* ca.po, rw.po: Remove.
[official-gcc.git] / gcc / bb-reorder.c
blobca80dbf0f79fd57cec5306ead1a37277c57284ee
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This (greedy) algorithm constructs traces in several rounds.
21 The construction starts from "seeds". The seed for the first round
22 is the entry point of function. When there are more than one seed
23 that one is selected first that has the lowest key in the heap
24 (see function bb_to_key). Then the algorithm repeatedly adds the most
25 probable successor to the end of a trace. Finally it connects the traces.
27 There are two parameters: Branch Threshold and Exec Threshold.
28 If the edge to a successor of the actual basic block is lower than
29 Branch Threshold or the frequency of the successor is lower than
30 Exec Threshold the successor will be the seed in one of the next rounds.
31 Each round has these parameters lower than the previous one.
32 The last round has to have these parameters set to zero
33 so that the remaining blocks are picked up.
35 The algorithm selects the most probable successor from all unvisited
36 successors and successors that have been added to this trace.
37 The other successors (that has not been "sent" to the next round) will be
38 other seeds for this round and the secondary traces will start in them.
39 If the successor has not been visited in this trace it is added to the trace
40 (however, there is some heuristic for simple branches).
41 If the successor has been visited in this trace the loop has been found.
42 If the loop has many iterations the loop is rotated so that the
43 source block of the most probable edge going out from the loop
44 is the last block of the trace.
45 If the loop has few iterations and there is no edge from the last block of
46 the loop going out from loop the loop header is duplicated.
47 Finally, the construction of the trace is terminated.
49 When connecting traces it first checks whether there is an edge from the
50 last block of one trace to the first block of another trace.
51 When there are still some unconnected traces it checks whether there exists
52 a basic block BB such that BB is a successor of the last bb of one trace
53 and BB is a predecessor of the first block of another trace. In this case,
54 BB is duplicated and the traces are connected through this duplicate.
55 The rest of traces are simply connected so there will be a jump to the
56 beginning of the rest of trace.
59 References:
61 "Software Trace Cache"
62 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
63 http://citeseer.nj.nec.com/15361.html
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "rtl.h"
72 #include "regs.h"
73 #include "flags.h"
74 #include "timevar.h"
75 #include "output.h"
76 #include "cfglayout.h"
77 #include "fibheap.h"
78 #include "target.h"
79 #include "function.h"
80 #include "tm_p.h"
81 #include "obstack.h"
82 #include "expr.h"
83 #include "params.h"
84 #include "toplev.h"
85 #include "tree-pass.h"
87 #ifndef HAVE_conditional_execution
88 #define HAVE_conditional_execution 0
89 #endif
91 /* The number of rounds. In most cases there will only be 4 rounds, but
92 when partitioning hot and cold basic blocks into separate sections of
93 the .o file there will be an extra round.*/
94 #define N_ROUNDS 5
96 /* Stubs in case we don't have a return insn.
97 We have to check at runtime too, not only compiletime. */
99 #ifndef HAVE_return
100 #define HAVE_return 0
101 #define gen_return() NULL_RTX
102 #endif
105 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
106 static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
108 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
109 static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
111 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
112 block the edge destination is not duplicated while connecting traces. */
113 #define DUPLICATION_THRESHOLD 100
115 /* Length of unconditional jump instruction. */
116 static int uncond_jump_length;
118 /* Structure to hold needed information for each basic block. */
119 typedef struct bbro_basic_block_data_def
121 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
122 int start_of_trace;
124 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
125 int end_of_trace;
127 /* Which trace is the bb in? */
128 int in_trace;
130 /* Which heap is BB in (if any)? */
131 fibheap_t heap;
133 /* Which heap node is BB in (if any)? */
134 fibnode_t node;
135 } bbro_basic_block_data;
137 /* The current size of the following dynamic array. */
138 static int array_size;
140 /* The array which holds needed information for basic blocks. */
141 static bbro_basic_block_data *bbd;
143 /* To avoid frequent reallocation the size of arrays is greater than needed,
144 the number of elements is (not less than) 1.25 * size_wanted. */
145 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
147 /* Free the memory and set the pointer to NULL. */
148 #define FREE(P) (gcc_assert (P), free (P), P = 0)
150 /* Structure for holding information about a trace. */
151 struct trace
153 /* First and last basic block of the trace. */
154 basic_block first, last;
156 /* The round of the STC creation which this trace was found in. */
157 int round;
159 /* The length (i.e. the number of basic blocks) of the trace. */
160 int length;
163 /* Maximum frequency and count of one of the entry blocks. */
164 static int max_entry_frequency;
165 static gcov_type max_entry_count;
167 /* Local function prototypes. */
168 static void find_traces (int *, struct trace *);
169 static basic_block rotate_loop (edge, struct trace *, int);
170 static void mark_bb_visited (basic_block, int);
171 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
172 int, fibheap_t *, int);
173 static basic_block copy_bb (basic_block, edge, basic_block, int);
174 static fibheapkey_t bb_to_key (basic_block);
175 static bool better_edge_p (basic_block, edge, int, int, int, int, edge);
176 static void connect_traces (int, struct trace *);
177 static bool copy_bb_p (basic_block, int);
178 static int get_uncond_jump_length (void);
179 static bool push_to_next_round_p (basic_block, int, int, int, gcov_type);
180 static void find_rarely_executed_basic_blocks_and_crossing_edges (edge *,
181 int *,
182 int *);
183 static void add_labels_and_missing_jumps (edge *, int);
184 static void add_reg_crossing_jump_notes (void);
185 static void fix_up_fall_thru_edges (void);
186 static void fix_edges_for_rarely_executed_code (edge *, int);
187 static void fix_crossing_conditional_branches (void);
188 static void fix_crossing_unconditional_branches (void);
190 /* Check to see if bb should be pushed into the next round of trace
191 collections or not. Reasons for pushing the block forward are 1).
192 If the block is cold, we are doing partitioning, and there will be
193 another round (cold partition blocks are not supposed to be
194 collected into traces until the very last round); or 2). There will
195 be another round, and the basic block is not "hot enough" for the
196 current round of trace collection. */
198 static bool
199 push_to_next_round_p (basic_block bb, int round, int number_of_rounds,
200 int exec_th, gcov_type count_th)
202 bool there_exists_another_round;
203 bool block_not_hot_enough;
205 there_exists_another_round = round < number_of_rounds - 1;
207 block_not_hot_enough = (bb->frequency < exec_th
208 || bb->count < count_th
209 || probably_never_executed_bb_p (bb));
211 if (there_exists_another_round
212 && block_not_hot_enough)
213 return true;
214 else
215 return false;
218 /* Find the traces for Software Trace Cache. Chain each trace through
219 RBI()->next. Store the number of traces to N_TRACES and description of
220 traces to TRACES. */
222 static void
223 find_traces (int *n_traces, struct trace *traces)
225 int i;
226 int number_of_rounds;
227 edge e;
228 edge_iterator ei;
229 fibheap_t heap;
231 /* Add one extra round of trace collection when partitioning hot/cold
232 basic blocks into separate sections. The last round is for all the
233 cold blocks (and ONLY the cold blocks). */
235 number_of_rounds = N_ROUNDS - 1;
237 /* Insert entry points of function into heap. */
238 heap = fibheap_new ();
239 max_entry_frequency = 0;
240 max_entry_count = 0;
241 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
243 bbd[e->dest->index].heap = heap;
244 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
245 e->dest);
246 if (e->dest->frequency > max_entry_frequency)
247 max_entry_frequency = e->dest->frequency;
248 if (e->dest->count > max_entry_count)
249 max_entry_count = e->dest->count;
252 /* Find the traces. */
253 for (i = 0; i < number_of_rounds; i++)
255 gcov_type count_threshold;
257 if (dump_file)
258 fprintf (dump_file, "STC - round %d\n", i + 1);
260 if (max_entry_count < INT_MAX / 1000)
261 count_threshold = max_entry_count * exec_threshold[i] / 1000;
262 else
263 count_threshold = max_entry_count / 1000 * exec_threshold[i];
265 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
266 max_entry_frequency * exec_threshold[i] / 1000,
267 count_threshold, traces, n_traces, i, &heap,
268 number_of_rounds);
270 fibheap_delete (heap);
272 if (dump_file)
274 for (i = 0; i < *n_traces; i++)
276 basic_block bb;
277 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
278 traces[i].round + 1);
279 for (bb = traces[i].first; bb != traces[i].last; bb = bb->aux)
280 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
281 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
283 fflush (dump_file);
287 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
288 (with sequential number TRACE_N). */
290 static basic_block
291 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
293 basic_block bb;
295 /* Information about the best end (end after rotation) of the loop. */
296 basic_block best_bb = NULL;
297 edge best_edge = NULL;
298 int best_freq = -1;
299 gcov_type best_count = -1;
300 /* The best edge is preferred when its destination is not visited yet
301 or is a start block of some trace. */
302 bool is_preferred = false;
304 /* Find the most frequent edge that goes out from current trace. */
305 bb = back_edge->dest;
308 edge e;
309 edge_iterator ei;
311 FOR_EACH_EDGE (e, ei, bb->succs)
312 if (e->dest != EXIT_BLOCK_PTR
313 && e->dest->il.rtl->visited != trace_n
314 && (e->flags & EDGE_CAN_FALLTHRU)
315 && !(e->flags & EDGE_COMPLEX))
317 if (is_preferred)
319 /* The best edge is preferred. */
320 if (!e->dest->il.rtl->visited
321 || bbd[e->dest->index].start_of_trace >= 0)
323 /* The current edge E is also preferred. */
324 int freq = EDGE_FREQUENCY (e);
325 if (freq > best_freq || e->count > best_count)
327 best_freq = freq;
328 best_count = e->count;
329 best_edge = e;
330 best_bb = bb;
334 else
336 if (!e->dest->il.rtl->visited
337 || bbd[e->dest->index].start_of_trace >= 0)
339 /* The current edge E is preferred. */
340 is_preferred = true;
341 best_freq = EDGE_FREQUENCY (e);
342 best_count = e->count;
343 best_edge = e;
344 best_bb = bb;
346 else
348 int freq = EDGE_FREQUENCY (e);
349 if (!best_edge || freq > best_freq || e->count > best_count)
351 best_freq = freq;
352 best_count = e->count;
353 best_edge = e;
354 best_bb = bb;
359 bb = bb->aux;
361 while (bb != back_edge->dest);
363 if (best_bb)
365 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
366 the trace. */
367 if (back_edge->dest == trace->first)
369 trace->first = best_bb->aux;
371 else
373 basic_block prev_bb;
375 for (prev_bb = trace->first;
376 prev_bb->aux != back_edge->dest;
377 prev_bb = prev_bb->aux)
379 prev_bb->aux = best_bb->aux;
381 /* Try to get rid of uncond jump to cond jump. */
382 if (single_succ_p (prev_bb))
384 basic_block header = single_succ (prev_bb);
386 /* Duplicate HEADER if it is a small block containing cond jump
387 in the end. */
388 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
389 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
390 NULL_RTX))
391 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
395 else
397 /* We have not found suitable loop tail so do no rotation. */
398 best_bb = back_edge->src;
400 best_bb->aux = NULL;
401 return best_bb;
404 /* This function marks BB that it was visited in trace number TRACE. */
406 static void
407 mark_bb_visited (basic_block bb, int trace)
409 bb->il.rtl->visited = trace;
410 if (bbd[bb->index].heap)
412 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
413 bbd[bb->index].heap = NULL;
414 bbd[bb->index].node = NULL;
418 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
419 not include basic blocks their probability is lower than BRANCH_TH or their
420 frequency is lower than EXEC_TH into traces (or count is lower than
421 COUNT_TH). It stores the new traces into TRACES and modifies the number of
422 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
423 expects that starting basic blocks are in *HEAP and at the end it deletes
424 *HEAP and stores starting points for the next round into new *HEAP. */
426 static void
427 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
428 struct trace *traces, int *n_traces, int round,
429 fibheap_t *heap, int number_of_rounds)
431 /* Heap for discarded basic blocks which are possible starting points for
432 the next round. */
433 fibheap_t new_heap = fibheap_new ();
435 while (!fibheap_empty (*heap))
437 basic_block bb;
438 struct trace *trace;
439 edge best_edge, e;
440 fibheapkey_t key;
441 edge_iterator ei;
443 bb = fibheap_extract_min (*heap);
444 bbd[bb->index].heap = NULL;
445 bbd[bb->index].node = NULL;
447 if (dump_file)
448 fprintf (dump_file, "Getting bb %d\n", bb->index);
450 /* If the BB's frequency is too low send BB to the next round. When
451 partitioning hot/cold blocks into separate sections, make sure all
452 the cold blocks (and ONLY the cold blocks) go into the (extra) final
453 round. */
455 if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
456 count_th))
458 int key = bb_to_key (bb);
459 bbd[bb->index].heap = new_heap;
460 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
462 if (dump_file)
463 fprintf (dump_file,
464 " Possible start point of next round: %d (key: %d)\n",
465 bb->index, key);
466 continue;
469 trace = traces + *n_traces;
470 trace->first = bb;
471 trace->round = round;
472 trace->length = 0;
473 bbd[bb->index].in_trace = *n_traces;
474 (*n_traces)++;
478 int prob, freq;
479 bool ends_in_call;
481 /* The probability and frequency of the best edge. */
482 int best_prob = INT_MIN / 2;
483 int best_freq = INT_MIN / 2;
485 best_edge = NULL;
486 mark_bb_visited (bb, *n_traces);
487 trace->length++;
489 if (dump_file)
490 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
491 bb->index, *n_traces - 1);
493 ends_in_call = block_ends_with_call_p (bb);
495 /* Select the successor that will be placed after BB. */
496 FOR_EACH_EDGE (e, ei, bb->succs)
498 gcc_assert (!(e->flags & EDGE_FAKE));
500 if (e->dest == EXIT_BLOCK_PTR)
501 continue;
503 if (e->dest->il.rtl->visited
504 && e->dest->il.rtl->visited != *n_traces)
505 continue;
507 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
508 continue;
510 prob = e->probability;
511 freq = e->dest->frequency;
513 /* The only sensible preference for a call instruction is the
514 fallthru edge. Don't bother selecting anything else. */
515 if (ends_in_call)
517 if (e->flags & EDGE_CAN_FALLTHRU)
519 best_edge = e;
520 best_prob = prob;
521 best_freq = freq;
523 continue;
526 /* Edge that cannot be fallthru or improbable or infrequent
527 successor (i.e. it is unsuitable successor). */
528 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
529 || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
530 || e->count < count_th)
531 continue;
533 /* If partitioning hot/cold basic blocks, don't consider edges
534 that cross section boundaries. */
536 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
537 best_edge))
539 best_edge = e;
540 best_prob = prob;
541 best_freq = freq;
545 /* If the best destination has multiple predecessors, and can be
546 duplicated cheaper than a jump, don't allow it to be added
547 to a trace. We'll duplicate it when connecting traces. */
548 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
549 && copy_bb_p (best_edge->dest, 0))
550 best_edge = NULL;
552 /* Add all non-selected successors to the heaps. */
553 FOR_EACH_EDGE (e, ei, bb->succs)
555 if (e == best_edge
556 || e->dest == EXIT_BLOCK_PTR
557 || e->dest->il.rtl->visited)
558 continue;
560 key = bb_to_key (e->dest);
562 if (bbd[e->dest->index].heap)
564 /* E->DEST is already in some heap. */
565 if (key != bbd[e->dest->index].node->key)
567 if (dump_file)
569 fprintf (dump_file,
570 "Changing key for bb %d from %ld to %ld.\n",
571 e->dest->index,
572 (long) bbd[e->dest->index].node->key,
573 key);
575 fibheap_replace_key (bbd[e->dest->index].heap,
576 bbd[e->dest->index].node, key);
579 else
581 fibheap_t which_heap = *heap;
583 prob = e->probability;
584 freq = EDGE_FREQUENCY (e);
586 if (!(e->flags & EDGE_CAN_FALLTHRU)
587 || (e->flags & EDGE_COMPLEX)
588 || prob < branch_th || freq < exec_th
589 || e->count < count_th)
591 /* When partitioning hot/cold basic blocks, make sure
592 the cold blocks (and only the cold blocks) all get
593 pushed to the last round of trace collection. */
595 if (push_to_next_round_p (e->dest, round,
596 number_of_rounds,
597 exec_th, count_th))
598 which_heap = new_heap;
601 bbd[e->dest->index].heap = which_heap;
602 bbd[e->dest->index].node = fibheap_insert (which_heap,
603 key, e->dest);
605 if (dump_file)
607 fprintf (dump_file,
608 " Possible start of %s round: %d (key: %ld)\n",
609 (which_heap == new_heap) ? "next" : "this",
610 e->dest->index, (long) key);
616 if (best_edge) /* Suitable successor was found. */
618 if (best_edge->dest->il.rtl->visited == *n_traces)
620 /* We do nothing with one basic block loops. */
621 if (best_edge->dest != bb)
623 if (EDGE_FREQUENCY (best_edge)
624 > 4 * best_edge->dest->frequency / 5)
626 /* The loop has at least 4 iterations. If the loop
627 header is not the first block of the function
628 we can rotate the loop. */
630 if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
632 if (dump_file)
634 fprintf (dump_file,
635 "Rotating loop %d - %d\n",
636 best_edge->dest->index, bb->index);
638 bb->aux = best_edge->dest;
639 bbd[best_edge->dest->index].in_trace =
640 (*n_traces) - 1;
641 bb = rotate_loop (best_edge, trace, *n_traces);
644 else
646 /* The loop has less than 4 iterations. */
648 if (single_succ_p (bb)
649 && copy_bb_p (best_edge->dest, !optimize_size))
651 bb = copy_bb (best_edge->dest, best_edge, bb,
652 *n_traces);
653 trace->length++;
658 /* Terminate the trace. */
659 break;
661 else
663 /* Check for a situation
671 where
672 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
673 >= EDGE_FREQUENCY (AC).
674 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
675 Best ordering is then A B C.
677 This situation is created for example by:
679 if (A) B;
684 FOR_EACH_EDGE (e, ei, bb->succs)
685 if (e != best_edge
686 && (e->flags & EDGE_CAN_FALLTHRU)
687 && !(e->flags & EDGE_COMPLEX)
688 && !e->dest->il.rtl->visited
689 && single_pred_p (e->dest)
690 && !(e->flags & EDGE_CROSSING)
691 && single_succ_p (e->dest)
692 && (single_succ_edge (e->dest)->flags
693 & EDGE_CAN_FALLTHRU)
694 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
695 && single_succ (e->dest) == best_edge->dest
696 && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
698 best_edge = e;
699 if (dump_file)
700 fprintf (dump_file, "Selecting BB %d\n",
701 best_edge->dest->index);
702 break;
705 bb->aux = best_edge->dest;
706 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
707 bb = best_edge->dest;
711 while (best_edge);
712 trace->last = bb;
713 bbd[trace->first->index].start_of_trace = *n_traces - 1;
714 bbd[trace->last->index].end_of_trace = *n_traces - 1;
716 /* The trace is terminated so we have to recount the keys in heap
717 (some block can have a lower key because now one of its predecessors
718 is an end of the trace). */
719 FOR_EACH_EDGE (e, ei, bb->succs)
721 if (e->dest == EXIT_BLOCK_PTR
722 || e->dest->il.rtl->visited)
723 continue;
725 if (bbd[e->dest->index].heap)
727 key = bb_to_key (e->dest);
728 if (key != bbd[e->dest->index].node->key)
730 if (dump_file)
732 fprintf (dump_file,
733 "Changing key for bb %d from %ld to %ld.\n",
734 e->dest->index,
735 (long) bbd[e->dest->index].node->key, key);
737 fibheap_replace_key (bbd[e->dest->index].heap,
738 bbd[e->dest->index].node,
739 key);
745 fibheap_delete (*heap);
747 /* "Return" the new heap. */
748 *heap = new_heap;
751 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
752 it to trace after BB, mark OLD_BB visited and update pass' data structures
753 (TRACE is a number of trace which OLD_BB is duplicated to). */
755 static basic_block
756 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
758 basic_block new_bb;
760 new_bb = duplicate_block (old_bb, e, bb);
761 BB_COPY_PARTITION (new_bb, old_bb);
763 gcc_assert (e->dest == new_bb);
764 gcc_assert (!e->dest->il.rtl->visited);
766 if (dump_file)
767 fprintf (dump_file,
768 "Duplicated bb %d (created bb %d)\n",
769 old_bb->index, new_bb->index);
770 new_bb->il.rtl->visited = trace;
771 new_bb->aux = bb->aux;
772 bb->aux = new_bb;
774 if (new_bb->index >= array_size || last_basic_block > array_size)
776 int i;
777 int new_size;
779 new_size = MAX (last_basic_block, new_bb->index + 1);
780 new_size = GET_ARRAY_SIZE (new_size);
781 bbd = xrealloc (bbd, new_size * sizeof (bbro_basic_block_data));
782 for (i = array_size; i < new_size; i++)
784 bbd[i].start_of_trace = -1;
785 bbd[i].in_trace = -1;
786 bbd[i].end_of_trace = -1;
787 bbd[i].heap = NULL;
788 bbd[i].node = NULL;
790 array_size = new_size;
792 if (dump_file)
794 fprintf (dump_file,
795 "Growing the dynamic array to %d elements.\n",
796 array_size);
800 bbd[new_bb->index].in_trace = trace;
802 return new_bb;
805 /* Compute and return the key (for the heap) of the basic block BB. */
807 static fibheapkey_t
808 bb_to_key (basic_block bb)
810 edge e;
811 edge_iterator ei;
812 int priority = 0;
814 /* Do not start in probably never executed blocks. */
816 if (BB_PARTITION (bb) == BB_COLD_PARTITION
817 || probably_never_executed_bb_p (bb))
818 return BB_FREQ_MAX;
820 /* Prefer blocks whose predecessor is an end of some trace
821 or whose predecessor edge is EDGE_DFS_BACK. */
822 FOR_EACH_EDGE (e, ei, bb->preds)
824 if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
825 || (e->flags & EDGE_DFS_BACK))
827 int edge_freq = EDGE_FREQUENCY (e);
829 if (edge_freq > priority)
830 priority = edge_freq;
834 if (priority)
835 /* The block with priority should have significantly lower key. */
836 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
837 return -bb->frequency;
840 /* Return true when the edge E from basic block BB is better than the temporary
841 best edge (details are in function). The probability of edge E is PROB. The
842 frequency of the successor is FREQ. The current best probability is
843 BEST_PROB, the best frequency is BEST_FREQ.
844 The edge is considered to be equivalent when PROB does not differ much from
845 BEST_PROB; similarly for frequency. */
847 static bool
848 better_edge_p (basic_block bb, edge e, int prob, int freq, int best_prob,
849 int best_freq, edge cur_best_edge)
851 bool is_better_edge;
853 /* The BEST_* values do not have to be best, but can be a bit smaller than
854 maximum values. */
855 int diff_prob = best_prob / 10;
856 int diff_freq = best_freq / 10;
858 if (prob > best_prob + diff_prob)
859 /* The edge has higher probability than the temporary best edge. */
860 is_better_edge = true;
861 else if (prob < best_prob - diff_prob)
862 /* The edge has lower probability than the temporary best edge. */
863 is_better_edge = false;
864 else if (freq < best_freq - diff_freq)
865 /* The edge and the temporary best edge have almost equivalent
866 probabilities. The higher frequency of a successor now means
867 that there is another edge going into that successor.
868 This successor has lower frequency so it is better. */
869 is_better_edge = true;
870 else if (freq > best_freq + diff_freq)
871 /* This successor has higher frequency so it is worse. */
872 is_better_edge = false;
873 else if (e->dest->prev_bb == bb)
874 /* The edges have equivalent probabilities and the successors
875 have equivalent frequencies. Select the previous successor. */
876 is_better_edge = true;
877 else
878 is_better_edge = false;
880 /* If we are doing hot/cold partitioning, make sure that we always favor
881 non-crossing edges over crossing edges. */
883 if (!is_better_edge
884 && flag_reorder_blocks_and_partition
885 && cur_best_edge
886 && (cur_best_edge->flags & EDGE_CROSSING)
887 && !(e->flags & EDGE_CROSSING))
888 is_better_edge = true;
890 return is_better_edge;
893 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
895 static void
896 connect_traces (int n_traces, struct trace *traces)
898 int i;
899 bool *connected;
900 bool two_passes;
901 int last_trace;
902 int current_pass;
903 int current_partition;
904 int freq_threshold;
905 gcov_type count_threshold;
907 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
908 if (max_entry_count < INT_MAX / 1000)
909 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
910 else
911 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
913 connected = XCNEWVEC (bool, n_traces);
914 last_trace = -1;
915 current_pass = 1;
916 current_partition = BB_PARTITION (traces[0].first);
917 two_passes = false;
919 if (flag_reorder_blocks_and_partition)
920 for (i = 0; i < n_traces && !two_passes; i++)
921 if (BB_PARTITION (traces[0].first)
922 != BB_PARTITION (traces[i].first))
923 two_passes = true;
925 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
927 int t = i;
928 int t2;
929 edge e, best;
930 int best_len;
932 if (i >= n_traces)
934 gcc_assert (two_passes && current_pass == 1);
935 i = 0;
936 t = i;
937 current_pass = 2;
938 if (current_partition == BB_HOT_PARTITION)
939 current_partition = BB_COLD_PARTITION;
940 else
941 current_partition = BB_HOT_PARTITION;
944 if (connected[t])
945 continue;
947 if (two_passes
948 && BB_PARTITION (traces[t].first) != current_partition)
949 continue;
951 connected[t] = true;
953 /* Find the predecessor traces. */
954 for (t2 = t; t2 > 0;)
956 edge_iterator ei;
957 best = NULL;
958 best_len = 0;
959 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
961 int si = e->src->index;
963 if (e->src != ENTRY_BLOCK_PTR
964 && (e->flags & EDGE_CAN_FALLTHRU)
965 && !(e->flags & EDGE_COMPLEX)
966 && bbd[si].end_of_trace >= 0
967 && !connected[bbd[si].end_of_trace]
968 && (BB_PARTITION (e->src) == current_partition)
969 && (!best
970 || e->probability > best->probability
971 || (e->probability == best->probability
972 && traces[bbd[si].end_of_trace].length > best_len)))
974 best = e;
975 best_len = traces[bbd[si].end_of_trace].length;
978 if (best)
980 best->src->aux = best->dest;
981 t2 = bbd[best->src->index].end_of_trace;
982 connected[t2] = true;
984 if (dump_file)
986 fprintf (dump_file, "Connection: %d %d\n",
987 best->src->index, best->dest->index);
990 else
991 break;
994 if (last_trace >= 0)
995 traces[last_trace].last->aux = traces[t2].first;
996 last_trace = t;
998 /* Find the successor traces. */
999 while (1)
1001 /* Find the continuation of the chain. */
1002 edge_iterator ei;
1003 best = NULL;
1004 best_len = 0;
1005 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1007 int di = e->dest->index;
1009 if (e->dest != EXIT_BLOCK_PTR
1010 && (e->flags & EDGE_CAN_FALLTHRU)
1011 && !(e->flags & EDGE_COMPLEX)
1012 && bbd[di].start_of_trace >= 0
1013 && !connected[bbd[di].start_of_trace]
1014 && (BB_PARTITION (e->dest) == current_partition)
1015 && (!best
1016 || e->probability > best->probability
1017 || (e->probability == best->probability
1018 && traces[bbd[di].start_of_trace].length > best_len)))
1020 best = e;
1021 best_len = traces[bbd[di].start_of_trace].length;
1025 if (best)
1027 if (dump_file)
1029 fprintf (dump_file, "Connection: %d %d\n",
1030 best->src->index, best->dest->index);
1032 t = bbd[best->dest->index].start_of_trace;
1033 traces[last_trace].last->aux = traces[t].first;
1034 connected[t] = true;
1035 last_trace = t;
1037 else
1039 /* Try to connect the traces by duplication of 1 block. */
1040 edge e2;
1041 basic_block next_bb = NULL;
1042 bool try_copy = false;
1044 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1045 if (e->dest != EXIT_BLOCK_PTR
1046 && (e->flags & EDGE_CAN_FALLTHRU)
1047 && !(e->flags & EDGE_COMPLEX)
1048 && (!best || e->probability > best->probability))
1050 edge_iterator ei;
1051 edge best2 = NULL;
1052 int best2_len = 0;
1054 /* If the destination is a start of a trace which is only
1055 one block long, then no need to search the successor
1056 blocks of the trace. Accept it. */
1057 if (bbd[e->dest->index].start_of_trace >= 0
1058 && traces[bbd[e->dest->index].start_of_trace].length
1059 == 1)
1061 best = e;
1062 try_copy = true;
1063 continue;
1066 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1068 int di = e2->dest->index;
1070 if (e2->dest == EXIT_BLOCK_PTR
1071 || ((e2->flags & EDGE_CAN_FALLTHRU)
1072 && !(e2->flags & EDGE_COMPLEX)
1073 && bbd[di].start_of_trace >= 0
1074 && !connected[bbd[di].start_of_trace]
1075 && (BB_PARTITION (e2->dest) == current_partition)
1076 && (EDGE_FREQUENCY (e2) >= freq_threshold)
1077 && (e2->count >= count_threshold)
1078 && (!best2
1079 || e2->probability > best2->probability
1080 || (e2->probability == best2->probability
1081 && traces[bbd[di].start_of_trace].length
1082 > best2_len))))
1084 best = e;
1085 best2 = e2;
1086 if (e2->dest != EXIT_BLOCK_PTR)
1087 best2_len = traces[bbd[di].start_of_trace].length;
1088 else
1089 best2_len = INT_MAX;
1090 next_bb = e2->dest;
1091 try_copy = true;
1096 if (flag_reorder_blocks_and_partition)
1097 try_copy = false;
1099 /* Copy tiny blocks always; copy larger blocks only when the
1100 edge is traversed frequently enough. */
1101 if (try_copy
1102 && copy_bb_p (best->dest,
1103 !optimize_size
1104 && EDGE_FREQUENCY (best) >= freq_threshold
1105 && best->count >= count_threshold))
1107 basic_block new_bb;
1109 if (dump_file)
1111 fprintf (dump_file, "Connection: %d %d ",
1112 traces[t].last->index, best->dest->index);
1113 if (!next_bb)
1114 fputc ('\n', dump_file);
1115 else if (next_bb == EXIT_BLOCK_PTR)
1116 fprintf (dump_file, "exit\n");
1117 else
1118 fprintf (dump_file, "%d\n", next_bb->index);
1121 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1122 traces[t].last = new_bb;
1123 if (next_bb && next_bb != EXIT_BLOCK_PTR)
1125 t = bbd[next_bb->index].start_of_trace;
1126 traces[last_trace].last->aux = traces[t].first;
1127 connected[t] = true;
1128 last_trace = t;
1130 else
1131 break; /* Stop finding the successor traces. */
1133 else
1134 break; /* Stop finding the successor traces. */
1139 if (dump_file)
1141 basic_block bb;
1143 fprintf (dump_file, "Final order:\n");
1144 for (bb = traces[0].first; bb; bb = bb->aux)
1145 fprintf (dump_file, "%d ", bb->index);
1146 fprintf (dump_file, "\n");
1147 fflush (dump_file);
1150 FREE (connected);
1153 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1154 when code size is allowed to grow by duplication. */
1156 static bool
1157 copy_bb_p (basic_block bb, int code_may_grow)
1159 int size = 0;
1160 int max_size = uncond_jump_length;
1161 rtx insn;
1163 if (!bb->frequency)
1164 return false;
1165 if (EDGE_COUNT (bb->preds) < 2)
1166 return false;
1167 if (!can_duplicate_block_p (bb))
1168 return false;
1170 /* Avoid duplicating blocks which have many successors (PR/13430). */
1171 if (EDGE_COUNT (bb->succs) > 8)
1172 return false;
1174 if (code_may_grow && maybe_hot_bb_p (bb))
1175 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1177 FOR_BB_INSNS (bb, insn)
1179 if (INSN_P (insn))
1180 size += get_attr_min_length (insn);
1183 if (size <= max_size)
1184 return true;
1186 if (dump_file)
1188 fprintf (dump_file,
1189 "Block %d can't be copied because its size = %d.\n",
1190 bb->index, size);
1193 return false;
1196 /* Return the length of unconditional jump instruction. */
1198 static int
1199 get_uncond_jump_length (void)
1201 rtx label, jump;
1202 int length;
1204 label = emit_label_before (gen_label_rtx (), get_insns ());
1205 jump = emit_jump_insn (gen_jump (label));
1207 length = get_attr_min_length (jump);
1209 delete_insn (jump);
1210 delete_insn (label);
1211 return length;
1214 /* Find the basic blocks that are rarely executed and need to be moved to
1215 a separate section of the .o file (to cut down on paging and improve
1216 cache locality). */
1218 static void
1219 find_rarely_executed_basic_blocks_and_crossing_edges (edge *crossing_edges,
1220 int *n_crossing_edges,
1221 int *max_idx)
1223 basic_block bb;
1224 bool has_hot_blocks = false;
1225 edge e;
1226 int i;
1227 edge_iterator ei;
1229 /* Mark which partition (hot/cold) each basic block belongs in. */
1231 FOR_EACH_BB (bb)
1233 if (probably_never_executed_bb_p (bb))
1234 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1235 else
1237 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1238 has_hot_blocks = true;
1242 /* Mark every edge that crosses between sections. */
1244 i = 0;
1245 FOR_EACH_BB (bb)
1246 FOR_EACH_EDGE (e, ei, bb->succs)
1248 if (e->src != ENTRY_BLOCK_PTR
1249 && e->dest != EXIT_BLOCK_PTR
1250 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1252 e->flags |= EDGE_CROSSING;
1253 if (i == *max_idx)
1255 *max_idx *= 2;
1256 crossing_edges = xrealloc (crossing_edges,
1257 (*max_idx) * sizeof (edge));
1259 crossing_edges[i++] = e;
1261 else
1262 e->flags &= ~EDGE_CROSSING;
1264 *n_crossing_edges = i;
1267 /* If any destination of a crossing edge does not have a label, add label;
1268 Convert any fall-through crossing edges (for blocks that do not contain
1269 a jump) to unconditional jumps. */
1271 static void
1272 add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1274 int i;
1275 basic_block src;
1276 basic_block dest;
1277 rtx label;
1278 rtx barrier;
1279 rtx new_jump;
1281 for (i=0; i < n_crossing_edges; i++)
1283 if (crossing_edges[i])
1285 src = crossing_edges[i]->src;
1286 dest = crossing_edges[i]->dest;
1288 /* Make sure dest has a label. */
1290 if (dest && (dest != EXIT_BLOCK_PTR))
1292 label = block_label (dest);
1294 /* Make sure source block ends with a jump. */
1296 if (src && (src != ENTRY_BLOCK_PTR))
1298 if (!JUMP_P (BB_END (src)))
1299 /* bb just falls through. */
1301 /* make sure there's only one successor */
1302 gcc_assert (single_succ_p (src));
1304 /* Find label in dest block. */
1305 label = block_label (dest);
1307 new_jump = emit_jump_insn_after (gen_jump (label),
1308 BB_END (src));
1309 barrier = emit_barrier_after (new_jump);
1310 JUMP_LABEL (new_jump) = label;
1311 LABEL_NUSES (label) += 1;
1312 src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1313 /* Mark edge as non-fallthru. */
1314 crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
1315 } /* end: 'if (GET_CODE ... ' */
1316 } /* end: 'if (src && src->index...' */
1317 } /* end: 'if (dest && dest->index...' */
1318 } /* end: 'if (crossing_edges[i]...' */
1319 } /* end for loop */
1322 /* Find any bb's where the fall-through edge is a crossing edge (note that
1323 these bb's must also contain a conditional jump; we've already
1324 dealt with fall-through edges for blocks that didn't have a
1325 conditional jump in the call to add_labels_and_missing_jumps).
1326 Convert the fall-through edge to non-crossing edge by inserting a
1327 new bb to fall-through into. The new bb will contain an
1328 unconditional jump (crossing edge) to the original fall through
1329 destination. */
1331 static void
1332 fix_up_fall_thru_edges (void)
1334 basic_block cur_bb;
1335 basic_block new_bb;
1336 edge succ1;
1337 edge succ2;
1338 edge fall_thru;
1339 edge cond_jump = NULL;
1340 edge e;
1341 bool cond_jump_crosses;
1342 int invert_worked;
1343 rtx old_jump;
1344 rtx fall_thru_label;
1345 rtx barrier;
1347 FOR_EACH_BB (cur_bb)
1349 fall_thru = NULL;
1350 if (EDGE_COUNT (cur_bb->succs) > 0)
1351 succ1 = EDGE_SUCC (cur_bb, 0);
1352 else
1353 succ1 = NULL;
1355 if (EDGE_COUNT (cur_bb->succs) > 1)
1356 succ2 = EDGE_SUCC (cur_bb, 1);
1357 else
1358 succ2 = NULL;
1360 /* Find the fall-through edge. */
1362 if (succ1
1363 && (succ1->flags & EDGE_FALLTHRU))
1365 fall_thru = succ1;
1366 cond_jump = succ2;
1368 else if (succ2
1369 && (succ2->flags & EDGE_FALLTHRU))
1371 fall_thru = succ2;
1372 cond_jump = succ1;
1375 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1377 /* Check to see if the fall-thru edge is a crossing edge. */
1379 if (fall_thru->flags & EDGE_CROSSING)
1381 /* The fall_thru edge crosses; now check the cond jump edge, if
1382 it exists. */
1384 cond_jump_crosses = true;
1385 invert_worked = 0;
1386 old_jump = BB_END (cur_bb);
1388 /* Find the jump instruction, if there is one. */
1390 if (cond_jump)
1392 if (!(cond_jump->flags & EDGE_CROSSING))
1393 cond_jump_crosses = false;
1395 /* We know the fall-thru edge crosses; if the cond
1396 jump edge does NOT cross, and its destination is the
1397 next block in the bb order, invert the jump
1398 (i.e. fix it so the fall thru does not cross and
1399 the cond jump does). */
1401 if (!cond_jump_crosses
1402 && cur_bb->aux == cond_jump->dest)
1404 /* Find label in fall_thru block. We've already added
1405 any missing labels, so there must be one. */
1407 fall_thru_label = block_label (fall_thru->dest);
1409 if (old_jump && fall_thru_label)
1410 invert_worked = invert_jump (old_jump,
1411 fall_thru_label,0);
1412 if (invert_worked)
1414 fall_thru->flags &= ~EDGE_FALLTHRU;
1415 cond_jump->flags |= EDGE_FALLTHRU;
1416 update_br_prob_note (cur_bb);
1417 e = fall_thru;
1418 fall_thru = cond_jump;
1419 cond_jump = e;
1420 cond_jump->flags |= EDGE_CROSSING;
1421 fall_thru->flags &= ~EDGE_CROSSING;
1426 if (cond_jump_crosses || !invert_worked)
1428 /* This is the case where both edges out of the basic
1429 block are crossing edges. Here we will fix up the
1430 fall through edge. The jump edge will be taken care
1431 of later. */
1433 new_bb = force_nonfallthru (fall_thru);
1435 if (new_bb)
1437 new_bb->aux = cur_bb->aux;
1438 cur_bb->aux = new_bb;
1440 /* Make sure new fall-through bb is in same
1441 partition as bb it's falling through from. */
1443 BB_COPY_PARTITION (new_bb, cur_bb);
1444 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1447 /* Add barrier after new jump */
1449 if (new_bb)
1451 barrier = emit_barrier_after (BB_END (new_bb));
1452 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1453 barrier);
1455 else
1457 barrier = emit_barrier_after (BB_END (cur_bb));
1458 cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
1459 barrier);
1467 /* This function checks the destination blockof a "crossing jump" to
1468 see if it has any crossing predecessors that begin with a code label
1469 and end with an unconditional jump. If so, it returns that predecessor
1470 block. (This is to avoid creating lots of new basic blocks that all
1471 contain unconditional jumps to the same destination). */
1473 static basic_block
1474 find_jump_block (basic_block jump_dest)
1476 basic_block source_bb = NULL;
1477 edge e;
1478 rtx insn;
1479 edge_iterator ei;
1481 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1482 if (e->flags & EDGE_CROSSING)
1484 basic_block src = e->src;
1486 /* Check each predecessor to see if it has a label, and contains
1487 only one executable instruction, which is an unconditional jump.
1488 If so, we can use it. */
1490 if (LABEL_P (BB_HEAD (src)))
1491 for (insn = BB_HEAD (src);
1492 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1493 insn = NEXT_INSN (insn))
1495 if (INSN_P (insn)
1496 && insn == BB_END (src)
1497 && JUMP_P (insn)
1498 && !any_condjump_p (insn))
1500 source_bb = src;
1501 break;
1505 if (source_bb)
1506 break;
1509 return source_bb;
1512 /* Find all BB's with conditional jumps that are crossing edges;
1513 insert a new bb and make the conditional jump branch to the new
1514 bb instead (make the new bb same color so conditional branch won't
1515 be a 'crossing' edge). Insert an unconditional jump from the
1516 new bb to the original destination of the conditional jump. */
1518 static void
1519 fix_crossing_conditional_branches (void)
1521 basic_block cur_bb;
1522 basic_block new_bb;
1523 basic_block last_bb;
1524 basic_block dest;
1525 basic_block prev_bb;
1526 edge succ1;
1527 edge succ2;
1528 edge crossing_edge;
1529 edge new_edge;
1530 rtx old_jump;
1531 rtx set_src;
1532 rtx old_label = NULL_RTX;
1533 rtx new_label;
1534 rtx new_jump;
1535 rtx barrier;
1537 last_bb = EXIT_BLOCK_PTR->prev_bb;
1539 FOR_EACH_BB (cur_bb)
1541 crossing_edge = NULL;
1542 if (EDGE_COUNT (cur_bb->succs) > 0)
1543 succ1 = EDGE_SUCC (cur_bb, 0);
1544 else
1545 succ1 = NULL;
1547 if (EDGE_COUNT (cur_bb->succs) > 1)
1548 succ2 = EDGE_SUCC (cur_bb, 1);
1549 else
1550 succ2 = NULL;
1552 /* We already took care of fall-through edges, so only one successor
1553 can be a crossing edge. */
1555 if (succ1 && (succ1->flags & EDGE_CROSSING))
1556 crossing_edge = succ1;
1557 else if (succ2 && (succ2->flags & EDGE_CROSSING))
1558 crossing_edge = succ2;
1560 if (crossing_edge)
1562 old_jump = BB_END (cur_bb);
1564 /* Check to make sure the jump instruction is a
1565 conditional jump. */
1567 set_src = NULL_RTX;
1569 if (any_condjump_p (old_jump))
1571 if (GET_CODE (PATTERN (old_jump)) == SET)
1572 set_src = SET_SRC (PATTERN (old_jump));
1573 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1575 set_src = XVECEXP (PATTERN (old_jump), 0,0);
1576 if (GET_CODE (set_src) == SET)
1577 set_src = SET_SRC (set_src);
1578 else
1579 set_src = NULL_RTX;
1583 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1585 if (GET_CODE (XEXP (set_src, 1)) == PC)
1586 old_label = XEXP (set_src, 2);
1587 else if (GET_CODE (XEXP (set_src, 2)) == PC)
1588 old_label = XEXP (set_src, 1);
1590 /* Check to see if new bb for jumping to that dest has
1591 already been created; if so, use it; if not, create
1592 a new one. */
1594 new_bb = find_jump_block (crossing_edge->dest);
1596 if (new_bb)
1597 new_label = block_label (new_bb);
1598 else
1600 /* Create new basic block to be dest for
1601 conditional jump. */
1603 new_bb = create_basic_block (NULL, NULL, last_bb);
1604 new_bb->aux = last_bb->aux;
1605 last_bb->aux = new_bb;
1606 prev_bb = last_bb;
1607 last_bb = new_bb;
1609 /* Update register liveness information. */
1611 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1612 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1613 COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
1614 prev_bb->il.rtl->global_live_at_end);
1615 COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
1616 prev_bb->il.rtl->global_live_at_end);
1618 /* Put appropriate instructions in new bb. */
1620 new_label = gen_label_rtx ();
1621 emit_label_before (new_label, BB_HEAD (new_bb));
1622 BB_HEAD (new_bb) = new_label;
1624 if (GET_CODE (old_label) == LABEL_REF)
1626 old_label = JUMP_LABEL (old_jump);
1627 new_jump = emit_jump_insn_after (gen_jump
1628 (old_label),
1629 BB_END (new_bb));
1631 else
1633 gcc_assert (HAVE_return
1634 && GET_CODE (old_label) == RETURN);
1635 new_jump = emit_jump_insn_after (gen_return (),
1636 BB_END (new_bb));
1639 barrier = emit_barrier_after (new_jump);
1640 JUMP_LABEL (new_jump) = old_label;
1641 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1642 barrier);
1644 /* Make sure new bb is in same partition as source
1645 of conditional branch. */
1646 BB_COPY_PARTITION (new_bb, cur_bb);
1649 /* Make old jump branch to new bb. */
1651 redirect_jump (old_jump, new_label, 0);
1653 /* Remove crossing_edge as predecessor of 'dest'. */
1655 dest = crossing_edge->dest;
1657 redirect_edge_succ (crossing_edge, new_bb);
1659 /* Make a new edge from new_bb to old dest; new edge
1660 will be a successor for new_bb and a predecessor
1661 for 'dest'. */
1663 if (EDGE_COUNT (new_bb->succs) == 0)
1664 new_edge = make_edge (new_bb, dest, 0);
1665 else
1666 new_edge = EDGE_SUCC (new_bb, 0);
1668 crossing_edge->flags &= ~EDGE_CROSSING;
1669 new_edge->flags |= EDGE_CROSSING;
1675 /* Find any unconditional branches that cross between hot and cold
1676 sections. Convert them into indirect jumps instead. */
1678 static void
1679 fix_crossing_unconditional_branches (void)
1681 basic_block cur_bb;
1682 rtx last_insn;
1683 rtx label;
1684 rtx label_addr;
1685 rtx indirect_jump_sequence;
1686 rtx jump_insn = NULL_RTX;
1687 rtx new_reg;
1688 rtx cur_insn;
1689 edge succ;
1691 FOR_EACH_BB (cur_bb)
1693 last_insn = BB_END (cur_bb);
1695 if (EDGE_COUNT (cur_bb->succs) < 1)
1696 continue;
1698 succ = EDGE_SUCC (cur_bb, 0);
1700 /* Check to see if bb ends in a crossing (unconditional) jump. At
1701 this point, no crossing jumps should be conditional. */
1703 if (JUMP_P (last_insn)
1704 && (succ->flags & EDGE_CROSSING))
1706 rtx label2, table;
1708 gcc_assert (!any_condjump_p (last_insn));
1710 /* Make sure the jump is not already an indirect or table jump. */
1712 if (!computed_jump_p (last_insn)
1713 && !tablejump_p (last_insn, &label2, &table))
1715 /* We have found a "crossing" unconditional branch. Now
1716 we must convert it to an indirect jump. First create
1717 reference of label, as target for jump. */
1719 label = JUMP_LABEL (last_insn);
1720 label_addr = gen_rtx_LABEL_REF (Pmode, label);
1721 LABEL_NUSES (label) += 1;
1723 /* Get a register to use for the indirect jump. */
1725 new_reg = gen_reg_rtx (Pmode);
1727 /* Generate indirect the jump sequence. */
1729 start_sequence ();
1730 emit_move_insn (new_reg, label_addr);
1731 emit_indirect_jump (new_reg);
1732 indirect_jump_sequence = get_insns ();
1733 end_sequence ();
1735 /* Make sure every instruction in the new jump sequence has
1736 its basic block set to be cur_bb. */
1738 for (cur_insn = indirect_jump_sequence; cur_insn;
1739 cur_insn = NEXT_INSN (cur_insn))
1741 if (!BARRIER_P (cur_insn))
1742 BLOCK_FOR_INSN (cur_insn) = cur_bb;
1743 if (JUMP_P (cur_insn))
1744 jump_insn = cur_insn;
1747 /* Insert the new (indirect) jump sequence immediately before
1748 the unconditional jump, then delete the unconditional jump. */
1750 emit_insn_before (indirect_jump_sequence, last_insn);
1751 delete_insn (last_insn);
1753 /* Make BB_END for cur_bb be the jump instruction (NOT the
1754 barrier instruction at the end of the sequence...). */
1756 BB_END (cur_bb) = jump_insn;
1762 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
1764 static void
1765 add_reg_crossing_jump_notes (void)
1767 basic_block bb;
1768 edge e;
1769 edge_iterator ei;
1771 FOR_EACH_BB (bb)
1772 FOR_EACH_EDGE (e, ei, bb->succs)
1773 if ((e->flags & EDGE_CROSSING)
1774 && JUMP_P (BB_END (e->src)))
1775 REG_NOTES (BB_END (e->src)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1776 NULL_RTX,
1777 REG_NOTES (BB_END
1778 (e->src)));
1781 /* Hot and cold basic blocks are partitioned and put in separate
1782 sections of the .o file, to reduce paging and improve cache
1783 performance (hopefully). This can result in bits of code from the
1784 same function being widely separated in the .o file. However this
1785 is not obvious to the current bb structure. Therefore we must take
1786 care to ensure that: 1). There are no fall_thru edges that cross
1787 between sections; 2). For those architectures which have "short"
1788 conditional branches, all conditional branches that attempt to
1789 cross between sections are converted to unconditional branches;
1790 and, 3). For those architectures which have "short" unconditional
1791 branches, all unconditional branches that attempt to cross between
1792 sections are converted to indirect jumps.
1794 The code for fixing up fall_thru edges that cross between hot and
1795 cold basic blocks does so by creating new basic blocks containing
1796 unconditional branches to the appropriate label in the "other"
1797 section. The new basic block is then put in the same (hot or cold)
1798 section as the original conditional branch, and the fall_thru edge
1799 is modified to fall into the new basic block instead. By adding
1800 this level of indirection we end up with only unconditional branches
1801 crossing between hot and cold sections.
1803 Conditional branches are dealt with by adding a level of indirection.
1804 A new basic block is added in the same (hot/cold) section as the
1805 conditional branch, and the conditional branch is retargeted to the
1806 new basic block. The new basic block contains an unconditional branch
1807 to the original target of the conditional branch (in the other section).
1809 Unconditional branches are dealt with by converting them into
1810 indirect jumps. */
1812 static void
1813 fix_edges_for_rarely_executed_code (edge *crossing_edges,
1814 int n_crossing_edges)
1816 /* Make sure the source of any crossing edge ends in a jump and the
1817 destination of any crossing edge has a label. */
1819 add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1821 /* Convert all crossing fall_thru edges to non-crossing fall
1822 thrus to unconditional jumps (that jump to the original fall
1823 thru dest). */
1825 fix_up_fall_thru_edges ();
1827 /* If the architecture does not have conditional branches that can
1828 span all of memory, convert crossing conditional branches into
1829 crossing unconditional branches. */
1831 if (!HAS_LONG_COND_BRANCH)
1832 fix_crossing_conditional_branches ();
1834 /* If the architecture does not have unconditional branches that
1835 can span all of memory, convert crossing unconditional branches
1836 into indirect jumps. Since adding an indirect jump also adds
1837 a new register usage, update the register usage information as
1838 well. */
1840 if (!HAS_LONG_UNCOND_BRANCH)
1842 fix_crossing_unconditional_branches ();
1843 reg_scan (get_insns(), max_reg_num ());
1846 add_reg_crossing_jump_notes ();
1849 /* Verify, in the basic block chain, that there is at most one switch
1850 between hot/cold partitions. This is modelled on
1851 rtl_verify_flow_info_1, but it cannot go inside that function
1852 because this condition will not be true until after
1853 reorder_basic_blocks is called. */
1855 static void
1856 verify_hot_cold_block_grouping (void)
1858 basic_block bb;
1859 int err = 0;
1860 bool switched_sections = false;
1861 int current_partition = 0;
1863 FOR_EACH_BB (bb)
1865 if (!current_partition)
1866 current_partition = BB_PARTITION (bb);
1867 if (BB_PARTITION (bb) != current_partition)
1869 if (switched_sections)
1871 error ("multiple hot/cold transitions found (bb %i)",
1872 bb->index);
1873 err = 1;
1875 else
1877 switched_sections = true;
1878 current_partition = BB_PARTITION (bb);
1883 gcc_assert(!err);
1886 /* Reorder basic blocks. The main entry point to this file. FLAGS is
1887 the set of flags to pass to cfg_layout_initialize(). */
1889 void
1890 reorder_basic_blocks (unsigned int flags)
1892 int n_traces;
1893 int i;
1894 struct trace *traces;
1896 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1897 return;
1899 if (targetm.cannot_modify_jumps_p ())
1900 return;
1902 cfg_layout_initialize (flags);
1904 set_edge_can_fallthru_flag ();
1905 mark_dfs_back_edges ();
1907 /* We are estimating the length of uncond jump insn only once since the code
1908 for getting the insn length always returns the minimal length now. */
1909 if (uncond_jump_length == 0)
1910 uncond_jump_length = get_uncond_jump_length ();
1912 /* We need to know some information for each basic block. */
1913 array_size = GET_ARRAY_SIZE (last_basic_block);
1914 bbd = XNEWVEC (bbro_basic_block_data, array_size);
1915 for (i = 0; i < array_size; i++)
1917 bbd[i].start_of_trace = -1;
1918 bbd[i].in_trace = -1;
1919 bbd[i].end_of_trace = -1;
1920 bbd[i].heap = NULL;
1921 bbd[i].node = NULL;
1924 traces = XNEWVEC (struct trace, n_basic_blocks);
1925 n_traces = 0;
1926 find_traces (&n_traces, traces);
1927 connect_traces (n_traces, traces);
1928 FREE (traces);
1929 FREE (bbd);
1931 if (dump_file)
1932 dump_flow_info (dump_file, dump_flags);
1934 cfg_layout_finalize ();
1935 if (flag_reorder_blocks_and_partition)
1936 verify_hot_cold_block_grouping ();
1939 /* Determine which partition the first basic block in the function
1940 belongs to, then find the first basic block in the current function
1941 that belongs to a different section, and insert a
1942 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1943 instruction stream. When writing out the assembly code,
1944 encountering this note will make the compiler switch between the
1945 hot and cold text sections. */
1947 static void
1948 insert_section_boundary_note (void)
1950 basic_block bb;
1951 rtx new_note;
1952 int first_partition = 0;
1954 if (flag_reorder_blocks_and_partition)
1955 FOR_EACH_BB (bb)
1957 if (!first_partition)
1958 first_partition = BB_PARTITION (bb);
1959 if (BB_PARTITION (bb) != first_partition)
1961 new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1962 BB_HEAD (bb));
1963 break;
1968 /* Duplicate the blocks containing computed gotos. This basically unfactors
1969 computed gotos that were factored early on in the compilation process to
1970 speed up edge based data flow. We used to not unfactoring them again,
1971 which can seriously pessimize code with many computed jumps in the source
1972 code, such as interpreters. See e.g. PR15242. */
1974 static bool
1975 gate_duplicate_computed_gotos (void)
1977 return (optimize > 0 && flag_expensive_optimizations && !optimize_size);
1981 static unsigned int
1982 duplicate_computed_gotos (void)
1984 basic_block bb, new_bb;
1985 bitmap candidates;
1986 int max_size;
1988 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1989 return 0;
1991 if (targetm.cannot_modify_jumps_p ())
1992 return 0;
1994 cfg_layout_initialize (0);
1996 /* We are estimating the length of uncond jump insn only once
1997 since the code for getting the insn length always returns
1998 the minimal length now. */
1999 if (uncond_jump_length == 0)
2000 uncond_jump_length = get_uncond_jump_length ();
2002 max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2003 candidates = BITMAP_ALLOC (NULL);
2005 /* Look for blocks that end in a computed jump, and see if such blocks
2006 are suitable for unfactoring. If a block is a candidate for unfactoring,
2007 mark it in the candidates. */
2008 FOR_EACH_BB (bb)
2010 rtx insn;
2011 edge e;
2012 edge_iterator ei;
2013 int size, all_flags;
2015 /* Build the reorder chain for the original order of blocks. */
2016 if (bb->next_bb != EXIT_BLOCK_PTR)
2017 bb->aux = bb->next_bb;
2019 /* Obviously the block has to end in a computed jump. */
2020 if (!computed_jump_p (BB_END (bb)))
2021 continue;
2023 /* Only consider blocks that can be duplicated. */
2024 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2025 || !can_duplicate_block_p (bb))
2026 continue;
2028 /* Make sure that the block is small enough. */
2029 size = 0;
2030 FOR_BB_INSNS (bb, insn)
2031 if (INSN_P (insn))
2033 size += get_attr_min_length (insn);
2034 if (size > max_size)
2035 break;
2037 if (size > max_size)
2038 continue;
2040 /* Final check: there must not be any incoming abnormal edges. */
2041 all_flags = 0;
2042 FOR_EACH_EDGE (e, ei, bb->preds)
2043 all_flags |= e->flags;
2044 if (all_flags & EDGE_COMPLEX)
2045 continue;
2047 bitmap_set_bit (candidates, bb->index);
2050 /* Nothing to do if there is no computed jump here. */
2051 if (bitmap_empty_p (candidates))
2052 goto done;
2054 /* Duplicate computed gotos. */
2055 FOR_EACH_BB (bb)
2057 if (bb->il.rtl->visited)
2058 continue;
2060 bb->il.rtl->visited = 1;
2062 /* BB must have one outgoing edge. That edge must not lead to
2063 the exit block or the next block.
2064 The destination must have more than one predecessor. */
2065 if (!single_succ_p (bb)
2066 || single_succ (bb) == EXIT_BLOCK_PTR
2067 || single_succ (bb) == bb->next_bb
2068 || single_pred_p (single_succ (bb)))
2069 continue;
2071 /* The successor block has to be a duplication candidate. */
2072 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2073 continue;
2075 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2076 new_bb->aux = bb->aux;
2077 bb->aux = new_bb;
2078 new_bb->il.rtl->visited = 1;
2081 done:
2082 cfg_layout_finalize ();
2084 BITMAP_FREE (candidates);
2085 return 0;
2088 struct tree_opt_pass pass_duplicate_computed_gotos =
2090 "compgotos", /* name */
2091 gate_duplicate_computed_gotos, /* gate */
2092 duplicate_computed_gotos, /* execute */
2093 NULL, /* sub */
2094 NULL, /* next */
2095 0, /* static_pass_number */
2096 TV_REORDER_BLOCKS, /* tv_id */
2097 0, /* properties_required */
2098 0, /* properties_provided */
2099 0, /* properties_destroyed */
2100 0, /* todo_flags_start */
2101 TODO_dump_func, /* todo_flags_finish */
2102 0 /* letter */
2106 /* This function is the main 'entrance' for the optimization that
2107 partitions hot and cold basic blocks into separate sections of the
2108 .o file (to improve performance and cache locality). Ideally it
2109 would be called after all optimizations that rearrange the CFG have
2110 been called. However part of this optimization may introduce new
2111 register usage, so it must be called before register allocation has
2112 occurred. This means that this optimization is actually called
2113 well before the optimization that reorders basic blocks (see
2114 function above).
2116 This optimization checks the feedback information to determine
2117 which basic blocks are hot/cold, updates flags on the basic blocks
2118 to indicate which section they belong in. This information is
2119 later used for writing out sections in the .o file. Because hot
2120 and cold sections can be arbitrarily large (within the bounds of
2121 memory), far beyond the size of a single function, it is necessary
2122 to fix up all edges that cross section boundaries, to make sure the
2123 instructions used can actually span the required distance. The
2124 fixes are described below.
2126 Fall-through edges must be changed into jumps; it is not safe or
2127 legal to fall through across a section boundary. Whenever a
2128 fall-through edge crossing a section boundary is encountered, a new
2129 basic block is inserted (in the same section as the fall-through
2130 source), and the fall through edge is redirected to the new basic
2131 block. The new basic block contains an unconditional jump to the
2132 original fall-through target. (If the unconditional jump is
2133 insufficient to cross section boundaries, that is dealt with a
2134 little later, see below).
2136 In order to deal with architectures that have short conditional
2137 branches (which cannot span all of memory) we take any conditional
2138 jump that attempts to cross a section boundary and add a level of
2139 indirection: it becomes a conditional jump to a new basic block, in
2140 the same section. The new basic block contains an unconditional
2141 jump to the original target, in the other section.
2143 For those architectures whose unconditional branch is also
2144 incapable of reaching all of memory, those unconditional jumps are
2145 converted into indirect jumps, through a register.
2147 IMPORTANT NOTE: This optimization causes some messy interactions
2148 with the cfg cleanup optimizations; those optimizations want to
2149 merge blocks wherever possible, and to collapse indirect jump
2150 sequences (change "A jumps to B jumps to C" directly into "A jumps
2151 to C"). Those optimizations can undo the jump fixes that
2152 partitioning is required to make (see above), in order to ensure
2153 that jumps attempting to cross section boundaries are really able
2154 to cover whatever distance the jump requires (on many architectures
2155 conditional or unconditional jumps are not able to reach all of
2156 memory). Therefore tests have to be inserted into each such
2157 optimization to make sure that it does not undo stuff necessary to
2158 cross partition boundaries. This would be much less of a problem
2159 if we could perform this optimization later in the compilation, but
2160 unfortunately the fact that we may need to create indirect jumps
2161 (through registers) requires that this optimization be performed
2162 before register allocation. */
2164 static void
2165 partition_hot_cold_basic_blocks (void)
2167 basic_block cur_bb;
2168 edge *crossing_edges;
2169 int n_crossing_edges;
2170 int max_edges = 2 * last_basic_block;
2172 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2173 return;
2175 crossing_edges = XCNEWVEC (edge, max_edges);
2177 cfg_layout_initialize (0);
2179 FOR_EACH_BB (cur_bb)
2180 if (cur_bb->index >= NUM_FIXED_BLOCKS
2181 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
2182 cur_bb->aux = cur_bb->next_bb;
2184 find_rarely_executed_basic_blocks_and_crossing_edges (crossing_edges,
2185 &n_crossing_edges,
2186 &max_edges);
2188 if (n_crossing_edges > 0)
2189 fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2191 free (crossing_edges);
2193 cfg_layout_finalize();
2196 static bool
2197 gate_handle_reorder_blocks (void)
2199 return (optimize > 0);
2203 /* Reorder basic blocks. */
2204 static unsigned int
2205 rest_of_handle_reorder_blocks (void)
2207 bool changed;
2208 unsigned int liveness_flags;
2210 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2211 splitting possibly introduced more crossjumping opportunities. */
2212 liveness_flags = (!HAVE_conditional_execution ? CLEANUP_UPDATE_LIFE : 0);
2213 changed = cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
2215 if (flag_sched2_use_traces && flag_schedule_insns_after_reload)
2217 timevar_push (TV_TRACER);
2218 tracer (liveness_flags);
2219 timevar_pop (TV_TRACER);
2222 if (flag_reorder_blocks || flag_reorder_blocks_and_partition)
2223 reorder_basic_blocks (liveness_flags);
2224 if (flag_reorder_blocks || flag_reorder_blocks_and_partition
2225 || (flag_sched2_use_traces && flag_schedule_insns_after_reload))
2226 changed |= cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
2228 /* On conditional execution targets we can not update the life cheaply, so
2229 we deffer the updating to after both cleanups. This may lose some cases
2230 but should not be terribly bad. */
2231 if (changed && HAVE_conditional_execution)
2232 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2233 PROP_DEATH_NOTES);
2235 /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
2236 insert_section_boundary_note ();
2237 return 0;
2240 struct tree_opt_pass pass_reorder_blocks =
2242 "bbro", /* name */
2243 gate_handle_reorder_blocks, /* gate */
2244 rest_of_handle_reorder_blocks, /* execute */
2245 NULL, /* sub */
2246 NULL, /* next */
2247 0, /* static_pass_number */
2248 TV_REORDER_BLOCKS, /* tv_id */
2249 0, /* properties_required */
2250 0, /* properties_provided */
2251 0, /* properties_destroyed */
2252 0, /* todo_flags_start */
2253 TODO_dump_func, /* todo_flags_finish */
2254 'B' /* letter */
2257 static bool
2258 gate_handle_partition_blocks (void)
2260 /* The optimization to partition hot/cold basic blocks into separate
2261 sections of the .o file does not work well with linkonce or with
2262 user defined section attributes. Don't call it if either case
2263 arises. */
2265 return (flag_reorder_blocks_and_partition
2266 && !DECL_ONE_ONLY (current_function_decl)
2267 && !user_defined_section_attribute);
2270 /* Partition hot and cold basic blocks. */
2271 static unsigned int
2272 rest_of_handle_partition_blocks (void)
2274 no_new_pseudos = 0;
2275 partition_hot_cold_basic_blocks ();
2276 allocate_reg_life_data ();
2277 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2278 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
2279 no_new_pseudos = 1;
2280 return 0;
2283 struct tree_opt_pass pass_partition_blocks =
2285 "bbpart", /* name */
2286 gate_handle_partition_blocks, /* gate */
2287 rest_of_handle_partition_blocks, /* execute */
2288 NULL, /* sub */
2289 NULL, /* next */
2290 0, /* static_pass_number */
2291 TV_REORDER_BLOCKS, /* tv_id */
2292 0, /* properties_required */
2293 0, /* properties_provided */
2294 0, /* properties_destroyed */
2295 0, /* todo_flags_start */
2296 TODO_dump_func, /* todo_flags_finish */
2297 0 /* letter */