* arm.md (stack_tie): New insn. Use an idiom that the alias code
[official-gcc.git] / gcc / ssa.c
blob71be1a9d9577ede99c0a3c89bca55b5914819e55
1 /* Static Single Assignment conversion routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* References:
23 Building an Optimizing Compiler
24 Robert Morgan
25 Butterworth-Heinemann, 1998
27 Static Single Assignment Construction
28 Preston Briggs, Tim Harvey, Taylor Simpson
29 Technical Report, Rice University, 1995
30 ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz. */
32 #include "config.h"
33 #include "system.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "varray.h"
38 #include "partition.h"
39 #include "sbitmap.h"
40 #include "hashtab.h"
41 #include "regs.h"
42 #include "hard-reg-set.h"
43 #include "flags.h"
44 #include "function.h"
45 #include "real.h"
46 #include "insn-config.h"
47 #include "recog.h"
48 #include "basic-block.h"
49 #include "output.h"
50 #include "ssa.h"
52 /* TODO:
54 Handle subregs better, maybe. For now, if a reg that's set in a
55 subreg expression is duplicated going into SSA form, an extra copy
56 is inserted first that copies the entire reg into the duplicate, so
57 that the other bits are preserved. This isn't strictly SSA, since
58 at least part of the reg is assigned in more than one place (though
59 they are adjacent).
61 ??? What to do about strict_low_part. Probably I'll have to split
62 them out of their current instructions first thing.
64 Actually the best solution may be to have a kind of "mid-level rtl"
65 in which the RTL encodes exactly what we want, without exposing a
66 lot of niggling processor details. At some later point we lower
67 the representation, calling back into optabs to finish any necessary
68 expansion. */
70 /* All pseudo-registers and select hard registers are converted to SSA
71 form. When converting out of SSA, these select hard registers are
72 guaranteed to be mapped to their original register number. Each
73 machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
74 indicating which hard registers should be converted.
76 When converting out of SSA, temporaries for all registers are
77 partitioned. The partition is checked to ensure that all uses of
78 the same hard register in the same machine mode are in the same
79 class. */
81 /* If conservative_reg_partition is non-zero, use a conservative
82 register partitioning algorithm (which leaves more regs after
83 emerging from SSA) instead of the coalescing one. This is being
84 left in for a limited time only, as a debugging tool until the
85 coalescing algorithm is validated. */
87 static int conservative_reg_partition;
89 /* This flag is set when the CFG is in SSA form. */
90 int in_ssa_form = 0;
92 /* Element I is the single instruction that sets register I. */
93 varray_type ssa_definition;
95 /* Element I-PSEUDO is the normal register that originated the ssa
96 register in question. */
97 varray_type ssa_rename_from;
99 /* Element I is the normal register that originated the ssa
100 register in question.
102 A hash table stores the (register, rtl) pairs. These are each
103 xmalloc'ed and deleted when the hash table is destroyed. */
104 htab_t ssa_rename_from_ht;
106 /* The running target ssa register for a given pseudo register.
107 (Pseudo registers appear in only one mode.) */
108 static rtx *ssa_rename_to_pseudo;
109 /* Similar, but for hard registers. A hard register can appear in
110 many modes, so we store an equivalent pseudo for each of the
111 modes. */
112 static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
114 /* ssa_rename_from maps pseudo registers to the original corresponding
115 RTL. It is implemented as using a hash table. */
117 typedef struct {
118 unsigned int reg;
119 rtx original;
120 } ssa_rename_from_pair;
122 struct ssa_rename_from_hash_table_data {
123 sbitmap canonical_elements;
124 partition reg_partition;
127 static rtx gen_sequence
128 PARAMS ((void));
129 static void ssa_rename_from_initialize
130 PARAMS ((void));
131 static rtx ssa_rename_from_lookup
132 PARAMS ((int reg));
133 static unsigned int original_register
134 PARAMS ((unsigned int regno));
135 static void ssa_rename_from_insert
136 PARAMS ((unsigned int reg, rtx r));
137 static void ssa_rename_from_free
138 PARAMS ((void));
139 typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
140 static void ssa_rename_from_traverse
141 PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
142 /*static Avoid warnign message. */ void ssa_rename_from_print
143 PARAMS ((void));
144 static int ssa_rename_from_print_1
145 PARAMS ((void **slot, void *data));
146 static hashval_t ssa_rename_from_hash_function
147 PARAMS ((const void * srfp));
148 static int ssa_rename_from_equal
149 PARAMS ((const void *srfp1, const void *srfp2));
150 static void ssa_rename_from_delete
151 PARAMS ((void *srfp));
153 static rtx ssa_rename_to_lookup
154 PARAMS ((rtx reg));
155 static void ssa_rename_to_insert
156 PARAMS ((rtx reg, rtx r));
158 /* The number of registers that were live on entry to the SSA routines. */
159 static unsigned int ssa_max_reg_num;
161 /* Local function prototypes. */
163 struct rename_context;
165 static inline rtx * phi_alternative
166 PARAMS ((rtx, int));
167 static void compute_dominance_frontiers_1
168 PARAMS ((sbitmap *frontiers, dominance_info idom, int bb, sbitmap done));
169 static void find_evaluations_1
170 PARAMS ((rtx dest, rtx set, void *data));
171 static void find_evaluations
172 PARAMS ((sbitmap *evals, int nregs));
173 static void compute_iterated_dominance_frontiers
174 PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
175 static void insert_phi_node
176 PARAMS ((int regno, int b));
177 static void insert_phi_nodes
178 PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
179 static void create_delayed_rename
180 PARAMS ((struct rename_context *, rtx *));
181 static void apply_delayed_renames
182 PARAMS ((struct rename_context *));
183 static int rename_insn_1
184 PARAMS ((rtx *ptr, void *data));
185 static void rename_block
186 PARAMS ((int b, dominance_info dom));
187 static void rename_registers
188 PARAMS ((int nregs, dominance_info idom));
190 static inline int ephi_add_node
191 PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
192 static int * ephi_forward
193 PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
194 static void ephi_backward
195 PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
196 static void ephi_create
197 PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
198 static void eliminate_phi
199 PARAMS ((edge e, partition reg_partition));
200 static int make_regs_equivalent_over_bad_edges
201 PARAMS ((int bb, partition reg_partition));
203 /* These are used only in the conservative register partitioning
204 algorithms. */
205 static int make_equivalent_phi_alternatives_equivalent
206 PARAMS ((int bb, partition reg_partition));
207 static partition compute_conservative_reg_partition
208 PARAMS ((void));
209 static int record_canonical_element_1
210 PARAMS ((void **srfp, void *data));
211 static int check_hard_regs_in_partition
212 PARAMS ((partition reg_partition));
213 static int rename_equivalent_regs_in_insn
214 PARAMS ((rtx *ptr, void *data));
216 /* These are used in the register coalescing algorithm. */
217 static int coalesce_if_unconflicting
218 PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
219 static int coalesce_regs_in_copies
220 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
221 static int coalesce_reg_in_phi
222 PARAMS ((rtx, int dest_regno, int src_regno, void *data));
223 static int coalesce_regs_in_successor_phi_nodes
224 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
225 static partition compute_coalesced_reg_partition
226 PARAMS ((void));
227 static int mark_reg_in_phi
228 PARAMS ((rtx *ptr, void *data));
229 static void mark_phi_and_copy_regs
230 PARAMS ((regset phi_set));
232 static int rename_equivalent_regs_in_insn
233 PARAMS ((rtx *ptr, void *data));
234 static void rename_equivalent_regs
235 PARAMS ((partition reg_partition));
237 /* Deal with hard registers. */
238 static int conflicting_hard_regs_p
239 PARAMS ((int reg1, int reg2));
241 /* ssa_rename_to maps registers and machine modes to SSA pseudo registers. */
243 /* Find the register associated with REG in the indicated mode. */
245 static rtx
246 ssa_rename_to_lookup (reg)
247 rtx reg;
249 if (!HARD_REGISTER_P (reg))
250 return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
251 else
252 return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
255 /* Store a new value mapping REG to R in ssa_rename_to. */
257 static void
258 ssa_rename_to_insert(reg, r)
259 rtx reg;
260 rtx r;
262 if (!HARD_REGISTER_P (reg))
263 ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
264 else
265 ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
268 /* Prepare ssa_rename_from for use. */
270 static void
271 ssa_rename_from_initialize ()
273 /* We use an arbitrary initial hash table size of 64. */
274 ssa_rename_from_ht = htab_create (64,
275 &ssa_rename_from_hash_function,
276 &ssa_rename_from_equal,
277 &ssa_rename_from_delete);
280 /* Find the REG entry in ssa_rename_from. Return NULL_RTX if no entry is
281 found. */
283 static rtx
284 ssa_rename_from_lookup (reg)
285 int reg;
287 ssa_rename_from_pair srfp;
288 ssa_rename_from_pair *answer;
289 srfp.reg = reg;
290 srfp.original = NULL_RTX;
291 answer = (ssa_rename_from_pair *)
292 htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
293 return (answer == 0 ? NULL_RTX : answer->original);
296 /* Find the number of the original register specified by REGNO. If
297 the register is a pseudo, return the original register's number.
298 Otherwise, return this register number REGNO. */
300 static unsigned int
301 original_register (regno)
302 unsigned int regno;
304 rtx original_rtx = ssa_rename_from_lookup (regno);
305 return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
308 /* Add mapping from R to REG to ssa_rename_from even if already present. */
310 static void
311 ssa_rename_from_insert (reg, r)
312 unsigned int reg;
313 rtx r;
315 void **slot;
316 ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
317 srfp->reg = reg;
318 srfp->original = r;
319 slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
320 reg, INSERT);
321 if (*slot != 0)
322 free ((void *) *slot);
323 *slot = srfp;
326 /* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
327 CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
328 current use of this function. */
330 static void
331 ssa_rename_from_traverse (callback_function,
332 canonical_elements, reg_partition)
333 htab_trav callback_function;
334 sbitmap canonical_elements;
335 partition reg_partition;
337 struct ssa_rename_from_hash_table_data srfhd;
338 srfhd.canonical_elements = canonical_elements;
339 srfhd.reg_partition = reg_partition;
340 htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
343 /* Destroy ssa_rename_from. */
345 static void
346 ssa_rename_from_free ()
348 htab_delete (ssa_rename_from_ht);
351 /* Print the contents of ssa_rename_from. */
353 /* static Avoid erroneous error message. */
354 void
355 ssa_rename_from_print ()
357 printf ("ssa_rename_from's hash table contents:\n");
358 htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
361 /* Print the contents of the hash table entry SLOT, passing the unused
362 sttribute DATA. Used as a callback function with htab_traverse (). */
364 static int
365 ssa_rename_from_print_1 (slot, data)
366 void **slot;
367 void *data ATTRIBUTE_UNUSED;
369 ssa_rename_from_pair * p = *slot;
370 printf ("ssa_rename_from maps pseudo %i to original %i.\n",
371 p->reg, REGNO (p->original));
372 return 1;
375 /* Given a hash entry SRFP, yield a hash value. */
377 static hashval_t
378 ssa_rename_from_hash_function (srfp)
379 const void *srfp;
381 return ((const ssa_rename_from_pair *) srfp)->reg;
384 /* Test whether two hash table entries SRFP1 and SRFP2 are equal. */
386 static int
387 ssa_rename_from_equal (srfp1, srfp2)
388 const void *srfp1;
389 const void *srfp2;
391 return ssa_rename_from_hash_function (srfp1) ==
392 ssa_rename_from_hash_function (srfp2);
395 /* Delete the hash table entry SRFP. */
397 static void
398 ssa_rename_from_delete (srfp)
399 void *srfp;
401 free (srfp);
404 /* Given the SET of a PHI node, return the address of the alternative
405 for predecessor block C. */
407 static inline rtx *
408 phi_alternative (set, c)
409 rtx set;
410 int c;
412 rtvec phi_vec = XVEC (SET_SRC (set), 0);
413 int v;
415 for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
416 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
417 return &RTVEC_ELT (phi_vec, v);
419 return NULL;
422 /* Given the SET of a phi node, remove the alternative for predecessor
423 block C. Return non-zero on success, or zero if no alternative is
424 found for C. */
427 remove_phi_alternative (set, block)
428 rtx set;
429 basic_block block;
431 rtvec phi_vec = XVEC (SET_SRC (set), 0);
432 int num_elem = GET_NUM_ELEM (phi_vec);
433 int v, c;
435 c = block->index;
436 for (v = num_elem - 2; v >= 0; v -= 2)
437 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
439 if (v < num_elem - 2)
441 RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
442 RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
444 PUT_NUM_ELEM (phi_vec, num_elem - 2);
445 return 1;
448 return 0;
451 /* For all registers, find all blocks in which they are set.
453 This is the transform of what would be local kill information that
454 we ought to be getting from flow. */
456 static sbitmap *fe_evals;
457 static int fe_current_bb;
459 static void
460 find_evaluations_1 (dest, set, data)
461 rtx dest;
462 rtx set ATTRIBUTE_UNUSED;
463 void *data ATTRIBUTE_UNUSED;
465 if (GET_CODE (dest) == REG
466 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
467 SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
470 static void
471 find_evaluations (evals, nregs)
472 sbitmap *evals;
473 int nregs;
475 basic_block bb;
477 sbitmap_vector_zero (evals, nregs);
478 fe_evals = evals;
480 FOR_EACH_BB_REVERSE (bb)
482 rtx p, last;
484 fe_current_bb = bb->index;
485 p = bb->head;
486 last = bb->end;
487 while (1)
489 if (INSN_P (p))
490 note_stores (PATTERN (p), find_evaluations_1, NULL);
492 if (p == last)
493 break;
494 p = NEXT_INSN (p);
499 /* Computing the Dominance Frontier:
501 As decribed in Morgan, section 3.5, this may be done simply by
502 walking the dominator tree bottom-up, computing the frontier for
503 the children before the parent. When considering a block B,
504 there are two cases:
506 (1) A flow graph edge leaving B that does not lead to a child
507 of B in the dominator tree must be a block that is either equal
508 to B or not dominated by B. Such blocks belong in the frontier
509 of B.
511 (2) Consider a block X in the frontier of one of the children C
512 of B. If X is not equal to B and is not dominated by B, it
513 is in the frontier of B.
516 static void
517 compute_dominance_frontiers_1 (frontiers, idom, bb, done)
518 sbitmap *frontiers;
519 dominance_info idom;
520 int bb;
521 sbitmap done;
523 basic_block b = BASIC_BLOCK (bb);
524 edge e;
525 basic_block c;
527 SET_BIT (done, bb);
528 sbitmap_zero (frontiers[bb]);
530 /* Do the frontier of the children first. Not all children in the
531 dominator tree (blocks dominated by this one) are children in the
532 CFG, so check all blocks. */
533 FOR_EACH_BB (c)
534 if (get_immediate_dominator (idom, c)->index == bb
535 && ! TEST_BIT (done, c->index))
536 compute_dominance_frontiers_1 (frontiers, idom, c->index, done);
538 /* Find blocks conforming to rule (1) above. */
539 for (e = b->succ; e; e = e->succ_next)
541 if (e->dest == EXIT_BLOCK_PTR)
542 continue;
543 if (get_immediate_dominator (idom, e->dest)->index != bb)
544 SET_BIT (frontiers[bb], e->dest->index);
547 /* Find blocks conforming to rule (2). */
548 FOR_EACH_BB (c)
549 if (get_immediate_dominator (idom, c)->index == bb)
551 int x;
552 EXECUTE_IF_SET_IN_SBITMAP (frontiers[c->index], 0, x,
554 if (get_immediate_dominator (idom, BASIC_BLOCK (x))->index != bb)
555 SET_BIT (frontiers[bb], x);
560 void
561 compute_dominance_frontiers (frontiers, idom)
562 sbitmap *frontiers;
563 dominance_info idom;
565 sbitmap done = sbitmap_alloc (last_basic_block);
566 sbitmap_zero (done);
568 compute_dominance_frontiers_1 (frontiers, idom, 0, done);
570 sbitmap_free (done);
573 /* Computing the Iterated Dominance Frontier:
575 This is the set of merge points for a given register.
577 This is not particularly intuitive. See section 7.1 of Morgan, in
578 particular figures 7.3 and 7.4 and the immediately surrounding text.
581 static void
582 compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
583 sbitmap *idfs;
584 sbitmap *frontiers;
585 sbitmap *evals;
586 int nregs;
588 sbitmap worklist;
589 int reg, passes = 0;
591 worklist = sbitmap_alloc (last_basic_block);
593 for (reg = 0; reg < nregs; ++reg)
595 sbitmap idf = idfs[reg];
596 int b, changed;
598 /* Start the iterative process by considering those blocks that
599 evaluate REG. We'll add their dominance frontiers to the
600 IDF, and then consider the blocks we just added. */
601 sbitmap_copy (worklist, evals[reg]);
603 /* Morgan's algorithm is incorrect here. Blocks that evaluate
604 REG aren't necessarily in REG's IDF. Start with an empty IDF. */
605 sbitmap_zero (idf);
607 /* Iterate until the worklist is empty. */
610 changed = 0;
611 passes++;
612 EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
614 RESET_BIT (worklist, b);
615 /* For each block on the worklist, add to the IDF all
616 blocks on its dominance frontier that aren't already
617 on the IDF. Every block that's added is also added
618 to the worklist. */
619 sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
620 sbitmap_a_or_b (idf, idf, frontiers[b]);
621 changed = 1;
624 while (changed);
627 sbitmap_free (worklist);
629 if (rtl_dump_file)
631 fprintf (rtl_dump_file,
632 "Iterated dominance frontier: %d passes on %d regs.\n",
633 passes, nregs);
637 /* Insert the phi nodes. */
639 static void
640 insert_phi_node (regno, bb)
641 int regno, bb;
643 basic_block b = BASIC_BLOCK (bb);
644 edge e;
645 int npred, i;
646 rtvec vec;
647 rtx phi, reg;
648 rtx insn;
649 int end_p;
651 /* Find out how many predecessors there are. */
652 for (e = b->pred, npred = 0; e; e = e->pred_next)
653 if (e->src != ENTRY_BLOCK_PTR)
654 npred++;
656 /* If this block has no "interesting" preds, then there is nothing to
657 do. Consider a block that only has the entry block as a pred. */
658 if (npred == 0)
659 return;
661 /* This is the register to which the phi function will be assigned. */
662 reg = regno_reg_rtx[regno];
664 /* Construct the arguments to the PHI node. The use of pc_rtx is just
665 a placeholder; we'll insert the proper value in rename_registers. */
666 vec = rtvec_alloc (npred * 2);
667 for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
668 if (e->src != ENTRY_BLOCK_PTR)
670 RTVEC_ELT (vec, i + 0) = pc_rtx;
671 RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
674 phi = gen_rtx_PHI (VOIDmode, vec);
675 phi = gen_rtx_SET (VOIDmode, reg, phi);
677 insn = first_insn_after_basic_block_note (b);
678 end_p = PREV_INSN (insn) == b->end;
679 emit_insn_before (phi, insn);
680 if (end_p)
681 b->end = PREV_INSN (insn);
684 static void
685 insert_phi_nodes (idfs, evals, nregs)
686 sbitmap *idfs;
687 sbitmap *evals ATTRIBUTE_UNUSED;
688 int nregs;
690 int reg;
692 for (reg = 0; reg < nregs; ++reg)
693 if (CONVERT_REGISTER_TO_SSA_P (reg))
695 int b;
696 EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
698 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
699 insert_phi_node (reg, b);
704 /* Rename the registers to conform to SSA.
706 This is essentially the algorithm presented in Figure 7.8 of Morgan,
707 with a few changes to reduce pattern search time in favour of a bit
708 more memory usage. */
710 /* One of these is created for each set. It will live in a list local
711 to its basic block for the duration of that block's processing. */
712 struct rename_set_data
714 struct rename_set_data *next;
715 /* This is the SET_DEST of the (first) SET that sets the REG. */
716 rtx *reg_loc;
717 /* This is what used to be at *REG_LOC. */
718 rtx old_reg;
719 /* This is the REG that will replace OLD_REG. It's set only
720 when the rename data is moved onto the DONE_RENAMES queue. */
721 rtx new_reg;
722 /* This is what to restore ssa_rename_to_lookup (old_reg) to. It is
723 usually the previous contents of ssa_rename_to_lookup (old_reg). */
724 rtx prev_reg;
725 /* This is the insn that contains all the SETs of the REG. */
726 rtx set_insn;
729 /* This struct is used to pass information to callback functions while
730 renaming registers. */
731 struct rename_context
733 struct rename_set_data *new_renames;
734 struct rename_set_data *done_renames;
735 rtx current_insn;
738 /* Queue the rename of *REG_LOC. */
739 static void
740 create_delayed_rename (c, reg_loc)
741 struct rename_context *c;
742 rtx *reg_loc;
744 struct rename_set_data *r;
745 r = (struct rename_set_data *) xmalloc (sizeof(*r));
747 if (GET_CODE (*reg_loc) != REG
748 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
749 abort ();
751 r->reg_loc = reg_loc;
752 r->old_reg = *reg_loc;
753 r->prev_reg = ssa_rename_to_lookup(r->old_reg);
754 r->set_insn = c->current_insn;
755 r->next = c->new_renames;
756 c->new_renames = r;
759 /* This is part of a rather ugly hack to allow the pre-ssa regno to be
760 reused. If, during processing, a register has not yet been touched,
761 ssa_rename_to[regno][machno] will be NULL. Now, in the course of pushing
762 and popping values from ssa_rename_to, when we would ordinarily
763 pop NULL back in, we pop RENAME_NO_RTX. We treat this exactly the
764 same as NULL, except that it signals that the original regno has
765 already been reused. */
766 #define RENAME_NO_RTX pc_rtx
768 /* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
769 applying all the renames on NEW_RENAMES. */
771 static void
772 apply_delayed_renames (c)
773 struct rename_context *c;
775 struct rename_set_data *r;
776 struct rename_set_data *last_r = NULL;
778 for (r = c->new_renames; r != NULL; r = r->next)
780 int new_regno;
782 /* Failure here means that someone has a PARALLEL that sets
783 a register twice (bad!). */
784 if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
785 abort ();
786 /* Failure here means we have changed REG_LOC before applying
787 the rename. */
788 /* For the first set we come across, reuse the original regno. */
789 if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
791 r->new_reg = r->old_reg;
792 /* We want to restore RENAME_NO_RTX rather than NULL_RTX. */
793 r->prev_reg = RENAME_NO_RTX;
795 else
796 r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
797 new_regno = REGNO (r->new_reg);
798 ssa_rename_to_insert (r->old_reg, r->new_reg);
800 if (new_regno >= (int) ssa_definition->num_elements)
802 int new_limit = new_regno * 5 / 4;
803 VARRAY_GROW (ssa_definition, new_limit);
806 VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
807 ssa_rename_from_insert (new_regno, r->old_reg);
808 last_r = r;
810 if (last_r != NULL)
812 last_r->next = c->done_renames;
813 c->done_renames = c->new_renames;
814 c->new_renames = NULL;
818 /* Part one of the first step of rename_block, called through for_each_rtx.
819 Mark pseudos that are set for later update. Transform uses of pseudos. */
821 static int
822 rename_insn_1 (ptr, data)
823 rtx *ptr;
824 void *data;
826 rtx x = *ptr;
827 struct rename_context *context = data;
829 if (x == NULL_RTX)
830 return 0;
832 switch (GET_CODE (x))
834 case SET:
836 rtx *destp = &SET_DEST (x);
837 rtx dest = SET_DEST (x);
839 /* An assignment to a paradoxical SUBREG does not read from
840 the destination operand, and thus does not need to be
841 wrapped into a SEQUENCE when translating into SSA form.
842 We merely strip off the SUBREG and proceed normally for
843 this case. */
844 if (GET_CODE (dest) == SUBREG
845 && (GET_MODE_SIZE (GET_MODE (dest))
846 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
847 && GET_CODE (SUBREG_REG (dest)) == REG
848 && CONVERT_REGISTER_TO_SSA_P (REGNO (SUBREG_REG (dest))))
850 destp = &XEXP (dest, 0);
851 dest = XEXP (dest, 0);
854 /* Some SETs also use the REG specified in their LHS.
855 These can be detected by the presence of
856 STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
857 in the LHS. Handle these by changing
858 (set (subreg (reg foo)) ...)
859 into
860 (sequence [(set (reg foo_1) (reg foo))
861 (set (subreg (reg foo_1)) ...)])
863 FIXME: Much of the time this is too much. For some constructs
864 we know that the output register is strictly an output
865 (paradoxical SUBREGs and some libcalls for example).
867 For those cases we are better off not making the false
868 dependency. */
869 if (GET_CODE (dest) == STRICT_LOW_PART
870 || GET_CODE (dest) == SUBREG
871 || GET_CODE (dest) == SIGN_EXTRACT
872 || GET_CODE (dest) == ZERO_EXTRACT)
874 rtx i, reg;
875 reg = dest;
877 while (GET_CODE (reg) == STRICT_LOW_PART
878 || GET_CODE (reg) == SUBREG
879 || GET_CODE (reg) == SIGN_EXTRACT
880 || GET_CODE (reg) == ZERO_EXTRACT)
881 reg = XEXP (reg, 0);
883 if (GET_CODE (reg) == REG
884 && CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
886 /* Generate (set reg reg), and do renaming on it so
887 that it becomes (set reg_1 reg_0), and we will
888 replace reg with reg_1 in the SUBREG. */
890 struct rename_set_data *saved_new_renames;
891 saved_new_renames = context->new_renames;
892 context->new_renames = NULL;
893 i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
894 for_each_rtx (&i, rename_insn_1, data);
895 apply_delayed_renames (context);
896 context->new_renames = saved_new_renames;
899 else if (GET_CODE (dest) == REG
900 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
902 /* We found a genuine set of an interesting register. Tag
903 it so that we can create a new name for it after we finish
904 processing this insn. */
906 create_delayed_rename (context, destp);
908 /* Since we do not wish to (directly) traverse the
909 SET_DEST, recurse through for_each_rtx for the SET_SRC
910 and return. */
911 if (GET_CODE (x) == SET)
912 for_each_rtx (&SET_SRC (x), rename_insn_1, data);
913 return -1;
916 /* Otherwise, this was not an interesting destination. Continue
917 on, marking uses as normal. */
918 return 0;
921 case REG:
922 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x))
923 && REGNO (x) < ssa_max_reg_num)
925 rtx new_reg = ssa_rename_to_lookup (x);
927 if (new_reg != RENAME_NO_RTX)
929 if (new_reg != NULL_RTX)
931 if (GET_MODE (x) != GET_MODE (new_reg))
932 abort ();
933 *ptr = new_reg;
935 else
937 /* Undefined value used, rename it to a new pseudo register so
938 that it cannot conflict with an existing register */
939 *ptr = gen_reg_rtx (GET_MODE(x));
943 return -1;
945 case CLOBBER:
946 /* There is considerable debate on how CLOBBERs ought to be
947 handled in SSA. For now, we're keeping the CLOBBERs, which
948 means that we don't really have SSA form. There are a couple
949 of proposals for how to fix this problem, but neither is
950 implemented yet. */
952 rtx dest = XCEXP (x, 0, CLOBBER);
953 if (REG_P (dest))
955 if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
956 && REGNO (dest) < ssa_max_reg_num)
958 rtx new_reg = ssa_rename_to_lookup (dest);
959 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
960 XCEXP (x, 0, CLOBBER) = new_reg;
962 /* Stop traversing. */
963 return -1;
965 else
966 /* Continue traversing. */
967 return 0;
970 case PHI:
971 /* Never muck with the phi. We do that elsewhere, special-like. */
972 return -1;
974 default:
975 /* Anything else, continue traversing. */
976 return 0;
980 static rtx
981 gen_sequence ()
983 rtx first_insn = get_insns ();
984 rtx result;
985 rtx tem;
986 int i;
987 int len;
989 /* Count the insns in the chain. */
990 len = 0;
991 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
992 len++;
994 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
996 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
997 XVECEXP (result, 0, i) = tem;
999 return result;
1002 static void
1003 rename_block (bb, idom)
1004 int bb;
1005 dominance_info idom;
1007 basic_block b = BASIC_BLOCK (bb);
1008 edge e;
1009 rtx insn, next, last;
1010 struct rename_set_data *set_data = NULL;
1011 basic_block c;
1013 /* Step One: Walk the basic block, adding new names for sets and
1014 replacing uses. */
1016 next = b->head;
1017 last = b->end;
1020 insn = next;
1021 if (INSN_P (insn))
1023 struct rename_context context;
1024 context.done_renames = set_data;
1025 context.new_renames = NULL;
1026 context.current_insn = insn;
1028 start_sequence ();
1029 for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
1030 for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
1032 /* Sometimes, we end up with a sequence of insns that
1033 SSA needs to treat as a single insn. Wrap these in a
1034 SEQUENCE. (Any notes now get attached to the SEQUENCE,
1035 not to the old version inner insn.) */
1036 if (get_insns () != NULL_RTX)
1038 rtx seq;
1039 int i;
1041 emit (PATTERN (insn));
1042 seq = gen_sequence ();
1043 /* We really want a SEQUENCE of SETs, not a SEQUENCE
1044 of INSNs. */
1045 for (i = 0; i < XVECLEN (seq, 0); i++)
1046 XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
1047 PATTERN (insn) = seq;
1049 end_sequence ();
1051 apply_delayed_renames (&context);
1052 set_data = context.done_renames;
1055 next = NEXT_INSN (insn);
1057 while (insn != last);
1059 /* Step Two: Update the phi nodes of this block's successors. */
1061 for (e = b->succ; e; e = e->succ_next)
1063 if (e->dest == EXIT_BLOCK_PTR)
1064 continue;
1066 insn = first_insn_after_basic_block_note (e->dest);
1068 while (PHI_NODE_P (insn))
1070 rtx phi = PATTERN (insn);
1071 rtx reg;
1073 /* Find out which of our outgoing registers this node is
1074 intended to replace. Note that if this is not the first PHI
1075 node to have been created for this register, we have to
1076 jump through rename links to figure out which register
1077 we're talking about. This can easily be recognized by
1078 noting that the regno is new to this pass. */
1079 reg = SET_DEST (phi);
1080 if (REGNO (reg) >= ssa_max_reg_num)
1081 reg = ssa_rename_from_lookup (REGNO (reg));
1082 if (reg == NULL_RTX)
1083 abort ();
1084 reg = ssa_rename_to_lookup (reg);
1086 /* It is possible for the variable to be uninitialized on
1087 edges in. Reduce the arity of the PHI so that we don't
1088 consider those edges. */
1089 if (reg == NULL || reg == RENAME_NO_RTX)
1091 if (! remove_phi_alternative (phi, b))
1092 abort ();
1094 else
1096 /* When we created the PHI nodes, we did not know what mode
1097 the register should be. Now that we've found an original,
1098 we can fill that in. */
1099 if (GET_MODE (SET_DEST (phi)) == VOIDmode)
1100 PUT_MODE (SET_DEST (phi), GET_MODE (reg));
1101 else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1102 abort ();
1104 *phi_alternative (phi, bb) = reg;
1107 insn = NEXT_INSN (insn);
1111 /* Step Three: Do the same to the children of this block in
1112 dominator order. */
1114 FOR_EACH_BB (c)
1115 if (get_immediate_dominator (idom, c)->index == bb)
1116 rename_block (c->index, idom);
1118 /* Step Four: Update the sets to refer to their new register,
1119 and restore ssa_rename_to to its previous state. */
1121 while (set_data)
1123 struct rename_set_data *next;
1124 rtx old_reg = *set_data->reg_loc;
1126 if (*set_data->reg_loc != set_data->old_reg)
1127 abort ();
1128 *set_data->reg_loc = set_data->new_reg;
1130 ssa_rename_to_insert (old_reg, set_data->prev_reg);
1132 next = set_data->next;
1133 free (set_data);
1134 set_data = next;
1138 static void
1139 rename_registers (nregs, idom)
1140 int nregs;
1141 dominance_info idom;
1143 VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1144 ssa_rename_from_initialize ();
1146 ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1147 memset ((char *) ssa_rename_to_pseudo, 0, nregs * sizeof(rtx));
1148 memset ((char *) ssa_rename_to_hard, 0,
1149 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
1151 rename_block (0, idom);
1153 /* ??? Update basic_block_live_at_start, and other flow info
1154 as needed. */
1156 ssa_rename_to_pseudo = NULL;
1159 /* The main entry point for moving to SSA. */
1161 void
1162 convert_to_ssa ()
1164 /* Element I is the set of blocks that set register I. */
1165 sbitmap *evals;
1167 /* Dominator bitmaps. */
1168 sbitmap *dfs;
1169 sbitmap *idfs;
1171 /* Element I is the immediate dominator of block I. */
1172 dominance_info idom;
1174 int nregs;
1176 basic_block bb;
1178 /* Don't do it twice. */
1179 if (in_ssa_form)
1180 abort ();
1182 /* Need global_live_at_{start,end} up to date. Do not remove any
1183 dead code. We'll let the SSA optimizers do that. */
1184 life_analysis (get_insns (), NULL, 0);
1186 idom = calculate_dominance_info (CDI_DOMINATORS);
1188 if (rtl_dump_file)
1190 fputs (";; Immediate Dominators:\n", rtl_dump_file);
1191 FOR_EACH_BB (bb)
1192 fprintf (rtl_dump_file, ";\t%3d = %3d\n", bb->index,
1193 get_immediate_dominator (idom, bb)->index);
1194 fflush (rtl_dump_file);
1197 /* Compute dominance frontiers. */
1199 dfs = sbitmap_vector_alloc (last_basic_block, last_basic_block);
1200 compute_dominance_frontiers (dfs, idom);
1202 if (rtl_dump_file)
1204 dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
1205 "; Basic Block", dfs, last_basic_block);
1206 fflush (rtl_dump_file);
1209 /* Compute register evaluations. */
1211 ssa_max_reg_num = max_reg_num ();
1212 nregs = ssa_max_reg_num;
1213 evals = sbitmap_vector_alloc (nregs, last_basic_block);
1214 find_evaluations (evals, nregs);
1216 /* Compute the iterated dominance frontier for each register. */
1218 idfs = sbitmap_vector_alloc (nregs, last_basic_block);
1219 compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);
1221 if (rtl_dump_file)
1223 dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1224 "; Register", idfs, nregs);
1225 fflush (rtl_dump_file);
1228 /* Insert the phi nodes. */
1230 insert_phi_nodes (idfs, evals, nregs);
1232 /* Rename the registers to satisfy SSA. */
1234 rename_registers (nregs, idom);
1236 /* All done! Clean up and go home. */
1238 sbitmap_vector_free (dfs);
1239 sbitmap_vector_free (evals);
1240 sbitmap_vector_free (idfs);
1241 in_ssa_form = 1;
1243 reg_scan (get_insns (), max_reg_num (), 1);
1244 free_dominance_info (idom);
1247 /* REG is the representative temporary of its partition. Add it to the
1248 set of nodes to be processed, if it hasn't been already. Return the
1249 index of this register in the node set. */
1251 static inline int
1252 ephi_add_node (reg, nodes, n_nodes)
1253 rtx reg, *nodes;
1254 int *n_nodes;
1256 int i;
1257 for (i = *n_nodes - 1; i >= 0; --i)
1258 if (REGNO (reg) == REGNO (nodes[i]))
1259 return i;
1261 nodes[i = (*n_nodes)++] = reg;
1262 return i;
1265 /* Part one of the topological sort. This is a forward (downward) search
1266 through the graph collecting a stack of nodes to process. Assuming no
1267 cycles, the nodes at top of the stack when we are finished will have
1268 no other dependencies. */
1270 static int *
1271 ephi_forward (t, visited, succ, tstack)
1272 int t;
1273 sbitmap visited;
1274 sbitmap *succ;
1275 int *tstack;
1277 int s;
1279 SET_BIT (visited, t);
1281 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1283 if (! TEST_BIT (visited, s))
1284 tstack = ephi_forward (s, visited, succ, tstack);
1287 *tstack++ = t;
1288 return tstack;
1291 /* Part two of the topological sort. The is a backward search through
1292 a cycle in the graph, copying the data forward as we go. */
1294 static void
1295 ephi_backward (t, visited, pred, nodes)
1296 int t;
1297 sbitmap visited, *pred;
1298 rtx *nodes;
1300 int p;
1302 SET_BIT (visited, t);
1304 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1306 if (! TEST_BIT (visited, p))
1308 ephi_backward (p, visited, pred, nodes);
1309 emit_move_insn (nodes[p], nodes[t]);
1314 /* Part two of the topological sort. Create the copy for a register
1315 and any cycle of which it is a member. */
1317 static void
1318 ephi_create (t, visited, pred, succ, nodes)
1319 int t;
1320 sbitmap visited, *pred, *succ;
1321 rtx *nodes;
1323 rtx reg_u = NULL_RTX;
1324 int unvisited_predecessors = 0;
1325 int p;
1327 /* Iterate through the predecessor list looking for unvisited nodes.
1328 If there are any, we have a cycle, and must deal with that. At
1329 the same time, look for a visited predecessor. If there is one,
1330 we won't need to create a temporary. */
1332 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1334 if (! TEST_BIT (visited, p))
1335 unvisited_predecessors = 1;
1336 else if (!reg_u)
1337 reg_u = nodes[p];
1340 if (unvisited_predecessors)
1342 /* We found a cycle. Copy out one element of the ring (if necessary),
1343 then traverse the ring copying as we go. */
1345 if (!reg_u)
1347 reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
1348 emit_move_insn (reg_u, nodes[t]);
1351 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1353 if (! TEST_BIT (visited, p))
1355 ephi_backward (p, visited, pred, nodes);
1356 emit_move_insn (nodes[p], reg_u);
1360 else
1362 /* No cycle. Just copy the value from a successor. */
1364 int s;
1365 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1367 SET_BIT (visited, t);
1368 emit_move_insn (nodes[t], nodes[s]);
1369 return;
1374 /* Convert the edge to normal form. */
1376 static void
1377 eliminate_phi (e, reg_partition)
1378 edge e;
1379 partition reg_partition;
1381 int n_nodes;
1382 sbitmap *pred, *succ;
1383 sbitmap visited;
1384 rtx *nodes;
1385 int *stack, *tstack;
1386 rtx insn;
1387 int i;
1389 /* Collect an upper bound on the number of registers needing processing. */
1391 insn = first_insn_after_basic_block_note (e->dest);
1393 n_nodes = 0;
1394 while (PHI_NODE_P (insn))
1396 insn = next_nonnote_insn (insn);
1397 n_nodes += 2;
1400 if (n_nodes == 0)
1401 return;
1403 /* Build the auxiliary graph R(B).
1405 The nodes of the graph are the members of the register partition
1406 present in Phi(B). There is an edge from FIND(T0)->FIND(T1) for
1407 each T0 = PHI(...,T1,...), where T1 is for the edge from block C. */
1409 nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
1410 pred = sbitmap_vector_alloc (n_nodes, n_nodes);
1411 succ = sbitmap_vector_alloc (n_nodes, n_nodes);
1412 sbitmap_vector_zero (pred, n_nodes);
1413 sbitmap_vector_zero (succ, n_nodes);
1415 insn = first_insn_after_basic_block_note (e->dest);
1417 n_nodes = 0;
1418 for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
1420 rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
1421 rtx tgt = SET_DEST (PATTERN (insn));
1422 rtx reg;
1424 /* There may be no phi alternative corresponding to this edge.
1425 This indicates that the phi variable is undefined along this
1426 edge. */
1427 if (preg == NULL)
1428 continue;
1429 reg = *preg;
1431 if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
1432 abort ();
1434 reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
1435 tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
1436 /* If the two registers are already in the same partition,
1437 nothing will need to be done. */
1438 if (reg != tgt)
1440 int ireg, itgt;
1442 ireg = ephi_add_node (reg, nodes, &n_nodes);
1443 itgt = ephi_add_node (tgt, nodes, &n_nodes);
1445 SET_BIT (pred[ireg], itgt);
1446 SET_BIT (succ[itgt], ireg);
1450 if (n_nodes == 0)
1451 goto out;
1453 /* Begin a topological sort of the graph. */
1455 visited = sbitmap_alloc (n_nodes);
1456 sbitmap_zero (visited);
1458 tstack = stack = (int *) alloca (n_nodes * sizeof (int));
1460 for (i = 0; i < n_nodes; ++i)
1461 if (! TEST_BIT (visited, i))
1462 tstack = ephi_forward (i, visited, succ, tstack);
1464 sbitmap_zero (visited);
1466 /* As we find a solution to the tsort, collect the implementation
1467 insns in a sequence. */
1468 start_sequence ();
1470 while (tstack != stack)
1472 i = *--tstack;
1473 if (! TEST_BIT (visited, i))
1474 ephi_create (i, visited, pred, succ, nodes);
1477 insn = get_insns ();
1478 end_sequence ();
1479 insert_insn_on_edge (insn, e);
1480 if (rtl_dump_file)
1481 fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
1482 e->src->index, e->dest->index);
1484 sbitmap_free (visited);
1485 out:
1486 sbitmap_vector_free (pred);
1487 sbitmap_vector_free (succ);
1490 /* For basic block B, consider all phi insns which provide an
1491 alternative corresponding to an incoming abnormal critical edge.
1492 Place the phi alternative corresponding to that abnormal critical
1493 edge in the same register class as the destination of the set.
1495 From Morgan, p. 178:
1497 For each abnormal critical edge (C, B),
1498 if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B,
1499 and C is the ith predecessor of B,
1500 then T0 and Ti must be equivalent.
1502 Return non-zero iff any such cases were found for which the two
1503 regs were not already in the same class. */
1505 static int
1506 make_regs_equivalent_over_bad_edges (bb, reg_partition)
1507 int bb;
1508 partition reg_partition;
1510 int changed = 0;
1511 basic_block b = BASIC_BLOCK (bb);
1512 rtx phi;
1514 /* Advance to the first phi node. */
1515 phi = first_insn_after_basic_block_note (b);
1517 /* Scan all the phi nodes. */
1518 for (;
1519 PHI_NODE_P (phi);
1520 phi = next_nonnote_insn (phi))
1522 edge e;
1523 int tgt_regno;
1524 rtx set = PATTERN (phi);
1525 rtx tgt = SET_DEST (set);
1527 /* The set target is expected to be an SSA register. */
1528 if (GET_CODE (tgt) != REG
1529 || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
1530 abort ();
1531 tgt_regno = REGNO (tgt);
1533 /* Scan incoming abnormal critical edges. */
1534 for (e = b->pred; e; e = e->pred_next)
1535 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
1537 rtx *alt = phi_alternative (set, e->src->index);
1538 int alt_regno;
1540 /* If there is no alternative corresponding to this edge,
1541 the value is undefined along the edge, so just go on. */
1542 if (alt == 0)
1543 continue;
1545 /* The phi alternative is expected to be an SSA register. */
1546 if (GET_CODE (*alt) != REG
1547 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1548 abort ();
1549 alt_regno = REGNO (*alt);
1551 /* If the set destination and the phi alternative aren't
1552 already in the same class... */
1553 if (partition_find (reg_partition, tgt_regno)
1554 != partition_find (reg_partition, alt_regno))
1556 /* ... make them such. */
1557 if (conflicting_hard_regs_p (tgt_regno, alt_regno))
1558 /* It is illegal to unify a hard register with a
1559 different register. */
1560 abort ();
1562 partition_union (reg_partition,
1563 tgt_regno, alt_regno);
1564 ++changed;
1569 return changed;
1572 /* Consider phi insns in basic block BB pairwise. If the set target
1573 of both isns are equivalent pseudos, make the corresponding phi
1574 alternatives in each phi corresponding equivalent.
1576 Return nonzero if any new register classes were unioned. */
1578 static int
1579 make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
1580 int bb;
1581 partition reg_partition;
1583 int changed = 0;
1584 basic_block b = BASIC_BLOCK (bb);
1585 rtx phi;
1587 /* Advance to the first phi node. */
1588 phi = first_insn_after_basic_block_note (b);
1590 /* Scan all the phi nodes. */
1591 for (;
1592 PHI_NODE_P (phi);
1593 phi = next_nonnote_insn (phi))
1595 rtx set = PATTERN (phi);
1596 /* The regno of the destination of the set. */
1597 int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));
1599 rtx phi2 = next_nonnote_insn (phi);
1601 /* Scan all phi nodes following this one. */
1602 for (;
1603 PHI_NODE_P (phi2);
1604 phi2 = next_nonnote_insn (phi2))
1606 rtx set2 = PATTERN (phi2);
1607 /* The regno of the destination of the set. */
1608 int tgt2_regno = REGNO (SET_DEST (set2));
1610 /* Are the set destinations equivalent regs? */
1611 if (partition_find (reg_partition, tgt_regno) ==
1612 partition_find (reg_partition, tgt2_regno))
1614 edge e;
1615 /* Scan over edges. */
1616 for (e = b->pred; e; e = e->pred_next)
1618 int pred_block = e->src->index;
1619 /* Identify the phi alternatives from both phi
1620 nodes corresponding to this edge. */
1621 rtx *alt = phi_alternative (set, pred_block);
1622 rtx *alt2 = phi_alternative (set2, pred_block);
1624 /* If one of the phi nodes doesn't have a
1625 corresponding alternative, just skip it. */
1626 if (alt == 0 || alt2 == 0)
1627 continue;
1629 /* Both alternatives should be SSA registers. */
1630 if (GET_CODE (*alt) != REG
1631 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1632 abort ();
1633 if (GET_CODE (*alt2) != REG
1634 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
1635 abort ();
1637 /* If the alternatives aren't already in the same
1638 class ... */
1639 if (partition_find (reg_partition, REGNO (*alt))
1640 != partition_find (reg_partition, REGNO (*alt2)))
1642 /* ... make them so. */
1643 if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
1644 /* It is illegal to unify a hard register with
1645 a different register. */
1646 abort ();
1648 partition_union (reg_partition,
1649 REGNO (*alt), REGNO (*alt2));
1650 ++changed;
1657 return changed;
1660 /* Compute a conservative partition of outstanding pseudo registers.
1661 See Morgan 7.3.1. */
1663 static partition
1664 compute_conservative_reg_partition ()
1666 basic_block bb;
1667 int changed = 0;
1669 /* We don't actually work with hard registers, but it's easier to
1670 carry them around anyway rather than constantly doing register
1671 number arithmetic. */
1672 partition p =
1673 partition_new (ssa_definition->num_elements);
1675 /* The first priority is to make sure registers that might have to
1676 be copied on abnormal critical edges are placed in the same
1677 partition. This saves us from having to split abnormal critical
1678 edges. */
1679 FOR_EACH_BB_REVERSE (bb)
1680 changed += make_regs_equivalent_over_bad_edges (bb->index, p);
1682 /* Now we have to insure that corresponding arguments of phi nodes
1683 assigning to corresponding regs are equivalent. Iterate until
1684 nothing changes. */
1685 while (changed > 0)
1687 changed = 0;
1688 FOR_EACH_BB_REVERSE (bb)
1689 changed += make_equivalent_phi_alternatives_equivalent (bb->index, p);
1692 return p;
1695 /* The following functions compute a register partition that attempts
1696 to eliminate as many reg copies and phi node copies as possible by
1697 coalescing registers. This is the strategy:
1699 1. As in the conservative case, the top priority is to coalesce
1700 registers that otherwise would cause copies to be placed on
1701 abnormal critical edges (which isn't possible).
1703 2. Figure out which regs are involved (in the LHS or RHS) of
1704 copies and phi nodes. Compute conflicts among these regs.
1706 3. Walk around the instruction stream, placing two regs in the
1707 same class of the partition if one appears on the LHS and the
1708 other on the RHS of a copy or phi node and the two regs don't
1709 conflict. The conflict information of course needs to be
1710 updated.
1712 4. If anything has changed, there may be new opportunities to
1713 coalesce regs, so go back to 2.
1716 /* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
1717 same class of partition P, if they aren't already. Update
1718 CONFLICTS appropriately.
1720 Returns one if REG1 and REG2 were placed in the same class but were
1721 not previously; zero otherwise.
1723 See Morgan figure 11.15. */
1725 static int
1726 coalesce_if_unconflicting (p, conflicts, reg1, reg2)
1727 partition p;
1728 conflict_graph conflicts;
1729 int reg1;
1730 int reg2;
1732 int reg;
1734 /* Work only on SSA registers. */
1735 if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
1736 return 0;
1738 /* Find the canonical regs for the classes containing REG1 and
1739 REG2. */
1740 reg1 = partition_find (p, reg1);
1741 reg2 = partition_find (p, reg2);
1743 /* If they're already in the same class, there's nothing to do. */
1744 if (reg1 == reg2)
1745 return 0;
1747 /* If the regs conflict, our hands are tied. */
1748 if (conflicting_hard_regs_p (reg1, reg2) ||
1749 conflict_graph_conflict_p (conflicts, reg1, reg2))
1750 return 0;
1752 /* We're good to go. Put the regs in the same partition. */
1753 partition_union (p, reg1, reg2);
1755 /* Find the new canonical reg for the merged class. */
1756 reg = partition_find (p, reg1);
1758 /* Merge conflicts from the two previous classes. */
1759 conflict_graph_merge_regs (conflicts, reg, reg1);
1760 conflict_graph_merge_regs (conflicts, reg, reg2);
1762 return 1;
1765 /* For each register copy insn in basic block BB, place the LHS and
1766 RHS regs in the same class in partition P if they do not conflict
1767 according to CONFLICTS.
1769 Returns the number of changes that were made to P.
1771 See Morgan figure 11.14. */
1773 static int
1774 coalesce_regs_in_copies (bb, p, conflicts)
1775 basic_block bb;
1776 partition p;
1777 conflict_graph conflicts;
1779 int changed = 0;
1780 rtx insn;
1781 rtx end = bb->end;
1783 /* Scan the instruction stream of the block. */
1784 for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
1786 rtx pattern;
1787 rtx src;
1788 rtx dest;
1790 /* If this isn't a set insn, go to the next insn. */
1791 if (GET_CODE (insn) != INSN)
1792 continue;
1793 pattern = PATTERN (insn);
1794 if (GET_CODE (pattern) != SET)
1795 continue;
1797 src = SET_SRC (pattern);
1798 dest = SET_DEST (pattern);
1800 /* We're only looking for copies. */
1801 if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
1802 continue;
1804 /* Coalesce only if the reg modes are the same. As long as
1805 each reg's rtx is unique, it can have only one mode, so two
1806 pseudos of different modes can't be coalesced into one.
1808 FIXME: We can probably get around this by inserting SUBREGs
1809 where appropriate, but for now we don't bother. */
1810 if (GET_MODE (src) != GET_MODE (dest))
1811 continue;
1813 /* Found a copy; see if we can use the same reg for both the
1814 source and destination (and thus eliminate the copy,
1815 ultimately). */
1816 changed += coalesce_if_unconflicting (p, conflicts,
1817 REGNO (src), REGNO (dest));
1820 return changed;
1823 struct phi_coalesce_context
1825 partition p;
1826 conflict_graph conflicts;
1827 int changed;
1830 /* Callback function for for_each_successor_phi. If the set
1831 destination and the phi alternative regs do not conflict, place
1832 them in the same paritition class. DATA is a pointer to a
1833 phi_coalesce_context struct. */
1835 static int
1836 coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
1837 rtx insn ATTRIBUTE_UNUSED;
1838 int dest_regno;
1839 int src_regno;
1840 void *data;
1842 struct phi_coalesce_context *context =
1843 (struct phi_coalesce_context *) data;
1845 /* Attempt to use the same reg, if they don't conflict. */
1846 context->changed
1847 += coalesce_if_unconflicting (context->p, context->conflicts,
1848 dest_regno, src_regno);
1849 return 0;
1852 /* For each alternative in a phi function corresponding to basic block
1853 BB (in phi nodes in successor block to BB), place the reg in the
1854 phi alternative and the reg to which the phi value is set into the
1855 same class in partition P, if allowed by CONFLICTS.
1857 Return the number of changes that were made to P.
1859 See Morgan figure 11.14. */
1861 static int
1862 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1863 basic_block bb;
1864 partition p;
1865 conflict_graph conflicts;
1867 struct phi_coalesce_context context;
1868 context.p = p;
1869 context.conflicts = conflicts;
1870 context.changed = 0;
1872 for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);
1874 return context.changed;
1877 /* Compute and return a partition of pseudos. Where possible,
1878 non-conflicting pseudos are placed in the same class.
1880 The caller is responsible for deallocating the returned partition. */
1882 static partition
1883 compute_coalesced_reg_partition ()
1885 basic_block bb;
1886 int changed = 0;
1887 regset_head phi_set_head;
1888 regset phi_set = &phi_set_head;
1890 partition p =
1891 partition_new (ssa_definition->num_elements);
1893 /* The first priority is to make sure registers that might have to
1894 be copied on abnormal critical edges are placed in the same
1895 partition. This saves us from having to split abnormal critical
1896 edges (which can't be done). */
1897 FOR_EACH_BB_REVERSE (bb)
1898 make_regs_equivalent_over_bad_edges (bb->index, p);
1900 INIT_REG_SET (phi_set);
1904 conflict_graph conflicts;
1906 changed = 0;
1908 /* Build the set of registers involved in phi nodes, either as
1909 arguments to the phi function or as the target of a set. */
1910 CLEAR_REG_SET (phi_set);
1911 mark_phi_and_copy_regs (phi_set);
1913 /* Compute conflicts. */
1914 conflicts = conflict_graph_compute (phi_set, p);
1916 /* FIXME: Better would be to process most frequently executed
1917 blocks first, so that most frequently executed copies would
1918 be more likely to be removed by register coalescing. But any
1919 order will generate correct, if non-optimal, results. */
1920 FOR_EACH_BB_REVERSE (bb)
1922 changed += coalesce_regs_in_copies (bb, p, conflicts);
1923 changed +=
1924 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts);
1927 conflict_graph_delete (conflicts);
1929 while (changed > 0);
1931 FREE_REG_SET (phi_set);
1933 return p;
1936 /* Mark the regs in a phi node. PTR is a phi expression or one of its
1937 components (a REG or a CONST_INT). DATA is a reg set in which to
1938 set all regs. Called from for_each_rtx. */
1940 static int
1941 mark_reg_in_phi (ptr, data)
1942 rtx *ptr;
1943 void *data;
1945 rtx expr = *ptr;
1946 regset set = (regset) data;
1948 switch (GET_CODE (expr))
1950 case REG:
1951 SET_REGNO_REG_SET (set, REGNO (expr));
1952 /* Fall through. */
1953 case CONST_INT:
1954 case PHI:
1955 return 0;
1956 default:
1957 abort ();
1961 /* Mark in PHI_SET all pseudos that are used in a phi node -- either
1962 set from a phi expression, or used as an argument in one. Also
1963 mark regs that are the source or target of a reg copy. Uses
1964 ssa_definition. */
1966 static void
1967 mark_phi_and_copy_regs (phi_set)
1968 regset phi_set;
1970 unsigned int reg;
1972 /* Scan the definitions of all regs. */
1973 for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
1974 if (CONVERT_REGISTER_TO_SSA_P (reg))
1976 rtx insn = VARRAY_RTX (ssa_definition, reg);
1977 rtx pattern;
1978 rtx src;
1980 if (insn == NULL
1981 || (GET_CODE (insn) == NOTE
1982 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED))
1983 continue;
1984 pattern = PATTERN (insn);
1985 /* Sometimes we get PARALLEL insns. These aren't phi nodes or
1986 copies. */
1987 if (GET_CODE (pattern) != SET)
1988 continue;
1989 src = SET_SRC (pattern);
1991 if (GET_CODE (src) == REG)
1993 /* It's a reg copy. */
1994 SET_REGNO_REG_SET (phi_set, reg);
1995 SET_REGNO_REG_SET (phi_set, REGNO (src));
1997 else if (GET_CODE (src) == PHI)
1999 /* It's a phi node. Mark the reg being set. */
2000 SET_REGNO_REG_SET (phi_set, reg);
2001 /* Mark the regs used in the phi function. */
2002 for_each_rtx (&src, mark_reg_in_phi, phi_set);
2004 /* ... else nothing to do. */
2008 /* Rename regs in insn PTR that are equivalent. DATA is the register
2009 partition which specifies equivalences. */
2011 static int
2012 rename_equivalent_regs_in_insn (ptr, data)
2013 rtx *ptr;
2014 void* data;
2016 rtx x = *ptr;
2017 partition reg_partition = (partition) data;
2019 if (x == NULL_RTX)
2020 return 0;
2022 switch (GET_CODE (x))
2024 case REG:
2025 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
2027 unsigned int regno = REGNO (x);
2028 unsigned int new_regno = partition_find (reg_partition, regno);
2029 rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);
2031 if (canonical_element_rtx != NULL_RTX &&
2032 HARD_REGISTER_P (canonical_element_rtx))
2034 if (REGNO (canonical_element_rtx) != regno)
2035 *ptr = canonical_element_rtx;
2037 else if (regno != new_regno)
2039 rtx new_reg = regno_reg_rtx[new_regno];
2040 if (GET_MODE (x) != GET_MODE (new_reg))
2041 abort ();
2042 *ptr = new_reg;
2045 return -1;
2047 case PHI:
2048 /* No need to rename the phi nodes. We'll check equivalence
2049 when inserting copies. */
2050 return -1;
2052 default:
2053 /* Anything else, continue traversing. */
2054 return 0;
2058 /* Record the register's canonical element stored in SRFP in the
2059 canonical_elements sbitmap packaged in DATA. This function is used
2060 as a callback function for traversing ssa_rename_from. */
2062 static int
2063 record_canonical_element_1 (srfp, data)
2064 void **srfp;
2065 void *data;
2067 unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
2068 sbitmap canonical_elements =
2069 ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
2070 partition reg_partition =
2071 ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
2073 SET_BIT (canonical_elements, partition_find (reg_partition, reg));
2074 return 1;
2077 /* For each class in the REG_PARTITION corresponding to a particular
2078 hard register and machine mode, check that there are no other
2079 classes with the same hard register and machine mode. Returns
2080 nonzero if this is the case, i.e., the partition is acceptable. */
2082 static int
2083 check_hard_regs_in_partition (reg_partition)
2084 partition reg_partition;
2086 /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
2087 number and machine mode has already been seen. This is a
2088 problem with the partition. */
2089 sbitmap canonical_elements;
2090 int element_index;
2091 int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
2092 int reg;
2093 int mach_mode;
2095 /* Collect a list of canonical elements. */
2096 canonical_elements = sbitmap_alloc (max_reg_num ());
2097 sbitmap_zero (canonical_elements);
2098 ssa_rename_from_traverse (&record_canonical_element_1,
2099 canonical_elements, reg_partition);
2101 /* We have not seen any hard register uses. */
2102 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
2103 for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
2104 already_seen[reg][mach_mode] = 0;
2106 /* Check for classes with the same hard register and machine mode. */
2107 EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
2109 rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
2110 if (hard_reg_rtx != NULL_RTX &&
2111 HARD_REGISTER_P (hard_reg_rtx) &&
2112 already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
2113 /* Two distinct partition classes should be mapped to the same
2114 hard register. */
2115 return 0;
2118 sbitmap_free (canonical_elements);
2120 return 1;
2123 /* Rename regs that are equivalent in REG_PARTITION. Also collapse
2124 any SEQUENCE insns. */
2126 static void
2127 rename_equivalent_regs (reg_partition)
2128 partition reg_partition;
2130 basic_block b;
2132 FOR_EACH_BB_REVERSE (b)
2134 rtx next = b->head;
2135 rtx last = b->end;
2136 rtx insn;
2140 insn = next;
2141 if (INSN_P (insn))
2143 for_each_rtx (&PATTERN (insn),
2144 rename_equivalent_regs_in_insn,
2145 reg_partition);
2146 for_each_rtx (&REG_NOTES (insn),
2147 rename_equivalent_regs_in_insn,
2148 reg_partition);
2150 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2152 rtx s = PATTERN (insn);
2153 int slen = XVECLEN (s, 0);
2154 int i;
2156 if (slen <= 1)
2157 abort ();
2159 PATTERN (insn) = XVECEXP (s, 0, slen-1);
2160 for (i = 0; i < slen - 1; i++)
2161 emit_insn_before (XVECEXP (s, 0, i), insn);
2165 next = NEXT_INSN (insn);
2167 while (insn != last);
2171 /* The main entry point for moving from SSA. */
2173 void
2174 convert_from_ssa ()
2176 basic_block b, bb;
2177 partition reg_partition;
2178 rtx insns = get_insns ();
2180 /* Need global_live_at_{start,end} up to date. There should not be
2181 any significant dead code at this point, except perhaps dead
2182 stores. So do not take the time to perform dead code elimination.
2184 Register coalescing needs death notes, so generate them. */
2185 life_analysis (insns, NULL, PROP_DEATH_NOTES);
2187 /* Figure out which regs in copies and phi nodes don't conflict and
2188 therefore can be coalesced. */
2189 if (conservative_reg_partition)
2190 reg_partition = compute_conservative_reg_partition ();
2191 else
2192 reg_partition = compute_coalesced_reg_partition ();
2194 if (!check_hard_regs_in_partition (reg_partition))
2195 /* Two separate partitions should correspond to the same hard
2196 register but do not. */
2197 abort ();
2199 rename_equivalent_regs (reg_partition);
2201 /* Eliminate the PHI nodes. */
2202 FOR_EACH_BB_REVERSE (b)
2204 edge e;
2206 for (e = b->pred; e; e = e->pred_next)
2207 if (e->src != ENTRY_BLOCK_PTR)
2208 eliminate_phi (e, reg_partition);
2211 partition_delete (reg_partition);
2213 /* Actually delete the PHI nodes. */
2214 FOR_EACH_BB_REVERSE (bb)
2216 rtx insn = bb->head;
2218 while (1)
2220 /* If this is a PHI node delete it. */
2221 if (PHI_NODE_P (insn))
2223 if (insn == bb->end)
2224 bb->end = PREV_INSN (insn);
2225 insn = delete_insn (insn);
2227 /* Since all the phi nodes come at the beginning of the
2228 block, if we find an ordinary insn, we can stop looking
2229 for more phi nodes. */
2230 else if (INSN_P (insn))
2231 break;
2232 /* If we've reached the end of the block, stop. */
2233 else if (insn == bb->end)
2234 break;
2235 else
2236 insn = NEXT_INSN (insn);
2240 /* Commit all the copy nodes needed to convert out of SSA form. */
2241 commit_edge_insertions ();
2243 in_ssa_form = 0;
2245 count_or_remove_death_notes (NULL, 1);
2247 /* Deallocate the data structures. */
2248 ssa_definition = 0;
2249 ssa_rename_from_free ();
2252 /* Scan phi nodes in successors to BB. For each such phi node that
2253 has a phi alternative value corresponding to BB, invoke FN. FN
2254 is passed the entire phi node insn, the regno of the set
2255 destination, the regno of the phi argument corresponding to BB,
2256 and DATA.
2258 If FN ever returns non-zero, stops immediately and returns this
2259 value. Otherwise, returns zero. */
2262 for_each_successor_phi (bb, fn, data)
2263 basic_block bb;
2264 successor_phi_fn fn;
2265 void *data;
2267 edge e;
2269 if (bb == EXIT_BLOCK_PTR)
2270 return 0;
2272 /* Scan outgoing edges. */
2273 for (e = bb->succ; e != NULL; e = e->succ_next)
2275 rtx insn;
2277 basic_block successor = e->dest;
2278 if (successor == ENTRY_BLOCK_PTR
2279 || successor == EXIT_BLOCK_PTR)
2280 continue;
2282 /* Advance to the first non-label insn of the successor block. */
2283 insn = first_insn_after_basic_block_note (successor);
2285 if (insn == NULL)
2286 continue;
2288 /* Scan phi nodes in the successor. */
2289 for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
2291 int result;
2292 rtx phi_set = PATTERN (insn);
2293 rtx *alternative = phi_alternative (phi_set, bb->index);
2294 rtx phi_src;
2296 /* This phi function may not have an alternative
2297 corresponding to the incoming edge, indicating the
2298 assigned variable is not defined along the edge. */
2299 if (alternative == NULL)
2300 continue;
2301 phi_src = *alternative;
2303 /* Invoke the callback. */
2304 result = (*fn) (insn, REGNO (SET_DEST (phi_set)),
2305 REGNO (phi_src), data);
2307 /* Terminate if requested. */
2308 if (result != 0)
2309 return result;
2313 return 0;
2316 /* Assuming the ssa_rename_from mapping has been established, yields
2317 nonzero if 1) only one SSA register of REG1 and REG2 comes from a
2318 hard register or 2) both SSA registers REG1 and REG2 come from
2319 different hard registers. */
2321 static int
2322 conflicting_hard_regs_p (reg1, reg2)
2323 int reg1;
2324 int reg2;
2326 int orig_reg1 = original_register (reg1);
2327 int orig_reg2 = original_register (reg2);
2328 if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
2329 && orig_reg1 != orig_reg2)
2330 return 1;
2331 if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
2332 return 1;
2333 if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
2334 return 1;
2336 return 0;