* config/arm/arm.c (arm_legitimize_address): Limit the value passed
[official-gcc.git] / gcc / tree-vectorizer.c
blob84ed5a90c3b477965334a65f2f0092b60898d1f2
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* Loop Vectorization Pass.
24 This pass tries to vectorize loops. This first implementation focuses on
25 simple inner-most loops, with no conditional control flow, and a set of
26 simple operations which vector form can be expressed using existing
27 tree codes (PLUS, MULT etc).
29 For example, the vectorizer transforms the following simple loop:
31 short a[N]; short b[N]; short c[N]; int i;
33 for (i=0; i<N; i++){
34 a[i] = b[i] + c[i];
37 as if it was manually vectorized by rewriting the source code into:
39 typedef int __attribute__((mode(V8HI))) v8hi;
40 short a[N]; short b[N]; short c[N]; int i;
41 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
42 v8hi va, vb, vc;
44 for (i=0; i<N/8; i++){
45 vb = pb[i];
46 vc = pc[i];
47 va = vb + vc;
48 pa[i] = va;
51 The main entry to this pass is vectorize_loops(), in which
52 the vectorizer applies a set of analyses on a given set of loops,
53 followed by the actual vectorization transformation for the loops that
54 had successfully passed the analysis phase.
56 Throughout this pass we make a distinction between two types of
57 data: scalars (which are represented by SSA_NAMES), and memory references
58 ("data-refs"). These two types of data require different handling both
59 during analysis and transformation. The types of data-refs that the
60 vectorizer currently supports are ARRAY_REFS which base is an array DECL
61 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
62 accesses are required to have a simple (consecutive) access pattern.
64 Analysis phase:
65 ===============
66 The driver for the analysis phase is vect_analyze_loop_nest().
67 It applies a set of analyses, some of which rely on the scalar evolution
68 analyzer (scev) developed by Sebastian Pop.
70 During the analysis phase the vectorizer records some information
71 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
72 loop, as well as general information about the loop as a whole, which is
73 recorded in a "loop_vec_info" struct attached to each loop.
75 Transformation phase:
76 =====================
77 The loop transformation phase scans all the stmts in the loop, and
78 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
79 the loop that needs to be vectorized. It insert the vector code sequence
80 just before the scalar stmt S, and records a pointer to the vector code
81 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
82 attached to S). This pointer will be used for the vectorization of following
83 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
84 otherwise, we rely on dead code elimination for removing it.
86 For example, say stmt S1 was vectorized into stmt VS1:
88 VS1: vb = px[i];
89 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
90 S2: a = b;
92 To vectorize stmt S2, the vectorizer first finds the stmt that defines
93 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
94 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
95 resulting sequence would be:
97 VS1: vb = px[i];
98 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
99 VS2: va = vb;
100 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
102 Operands that are not SSA_NAMEs, are data-refs that appear in
103 load/store operations (like 'x[i]' in S1), and are handled differently.
105 Target modeling:
106 =================
107 Currently the only target specific information that is used is the
108 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
109 support different sizes of vectors, for now will need to specify one value
110 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
112 Since we only vectorize operations which vector form can be
113 expressed using existing tree codes, to verify that an operation is
114 supported, the vectorizer checks the relevant optab at the relevant
115 machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
116 the value found is CODE_FOR_nothing, then there's no target support, and
117 we can't vectorize the stmt.
119 For additional information on this project see:
120 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
123 #include "config.h"
124 #include "system.h"
125 #include "coretypes.h"
126 #include "tm.h"
127 #include "ggc.h"
128 #include "tree.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "basic-block.h"
132 #include "diagnostic.h"
133 #include "tree-flow.h"
134 #include "tree-dump.h"
135 #include "timevar.h"
136 #include "cfgloop.h"
137 #include "cfglayout.h"
138 #include "expr.h"
139 #include "optabs.h"
140 #include "toplev.h"
141 #include "tree-chrec.h"
142 #include "tree-data-ref.h"
143 #include "tree-scalar-evolution.h"
144 #include "input.h"
145 #include "tree-vectorizer.h"
146 #include "tree-pass.h"
148 /*************************************************************************
149 Simple Loop Peeling Utilities
150 *************************************************************************/
151 static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg
152 (struct loop *, struct loops *, edge);
153 static void slpeel_update_phis_for_duplicate_loop
154 (struct loop *, struct loop *, bool after);
155 static void slpeel_update_phi_nodes_for_guard1
156 (edge, struct loop *, bool, basic_block *, bitmap *);
157 static void slpeel_update_phi_nodes_for_guard2
158 (edge, struct loop *, bool, basic_block *);
159 static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
161 static void rename_use_op (use_operand_p);
162 static void rename_variables_in_bb (basic_block);
163 static void rename_variables_in_loop (struct loop *);
165 /*************************************************************************
166 General Vectorization Utilities
167 *************************************************************************/
168 static void vect_set_dump_settings (void);
170 /* vect_dump will be set to stderr or dump_file if exist. */
171 FILE *vect_dump;
173 /* vect_verbosity_level set to an invalid value
174 to mark that it's uninitialized. */
175 enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
177 /* Number of loops, at the beginning of vectorization. */
178 unsigned int vect_loops_num;
180 /* Loop location. */
181 static LOC vect_loop_location;
183 /* Bitmap of virtual variables to be renamed. */
184 bitmap vect_vnames_to_rename;
186 /*************************************************************************
187 Simple Loop Peeling Utilities
189 Utilities to support loop peeling for vectorization purposes.
190 *************************************************************************/
193 /* Renames the use *OP_P. */
195 static void
196 rename_use_op (use_operand_p op_p)
198 tree new_name;
200 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
201 return;
203 new_name = get_current_def (USE_FROM_PTR (op_p));
205 /* Something defined outside of the loop. */
206 if (!new_name)
207 return;
209 /* An ordinary ssa name defined in the loop. */
211 SET_USE (op_p, new_name);
215 /* Renames the variables in basic block BB. */
217 static void
218 rename_variables_in_bb (basic_block bb)
220 tree phi;
221 block_stmt_iterator bsi;
222 tree stmt;
223 use_operand_p use_p;
224 ssa_op_iter iter;
225 edge e;
226 edge_iterator ei;
227 struct loop *loop = bb->loop_father;
229 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
231 stmt = bsi_stmt (bsi);
232 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
233 (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
234 rename_use_op (use_p);
237 FOR_EACH_EDGE (e, ei, bb->succs)
239 if (!flow_bb_inside_loop_p (loop, e->dest))
240 continue;
241 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
242 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
247 /* Renames variables in new generated LOOP. */
249 static void
250 rename_variables_in_loop (struct loop *loop)
252 unsigned i;
253 basic_block *bbs;
255 bbs = get_loop_body (loop);
257 for (i = 0; i < loop->num_nodes; i++)
258 rename_variables_in_bb (bbs[i]);
260 free (bbs);
264 /* Update the PHI nodes of NEW_LOOP.
266 NEW_LOOP is a duplicate of ORIG_LOOP.
267 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
268 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
269 executes before it. */
271 static void
272 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
273 struct loop *new_loop, bool after)
275 tree new_ssa_name;
276 tree phi_new, phi_orig;
277 tree def;
278 edge orig_loop_latch = loop_latch_edge (orig_loop);
279 edge orig_entry_e = loop_preheader_edge (orig_loop);
280 edge new_loop_exit_e = new_loop->single_exit;
281 edge new_loop_entry_e = loop_preheader_edge (new_loop);
282 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
285 step 1. For each loop-header-phi:
286 Add the first phi argument for the phi in NEW_LOOP
287 (the one associated with the entry of NEW_LOOP)
289 step 2. For each loop-header-phi:
290 Add the second phi argument for the phi in NEW_LOOP
291 (the one associated with the latch of NEW_LOOP)
293 step 3. Update the phis in the successor block of NEW_LOOP.
295 case 1: NEW_LOOP was placed before ORIG_LOOP:
296 The successor block of NEW_LOOP is the header of ORIG_LOOP.
297 Updating the phis in the successor block can therefore be done
298 along with the scanning of the loop header phis, because the
299 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
300 phi nodes, organized in the same order.
302 case 2: NEW_LOOP was placed after ORIG_LOOP:
303 The successor block of NEW_LOOP is the original exit block of
304 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
305 We postpone updating these phis to a later stage (when
306 loop guards are added).
310 /* Scan the phis in the headers of the old and new loops
311 (they are organized in exactly the same order). */
313 for (phi_new = phi_nodes (new_loop->header),
314 phi_orig = phi_nodes (orig_loop->header);
315 phi_new && phi_orig;
316 phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
318 /* step 1. */
319 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
320 add_phi_arg (phi_new, def, new_loop_entry_e);
322 /* step 2. */
323 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
324 if (TREE_CODE (def) != SSA_NAME)
325 continue;
327 new_ssa_name = get_current_def (def);
328 if (!new_ssa_name)
330 /* This only happens if there are no definitions
331 inside the loop. use the phi_result in this case. */
332 new_ssa_name = PHI_RESULT (phi_new);
335 /* An ordinary ssa name defined in the loop. */
336 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
338 /* step 3 (case 1). */
339 if (!after)
341 gcc_assert (new_loop_exit_e == orig_entry_e);
342 SET_PHI_ARG_DEF (phi_orig,
343 new_loop_exit_e->dest_idx,
344 new_ssa_name);
350 /* Update PHI nodes for a guard of the LOOP.
352 Input:
353 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
354 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
355 originates from the guard-bb, skips LOOP and reaches the (unique) exit
356 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
357 We denote this bb NEW_MERGE_BB because before the guard code was added
358 it had a single predecessor (the LOOP header), and now it became a merge
359 point of two paths - the path that ends with the LOOP exit-edge, and
360 the path that ends with GUARD_EDGE.
361 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
362 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
364 ===> The CFG before the guard-code was added:
365 LOOP_header_bb:
366 loop_body
367 if (exit_loop) goto update_bb
368 else goto LOOP_header_bb
369 update_bb:
371 ==> The CFG after the guard-code was added:
372 guard_bb:
373 if (LOOP_guard_condition) goto new_merge_bb
374 else goto LOOP_header_bb
375 LOOP_header_bb:
376 loop_body
377 if (exit_loop_condition) goto new_merge_bb
378 else goto LOOP_header_bb
379 new_merge_bb:
380 goto update_bb
381 update_bb:
383 ==> The CFG after this function:
384 guard_bb:
385 if (LOOP_guard_condition) goto new_merge_bb
386 else goto LOOP_header_bb
387 LOOP_header_bb:
388 loop_body
389 if (exit_loop_condition) goto new_exit_bb
390 else goto LOOP_header_bb
391 new_exit_bb:
392 new_merge_bb:
393 goto update_bb
394 update_bb:
396 This function:
397 1. creates and updates the relevant phi nodes to account for the new
398 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
399 1.1. Create phi nodes at NEW_MERGE_BB.
400 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
401 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
402 2. preserves loop-closed-ssa-form by creating the required phi nodes
403 at the exit of LOOP (i.e, in NEW_EXIT_BB).
405 There are two flavors to this function:
407 slpeel_update_phi_nodes_for_guard1:
408 Here the guard controls whether we enter or skip LOOP, where LOOP is a
409 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
410 for variables that have phis in the loop header.
412 slpeel_update_phi_nodes_for_guard2:
413 Here the guard controls whether we enter or skip LOOP, where LOOP is an
414 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
415 for variables that have phis in the loop exit.
417 I.E., the overall structure is:
419 loop1_preheader_bb:
420 guard1 (goto loop1/merg1_bb)
421 loop1
422 loop1_exit_bb:
423 guard2 (goto merge1_bb/merge2_bb)
424 merge1_bb
425 loop2
426 loop2_exit_bb
427 merge2_bb
428 next_bb
430 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
431 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
432 that have phis in loop1->header).
434 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
435 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
436 that have phis in next_bb). It also adds some of these phis to
437 loop1_exit_bb.
439 slpeel_update_phi_nodes_for_guard1 is always called before
440 slpeel_update_phi_nodes_for_guard2. They are both needed in order
441 to create correct data-flow and loop-closed-ssa-form.
443 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
444 that change between iterations of a loop (and therefore have a phi-node
445 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
446 phis for variables that are used out of the loop (and therefore have
447 loop-closed exit phis). Some variables may be both updated between
448 iterations and used after the loop. This is why in loop1_exit_bb we
449 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
450 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
452 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
453 an original loop. i.e., we have:
455 orig_loop
456 guard_bb (goto LOOP/new_merge)
457 new_loop <-- LOOP
458 new_exit
459 new_merge
460 next_bb
462 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
463 have:
465 new_loop
466 guard_bb (goto LOOP/new_merge)
467 orig_loop <-- LOOP
468 new_exit
469 new_merge
470 next_bb
472 The SSA names defined in the original loop have a current
473 reaching definition that that records the corresponding new
474 ssa-name used in the new duplicated loop copy.
477 /* Function slpeel_update_phi_nodes_for_guard1
479 Input:
480 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
481 - DEFS - a bitmap of ssa names to mark new names for which we recorded
482 information.
484 In the context of the overall structure, we have:
486 loop1_preheader_bb:
487 guard1 (goto loop1/merg1_bb)
488 LOOP-> loop1
489 loop1_exit_bb:
490 guard2 (goto merge1_bb/merge2_bb)
491 merge1_bb
492 loop2
493 loop2_exit_bb
494 merge2_bb
495 next_bb
497 For each name updated between loop iterations (i.e - for each name that has
498 an entry (loop-header) phi in LOOP) we create a new phi in:
499 1. merge1_bb (to account for the edge from guard1)
500 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
503 static void
504 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
505 bool is_new_loop, basic_block *new_exit_bb,
506 bitmap *defs)
508 tree orig_phi, new_phi;
509 tree update_phi, update_phi2;
510 tree guard_arg, loop_arg;
511 basic_block new_merge_bb = guard_edge->dest;
512 edge e = EDGE_SUCC (new_merge_bb, 0);
513 basic_block update_bb = e->dest;
514 basic_block orig_bb = loop->header;
515 edge new_exit_e;
516 tree current_new_name;
517 tree name;
519 /* Create new bb between loop and new_merge_bb. */
520 *new_exit_bb = split_edge (loop->single_exit);
521 add_bb_to_loop (*new_exit_bb, loop->outer);
523 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
525 for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
526 orig_phi && update_phi;
527 orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
529 /* Virtual phi; Mark it for renaming. We actually want to call
530 mar_sym_for_renaming, but since all ssa renaming datastructures
531 are going to be freed before we get to call ssa_upate, we just
532 record this name for now in a bitmap, and will mark it for
533 renaming later. */
534 name = PHI_RESULT (orig_phi);
535 if (!is_gimple_reg (SSA_NAME_VAR (name)))
536 bitmap_set_bit (vect_vnames_to_rename, SSA_NAME_VERSION (name));
538 /** 1. Handle new-merge-point phis **/
540 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
541 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
542 new_merge_bb);
544 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
545 of LOOP. Set the two phi args in NEW_PHI for these edges: */
546 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
547 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
549 add_phi_arg (new_phi, loop_arg, new_exit_e);
550 add_phi_arg (new_phi, guard_arg, guard_edge);
552 /* 1.3. Update phi in successor block. */
553 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
554 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
555 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
556 update_phi2 = new_phi;
559 /** 2. Handle loop-closed-ssa-form phis **/
561 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
562 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
563 *new_exit_bb);
565 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
566 add_phi_arg (new_phi, loop_arg, loop->single_exit);
568 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
569 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
570 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
572 /* 2.4. Record the newly created name with set_current_def.
573 We want to find a name such that
574 name = get_current_def (orig_loop_name)
575 and to set its current definition as follows:
576 set_current_def (name, new_phi_name)
578 If LOOP is a new loop then loop_arg is already the name we're
579 looking for. If LOOP is the original loop, then loop_arg is
580 the orig_loop_name and the relevant name is recorded in its
581 current reaching definition. */
582 if (is_new_loop)
583 current_new_name = loop_arg;
584 else
586 current_new_name = get_current_def (loop_arg);
587 /* current_def is not available only if the variable does not
588 change inside the loop, in which case we also don't care
589 about recording a current_def for it because we won't be
590 trying to create loop-exit-phis for it. */
591 if (!current_new_name)
592 continue;
594 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
596 set_current_def (current_new_name, PHI_RESULT (new_phi));
597 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
600 set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
604 /* Function slpeel_update_phi_nodes_for_guard2
606 Input:
607 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
609 In the context of the overall structure, we have:
611 loop1_preheader_bb:
612 guard1 (goto loop1/merg1_bb)
613 loop1
614 loop1_exit_bb:
615 guard2 (goto merge1_bb/merge2_bb)
616 merge1_bb
617 LOOP-> loop2
618 loop2_exit_bb
619 merge2_bb
620 next_bb
622 For each name used out side the loop (i.e - for each name that has an exit
623 phi in next_bb) we create a new phi in:
624 1. merge2_bb (to account for the edge from guard_bb)
625 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
626 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
627 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
630 static void
631 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
632 bool is_new_loop, basic_block *new_exit_bb)
634 tree orig_phi, new_phi;
635 tree update_phi, update_phi2;
636 tree guard_arg, loop_arg;
637 basic_block new_merge_bb = guard_edge->dest;
638 edge e = EDGE_SUCC (new_merge_bb, 0);
639 basic_block update_bb = e->dest;
640 edge new_exit_e;
641 tree orig_def, orig_def_new_name;
642 tree new_name, new_name2;
643 tree arg;
645 /* Create new bb between loop and new_merge_bb. */
646 *new_exit_bb = split_edge (loop->single_exit);
647 add_bb_to_loop (*new_exit_bb, loop->outer);
649 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
651 for (update_phi = phi_nodes (update_bb); update_phi;
652 update_phi = PHI_CHAIN (update_phi))
654 orig_phi = update_phi;
655 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
656 /* This loop-closed-phi actually doesn't represent a use
657 out of the loop - the phi arg is a constant. */
658 if (TREE_CODE (orig_def) != SSA_NAME)
659 continue;
660 orig_def_new_name = get_current_def (orig_def);
661 arg = NULL_TREE;
663 /** 1. Handle new-merge-point phis **/
665 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
666 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
667 new_merge_bb);
669 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
670 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
671 new_name = orig_def;
672 new_name2 = NULL_TREE;
673 if (orig_def_new_name)
675 new_name = orig_def_new_name;
676 /* Some variables have both loop-entry-phis and loop-exit-phis.
677 Such variables were given yet newer names by phis placed in
678 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
679 new_name2 = get_current_def (get_current_def (orig_name)). */
680 new_name2 = get_current_def (new_name);
683 if (is_new_loop)
685 guard_arg = orig_def;
686 loop_arg = new_name;
688 else
690 guard_arg = new_name;
691 loop_arg = orig_def;
693 if (new_name2)
694 guard_arg = new_name2;
696 add_phi_arg (new_phi, loop_arg, new_exit_e);
697 add_phi_arg (new_phi, guard_arg, guard_edge);
699 /* 1.3. Update phi in successor block. */
700 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
701 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
702 update_phi2 = new_phi;
705 /** 2. Handle loop-closed-ssa-form phis **/
707 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
708 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
709 *new_exit_bb);
711 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
712 add_phi_arg (new_phi, loop_arg, loop->single_exit);
714 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
715 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
716 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
719 /** 3. Handle loop-closed-ssa-form phis for first loop **/
721 /* 3.1. Find the relevant names that need an exit-phi in
722 GUARD_BB, i.e. names for which
723 slpeel_update_phi_nodes_for_guard1 had not already created a
724 phi node. This is the case for names that are used outside
725 the loop (and therefore need an exit phi) but are not updated
726 across loop iterations (and therefore don't have a
727 loop-header-phi).
729 slpeel_update_phi_nodes_for_guard1 is responsible for
730 creating loop-exit phis in GUARD_BB for names that have a
731 loop-header-phi. When such a phi is created we also record
732 the new name in its current definition. If this new name
733 exists, then guard_arg was set to this new name (see 1.2
734 above). Therefore, if guard_arg is not this new name, this
735 is an indication that an exit-phi in GUARD_BB was not yet
736 created, so we take care of it here. */
737 if (guard_arg == new_name2)
738 continue;
739 arg = guard_arg;
741 /* 3.2. Generate new phi node in GUARD_BB: */
742 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
743 guard_edge->src);
745 /* 3.3. GUARD_BB has one incoming edge: */
746 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
747 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
749 /* 3.4. Update phi in successor of GUARD_BB: */
750 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
751 == guard_arg);
752 SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
755 set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
759 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
760 that starts at zero, increases by one and its limit is NITERS.
762 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
764 void
765 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
767 tree indx_before_incr, indx_after_incr, cond_stmt, cond;
768 tree orig_cond;
769 edge exit_edge = loop->single_exit;
770 block_stmt_iterator loop_cond_bsi;
771 block_stmt_iterator incr_bsi;
772 bool insert_after;
773 tree begin_label = tree_block_label (loop->latch);
774 tree exit_label = tree_block_label (loop->single_exit->dest);
775 tree init = build_int_cst (TREE_TYPE (niters), 0);
776 tree step = build_int_cst (TREE_TYPE (niters), 1);
777 tree then_label;
778 tree else_label;
779 LOC loop_loc;
781 orig_cond = get_loop_exit_condition (loop);
782 gcc_assert (orig_cond);
783 loop_cond_bsi = bsi_for_stmt (orig_cond);
785 standard_iv_increment_position (loop, &incr_bsi, &insert_after);
786 create_iv (init, step, NULL_TREE, loop,
787 &incr_bsi, insert_after, &indx_before_incr, &indx_after_incr);
789 if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */
791 cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
792 then_label = build1 (GOTO_EXPR, void_type_node, exit_label);
793 else_label = build1 (GOTO_EXPR, void_type_node, begin_label);
795 else /* 'then' edge loops back. */
797 cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
798 then_label = build1 (GOTO_EXPR, void_type_node, begin_label);
799 else_label = build1 (GOTO_EXPR, void_type_node, exit_label);
802 cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
803 then_label, else_label);
804 bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT);
806 /* Remove old loop exit test: */
807 bsi_remove (&loop_cond_bsi);
809 loop_loc = find_loop_location (loop);
810 if (dump_file && (dump_flags & TDF_DETAILS))
812 if (loop_loc != UNKNOWN_LOC)
813 fprintf (dump_file, "\nloop at %s:%d: ",
814 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
815 print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
818 loop->nb_iterations = niters;
822 /* Given LOOP this function generates a new copy of it and puts it
823 on E which is either the entry or exit of LOOP. */
825 static struct loop *
826 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
827 edge e)
829 struct loop *new_loop;
830 basic_block *new_bbs, *bbs;
831 bool at_exit;
832 bool was_imm_dom;
833 basic_block exit_dest;
834 tree phi, phi_arg;
836 at_exit = (e == loop->single_exit);
837 if (!at_exit && e != loop_preheader_edge (loop))
838 return NULL;
840 bbs = get_loop_body (loop);
842 /* Check whether duplication is possible. */
843 if (!can_copy_bbs_p (bbs, loop->num_nodes))
845 free (bbs);
846 return NULL;
849 /* Generate new loop structure. */
850 new_loop = duplicate_loop (loops, loop, loop->outer);
851 if (!new_loop)
853 free (bbs);
854 return NULL;
857 exit_dest = loop->single_exit->dest;
858 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
859 exit_dest) == loop->header ?
860 true : false);
862 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
864 copy_bbs (bbs, loop->num_nodes, new_bbs,
865 &loop->single_exit, 1, &new_loop->single_exit, NULL,
866 e->src);
868 /* Duplicating phi args at exit bbs as coming
869 also from exit of duplicated loop. */
870 for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
872 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->single_exit);
873 if (phi_arg)
875 edge new_loop_exit_edge;
877 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
878 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
879 else
880 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
882 add_phi_arg (phi, phi_arg, new_loop_exit_edge);
886 if (at_exit) /* Add the loop copy at exit. */
888 redirect_edge_and_branch_force (e, new_loop->header);
889 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
890 if (was_imm_dom)
891 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
893 else /* Add the copy at entry. */
895 edge new_exit_e;
896 edge entry_e = loop_preheader_edge (loop);
897 basic_block preheader = entry_e->src;
899 if (!flow_bb_inside_loop_p (new_loop,
900 EDGE_SUCC (new_loop->header, 0)->dest))
901 new_exit_e = EDGE_SUCC (new_loop->header, 0);
902 else
903 new_exit_e = EDGE_SUCC (new_loop->header, 1);
905 redirect_edge_and_branch_force (new_exit_e, loop->header);
906 set_immediate_dominator (CDI_DOMINATORS, loop->header,
907 new_exit_e->src);
909 /* We have to add phi args to the loop->header here as coming
910 from new_exit_e edge. */
911 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
913 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
914 if (phi_arg)
915 add_phi_arg (phi, phi_arg, new_exit_e);
918 redirect_edge_and_branch_force (entry_e, new_loop->header);
919 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
922 free (new_bbs);
923 free (bbs);
925 return new_loop;
929 /* Given the condition statement COND, put it as the last statement
930 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
931 Assumes that this is the single exit of the guarded loop.
932 Returns the skip edge. */
934 static edge
935 slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
936 basic_block dom_bb)
938 block_stmt_iterator bsi;
939 edge new_e, enter_e;
940 tree cond_stmt, then_label, else_label;
942 enter_e = EDGE_SUCC (guard_bb, 0);
943 enter_e->flags &= ~EDGE_FALLTHRU;
944 enter_e->flags |= EDGE_FALSE_VALUE;
945 bsi = bsi_last (guard_bb);
947 then_label = build1 (GOTO_EXPR, void_type_node,
948 tree_block_label (exit_bb));
949 else_label = build1 (GOTO_EXPR, void_type_node,
950 tree_block_label (enter_e->dest));
951 cond_stmt = build3 (COND_EXPR, void_type_node, cond,
952 then_label, else_label);
953 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
954 /* Add new edge to connect guard block to the merge/loop-exit block. */
955 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
956 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
957 return new_e;
961 /* This function verifies that the following restrictions apply to LOOP:
962 (1) it is innermost
963 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
964 (3) it is single entry, single exit
965 (4) its exit condition is the last stmt in the header
966 (5) E is the entry/exit edge of LOOP.
969 bool
970 slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
972 edge exit_e = loop->single_exit;
973 edge entry_e = loop_preheader_edge (loop);
974 tree orig_cond = get_loop_exit_condition (loop);
975 block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
977 if (need_ssa_update_p ())
978 return false;
980 if (loop->inner
981 /* All loops have an outer scope; the only case loop->outer is NULL is for
982 the function itself. */
983 || !loop->outer
984 || loop->num_nodes != 2
985 || !empty_block_p (loop->latch)
986 || !loop->single_exit
987 /* Verify that new loop exit condition can be trivially modified. */
988 || (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
989 || (e != exit_e && e != entry_e))
990 return false;
992 return true;
995 #ifdef ENABLE_CHECKING
996 void
997 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
998 struct loop *second_loop)
1000 basic_block loop1_exit_bb = first_loop->single_exit->dest;
1001 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1002 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1004 /* A guard that controls whether the second_loop is to be executed or skipped
1005 is placed in first_loop->exit. first_loopt->exit therefore has two
1006 successors - one is the preheader of second_loop, and the other is a bb
1007 after second_loop.
1009 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1011 /* 1. Verify that one of the successors of first_loopt->exit is the preheader
1012 of second_loop. */
1014 /* The preheader of new_loop is expected to have two predecessors:
1015 first_loop->exit and the block that precedes first_loop. */
1017 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1018 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1019 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1020 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1021 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1023 /* Verify that the other successor of first_loopt->exit is after the
1024 second_loop. */
1025 /* TODO */
1027 #endif
1029 /* Function slpeel_tree_peel_loop_to_edge.
1031 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1032 that is placed on the entry (exit) edge E of LOOP. After this transformation
1033 we have two loops one after the other - first-loop iterates FIRST_NITERS
1034 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1036 Input:
1037 - LOOP: the loop to be peeled.
1038 - E: the exit or entry edge of LOOP.
1039 If it is the entry edge, we peel the first iterations of LOOP. In this
1040 case first-loop is LOOP, and second-loop is the newly created loop.
1041 If it is the exit edge, we peel the last iterations of LOOP. In this
1042 case, first-loop is the newly created loop, and second-loop is LOOP.
1043 - NITERS: the number of iterations that LOOP iterates.
1044 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1045 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1046 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1047 is false, the caller of this function may want to take care of this
1048 (this can be useful if we don't want new stmts added to first-loop).
1050 Output:
1051 The function returns a pointer to the new loop-copy, or NULL if it failed
1052 to perform the transformation.
1054 The function generates two if-then-else guards: one before the first loop,
1055 and the other before the second loop:
1056 The first guard is:
1057 if (FIRST_NITERS == 0) then skip the first loop,
1058 and go directly to the second loop.
1059 The second guard is:
1060 if (FIRST_NITERS == NITERS) then skip the second loop.
1062 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1063 FORNOW the resulting code will not be in loop-closed-ssa form.
1066 struct loop*
1067 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
1068 edge e, tree first_niters,
1069 tree niters, bool update_first_loop_count)
1071 struct loop *new_loop = NULL, *first_loop, *second_loop;
1072 edge skip_e;
1073 tree pre_condition;
1074 bitmap definitions;
1075 basic_block bb_before_second_loop, bb_after_second_loop;
1076 basic_block bb_before_first_loop;
1077 basic_block bb_between_loops;
1078 basic_block new_exit_bb;
1079 edge exit_e = loop->single_exit;
1080 LOC loop_loc;
1082 if (!slpeel_can_duplicate_loop_p (loop, e))
1083 return NULL;
1085 /* We have to initialize cfg_hooks. Then, when calling
1086 cfg_hooks->split_edge, the function tree_split_edge
1087 is actually called and, when calling cfg_hooks->duplicate_block,
1088 the function tree_duplicate_bb is called. */
1089 tree_register_cfg_hooks ();
1092 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1093 Resulting CFG would be:
1095 first_loop:
1096 do {
1097 } while ...
1099 second_loop:
1100 do {
1101 } while ...
1103 orig_exit_bb:
1106 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
1108 loop_loc = find_loop_location (loop);
1109 if (dump_file && (dump_flags & TDF_DETAILS))
1111 if (loop_loc != UNKNOWN_LOC)
1112 fprintf (dump_file, "\n%s:%d: note: ",
1113 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1114 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1116 return NULL;
1119 if (e == exit_e)
1121 /* NEW_LOOP was placed after LOOP. */
1122 first_loop = loop;
1123 second_loop = new_loop;
1125 else
1127 /* NEW_LOOP was placed before LOOP. */
1128 first_loop = new_loop;
1129 second_loop = loop;
1132 definitions = ssa_names_to_replace ();
1133 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1134 rename_variables_in_loop (new_loop);
1137 /* 2. Add the guard that controls whether the first loop is executed.
1138 Resulting CFG would be:
1140 bb_before_first_loop:
1141 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1142 GOTO first-loop
1144 first_loop:
1145 do {
1146 } while ...
1148 bb_before_second_loop:
1150 second_loop:
1151 do {
1152 } while ...
1154 orig_exit_bb:
1157 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1158 add_bb_to_loop (bb_before_first_loop, first_loop->outer);
1159 bb_before_second_loop = split_edge (first_loop->single_exit);
1160 add_bb_to_loop (bb_before_second_loop, first_loop->outer);
1162 pre_condition =
1163 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1164 build_int_cst (TREE_TYPE (first_niters), 0));
1165 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1166 bb_before_second_loop, bb_before_first_loop);
1167 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1168 first_loop == new_loop,
1169 &new_exit_bb, &definitions);
1172 /* 3. Add the guard that controls whether the second loop is executed.
1173 Resulting CFG would be:
1175 bb_before_first_loop:
1176 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1177 GOTO first-loop
1179 first_loop:
1180 do {
1181 } while ...
1183 bb_between_loops:
1184 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1185 GOTO bb_before_second_loop
1187 bb_before_second_loop:
1189 second_loop:
1190 do {
1191 } while ...
1193 bb_after_second_loop:
1195 orig_exit_bb:
1198 bb_between_loops = new_exit_bb;
1199 bb_after_second_loop = split_edge (second_loop->single_exit);
1200 add_bb_to_loop (bb_after_second_loop, second_loop->outer);
1202 pre_condition =
1203 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1204 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
1205 bb_after_second_loop, bb_before_first_loop);
1206 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1207 second_loop == new_loop, &new_exit_bb);
1209 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1211 if (update_first_loop_count)
1212 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1214 BITMAP_FREE (definitions);
1215 delete_update_ssa ();
1217 return new_loop;
1220 /* Function vect_get_loop_location.
1222 Extract the location of the loop in the source code.
1223 If the loop is not well formed for vectorization, an estimated
1224 location is calculated.
1225 Return the loop location if succeed and NULL if not. */
1228 find_loop_location (struct loop *loop)
1230 tree node = NULL_TREE;
1231 basic_block bb;
1232 block_stmt_iterator si;
1234 if (!loop)
1235 return UNKNOWN_LOC;
1237 node = get_loop_exit_condition (loop);
1239 if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node)
1240 && EXPR_FILENAME (node) && EXPR_LINENO (node))
1241 return EXPR_LOC (node);
1243 /* If we got here the loop is probably not "well formed",
1244 try to estimate the loop location */
1246 if (!loop->header)
1247 return UNKNOWN_LOC;
1249 bb = loop->header;
1251 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1253 node = bsi_stmt (si);
1254 if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node))
1255 return EXPR_LOC (node);
1258 return UNKNOWN_LOC;
1262 /*************************************************************************
1263 Vectorization Debug Information.
1264 *************************************************************************/
1266 /* Function vect_set_verbosity_level.
1268 Called from toplev.c upon detection of the
1269 -ftree-vectorizer-verbose=N option. */
1271 void
1272 vect_set_verbosity_level (const char *val)
1274 unsigned int vl;
1276 vl = atoi (val);
1277 if (vl < MAX_VERBOSITY_LEVEL)
1278 vect_verbosity_level = vl;
1279 else
1280 vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
1284 /* Function vect_set_dump_settings.
1286 Fix the verbosity level of the vectorizer if the
1287 requested level was not set explicitly using the flag
1288 -ftree-vectorizer-verbose=N.
1289 Decide where to print the debugging information (dump_file/stderr).
1290 If the user defined the verbosity level, but there is no dump file,
1291 print to stderr, otherwise print to the dump file. */
1293 static void
1294 vect_set_dump_settings (void)
1296 vect_dump = dump_file;
1298 /* Check if the verbosity level was defined by the user: */
1299 if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
1301 /* If there is no dump file, print to stderr. */
1302 if (!dump_file)
1303 vect_dump = stderr;
1304 return;
1307 /* User didn't specify verbosity level: */
1308 if (dump_file && (dump_flags & TDF_DETAILS))
1309 vect_verbosity_level = REPORT_DETAILS;
1310 else if (dump_file && (dump_flags & TDF_STATS))
1311 vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
1312 else
1313 vect_verbosity_level = REPORT_NONE;
1315 gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
1319 /* Function debug_loop_details.
1321 For vectorization debug dumps. */
1323 bool
1324 vect_print_dump_info (enum verbosity_levels vl)
1326 if (vl > vect_verbosity_level)
1327 return false;
1329 if (vect_loop_location == UNKNOWN_LOC)
1330 fprintf (vect_dump, "\n%s:%d: note: ",
1331 DECL_SOURCE_FILE (current_function_decl),
1332 DECL_SOURCE_LINE (current_function_decl));
1333 else
1334 fprintf (vect_dump, "\n%s:%d: note: ",
1335 LOC_FILE (vect_loop_location), LOC_LINE (vect_loop_location));
1338 return true;
1342 /*************************************************************************
1343 Vectorization Utilities.
1344 *************************************************************************/
1346 /* Function new_stmt_vec_info.
1348 Create and initialize a new stmt_vec_info struct for STMT. */
1350 stmt_vec_info
1351 new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo)
1353 stmt_vec_info res;
1354 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
1356 STMT_VINFO_TYPE (res) = undef_vec_info_type;
1357 STMT_VINFO_STMT (res) = stmt;
1358 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
1359 STMT_VINFO_RELEVANT_P (res) = 0;
1360 STMT_VINFO_LIVE_P (res) = 0;
1361 STMT_VINFO_VECTYPE (res) = NULL;
1362 STMT_VINFO_VEC_STMT (res) = NULL;
1363 STMT_VINFO_DATA_REF (res) = NULL;
1364 if (TREE_CODE (stmt) == PHI_NODE)
1365 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
1366 else
1367 STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
1368 STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
1370 return res;
1374 /* Function new_loop_vec_info.
1376 Create and initialize a new loop_vec_info struct for LOOP, as well as
1377 stmt_vec_info structs for all the stmts in LOOP. */
1379 loop_vec_info
1380 new_loop_vec_info (struct loop *loop)
1382 loop_vec_info res;
1383 basic_block *bbs;
1384 block_stmt_iterator si;
1385 unsigned int i;
1387 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1389 bbs = get_loop_body (loop);
1391 /* Create stmt_info for all stmts in the loop. */
1392 for (i = 0; i < loop->num_nodes; i++)
1394 basic_block bb = bbs[i];
1395 tree phi;
1397 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1399 tree_ann_t ann = get_tree_ann (phi);
1400 set_stmt_info (ann, new_stmt_vec_info (phi, res));
1403 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1405 tree stmt = bsi_stmt (si);
1406 stmt_ann_t ann;
1408 ann = stmt_ann (stmt);
1409 set_stmt_info ((tree_ann_t)ann, new_stmt_vec_info (stmt, res));
1413 LOOP_VINFO_LOOP (res) = loop;
1414 LOOP_VINFO_BBS (res) = bbs;
1415 LOOP_VINFO_EXIT_COND (res) = NULL;
1416 LOOP_VINFO_NITERS (res) = NULL;
1417 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1418 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
1419 LOOP_VINFO_VECT_FACTOR (res) = 0;
1420 VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREFS (res), 20, "loop_datarefs");
1421 VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DDRS (res), 20, "loop_ddrs");
1422 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1424 return res;
1428 /* Function destroy_loop_vec_info.
1430 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1431 stmts in the loop. */
1433 void
1434 destroy_loop_vec_info (loop_vec_info loop_vinfo)
1436 struct loop *loop;
1437 basic_block *bbs;
1438 int nbbs;
1439 block_stmt_iterator si;
1440 int j;
1442 if (!loop_vinfo)
1443 return;
1445 loop = LOOP_VINFO_LOOP (loop_vinfo);
1447 bbs = LOOP_VINFO_BBS (loop_vinfo);
1448 nbbs = loop->num_nodes;
1450 for (j = 0; j < nbbs; j++)
1452 basic_block bb = bbs[j];
1453 tree phi;
1454 stmt_vec_info stmt_info;
1456 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1458 tree_ann_t ann = get_tree_ann (phi);
1460 stmt_info = vinfo_for_stmt (phi);
1461 free (stmt_info);
1462 set_stmt_info (ann, NULL);
1465 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1467 tree stmt = bsi_stmt (si);
1468 stmt_ann_t ann = stmt_ann (stmt);
1469 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1471 if (stmt_info)
1473 VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
1474 free (stmt_info);
1475 set_stmt_info ((tree_ann_t)ann, NULL);
1480 free (LOOP_VINFO_BBS (loop_vinfo));
1481 varray_clear (LOOP_VINFO_DATAREFS (loop_vinfo));
1482 varray_clear (LOOP_VINFO_DDRS (loop_vinfo));
1484 free (loop_vinfo);
1488 /* Function vect_force_dr_alignment_p.
1490 Returns whether the alignment of a DECL can be forced to be aligned
1491 on ALIGNMENT bit boundary. */
1493 bool
1494 vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
1496 if (TREE_CODE (decl) != VAR_DECL)
1497 return false;
1499 if (DECL_EXTERNAL (decl))
1500 return false;
1502 if (TREE_ASM_WRITTEN (decl))
1503 return false;
1505 if (TREE_STATIC (decl))
1506 return (alignment <= MAX_OFILE_ALIGNMENT);
1507 else
1508 /* This is not 100% correct. The absolute correct stack alignment
1509 is STACK_BOUNDARY. We're supposed to hope, but not assume, that
1510 PREFERRED_STACK_BOUNDARY is honored by all translation units.
1511 However, until someone implements forced stack alignment, SSE
1512 isn't really usable without this. */
1513 return (alignment <= PREFERRED_STACK_BOUNDARY);
1517 /* Function get_vectype_for_scalar_type.
1519 Returns the vector type corresponding to SCALAR_TYPE as supported
1520 by the target. */
1522 tree
1523 get_vectype_for_scalar_type (tree scalar_type)
1525 enum machine_mode inner_mode = TYPE_MODE (scalar_type);
1526 int nbytes = GET_MODE_SIZE (inner_mode);
1527 int nunits;
1528 tree vectype;
1530 if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD)
1531 return NULL_TREE;
1533 /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
1534 is expected. */
1535 nunits = UNITS_PER_SIMD_WORD / nbytes;
1537 vectype = build_vector_type (scalar_type, nunits);
1538 if (vect_print_dump_info (REPORT_DETAILS))
1540 fprintf (vect_dump, "get vectype with %d units of type ", nunits);
1541 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
1544 if (!vectype)
1545 return NULL_TREE;
1547 if (vect_print_dump_info (REPORT_DETAILS))
1549 fprintf (vect_dump, "vectype: ");
1550 print_generic_expr (vect_dump, vectype, TDF_SLIM);
1553 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
1554 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
1556 if (vect_print_dump_info (REPORT_DETAILS))
1557 fprintf (vect_dump, "mode not supported by target.");
1558 return NULL_TREE;
1561 return vectype;
1565 /* Function vect_supportable_dr_alignment
1567 Return whether the data reference DR is supported with respect to its
1568 alignment. */
1570 enum dr_alignment_support
1571 vect_supportable_dr_alignment (struct data_reference *dr)
1573 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
1574 enum machine_mode mode = (int) TYPE_MODE (vectype);
1576 if (aligned_access_p (dr))
1577 return dr_aligned;
1579 /* Possibly unaligned access. */
1581 if (DR_IS_READ (dr))
1583 if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
1584 && (!targetm.vectorize.builtin_mask_for_load
1585 || targetm.vectorize.builtin_mask_for_load ()))
1586 return dr_unaligned_software_pipeline;
1588 if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing)
1589 /* Can't software pipeline the loads, but can at least do them. */
1590 return dr_unaligned_supported;
1593 /* Unsupported. */
1594 return dr_unaligned_unsupported;
1598 /* Function vect_is_simple_use.
1600 Input:
1601 LOOP - the loop that is being vectorized.
1602 OPERAND - operand of a stmt in LOOP.
1603 DEF - the defining stmt in case OPERAND is an SSA_NAME.
1605 Returns whether a stmt with OPERAND can be vectorized.
1606 Supportable operands are constants, loop invariants, and operands that are
1607 defined by the current iteration of the loop. Unsupportable operands are
1608 those that are defined by a previous iteration of the loop (as is the case
1609 in reduction/induction computations). */
1611 bool
1612 vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def_stmt,
1613 tree *def, enum vect_def_type *dt)
1615 basic_block bb;
1616 stmt_vec_info stmt_vinfo;
1617 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1619 *def_stmt = NULL_TREE;
1620 *def = NULL_TREE;
1622 if (vect_print_dump_info (REPORT_DETAILS))
1624 fprintf (vect_dump, "vect_is_simple_use: operand ");
1625 print_generic_expr (vect_dump, operand, TDF_SLIM);
1628 if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
1630 *dt = vect_constant_def;
1631 return true;
1634 if (TREE_CODE (operand) != SSA_NAME)
1636 if (vect_print_dump_info (REPORT_DETAILS))
1637 fprintf (vect_dump, "not ssa-name.");
1638 return false;
1641 *def_stmt = SSA_NAME_DEF_STMT (operand);
1642 if (*def_stmt == NULL_TREE )
1644 if (vect_print_dump_info (REPORT_DETAILS))
1645 fprintf (vect_dump, "no def_stmt.");
1646 return false;
1649 if (vect_print_dump_info (REPORT_DETAILS))
1651 fprintf (vect_dump, "def_stmt: ");
1652 print_generic_expr (vect_dump, *def_stmt, TDF_SLIM);
1655 /* empty stmt is expected only in case of a function argument.
1656 (Otherwise - we expect a phi_node or a modify_expr). */
1657 if (IS_EMPTY_STMT (*def_stmt))
1659 tree arg = TREE_OPERAND (*def_stmt, 0);
1660 if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
1662 *def = operand;
1663 *dt = vect_invariant_def;
1664 return true;
1667 if (vect_print_dump_info (REPORT_DETAILS))
1668 fprintf (vect_dump, "Unexpected empty stmt.");
1669 return false;
1672 bb = bb_for_stmt (*def_stmt);
1673 if (!flow_bb_inside_loop_p (loop, bb))
1674 *dt = vect_invariant_def;
1675 else
1677 stmt_vinfo = vinfo_for_stmt (*def_stmt);
1678 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
1681 if (*dt == vect_unknown_def_type)
1683 if (vect_print_dump_info (REPORT_DETAILS))
1684 fprintf (vect_dump, "Unsupported pattern.");
1685 return false;
1688 /* stmts inside the loop that have been identified as performing
1689 a reduction operation cannot have uses in the loop. */
1690 if (*dt == vect_reduction_def && TREE_CODE (*def_stmt) != PHI_NODE)
1692 if (vect_print_dump_info (REPORT_DETAILS))
1693 fprintf (vect_dump, "reduction used in loop.");
1694 return false;
1697 if (vect_print_dump_info (REPORT_DETAILS))
1698 fprintf (vect_dump, "type of def: %d.",*dt);
1700 switch (TREE_CODE (*def_stmt))
1702 case PHI_NODE:
1703 *def = PHI_RESULT (*def_stmt);
1704 gcc_assert (*dt == vect_induction_def || *dt == vect_reduction_def
1705 || *dt == vect_invariant_def);
1706 break;
1708 case MODIFY_EXPR:
1709 *def = TREE_OPERAND (*def_stmt, 0);
1710 gcc_assert (*dt == vect_loop_def || *dt == vect_invariant_def);
1711 break;
1713 default:
1714 if (vect_print_dump_info (REPORT_DETAILS))
1715 fprintf (vect_dump, "unsupported defining stmt: ");
1716 return false;
1719 if (*dt == vect_induction_def)
1721 if (vect_print_dump_info (REPORT_DETAILS))
1722 fprintf (vect_dump, "induction not supported.");
1723 return false;
1726 return true;
1730 /* Function reduction_code_for_scalar_code
1732 Input:
1733 CODE - tree_code of a reduction operations.
1735 Output:
1736 REDUC_CODE - the corresponding tree-code to be used to reduce the
1737 vector of partial results into a single scalar result (which
1738 will also reside in a vector).
1740 Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
1742 bool
1743 reduction_code_for_scalar_code (enum tree_code code,
1744 enum tree_code *reduc_code)
1746 switch (code)
1748 case MAX_EXPR:
1749 *reduc_code = REDUC_MAX_EXPR;
1750 return true;
1752 case MIN_EXPR:
1753 *reduc_code = REDUC_MIN_EXPR;
1754 return true;
1756 case PLUS_EXPR:
1757 *reduc_code = REDUC_PLUS_EXPR;
1758 return true;
1760 default:
1761 return false;
1766 /* Function vect_is_simple_reduction
1768 Detect a cross-iteration def-use cucle that represents a simple
1769 reduction computation. We look for the following pattern:
1771 loop_header:
1772 a1 = phi < a0, a2 >
1773 a3 = ...
1774 a2 = operation (a3, a1)
1776 such that:
1777 1. operation is commutative and associative and it is safe to
1778 change the order of the computation.
1779 2. no uses for a2 in the loop (a2 is used out of the loop)
1780 3. no uses of a1 in the loop besides the reduction operation.
1782 Condition 1 is tested here.
1783 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
1785 tree
1786 vect_is_simple_reduction (struct loop *loop ATTRIBUTE_UNUSED,
1787 tree phi ATTRIBUTE_UNUSED)
1789 edge latch_e = loop_latch_edge (loop);
1790 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1791 tree def_stmt, def1, def2;
1792 enum tree_code code;
1793 int op_type;
1794 tree operation, op1, op2;
1795 tree type;
1797 if (TREE_CODE (loop_arg) != SSA_NAME)
1799 if (vect_print_dump_info (REPORT_DETAILS))
1801 fprintf (vect_dump, "reduction: not ssa_name: ");
1802 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1804 return NULL_TREE;
1807 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1808 if (!def_stmt)
1810 if (vect_print_dump_info (REPORT_DETAILS))
1811 fprintf (vect_dump, "reduction: no def_stmt.");
1812 return NULL_TREE;
1815 if (TREE_CODE (def_stmt) != MODIFY_EXPR)
1817 if (vect_print_dump_info (REPORT_DETAILS))
1819 print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
1821 return NULL_TREE;
1824 operation = TREE_OPERAND (def_stmt, 1);
1825 code = TREE_CODE (operation);
1826 if (!commutative_tree_code (code) || !associative_tree_code (code))
1828 if (vect_print_dump_info (REPORT_DETAILS))
1830 fprintf (vect_dump, "reduction: not commutative/associative: ");
1831 print_generic_expr (vect_dump, operation, TDF_SLIM);
1833 return NULL_TREE;
1836 op_type = TREE_CODE_LENGTH (code);
1837 if (op_type != binary_op)
1839 if (vect_print_dump_info (REPORT_DETAILS))
1841 fprintf (vect_dump, "reduction: not binary operation: ");
1842 print_generic_expr (vect_dump, operation, TDF_SLIM);
1844 return NULL_TREE;
1847 op1 = TREE_OPERAND (operation, 0);
1848 op2 = TREE_OPERAND (operation, 1);
1849 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
1851 if (vect_print_dump_info (REPORT_DETAILS))
1853 fprintf (vect_dump, "reduction: uses not ssa_names: ");
1854 print_generic_expr (vect_dump, operation, TDF_SLIM);
1856 return NULL_TREE;
1859 /* Check that it's ok to change the order of the computation. */
1860 type = TREE_TYPE (operation);
1861 if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
1862 || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
1864 if (vect_print_dump_info (REPORT_DETAILS))
1866 fprintf (vect_dump, "reduction: multiple types: operation type: ");
1867 print_generic_expr (vect_dump, type, TDF_SLIM);
1868 fprintf (vect_dump, ", operands types: ");
1869 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
1870 fprintf (vect_dump, ",");
1871 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
1873 return NULL_TREE;
1876 /* CHECKME: check for !flag_finite_math_only too? */
1877 if (SCALAR_FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
1879 /* Changing the order of operations changes the sematics. */
1880 if (vect_print_dump_info (REPORT_DETAILS))
1882 fprintf (vect_dump, "reduction: unsafe fp math optimization: ");
1883 print_generic_expr (vect_dump, operation, TDF_SLIM);
1885 return NULL_TREE;
1887 else if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type) && flag_trapv)
1889 /* Changing the order of operations changes the sematics. */
1890 if (vect_print_dump_info (REPORT_DETAILS))
1892 fprintf (vect_dump, "reduction: unsafe int math optimization: ");
1893 print_generic_expr (vect_dump, operation, TDF_SLIM);
1895 return NULL_TREE;
1898 /* reduction is safe. we're dealing with one of the following:
1899 1) integer arithmetic and no trapv
1900 2) floating point arithmetic, and special flags permit this optimization.
1902 def1 = SSA_NAME_DEF_STMT (op1);
1903 def2 = SSA_NAME_DEF_STMT (op2);
1904 if (!def1 || !def2)
1906 if (vect_print_dump_info (REPORT_DETAILS))
1908 fprintf (vect_dump, "reduction: no defs for operands: ");
1909 print_generic_expr (vect_dump, operation, TDF_SLIM);
1911 return NULL_TREE;
1914 if (TREE_CODE (def1) == MODIFY_EXPR
1915 && flow_bb_inside_loop_p (loop, bb_for_stmt (def1))
1916 && def2 == phi)
1918 if (vect_print_dump_info (REPORT_DETAILS))
1920 fprintf (vect_dump, "detected reduction:");
1921 print_generic_expr (vect_dump, operation, TDF_SLIM);
1923 return def_stmt;
1925 else if (TREE_CODE (def2) == MODIFY_EXPR
1926 && flow_bb_inside_loop_p (loop, bb_for_stmt (def2))
1927 && def1 == phi)
1929 use_operand_p use;
1930 ssa_op_iter iter;
1932 /* Swap operands (just for simplicity - so that the rest of the code
1933 can assume that the reduction variable is always the last (second)
1934 argument). */
1935 if (vect_print_dump_info (REPORT_DETAILS))
1937 fprintf (vect_dump, "detected reduction: need to swap operands:");
1938 print_generic_expr (vect_dump, operation, TDF_SLIM);
1941 /* CHECKME */
1942 FOR_EACH_SSA_USE_OPERAND (use, def_stmt, iter, SSA_OP_USE)
1944 tree tuse = USE_FROM_PTR (use);
1945 if (tuse == op1)
1946 SET_USE (use, op2);
1947 else if (tuse == op2)
1948 SET_USE (use, op1);
1950 return def_stmt;
1952 else
1954 if (vect_print_dump_info (REPORT_DETAILS))
1956 fprintf (vect_dump, "reduction: unknown pattern.");
1957 print_generic_expr (vect_dump, operation, TDF_SLIM);
1959 return NULL_TREE;
1964 /* Function vect_is_simple_iv_evolution.
1966 FORNOW: A simple evolution of an induction variables in the loop is
1967 considered a polynomial evolution with constant step. */
1969 bool
1970 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
1971 tree * step)
1973 tree init_expr;
1974 tree step_expr;
1976 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
1978 /* When there is no evolution in this loop, the evolution function
1979 is not "simple". */
1980 if (evolution_part == NULL_TREE)
1981 return false;
1983 /* When the evolution is a polynomial of degree >= 2
1984 the evolution function is not "simple". */
1985 if (tree_is_chrec (evolution_part))
1986 return false;
1988 step_expr = evolution_part;
1989 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1990 loop_nb));
1992 if (vect_print_dump_info (REPORT_DETAILS))
1994 fprintf (vect_dump, "step: ");
1995 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
1996 fprintf (vect_dump, ", init: ");
1997 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
2000 *init = init_expr;
2001 *step = step_expr;
2003 if (TREE_CODE (step_expr) != INTEGER_CST)
2005 if (vect_print_dump_info (REPORT_DETAILS))
2006 fprintf (vect_dump, "step unknown.");
2007 return false;
2010 return true;
2014 /* Function vectorize_loops.
2016 Entry Point to loop vectorization phase. */
2018 void
2019 vectorize_loops (struct loops *loops)
2021 unsigned int i;
2022 unsigned int num_vectorized_loops = 0;
2024 /* Fix the verbosity level if not defined explicitly by the user. */
2025 vect_set_dump_settings ();
2027 /* Allocate the bitmap that records which virtual variables that
2028 need to be renamed. */
2029 vect_vnames_to_rename = BITMAP_ALLOC (NULL);
2031 /* ----------- Analyze loops. ----------- */
2033 /* If some loop was duplicated, it gets bigger number
2034 than all previously defined loops. This fact allows us to run
2035 only over initial loops skipping newly generated ones. */
2036 vect_loops_num = loops->num;
2037 for (i = 1; i < vect_loops_num; i++)
2039 loop_vec_info loop_vinfo;
2040 struct loop *loop = loops->parray[i];
2042 if (!loop)
2043 continue;
2045 vect_loop_location = find_loop_location (loop);
2046 loop_vinfo = vect_analyze_loop (loop);
2047 loop->aux = loop_vinfo;
2049 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
2050 continue;
2052 vect_transform_loop (loop_vinfo, loops);
2053 num_vectorized_loops++;
2056 if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
2057 fprintf (vect_dump, "vectorized %u loops in function.\n",
2058 num_vectorized_loops);
2060 /* ----------- Finalize. ----------- */
2062 BITMAP_FREE (vect_vnames_to_rename);
2064 for (i = 1; i < vect_loops_num; i++)
2066 struct loop *loop = loops->parray[i];
2067 loop_vec_info loop_vinfo;
2069 if (!loop)
2070 continue;
2071 loop_vinfo = loop->aux;
2072 destroy_loop_vec_info (loop_vinfo);
2073 loop->aux = NULL;