1699 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1700 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1701 NULL_RTX);
1703 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1704 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1705 SET_DEST (PATTERN (i1)));
1708 #endif
1710 /* Verify that I2 and I1 are valid for combining. */
1711 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1712 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1714 undo_all ();
1715 return 0;
1718 /* Record whether I2DEST is used in I2SRC and similarly for the other
1719 cases. Knowing this will help in register status updating below. */
1720 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1721 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1722 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1724 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1725 in I2SRC. */
1726 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1728 /* Ensure that I3's pattern can be the destination of combines. */
1729 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1730 i1 && i2dest_in_i1src && i1_feeds_i3,
1731 &i3dest_killed))
1733 undo_all ();
1734 return 0;
1737 /* See if any of the insns is a MULT operation. Unless one is, we will
1738 reject a combination that is, since it must be slower. Be conservative
1739 here. */
1740 if (GET_CODE (i2src) == MULT
1741 || (i1 != 0 && GET_CODE (i1src) == MULT)
1742 || (GET_CODE (PATTERN (i3)) == SET
1743 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1744 have_mult = 1;
1746 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1747 We used to do this EXCEPT in one case: I3 has a post-inc in an
1748 output operand. However, that exception can give rise to insns like
1749 mov r3,(r3)+
1750 which is a famous insn on the PDP-11 where the value of r3 used as the
1751 source was model-dependent. Avoid this sort of thing. */
1753 #if 0
1754 if (!(GET_CODE (PATTERN (i3)) == SET
1755 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1756 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1757 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1758 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1759 /* It's not the exception. */
1760 #endif
1761 #ifdef AUTO_INC_DEC
1762 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1763 if (REG_NOTE_KIND (link) == REG_INC
1764 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1765 || (i1 != 0
1766 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1768 undo_all ();
1769 return 0;
1771 #endif
1773 /* See if the SETs in I1 or I2 need to be kept around in the merged
1774 instruction: whenever the value set there is still needed past I3.
1775 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1777 For the SET in I1, we have two cases: If I1 and I2 independently
1778 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1779 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1780 in I1 needs to be kept around unless I1DEST dies or is set in either
1781 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1782 I1DEST. If so, we know I1 feeds into I2. */
1784 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1786 added_sets_1
1787 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1788 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1790 /* If the set in I2 needs to be kept around, we must make a copy of
1791 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1792 PATTERN (I2), we are only substituting for the original I1DEST, not into
1793 an already-substituted copy. This also prevents making self-referential
1794 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1795 I2DEST. */
1797 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1798 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1799 : PATTERN (i2));
1801 if (added_sets_2)
1802 i2pat = copy_rtx (i2pat);
1804 combine_merges++;
1806 /* Substitute in the latest insn for the regs set by the earlier ones. */
1808 maxreg = max_reg_num ();
1810 subst_insn = i3;
1812 /* It is possible that the source of I2 or I1 may be performing an
1813 unneeded operation, such as a ZERO_EXTEND of something that is known
1814 to have the high part zero. Handle that case by letting subst look at
1815 the innermost one of them.
1817 Another way to do this would be to have a function that tries to
1818 simplify a single insn instead of merging two or more insns. We don't
1819 do this because of the potential of infinite loops and because
1820 of the potential extra memory required. However, doing it the way
1821 we are is a bit of a kludge and doesn't catch all cases.
1823 But only do this if -fexpensive-optimizations since it slows things down
1824 and doesn't usually win. */
1826 if (flag_expensive_optimizations)
1828 /* Pass pc_rtx so no substitutions are done, just simplifications.
1829 The cases that we are interested in here do not involve the few
1830 cases were is_replaced is checked. */
1831 if (i1)
1833 subst_low_cuid = INSN_CUID (i1);
1834 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1836 else
1838 subst_low_cuid = INSN_CUID (i2);
1839 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1843 #ifndef HAVE_cc0
1844 /* Many machines that don't use CC0 have insns that can both perform an
1845 arithmetic operation and set the condition code. These operations will
1846 be represented as a PARALLEL with the first element of the vector
1847 being a COMPARE of an arithmetic operation with the constant zero.
1848 The second element of the vector will set some pseudo to the result
1849 of the same arithmetic operation. If we simplify the COMPARE, we won't
1850 match such a pattern and so will generate an extra insn. Here we test
1851 for this case, where both the comparison and the operation result are
1852 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1853 I2SRC. Later we will make the PARALLEL that contains I2. */
1855 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1856 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1857 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1858 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1860 #ifdef SELECT_CC_MODE
1861 rtx *cc_use;
1862 enum machine_mode compare_mode;
1863 #endif
1865 newpat = PATTERN (i3);
1866 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1868 i2_is_used = 1;
1870 #ifdef SELECT_CC_MODE
1871 /* See if a COMPARE with the operand we substituted in should be done
1872 with the mode that is currently being used. If not, do the same
1873 processing we do in `subst' for a SET; namely, if the destination
1874 is used only once, try to replace it with a register of the proper
1875 mode and also replace the COMPARE. */
1876 if (undobuf.other_insn == 0
1877 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1878 &undobuf.other_insn))
1879 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1880 i2src, const0_rtx))
1881 != GET_MODE (SET_DEST (newpat))))
1883 unsigned int regno = REGNO (SET_DEST (newpat));
1884 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1886 if (regno < FIRST_PSEUDO_REGISTER
1887 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1888 && ! REG_USERVAR_P (SET_DEST (newpat))))
1890 if (regno >= FIRST_PSEUDO_REGISTER)
1891 SUBST (regno_reg_rtx[regno], new_dest);
1893 SUBST (SET_DEST (newpat), new_dest);
1894 SUBST (XEXP (*cc_use, 0), new_dest);
1895 SUBST (SET_SRC (newpat),
1896 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1898 else
1899 undobuf.other_insn = 0;
1901 #endif
1903 else
1904 #endif
1906 n_occurrences = 0; /* `subst' counts here */
1908 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1909 need to make a unique copy of I2SRC each time we substitute it
1910 to avoid self-referential rtl. */
1912 subst_low_cuid = INSN_CUID (i2);
1913 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1914 ! i1_feeds_i3 && i1dest_in_i1src);
1915 substed_i2 = 1;
1917 /* Record whether i2's body now appears within i3's body. */
1918 i2_is_used = n_occurrences;
1921 /* If we already got a failure, don't try to do more. Otherwise,
1922 try to substitute in I1 if we have it. */
1924 if (i1 && GET_CODE (newpat) != CLOBBER)
1926 /* Before we can do this substitution, we must redo the test done
1927 above (see detailed comments there) that ensures that I1DEST
1928 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1930 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1931 0, (rtx*) 0))
1933 undo_all ();
1934 return 0;
1937 n_occurrences = 0;
1938 subst_low_cuid = INSN_CUID (i1);
1939 newpat = subst (newpat, i1dest, i1src, 0, 0);
1940 substed_i1 = 1;
1943 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1944 to count all the ways that I2SRC and I1SRC can be used. */
1945 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1946 && i2_is_used + added_sets_2 > 1)
1947 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1948 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1949 > 1))
1950 /* Fail if we tried to make a new register (we used to abort, but there's
1951 really no reason to). */
1952 || max_reg_num () != maxreg
1953 /* Fail if we couldn't do something and have a CLOBBER. */
1954 || GET_CODE (newpat) == CLOBBER
1955 /* Fail if this new pattern is a MULT and we didn't have one before
1956 at the outer level. */
1957 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1958 && ! have_mult))
1960 undo_all ();
1961 return 0;
1964 /* If the actions of the earlier insns must be kept
1965 in addition to substituting them into the latest one,
1966 we must make a new PARALLEL for the latest insn
1967 to hold additional the SETs. */
1969 if (added_sets_1 || added_sets_2)
1971 combine_extras++;
1973 if (GET_CODE (newpat) == PARALLEL)
1975 rtvec old = XVEC (newpat, 0);
1976 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1977 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1978 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1979 sizeof (old->elem[0]) * old->num_elem);
1981 else
1983 rtx old = newpat;
1984 total_sets = 1 + added_sets_1 + added_sets_2;
1985 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1986 XVECEXP (newpat, 0, 0) = old;
1989 if (added_sets_1)
1990 XVECEXP (newpat, 0, --total_sets)
1991 = (GET_CODE (PATTERN (i1)) == PARALLEL
1992 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1994 if (added_sets_2)
1996 /* If there is no I1, use I2's body as is. We used to also not do
1997 the subst call below if I2 was substituted into I3,
1998 but that could lose a simplification. */
1999 if (i1 == 0)
2000 XVECEXP (newpat, 0, --total_sets) = i2pat;
2001 else
2002 /* See comment where i2pat is assigned. */
2003 XVECEXP (newpat, 0, --total_sets)
2004 = subst (i2pat, i1dest, i1src, 0, 0);
2008 /* We come here when we are replacing a destination in I2 with the
2009 destination of I3. */
2010 validate_replacement:
2012 /* Note which hard regs this insn has as inputs. */
2013 mark_used_regs_combine (newpat);
2015 /* Is the result of combination a valid instruction? */
2016 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2018 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2019 the second SET's destination is a register that is unused. In that case,
2020 we just need the first SET. This can occur when simplifying a divmod
2021 insn. We *must* test for this case here because the code below that
2022 splits two independent SETs doesn't handle this case correctly when it
2023 updates the register status. Also check the case where the first
2024 SET's destination is unused. That would not cause incorrect code, but
2025 does cause an unneeded insn to remain. */
2027 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2028 && XVECLEN (newpat, 0) == 2
2029 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2030 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2031 && asm_noperands (newpat) < 0)
2033 rtx set0 = XVECEXP (newpat, 0, 0);
2034 rtx set1 = XVECEXP (newpat, 0, 1);
2036 if (((GET_CODE (SET_DEST (set1)) == REG
2037 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2038 || (GET_CODE (SET_DEST (set1)) == SUBREG
2039 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2040 && ! side_effects_p (SET_SRC (set1)))
2042 newpat = set0;
2043 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2046 else if (((GET_CODE (SET_DEST (set0)) == REG
2047 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2048 || (GET_CODE (SET_DEST (set0)) == SUBREG
2049 && find_reg_note (i3, REG_UNUSED,
2050 SUBREG_REG (SET_DEST (set0)))))
2051 && ! side_effects_p (SET_SRC (set0)))
2053 newpat = set1;
2054 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2056 if (insn_code_number >= 0)
2058 /* If we will be able to accept this, we have made a
2059 change to the destination of I3. This requires us to
2060 do a few adjustments. */
2062 PATTERN (i3) = newpat;
2063 adjust_for_new_dest (i3);
2068 /* If we were combining three insns and the result is a simple SET
2069 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2070 insns. There are two ways to do this. It can be split using a
2071 machine-specific method (like when you have an addition of a large
2072 constant) or by combine in the function find_split_point. */
2074 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2075 && asm_noperands (newpat) < 0)
2077 rtx m_split, *split;
2078 rtx ni2dest = i2dest;
2080 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2081 use I2DEST as a scratch register will help. In the latter case,
2082 convert I2DEST to the mode of the source of NEWPAT if we can. */
2084 m_split = split_insns (newpat, i3);
2086 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2087 inputs of NEWPAT. */
2089 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2090 possible to try that as a scratch reg. This would require adding
2091 more code to make it work though. */
2093 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2095 /* If I2DEST is a hard register or the only use of a pseudo,
2096 we can change its mode. */
2097 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2098 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2099 && GET_CODE (i2dest) == REG
2100 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2101 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2102 && ! REG_USERVAR_P (i2dest))))
2103 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2104 REGNO (i2dest));
2106 m_split = split_insns (gen_rtx_PARALLEL
2107 (VOIDmode,
2108 gen_rtvec (2, newpat,
2109 gen_rtx_CLOBBER (VOIDmode,
2110 ni2dest))),
2111 i3);
2112 /* If the split with the mode-changed register didn't work, try
2113 the original register. */
2114 if (! m_split && ni2dest != i2dest)
2116 ni2dest = i2dest;
2117 m_split = split_insns (gen_rtx_PARALLEL
2118 (VOIDmode,
2119 gen_rtvec (2, newpat,
2120 gen_rtx_CLOBBER (VOIDmode,
2121 i2dest))),
2122 i3);
2126 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2128 m_split = PATTERN (m_split);
2129 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2130 if (insn_code_number >= 0)
2131 newpat = m_split;
2133 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2134 && (next_real_insn (i2) == i3
2135 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2137 rtx i2set, i3set;
2138 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2139 newi2pat = PATTERN (m_split);
2141 i3set = single_set (NEXT_INSN (m_split));
2142 i2set = single_set (m_split);
2144 /* In case we changed the mode of I2DEST, replace it in the
2145 pseudo-register table here. We can't do it above in case this
2146 code doesn't get executed and we do a split the other way. */
2148 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2149 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2151 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2153 /* If I2 or I3 has multiple SETs, we won't know how to track
2154 register status, so don't use these insns. If I2's destination
2155 is used between I2 and I3, we also can't use these insns. */
2157 if (i2_code_number >= 0 && i2set && i3set
2158 && (next_real_insn (i2) == i3
2159 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2160 insn_code_number = recog_for_combine (&newi3pat, i3,
2161 &new_i3_notes);
2162 if (insn_code_number >= 0)
2163 newpat = newi3pat;
2165 /* It is possible that both insns now set the destination of I3.
2166 If so, we must show an extra use of it. */
2168 if (insn_code_number >= 0)
2170 rtx new_i3_dest = SET_DEST (i3set);
2171 rtx new_i2_dest = SET_DEST (i2set);
2173 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2174 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2175 || GET_CODE (new_i3_dest) == SUBREG)
2176 new_i3_dest = XEXP (new_i3_dest, 0);
2178 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2179 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2180 || GET_CODE (new_i2_dest) == SUBREG)
2181 new_i2_dest = XEXP (new_i2_dest, 0);
2183 if (GET_CODE (new_i3_dest) == REG
2184 && GET_CODE (new_i2_dest) == REG
2185 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2186 REG_N_SETS (REGNO (new_i2_dest))++;
2190 /* If we can split it and use I2DEST, go ahead and see if that
2191 helps things be recognized. Verify that none of the registers
2192 are set between I2 and I3. */
2193 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2194 #ifdef HAVE_cc0
2195 && GET_CODE (i2dest) == REG
2196 #endif
2197 /* We need I2DEST in the proper mode. If it is a hard register
2198 or the only use of a pseudo, we can change its mode. */
2199 && (GET_MODE (*split) == GET_MODE (i2dest)
2200 || GET_MODE (*split) == VOIDmode
2201 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2202 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2203 && ! REG_USERVAR_P (i2dest)))
2204 && (next_real_insn (i2) == i3
2205 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2206 /* We can't overwrite I2DEST if its value is still used by
2207 NEWPAT. */
2208 && ! reg_referenced_p (i2dest, newpat))
2210 rtx newdest = i2dest;
2211 enum rtx_code split_code = GET_CODE (*split);
2212 enum machine_mode split_mode = GET_MODE (*split);
2214 /* Get NEWDEST as a register in the proper mode. We have already
2215 validated that we can do this. */
2216 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2218 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2220 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2221 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2224 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2225 an ASHIFT. This can occur if it was inside a PLUS and hence
2226 appeared to be a memory address. This is a kludge. */
2227 if (split_code == MULT
2228 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2229 && INTVAL (XEXP (*split, 1)) > 0
2230 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2232 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2233 XEXP (*split, 0), GEN_INT (i)));
2234 /* Update split_code because we may not have a multiply
2235 anymore. */
2236 split_code = GET_CODE (*split);
2239 #ifdef INSN_SCHEDULING
2240 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2241 be written as a ZERO_EXTEND. */
2242 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2244 #ifdef LOAD_EXTEND_OP
2245 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2246 what it really is. */
2247 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2248 == SIGN_EXTEND)
2249 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2250 SUBREG_REG (*split)));
2251 else
2252 #endif
2253 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2254 SUBREG_REG (*split)));
2256 #endif
2258 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2259 SUBST (*split, newdest);
2260 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2262 /* If the split point was a MULT and we didn't have one before,
2263 don't use one now. */
2264 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2265 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2269 /* Check for a case where we loaded from memory in a narrow mode and
2270 then sign extended it, but we need both registers. In that case,
2271 we have a PARALLEL with both loads from the same memory location.
2272 We can split this into a load from memory followed by a register-register
2273 copy. This saves at least one insn, more if register allocation can
2274 eliminate the copy.
2276 We cannot do this if the destination of the first assignment is a
2277 condition code register or cc0. We eliminate this case by making sure
2278 the SET_DEST and SET_SRC have the same mode.
2280 We cannot do this if the destination of the second assignment is
2281 a register that we have already assumed is zero-extended. Similarly
2282 for a SUBREG of such a register. */
2284 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2285 && GET_CODE (newpat) == PARALLEL
2286 && XVECLEN (newpat, 0) == 2
2287 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2288 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2289 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2290 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2291 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2292 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2293 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2294 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2295 INSN_CUID (i2))
2296 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2297 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2298 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2299 (GET_CODE (temp) == REG
2300 && reg_nonzero_bits[REGNO (temp)] != 0
2301 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2302 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2303 && (reg_nonzero_bits[REGNO (temp)]
2304 != GET_MODE_MASK (word_mode))))
2305 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2306 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2307 (GET_CODE (temp) == REG
2308 && reg_nonzero_bits[REGNO (temp)] != 0
2309 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2310 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2311 && (reg_nonzero_bits[REGNO (temp)]
2312 != GET_MODE_MASK (word_mode)))))
2313 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2314 SET_SRC (XVECEXP (newpat, 0, 1)))
2315 && ! find_reg_note (i3, REG_UNUSED,
2316 SET_DEST (XVECEXP (newpat, 0, 0))))
2318 rtx ni2dest;
2320 newi2pat = XVECEXP (newpat, 0, 0);
2321 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2322 newpat = XVECEXP (newpat, 0, 1);
2323 SUBST (SET_SRC (newpat),
2324 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2325 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2327 if (i2_code_number >= 0)
2328 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2330 if (insn_code_number >= 0)
2332 rtx insn;
2333 rtx link;
2335 /* If we will be able to accept this, we have made a change to the
2336 destination of I3. This requires us to do a few adjustments. */
2337 PATTERN (i3) = newpat;
2338 adjust_for_new_dest (i3);
2340 /* I3 now uses what used to be its destination and which is
2341 now I2's destination. That means we need a LOG_LINK from
2342 I3 to I2. But we used to have one, so we still will.
2344 However, some later insn might be using I2's dest and have
2345 a LOG_LINK pointing at I3. We must remove this link.
2346 The simplest way to remove the link is to point it at I1,
2347 which we know will be a NOTE. */
2349 for (insn = NEXT_INSN (i3);
2350 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2351 || insn != BB_HEAD (this_basic_block->next_bb));
2352 insn = NEXT_INSN (insn))
2354 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2356 for (link = LOG_LINKS (insn); link;
2357 link = XEXP (link, 1))
2358 if (XEXP (link, 0) == i3)
2359 XEXP (link, 0) = i1;
2361 break;
2367 /* Similarly, check for a case where we have a PARALLEL of two independent
2368 SETs but we started with three insns. In this case, we can do the sets
2369 as two separate insns. This case occurs when some SET allows two
2370 other insns to combine, but the destination of that SET is still live. */
2372 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2373 && GET_CODE (newpat) == PARALLEL
2374 && XVECLEN (newpat, 0) == 2
2375 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2376 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2377 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2378 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2379 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2380 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2381 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2382 INSN_CUID (i2))
2383 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2384 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2386 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2387 XVECEXP (newpat, 0, 0))
2388 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2389 XVECEXP (newpat, 0, 1))
2390 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2391 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2393 /* Normally, it doesn't matter which of the two is done first,
2394 but it does if one references cc0. In that case, it has to
2395 be first. */
2396 #ifdef HAVE_cc0
2397 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2399 newi2pat = XVECEXP (newpat, 0, 0);
2400 newpat = XVECEXP (newpat, 0, 1);
2402 else
2403 #endif
2405 newi2pat = XVECEXP (newpat, 0, 1);
2406 newpat = XVECEXP (newpat, 0, 0);
2409 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2411 if (i2_code_number >= 0)
2412 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2415 /* If it still isn't recognized, fail and change things back the way they
2416 were. */
2417 if ((insn_code_number < 0
2418 /* Is the result a reasonable ASM_OPERANDS? */
2419 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2421 undo_all ();
2422 return 0;
2425 /* If we had to change another insn, make sure it is valid also. */
2426 if (undobuf.other_insn)
2428 rtx other_pat = PATTERN (undobuf.other_insn);
2429 rtx new_other_notes;
2430 rtx note, next;
2432 CLEAR_HARD_REG_SET (newpat_used_regs);
2434 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2435 &new_other_notes);
2437 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2439 undo_all ();
2440 return 0;
2443 PATTERN (undobuf.other_insn) = other_pat;
2445 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2446 are still valid. Then add any non-duplicate notes added by
2447 recog_for_combine. */
2448 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2450 next = XEXP (note, 1);
2452 if (REG_NOTE_KIND (note) == REG_UNUSED
2453 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2455 if (GET_CODE (XEXP (note, 0)) == REG)
2456 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2458 remove_note (undobuf.other_insn, note);
2462 for (note = new_other_notes; note; note = XEXP (note, 1))
2463 if (GET_CODE (XEXP (note, 0)) == REG)
2464 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2466 distribute_notes (new_other_notes, undobuf.other_insn,
2467 undobuf.other_insn, NULL_RTX);
2469 #ifdef HAVE_cc0
2470 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2471 they are adjacent to each other or not. */
2473 rtx p = prev_nonnote_insn (i3);
2474 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2475 && sets_cc0_p (newi2pat))
2477 undo_all ();
2478 return 0;
2481 #endif
2483 /* We now know that we can do this combination. Merge the insns and
2484 update the status of registers and LOG_LINKS. */
2487 rtx i3notes, i2notes, i1notes = 0;
2488 rtx i3links, i2links, i1links = 0;
2489 rtx midnotes = 0;
2490 unsigned int regno;
2492 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2493 clear them. */
2494 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2495 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2496 if (i1)
2497 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2499 /* Ensure that we do not have something that should not be shared but
2500 occurs multiple times in the new insns. Check this by first
2501 resetting all the `used' flags and then copying anything is shared. */
2503 reset_used_flags (i3notes);
2504 reset_used_flags (i2notes);
2505 reset_used_flags (i1notes);
2506 reset_used_flags (newpat);
2507 reset_used_flags (newi2pat);
2508 if (undobuf.other_insn)
2509 reset_used_flags (PATTERN (undobuf.other_insn));
2511 i3notes = copy_rtx_if_shared (i3notes);
2512 i2notes = copy_rtx_if_shared (i2notes);
2513 i1notes = copy_rtx_if_shared (i1notes);
2514 newpat = copy_rtx_if_shared (newpat);
2515 newi2pat = copy_rtx_if_shared (newi2pat);
2516 if (undobuf.other_insn)
2517 reset_used_flags (PATTERN (undobuf.other_insn));
2519 INSN_CODE (i3) = insn_code_number;
2520 PATTERN (i3) = newpat;
2522 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2524 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2526 reset_used_flags (call_usage);
2527 call_usage = copy_rtx (call_usage);
2529 if (substed_i2)
2530 replace_rtx (call_usage, i2dest, i2src);
2532 if (substed_i1)
2533 replace_rtx (call_usage, i1dest, i1src);
2535 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2538 if (undobuf.other_insn)
2539 INSN_CODE (undobuf.other_insn) = other_code_number;
2541 /* We had one special case above where I2 had more than one set and
2542 we replaced a destination of one of those sets with the destination
2543 of I3. In that case, we have to update LOG_LINKS of insns later
2544 in this basic block. Note that this (expensive) case is rare.
2546 Also, in this case, we must pretend that all REG_NOTEs for I2
2547 actually came from I3, so that REG_UNUSED notes from I2 will be
2548 properly handled. */
2550 if (i3_subst_into_i2)
2552 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2553 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2554 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2555 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2556 && ! find_reg_note (i2, REG_UNUSED,
2557 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2558 for (temp = NEXT_INSN (i2);
2559 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2560 || BB_HEAD (this_basic_block) != temp);
2561 temp = NEXT_INSN (temp))
2562 if (temp != i3 && INSN_P (temp))
2563 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2564 if (XEXP (link, 0) == i2)
2565 XEXP (link, 0) = i3;
2567 if (i3notes)
2569 rtx link = i3notes;
2570 while (XEXP (link, 1))
2571 link = XEXP (link, 1);
2572 XEXP (link, 1) = i2notes;
2574 else
2575 i3notes = i2notes;
2576 i2notes = 0;
2579 LOG_LINKS (i3) = 0;
2580 REG_NOTES (i3) = 0;
2581 LOG_LINKS (i2) = 0;
2582 REG_NOTES (i2) = 0;
2584 if (newi2pat)
2586 INSN_CODE (i2) = i2_code_number;
2587 PATTERN (i2) = newi2pat;
2589 else
2591 PUT_CODE (i2, NOTE);
2592 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2593 NOTE_SOURCE_FILE (i2) = 0;
2596 if (i1)
2598 LOG_LINKS (i1) = 0;
2599 REG_NOTES (i1) = 0;
2600 PUT_CODE (i1, NOTE);
2601 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2602 NOTE_SOURCE_FILE (i1) = 0;
2605 /* Get death notes for everything that is now used in either I3 or
2606 I2 and used to die in a previous insn. If we built two new
2607 patterns, move from I1 to I2 then I2 to I3 so that we get the
2608 proper movement on registers that I2 modifies. */
2610 if (newi2pat)
2612 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2613 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2615 else
2616 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2617 i3, &midnotes);
2619 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2620 if (i3notes)
2621 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2622 if (i2notes)
2623 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2624 if (i1notes)
2625 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2626 if (midnotes)
2627 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2629 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2630 know these are REG_UNUSED and want them to go to the desired insn,
2631 so we always pass it as i3. We have not counted the notes in
2632 reg_n_deaths yet, so we need to do so now. */
2634 if (newi2pat && new_i2_notes)
2636 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2637 if (GET_CODE (XEXP (temp, 0)) == REG)
2638 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2640 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2643 if (new_i3_notes)
2645 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2646 if (GET_CODE (XEXP (temp, 0)) == REG)
2647 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2649 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2652 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2653 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2654 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2655 in that case, it might delete I2. Similarly for I2 and I1.
2656 Show an additional death due to the REG_DEAD note we make here. If
2657 we discard it in distribute_notes, we will decrement it again. */
2659 if (i3dest_killed)
2661 if (GET_CODE (i3dest_killed) == REG)
2662 REG_N_DEATHS (REGNO (i3dest_killed))++;
2664 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2665 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2666 NULL_RTX),
2667 NULL_RTX, i2, NULL_RTX);
2668 else
2669 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2670 NULL_RTX),
2671 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2674 if (i2dest_in_i2src)
2676 if (GET_CODE (i2dest) == REG)
2677 REG_N_DEATHS (REGNO (i2dest))++;
2679 if (newi2pat && reg_set_p (i2dest, newi2pat))
2680 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2681 NULL_RTX, i2, NULL_RTX);
2682 else
2683 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2684 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2687 if (i1dest_in_i1src)
2689 if (GET_CODE (i1dest) == REG)
2690 REG_N_DEATHS (REGNO (i1dest))++;
2692 if (newi2pat && reg_set_p (i1dest, newi2pat))
2693 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2694 NULL_RTX, i2, NULL_RTX);
2695 else
2696 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2697 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2700 distribute_links (i3links);
2701 distribute_links (i2links);
2702 distribute_links (i1links);
2704 if (GET_CODE (i2dest) == REG)
2706 rtx link;
2707 rtx i2_insn = 0, i2_val = 0, set;
2709 /* The insn that used to set this register doesn't exist, and
2710 this life of the register may not exist either. See if one of
2711 I3's links points to an insn that sets I2DEST. If it does,
2712 that is now the last known value for I2DEST. If we don't update
2713 this and I2 set the register to a value that depended on its old
2714 contents, we will get confused. If this insn is used, thing
2715 will be set correctly in combine_instructions. */
2717 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2718 if ((set = single_set (XEXP (link, 0))) != 0
2719 && rtx_equal_p (i2dest, SET_DEST (set)))
2720 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2722 record_value_for_reg (i2dest, i2_insn, i2_val);
2724 /* If the reg formerly set in I2 died only once and that was in I3,
2725 zero its use count so it won't make `reload' do any work. */
2726 if (! added_sets_2
2727 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2728 && ! i2dest_in_i2src)
2730 regno = REGNO (i2dest);
2731 REG_N_SETS (regno)--;
2735 if (i1 && GET_CODE (i1dest) == REG)
2737 rtx link;
2738 rtx i1_insn = 0, i1_val = 0, set;
2740 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2741 if ((set = single_set (XEXP (link, 0))) != 0
2742 && rtx_equal_p (i1dest, SET_DEST (set)))
2743 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2745 record_value_for_reg (i1dest, i1_insn, i1_val);
2747 regno = REGNO (i1dest);
2748 if (! added_sets_1 && ! i1dest_in_i1src)
2749 REG_N_SETS (regno)--;
2752 /* Update reg_nonzero_bits et al for any changes that may have been made
2753 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2754 important. Because newi2pat can affect nonzero_bits of newpat */
2755 if (newi2pat)
2756 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2757 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2759 /* Set new_direct_jump_p if a new return or simple jump instruction
2760 has been created.
2762 If I3 is now an unconditional jump, ensure that it has a
2763 BARRIER following it since it may have initially been a
2764 conditional jump. It may also be the last nonnote insn. */
2766 if (returnjump_p (i3) || any_uncondjump_p (i3))
2768 *new_direct_jump_p = 1;
2769 mark_jump_label (PATTERN (i3), i3, 0);
2771 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2772 || GET_CODE (temp) != BARRIER)
2773 emit_barrier_after (i3);
2776 if (undobuf.other_insn != NULL_RTX
2777 && (returnjump_p (undobuf.other_insn)
2778 || any_uncondjump_p (undobuf.other_insn)))
2780 *new_direct_jump_p = 1;
2782 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2783 || GET_CODE (temp) != BARRIER)
2784 emit_barrier_after (undobuf.other_insn);
2787 /* An NOOP jump does not need barrier, but it does need cleaning up
2788 of CFG. */
2789 if (GET_CODE (newpat) == SET
2790 && SET_SRC (newpat) == pc_rtx
2791 && SET_DEST (newpat) == pc_rtx)
2792 *new_direct_jump_p = 1;
2795 combine_successes++;
2796 undo_commit ();
2798 if (added_links_insn
2799 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2800 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2801 return added_links_insn;
2802 else
2803 return newi2pat ? i2 : i3;
2806 /* Undo all the modifications recorded in undobuf. */
2808 static void
2809 undo_all (void)
2811 struct undo *undo, *next;
2813 for (undo = undobuf.undos; undo; undo = next)
2815 next = undo->next;
2816 if (undo->is_int)
2817 *undo->where.i = undo->old_contents.i;
2818 else
2819 *undo->where.r = undo->old_contents.r;
2821 undo->next = undobuf.frees;
2822 undobuf.frees = undo;
2825 undobuf.undos = 0;
2828 /* We've committed to accepting the changes we made. Move all
2829 of the undos to the free list. */
2831 static void
2832 undo_commit (void)
2834 struct undo *undo, *next;
2836 for (undo = undobuf.undos; undo; undo = next)
2838 next = undo->next;
2839 undo->next = undobuf.frees;
2840 undobuf.frees = undo;
2842 undobuf.undos = 0;
2846 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2847 where we have an arithmetic expression and return that point. LOC will
2848 be inside INSN.
2850 try_combine will call this function to see if an insn can be split into
2851 two insns. */
2853 static rtx *
2854 find_split_point (rtx *loc, rtx insn)
2856 rtx x = *loc;
2857 enum rtx_code code = GET_CODE (x);
2858 rtx *split;
2859 unsigned HOST_WIDE_INT len = 0;
2860 HOST_WIDE_INT pos = 0;
2861 int unsignedp = 0;
2862 rtx inner = NULL_RTX;
2864 /* First special-case some codes. */
2865 switch (code)
2867 case SUBREG:
2868 #ifdef INSN_SCHEDULING
2869 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2870 point. */
2871 if (GET_CODE (SUBREG_REG (x)) == MEM)
2872 return loc;
2873 #endif
2874 return find_split_point (&SUBREG_REG (x), insn);
2876 case MEM:
2877 #ifdef HAVE_lo_sum
2878 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2879 using LO_SUM and HIGH. */
2880 if (GET_CODE (XEXP (x, 0)) == CONST
2881 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2883 SUBST (XEXP (x, 0),
2884 gen_rtx_LO_SUM (Pmode,
2885 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2886 XEXP (x, 0)));
2887 return &XEXP (XEXP (x, 0), 0);
2889 #endif
2891 /* If we have a PLUS whose second operand is a constant and the
2892 address is not valid, perhaps will can split it up using
2893 the machine-specific way to split large constants. We use
2894 the first pseudo-reg (one of the virtual regs) as a placeholder;
2895 it will not remain in the result. */
2896 if (GET_CODE (XEXP (x, 0)) == PLUS
2897 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2898 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2900 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2901 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2902 subst_insn);
2904 /* This should have produced two insns, each of which sets our
2905 placeholder. If the source of the second is a valid address,
2906 we can make put both sources together and make a split point
2907 in the middle. */
2909 if (seq
2910 && NEXT_INSN (seq) != NULL_RTX
2911 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2912 && GET_CODE (seq) == INSN
2913 && GET_CODE (PATTERN (seq)) == SET
2914 && SET_DEST (PATTERN (seq)) == reg
2915 && ! reg_mentioned_p (reg,
2916 SET_SRC (PATTERN (seq)))
2917 && GET_CODE (NEXT_INSN (seq)) == INSN
2918 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2919 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2920 && memory_address_p (GET_MODE (x),
2921 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2923 rtx src1 = SET_SRC (PATTERN (seq));
2924 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2926 /* Replace the placeholder in SRC2 with SRC1. If we can
2927 find where in SRC2 it was placed, that can become our
2928 split point and we can replace this address with SRC2.
2929 Just try two obvious places. */
2931 src2 = replace_rtx (src2, reg, src1);
2932 split = 0;
2933 if (XEXP (src2, 0) == src1)
2934 split = &XEXP (src2, 0);
2935 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2936 && XEXP (XEXP (src2, 0), 0) == src1)
2937 split = &XEXP (XEXP (src2, 0), 0);
2939 if (split)
2941 SUBST (XEXP (x, 0), src2);
2942 return split;
2946 /* If that didn't work, perhaps the first operand is complex and
2947 needs to be computed separately, so make a split point there.
2948 This will occur on machines that just support REG + CONST
2949 and have a constant moved through some previous computation. */
2951 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2952 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2953 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2954 == 'o')))
2955 return &XEXP (XEXP (x, 0), 0);
2957 break;
2959 case SET:
2960 #ifdef HAVE_cc0
2961 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2962 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2963 we need to put the operand into a register. So split at that
2964 point. */
2966 if (SET_DEST (x) == cc0_rtx
2967 && GET_CODE (SET_SRC (x)) != COMPARE
2968 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2969 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2970 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2971 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2972 return &SET_SRC (x);
2973 #endif
2975 /* See if we can split SET_SRC as it stands. */
2976 split = find_split_point (&SET_SRC (x), insn);
2977 if (split && split != &SET_SRC (x))
2978 return split;
2980 /* See if we can split SET_DEST as it stands. */
2981 split = find_split_point (&SET_DEST (x), insn);
2982 if (split && split != &SET_DEST (x))
2983 return split;
2985 /* See if this is a bitfield assignment with everything constant. If
2986 so, this is an IOR of an AND, so split it into that. */
2987 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2988 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2989 <= HOST_BITS_PER_WIDE_INT)
2990 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2991 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2992 && GET_CODE (SET_SRC (x)) == CONST_INT
2993 && ((INTVAL (XEXP (SET_DEST (x), 1))
2994 + INTVAL (XEXP (SET_DEST (x), 2)))
2995 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2996 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2998 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2999 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3000 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3001 rtx dest = XEXP (SET_DEST (x), 0);
3002 enum machine_mode mode = GET_MODE (dest);
3003 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3005 if (BITS_BIG_ENDIAN)
3006 pos = GET_MODE_BITSIZE (mode) - len - pos;
3008 if (src == mask)
3009 SUBST (SET_SRC (x),
3010 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3011 else
3012 SUBST (SET_SRC (x),
3013 gen_binary (IOR, mode,
3014 gen_binary (AND, mode, dest,
3015 gen_int_mode (~(mask << pos),
3016 mode)),
3017 GEN_INT (src << pos)));
3019 SUBST (SET_DEST (x), dest);
3021 split = find_split_point (&SET_SRC (x), insn);
3022 if (split && split != &SET_SRC (x))
3023 return split;
3026 /* Otherwise, see if this is an operation that we can split into two.
3027 If so, try to split that. */
3028 code = GET_CODE (SET_SRC (x));
3030 switch (code)
3032 case AND:
3033 /* If we are AND'ing with a large constant that is only a single
3034 bit and the result is only being used in a context where we
3035 need to know if it is zero or nonzero, replace it with a bit
3036 extraction. This will avoid the large constant, which might
3037 have taken more than one insn to make. If the constant were
3038 not a valid argument to the AND but took only one insn to make,
3039 this is no worse, but if it took more than one insn, it will
3040 be better. */
3042 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3043 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3044 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3045 && GET_CODE (SET_DEST (x)) == REG
3046 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3047 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3048 && XEXP (*split, 0) == SET_DEST (x)
3049 && XEXP (*split, 1) == const0_rtx)
3051 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3052 XEXP (SET_SRC (x), 0),
3053 pos, NULL_RTX, 1, 1, 0, 0);
3054 if (extraction != 0)
3056 SUBST (SET_SRC (x), extraction);
3057 return find_split_point (loc, insn);
3060 break;
3062 case NE:
3063 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3064 is known to be on, this can be converted into a NEG of a shift. */
3065 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3066 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3067 && 1 <= (pos = exact_log2
3068 (nonzero_bits (XEXP (SET_SRC (x), 0),
3069 GET_MODE (XEXP (SET_SRC (x), 0))))))
3071 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3073 SUBST (SET_SRC (x),
3074 gen_rtx_NEG (mode,
3075 gen_rtx_LSHIFTRT (mode,
3076 XEXP (SET_SRC (x), 0),
3077 GEN_INT (pos))));
3079 split = find_split_point (&SET_SRC (x), insn);
3080 if (split && split != &SET_SRC (x))
3081 return split;
3083 break;
3085 case SIGN_EXTEND:
3086 inner = XEXP (SET_SRC (x), 0);
3088 /* We can't optimize if either mode is a partial integer
3089 mode as we don't know how many bits are significant
3090 in those modes. */
3091 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3092 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3093 break;
3095 pos = 0;
3096 len = GET_MODE_BITSIZE (GET_MODE (inner));
3097 unsignedp = 0;
3098 break;
3100 case SIGN_EXTRACT:
3101 case ZERO_EXTRACT:
3102 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3103 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3105 inner = XEXP (SET_SRC (x), 0);
3106 len = INTVAL (XEXP (SET_SRC (x), 1));
3107 pos = INTVAL (XEXP (SET_SRC (x), 2));
3109 if (BITS_BIG_ENDIAN)
3110 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3111 unsignedp = (code == ZERO_EXTRACT);
3113 break;
3115 default:
3116 break;
3119 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3121 enum machine_mode mode = GET_MODE (SET_SRC (x));
3123 /* For unsigned, we have a choice of a shift followed by an
3124 AND or two shifts. Use two shifts for field sizes where the
3125 constant might be too large. We assume here that we can
3126 always at least get 8-bit constants in an AND insn, which is
3127 true for every current RISC. */
3129 if (unsignedp && len <= 8)
3131 SUBST (SET_SRC (x),
3132 gen_rtx_AND (mode,
3133 gen_rtx_LSHIFTRT
3134 (mode, gen_lowpart_for_combine (mode, inner),
3135 GEN_INT (pos)),
3136 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3138 split = find_split_point (&SET_SRC (x), insn);
3139 if (split && split != &SET_SRC (x))
3140 return split;
3142 else
3144 SUBST (SET_SRC (x),
3145 gen_rtx_fmt_ee
3146 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3147 gen_rtx_ASHIFT (mode,
3148 gen_lowpart_for_combine (mode, inner),
3149 GEN_INT (GET_MODE_BITSIZE (mode)
3150 - len - pos)),
3151 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3153 split = find_split_point (&SET_SRC (x), insn);
3154 if (split && split != &SET_SRC (x))
3155 return split;
3159 /* See if this is a simple operation with a constant as the second
3160 operand. It might be that this constant is out of range and hence
3161 could be used as a split point. */
3162 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3163 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3164 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3165 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3166 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3167 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3168 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3169 == 'o'))))
3170 return &XEXP (SET_SRC (x), 1);
3172 /* Finally, see if this is a simple operation with its first operand
3173 not in a register. The operation might require this operand in a
3174 register, so return it as a split point. We can always do this
3175 because if the first operand were another operation, we would have
3176 already found it as a split point. */
3177 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3178 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3179 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3180 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3181 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3182 return &XEXP (SET_SRC (x), 0);
3184 return 0;
3186 case AND:
3187 case IOR:
3188 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3189 it is better to write this as (not (ior A B)) so we can split it.
3190 Similarly for IOR. */
3191 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3193 SUBST (*loc,
3194 gen_rtx_NOT (GET_MODE (x),
3195 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3196 GET_MODE (x),
3197 XEXP (XEXP (x, 0), 0),
3198 XEXP (XEXP (x, 1), 0))));
3199 return find_split_point (loc, insn);
3202 /* Many RISC machines have a large set of logical insns. If the
3203 second operand is a NOT, put it first so we will try to split the
3204 other operand first. */
3205 if (GET_CODE (XEXP (x, 1)) == NOT)
3207 rtx tem = XEXP (x, 0);
3208 SUBST (XEXP (x, 0), XEXP (x, 1));
3209 SUBST (XEXP (x, 1), tem);
3211 break;
3213 default:
3214 break;
3217 /* Otherwise, select our actions depending on our rtx class. */
3218 switch (GET_RTX_CLASS (code))
3220 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3221 case '3':
3222 split = find_split_point (&XEXP (x, 2), insn);
3223 if (split)
3224 return split;
3225 /* ... fall through ... */
3226 case '2':
3227 case 'c':
3228 case '<':
3229 split = find_split_point (&XEXP (x, 1), insn);
3230 if (split)
3231 return split;
3232 /* ... fall through ... */
3233 case '1':
3234 /* Some machines have (and (shift ...) ...) insns. If X is not
3235 an AND, but XEXP (X, 0) is, use it as our split point. */
3236 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3237 return &XEXP (x, 0);
3239 split = find_split_point (&XEXP (x, 0), insn);
3240 if (split)
3241 return split;
3242 return loc;
3245 /* Otherwise, we don't have a split point. */
3246 return 0;
3249 /* Throughout X, replace FROM with TO, and return the result.
3250 The result is TO if X is FROM;
3251 otherwise the result is X, but its contents may have been modified.
3252 If they were modified, a record was made in undobuf so that
3253 undo_all will (among other things) return X to its original state.
3255 If the number of changes necessary is too much to record to undo,
3256 the excess changes are not made, so the result is invalid.
3257 The changes already made can still be undone.
3258 undobuf.num_undo is incremented for such changes, so by testing that
3259 the caller can tell whether the result is valid.
3261 `n_occurrences' is incremented each time FROM is replaced.
3263 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3265 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3266 by copying if `n_occurrences' is nonzero. */
3268 static rtx
3269 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3271 enum rtx_code code = GET_CODE (x);
3272 enum machine_mode op0_mode = VOIDmode;
3273 const char *fmt;
3274 int len, i;
3275 rtx new;
3277 /* Two expressions are equal if they are identical copies of a shared
3278 RTX or if they are both registers with the same register number
3279 and mode. */
3281 #define COMBINE_RTX_EQUAL_P(X,Y) \
3282 ((X) == (Y) \
3283 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3284 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3286 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3288 n_occurrences++;
3289 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3292 /* If X and FROM are the same register but different modes, they will
3293 not have been seen as equal above. However, flow.c will make a
3294 LOG_LINKS entry for that case. If we do nothing, we will try to
3295 rerecognize our original insn and, when it succeeds, we will
3296 delete the feeding insn, which is incorrect.
3298 So force this insn not to match in this (rare) case. */
3299 if (! in_dest && code == REG && GET_CODE (from) == REG
3300 && REGNO (x) == REGNO (from))
3301 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3303 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3304 of which may contain things that can be combined. */
3305 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3306 return x;
3308 /* It is possible to have a subexpression appear twice in the insn.
3309 Suppose that FROM is a register that appears within TO.
3310 Then, after that subexpression has been scanned once by `subst',
3311 the second time it is scanned, TO may be found. If we were
3312 to scan TO here, we would find FROM within it and create a
3313 self-referent rtl structure which is completely wrong. */
3314 if (COMBINE_RTX_EQUAL_P (x, to))
3315 return to;
3317 /* Parallel asm_operands need special attention because all of the
3318 inputs are shared across the arms. Furthermore, unsharing the
3319 rtl results in recognition failures. Failure to handle this case
3320 specially can result in circular rtl.
3322 Solve this by doing a normal pass across the first entry of the
3323 parallel, and only processing the SET_DESTs of the subsequent
3324 entries. Ug. */
3326 if (code == PARALLEL
3327 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3328 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3330 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3332 /* If this substitution failed, this whole thing fails. */
3333 if (GET_CODE (new) == CLOBBER
3334 && XEXP (new, 0) == const0_rtx)
3335 return new;
3337 SUBST (XVECEXP (x, 0, 0), new);
3339 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3341 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3343 if (GET_CODE (dest) != REG
3344 && GET_CODE (dest) != CC0
3345 && GET_CODE (dest) != PC)
3347 new = subst (dest, from, to, 0, unique_copy);
3349 /* If this substitution failed, this whole thing fails. */
3350 if (GET_CODE (new) == CLOBBER
3351 && XEXP (new, 0) == const0_rtx)
3352 return new;
3354 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3358 else
3360 len = GET_RTX_LENGTH (code);
3361 fmt = GET_RTX_FORMAT (code);
3363 /* We don't need to process a SET_DEST that is a register, CC0,
3364 or PC, so set up to skip this common case. All other cases
3365 where we want to suppress replacing something inside a
3366 SET_SRC are handled via the IN_DEST operand. */
3367 if (code == SET
3368 && (GET_CODE (SET_DEST (x)) == REG
3369 || GET_CODE (SET_DEST (x)) == CC0
3370 || GET_CODE (SET_DEST (x)) == PC))
3371 fmt = "ie";
3373 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3374 constant. */
3375 if (fmt[0] == 'e')
3376 op0_mode = GET_MODE (XEXP (x, 0));
3378 for (i = 0; i < len; i++)
3380 if (fmt[i] == 'E')
3382 int j;
3383 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3385 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3387 new = (unique_copy && n_occurrences
3388 ? copy_rtx (to) : to);
3389 n_occurrences++;
3391 else
3393 new = subst (XVECEXP (x, i, j), from, to, 0,
3394 unique_copy);
3396 /* If this substitution failed, this whole thing
3397 fails. */
3398 if (GET_CODE (new) == CLOBBER
3399 && XEXP (new, 0) == const0_rtx)
3400 return new;
3403 SUBST (XVECEXP (x, i, j), new);
3406 else if (fmt[i] == 'e')
3408 /* If this is a register being set, ignore it. */
3409 new = XEXP (x, i);
3410 if (in_dest
3411 && (code == SUBREG || code == STRICT_LOW_PART
3412 || code == ZERO_EXTRACT)
3413 && i == 0
3414 && GET_CODE (new) == REG)
3417 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3419 /* In general, don't install a subreg involving two
3420 modes not tieable. It can worsen register
3421 allocation, and can even make invalid reload
3422 insns, since the reg inside may need to be copied
3423 from in the outside mode, and that may be invalid
3424 if it is an fp reg copied in integer mode.
3426 We allow two exceptions to this: It is valid if
3427 it is inside another SUBREG and the mode of that
3428 SUBREG and the mode of the inside of TO is
3429 tieable and it is valid if X is a SET that copies
3430 FROM to CC0. */
3432 if (GET_CODE (to) == SUBREG
3433 && ! MODES_TIEABLE_P (GET_MODE (to),
3434 GET_MODE (SUBREG_REG (to)))
3435 && ! (code == SUBREG
3436 && MODES_TIEABLE_P (GET_MODE (x),
3437 GET_MODE (SUBREG_REG (to))))
3438 #ifdef HAVE_cc0
3439 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3440 #endif
3442 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3444 #ifdef CANNOT_CHANGE_MODE_CLASS
3445 if (code == SUBREG
3446 && GET_CODE (to) == REG
3447 && REGNO (to) < FIRST_PSEUDO_REGISTER
3448 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3449 GET_MODE (to),
3450 GET_MODE (x)))
3451 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3452 #endif
3454 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3455 n_occurrences++;
3457 else
3458 /* If we are in a SET_DEST, suppress most cases unless we
3459 have gone inside a MEM, in which case we want to
3460 simplify the address. We assume here that things that
3461 are actually part of the destination have their inner
3462 parts in the first expression. This is true for SUBREG,
3463 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3464 things aside from REG and MEM that should appear in a
3465 SET_DEST. */
3466 new = subst (XEXP (x, i), from, to,
3467 (((in_dest
3468 && (code == SUBREG || code == STRICT_LOW_PART
3469 || code == ZERO_EXTRACT))
3470 || code == SET)
3471 && i == 0), unique_copy);
3473 /* If we found that we will have to reject this combination,
3474 indicate that by returning the CLOBBER ourselves, rather than
3475 an expression containing it. This will speed things up as
3476 well as prevent accidents where two CLOBBERs are considered
3477 to be equal, thus producing an incorrect simplification. */
3479 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3480 return new;
3482 if (GET_CODE (x) == SUBREG
3483 && (GET_CODE (new) == CONST_INT
3484 || GET_CODE (new) == CONST_DOUBLE))
3486 enum machine_mode mode = GET_MODE (x);
3488 x = simplify_subreg (GET_MODE (x), new,
3489 GET_MODE (SUBREG_REG (x)),
3490 SUBREG_BYTE (x));
3491 if (! x)
3492 x = gen_rtx_CLOBBER (mode, const0_rtx);
3494 else if (GET_CODE (new) == CONST_INT
3495 && GET_CODE (x) == ZERO_EXTEND)
3497 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3498 new, GET_MODE (XEXP (x, 0)));
3499 if (! x)
3500 abort ();
3502 else
3503 SUBST (XEXP (x, i), new);
3508 /* Try to simplify X. If the simplification changed the code, it is likely
3509 that further simplification will help, so loop, but limit the number
3510 of repetitions that will be performed. */
3512 for (i = 0; i < 4; i++)
3514 /* If X is sufficiently simple, don't bother trying to do anything
3515 with it. */
3516 if (code != CONST_INT && code != REG && code != CLOBBER)
3517 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3519 if (GET_CODE (x) == code)
3520 break;
3522 code = GET_CODE (x);
3524 /* We no longer know the original mode of operand 0 since we
3525 have changed the form of X) */
3526 op0_mode = VOIDmode;
3529 return x;
3532 /* Simplify X, a piece of RTL. We just operate on the expression at the
3533 outer level; call `subst' to simplify recursively. Return the new
3534 expression.
3536 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3537 will be the iteration even if an expression with a code different from
3538 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3540 static rtx
3541 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3542 int in_dest)
3544 enum rtx_code code = GET_CODE (x);
3545 enum machine_mode mode = GET_MODE (x);
3546 rtx temp;
3547 rtx reversed;
3548 int i;
3550 /* If this is a commutative operation, put a constant last and a complex
3551 expression first. We don't need to do this for comparisons here. */
3552 if (GET_RTX_CLASS (code) == 'c'
3553 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3555 temp = XEXP (x, 0);
3556 SUBST (XEXP (x, 0), XEXP (x, 1));
3557 SUBST (XEXP (x, 1), temp);
3560 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3561 sign extension of a PLUS with a constant, reverse the order of the sign
3562 extension and the addition. Note that this not the same as the original
3563 code, but overflow is undefined for signed values. Also note that the
3564 PLUS will have been partially moved "inside" the sign-extension, so that
3565 the first operand of X will really look like:
3566 (ashiftrt (plus (ashift A C4) C5) C4).
3567 We convert this to
3568 (plus (ashiftrt (ashift A C4) C2) C4)
3569 and replace the first operand of X with that expression. Later parts
3570 of this function may simplify the expression further.
3572 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3573 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3574 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3576 We do this to simplify address expressions. */
3578 if ((code == PLUS || code == MINUS || code == MULT)
3579 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3580 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3581 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3582 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3583 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3584 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3585 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3586 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3587 XEXP (XEXP (XEXP (x, 0), 0), 1),
3588 XEXP (XEXP (x, 0), 1))) != 0)
3590 rtx new
3591 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3592 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3593 INTVAL (XEXP (XEXP (x, 0), 1)));
3595 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3596 INTVAL (XEXP (XEXP (x, 0), 1)));
3598 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3601 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3602 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3603 things. Check for cases where both arms are testing the same
3604 condition.
3606 Don't do anything if all operands are very simple. */
3608 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3609 || GET_RTX_CLASS (code) == '<')
3610 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3611 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3612 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3613 == 'o')))
3614 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3615 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3616 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3617 == 'o')))))
3618 || (GET_RTX_CLASS (code) == '1'
3619 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3620 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3621 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3622 == 'o'))))))
3624 rtx cond, true_rtx, false_rtx;
3626 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3627 if (cond != 0
3628 /* If everything is a comparison, what we have is highly unlikely
3629 to be simpler, so don't use it. */
3630 && ! (GET_RTX_CLASS (code) == '<'
3631 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3632 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3634 rtx cop1 = const0_rtx;
3635 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3637 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3638 return x;
3640 /* Simplify the alternative arms; this may collapse the true and
3641 false arms to store-flag values. Be careful to use copy_rtx
3642 here since true_rtx or false_rtx might share RTL with x as a
3643 result of the if_then_else_cond call above. */
3644 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3645 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3647 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3648 is unlikely to be simpler. */
3649 if (general_operand (true_rtx, VOIDmode)
3650 && general_operand (false_rtx, VOIDmode))
3652 enum rtx_code reversed;
3654 /* Restarting if we generate a store-flag expression will cause
3655 us to loop. Just drop through in this case. */
3657 /* If the result values are STORE_FLAG_VALUE and zero, we can
3658 just make the comparison operation. */
3659 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3660 x = gen_binary (cond_code, mode, cond, cop1);
3661 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3662 && ((reversed = reversed_comparison_code_parts
3663 (cond_code, cond, cop1, NULL))
3664 != UNKNOWN))
3665 x = gen_binary (reversed, mode, cond, cop1);
3667 /* Likewise, we can make the negate of a comparison operation
3668 if the result values are - STORE_FLAG_VALUE and zero. */
3669 else if (GET_CODE (true_rtx) == CONST_INT
3670 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3671 && false_rtx == const0_rtx)
3672 x = simplify_gen_unary (NEG, mode,
3673 gen_binary (cond_code, mode, cond,
3674 cop1),
3675 mode);
3676 else if (GET_CODE (false_rtx) == CONST_INT
3677 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3678 && true_rtx == const0_rtx
3679 && ((reversed = reversed_comparison_code_parts
3680 (cond_code, cond, cop1, NULL))
3681 != UNKNOWN))
3682 x = simplify_gen_unary (NEG, mode,
3683 gen_binary (reversed, mode,
3684 cond, cop1),
3685 mode);
3686 else
3687 return gen_rtx_IF_THEN_ELSE (mode,
3688 gen_binary (cond_code, VOIDmode,
3689 cond, cop1),
3690 true_rtx, false_rtx);
3692 code = GET_CODE (x);
3693 op0_mode = VOIDmode;
3698 /* Try to fold this expression in case we have constants that weren't
3699 present before. */
3700 temp = 0;
3701 switch (GET_RTX_CLASS (code))
3703 case '1':
3704 if (op0_mode == VOIDmode)
3705 op0_mode = GET_MODE (XEXP (x, 0));
3706 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3707 break;
3708 case '<':
3710 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3711 if (cmp_mode == VOIDmode)
3713 cmp_mode = GET_MODE (XEXP (x, 1));
3714 if (cmp_mode == VOIDmode)
3715 cmp_mode = op0_mode;
3717 temp = simplify_relational_operation (code, cmp_mode,
3718 XEXP (x, 0), XEXP (x, 1));
3720 #ifdef FLOAT_STORE_FLAG_VALUE
3721 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3723 if (temp == const0_rtx)
3724 temp = CONST0_RTX (mode);
3725 else
3726 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3727 mode);
3729 #endif
3730 break;
3731 case 'c':
3732 case '2':
3733 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3734 break;
3735 case 'b':
3736 case '3':
3737 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3738 XEXP (x, 1), XEXP (x, 2));
3739 break;
3742 if (temp)
3744 x = temp;
3745 code = GET_CODE (temp);
3746 op0_mode = VOIDmode;
3747 mode = GET_MODE (temp);
3750 /* First see if we can apply the inverse distributive law. */
3751 if (code == PLUS || code == MINUS
3752 || code == AND || code == IOR || code == XOR)
3754 x = apply_distributive_law (x);
3755 code = GET_CODE (x);
3756 op0_mode = VOIDmode;
3759 /* If CODE is an associative operation not otherwise handled, see if we
3760 can associate some operands. This can win if they are constants or
3761 if they are logically related (i.e. (a & b) & a). */
3762 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3763 || code == AND || code == IOR || code == XOR
3764 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3765 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3766 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3768 if (GET_CODE (XEXP (x, 0)) == code)
3770 rtx other = XEXP (XEXP (x, 0), 0);
3771 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3772 rtx inner_op1 = XEXP (x, 1);
3773 rtx inner;
3775 /* Make sure we pass the constant operand if any as the second
3776 one if this is a commutative operation. */
3777 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3779 rtx tem = inner_op0;
3780 inner_op0 = inner_op1;
3781 inner_op1 = tem;
3783 inner = simplify_binary_operation (code == MINUS ? PLUS
3784 : code == DIV ? MULT
3785 : code,
3786 mode, inner_op0, inner_op1);
3788 /* For commutative operations, try the other pair if that one
3789 didn't simplify. */
3790 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3792 other = XEXP (XEXP (x, 0), 1);
3793 inner = simplify_binary_operation (code, mode,
3794 XEXP (XEXP (x, 0), 0),
3795 XEXP (x, 1));
3798 if (inner)
3799 return gen_binary (code, mode, other, inner);
3803 /* A little bit of algebraic simplification here. */
3804 switch (code)
3806 case MEM:
3807 /* Ensure that our address has any ASHIFTs converted to MULT in case
3808 address-recognizing predicates are called later. */
3809 temp = make_compound_operation (XEXP (x, 0), MEM);
3810 SUBST (XEXP (x, 0), temp);
3811 break;
3813 case SUBREG:
3814 if (op0_mode == VOIDmode)
3815 op0_mode = GET_MODE (SUBREG_REG (x));
3817 /* simplify_subreg can't use gen_lowpart_for_combine. */
3818 if (CONSTANT_P (SUBREG_REG (x))
3819 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3820 /* Don't call gen_lowpart_for_combine if the inner mode
3821 is VOIDmode and we cannot simplify it, as SUBREG without
3822 inner mode is invalid. */
3823 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3824 || gen_lowpart_common (mode, SUBREG_REG (x))))
3825 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3827 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3828 break;
3830 rtx temp;
3831 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3832 SUBREG_BYTE (x));
3833 if (temp)
3834 return temp;
3837 /* Don't change the mode of the MEM if that would change the meaning
3838 of the address. */
3839 if (GET_CODE (SUBREG_REG (x)) == MEM
3840 && (MEM_VOLATILE_P (SUBREG_REG (x))
3841 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3842 return gen_rtx_CLOBBER (mode, const0_rtx);
3844 /* Note that we cannot do any narrowing for non-constants since
3845 we might have been counting on using the fact that some bits were
3846 zero. We now do this in the SET. */
3848 break;
3850 case NOT:
3851 if (GET_CODE (XEXP (x, 0)) == SUBREG
3852 && subreg_lowpart_p (XEXP (x, 0))
3853 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3854 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3855 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3856 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3858 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3860 x = gen_rtx_ROTATE (inner_mode,
3861 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3862 inner_mode),
3863 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3864 return gen_lowpart_for_combine (mode, x);
3867 /* Apply De Morgan's laws to reduce number of patterns for machines
3868 with negating logical insns (and-not, nand, etc.). If result has
3869 only one NOT, put it first, since that is how the patterns are
3870 coded. */
3872 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3874 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3875 enum machine_mode op_mode;
3877 op_mode = GET_MODE (in1);
3878 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3880 op_mode = GET_MODE (in2);
3881 if (op_mode == VOIDmode)
3882 op_mode = mode;
3883 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3885 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3887 rtx tem = in2;
3888 in2 = in1; in1 = tem;
3891 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3892 mode, in1, in2);
3894 break;
3896 case NEG:
3897 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3898 if (GET_CODE (XEXP (x, 0)) == XOR
3899 && XEXP (XEXP (x, 0), 1) == const1_rtx
3900 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3901 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3903 temp = expand_compound_operation (XEXP (x, 0));
3905 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3906 replaced by (lshiftrt X C). This will convert
3907 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3909 if (GET_CODE (temp) == ASHIFTRT
3910 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3911 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3912 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3913 INTVAL (XEXP (temp, 1)));
3915 /* If X has only a single bit that might be nonzero, say, bit I, convert
3916 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3917 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3918 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3919 or a SUBREG of one since we'd be making the expression more
3920 complex if it was just a register. */
3922 if (GET_CODE (temp) != REG
3923 && ! (GET_CODE (temp) == SUBREG
3924 && GET_CODE (SUBREG_REG (temp)) == REG)
3925 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3927 rtx temp1 = simplify_shift_const
3928 (NULL_RTX, ASHIFTRT, mode,
3929 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3930 GET_MODE_BITSIZE (mode) - 1 - i),
3931 GET_MODE_BITSIZE (mode) - 1 - i);
3933 /* If all we did was surround TEMP with the two shifts, we
3934 haven't improved anything, so don't use it. Otherwise,
3935 we are better off with TEMP1. */
3936 if (GET_CODE (temp1) != ASHIFTRT
3937 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3938 || XEXP (XEXP (temp1, 0), 0) != temp)
3939 return temp1;
3941 break;
3943 case TRUNCATE:
3944 /* We can't handle truncation to a partial integer mode here
3945 because we don't know the real bitsize of the partial
3946 integer mode. */
3947 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3948 break;
3950 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3951 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3952 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3953 SUBST (XEXP (x, 0),
3954 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3955 GET_MODE_MASK (mode), NULL_RTX, 0));
3957 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3958 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3959 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3960 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3961 return XEXP (XEXP (x, 0), 0);
3963 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3964 (OP:SI foo:SI) if OP is NEG or ABS. */
3965 if ((GET_CODE (XEXP (x, 0)) == ABS
3966 || GET_CODE (XEXP (x, 0)) == NEG)
3967 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3968 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3969 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3970 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
3971 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
3973 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3974 (truncate:SI x). */
3975 if (GET_CODE (XEXP (x, 0)) == SUBREG
3976 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3977 && subreg_lowpart_p (XEXP (x, 0)))
3978 return SUBREG_REG (XEXP (x, 0));
3980 /* If we know that the value is already truncated, we can
3981 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
3982 is nonzero for the corresponding modes. But don't do this
3983 for an (LSHIFTRT (MULT ...)) since this will cause problems
3984 with the umulXi3_highpart patterns. */
3985 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3986 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3987 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3988 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
3989 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
3990 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
3991 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3993 /* A truncate of a comparison can be replaced with a subreg if
3994 STORE_FLAG_VALUE permits. This is like the previous test,
3995 but it works even if the comparison is done in a mode larger
3996 than HOST_BITS_PER_WIDE_INT. */
3997 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3998 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3999 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4000 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4002 /* Similarly, a truncate of a register whose value is a
4003 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4004 permits. */
4005 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4006 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4007 && (temp = get_last_value (XEXP (x, 0)))
4008 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4009 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4011 break;
4013 case FLOAT_TRUNCATE:
4014 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4015 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4016 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4017 return XEXP (XEXP (x, 0), 0);
4019 /* (float_truncate:SF (float_truncate:DF foo:XF))
4020 = (float_truncate:SF foo:XF).
4021 This may eliminate double rounding, so it is unsafe.
4023 (float_truncate:SF (float_extend:XF foo:DF))
4024 = (float_truncate:SF foo:DF).
4026 (float_truncate:DF (float_extend:XF foo:SF))
4027 = (float_extend:SF foo:DF). */
4028 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4029 && flag_unsafe_math_optimizations)
4030 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4031 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4032 0)))
4033 > GET_MODE_SIZE (mode)
4034 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4035 mode,
4036 XEXP (XEXP (x, 0), 0), mode);
4038 /* (float_truncate (float x)) is (float x) */
4039 if (GET_CODE (XEXP (x, 0)) == FLOAT
4040 && (flag_unsafe_math_optimizations
4041 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4042 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4043 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4044 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4045 return simplify_gen_unary (FLOAT, mode,
4046 XEXP (XEXP (x, 0), 0),
4047 GET_MODE (XEXP (XEXP (x, 0), 0)));
4049 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4050 (OP:SF foo:SF) if OP is NEG or ABS. */
4051 if ((GET_CODE (XEXP (x, 0)) == ABS
4052 || GET_CODE (XEXP (x, 0)) == NEG)
4053 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4054 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4055 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4056 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4058 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4059 is (float_truncate:SF x). */
4060 if (GET_CODE (XEXP (x, 0)) == SUBREG
4061 && subreg_lowpart_p (XEXP (x, 0))
4062 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4063 return SUBREG_REG (XEXP (x, 0));
4064 break;
4065 case FLOAT_EXTEND:
4066 /* (float_extend (float_extend x)) is (float_extend x)
4068 (float_extend (float x)) is (float x) assuming that double
4069 rounding can't happen.
4071 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4072 || (GET_CODE (XEXP (x, 0)) == FLOAT
4073 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4074 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4075 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4076 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4077 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4078 XEXP (XEXP (x, 0), 0),
4079 GET_MODE (XEXP (XEXP (x, 0), 0)));
4081 break;
4082 #ifdef HAVE_cc0
4083 case COMPARE:
4084 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4085 using cc0, in which case we want to leave it as a COMPARE
4086 so we can distinguish it from a register-register-copy. */
4087 if (XEXP (x, 1) == const0_rtx)
4088 return XEXP (x, 0);
4090 /* x - 0 is the same as x unless x's mode has signed zeros and
4091 allows rounding towards -infinity. Under those conditions,
4092 0 - 0 is -0. */
4093 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4094 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4095 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4096 return XEXP (x, 0);
4097 break;
4098 #endif
4100 case CONST:
4101 /* (const (const X)) can become (const X). Do it this way rather than
4102 returning the inner CONST since CONST can be shared with a
4103 REG_EQUAL note. */
4104 if (GET_CODE (XEXP (x, 0)) == CONST)
4105 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4106 break;
4108 #ifdef HAVE_lo_sum
4109 case LO_SUM:
4110 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4111 can add in an offset. find_split_point will split this address up
4112 again if it doesn't match. */
4113 if (GET_CODE (XEXP (x, 0)) == HIGH
4114 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4115 return XEXP (x, 1);
4116 break;
4117 #endif
4119 case PLUS:
4120 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4122 if (GET_CODE (XEXP (x, 0)) == MULT
4123 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4125 rtx in1, in2;
4127 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4128 in2 = XEXP (XEXP (x, 0), 1);
4129 return gen_binary (MINUS, mode, XEXP (x, 1),
4130 gen_binary (MULT, mode, in1, in2));
4133 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4134 outermost. That's because that's the way indexed addresses are
4135 supposed to appear. This code used to check many more cases, but
4136 they are now checked elsewhere. */
4137 if (GET_CODE (XEXP (x, 0)) == PLUS
4138 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4139 return gen_binary (PLUS, mode,
4140 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4141 XEXP (x, 1)),
4142 XEXP (XEXP (x, 0), 1));
4144 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4145 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4146 bit-field and can be replaced by either a sign_extend or a
4147 sign_extract. The `and' may be a zero_extend and the two
4148 <c>, -<c> constants may be reversed. */
4149 if (GET_CODE (XEXP (x, 0)) == XOR
4150 && GET_CODE (XEXP (x, 1)) == CONST_INT
4151 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4152 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4153 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4154 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4155 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4156 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4157 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4158 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4159 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4160 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4161 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4162 == (unsigned int) i + 1))))
4163 return simplify_shift_const
4164 (NULL_RTX, ASHIFTRT, mode,
4165 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4166 XEXP (XEXP (XEXP (x, 0), 0), 0),
4167 GET_MODE_BITSIZE (mode) - (i + 1)),
4168 GET_MODE_BITSIZE (mode) - (i + 1));
4170 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4171 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4172 is 1. This produces better code than the alternative immediately
4173 below. */
4174 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4175 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4176 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4177 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4178 XEXP (XEXP (x, 0), 0),
4179 XEXP (XEXP (x, 0), 1))))
4180 return
4181 simplify_gen_unary (NEG, mode, reversed, mode);
4183 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4184 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4185 the bitsize of the mode - 1. This allows simplification of
4186 "a = (b & 8) == 0;" */
4187 if (XEXP (x, 1) == constm1_rtx
4188 && GET_CODE (XEXP (x, 0)) != REG
4189 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4190 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4191 && nonzero_bits (XEXP (x, 0), mode) == 1)
4192 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4193 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4194 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4195 GET_MODE_BITSIZE (mode) - 1),
4196 GET_MODE_BITSIZE (mode) - 1);
4198 /* If we are adding two things that have no bits in common, convert
4199 the addition into an IOR. This will often be further simplified,
4200 for example in cases like ((a & 1) + (a & 2)), which can
4201 become a & 3. */
4203 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4204 && (nonzero_bits (XEXP (x, 0), mode)
4205 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4207 /* Try to simplify the expression further. */
4208 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4209 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4211 /* If we could, great. If not, do not go ahead with the IOR
4212 replacement, since PLUS appears in many special purpose
4213 address arithmetic instructions. */
4214 if (GET_CODE (temp) != CLOBBER && temp != tor)
4215 return temp;
4217 break;
4219 case MINUS:
4220 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4221 by reversing the comparison code if valid. */
4222 if (STORE_FLAG_VALUE == 1
4223 && XEXP (x, 0) == const1_rtx
4224 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4225 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4226 XEXP (XEXP (x, 1), 0),
4227 XEXP (XEXP (x, 1), 1))))
4228 return reversed;
4230 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4231 (and <foo> (const_int pow2-1)) */
4232 if (GET_CODE (XEXP (x, 1)) == AND
4233 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4234 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4235 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4236 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4237 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4239 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4241 if (GET_CODE (XEXP (x, 1)) == MULT
4242 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4244 rtx in1, in2;
4246 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4247 in2 = XEXP (XEXP (x, 1), 1);
4248 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4249 XEXP (x, 0));
4252 /* Canonicalize (minus (neg A) (mult B C)) to
4253 (minus (mult (neg B) C) A). */
4254 if (GET_CODE (XEXP (x, 1)) == MULT
4255 && GET_CODE (XEXP (x, 0)) == NEG)
4257 rtx in1, in2;
4259 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4260 in2 = XEXP (XEXP (x, 1), 1);
4261 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4262 XEXP (XEXP (x, 0), 0));
4265 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4266 integers. */
4267 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4268 return gen_binary (MINUS, mode,
4269 gen_binary (MINUS, mode, XEXP (x, 0),
4270 XEXP (XEXP (x, 1), 0)),
4271 XEXP (XEXP (x, 1), 1));
4272 break;
4274 case MULT:
4275 /* If we have (mult (plus A B) C), apply the distributive law and then
4276 the inverse distributive law to see if things simplify. This
4277 occurs mostly in addresses, often when unrolling loops. */
4279 if (GET_CODE (XEXP (x, 0)) == PLUS)
4281 x = apply_distributive_law
4282 (gen_binary (PLUS, mode,
4283 gen_binary (MULT, mode,
4284 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4285 gen_binary (MULT, mode,
4286 XEXP (XEXP (x, 0), 1),
4287 copy_rtx (XEXP (x, 1)))));
4289 if (GET_CODE (x) != MULT)
4290 return x;
4292 /* Try simplify a*(b/c) as (a*b)/c. */
4293 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4294 && GET_CODE (XEXP (x, 0)) == DIV)
4296 rtx tem = simplify_binary_operation (MULT, mode,
4297 XEXP (XEXP (x, 0), 0),
4298 XEXP (x, 1));
4299 if (tem)
4300 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4302 break;
4304 case UDIV:
4305 /* If this is a divide by a power of two, treat it as a shift if
4306 its first operand is a shift. */
4307 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4308 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4309 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4310 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4311 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4312 || GET_CODE (XEXP (x, 0)) == ROTATE
4313 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4314 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4315 break;
4317 case EQ: case NE:
4318 case GT: case GTU: case GE: case GEU:
4319 case LT: case LTU: case LE: case LEU:
4320 case UNEQ: case LTGT:
4321 case UNGT: case UNGE:
4322 case UNLT: case UNLE:
4323 case UNORDERED: case ORDERED:
4324 /* If the first operand is a condition code, we can't do anything
4325 with it. */
4326 if (GET_CODE (XEXP (x, 0)) == COMPARE
4327 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4328 && ! CC0_P (XEXP (x, 0))))
4330 rtx op0 = XEXP (x, 0);
4331 rtx op1 = XEXP (x, 1);
4332 enum rtx_code new_code;
4334 if (GET_CODE (op0) == COMPARE)
4335 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4337 /* Simplify our comparison, if possible. */
4338 new_code = simplify_comparison (code, &op0, &op1);
4340 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4341 if only the low-order bit is possibly nonzero in X (such as when
4342 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4343 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4344 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4345 (plus X 1).
4347 Remove any ZERO_EXTRACT we made when thinking this was a
4348 comparison. It may now be simpler to use, e.g., an AND. If a
4349 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4350 the call to make_compound_operation in the SET case. */
4352 if (STORE_FLAG_VALUE == 1
4353 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4354 && op1 == const0_rtx
4355 && mode == GET_MODE (op0)
4356 && nonzero_bits (op0, mode) == 1)
4357 return gen_lowpart_for_combine (mode,
4358 expand_compound_operation (op0));
4360 else if (STORE_FLAG_VALUE == 1
4361 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4362 && op1 == const0_rtx
4363 && mode == GET_MODE (op0)
4364 && (num_sign_bit_copies (op0, mode)
4365 == GET_MODE_BITSIZE (mode)))
4367 op0 = expand_compound_operation (op0);
4368 return simplify_gen_unary (NEG, mode,
4369 gen_lowpart_for_combine (mode, op0),
4370 mode);
4373 else if (STORE_FLAG_VALUE == 1
4374 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4375 && op1 == const0_rtx
4376 && mode == GET_MODE (op0)
4377 && nonzero_bits (op0, mode) == 1)
4379 op0 = expand_compound_operation (op0);
4380 return gen_binary (XOR, mode,
4381 gen_lowpart_for_combine (mode, op0),
4382 const1_rtx);
4385 else if (STORE_FLAG_VALUE == 1
4386 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4387 && op1 == const0_rtx
4388 && mode == GET_MODE (op0)
4389 && (num_sign_bit_copies (op0, mode)
4390 == GET_MODE_BITSIZE (mode)))
4392 op0 = expand_compound_operation (op0);
4393 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4396 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4397 those above. */
4398 if (STORE_FLAG_VALUE == -1
4399 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4400 && op1 == const0_rtx
4401 && (num_sign_bit_copies (op0, mode)
4402 == GET_MODE_BITSIZE (mode)))
4403 return gen_lowpart_for_combine (mode,
4404 expand_compound_operation (op0));
4406 else if (STORE_FLAG_VALUE == -1
4407 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4408 && op1 == const0_rtx
4409 && mode == GET_MODE (op0)
4410 && nonzero_bits (op0, mode) == 1)
4412 op0 = expand_compound_operation (op0);
4413 return simplify_gen_unary (NEG, mode,
4414 gen_lowpart_for_combine (mode, op0),
4415 mode);
4418 else if (STORE_FLAG_VALUE == -1
4419 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4420 && op1 == const0_rtx
4421 && mode == GET_MODE (op0)
4422 && (num_sign_bit_copies (op0, mode)
4423 == GET_MODE_BITSIZE (mode)))
4425 op0 = expand_compound_operation (op0);
4426 return simplify_gen_unary (NOT, mode,
4427 gen_lowpart_for_combine (mode, op0),
4428 mode);
4431 /* If X is 0/1, (eq X 0) is X-1. */
4432 else if (STORE_FLAG_VALUE == -1
4433 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4434 && op1 == const0_rtx
4435 && mode == GET_MODE (op0)
4436 && nonzero_bits (op0, mode) == 1)
4438 op0 = expand_compound_operation (op0);
4439 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4442 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4443 one bit that might be nonzero, we can convert (ne x 0) to
4444 (ashift x c) where C puts the bit in the sign bit. Remove any
4445 AND with STORE_FLAG_VALUE when we are done, since we are only
4446 going to test the sign bit. */
4447 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4448 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4449 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4450 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4451 && op1 == const0_rtx
4452 && mode == GET_MODE (op0)
4453 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4455 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4456 expand_compound_operation (op0),
4457 GET_MODE_BITSIZE (mode) - 1 - i);
4458 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4459 return XEXP (x, 0);
4460 else
4461 return x;
4464 /* If the code changed, return a whole new comparison. */
4465 if (new_code != code)
4466 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4468 /* Otherwise, keep this operation, but maybe change its operands.
4469 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4470 SUBST (XEXP (x, 0), op0);
4471 SUBST (XEXP (x, 1), op1);
4473 break;
4475 case IF_THEN_ELSE:
4476 return simplify_if_then_else (x);
4478 case ZERO_EXTRACT:
4479 case SIGN_EXTRACT:
4480 case ZERO_EXTEND:
4481 case SIGN_EXTEND:
4482 /* If we are processing SET_DEST, we are done. */
4483 if (in_dest)
4484 return x;
4486 return expand_compound_operation (x);
4488 case SET:
4489 return simplify_set (x);
4491 case AND:
4492 case IOR:
4493 case XOR:
4494 return simplify_logical (x, last);
4496 case ABS:
4497 /* (abs (neg <foo>)) -> (abs <foo>) */
4498 if (GET_CODE (XEXP (x, 0)) == NEG)
4499 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4501 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4502 do nothing. */
4503 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4504 break;
4506 /* If operand is something known to be positive, ignore the ABS. */
4507 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4508 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4509 <= HOST_BITS_PER_WIDE_INT)
4510 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4511 & ((HOST_WIDE_INT) 1
4512 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4513 == 0)))
4514 return XEXP (x, 0);
4516 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4517 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4518 return gen_rtx_NEG (mode, XEXP (x, 0));
4520 break;
4522 case FFS:
4523 /* (ffs (*_extend <X>)) = (ffs <X>) */
4524 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4525 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4526 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4527 break;
4529 case POPCOUNT:
4530 case PARITY:
4531 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4532 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4533 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4534 break;
4536 case FLOAT:
4537 /* (float (sign_extend <X>)) = (float <X>). */
4538 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4539 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4540 break;
4542 case ASHIFT:
4543 case LSHIFTRT:
4544 case ASHIFTRT:
4545 case ROTATE:
4546 case ROTATERT:
4547 /* If this is a shift by a constant amount, simplify it. */
4548 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4549 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4550 INTVAL (XEXP (x, 1)));
4552 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4553 SUBST (XEXP (x, 1),
4554 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4555 ((HOST_WIDE_INT) 1
4556 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4557 - 1,
4558 NULL_RTX, 0));
4559 break;
4561 case VEC_SELECT:
4563 rtx op0 = XEXP (x, 0);
4564 rtx op1 = XEXP (x, 1);
4565 int len;
4567 if (GET_CODE (op1) != PARALLEL)
4568 abort ();
4569 len = XVECLEN (op1, 0);
4570 if (len == 1
4571 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4572 && GET_CODE (op0) == VEC_CONCAT)
4574 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4576 /* Try to find the element in the VEC_CONCAT. */
4577 for (;;)
4579 if (GET_MODE (op0) == GET_MODE (x))
4580 return op0;
4581 if (GET_CODE (op0) == VEC_CONCAT)
4583 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4584 if (op0_size < offset)
4585 op0 = XEXP (op0, 0);
4586 else
4588 offset -= op0_size;
4589 op0 = XEXP (op0, 1);
4592 else
4593 break;
4598 break;
4600 default:
4601 break;
4604 return x;
4607 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4609 static rtx
4610 simplify_if_then_else (rtx x)
4612 enum machine_mode mode = GET_MODE (x);
4613 rtx cond = XEXP (x, 0);
4614 rtx true_rtx = XEXP (x, 1);
4615 rtx false_rtx = XEXP (x, 2);
4616 enum rtx_code true_code = GET_CODE (cond);
4617 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4618 rtx temp;
4619 int i;
4620 enum rtx_code false_code;
4621 rtx reversed;
4623 /* Simplify storing of the truth value. */
4624 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4625 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4627 /* Also when the truth value has to be reversed. */
4628 if (comparison_p
4629 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4630 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4631 XEXP (cond, 1))))
4632 return reversed;
4634 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4635 in it is being compared against certain values. Get the true and false
4636 comparisons and see if that says anything about the value of each arm. */
4638 if (comparison_p
4639 && ((false_code = combine_reversed_comparison_code (cond))
4640 != UNKNOWN)
4641 && GET_CODE (XEXP (cond, 0)) == REG)
4643 HOST_WIDE_INT nzb;
4644 rtx from = XEXP (cond, 0);
4645 rtx true_val = XEXP (cond, 1);
4646 rtx false_val = true_val;
4647 int swapped = 0;
4649 /* If FALSE_CODE is EQ, swap the codes and arms. */
4651 if (false_code == EQ)
4653 swapped = 1, true_code = EQ, false_code = NE;
4654 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4657 /* If we are comparing against zero and the expression being tested has
4658 only a single bit that might be nonzero, that is its value when it is
4659 not equal to zero. Similarly if it is known to be -1 or 0. */
4661 if (true_code == EQ && true_val == const0_rtx
4662 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4663 false_code = EQ, false_val = GEN_INT (nzb);
4664 else if (true_code == EQ && true_val == const0_rtx
4665 && (num_sign_bit_copies (from, GET_MODE (from))
4666 == GET_MODE_BITSIZE (GET_MODE (from))))
4667 false_code = EQ, false_val = constm1_rtx;
4669 /* Now simplify an arm if we know the value of the register in the
4670 branch and it is used in the arm. Be careful due to the potential
4671 of locally-shared RTL. */
4673 if (reg_mentioned_p (from, true_rtx))
4674 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4675 from, true_val),
4676 pc_rtx, pc_rtx, 0, 0);
4677 if (reg_mentioned_p (from, false_rtx))
4678 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4679 from, false_val),
4680 pc_rtx, pc_rtx, 0, 0);
4682 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4683 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4685 true_rtx = XEXP (x, 1);
4686 false_rtx = XEXP (x, 2);
4687 true_code = GET_CODE (cond);
4690 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4691 reversed, do so to avoid needing two sets of patterns for
4692 subtract-and-branch insns. Similarly if we have a constant in the true
4693 arm, the false arm is the same as the first operand of the comparison, or
4694 the false arm is more complicated than the true arm. */
4696 if (comparison_p
4697 && combine_reversed_comparison_code (cond) != UNKNOWN
4698 && (true_rtx == pc_rtx
4699 || (CONSTANT_P (true_rtx)
4700 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4701 || true_rtx == const0_rtx
4702 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4703 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4704 || (GET_CODE (true_rtx) == SUBREG
4705 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4706 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4707 || reg_mentioned_p (true_rtx, false_rtx)
4708 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4710 true_code = reversed_comparison_code (cond, NULL);
4711 SUBST (XEXP (x, 0),
4712 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4713 XEXP (cond, 1)));
4715 SUBST (XEXP (x, 1), false_rtx);
4716 SUBST (XEXP (x, 2), true_rtx);
4718 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4719 cond = XEXP (x, 0);
4721 /* It is possible that the conditional has been simplified out. */
4722 true_code = GET_CODE (cond);
4723 comparison_p = GET_RTX_CLASS (true_code) == '<';
4726 /* If the two arms are identical, we don't need the comparison. */
4728 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4729 return true_rtx;
4731 /* Convert a == b ? b : a to "a". */
4732 if (true_code == EQ && ! side_effects_p (cond)
4733 && !HONOR_NANS (mode)
4734 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4735 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4736 return false_rtx;
4737 else if (true_code == NE && ! side_effects_p (cond)
4738 && !HONOR_NANS (mode)
4739 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4740 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4741 return true_rtx;
4743 /* Look for cases where we have (abs x) or (neg (abs X)). */
4745 if (GET_MODE_CLASS (mode) == MODE_INT
4746 && GET_CODE (false_rtx) == NEG
4747 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4748 && comparison_p
4749 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4750 && ! side_effects_p (true_rtx))
4751 switch (true_code)
4753 case GT:
4754 case GE:
4755 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4756 case LT:
4757 case LE:
4758 return
4759 simplify_gen_unary (NEG, mode,
4760 simplify_gen_unary (ABS, mode, true_rtx, mode),
4761 mode);
4762 default:
4763 break;
4766 /* Look for MIN or MAX. */
4768 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4769 && comparison_p
4770 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4771 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4772 && ! side_effects_p (cond))
4773 switch (true_code)
4775 case GE:
4776 case GT:
4777 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4778 case LE:
4779 case LT:
4780 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4781 case GEU:
4782 case GTU:
4783 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4784 case LEU:
4785 case LTU:
4786 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4787 default:
4788 break;
4791 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4792 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4793 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4794 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4795 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4796 neither 1 or -1, but it isn't worth checking for. */
4798 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4799 && comparison_p
4800 && GET_MODE_CLASS (mode) == MODE_INT
4801 && ! side_effects_p (x))
4803 rtx t = make_compound_operation (true_rtx, SET);
4804 rtx f = make_compound_operation (false_rtx, SET);
4805 rtx cond_op0 = XEXP (cond, 0);
4806 rtx cond_op1 = XEXP (cond, 1);
4807 enum rtx_code op = NIL, extend_op = NIL;
4808 enum machine_mode m = mode;
4809 rtx z = 0, c1 = NULL_RTX;
4811 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4812 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4813 || GET_CODE (t) == ASHIFT
4814 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4815 && rtx_equal_p (XEXP (t, 0), f))
4816 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4818 /* If an identity-zero op is commutative, check whether there
4819 would be a match if we swapped the operands. */
4820 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4821 || GET_CODE (t) == XOR)
4822 && rtx_equal_p (XEXP (t, 1), f))
4823 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4824 else if (GET_CODE (t) == SIGN_EXTEND
4825 && (GET_CODE (XEXP (t, 0)) == PLUS
4826 || GET_CODE (XEXP (t, 0)) == MINUS
4827 || GET_CODE (XEXP (t, 0)) == IOR
4828 || GET_CODE (XEXP (t, 0)) == XOR
4829 || GET_CODE (XEXP (t, 0)) == ASHIFT
4830 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4831 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4832 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4833 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4834 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4835 && (num_sign_bit_copies (f, GET_MODE (f))
4836 > (unsigned int)
4837 (GET_MODE_BITSIZE (mode)
4838 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4840 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4841 extend_op = SIGN_EXTEND;
4842 m = GET_MODE (XEXP (t, 0));
4844 else if (GET_CODE (t) == SIGN_EXTEND
4845 && (GET_CODE (XEXP (t, 0)) == PLUS
4846 || GET_CODE (XEXP (t, 0)) == IOR
4847 || GET_CODE (XEXP (t, 0)) == XOR)
4848 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4849 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4850 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4851 && (num_sign_bit_copies (f, GET_MODE (f))
4852 > (unsigned int)
4853 (GET_MODE_BITSIZE (mode)
4854 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4856 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4857 extend_op = SIGN_EXTEND;
4858 m = GET_MODE (XEXP (t, 0));
4860 else if (GET_CODE (t) == ZERO_EXTEND
4861 && (GET_CODE (XEXP (t, 0)) == PLUS
4862 || GET_CODE (XEXP (t, 0)) == MINUS
4863 || GET_CODE (XEXP (t, 0)) == IOR
4864 || GET_CODE (XEXP (t, 0)) == XOR
4865 || GET_CODE (XEXP (t, 0)) == ASHIFT
4866 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4867 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4868 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4869 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4870 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4871 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4872 && ((nonzero_bits (f, GET_MODE (f))
4873 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4874 == 0))
4876 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4877 extend_op = ZERO_EXTEND;
4878 m = GET_MODE (XEXP (t, 0));
4880 else if (GET_CODE (t) == ZERO_EXTEND
4881 && (GET_CODE (XEXP (t, 0)) == PLUS
4882 || GET_CODE (XEXP (t, 0)) == IOR
4883 || GET_CODE (XEXP (t, 0)) == XOR)
4884 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4885 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4886 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4887 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4888 && ((nonzero_bits (f, GET_MODE (f))
4889 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4890 == 0))
4892 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4893 extend_op = ZERO_EXTEND;
4894 m = GET_MODE (XEXP (t, 0));
4897 if (z)
4899 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4900 pc_rtx, pc_rtx, 0, 0);
4901 temp = gen_binary (MULT, m, temp,
4902 gen_binary (MULT, m, c1, const_true_rtx));
4903 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4904 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4906 if (extend_op != NIL)
4907 temp = simplify_gen_unary (extend_op, mode, temp, m);
4909 return temp;
4913 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4914 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4915 negation of a single bit, we can convert this operation to a shift. We
4916 can actually do this more generally, but it doesn't seem worth it. */
4918 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4919 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4920 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4921 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4922 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4923 == GET_MODE_BITSIZE (mode))
4924 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4925 return
4926 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4927 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4929 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
4930 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4931 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4932 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
4933 == nonzero_bits (XEXP (cond, 0), mode)
4934 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
4935 return XEXP (cond, 0);
4937 return x;
4940 /* Simplify X, a SET expression. Return the new expression. */
4942 static rtx
4943 simplify_set (rtx x)
4945 rtx src = SET_SRC (x);
4946 rtx dest = SET_DEST (x);
4947 enum machine_mode mode
4948 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4949 rtx other_insn;
4950 rtx *cc_use;
4952 /* (set (pc) (return)) gets written as (return). */
4953 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4954 return src;
4956 /* Now that we know for sure which bits of SRC we are using, see if we can
4957 simplify the expression for the object knowing that we only need the
4958 low-order bits. */
4960 if (GET_MODE_CLASS (mode) == MODE_INT
4961 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4963 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4964 SUBST (SET_SRC (x), src);
4967 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4968 the comparison result and try to simplify it unless we already have used
4969 undobuf.other_insn. */
4970 if ((GET_MODE_CLASS (mode) == MODE_CC
4971 || GET_CODE (src) == COMPARE
4972 || CC0_P (dest))
4973 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4974 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4975 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4976 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4978 enum rtx_code old_code = GET_CODE (*cc_use);
4979 enum rtx_code new_code;
4980 rtx op0, op1, tmp;
4981 int other_changed = 0;
4982 enum machine_mode compare_mode = GET_MODE (dest);
4983 enum machine_mode tmp_mode;
4985 if (GET_CODE (src) == COMPARE)
4986 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4987 else
4988 op0 = src, op1 = const0_rtx;
4990 /* Check whether the comparison is known at compile time. */
4991 if (GET_MODE (op0) != VOIDmode)
4992 tmp_mode = GET_MODE (op0);
4993 else if (GET_MODE (op1) != VOIDmode)
4994 tmp_mode = GET_MODE (op1);
4995 else
4996 tmp_mode = compare_mode;
4997 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
4998 if (tmp != NULL_RTX)
5000 rtx pat = PATTERN (other_insn);
5001 undobuf.other_insn = other_insn;
5002 SUBST (*cc_use, tmp);
5004 /* Attempt to simplify CC user. */
5005 if (GET_CODE (pat) == SET)
5007 rtx new = simplify_rtx (SET_SRC (pat));
5008 if (new != NULL_RTX)
5009 SUBST (SET_SRC (pat), new);
5012 /* Convert X into a no-op move. */
5013 SUBST (SET_DEST (x), pc_rtx);
5014 SUBST (SET_SRC (x), pc_rtx);
5015 return x;
5018 /* Simplify our comparison, if possible. */
5019 new_code = simplify_comparison (old_code, &op0, &op1);
5021 #ifdef SELECT_CC_MODE
5022 /* If this machine has CC modes other than CCmode, check to see if we
5023 need to use a different CC mode here. */
5024 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5026 #ifndef HAVE_cc0
5027 /* If the mode changed, we have to change SET_DEST, the mode in the
5028 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5029 a hard register, just build new versions with the proper mode. If it
5030 is a pseudo, we lose unless it is only time we set the pseudo, in
5031 which case we can safely change its mode. */
5032 if (compare_mode != GET_MODE (dest))
5034 unsigned int regno = REGNO (dest);
5035 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5037 if (regno < FIRST_PSEUDO_REGISTER
5038 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5040 if (regno >= FIRST_PSEUDO_REGISTER)
5041 SUBST (regno_reg_rtx[regno], new_dest);
5043 SUBST (SET_DEST (x), new_dest);
5044 SUBST (XEXP (*cc_use, 0), new_dest);
5045 other_changed = 1;
5047 dest = new_dest;
5050 #endif /* cc0 */
5051 #endif /* SELECT_CC_MODE */
5053 /* If the code changed, we have to build a new comparison in
5054 undobuf.other_insn. */
5055 if (new_code != old_code)
5057 int other_changed_previously = other_changed;
5058 unsigned HOST_WIDE_INT mask;
5060 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5061 dest, const0_rtx));
5062 other_changed = 1;
5064 /* If the only change we made was to change an EQ into an NE or
5065 vice versa, OP0 has only one bit that might be nonzero, and OP1
5066 is zero, check if changing the user of the condition code will
5067 produce a valid insn. If it won't, we can keep the original code
5068 in that insn by surrounding our operation with an XOR. */
5070 if (((old_code == NE && new_code == EQ)
5071 || (old_code == EQ && new_code == NE))
5072 && ! other_changed_previously && op1 == const0_rtx
5073 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5074 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5076 rtx pat = PATTERN (other_insn), note = 0;
5078 if ((recog_for_combine (&pat, other_insn, &note) < 0
5079 && ! check_asm_operands (pat)))
5081 PUT_CODE (*cc_use, old_code);
5082 other_changed = 0;
5084 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5089 if (other_changed)
5090 undobuf.other_insn = other_insn;
5092 #ifdef HAVE_cc0
5093 /* If we are now comparing against zero, change our source if
5094 needed. If we do not use cc0, we always have a COMPARE. */
5095 if (op1 == const0_rtx && dest == cc0_rtx)
5097 SUBST (SET_SRC (x), op0);
5098 src = op0;
5100 else
5101 #endif
5103 /* Otherwise, if we didn't previously have a COMPARE in the
5104 correct mode, we need one. */
5105 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5107 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5108 src = SET_SRC (x);
5110 else
5112 /* Otherwise, update the COMPARE if needed. */
5113 SUBST (XEXP (src, 0), op0);
5114 SUBST (XEXP (src, 1), op1);
5117 else
5119 /* Get SET_SRC in a form where we have placed back any
5120 compound expressions. Then do the checks below. */
5121 src = make_compound_operation (src, SET);
5122 SUBST (SET_SRC (x), src);
5125 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5126 and X being a REG or (subreg (reg)), we may be able to convert this to
5127 (set (subreg:m2 x) (op)).
5129 We can always do this if M1 is narrower than M2 because that means that
5130 we only care about the low bits of the result.
5132 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5133 perform a narrower operation than requested since the high-order bits will
5134 be undefined. On machine where it is defined, this transformation is safe
5135 as long as M1 and M2 have the same number of words. */
5137 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5138 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5139 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5140 / UNITS_PER_WORD)
5141 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5142 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5143 #ifndef WORD_REGISTER_OPERATIONS
5144 && (GET_MODE_SIZE (GET_MODE (src))
5145 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5146 #endif
5147 #ifdef CANNOT_CHANGE_MODE_CLASS
5148 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5149 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5150 GET_MODE (SUBREG_REG (src)),
5151 GET_MODE (src)))
5152 #endif
5153 && (GET_CODE (dest) == REG
5154 || (GET_CODE (dest) == SUBREG
5155 && GET_CODE (SUBREG_REG (dest)) == REG)))
5157 SUBST (SET_DEST (x),
5158 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5159 dest));
5160 SUBST (SET_SRC (x), SUBREG_REG (src));
5162 src = SET_SRC (x), dest = SET_DEST (x);
5165 #ifdef HAVE_cc0
5166 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5167 in SRC. */
5168 if (dest == cc0_rtx
5169 && GET_CODE (src) == SUBREG
5170 && subreg_lowpart_p (src)
5171 && (GET_MODE_BITSIZE (GET_MODE (src))
5172 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5174 rtx inner = SUBREG_REG (src);
5175 enum machine_mode inner_mode = GET_MODE (inner);
5177 /* Here we make sure that we don't have a sign bit on. */
5178 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5179 && (nonzero_bits (inner, inner_mode)
5180 < ((unsigned HOST_WIDE_INT) 1
5181 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5183 SUBST (SET_SRC (x), inner);
5184 src = SET_SRC (x);
5187 #endif
5189 #ifdef LOAD_EXTEND_OP
5190 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5191 would require a paradoxical subreg. Replace the subreg with a
5192 zero_extend to avoid the reload that would otherwise be required. */
5194 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5195 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5196 && SUBREG_BYTE (src) == 0
5197 && (GET_MODE_SIZE (GET_MODE (src))
5198 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5199 && GET_CODE (SUBREG_REG (src)) == MEM)
5201 SUBST (SET_SRC (x),
5202 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5203 GET_MODE (src), SUBREG_REG (src)));
5205 src = SET_SRC (x);
5207 #endif
5209 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5210 are comparing an item known to be 0 or -1 against 0, use a logical
5211 operation instead. Check for one of the arms being an IOR of the other
5212 arm with some value. We compute three terms to be IOR'ed together. In
5213 practice, at most two will be nonzero. Then we do the IOR's. */
5215 if (GET_CODE (dest) != PC
5216 && GET_CODE (src) == IF_THEN_ELSE
5217 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5218 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5219 && XEXP (XEXP (src, 0), 1) == const0_rtx
5220 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5221 #ifdef HAVE_conditional_move
5222 && ! can_conditionally_move_p (GET_MODE (src))
5223 #endif
5224 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5225 GET_MODE (XEXP (XEXP (src, 0), 0)))
5226 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5227 && ! side_effects_p (src))
5229 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5230 ? XEXP (src, 1) : XEXP (src, 2));
5231 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5232 ? XEXP (src, 2) : XEXP (src, 1));
5233 rtx term1 = const0_rtx, term2, term3;
5235 if (GET_CODE (true_rtx) == IOR
5236 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5237 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5238 else if (GET_CODE (true_rtx) == IOR
5239 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5240 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5241 else if (GET_CODE (false_rtx) == IOR
5242 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5243 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5244 else if (GET_CODE (false_rtx) == IOR
5245 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5246 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5248 term2 = gen_binary (AND, GET_MODE (src),
5249 XEXP (XEXP (src, 0), 0), true_rtx);
5250 term3 = gen_binary (AND, GET_MODE (src),
5251 simplify_gen_unary (NOT, GET_MODE (src),
5252 XEXP (XEXP (src, 0), 0),
5253 GET_MODE (src)),
5254 false_rtx);
5256 SUBST (SET_SRC (x),
5257 gen_binary (IOR, GET_MODE (src),
5258 gen_binary (IOR, GET_MODE (src), term1, term2),
5259 term3));
5261 src = SET_SRC (x);
5264 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5265 whole thing fail. */
5266 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5267 return src;
5268 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5269 return dest;
5270 else
5271 /* Convert this into a field assignment operation, if possible. */
5272 return make_field_assignment (x);
5275 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5276 result. LAST is nonzero if this is the last retry. */
5278 static rtx
5279 simplify_logical (rtx x, int last)
5281 enum machine_mode mode = GET_MODE (x);
5282 rtx op0 = XEXP (x, 0);
5283 rtx op1 = XEXP (x, 1);
5284 rtx reversed;
5286 switch (GET_CODE (x))
5288 case AND:
5289 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5290 insn (and may simplify more). */
5291 if (GET_CODE (op0) == XOR
5292 && rtx_equal_p (XEXP (op0, 0), op1)
5293 && ! side_effects_p (op1))
5294 x = gen_binary (AND, mode,
5295 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5296 op1);
5298 if (GET_CODE (op0) == XOR
5299 && rtx_equal_p (XEXP (op0, 1), op1)
5300 && ! side_effects_p (op1))
5301 x = gen_binary (AND, mode,
5302 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5303 op1);
5305 /* Similarly for (~(A ^ B)) & A. */
5306 if (GET_CODE (op0) == NOT
5307 && GET_CODE (XEXP (op0, 0)) == XOR
5308 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5309 && ! side_effects_p (op1))
5310 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5312 if (GET_CODE (op0) == NOT
5313 && GET_CODE (XEXP (op0, 0)) == XOR
5314 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5315 && ! side_effects_p (op1))
5316 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5318 /* We can call simplify_and_const_int only if we don't lose
5319 any (sign) bits when converting INTVAL (op1) to
5320 "unsigned HOST_WIDE_INT". */
5321 if (GET_CODE (op1) == CONST_INT
5322 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5323 || INTVAL (op1) > 0))
5325 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5327 /* If we have (ior (and (X C1) C2)) and the next restart would be
5328 the last, simplify this by making C1 as small as possible
5329 and then exit. */
5330 if (last
5331 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5332 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5333 && GET_CODE (op1) == CONST_INT)
5334 return gen_binary (IOR, mode,
5335 gen_binary (AND, mode, XEXP (op0, 0),
5336 GEN_INT (INTVAL (XEXP (op0, 1))
5337 & ~INTVAL (op1))), op1);
5339 if (GET_CODE (x) != AND)
5340 return x;
5342 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5343 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5344 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5347 /* Convert (A | B) & A to A. */
5348 if (GET_CODE (op0) == IOR
5349 && (rtx_equal_p (XEXP (op0, 0), op1)
5350 || rtx_equal_p (XEXP (op0, 1), op1))
5351 && ! side_effects_p (XEXP (op0, 0))
5352 && ! side_effects_p (XEXP (op0, 1)))
5353 return op1;
5355 /* In the following group of tests (and those in case IOR below),
5356 we start with some combination of logical operations and apply
5357 the distributive law followed by the inverse distributive law.
5358 Most of the time, this results in no change. However, if some of
5359 the operands are the same or inverses of each other, simplifications
5360 will result.
5362 For example, (and (ior A B) (not B)) can occur as the result of
5363 expanding a bit field assignment. When we apply the distributive
5364 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5365 which then simplifies to (and (A (not B))).
5367 If we have (and (ior A B) C), apply the distributive law and then
5368 the inverse distributive law to see if things simplify. */
5370 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5372 x = apply_distributive_law
5373 (gen_binary (GET_CODE (op0), mode,
5374 gen_binary (AND, mode, XEXP (op0, 0), op1),
5375 gen_binary (AND, mode, XEXP (op0, 1),
5376 copy_rtx (op1))));
5377 if (GET_CODE (x) != AND)
5378 return x;
5381 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5382 return apply_distributive_law
5383 (gen_binary (GET_CODE (op1), mode,
5384 gen_binary (AND, mode, XEXP (op1, 0), op0),
5385 gen_binary (AND, mode, XEXP (op1, 1),
5386 copy_rtx (op0))));
5388 /* Similarly, taking advantage of the fact that
5389 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5391 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5392 return apply_distributive_law
5393 (gen_binary (XOR, mode,
5394 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5395 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5396 XEXP (op1, 1))));
5398 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5399 return apply_distributive_law
5400 (gen_binary (XOR, mode,
5401 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5402 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5403 break;
5405 case IOR:
5406 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5407 if (GET_CODE (op1) == CONST_INT
5408 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5409 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5410 return op1;
5412 /* Convert (A & B) | A to A. */
5413 if (GET_CODE (op0) == AND
5414 && (rtx_equal_p (XEXP (op0, 0), op1)
5415 || rtx_equal_p (XEXP (op0, 1), op1))
5416 && ! side_effects_p (XEXP (op0, 0))
5417 && ! side_effects_p (XEXP (op0, 1)))
5418 return op1;
5420 /* If we have (ior (and A B) C), apply the distributive law and then
5421 the inverse distributive law to see if things simplify. */
5423 if (GET_CODE (op0) == AND)
5425 x = apply_distributive_law
5426 (gen_binary (AND, mode,
5427 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5428 gen_binary (IOR, mode, XEXP (op0, 1),
5429 copy_rtx (op1))));
5431 if (GET_CODE (x) != IOR)
5432 return x;
5435 if (GET_CODE (op1) == AND)
5437 x = apply_distributive_law
5438 (gen_binary (AND, mode,
5439 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5440 gen_binary (IOR, mode, XEXP (op1, 1),
5441 copy_rtx (op0))));
5443 if (GET_CODE (x) != IOR)
5444 return x;
5447 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5448 mode size to (rotate A CX). */
5450 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5451 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5452 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5453 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5454 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5455 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5456 == GET_MODE_BITSIZE (mode)))
5457 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5458 (GET_CODE (op0) == ASHIFT
5459 ? XEXP (op0, 1) : XEXP (op1, 1)));
5461 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5462 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5463 does not affect any of the bits in OP1, it can really be done
5464 as a PLUS and we can associate. We do this by seeing if OP1
5465 can be safely shifted left C bits. */
5466 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5467 && GET_CODE (XEXP (op0, 0)) == PLUS
5468 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5469 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5470 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5472 int count = INTVAL (XEXP (op0, 1));
5473 HOST_WIDE_INT mask = INTVAL (op1) << count;
5475 if (mask >> count == INTVAL (op1)
5476 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5478 SUBST (XEXP (XEXP (op0, 0), 1),
5479 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5480 return op0;
5483 break;
5485 case XOR:
5486 /* If we are XORing two things that have no bits in common,
5487 convert them into an IOR. This helps to detect rotation encoded
5488 using those methods and possibly other simplifications. */
5490 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5491 && (nonzero_bits (op0, mode)
5492 & nonzero_bits (op1, mode)) == 0)
5493 return (gen_binary (IOR, mode, op0, op1));
5495 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5496 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5497 (NOT y). */
5499 int num_negated = 0;
5501 if (GET_CODE (op0) == NOT)
5502 num_negated++, op0 = XEXP (op0, 0);
5503 if (GET_CODE (op1) == NOT)
5504 num_negated++, op1 = XEXP (op1, 0);
5506 if (num_negated == 2)
5508 SUBST (XEXP (x, 0), op0);
5509 SUBST (XEXP (x, 1), op1);
5511 else if (num_negated == 1)
5512 return
5513 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5514 mode);
5517 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5518 correspond to a machine insn or result in further simplifications
5519 if B is a constant. */
5521 if (GET_CODE (op0) == AND
5522 && rtx_equal_p (XEXP (op0, 1), op1)
5523 && ! side_effects_p (op1))
5524 return gen_binary (AND, mode,
5525 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5526 op1);
5528 else if (GET_CODE (op0) == AND
5529 && rtx_equal_p (XEXP (op0, 0), op1)
5530 && ! side_effects_p (op1))
5531 return gen_binary (AND, mode,
5532 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5533 op1);
5535 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5536 comparison if STORE_FLAG_VALUE is 1. */
5537 if (STORE_FLAG_VALUE == 1
5538 && op1 == const1_rtx
5539 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5540 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5541 XEXP (op0, 1))))
5542 return reversed;
5544 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5545 is (lt foo (const_int 0)), so we can perform the above
5546 simplification if STORE_FLAG_VALUE is 1. */
5548 if (STORE_FLAG_VALUE == 1
5549 && op1 == const1_rtx
5550 && GET_CODE (op0) == LSHIFTRT
5551 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5552 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5553 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5555 /* (xor (comparison foo bar) (const_int sign-bit))
5556 when STORE_FLAG_VALUE is the sign bit. */
5557 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5558 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5559 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5560 && op1 == const_true_rtx
5561 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5562 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5563 XEXP (op0, 1))))
5564 return reversed;
5566 break;
5568 default:
5569 abort ();
5572 return x;
5575 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5576 operations" because they can be replaced with two more basic operations.
5577 ZERO_EXTEND is also considered "compound" because it can be replaced with
5578 an AND operation, which is simpler, though only one operation.
5580 The function expand_compound_operation is called with an rtx expression
5581 and will convert it to the appropriate shifts and AND operations,
5582 simplifying at each stage.
5584 The function make_compound_operation is called to convert an expression
5585 consisting of shifts and ANDs into the equivalent compound expression.
5586 It is the inverse of this function, loosely speaking. */
5588 static rtx
5589 expand_compound_operation (rtx x)
5591 unsigned HOST_WIDE_INT pos = 0, len;
5592 int unsignedp = 0;
5593 unsigned int modewidth;
5594 rtx tem;
5596 switch (GET_CODE (x))
5598 case ZERO_EXTEND:
5599 unsignedp = 1;
5600 case SIGN_EXTEND:
5601 /* We can't necessarily use a const_int for a multiword mode;
5602 it depends on implicitly extending the value.
5603 Since we don't know the right way to extend it,
5604 we can't tell whether the implicit way is right.
5606 Even for a mode that is no wider than a const_int,
5607 we can't win, because we need to sign extend one of its bits through
5608 the rest of it, and we don't know which bit. */
5609 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5610 return x;
5612 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5613 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5614 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5615 reloaded. If not for that, MEM's would very rarely be safe.
5617 Reject MODEs bigger than a word, because we might not be able
5618 to reference a two-register group starting with an arbitrary register
5619 (and currently gen_lowpart might crash for a SUBREG). */
5621 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5622 return x;
5624 /* Reject MODEs that aren't scalar integers because turning vector
5625 or complex modes into shifts causes problems. */
5627 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5628 return x;
5630 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5631 /* If the inner object has VOIDmode (the only way this can happen
5632 is if it is an ASM_OPERANDS), we can't do anything since we don't
5633 know how much masking to do. */
5634 if (len == 0)
5635 return x;
5637 break;
5639 case ZERO_EXTRACT:
5640 unsignedp = 1;
5641 case SIGN_EXTRACT:
5642 /* If the operand is a CLOBBER, just return it. */
5643 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5644 return XEXP (x, 0);
5646 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5647 || GET_CODE (XEXP (x, 2)) != CONST_INT
5648 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5649 return x;
5651 /* Reject MODEs that aren't scalar integers because turning vector
5652 or complex modes into shifts causes problems. */
5654 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5655 return x;
5657 len = INTVAL (XEXP (x, 1));
5658 pos = INTVAL (XEXP (x, 2));
5660 /* If this goes outside the object being extracted, replace the object
5661 with a (use (mem ...)) construct that only combine understands
5662 and is used only for this purpose. */
5663 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5664 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5666 if (BITS_BIG_ENDIAN)
5667 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5669 break;
5671 default:
5672 return x;
5674 /* Convert sign extension to zero extension, if we know that the high
5675 bit is not set, as this is easier to optimize. It will be converted
5676 back to cheaper alternative in make_extraction. */
5677 if (GET_CODE (x) == SIGN_EXTEND
5678 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5679 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5680 & ~(((unsigned HOST_WIDE_INT)
5681 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5682 >> 1))
5683 == 0)))
5685 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5686 rtx temp2 = expand_compound_operation (temp);
5688 /* Make sure this is a profitable operation. */
5689 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5690 return temp2;
5691 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5692 return temp;
5693 else
5694 return x;
5697 /* We can optimize some special cases of ZERO_EXTEND. */
5698 if (GET_CODE (x) == ZERO_EXTEND)
5700 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5701 know that the last value didn't have any inappropriate bits
5702 set. */
5703 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5704 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5705 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5706 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5707 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5708 return XEXP (XEXP (x, 0), 0);
5710 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5711 if (GET_CODE (XEXP (x, 0)) == SUBREG
5712 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5713 && subreg_lowpart_p (XEXP (x, 0))
5714 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5715 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5716 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5717 return SUBREG_REG (XEXP (x, 0));
5719 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5720 is a comparison and STORE_FLAG_VALUE permits. This is like
5721 the first case, but it works even when GET_MODE (x) is larger
5722 than HOST_WIDE_INT. */
5723 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5724 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5725 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5726 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5727 <= HOST_BITS_PER_WIDE_INT)
5728 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5729 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5730 return XEXP (XEXP (x, 0), 0);
5732 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5733 if (GET_CODE (XEXP (x, 0)) == SUBREG
5734 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5735 && subreg_lowpart_p (XEXP (x, 0))
5736 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5737 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5738 <= HOST_BITS_PER_WIDE_INT)
5739 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5740 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5741 return SUBREG_REG (XEXP (x, 0));
5745 /* If we reach here, we want to return a pair of shifts. The inner
5746 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5747 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5748 logical depending on the value of UNSIGNEDP.
5750 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5751 converted into an AND of a shift.
5753 We must check for the case where the left shift would have a negative
5754 count. This can happen in a case like (x >> 31) & 255 on machines
5755 that can't shift by a constant. On those machines, we would first
5756 combine the shift with the AND to produce a variable-position
5757 extraction. Then the constant of 31 would be substituted in to produce
5758 a such a position. */
5760 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5761 if (modewidth + len >= pos)
5762 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5763 GET_MODE (x),
5764 simplify_shift_const (NULL_RTX, ASHIFT,
5765 GET_MODE (x),
5766 XEXP (x, 0),
5767 modewidth - pos - len),
5768 modewidth - len);
5770 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5771 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5772 simplify_shift_const (NULL_RTX, LSHIFTRT,
5773 GET_MODE (x),
5774 XEXP (x, 0), pos),
5775 ((HOST_WIDE_INT) 1 << len) - 1);
5776 else
5777 /* Any other cases we can't handle. */
5778 return x;
5780 /* If we couldn't do this for some reason, return the original
5781 expression. */
5782 if (GET_CODE (tem) == CLOBBER)
5783 return x;
5785 return tem;
5788 /* X is a SET which contains an assignment of one object into
5789 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5790 or certain SUBREGS). If possible, convert it into a series of
5791 logical operations.
5793 We half-heartedly support variable positions, but do not at all
5794 support variable lengths. */
5796 static rtx
5797 expand_field_assignment (rtx x)
5799 rtx inner;
5800 rtx pos; /* Always counts from low bit. */
5801 int len;
5802 rtx mask;
5803 enum machine_mode compute_mode;
5805 /* Loop until we find something we can't simplify. */
5806 while (1)
5808 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5809 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5811 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5812 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5813 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5815 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5816 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5818 inner = XEXP (SET_DEST (x), 0);
5819 len = INTVAL (XEXP (SET_DEST (x), 1));
5820 pos = XEXP (SET_DEST (x), 2);
5822 /* If the position is constant and spans the width of INNER,
5823 surround INNER with a USE to indicate this. */
5824 if (GET_CODE (pos) == CONST_INT
5825 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5826 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5828 if (BITS_BIG_ENDIAN)
5830 if (GET_CODE (pos) == CONST_INT)
5831 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5832 - INTVAL (pos));
5833 else if (GET_CODE (pos) == MINUS
5834 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5835 && (INTVAL (XEXP (pos, 1))
5836 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5837 /* If position is ADJUST - X, new position is X. */
5838 pos = XEXP (pos, 0);
5839 else
5840 pos = gen_binary (MINUS, GET_MODE (pos),
5841 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5842 - len),
5843 pos);
5847 /* A SUBREG between two modes that occupy the same numbers of words
5848 can be done by moving the SUBREG to the source. */
5849 else if (GET_CODE (SET_DEST (x)) == SUBREG
5850 /* We need SUBREGs to compute nonzero_bits properly. */
5851 && nonzero_sign_valid
5852 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5853 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5854 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5855 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5857 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5858 gen_lowpart_for_combine
5859 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5860 SET_SRC (x)));
5861 continue;
5863 else
5864 break;
5866 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5867 inner = SUBREG_REG (inner);
5869 compute_mode = GET_MODE (inner);
5871 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5872 if (! SCALAR_INT_MODE_P (compute_mode))
5874 enum machine_mode imode;
5876 /* Don't do anything for vector or complex integral types. */
5877 if (! FLOAT_MODE_P (compute_mode))
5878 break;
5880 /* Try to find an integral mode to pun with. */
5881 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5882 if (imode == BLKmode)
5883 break;
5885 compute_mode = imode;
5886 inner = gen_lowpart_for_combine (imode, inner);
5889 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5890 if (len < HOST_BITS_PER_WIDE_INT)
5891 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5892 else
5893 break;
5895 /* Now compute the equivalent expression. Make a copy of INNER
5896 for the SET_DEST in case it is a MEM into which we will substitute;
5897 we don't want shared RTL in that case. */
5898 x = gen_rtx_SET
5899 (VOIDmode, copy_rtx (inner),
5900 gen_binary (IOR, compute_mode,
5901 gen_binary (AND, compute_mode,
5902 simplify_gen_unary (NOT, compute_mode,
5903 gen_binary (ASHIFT,
5904 compute_mode,
5905 mask, pos),
5906 compute_mode),
5907 inner),
5908 gen_binary (ASHIFT, compute_mode,
5909 gen_binary (AND, compute_mode,
5910 gen_lowpart_for_combine
5911 (compute_mode, SET_SRC (x)),
5912 mask),
5913 pos)));
5916 return x;
5919 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5920 it is an RTX that represents a variable starting position; otherwise,
5921 POS is the (constant) starting bit position (counted from the LSB).
5923 INNER may be a USE. This will occur when we started with a bitfield
5924 that went outside the boundary of the object in memory, which is
5925 allowed on most machines. To isolate this case, we produce a USE
5926 whose mode is wide enough and surround the MEM with it. The only
5927 code that understands the USE is this routine. If it is not removed,
5928 it will cause the resulting insn not to match.
5930 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5931 signed reference.
5933 IN_DEST is nonzero if this is a reference in the destination of a
5934 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5935 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5936 be used.
5938 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5939 ZERO_EXTRACT should be built even for bits starting at bit 0.
5941 MODE is the desired mode of the result (if IN_DEST == 0).
5943 The result is an RTX for the extraction or NULL_RTX if the target
5944 can't handle it. */
5946 static rtx
5947 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5948 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5949 int in_dest, int in_compare)
5951 /* This mode describes the size of the storage area
5952 to fetch the overall value from. Within that, we
5953 ignore the POS lowest bits, etc. */
5954 enum machine_mode is_mode = GET_MODE (inner);
5955 enum machine_mode inner_mode;
5956 enum machine_mode wanted_inner_mode = byte_mode;
5957 enum machine_mode wanted_inner_reg_mode = word_mode;
5958 enum machine_mode pos_mode = word_mode;
5959 enum machine_mode extraction_mode = word_mode;
5960 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5961 int spans_byte = 0;
5962 rtx new = 0;
5963 rtx orig_pos_rtx = pos_rtx;
5964 HOST_WIDE_INT orig_pos;
5966 /* Get some information about INNER and get the innermost object. */
5967 if (GET_CODE (inner) == USE)
5968 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5969 /* We don't need to adjust the position because we set up the USE
5970 to pretend that it was a full-word object. */
5971 spans_byte = 1, inner = XEXP (inner, 0);
5972 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5974 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5975 consider just the QI as the memory to extract from.
5976 The subreg adds or removes high bits; its mode is
5977 irrelevant to the meaning of this extraction,
5978 since POS and LEN count from the lsb. */
5979 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5980 is_mode = GET_MODE (SUBREG_REG (inner));
5981 inner = SUBREG_REG (inner);
5983 else if (GET_CODE (inner) == ASHIFT
5984 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5985 && pos_rtx == 0 && pos == 0
5986 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5988 /* We're extracting the least significant bits of an rtx
5989 (ashift X (const_int C)), where LEN > C. Extract the
5990 least significant (LEN - C) bits of X, giving an rtx
5991 whose mode is MODE, then shift it left C times. */
5992 new = make_extraction (mode, XEXP (inner, 0),
5993 0, 0, len - INTVAL (XEXP (inner, 1)),
5994 unsignedp, in_dest, in_compare);
5995 if (new != 0)
5996 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5999 inner_mode = GET_MODE (inner);
6001 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6002 pos = INTVAL (pos_rtx), pos_rtx = 0;
6004 /* See if this can be done without an extraction. We never can if the
6005 width of the field is not the same as that of some integer mode. For
6006 registers, we can only avoid the extraction if the position is at the
6007 low-order bit and this is either not in the destination or we have the
6008 appropriate STRICT_LOW_PART operation available.
6010 For MEM, we can avoid an extract if the field starts on an appropriate
6011 boundary and we can change the mode of the memory reference. However,
6012 we cannot directly access the MEM if we have a USE and the underlying
6013 MEM is not TMODE. This combination means that MEM was being used in a
6014 context where bits outside its mode were being referenced; that is only
6015 valid in bit-field insns. */
6017 if (tmode != BLKmode
6018 && ! (spans_byte && inner_mode != tmode)
6019 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6020 && GET_CODE (inner) != MEM
6021 && (! in_dest
6022 || (GET_CODE (inner) == REG
6023 && have_insn_for (STRICT_LOW_PART, tmode))))
6024 || (GET_CODE (inner) == MEM && pos_rtx == 0
6025 && (pos
6026 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6027 : BITS_PER_UNIT)) == 0
6028 /* We can't do this if we are widening INNER_MODE (it
6029 may not be aligned, for one thing). */
6030 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6031 && (inner_mode == tmode
6032 || (! mode_dependent_address_p (XEXP (inner, 0))
6033 && ! MEM_VOLATILE_P (inner))))))
6035 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6036 field. If the original and current mode are the same, we need not
6037 adjust the offset. Otherwise, we do if bytes big endian.
6039 If INNER is not a MEM, get a piece consisting of just the field
6040 of interest (in this case POS % BITS_PER_WORD must be 0). */
6042 if (GET_CODE (inner) == MEM)
6044 HOST_WIDE_INT offset;
6046 /* POS counts from lsb, but make OFFSET count in memory order. */
6047 if (BYTES_BIG_ENDIAN)
6048 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6049 else
6050 offset = pos / BITS_PER_UNIT;
6052 new = adjust_address_nv (inner, tmode, offset);
6054 else if (GET_CODE (inner) == REG)
6056 if (tmode != inner_mode)
6058 /* We can't call gen_lowpart_for_combine in a DEST since we
6059 always want a SUBREG (see below) and it would sometimes
6060 return a new hard register. */
6061 if (pos || in_dest)
6063 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6065 if (WORDS_BIG_ENDIAN
6066 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6067 final_word = ((GET_MODE_SIZE (inner_mode)
6068 - GET_MODE_SIZE (tmode))
6069 / UNITS_PER_WORD) - final_word;
6071 final_word *= UNITS_PER_WORD;
6072 if (BYTES_BIG_ENDIAN &&
6073 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6074 final_word += (GET_MODE_SIZE (inner_mode)
6075 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6077 /* Avoid creating invalid subregs, for example when
6078 simplifying (x>>32)&255. */
6079 if (final_word >= GET_MODE_SIZE (inner_mode))
6080 return NULL_RTX;
6082 new = gen_rtx_SUBREG (tmode, inner, final_word);
6084 else
6085 new = gen_lowpart_for_combine (tmode, inner);
6087 else
6088 new = inner;
6090 else
6091 new = force_to_mode (inner, tmode,
6092 len >= HOST_BITS_PER_WIDE_INT
6093 ? ~(unsigned HOST_WIDE_INT) 0
6094 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6095 NULL_RTX, 0);
6097 /* If this extraction is going into the destination of a SET,
6098 make a STRICT_LOW_PART unless we made a MEM. */
6100 if (in_dest)
6101 return (GET_CODE (new) == MEM ? new
6102 : (GET_CODE (new) != SUBREG
6103 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6104 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6106 if (mode == tmode)
6107 return new;
6109 if (GET_CODE (new) == CONST_INT)
6110 return gen_int_mode (INTVAL (new), mode);
6112 /* If we know that no extraneous bits are set, and that the high
6113 bit is not set, convert the extraction to the cheaper of
6114 sign and zero extension, that are equivalent in these cases. */
6115 if (flag_expensive_optimizations
6116 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6117 && ((nonzero_bits (new, tmode)
6118 & ~(((unsigned HOST_WIDE_INT)
6119 GET_MODE_MASK (tmode))
6120 >> 1))
6121 == 0)))
6123 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6124 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6126 /* Prefer ZERO_EXTENSION, since it gives more information to
6127 backends. */
6128 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6129 return temp;
6130 return temp1;
6133 /* Otherwise, sign- or zero-extend unless we already are in the
6134 proper mode. */
6136 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6137 mode, new));
6140 /* Unless this is a COMPARE or we have a funny memory reference,
6141 don't do anything with zero-extending field extracts starting at
6142 the low-order bit since they are simple AND operations. */
6143 if (pos_rtx == 0 && pos == 0 && ! in_dest
6144 && ! in_compare && ! spans_byte && unsignedp)
6145 return 0;
6147 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6148 we would be spanning bytes or if the position is not a constant and the
6149 length is not 1. In all other cases, we would only be going outside
6150 our object in cases when an original shift would have been
6151 undefined. */
6152 if (! spans_byte && GET_CODE (inner) == MEM
6153 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6154 || (pos_rtx != 0 && len != 1)))
6155 return 0;
6157 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6158 and the mode for the result. */
6159 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6161 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6162 pos_mode = mode_for_extraction (EP_insv, 2);
6163 extraction_mode = mode_for_extraction (EP_insv, 3);
6166 if (! in_dest && unsignedp
6167 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6169 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6170 pos_mode = mode_for_extraction (EP_extzv, 3);
6171 extraction_mode = mode_for_extraction (EP_extzv, 0);
6174 if (! in_dest && ! unsignedp
6175 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6177 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6178 pos_mode = mode_for_extraction (EP_extv, 3);
6179 extraction_mode = mode_for_extraction (EP_extv, 0);
6182 /* Never narrow an object, since that might not be safe. */
6184 if (mode != VOIDmode
6185 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6186 extraction_mode = mode;
6188 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6189 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6190 pos_mode = GET_MODE (pos_rtx);
6192 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6193 if we have to change the mode of memory and cannot, the desired mode is
6194 EXTRACTION_MODE. */
6195 if (GET_CODE (inner) != MEM)
6196 wanted_inner_mode = wanted_inner_reg_mode;
6197 else if (inner_mode != wanted_inner_mode
6198 && (mode_dependent_address_p (XEXP (inner, 0))
6199 || MEM_VOLATILE_P (inner)))
6200 wanted_inner_mode = extraction_mode;
6202 orig_pos = pos;
6204 if (BITS_BIG_ENDIAN)
6206 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6207 BITS_BIG_ENDIAN style. If position is constant, compute new
6208 position. Otherwise, build subtraction.
6209 Note that POS is relative to the mode of the original argument.
6210 If it's a MEM we need to recompute POS relative to that.
6211 However, if we're extracting from (or inserting into) a register,
6212 we want to recompute POS relative to wanted_inner_mode. */
6213 int width = (GET_CODE (inner) == MEM
6214 ? GET_MODE_BITSIZE (is_mode)
6215 : GET_MODE_BITSIZE (wanted_inner_mode));
6217 if (pos_rtx == 0)
6218 pos = width - len - pos;
6219 else
6220 pos_rtx
6221 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6222 /* POS may be less than 0 now, but we check for that below.
6223 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6226 /* If INNER has a wider mode, make it smaller. If this is a constant
6227 extract, try to adjust the byte to point to the byte containing
6228 the value. */
6229 if (wanted_inner_mode != VOIDmode
6230 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6231 && ((GET_CODE (inner) == MEM
6232 && (inner_mode == wanted_inner_mode
6233 || (! mode_dependent_address_p (XEXP (inner, 0))
6234 && ! MEM_VOLATILE_P (inner))))))
6236 int offset = 0;
6238 /* The computations below will be correct if the machine is big
6239 endian in both bits and bytes or little endian in bits and bytes.
6240 If it is mixed, we must adjust. */
6242 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6243 adjust OFFSET to compensate. */
6244 if (BYTES_BIG_ENDIAN
6245 && ! spans_byte
6246 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6247 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6249 /* If this is a constant position, we can move to the desired byte. */
6250 if (pos_rtx == 0)
6252 offset += pos / BITS_PER_UNIT;
6253 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6256 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6257 && ! spans_byte
6258 && is_mode != wanted_inner_mode)
6259 offset = (GET_MODE_SIZE (is_mode)
6260 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6262 if (offset != 0 || inner_mode != wanted_inner_mode)
6263 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6266 /* If INNER is not memory, we can always get it into the proper mode. If we
6267 are changing its mode, POS must be a constant and smaller than the size
6268 of the new mode. */
6269 else if (GET_CODE (inner) != MEM)
6271 if (GET_MODE (inner) != wanted_inner_mode
6272 && (pos_rtx != 0
6273 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6274 return 0;
6276 inner = force_to_mode (inner, wanted_inner_mode,
6277 pos_rtx
6278 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6279 ? ~(unsigned HOST_WIDE_INT) 0
6280 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6281 << orig_pos),
6282 NULL_RTX, 0);
6285 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6286 have to zero extend. Otherwise, we can just use a SUBREG. */
6287 if (pos_rtx != 0
6288 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6290 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6292 /* If we know that no extraneous bits are set, and that the high
6293 bit is not set, convert extraction to cheaper one - either
6294 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6295 cases. */
6296 if (flag_expensive_optimizations
6297 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6298 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6299 & ~(((unsigned HOST_WIDE_INT)
6300 GET_MODE_MASK (GET_MODE (pos_rtx)))
6301 >> 1))
6302 == 0)))
6304 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6306 /* Prefer ZERO_EXTENSION, since it gives more information to
6307 backends. */
6308 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6309 temp = temp1;
6311 pos_rtx = temp;
6313 else if (pos_rtx != 0
6314 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6315 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6317 /* Make POS_RTX unless we already have it and it is correct. If we don't
6318 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6319 be a CONST_INT. */
6320 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6321 pos_rtx = orig_pos_rtx;
6323 else if (pos_rtx == 0)
6324 pos_rtx = GEN_INT (pos);
6326 /* Make the required operation. See if we can use existing rtx. */
6327 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6328 extraction_mode, inner, GEN_INT (len), pos_rtx);
6329 if (! in_dest)
6330 new = gen_lowpart_for_combine (mode, new);
6332 return new;
6335 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6336 with any other operations in X. Return X without that shift if so. */
6338 static rtx
6339 extract_left_shift (rtx x, int count)
6341 enum rtx_code code = GET_CODE (x);
6342 enum machine_mode mode = GET_MODE (x);
6343 rtx tem;
6345 switch (code)
6347 case ASHIFT:
6348 /* This is the shift itself. If it is wide enough, we will return
6349 either the value being shifted if the shift count is equal to
6350 COUNT or a shift for the difference. */
6351 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6352 && INTVAL (XEXP (x, 1)) >= count)
6353 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6354 INTVAL (XEXP (x, 1)) - count);
6355 break;
6357 case NEG: case NOT:
6358 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6359 return simplify_gen_unary (code, mode, tem, mode);
6361 break;
6363 case PLUS: case IOR: case XOR: case AND:
6364 /* If we can safely shift this constant and we find the inner shift,
6365 make a new operation. */
6366 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6367 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6368 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6369 return gen_binary (code, mode, tem,
6370 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6372 break;
6374 default:
6375 break;
6378 return 0;
6381 /* Look at the expression rooted at X. Look for expressions
6382 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6383 Form these expressions.
6385 Return the new rtx, usually just X.
6387 Also, for machines like the VAX that don't have logical shift insns,
6388 try to convert logical to arithmetic shift operations in cases where
6389 they are equivalent. This undoes the canonicalizations to logical
6390 shifts done elsewhere.
6392 We try, as much as possible, to re-use rtl expressions to save memory.
6394 IN_CODE says what kind of expression we are processing. Normally, it is
6395 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6396 being kludges), it is MEM. When processing the arguments of a comparison
6397 or a COMPARE against zero, it is COMPARE. */
6399 static rtx
6400 make_compound_operation (rtx x, enum rtx_code in_code)
6402 enum rtx_code code = GET_CODE (x);
6403 enum machine_mode mode = GET_MODE (x);
6404 int mode_width = GET_MODE_BITSIZE (mode);
6405 rtx rhs, lhs;
6406 enum rtx_code next_code;
6407 int i;
6408 rtx new = 0;
6409 rtx tem;
6410 const char *fmt;
6412 /* Select the code to be used in recursive calls. Once we are inside an
6413 address, we stay there. If we have a comparison, set to COMPARE,
6414 but once inside, go back to our default of SET. */
6416 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6417 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6418 && XEXP (x, 1) == const0_rtx) ? COMPARE
6419 : in_code == COMPARE ? SET : in_code);
6421 /* Process depending on the code of this operation. If NEW is set
6422 nonzero, it will be returned. */
6424 switch (code)
6426 case ASHIFT:
6427 /* Convert shifts by constants into multiplications if inside
6428 an address. */
6429 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6430 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6431 && INTVAL (XEXP (x, 1)) >= 0)
6433 new = make_compound_operation (XEXP (x, 0), next_code);
6434 new = gen_rtx_MULT (mode, new,
6435 GEN_INT ((HOST_WIDE_INT) 1
6436 << INTVAL (XEXP (x, 1))));
6438 break;
6440 case AND:
6441 /* If the second operand is not a constant, we can't do anything
6442 with it. */
6443 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6444 break;
6446 /* If the constant is a power of two minus one and the first operand
6447 is a logical right shift, make an extraction. */
6448 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6449 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6451 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6452 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6453 0, in_code == COMPARE);
6456 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6457 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6458 && subreg_lowpart_p (XEXP (x, 0))
6459 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6460 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6462 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6463 next_code);
6464 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6465 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6466 0, in_code == COMPARE);
6468 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6469 else if ((GET_CODE (XEXP (x, 0)) == XOR
6470 || GET_CODE (XEXP (x, 0)) == IOR)
6471 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6472 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6473 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6475 /* Apply the distributive law, and then try to make extractions. */
6476 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6477 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6478 XEXP (x, 1)),
6479 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6480 XEXP (x, 1)));
6481 new = make_compound_operation (new, in_code);
6484 /* If we are have (and (rotate X C) M) and C is larger than the number
6485 of bits in M, this is an extraction. */
6487 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6488 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6489 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6490 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6492 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6493 new = make_extraction (mode, new,
6494 (GET_MODE_BITSIZE (mode)
6495 - INTVAL (XEXP (XEXP (x, 0), 1))),
6496 NULL_RTX, i, 1, 0, in_code == COMPARE);
6499 /* On machines without logical shifts, if the operand of the AND is
6500 a logical shift and our mask turns off all the propagated sign
6501 bits, we can replace the logical shift with an arithmetic shift. */
6502 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6503 && !have_insn_for (LSHIFTRT, mode)
6504 && have_insn_for (ASHIFTRT, mode)
6505 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6506 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6507 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6508 && mode_width <= HOST_BITS_PER_WIDE_INT)
6510 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6512 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6513 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6514 SUBST (XEXP (x, 0),
6515 gen_rtx_ASHIFTRT (mode,
6516 make_compound_operation
6517 (XEXP (XEXP (x, 0), 0), next_code),
6518 XEXP (XEXP (x, 0), 1)));
6521 /* If the constant is one less than a power of two, this might be
6522 representable by an extraction even if no shift is present.
6523 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6524 we are in a COMPARE. */
6525 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6526 new = make_extraction (mode,
6527 make_compound_operation (XEXP (x, 0),
6528 next_code),
6529 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6531 /* If we are in a comparison and this is an AND with a power of two,
6532 convert this into the appropriate bit extract. */
6533 else if (in_code == COMPARE
6534 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6535 new = make_extraction (mode,
6536 make_compound_operation (XEXP (x, 0),
6537 next_code),
6538 i, NULL_RTX, 1, 1, 0, 1);
6540 break;
6542 case LSHIFTRT:
6543 /* If the sign bit is known to be zero, replace this with an
6544 arithmetic shift. */
6545 if (have_insn_for (ASHIFTRT, mode)
6546 && ! have_insn_for (LSHIFTRT, mode)
6547 && mode_width <= HOST_BITS_PER_WIDE_INT
6548 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6550 new = gen_rtx_ASHIFTRT (mode,
6551 make_compound_operation (XEXP (x, 0),
6552 next_code),
6553 XEXP (x, 1));
6554 break;
6557 /* ... fall through ... */
6559 case ASHIFTRT:
6560 lhs = XEXP (x, 0);
6561 rhs = XEXP (x, 1);
6563 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6564 this is a SIGN_EXTRACT. */
6565 if (GET_CODE (rhs) == CONST_INT
6566 && GET_CODE (lhs) == ASHIFT
6567 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6568 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6570 new = make_compound_operation (XEXP (lhs, 0), next_code);
6571 new = make_extraction (mode, new,
6572 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6573 NULL_RTX, mode_width - INTVAL (rhs),
6574 code == LSHIFTRT, 0, in_code == COMPARE);
6575 break;
6578 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6579 If so, try to merge the shifts into a SIGN_EXTEND. We could
6580 also do this for some cases of SIGN_EXTRACT, but it doesn't
6581 seem worth the effort; the case checked for occurs on Alpha. */
6583 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6584 && ! (GET_CODE (lhs) == SUBREG
6585 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6586 && GET_CODE (rhs) == CONST_INT
6587 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6588 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6589 new = make_extraction (mode, make_compound_operation (new, next_code),
6590 0, NULL_RTX, mode_width - INTVAL (rhs),
6591 code == LSHIFTRT, 0, in_code == COMPARE);
6593 break;
6595 case SUBREG:
6596 /* Call ourselves recursively on the inner expression. If we are
6597 narrowing the object and it has a different RTL code from
6598 what it originally did, do this SUBREG as a force_to_mode. */
6600 tem = make_compound_operation (SUBREG_REG (x), in_code);
6601 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6602 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6603 && subreg_lowpart_p (x))
6605 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6606 NULL_RTX, 0);
6608 /* If we have something other than a SUBREG, we might have
6609 done an expansion, so rerun ourselves. */
6610 if (GET_CODE (newer) != SUBREG)
6611 newer = make_compound_operation (newer, in_code);
6613 return newer;
6616 /* If this is a paradoxical subreg, and the new code is a sign or
6617 zero extension, omit the subreg and widen the extension. If it
6618 is a regular subreg, we can still get rid of the subreg by not
6619 widening so much, or in fact removing the extension entirely. */
6620 if ((GET_CODE (tem) == SIGN_EXTEND
6621 || GET_CODE (tem) == ZERO_EXTEND)
6622 && subreg_lowpart_p (x))
6624 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6625 || (GET_MODE_SIZE (mode) >
6626 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6628 if (! SCALAR_INT_MODE_P (mode))
6629 break;
6630 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6632 else
6633 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6634 return tem;
6636 break;
6638 default:
6639 break;
6642 if (new)
6644 x = gen_lowpart_for_combine (mode, new);
6645 code = GET_CODE (x);
6648 /* Now recursively process each operand of this operation. */
6649 fmt = GET_RTX_FORMAT (code);
6650 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6651 if (fmt[i] == 'e')
6653 new = make_compound_operation (XEXP (x, i), next_code);
6654 SUBST (XEXP (x, i), new);
6657 return x;
6660 /* Given M see if it is a value that would select a field of bits
6661 within an item, but not the entire word. Return -1 if not.
6662 Otherwise, return the starting position of the field, where 0 is the
6663 low-order bit.
6665 *PLEN is set to the length of the field. */
6667 static int
6668 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6670 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6671 int pos = exact_log2 (m & -m);
6672 int len;
6674 if (pos < 0)
6675 return -1;
6677 /* Now shift off the low-order zero bits and see if we have a power of
6678 two minus 1. */
6679 len = exact_log2 ((m >> pos) + 1);
6681 if (len <= 0)
6682 return -1;
6684 *plen = len;
6685 return pos;
6688 /* See if X can be simplified knowing that we will only refer to it in
6689 MODE and will only refer to those bits that are nonzero in MASK.
6690 If other bits are being computed or if masking operations are done
6691 that select a superset of the bits in MASK, they can sometimes be
6692 ignored.
6694 Return a possibly simplified expression, but always convert X to
6695 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6697 Also, if REG is nonzero and X is a register equal in value to REG,
6698 replace X with REG.
6700 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6701 are all off in X. This is used when X will be complemented, by either
6702 NOT, NEG, or XOR. */
6704 static rtx
6705 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6706 rtx reg, int just_select)
6708 enum rtx_code code = GET_CODE (x);
6709 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6710 enum machine_mode op_mode;
6711 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6712 rtx op0, op1, temp;
6714 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6715 code below will do the wrong thing since the mode of such an
6716 expression is VOIDmode.
6718 Also do nothing if X is a CLOBBER; this can happen if X was
6719 the return value from a call to gen_lowpart_for_combine. */
6720 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6721 return x;
6723 /* We want to perform the operation is its present mode unless we know
6724 that the operation is valid in MODE, in which case we do the operation
6725 in MODE. */
6726 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6727 && have_insn_for (code, mode))
6728 ? mode : GET_MODE (x));
6730 /* It is not valid to do a right-shift in a narrower mode
6731 than the one it came in with. */
6732 if ((code == LSHIFTRT || code == ASHIFTRT)
6733 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6734 op_mode = GET_MODE (x);
6736 /* Truncate MASK to fit OP_MODE. */
6737 if (op_mode)
6738 mask &= GET_MODE_MASK (op_mode);
6740 /* When we have an arithmetic operation, or a shift whose count we
6741 do not know, we need to assume that all bits up to the highest-order
6742 bit in MASK will be needed. This is how we form such a mask. */
6743 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6744 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6745 else
6746 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6747 - 1);
6749 /* Determine what bits of X are guaranteed to be (non)zero. */
6750 nonzero = nonzero_bits (x, mode);
6752 /* If none of the bits in X are needed, return a zero. */
6753 if (! just_select && (nonzero & mask) == 0)
6754 x = const0_rtx;
6756 /* If X is a CONST_INT, return a new one. Do this here since the
6757 test below will fail. */
6758 if (GET_CODE (x) == CONST_INT)
6760 if (SCALAR_INT_MODE_P (mode))
6761 return gen_int_mode (INTVAL (x) & mask, mode);
6762 else
6764 x = GEN_INT (INTVAL (x) & mask);
6765 return gen_lowpart_common (mode, x);
6769 /* If X is narrower than MODE and we want all the bits in X's mode, just
6770 get X in the proper mode. */
6771 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6772 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6773 return gen_lowpart_for_combine (mode, x);
6775 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6776 MASK are already known to be zero in X, we need not do anything. */
6777 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6778 return x;
6780 switch (code)
6782 case CLOBBER:
6783 /* If X is a (clobber (const_int)), return it since we know we are
6784 generating something that won't match. */
6785 return x;
6787 case USE:
6788 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6789 spanned the boundary of the MEM. If we are now masking so it is
6790 within that boundary, we don't need the USE any more. */
6791 if (! BITS_BIG_ENDIAN
6792 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6793 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6794 break;
6796 case SIGN_EXTEND:
6797 case ZERO_EXTEND:
6798 case ZERO_EXTRACT:
6799 case SIGN_EXTRACT:
6800 x = expand_compound_operation (x);
6801 if (GET_CODE (x) != code)
6802 return force_to_mode (x, mode, mask, reg, next_select);
6803 break;
6805 case REG:
6806 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6807 || rtx_equal_p (reg, get_last_value (x))))
6808 x = reg;
6809 break;
6811 case SUBREG:
6812 if (subreg_lowpart_p (x)
6813 /* We can ignore the effect of this SUBREG if it narrows the mode or
6814 if the constant masks to zero all the bits the mode doesn't
6815 have. */
6816 && ((GET_MODE_SIZE (GET_MODE (x))
6817 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6818 || (0 == (mask
6819 & GET_MODE_MASK (GET_MODE (x))
6820 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6821 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6822 break;
6824 case AND:
6825 /* If this is an AND with a constant, convert it into an AND
6826 whose constant is the AND of that constant with MASK. If it
6827 remains an AND of MASK, delete it since it is redundant. */
6829 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6831 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6832 mask & INTVAL (XEXP (x, 1)));
6834 /* If X is still an AND, see if it is an AND with a mask that
6835 is just some low-order bits. If so, and it is MASK, we don't
6836 need it. */
6838 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6839 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6840 == mask))
6841 x = XEXP (x, 0);
6843 /* If it remains an AND, try making another AND with the bits
6844 in the mode mask that aren't in MASK turned on. If the
6845 constant in the AND is wide enough, this might make a
6846 cheaper constant. */
6848 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6849 && GET_MODE_MASK (GET_MODE (x)) != mask
6850 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6852 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6853 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6854 int width = GET_MODE_BITSIZE (GET_MODE (x));
6855 rtx y;
6857 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6858 number, sign extend it. */
6859 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6860 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6861 cval |= (HOST_WIDE_INT) -1 << width;
6863 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6864 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6865 x = y;
6868 break;
6871 goto binop;
6873 case PLUS:
6874 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6875 low-order bits (as in an alignment operation) and FOO is already
6876 aligned to that boundary, mask C1 to that boundary as well.
6877 This may eliminate that PLUS and, later, the AND. */
6880 unsigned int width = GET_MODE_BITSIZE (mode);
6881 unsigned HOST_WIDE_INT smask = mask;
6883 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6884 number, sign extend it. */
6886 if (width < HOST_BITS_PER_WIDE_INT
6887 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6888 smask |= (HOST_WIDE_INT) -1 << width;
6890 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6891 && exact_log2 (- smask) >= 0
6892 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6893 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6894 return force_to_mode (plus_constant (XEXP (x, 0),
6895 (INTVAL (XEXP (x, 1)) & smask)),
6896 mode, smask, reg, next_select);
6899 /* ... fall through ... */
6901 case MULT:
6902 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6903 most significant bit in MASK since carries from those bits will
6904 affect the bits we are interested in. */
6905 mask = fuller_mask;
6906 goto binop;
6908 case MINUS:
6909 /* If X is (minus C Y) where C's least set bit is larger than any bit
6910 in the mask, then we may replace with (neg Y). */
6911 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6912 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6913 & -INTVAL (XEXP (x, 0))))
6914 > mask))
6916 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6917 GET_MODE (x));
6918 return force_to_mode (x, mode, mask, reg, next_select);
6921 /* Similarly, if C contains every bit in the fuller_mask, then we may
6922 replace with (not Y). */
6923 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6924 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6925 == INTVAL (XEXP (x, 0))))
6927 x = simplify_gen_unary (NOT, GET_MODE (x),
6928 XEXP (x, 1), GET_MODE (x));
6929 return force_to_mode (x, mode, mask, reg, next_select);
6932 mask = fuller_mask;
6933 goto binop;
6935 case IOR:
6936 case XOR:
6937 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6938 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6939 operation which may be a bitfield extraction. Ensure that the
6940 constant we form is not wider than the mode of X. */
6942 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6943 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6944 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6945 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6946 && GET_CODE (XEXP (x, 1)) == CONST_INT
6947 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6948 + floor_log2 (INTVAL (XEXP (x, 1))))
6949 < GET_MODE_BITSIZE (GET_MODE (x)))
6950 && (INTVAL (XEXP (x, 1))
6951 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6953 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6954 << INTVAL (XEXP (XEXP (x, 0), 1)));
6955 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6956 XEXP (XEXP (x, 0), 0), temp);
6957 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6958 XEXP (XEXP (x, 0), 1));
6959 return force_to_mode (x, mode, mask, reg, next_select);
6962 binop:
6963 /* For most binary operations, just propagate into the operation and
6964 change the mode if we have an operation of that mode. */
6966 op0 = gen_lowpart_for_combine (op_mode,
6967 force_to_mode (XEXP (x, 0), mode, mask,
6968 reg, next_select));
6969 op1 = gen_lowpart_for_combine (op_mode,
6970 force_to_mode (XEXP (x, 1), mode, mask,
6971 reg, next_select));
6973 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6974 x = gen_binary (code, op_mode, op0, op1);
6975 break;
6977 case ASHIFT:
6978 /* For left shifts, do the same, but just for the first operand.
6979 However, we cannot do anything with shifts where we cannot
6980 guarantee that the counts are smaller than the size of the mode
6981 because such a count will have a different meaning in a
6982 wider mode. */
6984 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6985 && INTVAL (XEXP (x, 1)) >= 0
6986 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6987 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6988 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6989 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6990 break;
6992 /* If the shift count is a constant and we can do arithmetic in
6993 the mode of the shift, refine which bits we need. Otherwise, use the
6994 conservative form of the mask. */
6995 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6996 && INTVAL (XEXP (x, 1)) >= 0
6997 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6998 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6999 mask >>= INTVAL (XEXP (x, 1));
7000 else
7001 mask = fuller_mask;
7003 op0 = gen_lowpart_for_combine (op_mode,
7004 force_to_mode (XEXP (x, 0), op_mode,
7005 mask, reg, next_select));
7007 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7008 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7009 break;
7011 case LSHIFTRT:
7012 /* Here we can only do something if the shift count is a constant,
7013 this shift constant is valid for the host, and we can do arithmetic
7014 in OP_MODE. */
7016 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7017 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7018 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7020 rtx inner = XEXP (x, 0);
7021 unsigned HOST_WIDE_INT inner_mask;
7023 /* Select the mask of the bits we need for the shift operand. */
7024 inner_mask = mask << INTVAL (XEXP (x, 1));
7026 /* We can only change the mode of the shift if we can do arithmetic
7027 in the mode of the shift and INNER_MASK is no wider than the
7028 width of OP_MODE. */
7029 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7030 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7031 op_mode = GET_MODE (x);
7033 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7035 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7036 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7039 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7040 shift and AND produces only copies of the sign bit (C2 is one less
7041 than a power of two), we can do this with just a shift. */
7043 if (GET_CODE (x) == LSHIFTRT
7044 && GET_CODE (XEXP (x, 1)) == CONST_INT
7045 /* The shift puts one of the sign bit copies in the least significant
7046 bit. */
7047 && ((INTVAL (XEXP (x, 1))
7048 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7049 >= GET_MODE_BITSIZE (GET_MODE (x)))
7050 && exact_log2 (mask + 1) >= 0
7051 /* Number of bits left after the shift must be more than the mask
7052 needs. */
7053 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7054 <= GET_MODE_BITSIZE (GET_MODE (x)))
7055 /* Must be more sign bit copies than the mask needs. */
7056 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7057 >= exact_log2 (mask + 1)))
7058 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7059 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7060 - exact_log2 (mask + 1)));
7062 goto shiftrt;
7064 case ASHIFTRT:
7065 /* If we are just looking for the sign bit, we don't need this shift at
7066 all, even if it has a variable count. */
7067 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7068 && (mask == ((unsigned HOST_WIDE_INT) 1
7069 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7070 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7072 /* If this is a shift by a constant, get a mask that contains those bits
7073 that are not copies of the sign bit. We then have two cases: If
7074 MASK only includes those bits, this can be a logical shift, which may
7075 allow simplifications. If MASK is a single-bit field not within
7076 those bits, we are requesting a copy of the sign bit and hence can
7077 shift the sign bit to the appropriate location. */
7079 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7080 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7082 int i = -1;
7084 /* If the considered data is wider than HOST_WIDE_INT, we can't
7085 represent a mask for all its bits in a single scalar.
7086 But we only care about the lower bits, so calculate these. */
7088 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7090 nonzero = ~(HOST_WIDE_INT) 0;
7092 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7093 is the number of bits a full-width mask would have set.
7094 We need only shift if these are fewer than nonzero can
7095 hold. If not, we must keep all bits set in nonzero. */
7097 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7098 < HOST_BITS_PER_WIDE_INT)
7099 nonzero >>= INTVAL (XEXP (x, 1))
7100 + HOST_BITS_PER_WIDE_INT
7101 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7103 else
7105 nonzero = GET_MODE_MASK (GET_MODE (x));
7106 nonzero >>= INTVAL (XEXP (x, 1));
7109 if ((mask & ~nonzero) == 0
7110 || (i = exact_log2 (mask)) >= 0)
7112 x = simplify_shift_const
7113 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7114 i < 0 ? INTVAL (XEXP (x, 1))
7115 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7117 if (GET_CODE (x) != ASHIFTRT)
7118 return force_to_mode (x, mode, mask, reg, next_select);
7122 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7123 even if the shift count isn't a constant. */
7124 if (mask == 1)
7125 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7127 shiftrt:
7129 /* If this is a zero- or sign-extension operation that just affects bits
7130 we don't care about, remove it. Be sure the call above returned
7131 something that is still a shift. */
7133 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7134 && GET_CODE (XEXP (x, 1)) == CONST_INT
7135 && INTVAL (XEXP (x, 1)) >= 0
7136 && (INTVAL (XEXP (x, 1))
7137 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7138 && GET_CODE (XEXP (x, 0)) == ASHIFT
7139 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7140 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7141 reg, next_select);
7143 break;
7145 case ROTATE:
7146 case ROTATERT:
7147 /* If the shift count is constant and we can do computations
7148 in the mode of X, compute where the bits we care about are.
7149 Otherwise, we can't do anything. Don't change the mode of
7150 the shift or propagate MODE into the shift, though. */
7151 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7152 && INTVAL (XEXP (x, 1)) >= 0)
7154 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7155 GET_MODE (x), GEN_INT (mask),
7156 XEXP (x, 1));
7157 if (temp && GET_CODE (temp) == CONST_INT)
7158 SUBST (XEXP (x, 0),
7159 force_to_mode (XEXP (x, 0), GET_MODE (x),
7160 INTVAL (temp), reg, next_select));
7162 break;
7164 case NEG:
7165 /* If we just want the low-order bit, the NEG isn't needed since it
7166 won't change the low-order bit. */
7167 if (mask == 1)
7168 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7170 /* We need any bits less significant than the most significant bit in
7171 MASK since carries from those bits will affect the bits we are
7172 interested in. */
7173 mask = fuller_mask;
7174 goto unop;
7176 case NOT:
7177 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7178 same as the XOR case above. Ensure that the constant we form is not
7179 wider than the mode of X. */
7181 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7182 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7183 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7184 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7185 < GET_MODE_BITSIZE (GET_MODE (x)))
7186 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7188 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7189 GET_MODE (x));
7190 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7191 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7193 return force_to_mode (x, mode, mask, reg, next_select);
7196 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7197 use the full mask inside the NOT. */
7198 mask = fuller_mask;
7200 unop:
7201 op0 = gen_lowpart_for_combine (op_mode,
7202 force_to_mode (XEXP (x, 0), mode, mask,
7203 reg, next_select));
7204 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7205 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7206 break;
7208 case NE:
7209 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7210 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7211 which is equal to STORE_FLAG_VALUE. */
7212 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7213 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7214 && (nonzero_bits (XEXP (x, 0), mode)
7215 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7216 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7218 break;
7220 case IF_THEN_ELSE:
7221 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7222 written in a narrower mode. We play it safe and do not do so. */
7224 SUBST (XEXP (x, 1),
7225 gen_lowpart_for_combine (GET_MODE (x),
7226 force_to_mode (XEXP (x, 1), mode,
7227 mask, reg, next_select)));
7228 SUBST (XEXP (x, 2),
7229 gen_lowpart_for_combine (GET_MODE (x),
7230 force_to_mode (XEXP (x, 2), mode,
7231 mask, reg, next_select)));
7232 break;
7234 default:
7235 break;
7238 /* Ensure we return a value of the proper mode. */
7239 return gen_lowpart_for_combine (mode, x);
7242 /* Return nonzero if X is an expression that has one of two values depending on
7243 whether some other value is zero or nonzero. In that case, we return the
7244 value that is being tested, *PTRUE is set to the value if the rtx being
7245 returned has a nonzero value, and *PFALSE is set to the other alternative.
7247 If we return zero, we set *PTRUE and *PFALSE to X. */
7249 static rtx
7250 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7252 enum machine_mode mode = GET_MODE (x);
7253 enum rtx_code code = GET_CODE (x);
7254 rtx cond0, cond1, true0, true1, false0, false1;
7255 unsigned HOST_WIDE_INT nz;
7257 /* If we are comparing a value against zero, we are done. */
7258 if ((code == NE || code == EQ)
7259 && XEXP (x, 1) == const0_rtx)
7261 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7262 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7263 return XEXP (x, 0);
7266 /* If this is a unary operation whose operand has one of two values, apply
7267 our opcode to compute those values. */
7268 else if (GET_RTX_CLASS (code) == '1'
7269 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7271 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7272 *pfalse = simplify_gen_unary (code, mode, false0,
7273 GET_MODE (XEXP (x, 0)));
7274 return cond0;
7277 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7278 make can't possibly match and would suppress other optimizations. */
7279 else if (code == COMPARE)
7282 /* If this is a binary operation, see if either side has only one of two
7283 values. If either one does or if both do and they are conditional on
7284 the same value, compute the new true and false values. */
7285 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7286 || GET_RTX_CLASS (code) == '<')
7288 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7289 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7291 if ((cond0 != 0 || cond1 != 0)
7292 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7294 /* If if_then_else_cond returned zero, then true/false are the
7295 same rtl. We must copy one of them to prevent invalid rtl
7296 sharing. */
7297 if (cond0 == 0)
7298 true0 = copy_rtx (true0);
7299 else if (cond1 == 0)
7300 true1 = copy_rtx (true1);
7302 *ptrue = gen_binary (code, mode, true0, true1);
7303 *pfalse = gen_binary (code, mode, false0, false1);
7304 return cond0 ? cond0 : cond1;
7307 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7308 operands is zero when the other is nonzero, and vice-versa,
7309 and STORE_FLAG_VALUE is 1 or -1. */
7311 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7312 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7313 || code == UMAX)
7314 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7316 rtx op0 = XEXP (XEXP (x, 0), 1);
7317 rtx op1 = XEXP (XEXP (x, 1), 1);
7319 cond0 = XEXP (XEXP (x, 0), 0);
7320 cond1 = XEXP (XEXP (x, 1), 0);
7322 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7323 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7324 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7325 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7326 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7327 || ((swap_condition (GET_CODE (cond0))
7328 == combine_reversed_comparison_code (cond1))
7329 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7330 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7331 && ! side_effects_p (x))
7333 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7334 *pfalse = gen_binary (MULT, mode,
7335 (code == MINUS
7336 ? simplify_gen_unary (NEG, mode, op1,
7337 mode)
7338 : op1),
7339 const_true_rtx);
7340 return cond0;
7344 /* Similarly for MULT, AND and UMIN, except that for these the result
7345 is always zero. */
7346 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7347 && (code == MULT || code == AND || code == UMIN)
7348 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7350 cond0 = XEXP (XEXP (x, 0), 0);
7351 cond1 = XEXP (XEXP (x, 1), 0);
7353 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7354 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7355 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7356 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7357 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7358 || ((swap_condition (GET_CODE (cond0))
7359 == combine_reversed_comparison_code (cond1))
7360 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7361 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7362 && ! side_effects_p (x))
7364 *ptrue = *pfalse = const0_rtx;
7365 return cond0;
7370 else if (code == IF_THEN_ELSE)
7372 /* If we have IF_THEN_ELSE already, extract the condition and
7373 canonicalize it if it is NE or EQ. */
7374 cond0 = XEXP (x, 0);
7375 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7376 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7377 return XEXP (cond0, 0);
7378 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7380 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7381 return XEXP (cond0, 0);
7383 else
7384 return cond0;
7387 /* If X is a SUBREG, we can narrow both the true and false values
7388 if the inner expression, if there is a condition. */
7389 else if (code == SUBREG
7390 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7391 &true0, &false0)))
7393 *ptrue = simplify_gen_subreg (mode, true0,
7394 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7395 *pfalse = simplify_gen_subreg (mode, false0,
7396 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7398 return cond0;
7401 /* If X is a constant, this isn't special and will cause confusions
7402 if we treat it as such. Likewise if it is equivalent to a constant. */
7403 else if (CONSTANT_P (x)
7404 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7407 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7408 will be least confusing to the rest of the compiler. */
7409 else if (mode == BImode)
7411 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7412 return x;
7415 /* If X is known to be either 0 or -1, those are the true and
7416 false values when testing X. */
7417 else if (x == constm1_rtx || x == const0_rtx
7418 || (mode != VOIDmode
7419 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7421 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7422 return x;
7425 /* Likewise for 0 or a single bit. */
7426 else if (SCALAR_INT_MODE_P (mode)
7427 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7428 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7430 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7431 return x;
7434 /* Otherwise fail; show no condition with true and false values the same. */
7435 *ptrue = *pfalse = x;
7436 return 0;
7439 /* Return the value of expression X given the fact that condition COND
7440 is known to be true when applied to REG as its first operand and VAL
7441 as its second. X is known to not be shared and so can be modified in
7442 place.
7444 We only handle the simplest cases, and specifically those cases that
7445 arise with IF_THEN_ELSE expressions. */
7447 static rtx
7448 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7450 enum rtx_code code = GET_CODE (x);
7451 rtx temp;
7452 const char *fmt;
7453 int i, j;
7455 if (side_effects_p (x))
7456 return x;
7458 /* If either operand of the condition is a floating point value,
7459 then we have to avoid collapsing an EQ comparison. */
7460 if (cond == EQ
7461 && rtx_equal_p (x, reg)
7462 && ! FLOAT_MODE_P (GET_MODE (x))
7463 && ! FLOAT_MODE_P (GET_MODE (val)))
7464 return val;
7466 if (cond == UNEQ && rtx_equal_p (x, reg))
7467 return val;
7469 /* If X is (abs REG) and we know something about REG's relationship
7470 with zero, we may be able to simplify this. */
7472 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7473 switch (cond)
7475 case GE: case GT: case EQ:
7476 return XEXP (x, 0);
7477 case LT: case LE:
7478 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7479 XEXP (x, 0),
7480 GET_MODE (XEXP (x, 0)));
7481 default:
7482 break;
7485 /* The only other cases we handle are MIN, MAX, and comparisons if the
7486 operands are the same as REG and VAL. */
7488 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7490 if (rtx_equal_p (XEXP (x, 0), val))
7491 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7493 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7495 if (GET_RTX_CLASS (code) == '<')
7497 if (comparison_dominates_p (cond, code))
7498 return const_true_rtx;
7500 code = combine_reversed_comparison_code (x);
7501 if (code != UNKNOWN
7502 && comparison_dominates_p (cond, code))
7503 return const0_rtx;
7504 else
7505 return x;
7507 else if (code == SMAX || code == SMIN
7508 || code == UMIN || code == UMAX)
7510 int unsignedp = (code == UMIN || code == UMAX);
7512 /* Do not reverse the condition when it is NE or EQ.
7513 This is because we cannot conclude anything about
7514 the value of 'SMAX (x, y)' when x is not equal to y,
7515 but we can when x equals y. */
7516 if ((code == SMAX || code == UMAX)
7517 && ! (cond == EQ || cond == NE))
7518 cond = reverse_condition (cond);
7520 switch (cond)
7522 case GE: case GT:
7523 return unsignedp ? x : XEXP (x, 1);
7524 case LE: case LT:
7525 return unsignedp ? x : XEXP (x, 0);
7526 case GEU: case GTU:
7527 return unsignedp ? XEXP (x, 1) : x;
7528 case LEU: case LTU:
7529 return unsignedp ? XEXP (x, 0) : x;
7530 default:
7531 break;
7536 else if (code == SUBREG)
7538 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7539 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7541 if (SUBREG_REG (x) != r)
7543 /* We must simplify subreg here, before we lose track of the
7544 original inner_mode. */
7545 new = simplify_subreg (GET_MODE (x), r,
7546 inner_mode, SUBREG_BYTE (x));
7547 if (new)
7548 return new;
7549 else
7550 SUBST (SUBREG_REG (x), r);
7553 return x;
7555 /* We don't have to handle SIGN_EXTEND here, because even in the
7556 case of replacing something with a modeless CONST_INT, a
7557 CONST_INT is already (supposed to be) a valid sign extension for
7558 its narrower mode, which implies it's already properly
7559 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7560 story is different. */
7561 else if (code == ZERO_EXTEND)
7563 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7564 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7566 if (XEXP (x, 0) != r)
7568 /* We must simplify the zero_extend here, before we lose
7569 track of the original inner_mode. */
7570 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7571 r, inner_mode);
7572 if (new)
7573 return new;
7574 else
7575 SUBST (XEXP (x, 0), r);
7578 return x;
7581 fmt = GET_RTX_FORMAT (code);
7582 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7584 if (fmt[i] == 'e')
7585 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7586 else if (fmt[i] == 'E')
7587 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7588 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7589 cond, reg, val));
7592 return x;
7595 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7596 assignment as a field assignment. */
7598 static int
7599 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7601 if (x == y || rtx_equal_p (x, y))
7602 return 1;
7604 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7605 return 0;
7607 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7608 Note that all SUBREGs of MEM are paradoxical; otherwise they
7609 would have been rewritten. */
7610 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7611 && GET_CODE (SUBREG_REG (y)) == MEM
7612 && rtx_equal_p (SUBREG_REG (y),
7613 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7614 return 1;
7616 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7617 && GET_CODE (SUBREG_REG (x)) == MEM
7618 && rtx_equal_p (SUBREG_REG (x),
7619 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7620 return 1;
7622 /* We used to see if get_last_value of X and Y were the same but that's
7623 not correct. In one direction, we'll cause the assignment to have
7624 the wrong destination and in the case, we'll import a register into this
7625 insn that might have already have been dead. So fail if none of the
7626 above cases are true. */
7627 return 0;
7630 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7631 Return that assignment if so.
7633 We only handle the most common cases. */
7635 static rtx
7636 make_field_assignment (rtx x)
7638 rtx dest = SET_DEST (x);
7639 rtx src = SET_SRC (x);
7640 rtx assign;
7641 rtx rhs, lhs;
7642 HOST_WIDE_INT c1;
7643 HOST_WIDE_INT pos;
7644 unsigned HOST_WIDE_INT len;
7645 rtx other;
7646 enum machine_mode mode;
7648 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7649 a clear of a one-bit field. We will have changed it to
7650 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7651 for a SUBREG. */
7653 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7654 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7655 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7656 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7658 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7659 1, 1, 1, 0);
7660 if (assign != 0)
7661 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7662 return x;
7665 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7666 && subreg_lowpart_p (XEXP (src, 0))
7667 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7668 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7669 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7670 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7671 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7672 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7674 assign = make_extraction (VOIDmode, dest, 0,
7675 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7676 1, 1, 1, 0);
7677 if (assign != 0)
7678 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7679 return x;
7682 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7683 one-bit field. */
7684 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7685 && XEXP (XEXP (src, 0), 0) == const1_rtx
7686 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7688 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7689 1, 1, 1, 0);
7690 if (assign != 0)
7691 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7692 return x;
7695 /* The other case we handle is assignments into a constant-position
7696 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7697 a mask that has all one bits except for a group of zero bits and
7698 OTHER is known to have zeros where C1 has ones, this is such an
7699 assignment. Compute the position and length from C1. Shift OTHER
7700 to the appropriate position, force it to the required mode, and
7701 make the extraction. Check for the AND in both operands. */
7703 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7704 return x;
7706 rhs = expand_compound_operation (XEXP (src, 0));
7707 lhs = expand_compound_operation (XEXP (src, 1));
7709 if (GET_CODE (rhs) == AND
7710 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7711 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7712 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7713 else if (GET_CODE (lhs) == AND
7714 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7715 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7716 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7717 else
7718 return x;
7720 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7721 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7722 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7723 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7724 return x;
7726 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7727 if (assign == 0)
7728 return x;
7730 /* The mode to use for the source is the mode of the assignment, or of
7731 what is inside a possible STRICT_LOW_PART. */
7732 mode = (GET_CODE (assign) == STRICT_LOW_PART
7733 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7735 /* Shift OTHER right POS places and make it the source, restricting it
7736 to the proper length and mode. */
7738 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7739 GET_MODE (src), other, pos),
7740 mode,
7741 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7742 ? ~(unsigned HOST_WIDE_INT) 0
7743 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7744 dest, 0);
7746 /* If SRC is masked by an AND that does not make a difference in
7747 the value being stored, strip it. */
7748 if (GET_CODE (assign) == ZERO_EXTRACT
7749 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7750 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7751 && GET_CODE (src) == AND
7752 && GET_CODE (XEXP (src, 1)) == CONST_INT
7753 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7754 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7755 src = XEXP (src, 0);
7757 return gen_rtx_SET (VOIDmode, assign, src);
7760 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7761 if so. */
7763 static rtx
7764 apply_distributive_law (rtx x)
7766 enum rtx_code code = GET_CODE (x);
7767 enum rtx_code inner_code;
7768 rtx lhs, rhs, other;
7769 rtx tem;
7771 /* Distributivity is not true for floating point as it can change the
7772 value. So we don't do it unless -funsafe-math-optimizations. */
7773 if (FLOAT_MODE_P (GET_MODE (x))
7774 && ! flag_unsafe_math_optimizations)
7775 return x;
7777 /* The outer operation can only be one of the following: */
7778 if (code != IOR && code != AND && code != XOR
7779 && code != PLUS && code != MINUS)
7780 return x;
7782 lhs = XEXP (x, 0);
7783 rhs = XEXP (x, 1);
7785 /* If either operand is a primitive we can't do anything, so get out
7786 fast. */
7787 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7788 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7789 return x;
7791 lhs = expand_compound_operation (lhs);
7792 rhs = expand_compound_operation (rhs);
7793 inner_code = GET_CODE (lhs);
7794 if (inner_code != GET_CODE (rhs))
7795 return x;
7797 /* See if the inner and outer operations distribute. */
7798 switch (inner_code)
7800 case LSHIFTRT:
7801 case ASHIFTRT:
7802 case AND:
7803 case IOR:
7804 /* These all distribute except over PLUS. */
7805 if (code == PLUS || code == MINUS)
7806 return x;
7807 break;
7809 case MULT:
7810 if (code != PLUS && code != MINUS)
7811 return x;
7812 break;
7814 case ASHIFT:
7815 /* This is also a multiply, so it distributes over everything. */
7816 break;
7818 case SUBREG:
7819 /* Non-paradoxical SUBREGs distributes over all operations, provided
7820 the inner modes and byte offsets are the same, this is an extraction
7821 of a low-order part, we don't convert an fp operation to int or
7822 vice versa, and we would not be converting a single-word
7823 operation into a multi-word operation. The latter test is not
7824 required, but it prevents generating unneeded multi-word operations.
7825 Some of the previous tests are redundant given the latter test, but
7826 are retained because they are required for correctness.
7828 We produce the result slightly differently in this case. */
7830 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7831 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7832 || ! subreg_lowpart_p (lhs)
7833 || (GET_MODE_CLASS (GET_MODE (lhs))
7834 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7835 || (GET_MODE_SIZE (GET_MODE (lhs))
7836 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7837 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7838 return x;
7840 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7841 SUBREG_REG (lhs), SUBREG_REG (rhs));
7842 return gen_lowpart_for_combine (GET_MODE (x), tem);
7844 default:
7845 return x;
7848 /* Set LHS and RHS to the inner operands (A and B in the example
7849 above) and set OTHER to the common operand (C in the example).
7850 These is only one way to do this unless the inner operation is
7851 commutative. */
7852 if (GET_RTX_CLASS (inner_code) == 'c'
7853 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7854 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7855 else if (GET_RTX_CLASS (inner_code) == 'c'
7856 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7857 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7858 else if (GET_RTX_CLASS (inner_code) == 'c'
7859 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7860 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7861 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7862 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7863 else
7864 return x;
7866 /* Form the new inner operation, seeing if it simplifies first. */
7867 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7869 /* There is one exception to the general way of distributing:
7870 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7871 if (code == XOR && inner_code == IOR)
7873 inner_code = AND;
7874 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7877 /* We may be able to continuing distributing the result, so call
7878 ourselves recursively on the inner operation before forming the
7879 outer operation, which we return. */
7880 return gen_binary (inner_code, GET_MODE (x),
7881 apply_distributive_law (tem), other);
7884 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7885 in MODE.
7887 Return an equivalent form, if different from X. Otherwise, return X. If
7888 X is zero, we are to always construct the equivalent form. */
7890 static rtx
7891 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7892 unsigned HOST_WIDE_INT constop)
7894 unsigned HOST_WIDE_INT nonzero;
7895 int i;
7897 /* Simplify VAROP knowing that we will be only looking at some of the
7898 bits in it.
7900 Note by passing in CONSTOP, we guarantee that the bits not set in
7901 CONSTOP are not significant and will never be examined. We must
7902 ensure that is the case by explicitly masking out those bits
7903 before returning. */
7904 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7906 /* If VAROP is a CLOBBER, we will fail so return it. */
7907 if (GET_CODE (varop) == CLOBBER)
7908 return varop;
7910 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7911 to VAROP and return the new constant. */
7912 if (GET_CODE (varop) == CONST_INT)
7913 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7915 /* See what bits may be nonzero in VAROP. Unlike the general case of
7916 a call to nonzero_bits, here we don't care about bits outside
7917 MODE. */
7919 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7921 /* Turn off all bits in the constant that are known to already be zero.
7922 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7923 which is tested below. */
7925 constop &= nonzero;
7927 /* If we don't have any bits left, return zero. */
7928 if (constop == 0)
7929 return const0_rtx;
7931 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7932 a power of two, we can replace this with an ASHIFT. */
7933 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7934 && (i = exact_log2 (constop)) >= 0)
7935 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7937 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7938 or XOR, then try to apply the distributive law. This may eliminate
7939 operations if either branch can be simplified because of the AND.
7940 It may also make some cases more complex, but those cases probably
7941 won't match a pattern either with or without this. */
7943 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7944 return
7945 gen_lowpart_for_combine
7946 (mode,
7947 apply_distributive_law
7948 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7949 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7950 XEXP (varop, 0), constop),
7951 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7952 XEXP (varop, 1), constop))));
7954 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7955 the AND and see if one of the operands simplifies to zero. If so, we
7956 may eliminate it. */
7958 if (GET_CODE (varop) == PLUS
7959 && exact_log2 (constop + 1) >= 0)
7961 rtx o0, o1;
7963 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7964 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7965 if (o0 == const0_rtx)
7966 return o1;
7967 if (o1 == const0_rtx)
7968 return o0;
7971 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7972 if we already had one (just check for the simplest cases). */
7973 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7974 && GET_MODE (XEXP (x, 0)) == mode
7975 && SUBREG_REG (XEXP (x, 0)) == varop)
7976 varop = XEXP (x, 0);
7977 else
7978 varop = gen_lowpart_for_combine (mode, varop);
7980 /* If we can't make the SUBREG, try to return what we were given. */
7981 if (GET_CODE (varop) == CLOBBER)
7982 return x ? x : varop;
7984 /* If we are only masking insignificant bits, return VAROP. */
7985 if (constop == nonzero)
7986 x = varop;
7987 else
7989 /* Otherwise, return an AND. */
7990 constop = trunc_int_for_mode (constop, mode);
7991 /* See how much, if any, of X we can use. */
7992 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7993 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7995 else
7997 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7998 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7999 SUBST (XEXP (x, 1), GEN_INT (constop));
8001 SUBST (XEXP (x, 0), varop);
8005 return x;
8008 #define nonzero_bits_with_known(X, MODE) \
8009 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8011 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8012 It avoids exponential behavior in nonzero_bits1 when X has
8013 identical subexpressions on the first or the second level. */
8015 static unsigned HOST_WIDE_INT
8016 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8017 enum machine_mode known_mode,
8018 unsigned HOST_WIDE_INT known_ret)
8020 if (x == known_x && mode == known_mode)
8021 return known_ret;
8023 /* Try to find identical subexpressions. If found call
8024 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8025 precomputed value for the subexpression as KNOWN_RET. */
8027 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8028 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8030 rtx x0 = XEXP (x, 0);
8031 rtx x1 = XEXP (x, 1);
8033 /* Check the first level. */
8034 if (x0 == x1)
8035 return nonzero_bits1 (x, mode, x0, mode,
8036 nonzero_bits_with_known (x0, mode));
8038 /* Check the second level. */
8039 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8040 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8041 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8042 return nonzero_bits1 (x, mode, x1, mode,
8043 nonzero_bits_with_known (x1, mode));
8045 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8046 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8047 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8048 return nonzero_bits1 (x, mode, x0, mode,
8049 nonzero_bits_with_known (x0, mode));
8052 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8055 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8056 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8057 is less useful. We can't allow both, because that results in exponential
8058 run time recursion. There is a nullstone testcase that triggered
8059 this. This macro avoids accidental uses of num_sign_bit_copies. */
8060 #define cached_num_sign_bit_copies()
8062 /* Given an expression, X, compute which bits in X can be nonzero.
8063 We don't care about bits outside of those defined in MODE.
8065 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8066 a shift, AND, or zero_extract, we can do better. */
8068 static unsigned HOST_WIDE_INT
8069 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8070 enum machine_mode known_mode,
8071 unsigned HOST_WIDE_INT known_ret)
8073 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8074 unsigned HOST_WIDE_INT inner_nz;
8075 enum rtx_code code;
8076 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8077 rtx tem;
8079 /* For floating-point values, assume all bits are needed. */
8080 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8081 return nonzero;
8083 /* If X is wider than MODE, use its mode instead. */
8084 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8086 mode = GET_MODE (x);
8087 nonzero = GET_MODE_MASK (mode);
8088 mode_width = GET_MODE_BITSIZE (mode);
8091 if (mode_width > HOST_BITS_PER_WIDE_INT)
8092 /* Our only callers in this case look for single bit values. So
8093 just return the mode mask. Those tests will then be false. */
8094 return nonzero;
8096 #ifndef WORD_REGISTER_OPERATIONS
8097 /* If MODE is wider than X, but both are a single word for both the host
8098 and target machines, we can compute this from which bits of the
8099 object might be nonzero in its own mode, taking into account the fact
8100 that on many CISC machines, accessing an object in a wider mode
8101 causes the high-order bits to become undefined. So they are
8102 not known to be zero. */
8104 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8105 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8106 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8107 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8109 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8110 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8111 return nonzero;
8113 #endif
8115 code = GET_CODE (x);
8116 switch (code)
8118 case REG:
8119 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8120 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8121 all the bits above ptr_mode are known to be zero. */
8122 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8123 && REG_POINTER (x))
8124 nonzero &= GET_MODE_MASK (ptr_mode);
8125 #endif
8127 /* Include declared information about alignment of pointers. */
8128 /* ??? We don't properly preserve REG_POINTER changes across
8129 pointer-to-integer casts, so we can't trust it except for
8130 things that we know must be pointers. See execute/960116-1.c. */
8131 if ((x == stack_pointer_rtx
8132 || x == frame_pointer_rtx
8133 || x == arg_pointer_rtx)
8134 && REGNO_POINTER_ALIGN (REGNO (x)))
8136 unsigned HOST_WIDE_INT alignment
8137 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8139 #ifdef PUSH_ROUNDING
8140 /* If PUSH_ROUNDING is defined, it is possible for the
8141 stack to be momentarily aligned only to that amount,
8142 so we pick the least alignment. */
8143 if (x == stack_pointer_rtx && PUSH_ARGS)
8144 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8145 alignment);
8146 #endif
8148 nonzero &= ~(alignment - 1);
8151 /* If X is a register whose nonzero bits value is current, use it.
8152 Otherwise, if X is a register whose value we can find, use that
8153 value. Otherwise, use the previously-computed global nonzero bits
8154 for this register. */
8156 if (reg_last_set_value[REGNO (x)] != 0
8157 && (reg_last_set_mode[REGNO (x)] == mode
8158 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8159 && GET_MODE_CLASS (mode) == MODE_INT))
8160 && (reg_last_set_label[REGNO (x)] == label_tick
8161 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8162 && REG_N_SETS (REGNO (x)) == 1
8163 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8164 REGNO (x))))
8165 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8166 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8168 tem = get_last_value (x);
8170 if (tem)
8172 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8173 /* If X is narrower than MODE and TEM is a non-negative
8174 constant that would appear negative in the mode of X,
8175 sign-extend it for use in reg_nonzero_bits because some
8176 machines (maybe most) will actually do the sign-extension
8177 and this is the conservative approach.
8179 ??? For 2.5, try to tighten up the MD files in this regard
8180 instead of this kludge. */
8182 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8183 && GET_CODE (tem) == CONST_INT
8184 && INTVAL (tem) > 0
8185 && 0 != (INTVAL (tem)
8186 & ((HOST_WIDE_INT) 1
8187 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8188 tem = GEN_INT (INTVAL (tem)
8189 | ((HOST_WIDE_INT) (-1)
8190 << GET_MODE_BITSIZE (GET_MODE (x))));
8191 #endif
8192 return nonzero_bits_with_known (tem, mode) & nonzero;
8194 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8196 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8198 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8199 /* We don't know anything about the upper bits. */
8200 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8201 return nonzero & mask;
8203 else
8204 return nonzero;
8206 case CONST_INT:
8207 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8208 /* If X is negative in MODE, sign-extend the value. */
8209 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8210 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8211 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8212 #endif
8214 return INTVAL (x);
8216 case MEM:
8217 #ifdef LOAD_EXTEND_OP
8218 /* In many, if not most, RISC machines, reading a byte from memory
8219 zeros the rest of the register. Noticing that fact saves a lot
8220 of extra zero-extends. */
8221 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8222 nonzero &= GET_MODE_MASK (GET_MODE (x));
8223 #endif
8224 break;
8226 case EQ: case NE:
8227 case UNEQ: case LTGT:
8228 case GT: case GTU: case UNGT:
8229 case LT: case LTU: case UNLT:
8230 case GE: case GEU: case UNGE:
8231 case LE: case LEU: case UNLE:
8232 case UNORDERED: case ORDERED:
8234 /* If this produces an integer result, we know which bits are set.
8235 Code here used to clear bits outside the mode of X, but that is
8236 now done above. */
8238 if (GET_MODE_CLASS (mode) == MODE_INT
8239 && mode_width <= HOST_BITS_PER_WIDE_INT)
8240 nonzero = STORE_FLAG_VALUE;
8241 break;
8243 case NEG:
8244 #if 0
8245 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8246 and num_sign_bit_copies. */
8247 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8248 == GET_MODE_BITSIZE (GET_MODE (x)))
8249 nonzero = 1;
8250 #endif
8252 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8253 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8254 break;
8256 case ABS:
8257 #if 0
8258 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8259 and num_sign_bit_copies. */
8260 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8261 == GET_MODE_BITSIZE (GET_MODE (x)))
8262 nonzero = 1;
8263 #endif
8264 break;
8266 case TRUNCATE:
8267 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8268 & GET_MODE_MASK (mode));
8269 break;
8271 case ZERO_EXTEND:
8272 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8273 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8274 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8275 break;
8277 case SIGN_EXTEND:
8278 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8279 Otherwise, show all the bits in the outer mode but not the inner
8280 may be nonzero. */
8281 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8282 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8284 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8285 if (inner_nz
8286 & (((HOST_WIDE_INT) 1
8287 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8288 inner_nz |= (GET_MODE_MASK (mode)
8289 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8292 nonzero &= inner_nz;
8293 break;
8295 case AND:
8296 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8297 & nonzero_bits_with_known (XEXP (x, 1), mode));
8298 break;
8300 case XOR: case IOR:
8301 case UMIN: case UMAX: case SMIN: case SMAX:
8303 unsigned HOST_WIDE_INT nonzero0 =
8304 nonzero_bits_with_known (XEXP (x, 0), mode);
8306 /* Don't call nonzero_bits for the second time if it cannot change
8307 anything. */
8308 if ((nonzero & nonzero0) != nonzero)
8309 nonzero &= (nonzero0
8310 | nonzero_bits_with_known (XEXP (x, 1), mode));
8312 break;
8314 case PLUS: case MINUS:
8315 case MULT:
8316 case DIV: case UDIV:
8317 case MOD: case UMOD:
8318 /* We can apply the rules of arithmetic to compute the number of
8319 high- and low-order zero bits of these operations. We start by
8320 computing the width (position of the highest-order nonzero bit)
8321 and the number of low-order zero bits for each value. */
8323 unsigned HOST_WIDE_INT nz0 =
8324 nonzero_bits_with_known (XEXP (x, 0), mode);
8325 unsigned HOST_WIDE_INT nz1 =
8326 nonzero_bits_with_known (XEXP (x, 1), mode);
8327 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8328 int width0 = floor_log2 (nz0) + 1;
8329 int width1 = floor_log2 (nz1) + 1;
8330 int low0 = floor_log2 (nz0 & -nz0);
8331 int low1 = floor_log2 (nz1 & -nz1);
8332 HOST_WIDE_INT op0_maybe_minusp
8333 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8334 HOST_WIDE_INT op1_maybe_minusp
8335 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8336 unsigned int result_width = mode_width;
8337 int result_low = 0;
8339 switch (code)
8341 case PLUS:
8342 result_width = MAX (width0, width1) + 1;
8343 result_low = MIN (low0, low1);
8344 break;
8345 case MINUS:
8346 result_low = MIN (low0, low1);
8347 break;
8348 case MULT:
8349 result_width = width0 + width1;
8350 result_low = low0 + low1;
8351 break;
8352 case DIV:
8353 if (width1 == 0)
8354 break;
8355 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8356 result_width = width0;
8357 break;
8358 case UDIV:
8359 if (width1 == 0)
8360 break;
8361 result_width = width0;
8362 break;
8363 case MOD:
8364 if (width1 == 0)
8365 break;
8366 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8367 result_width = MIN (width0, width1);
8368 result_low = MIN (low0, low1);
8369 break;
8370 case UMOD:
8371 if (width1 == 0)
8372 break;
8373 result_width = MIN (width0, width1);
8374 result_low = MIN (low0, low1);
8375 break;
8376 default:
8377 abort ();
8380 if (result_width < mode_width)
8381 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8383 if (result_low > 0)
8384 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8386 #ifdef POINTERS_EXTEND_UNSIGNED
8387 /* If pointers extend unsigned and this is an addition or subtraction
8388 to a pointer in Pmode, all the bits above ptr_mode are known to be
8389 zero. */
8390 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8391 && (code == PLUS || code == MINUS)
8392 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8393 nonzero &= GET_MODE_MASK (ptr_mode);
8394 #endif
8396 break;
8398 case ZERO_EXTRACT:
8399 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8400 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8401 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8402 break;
8404 case SUBREG:
8405 /* If this is a SUBREG formed for a promoted variable that has
8406 been zero-extended, we know that at least the high-order bits
8407 are zero, though others might be too. */
8409 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8410 nonzero = (GET_MODE_MASK (GET_MODE (x))
8411 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8413 /* If the inner mode is a single word for both the host and target
8414 machines, we can compute this from which bits of the inner
8415 object might be nonzero. */
8416 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8417 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8418 <= HOST_BITS_PER_WIDE_INT))
8420 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8422 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8423 /* If this is a typical RISC machine, we only have to worry
8424 about the way loads are extended. */
8425 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8426 ? (((nonzero
8427 & (((unsigned HOST_WIDE_INT) 1
8428 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8429 != 0))
8430 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8431 || GET_CODE (SUBREG_REG (x)) != MEM)
8432 #endif
8434 /* On many CISC machines, accessing an object in a wider mode
8435 causes the high-order bits to become undefined. So they are
8436 not known to be zero. */
8437 if (GET_MODE_SIZE (GET_MODE (x))
8438 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8439 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8440 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8443 break;
8445 case ASHIFTRT:
8446 case LSHIFTRT:
8447 case ASHIFT:
8448 case ROTATE:
8449 /* The nonzero bits are in two classes: any bits within MODE
8450 that aren't in GET_MODE (x) are always significant. The rest of the
8451 nonzero bits are those that are significant in the operand of
8452 the shift when shifted the appropriate number of bits. This
8453 shows that high-order bits are cleared by the right shift and
8454 low-order bits by left shifts. */
8455 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8456 && INTVAL (XEXP (x, 1)) >= 0
8457 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8459 enum machine_mode inner_mode = GET_MODE (x);
8460 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8461 int count = INTVAL (XEXP (x, 1));
8462 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8463 unsigned HOST_WIDE_INT op_nonzero =
8464 nonzero_bits_with_known (XEXP (x, 0), mode);
8465 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8466 unsigned HOST_WIDE_INT outer = 0;
8468 if (mode_width > width)
8469 outer = (op_nonzero & nonzero & ~mode_mask);
8471 if (code == LSHIFTRT)
8472 inner >>= count;
8473 else if (code == ASHIFTRT)
8475 inner >>= count;
8477 /* If the sign bit may have been nonzero before the shift, we
8478 need to mark all the places it could have been copied to
8479 by the shift as possibly nonzero. */
8480 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8481 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8483 else if (code == ASHIFT)
8484 inner <<= count;
8485 else
8486 inner = ((inner << (count % width)
8487 | (inner >> (width - (count % width)))) & mode_mask);
8489 nonzero &= (outer | inner);
8491 break;
8493 case FFS:
8494 case POPCOUNT:
8495 /* This is at most the number of bits in the mode. */
8496 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8497 break;
8499 case CLZ:
8500 /* If CLZ has a known value at zero, then the nonzero bits are
8501 that value, plus the number of bits in the mode minus one. */
8502 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8503 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8504 else
8505 nonzero = -1;
8506 break;
8508 case CTZ:
8509 /* If CTZ has a known value at zero, then the nonzero bits are
8510 that value, plus the number of bits in the mode minus one. */
8511 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8512 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8513 else
8514 nonzero = -1;
8515 break;
8517 case PARITY:
8518 nonzero = 1;
8519 break;
8521 case IF_THEN_ELSE:
8522 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8523 | nonzero_bits_with_known (XEXP (x, 2), mode));
8524 break;
8526 default:
8527 break;
8530 return nonzero;
8533 /* See the macro definition above. */
8534 #undef cached_num_sign_bit_copies
8536 #define num_sign_bit_copies_with_known(X, M) \
8537 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8539 /* The function cached_num_sign_bit_copies is a wrapper around
8540 num_sign_bit_copies1. It avoids exponential behavior in
8541 num_sign_bit_copies1 when X has identical subexpressions on the
8542 first or the second level. */
8544 static unsigned int
8545 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8546 enum machine_mode known_mode,
8547 unsigned int known_ret)
8549 if (x == known_x && mode == known_mode)
8550 return known_ret;
8552 /* Try to find identical subexpressions. If found call
8553 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8554 the precomputed value for the subexpression as KNOWN_RET. */
8556 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8557 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8559 rtx x0 = XEXP (x, 0);
8560 rtx x1 = XEXP (x, 1);
8562 /* Check the first level. */
8563 if (x0 == x1)
8564 return
8565 num_sign_bit_copies1 (x, mode, x0, mode,
8566 num_sign_bit_copies_with_known (x0, mode));
8568 /* Check the second level. */
8569 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8570 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8571 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8572 return
8573 num_sign_bit_copies1 (x, mode, x1, mode,
8574 num_sign_bit_copies_with_known (x1, mode));
8576 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8577 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8578 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8579 return
8580 num_sign_bit_copies1 (x, mode, x0, mode,
8581 num_sign_bit_copies_with_known (x0, mode));
8584 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8587 /* Return the number of bits at the high-order end of X that are known to
8588 be equal to the sign bit. X will be used in mode MODE; if MODE is
8589 VOIDmode, X will be used in its own mode. The returned value will always
8590 be between 1 and the number of bits in MODE. */
8592 static unsigned int
8593 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8594 enum machine_mode known_mode,
8595 unsigned int known_ret)
8597 enum rtx_code code = GET_CODE (x);
8598 unsigned int bitwidth;
8599 int num0, num1, result;
8600 unsigned HOST_WIDE_INT nonzero;
8601 rtx tem;
8603 /* If we weren't given a mode, use the mode of X. If the mode is still
8604 VOIDmode, we don't know anything. Likewise if one of the modes is
8605 floating-point. */
8607 if (mode == VOIDmode)
8608 mode = GET_MODE (x);
8610 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8611 return 1;
8613 bitwidth = GET_MODE_BITSIZE (mode);
8615 /* For a smaller object, just ignore the high bits. */
8616 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8618 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8619 return MAX (1,
8620 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8623 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8625 #ifndef WORD_REGISTER_OPERATIONS
8626 /* If this machine does not do all register operations on the entire
8627 register and MODE is wider than the mode of X, we can say nothing
8628 at all about the high-order bits. */
8629 return 1;
8630 #else
8631 /* Likewise on machines that do, if the mode of the object is smaller
8632 than a word and loads of that size don't sign extend, we can say
8633 nothing about the high order bits. */
8634 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8635 #ifdef LOAD_EXTEND_OP
8636 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8637 #endif
8639 return 1;
8640 #endif
8643 switch (code)
8645 case REG:
8647 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8648 /* If pointers extend signed and this is a pointer in Pmode, say that
8649 all the bits above ptr_mode are known to be sign bit copies. */
8650 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8651 && REG_POINTER (x))
8652 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8653 #endif
8655 if (reg_last_set_value[REGNO (x)] != 0
8656 && reg_last_set_mode[REGNO (x)] == mode
8657 && (reg_last_set_label[REGNO (x)] == label_tick
8658 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8659 && REG_N_SETS (REGNO (x)) == 1
8660 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8661 REGNO (x))))
8662 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8663 return reg_last_set_sign_bit_copies[REGNO (x)];
8665 tem = get_last_value (x);
8666 if (tem != 0)
8667 return num_sign_bit_copies_with_known (tem, mode);
8669 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8670 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8671 return reg_sign_bit_copies[REGNO (x)];
8672 break;
8674 case MEM:
8675 #ifdef LOAD_EXTEND_OP
8676 /* Some RISC machines sign-extend all loads of smaller than a word. */
8677 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8678 return MAX (1, ((int) bitwidth
8679 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8680 #endif
8681 break;
8683 case CONST_INT:
8684 /* If the constant is negative, take its 1's complement and remask.
8685 Then see how many zero bits we have. */
8686 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8687 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8688 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8689 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8691 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8693 case SUBREG:
8694 /* If this is a SUBREG for a promoted object that is sign-extended
8695 and we are looking at it in a wider mode, we know that at least the
8696 high-order bits are known to be sign bit copies. */
8698 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8700 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8701 return MAX ((int) bitwidth
8702 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8703 num0);
8706 /* For a smaller object, just ignore the high bits. */
8707 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8709 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8710 return MAX (1, (num0
8711 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8712 - bitwidth)));
8715 #ifdef WORD_REGISTER_OPERATIONS
8716 #ifdef LOAD_EXTEND_OP
8717 /* For paradoxical SUBREGs on machines where all register operations
8718 affect the entire register, just look inside. Note that we are
8719 passing MODE to the recursive call, so the number of sign bit copies
8720 will remain relative to that mode, not the inner mode. */
8722 /* This works only if loads sign extend. Otherwise, if we get a
8723 reload for the inner part, it may be loaded from the stack, and
8724 then we lose all sign bit copies that existed before the store
8725 to the stack. */
8727 if ((GET_MODE_SIZE (GET_MODE (x))
8728 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8729 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8730 && GET_CODE (SUBREG_REG (x)) == MEM)
8731 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8732 #endif
8733 #endif
8734 break;
8736 case SIGN_EXTRACT:
8737 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8738 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8739 break;
8741 case SIGN_EXTEND:
8742 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8743 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8745 case TRUNCATE:
8746 /* For a smaller object, just ignore the high bits. */
8747 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8748 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8749 - bitwidth)));
8751 case NOT:
8752 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8754 case ROTATE: case ROTATERT:
8755 /* If we are rotating left by a number of bits less than the number
8756 of sign bit copies, we can just subtract that amount from the
8757 number. */
8758 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8759 && INTVAL (XEXP (x, 1)) >= 0
8760 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8762 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8763 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8764 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8766 break;
8768 case NEG:
8769 /* In general, this subtracts one sign bit copy. But if the value
8770 is known to be positive, the number of sign bit copies is the
8771 same as that of the input. Finally, if the input has just one bit
8772 that might be nonzero, all the bits are copies of the sign bit. */
8773 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8774 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8775 return num0 > 1 ? num0 - 1 : 1;
8777 nonzero = nonzero_bits (XEXP (x, 0), mode);
8778 if (nonzero == 1)
8779 return bitwidth;
8781 if (num0 > 1
8782 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8783 num0--;
8785 return num0;
8787 case IOR: case AND: case XOR:
8788 case SMIN: case SMAX: case UMIN: case UMAX:
8789 /* Logical operations will preserve the number of sign-bit copies.
8790 MIN and MAX operations always return one of the operands. */
8791 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8792 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8793 return MIN (num0, num1);
8795 case PLUS: case MINUS:
8796 /* For addition and subtraction, we can have a 1-bit carry. However,
8797 if we are subtracting 1 from a positive number, there will not
8798 be such a carry. Furthermore, if the positive number is known to
8799 be 0 or 1, we know the result is either -1 or 0. */
8801 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8802 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8804 nonzero = nonzero_bits (XEXP (x, 0), mode);
8805 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8806 return (nonzero == 1 || nonzero == 0 ? bitwidth
8807 : bitwidth - floor_log2 (nonzero) - 1);
8810 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8811 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8812 result = MAX (1, MIN (num0, num1) - 1);
8814 #ifdef POINTERS_EXTEND_UNSIGNED
8815 /* If pointers extend signed and this is an addition or subtraction
8816 to a pointer in Pmode, all the bits above ptr_mode are known to be
8817 sign bit copies. */
8818 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8819 && (code == PLUS || code == MINUS)
8820 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8821 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8822 - GET_MODE_BITSIZE (ptr_mode) + 1),
8823 result);
8824 #endif
8825 return result;
8827 case MULT:
8828 /* The number of bits of the product is the sum of the number of
8829 bits of both terms. However, unless one of the terms if known
8830 to be positive, we must allow for an additional bit since negating
8831 a negative number can remove one sign bit copy. */
8833 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8834 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8836 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8837 if (result > 0
8838 && (bitwidth > HOST_BITS_PER_WIDE_INT
8839 || (((nonzero_bits (XEXP (x, 0), mode)
8840 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8841 && ((nonzero_bits (XEXP (x, 1), mode)
8842 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8843 result--;
8845 return MAX (1, result);
8847 case UDIV:
8848 /* The result must be <= the first operand. If the first operand
8849 has the high bit set, we know nothing about the number of sign
8850 bit copies. */
8851 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8852 return 1;
8853 else if ((nonzero_bits (XEXP (x, 0), mode)
8854 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8855 return 1;
8856 else
8857 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8859 case UMOD:
8860 /* The result must be <= the second operand. */
8861 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8863 case DIV:
8864 /* Similar to unsigned division, except that we have to worry about
8865 the case where the divisor is negative, in which case we have
8866 to add 1. */
8867 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8868 if (result > 1
8869 && (bitwidth > HOST_BITS_PER_WIDE_INT
8870 || (nonzero_bits (XEXP (x, 1), mode)
8871 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8872 result--;
8874 return result;
8876 case MOD:
8877 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8878 if (result > 1
8879 && (bitwidth > HOST_BITS_PER_WIDE_INT
8880 || (nonzero_bits (XEXP (x, 1), mode)
8881 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8882 result--;
8884 return result;
8886 case ASHIFTRT:
8887 /* Shifts by a constant add to the number of bits equal to the
8888 sign bit. */
8889 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8890 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8891 && INTVAL (XEXP (x, 1)) > 0)
8892 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8894 return num0;
8896 case ASHIFT:
8897 /* Left shifts destroy copies. */
8898 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8899 || INTVAL (XEXP (x, 1)) < 0
8900 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8901 return 1;
8903 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8904 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8906 case IF_THEN_ELSE:
8907 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8908 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8909 return MIN (num0, num1);
8911 case EQ: case NE: case GE: case GT: case LE: case LT:
8912 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8913 case GEU: case GTU: case LEU: case LTU:
8914 case UNORDERED: case ORDERED:
8915 /* If the constant is negative, take its 1's complement and remask.
8916 Then see how many zero bits we have. */
8917 nonzero = STORE_FLAG_VALUE;
8918 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8919 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8920 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8922 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8923 break;
8925 default:
8926 break;
8929 /* If we haven't been able to figure it out by one of the above rules,
8930 see if some of the high-order bits are known to be zero. If so,
8931 count those bits and return one less than that amount. If we can't
8932 safely compute the mask for this mode, always return BITWIDTH. */
8934 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8935 return 1;
8937 nonzero = nonzero_bits (x, mode);
8938 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8939 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8942 /* Return the number of "extended" bits there are in X, when interpreted
8943 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8944 unsigned quantities, this is the number of high-order zero bits.
8945 For signed quantities, this is the number of copies of the sign bit
8946 minus 1. In both case, this function returns the number of "spare"
8947 bits. For example, if two quantities for which this function returns
8948 at least 1 are added, the addition is known not to overflow.
8950 This function will always return 0 unless called during combine, which
8951 implies that it must be called from a define_split. */
8953 unsigned int
8954 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8956 if (nonzero_sign_valid == 0)
8957 return 0;
8959 return (unsignedp
8960 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8961 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8962 - floor_log2 (nonzero_bits (x, mode)))
8963 : 0)
8964 : num_sign_bit_copies (x, mode) - 1);
8967 /* This function is called from `simplify_shift_const' to merge two
8968 outer operations. Specifically, we have already found that we need
8969 to perform operation *POP0 with constant *PCONST0 at the outermost
8970 position. We would now like to also perform OP1 with constant CONST1
8971 (with *POP0 being done last).
8973 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8974 the resulting operation. *PCOMP_P is set to 1 if we would need to
8975 complement the innermost operand, otherwise it is unchanged.
8977 MODE is the mode in which the operation will be done. No bits outside
8978 the width of this mode matter. It is assumed that the width of this mode
8979 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8981 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8982 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8983 result is simply *PCONST0.
8985 If the resulting operation cannot be expressed as one operation, we
8986 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8988 static int
8989 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8991 enum rtx_code op0 = *pop0;
8992 HOST_WIDE_INT const0 = *pconst0;
8994 const0 &= GET_MODE_MASK (mode);
8995 const1 &= GET_MODE_MASK (mode);
8997 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8998 if (op0 == AND)
8999 const1 &= const0;
9001 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9002 if OP0 is SET. */
9004 if (op1 == NIL || op0 == SET)
9005 return 1;
9007 else if (op0 == NIL)
9008 op0 = op1, const0 = const1;
9010 else if (op0 == op1)
9012 switch (op0)
9014 case AND:
9015 const0 &= const1;
9016 break;
9017 case IOR:
9018 const0 |= const1;
9019 break;
9020 case XOR:
9021 const0 ^= const1;
9022 break;
9023 case PLUS:
9024 const0 += const1;
9025 break;
9026 case NEG:
9027 op0 = NIL;
9028 break;
9029 default:
9030 break;
9034 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9035 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9036 return 0;
9038 /* If the two constants aren't the same, we can't do anything. The
9039 remaining six cases can all be done. */
9040 else if (const0 != const1)
9041 return 0;
9043 else
9044 switch (op0)
9046 case IOR:
9047 if (op1 == AND)
9048 /* (a & b) | b == b */
9049 op0 = SET;
9050 else /* op1 == XOR */
9051 /* (a ^ b) | b == a | b */
9053 break;
9055 case XOR:
9056 if (op1 == AND)
9057 /* (a & b) ^ b == (~a) & b */
9058 op0 = AND, *pcomp_p = 1;
9059 else /* op1 == IOR */
9060 /* (a | b) ^ b == a & ~b */
9061 op0 = AND, const0 = ~const0;
9062 break;
9064 case AND:
9065 if (op1 == IOR)
9066 /* (a | b) & b == b */
9067 op0 = SET;
9068 else /* op1 == XOR */
9069 /* (a ^ b) & b) == (~a) & b */
9070 *pcomp_p = 1;
9071 break;
9072 default:
9073 break;
9076 /* Check for NO-OP cases. */
9077 const0 &= GET_MODE_MASK (mode);
9078 if (const0 == 0
9079 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9080 op0 = NIL;
9081 else if (const0 == 0 && op0 == AND)
9082 op0 = SET;
9083 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9084 && op0 == AND)
9085 op0 = NIL;
9087 /* ??? Slightly redundant with the above mask, but not entirely.
9088 Moving this above means we'd have to sign-extend the mode mask
9089 for the final test. */
9090 const0 = trunc_int_for_mode (const0, mode);
9092 *pop0 = op0;
9093 *pconst0 = const0;
9095 return 1;
9098 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9099 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9100 that we started with.
9102 The shift is normally computed in the widest mode we find in VAROP, as
9103 long as it isn't a different number of words than RESULT_MODE. Exceptions
9104 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9106 static rtx
9107 simplify_shift_const (rtx x, enum rtx_code code,
9108 enum machine_mode result_mode, rtx varop,
9109 int orig_count)
9111 enum rtx_code orig_code = code;
9112 unsigned int count;
9113 int signed_count;
9114 enum machine_mode mode = result_mode;
9115 enum machine_mode shift_mode, tmode;
9116 unsigned int mode_words
9117 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9118 /* We form (outer_op (code varop count) (outer_const)). */
9119 enum rtx_code outer_op = NIL;
9120 HOST_WIDE_INT outer_const = 0;
9121 rtx const_rtx;
9122 int complement_p = 0;
9123 rtx new;
9125 /* Make sure and truncate the "natural" shift on the way in. We don't
9126 want to do this inside the loop as it makes it more difficult to
9127 combine shifts. */
9128 if (SHIFT_COUNT_TRUNCATED)
9129 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9131 /* If we were given an invalid count, don't do anything except exactly
9132 what was requested. */
9134 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9136 if (x)
9137 return x;
9139 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9142 count = orig_count;
9144 /* Unless one of the branches of the `if' in this loop does a `continue',
9145 we will `break' the loop after the `if'. */
9147 while (count != 0)
9149 /* If we have an operand of (clobber (const_int 0)), just return that
9150 value. */
9151 if (GET_CODE (varop) == CLOBBER)
9152 return varop;
9154 /* If we discovered we had to complement VAROP, leave. Making a NOT
9155 here would cause an infinite loop. */
9156 if (complement_p)
9157 break;
9159 /* Convert ROTATERT to ROTATE. */
9160 if (code == ROTATERT)
9162 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9163 code = ROTATE;
9164 if (VECTOR_MODE_P (result_mode))
9165 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9166 else
9167 count = bitsize - count;
9170 /* We need to determine what mode we will do the shift in. If the
9171 shift is a right shift or a ROTATE, we must always do it in the mode
9172 it was originally done in. Otherwise, we can do it in MODE, the
9173 widest mode encountered. */
9174 shift_mode
9175 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9176 ? result_mode : mode);
9178 /* Handle cases where the count is greater than the size of the mode
9179 minus 1. For ASHIFT, use the size minus one as the count (this can
9180 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9181 take the count modulo the size. For other shifts, the result is
9182 zero.
9184 Since these shifts are being produced by the compiler by combining
9185 multiple operations, each of which are defined, we know what the
9186 result is supposed to be. */
9188 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9190 if (code == ASHIFTRT)
9191 count = GET_MODE_BITSIZE (shift_mode) - 1;
9192 else if (code == ROTATE || code == ROTATERT)
9193 count %= GET_MODE_BITSIZE (shift_mode);
9194 else
9196 /* We can't simply return zero because there may be an
9197 outer op. */
9198 varop = const0_rtx;
9199 count = 0;
9200 break;
9204 /* An arithmetic right shift of a quantity known to be -1 or 0
9205 is a no-op. */
9206 if (code == ASHIFTRT
9207 && (num_sign_bit_copies (varop, shift_mode)
9208 == GET_MODE_BITSIZE (shift_mode)))
9210 count = 0;
9211 break;
9214 /* If we are doing an arithmetic right shift and discarding all but
9215 the sign bit copies, this is equivalent to doing a shift by the
9216 bitsize minus one. Convert it into that shift because it will often
9217 allow other simplifications. */
9219 if (code == ASHIFTRT
9220 && (count + num_sign_bit_copies (varop, shift_mode)
9221 >= GET_MODE_BITSIZE (shift_mode)))
9222 count = GET_MODE_BITSIZE (shift_mode) - 1;
9224 /* We simplify the tests below and elsewhere by converting
9225 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9226 `make_compound_operation' will convert it to an ASHIFTRT for
9227 those machines (such as VAX) that don't have an LSHIFTRT. */
9228 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9229 && code == ASHIFTRT
9230 && ((nonzero_bits (varop, shift_mode)
9231 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9232 == 0))
9233 code = LSHIFTRT;
9235 if (code == LSHIFTRT
9236 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9237 && !(nonzero_bits (varop, shift_mode) >> count))
9238 varop = const0_rtx;
9239 if (code == ASHIFT
9240 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9241 && !((nonzero_bits (varop, shift_mode) << count)
9242 & GET_MODE_MASK (shift_mode)))
9243 varop = const0_rtx;
9245 switch (GET_CODE (varop))
9247 case SIGN_EXTEND:
9248 case ZERO_EXTEND:
9249 case SIGN_EXTRACT:
9250 case ZERO_EXTRACT:
9251 new = expand_compound_operation (varop);
9252 if (new != varop)
9254 varop = new;
9255 continue;
9257 break;
9259 case MEM:
9260 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9261 minus the width of a smaller mode, we can do this with a
9262 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9263 if ((code == ASHIFTRT || code == LSHIFTRT)
9264 && ! mode_dependent_address_p (XEXP (varop, 0))
9265 && ! MEM_VOLATILE_P (varop)
9266 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9267 MODE_INT, 1)) != BLKmode)
9269 new = adjust_address_nv (varop, tmode,
9270 BYTES_BIG_ENDIAN ? 0
9271 : count / BITS_PER_UNIT);
9273 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9274 : ZERO_EXTEND, mode, new);
9275 count = 0;
9276 continue;
9278 break;
9280 case USE:
9281 /* Similar to the case above, except that we can only do this if
9282 the resulting mode is the same as that of the underlying
9283 MEM and adjust the address depending on the *bits* endianness
9284 because of the way that bit-field extract insns are defined. */
9285 if ((code == ASHIFTRT || code == LSHIFTRT)
9286 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9287 MODE_INT, 1)) != BLKmode
9288 && tmode == GET_MODE (XEXP (varop, 0)))
9290 if (BITS_BIG_ENDIAN)
9291 new = XEXP (varop, 0);
9292 else
9294 new = copy_rtx (XEXP (varop, 0));
9295 SUBST (XEXP (new, 0),
9296 plus_constant (XEXP (new, 0),
9297 count / BITS_PER_UNIT));
9300 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9301 : ZERO_EXTEND, mode, new);
9302 count = 0;
9303 continue;
9305 break;
9307 case SUBREG:
9308 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9309 the same number of words as what we've seen so far. Then store
9310 the widest mode in MODE. */
9311 if (subreg_lowpart_p (varop)
9312 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9313 > GET_MODE_SIZE (GET_MODE (varop)))
9314 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9315 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9316 == mode_words)
9318 varop = SUBREG_REG (varop);
9319 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9320 mode = GET_MODE (varop);
9321 continue;
9323 break;
9325 case MULT:
9326 /* Some machines use MULT instead of ASHIFT because MULT
9327 is cheaper. But it is still better on those machines to
9328 merge two shifts into one. */
9329 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9330 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9332 varop
9333 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9334 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9335 continue;
9337 break;
9339 case UDIV:
9340 /* Similar, for when divides are cheaper. */
9341 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9342 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9344 varop
9345 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9346 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9347 continue;
9349 break;
9351 case ASHIFTRT:
9352 /* If we are extracting just the sign bit of an arithmetic
9353 right shift, that shift is not needed. However, the sign
9354 bit of a wider mode may be different from what would be
9355 interpreted as the sign bit in a narrower mode, so, if
9356 the result is narrower, don't discard the shift. */
9357 if (code == LSHIFTRT
9358 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9359 && (GET_MODE_BITSIZE (result_mode)
9360 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9362 varop = XEXP (varop, 0);
9363 continue;
9366 /* ... fall through ... */
9368 case LSHIFTRT:
9369 case ASHIFT:
9370 case ROTATE:
9371 /* Here we have two nested shifts. The result is usually the
9372 AND of a new shift with a mask. We compute the result below. */
9373 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9374 && INTVAL (XEXP (varop, 1)) >= 0
9375 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9376 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9377 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9379 enum rtx_code first_code = GET_CODE (varop);
9380 unsigned int first_count = INTVAL (XEXP (varop, 1));
9381 unsigned HOST_WIDE_INT mask;
9382 rtx mask_rtx;
9384 /* We have one common special case. We can't do any merging if
9385 the inner code is an ASHIFTRT of a smaller mode. However, if
9386 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9387 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9388 we can convert it to
9389 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9390 This simplifies certain SIGN_EXTEND operations. */
9391 if (code == ASHIFT && first_code == ASHIFTRT
9392 && count == (unsigned int)
9393 (GET_MODE_BITSIZE (result_mode)
9394 - GET_MODE_BITSIZE (GET_MODE (varop))))
9396 /* C3 has the low-order C1 bits zero. */
9398 mask = (GET_MODE_MASK (mode)
9399 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9401 varop = simplify_and_const_int (NULL_RTX, result_mode,
9402 XEXP (varop, 0), mask);
9403 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9404 varop, count);
9405 count = first_count;
9406 code = ASHIFTRT;
9407 continue;
9410 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9411 than C1 high-order bits equal to the sign bit, we can convert
9412 this to either an ASHIFT or an ASHIFTRT depending on the
9413 two counts.
9415 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9417 if (code == ASHIFTRT && first_code == ASHIFT
9418 && GET_MODE (varop) == shift_mode
9419 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9420 > first_count))
9422 varop = XEXP (varop, 0);
9424 signed_count = count - first_count;
9425 if (signed_count < 0)
9426 count = -signed_count, code = ASHIFT;
9427 else
9428 count = signed_count;
9430 continue;
9433 /* There are some cases we can't do. If CODE is ASHIFTRT,
9434 we can only do this if FIRST_CODE is also ASHIFTRT.
9436 We can't do the case when CODE is ROTATE and FIRST_CODE is
9437 ASHIFTRT.
9439 If the mode of this shift is not the mode of the outer shift,
9440 we can't do this if either shift is a right shift or ROTATE.
9442 Finally, we can't do any of these if the mode is too wide
9443 unless the codes are the same.
9445 Handle the case where the shift codes are the same
9446 first. */
9448 if (code == first_code)
9450 if (GET_MODE (varop) != result_mode
9451 && (code == ASHIFTRT || code == LSHIFTRT
9452 || code == ROTATE))
9453 break;
9455 count += first_count;
9456 varop = XEXP (varop, 0);
9457 continue;
9460 if (code == ASHIFTRT
9461 || (code == ROTATE && first_code == ASHIFTRT)
9462 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9463 || (GET_MODE (varop) != result_mode
9464 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9465 || first_code == ROTATE
9466 || code == ROTATE)))
9467 break;
9469 /* To compute the mask to apply after the shift, shift the
9470 nonzero bits of the inner shift the same way the
9471 outer shift will. */
9473 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9475 mask_rtx
9476 = simplify_binary_operation (code, result_mode, mask_rtx,
9477 GEN_INT (count));
9479 /* Give up if we can't compute an outer operation to use. */
9480 if (mask_rtx == 0
9481 || GET_CODE (mask_rtx) != CONST_INT
9482 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9483 INTVAL (mask_rtx),
9484 result_mode, &complement_p))
9485 break;
9487 /* If the shifts are in the same direction, we add the
9488 counts. Otherwise, we subtract them. */
9489 signed_count = count;
9490 if ((code == ASHIFTRT || code == LSHIFTRT)
9491 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9492 signed_count += first_count;
9493 else
9494 signed_count -= first_count;
9496 /* If COUNT is positive, the new shift is usually CODE,
9497 except for the two exceptions below, in which case it is
9498 FIRST_CODE. If the count is negative, FIRST_CODE should
9499 always be used */
9500 if (signed_count > 0
9501 && ((first_code == ROTATE && code == ASHIFT)
9502 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9503 code = first_code, count = signed_count;
9504 else if (signed_count < 0)
9505 code = first_code, count = -signed_count;
9506 else
9507 count = signed_count;
9509 varop = XEXP (varop, 0);
9510 continue;
9513 /* If we have (A << B << C) for any shift, we can convert this to
9514 (A << C << B). This wins if A is a constant. Only try this if
9515 B is not a constant. */
9517 else if (GET_CODE (varop) == code
9518 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9519 && 0 != (new
9520 = simplify_binary_operation (code, mode,
9521 XEXP (varop, 0),
9522 GEN_INT (count))))
9524 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9525 count = 0;
9526 continue;
9528 break;
9530 case NOT:
9531 /* Make this fit the case below. */
9532 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9533 GEN_INT (GET_MODE_MASK (mode)));
9534 continue;
9536 case IOR:
9537 case AND:
9538 case XOR:
9539 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9540 with C the size of VAROP - 1 and the shift is logical if
9541 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9542 we have an (le X 0) operation. If we have an arithmetic shift
9543 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9544 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9546 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9547 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9548 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9549 && (code == LSHIFTRT || code == ASHIFTRT)
9550 && count == (unsigned int)
9551 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9552 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9554 count = 0;
9555 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9556 const0_rtx);
9558 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9559 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9561 continue;
9564 /* If we have (shift (logical)), move the logical to the outside
9565 to allow it to possibly combine with another logical and the
9566 shift to combine with another shift. This also canonicalizes to
9567 what a ZERO_EXTRACT looks like. Also, some machines have
9568 (and (shift)) insns. */
9570 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9571 && (new = simplify_binary_operation (code, result_mode,
9572 XEXP (varop, 1),
9573 GEN_INT (count))) != 0
9574 && GET_CODE (new) == CONST_INT
9575 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9576 INTVAL (new), result_mode, &complement_p))
9578 varop = XEXP (varop, 0);
9579 continue;
9582 /* If we can't do that, try to simplify the shift in each arm of the
9583 logical expression, make a new logical expression, and apply
9584 the inverse distributive law. */
9586 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9587 XEXP (varop, 0), count);
9588 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9589 XEXP (varop, 1), count);
9591 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9592 varop = apply_distributive_law (varop);
9594 count = 0;
9596 break;
9598 case EQ:
9599 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9600 says that the sign bit can be tested, FOO has mode MODE, C is
9601 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9602 that may be nonzero. */
9603 if (code == LSHIFTRT
9604 && XEXP (varop, 1) == const0_rtx
9605 && GET_MODE (XEXP (varop, 0)) == result_mode
9606 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9607 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9608 && ((STORE_FLAG_VALUE
9609 & ((HOST_WIDE_INT) 1
9610 < (GET_MODE_BITSIZE (result_mode) - 1))))
9611 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9612 && merge_outer_ops (&outer_op, &outer_const, XOR,
9613 (HOST_WIDE_INT) 1, result_mode,
9614 &complement_p))
9616 varop = XEXP (varop, 0);
9617 count = 0;
9618 continue;
9620 break;
9622 case NEG:
9623 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9624 than the number of bits in the mode is equivalent to A. */
9625 if (code == LSHIFTRT
9626 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9627 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9629 varop = XEXP (varop, 0);
9630 count = 0;
9631 continue;
9634 /* NEG commutes with ASHIFT since it is multiplication. Move the
9635 NEG outside to allow shifts to combine. */
9636 if (code == ASHIFT
9637 && merge_outer_ops (&outer_op, &outer_const, NEG,
9638 (HOST_WIDE_INT) 0, result_mode,
9639 &complement_p))
9641 varop = XEXP (varop, 0);
9642 continue;
9644 break;
9646 case PLUS:
9647 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9648 is one less than the number of bits in the mode is
9649 equivalent to (xor A 1). */
9650 if (code == LSHIFTRT
9651 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9652 && XEXP (varop, 1) == constm1_rtx
9653 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9654 && merge_outer_ops (&outer_op, &outer_const, XOR,
9655 (HOST_WIDE_INT) 1, result_mode,
9656 &complement_p))
9658 count = 0;
9659 varop = XEXP (varop, 0);
9660 continue;
9663 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9664 that might be nonzero in BAR are those being shifted out and those
9665 bits are known zero in FOO, we can replace the PLUS with FOO.
9666 Similarly in the other operand order. This code occurs when
9667 we are computing the size of a variable-size array. */
9669 if ((code == ASHIFTRT || code == LSHIFTRT)
9670 && count < HOST_BITS_PER_WIDE_INT
9671 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9672 && (nonzero_bits (XEXP (varop, 1), result_mode)
9673 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9675 varop = XEXP (varop, 0);
9676 continue;
9678 else if ((code == ASHIFTRT || code == LSHIFTRT)
9679 && count < HOST_BITS_PER_WIDE_INT
9680 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9681 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9682 >> count)
9683 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9684 & nonzero_bits (XEXP (varop, 1),
9685 result_mode)))
9687 varop = XEXP (varop, 1);
9688 continue;
9691 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9692 if (code == ASHIFT
9693 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9694 && (new = simplify_binary_operation (ASHIFT, result_mode,
9695 XEXP (varop, 1),
9696 GEN_INT (count))) != 0
9697 && GET_CODE (new) == CONST_INT
9698 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9699 INTVAL (new), result_mode, &complement_p))
9701 varop = XEXP (varop, 0);
9702 continue;
9704 break;
9706 case MINUS:
9707 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9708 with C the size of VAROP - 1 and the shift is logical if
9709 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9710 we have a (gt X 0) operation. If the shift is arithmetic with
9711 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9712 we have a (neg (gt X 0)) operation. */
9714 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9715 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9716 && count == (unsigned int)
9717 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9718 && (code == LSHIFTRT || code == ASHIFTRT)
9719 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9720 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9721 == count
9722 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9724 count = 0;
9725 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9726 const0_rtx);
9728 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9729 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9731 continue;
9733 break;
9735 case TRUNCATE:
9736 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9737 if the truncate does not affect the value. */
9738 if (code == LSHIFTRT
9739 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9740 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9741 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9742 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9743 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9745 rtx varop_inner = XEXP (varop, 0);
9747 varop_inner
9748 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9749 XEXP (varop_inner, 0),
9750 GEN_INT
9751 (count + INTVAL (XEXP (varop_inner, 1))));
9752 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9753 count = 0;
9754 continue;
9756 break;
9758 default:
9759 break;
9762 break;
9765 /* We need to determine what mode to do the shift in. If the shift is
9766 a right shift or ROTATE, we must always do it in the mode it was
9767 originally done in. Otherwise, we can do it in MODE, the widest mode
9768 encountered. The code we care about is that of the shift that will
9769 actually be done, not the shift that was originally requested. */
9770 shift_mode
9771 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9772 ? result_mode : mode);
9774 /* We have now finished analyzing the shift. The result should be
9775 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9776 OUTER_OP is non-NIL, it is an operation that needs to be applied
9777 to the result of the shift. OUTER_CONST is the relevant constant,
9778 but we must turn off all bits turned off in the shift.
9780 If we were passed a value for X, see if we can use any pieces of
9781 it. If not, make new rtx. */
9783 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9784 && GET_CODE (XEXP (x, 1)) == CONST_INT
9785 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9786 const_rtx = XEXP (x, 1);
9787 else
9788 const_rtx = GEN_INT (count);
9790 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9791 && GET_MODE (XEXP (x, 0)) == shift_mode
9792 && SUBREG_REG (XEXP (x, 0)) == varop)
9793 varop = XEXP (x, 0);
9794 else if (GET_MODE (varop) != shift_mode)
9795 varop = gen_lowpart_for_combine (shift_mode, varop);
9797 /* If we can't make the SUBREG, try to return what we were given. */
9798 if (GET_CODE (varop) == CLOBBER)
9799 return x ? x : varop;
9801 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9802 if (new != 0)
9803 x = new;
9804 else
9805 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9807 /* If we have an outer operation and we just made a shift, it is
9808 possible that we could have simplified the shift were it not
9809 for the outer operation. So try to do the simplification
9810 recursively. */
9812 if (outer_op != NIL && GET_CODE (x) == code
9813 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9814 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9815 INTVAL (XEXP (x, 1)));
9817 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9818 turn off all the bits that the shift would have turned off. */
9819 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9820 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9821 GET_MODE_MASK (result_mode) >> orig_count);
9823 /* Do the remainder of the processing in RESULT_MODE. */
9824 x = gen_lowpart_for_combine (result_mode, x);
9826 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9827 operation. */
9828 if (complement_p)
9829 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9831 if (outer_op != NIL)
9833 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9834 outer_const = trunc_int_for_mode (outer_const, result_mode);
9836 if (outer_op == AND)
9837 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9838 else if (outer_op == SET)
9839 /* This means that we have determined that the result is
9840 equivalent to a constant. This should be rare. */
9841 x = GEN_INT (outer_const);
9842 else if (GET_RTX_CLASS (outer_op) == '1')
9843 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9844 else
9845 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9848 return x;
9851 /* Like recog, but we receive the address of a pointer to a new pattern.
9852 We try to match the rtx that the pointer points to.
9853 If that fails, we may try to modify or replace the pattern,
9854 storing the replacement into the same pointer object.
9856 Modifications include deletion or addition of CLOBBERs.
9858 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9859 the CLOBBERs are placed.
9861 The value is the final insn code from the pattern ultimately matched,
9862 or -1. */
9864 static int
9865 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9867 rtx pat = *pnewpat;
9868 int insn_code_number;
9869 int num_clobbers_to_add = 0;
9870 int i;
9871 rtx notes = 0;
9872 rtx old_notes, old_pat;
9874 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9875 we use to indicate that something didn't match. If we find such a
9876 thing, force rejection. */
9877 if (GET_CODE (pat) == PARALLEL)
9878 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9879 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9880 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9881 return -1;
9883 old_pat = PATTERN (insn);
9884 old_notes = REG_NOTES (insn);
9885 PATTERN (insn) = pat;
9886 REG_NOTES (insn) = 0;
9888 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9890 /* If it isn't, there is the possibility that we previously had an insn
9891 that clobbered some register as a side effect, but the combined
9892 insn doesn't need to do that. So try once more without the clobbers
9893 unless this represents an ASM insn. */
9895 if (insn_code_number < 0 && ! check_asm_operands (pat)
9896 && GET_CODE (pat) == PARALLEL)
9898 int pos;
9900 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9901 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9903 if (i != pos)
9904 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9905 pos++;
9908 SUBST_INT (XVECLEN (pat, 0), pos);
9910 if (pos == 1)
9911 pat = XVECEXP (pat, 0, 0);
9913 PATTERN (insn) = pat;
9914 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9916 PATTERN (insn) = old_pat;
9917 REG_NOTES (insn) = old_notes;
9919 /* Recognize all noop sets, these will be killed by followup pass. */
9920 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9921 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9923 /* If we had any clobbers to add, make a new pattern than contains
9924 them. Then check to make sure that all of them are dead. */
9925 if (num_clobbers_to_add)
9927 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9928 rtvec_alloc (GET_CODE (pat) == PARALLEL
9929 ? (XVECLEN (pat, 0)
9930 + num_clobbers_to_add)
9931 : num_clobbers_to_add + 1));
9933 if (GET_CODE (pat) == PARALLEL)
9934 for (i = 0; i < XVECLEN (pat, 0); i++)
9935 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9936 else
9937 XVECEXP (newpat, 0, 0) = pat;
9939 add_clobbers (newpat, insn_code_number);
9941 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9942 i < XVECLEN (newpat, 0); i++)
9944 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9945 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9946 return -1;
9947 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9948 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9950 pat = newpat;
9953 *pnewpat = pat;
9954 *pnotes = notes;
9956 return insn_code_number;
9959 /* Like gen_lowpart but for use by combine. In combine it is not possible
9960 to create any new pseudoregs. However, it is safe to create
9961 invalid memory addresses, because combine will try to recognize
9962 them and all they will do is make the combine attempt fail.
9964 If for some reason this cannot do its job, an rtx
9965 (clobber (const_int 0)) is returned.
9966 An insn containing that will not be recognized. */
9968 #undef gen_lowpart
9970 static rtx
9971 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9973 rtx result;
9975 if (GET_MODE (x) == mode)
9976 return x;
9978 /* Return identity if this is a CONST or symbolic
9979 reference. */
9980 if (mode == Pmode
9981 && (GET_CODE (x) == CONST
9982 || GET_CODE (x) == SYMBOL_REF
9983 || GET_CODE (x) == LABEL_REF))
9984 return x;
9986 /* We can only support MODE being wider than a word if X is a
9987 constant integer or has a mode the same size. */
9989 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9990 && ! ((GET_MODE (x) == VOIDmode
9991 && (GET_CODE (x) == CONST_INT
9992 || GET_CODE (x) == CONST_DOUBLE))
9993 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9994 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9996 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9997 won't know what to do. So we will strip off the SUBREG here and
9998 process normally. */
9999 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10001 x = SUBREG_REG (x);
10002 if (GET_MODE (x) == mode)
10003 return x;
10006 result = gen_lowpart_common (mode, x);
10007 #ifdef CANNOT_CHANGE_MODE_CLASS
10008 if (result != 0
10009 && GET_CODE (result) == SUBREG
10010 && GET_CODE (SUBREG_REG (result)) == REG
10011 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10012 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10013 * MAX_MACHINE_MODE
10014 + GET_MODE (result));
10015 #endif
10017 if (result)
10018 return result;
10020 if (GET_CODE (x) == MEM)
10022 int offset = 0;
10024 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10025 address. */
10026 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10027 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10029 /* If we want to refer to something bigger than the original memref,
10030 generate a perverse subreg instead. That will force a reload
10031 of the original memref X. */
10032 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10033 return gen_rtx_SUBREG (mode, x, 0);
10035 if (WORDS_BIG_ENDIAN)
10036 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10037 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10039 if (BYTES_BIG_ENDIAN)
10041 /* Adjust the address so that the address-after-the-data is
10042 unchanged. */
10043 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10044 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10047 return adjust_address_nv (x, mode, offset);
10050 /* If X is a comparison operator, rewrite it in a new mode. This
10051 probably won't match, but may allow further simplifications. */
10052 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10053 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10055 /* If we couldn't simplify X any other way, just enclose it in a
10056 SUBREG. Normally, this SUBREG won't match, but some patterns may
10057 include an explicit SUBREG or we may simplify it further in combine. */
10058 else
10060 int offset = 0;
10061 rtx res;
10062 enum machine_mode sub_mode = GET_MODE (x);
10064 offset = subreg_lowpart_offset (mode, sub_mode);
10065 if (sub_mode == VOIDmode)
10067 sub_mode = int_mode_for_mode (mode);
10068 x = gen_lowpart_common (sub_mode, x);
10069 if (x == 0)
10070 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10072 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10073 if (res)
10074 return res;
10075 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10079 /* These routines make binary and unary operations by first seeing if they
10080 fold; if not, a new expression is allocated. */
10082 static rtx
10083 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10085 rtx result;
10086 rtx tem;
10088 if (GET_CODE (op0) == CLOBBER)
10089 return op0;
10090 else if (GET_CODE (op1) == CLOBBER)
10091 return op1;
10093 if (GET_RTX_CLASS (code) == 'c'
10094 && swap_commutative_operands_p (op0, op1))
10095 tem = op0, op0 = op1, op1 = tem;
10097 if (GET_RTX_CLASS (code) == '<')
10099 enum machine_mode op_mode = GET_MODE (op0);
10101 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10102 just (REL_OP X Y). */
10103 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10105 op1 = XEXP (op0, 1);
10106 op0 = XEXP (op0, 0);
10107 op_mode = GET_MODE (op0);
10110 if (op_mode == VOIDmode)
10111 op_mode = GET_MODE (op1);
10112 result = simplify_relational_operation (code, op_mode, op0, op1);
10114 else
10115 result = simplify_binary_operation (code, mode, op0, op1);
10117 if (result)
10118 return result;
10120 /* Put complex operands first and constants second. */
10121 if (GET_RTX_CLASS (code) == 'c'
10122 && swap_commutative_operands_p (op0, op1))
10123 return gen_rtx_fmt_ee (code, mode, op1, op0);
10125 /* If we are turning off bits already known off in OP0, we need not do
10126 an AND. */
10127 else if (code == AND && GET_CODE (op1) == CONST_INT
10128 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10129 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10130 return op0;
10132 return gen_rtx_fmt_ee (code, mode, op0, op1);
10135 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10136 comparison code that will be tested.
10138 The result is a possibly different comparison code to use. *POP0 and
10139 *POP1 may be updated.
10141 It is possible that we might detect that a comparison is either always
10142 true or always false. However, we do not perform general constant
10143 folding in combine, so this knowledge isn't useful. Such tautologies
10144 should have been detected earlier. Hence we ignore all such cases. */
10146 static enum rtx_code
10147 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10149 rtx op0 = *pop0;
10150 rtx op1 = *pop1;
10151 rtx tem, tem1;
10152 int i;
10153 enum machine_mode mode, tmode;
10155 /* Try a few ways of applying the same transformation to both operands. */
10156 while (1)
10158 #ifndef WORD_REGISTER_OPERATIONS
10159 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10160 so check specially. */
10161 if (code != GTU && code != GEU && code != LTU && code != LEU
10162 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10163 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10164 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10165 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10166 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10167 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10168 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10169 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10170 && XEXP (op0, 1) == XEXP (op1, 1)
10171 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10172 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10173 && (INTVAL (XEXP (op0, 1))
10174 == (GET_MODE_BITSIZE (GET_MODE (op0))
10175 - (GET_MODE_BITSIZE
10176 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10178 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10179 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10181 #endif
10183 /* If both operands are the same constant shift, see if we can ignore the
10184 shift. We can if the shift is a rotate or if the bits shifted out of
10185 this shift are known to be zero for both inputs and if the type of
10186 comparison is compatible with the shift. */
10187 if (GET_CODE (op0) == GET_CODE (op1)
10188 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10189 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10190 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10191 && (code != GT && code != LT && code != GE && code != LE))
10192 || (GET_CODE (op0) == ASHIFTRT
10193 && (code != GTU && code != LTU
10194 && code != GEU && code != LEU)))
10195 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10196 && INTVAL (XEXP (op0, 1)) >= 0
10197 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10198 && XEXP (op0, 1) == XEXP (op1, 1))
10200 enum machine_mode mode = GET_MODE (op0);
10201 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10202 int shift_count = INTVAL (XEXP (op0, 1));
10204 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10205 mask &= (mask >> shift_count) << shift_count;
10206 else if (GET_CODE (op0) == ASHIFT)
10207 mask = (mask & (mask << shift_count)) >> shift_count;
10209 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10210 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10211 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10212 else
10213 break;
10216 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10217 SUBREGs are of the same mode, and, in both cases, the AND would
10218 be redundant if the comparison was done in the narrower mode,
10219 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10220 and the operand's possibly nonzero bits are 0xffffff01; in that case
10221 if we only care about QImode, we don't need the AND). This case
10222 occurs if the output mode of an scc insn is not SImode and
10223 STORE_FLAG_VALUE == 1 (e.g., the 386).
10225 Similarly, check for a case where the AND's are ZERO_EXTEND
10226 operations from some narrower mode even though a SUBREG is not
10227 present. */
10229 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10230 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10231 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10233 rtx inner_op0 = XEXP (op0, 0);
10234 rtx inner_op1 = XEXP (op1, 0);
10235 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10236 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10237 int changed = 0;
10239 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10240 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10241 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10242 && (GET_MODE (SUBREG_REG (inner_op0))
10243 == GET_MODE (SUBREG_REG (inner_op1)))
10244 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10245 <= HOST_BITS_PER_WIDE_INT)
10246 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10247 GET_MODE (SUBREG_REG (inner_op0)))))
10248 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10249 GET_MODE (SUBREG_REG (inner_op1))))))
10251 op0 = SUBREG_REG (inner_op0);
10252 op1 = SUBREG_REG (inner_op1);
10254 /* The resulting comparison is always unsigned since we masked
10255 off the original sign bit. */
10256 code = unsigned_condition (code);
10258 changed = 1;
10261 else if (c0 == c1)
10262 for (tmode = GET_CLASS_NARROWEST_MODE
10263 (GET_MODE_CLASS (GET_MODE (op0)));
10264 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10265 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10267 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10268 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10269 code = unsigned_condition (code);
10270 changed = 1;
10271 break;
10274 if (! changed)
10275 break;
10278 /* If both operands are NOT, we can strip off the outer operation
10279 and adjust the comparison code for swapped operands; similarly for
10280 NEG, except that this must be an equality comparison. */
10281 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10282 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10283 && (code == EQ || code == NE)))
10284 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10286 else
10287 break;
10290 /* If the first operand is a constant, swap the operands and adjust the
10291 comparison code appropriately, but don't do this if the second operand
10292 is already a constant integer. */
10293 if (swap_commutative_operands_p (op0, op1))
10295 tem = op0, op0 = op1, op1 = tem;
10296 code = swap_condition (code);
10299 /* We now enter a loop during which we will try to simplify the comparison.
10300 For the most part, we only are concerned with comparisons with zero,
10301 but some things may really be comparisons with zero but not start
10302 out looking that way. */
10304 while (GET_CODE (op1) == CONST_INT)
10306 enum machine_mode mode = GET_MODE (op0);
10307 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10308 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10309 int equality_comparison_p;
10310 int sign_bit_comparison_p;
10311 int unsigned_comparison_p;
10312 HOST_WIDE_INT const_op;
10314 /* We only want to handle integral modes. This catches VOIDmode,
10315 CCmode, and the floating-point modes. An exception is that we
10316 can handle VOIDmode if OP0 is a COMPARE or a comparison
10317 operation. */
10319 if (GET_MODE_CLASS (mode) != MODE_INT
10320 && ! (mode == VOIDmode
10321 && (GET_CODE (op0) == COMPARE
10322 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10323 break;
10325 /* Get the constant we are comparing against and turn off all bits
10326 not on in our mode. */
10327 const_op = INTVAL (op1);
10328 if (mode != VOIDmode)
10329 const_op = trunc_int_for_mode (const_op, mode);
10330 op1 = GEN_INT (const_op);
10332 /* If we are comparing against a constant power of two and the value
10333 being compared can only have that single bit nonzero (e.g., it was
10334 `and'ed with that bit), we can replace this with a comparison
10335 with zero. */
10336 if (const_op
10337 && (code == EQ || code == NE || code == GE || code == GEU
10338 || code == LT || code == LTU)
10339 && mode_width <= HOST_BITS_PER_WIDE_INT
10340 && exact_log2 (const_op) >= 0
10341 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10343 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10344 op1 = const0_rtx, const_op = 0;
10347 /* Similarly, if we are comparing a value known to be either -1 or
10348 0 with -1, change it to the opposite comparison against zero. */
10350 if (const_op == -1
10351 && (code == EQ || code == NE || code == GT || code == LE
10352 || code == GEU || code == LTU)
10353 && num_sign_bit_copies (op0, mode) == mode_width)
10355 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10356 op1 = const0_rtx, const_op = 0;
10359 /* Do some canonicalizations based on the comparison code. We prefer
10360 comparisons against zero and then prefer equality comparisons.
10361 If we can reduce the size of a constant, we will do that too. */
10363 switch (code)
10365 case LT:
10366 /* < C is equivalent to <= (C - 1) */
10367 if (const_op > 0)
10369 const_op -= 1;
10370 op1 = GEN_INT (const_op);
10371 code = LE;
10372 /* ... fall through to LE case below. */
10374 else
10375 break;
10377 case LE:
10378 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10379 if (const_op < 0)
10381 const_op += 1;
10382 op1 = GEN_INT (const_op);
10383 code = LT;
10386 /* If we are doing a <= 0 comparison on a value known to have
10387 a zero sign bit, we can replace this with == 0. */
10388 else if (const_op == 0
10389 && mode_width <= HOST_BITS_PER_WIDE_INT
10390 && (nonzero_bits (op0, mode)
10391 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10392 code = EQ;
10393 break;
10395 case GE:
10396 /* >= C is equivalent to > (C - 1). */
10397 if (const_op > 0)
10399 const_op -= 1;
10400 op1 = GEN_INT (const_op);
10401 code = GT;
10402 /* ... fall through to GT below. */
10404 else
10405 break;
10407 case GT:
10408 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10409 if (const_op < 0)
10411 const_op += 1;
10412 op1 = GEN_INT (const_op);
10413 code = GE;
10416 /* If we are doing a > 0 comparison on a value known to have
10417 a zero sign bit, we can replace this with != 0. */
10418 else if (const_op == 0
10419 && mode_width <= HOST_BITS_PER_WIDE_INT
10420 && (nonzero_bits (op0, mode)
10421 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10422 code = NE;
10423 break;
10425 case LTU:
10426 /* < C is equivalent to <= (C - 1). */
10427 if (const_op > 0)
10429 const_op -= 1;
10430 op1 = GEN_INT (const_op);
10431 code = LEU;
10432 /* ... fall through ... */
10435 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10436 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10437 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10439 const_op = 0, op1 = const0_rtx;
10440 code = GE;
10441 break;
10443 else
10444 break;
10446 case LEU:
10447 /* unsigned <= 0 is equivalent to == 0 */
10448 if (const_op == 0)
10449 code = EQ;
10451 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10452 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10453 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10455 const_op = 0, op1 = const0_rtx;
10456 code = GE;
10458 break;
10460 case GEU:
10461 /* >= C is equivalent to < (C - 1). */
10462 if (const_op > 1)
10464 const_op -= 1;
10465 op1 = GEN_INT (const_op);
10466 code = GTU;
10467 /* ... fall through ... */
10470 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10471 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10472 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10474 const_op = 0, op1 = const0_rtx;
10475 code = LT;
10476 break;
10478 else
10479 break;
10481 case GTU:
10482 /* unsigned > 0 is equivalent to != 0 */
10483 if (const_op == 0)
10484 code = NE;
10486 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10487 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10488 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10490 const_op = 0, op1 = const0_rtx;
10491 code = LT;
10493 break;
10495 default:
10496 break;
10499 /* Compute some predicates to simplify code below. */
10501 equality_comparison_p = (code == EQ || code == NE);
10502 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10503 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10504 || code == GEU);
10506 /* If this is a sign bit comparison and we can do arithmetic in
10507 MODE, say that we will only be needing the sign bit of OP0. */
10508 if (sign_bit_comparison_p
10509 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10510 op0 = force_to_mode (op0, mode,
10511 ((HOST_WIDE_INT) 1
10512 << (GET_MODE_BITSIZE (mode) - 1)),
10513 NULL_RTX, 0);
10515 /* Now try cases based on the opcode of OP0. If none of the cases
10516 does a "continue", we exit this loop immediately after the
10517 switch. */
10519 switch (GET_CODE (op0))
10521 case ZERO_EXTRACT:
10522 /* If we are extracting a single bit from a variable position in
10523 a constant that has only a single bit set and are comparing it
10524 with zero, we can convert this into an equality comparison
10525 between the position and the location of the single bit. */
10526 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10527 have already reduced the shift count modulo the word size. */
10528 if (!SHIFT_COUNT_TRUNCATED
10529 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10530 && XEXP (op0, 1) == const1_rtx
10531 && equality_comparison_p && const_op == 0
10532 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10534 if (BITS_BIG_ENDIAN)
10536 enum machine_mode new_mode
10537 = mode_for_extraction (EP_extzv, 1);
10538 if (new_mode == MAX_MACHINE_MODE)
10539 i = BITS_PER_WORD - 1 - i;
10540 else
10542 mode = new_mode;
10543 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10547 op0 = XEXP (op0, 2);
10548 op1 = GEN_INT (i);
10549 const_op = i;
10551 /* Result is nonzero iff shift count is equal to I. */
10552 code = reverse_condition (code);
10553 continue;
10556 /* ... fall through ... */
10558 case SIGN_EXTRACT:
10559 tem = expand_compound_operation (op0);
10560 if (tem != op0)
10562 op0 = tem;
10563 continue;
10565 break;
10567 case NOT:
10568 /* If testing for equality, we can take the NOT of the constant. */
10569 if (equality_comparison_p
10570 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10572 op0 = XEXP (op0, 0);
10573 op1 = tem;
10574 continue;
10577 /* If just looking at the sign bit, reverse the sense of the
10578 comparison. */
10579 if (sign_bit_comparison_p)
10581 op0 = XEXP (op0, 0);
10582 code = (code == GE ? LT : GE);
10583 continue;
10585 break;
10587 case NEG:
10588 /* If testing for equality, we can take the NEG of the constant. */
10589 if (equality_comparison_p
10590 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10592 op0 = XEXP (op0, 0);
10593 op1 = tem;
10594 continue;
10597 /* The remaining cases only apply to comparisons with zero. */
10598 if (const_op != 0)
10599 break;
10601 /* When X is ABS or is known positive,
10602 (neg X) is < 0 if and only if X != 0. */
10604 if (sign_bit_comparison_p
10605 && (GET_CODE (XEXP (op0, 0)) == ABS
10606 || (mode_width <= HOST_BITS_PER_WIDE_INT
10607 && (nonzero_bits (XEXP (op0, 0), mode)
10608 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10610 op0 = XEXP (op0, 0);
10611 code = (code == LT ? NE : EQ);
10612 continue;
10615 /* If we have NEG of something whose two high-order bits are the
10616 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10617 if (num_sign_bit_copies (op0, mode) >= 2)
10619 op0 = XEXP (op0, 0);
10620 code = swap_condition (code);
10621 continue;
10623 break;
10625 case ROTATE:
10626 /* If we are testing equality and our count is a constant, we
10627 can perform the inverse operation on our RHS. */
10628 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10629 && (tem = simplify_binary_operation (ROTATERT, mode,
10630 op1, XEXP (op0, 1))) != 0)
10632 op0 = XEXP (op0, 0);
10633 op1 = tem;
10634 continue;
10637 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10638 a particular bit. Convert it to an AND of a constant of that
10639 bit. This will be converted into a ZERO_EXTRACT. */
10640 if (const_op == 0 && sign_bit_comparison_p
10641 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10642 && mode_width <= HOST_BITS_PER_WIDE_INT)
10644 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10645 ((HOST_WIDE_INT) 1
10646 << (mode_width - 1
10647 - INTVAL (XEXP (op0, 1)))));
10648 code = (code == LT ? NE : EQ);
10649 continue;
10652 /* Fall through. */
10654 case ABS:
10655 /* ABS is ignorable inside an equality comparison with zero. */
10656 if (const_op == 0 && equality_comparison_p)
10658 op0 = XEXP (op0, 0);
10659 continue;
10661 break;
10663 case SIGN_EXTEND:
10664 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10665 to (compare FOO CONST) if CONST fits in FOO's mode and we
10666 are either testing inequality or have an unsigned comparison
10667 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10668 if (! unsigned_comparison_p
10669 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10670 <= HOST_BITS_PER_WIDE_INT)
10671 && ((unsigned HOST_WIDE_INT) const_op
10672 < (((unsigned HOST_WIDE_INT) 1
10673 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10675 op0 = XEXP (op0, 0);
10676 continue;
10678 break;
10680 case SUBREG:
10681 /* Check for the case where we are comparing A - C1 with C2,
10682 both constants are smaller than 1/2 the maximum positive
10683 value in MODE, and the comparison is equality or unsigned.
10684 In that case, if A is either zero-extended to MODE or has
10685 sufficient sign bits so that the high-order bit in MODE
10686 is a copy of the sign in the inner mode, we can prove that it is
10687 safe to do the operation in the wider mode. This simplifies
10688 many range checks. */
10690 if (mode_width <= HOST_BITS_PER_WIDE_INT
10691 && subreg_lowpart_p (op0)
10692 && GET_CODE (SUBREG_REG (op0)) == PLUS
10693 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10694 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10695 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10696 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10697 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10698 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10699 GET_MODE (SUBREG_REG (op0)))
10700 & ~GET_MODE_MASK (mode))
10701 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10702 GET_MODE (SUBREG_REG (op0)))
10703 > (unsigned int)
10704 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10705 - GET_MODE_BITSIZE (mode)))))
10707 op0 = SUBREG_REG (op0);
10708 continue;
10711 /* If the inner mode is narrower and we are extracting the low part,
10712 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10713 if (subreg_lowpart_p (op0)
10714 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10715 /* Fall through */ ;
10716 else
10717 break;
10719 /* ... fall through ... */
10721 case ZERO_EXTEND:
10722 if ((unsigned_comparison_p || equality_comparison_p)
10723 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10724 <= HOST_BITS_PER_WIDE_INT)
10725 && ((unsigned HOST_WIDE_INT) const_op
10726 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10728 op0 = XEXP (op0, 0);
10729 continue;
10731 break;
10733 case PLUS:
10734 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10735 this for equality comparisons due to pathological cases involving
10736 overflows. */
10737 if (equality_comparison_p
10738 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10739 op1, XEXP (op0, 1))))
10741 op0 = XEXP (op0, 0);
10742 op1 = tem;
10743 continue;
10746 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10747 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10748 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10750 op0 = XEXP (XEXP (op0, 0), 0);
10751 code = (code == LT ? EQ : NE);
10752 continue;
10754 break;
10756 case MINUS:
10757 /* We used to optimize signed comparisons against zero, but that
10758 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10759 arrive here as equality comparisons, or (GEU, LTU) are
10760 optimized away. No need to special-case them. */
10762 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10763 (eq B (minus A C)), whichever simplifies. We can only do
10764 this for equality comparisons due to pathological cases involving
10765 overflows. */
10766 if (equality_comparison_p
10767 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10768 XEXP (op0, 1), op1)))
10770 op0 = XEXP (op0, 0);
10771 op1 = tem;
10772 continue;
10775 if (equality_comparison_p
10776 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10777 XEXP (op0, 0), op1)))
10779 op0 = XEXP (op0, 1);
10780 op1 = tem;
10781 continue;
10784 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10785 of bits in X minus 1, is one iff X > 0. */
10786 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10787 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10788 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10789 == mode_width - 1
10790 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10792 op0 = XEXP (op0, 1);
10793 code = (code == GE ? LE : GT);
10794 continue;
10796 break;
10798 case XOR:
10799 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10800 if C is zero or B is a constant. */
10801 if (equality_comparison_p
10802 && 0 != (tem = simplify_binary_operation (XOR, mode,
10803 XEXP (op0, 1), op1)))
10805 op0 = XEXP (op0, 0);
10806 op1 = tem;
10807 continue;
10809 break;
10811 case EQ: case NE:
10812 case UNEQ: case LTGT:
10813 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10814 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10815 case UNORDERED: case ORDERED:
10816 /* We can't do anything if OP0 is a condition code value, rather
10817 than an actual data value. */
10818 if (const_op != 0
10819 || CC0_P (XEXP (op0, 0))
10820 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10821 break;
10823 /* Get the two operands being compared. */
10824 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10825 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10826 else
10827 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10829 /* Check for the cases where we simply want the result of the
10830 earlier test or the opposite of that result. */
10831 if (code == NE || code == EQ
10832 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10833 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10834 && (STORE_FLAG_VALUE
10835 & (((HOST_WIDE_INT) 1
10836 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10837 && (code == LT || code == GE)))
10839 enum rtx_code new_code;
10840 if (code == LT || code == NE)
10841 new_code = GET_CODE (op0);
10842 else
10843 new_code = combine_reversed_comparison_code (op0);
10845 if (new_code != UNKNOWN)
10847 code = new_code;
10848 op0 = tem;
10849 op1 = tem1;
10850 continue;
10853 break;
10855 case IOR:
10856 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10857 iff X <= 0. */
10858 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10859 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10860 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10862 op0 = XEXP (op0, 1);
10863 code = (code == GE ? GT : LE);
10864 continue;
10866 break;
10868 case AND:
10869 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10870 will be converted to a ZERO_EXTRACT later. */
10871 if (const_op == 0 && equality_comparison_p
10872 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10873 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10875 op0 = simplify_and_const_int
10876 (op0, mode, gen_rtx_LSHIFTRT (mode,
10877 XEXP (op0, 1),
10878 XEXP (XEXP (op0, 0), 1)),
10879 (HOST_WIDE_INT) 1);
10880 continue;
10883 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10884 zero and X is a comparison and C1 and C2 describe only bits set
10885 in STORE_FLAG_VALUE, we can compare with X. */
10886 if (const_op == 0 && equality_comparison_p
10887 && mode_width <= HOST_BITS_PER_WIDE_INT
10888 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10889 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10890 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10891 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10892 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10894 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10895 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10896 if ((~STORE_FLAG_VALUE & mask) == 0
10897 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10898 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10899 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10901 op0 = XEXP (XEXP (op0, 0), 0);
10902 continue;
10906 /* If we are doing an equality comparison of an AND of a bit equal
10907 to the sign bit, replace this with a LT or GE comparison of
10908 the underlying value. */
10909 if (equality_comparison_p
10910 && const_op == 0
10911 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10912 && mode_width <= HOST_BITS_PER_WIDE_INT
10913 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10914 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10916 op0 = XEXP (op0, 0);
10917 code = (code == EQ ? GE : LT);
10918 continue;
10921 /* If this AND operation is really a ZERO_EXTEND from a narrower
10922 mode, the constant fits within that mode, and this is either an
10923 equality or unsigned comparison, try to do this comparison in
10924 the narrower mode. */
10925 if ((equality_comparison_p || unsigned_comparison_p)
10926 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10927 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10928 & GET_MODE_MASK (mode))
10929 + 1)) >= 0
10930 && const_op >> i == 0
10931 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10933 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10934 continue;
10937 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10938 fits in both M1 and M2 and the SUBREG is either paradoxical
10939 or represents the low part, permute the SUBREG and the AND
10940 and try again. */
10941 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10943 unsigned HOST_WIDE_INT c1;
10944 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10945 /* Require an integral mode, to avoid creating something like
10946 (AND:SF ...). */
10947 if (SCALAR_INT_MODE_P (tmode)
10948 /* It is unsafe to commute the AND into the SUBREG if the
10949 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10950 not defined. As originally written the upper bits
10951 have a defined value due to the AND operation.
10952 However, if we commute the AND inside the SUBREG then
10953 they no longer have defined values and the meaning of
10954 the code has been changed. */
10955 && (0
10956 #ifdef WORD_REGISTER_OPERATIONS
10957 || (mode_width > GET_MODE_BITSIZE (tmode)
10958 && mode_width <= BITS_PER_WORD)
10959 #endif
10960 || (mode_width <= GET_MODE_BITSIZE (tmode)
10961 && subreg_lowpart_p (XEXP (op0, 0))))
10962 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10963 && mode_width <= HOST_BITS_PER_WIDE_INT
10964 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10965 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10966 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10967 && c1 != mask
10968 && c1 != GET_MODE_MASK (tmode))
10970 op0 = gen_binary (AND, tmode,
10971 SUBREG_REG (XEXP (op0, 0)),
10972 gen_int_mode (c1, tmode));
10973 op0 = gen_lowpart_for_combine (mode, op0);
10974 continue;
10978 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10979 if (const_op == 0 && equality_comparison_p
10980 && XEXP (op0, 1) == const1_rtx
10981 && GET_CODE (XEXP (op0, 0)) == NOT)
10983 op0 = simplify_and_const_int
10984 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10985 code = (code == NE ? EQ : NE);
10986 continue;
10989 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10990 (eq (and (lshiftrt X) 1) 0).
10991 Also handle the case where (not X) is expressed using xor. */
10992 if (const_op == 0 && equality_comparison_p
10993 && XEXP (op0, 1) == const1_rtx
10994 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10996 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10997 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10999 if (GET_CODE (shift_op) == NOT
11000 || (GET_CODE (shift_op) == XOR
11001 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
11002 && GET_CODE (shift_count) == CONST_INT
11003 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11004 && (INTVAL (XEXP (shift_op, 1))
11005 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11007 op0 = simplify_and_const_int
11008 (NULL_RTX, mode,
11009 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11010 (HOST_WIDE_INT) 1);
11011 code = (code == NE ? EQ : NE);
11012 continue;
11015 break;
11017 case ASHIFT:
11018 /* If we have (compare (ashift FOO N) (const_int C)) and
11019 the high order N bits of FOO (N+1 if an inequality comparison)
11020 are known to be zero, we can do this by comparing FOO with C
11021 shifted right N bits so long as the low-order N bits of C are
11022 zero. */
11023 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11024 && INTVAL (XEXP (op0, 1)) >= 0
11025 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11026 < HOST_BITS_PER_WIDE_INT)
11027 && ((const_op
11028 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11029 && mode_width <= HOST_BITS_PER_WIDE_INT
11030 && (nonzero_bits (XEXP (op0, 0), mode)
11031 & ~(mask >> (INTVAL (XEXP (op0, 1))
11032 + ! equality_comparison_p))) == 0)
11034 /* We must perform a logical shift, not an arithmetic one,
11035 as we want the top N bits of C to be zero. */
11036 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11038 temp >>= INTVAL (XEXP (op0, 1));
11039 op1 = gen_int_mode (temp, mode);
11040 op0 = XEXP (op0, 0);
11041 continue;
11044 /* If we are doing a sign bit comparison, it means we are testing
11045 a particular bit. Convert it to the appropriate AND. */
11046 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11047 && mode_width <= HOST_BITS_PER_WIDE_INT)
11049 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11050 ((HOST_WIDE_INT) 1
11051 << (mode_width - 1
11052 - INTVAL (XEXP (op0, 1)))));
11053 code = (code == LT ? NE : EQ);
11054 continue;
11057 /* If this an equality comparison with zero and we are shifting
11058 the low bit to the sign bit, we can convert this to an AND of the
11059 low-order bit. */
11060 if (const_op == 0 && equality_comparison_p
11061 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11062 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11063 == mode_width - 1)
11065 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11066 (HOST_WIDE_INT) 1);
11067 continue;
11069 break;
11071 case ASHIFTRT:
11072 /* If this is an equality comparison with zero, we can do this
11073 as a logical shift, which might be much simpler. */
11074 if (equality_comparison_p && const_op == 0
11075 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11077 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11078 XEXP (op0, 0),
11079 INTVAL (XEXP (op0, 1)));
11080 continue;
11083 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11084 do the comparison in a narrower mode. */
11085 if (! unsigned_comparison_p
11086 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11087 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11088 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11089 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11090 MODE_INT, 1)) != BLKmode
11091 && (((unsigned HOST_WIDE_INT) const_op
11092 + (GET_MODE_MASK (tmode) >> 1) + 1)
11093 <= GET_MODE_MASK (tmode)))
11095 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11096 continue;
11099 /* Likewise if OP0 is a PLUS of a sign extension with a
11100 constant, which is usually represented with the PLUS
11101 between the shifts. */
11102 if (! unsigned_comparison_p
11103 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11104 && GET_CODE (XEXP (op0, 0)) == PLUS
11105 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11106 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11107 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11108 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11109 MODE_INT, 1)) != BLKmode
11110 && (((unsigned HOST_WIDE_INT) const_op
11111 + (GET_MODE_MASK (tmode) >> 1) + 1)
11112 <= GET_MODE_MASK (tmode)))
11114 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11115 rtx add_const = XEXP (XEXP (op0, 0), 1);
11116 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11117 XEXP (op0, 1));
11119 op0 = gen_binary (PLUS, tmode,
11120 gen_lowpart_for_combine (tmode, inner),
11121 new_const);
11122 continue;
11125 /* ... fall through ... */
11126 case LSHIFTRT:
11127 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11128 the low order N bits of FOO are known to be zero, we can do this
11129 by comparing FOO with C shifted left N bits so long as no
11130 overflow occurs. */
11131 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11132 && INTVAL (XEXP (op0, 1)) >= 0
11133 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11134 && mode_width <= HOST_BITS_PER_WIDE_INT
11135 && (nonzero_bits (XEXP (op0, 0), mode)
11136 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11137 && (((unsigned HOST_WIDE_INT) const_op
11138 + (GET_CODE (op0) != LSHIFTRT
11139 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11140 + 1)
11141 : 0))
11142 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11144 /* If the shift was logical, then we must make the condition
11145 unsigned. */
11146 if (GET_CODE (op0) == LSHIFTRT)
11147 code = unsigned_condition (code);
11149 const_op <<= INTVAL (XEXP (op0, 1));
11150 op1 = GEN_INT (const_op);
11151 op0 = XEXP (op0, 0);
11152 continue;
11155 /* If we are using this shift to extract just the sign bit, we
11156 can replace this with an LT or GE comparison. */
11157 if (const_op == 0
11158 && (equality_comparison_p || sign_bit_comparison_p)
11159 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11160 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11161 == mode_width - 1)
11163 op0 = XEXP (op0, 0);
11164 code = (code == NE || code == GT ? LT : GE);
11165 continue;
11167 break;
11169 default:
11170 break;
11173 break;
11176 /* Now make any compound operations involved in this comparison. Then,
11177 check for an outmost SUBREG on OP0 that is not doing anything or is
11178 paradoxical. The latter transformation must only be performed when
11179 it is known that the "extra" bits will be the same in op0 and op1 or
11180 that they don't matter. There are three cases to consider:
11182 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11183 care bits and we can assume they have any convenient value. So
11184 making the transformation is safe.
11186 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11187 In this case the upper bits of op0 are undefined. We should not make
11188 the simplification in that case as we do not know the contents of
11189 those bits.
11191 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11192 NIL. In that case we know those bits are zeros or ones. We must
11193 also be sure that they are the same as the upper bits of op1.
11195 We can never remove a SUBREG for a non-equality comparison because
11196 the sign bit is in a different place in the underlying object. */
11198 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11199 op1 = make_compound_operation (op1, SET);
11201 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11202 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11203 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11204 && (code == NE || code == EQ))
11206 if (GET_MODE_SIZE (GET_MODE (op0))
11207 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11209 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11210 implemented. */
11211 if (GET_CODE (SUBREG_REG (op0)) == REG)
11213 op0 = SUBREG_REG (op0);
11214 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11217 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11218 <= HOST_BITS_PER_WIDE_INT)
11219 && (nonzero_bits (SUBREG_REG (op0),
11220 GET_MODE (SUBREG_REG (op0)))
11221 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11223 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11225 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11226 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11227 op0 = SUBREG_REG (op0), op1 = tem;
11231 /* We now do the opposite procedure: Some machines don't have compare
11232 insns in all modes. If OP0's mode is an integer mode smaller than a
11233 word and we can't do a compare in that mode, see if there is a larger
11234 mode for which we can do the compare. There are a number of cases in
11235 which we can use the wider mode. */
11237 mode = GET_MODE (op0);
11238 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11239 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11240 && ! have_insn_for (COMPARE, mode))
11241 for (tmode = GET_MODE_WIDER_MODE (mode);
11242 (tmode != VOIDmode
11243 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11244 tmode = GET_MODE_WIDER_MODE (tmode))
11245 if (have_insn_for (COMPARE, tmode))
11247 int zero_extended;
11249 /* If the only nonzero bits in OP0 and OP1 are those in the
11250 narrower mode and this is an equality or unsigned comparison,
11251 we can use the wider mode. Similarly for sign-extended
11252 values, in which case it is true for all comparisons. */
11253 zero_extended = ((code == EQ || code == NE
11254 || code == GEU || code == GTU
11255 || code == LEU || code == LTU)
11256 && (nonzero_bits (op0, tmode)
11257 & ~GET_MODE_MASK (mode)) == 0
11258 && ((GET_CODE (op1) == CONST_INT
11259 || (nonzero_bits (op1, tmode)
11260 & ~GET_MODE_MASK (mode)) == 0)));
11262 if (zero_extended
11263 || ((num_sign_bit_copies (op0, tmode)
11264 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11265 - GET_MODE_BITSIZE (mode)))
11266 && (num_sign_bit_copies (op1, tmode)
11267 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11268 - GET_MODE_BITSIZE (mode)))))
11270 /* If OP0 is an AND and we don't have an AND in MODE either,
11271 make a new AND in the proper mode. */
11272 if (GET_CODE (op0) == AND
11273 && !have_insn_for (AND, mode))
11274 op0 = gen_binary (AND, tmode,
11275 gen_lowpart_for_combine (tmode,
11276 XEXP (op0, 0)),
11277 gen_lowpart_for_combine (tmode,
11278 XEXP (op0, 1)));
11280 op0 = gen_lowpart_for_combine (tmode, op0);
11281 if (zero_extended && GET_CODE (op1) == CONST_INT)
11282 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11283 op1 = gen_lowpart_for_combine (tmode, op1);
11284 break;
11287 /* If this is a test for negative, we can make an explicit
11288 test of the sign bit. */
11290 if (op1 == const0_rtx && (code == LT || code == GE)
11291 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11293 op0 = gen_binary (AND, tmode,
11294 gen_lowpart_for_combine (tmode, op0),
11295 GEN_INT ((HOST_WIDE_INT) 1
11296 << (GET_MODE_BITSIZE (mode) - 1)));
11297 code = (code == LT) ? NE : EQ;
11298 break;
11302 #ifdef CANONICALIZE_COMPARISON
11303 /* If this machine only supports a subset of valid comparisons, see if we
11304 can convert an unsupported one into a supported one. */
11305 CANONICALIZE_COMPARISON (code, op0, op1);
11306 #endif
11308 *pop0 = op0;
11309 *pop1 = op1;
11311 return code;
11314 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11315 searching backward. */
11316 static enum rtx_code
11317 combine_reversed_comparison_code (rtx exp)
11319 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11320 rtx x;
11322 if (code1 != UNKNOWN
11323 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11324 return code1;
11325 /* Otherwise try and find where the condition codes were last set and
11326 use that. */
11327 x = get_last_value (XEXP (exp, 0));
11328 if (!x || GET_CODE (x) != COMPARE)
11329 return UNKNOWN;
11330 return reversed_comparison_code_parts (GET_CODE (exp),
11331 XEXP (x, 0), XEXP (x, 1), NULL);
11334 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11335 Return NULL_RTX in case we fail to do the reversal. */
11336 static rtx
11337 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11339 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11340 if (reversed_code == UNKNOWN)
11341 return NULL_RTX;
11342 else
11343 return gen_binary (reversed_code, mode, op0, op1);
11346 /* Utility function for following routine. Called when X is part of a value
11347 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11348 for each register mentioned. Similar to mention_regs in cse.c */
11350 static void
11351 update_table_tick (rtx x)
11353 enum rtx_code code = GET_CODE (x);
11354 const char *fmt = GET_RTX_FORMAT (code);
11355 int i;
11357 if (code == REG)
11359 unsigned int regno = REGNO (x);
11360 unsigned int endregno
11361 = regno + (regno < FIRST_PSEUDO_REGISTER
11362 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11363 unsigned int r;
11365 for (r = regno; r < endregno; r++)
11366 reg_last_set_table_tick[r] = label_tick;
11368 return;
11371 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11372 /* Note that we can't have an "E" in values stored; see
11373 get_last_value_validate. */
11374 if (fmt[i] == 'e')
11376 /* Check for identical subexpressions. If x contains
11377 identical subexpression we only have to traverse one of
11378 them. */
11379 if (i == 0
11380 && (GET_RTX_CLASS (code) == '2'
11381 || GET_RTX_CLASS (code) == 'c'))
11383 /* Note that at this point x1 has already been
11384 processed. */
11385 rtx x0 = XEXP (x, 0);
11386 rtx x1 = XEXP (x, 1);
11388 /* If x0 and x1 are identical then there is no need to
11389 process x0. */
11390 if (x0 == x1)
11391 break;
11393 /* If x0 is identical to a subexpression of x1 then while
11394 processing x1, x0 has already been processed. Thus we
11395 are done with x. */
11396 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11397 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11398 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11399 break;
11401 /* If x1 is identical to a subexpression of x0 then we
11402 still have to process the rest of x0. */
11403 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11404 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11405 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11407 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11408 break;
11412 update_table_tick (XEXP (x, i));
11416 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11417 are saying that the register is clobbered and we no longer know its
11418 value. If INSN is zero, don't update reg_last_set; this is only permitted
11419 with VALUE also zero and is used to invalidate the register. */
11421 static void
11422 record_value_for_reg (rtx reg, rtx insn, rtx value)
11424 unsigned int regno = REGNO (reg);
11425 unsigned int endregno
11426 = regno + (regno < FIRST_PSEUDO_REGISTER
11427 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11428 unsigned int i;
11430 /* If VALUE contains REG and we have a previous value for REG, substitute
11431 the previous value. */
11432 if (value && insn && reg_overlap_mentioned_p (reg, value))
11434 rtx tem;
11436 /* Set things up so get_last_value is allowed to see anything set up to
11437 our insn. */
11438 subst_low_cuid = INSN_CUID (insn);
11439 tem = get_last_value (reg);
11441 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11442 it isn't going to be useful and will take a lot of time to process,
11443 so just use the CLOBBER. */
11445 if (tem)
11447 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11448 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11449 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11450 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11451 tem = XEXP (tem, 0);
11453 value = replace_rtx (copy_rtx (value), reg, tem);
11457 /* For each register modified, show we don't know its value, that
11458 we don't know about its bitwise content, that its value has been
11459 updated, and that we don't know the location of the death of the
11460 register. */
11461 for (i = regno; i < endregno; i++)
11463 if (insn)
11464 reg_last_set[i] = insn;
11466 reg_last_set_value[i] = 0;
11467 reg_last_set_mode[i] = 0;
11468 reg_last_set_nonzero_bits[i] = 0;
11469 reg_last_set_sign_bit_copies[i] = 0;
11470 reg_last_death[i] = 0;
11473 /* Mark registers that are being referenced in this value. */
11474 if (value)
11475 update_table_tick (value);
11477 /* Now update the status of each register being set.
11478 If someone is using this register in this block, set this register
11479 to invalid since we will get confused between the two lives in this
11480 basic block. This makes using this register always invalid. In cse, we
11481 scan the table to invalidate all entries using this register, but this
11482 is too much work for us. */
11484 for (i = regno; i < endregno; i++)
11486 reg_last_set_label[i] = label_tick;
11487 if (value && reg_last_set_table_tick[i] == label_tick)
11488 reg_last_set_invalid[i] = 1;
11489 else
11490 reg_last_set_invalid[i] = 0;
11493 /* The value being assigned might refer to X (like in "x++;"). In that
11494 case, we must replace it with (clobber (const_int 0)) to prevent
11495 infinite loops. */
11496 if (value && ! get_last_value_validate (&value, insn,
11497 reg_last_set_label[regno], 0))
11499 value = copy_rtx (value);
11500 if (! get_last_value_validate (&value, insn,
11501 reg_last_set_label[regno], 1))
11502 value = 0;
11505 /* For the main register being modified, update the value, the mode, the
11506 nonzero bits, and the number of sign bit copies. */
11508 reg_last_set_value[regno] = value;
11510 if (value)
11512 enum machine_mode mode = GET_MODE (reg);
11513 subst_low_cuid = INSN_CUID (insn);
11514 reg_last_set_mode[regno] = mode;
11515 if (GET_MODE_CLASS (mode) == MODE_INT
11516 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11517 mode = nonzero_bits_mode;
11518 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11519 reg_last_set_sign_bit_copies[regno]
11520 = num_sign_bit_copies (value, GET_MODE (reg));
11524 /* Called via note_stores from record_dead_and_set_regs to handle one
11525 SET or CLOBBER in an insn. DATA is the instruction in which the
11526 set is occurring. */
11528 static void
11529 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11531 rtx record_dead_insn = (rtx) data;
11533 if (GET_CODE (dest) == SUBREG)
11534 dest = SUBREG_REG (dest);
11536 if (GET_CODE (dest) == REG)
11538 /* If we are setting the whole register, we know its value. Otherwise
11539 show that we don't know the value. We can handle SUBREG in
11540 some cases. */
11541 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11542 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11543 else if (GET_CODE (setter) == SET
11544 && GET_CODE (SET_DEST (setter)) == SUBREG
11545 && SUBREG_REG (SET_DEST (setter)) == dest
11546 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11547 && subreg_lowpart_p (SET_DEST (setter)))
11548 record_value_for_reg (dest, record_dead_insn,
11549 gen_lowpart_for_combine (GET_MODE (dest),
11550 SET_SRC (setter)));
11551 else
11552 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11554 else if (GET_CODE (dest) == MEM
11555 /* Ignore pushes, they clobber nothing. */
11556 && ! push_operand (dest, GET_MODE (dest)))
11557 mem_last_set = INSN_CUID (record_dead_insn);
11560 /* Update the records of when each REG was most recently set or killed
11561 for the things done by INSN. This is the last thing done in processing
11562 INSN in the combiner loop.
11564 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11565 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11566 and also the similar information mem_last_set (which insn most recently
11567 modified memory) and last_call_cuid (which insn was the most recent
11568 subroutine call). */
11570 static void
11571 record_dead_and_set_regs (rtx insn)
11573 rtx link;
11574 unsigned int i;
11576 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11578 if (REG_NOTE_KIND (link) == REG_DEAD
11579 && GET_CODE (XEXP (link, 0)) == REG)
11581 unsigned int regno = REGNO (XEXP (link, 0));
11582 unsigned int endregno
11583 = regno + (regno < FIRST_PSEUDO_REGISTER
11584 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11585 : 1);
11587 for (i = regno; i < endregno; i++)
11588 reg_last_death[i] = insn;
11590 else if (REG_NOTE_KIND (link) == REG_INC)
11591 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11594 if (GET_CODE (insn) == CALL_INSN)
11596 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11597 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11599 reg_last_set_value[i] = 0;
11600 reg_last_set_mode[i] = 0;
11601 reg_last_set_nonzero_bits[i] = 0;
11602 reg_last_set_sign_bit_copies[i] = 0;
11603 reg_last_death[i] = 0;
11606 last_call_cuid = mem_last_set = INSN_CUID (insn);
11608 /* Don't bother recording what this insn does. It might set the
11609 return value register, but we can't combine into a call
11610 pattern anyway, so there's no point trying (and it may cause
11611 a crash, if e.g. we wind up asking for last_set_value of a
11612 SUBREG of the return value register). */
11613 return;
11616 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11619 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11620 register present in the SUBREG, so for each such SUBREG go back and
11621 adjust nonzero and sign bit information of the registers that are
11622 known to have some zero/sign bits set.
11624 This is needed because when combine blows the SUBREGs away, the
11625 information on zero/sign bits is lost and further combines can be
11626 missed because of that. */
11628 static void
11629 record_promoted_value (rtx insn, rtx subreg)
11631 rtx links, set;
11632 unsigned int regno = REGNO (SUBREG_REG (subreg));
11633 enum machine_mode mode = GET_MODE (subreg);
11635 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11636 return;
11638 for (links = LOG_LINKS (insn); links;)
11640 insn = XEXP (links, 0);
11641 set = single_set (insn);
11643 if (! set || GET_CODE (SET_DEST (set)) != REG
11644 || REGNO (SET_DEST (set)) != regno
11645 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11647 links = XEXP (links, 1);
11648 continue;
11651 if (reg_last_set[regno] == insn)
11653 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11654 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11657 if (GET_CODE (SET_SRC (set)) == REG)
11659 regno = REGNO (SET_SRC (set));
11660 links = LOG_LINKS (insn);
11662 else
11663 break;
11667 /* Scan X for promoted SUBREGs. For each one found,
11668 note what it implies to the registers used in it. */
11670 static void
11671 check_promoted_subreg (rtx insn, rtx x)
11673 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11674 && GET_CODE (SUBREG_REG (x)) == REG)
11675 record_promoted_value (insn, x);
11676 else
11678 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11679 int i, j;
11681 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11682 switch (format[i])
11684 case 'e':
11685 check_promoted_subreg (insn, XEXP (x, i));
11686 break;
11687 case 'V':
11688 case 'E':
11689 if (XVEC (x, i) != 0)
11690 for (j = 0; j < XVECLEN (x, i); j++)
11691 check_promoted_subreg (insn, XVECEXP (x, i, j));
11692 break;
11697 /* Utility routine for the following function. Verify that all the registers
11698 mentioned in *LOC are valid when *LOC was part of a value set when
11699 label_tick == TICK. Return 0 if some are not.
11701 If REPLACE is nonzero, replace the invalid reference with
11702 (clobber (const_int 0)) and return 1. This replacement is useful because
11703 we often can get useful information about the form of a value (e.g., if
11704 it was produced by a shift that always produces -1 or 0) even though
11705 we don't know exactly what registers it was produced from. */
11707 static int
11708 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11710 rtx x = *loc;
11711 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11712 int len = GET_RTX_LENGTH (GET_CODE (x));
11713 int i;
11715 if (GET_CODE (x) == REG)
11717 unsigned int regno = REGNO (x);
11718 unsigned int endregno
11719 = regno + (regno < FIRST_PSEUDO_REGISTER
11720 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11721 unsigned int j;
11723 for (j = regno; j < endregno; j++)
11724 if (reg_last_set_invalid[j]
11725 /* If this is a pseudo-register that was only set once and not
11726 live at the beginning of the function, it is always valid. */
11727 || (! (regno >= FIRST_PSEUDO_REGISTER
11728 && REG_N_SETS (regno) == 1
11729 && (! REGNO_REG_SET_P
11730 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11731 && reg_last_set_label[j] > tick))
11733 if (replace)
11734 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11735 return replace;
11738 return 1;
11740 /* If this is a memory reference, make sure that there were
11741 no stores after it that might have clobbered the value. We don't
11742 have alias info, so we assume any store invalidates it. */
11743 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11744 && INSN_CUID (insn) <= mem_last_set)
11746 if (replace)
11747 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11748 return replace;
11751 for (i = 0; i < len; i++)
11753 if (fmt[i] == 'e')
11755 /* Check for identical subexpressions. If x contains
11756 identical subexpression we only have to traverse one of
11757 them. */
11758 if (i == 1
11759 && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11760 || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11762 /* Note that at this point x0 has already been checked
11763 and found valid. */
11764 rtx x0 = XEXP (x, 0);
11765 rtx x1 = XEXP (x, 1);
11767 /* If x0 and x1 are identical then x is also valid. */
11768 if (x0 == x1)
11769 return 1;
11771 /* If x1 is identical to a subexpression of x0 then
11772 while checking x0, x1 has already been checked. Thus
11773 it is valid and so as x. */
11774 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11775 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11776 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11777 return 1;
11779 /* If x0 is identical to a subexpression of x1 then x is
11780 valid iff the rest of x1 is valid. */
11781 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11782 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11783 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11784 return
11785 get_last_value_validate (&XEXP (x1,
11786 x0 == XEXP (x1, 0) ? 1 : 0),
11787 insn, tick, replace);
11790 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11791 replace) == 0)
11792 return 0;
11794 /* Don't bother with these. They shouldn't occur anyway. */
11795 else if (fmt[i] == 'E')
11796 return 0;
11799 /* If we haven't found a reason for it to be invalid, it is valid. */
11800 return 1;
11803 /* Get the last value assigned to X, if known. Some registers
11804 in the value may be replaced with (clobber (const_int 0)) if their value
11805 is known longer known reliably. */
11807 static rtx
11808 get_last_value (rtx x)
11810 unsigned int regno;
11811 rtx value;
11813 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11814 then convert it to the desired mode. If this is a paradoxical SUBREG,
11815 we cannot predict what values the "extra" bits might have. */
11816 if (GET_CODE (x) == SUBREG
11817 && subreg_lowpart_p (x)
11818 && (GET_MODE_SIZE (GET_MODE (x))
11819 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11820 && (value = get_last_value (SUBREG_REG (x))) != 0)
11821 return gen_lowpart_for_combine (GET_MODE (x), value);
11823 if (GET_CODE (x) != REG)
11824 return 0;
11826 regno = REGNO (x);
11827 value = reg_last_set_value[regno];
11829 /* If we don't have a value, or if it isn't for this basic block and
11830 it's either a hard register, set more than once, or it's a live
11831 at the beginning of the function, return 0.
11833 Because if it's not live at the beginning of the function then the reg
11834 is always set before being used (is never used without being set).
11835 And, if it's set only once, and it's always set before use, then all
11836 uses must have the same last value, even if it's not from this basic
11837 block. */
11839 if (value == 0
11840 || (reg_last_set_label[regno] != label_tick
11841 && (regno < FIRST_PSEUDO_REGISTER
11842 || REG_N_SETS (regno) != 1
11843 || (REGNO_REG_SET_P
11844 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11845 return 0;
11847 /* If the value was set in a later insn than the ones we are processing,
11848 we can't use it even if the register was only set once. */
11849 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11850 return 0;
11852 /* If the value has all its registers valid, return it. */
11853 if (get_last_value_validate (&value, reg_last_set[regno],
11854 reg_last_set_label[regno], 0))
11855 return value;
11857 /* Otherwise, make a copy and replace any invalid register with
11858 (clobber (const_int 0)). If that fails for some reason, return 0. */
11860 value = copy_rtx (value);
11861 if (get_last_value_validate (&value, reg_last_set[regno],
11862 reg_last_set_label[regno], 1))
11863 return value;
11865 return 0;
11868 /* Return nonzero if expression X refers to a REG or to memory
11869 that is set in an instruction more recent than FROM_CUID. */
11871 static int
11872 use_crosses_set_p (rtx x, int from_cuid)
11874 const char *fmt;
11875 int i;
11876 enum rtx_code code = GET_CODE (x);
11878 if (code == REG)
11880 unsigned int regno = REGNO (x);
11881 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11882 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11884 #ifdef PUSH_ROUNDING
11885 /* Don't allow uses of the stack pointer to be moved,
11886 because we don't know whether the move crosses a push insn. */
11887 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11888 return 1;
11889 #endif
11890 for (; regno < endreg; regno++)
11891 if (reg_last_set[regno]
11892 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11893 return 1;
11894 return 0;
11897 if (code == MEM && mem_last_set > from_cuid)
11898 return 1;
11900 fmt = GET_RTX_FORMAT (code);
11902 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11904 if (fmt[i] == 'E')
11906 int j;
11907 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11908 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11909 return 1;
11911 else if (fmt[i] == 'e'
11912 && use_crosses_set_p (XEXP (x, i), from_cuid))
11913 return 1;
11915 return 0;
11918 /* Define three variables used for communication between the following
11919 routines. */
11921 static unsigned int reg_dead_regno, reg_dead_endregno;
11922 static int reg_dead_flag;
11924 /* Function called via note_stores from reg_dead_at_p.
11926 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11927 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11929 static void
11930 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11932 unsigned int regno, endregno;
11934 if (GET_CODE (dest) != REG)
11935 return;
11937 regno = REGNO (dest);
11938 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11939 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11941 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11942 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11945 /* Return nonzero if REG is known to be dead at INSN.
11947 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11948 referencing REG, it is dead. If we hit a SET referencing REG, it is
11949 live. Otherwise, see if it is live or dead at the start of the basic
11950 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11951 must be assumed to be always live. */
11953 static int
11954 reg_dead_at_p (rtx reg, rtx insn)
11956 basic_block block;
11957 unsigned int i;
11959 /* Set variables for reg_dead_at_p_1. */
11960 reg_dead_regno = REGNO (reg);
11961 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11962 ? HARD_REGNO_NREGS (reg_dead_regno,
11963 GET_MODE (reg))
11964 : 1);
11966 reg_dead_flag = 0;
11968 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11969 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11971 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11972 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11973 return 0;
11976 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11977 beginning of function. */
11978 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11979 insn = prev_nonnote_insn (insn))
11981 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11982 if (reg_dead_flag)
11983 return reg_dead_flag == 1 ? 1 : 0;
11985 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11986 return 1;
11989 /* Get the basic block that we were in. */
11990 if (insn == 0)
11991 block = ENTRY_BLOCK_PTR->next_bb;
11992 else
11994 FOR_EACH_BB (block)
11995 if (insn == BB_HEAD (block))
11996 break;
11998 if (block == EXIT_BLOCK_PTR)
11999 return 0;
12002 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12003 if (REGNO_REG_SET_P (block->global_live_at_start, i))
12004 return 0;
12006 return 1;
12009 /* Note hard registers in X that are used. This code is similar to
12010 that in flow.c, but much simpler since we don't care about pseudos. */
12012 static void
12013 mark_used_regs_combine (rtx x)
12015 RTX_CODE code = GET_CODE (x);
12016 unsigned int regno;
12017 int i;
12019 switch (code)
12021 case LABEL_REF:
12022 case SYMBOL_REF:
12023 case CONST_INT:
12024 case CONST:
12025 case CONST_DOUBLE:
12026 case CONST_VECTOR:
12027 case PC:
12028 case ADDR_VEC:
12029 case ADDR_DIFF_VEC:
12030 case ASM_INPUT:
12031 #ifdef HAVE_cc0
12032 /* CC0 must die in the insn after it is set, so we don't need to take
12033 special note of it here. */
12034 case CC0:
12035 #endif
12036 return;
12038 case CLOBBER:
12039 /* If we are clobbering a MEM, mark any hard registers inside the
12040 address as used. */
12041 if (GET_CODE (XEXP (x, 0)) == MEM)
12042 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12043 return;
12045 case REG:
12046 regno = REGNO (x);
12047 /* A hard reg in a wide mode may really be multiple registers.
12048 If so, mark all of them just like the first. */
12049 if (regno < FIRST_PSEUDO_REGISTER)
12051 unsigned int endregno, r;
12053 /* None of this applies to the stack, frame or arg pointers. */
12054 if (regno == STACK_POINTER_REGNUM
12055 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12056 || regno == HARD_FRAME_POINTER_REGNUM
12057 #endif
12058 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12059 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12060 #endif
12061 || regno == FRAME_POINTER_REGNUM)
12062 return;
12064 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12065 for (r = regno; r < endregno; r++)
12066 SET_HARD_REG_BIT (newpat_used_regs, r);
12068 return;
12070 case SET:
12072 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12073 the address. */
12074 rtx testreg = SET_DEST (x);
12076 while (GET_CODE (testreg) == SUBREG
12077 || GET_CODE (testreg) == ZERO_EXTRACT
12078 || GET_CODE (testreg) == SIGN_EXTRACT
12079 || GET_CODE (testreg) == STRICT_LOW_PART)
12080 testreg = XEXP (testreg, 0);
12082 if (GET_CODE (testreg) == MEM)
12083 mark_used_regs_combine (XEXP (testreg, 0));
12085 mark_used_regs_combine (SET_SRC (x));
12087 return;
12089 default:
12090 break;
12093 /* Recursively scan the operands of this expression. */
12096 const char *fmt = GET_RTX_FORMAT (code);
12098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12100 if (fmt[i] == 'e')
12101 mark_used_regs_combine (XEXP (x, i));
12102 else if (fmt[i] == 'E')
12104 int j;
12106 for (j = 0; j < XVECLEN (x, i); j++)
12107 mark_used_regs_combine (XVECEXP (x, i, j));
12113 /* Remove register number REGNO from the dead registers list of INSN.
12115 Return the note used to record the death, if there was one. */
12118 remove_death (unsigned int regno, rtx insn)
12120 rtx note = find_regno_note (insn, REG_DEAD, regno);
12122 if (note)
12124 REG_N_DEATHS (regno)--;
12125 remove_note (insn, note);
12128 return note;
12131 /* For each register (hardware or pseudo) used within expression X, if its
12132 death is in an instruction with cuid between FROM_CUID (inclusive) and
12133 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12134 list headed by PNOTES.
12136 That said, don't move registers killed by maybe_kill_insn.
12138 This is done when X is being merged by combination into TO_INSN. These
12139 notes will then be distributed as needed. */
12141 static void
12142 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12143 rtx *pnotes)
12145 const char *fmt;
12146 int len, i;
12147 enum rtx_code code = GET_CODE (x);
12149 if (code == REG)
12151 unsigned int regno = REGNO (x);
12152 rtx where_dead = reg_last_death[regno];
12153 rtx before_dead, after_dead;
12155 /* Don't move the register if it gets killed in between from and to. */
12156 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12157 && ! reg_referenced_p (x, maybe_kill_insn))
12158 return;
12160 /* WHERE_DEAD could be a USE insn made by combine, so first we
12161 make sure that we have insns with valid INSN_CUID values. */
12162 before_dead = where_dead;
12163 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12164 before_dead = PREV_INSN (before_dead);
12166 after_dead = where_dead;
12167 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12168 after_dead = NEXT_INSN (after_dead);
12170 if (before_dead && after_dead
12171 && INSN_CUID (before_dead) >= from_cuid
12172 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12173 || (where_dead != after_dead
12174 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12176 rtx note = remove_death (regno, where_dead);
12178 /* It is possible for the call above to return 0. This can occur
12179 when reg_last_death points to I2 or I1 that we combined with.
12180 In that case make a new note.
12182 We must also check for the case where X is a hard register
12183 and NOTE is a death note for a range of hard registers
12184 including X. In that case, we must put REG_DEAD notes for
12185 the remaining registers in place of NOTE. */
12187 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12188 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12189 > GET_MODE_SIZE (GET_MODE (x))))
12191 unsigned int deadregno = REGNO (XEXP (note, 0));
12192 unsigned int deadend
12193 = (deadregno + HARD_REGNO_NREGS (deadregno,
12194 GET_MODE (XEXP (note, 0))));
12195 unsigned int ourend
12196 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12197 unsigned int i;
12199 for (i = deadregno; i < deadend; i++)
12200 if (i < regno || i >= ourend)
12201 REG_NOTES (where_dead)
12202 = gen_rtx_EXPR_LIST (REG_DEAD,
12203 regno_reg_rtx[i],
12204 REG_NOTES (where_dead));
12207 /* If we didn't find any note, or if we found a REG_DEAD note that
12208 covers only part of the given reg, and we have a multi-reg hard
12209 register, then to be safe we must check for REG_DEAD notes
12210 for each register other than the first. They could have
12211 their own REG_DEAD notes lying around. */
12212 else if ((note == 0
12213 || (note != 0
12214 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12215 < GET_MODE_SIZE (GET_MODE (x)))))
12216 && regno < FIRST_PSEUDO_REGISTER
12217 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12219 unsigned int ourend
12220 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12221 unsigned int i, offset;
12222 rtx oldnotes = 0;
12224 if (note)
12225 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12226 else
12227 offset = 1;
12229 for (i = regno + offset; i < ourend; i++)
12230 move_deaths (regno_reg_rtx[i],
12231 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12234 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12236 XEXP (note, 1) = *pnotes;
12237 *pnotes = note;
12239 else
12240 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12242 REG_N_DEATHS (regno)++;
12245 return;
12248 else if (GET_CODE (x) == SET)
12250 rtx dest = SET_DEST (x);
12252 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12254 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12255 that accesses one word of a multi-word item, some
12256 piece of everything register in the expression is used by
12257 this insn, so remove any old death. */
12258 /* ??? So why do we test for equality of the sizes? */
12260 if (GET_CODE (dest) == ZERO_EXTRACT
12261 || GET_CODE (dest) == STRICT_LOW_PART
12262 || (GET_CODE (dest) == SUBREG
12263 && (((GET_MODE_SIZE (GET_MODE (dest))
12264 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12265 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12266 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12268 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12269 return;
12272 /* If this is some other SUBREG, we know it replaces the entire
12273 value, so use that as the destination. */
12274 if (GET_CODE (dest) == SUBREG)
12275 dest = SUBREG_REG (dest);
12277 /* If this is a MEM, adjust deaths of anything used in the address.
12278 For a REG (the only other possibility), the entire value is
12279 being replaced so the old value is not used in this insn. */
12281 if (GET_CODE (dest) == MEM)
12282 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12283 to_insn, pnotes);
12284 return;
12287 else if (GET_CODE (x) == CLOBBER)
12288 return;
12290 len = GET_RTX_LENGTH (code);
12291 fmt = GET_RTX_FORMAT (code);
12293 for (i = 0; i < len; i++)
12295 if (fmt[i] == 'E')
12297 int j;
12298 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12299 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12300 to_insn, pnotes);
12302 else if (fmt[i] == 'e')
12303 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12307 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12308 pattern of an insn. X must be a REG. */
12310 static int
12311 reg_bitfield_target_p (rtx x, rtx body)
12313 int i;
12315 if (GET_CODE (body) == SET)
12317 rtx dest = SET_DEST (body);
12318 rtx target;
12319 unsigned int regno, tregno, endregno, endtregno;
12321 if (GET_CODE (dest) == ZERO_EXTRACT)
12322 target = XEXP (dest, 0);
12323 else if (GET_CODE (dest) == STRICT_LOW_PART)
12324 target = SUBREG_REG (XEXP (dest, 0));
12325 else
12326 return 0;
12328 if (GET_CODE (target) == SUBREG)
12329 target = SUBREG_REG (target);
12331 if (GET_CODE (target) != REG)
12332 return 0;
12334 tregno = REGNO (target), regno = REGNO (x);
12335 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12336 return target == x;
12338 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12339 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12341 return endregno > tregno && regno < endtregno;
12344 else if (GET_CODE (body) == PARALLEL)
12345 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12346 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12347 return 1;
12349 return 0;
12352 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12353 as appropriate. I3 and I2 are the insns resulting from the combination
12354 insns including FROM (I2 may be zero).
12356 Each note in the list is either ignored or placed on some insns, depending
12357 on the type of note. */
12359 static void
12360 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12362 rtx note, next_note;
12363 rtx tem;
12365 for (note = notes; note; note = next_note)
12367 rtx place = 0, place2 = 0;
12369 /* If this NOTE references a pseudo register, ensure it references
12370 the latest copy of that register. */
12371 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12372 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12373 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12375 next_note = XEXP (note, 1);
12376 switch (REG_NOTE_KIND (note))
12378 case REG_BR_PROB:
12379 case REG_BR_PRED:
12380 /* Doesn't matter much where we put this, as long as it's somewhere.
12381 It is preferable to keep these notes on branches, which is most
12382 likely to be i3. */
12383 place = i3;
12384 break;
12386 case REG_VALUE_PROFILE:
12387 /* Just get rid of this note, as it is unused later anyway. */
12388 break;
12390 case REG_VTABLE_REF:
12391 /* ??? Should remain with *a particular* memory load. Given the
12392 nature of vtable data, the last insn seems relatively safe. */
12393 place = i3;
12394 break;
12396 case REG_NON_LOCAL_GOTO:
12397 if (GET_CODE (i3) == JUMP_INSN)
12398 place = i3;
12399 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12400 place = i2;
12401 else
12402 abort ();
12403 break;
12405 case REG_EH_REGION:
12406 /* These notes must remain with the call or trapping instruction. */
12407 if (GET_CODE (i3) == CALL_INSN)
12408 place = i3;
12409 else if (i2 && GET_CODE (i2) == CALL_INSN)
12410 place = i2;
12411 else if (flag_non_call_exceptions)
12413 if (may_trap_p (i3))
12414 place = i3;
12415 else if (i2 && may_trap_p (i2))
12416 place = i2;
12417 /* ??? Otherwise assume we've combined things such that we
12418 can now prove that the instructions can't trap. Drop the
12419 note in this case. */
12421 else
12422 abort ();
12423 break;
12425 case REG_ALWAYS_RETURN:
12426 case REG_NORETURN:
12427 case REG_SETJMP:
12428 /* These notes must remain with the call. It should not be
12429 possible for both I2 and I3 to be a call. */
12430 if (GET_CODE (i3) == CALL_INSN)
12431 place = i3;
12432 else if (i2 && GET_CODE (i2) == CALL_INSN)
12433 place = i2;
12434 else
12435 abort ();
12436 break;
12438 case REG_UNUSED:
12439 /* Any clobbers for i3 may still exist, and so we must process
12440 REG_UNUSED notes from that insn.
12442 Any clobbers from i2 or i1 can only exist if they were added by
12443 recog_for_combine. In that case, recog_for_combine created the
12444 necessary REG_UNUSED notes. Trying to keep any original
12445 REG_UNUSED notes from these insns can cause incorrect output
12446 if it is for the same register as the original i3 dest.
12447 In that case, we will notice that the register is set in i3,
12448 and then add a REG_UNUSED note for the destination of i3, which
12449 is wrong. However, it is possible to have REG_UNUSED notes from
12450 i2 or i1 for register which were both used and clobbered, so
12451 we keep notes from i2 or i1 if they will turn into REG_DEAD
12452 notes. */
12454 /* If this register is set or clobbered in I3, put the note there
12455 unless there is one already. */
12456 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12458 if (from_insn != i3)
12459 break;
12461 if (! (GET_CODE (XEXP (note, 0)) == REG
12462 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12463 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12464 place = i3;
12466 /* Otherwise, if this register is used by I3, then this register
12467 now dies here, so we must put a REG_DEAD note here unless there
12468 is one already. */
12469 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12470 && ! (GET_CODE (XEXP (note, 0)) == REG
12471 ? find_regno_note (i3, REG_DEAD,
12472 REGNO (XEXP (note, 0)))
12473 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12475 PUT_REG_NOTE_KIND (note, REG_DEAD);
12476 place = i3;
12478 break;
12480 case REG_EQUAL:
12481 case REG_EQUIV:
12482 case REG_NOALIAS:
12483 /* These notes say something about results of an insn. We can
12484 only support them if they used to be on I3 in which case they
12485 remain on I3. Otherwise they are ignored.
12487 If the note refers to an expression that is not a constant, we
12488 must also ignore the note since we cannot tell whether the
12489 equivalence is still true. It might be possible to do
12490 slightly better than this (we only have a problem if I2DEST
12491 or I1DEST is present in the expression), but it doesn't
12492 seem worth the trouble. */
12494 if (from_insn == i3
12495 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12496 place = i3;
12497 break;
12499 case REG_INC:
12500 case REG_NO_CONFLICT:
12501 /* These notes say something about how a register is used. They must
12502 be present on any use of the register in I2 or I3. */
12503 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12504 place = i3;
12506 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12508 if (place)
12509 place2 = i2;
12510 else
12511 place = i2;
12513 break;
12515 case REG_LABEL:
12516 /* This can show up in several ways -- either directly in the
12517 pattern, or hidden off in the constant pool with (or without?)
12518 a REG_EQUAL note. */
12519 /* ??? Ignore the without-reg_equal-note problem for now. */
12520 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12521 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12522 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12523 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12524 place = i3;
12526 if (i2
12527 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12528 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12529 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12530 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12532 if (place)
12533 place2 = i2;
12534 else
12535 place = i2;
12538 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12539 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12540 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12542 if (JUMP_LABEL (place) != XEXP (note, 0))
12543 abort ();
12544 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12545 LABEL_NUSES (JUMP_LABEL (place))--;
12546 place = 0;
12548 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12550 if (JUMP_LABEL (place2) != XEXP (note, 0))
12551 abort ();
12552 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12553 LABEL_NUSES (JUMP_LABEL (place2))--;
12554 place2 = 0;
12556 break;
12558 case REG_NONNEG:
12559 /* This note says something about the value of a register prior
12560 to the execution of an insn. It is too much trouble to see
12561 if the note is still correct in all situations. It is better
12562 to simply delete it. */
12563 break;
12565 case REG_RETVAL:
12566 /* If the insn previously containing this note still exists,
12567 put it back where it was. Otherwise move it to the previous
12568 insn. Adjust the corresponding REG_LIBCALL note. */
12569 if (GET_CODE (from_insn) != NOTE)
12570 place = from_insn;
12571 else
12573 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12574 place = prev_real_insn (from_insn);
12575 if (tem && place)
12576 XEXP (tem, 0) = place;
12577 /* If we're deleting the last remaining instruction of a
12578 libcall sequence, don't add the notes. */
12579 else if (XEXP (note, 0) == from_insn)
12580 tem = place = 0;
12582 break;
12584 case REG_LIBCALL:
12585 /* This is handled similarly to REG_RETVAL. */
12586 if (GET_CODE (from_insn) != NOTE)
12587 place = from_insn;
12588 else
12590 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12591 place = next_real_insn (from_insn);
12592 if (tem && place)
12593 XEXP (tem, 0) = place;
12594 /* If we're deleting the last remaining instruction of a
12595 libcall sequence, don't add the notes. */
12596 else if (XEXP (note, 0) == from_insn)
12597 tem = place = 0;
12599 break;
12601 case REG_DEAD:
12602 /* If the register is used as an input in I3, it dies there.
12603 Similarly for I2, if it is nonzero and adjacent to I3.
12605 If the register is not used as an input in either I3 or I2
12606 and it is not one of the registers we were supposed to eliminate,
12607 there are two possibilities. We might have a non-adjacent I2
12608 or we might have somehow eliminated an additional register
12609 from a computation. For example, we might have had A & B where
12610 we discover that B will always be zero. In this case we will
12611 eliminate the reference to A.
12613 In both cases, we must search to see if we can find a previous
12614 use of A and put the death note there. */
12616 if (from_insn
12617 && GET_CODE (from_insn) == CALL_INSN
12618 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12619 place = from_insn;
12620 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12621 place = i3;
12622 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12623 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12624 place = i2;
12626 if (place == 0)
12628 basic_block bb = this_basic_block;
12630 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12632 if (! INSN_P (tem))
12634 if (tem == BB_HEAD (bb))
12635 break;
12636 continue;
12639 /* If the register is being set at TEM, see if that is all
12640 TEM is doing. If so, delete TEM. Otherwise, make this
12641 into a REG_UNUSED note instead. */
12642 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12644 rtx set = single_set (tem);
12645 rtx inner_dest = 0;
12646 #ifdef HAVE_cc0
12647 rtx cc0_setter = NULL_RTX;
12648 #endif
12650 if (set != 0)
12651 for (inner_dest = SET_DEST (set);
12652 (GET_CODE (inner_dest) == STRICT_LOW_PART
12653 || GET_CODE (inner_dest) == SUBREG
12654 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12655 inner_dest = XEXP (inner_dest, 0))
12658 /* Verify that it was the set, and not a clobber that
12659 modified the register.
12661 CC0 targets must be careful to maintain setter/user
12662 pairs. If we cannot delete the setter due to side
12663 effects, mark the user with an UNUSED note instead
12664 of deleting it. */
12666 if (set != 0 && ! side_effects_p (SET_SRC (set))
12667 && rtx_equal_p (XEXP (note, 0), inner_dest)
12668 #ifdef HAVE_cc0
12669 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12670 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12671 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12672 #endif
12675 /* Move the notes and links of TEM elsewhere.
12676 This might delete other dead insns recursively.
12677 First set the pattern to something that won't use
12678 any register. */
12679 rtx old_notes = REG_NOTES (tem);
12681 PATTERN (tem) = pc_rtx;
12682 REG_NOTES (tem) = NULL;
12684 distribute_notes (old_notes, tem, tem, NULL_RTX);
12685 distribute_links (LOG_LINKS (tem));
12687 PUT_CODE (tem, NOTE);
12688 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12689 NOTE_SOURCE_FILE (tem) = 0;
12691 #ifdef HAVE_cc0
12692 /* Delete the setter too. */
12693 if (cc0_setter)
12695 PATTERN (cc0_setter) = pc_rtx;
12696 old_notes = REG_NOTES (cc0_setter);
12697 REG_NOTES (cc0_setter) = NULL;
12699 distribute_notes (old_notes, cc0_setter,
12700 cc0_setter, NULL_RTX);
12701 distribute_links (LOG_LINKS (cc0_setter));
12703 PUT_CODE (cc0_setter, NOTE);
12704 NOTE_LINE_NUMBER (cc0_setter)
12705 = NOTE_INSN_DELETED;
12706 NOTE_SOURCE_FILE (cc0_setter) = 0;
12708 #endif
12710 /* If the register is both set and used here, put the
12711 REG_DEAD note here, but place a REG_UNUSED note
12712 here too unless there already is one. */
12713 else if (reg_referenced_p (XEXP (note, 0),
12714 PATTERN (tem)))
12716 place = tem;
12718 if (! find_regno_note (tem, REG_UNUSED,
12719 REGNO (XEXP (note, 0))))
12720 REG_NOTES (tem)
12721 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12722 REG_NOTES (tem));
12724 else
12726 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12728 /* If there isn't already a REG_UNUSED note, put one
12729 here. */
12730 if (! find_regno_note (tem, REG_UNUSED,
12731 REGNO (XEXP (note, 0))))
12732 place = tem;
12733 break;
12736 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12737 || (GET_CODE (tem) == CALL_INSN
12738 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12740 place = tem;
12742 /* If we are doing a 3->2 combination, and we have a
12743 register which formerly died in i3 and was not used
12744 by i2, which now no longer dies in i3 and is used in
12745 i2 but does not die in i2, and place is between i2
12746 and i3, then we may need to move a link from place to
12747 i2. */
12748 if (i2 && INSN_UID (place) <= max_uid_cuid
12749 && INSN_CUID (place) > INSN_CUID (i2)
12750 && from_insn
12751 && INSN_CUID (from_insn) > INSN_CUID (i2)
12752 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12754 rtx links = LOG_LINKS (place);
12755 LOG_LINKS (place) = 0;
12756 distribute_links (links);
12758 break;
12761 if (tem == BB_HEAD (bb))
12762 break;
12765 /* We haven't found an insn for the death note and it
12766 is still a REG_DEAD note, but we have hit the beginning
12767 of the block. If the existing life info says the reg
12768 was dead, there's nothing left to do. Otherwise, we'll
12769 need to do a global life update after combine. */
12770 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12771 && REGNO_REG_SET_P (bb->global_live_at_start,
12772 REGNO (XEXP (note, 0))))
12773 SET_BIT (refresh_blocks, this_basic_block->index);
12776 /* If the register is set or already dead at PLACE, we needn't do
12777 anything with this note if it is still a REG_DEAD note.
12778 We can here if it is set at all, not if is it totally replace,
12779 which is what `dead_or_set_p' checks, so also check for it being
12780 set partially. */
12782 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12784 unsigned int regno = REGNO (XEXP (note, 0));
12786 /* Similarly, if the instruction on which we want to place
12787 the note is a noop, we'll need do a global live update
12788 after we remove them in delete_noop_moves. */
12789 if (noop_move_p (place))
12790 SET_BIT (refresh_blocks, this_basic_block->index);
12792 if (dead_or_set_p (place, XEXP (note, 0))
12793 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12795 /* Unless the register previously died in PLACE, clear
12796 reg_last_death. [I no longer understand why this is
12797 being done.] */
12798 if (reg_last_death[regno] != place)
12799 reg_last_death[regno] = 0;
12800 place = 0;
12802 else
12803 reg_last_death[regno] = place;
12805 /* If this is a death note for a hard reg that is occupying
12806 multiple registers, ensure that we are still using all
12807 parts of the object. If we find a piece of the object
12808 that is unused, we must arrange for an appropriate REG_DEAD
12809 note to be added for it. However, we can't just emit a USE
12810 and tag the note to it, since the register might actually
12811 be dead; so we recourse, and the recursive call then finds
12812 the previous insn that used this register. */
12814 if (place && regno < FIRST_PSEUDO_REGISTER
12815 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12817 unsigned int endregno
12818 = regno + HARD_REGNO_NREGS (regno,
12819 GET_MODE (XEXP (note, 0)));
12820 int all_used = 1;
12821 unsigned int i;
12823 for (i = regno; i < endregno; i++)
12824 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12825 && ! find_regno_fusage (place, USE, i))
12826 || dead_or_set_regno_p (place, i))
12827 all_used = 0;
12829 if (! all_used)
12831 /* Put only REG_DEAD notes for pieces that are
12832 not already dead or set. */
12834 for (i = regno; i < endregno;
12835 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12837 rtx piece = regno_reg_rtx[i];
12838 basic_block bb = this_basic_block;
12840 if (! dead_or_set_p (place, piece)
12841 && ! reg_bitfield_target_p (piece,
12842 PATTERN (place)))
12844 rtx new_note
12845 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12847 distribute_notes (new_note, place, place,
12848 NULL_RTX);
12850 else if (! refers_to_regno_p (i, i + 1,
12851 PATTERN (place), 0)
12852 && ! find_regno_fusage (place, USE, i))
12853 for (tem = PREV_INSN (place); ;
12854 tem = PREV_INSN (tem))
12856 if (! INSN_P (tem))
12858 if (tem == BB_HEAD (bb))
12860 SET_BIT (refresh_blocks,
12861 this_basic_block->index);
12862 break;
12864 continue;
12866 if (dead_or_set_p (tem, piece)
12867 || reg_bitfield_target_p (piece,
12868 PATTERN (tem)))
12870 REG_NOTES (tem)
12871 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12872 REG_NOTES (tem));
12873 break;
12879 place = 0;
12883 break;
12885 default:
12886 /* Any other notes should not be present at this point in the
12887 compilation. */
12888 abort ();
12891 if (place)
12893 XEXP (note, 1) = REG_NOTES (place);
12894 REG_NOTES (place) = note;
12896 else if ((REG_NOTE_KIND (note) == REG_DEAD
12897 || REG_NOTE_KIND (note) == REG_UNUSED)
12898 && GET_CODE (XEXP (note, 0)) == REG)
12899 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12901 if (place2)
12903 if ((REG_NOTE_KIND (note) == REG_DEAD
12904 || REG_NOTE_KIND (note) == REG_UNUSED)
12905 && GET_CODE (XEXP (note, 0)) == REG)
12906 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12908 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12909 REG_NOTE_KIND (note),
12910 XEXP (note, 0),
12911 REG_NOTES (place2));
12916 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12917 I3, I2, and I1 to new locations. This is also called to add a link
12918 pointing at I3 when I3's destination is changed. */
12920 static void
12921 distribute_links (rtx links)
12923 rtx link, next_link;
12925 for (link = links; link; link = next_link)
12927 rtx place = 0;
12928 rtx insn;
12929 rtx set, reg;
12931 next_link = XEXP (link, 1);
12933 /* If the insn that this link points to is a NOTE or isn't a single
12934 set, ignore it. In the latter case, it isn't clear what we
12935 can do other than ignore the link, since we can't tell which
12936 register it was for. Such links wouldn't be used by combine
12937 anyway.
12939 It is not possible for the destination of the target of the link to
12940 have been changed by combine. The only potential of this is if we
12941 replace I3, I2, and I1 by I3 and I2. But in that case the
12942 destination of I2 also remains unchanged. */
12944 if (GET_CODE (XEXP (link, 0)) == NOTE
12945 || (set = single_set (XEXP (link, 0))) == 0)
12946 continue;
12948 reg = SET_DEST (set);
12949 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12950 || GET_CODE (reg) == SIGN_EXTRACT
12951 || GET_CODE (reg) == STRICT_LOW_PART)
12952 reg = XEXP (reg, 0);
12954 /* A LOG_LINK is defined as being placed on the first insn that uses
12955 a register and points to the insn that sets the register. Start
12956 searching at the next insn after the target of the link and stop
12957 when we reach a set of the register or the end of the basic block.
12959 Note that this correctly handles the link that used to point from
12960 I3 to I2. Also note that not much searching is typically done here
12961 since most links don't point very far away. */
12963 for (insn = NEXT_INSN (XEXP (link, 0));
12964 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12965 || BB_HEAD (this_basic_block->next_bb) != insn));
12966 insn = NEXT_INSN (insn))
12967 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12969 if (reg_referenced_p (reg, PATTERN (insn)))
12970 place = insn;
12971 break;
12973 else if (GET_CODE (insn) == CALL_INSN
12974 && find_reg_fusage (insn, USE, reg))
12976 place = insn;
12977 break;
12979 else if (INSN_P (insn) && reg_set_p (reg, insn))
12980 break;
12982 /* If we found a place to put the link, place it there unless there
12983 is already a link to the same insn as LINK at that point. */
12985 if (place)
12987 rtx link2;
12989 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12990 if (XEXP (link2, 0) == XEXP (link, 0))
12991 break;
12993 if (link2 == 0)
12995 XEXP (link, 1) = LOG_LINKS (place);
12996 LOG_LINKS (place) = link;
12998 /* Set added_links_insn to the earliest insn we added a
12999 link to. */
13000 if (added_links_insn == 0
13001 || INSN_CUID (added_links_insn) > INSN_CUID (place))
13002 added_links_insn = place;
13008 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13010 static int
13011 insn_cuid (rtx insn)
13013 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13014 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13015 insn = NEXT_INSN (insn);
13017 if (INSN_UID (insn) > max_uid_cuid)
13018 abort ();
13020 return INSN_CUID (insn);
13023 void
13024 dump_combine_stats (FILE *file)
13026 fnotice
13027 (file,
13028 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13029 combine_attempts, combine_merges, combine_extras, combine_successes);
13032 void
13033 dump_combine_total_stats (FILE *file)
13035 fnotice
13036 (file,
13037 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13038 total_attempts, total_merges, total_extras, total_successes);