* configure.in: Don't check for putenv.
[official-gcc.git] / gcc / genrecog.c
blob2224f8036fe7b5df5b2d4abcefecd3c6d787296e
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl in a SEQUENCE.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "hconfig.h"
54 #include "system.h"
55 #include "rtl.h"
56 #include "errors.h"
57 #include "gensupport.h"
60 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63 /* Holds an array of names indexed by insn_code_number. */
64 static char **insn_name_ptr = 0;
65 static int insn_name_ptr_size = 0;
67 /* A listhead of decision trees. The alternatives to a node are kept
68 in a doublely-linked list so we can easily add nodes to the proper
69 place when merging. */
71 struct decision_head
73 struct decision *first;
74 struct decision *last;
77 /* A single test. The two accept types aren't tests per-se, but
78 their equality (or lack thereof) does affect tree merging so
79 it is convenient to keep them here. */
81 struct decision_test
83 /* A linked list through the tests attached to a node. */
84 struct decision_test *next;
86 /* These types are roughly in the order in which we'd like to test them. */
87 enum decision_type {
88 DT_mode, DT_code, DT_veclen,
89 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide,
90 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
91 DT_accept_op, DT_accept_insn
92 } type;
94 union
96 enum machine_mode mode; /* Machine mode of node. */
97 RTX_CODE code; /* Code to test. */
99 struct
101 const char *name; /* Predicate to call. */
102 int index; /* Index into `preds' or -1. */
103 enum machine_mode mode; /* Machine mode for node. */
104 } pred;
106 const char *c_test; /* Additional test to perform. */
107 int veclen; /* Length of vector. */
108 int dup; /* Number of operand to compare against. */
109 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
110 int opno; /* Operand number matched. */
112 struct {
113 int code_number; /* Insn number matched. */
114 int lineno; /* Line number of the insn. */
115 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
116 } insn;
117 } u;
120 /* Data structure for decision tree for recognizing legitimate insns. */
122 struct decision
124 struct decision_head success; /* Nodes to test on success. */
125 struct decision *next; /* Node to test on failure. */
126 struct decision *prev; /* Node whose failure tests us. */
127 struct decision *afterward; /* Node to test on success,
128 but failure of successor nodes. */
130 const char *position; /* String denoting position in pattern. */
132 struct decision_test *tests; /* The tests for this node. */
134 int number; /* Node number, used for labels */
135 int subroutine_number; /* Number of subroutine this node starts */
136 int need_label; /* Label needs to be output. */
139 #define SUBROUTINE_THRESHOLD 100
141 static int next_subroutine_number;
143 /* We can write three types of subroutines: One for insn recognition,
144 one to split insns, and one for peephole-type optimizations. This
145 defines which type is being written. */
147 enum routine_type {
148 RECOG, SPLIT, PEEPHOLE2
151 #define IS_SPLIT(X) ((X) != RECOG)
153 /* Next available node number for tree nodes. */
155 static int next_number;
157 /* Next number to use as an insn_code. */
159 static int next_insn_code;
161 /* Similar, but counts all expressions in the MD file; used for
162 error messages. */
164 static int next_index;
166 /* Record the highest depth we ever have so we know how many variables to
167 allocate in each subroutine we make. */
169 static int max_depth;
171 /* The line number of the start of the pattern currently being processed. */
172 static int pattern_lineno;
174 /* Count of errors. */
175 static int error_count;
177 /* This table contains a list of the rtl codes that can possibly match a
178 predicate defined in recog.c. The function `maybe_both_true' uses it to
179 deduce that there are no expressions that can be matches by certain pairs
180 of tree nodes. Also, if a predicate can match only one code, we can
181 hardwire that code into the node testing the predicate. */
183 static struct pred_table
185 const char *name;
186 RTX_CODE codes[NUM_RTX_CODE];
187 } preds[] = {
188 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
189 LABEL_REF, SUBREG, REG, MEM}},
190 #ifdef PREDICATE_CODES
191 PREDICATE_CODES
192 #endif
193 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
194 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
195 {"register_operand", {SUBREG, REG}},
196 {"pmode_register_operand", {SUBREG, REG}},
197 {"scratch_operand", {SCRATCH, REG}},
198 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
199 LABEL_REF}},
200 {"const_int_operand", {CONST_INT}},
201 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
202 {"nonimmediate_operand", {SUBREG, REG, MEM}},
203 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF, SUBREG, REG}},
205 {"push_operand", {MEM}},
206 {"pop_operand", {MEM}},
207 {"memory_operand", {SUBREG, MEM}},
208 {"indirect_operand", {SUBREG, MEM}},
209 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
210 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
211 UNLT, LTGT}},
212 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
213 LABEL_REF, SUBREG, REG, MEM}}
216 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
218 static const char * special_mode_pred_table[] = {
219 #ifdef SPECIAL_MODE_PREDICATES
220 SPECIAL_MODE_PREDICATES
221 #endif
222 "pmode_register_operand"
225 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
227 static struct decision *new_decision
228 PARAMS ((const char *, struct decision_head *));
229 static struct decision_test *new_decision_test
230 PARAMS ((enum decision_type, struct decision_test ***));
231 static rtx find_operand
232 PARAMS ((rtx, int));
233 static rtx find_matching_operand
234 PARAMS ((rtx, int));
235 static void validate_pattern
236 PARAMS ((rtx, rtx, rtx, int));
237 static struct decision *add_to_sequence
238 PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int));
240 static int maybe_both_true_2
241 PARAMS ((struct decision_test *, struct decision_test *));
242 static int maybe_both_true_1
243 PARAMS ((struct decision_test *, struct decision_test *));
244 static int maybe_both_true
245 PARAMS ((struct decision *, struct decision *, int));
247 static int nodes_identical_1
248 PARAMS ((struct decision_test *, struct decision_test *));
249 static int nodes_identical
250 PARAMS ((struct decision *, struct decision *));
251 static void merge_accept_insn
252 PARAMS ((struct decision *, struct decision *));
253 static void merge_trees
254 PARAMS ((struct decision_head *, struct decision_head *));
256 static void factor_tests
257 PARAMS ((struct decision_head *));
258 static void simplify_tests
259 PARAMS ((struct decision_head *));
260 static int break_out_subroutines
261 PARAMS ((struct decision_head *, int));
262 static void find_afterward
263 PARAMS ((struct decision_head *, struct decision *));
265 static void change_state
266 PARAMS ((const char *, const char *, struct decision *, const char *));
267 static void print_code
268 PARAMS ((enum rtx_code));
269 static void write_afterward
270 PARAMS ((struct decision *, struct decision *, const char *));
271 static struct decision *write_switch
272 PARAMS ((struct decision *, int));
273 static void write_cond
274 PARAMS ((struct decision_test *, int, enum routine_type));
275 static void write_action
276 PARAMS ((struct decision *, struct decision_test *, int, int,
277 struct decision *, enum routine_type));
278 static int is_unconditional
279 PARAMS ((struct decision_test *, enum routine_type));
280 static int write_node
281 PARAMS ((struct decision *, int, enum routine_type));
282 static void write_tree_1
283 PARAMS ((struct decision_head *, int, enum routine_type));
284 static void write_tree
285 PARAMS ((struct decision_head *, const char *, enum routine_type, int));
286 static void write_subroutine
287 PARAMS ((struct decision_head *, enum routine_type));
288 static void write_subroutines
289 PARAMS ((struct decision_head *, enum routine_type));
290 static void write_header
291 PARAMS ((void));
293 static struct decision_head make_insn_sequence
294 PARAMS ((rtx, enum routine_type));
295 static void process_tree
296 PARAMS ((struct decision_head *, enum routine_type));
298 static void record_insn_name
299 PARAMS ((int, const char *));
301 static void debug_decision_0
302 PARAMS ((struct decision *, int, int));
303 static void debug_decision_1
304 PARAMS ((struct decision *, int));
305 static void debug_decision_2
306 PARAMS ((struct decision_test *));
307 extern void debug_decision
308 PARAMS ((struct decision *));
309 extern void debug_decision_list
310 PARAMS ((struct decision *));
312 /* Create a new node in sequence after LAST. */
314 static struct decision *
315 new_decision (position, last)
316 const char *position;
317 struct decision_head *last;
319 register struct decision *new
320 = (struct decision *) xmalloc (sizeof (struct decision));
322 memset (new, 0, sizeof (*new));
323 new->success = *last;
324 new->position = xstrdup (position);
325 new->number = next_number++;
327 last->first = last->last = new;
328 return new;
331 /* Create a new test and link it in at PLACE. */
333 static struct decision_test *
334 new_decision_test (type, pplace)
335 enum decision_type type;
336 struct decision_test ***pplace;
338 struct decision_test **place = *pplace;
339 struct decision_test *test;
341 test = (struct decision_test *) xmalloc (sizeof (*test));
342 test->next = *place;
343 test->type = type;
344 *place = test;
346 place = &test->next;
347 *pplace = place;
349 return test;
352 /* Search for and return operand N. */
354 static rtx
355 find_operand (pattern, n)
356 rtx pattern;
357 int n;
359 const char *fmt;
360 RTX_CODE code;
361 int i, j, len;
362 rtx r;
364 code = GET_CODE (pattern);
365 if ((code == MATCH_SCRATCH
366 || code == MATCH_INSN
367 || code == MATCH_OPERAND
368 || code == MATCH_OPERATOR
369 || code == MATCH_PARALLEL)
370 && XINT (pattern, 0) == n)
371 return pattern;
373 fmt = GET_RTX_FORMAT (code);
374 len = GET_RTX_LENGTH (code);
375 for (i = 0; i < len; i++)
377 switch (fmt[i])
379 case 'e': case 'u':
380 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
381 return r;
382 break;
384 case 'V':
385 if (! XVEC (pattern, i))
386 break;
387 /* FALLTHRU */
389 case 'E':
390 for (j = 0; j < XVECLEN (pattern, i); j++)
391 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
392 return r;
393 break;
395 case 'i': case 'w': case '0': case 's':
396 break;
398 default:
399 abort ();
403 return NULL;
406 /* Search for and return operand M, such that it has a matching
407 constraint for operand N. */
409 static rtx
410 find_matching_operand (pattern, n)
411 rtx pattern;
412 int n;
414 const char *fmt;
415 RTX_CODE code;
416 int i, j, len;
417 rtx r;
419 code = GET_CODE (pattern);
420 if (code == MATCH_OPERAND
421 && (XSTR (pattern, 2)[0] == '0' + n
422 || (XSTR (pattern, 2)[0] == '%'
423 && XSTR (pattern, 2)[1] == '0' + n)))
424 return pattern;
426 fmt = GET_RTX_FORMAT (code);
427 len = GET_RTX_LENGTH (code);
428 for (i = 0; i < len; i++)
430 switch (fmt[i])
432 case 'e': case 'u':
433 if ((r = find_matching_operand (XEXP (pattern, i), n)))
434 return r;
435 break;
437 case 'V':
438 if (! XVEC (pattern, i))
439 break;
440 /* FALLTHRU */
442 case 'E':
443 for (j = 0; j < XVECLEN (pattern, i); j++)
444 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
445 return r;
446 break;
448 case 'i': case 'w': case '0': case 's':
449 break;
451 default:
452 abort ();
456 return NULL;
460 /* Check for various errors in patterns. SET is nonnull for a destination,
461 and is the complete set pattern. SET_CODE is '=' for normal sets, and
462 '+' within a context that requires in-out constraints. */
464 static void
465 validate_pattern (pattern, insn, set, set_code)
466 rtx pattern;
467 rtx insn;
468 rtx set;
469 int set_code;
471 const char *fmt;
472 RTX_CODE code;
473 size_t i, len;
474 int j;
476 code = GET_CODE (pattern);
477 switch (code)
479 case MATCH_SCRATCH:
480 return;
482 case MATCH_INSN:
483 case MATCH_OPERAND:
484 case MATCH_OPERATOR:
486 const char *pred_name = XSTR (pattern, 1);
487 int allows_non_lvalue = 1, allows_non_const = 1;
488 int special_mode_pred = 0;
489 const char *c_test;
491 if (GET_CODE (insn) == DEFINE_INSN)
492 c_test = XSTR (insn, 2);
493 else
494 c_test = XSTR (insn, 1);
496 if (pred_name[0] != 0)
498 for (i = 0; i < NUM_KNOWN_PREDS; i++)
499 if (! strcmp (preds[i].name, pred_name))
500 break;
502 if (i < NUM_KNOWN_PREDS)
504 int j;
506 allows_non_lvalue = allows_non_const = 0;
507 for (j = 0; preds[i].codes[j] != 0; j++)
509 RTX_CODE c = preds[i].codes[j];
510 if (c != LABEL_REF
511 && c != SYMBOL_REF
512 && c != CONST_INT
513 && c != CONST_DOUBLE
514 && c != CONST
515 && c != HIGH
516 && c != CONSTANT_P_RTX)
517 allows_non_const = 1;
519 if (c != REG
520 && c != SUBREG
521 && c != MEM
522 && c != CONCAT
523 && c != PARALLEL
524 && c != STRICT_LOW_PART)
525 allows_non_lvalue = 1;
528 else
530 #ifdef PREDICATE_CODES
531 /* If the port has a list of the predicates it uses but
532 omits one, warn. */
533 message_with_line (pattern_lineno,
534 "warning: `%s' not in PREDICATE_CODES",
535 pred_name);
536 #endif
539 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
540 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
542 special_mode_pred = 1;
543 break;
547 /* A MATCH_OPERAND that is a SET should have an output reload. */
548 if (set && code == MATCH_OPERAND
549 && XSTR (pattern, 2)[0] != '\0')
551 if (set_code == '+')
553 if (XSTR (pattern, 2)[0] == '+')
555 /* If we've only got an output reload for this operand,
556 we'd better have a matching input operand. */
557 else if (XSTR (pattern, 2)[0] == '='
558 && find_matching_operand (insn, XINT (pattern, 0)))
560 else
562 message_with_line (pattern_lineno,
563 "operand %d missing in-out reload",
564 XINT (pattern, 0));
565 error_count++;
568 else if (XSTR (pattern, 2)[0] != '='
569 && XSTR (pattern, 2)[0] != '+')
571 message_with_line (pattern_lineno,
572 "operand %d missing output reload",
573 XINT (pattern, 0));
574 error_count++;
578 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
579 while not likely to occur at runtime, results in less efficient
580 code from insn-recog.c. */
581 if (set
582 && pred_name[0] != '\0'
583 && allows_non_lvalue)
585 message_with_line (pattern_lineno,
586 "warning: destination operand %d allows non-lvalue",
587 XINT (pattern, 0));
590 /* A modeless MATCH_OPERAND can be handy when we can
591 check for multiple modes in the c_test. In most other cases,
592 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
593 and PEEP2 can FAIL within the output pattern. Exclude
594 address_operand, since its mode is related to the mode of
595 the memory not the operand. Exclude the SET_DEST of a call
596 instruction, as that is a common idiom. */
598 if (GET_MODE (pattern) == VOIDmode
599 && code == MATCH_OPERAND
600 && GET_CODE (insn) == DEFINE_INSN
601 && allows_non_const
602 && ! special_mode_pred
603 && pred_name[0] != '\0'
604 && strcmp (pred_name, "address_operand") != 0
605 && strstr (c_test, "operands") == NULL
606 && ! (set
607 && GET_CODE (set) == SET
608 && GET_CODE (SET_SRC (set)) == CALL))
610 message_with_line (pattern_lineno,
611 "warning: operand %d missing mode?",
612 XINT (pattern, 0));
614 return;
617 case SET:
619 enum machine_mode dmode, smode;
620 rtx dest, src;
622 dest = SET_DEST (pattern);
623 src = SET_SRC (pattern);
625 /* Find the referant for a DUP. */
627 if (GET_CODE (dest) == MATCH_DUP
628 || GET_CODE (dest) == MATCH_OP_DUP
629 || GET_CODE (dest) == MATCH_PAR_DUP)
630 dest = find_operand (insn, XINT (dest, 0));
632 if (GET_CODE (src) == MATCH_DUP
633 || GET_CODE (src) == MATCH_OP_DUP
634 || GET_CODE (src) == MATCH_PAR_DUP)
635 src = find_operand (insn, XINT (src, 0));
637 /* STRICT_LOW_PART is a wrapper. Its argument is the real
638 destination, and it's mode should match the source. */
639 if (GET_CODE (dest) == STRICT_LOW_PART)
640 dest = XEXP (dest, 0);
642 dmode = GET_MODE (dest);
643 smode = GET_MODE (src);
645 /* The mode of an ADDRESS_OPERAND is the mode of the memory
646 reference, not the mode of the address. */
647 if (GET_CODE (src) == MATCH_OPERAND
648 && ! strcmp (XSTR (src, 1), "address_operand"))
651 /* The operands of a SET must have the same mode unless one
652 is VOIDmode. */
653 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
655 message_with_line (pattern_lineno,
656 "mode mismatch in set: %smode vs %smode",
657 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
658 error_count++;
661 /* If only one of the operands is VOIDmode, and PC or CC0 is
662 not involved, it's probably a mistake. */
663 else if (dmode != smode
664 && GET_CODE (dest) != PC
665 && GET_CODE (dest) != CC0
666 && GET_CODE (src) != PC
667 && GET_CODE (src) != CC0
668 && GET_CODE (src) != CONST_INT)
670 const char *which;
671 which = (dmode == VOIDmode ? "destination" : "source");
672 message_with_line (pattern_lineno,
673 "warning: %s missing a mode?", which);
676 if (dest != SET_DEST (pattern))
677 validate_pattern (dest, insn, pattern, '=');
678 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
679 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
680 return;
683 case CLOBBER:
684 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
685 return;
687 case ZERO_EXTRACT:
688 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
689 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
690 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
691 return;
693 case STRICT_LOW_PART:
694 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
695 return;
697 case LABEL_REF:
698 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
700 message_with_line (pattern_lineno,
701 "operand to label_ref %smode not VOIDmode",
702 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
703 error_count++;
705 break;
707 default:
708 break;
711 fmt = GET_RTX_FORMAT (code);
712 len = GET_RTX_LENGTH (code);
713 for (i = 0; i < len; i++)
715 switch (fmt[i])
717 case 'e': case 'u':
718 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
719 break;
721 case 'E':
722 for (j = 0; j < XVECLEN (pattern, i); j++)
723 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
724 break;
726 case 'i': case 'w': case '0': case 's':
727 break;
729 default:
730 abort ();
735 /* Create a chain of nodes to verify that an rtl expression matches
736 PATTERN.
738 LAST is a pointer to the listhead in the previous node in the chain (or
739 in the calling function, for the first node).
741 POSITION is the string representing the current position in the insn.
743 INSN_TYPE is the type of insn for which we are emitting code.
745 A pointer to the final node in the chain is returned. */
747 static struct decision *
748 add_to_sequence (pattern, last, position, insn_type, top)
749 rtx pattern;
750 struct decision_head *last;
751 const char *position;
752 enum routine_type insn_type;
753 int top;
755 RTX_CODE code;
756 struct decision *this, *sub;
757 struct decision_test *test;
758 struct decision_test **place;
759 char *subpos;
760 register size_t i;
761 register const char *fmt;
762 int depth = strlen (position);
763 int len;
764 enum machine_mode mode;
766 if (depth > max_depth)
767 max_depth = depth;
769 subpos = (char *) xmalloc (depth + 2);
770 strcpy (subpos, position);
771 subpos[depth + 1] = 0;
773 sub = this = new_decision (position, last);
774 place = &this->tests;
776 restart:
777 mode = GET_MODE (pattern);
778 code = GET_CODE (pattern);
780 switch (code)
782 case PARALLEL:
783 /* Toplevel peephole pattern. */
784 if (insn_type == PEEPHOLE2 && top)
786 /* We don't need the node we just created -- unlink it. */
787 last->first = last->last = NULL;
789 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
791 /* Which insn we're looking at is represented by A-Z. We don't
792 ever use 'A', however; it is always implied. */
794 subpos[depth] = (i > 0 ? 'A' + i : 0);
795 sub = add_to_sequence (XVECEXP (pattern, 0, i),
796 last, subpos, insn_type, 0);
797 last = &sub->success;
799 goto ret;
802 /* Else nothing special. */
803 break;
805 case MATCH_PARALLEL:
806 /* The explicit patterns within a match_parallel enforce a minimum
807 length on the vector. The match_parallel predicate may allow
808 for more elements. We do need to check for this minimum here
809 or the code generated to match the internals may reference data
810 beyond the end of the vector. */
811 test = new_decision_test (DT_veclen_ge, &place);
812 test->u.veclen = XVECLEN (pattern, 2);
813 /* FALLTHRU */
815 case MATCH_OPERAND:
816 case MATCH_SCRATCH:
817 case MATCH_OPERATOR:
818 case MATCH_INSN:
820 const char *pred_name;
821 RTX_CODE was_code = code;
822 int allows_const_int = 1;
824 if (code == MATCH_SCRATCH)
826 pred_name = "scratch_operand";
827 code = UNKNOWN;
829 else
831 pred_name = XSTR (pattern, 1);
832 if (code == MATCH_PARALLEL)
833 code = PARALLEL;
834 else
835 code = UNKNOWN;
838 if (pred_name[0] != 0)
840 test = new_decision_test (DT_pred, &place);
841 test->u.pred.name = pred_name;
842 test->u.pred.mode = mode;
844 /* See if we know about this predicate and save its number. If
845 we do, and it only accepts one code, note that fact. The
846 predicate `const_int_operand' only tests for a CONST_INT, so
847 if we do so we can avoid calling it at all.
849 Finally, if we know that the predicate does not allow
850 CONST_INT, we know that the only way the predicate can match
851 is if the modes match (here we use the kludge of relying on
852 the fact that "address_operand" accepts CONST_INT; otherwise,
853 it would have to be a special case), so we can test the mode
854 (but we need not). This fact should considerably simplify the
855 generated code. */
857 for (i = 0; i < NUM_KNOWN_PREDS; i++)
858 if (! strcmp (preds[i].name, pred_name))
859 break;
861 if (i < NUM_KNOWN_PREDS)
863 int j;
865 test->u.pred.index = i;
867 if (preds[i].codes[1] == 0 && code == UNKNOWN)
868 code = preds[i].codes[0];
870 allows_const_int = 0;
871 for (j = 0; preds[i].codes[j] != 0; j++)
872 if (preds[i].codes[j] == CONST_INT)
874 allows_const_int = 1;
875 break;
878 else
879 test->u.pred.index = -1;
882 /* Can't enforce a mode if we allow const_int. */
883 if (allows_const_int)
884 mode = VOIDmode;
886 /* Accept the operand, ie. record it in `operands'. */
887 test = new_decision_test (DT_accept_op, &place);
888 test->u.opno = XINT (pattern, 0);
890 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
892 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
893 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
895 subpos[depth] = i + base;
896 sub = add_to_sequence (XVECEXP (pattern, 2, i),
897 &sub->success, subpos, insn_type, 0);
900 goto fini;
903 case MATCH_OP_DUP:
904 code = UNKNOWN;
906 test = new_decision_test (DT_dup, &place);
907 test->u.dup = XINT (pattern, 0);
909 test = new_decision_test (DT_accept_op, &place);
910 test->u.opno = XINT (pattern, 0);
912 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
914 subpos[depth] = i + '0';
915 sub = add_to_sequence (XVECEXP (pattern, 1, i),
916 &sub->success, subpos, insn_type, 0);
918 goto fini;
920 case MATCH_DUP:
921 case MATCH_PAR_DUP:
922 code = UNKNOWN;
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
926 goto fini;
928 case ADDRESS:
929 pattern = XEXP (pattern, 0);
930 goto restart;
932 default:
933 break;
936 fmt = GET_RTX_FORMAT (code);
937 len = GET_RTX_LENGTH (code);
939 /* Do tests against the current node first. */
940 for (i = 0; i < (size_t) len; i++)
942 if (fmt[i] == 'i')
944 if (i == 0)
946 test = new_decision_test (DT_elt_zero_int, &place);
947 test->u.intval = XINT (pattern, i);
949 else if (i == 1)
951 test = new_decision_test (DT_elt_one_int, &place);
952 test->u.intval = XINT (pattern, i);
954 else
955 abort ();
957 else if (fmt[i] == 'w')
959 if (i != 0)
960 abort ();
962 test = new_decision_test (DT_elt_zero_wide, &place);
963 test->u.intval = XWINT (pattern, i);
965 else if (fmt[i] == 'E')
967 if (i != 0)
968 abort ();
970 test = new_decision_test (DT_veclen, &place);
971 test->u.veclen = XVECLEN (pattern, i);
975 /* Now test our sub-patterns. */
976 for (i = 0; i < (size_t) len; i++)
978 switch (fmt[i])
980 case 'e': case 'u':
981 subpos[depth] = '0' + i;
982 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
983 subpos, insn_type, 0);
984 break;
986 case 'E':
988 register int j;
989 for (j = 0; j < XVECLEN (pattern, i); j++)
991 subpos[depth] = 'a' + j;
992 sub = add_to_sequence (XVECEXP (pattern, i, j),
993 &sub->success, subpos, insn_type, 0);
995 break;
998 case 'i': case 'w':
999 /* Handled above. */
1000 break;
1001 case '0':
1002 break;
1004 default:
1005 abort ();
1009 fini:
1010 /* Insert nodes testing mode and code, if they're still relevant,
1011 before any of the nodes we may have added above. */
1012 if (code != UNKNOWN)
1014 place = &this->tests;
1015 test = new_decision_test (DT_code, &place);
1016 test->u.code = code;
1019 if (mode != VOIDmode)
1021 place = &this->tests;
1022 test = new_decision_test (DT_mode, &place);
1023 test->u.mode = mode;
1026 /* If we didn't insert any tests or accept nodes, hork. */
1027 if (this->tests == NULL)
1028 abort ();
1030 ret:
1031 free (subpos);
1032 return sub;
1035 /* A subroutine of maybe_both_true; examines only one test.
1036 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1038 static int
1039 maybe_both_true_2 (d1, d2)
1040 struct decision_test *d1, *d2;
1042 if (d1->type == d2->type)
1044 switch (d1->type)
1046 case DT_mode:
1047 return d1->u.mode == d2->u.mode;
1049 case DT_code:
1050 return d1->u.code == d2->u.code;
1052 case DT_veclen:
1053 return d1->u.veclen == d2->u.veclen;
1055 case DT_elt_zero_int:
1056 case DT_elt_one_int:
1057 case DT_elt_zero_wide:
1058 return d1->u.intval == d2->u.intval;
1060 default:
1061 break;
1065 /* If either has a predicate that we know something about, set
1066 things up so that D1 is the one that always has a known
1067 predicate. Then see if they have any codes in common. */
1069 if (d1->type == DT_pred || d2->type == DT_pred)
1071 if (d2->type == DT_pred)
1073 struct decision_test *tmp;
1074 tmp = d1, d1 = d2, d2 = tmp;
1077 /* If D2 tests a mode, see if it matches D1. */
1078 if (d1->u.pred.mode != VOIDmode)
1080 if (d2->type == DT_mode)
1082 if (d1->u.pred.mode != d2->u.mode
1083 /* The mode of an address_operand predicate is the
1084 mode of the memory, not the operand. It can only
1085 be used for testing the predicate, so we must
1086 ignore it here. */
1087 && strcmp (d1->u.pred.name, "address_operand") != 0)
1088 return 0;
1090 /* Don't check two predicate modes here, because if both predicates
1091 accept CONST_INT, then both can still be true even if the modes
1092 are different. If they don't accept CONST_INT, there will be a
1093 separate DT_mode that will make maybe_both_true_1 return 0. */
1096 if (d1->u.pred.index >= 0)
1098 /* If D2 tests a code, see if it is in the list of valid
1099 codes for D1's predicate. */
1100 if (d2->type == DT_code)
1102 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1103 while (*c != 0)
1105 if (*c == d2->u.code)
1106 break;
1107 ++c;
1109 if (*c == 0)
1110 return 0;
1113 /* Otherwise see if the predicates have any codes in common. */
1114 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1116 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1117 int common = 0;
1119 while (*c1 != 0 && !common)
1121 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1122 while (*c2 != 0 && !common)
1124 common = (*c1 == *c2);
1125 ++c2;
1127 ++c1;
1130 if (!common)
1131 return 0;
1136 /* Tests vs veclen may be known when strict equality is involved. */
1137 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1138 return d1->u.veclen >= d2->u.veclen;
1139 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1140 return d2->u.veclen >= d1->u.veclen;
1142 return -1;
1145 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1146 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1148 static int
1149 maybe_both_true_1 (d1, d2)
1150 struct decision_test *d1, *d2;
1152 struct decision_test *t1, *t2;
1154 /* A match_operand with no predicate can match anything. Recognize
1155 this by the existance of a lone DT_accept_op test. */
1156 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1157 return 1;
1159 /* Eliminate pairs of tests while they can exactly match. */
1160 while (d1 && d2 && d1->type == d2->type)
1162 if (maybe_both_true_2 (d1, d2) == 0)
1163 return 0;
1164 d1 = d1->next, d2 = d2->next;
1167 /* After that, consider all pairs. */
1168 for (t1 = d1; t1 ; t1 = t1->next)
1169 for (t2 = d2; t2 ; t2 = t2->next)
1170 if (maybe_both_true_2 (t1, t2) == 0)
1171 return 0;
1173 return -1;
1176 /* Return 0 if we can prove that there is no RTL that can match both
1177 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1178 can match both or just that we couldn't prove there wasn't such an RTL).
1180 TOPLEVEL is non-zero if we are to only look at the top level and not
1181 recursively descend. */
1183 static int
1184 maybe_both_true (d1, d2, toplevel)
1185 struct decision *d1, *d2;
1186 int toplevel;
1188 struct decision *p1, *p2;
1189 int cmp;
1191 /* Don't compare strings on the different positions in insn. Doing so
1192 is incorrect and results in false matches from constructs like
1194 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1195 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1197 [(set (match_operand:HI "register_operand" "r")
1198 (match_operand:HI "register_operand" "r"))]
1200 If we are presented with such, we are recursing through the remainder
1201 of a node's success nodes (from the loop at the end of this function).
1202 Skip forward until we come to a position that matches.
1204 Due to the way position strings are constructed, we know that iterating
1205 forward from the lexically lower position (e.g. "00") will run into
1206 the lexically higher position (e.g. "1") and not the other way around.
1207 This saves a bit of effort. */
1209 cmp = strcmp (d1->position, d2->position);
1210 if (cmp != 0)
1212 if (toplevel)
1213 abort();
1215 /* If the d2->position was lexically lower, swap. */
1216 if (cmp > 0)
1217 p1 = d1, d1 = d2, d2 = p1;
1219 if (d1->success.first == 0)
1220 return 1;
1221 for (p1 = d1->success.first; p1; p1 = p1->next)
1222 if (maybe_both_true (p1, d2, 0))
1223 return 1;
1225 return 0;
1228 /* Test the current level. */
1229 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1230 if (cmp >= 0)
1231 return cmp;
1233 /* We can't prove that D1 and D2 cannot both be true. If we are only
1234 to check the top level, return 1. Otherwise, see if we can prove
1235 that all choices in both successors are mutually exclusive. If
1236 either does not have any successors, we can't prove they can't both
1237 be true. */
1239 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1240 return 1;
1242 for (p1 = d1->success.first; p1; p1 = p1->next)
1243 for (p2 = d2->success.first; p2; p2 = p2->next)
1244 if (maybe_both_true (p1, p2, 0))
1245 return 1;
1247 return 0;
1250 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1252 static int
1253 nodes_identical_1 (d1, d2)
1254 struct decision_test *d1, *d2;
1256 switch (d1->type)
1258 case DT_mode:
1259 return d1->u.mode == d2->u.mode;
1261 case DT_code:
1262 return d1->u.code == d2->u.code;
1264 case DT_pred:
1265 return (d1->u.pred.mode == d2->u.pred.mode
1266 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1268 case DT_c_test:
1269 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1271 case DT_veclen:
1272 case DT_veclen_ge:
1273 return d1->u.veclen == d2->u.veclen;
1275 case DT_dup:
1276 return d1->u.dup == d2->u.dup;
1278 case DT_elt_zero_int:
1279 case DT_elt_one_int:
1280 case DT_elt_zero_wide:
1281 return d1->u.intval == d2->u.intval;
1283 case DT_accept_op:
1284 return d1->u.opno == d2->u.opno;
1286 case DT_accept_insn:
1287 /* Differences will be handled in merge_accept_insn. */
1288 return 1;
1290 default:
1291 abort ();
1295 /* True iff the two nodes are identical (on one level only). Due
1296 to the way these lists are constructed, we shouldn't have to
1297 consider different orderings on the tests. */
1299 static int
1300 nodes_identical (d1, d2)
1301 struct decision *d1, *d2;
1303 struct decision_test *t1, *t2;
1305 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1307 if (t1->type != t2->type)
1308 return 0;
1309 if (! nodes_identical_1 (t1, t2))
1310 return 0;
1313 /* For success, they should now both be null. */
1314 if (t1 != t2)
1315 return 0;
1317 /* Check that their subnodes are at the same position, as any one set
1318 of sibling decisions must be at the same position. Allowing this
1319 requires complications to find_afterward and when change_state is
1320 invoked. */
1321 if (d1->success.first
1322 && d2->success.first
1323 && strcmp (d1->success.first->position, d2->success.first->position))
1324 return 0;
1326 return 1;
1329 /* A subroutine of merge_trees; given two nodes that have been declared
1330 identical, cope with two insn accept states. If they differ in the
1331 number of clobbers, then the conflict was created by make_insn_sequence
1332 and we can drop the with-clobbers version on the floor. If both
1333 nodes have no additional clobbers, we have found an ambiguity in the
1334 source machine description. */
1336 static void
1337 merge_accept_insn (oldd, addd)
1338 struct decision *oldd, *addd;
1340 struct decision_test *old, *add;
1342 for (old = oldd->tests; old; old = old->next)
1343 if (old->type == DT_accept_insn)
1344 break;
1345 if (old == NULL)
1346 return;
1348 for (add = addd->tests; add; add = add->next)
1349 if (add->type == DT_accept_insn)
1350 break;
1351 if (add == NULL)
1352 return;
1354 /* If one node is for a normal insn and the second is for the base
1355 insn with clobbers stripped off, the second node should be ignored. */
1357 if (old->u.insn.num_clobbers_to_add == 0
1358 && add->u.insn.num_clobbers_to_add > 0)
1360 /* Nothing to do here. */
1362 else if (old->u.insn.num_clobbers_to_add > 0
1363 && add->u.insn.num_clobbers_to_add == 0)
1365 /* In this case, replace OLD with ADD. */
1366 old->u.insn = add->u.insn;
1368 else
1370 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1371 get_insn_name (add->u.insn.code_number),
1372 get_insn_name (old->u.insn.code_number));
1373 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1374 get_insn_name (old->u.insn.code_number));
1375 error_count++;
1379 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1381 static void
1382 merge_trees (oldh, addh)
1383 struct decision_head *oldh, *addh;
1385 struct decision *next, *add;
1387 if (addh->first == 0)
1388 return;
1389 if (oldh->first == 0)
1391 *oldh = *addh;
1392 return;
1395 /* Trying to merge bits at different positions isn't possible. */
1396 if (strcmp (oldh->first->position, addh->first->position))
1397 abort ();
1399 for (add = addh->first; add ; add = next)
1401 struct decision *old, *insert_before = NULL;
1403 next = add->next;
1405 /* The semantics of pattern matching state that the tests are
1406 done in the order given in the MD file so that if an insn
1407 matches two patterns, the first one will be used. However,
1408 in practice, most, if not all, patterns are unambiguous so
1409 that their order is independent. In that case, we can merge
1410 identical tests and group all similar modes and codes together.
1412 Scan starting from the end of OLDH until we reach a point
1413 where we reach the head of the list or where we pass a
1414 pattern that could also be true if NEW is true. If we find
1415 an identical pattern, we can merge them. Also, record the
1416 last node that tests the same code and mode and the last one
1417 that tests just the same mode.
1419 If we have no match, place NEW after the closest match we found. */
1421 for (old = oldh->last; old; old = old->prev)
1423 if (nodes_identical (old, add))
1425 merge_accept_insn (old, add);
1426 merge_trees (&old->success, &add->success);
1427 goto merged_nodes;
1430 if (maybe_both_true (old, add, 0))
1431 break;
1433 /* Insert the nodes in DT test type order, which is roughly
1434 how expensive/important the test is. Given that the tests
1435 are also ordered within the list, examining the first is
1436 sufficient. */
1437 if ((int) add->tests->type < (int) old->tests->type)
1438 insert_before = old;
1441 if (insert_before == NULL)
1443 add->next = NULL;
1444 add->prev = oldh->last;
1445 oldh->last->next = add;
1446 oldh->last = add;
1448 else
1450 if ((add->prev = insert_before->prev) != NULL)
1451 add->prev->next = add;
1452 else
1453 oldh->first = add;
1454 add->next = insert_before;
1455 insert_before->prev = add;
1458 merged_nodes:;
1462 /* Walk the tree looking for sub-nodes that perform common tests.
1463 Factor out the common test into a new node. This enables us
1464 (depending on the test type) to emit switch statements later. */
1466 static void
1467 factor_tests (head)
1468 struct decision_head *head;
1470 struct decision *first, *next;
1472 for (first = head->first; first && first->next; first = next)
1474 enum decision_type type;
1475 struct decision *new, *old_last;
1477 type = first->tests->type;
1478 next = first->next;
1480 /* Want at least two compatible sequential nodes. */
1481 if (next->tests->type != type)
1482 continue;
1484 /* Don't want all node types, just those we can turn into
1485 switch statements. */
1486 if (type != DT_mode
1487 && type != DT_code
1488 && type != DT_veclen
1489 && type != DT_elt_zero_int
1490 && type != DT_elt_one_int
1491 && type != DT_elt_zero_wide)
1492 continue;
1494 /* If we'd been performing more than one test, create a new node
1495 below our first test. */
1496 if (first->tests->next != NULL)
1498 new = new_decision (first->position, &first->success);
1499 new->tests = first->tests->next;
1500 first->tests->next = NULL;
1503 /* Crop the node tree off after our first test. */
1504 first->next = NULL;
1505 old_last = head->last;
1506 head->last = first;
1508 /* For each compatible test, adjust to perform only one test in
1509 the top level node, then merge the node back into the tree. */
1512 struct decision_head h;
1514 if (next->tests->next != NULL)
1516 new = new_decision (next->position, &next->success);
1517 new->tests = next->tests->next;
1518 next->tests->next = NULL;
1520 new = next;
1521 next = next->next;
1522 new->next = NULL;
1523 h.first = h.last = new;
1525 merge_trees (head, &h);
1527 while (next && next->tests->type == type);
1529 /* After we run out of compatible tests, graft the remaining nodes
1530 back onto the tree. */
1531 if (next)
1533 next->prev = head->last;
1534 head->last->next = next;
1535 head->last = old_last;
1539 /* Recurse. */
1540 for (first = head->first; first; first = first->next)
1541 factor_tests (&first->success);
1544 /* After factoring, try to simplify the tests on any one node.
1545 Tests that are useful for switch statements are recognizable
1546 by having only a single test on a node -- we'll be manipulating
1547 nodes with multiple tests:
1549 If we have mode tests or code tests that are redundant with
1550 predicates, remove them. */
1552 static void
1553 simplify_tests (head)
1554 struct decision_head *head;
1556 struct decision *tree;
1558 for (tree = head->first; tree; tree = tree->next)
1560 struct decision_test *a, *b;
1562 a = tree->tests;
1563 b = a->next;
1564 if (b == NULL)
1565 continue;
1567 /* Find a predicate node. */
1568 while (b && b->type != DT_pred)
1569 b = b->next;
1570 if (b)
1572 /* Due to how these tests are constructed, we don't even need
1573 to check that the mode and code are compatible -- they were
1574 generated from the predicate in the first place. */
1575 while (a->type == DT_mode || a->type == DT_code)
1576 a = a->next;
1577 tree->tests = a;
1581 /* Recurse. */
1582 for (tree = head->first; tree; tree = tree->next)
1583 simplify_tests (&tree->success);
1586 /* Count the number of subnodes of HEAD. If the number is high enough,
1587 make the first node in HEAD start a separate subroutine in the C code
1588 that is generated. */
1590 static int
1591 break_out_subroutines (head, initial)
1592 struct decision_head *head;
1593 int initial;
1595 int size = 0;
1596 struct decision *sub;
1598 for (sub = head->first; sub; sub = sub->next)
1599 size += 1 + break_out_subroutines (&sub->success, 0);
1601 if (size > SUBROUTINE_THRESHOLD && ! initial)
1603 head->first->subroutine_number = ++next_subroutine_number;
1604 size = 1;
1606 return size;
1609 /* For each node p, find the next alternative that might be true
1610 when p is true. */
1612 static void
1613 find_afterward (head, real_afterward)
1614 struct decision_head *head;
1615 struct decision *real_afterward;
1617 struct decision *p, *q, *afterward;
1619 /* We can't propogate alternatives across subroutine boundaries.
1620 This is not incorrect, merely a minor optimization loss. */
1622 p = head->first;
1623 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1625 for ( ; p ; p = p->next)
1627 /* Find the next node that might be true if this one fails. */
1628 for (q = p->next; q ; q = q->next)
1629 if (maybe_both_true (p, q, 1))
1630 break;
1632 /* If we reached the end of the list without finding one,
1633 use the incoming afterward position. */
1634 if (!q)
1635 q = afterward;
1636 p->afterward = q;
1637 if (q)
1638 q->need_label = 1;
1641 /* Recurse. */
1642 for (p = head->first; p ; p = p->next)
1643 if (p->success.first)
1644 find_afterward (&p->success, p->afterward);
1646 /* When we are generating a subroutine, record the real afterward
1647 position in the first node where write_tree can find it, and we
1648 can do the right thing at the subroutine call site. */
1649 p = head->first;
1650 if (p->subroutine_number > 0)
1651 p->afterward = real_afterward;
1654 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1655 actions are necessary to move to NEWPOS. If we fail to move to the
1656 new state, branch to node AFTERWARD if non-zero, otherwise return.
1658 Failure to move to the new state can only occur if we are trying to
1659 match multiple insns and we try to step past the end of the stream. */
1661 static void
1662 change_state (oldpos, newpos, afterward, indent)
1663 const char *oldpos;
1664 const char *newpos;
1665 struct decision *afterward;
1666 const char *indent;
1668 int odepth = strlen (oldpos);
1669 int ndepth = strlen (newpos);
1670 int depth;
1671 int old_has_insn, new_has_insn;
1673 /* Pop up as many levels as necessary. */
1674 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1675 continue;
1677 /* Hunt for the last [A-Z] in both strings. */
1678 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1679 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1680 break;
1681 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1682 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1683 break;
1685 /* Go down to desired level. */
1686 while (depth < ndepth)
1688 /* It's a different insn from the first one. */
1689 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
1691 /* We can only fail if we're moving down the tree. */
1692 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1694 printf ("%stem = peep2_next_insn (%d);\n",
1695 indent, newpos[depth] - 'A');
1697 else
1699 printf ("%stem = peep2_next_insn (%d);\n",
1700 indent, newpos[depth] - 'A');
1701 printf ("%sif (tem == NULL_RTX)\n", indent);
1702 if (afterward)
1703 printf ("%s goto L%d;\n", indent, afterward->number);
1704 else
1705 printf ("%s goto ret0;\n", indent);
1707 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1709 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1710 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1711 indent, depth + 1, depth, newpos[depth] - 'a');
1712 else
1713 printf ("%sx%d = XEXP (x%d, %c);\n",
1714 indent, depth + 1, depth, newpos[depth]);
1715 ++depth;
1719 /* Print the enumerator constant for CODE -- the upcase version of
1720 the name. */
1722 static void
1723 print_code (code)
1724 enum rtx_code code;
1726 register const char *p;
1727 for (p = GET_RTX_NAME (code); *p; p++)
1728 putchar (TOUPPER (*p));
1731 /* Emit code to cross an afterward link -- change state and branch. */
1733 static void
1734 write_afterward (start, afterward, indent)
1735 struct decision *start;
1736 struct decision *afterward;
1737 const char *indent;
1739 if (!afterward || start->subroutine_number > 0)
1740 printf("%sgoto ret0;\n", indent);
1741 else
1743 change_state (start->position, afterward->position, NULL, indent);
1744 printf ("%sgoto L%d;\n", indent, afterward->number);
1748 /* Emit a switch statement, if possible, for an initial sequence of
1749 nodes at START. Return the first node yet untested. */
1751 static struct decision *
1752 write_switch (start, depth)
1753 struct decision *start;
1754 int depth;
1756 struct decision *p = start;
1757 enum decision_type type = p->tests->type;
1758 struct decision *needs_label = NULL;
1760 /* If we have two or more nodes in sequence that test the same one
1761 thing, we may be able to use a switch statement. */
1763 if (!p->next
1764 || p->tests->next
1765 || p->next->tests->type != type
1766 || p->next->tests->next
1767 || nodes_identical_1 (p->tests, p->next->tests))
1768 return p;
1770 /* DT_code is special in that we can do interesting things with
1771 known predicates at the same time. */
1772 if (type == DT_code)
1774 char codemap[NUM_RTX_CODE];
1775 struct decision *ret;
1776 RTX_CODE code;
1778 memset (codemap, 0, sizeof(codemap));
1780 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1781 code = p->tests->u.code;
1784 if (p != start && p->need_label && needs_label == NULL)
1785 needs_label = p;
1787 printf (" case ");
1788 print_code (code);
1789 printf (":\n goto L%d;\n", p->success.first->number);
1790 p->success.first->need_label = 1;
1792 codemap[code] = 1;
1793 p = p->next;
1795 while (p
1796 && ! p->tests->next
1797 && p->tests->type == DT_code
1798 && ! codemap[code = p->tests->u.code]);
1800 /* If P is testing a predicate that we know about and we haven't
1801 seen any of the codes that are valid for the predicate, we can
1802 write a series of "case" statement, one for each possible code.
1803 Since we are already in a switch, these redundant tests are very
1804 cheap and will reduce the number of predicates called. */
1806 /* Note that while we write out cases for these predicates here,
1807 we don't actually write the test here, as it gets kinda messy.
1808 It is trivial to leave this to later by telling our caller that
1809 we only processed the CODE tests. */
1810 if (needs_label != NULL)
1811 ret = needs_label;
1812 else
1813 ret = p;
1815 while (p && p->tests->type == DT_pred
1816 && p->tests->u.pred.index >= 0)
1818 const RTX_CODE *c;
1820 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1821 if (codemap[(int) *c] != 0)
1822 goto pred_done;
1824 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1826 printf (" case ");
1827 print_code (*c);
1828 printf (":\n");
1829 codemap[(int) *c] = 1;
1832 printf (" goto L%d;\n", p->number);
1833 p->need_label = 1;
1834 p = p->next;
1837 pred_done:
1838 /* Make the default case skip the predicates we managed to match. */
1840 printf (" default:\n");
1841 if (p != ret)
1843 if (p)
1845 printf (" goto L%d;\n", p->number);
1846 p->need_label = 1;
1848 else
1849 write_afterward (start, start->afterward, " ");
1851 else
1852 printf (" break;\n");
1853 printf (" }\n");
1855 return ret;
1857 else if (type == DT_mode
1858 || type == DT_veclen
1859 || type == DT_elt_zero_int
1860 || type == DT_elt_one_int
1861 || type == DT_elt_zero_wide)
1863 printf (" switch (");
1864 switch (type)
1866 case DT_mode:
1867 printf ("GET_MODE (x%d)", depth);
1868 break;
1869 case DT_veclen:
1870 printf ("XVECLEN (x%d, 0)", depth);
1871 break;
1872 case DT_elt_zero_int:
1873 printf ("XINT (x%d, 0)", depth);
1874 break;
1875 case DT_elt_one_int:
1876 printf ("XINT (x%d, 1)", depth);
1877 break;
1878 case DT_elt_zero_wide:
1879 /* Convert result of XWINT to int for portability since some C
1880 compilers won't do it and some will. */
1881 printf ("(int) XWINT (x%d, 0)", depth);
1882 break;
1883 default:
1884 abort ();
1886 printf (")\n {\n");
1890 /* Merge trees will not unify identical nodes if their
1891 sub-nodes are at different levels. Thus we must check
1892 for duplicate cases. */
1893 struct decision *q;
1894 for (q = start; q != p; q = q->next)
1895 if (nodes_identical_1 (p->tests, q->tests))
1896 goto case_done;
1898 if (p != start && p->need_label && needs_label == NULL)
1899 needs_label = p;
1901 printf (" case ");
1902 switch (type)
1904 case DT_mode:
1905 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1906 break;
1907 case DT_veclen:
1908 printf ("%d", p->tests->u.veclen);
1909 break;
1910 case DT_elt_zero_int:
1911 case DT_elt_one_int:
1912 case DT_elt_zero_wide:
1913 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1914 break;
1915 default:
1916 abort ();
1918 printf (":\n goto L%d;\n", p->success.first->number);
1919 p->success.first->need_label = 1;
1921 p = p->next;
1923 while (p && p->tests->type == type && !p->tests->next);
1925 case_done:
1926 printf (" default:\n break;\n }\n");
1928 return needs_label != NULL ? needs_label : p;
1930 else
1932 /* None of the other tests are ameanable. */
1933 return p;
1937 /* Emit code for one test. */
1939 static void
1940 write_cond (p, depth, subroutine_type)
1941 struct decision_test *p;
1942 int depth;
1943 enum routine_type subroutine_type;
1945 switch (p->type)
1947 case DT_mode:
1948 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1949 break;
1951 case DT_code:
1952 printf ("GET_CODE (x%d) == ", depth);
1953 print_code (p->u.code);
1954 break;
1956 case DT_veclen:
1957 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1958 break;
1960 case DT_elt_zero_int:
1961 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1962 break;
1964 case DT_elt_one_int:
1965 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1966 break;
1968 case DT_elt_zero_wide:
1969 printf ("XWINT (x%d, 0) == ", depth);
1970 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
1971 break;
1973 case DT_veclen_ge:
1974 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1975 break;
1977 case DT_dup:
1978 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1979 break;
1981 case DT_pred:
1982 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1983 GET_MODE_NAME (p->u.pred.mode));
1984 break;
1986 case DT_c_test:
1987 printf ("(%s)", p->u.c_test);
1988 break;
1990 case DT_accept_insn:
1991 switch (subroutine_type)
1993 case RECOG:
1994 if (p->u.insn.num_clobbers_to_add == 0)
1995 abort ();
1996 printf ("pnum_clobbers != NULL");
1997 break;
1999 default:
2000 abort ();
2002 break;
2004 default:
2005 abort ();
2009 /* Emit code for one action. The previous tests have succeeded;
2010 TEST is the last of the chain. In the normal case we simply
2011 perform a state change. For the `accept' tests we must do more work. */
2013 static void
2014 write_action (p, test, depth, uncond, success, subroutine_type)
2015 struct decision *p;
2016 struct decision_test *test;
2017 int depth, uncond;
2018 struct decision *success;
2019 enum routine_type subroutine_type;
2021 const char *indent;
2022 int want_close = 0;
2024 if (uncond)
2025 indent = " ";
2026 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2028 fputs (" {\n", stdout);
2029 indent = " ";
2030 want_close = 1;
2032 else
2033 indent = " ";
2035 if (test->type == DT_accept_op)
2037 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2039 /* Only allow DT_accept_insn to follow. */
2040 if (test->next)
2042 test = test->next;
2043 if (test->type != DT_accept_insn)
2044 abort ();
2048 /* Sanity check that we're now at the end of the list of tests. */
2049 if (test->next)
2050 abort ();
2052 if (test->type == DT_accept_insn)
2054 switch (subroutine_type)
2056 case RECOG:
2057 if (test->u.insn.num_clobbers_to_add != 0)
2058 printf ("%s*pnum_clobbers = %d;\n",
2059 indent, test->u.insn.num_clobbers_to_add);
2060 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2061 break;
2063 case SPLIT:
2064 printf ("%sreturn gen_split_%d (operands);\n",
2065 indent, test->u.insn.code_number);
2066 break;
2068 case PEEPHOLE2:
2070 int match_len = 0, i;
2072 for (i = strlen (p->position) - 1; i >= 0; --i)
2073 if (p->position[i] >= 'A' && p->position[i] <= 'Z')
2075 match_len = p->position[i] - 'A';
2076 break;
2078 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2079 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2080 indent, test->u.insn.code_number);
2081 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2083 break;
2085 default:
2086 abort ();
2089 else
2091 printf("%sgoto L%d;\n", indent, success->number);
2092 success->need_label = 1;
2095 if (want_close)
2096 fputs (" }\n", stdout);
2099 /* Return 1 if the test is always true and has no fallthru path. Return -1
2100 if the test does have a fallthru path, but requires that the condition be
2101 terminated. Otherwise return 0 for a normal test. */
2102 /* ??? is_unconditional is a stupid name for a tri-state function. */
2104 static int
2105 is_unconditional (t, subroutine_type)
2106 struct decision_test *t;
2107 enum routine_type subroutine_type;
2109 if (t->type == DT_accept_op)
2110 return 1;
2112 if (t->type == DT_accept_insn)
2114 switch (subroutine_type)
2116 case RECOG:
2117 return (t->u.insn.num_clobbers_to_add == 0);
2118 case SPLIT:
2119 return 1;
2120 case PEEPHOLE2:
2121 return -1;
2122 default:
2123 abort ();
2127 return 0;
2130 /* Emit code for one node -- the conditional and the accompanying action.
2131 Return true if there is no fallthru path. */
2133 static int
2134 write_node (p, depth, subroutine_type)
2135 struct decision *p;
2136 int depth;
2137 enum routine_type subroutine_type;
2139 struct decision_test *test, *last_test;
2140 int uncond;
2142 last_test = test = p->tests;
2143 uncond = is_unconditional (test, subroutine_type);
2144 if (uncond == 0)
2146 printf (" if (");
2147 write_cond (test, depth, subroutine_type);
2149 while ((test = test->next) != NULL)
2151 int uncond2;
2153 last_test = test;
2154 uncond2 = is_unconditional (test, subroutine_type);
2155 if (uncond2 != 0)
2156 break;
2158 printf ("\n && ");
2159 write_cond (test, depth, subroutine_type);
2162 printf (")\n");
2165 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2167 return uncond > 0;
2170 /* Emit code for all of the sibling nodes of HEAD. */
2172 static void
2173 write_tree_1 (head, depth, subroutine_type)
2174 struct decision_head *head;
2175 int depth;
2176 enum routine_type subroutine_type;
2178 struct decision *p, *next;
2179 int uncond = 0;
2181 for (p = head->first; p ; p = next)
2183 /* The label for the first element was printed in write_tree. */
2184 if (p != head->first && p->need_label)
2185 OUTPUT_LABEL (" ", p->number);
2187 /* Attempt to write a switch statement for a whole sequence. */
2188 next = write_switch (p, depth);
2189 if (p != next)
2190 uncond = 0;
2191 else
2193 /* Failed -- fall back and write one node. */
2194 uncond = write_node (p, depth, subroutine_type);
2195 next = p->next;
2199 /* Finished with this chain. Close a fallthru path by branching
2200 to the afterward node. */
2201 if (! uncond)
2202 write_afterward (head->last, head->last->afterward, " ");
2205 /* Write out the decision tree starting at HEAD. PREVPOS is the
2206 position at the node that branched to this node. */
2208 static void
2209 write_tree (head, prevpos, type, initial)
2210 struct decision_head *head;
2211 const char *prevpos;
2212 enum routine_type type;
2213 int initial;
2215 register struct decision *p = head->first;
2217 putchar ('\n');
2218 if (p->need_label)
2219 OUTPUT_LABEL (" ", p->number);
2221 if (! initial && p->subroutine_number > 0)
2223 static const char * const name_prefix[] = {
2224 "recog", "split", "peephole2"
2227 static const char * const call_suffix[] = {
2228 ", pnum_clobbers", "", ", _pmatch_len"
2231 /* This node has been broken out into a separate subroutine.
2232 Call it, test the result, and branch accordingly. */
2234 if (p->afterward)
2236 printf (" tem = %s_%d (x0, insn%s);\n",
2237 name_prefix[type], p->subroutine_number, call_suffix[type]);
2238 if (IS_SPLIT (type))
2239 printf (" if (tem != 0)\n return tem;\n");
2240 else
2241 printf (" if (tem >= 0)\n return tem;\n");
2243 change_state (p->position, p->afterward->position, NULL, " ");
2244 printf (" goto L%d;\n", p->afterward->number);
2246 else
2248 printf (" return %s_%d (x0, insn%s);\n",
2249 name_prefix[type], p->subroutine_number, call_suffix[type]);
2252 else
2254 int depth = strlen (p->position);
2256 change_state (prevpos, p->position, head->last->afterward, " ");
2257 write_tree_1 (head, depth, type);
2259 for (p = head->first; p; p = p->next)
2260 if (p->success.first)
2261 write_tree (&p->success, p->position, type, 0);
2265 /* Write out a subroutine of type TYPE to do comparisons starting at
2266 node TREE. */
2268 static void
2269 write_subroutine (head, type)
2270 struct decision_head *head;
2271 enum routine_type type;
2273 int subfunction = head->first ? head->first->subroutine_number : 0;
2274 const char *s_or_e;
2275 char extension[32];
2276 int i;
2278 s_or_e = subfunction ? "static " : "";
2280 if (subfunction)
2281 sprintf (extension, "_%d", subfunction);
2282 else if (type == RECOG)
2283 extension[0] = '\0';
2284 else
2285 strcpy (extension, "_insns");
2287 switch (type)
2289 case RECOG:
2290 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension);
2291 printf ("%sint\n\
2292 recog%s (x0, insn, pnum_clobbers)\n\
2293 register rtx x0;\n\
2294 rtx insn ATTRIBUTE_UNUSED;\n\
2295 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2296 break;
2297 case SPLIT:
2298 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension);
2299 printf ("%srtx\n\
2300 split%s (x0, insn)\n\
2301 register rtx x0;\n\
2302 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2303 break;
2304 case PEEPHOLE2:
2305 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n",
2306 s_or_e, extension);
2307 printf ("%srtx\n\
2308 peephole2%s (x0, insn, _pmatch_len)\n\
2309 register rtx x0;\n\
2310 rtx insn ATTRIBUTE_UNUSED;\n\
2311 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2312 break;
2315 printf ("{\n register rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2316 for (i = 1; i <= max_depth; i++)
2317 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i);
2319 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2321 if (!subfunction)
2322 printf (" recog_data.insn = NULL_RTX;\n");
2324 if (head->first)
2325 write_tree (head, "", type, 1);
2326 else
2327 printf (" goto ret0;\n");
2329 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2332 /* In break_out_subroutines, we discovered the boundaries for the
2333 subroutines, but did not write them out. Do so now. */
2335 static void
2336 write_subroutines (head, type)
2337 struct decision_head *head;
2338 enum routine_type type;
2340 struct decision *p;
2342 for (p = head->first; p ; p = p->next)
2343 if (p->success.first)
2344 write_subroutines (&p->success, type);
2346 if (head->first->subroutine_number > 0)
2347 write_subroutine (head, type);
2350 /* Begin the output file. */
2352 static void
2353 write_header ()
2355 puts ("\
2356 /* Generated automatically by the program `genrecog' from the target\n\
2357 machine description file. */\n\
2359 #include \"config.h\"\n\
2360 #include \"system.h\"\n\
2361 #include \"rtl.h\"\n\
2362 #include \"tm_p.h\"\n\
2363 #include \"function.h\"\n\
2364 #include \"insn-config.h\"\n\
2365 #include \"recog.h\"\n\
2366 #include \"real.h\"\n\
2367 #include \"output.h\"\n\
2368 #include \"flags.h\"\n\
2369 #include \"hard-reg-set.h\"\n\
2370 #include \"resource.h\"\n\
2371 \n");
2373 puts ("\n\
2374 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2375 X0 is a valid instruction.\n\
2377 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2378 returns a nonnegative number which is the insn code number for the\n\
2379 pattern that matched. This is the same as the order in the machine\n\
2380 description of the entry that matched. This number can be used as an\n\
2381 index into `insn_data' and other tables.\n");
2382 puts ("\
2383 The third argument to recog is an optional pointer to an int. If\n\
2384 present, recog will accept a pattern if it matches except for missing\n\
2385 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2386 the optional pointer will be set to the number of CLOBBERs that need\n\
2387 to be added (it should be initialized to zero by the caller). If it");
2388 puts ("\
2389 is set nonzero, the caller should allocate a PARALLEL of the\n\
2390 appropriate size, copy the initial entries, and call add_clobbers\n\
2391 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2394 puts ("\n\
2395 The function split_insns returns 0 if the rtl could not\n\
2396 be split or the split rtl in a SEQUENCE if it can be.\n\
2398 The function peephole2_insns returns 0 if the rtl could not\n\
2399 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2400 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2401 */\n\n");
2405 /* Construct and return a sequence of decisions
2406 that will recognize INSN.
2408 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2410 static struct decision_head
2411 make_insn_sequence (insn, type)
2412 rtx insn;
2413 enum routine_type type;
2415 rtx x;
2416 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2417 struct decision *last;
2418 struct decision_test *test, **place;
2419 struct decision_head head;
2420 char c_test_pos[2];
2422 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2424 c_test_pos[0] = '\0';
2425 if (type == PEEPHOLE2)
2427 int i, j;
2429 /* peephole2 gets special treatment:
2430 - X always gets an outer parallel even if it's only one entry
2431 - we remove all traces of outer-level match_scratch and match_dup
2432 expressions here. */
2433 x = rtx_alloc (PARALLEL);
2434 PUT_MODE (x, VOIDmode);
2435 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2436 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2438 rtx tmp = XVECEXP (insn, 0, i);
2439 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2441 XVECEXP (x, 0, j) = tmp;
2442 j++;
2445 XVECLEN (x, 0) = j;
2447 c_test_pos[0] = 'A' + j - 1;
2448 c_test_pos[1] = '\0';
2450 else if (XVECLEN (insn, type == RECOG) == 1)
2451 x = XVECEXP (insn, type == RECOG, 0);
2452 else
2454 x = rtx_alloc (PARALLEL);
2455 XVEC (x, 0) = XVEC (insn, type == RECOG);
2456 PUT_MODE (x, VOIDmode);
2459 validate_pattern (x, insn, NULL_RTX, 0);
2461 memset(&head, 0, sizeof(head));
2462 last = add_to_sequence (x, &head, "", type, 1);
2464 /* Find the end of the test chain on the last node. */
2465 for (test = last->tests; test->next; test = test->next)
2466 continue;
2467 place = &test->next;
2469 if (c_test[0])
2471 /* Need a new node if we have another test to add. */
2472 if (test->type == DT_accept_op)
2474 last = new_decision (c_test_pos, &last->success);
2475 place = &last->tests;
2477 test = new_decision_test (DT_c_test, &place);
2478 test->u.c_test = c_test;
2481 test = new_decision_test (DT_accept_insn, &place);
2482 test->u.insn.code_number = next_insn_code;
2483 test->u.insn.lineno = pattern_lineno;
2484 test->u.insn.num_clobbers_to_add = 0;
2486 switch (type)
2488 case RECOG:
2489 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2490 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2491 If so, set up to recognize the pattern without these CLOBBERs. */
2493 if (GET_CODE (x) == PARALLEL)
2495 int i;
2497 /* Find the last non-clobber in the parallel. */
2498 for (i = XVECLEN (x, 0); i > 0; i--)
2500 rtx y = XVECEXP (x, 0, i - 1);
2501 if (GET_CODE (y) != CLOBBER
2502 || (GET_CODE (XEXP (y, 0)) != REG
2503 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2504 break;
2507 if (i != XVECLEN (x, 0))
2509 rtx new;
2510 struct decision_head clobber_head;
2512 /* Build a similar insn without the clobbers. */
2513 if (i == 1)
2514 new = XVECEXP (x, 0, 0);
2515 else
2517 int j;
2519 new = rtx_alloc (PARALLEL);
2520 XVEC (new, 0) = rtvec_alloc (i);
2521 for (j = i - 1; j >= 0; j--)
2522 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2525 /* Recognize it. */
2526 memset (&clobber_head, 0, sizeof(clobber_head));
2527 last = add_to_sequence (new, &clobber_head, "", type, 1);
2529 /* Find the end of the test chain on the last node. */
2530 for (test = last->tests; test->next; test = test->next)
2531 continue;
2533 /* We definitely have a new test to add -- create a new
2534 node if needed. */
2535 place = &test->next;
2536 if (test->type == DT_accept_op)
2538 last = new_decision ("", &last->success);
2539 place = &last->tests;
2542 if (c_test[0])
2544 test = new_decision_test (DT_c_test, &place);
2545 test->u.c_test = c_test;
2548 test = new_decision_test (DT_accept_insn, &place);
2549 test->u.insn.code_number = next_insn_code;
2550 test->u.insn.lineno = pattern_lineno;
2551 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2553 merge_trees (&head, &clobber_head);
2556 break;
2558 case SPLIT:
2559 /* Define the subroutine we will call below and emit in genemit. */
2560 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code);
2561 break;
2563 case PEEPHOLE2:
2564 /* Define the subroutine we will call below and emit in genemit. */
2565 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
2566 next_insn_code);
2567 break;
2570 return head;
2573 static void
2574 process_tree (head, subroutine_type)
2575 struct decision_head *head;
2576 enum routine_type subroutine_type;
2578 if (head->first == NULL)
2580 /* We can elide peephole2_insns, but not recog or split_insns. */
2581 if (subroutine_type == PEEPHOLE2)
2582 return;
2584 else
2586 factor_tests (head);
2588 next_subroutine_number = 0;
2589 break_out_subroutines (head, 1);
2590 find_afterward (head, NULL);
2592 /* We run this after find_afterward, because find_afterward needs
2593 the redundant DT_mode tests on predicates to determine whether
2594 two tests can both be true or not. */
2595 simplify_tests(head);
2597 write_subroutines (head, subroutine_type);
2600 write_subroutine (head, subroutine_type);
2603 extern int main PARAMS ((int, char **));
2606 main (argc, argv)
2607 int argc;
2608 char **argv;
2610 rtx desc;
2611 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2613 progname = "genrecog";
2615 memset (&recog_tree, 0, sizeof recog_tree);
2616 memset (&split_tree, 0, sizeof split_tree);
2617 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2619 if (argc <= 1)
2620 fatal ("No input file name.");
2622 if (init_md_reader (argv[1]) != SUCCESS_EXIT_CODE)
2623 return (FATAL_EXIT_CODE);
2625 next_insn_code = 0;
2626 next_index = 0;
2628 write_header ();
2630 /* Read the machine description. */
2632 while (1)
2634 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2635 if (desc == NULL)
2636 break;
2638 if (GET_CODE (desc) == DEFINE_INSN)
2640 h = make_insn_sequence (desc, RECOG);
2641 merge_trees (&recog_tree, &h);
2643 else if (GET_CODE (desc) == DEFINE_SPLIT)
2645 h = make_insn_sequence (desc, SPLIT);
2646 merge_trees (&split_tree, &h);
2648 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2650 h = make_insn_sequence (desc, PEEPHOLE2);
2651 merge_trees (&peephole2_tree, &h);
2654 next_index++;
2657 if (error_count)
2658 return FATAL_EXIT_CODE;
2660 puts ("\n\n");
2662 process_tree (&recog_tree, RECOG);
2663 process_tree (&split_tree, SPLIT);
2664 process_tree (&peephole2_tree, PEEPHOLE2);
2666 fflush (stdout);
2667 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2670 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2671 const char *
2672 get_insn_name (code)
2673 int code;
2675 if (code < insn_name_ptr_size)
2676 return insn_name_ptr[code];
2677 else
2678 return NULL;
2681 static void
2682 record_insn_name (code, name)
2683 int code;
2684 const char *name;
2686 static const char *last_real_name = "insn";
2687 static int last_real_code = 0;
2688 char *new;
2690 if (insn_name_ptr_size <= code)
2692 int new_size;
2693 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2694 insn_name_ptr =
2695 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2696 memset (insn_name_ptr + insn_name_ptr_size, 0,
2697 sizeof(char *) * (new_size - insn_name_ptr_size));
2698 insn_name_ptr_size = new_size;
2701 if (!name || name[0] == '\0')
2703 new = xmalloc (strlen (last_real_name) + 10);
2704 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2706 else
2708 last_real_name = new = xstrdup (name);
2709 last_real_code = code;
2712 insn_name_ptr[code] = new;
2715 static void
2716 debug_decision_2 (test)
2717 struct decision_test *test;
2719 switch (test->type)
2721 case DT_mode:
2722 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2723 break;
2724 case DT_code:
2725 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2726 break;
2727 case DT_veclen:
2728 fprintf (stderr, "veclen=%d", test->u.veclen);
2729 break;
2730 case DT_elt_zero_int:
2731 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2732 break;
2733 case DT_elt_one_int:
2734 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2735 break;
2736 case DT_elt_zero_wide:
2737 fprintf (stderr, "elt0_w=");
2738 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2739 break;
2740 case DT_veclen_ge:
2741 fprintf (stderr, "veclen>=%d", test->u.veclen);
2742 break;
2743 case DT_dup:
2744 fprintf (stderr, "dup=%d", test->u.dup);
2745 break;
2746 case DT_pred:
2747 fprintf (stderr, "pred=(%s,%s)",
2748 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2749 break;
2750 case DT_c_test:
2752 char sub[16+4];
2753 strncpy (sub, test->u.c_test, sizeof(sub));
2754 memcpy (sub+16, "...", 4);
2755 fprintf (stderr, "c_test=\"%s\"", sub);
2757 break;
2758 case DT_accept_op:
2759 fprintf (stderr, "A_op=%d", test->u.opno);
2760 break;
2761 case DT_accept_insn:
2762 fprintf (stderr, "A_insn=(%d,%d)",
2763 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2764 break;
2766 default:
2767 abort ();
2771 static void
2772 debug_decision_1 (d, indent)
2773 struct decision *d;
2774 int indent;
2776 int i;
2777 struct decision_test *test;
2779 if (d == NULL)
2781 for (i = 0; i < indent; ++i)
2782 putc (' ', stderr);
2783 fputs ("(nil)\n", stderr);
2784 return;
2787 for (i = 0; i < indent; ++i)
2788 putc (' ', stderr);
2790 putc ('{', stderr);
2791 test = d->tests;
2792 if (test)
2794 debug_decision_2 (test);
2795 while ((test = test->next) != NULL)
2797 fputs (" + ", stderr);
2798 debug_decision_2 (test);
2801 fprintf (stderr, "} %d n %d a %d\n", d->number,
2802 (d->next ? d->next->number : -1),
2803 (d->afterward ? d->afterward->number : -1));
2806 static void
2807 debug_decision_0 (d, indent, maxdepth)
2808 struct decision *d;
2809 int indent, maxdepth;
2811 struct decision *n;
2812 int i;
2814 if (maxdepth < 0)
2815 return;
2816 if (d == NULL)
2818 for (i = 0; i < indent; ++i)
2819 putc (' ', stderr);
2820 fputs ("(nil)\n", stderr);
2821 return;
2824 debug_decision_1 (d, indent);
2825 for (n = d->success.first; n ; n = n->next)
2826 debug_decision_0 (n, indent + 2, maxdepth - 1);
2829 void
2830 debug_decision (d)
2831 struct decision *d;
2833 debug_decision_0 (d, 0, 1000000);
2836 void
2837 debug_decision_list (d)
2838 struct decision *d;
2840 while (d)
2842 debug_decision_0 (d, 0, 0);
2843 d = d->next;