* arm.md (stack_tie): New insn. Use an idiom that the alias code
[official-gcc.git] / gcc / regclass.c
blob08051cdb64273409575a58b61ae18f92d6f8343d
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
186 #ifdef DEBUG_REGISTER_NAMES
187 const char * reg_names[] = REGISTER_NAMES;
188 #endif
190 /* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
195 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
197 /* 1 if class does contain register of given mode. */
199 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
201 /* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
204 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206 /* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
209 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211 /* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
214 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216 #ifdef FORBIDDEN_INC_DEC_CLASSES
218 /* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
221 static int forbidden_inc_dec_class[N_REG_CLASSES];
223 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
226 static char *in_inc_dec;
228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230 #ifdef CLASS_CANNOT_CHANGE_MODE
232 /* These are the classes containing only registers that can be used in
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
236 static int class_can_change_mode[N_REG_CLASSES];
238 /* Registers, including pseudos, which change modes in some way that
239 is illegal. */
241 static regset reg_changes_mode;
243 #endif /* CLASS_CANNOT_CHANGE_MODE */
245 /* Sample MEM values for use by memory_move_secondary_cost. */
247 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
249 /* Linked list of reg_info structures allocated for reg_n_info array.
250 Grouping all of the allocated structures together in one lump
251 means only one call to bzero to clear them, rather than n smaller
252 calls. */
253 struct reg_info_data {
254 struct reg_info_data *next; /* next set of reg_info structures */
255 size_t min_index; /* minimum index # */
256 size_t max_index; /* maximum index # */
257 char used_p; /* non-zero if this has been used previously */
258 reg_info data[1]; /* beginning of the reg_info data */
261 static struct reg_info_data *reg_info_head;
263 /* No more global register variables may be declared; true once
264 regclass has been initialized. */
266 static int no_global_reg_vars = 0;
269 /* Function called only once to initialize the above data on reg usage.
270 Once this is done, various switches may override. */
272 void
273 init_reg_sets ()
275 int i, j;
277 /* First copy the register information from the initial int form into
278 the regsets. */
280 for (i = 0; i < N_REG_CLASSES; i++)
282 CLEAR_HARD_REG_SET (reg_class_contents[i]);
284 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
285 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
286 if (int_reg_class_contents[i][j / 32]
287 & ((unsigned) 1 << (j % 32)))
288 SET_HARD_REG_BIT (reg_class_contents[i], j);
291 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
292 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
293 memset (global_regs, 0, sizeof global_regs);
295 /* Do any additional initialization regsets may need */
296 INIT_ONCE_REG_SET ();
298 #ifdef REG_ALLOC_ORDER
299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
300 inv_reg_alloc_order[reg_alloc_order[i]] = i;
301 #endif
304 /* After switches have been processed, which perhaps alter
305 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
307 static void
308 init_reg_sets_1 ()
310 unsigned int i, j;
311 unsigned int /* enum machine_mode */ m;
312 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
314 /* This macro allows the fixed or call-used registers
315 and the register classes to depend on target flags. */
317 #ifdef CONDITIONAL_REGISTER_USAGE
318 CONDITIONAL_REGISTER_USAGE;
319 #endif
321 /* Compute number of hard regs in each class. */
323 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
324 for (i = 0; i < N_REG_CLASSES; i++)
325 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
326 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
327 reg_class_size[i]++;
329 /* Initialize the table of subunions.
330 reg_class_subunion[I][J] gets the largest-numbered reg-class
331 that is contained in the union of classes I and J. */
333 for (i = 0; i < N_REG_CLASSES; i++)
335 for (j = 0; j < N_REG_CLASSES; j++)
337 #ifdef HARD_REG_SET
338 register /* Declare it register if it's a scalar. */
339 #endif
340 HARD_REG_SET c;
341 int k;
343 COPY_HARD_REG_SET (c, reg_class_contents[i]);
344 IOR_HARD_REG_SET (c, reg_class_contents[j]);
345 for (k = 0; k < N_REG_CLASSES; k++)
347 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
348 subclass1);
349 continue;
351 subclass1:
352 /* keep the largest subclass */ /* SPEE 900308 */
353 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
354 reg_class_contents[(int) reg_class_subunion[i][j]],
355 subclass2);
356 reg_class_subunion[i][j] = (enum reg_class) k;
357 subclass2:
363 /* Initialize the table of superunions.
364 reg_class_superunion[I][J] gets the smallest-numbered reg-class
365 containing the union of classes I and J. */
367 for (i = 0; i < N_REG_CLASSES; i++)
369 for (j = 0; j < N_REG_CLASSES; j++)
371 #ifdef HARD_REG_SET
372 register /* Declare it register if it's a scalar. */
373 #endif
374 HARD_REG_SET c;
375 int k;
377 COPY_HARD_REG_SET (c, reg_class_contents[i]);
378 IOR_HARD_REG_SET (c, reg_class_contents[j]);
379 for (k = 0; k < N_REG_CLASSES; k++)
380 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
382 superclass:
383 reg_class_superunion[i][j] = (enum reg_class) k;
387 /* Initialize the tables of subclasses and superclasses of each reg class.
388 First clear the whole table, then add the elements as they are found. */
390 for (i = 0; i < N_REG_CLASSES; i++)
392 for (j = 0; j < N_REG_CLASSES; j++)
394 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
395 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
399 for (i = 0; i < N_REG_CLASSES; i++)
401 if (i == (int) NO_REGS)
402 continue;
404 for (j = i + 1; j < N_REG_CLASSES; j++)
406 enum reg_class *p;
408 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
409 subclass);
410 continue;
411 subclass:
412 /* Reg class I is a subclass of J.
413 Add J to the table of superclasses of I. */
414 p = &reg_class_superclasses[i][0];
415 while (*p != LIM_REG_CLASSES) p++;
416 *p = (enum reg_class) j;
417 /* Add I to the table of superclasses of J. */
418 p = &reg_class_subclasses[j][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) i;
424 /* Initialize "constant" tables. */
426 CLEAR_HARD_REG_SET (fixed_reg_set);
427 CLEAR_HARD_REG_SET (call_used_reg_set);
428 CLEAR_HARD_REG_SET (call_fixed_reg_set);
429 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
431 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
433 n_non_fixed_regs = 0;
435 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
437 if (fixed_regs[i])
438 SET_HARD_REG_BIT (fixed_reg_set, i);
439 else
440 n_non_fixed_regs++;
442 if (call_used_regs[i])
443 SET_HARD_REG_BIT (call_used_reg_set, i);
444 if (call_fixed_regs[i])
445 SET_HARD_REG_BIT (call_fixed_reg_set, i);
446 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
447 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
449 /* There are a couple of fixed registers that we know are safe to
450 exclude from being clobbered by calls:
452 The frame pointer is always preserved across calls. The arg pointer
453 is if it is fixed. The stack pointer usually is, unless
454 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
455 If we are generating PIC code, the PIC offset table register is
456 preserved across calls, though the target can override that. */
458 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
460 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
461 else if (i == HARD_FRAME_POINTER_REGNUM)
463 #endif
464 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
467 #endif
468 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
469 else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
471 #endif
472 else if (0
473 #ifdef CALL_REALLY_USED_REGISTERS
474 || call_really_used_regs[i]
475 #else
476 || call_used_regs[i]
477 #endif
478 || global_regs[i])
479 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
482 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
483 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
484 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
485 for (i = 0; i < N_REG_CLASSES; i++)
486 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
487 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
488 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
489 && HARD_REGNO_MODE_OK (j, m))
491 contains_reg_of_mode [i][m] = 1;
492 allocatable_regs_of_mode [m] = 1;
493 break;
496 /* Initialize the move cost table. Find every subset of each class
497 and take the maximum cost of moving any subset to any other. */
499 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
500 if (allocatable_regs_of_mode [m])
502 for (i = 0; i < N_REG_CLASSES; i++)
503 if (contains_reg_of_mode [i][m])
504 for (j = 0; j < N_REG_CLASSES; j++)
506 int cost;
507 enum reg_class *p1, *p2;
509 if (!contains_reg_of_mode [j][m])
511 move_cost[m][i][j] = 65536;
512 may_move_in_cost[m][i][j] = 65536;
513 may_move_out_cost[m][i][j] = 65536;
515 else
517 cost = REGISTER_MOVE_COST (m, i, j);
519 for (p2 = &reg_class_subclasses[j][0];
520 *p2 != LIM_REG_CLASSES;
521 p2++)
522 if (*p2 != i && contains_reg_of_mode [*p2][m])
523 cost = MAX (cost, move_cost [m][i][*p2]);
525 for (p1 = &reg_class_subclasses[i][0];
526 *p1 != LIM_REG_CLASSES;
527 p1++)
528 if (*p1 != j && contains_reg_of_mode [*p1][m])
529 cost = MAX (cost, move_cost [m][*p1][j]);
531 move_cost[m][i][j] = cost;
533 if (reg_class_subset_p (i, j))
534 may_move_in_cost[m][i][j] = 0;
535 else
536 may_move_in_cost[m][i][j] = cost;
538 if (reg_class_subset_p (j, i))
539 may_move_out_cost[m][i][j] = 0;
540 else
541 may_move_out_cost[m][i][j] = cost;
544 else
545 for (j = 0; j < N_REG_CLASSES; j++)
547 move_cost[m][i][j] = 65536;
548 may_move_in_cost[m][i][j] = 65536;
549 may_move_out_cost[m][i][j] = 65536;
553 #ifdef CLASS_CANNOT_CHANGE_MODE
555 HARD_REG_SET c;
556 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
558 for (i = 0; i < N_REG_CLASSES; i++)
560 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
561 class_can_change_mode [i] = 0;
562 continue;
563 ok_class:
564 class_can_change_mode [i] = 1;
567 #endif /* CLASS_CANNOT_CHANGE_MODE */
570 /* Compute the table of register modes.
571 These values are used to record death information for individual registers
572 (as opposed to a multi-register mode). */
574 static void
575 init_reg_modes ()
577 int i;
579 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
581 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
583 /* If we couldn't find a valid mode, just use the previous mode.
584 ??? One situation in which we need to do this is on the mips where
585 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
586 to use DF mode for the even registers and VOIDmode for the odd
587 (for the cpu models where the odd ones are inaccessible). */
588 if (reg_raw_mode[i] == VOIDmode)
589 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
593 /* Finish initializing the register sets and
594 initialize the register modes. */
596 void
597 init_regs ()
599 /* This finishes what was started by init_reg_sets, but couldn't be done
600 until after register usage was specified. */
601 init_reg_sets_1 ();
603 init_reg_modes ();
606 /* Initialize some fake stack-frame MEM references for use in
607 memory_move_secondary_cost. */
609 void
610 init_fake_stack_mems ()
612 #ifdef HAVE_SECONDARY_RELOADS
614 int i;
616 for (i = 0; i < MAX_MACHINE_MODE; i++)
617 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
619 #endif
622 #ifdef HAVE_SECONDARY_RELOADS
624 /* Compute extra cost of moving registers to/from memory due to reloads.
625 Only needed if secondary reloads are required for memory moves. */
628 memory_move_secondary_cost (mode, class, in)
629 enum machine_mode mode;
630 enum reg_class class;
631 int in;
633 enum reg_class altclass;
634 int partial_cost = 0;
635 /* We need a memory reference to feed to SECONDARY... macros. */
636 /* mem may be unused even if the SECONDARY_ macros are defined. */
637 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
640 if (in)
642 #ifdef SECONDARY_INPUT_RELOAD_CLASS
643 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
644 #else
645 altclass = NO_REGS;
646 #endif
648 else
650 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
651 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
652 #else
653 altclass = NO_REGS;
654 #endif
657 if (altclass == NO_REGS)
658 return 0;
660 if (in)
661 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
662 else
663 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
665 if (class == altclass)
666 /* This isn't simply a copy-to-temporary situation. Can't guess
667 what it is, so MEMORY_MOVE_COST really ought not to be calling
668 here in that case.
670 I'm tempted to put in an abort here, but returning this will
671 probably only give poor estimates, which is what we would've
672 had before this code anyways. */
673 return partial_cost;
675 /* Check if the secondary reload register will also need a
676 secondary reload. */
677 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
679 #endif
681 /* Return a machine mode that is legitimate for hard reg REGNO and large
682 enough to save nregs. If we can't find one, return VOIDmode. */
684 enum machine_mode
685 choose_hard_reg_mode (regno, nregs)
686 unsigned int regno ATTRIBUTE_UNUSED;
687 unsigned int nregs;
689 unsigned int /* enum machine_mode */ m;
690 enum machine_mode found_mode = VOIDmode, mode;
692 /* We first look for the largest integer mode that can be validly
693 held in REGNO. If none, we look for the largest floating-point mode.
694 If we still didn't find a valid mode, try CCmode. */
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if (HARD_REGNO_NREGS (regno, mode) == nregs
700 && HARD_REGNO_MODE_OK (regno, mode))
701 found_mode = mode;
703 if (found_mode != VOIDmode)
704 return found_mode;
706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
707 mode != VOIDmode;
708 mode = GET_MODE_WIDER_MODE (mode))
709 if (HARD_REGNO_NREGS (regno, mode) == nregs
710 && HARD_REGNO_MODE_OK (regno, mode))
711 found_mode = mode;
713 if (found_mode != VOIDmode)
714 return found_mode;
716 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
717 mode != VOIDmode;
718 mode = GET_MODE_WIDER_MODE (mode))
719 if (HARD_REGNO_NREGS (regno, mode) == nregs
720 && HARD_REGNO_MODE_OK (regno, mode))
721 found_mode = mode;
723 if (found_mode != VOIDmode)
724 return found_mode;
726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
727 mode != VOIDmode;
728 mode = GET_MODE_WIDER_MODE (mode))
729 if (HARD_REGNO_NREGS (regno, mode) == nregs
730 && HARD_REGNO_MODE_OK (regno, mode))
731 found_mode = mode;
733 if (found_mode != VOIDmode)
734 return found_mode;
736 /* Iterate over all of the CCmodes. */
737 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
739 mode = (enum machine_mode) m;
740 if (HARD_REGNO_NREGS (regno, mode) == nregs
741 && HARD_REGNO_MODE_OK (regno, mode))
742 return mode;
745 /* We can't find a mode valid for this register. */
746 return VOIDmode;
749 /* Specify the usage characteristics of the register named NAME.
750 It should be a fixed register if FIXED and a
751 call-used register if CALL_USED. */
753 void
754 fix_register (name, fixed, call_used)
755 const char *name;
756 int fixed, call_used;
758 int i;
760 /* Decode the name and update the primary form of
761 the register info. */
763 if ((i = decode_reg_name (name)) >= 0)
765 if ((i == STACK_POINTER_REGNUM
766 #ifdef HARD_FRAME_POINTER_REGNUM
767 || i == HARD_FRAME_POINTER_REGNUM
768 #else
769 || i == FRAME_POINTER_REGNUM
770 #endif
772 && (fixed == 0 || call_used == 0))
774 static const char * const what_option[2][2] = {
775 { "call-saved", "call-used" },
776 { "no-such-option", "fixed" }};
778 error ("can't use '%s' as a %s register", name,
779 what_option[fixed][call_used]);
781 else
783 fixed_regs[i] = fixed;
784 call_used_regs[i] = call_used;
785 #ifdef CALL_REALLY_USED_REGISTERS
786 if (fixed == 0)
787 call_really_used_regs[i] = call_used;
788 #endif
791 else
793 warning ("unknown register name: %s", name);
797 /* Mark register number I as global. */
799 void
800 globalize_reg (i)
801 int i;
803 if (fixed_regs[i] == 0 && no_global_reg_vars)
804 error ("global register variable follows a function definition");
806 if (global_regs[i])
808 warning ("register used for two global register variables");
809 return;
812 if (call_used_regs[i] && ! fixed_regs[i])
813 warning ("call-clobbered register used for global register variable");
815 global_regs[i] = 1;
817 /* If already fixed, nothing else to do. */
818 if (fixed_regs[i])
819 return;
821 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
822 n_non_fixed_regs--;
824 SET_HARD_REG_BIT (fixed_reg_set, i);
825 SET_HARD_REG_BIT (call_used_reg_set, i);
826 SET_HARD_REG_BIT (call_fixed_reg_set, i);
827 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
830 /* Now the data and code for the `regclass' pass, which happens
831 just before local-alloc. */
833 /* The `costs' struct records the cost of using a hard register of each class
834 and of using memory for each pseudo. We use this data to set up
835 register class preferences. */
837 struct costs
839 int cost[N_REG_CLASSES];
840 int mem_cost;
843 /* Structure used to record preferrences of given pseudo. */
844 struct reg_pref
846 /* (enum reg_class) prefclass is the preferred class. */
847 char prefclass;
849 /* altclass is a register class that we should use for allocating
850 pseudo if no register in the preferred class is available.
851 If no register in this class is available, memory is preferred.
853 It might appear to be more general to have a bitmask of classes here,
854 but since it is recommended that there be a class corresponding to the
855 union of most major pair of classes, that generality is not required. */
856 char altclass;
859 /* Record the cost of each class for each pseudo. */
861 static struct costs *costs;
863 /* Initialized once, and used to initialize cost values for each insn. */
865 static struct costs init_cost;
867 /* Record preferrences of each pseudo.
868 This is available after `regclass' is run. */
870 static struct reg_pref *reg_pref;
872 /* Allocated buffers for reg_pref. */
874 static struct reg_pref *reg_pref_buffer;
876 /* Frequency of executions of current insn. */
878 static int frequency;
880 static rtx scan_one_insn PARAMS ((rtx, int));
881 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
882 static void dump_regclass PARAMS ((FILE *));
883 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
884 const char **, rtx,
885 struct costs *, struct reg_pref *));
886 static int copy_cost PARAMS ((rtx, enum machine_mode,
887 enum reg_class, int));
888 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
889 #ifdef FORBIDDEN_INC_DEC_CLASSES
890 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
891 #endif
892 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
894 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
895 This function is sometimes called before the info has been computed.
896 When that happens, just return GENERAL_REGS, which is innocuous. */
898 enum reg_class
899 reg_preferred_class (regno)
900 int regno;
902 if (reg_pref == 0)
903 return GENERAL_REGS;
904 return (enum reg_class) reg_pref[regno].prefclass;
907 enum reg_class
908 reg_alternate_class (regno)
909 int regno;
911 if (reg_pref == 0)
912 return ALL_REGS;
914 return (enum reg_class) reg_pref[regno].altclass;
917 /* Initialize some global data for this pass. */
919 void
920 regclass_init ()
922 int i;
924 init_cost.mem_cost = 10000;
925 for (i = 0; i < N_REG_CLASSES; i++)
926 init_cost.cost[i] = 10000;
928 /* This prevents dump_flow_info from losing if called
929 before regclass is run. */
930 reg_pref = NULL;
932 /* No more global register variables may be declared. */
933 no_global_reg_vars = 1;
936 /* Dump register costs. */
937 static void
938 dump_regclass (dump)
939 FILE *dump;
941 static const char *const reg_class_names[] = REG_CLASS_NAMES;
942 int i;
943 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
945 int /* enum reg_class */ class;
946 if (REG_N_REFS (i))
948 fprintf (dump, " Register %i costs:", i);
949 for (class = 0; class < (int) N_REG_CLASSES; class++)
950 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
951 #ifdef FORBIDDEN_INC_DEC_CLASSES
952 && (!in_inc_dec[i]
953 || !forbidden_inc_dec_class[(enum reg_class) class])
954 #endif
955 #ifdef CLASS_CANNOT_CHANGE_MODE
956 && (!REGNO_REG_SET_P (reg_changes_mode, i)
957 || class_can_change_mode [(enum reg_class) class])
958 #endif
960 fprintf (dump, " %s:%i", reg_class_names[class],
961 costs[i].cost[(enum reg_class) class]);
962 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
968 /* Calculate the costs of insn operands. */
970 static void
971 record_operand_costs (insn, op_costs, reg_pref)
972 rtx insn;
973 struct costs *op_costs;
974 struct reg_pref *reg_pref;
976 const char *constraints[MAX_RECOG_OPERANDS];
977 enum machine_mode modes[MAX_RECOG_OPERANDS];
978 int i;
980 for (i = 0; i < recog_data.n_operands; i++)
982 constraints[i] = recog_data.constraints[i];
983 modes[i] = recog_data.operand_mode[i];
986 /* If we get here, we are set up to record the costs of all the
987 operands for this insn. Start by initializing the costs.
988 Then handle any address registers. Finally record the desired
989 classes for any pseudos, doing it twice if some pair of
990 operands are commutative. */
992 for (i = 0; i < recog_data.n_operands; i++)
994 op_costs[i] = init_cost;
996 if (GET_CODE (recog_data.operand[i]) == SUBREG)
998 rtx inner = SUBREG_REG (recog_data.operand[i]);
999 #ifdef CLASS_CANNOT_CHANGE_MODE
1000 if (GET_CODE (inner) == REG
1001 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
1002 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
1003 #endif
1004 recog_data.operand[i] = inner;
1007 if (GET_CODE (recog_data.operand[i]) == MEM)
1008 record_address_regs (XEXP (recog_data.operand[i], 0),
1009 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1010 else if (constraints[i][0] == 'p')
1011 record_address_regs (recog_data.operand[i],
1012 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1015 /* Check for commutative in a separate loop so everything will
1016 have been initialized. We must do this even if one operand
1017 is a constant--see addsi3 in m68k.md. */
1019 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1020 if (constraints[i][0] == '%')
1022 const char *xconstraints[MAX_RECOG_OPERANDS];
1023 int j;
1025 /* Handle commutative operands by swapping the constraints.
1026 We assume the modes are the same. */
1028 for (j = 0; j < recog_data.n_operands; j++)
1029 xconstraints[j] = constraints[j];
1031 xconstraints[i] = constraints[i+1];
1032 xconstraints[i+1] = constraints[i];
1033 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1034 recog_data.operand, modes,
1035 xconstraints, insn, op_costs, reg_pref);
1038 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1039 recog_data.operand, modes,
1040 constraints, insn, op_costs, reg_pref);
1043 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1044 time it would save code to put a certain register in a certain class.
1045 PASS, when nonzero, inhibits some optimizations which need only be done
1046 once.
1047 Return the last insn processed, so that the scan can be continued from
1048 there. */
1050 static rtx
1051 scan_one_insn (insn, pass)
1052 rtx insn;
1053 int pass;
1055 enum rtx_code code = GET_CODE (insn);
1056 enum rtx_code pat_code;
1057 rtx set, note;
1058 int i, j;
1059 struct costs op_costs[MAX_RECOG_OPERANDS];
1061 if (GET_RTX_CLASS (code) != 'i')
1062 return insn;
1064 pat_code = GET_CODE (PATTERN (insn));
1065 if (pat_code == USE
1066 || pat_code == CLOBBER
1067 || pat_code == ASM_INPUT
1068 || pat_code == ADDR_VEC
1069 || pat_code == ADDR_DIFF_VEC)
1070 return insn;
1072 set = single_set (insn);
1073 extract_insn (insn);
1075 /* If this insn loads a parameter from its stack slot, then
1076 it represents a savings, rather than a cost, if the
1077 parameter is stored in memory. Record this fact. */
1079 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1080 && GET_CODE (SET_SRC (set)) == MEM
1081 && (note = find_reg_note (insn, REG_EQUIV,
1082 NULL_RTX)) != 0
1083 && GET_CODE (XEXP (note, 0)) == MEM)
1085 costs[REGNO (SET_DEST (set))].mem_cost
1086 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1087 GENERAL_REGS, 1)
1088 * frequency);
1089 record_address_regs (XEXP (SET_SRC (set), 0),
1090 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1091 return insn;
1094 /* Improve handling of two-address insns such as
1095 (set X (ashift CONST Y)) where CONST must be made to
1096 match X. Change it into two insns: (set X CONST)
1097 (set X (ashift X Y)). If we left this for reloading, it
1098 would probably get three insns because X and Y might go
1099 in the same place. This prevents X and Y from receiving
1100 the same hard reg.
1102 We can only do this if the modes of operands 0 and 1
1103 (which might not be the same) are tieable and we only need
1104 do this during our first pass. */
1106 if (pass == 0 && optimize
1107 && recog_data.n_operands >= 3
1108 && recog_data.constraints[1][0] == '0'
1109 && recog_data.constraints[1][1] == 0
1110 && CONSTANT_P (recog_data.operand[1])
1111 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1112 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1113 && GET_CODE (recog_data.operand[0]) == REG
1114 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1115 recog_data.operand_mode[1]))
1117 rtx previnsn = prev_real_insn (insn);
1118 rtx dest
1119 = gen_lowpart (recog_data.operand_mode[1],
1120 recog_data.operand[0]);
1121 rtx newinsn
1122 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1124 /* If this insn was the start of a basic block,
1125 include the new insn in that block.
1126 We need not check for code_label here;
1127 while a basic block can start with a code_label,
1128 INSN could not be at the beginning of that block. */
1129 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1131 basic_block b;
1132 FOR_EACH_BB (b)
1133 if (insn == b->head)
1134 b->head = newinsn;
1137 /* This makes one more setting of new insns's dest. */
1138 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1139 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1140 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1142 *recog_data.operand_loc[1] = recog_data.operand[0];
1143 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1144 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1145 for (i = recog_data.n_dups - 1; i >= 0; i--)
1146 if (recog_data.dup_num[i] == 1)
1148 *recog_data.dup_loc[i] = recog_data.operand[0];
1149 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1150 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1153 return PREV_INSN (newinsn);
1156 record_operand_costs (insn, op_costs, reg_pref);
1158 /* Now add the cost for each operand to the total costs for
1159 its register. */
1161 for (i = 0; i < recog_data.n_operands; i++)
1162 if (GET_CODE (recog_data.operand[i]) == REG
1163 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1165 int regno = REGNO (recog_data.operand[i]);
1166 struct costs *p = &costs[regno], *q = &op_costs[i];
1168 p->mem_cost += q->mem_cost * frequency;
1169 for (j = 0; j < N_REG_CLASSES; j++)
1170 p->cost[j] += q->cost[j] * frequency;
1173 return insn;
1176 /* This is a pass of the compiler that scans all instructions
1177 and calculates the preferred class for each pseudo-register.
1178 This information can be accessed later by calling `reg_preferred_class'.
1179 This pass comes just before local register allocation. */
1181 void
1182 regclass (f, nregs, dump)
1183 rtx f;
1184 int nregs;
1185 FILE *dump;
1187 rtx insn;
1188 int i;
1189 int pass;
1191 init_recog ();
1193 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1195 #ifdef CLASS_CANNOT_CHANGE_MODE
1196 reg_changes_mode = BITMAP_XMALLOC ();
1197 #endif
1199 #ifdef FORBIDDEN_INC_DEC_CLASSES
1201 in_inc_dec = (char *) xmalloc (nregs);
1203 /* Initialize information about which register classes can be used for
1204 pseudos that are auto-incremented or auto-decremented. It would
1205 seem better to put this in init_reg_sets, but we need to be able
1206 to allocate rtx, which we can't do that early. */
1208 for (i = 0; i < N_REG_CLASSES; i++)
1210 rtx r = gen_rtx_REG (VOIDmode, 0);
1211 enum machine_mode m;
1212 int j;
1214 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1215 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1217 REGNO (r) = j;
1219 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1220 m = (enum machine_mode) ((int) m + 1))
1221 if (HARD_REGNO_MODE_OK (j, m))
1223 PUT_MODE (r, m);
1225 /* If a register is not directly suitable for an
1226 auto-increment or decrement addressing mode and
1227 requires secondary reloads, disallow its class from
1228 being used in such addresses. */
1230 if ((0
1231 #ifdef SECONDARY_RELOAD_CLASS
1232 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1233 != NO_REGS)
1234 #else
1235 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1236 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1237 != NO_REGS)
1238 #endif
1239 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1240 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1241 != NO_REGS)
1242 #endif
1243 #endif
1245 && ! auto_inc_dec_reg_p (r, m))
1246 forbidden_inc_dec_class[i] = 1;
1250 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1252 /* Normally we scan the insns once and determine the best class to use for
1253 each register. However, if -fexpensive_optimizations are on, we do so
1254 twice, the second time using the tentative best classes to guide the
1255 selection. */
1257 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1259 basic_block bb;
1261 if (dump)
1262 fprintf (dump, "\n\nPass %i\n\n",pass);
1263 /* Zero out our accumulation of the cost of each class for each reg. */
1265 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1267 #ifdef FORBIDDEN_INC_DEC_CLASSES
1268 memset (in_inc_dec, 0, nregs);
1269 #endif
1271 /* Scan the instructions and record each time it would
1272 save code to put a certain register in a certain class. */
1274 if (!optimize)
1276 frequency = REG_FREQ_MAX;
1277 for (insn = f; insn; insn = NEXT_INSN (insn))
1278 insn = scan_one_insn (insn, pass);
1280 else
1281 FOR_EACH_BB (bb)
1283 /* Show that an insn inside a loop is likely to be executed three
1284 times more than insns outside a loop. This is much more
1285 aggressive than the assumptions made elsewhere and is being
1286 tried as an experiment. */
1287 frequency = REG_FREQ_FROM_BB (bb);
1288 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1290 insn = scan_one_insn (insn, pass);
1291 if (insn == bb->end)
1292 break;
1296 /* Now for each register look at how desirable each class is
1297 and find which class is preferred. Store that in
1298 `prefclass'. Record in `altclass' the largest register
1299 class any of whose registers is better than memory. */
1301 if (pass == 0)
1302 reg_pref = reg_pref_buffer;
1304 if (dump)
1306 dump_regclass (dump);
1307 fprintf (dump,"\n");
1309 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1311 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1312 enum reg_class best = ALL_REGS, alt = NO_REGS;
1313 /* This is an enum reg_class, but we call it an int
1314 to save lots of casts. */
1315 int class;
1316 struct costs *p = &costs[i];
1318 /* In non-optimizing compilation REG_N_REFS is not initialized
1319 yet. */
1320 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1321 continue;
1323 for (class = (int) ALL_REGS - 1; class > 0; class--)
1325 /* Ignore classes that are too small for this operand or
1326 invalid for an operand that was auto-incremented. */
1327 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1328 #ifdef FORBIDDEN_INC_DEC_CLASSES
1329 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1330 #endif
1331 #ifdef CLASS_CANNOT_CHANGE_MODE
1332 || (REGNO_REG_SET_P (reg_changes_mode, i)
1333 && ! class_can_change_mode [class])
1334 #endif
1337 else if (p->cost[class] < best_cost)
1339 best_cost = p->cost[class];
1340 best = (enum reg_class) class;
1342 else if (p->cost[class] == best_cost)
1343 best = reg_class_subunion[(int) best][class];
1346 /* Record the alternate register class; i.e., a class for which
1347 every register in it is better than using memory. If adding a
1348 class would make a smaller class (i.e., no union of just those
1349 classes exists), skip that class. The major unions of classes
1350 should be provided as a register class. Don't do this if we
1351 will be doing it again later. */
1353 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1354 for (class = 0; class < N_REG_CLASSES; class++)
1355 if (p->cost[class] < p->mem_cost
1356 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1357 > reg_class_size[(int) alt])
1358 #ifdef FORBIDDEN_INC_DEC_CLASSES
1359 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1360 #endif
1361 #ifdef CLASS_CANNOT_CHANGE_MODE
1362 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1363 && ! class_can_change_mode [class])
1364 #endif
1366 alt = reg_class_subunion[(int) alt][class];
1368 /* If we don't add any classes, nothing to try. */
1369 if (alt == best)
1370 alt = NO_REGS;
1372 if (dump
1373 && (reg_pref[i].prefclass != (int) best
1374 || reg_pref[i].altclass != (int) alt))
1376 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1377 fprintf (dump, " Register %i", i);
1378 if (alt == ALL_REGS || best == ALL_REGS)
1379 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1380 else if (alt == NO_REGS)
1381 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1382 else
1383 fprintf (dump, " pref %s, else %s\n",
1384 reg_class_names[(int) best],
1385 reg_class_names[(int) alt]);
1388 /* We cast to (int) because (char) hits bugs in some compilers. */
1389 reg_pref[i].prefclass = (int) best;
1390 reg_pref[i].altclass = (int) alt;
1394 #ifdef FORBIDDEN_INC_DEC_CLASSES
1395 free (in_inc_dec);
1396 #endif
1397 #ifdef CLASS_CANNOT_CHANGE_MODE
1398 BITMAP_XFREE (reg_changes_mode);
1399 #endif
1400 free (costs);
1403 /* Record the cost of using memory or registers of various classes for
1404 the operands in INSN.
1406 N_ALTS is the number of alternatives.
1408 N_OPS is the number of operands.
1410 OPS is an array of the operands.
1412 MODES are the modes of the operands, in case any are VOIDmode.
1414 CONSTRAINTS are the constraints to use for the operands. This array
1415 is modified by this procedure.
1417 This procedure works alternative by alternative. For each alternative
1418 we assume that we will be able to allocate all pseudos to their ideal
1419 register class and calculate the cost of using that alternative. Then
1420 we compute for each operand that is a pseudo-register, the cost of
1421 having the pseudo allocated to each register class and using it in that
1422 alternative. To this cost is added the cost of the alternative.
1424 The cost of each class for this insn is its lowest cost among all the
1425 alternatives. */
1427 static void
1428 record_reg_classes (n_alts, n_ops, ops, modes,
1429 constraints, insn, op_costs, reg_pref)
1430 int n_alts;
1431 int n_ops;
1432 rtx *ops;
1433 enum machine_mode *modes;
1434 const char **constraints;
1435 rtx insn;
1436 struct costs *op_costs;
1437 struct reg_pref *reg_pref;
1439 int alt;
1440 int i, j;
1441 rtx set;
1443 /* Process each alternative, each time minimizing an operand's cost with
1444 the cost for each operand in that alternative. */
1446 for (alt = 0; alt < n_alts; alt++)
1448 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1449 int alt_fail = 0;
1450 int alt_cost = 0;
1451 enum reg_class classes[MAX_RECOG_OPERANDS];
1452 int allows_mem[MAX_RECOG_OPERANDS];
1453 int class;
1455 for (i = 0; i < n_ops; i++)
1457 const char *p = constraints[i];
1458 rtx op = ops[i];
1459 enum machine_mode mode = modes[i];
1460 int allows_addr = 0;
1461 int win = 0;
1462 unsigned char c;
1464 /* Initially show we know nothing about the register class. */
1465 classes[i] = NO_REGS;
1466 allows_mem[i] = 0;
1468 /* If this operand has no constraints at all, we can conclude
1469 nothing about it since anything is valid. */
1471 if (*p == 0)
1473 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1474 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1476 continue;
1479 /* If this alternative is only relevant when this operand
1480 matches a previous operand, we do different things depending
1481 on whether this operand is a pseudo-reg or not. We must process
1482 any modifiers for the operand before we can make this test. */
1484 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1485 p++;
1487 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1489 /* Copy class and whether memory is allowed from the matching
1490 alternative. Then perform any needed cost computations
1491 and/or adjustments. */
1492 j = p[0] - '0';
1493 classes[i] = classes[j];
1494 allows_mem[i] = allows_mem[j];
1496 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1498 /* If this matches the other operand, we have no added
1499 cost and we win. */
1500 if (rtx_equal_p (ops[j], op))
1501 win = 1;
1503 /* If we can put the other operand into a register, add to
1504 the cost of this alternative the cost to copy this
1505 operand to the register used for the other operand. */
1507 else if (classes[j] != NO_REGS)
1508 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1510 else if (GET_CODE (ops[j]) != REG
1511 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1513 /* This op is a pseudo but the one it matches is not. */
1515 /* If we can't put the other operand into a register, this
1516 alternative can't be used. */
1518 if (classes[j] == NO_REGS)
1519 alt_fail = 1;
1521 /* Otherwise, add to the cost of this alternative the cost
1522 to copy the other operand to the register used for this
1523 operand. */
1525 else
1526 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1528 else
1530 /* The costs of this operand are not the same as the other
1531 operand since move costs are not symmetric. Moreover,
1532 if we cannot tie them, this alternative needs to do a
1533 copy, which is one instruction. */
1535 struct costs *pp = &this_op_costs[i];
1537 for (class = 0; class < N_REG_CLASSES; class++)
1538 pp->cost[class]
1539 = ((recog_data.operand_type[i] != OP_OUT
1540 ? may_move_in_cost[mode][class][(int) classes[i]]
1541 : 0)
1542 + (recog_data.operand_type[i] != OP_IN
1543 ? may_move_out_cost[mode][(int) classes[i]][class]
1544 : 0));
1546 /* If the alternative actually allows memory, make things
1547 a bit cheaper since we won't need an extra insn to
1548 load it. */
1550 pp->mem_cost
1551 = ((recog_data.operand_type[i] != OP_IN
1552 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1553 : 0)
1554 + (recog_data.operand_type[i] != OP_OUT
1555 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1556 : 0) - allows_mem[i]);
1558 /* If we have assigned a class to this register in our
1559 first pass, add a cost to this alternative corresponding
1560 to what we would add if this register were not in the
1561 appropriate class. */
1563 if (reg_pref)
1564 alt_cost
1565 += (may_move_in_cost[mode]
1566 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1567 [(int) classes[i]]);
1569 if (REGNO (ops[i]) != REGNO (ops[j])
1570 && ! find_reg_note (insn, REG_DEAD, op))
1571 alt_cost += 2;
1573 /* This is in place of ordinary cost computation
1574 for this operand, so skip to the end of the
1575 alternative (should be just one character). */
1576 while (*p && *p++ != ',')
1579 constraints[i] = p;
1580 continue;
1584 /* Scan all the constraint letters. See if the operand matches
1585 any of the constraints. Collect the valid register classes
1586 and see if this operand accepts memory. */
1588 while (*p && (c = *p++) != ',')
1589 switch (c)
1591 case '*':
1592 /* Ignore the next letter for this pass. */
1593 p++;
1594 break;
1596 case '?':
1597 alt_cost += 2;
1598 case '!': case '#': case '&':
1599 case '0': case '1': case '2': case '3': case '4':
1600 case '5': case '6': case '7': case '8': case '9':
1601 break;
1603 case 'p':
1604 allows_addr = 1;
1605 win = address_operand (op, GET_MODE (op));
1606 /* We know this operand is an address, so we want it to be
1607 allocated to a register that can be the base of an
1608 address, ie BASE_REG_CLASS. */
1609 classes[i]
1610 = reg_class_subunion[(int) classes[i]]
1611 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1612 break;
1614 case 'm': case 'o': case 'V':
1615 /* It doesn't seem worth distinguishing between offsettable
1616 and non-offsettable addresses here. */
1617 allows_mem[i] = 1;
1618 if (GET_CODE (op) == MEM)
1619 win = 1;
1620 break;
1622 case '<':
1623 if (GET_CODE (op) == MEM
1624 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1625 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1626 win = 1;
1627 break;
1629 case '>':
1630 if (GET_CODE (op) == MEM
1631 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1632 || GET_CODE (XEXP (op, 0)) == POST_INC))
1633 win = 1;
1634 break;
1636 case 'E':
1637 case 'F':
1638 if (GET_CODE (op) == CONST_DOUBLE)
1639 win = 1;
1640 break;
1642 case 'G':
1643 case 'H':
1644 if (GET_CODE (op) == CONST_DOUBLE
1645 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1646 win = 1;
1647 break;
1649 case 's':
1650 if (GET_CODE (op) == CONST_INT
1651 || (GET_CODE (op) == CONST_DOUBLE
1652 && GET_MODE (op) == VOIDmode))
1653 break;
1654 case 'i':
1655 if (CONSTANT_P (op)
1656 #ifdef LEGITIMATE_PIC_OPERAND_P
1657 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1658 #endif
1660 win = 1;
1661 break;
1663 case 'n':
1664 if (GET_CODE (op) == CONST_INT
1665 || (GET_CODE (op) == CONST_DOUBLE
1666 && GET_MODE (op) == VOIDmode))
1667 win = 1;
1668 break;
1670 case 'I':
1671 case 'J':
1672 case 'K':
1673 case 'L':
1674 case 'M':
1675 case 'N':
1676 case 'O':
1677 case 'P':
1678 if (GET_CODE (op) == CONST_INT
1679 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1680 win = 1;
1681 break;
1683 case 'X':
1684 win = 1;
1685 break;
1687 case 'g':
1688 if (GET_CODE (op) == MEM
1689 || (CONSTANT_P (op)
1690 #ifdef LEGITIMATE_PIC_OPERAND_P
1691 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1692 #endif
1694 win = 1;
1695 allows_mem[i] = 1;
1696 case 'r':
1697 classes[i]
1698 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1699 break;
1701 default:
1702 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1703 classes[i]
1704 = reg_class_subunion[(int) classes[i]]
1705 [(int) REG_CLASS_FROM_LETTER (c)];
1706 #ifdef EXTRA_CONSTRAINT
1707 else if (EXTRA_CONSTRAINT (op, c))
1708 win = 1;
1709 #endif
1710 break;
1713 constraints[i] = p;
1715 /* How we account for this operand now depends on whether it is a
1716 pseudo register or not. If it is, we first check if any
1717 register classes are valid. If not, we ignore this alternative,
1718 since we want to assume that all pseudos get allocated for
1719 register preferencing. If some register class is valid, compute
1720 the costs of moving the pseudo into that class. */
1722 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1724 if (classes[i] == NO_REGS)
1726 /* We must always fail if the operand is a REG, but
1727 we did not find a suitable class.
1729 Otherwise we may perform an uninitialized read
1730 from this_op_costs after the `continue' statement
1731 below. */
1732 alt_fail = 1;
1734 else
1736 struct costs *pp = &this_op_costs[i];
1738 for (class = 0; class < N_REG_CLASSES; class++)
1739 pp->cost[class]
1740 = ((recog_data.operand_type[i] != OP_OUT
1741 ? may_move_in_cost[mode][class][(int) classes[i]]
1742 : 0)
1743 + (recog_data.operand_type[i] != OP_IN
1744 ? may_move_out_cost[mode][(int) classes[i]][class]
1745 : 0));
1747 /* If the alternative actually allows memory, make things
1748 a bit cheaper since we won't need an extra insn to
1749 load it. */
1751 pp->mem_cost
1752 = ((recog_data.operand_type[i] != OP_IN
1753 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1754 : 0)
1755 + (recog_data.operand_type[i] != OP_OUT
1756 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1757 : 0) - allows_mem[i]);
1759 /* If we have assigned a class to this register in our
1760 first pass, add a cost to this alternative corresponding
1761 to what we would add if this register were not in the
1762 appropriate class. */
1764 if (reg_pref)
1765 alt_cost
1766 += (may_move_in_cost[mode]
1767 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1768 [(int) classes[i]]);
1772 /* Otherwise, if this alternative wins, either because we
1773 have already determined that or if we have a hard register of
1774 the proper class, there is no cost for this alternative. */
1776 else if (win
1777 || (GET_CODE (op) == REG
1778 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1781 /* If registers are valid, the cost of this alternative includes
1782 copying the object to and/or from a register. */
1784 else if (classes[i] != NO_REGS)
1786 if (recog_data.operand_type[i] != OP_OUT)
1787 alt_cost += copy_cost (op, mode, classes[i], 1);
1789 if (recog_data.operand_type[i] != OP_IN)
1790 alt_cost += copy_cost (op, mode, classes[i], 0);
1793 /* The only other way this alternative can be used is if this is a
1794 constant that could be placed into memory. */
1796 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1797 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1798 else
1799 alt_fail = 1;
1802 if (alt_fail)
1803 continue;
1805 /* Finally, update the costs with the information we've calculated
1806 about this alternative. */
1808 for (i = 0; i < n_ops; i++)
1809 if (GET_CODE (ops[i]) == REG
1810 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1812 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1813 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1815 pp->mem_cost = MIN (pp->mem_cost,
1816 (qq->mem_cost + alt_cost) * scale);
1818 for (class = 0; class < N_REG_CLASSES; class++)
1819 pp->cost[class] = MIN (pp->cost[class],
1820 (qq->cost[class] + alt_cost) * scale);
1824 /* If this insn is a single set copying operand 1 to operand 0
1825 and one operand is a pseudo with the other a hard reg or a pseudo
1826 that prefers a register that is in its own register class then
1827 we may want to adjust the cost of that register class to -1.
1829 Avoid the adjustment if the source does not die to avoid stressing of
1830 register allocator by preferrencing two coliding registers into single
1831 class.
1833 Also avoid the adjustment if a copy between registers of the class
1834 is expensive (ten times the cost of a default copy is considered
1835 arbitrarily expensive). This avoids losing when the preferred class
1836 is very expensive as the source of a copy instruction. */
1838 if ((set = single_set (insn)) != 0
1839 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1840 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1841 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1842 for (i = 0; i <= 1; i++)
1843 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1845 unsigned int regno = REGNO (ops[!i]);
1846 enum machine_mode mode = GET_MODE (ops[!i]);
1847 int class;
1848 unsigned int nr;
1850 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1852 enum reg_class pref = reg_pref[regno].prefclass;
1854 if ((reg_class_size[(unsigned char) pref]
1855 == CLASS_MAX_NREGS (pref, mode))
1856 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1857 op_costs[i].cost[(unsigned char) pref] = -1;
1859 else if (regno < FIRST_PSEUDO_REGISTER)
1860 for (class = 0; class < N_REG_CLASSES; class++)
1861 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1862 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1864 if (reg_class_size[class] == 1)
1865 op_costs[i].cost[class] = -1;
1866 else
1868 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1870 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1871 regno + nr))
1872 break;
1875 if (nr == HARD_REGNO_NREGS (regno,mode))
1876 op_costs[i].cost[class] = -1;
1882 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1883 TO_P is zero) a register of class CLASS in mode MODE.
1885 X must not be a pseudo. */
1887 static int
1888 copy_cost (x, mode, class, to_p)
1889 rtx x;
1890 enum machine_mode mode ATTRIBUTE_UNUSED;
1891 enum reg_class class;
1892 int to_p ATTRIBUTE_UNUSED;
1894 #ifdef HAVE_SECONDARY_RELOADS
1895 enum reg_class secondary_class = NO_REGS;
1896 #endif
1898 /* If X is a SCRATCH, there is actually nothing to move since we are
1899 assuming optimal allocation. */
1901 if (GET_CODE (x) == SCRATCH)
1902 return 0;
1904 /* Get the class we will actually use for a reload. */
1905 class = PREFERRED_RELOAD_CLASS (x, class);
1907 #ifdef HAVE_SECONDARY_RELOADS
1908 /* If we need a secondary reload (we assume here that we are using
1909 the secondary reload as an intermediate, not a scratch register), the
1910 cost is that to load the input into the intermediate register, then
1911 to copy them. We use a special value of TO_P to avoid recursion. */
1913 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1914 if (to_p == 1)
1915 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1916 #endif
1918 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1919 if (! to_p)
1920 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1921 #endif
1923 if (secondary_class != NO_REGS)
1924 return (move_cost[mode][(int) secondary_class][(int) class]
1925 + copy_cost (x, mode, secondary_class, 2));
1926 #endif /* HAVE_SECONDARY_RELOADS */
1928 /* For memory, use the memory move cost, for (hard) registers, use the
1929 cost to move between the register classes, and use 2 for everything
1930 else (constants). */
1932 if (GET_CODE (x) == MEM || class == NO_REGS)
1933 return MEMORY_MOVE_COST (mode, class, to_p);
1935 else if (GET_CODE (x) == REG)
1936 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1938 else
1939 /* If this is a constant, we may eventually want to call rtx_cost here. */
1940 return COSTS_N_INSNS (1);
1943 /* Record the pseudo registers we must reload into hard registers
1944 in a subexpression of a memory address, X.
1946 CLASS is the class that the register needs to be in and is either
1947 BASE_REG_CLASS or INDEX_REG_CLASS.
1949 SCALE is twice the amount to multiply the cost by (it is twice so we
1950 can represent half-cost adjustments). */
1952 static void
1953 record_address_regs (x, class, scale)
1954 rtx x;
1955 enum reg_class class;
1956 int scale;
1958 enum rtx_code code = GET_CODE (x);
1960 switch (code)
1962 case CONST_INT:
1963 case CONST:
1964 case CC0:
1965 case PC:
1966 case SYMBOL_REF:
1967 case LABEL_REF:
1968 return;
1970 case PLUS:
1971 /* When we have an address that is a sum,
1972 we must determine whether registers are "base" or "index" regs.
1973 If there is a sum of two registers, we must choose one to be
1974 the "base". Luckily, we can use the REG_POINTER to make a good
1975 choice most of the time. We only need to do this on machines
1976 that can have two registers in an address and where the base
1977 and index register classes are different.
1979 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1980 that seems bogus since it should only be set when we are sure
1981 the register is being used as a pointer. */
1984 rtx arg0 = XEXP (x, 0);
1985 rtx arg1 = XEXP (x, 1);
1986 enum rtx_code code0 = GET_CODE (arg0);
1987 enum rtx_code code1 = GET_CODE (arg1);
1989 /* Look inside subregs. */
1990 if (code0 == SUBREG)
1991 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1992 if (code1 == SUBREG)
1993 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1995 /* If this machine only allows one register per address, it must
1996 be in the first operand. */
1998 if (MAX_REGS_PER_ADDRESS == 1)
1999 record_address_regs (arg0, class, scale);
2001 /* If index and base registers are the same on this machine, just
2002 record registers in any non-constant operands. We assume here,
2003 as well as in the tests below, that all addresses are in
2004 canonical form. */
2006 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
2008 record_address_regs (arg0, class, scale);
2009 if (! CONSTANT_P (arg1))
2010 record_address_regs (arg1, class, scale);
2013 /* If the second operand is a constant integer, it doesn't change
2014 what class the first operand must be. */
2016 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2017 record_address_regs (arg0, class, scale);
2019 /* If the second operand is a symbolic constant, the first operand
2020 must be an index register. */
2022 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2023 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2025 /* If both operands are registers but one is already a hard register
2026 of index or base class, give the other the class that the hard
2027 register is not. */
2029 #ifdef REG_OK_FOR_BASE_P
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2032 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2033 record_address_regs (arg1,
2034 REG_OK_FOR_BASE_P (arg0)
2035 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2036 scale);
2037 else if (code0 == REG && code1 == REG
2038 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2039 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2040 record_address_regs (arg0,
2041 REG_OK_FOR_BASE_P (arg1)
2042 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2043 scale);
2044 #endif
2046 /* If one operand is known to be a pointer, it must be the base
2047 with the other operand the index. Likewise if the other operand
2048 is a MULT. */
2050 else if ((code0 == REG && REG_POINTER (arg0))
2051 || code1 == MULT)
2053 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2054 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2056 else if ((code1 == REG && REG_POINTER (arg1))
2057 || code0 == MULT)
2059 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2060 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2063 /* Otherwise, count equal chances that each might be a base
2064 or index register. This case should be rare. */
2066 else
2068 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2069 scale / 2);
2070 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2071 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2072 scale / 2);
2073 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2076 break;
2078 /* Double the importance of a pseudo register that is incremented
2079 or decremented, since it would take two extra insns
2080 if it ends up in the wrong place. */
2081 case POST_MODIFY:
2082 case PRE_MODIFY:
2083 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2084 2 * scale);
2085 if (REG_P (XEXP (XEXP (x, 1), 1)))
2086 record_address_regs (XEXP (XEXP (x, 1), 1),
2087 INDEX_REG_CLASS, 2 * scale);
2088 break;
2090 case POST_INC:
2091 case PRE_INC:
2092 case POST_DEC:
2093 case PRE_DEC:
2094 /* Double the importance of a pseudo register that is incremented
2095 or decremented, since it would take two extra insns
2096 if it ends up in the wrong place. If the operand is a pseudo,
2097 show it is being used in an INC_DEC context. */
2099 #ifdef FORBIDDEN_INC_DEC_CLASSES
2100 if (GET_CODE (XEXP (x, 0)) == REG
2101 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2102 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2103 #endif
2105 record_address_regs (XEXP (x, 0), class, 2 * scale);
2106 break;
2108 case REG:
2110 struct costs *pp = &costs[REGNO (x)];
2111 int i;
2113 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2115 for (i = 0; i < N_REG_CLASSES; i++)
2116 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2118 break;
2120 default:
2122 const char *fmt = GET_RTX_FORMAT (code);
2123 int i;
2124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2125 if (fmt[i] == 'e')
2126 record_address_regs (XEXP (x, i), class, scale);
2131 #ifdef FORBIDDEN_INC_DEC_CLASSES
2133 /* Return 1 if REG is valid as an auto-increment memory reference
2134 to an object of MODE. */
2136 static int
2137 auto_inc_dec_reg_p (reg, mode)
2138 rtx reg;
2139 enum machine_mode mode;
2141 if (HAVE_POST_INCREMENT
2142 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2143 return 1;
2145 if (HAVE_POST_DECREMENT
2146 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2147 return 1;
2149 if (HAVE_PRE_INCREMENT
2150 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2151 return 1;
2153 if (HAVE_PRE_DECREMENT
2154 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2155 return 1;
2157 return 0;
2159 #endif
2161 static short *renumber;
2162 static size_t regno_allocated;
2163 static unsigned int reg_n_max;
2165 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2166 reg_scan and flow_analysis that are indexed by the register number. If
2167 NEW_P is non zero, initialize all of the registers, otherwise only
2168 initialize the new registers allocated. The same table is kept from
2169 function to function, only reallocating it when we need more room. If
2170 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2172 void
2173 allocate_reg_info (num_regs, new_p, renumber_p)
2174 size_t num_regs;
2175 int new_p;
2176 int renumber_p;
2178 size_t size_info;
2179 size_t size_renumber;
2180 size_t min = (new_p) ? 0 : reg_n_max;
2181 struct reg_info_data *reg_data;
2183 if (num_regs > regno_allocated)
2185 size_t old_allocated = regno_allocated;
2187 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2188 size_renumber = regno_allocated * sizeof (short);
2190 if (!reg_n_info)
2192 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2193 renumber = (short *) xmalloc (size_renumber);
2194 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2195 * sizeof (struct reg_pref));
2198 else
2200 VARRAY_GROW (reg_n_info, regno_allocated);
2202 if (new_p) /* if we're zapping everything, no need to realloc */
2204 free ((char *) renumber);
2205 free ((char *) reg_pref);
2206 renumber = (short *) xmalloc (size_renumber);
2207 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2208 * sizeof (struct reg_pref));
2211 else
2213 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2214 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2215 regno_allocated
2216 * sizeof (struct reg_pref));
2220 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2221 + sizeof (struct reg_info_data) - sizeof (reg_info);
2222 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2223 reg_data->min_index = old_allocated;
2224 reg_data->max_index = regno_allocated - 1;
2225 reg_data->next = reg_info_head;
2226 reg_info_head = reg_data;
2229 reg_n_max = num_regs;
2230 if (min < num_regs)
2232 /* Loop through each of the segments allocated for the actual
2233 reg_info pages, and set up the pointers, zero the pages, etc. */
2234 for (reg_data = reg_info_head;
2235 reg_data && reg_data->max_index >= min;
2236 reg_data = reg_data->next)
2238 size_t min_index = reg_data->min_index;
2239 size_t max_index = reg_data->max_index;
2240 size_t max = MIN (max_index, num_regs);
2241 size_t local_min = min - min_index;
2242 size_t i;
2244 if (reg_data->min_index > num_regs)
2245 continue;
2247 if (min < min_index)
2248 local_min = 0;
2249 if (!reg_data->used_p) /* page just allocated with calloc */
2250 reg_data->used_p = 1; /* no need to zero */
2251 else
2252 memset ((char *) &reg_data->data[local_min], 0,
2253 sizeof (reg_info) * (max - min_index - local_min + 1));
2255 for (i = min_index+local_min; i <= max; i++)
2257 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2258 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2259 renumber[i] = -1;
2260 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2261 reg_pref_buffer[i].altclass = (char) NO_REGS;
2266 /* If {pref,alt}class have already been allocated, update the pointers to
2267 the newly realloced ones. */
2268 if (reg_pref)
2269 reg_pref = reg_pref_buffer;
2271 if (renumber_p)
2272 reg_renumber = renumber;
2274 /* Tell the regset code about the new number of registers */
2275 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2278 /* Free up the space allocated by allocate_reg_info. */
2279 void
2280 free_reg_info ()
2282 if (reg_n_info)
2284 struct reg_info_data *reg_data;
2285 struct reg_info_data *reg_next;
2287 VARRAY_FREE (reg_n_info);
2288 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2290 reg_next = reg_data->next;
2291 free ((char *) reg_data);
2294 free (reg_pref_buffer);
2295 reg_pref_buffer = (struct reg_pref *) 0;
2296 reg_info_head = (struct reg_info_data *) 0;
2297 renumber = (short *) 0;
2299 regno_allocated = 0;
2300 reg_n_max = 0;
2303 /* This is the `regscan' pass of the compiler, run just before cse
2304 and again just before loop.
2306 It finds the first and last use of each pseudo-register
2307 and records them in the vectors regno_first_uid, regno_last_uid
2308 and counts the number of sets in the vector reg_n_sets.
2310 REPEAT is nonzero the second time this is called. */
2312 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2313 Always at least 3, since the combiner could put that many together
2314 and we want this to remain correct for all the remaining passes.
2315 This corresponds to the maximum number of times note_stores will call
2316 a function for any insn. */
2318 int max_parallel;
2320 /* Used as a temporary to record the largest number of registers in
2321 PARALLEL in a SET_DEST. This is added to max_parallel. */
2323 static int max_set_parallel;
2325 void
2326 reg_scan (f, nregs, repeat)
2327 rtx f;
2328 unsigned int nregs;
2329 int repeat ATTRIBUTE_UNUSED;
2331 rtx insn;
2333 allocate_reg_info (nregs, TRUE, FALSE);
2334 max_parallel = 3;
2335 max_set_parallel = 0;
2337 for (insn = f; insn; insn = NEXT_INSN (insn))
2338 if (GET_CODE (insn) == INSN
2339 || GET_CODE (insn) == CALL_INSN
2340 || GET_CODE (insn) == JUMP_INSN)
2342 if (GET_CODE (PATTERN (insn)) == PARALLEL
2343 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2344 max_parallel = XVECLEN (PATTERN (insn), 0);
2345 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2347 if (REG_NOTES (insn))
2348 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2351 max_parallel += max_set_parallel;
2354 /* Update 'regscan' information by looking at the insns
2355 from FIRST to LAST. Some new REGs have been created,
2356 and any REG with number greater than OLD_MAX_REGNO is
2357 such a REG. We only update information for those. */
2359 void
2360 reg_scan_update (first, last, old_max_regno)
2361 rtx first;
2362 rtx last;
2363 unsigned int old_max_regno;
2365 rtx insn;
2367 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2369 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2370 if (GET_CODE (insn) == INSN
2371 || GET_CODE (insn) == CALL_INSN
2372 || GET_CODE (insn) == JUMP_INSN)
2374 if (GET_CODE (PATTERN (insn)) == PARALLEL
2375 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2376 max_parallel = XVECLEN (PATTERN (insn), 0);
2377 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2379 if (REG_NOTES (insn))
2380 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2384 /* X is the expression to scan. INSN is the insn it appears in.
2385 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2386 We should only record information for REGs with numbers
2387 greater than or equal to MIN_REGNO. */
2389 static void
2390 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2391 rtx x;
2392 rtx insn;
2393 int note_flag;
2394 unsigned int min_regno;
2396 enum rtx_code code;
2397 rtx dest;
2398 rtx note;
2400 if (!x)
2401 return;
2402 code = GET_CODE (x);
2403 switch (code)
2405 case CONST:
2406 case CONST_INT:
2407 case CONST_DOUBLE:
2408 case CONST_VECTOR:
2409 case CC0:
2410 case PC:
2411 case SYMBOL_REF:
2412 case LABEL_REF:
2413 case ADDR_VEC:
2414 case ADDR_DIFF_VEC:
2415 return;
2417 case REG:
2419 unsigned int regno = REGNO (x);
2421 if (regno >= min_regno)
2423 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2424 if (!note_flag)
2425 REGNO_LAST_UID (regno) = INSN_UID (insn);
2426 if (REGNO_FIRST_UID (regno) == 0)
2427 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2428 /* If we are called by reg_scan_update() (indicated by min_regno
2429 being set), we also need to update the reference count. */
2430 if (min_regno)
2431 REG_N_REFS (regno)++;
2434 break;
2436 case EXPR_LIST:
2437 if (XEXP (x, 0))
2438 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2439 if (XEXP (x, 1))
2440 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2441 break;
2443 case INSN_LIST:
2444 if (XEXP (x, 1))
2445 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2446 break;
2448 case CLOBBER:
2450 rtx reg = XEXP (x, 0);
2451 if (REG_P (reg)
2452 && REGNO (reg) >= min_regno)
2454 REG_N_SETS (REGNO (reg))++;
2455 REG_N_REFS (REGNO (reg))++;
2458 break;
2460 case SET:
2461 /* Count a set of the destination if it is a register. */
2462 for (dest = SET_DEST (x);
2463 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2464 || GET_CODE (dest) == ZERO_EXTEND;
2465 dest = XEXP (dest, 0))
2468 /* For a PARALLEL, record the number of things (less the usual one for a
2469 SET) that are set. */
2470 if (GET_CODE (dest) == PARALLEL)
2471 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2473 if (GET_CODE (dest) == REG
2474 && REGNO (dest) >= min_regno)
2476 REG_N_SETS (REGNO (dest))++;
2477 REG_N_REFS (REGNO (dest))++;
2480 /* If this is setting a pseudo from another pseudo or the sum of a
2481 pseudo and a constant integer and the other pseudo is known to be
2482 a pointer, set the destination to be a pointer as well.
2484 Likewise if it is setting the destination from an address or from a
2485 value equivalent to an address or to the sum of an address and
2486 something else.
2488 But don't do any of this if the pseudo corresponds to a user
2489 variable since it should have already been set as a pointer based
2490 on the type. */
2492 if (GET_CODE (SET_DEST (x)) == REG
2493 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2494 && REGNO (SET_DEST (x)) >= min_regno
2495 /* If the destination pseudo is set more than once, then other
2496 sets might not be to a pointer value (consider access to a
2497 union in two threads of control in the presense of global
2498 optimizations). So only set REG_POINTER on the destination
2499 pseudo if this is the only set of that pseudo. */
2500 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2501 && ! REG_USERVAR_P (SET_DEST (x))
2502 && ! REG_POINTER (SET_DEST (x))
2503 && ((GET_CODE (SET_SRC (x)) == REG
2504 && REG_POINTER (SET_SRC (x)))
2505 || ((GET_CODE (SET_SRC (x)) == PLUS
2506 || GET_CODE (SET_SRC (x)) == LO_SUM)
2507 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2508 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2509 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2510 || GET_CODE (SET_SRC (x)) == CONST
2511 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2512 || GET_CODE (SET_SRC (x)) == LABEL_REF
2513 || (GET_CODE (SET_SRC (x)) == HIGH
2514 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2515 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2516 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2517 || ((GET_CODE (SET_SRC (x)) == PLUS
2518 || GET_CODE (SET_SRC (x)) == LO_SUM)
2519 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2520 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2521 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2522 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2523 && (GET_CODE (XEXP (note, 0)) == CONST
2524 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2525 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2526 REG_POINTER (SET_DEST (x)) = 1;
2528 /* If this is setting a register from a register or from a simple
2529 conversion of a register, propagate REG_DECL. */
2530 if (GET_CODE (dest) == REG)
2532 rtx src = SET_SRC (x);
2534 while (GET_CODE (src) == SIGN_EXTEND
2535 || GET_CODE (src) == ZERO_EXTEND
2536 || GET_CODE (src) == TRUNCATE
2537 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2538 src = XEXP (src, 0);
2540 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2541 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2542 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2543 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2546 /* ... fall through ... */
2548 default:
2550 const char *fmt = GET_RTX_FORMAT (code);
2551 int i;
2552 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2554 if (fmt[i] == 'e')
2555 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2556 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2558 int j;
2559 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2560 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2567 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2568 is also in C2. */
2571 reg_class_subset_p (c1, c2)
2572 enum reg_class c1;
2573 enum reg_class c2;
2575 if (c1 == c2) return 1;
2577 if (c2 == ALL_REGS)
2578 win:
2579 return 1;
2580 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2581 reg_class_contents[(int) c2],
2582 win);
2583 return 0;
2586 /* Return nonzero if there is a register that is in both C1 and C2. */
2589 reg_classes_intersect_p (c1, c2)
2590 enum reg_class c1;
2591 enum reg_class c2;
2593 #ifdef HARD_REG_SET
2594 register
2595 #endif
2596 HARD_REG_SET c;
2598 if (c1 == c2) return 1;
2600 if (c1 == ALL_REGS || c2 == ALL_REGS)
2601 return 1;
2603 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2604 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2606 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2607 return 1;
2609 lose:
2610 return 0;
2613 /* Release any memory allocated by register sets. */
2615 void
2616 regset_release_memory ()
2618 bitmap_release_memory ();
2621 #include "gt-regclass.h"