Mark symbols in offload tables with force_output in read_offload_tables
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob94ecc23582ea61238a810f7e15a69c17e905120e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch4 is
68 -- Tables which speed up the identification of dangerous calls to Ada 2012
69 -- functions with writable actuals (AI05-0144).
71 -- The following table enumerates the Ada constructs which may evaluate in
72 -- arbitrary order. It does not cover all the language constructs which can
73 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
75 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
76 (N_Aggregate => True,
77 N_Assignment_Statement => True,
78 N_Entry_Call_Statement => True,
79 N_Extension_Aggregate => True,
80 N_Full_Type_Declaration => True,
81 N_Indexed_Component => True,
82 N_Object_Declaration => True,
83 N_Pragma => True,
84 N_Range => True,
85 N_Slice => True,
86 N_Array_Type_Definition => True,
87 N_Membership_Test => True,
88 N_Binary_Op => True,
89 N_Subprogram_Call => True,
90 others => False);
92 -- The following table enumerates the nodes on which we stop climbing when
93 -- locating the outermost Ada construct that can be evaluated in arbitrary
94 -- order.
96 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
97 (N_Aggregate => True,
98 N_Assignment_Statement => True,
99 N_Entry_Call_Statement => True,
100 N_Extended_Return_Statement => True,
101 N_Extension_Aggregate => True,
102 N_Full_Type_Declaration => True,
103 N_Object_Declaration => True,
104 N_Object_Renaming_Declaration => True,
105 N_Package_Specification => True,
106 N_Pragma => True,
107 N_Procedure_Call_Statement => True,
108 N_Simple_Return_Statement => True,
109 N_Has_Condition => True,
110 others => False);
112 -----------------------
113 -- Local Subprograms --
114 -----------------------
116 procedure Analyze_Concatenation_Rest (N : Node_Id);
117 -- Does the "rest" of the work of Analyze_Concatenation, after the left
118 -- operand has been analyzed. See Analyze_Concatenation for details.
120 procedure Analyze_Expression (N : Node_Id);
121 -- For expressions that are not names, this is just a call to analyze. If
122 -- the expression is a name, it may be a call to a parameterless function,
123 -- and if so must be converted into an explicit call node and analyzed as
124 -- such. This deproceduring must be done during the first pass of overload
125 -- resolution, because otherwise a procedure call with overloaded actuals
126 -- may fail to resolve.
128 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
129 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
130 -- operator name or an expanded name whose selector is an operator name,
131 -- and one possible interpretation is as a predefined operator.
133 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
134 -- If the prefix of a selected_component is overloaded, the proper
135 -- interpretation that yields a record type with the proper selector
136 -- name must be selected.
138 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
139 -- Procedure to analyze a user defined binary operator, which is resolved
140 -- like a function, but instead of a list of actuals it is presented
141 -- with the left and right operands of an operator node.
143 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
144 -- Procedure to analyze a user defined unary operator, which is resolved
145 -- like a function, but instead of a list of actuals, it is presented with
146 -- the operand of the operator node.
148 procedure Ambiguous_Operands (N : Node_Id);
149 -- For equality, membership, and comparison operators with overloaded
150 -- arguments, list possible interpretations.
152 procedure Analyze_One_Call
153 (N : Node_Id;
154 Nam : Entity_Id;
155 Report : Boolean;
156 Success : out Boolean;
157 Skip_First : Boolean := False);
158 -- Check one interpretation of an overloaded subprogram name for
159 -- compatibility with the types of the actuals in a call. If there is a
160 -- single interpretation which does not match, post error if Report is
161 -- set to True.
163 -- Nam is the entity that provides the formals against which the actuals
164 -- are checked. Nam is either the name of a subprogram, or the internal
165 -- subprogram type constructed for an access_to_subprogram. If the actuals
166 -- are compatible with Nam, then Nam is added to the list of candidate
167 -- interpretations for N, and Success is set to True.
169 -- The flag Skip_First is used when analyzing a call that was rewritten
170 -- from object notation. In this case the first actual may have to receive
171 -- an explicit dereference, depending on the first formal of the operation
172 -- being called. The caller will have verified that the object is legal
173 -- for the call. If the remaining parameters match, the first parameter
174 -- will rewritten as a dereference if needed, prior to completing analysis.
176 procedure Check_Misspelled_Selector
177 (Prefix : Entity_Id;
178 Sel : Node_Id);
179 -- Give possible misspelling message if Sel seems likely to be a mis-
180 -- spelling of one of the selectors of the Prefix. This is called by
181 -- Analyze_Selected_Component after producing an invalid selector error
182 -- message.
184 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
185 -- Verify that type T is declared in scope S. Used to find interpretations
186 -- for operators given by expanded names. This is abstracted as a separate
187 -- function to handle extensions to System, where S is System, but T is
188 -- declared in the extension.
190 procedure Find_Arithmetic_Types
191 (L, R : Node_Id;
192 Op_Id : Entity_Id;
193 N : Node_Id);
194 -- L and R are the operands of an arithmetic operator. Find consistent
195 -- pairs of interpretations for L and R that have a numeric type consistent
196 -- with the semantics of the operator.
198 procedure Find_Comparison_Types
199 (L, R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
202 -- L and R are operands of a comparison operator. Find consistent pairs of
203 -- interpretations for L and R.
205 procedure Find_Concatenation_Types
206 (L, R : Node_Id;
207 Op_Id : Entity_Id;
208 N : Node_Id);
209 -- For the four varieties of concatenation
211 procedure Find_Equality_Types
212 (L, R : Node_Id;
213 Op_Id : Entity_Id;
214 N : Node_Id);
215 -- Ditto for equality operators
217 procedure Find_Boolean_Types
218 (L, R : Node_Id;
219 Op_Id : Entity_Id;
220 N : Node_Id);
221 -- Ditto for binary logical operations
223 procedure Find_Negation_Types
224 (R : Node_Id;
225 Op_Id : Entity_Id;
226 N : Node_Id);
227 -- Find consistent interpretation for operand of negation operator
229 procedure Find_Non_Universal_Interpretations
230 (N : Node_Id;
231 R : Node_Id;
232 Op_Id : Entity_Id;
233 T1 : Entity_Id);
234 -- For equality and comparison operators, the result is always boolean,
235 -- and the legality of the operation is determined from the visibility
236 -- of the operand types. If one of the operands has a universal interpre-
237 -- tation, the legality check uses some compatible non-universal
238 -- interpretation of the other operand. N can be an operator node, or
239 -- a function call whose name is an operator designator. Any_Access, which
240 -- is the initial type of the literal NULL, is a universal type for the
241 -- purpose of this routine.
243 function Find_Primitive_Operation (N : Node_Id) return Boolean;
244 -- Find candidate interpretations for the name Obj.Proc when it appears
245 -- in a subprogram renaming declaration.
247 procedure Find_Unary_Types
248 (R : Node_Id;
249 Op_Id : Entity_Id;
250 N : Node_Id);
251 -- Unary arithmetic types: plus, minus, abs
253 procedure Check_Arithmetic_Pair
254 (T1, T2 : Entity_Id;
255 Op_Id : Entity_Id;
256 N : Node_Id);
257 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
258 -- for left and right operand. Determine whether they constitute a valid
259 -- pair for the given operator, and record the corresponding interpretation
260 -- of the operator node. The node N may be an operator node (the usual
261 -- case) or a function call whose prefix is an operator designator. In
262 -- both cases Op_Id is the operator name itself.
264 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
265 -- Give detailed information on overloaded call where none of the
266 -- interpretations match. N is the call node, Nam the designator for
267 -- the overloaded entity being called.
269 function Junk_Operand (N : Node_Id) return Boolean;
270 -- Test for an operand that is an inappropriate entity (e.g. a package
271 -- name or a label). If so, issue an error message and return True. If
272 -- the operand is not an inappropriate entity kind, return False.
274 procedure Operator_Check (N : Node_Id);
275 -- Verify that an operator has received some valid interpretation. If none
276 -- was found, determine whether a use clause would make the operation
277 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
278 -- every type compatible with the operator, even if the operator for the
279 -- type is not directly visible. The routine uses this type to emit a more
280 -- informative message.
282 function Process_Implicit_Dereference_Prefix
283 (E : Entity_Id;
284 P : Node_Id) return Entity_Id;
285 -- Called when P is the prefix of an implicit dereference, denoting an
286 -- object E. The function returns the designated type of the prefix, taking
287 -- into account that the designated type of an anonymous access type may be
288 -- a limited view, when the non-limited view is visible.
290 -- If in semantics only mode (-gnatc or generic), the function also records
291 -- that the prefix is a reference to E, if any. Normally, such a reference
292 -- is generated only when the implicit dereference is expanded into an
293 -- explicit one, but for consistency we must generate the reference when
294 -- expansion is disabled as well.
296 procedure Remove_Abstract_Operations (N : Node_Id);
297 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
298 -- operation is not a candidate interpretation.
300 function Try_Container_Indexing
301 (N : Node_Id;
302 Prefix : Node_Id;
303 Exprs : List_Id) return Boolean;
304 -- AI05-0139: Generalized indexing to support iterators over containers
306 function Try_Indexed_Call
307 (N : Node_Id;
308 Nam : Entity_Id;
309 Typ : Entity_Id;
310 Skip_First : Boolean) return Boolean;
311 -- If a function has defaults for all its actuals, a call to it may in fact
312 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
313 -- interpretation as an indexing, prior to analysis as a call. If both are
314 -- possible, the node is overloaded with both interpretations (same symbol
315 -- but two different types). If the call is written in prefix form, the
316 -- prefix becomes the first parameter in the call, and only the remaining
317 -- actuals must be checked for the presence of defaults.
319 function Try_Indirect_Call
320 (N : Node_Id;
321 Nam : Entity_Id;
322 Typ : Entity_Id) return Boolean;
323 -- Similarly, a function F that needs no actuals can return an access to a
324 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
325 -- the call may be overloaded with both interpretations.
327 function Try_Object_Operation
328 (N : Node_Id;
329 CW_Test_Only : Boolean := False) return Boolean;
330 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
331 -- is a call in this notation, it is transformed into a normal subprogram
332 -- call where the prefix is a parameter, and True is returned. If node
333 -- N is not of this form, it is unchanged, and False is returned. If
334 -- CW_Test_Only is true then N is an N_Selected_Component node which
335 -- is part of a call to an entry or procedure of a tagged concurrent
336 -- type and this routine is invoked to search for class-wide subprograms
337 -- conflicting with the target entity.
339 procedure wpo (T : Entity_Id);
340 pragma Warnings (Off, wpo);
341 -- Used for debugging: obtain list of primitive operations even if
342 -- type is not frozen and dispatch table is not built yet.
344 ------------------------
345 -- Ambiguous_Operands --
346 ------------------------
348 procedure Ambiguous_Operands (N : Node_Id) is
349 procedure List_Operand_Interps (Opnd : Node_Id);
351 --------------------------
352 -- List_Operand_Interps --
353 --------------------------
355 procedure List_Operand_Interps (Opnd : Node_Id) is
356 Nam : Node_Id;
357 Err : Node_Id := N;
359 begin
360 if Is_Overloaded (Opnd) then
361 if Nkind (Opnd) in N_Op then
362 Nam := Opnd;
364 elsif Nkind (Opnd) = N_Function_Call then
365 Nam := Name (Opnd);
367 elsif Ada_Version >= Ada_2012 then
368 declare
369 It : Interp;
370 I : Interp_Index;
372 begin
373 Get_First_Interp (Opnd, I, It);
374 while Present (It.Nam) loop
375 if Has_Implicit_Dereference (It.Typ) then
376 Error_Msg_N
377 ("can be interpreted as implicit dereference", Opnd);
378 return;
379 end if;
381 Get_Next_Interp (I, It);
382 end loop;
383 end;
385 return;
386 end if;
388 else
389 return;
390 end if;
392 if Opnd = Left_Opnd (N) then
393 Error_Msg_N
394 ("\left operand has the following interpretations", N);
395 else
396 Error_Msg_N
397 ("\right operand has the following interpretations", N);
398 Err := Opnd;
399 end if;
401 List_Interps (Nam, Err);
402 end List_Operand_Interps;
404 -- Start of processing for Ambiguous_Operands
406 begin
407 if Nkind (N) in N_Membership_Test then
408 Error_Msg_N ("ambiguous operands for membership", N);
410 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
411 Error_Msg_N ("ambiguous operands for equality", N);
413 else
414 Error_Msg_N ("ambiguous operands for comparison", N);
415 end if;
417 if All_Errors_Mode then
418 List_Operand_Interps (Left_Opnd (N));
419 List_Operand_Interps (Right_Opnd (N));
420 else
421 Error_Msg_N ("\use -gnatf switch for details", N);
422 end if;
423 end Ambiguous_Operands;
425 -----------------------
426 -- Analyze_Aggregate --
427 -----------------------
429 -- Most of the analysis of Aggregates requires that the type be known,
430 -- and is therefore put off until resolution.
432 procedure Analyze_Aggregate (N : Node_Id) is
433 begin
434 if No (Etype (N)) then
435 Set_Etype (N, Any_Composite);
436 end if;
437 end Analyze_Aggregate;
439 -----------------------
440 -- Analyze_Allocator --
441 -----------------------
443 procedure Analyze_Allocator (N : Node_Id) is
444 Loc : constant Source_Ptr := Sloc (N);
445 Sav_Errs : constant Nat := Serious_Errors_Detected;
446 E : Node_Id := Expression (N);
447 Acc_Type : Entity_Id;
448 Type_Id : Entity_Id;
449 P : Node_Id;
450 C : Node_Id;
451 Onode : Node_Id;
453 begin
454 Check_SPARK_05_Restriction ("allocator is not allowed", N);
456 -- Deal with allocator restrictions
458 -- In accordance with H.4(7), the No_Allocators restriction only applies
459 -- to user-written allocators. The same consideration applies to the
460 -- No_Standard_Allocators_Before_Elaboration restriction.
462 if Comes_From_Source (N) then
463 Check_Restriction (No_Allocators, N);
465 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
466 -- look at enclosing context, checking task/main subprogram case.
468 C := N;
469 P := Parent (C);
470 while Present (P) loop
472 -- For the task case we need a handled sequence of statements,
473 -- where the occurrence of the allocator is within the statements
474 -- and the parent is a task body
476 if Nkind (P) = N_Handled_Sequence_Of_Statements
477 and then Is_List_Member (C)
478 and then List_Containing (C) = Statements (P)
479 then
480 Onode := Original_Node (Parent (P));
482 -- Check for allocator within task body, this is a definite
483 -- violation of No_Allocators_After_Elaboration we can detect
484 -- at compile time.
486 if Nkind (Onode) = N_Task_Body then
487 Check_Restriction
488 (No_Standard_Allocators_After_Elaboration, N);
489 exit;
490 end if;
491 end if;
493 -- The other case is appearance in a subprogram body. This is
494 -- a violation if this is a library level subprogram with no
495 -- parameters. Note that this is now a static error even if the
496 -- subprogram is not the main program (this is a change, in an
497 -- earlier version only the main program was affected, and the
498 -- check had to be done in the binder.
500 if Nkind (P) = N_Subprogram_Body
501 and then Nkind (Parent (P)) = N_Compilation_Unit
502 and then No (Parameter_Specifications (Specification (P)))
503 then
504 Check_Restriction
505 (No_Standard_Allocators_After_Elaboration, N);
506 end if;
508 C := P;
509 P := Parent (C);
510 end loop;
511 end if;
513 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
514 -- any. The expected type for the name is any type. A non-overloading
515 -- rule then requires it to be of a type descended from
516 -- System.Storage_Pools.Subpools.Subpool_Handle.
518 -- This isn't exactly what the AI says, but it seems to be the right
519 -- rule. The AI should be fixed.???
521 declare
522 Subpool : constant Node_Id := Subpool_Handle_Name (N);
524 begin
525 if Present (Subpool) then
526 Analyze (Subpool);
528 if Is_Overloaded (Subpool) then
529 Error_Msg_N ("ambiguous subpool handle", Subpool);
530 end if;
532 -- Check that Etype (Subpool) is descended from Subpool_Handle
534 Resolve (Subpool);
535 end if;
536 end;
538 -- Analyze the qualified expression or subtype indication
540 if Nkind (E) = N_Qualified_Expression then
541 Acc_Type := Create_Itype (E_Allocator_Type, N);
542 Set_Etype (Acc_Type, Acc_Type);
543 Find_Type (Subtype_Mark (E));
545 -- Analyze the qualified expression, and apply the name resolution
546 -- rule given in 4.7(3).
548 Analyze (E);
549 Type_Id := Etype (E);
550 Set_Directly_Designated_Type (Acc_Type, Type_Id);
552 -- A qualified expression requires an exact match of the type,
553 -- class-wide matching is not allowed.
555 -- if Is_Class_Wide_Type (Type_Id)
556 -- and then Base_Type
557 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
558 -- then
559 -- Wrong_Type (Expression (E), Type_Id);
560 -- end if;
562 -- We don't analyze the qualified expression itself because it's
563 -- part of the allocator. It is fully analyzed and resolved when
564 -- the allocator is resolved with the context type.
566 Set_Etype (E, Type_Id);
568 -- Case where allocator has a subtype indication
570 else
571 declare
572 Def_Id : Entity_Id;
573 Base_Typ : Entity_Id;
575 begin
576 -- If the allocator includes a N_Subtype_Indication then a
577 -- constraint is present, otherwise the node is a subtype mark.
578 -- Introduce an explicit subtype declaration into the tree
579 -- defining some anonymous subtype and rewrite the allocator to
580 -- use this subtype rather than the subtype indication.
582 -- It is important to introduce the explicit subtype declaration
583 -- so that the bounds of the subtype indication are attached to
584 -- the tree in case the allocator is inside a generic unit.
586 if Nkind (E) = N_Subtype_Indication then
588 -- A constraint is only allowed for a composite type in Ada
589 -- 95. In Ada 83, a constraint is also allowed for an
590 -- access-to-composite type, but the constraint is ignored.
592 Find_Type (Subtype_Mark (E));
593 Base_Typ := Entity (Subtype_Mark (E));
595 if Is_Elementary_Type (Base_Typ) then
596 if not (Ada_Version = Ada_83
597 and then Is_Access_Type (Base_Typ))
598 then
599 Error_Msg_N ("constraint not allowed here", E);
601 if Nkind (Constraint (E)) =
602 N_Index_Or_Discriminant_Constraint
603 then
604 Error_Msg_N -- CODEFIX
605 ("\if qualified expression was meant, " &
606 "use apostrophe", Constraint (E));
607 end if;
608 end if;
610 -- Get rid of the bogus constraint:
612 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
613 Analyze_Allocator (N);
614 return;
615 end if;
617 if Expander_Active then
618 Def_Id := Make_Temporary (Loc, 'S');
620 Insert_Action (E,
621 Make_Subtype_Declaration (Loc,
622 Defining_Identifier => Def_Id,
623 Subtype_Indication => Relocate_Node (E)));
625 if Sav_Errs /= Serious_Errors_Detected
626 and then Nkind (Constraint (E)) =
627 N_Index_Or_Discriminant_Constraint
628 then
629 Error_Msg_N -- CODEFIX
630 ("if qualified expression was meant, "
631 & "use apostrophe!", Constraint (E));
632 end if;
634 E := New_Occurrence_Of (Def_Id, Loc);
635 Rewrite (Expression (N), E);
636 end if;
637 end if;
639 Type_Id := Process_Subtype (E, N);
640 Acc_Type := Create_Itype (E_Allocator_Type, N);
641 Set_Etype (Acc_Type, Acc_Type);
642 Set_Directly_Designated_Type (Acc_Type, Type_Id);
643 Check_Fully_Declared (Type_Id, N);
645 -- Ada 2005 (AI-231): If the designated type is itself an access
646 -- type that excludes null, its default initialization will
647 -- be a null object, and we can insert an unconditional raise
648 -- before the allocator.
650 -- Ada 2012 (AI-104): A not null indication here is altogether
651 -- illegal.
653 if Can_Never_Be_Null (Type_Id) then
654 declare
655 Not_Null_Check : constant Node_Id :=
656 Make_Raise_Constraint_Error (Sloc (E),
657 Reason => CE_Null_Not_Allowed);
659 begin
660 if Expander_Active then
661 Insert_Action (N, Not_Null_Check);
662 Analyze (Not_Null_Check);
664 elsif Warn_On_Ada_2012_Compatibility then
665 Error_Msg_N
666 ("null value not allowed here in Ada 2012?y?", E);
667 end if;
668 end;
669 end if;
671 -- Check for missing initialization. Skip this check if we already
672 -- had errors on analyzing the allocator, since in that case these
673 -- are probably cascaded errors.
675 if not Is_Definite_Subtype (Type_Id)
676 and then Serious_Errors_Detected = Sav_Errs
677 then
678 -- The build-in-place machinery may produce an allocator when
679 -- the designated type is indefinite but the underlying type is
680 -- not. In this case the unknown discriminants are meaningless
681 -- and should not trigger error messages. Check the parent node
682 -- because the allocator is marked as coming from source.
684 if Present (Underlying_Type (Type_Id))
685 and then Is_Definite_Subtype (Underlying_Type (Type_Id))
686 and then not Comes_From_Source (Parent (N))
687 then
688 null;
690 elsif Is_Class_Wide_Type (Type_Id) then
691 Error_Msg_N
692 ("initialization required in class-wide allocation", N);
694 else
695 if Ada_Version < Ada_2005
696 and then Is_Limited_Type (Type_Id)
697 then
698 Error_Msg_N ("unconstrained allocation not allowed", N);
700 if Is_Array_Type (Type_Id) then
701 Error_Msg_N
702 ("\constraint with array bounds required", N);
704 elsif Has_Unknown_Discriminants (Type_Id) then
705 null;
707 else pragma Assert (Has_Discriminants (Type_Id));
708 Error_Msg_N
709 ("\constraint with discriminant values required", N);
710 end if;
712 -- Limited Ada 2005 and general non-limited case
714 else
715 Error_Msg_N
716 ("uninitialized unconstrained allocation not "
717 & "allowed", N);
719 if Is_Array_Type (Type_Id) then
720 Error_Msg_N
721 ("\qualified expression or constraint with "
722 & "array bounds required", N);
724 elsif Has_Unknown_Discriminants (Type_Id) then
725 Error_Msg_N ("\qualified expression required", N);
727 else pragma Assert (Has_Discriminants (Type_Id));
728 Error_Msg_N
729 ("\qualified expression or constraint with "
730 & "discriminant values required", N);
731 end if;
732 end if;
733 end if;
734 end if;
735 end;
736 end if;
738 if Is_Abstract_Type (Type_Id) then
739 Error_Msg_N ("cannot allocate abstract object", E);
740 end if;
742 if Has_Task (Designated_Type (Acc_Type)) then
743 Check_Restriction (No_Tasking, N);
744 Check_Restriction (Max_Tasks, N);
745 Check_Restriction (No_Task_Allocators, N);
746 end if;
748 -- Check restriction against dynamically allocated protected objects
750 if Has_Protected (Designated_Type (Acc_Type)) then
751 Check_Restriction (No_Protected_Type_Allocators, N);
752 end if;
754 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
755 -- type is nested, and the designated type needs finalization. The rule
756 -- is conservative in that class-wide types need finalization.
758 if Needs_Finalization (Designated_Type (Acc_Type))
759 and then not Is_Library_Level_Entity (Acc_Type)
760 then
761 Check_Restriction (No_Nested_Finalization, N);
762 end if;
764 -- Check that an allocator of a nested access type doesn't create a
765 -- protected object when restriction No_Local_Protected_Objects applies.
767 if Has_Protected (Designated_Type (Acc_Type))
768 and then not Is_Library_Level_Entity (Acc_Type)
769 then
770 Check_Restriction (No_Local_Protected_Objects, N);
771 end if;
773 -- If the No_Streams restriction is set, check that the type of the
774 -- object is not, and does not contain, any subtype derived from
775 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
776 -- Has_Stream just for efficiency reasons. There is no point in
777 -- spending time on a Has_Stream check if the restriction is not set.
779 if Restriction_Check_Required (No_Streams) then
780 if Has_Stream (Designated_Type (Acc_Type)) then
781 Check_Restriction (No_Streams, N);
782 end if;
783 end if;
785 Set_Etype (N, Acc_Type);
787 if not Is_Library_Level_Entity (Acc_Type) then
788 Check_Restriction (No_Local_Allocators, N);
789 end if;
791 if Serious_Errors_Detected > Sav_Errs then
792 Set_Error_Posted (N);
793 Set_Etype (N, Any_Type);
794 end if;
795 end Analyze_Allocator;
797 ---------------------------
798 -- Analyze_Arithmetic_Op --
799 ---------------------------
801 procedure Analyze_Arithmetic_Op (N : Node_Id) is
802 L : constant Node_Id := Left_Opnd (N);
803 R : constant Node_Id := Right_Opnd (N);
804 Op_Id : Entity_Id;
806 begin
807 Candidate_Type := Empty;
808 Analyze_Expression (L);
809 Analyze_Expression (R);
811 -- If the entity is already set, the node is the instantiation of a
812 -- generic node with a non-local reference, or was manufactured by a
813 -- call to Make_Op_xxx. In either case the entity is known to be valid,
814 -- and we do not need to collect interpretations, instead we just get
815 -- the single possible interpretation.
817 Op_Id := Entity (N);
819 if Present (Op_Id) then
820 if Ekind (Op_Id) = E_Operator then
822 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
823 and then Treat_Fixed_As_Integer (N)
824 then
825 null;
826 else
827 Set_Etype (N, Any_Type);
828 Find_Arithmetic_Types (L, R, Op_Id, N);
829 end if;
831 else
832 Set_Etype (N, Any_Type);
833 Add_One_Interp (N, Op_Id, Etype (Op_Id));
834 end if;
836 -- Entity is not already set, so we do need to collect interpretations
838 else
839 Set_Etype (N, Any_Type);
841 Op_Id := Get_Name_Entity_Id (Chars (N));
842 while Present (Op_Id) loop
843 if Ekind (Op_Id) = E_Operator
844 and then Present (Next_Entity (First_Entity (Op_Id)))
845 then
846 Find_Arithmetic_Types (L, R, Op_Id, N);
848 -- The following may seem superfluous, because an operator cannot
849 -- be generic, but this ignores the cleverness of the author of
850 -- ACVC bc1013a.
852 elsif Is_Overloadable (Op_Id) then
853 Analyze_User_Defined_Binary_Op (N, Op_Id);
854 end if;
856 Op_Id := Homonym (Op_Id);
857 end loop;
858 end if;
860 Operator_Check (N);
861 Check_Function_Writable_Actuals (N);
862 end Analyze_Arithmetic_Op;
864 ------------------
865 -- Analyze_Call --
866 ------------------
868 -- Function, procedure, and entry calls are checked here. The Name in
869 -- the call may be overloaded. The actuals have been analyzed and may
870 -- themselves be overloaded. On exit from this procedure, the node N
871 -- may have zero, one or more interpretations. In the first case an
872 -- error message is produced. In the last case, the node is flagged
873 -- as overloaded and the interpretations are collected in All_Interp.
875 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
876 -- the type-checking is similar to that of other calls.
878 procedure Analyze_Call (N : Node_Id) is
879 Actuals : constant List_Id := Parameter_Associations (N);
880 Nam : Node_Id;
881 X : Interp_Index;
882 It : Interp;
883 Nam_Ent : Entity_Id;
884 Success : Boolean := False;
886 Deref : Boolean := False;
887 -- Flag indicates whether an interpretation of the prefix is a
888 -- parameterless call that returns an access_to_subprogram.
890 procedure Check_Mixed_Parameter_And_Named_Associations;
891 -- Check that parameter and named associations are not mixed. This is
892 -- a restriction in SPARK mode.
894 procedure Check_Writable_Actuals (N : Node_Id);
895 -- If the call has out or in-out parameters then mark its outermost
896 -- enclosing construct as a node on which the writable actuals check
897 -- must be performed.
899 function Name_Denotes_Function return Boolean;
900 -- If the type of the name is an access to subprogram, this may be the
901 -- type of a name, or the return type of the function being called. If
902 -- the name is not an entity then it can denote a protected function.
903 -- Until we distinguish Etype from Return_Type, we must use this routine
904 -- to resolve the meaning of the name in the call.
906 procedure No_Interpretation;
907 -- Output error message when no valid interpretation exists
909 --------------------------------------------------
910 -- Check_Mixed_Parameter_And_Named_Associations --
911 --------------------------------------------------
913 procedure Check_Mixed_Parameter_And_Named_Associations is
914 Actual : Node_Id;
915 Named_Seen : Boolean;
917 begin
918 Named_Seen := False;
920 Actual := First (Actuals);
921 while Present (Actual) loop
922 case Nkind (Actual) is
923 when N_Parameter_Association =>
924 if Named_Seen then
925 Check_SPARK_05_Restriction
926 ("named association cannot follow positional one",
927 Actual);
928 exit;
929 end if;
931 when others =>
932 Named_Seen := True;
933 end case;
935 Next (Actual);
936 end loop;
937 end Check_Mixed_Parameter_And_Named_Associations;
939 ----------------------------
940 -- Check_Writable_Actuals --
941 ----------------------------
943 -- The identification of conflicts in calls to functions with writable
944 -- actuals is performed in the analysis phase of the front end to ensure
945 -- that it reports exactly the same errors compiling with and without
946 -- expansion enabled. It is performed in two stages:
948 -- 1) When a call to a function with out-mode parameters is found,
949 -- we climb to the outermost enclosing construct that can be
950 -- evaluated in arbitrary order and we mark it with the flag
951 -- Check_Actuals.
953 -- 2) When the analysis of the marked node is complete, we traverse
954 -- its decorated subtree searching for conflicts (see function
955 -- Sem_Util.Check_Function_Writable_Actuals).
957 -- The unique exception to this general rule is for aggregates, since
958 -- their analysis is performed by the front end in the resolution
959 -- phase. For aggregates we do not climb to their enclosing construct:
960 -- we restrict the analysis to the subexpressions initializing the
961 -- aggregate components.
963 -- This implies that the analysis of expressions containing aggregates
964 -- is not complete, since there may be conflicts on writable actuals
965 -- involving subexpressions of the enclosing logical or arithmetic
966 -- expressions. However, we cannot wait and perform the analysis when
967 -- the whole subtree is resolved, since the subtrees may be transformed,
968 -- thus adding extra complexity and computation cost to identify and
969 -- report exactly the same errors compiling with and without expansion
970 -- enabled.
972 procedure Check_Writable_Actuals (N : Node_Id) is
973 begin
974 if Comes_From_Source (N)
975 and then Present (Get_Subprogram_Entity (N))
976 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
977 then
978 -- For procedures and entries there is no need to climb since
979 -- we only need to check if the actuals of this call invoke
980 -- functions whose out-mode parameters overlap.
982 if Nkind (N) /= N_Function_Call then
983 Set_Check_Actuals (N);
985 -- For calls to functions we climb to the outermost enclosing
986 -- construct where the out-mode actuals of this function may
987 -- introduce conflicts.
989 else
990 declare
991 Outermost : Node_Id;
992 P : Node_Id := N;
994 begin
995 while Present (P) loop
997 -- For object declarations we can climb to the node from
998 -- its object definition branch or from its initializing
999 -- expression. We prefer to mark the child node as the
1000 -- outermost construct to avoid adding further complexity
1001 -- to the routine that will later take care of
1002 -- performing the writable actuals check.
1004 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1005 and then not Nkind_In (P, N_Assignment_Statement,
1006 N_Object_Declaration)
1007 then
1008 Outermost := P;
1009 end if;
1011 -- Avoid climbing more than needed!
1013 exit when Stop_Subtree_Climbing (Nkind (P))
1014 or else (Nkind (P) = N_Range
1015 and then not
1016 Nkind_In (Parent (P), N_In, N_Not_In));
1018 P := Parent (P);
1019 end loop;
1021 Set_Check_Actuals (Outermost);
1022 end;
1023 end if;
1024 end if;
1025 end Check_Writable_Actuals;
1027 ---------------------------
1028 -- Name_Denotes_Function --
1029 ---------------------------
1031 function Name_Denotes_Function return Boolean is
1032 begin
1033 if Is_Entity_Name (Nam) then
1034 return Ekind (Entity (Nam)) = E_Function;
1035 elsif Nkind (Nam) = N_Selected_Component then
1036 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1037 else
1038 return False;
1039 end if;
1040 end Name_Denotes_Function;
1042 -----------------------
1043 -- No_Interpretation --
1044 -----------------------
1046 procedure No_Interpretation is
1047 L : constant Boolean := Is_List_Member (N);
1048 K : constant Node_Kind := Nkind (Parent (N));
1050 begin
1051 -- If the node is in a list whose parent is not an expression then it
1052 -- must be an attempted procedure call.
1054 if L and then K not in N_Subexpr then
1055 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1056 Error_Msg_NE
1057 ("must instantiate generic procedure& before call",
1058 Nam, Entity (Nam));
1059 else
1060 Error_Msg_N ("procedure or entry name expected", Nam);
1061 end if;
1063 -- Check for tasking cases where only an entry call will do
1065 elsif not L
1066 and then Nkind_In (K, N_Entry_Call_Alternative,
1067 N_Triggering_Alternative)
1068 then
1069 Error_Msg_N ("entry name expected", Nam);
1071 -- Otherwise give general error message
1073 else
1074 Error_Msg_N ("invalid prefix in call", Nam);
1075 end if;
1076 end No_Interpretation;
1078 -- Start of processing for Analyze_Call
1080 begin
1081 if Restriction_Check_Required (SPARK_05) then
1082 Check_Mixed_Parameter_And_Named_Associations;
1083 end if;
1085 -- Initialize the type of the result of the call to the error type,
1086 -- which will be reset if the type is successfully resolved.
1088 Set_Etype (N, Any_Type);
1090 Nam := Name (N);
1092 if not Is_Overloaded (Nam) then
1094 -- Only one interpretation to check
1096 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1097 Nam_Ent := Etype (Nam);
1099 -- If the prefix is an access_to_subprogram, this may be an indirect
1100 -- call. This is the case if the name in the call is not an entity
1101 -- name, or if it is a function name in the context of a procedure
1102 -- call. In this latter case, we have a call to a parameterless
1103 -- function that returns a pointer_to_procedure which is the entity
1104 -- being called. Finally, F (X) may be a call to a parameterless
1105 -- function that returns a pointer to a function with parameters.
1106 -- Note that if F returns an access-to-subprogram whose designated
1107 -- type is an array, F (X) cannot be interpreted as an indirect call
1108 -- through the result of the call to F.
1110 elsif Is_Access_Type (Etype (Nam))
1111 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1112 and then
1113 (not Name_Denotes_Function
1114 or else Nkind (N) = N_Procedure_Call_Statement
1115 or else
1116 (Nkind (Parent (N)) /= N_Explicit_Dereference
1117 and then Is_Entity_Name (Nam)
1118 and then No (First_Formal (Entity (Nam)))
1119 and then not
1120 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1121 and then Present (Actuals)))
1122 then
1123 Nam_Ent := Designated_Type (Etype (Nam));
1124 Insert_Explicit_Dereference (Nam);
1126 -- Selected component case. Simple entry or protected operation,
1127 -- where the entry name is given by the selector name.
1129 elsif Nkind (Nam) = N_Selected_Component then
1130 Nam_Ent := Entity (Selector_Name (Nam));
1132 if not Ekind_In (Nam_Ent, E_Entry,
1133 E_Entry_Family,
1134 E_Function,
1135 E_Procedure)
1136 then
1137 Error_Msg_N ("name in call is not a callable entity", Nam);
1138 Set_Etype (N, Any_Type);
1139 return;
1140 end if;
1142 -- If the name is an Indexed component, it can be a call to a member
1143 -- of an entry family. The prefix must be a selected component whose
1144 -- selector is the entry. Analyze_Procedure_Call normalizes several
1145 -- kinds of call into this form.
1147 elsif Nkind (Nam) = N_Indexed_Component then
1148 if Nkind (Prefix (Nam)) = N_Selected_Component then
1149 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1150 else
1151 Error_Msg_N ("name in call is not a callable entity", Nam);
1152 Set_Etype (N, Any_Type);
1153 return;
1154 end if;
1156 elsif not Is_Entity_Name (Nam) then
1157 Error_Msg_N ("name in call is not a callable entity", Nam);
1158 Set_Etype (N, Any_Type);
1159 return;
1161 else
1162 Nam_Ent := Entity (Nam);
1164 -- If not overloadable, this may be a generalized indexing
1165 -- operation with named associations. Rewrite again as an
1166 -- indexed component and analyze as container indexing.
1168 if not Is_Overloadable (Nam_Ent) then
1169 if Present
1170 (Find_Value_Of_Aspect
1171 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1172 then
1173 Replace (N,
1174 Make_Indexed_Component (Sloc (N),
1175 Prefix => Nam,
1176 Expressions => Parameter_Associations (N)));
1178 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1179 return;
1180 else
1181 No_Interpretation;
1182 end if;
1184 else
1185 No_Interpretation;
1186 end if;
1188 return;
1189 end if;
1190 end if;
1192 -- Operations generated for RACW stub types are called only through
1193 -- dispatching, and can never be the static interpretation of a call.
1195 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1196 No_Interpretation;
1197 return;
1198 end if;
1200 Analyze_One_Call (N, Nam_Ent, True, Success);
1202 -- If this is an indirect call, the return type of the access_to
1203 -- subprogram may be an incomplete type. At the point of the call,
1204 -- use the full type if available, and at the same time update the
1205 -- return type of the access_to_subprogram.
1207 if Success
1208 and then Nkind (Nam) = N_Explicit_Dereference
1209 and then Ekind (Etype (N)) = E_Incomplete_Type
1210 and then Present (Full_View (Etype (N)))
1211 then
1212 Set_Etype (N, Full_View (Etype (N)));
1213 Set_Etype (Nam_Ent, Etype (N));
1214 end if;
1216 -- Overloaded call
1218 else
1219 -- An overloaded selected component must denote overloaded operations
1220 -- of a concurrent type. The interpretations are attached to the
1221 -- simple name of those operations.
1223 if Nkind (Nam) = N_Selected_Component then
1224 Nam := Selector_Name (Nam);
1225 end if;
1227 Get_First_Interp (Nam, X, It);
1228 while Present (It.Nam) loop
1229 Nam_Ent := It.Nam;
1230 Deref := False;
1232 -- Name may be call that returns an access to subprogram, or more
1233 -- generally an overloaded expression one of whose interpretations
1234 -- yields an access to subprogram. If the name is an entity, we do
1235 -- not dereference, because the node is a call that returns the
1236 -- access type: note difference between f(x), where the call may
1237 -- return an access subprogram type, and f(x)(y), where the type
1238 -- returned by the call to f is implicitly dereferenced to analyze
1239 -- the outer call.
1241 if Is_Access_Type (Nam_Ent) then
1242 Nam_Ent := Designated_Type (Nam_Ent);
1244 elsif Is_Access_Type (Etype (Nam_Ent))
1245 and then
1246 (not Is_Entity_Name (Nam)
1247 or else Nkind (N) = N_Procedure_Call_Statement)
1248 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1249 = E_Subprogram_Type
1250 then
1251 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1253 if Is_Entity_Name (Nam) then
1254 Deref := True;
1255 end if;
1256 end if;
1258 -- If the call has been rewritten from a prefixed call, the first
1259 -- parameter has been analyzed, but may need a subsequent
1260 -- dereference, so skip its analysis now.
1262 if N /= Original_Node (N)
1263 and then Nkind (Original_Node (N)) = Nkind (N)
1264 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1265 and then Present (Parameter_Associations (N))
1266 and then Present (Etype (First (Parameter_Associations (N))))
1267 then
1268 Analyze_One_Call
1269 (N, Nam_Ent, False, Success, Skip_First => True);
1270 else
1271 Analyze_One_Call (N, Nam_Ent, False, Success);
1272 end if;
1274 -- If the interpretation succeeds, mark the proper type of the
1275 -- prefix (any valid candidate will do). If not, remove the
1276 -- candidate interpretation. This only needs to be done for
1277 -- overloaded protected operations, for other entities disambi-
1278 -- guation is done directly in Resolve.
1280 if Success then
1281 if Deref
1282 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1283 then
1284 Set_Entity (Nam, It.Nam);
1285 Insert_Explicit_Dereference (Nam);
1286 Set_Etype (Nam, Nam_Ent);
1288 else
1289 Set_Etype (Nam, It.Typ);
1290 end if;
1292 elsif Nkind_In (Name (N), N_Selected_Component,
1293 N_Function_Call)
1294 then
1295 Remove_Interp (X);
1296 end if;
1298 Get_Next_Interp (X, It);
1299 end loop;
1301 -- If the name is the result of a function call, it can only be a
1302 -- call to a function returning an access to subprogram. Insert
1303 -- explicit dereference.
1305 if Nkind (Nam) = N_Function_Call then
1306 Insert_Explicit_Dereference (Nam);
1307 end if;
1309 if Etype (N) = Any_Type then
1311 -- None of the interpretations is compatible with the actuals
1313 Diagnose_Call (N, Nam);
1315 -- Special checks for uninstantiated put routines
1317 if Nkind (N) = N_Procedure_Call_Statement
1318 and then Is_Entity_Name (Nam)
1319 and then Chars (Nam) = Name_Put
1320 and then List_Length (Actuals) = 1
1321 then
1322 declare
1323 Arg : constant Node_Id := First (Actuals);
1324 Typ : Entity_Id;
1326 begin
1327 if Nkind (Arg) = N_Parameter_Association then
1328 Typ := Etype (Explicit_Actual_Parameter (Arg));
1329 else
1330 Typ := Etype (Arg);
1331 end if;
1333 if Is_Signed_Integer_Type (Typ) then
1334 Error_Msg_N
1335 ("possible missing instantiation of "
1336 & "'Text_'I'O.'Integer_'I'O!", Nam);
1338 elsif Is_Modular_Integer_Type (Typ) then
1339 Error_Msg_N
1340 ("possible missing instantiation of "
1341 & "'Text_'I'O.'Modular_'I'O!", Nam);
1343 elsif Is_Floating_Point_Type (Typ) then
1344 Error_Msg_N
1345 ("possible missing instantiation of "
1346 & "'Text_'I'O.'Float_'I'O!", Nam);
1348 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1349 Error_Msg_N
1350 ("possible missing instantiation of "
1351 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1353 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1354 Error_Msg_N
1355 ("possible missing instantiation of "
1356 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1358 elsif Is_Enumeration_Type (Typ) then
1359 Error_Msg_N
1360 ("possible missing instantiation of "
1361 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1362 end if;
1363 end;
1364 end if;
1366 elsif not Is_Overloaded (N)
1367 and then Is_Entity_Name (Nam)
1368 then
1369 -- Resolution yields a single interpretation. Verify that the
1370 -- reference has capitalization consistent with the declaration.
1372 Set_Entity_With_Checks (Nam, Entity (Nam));
1373 Generate_Reference (Entity (Nam), Nam);
1375 Set_Etype (Nam, Etype (Entity (Nam)));
1376 else
1377 Remove_Abstract_Operations (N);
1378 end if;
1380 End_Interp_List;
1381 end if;
1383 if Ada_Version >= Ada_2012 then
1385 -- Check if the call contains a function with writable actuals
1387 Check_Writable_Actuals (N);
1389 -- If found and the outermost construct that can be evaluated in
1390 -- an arbitrary order is precisely this call, then check all its
1391 -- actuals.
1393 Check_Function_Writable_Actuals (N);
1394 end if;
1395 end Analyze_Call;
1397 -----------------------------
1398 -- Analyze_Case_Expression --
1399 -----------------------------
1401 procedure Analyze_Case_Expression (N : Node_Id) is
1402 procedure Non_Static_Choice_Error (Choice : Node_Id);
1403 -- Error routine invoked by the generic instantiation below when
1404 -- the case expression has a non static choice.
1406 package Case_Choices_Analysis is new
1407 Generic_Analyze_Choices
1408 (Process_Associated_Node => No_OP);
1409 use Case_Choices_Analysis;
1411 package Case_Choices_Checking is new
1412 Generic_Check_Choices
1413 (Process_Empty_Choice => No_OP,
1414 Process_Non_Static_Choice => Non_Static_Choice_Error,
1415 Process_Associated_Node => No_OP);
1416 use Case_Choices_Checking;
1418 -----------------------------
1419 -- Non_Static_Choice_Error --
1420 -----------------------------
1422 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1423 begin
1424 Flag_Non_Static_Expr
1425 ("choice given in case expression is not static!", Choice);
1426 end Non_Static_Choice_Error;
1428 -- Local variables
1430 Expr : constant Node_Id := Expression (N);
1431 Alt : Node_Id;
1432 Exp_Type : Entity_Id;
1433 Exp_Btype : Entity_Id;
1435 FirstX : Node_Id := Empty;
1436 -- First expression in the case for which there is some type information
1437 -- available, i.e. it is not Any_Type, which can happen because of some
1438 -- error, or from the use of e.g. raise Constraint_Error.
1440 Others_Present : Boolean;
1441 -- Indicates if Others was present
1443 Wrong_Alt : Node_Id;
1444 -- For error reporting
1446 -- Start of processing for Analyze_Case_Expression
1448 begin
1449 if Comes_From_Source (N) then
1450 Check_Compiler_Unit ("case expression", N);
1451 end if;
1453 Analyze_And_Resolve (Expr, Any_Discrete);
1454 Check_Unset_Reference (Expr);
1455 Exp_Type := Etype (Expr);
1456 Exp_Btype := Base_Type (Exp_Type);
1458 Alt := First (Alternatives (N));
1459 while Present (Alt) loop
1460 Analyze (Expression (Alt));
1462 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1463 FirstX := Expression (Alt);
1464 end if;
1466 Next (Alt);
1467 end loop;
1469 -- Get our initial type from the first expression for which we got some
1470 -- useful type information from the expression.
1472 if not Is_Overloaded (FirstX) then
1473 Set_Etype (N, Etype (FirstX));
1475 else
1476 declare
1477 I : Interp_Index;
1478 It : Interp;
1480 begin
1481 Set_Etype (N, Any_Type);
1483 Get_First_Interp (FirstX, I, It);
1484 while Present (It.Nam) loop
1486 -- For each interpretation of the first expression, we only
1487 -- add the interpretation if every other expression in the
1488 -- case expression alternatives has a compatible type.
1490 Alt := Next (First (Alternatives (N)));
1491 while Present (Alt) loop
1492 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1493 Next (Alt);
1494 end loop;
1496 if No (Alt) then
1497 Add_One_Interp (N, It.Typ, It.Typ);
1498 else
1499 Wrong_Alt := Alt;
1500 end if;
1502 Get_Next_Interp (I, It);
1503 end loop;
1504 end;
1505 end if;
1507 Exp_Btype := Base_Type (Exp_Type);
1509 -- The expression must be of a discrete type which must be determinable
1510 -- independently of the context in which the expression occurs, but
1511 -- using the fact that the expression must be of a discrete type.
1512 -- Moreover, the type this expression must not be a character literal
1513 -- (which is always ambiguous).
1515 -- If error already reported by Resolve, nothing more to do
1517 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1518 return;
1520 -- Special casee message for character literal
1522 elsif Exp_Btype = Any_Character then
1523 Error_Msg_N
1524 ("character literal as case expression is ambiguous", Expr);
1525 return;
1526 end if;
1528 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1529 Error_Msg_N
1530 ("type incompatible with that of previous alternatives",
1531 Expression (Wrong_Alt));
1532 return;
1533 end if;
1535 -- If the case expression is a formal object of mode in out, then
1536 -- treat it as having a nonstatic subtype by forcing use of the base
1537 -- type (which has to get passed to Check_Case_Choices below). Also
1538 -- use base type when the case expression is parenthesized.
1540 if Paren_Count (Expr) > 0
1541 or else (Is_Entity_Name (Expr)
1542 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1543 then
1544 Exp_Type := Exp_Btype;
1545 end if;
1547 -- The case expression alternatives cover the range of a static subtype
1548 -- subject to aspect Static_Predicate. Do not check the choices when the
1549 -- case expression has not been fully analyzed yet because this may lead
1550 -- to bogus errors.
1552 if Is_OK_Static_Subtype (Exp_Type)
1553 and then Has_Static_Predicate_Aspect (Exp_Type)
1554 and then In_Spec_Expression
1555 then
1556 null;
1558 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1560 else
1561 Analyze_Choices (Alternatives (N), Exp_Type);
1562 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1563 end if;
1565 if Exp_Type = Universal_Integer and then not Others_Present then
1566 Error_Msg_N
1567 ("case on universal integer requires OTHERS choice", Expr);
1568 end if;
1569 end Analyze_Case_Expression;
1571 ---------------------------
1572 -- Analyze_Comparison_Op --
1573 ---------------------------
1575 procedure Analyze_Comparison_Op (N : Node_Id) is
1576 L : constant Node_Id := Left_Opnd (N);
1577 R : constant Node_Id := Right_Opnd (N);
1578 Op_Id : Entity_Id := Entity (N);
1580 begin
1581 Set_Etype (N, Any_Type);
1582 Candidate_Type := Empty;
1584 Analyze_Expression (L);
1585 Analyze_Expression (R);
1587 if Present (Op_Id) then
1588 if Ekind (Op_Id) = E_Operator then
1589 Find_Comparison_Types (L, R, Op_Id, N);
1590 else
1591 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1592 end if;
1594 if Is_Overloaded (L) then
1595 Set_Etype (L, Intersect_Types (L, R));
1596 end if;
1598 else
1599 Op_Id := Get_Name_Entity_Id (Chars (N));
1600 while Present (Op_Id) loop
1601 if Ekind (Op_Id) = E_Operator then
1602 Find_Comparison_Types (L, R, Op_Id, N);
1603 else
1604 Analyze_User_Defined_Binary_Op (N, Op_Id);
1605 end if;
1607 Op_Id := Homonym (Op_Id);
1608 end loop;
1609 end if;
1611 Operator_Check (N);
1612 Check_Function_Writable_Actuals (N);
1613 end Analyze_Comparison_Op;
1615 ---------------------------
1616 -- Analyze_Concatenation --
1617 ---------------------------
1619 procedure Analyze_Concatenation (N : Node_Id) is
1621 -- We wish to avoid deep recursion, because concatenations are often
1622 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1623 -- operands nonrecursively until we find something that is not a
1624 -- concatenation (A in this case), or has already been analyzed. We
1625 -- analyze that, and then walk back up the tree following Parent
1626 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1627 -- work at each level. The Parent pointers allow us to avoid recursion,
1628 -- and thus avoid running out of memory.
1630 NN : Node_Id := N;
1631 L : Node_Id;
1633 begin
1634 Candidate_Type := Empty;
1636 -- The following code is equivalent to:
1638 -- Set_Etype (N, Any_Type);
1639 -- Analyze_Expression (Left_Opnd (N));
1640 -- Analyze_Concatenation_Rest (N);
1642 -- where the Analyze_Expression call recurses back here if the left
1643 -- operand is a concatenation.
1645 -- Walk down left operands
1647 loop
1648 Set_Etype (NN, Any_Type);
1649 L := Left_Opnd (NN);
1650 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1651 NN := L;
1652 end loop;
1654 -- Now (given the above example) NN is A&B and L is A
1656 -- First analyze L ...
1658 Analyze_Expression (L);
1660 -- ... then walk NN back up until we reach N (where we started), calling
1661 -- Analyze_Concatenation_Rest along the way.
1663 loop
1664 Analyze_Concatenation_Rest (NN);
1665 exit when NN = N;
1666 NN := Parent (NN);
1667 end loop;
1668 end Analyze_Concatenation;
1670 --------------------------------
1671 -- Analyze_Concatenation_Rest --
1672 --------------------------------
1674 -- If the only one-dimensional array type in scope is String,
1675 -- this is the resulting type of the operation. Otherwise there
1676 -- will be a concatenation operation defined for each user-defined
1677 -- one-dimensional array.
1679 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1680 L : constant Node_Id := Left_Opnd (N);
1681 R : constant Node_Id := Right_Opnd (N);
1682 Op_Id : Entity_Id := Entity (N);
1683 LT : Entity_Id;
1684 RT : Entity_Id;
1686 begin
1687 Analyze_Expression (R);
1689 -- If the entity is present, the node appears in an instance, and
1690 -- denotes a predefined concatenation operation. The resulting type is
1691 -- obtained from the arguments when possible. If the arguments are
1692 -- aggregates, the array type and the concatenation type must be
1693 -- visible.
1695 if Present (Op_Id) then
1696 if Ekind (Op_Id) = E_Operator then
1697 LT := Base_Type (Etype (L));
1698 RT := Base_Type (Etype (R));
1700 if Is_Array_Type (LT)
1701 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1702 then
1703 Add_One_Interp (N, Op_Id, LT);
1705 elsif Is_Array_Type (RT)
1706 and then LT = Base_Type (Component_Type (RT))
1707 then
1708 Add_One_Interp (N, Op_Id, RT);
1710 -- If one operand is a string type or a user-defined array type,
1711 -- and the other is a literal, result is of the specific type.
1713 elsif
1714 (Root_Type (LT) = Standard_String
1715 or else Scope (LT) /= Standard_Standard)
1716 and then Etype (R) = Any_String
1717 then
1718 Add_One_Interp (N, Op_Id, LT);
1720 elsif
1721 (Root_Type (RT) = Standard_String
1722 or else Scope (RT) /= Standard_Standard)
1723 and then Etype (L) = Any_String
1724 then
1725 Add_One_Interp (N, Op_Id, RT);
1727 elsif not Is_Generic_Type (Etype (Op_Id)) then
1728 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1730 else
1731 -- Type and its operations must be visible
1733 Set_Entity (N, Empty);
1734 Analyze_Concatenation (N);
1735 end if;
1737 else
1738 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1739 end if;
1741 else
1742 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1743 while Present (Op_Id) loop
1744 if Ekind (Op_Id) = E_Operator then
1746 -- Do not consider operators declared in dead code, they can
1747 -- not be part of the resolution.
1749 if Is_Eliminated (Op_Id) then
1750 null;
1751 else
1752 Find_Concatenation_Types (L, R, Op_Id, N);
1753 end if;
1755 else
1756 Analyze_User_Defined_Binary_Op (N, Op_Id);
1757 end if;
1759 Op_Id := Homonym (Op_Id);
1760 end loop;
1761 end if;
1763 Operator_Check (N);
1764 end Analyze_Concatenation_Rest;
1766 -------------------------
1767 -- Analyze_Equality_Op --
1768 -------------------------
1770 procedure Analyze_Equality_Op (N : Node_Id) is
1771 Loc : constant Source_Ptr := Sloc (N);
1772 L : constant Node_Id := Left_Opnd (N);
1773 R : constant Node_Id := Right_Opnd (N);
1774 Op_Id : Entity_Id;
1776 begin
1777 Set_Etype (N, Any_Type);
1778 Candidate_Type := Empty;
1780 Analyze_Expression (L);
1781 Analyze_Expression (R);
1783 -- If the entity is set, the node is a generic instance with a non-local
1784 -- reference to the predefined operator or to a user-defined function.
1785 -- It can also be an inequality that is expanded into the negation of a
1786 -- call to a user-defined equality operator.
1788 -- For the predefined case, the result is Boolean, regardless of the
1789 -- type of the operands. The operands may even be limited, if they are
1790 -- generic actuals. If they are overloaded, label the left argument with
1791 -- the common type that must be present, or with the type of the formal
1792 -- of the user-defined function.
1794 if Present (Entity (N)) then
1795 Op_Id := Entity (N);
1797 if Ekind (Op_Id) = E_Operator then
1798 Add_One_Interp (N, Op_Id, Standard_Boolean);
1799 else
1800 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1801 end if;
1803 if Is_Overloaded (L) then
1804 if Ekind (Op_Id) = E_Operator then
1805 Set_Etype (L, Intersect_Types (L, R));
1806 else
1807 Set_Etype (L, Etype (First_Formal (Op_Id)));
1808 end if;
1809 end if;
1811 else
1812 Op_Id := Get_Name_Entity_Id (Chars (N));
1813 while Present (Op_Id) loop
1814 if Ekind (Op_Id) = E_Operator then
1815 Find_Equality_Types (L, R, Op_Id, N);
1816 else
1817 Analyze_User_Defined_Binary_Op (N, Op_Id);
1818 end if;
1820 Op_Id := Homonym (Op_Id);
1821 end loop;
1822 end if;
1824 -- If there was no match, and the operator is inequality, this may be
1825 -- a case where inequality has not been made explicit, as for tagged
1826 -- types. Analyze the node as the negation of an equality operation.
1827 -- This cannot be done earlier, because before analysis we cannot rule
1828 -- out the presence of an explicit inequality.
1830 if Etype (N) = Any_Type
1831 and then Nkind (N) = N_Op_Ne
1832 then
1833 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1834 while Present (Op_Id) loop
1835 if Ekind (Op_Id) = E_Operator then
1836 Find_Equality_Types (L, R, Op_Id, N);
1837 else
1838 Analyze_User_Defined_Binary_Op (N, Op_Id);
1839 end if;
1841 Op_Id := Homonym (Op_Id);
1842 end loop;
1844 if Etype (N) /= Any_Type then
1845 Op_Id := Entity (N);
1847 Rewrite (N,
1848 Make_Op_Not (Loc,
1849 Right_Opnd =>
1850 Make_Op_Eq (Loc,
1851 Left_Opnd => Left_Opnd (N),
1852 Right_Opnd => Right_Opnd (N))));
1854 Set_Entity (Right_Opnd (N), Op_Id);
1855 Analyze (N);
1856 end if;
1857 end if;
1859 Operator_Check (N);
1860 Check_Function_Writable_Actuals (N);
1861 end Analyze_Equality_Op;
1863 ----------------------------------
1864 -- Analyze_Explicit_Dereference --
1865 ----------------------------------
1867 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1868 Loc : constant Source_Ptr := Sloc (N);
1869 P : constant Node_Id := Prefix (N);
1870 T : Entity_Id;
1871 I : Interp_Index;
1872 It : Interp;
1873 New_N : Node_Id;
1875 function Is_Function_Type return Boolean;
1876 -- Check whether node may be interpreted as an implicit function call
1878 ----------------------
1879 -- Is_Function_Type --
1880 ----------------------
1882 function Is_Function_Type return Boolean is
1883 I : Interp_Index;
1884 It : Interp;
1886 begin
1887 if not Is_Overloaded (N) then
1888 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1889 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1891 else
1892 Get_First_Interp (N, I, It);
1893 while Present (It.Nam) loop
1894 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1895 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1896 then
1897 return False;
1898 end if;
1900 Get_Next_Interp (I, It);
1901 end loop;
1903 return True;
1904 end if;
1905 end Is_Function_Type;
1907 -- Start of processing for Analyze_Explicit_Dereference
1909 begin
1910 -- If source node, check SPARK restriction. We guard this with the
1911 -- source node check, because ???
1913 if Comes_From_Source (N) then
1914 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
1915 end if;
1917 -- In formal verification mode, keep track of all reads and writes
1918 -- through explicit dereferences.
1920 if GNATprove_Mode then
1921 SPARK_Specific.Generate_Dereference (N);
1922 end if;
1924 Analyze (P);
1925 Set_Etype (N, Any_Type);
1927 -- Test for remote access to subprogram type, and if so return
1928 -- after rewriting the original tree.
1930 if Remote_AST_E_Dereference (P) then
1931 return;
1932 end if;
1934 -- Normal processing for other than remote access to subprogram type
1936 if not Is_Overloaded (P) then
1937 if Is_Access_Type (Etype (P)) then
1939 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1940 -- avoid other problems caused by the Private_Subtype and it is
1941 -- safe to go to the Base_Type because this is the same as
1942 -- converting the access value to its Base_Type.
1944 declare
1945 DT : Entity_Id := Designated_Type (Etype (P));
1947 begin
1948 if Ekind (DT) = E_Private_Subtype
1949 and then Is_For_Access_Subtype (DT)
1950 then
1951 DT := Base_Type (DT);
1952 end if;
1954 -- An explicit dereference is a legal occurrence of an
1955 -- incomplete type imported through a limited_with clause, if
1956 -- the full view is visible, or if we are within an instance
1957 -- body, where the enclosing body has a regular with_clause
1958 -- on the unit.
1960 if From_Limited_With (DT)
1961 and then not From_Limited_With (Scope (DT))
1962 and then
1963 (Is_Immediately_Visible (Scope (DT))
1964 or else
1965 (Is_Child_Unit (Scope (DT))
1966 and then Is_Visible_Lib_Unit (Scope (DT)))
1967 or else In_Instance_Body)
1968 then
1969 Set_Etype (N, Available_View (DT));
1971 else
1972 Set_Etype (N, DT);
1973 end if;
1974 end;
1976 elsif Etype (P) /= Any_Type then
1977 Error_Msg_N ("prefix of dereference must be an access type", N);
1978 return;
1979 end if;
1981 else
1982 Get_First_Interp (P, I, It);
1983 while Present (It.Nam) loop
1984 T := It.Typ;
1986 if Is_Access_Type (T) then
1987 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1988 end if;
1990 Get_Next_Interp (I, It);
1991 end loop;
1993 -- Error if no interpretation of the prefix has an access type
1995 if Etype (N) = Any_Type then
1996 Error_Msg_N
1997 ("access type required in prefix of explicit dereference", P);
1998 Set_Etype (N, Any_Type);
1999 return;
2000 end if;
2001 end if;
2003 if Is_Function_Type
2004 and then Nkind (Parent (N)) /= N_Indexed_Component
2006 and then (Nkind (Parent (N)) /= N_Function_Call
2007 or else N /= Name (Parent (N)))
2009 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2010 or else N /= Name (Parent (N)))
2012 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2013 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2014 or else
2015 (Attribute_Name (Parent (N)) /= Name_Address
2016 and then
2017 Attribute_Name (Parent (N)) /= Name_Access))
2018 then
2019 -- Name is a function call with no actuals, in a context that
2020 -- requires deproceduring (including as an actual in an enclosing
2021 -- function or procedure call). There are some pathological cases
2022 -- where the prefix might include functions that return access to
2023 -- subprograms and others that return a regular type. Disambiguation
2024 -- of those has to take place in Resolve.
2026 New_N :=
2027 Make_Function_Call (Loc,
2028 Name => Make_Explicit_Dereference (Loc, P),
2029 Parameter_Associations => New_List);
2031 -- If the prefix is overloaded, remove operations that have formals,
2032 -- we know that this is a parameterless call.
2034 if Is_Overloaded (P) then
2035 Get_First_Interp (P, I, It);
2036 while Present (It.Nam) loop
2037 T := It.Typ;
2039 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2040 Set_Etype (P, T);
2041 else
2042 Remove_Interp (I);
2043 end if;
2045 Get_Next_Interp (I, It);
2046 end loop;
2047 end if;
2049 Rewrite (N, New_N);
2050 Analyze (N);
2052 elsif not Is_Function_Type
2053 and then Is_Overloaded (N)
2054 then
2055 -- The prefix may include access to subprograms and other access
2056 -- types. If the context selects the interpretation that is a
2057 -- function call (not a procedure call) we cannot rewrite the node
2058 -- yet, but we include the result of the call interpretation.
2060 Get_First_Interp (N, I, It);
2061 while Present (It.Nam) loop
2062 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2063 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2064 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2065 then
2066 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2067 end if;
2069 Get_Next_Interp (I, It);
2070 end loop;
2071 end if;
2073 -- A value of remote access-to-class-wide must not be dereferenced
2074 -- (RM E.2.2(16)).
2076 Validate_Remote_Access_To_Class_Wide_Type (N);
2077 end Analyze_Explicit_Dereference;
2079 ------------------------
2080 -- Analyze_Expression --
2081 ------------------------
2083 procedure Analyze_Expression (N : Node_Id) is
2084 begin
2086 -- If the expression is an indexed component that will be rewritten
2087 -- as a container indexing, it has already been analyzed.
2089 if Nkind (N) = N_Indexed_Component
2090 and then Present (Generalized_Indexing (N))
2091 then
2092 null;
2094 else
2095 Analyze (N);
2096 Check_Parameterless_Call (N);
2097 end if;
2098 end Analyze_Expression;
2100 -------------------------------------
2101 -- Analyze_Expression_With_Actions --
2102 -------------------------------------
2104 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2105 A : Node_Id;
2107 begin
2108 A := First (Actions (N));
2109 while Present (A) loop
2110 Analyze (A);
2111 Next (A);
2112 end loop;
2114 Analyze_Expression (Expression (N));
2115 Set_Etype (N, Etype (Expression (N)));
2116 end Analyze_Expression_With_Actions;
2118 ---------------------------
2119 -- Analyze_If_Expression --
2120 ---------------------------
2122 procedure Analyze_If_Expression (N : Node_Id) is
2123 Condition : constant Node_Id := First (Expressions (N));
2124 Then_Expr : constant Node_Id := Next (Condition);
2125 Else_Expr : Node_Id;
2127 begin
2128 -- Defend against error of missing expressions from previous error
2130 if No (Then_Expr) then
2131 Check_Error_Detected;
2132 return;
2133 end if;
2135 if Comes_From_Source (N) then
2136 Check_SPARK_05_Restriction ("if expression is not allowed", N);
2137 end if;
2139 Else_Expr := Next (Then_Expr);
2141 if Comes_From_Source (N) then
2142 Check_Compiler_Unit ("if expression", N);
2143 end if;
2145 -- Analyze and resolve the condition. We need to resolve this now so
2146 -- that it gets folded to True/False if possible, before we analyze
2147 -- the THEN/ELSE branches, because when analyzing these branches, we
2148 -- may call Is_Statically_Unevaluated, which expects the condition of
2149 -- an enclosing IF to have been analyze/resolved/evaluated.
2151 Analyze_Expression (Condition);
2152 Resolve (Condition, Any_Boolean);
2154 -- Analyze THEN expression and (if present) ELSE expression. For those
2155 -- we delay resolution in the normal manner, because of overloading etc.
2157 Analyze_Expression (Then_Expr);
2159 if Present (Else_Expr) then
2160 Analyze_Expression (Else_Expr);
2161 end if;
2163 -- If then expression not overloaded, then that decides the type
2165 if not Is_Overloaded (Then_Expr) then
2166 Set_Etype (N, Etype (Then_Expr));
2168 -- Case where then expression is overloaded
2170 else
2171 declare
2172 I : Interp_Index;
2173 It : Interp;
2175 begin
2176 Set_Etype (N, Any_Type);
2178 -- Loop through intepretations of Then_Expr
2180 Get_First_Interp (Then_Expr, I, It);
2181 while Present (It.Nam) loop
2183 -- Add possible intepretation of Then_Expr if no Else_Expr, or
2184 -- Else_Expr is present and has a compatible type.
2186 if No (Else_Expr)
2187 or else Has_Compatible_Type (Else_Expr, It.Typ)
2188 then
2189 Add_One_Interp (N, It.Typ, It.Typ);
2190 end if;
2192 Get_Next_Interp (I, It);
2193 end loop;
2195 -- If no valid interpretation has been found, then the type of the
2196 -- ELSE expression does not match any interpretation of the THEN
2197 -- expression.
2199 if Etype (N) = Any_Type then
2200 Error_Msg_N
2201 ("type incompatible with that of `THEN` expression",
2202 Else_Expr);
2203 return;
2204 end if;
2205 end;
2206 end if;
2207 end Analyze_If_Expression;
2209 ------------------------------------
2210 -- Analyze_Indexed_Component_Form --
2211 ------------------------------------
2213 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2214 P : constant Node_Id := Prefix (N);
2215 Exprs : constant List_Id := Expressions (N);
2216 Exp : Node_Id;
2217 P_T : Entity_Id;
2218 E : Node_Id;
2219 U_N : Entity_Id;
2221 procedure Process_Function_Call;
2222 -- Prefix in indexed component form is an overloadable entity, so the
2223 -- node is a function call. Reformat it as such.
2225 procedure Process_Indexed_Component;
2226 -- Prefix in indexed component form is actually an indexed component.
2227 -- This routine processes it, knowing that the prefix is already
2228 -- resolved.
2230 procedure Process_Indexed_Component_Or_Slice;
2231 -- An indexed component with a single index may designate a slice if
2232 -- the index is a subtype mark. This routine disambiguates these two
2233 -- cases by resolving the prefix to see if it is a subtype mark.
2235 procedure Process_Overloaded_Indexed_Component;
2236 -- If the prefix of an indexed component is overloaded, the proper
2237 -- interpretation is selected by the index types and the context.
2239 ---------------------------
2240 -- Process_Function_Call --
2241 ---------------------------
2243 procedure Process_Function_Call is
2244 Loc : constant Source_Ptr := Sloc (N);
2245 Actual : Node_Id;
2247 begin
2248 Change_Node (N, N_Function_Call);
2249 Set_Name (N, P);
2250 Set_Parameter_Associations (N, Exprs);
2252 -- Analyze actuals prior to analyzing the call itself
2254 Actual := First (Parameter_Associations (N));
2255 while Present (Actual) loop
2256 Analyze (Actual);
2257 Check_Parameterless_Call (Actual);
2259 -- Move to next actual. Note that we use Next, not Next_Actual
2260 -- here. The reason for this is a bit subtle. If a function call
2261 -- includes named associations, the parser recognizes the node
2262 -- as a call, and it is analyzed as such. If all associations are
2263 -- positional, the parser builds an indexed_component node, and
2264 -- it is only after analysis of the prefix that the construct
2265 -- is recognized as a call, in which case Process_Function_Call
2266 -- rewrites the node and analyzes the actuals. If the list of
2267 -- actuals is malformed, the parser may leave the node as an
2268 -- indexed component (despite the presence of named associations).
2269 -- The iterator Next_Actual is equivalent to Next if the list is
2270 -- positional, but follows the normalized chain of actuals when
2271 -- named associations are present. In this case normalization has
2272 -- not taken place, and actuals remain unanalyzed, which leads to
2273 -- subsequent crashes or loops if there is an attempt to continue
2274 -- analysis of the program.
2276 -- IF there is a single actual and it is a type name, the node
2277 -- can only be interpreted as a slice of a parameterless call.
2278 -- Rebuild the node as such and analyze.
2280 if No (Next (Actual))
2281 and then Is_Entity_Name (Actual)
2282 and then Is_Type (Entity (Actual))
2283 and then Is_Discrete_Type (Entity (Actual))
2284 then
2285 Replace (N,
2286 Make_Slice (Loc,
2287 Prefix => P,
2288 Discrete_Range =>
2289 New_Occurrence_Of (Entity (Actual), Loc)));
2290 Analyze (N);
2291 return;
2293 else
2294 Next (Actual);
2295 end if;
2296 end loop;
2298 Analyze_Call (N);
2299 end Process_Function_Call;
2301 -------------------------------
2302 -- Process_Indexed_Component --
2303 -------------------------------
2305 procedure Process_Indexed_Component is
2306 Exp : Node_Id;
2307 Array_Type : Entity_Id;
2308 Index : Node_Id;
2309 Pent : Entity_Id := Empty;
2311 begin
2312 Exp := First (Exprs);
2314 if Is_Overloaded (P) then
2315 Process_Overloaded_Indexed_Component;
2317 else
2318 Array_Type := Etype (P);
2320 if Is_Entity_Name (P) then
2321 Pent := Entity (P);
2322 elsif Nkind (P) = N_Selected_Component
2323 and then Is_Entity_Name (Selector_Name (P))
2324 then
2325 Pent := Entity (Selector_Name (P));
2326 end if;
2328 -- Prefix must be appropriate for an array type, taking into
2329 -- account a possible implicit dereference.
2331 if Is_Access_Type (Array_Type) then
2332 Error_Msg_NW
2333 (Warn_On_Dereference, "?d?implicit dereference", N);
2334 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2335 end if;
2337 if Is_Array_Type (Array_Type) then
2338 null;
2340 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2341 Analyze (Exp);
2342 Set_Etype (N, Any_Type);
2344 if not Has_Compatible_Type
2345 (Exp, Entry_Index_Type (Pent))
2346 then
2347 Error_Msg_N ("invalid index type in entry name", N);
2349 elsif Present (Next (Exp)) then
2350 Error_Msg_N ("too many subscripts in entry reference", N);
2352 else
2353 Set_Etype (N, Etype (P));
2354 end if;
2356 return;
2358 elsif Is_Record_Type (Array_Type)
2359 and then Remote_AST_I_Dereference (P)
2360 then
2361 return;
2363 elsif Try_Container_Indexing (N, P, Exprs) then
2364 return;
2366 elsif Array_Type = Any_Type then
2367 Set_Etype (N, Any_Type);
2369 -- In most cases the analysis of the prefix will have emitted
2370 -- an error already, but if the prefix may be interpreted as a
2371 -- call in prefixed notation, the report is left to the caller.
2372 -- To prevent cascaded errors, report only if no previous ones.
2374 if Serious_Errors_Detected = 0 then
2375 Error_Msg_N ("invalid prefix in indexed component", P);
2377 if Nkind (P) = N_Expanded_Name then
2378 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2379 end if;
2380 end if;
2382 return;
2384 -- Here we definitely have a bad indexing
2386 else
2387 if Nkind (Parent (N)) = N_Requeue_Statement
2388 and then Present (Pent) and then Ekind (Pent) = E_Entry
2389 then
2390 Error_Msg_N
2391 ("REQUEUE does not permit parameters", First (Exprs));
2393 elsif Is_Entity_Name (P)
2394 and then Etype (P) = Standard_Void_Type
2395 then
2396 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2398 else
2399 Error_Msg_N ("array type required in indexed component", P);
2400 end if;
2402 Set_Etype (N, Any_Type);
2403 return;
2404 end if;
2406 Index := First_Index (Array_Type);
2407 while Present (Index) and then Present (Exp) loop
2408 if not Has_Compatible_Type (Exp, Etype (Index)) then
2409 Wrong_Type (Exp, Etype (Index));
2410 Set_Etype (N, Any_Type);
2411 return;
2412 end if;
2414 Next_Index (Index);
2415 Next (Exp);
2416 end loop;
2418 Set_Etype (N, Component_Type (Array_Type));
2419 Check_Implicit_Dereference (N, Etype (N));
2421 if Present (Index) then
2422 Error_Msg_N
2423 ("too few subscripts in array reference", First (Exprs));
2425 elsif Present (Exp) then
2426 Error_Msg_N ("too many subscripts in array reference", Exp);
2427 end if;
2428 end if;
2429 end Process_Indexed_Component;
2431 ----------------------------------------
2432 -- Process_Indexed_Component_Or_Slice --
2433 ----------------------------------------
2435 procedure Process_Indexed_Component_Or_Slice is
2436 begin
2437 Exp := First (Exprs);
2438 while Present (Exp) loop
2439 Analyze_Expression (Exp);
2440 Next (Exp);
2441 end loop;
2443 Exp := First (Exprs);
2445 -- If one index is present, and it is a subtype name, then the node
2446 -- denotes a slice (note that the case of an explicit range for a
2447 -- slice was already built as an N_Slice node in the first place,
2448 -- so that case is not handled here).
2450 -- We use a replace rather than a rewrite here because this is one
2451 -- of the cases in which the tree built by the parser is plain wrong.
2453 if No (Next (Exp))
2454 and then Is_Entity_Name (Exp)
2455 and then Is_Type (Entity (Exp))
2456 then
2457 Replace (N,
2458 Make_Slice (Sloc (N),
2459 Prefix => P,
2460 Discrete_Range => New_Copy (Exp)));
2461 Analyze (N);
2463 -- Otherwise (more than one index present, or single index is not
2464 -- a subtype name), then we have the indexed component case.
2466 else
2467 Process_Indexed_Component;
2468 end if;
2469 end Process_Indexed_Component_Or_Slice;
2471 ------------------------------------------
2472 -- Process_Overloaded_Indexed_Component --
2473 ------------------------------------------
2475 procedure Process_Overloaded_Indexed_Component is
2476 Exp : Node_Id;
2477 I : Interp_Index;
2478 It : Interp;
2479 Typ : Entity_Id;
2480 Index : Node_Id;
2481 Found : Boolean;
2483 begin
2484 Set_Etype (N, Any_Type);
2486 Get_First_Interp (P, I, It);
2487 while Present (It.Nam) loop
2488 Typ := It.Typ;
2490 if Is_Access_Type (Typ) then
2491 Typ := Designated_Type (Typ);
2492 Error_Msg_NW
2493 (Warn_On_Dereference, "?d?implicit dereference", N);
2494 end if;
2496 if Is_Array_Type (Typ) then
2498 -- Got a candidate: verify that index types are compatible
2500 Index := First_Index (Typ);
2501 Found := True;
2502 Exp := First (Exprs);
2503 while Present (Index) and then Present (Exp) loop
2504 if Has_Compatible_Type (Exp, Etype (Index)) then
2505 null;
2506 else
2507 Found := False;
2508 Remove_Interp (I);
2509 exit;
2510 end if;
2512 Next_Index (Index);
2513 Next (Exp);
2514 end loop;
2516 if Found and then No (Index) and then No (Exp) then
2517 declare
2518 CT : constant Entity_Id :=
2519 Base_Type (Component_Type (Typ));
2520 begin
2521 Add_One_Interp (N, CT, CT);
2522 Check_Implicit_Dereference (N, CT);
2523 end;
2524 end if;
2526 elsif Try_Container_Indexing (N, P, Exprs) then
2527 return;
2529 end if;
2531 Get_Next_Interp (I, It);
2532 end loop;
2534 if Etype (N) = Any_Type then
2535 Error_Msg_N ("no legal interpretation for indexed component", N);
2536 Set_Is_Overloaded (N, False);
2537 end if;
2539 End_Interp_List;
2540 end Process_Overloaded_Indexed_Component;
2542 -- Start of processing for Analyze_Indexed_Component_Form
2544 begin
2545 -- Get name of array, function or type
2547 Analyze (P);
2549 -- If P is an explicit dereference whose prefix is of a remote access-
2550 -- to-subprogram type, then N has already been rewritten as a subprogram
2551 -- call and analyzed.
2553 if Nkind (N) in N_Subprogram_Call then
2554 return;
2556 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2557 -- the indexed component denotes a loop name, the indexed form is turned
2558 -- into an attribute reference.
2560 elsif Nkind (N) = N_Attribute_Reference
2561 and then Attribute_Name (N) = Name_Loop_Entry
2562 then
2563 return;
2564 end if;
2566 pragma Assert (Nkind (N) = N_Indexed_Component);
2568 P_T := Base_Type (Etype (P));
2570 if Is_Entity_Name (P) and then Present (Entity (P)) then
2571 U_N := Entity (P);
2573 if Is_Type (U_N) then
2575 -- Reformat node as a type conversion
2577 E := Remove_Head (Exprs);
2579 if Present (First (Exprs)) then
2580 Error_Msg_N
2581 ("argument of type conversion must be single expression", N);
2582 end if;
2584 Change_Node (N, N_Type_Conversion);
2585 Set_Subtype_Mark (N, P);
2586 Set_Etype (N, U_N);
2587 Set_Expression (N, E);
2589 -- After changing the node, call for the specific Analysis
2590 -- routine directly, to avoid a double call to the expander.
2592 Analyze_Type_Conversion (N);
2593 return;
2594 end if;
2596 if Is_Overloadable (U_N) then
2597 Process_Function_Call;
2599 elsif Ekind (Etype (P)) = E_Subprogram_Type
2600 or else (Is_Access_Type (Etype (P))
2601 and then
2602 Ekind (Designated_Type (Etype (P))) =
2603 E_Subprogram_Type)
2604 then
2605 -- Call to access_to-subprogram with possible implicit dereference
2607 Process_Function_Call;
2609 elsif Is_Generic_Subprogram (U_N) then
2611 -- A common beginner's (or C++ templates fan) error
2613 Error_Msg_N ("generic subprogram cannot be called", N);
2614 Set_Etype (N, Any_Type);
2615 return;
2617 else
2618 Process_Indexed_Component_Or_Slice;
2619 end if;
2621 -- If not an entity name, prefix is an expression that may denote
2622 -- an array or an access-to-subprogram.
2624 else
2625 if Ekind (P_T) = E_Subprogram_Type
2626 or else (Is_Access_Type (P_T)
2627 and then
2628 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2629 then
2630 Process_Function_Call;
2632 elsif Nkind (P) = N_Selected_Component
2633 and then Present (Entity (Selector_Name (P)))
2634 and then Is_Overloadable (Entity (Selector_Name (P)))
2635 then
2636 Process_Function_Call;
2638 -- In ASIS mode within a generic, a prefixed call is analyzed and
2639 -- partially rewritten but the original indexed component has not
2640 -- yet been rewritten as a call. Perform the replacement now.
2642 elsif Nkind (P) = N_Selected_Component
2643 and then Nkind (Parent (P)) = N_Function_Call
2644 and then ASIS_Mode
2645 then
2646 Rewrite (N, Parent (P));
2647 Analyze (N);
2649 else
2650 -- Indexed component, slice, or a call to a member of a family
2651 -- entry, which will be converted to an entry call later.
2653 Process_Indexed_Component_Or_Slice;
2654 end if;
2655 end if;
2657 Analyze_Dimension (N);
2658 end Analyze_Indexed_Component_Form;
2660 ------------------------
2661 -- Analyze_Logical_Op --
2662 ------------------------
2664 procedure Analyze_Logical_Op (N : Node_Id) is
2665 L : constant Node_Id := Left_Opnd (N);
2666 R : constant Node_Id := Right_Opnd (N);
2667 Op_Id : Entity_Id := Entity (N);
2669 begin
2670 Set_Etype (N, Any_Type);
2671 Candidate_Type := Empty;
2673 Analyze_Expression (L);
2674 Analyze_Expression (R);
2676 if Present (Op_Id) then
2678 if Ekind (Op_Id) = E_Operator then
2679 Find_Boolean_Types (L, R, Op_Id, N);
2680 else
2681 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2682 end if;
2684 else
2685 Op_Id := Get_Name_Entity_Id (Chars (N));
2686 while Present (Op_Id) loop
2687 if Ekind (Op_Id) = E_Operator then
2688 Find_Boolean_Types (L, R, Op_Id, N);
2689 else
2690 Analyze_User_Defined_Binary_Op (N, Op_Id);
2691 end if;
2693 Op_Id := Homonym (Op_Id);
2694 end loop;
2695 end if;
2697 Operator_Check (N);
2698 Check_Function_Writable_Actuals (N);
2699 end Analyze_Logical_Op;
2701 ---------------------------
2702 -- Analyze_Membership_Op --
2703 ---------------------------
2705 procedure Analyze_Membership_Op (N : Node_Id) is
2706 Loc : constant Source_Ptr := Sloc (N);
2707 L : constant Node_Id := Left_Opnd (N);
2708 R : constant Node_Id := Right_Opnd (N);
2710 Index : Interp_Index;
2711 It : Interp;
2712 Found : Boolean := False;
2713 I_F : Interp_Index;
2714 T_F : Entity_Id;
2716 procedure Try_One_Interp (T1 : Entity_Id);
2717 -- Routine to try one proposed interpretation. Note that the context
2718 -- of the operation plays no role in resolving the arguments, so that
2719 -- if there is more than one interpretation of the operands that is
2720 -- compatible with a membership test, the operation is ambiguous.
2722 --------------------
2723 -- Try_One_Interp --
2724 --------------------
2726 procedure Try_One_Interp (T1 : Entity_Id) is
2727 begin
2728 if Has_Compatible_Type (R, T1) then
2729 if Found
2730 and then Base_Type (T1) /= Base_Type (T_F)
2731 then
2732 It := Disambiguate (L, I_F, Index, Any_Type);
2734 if It = No_Interp then
2735 Ambiguous_Operands (N);
2736 Set_Etype (L, Any_Type);
2737 return;
2739 else
2740 T_F := It.Typ;
2741 end if;
2743 else
2744 Found := True;
2745 T_F := T1;
2746 I_F := Index;
2747 end if;
2749 Set_Etype (L, T_F);
2750 end if;
2751 end Try_One_Interp;
2753 procedure Analyze_Set_Membership;
2754 -- If a set of alternatives is present, analyze each and find the
2755 -- common type to which they must all resolve.
2757 ----------------------------
2758 -- Analyze_Set_Membership --
2759 ----------------------------
2761 procedure Analyze_Set_Membership is
2762 Alt : Node_Id;
2763 Index : Interp_Index;
2764 It : Interp;
2765 Candidate_Interps : Node_Id;
2766 Common_Type : Entity_Id := Empty;
2768 begin
2769 if Comes_From_Source (N) then
2770 Check_Compiler_Unit ("set membership", N);
2771 end if;
2773 Analyze (L);
2774 Candidate_Interps := L;
2776 if not Is_Overloaded (L) then
2777 Common_Type := Etype (L);
2779 Alt := First (Alternatives (N));
2780 while Present (Alt) loop
2781 Analyze (Alt);
2783 if not Has_Compatible_Type (Alt, Common_Type) then
2784 Wrong_Type (Alt, Common_Type);
2785 end if;
2787 Next (Alt);
2788 end loop;
2790 else
2791 Alt := First (Alternatives (N));
2792 while Present (Alt) loop
2793 Analyze (Alt);
2794 if not Is_Overloaded (Alt) then
2795 Common_Type := Etype (Alt);
2797 else
2798 Get_First_Interp (Alt, Index, It);
2799 while Present (It.Typ) loop
2800 if not
2801 Has_Compatible_Type (Candidate_Interps, It.Typ)
2802 then
2803 Remove_Interp (Index);
2804 end if;
2806 Get_Next_Interp (Index, It);
2807 end loop;
2809 Get_First_Interp (Alt, Index, It);
2811 if No (It.Typ) then
2812 Error_Msg_N ("alternative has no legal type", Alt);
2813 return;
2814 end if;
2816 -- If alternative is not overloaded, we have a unique type
2817 -- for all of them.
2819 Set_Etype (Alt, It.Typ);
2820 Get_Next_Interp (Index, It);
2822 if No (It.Typ) then
2823 Set_Is_Overloaded (Alt, False);
2824 Common_Type := Etype (Alt);
2825 end if;
2827 Candidate_Interps := Alt;
2828 end if;
2830 Next (Alt);
2831 end loop;
2832 end if;
2834 Set_Etype (N, Standard_Boolean);
2836 if Present (Common_Type) then
2837 Set_Etype (L, Common_Type);
2839 -- The left operand may still be overloaded, to be resolved using
2840 -- the Common_Type.
2842 else
2843 Error_Msg_N ("cannot resolve membership operation", N);
2844 end if;
2845 end Analyze_Set_Membership;
2847 -- Start of processing for Analyze_Membership_Op
2849 begin
2850 Analyze_Expression (L);
2852 if No (R) and then Ada_Version >= Ada_2012 then
2853 Analyze_Set_Membership;
2854 Check_Function_Writable_Actuals (N);
2856 return;
2857 end if;
2859 if Nkind (R) = N_Range
2860 or else (Nkind (R) = N_Attribute_Reference
2861 and then Attribute_Name (R) = Name_Range)
2862 then
2863 Analyze (R);
2865 if not Is_Overloaded (L) then
2866 Try_One_Interp (Etype (L));
2868 else
2869 Get_First_Interp (L, Index, It);
2870 while Present (It.Typ) loop
2871 Try_One_Interp (It.Typ);
2872 Get_Next_Interp (Index, It);
2873 end loop;
2874 end if;
2876 -- If not a range, it can be a subtype mark, or else it is a degenerate
2877 -- membership test with a singleton value, i.e. a test for equality,
2878 -- if the types are compatible.
2880 else
2881 Analyze (R);
2883 if Is_Entity_Name (R)
2884 and then Is_Type (Entity (R))
2885 then
2886 Find_Type (R);
2887 Check_Fully_Declared (Entity (R), R);
2889 elsif Ada_Version >= Ada_2012
2890 and then Has_Compatible_Type (R, Etype (L))
2891 then
2892 if Nkind (N) = N_In then
2893 Rewrite (N,
2894 Make_Op_Eq (Loc,
2895 Left_Opnd => L,
2896 Right_Opnd => R));
2897 else
2898 Rewrite (N,
2899 Make_Op_Ne (Loc,
2900 Left_Opnd => L,
2901 Right_Opnd => R));
2902 end if;
2904 Analyze (N);
2905 return;
2907 else
2908 -- In all versions of the language, if we reach this point there
2909 -- is a previous error that will be diagnosed below.
2911 Find_Type (R);
2912 end if;
2913 end if;
2915 -- Compatibility between expression and subtype mark or range is
2916 -- checked during resolution. The result of the operation is Boolean
2917 -- in any case.
2919 Set_Etype (N, Standard_Boolean);
2921 if Comes_From_Source (N)
2922 and then Present (Right_Opnd (N))
2923 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2924 then
2925 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2926 end if;
2928 Check_Function_Writable_Actuals (N);
2929 end Analyze_Membership_Op;
2931 -----------------
2932 -- Analyze_Mod --
2933 -----------------
2935 procedure Analyze_Mod (N : Node_Id) is
2936 begin
2937 -- A special warning check, if we have an expression of the form:
2938 -- expr mod 2 * literal
2939 -- where literal is 64 or less, then probably what was meant was
2940 -- expr mod 2 ** literal
2941 -- so issue an appropriate warning.
2943 if Warn_On_Suspicious_Modulus_Value
2944 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2945 and then Intval (Right_Opnd (N)) = Uint_2
2946 and then Nkind (Parent (N)) = N_Op_Multiply
2947 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2948 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2949 then
2950 Error_Msg_N
2951 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2952 end if;
2954 -- Remaining processing is same as for other arithmetic operators
2956 Analyze_Arithmetic_Op (N);
2957 end Analyze_Mod;
2959 ----------------------
2960 -- Analyze_Negation --
2961 ----------------------
2963 procedure Analyze_Negation (N : Node_Id) is
2964 R : constant Node_Id := Right_Opnd (N);
2965 Op_Id : Entity_Id := Entity (N);
2967 begin
2968 Set_Etype (N, Any_Type);
2969 Candidate_Type := Empty;
2971 Analyze_Expression (R);
2973 if Present (Op_Id) then
2974 if Ekind (Op_Id) = E_Operator then
2975 Find_Negation_Types (R, Op_Id, N);
2976 else
2977 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2978 end if;
2980 else
2981 Op_Id := Get_Name_Entity_Id (Chars (N));
2982 while Present (Op_Id) loop
2983 if Ekind (Op_Id) = E_Operator then
2984 Find_Negation_Types (R, Op_Id, N);
2985 else
2986 Analyze_User_Defined_Unary_Op (N, Op_Id);
2987 end if;
2989 Op_Id := Homonym (Op_Id);
2990 end loop;
2991 end if;
2993 Operator_Check (N);
2994 end Analyze_Negation;
2996 ------------------
2997 -- Analyze_Null --
2998 ------------------
3000 procedure Analyze_Null (N : Node_Id) is
3001 begin
3002 Check_SPARK_05_Restriction ("null is not allowed", N);
3004 Set_Etype (N, Any_Access);
3005 end Analyze_Null;
3007 ----------------------
3008 -- Analyze_One_Call --
3009 ----------------------
3011 procedure Analyze_One_Call
3012 (N : Node_Id;
3013 Nam : Entity_Id;
3014 Report : Boolean;
3015 Success : out Boolean;
3016 Skip_First : Boolean := False)
3018 Actuals : constant List_Id := Parameter_Associations (N);
3019 Prev_T : constant Entity_Id := Etype (N);
3021 Must_Skip : constant Boolean := Skip_First
3022 or else Nkind (Original_Node (N)) = N_Selected_Component
3023 or else
3024 (Nkind (Original_Node (N)) = N_Indexed_Component
3025 and then Nkind (Prefix (Original_Node (N)))
3026 = N_Selected_Component);
3027 -- The first formal must be omitted from the match when trying to find
3028 -- a primitive operation that is a possible interpretation, and also
3029 -- after the call has been rewritten, because the corresponding actual
3030 -- is already known to be compatible, and because this may be an
3031 -- indexing of a call with default parameters.
3033 Formal : Entity_Id;
3034 Actual : Node_Id;
3035 Is_Indexed : Boolean := False;
3036 Is_Indirect : Boolean := False;
3037 Subp_Type : constant Entity_Id := Etype (Nam);
3038 Norm_OK : Boolean;
3040 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3041 -- There may be a user-defined operator that hides the current
3042 -- interpretation. We must check for this independently of the
3043 -- analysis of the call with the user-defined operation, because
3044 -- the parameter names may be wrong and yet the hiding takes place.
3045 -- This fixes a problem with ACATS test B34014O.
3047 -- When the type Address is a visible integer type, and the DEC
3048 -- system extension is visible, the predefined operator may be
3049 -- hidden as well, by one of the address operations in auxdec.
3050 -- Finally, The abstract operations on address do not hide the
3051 -- predefined operator (this is the purpose of making them abstract).
3053 procedure Indicate_Name_And_Type;
3054 -- If candidate interpretation matches, indicate name and type of
3055 -- result on call node.
3057 ----------------------------
3058 -- Indicate_Name_And_Type --
3059 ----------------------------
3061 procedure Indicate_Name_And_Type is
3062 begin
3063 Add_One_Interp (N, Nam, Etype (Nam));
3064 Check_Implicit_Dereference (N, Etype (Nam));
3065 Success := True;
3067 -- If the prefix of the call is a name, indicate the entity
3068 -- being called. If it is not a name, it is an expression that
3069 -- denotes an access to subprogram or else an entry or family. In
3070 -- the latter case, the name is a selected component, and the entity
3071 -- being called is noted on the selector.
3073 if not Is_Type (Nam) then
3074 if Is_Entity_Name (Name (N)) then
3075 Set_Entity (Name (N), Nam);
3076 Set_Etype (Name (N), Etype (Nam));
3078 elsif Nkind (Name (N)) = N_Selected_Component then
3079 Set_Entity (Selector_Name (Name (N)), Nam);
3080 end if;
3081 end if;
3083 if Debug_Flag_E and not Report then
3084 Write_Str (" Overloaded call ");
3085 Write_Int (Int (N));
3086 Write_Str (" compatible with ");
3087 Write_Int (Int (Nam));
3088 Write_Eol;
3089 end if;
3090 end Indicate_Name_And_Type;
3092 ------------------------
3093 -- Operator_Hidden_By --
3094 ------------------------
3096 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3097 Act1 : constant Node_Id := First_Actual (N);
3098 Act2 : constant Node_Id := Next_Actual (Act1);
3099 Form1 : constant Entity_Id := First_Formal (Fun);
3100 Form2 : constant Entity_Id := Next_Formal (Form1);
3102 begin
3103 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3104 return False;
3106 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3107 return False;
3109 elsif Present (Form2) then
3110 if No (Act2)
3111 or else not Has_Compatible_Type (Act2, Etype (Form2))
3112 then
3113 return False;
3114 end if;
3116 elsif Present (Act2) then
3117 return False;
3118 end if;
3120 -- Now we know that the arity of the operator matches the function,
3121 -- and the function call is a valid interpretation. The function
3122 -- hides the operator if it has the right signature, or if one of
3123 -- its operands is a non-abstract operation on Address when this is
3124 -- a visible integer type.
3126 return Hides_Op (Fun, Nam)
3127 or else Is_Descendent_Of_Address (Etype (Form1))
3128 or else
3129 (Present (Form2)
3130 and then Is_Descendent_Of_Address (Etype (Form2)));
3131 end Operator_Hidden_By;
3133 -- Start of processing for Analyze_One_Call
3135 begin
3136 Success := False;
3138 -- If the subprogram has no formals or if all the formals have defaults,
3139 -- and the return type is an array type, the node may denote an indexing
3140 -- of the result of a parameterless call. In Ada 2005, the subprogram
3141 -- may have one non-defaulted formal, and the call may have been written
3142 -- in prefix notation, so that the rebuilt parameter list has more than
3143 -- one actual.
3145 if not Is_Overloadable (Nam)
3146 and then Ekind (Nam) /= E_Subprogram_Type
3147 and then Ekind (Nam) /= E_Entry_Family
3148 then
3149 return;
3150 end if;
3152 -- An indexing requires at least one actual. The name of the call cannot
3153 -- be an implicit indirect call, so it cannot be a generated explicit
3154 -- dereference.
3156 if not Is_Empty_List (Actuals)
3157 and then
3158 (Needs_No_Actuals (Nam)
3159 or else
3160 (Needs_One_Actual (Nam)
3161 and then Present (Next_Actual (First (Actuals)))))
3162 then
3163 if Is_Array_Type (Subp_Type)
3164 and then
3165 (Nkind (Name (N)) /= N_Explicit_Dereference
3166 or else Comes_From_Source (Name (N)))
3167 then
3168 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3170 elsif Is_Access_Type (Subp_Type)
3171 and then Is_Array_Type (Designated_Type (Subp_Type))
3172 then
3173 Is_Indexed :=
3174 Try_Indexed_Call
3175 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3177 -- The prefix can also be a parameterless function that returns an
3178 -- access to subprogram, in which case this is an indirect call.
3179 -- If this succeeds, an explicit dereference is added later on,
3180 -- in Analyze_Call or Resolve_Call.
3182 elsif Is_Access_Type (Subp_Type)
3183 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3184 then
3185 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3186 end if;
3188 end if;
3190 -- If the call has been transformed into a slice, it is of the form
3191 -- F (Subtype) where F is parameterless. The node has been rewritten in
3192 -- Try_Indexed_Call and there is nothing else to do.
3194 if Is_Indexed
3195 and then Nkind (N) = N_Slice
3196 then
3197 return;
3198 end if;
3200 Normalize_Actuals
3201 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3203 if not Norm_OK then
3205 -- If an indirect call is a possible interpretation, indicate
3206 -- success to the caller. This may be an indexing of an explicit
3207 -- dereference of a call that returns an access type (see above).
3209 if Is_Indirect
3210 or else (Is_Indexed
3211 and then Nkind (Name (N)) = N_Explicit_Dereference
3212 and then Comes_From_Source (Name (N)))
3213 then
3214 Success := True;
3215 return;
3217 -- Mismatch in number or names of parameters
3219 elsif Debug_Flag_E then
3220 Write_Str (" normalization fails in call ");
3221 Write_Int (Int (N));
3222 Write_Str (" with subprogram ");
3223 Write_Int (Int (Nam));
3224 Write_Eol;
3225 end if;
3227 -- If the context expects a function call, discard any interpretation
3228 -- that is a procedure. If the node is not overloaded, leave as is for
3229 -- better error reporting when type mismatch is found.
3231 elsif Nkind (N) = N_Function_Call
3232 and then Is_Overloaded (Name (N))
3233 and then Ekind (Nam) = E_Procedure
3234 then
3235 return;
3237 -- Ditto for function calls in a procedure context
3239 elsif Nkind (N) = N_Procedure_Call_Statement
3240 and then Is_Overloaded (Name (N))
3241 and then Etype (Nam) /= Standard_Void_Type
3242 then
3243 return;
3245 elsif No (Actuals) then
3247 -- If Normalize succeeds, then there are default parameters for
3248 -- all formals.
3250 Indicate_Name_And_Type;
3252 elsif Ekind (Nam) = E_Operator then
3253 if Nkind (N) = N_Procedure_Call_Statement then
3254 return;
3255 end if;
3257 -- This can occur when the prefix of the call is an operator
3258 -- name or an expanded name whose selector is an operator name.
3260 Analyze_Operator_Call (N, Nam);
3262 if Etype (N) /= Prev_T then
3264 -- Check that operator is not hidden by a function interpretation
3266 if Is_Overloaded (Name (N)) then
3267 declare
3268 I : Interp_Index;
3269 It : Interp;
3271 begin
3272 Get_First_Interp (Name (N), I, It);
3273 while Present (It.Nam) loop
3274 if Operator_Hidden_By (It.Nam) then
3275 Set_Etype (N, Prev_T);
3276 return;
3277 end if;
3279 Get_Next_Interp (I, It);
3280 end loop;
3281 end;
3282 end if;
3284 -- If operator matches formals, record its name on the call.
3285 -- If the operator is overloaded, Resolve will select the
3286 -- correct one from the list of interpretations. The call
3287 -- node itself carries the first candidate.
3289 Set_Entity (Name (N), Nam);
3290 Success := True;
3292 elsif Report and then Etype (N) = Any_Type then
3293 Error_Msg_N ("incompatible arguments for operator", N);
3294 end if;
3296 else
3297 -- Normalize_Actuals has chained the named associations in the
3298 -- correct order of the formals.
3300 Actual := First_Actual (N);
3301 Formal := First_Formal (Nam);
3303 -- If we are analyzing a call rewritten from object notation, skip
3304 -- first actual, which may be rewritten later as an explicit
3305 -- dereference.
3307 if Must_Skip then
3308 Next_Actual (Actual);
3309 Next_Formal (Formal);
3310 end if;
3312 while Present (Actual) and then Present (Formal) loop
3313 if Nkind (Parent (Actual)) /= N_Parameter_Association
3314 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3315 then
3316 -- The actual can be compatible with the formal, but we must
3317 -- also check that the context is not an address type that is
3318 -- visibly an integer type. In this case the use of literals is
3319 -- illegal, except in the body of descendents of system, where
3320 -- arithmetic operations on address are of course used.
3322 if Has_Compatible_Type (Actual, Etype (Formal))
3323 and then
3324 (Etype (Actual) /= Universal_Integer
3325 or else not Is_Descendent_Of_Address (Etype (Formal))
3326 or else
3327 Is_Predefined_File_Name
3328 (Unit_File_Name (Get_Source_Unit (N))))
3329 then
3330 Next_Actual (Actual);
3331 Next_Formal (Formal);
3333 -- In Allow_Integer_Address mode, we allow an actual integer to
3334 -- match a formal address type and vice versa. We only do this
3335 -- if we are certain that an error will otherwise be issued
3337 elsif Address_Integer_Convert_OK
3338 (Etype (Actual), Etype (Formal))
3339 and then (Report and not Is_Indexed and not Is_Indirect)
3340 then
3341 -- Handle this case by introducing an unchecked conversion
3343 Rewrite (Actual,
3344 Unchecked_Convert_To (Etype (Formal),
3345 Relocate_Node (Actual)));
3346 Analyze_And_Resolve (Actual, Etype (Formal));
3347 Next_Actual (Actual);
3348 Next_Formal (Formal);
3350 -- For an Ada 2012 predicate or invariant, a call may mention
3351 -- an incomplete type, while resolution of the corresponding
3352 -- predicate function may see the full view, as a consequence
3353 -- of the delayed resolution of the corresponding expressions.
3355 elsif Ekind (Etype (Formal)) = E_Incomplete_Type
3356 and then Full_View (Etype (Formal)) = Etype (Actual)
3357 then
3358 Set_Etype (Formal, Etype (Actual));
3359 Next_Actual (Actual);
3360 Next_Formal (Formal);
3362 else
3363 if Debug_Flag_E then
3364 Write_Str (" type checking fails in call ");
3365 Write_Int (Int (N));
3366 Write_Str (" with formal ");
3367 Write_Int (Int (Formal));
3368 Write_Str (" in subprogram ");
3369 Write_Int (Int (Nam));
3370 Write_Eol;
3371 end if;
3373 -- Comment needed on the following test???
3375 if Report and not Is_Indexed and not Is_Indirect then
3377 -- Ada 2005 (AI-251): Complete the error notification
3378 -- to help new Ada 2005 users.
3380 if Is_Class_Wide_Type (Etype (Formal))
3381 and then Is_Interface (Etype (Etype (Formal)))
3382 and then not Interface_Present_In_Ancestor
3383 (Typ => Etype (Actual),
3384 Iface => Etype (Etype (Formal)))
3385 then
3386 Error_Msg_NE
3387 ("(Ada 2005) does not implement interface }",
3388 Actual, Etype (Etype (Formal)));
3389 end if;
3391 Wrong_Type (Actual, Etype (Formal));
3393 if Nkind (Actual) = N_Op_Eq
3394 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3395 then
3396 Formal := First_Formal (Nam);
3397 while Present (Formal) loop
3398 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3399 Error_Msg_N -- CODEFIX
3400 ("possible misspelling of `='>`!", Actual);
3401 exit;
3402 end if;
3404 Next_Formal (Formal);
3405 end loop;
3406 end if;
3408 if All_Errors_Mode then
3409 Error_Msg_Sloc := Sloc (Nam);
3411 if Etype (Formal) = Any_Type then
3412 Error_Msg_N
3413 ("there is no legal actual parameter", Actual);
3414 end if;
3416 if Is_Overloadable (Nam)
3417 and then Present (Alias (Nam))
3418 and then not Comes_From_Source (Nam)
3419 then
3420 Error_Msg_NE
3421 ("\\ =='> in call to inherited operation & #!",
3422 Actual, Nam);
3424 elsif Ekind (Nam) = E_Subprogram_Type then
3425 declare
3426 Access_To_Subprogram_Typ :
3427 constant Entity_Id :=
3428 Defining_Identifier
3429 (Associated_Node_For_Itype (Nam));
3430 begin
3431 Error_Msg_NE
3432 ("\\ =='> in call to dereference of &#!",
3433 Actual, Access_To_Subprogram_Typ);
3434 end;
3436 else
3437 Error_Msg_NE
3438 ("\\ =='> in call to &#!", Actual, Nam);
3440 end if;
3441 end if;
3442 end if;
3444 return;
3445 end if;
3447 else
3448 -- Normalize_Actuals has verified that a default value exists
3449 -- for this formal. Current actual names a subsequent formal.
3451 Next_Formal (Formal);
3452 end if;
3453 end loop;
3455 -- On exit, all actuals match
3457 Indicate_Name_And_Type;
3458 end if;
3459 end Analyze_One_Call;
3461 ---------------------------
3462 -- Analyze_Operator_Call --
3463 ---------------------------
3465 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3466 Op_Name : constant Name_Id := Chars (Op_Id);
3467 Act1 : constant Node_Id := First_Actual (N);
3468 Act2 : constant Node_Id := Next_Actual (Act1);
3470 begin
3471 -- Binary operator case
3473 if Present (Act2) then
3475 -- If more than two operands, then not binary operator after all
3477 if Present (Next_Actual (Act2)) then
3478 return;
3479 end if;
3481 -- Otherwise action depends on operator
3483 case Op_Name is
3484 when Name_Op_Add |
3485 Name_Op_Subtract |
3486 Name_Op_Multiply |
3487 Name_Op_Divide |
3488 Name_Op_Mod |
3489 Name_Op_Rem |
3490 Name_Op_Expon =>
3491 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3493 when Name_Op_And |
3494 Name_Op_Or |
3495 Name_Op_Xor =>
3496 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3498 when Name_Op_Lt |
3499 Name_Op_Le |
3500 Name_Op_Gt |
3501 Name_Op_Ge =>
3502 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3504 when Name_Op_Eq |
3505 Name_Op_Ne =>
3506 Find_Equality_Types (Act1, Act2, Op_Id, N);
3508 when Name_Op_Concat =>
3509 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3511 -- Is this when others, or should it be an abort???
3513 when others =>
3514 null;
3515 end case;
3517 -- Unary operator case
3519 else
3520 case Op_Name is
3521 when Name_Op_Subtract |
3522 Name_Op_Add |
3523 Name_Op_Abs =>
3524 Find_Unary_Types (Act1, Op_Id, N);
3526 when Name_Op_Not =>
3527 Find_Negation_Types (Act1, Op_Id, N);
3529 -- Is this when others correct, or should it be an abort???
3531 when others =>
3532 null;
3533 end case;
3534 end if;
3535 end Analyze_Operator_Call;
3537 -------------------------------------------
3538 -- Analyze_Overloaded_Selected_Component --
3539 -------------------------------------------
3541 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3542 Nam : constant Node_Id := Prefix (N);
3543 Sel : constant Node_Id := Selector_Name (N);
3544 Comp : Entity_Id;
3545 I : Interp_Index;
3546 It : Interp;
3547 T : Entity_Id;
3549 begin
3550 Set_Etype (Sel, Any_Type);
3552 Get_First_Interp (Nam, I, It);
3553 while Present (It.Typ) loop
3554 if Is_Access_Type (It.Typ) then
3555 T := Designated_Type (It.Typ);
3556 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3557 else
3558 T := It.Typ;
3559 end if;
3561 -- Locate the component. For a private prefix the selector can denote
3562 -- a discriminant.
3564 if Is_Record_Type (T) or else Is_Private_Type (T) then
3566 -- If the prefix is a class-wide type, the visible components are
3567 -- those of the base type.
3569 if Is_Class_Wide_Type (T) then
3570 T := Etype (T);
3571 end if;
3573 Comp := First_Entity (T);
3574 while Present (Comp) loop
3575 if Chars (Comp) = Chars (Sel)
3576 and then Is_Visible_Component (Comp)
3577 then
3579 -- AI05-105: if the context is an object renaming with
3580 -- an anonymous access type, the expected type of the
3581 -- object must be anonymous. This is a name resolution rule.
3583 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3584 or else No (Access_Definition (Parent (N)))
3585 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3586 or else
3587 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3588 then
3589 Set_Entity (Sel, Comp);
3590 Set_Etype (Sel, Etype (Comp));
3591 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3592 Check_Implicit_Dereference (N, Etype (Comp));
3594 -- This also specifies a candidate to resolve the name.
3595 -- Further overloading will be resolved from context.
3596 -- The selector name itself does not carry overloading
3597 -- information.
3599 Set_Etype (Nam, It.Typ);
3601 else
3602 -- Named access type in the context of a renaming
3603 -- declaration with an access definition. Remove
3604 -- inapplicable candidate.
3606 Remove_Interp (I);
3607 end if;
3608 end if;
3610 Next_Entity (Comp);
3611 end loop;
3613 elsif Is_Concurrent_Type (T) then
3614 Comp := First_Entity (T);
3615 while Present (Comp)
3616 and then Comp /= First_Private_Entity (T)
3617 loop
3618 if Chars (Comp) = Chars (Sel) then
3619 if Is_Overloadable (Comp) then
3620 Add_One_Interp (Sel, Comp, Etype (Comp));
3621 else
3622 Set_Entity_With_Checks (Sel, Comp);
3623 Generate_Reference (Comp, Sel);
3624 end if;
3626 Set_Etype (Sel, Etype (Comp));
3627 Set_Etype (N, Etype (Comp));
3628 Set_Etype (Nam, It.Typ);
3630 -- For access type case, introduce explicit dereference for
3631 -- more uniform treatment of entry calls. Do this only once
3632 -- if several interpretations yield an access type.
3634 if Is_Access_Type (Etype (Nam))
3635 and then Nkind (Nam) /= N_Explicit_Dereference
3636 then
3637 Insert_Explicit_Dereference (Nam);
3638 Error_Msg_NW
3639 (Warn_On_Dereference, "?d?implicit dereference", N);
3640 end if;
3641 end if;
3643 Next_Entity (Comp);
3644 end loop;
3646 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3647 end if;
3649 Get_Next_Interp (I, It);
3650 end loop;
3652 if Etype (N) = Any_Type
3653 and then not Try_Object_Operation (N)
3654 then
3655 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3656 Set_Entity (Sel, Any_Id);
3657 Set_Etype (Sel, Any_Type);
3658 end if;
3659 end Analyze_Overloaded_Selected_Component;
3661 ----------------------------------
3662 -- Analyze_Qualified_Expression --
3663 ----------------------------------
3665 procedure Analyze_Qualified_Expression (N : Node_Id) is
3666 Mark : constant Entity_Id := Subtype_Mark (N);
3667 Expr : constant Node_Id := Expression (N);
3668 I : Interp_Index;
3669 It : Interp;
3670 T : Entity_Id;
3672 begin
3673 Analyze_Expression (Expr);
3675 Set_Etype (N, Any_Type);
3676 Find_Type (Mark);
3677 T := Entity (Mark);
3678 Set_Etype (N, T);
3680 if T = Any_Type then
3681 return;
3682 end if;
3684 Check_Fully_Declared (T, N);
3686 -- If expected type is class-wide, check for exact match before
3687 -- expansion, because if the expression is a dispatching call it
3688 -- may be rewritten as explicit dereference with class-wide result.
3689 -- If expression is overloaded, retain only interpretations that
3690 -- will yield exact matches.
3692 if Is_Class_Wide_Type (T) then
3693 if not Is_Overloaded (Expr) then
3694 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3695 if Nkind (Expr) = N_Aggregate then
3696 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3697 else
3698 Wrong_Type (Expr, T);
3699 end if;
3700 end if;
3702 else
3703 Get_First_Interp (Expr, I, It);
3705 while Present (It.Nam) loop
3706 if Base_Type (It.Typ) /= Base_Type (T) then
3707 Remove_Interp (I);
3708 end if;
3710 Get_Next_Interp (I, It);
3711 end loop;
3712 end if;
3713 end if;
3715 Set_Etype (N, T);
3716 end Analyze_Qualified_Expression;
3718 -----------------------------------
3719 -- Analyze_Quantified_Expression --
3720 -----------------------------------
3722 procedure Analyze_Quantified_Expression (N : Node_Id) is
3723 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3724 -- If the iterator is part of a quantified expression, and the range is
3725 -- known to be statically empty, emit a warning and replace expression
3726 -- with its static value. Returns True if the replacement occurs.
3728 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3729 -- Determine whether if expression If_Expr lacks an else part or if it
3730 -- has one, it evaluates to True.
3732 --------------------
3733 -- Is_Empty_Range --
3734 --------------------
3736 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3737 Loc : constant Source_Ptr := Sloc (N);
3739 begin
3740 if Is_Array_Type (Typ)
3741 and then Compile_Time_Known_Bounds (Typ)
3742 and then
3743 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3744 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3745 then
3746 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3748 if All_Present (N) then
3749 Error_Msg_N
3750 ("??quantified expression with ALL "
3751 & "over a null range has value True", N);
3752 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3754 else
3755 Error_Msg_N
3756 ("??quantified expression with SOME "
3757 & "over a null range has value False", N);
3758 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3759 end if;
3761 Analyze (N);
3762 return True;
3764 else
3765 return False;
3766 end if;
3767 end Is_Empty_Range;
3769 -----------------------------
3770 -- No_Else_Or_Trivial_True --
3771 -----------------------------
3773 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3774 Else_Expr : constant Node_Id :=
3775 Next (Next (First (Expressions (If_Expr))));
3776 begin
3777 return
3778 No (Else_Expr)
3779 or else (Compile_Time_Known_Value (Else_Expr)
3780 and then Is_True (Expr_Value (Else_Expr)));
3781 end No_Else_Or_Trivial_True;
3783 -- Local variables
3785 Cond : constant Node_Id := Condition (N);
3786 Loop_Id : Entity_Id;
3787 QE_Scop : Entity_Id;
3789 -- Start of processing for Analyze_Quantified_Expression
3791 begin
3792 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
3794 -- Create a scope to emulate the loop-like behavior of the quantified
3795 -- expression. The scope is needed to provide proper visibility of the
3796 -- loop variable.
3798 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3799 Set_Etype (QE_Scop, Standard_Void_Type);
3800 Set_Scope (QE_Scop, Current_Scope);
3801 Set_Parent (QE_Scop, N);
3803 Push_Scope (QE_Scop);
3805 -- All constituents are preanalyzed and resolved to avoid untimely
3806 -- generation of various temporaries and types. Full analysis and
3807 -- expansion is carried out when the quantified expression is
3808 -- transformed into an expression with actions.
3810 if Present (Iterator_Specification (N)) then
3811 Preanalyze (Iterator_Specification (N));
3813 -- Do not proceed with the analysis when the range of iteration is
3814 -- empty. The appropriate error is issued by Is_Empty_Range.
3816 if Is_Entity_Name (Name (Iterator_Specification (N)))
3817 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3818 then
3819 return;
3820 end if;
3822 else pragma Assert (Present (Loop_Parameter_Specification (N)));
3823 declare
3824 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3826 begin
3827 Preanalyze (Loop_Par);
3829 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
3830 and then Parent (Loop_Par) /= N
3831 then
3832 -- The parser cannot distinguish between a loop specification
3833 -- and an iterator specification. If after pre-analysis the
3834 -- proper form has been recognized, rewrite the expression to
3835 -- reflect the right kind. This is needed for proper ASIS
3836 -- navigation. If expansion is enabled, the transformation is
3837 -- performed when the expression is rewritten as a loop.
3839 Set_Iterator_Specification (N,
3840 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
3842 Set_Defining_Identifier (Iterator_Specification (N),
3843 Relocate_Node (Defining_Identifier (Loop_Par)));
3844 Set_Name (Iterator_Specification (N),
3845 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3846 Set_Comes_From_Source (Iterator_Specification (N),
3847 Comes_From_Source (Loop_Parameter_Specification (N)));
3848 Set_Loop_Parameter_Specification (N, Empty);
3849 end if;
3850 end;
3851 end if;
3853 Preanalyze_And_Resolve (Cond, Standard_Boolean);
3855 End_Scope;
3856 Set_Etype (N, Standard_Boolean);
3858 -- Verify that the loop variable is used within the condition of the
3859 -- quantified expression.
3861 if Present (Iterator_Specification (N)) then
3862 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3863 else
3864 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3865 end if;
3867 if Warn_On_Suspicious_Contract
3868 and then not Referenced (Loop_Id, Cond)
3869 then
3870 Error_Msg_N ("?T?unused variable &", Loop_Id);
3871 end if;
3873 -- Diagnose a possible misuse of the SOME existential quantifier. When
3874 -- we have a quantified expression of the form:
3876 -- for some X => (if P then Q [else True])
3878 -- any value for X that makes P False results in the if expression being
3879 -- trivially True, and so also results in the quantified expression
3880 -- being trivially True.
3882 if Warn_On_Suspicious_Contract
3883 and then not All_Present (N)
3884 and then Nkind (Cond) = N_If_Expression
3885 and then No_Else_Or_Trivial_True (Cond)
3886 then
3887 Error_Msg_N ("?T?suspicious expression", N);
3888 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3889 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3890 end if;
3891 end Analyze_Quantified_Expression;
3893 -------------------
3894 -- Analyze_Range --
3895 -------------------
3897 procedure Analyze_Range (N : Node_Id) is
3898 L : constant Node_Id := Low_Bound (N);
3899 H : constant Node_Id := High_Bound (N);
3900 I1, I2 : Interp_Index;
3901 It1, It2 : Interp;
3903 procedure Check_Common_Type (T1, T2 : Entity_Id);
3904 -- Verify the compatibility of two types, and choose the
3905 -- non universal one if the other is universal.
3907 procedure Check_High_Bound (T : Entity_Id);
3908 -- Test one interpretation of the low bound against all those
3909 -- of the high bound.
3911 procedure Check_Universal_Expression (N : Node_Id);
3912 -- In Ada 83, reject bounds of a universal range that are not literals
3913 -- or entity names.
3915 -----------------------
3916 -- Check_Common_Type --
3917 -----------------------
3919 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3920 begin
3921 if Covers (T1 => T1, T2 => T2)
3922 or else
3923 Covers (T1 => T2, T2 => T1)
3924 then
3925 if T1 = Universal_Integer
3926 or else T1 = Universal_Real
3927 or else T1 = Any_Character
3928 then
3929 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3931 elsif T1 = T2 then
3932 Add_One_Interp (N, T1, T1);
3934 else
3935 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3936 end if;
3937 end if;
3938 end Check_Common_Type;
3940 ----------------------
3941 -- Check_High_Bound --
3942 ----------------------
3944 procedure Check_High_Bound (T : Entity_Id) is
3945 begin
3946 if not Is_Overloaded (H) then
3947 Check_Common_Type (T, Etype (H));
3948 else
3949 Get_First_Interp (H, I2, It2);
3950 while Present (It2.Typ) loop
3951 Check_Common_Type (T, It2.Typ);
3952 Get_Next_Interp (I2, It2);
3953 end loop;
3954 end if;
3955 end Check_High_Bound;
3957 -----------------------------
3958 -- Is_Universal_Expression --
3959 -----------------------------
3961 procedure Check_Universal_Expression (N : Node_Id) is
3962 begin
3963 if Etype (N) = Universal_Integer
3964 and then Nkind (N) /= N_Integer_Literal
3965 and then not Is_Entity_Name (N)
3966 and then Nkind (N) /= N_Attribute_Reference
3967 then
3968 Error_Msg_N ("illegal bound in discrete range", N);
3969 end if;
3970 end Check_Universal_Expression;
3972 -- Start of processing for Analyze_Range
3974 begin
3975 Set_Etype (N, Any_Type);
3976 Analyze_Expression (L);
3977 Analyze_Expression (H);
3979 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3980 return;
3982 else
3983 if not Is_Overloaded (L) then
3984 Check_High_Bound (Etype (L));
3985 else
3986 Get_First_Interp (L, I1, It1);
3987 while Present (It1.Typ) loop
3988 Check_High_Bound (It1.Typ);
3989 Get_Next_Interp (I1, It1);
3990 end loop;
3991 end if;
3993 -- If result is Any_Type, then we did not find a compatible pair
3995 if Etype (N) = Any_Type then
3996 Error_Msg_N ("incompatible types in range ", N);
3997 end if;
3998 end if;
4000 if Ada_Version = Ada_83
4001 and then
4002 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4003 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4004 then
4005 Check_Universal_Expression (L);
4006 Check_Universal_Expression (H);
4007 end if;
4009 Check_Function_Writable_Actuals (N);
4010 end Analyze_Range;
4012 -----------------------
4013 -- Analyze_Reference --
4014 -----------------------
4016 procedure Analyze_Reference (N : Node_Id) is
4017 P : constant Node_Id := Prefix (N);
4018 E : Entity_Id;
4019 T : Entity_Id;
4020 Acc_Type : Entity_Id;
4022 begin
4023 Analyze (P);
4025 -- An interesting error check, if we take the 'Ref of an object for
4026 -- which a pragma Atomic or Volatile has been given, and the type of the
4027 -- object is not Atomic or Volatile, then we are in trouble. The problem
4028 -- is that no trace of the atomic/volatile status will remain for the
4029 -- backend to respect when it deals with the resulting pointer, since
4030 -- the pointer type will not be marked atomic (it is a pointer to the
4031 -- base type of the object).
4033 -- It is not clear if that can ever occur, but in case it does, we will
4034 -- generate an error message. Not clear if this message can ever be
4035 -- generated, and pretty clear that it represents a bug if it is, still
4036 -- seems worth checking, except in CodePeer mode where we do not really
4037 -- care and don't want to bother the user.
4039 T := Etype (P);
4041 if Is_Entity_Name (P)
4042 and then Is_Object_Reference (P)
4043 and then not CodePeer_Mode
4044 then
4045 E := Entity (P);
4046 T := Etype (P);
4048 if (Has_Atomic_Components (E)
4049 and then not Has_Atomic_Components (T))
4050 or else
4051 (Has_Volatile_Components (E)
4052 and then not Has_Volatile_Components (T))
4053 or else (Is_Atomic (E) and then not Is_Atomic (T))
4054 or else (Is_Volatile (E) and then not Is_Volatile (T))
4055 then
4056 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4057 end if;
4058 end if;
4060 -- Carry on with normal processing
4062 Acc_Type := Create_Itype (E_Allocator_Type, N);
4063 Set_Etype (Acc_Type, Acc_Type);
4064 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4065 Set_Etype (N, Acc_Type);
4066 end Analyze_Reference;
4068 --------------------------------
4069 -- Analyze_Selected_Component --
4070 --------------------------------
4072 -- Prefix is a record type or a task or protected type. In the latter case,
4073 -- the selector must denote a visible entry.
4075 procedure Analyze_Selected_Component (N : Node_Id) is
4076 Name : constant Node_Id := Prefix (N);
4077 Sel : constant Node_Id := Selector_Name (N);
4078 Act_Decl : Node_Id;
4079 Comp : Entity_Id;
4080 Has_Candidate : Boolean := False;
4081 In_Scope : Boolean;
4082 Parent_N : Node_Id;
4083 Pent : Entity_Id := Empty;
4084 Prefix_Type : Entity_Id;
4086 Type_To_Use : Entity_Id;
4087 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4088 -- a class-wide type, we use its root type, whose components are
4089 -- present in the class-wide type.
4091 Is_Single_Concurrent_Object : Boolean;
4092 -- Set True if the prefix is a single task or a single protected object
4094 procedure Find_Component_In_Instance (Rec : Entity_Id);
4095 -- In an instance, a component of a private extension may not be visible
4096 -- while it was visible in the generic. Search candidate scope for a
4097 -- component with the proper identifier. This is only done if all other
4098 -- searches have failed. If a match is found, the Etype of both N and
4099 -- Sel are set from this component, and the entity of Sel is set to
4100 -- reference this component. If no match is found, Entity (Sel) remains
4101 -- unset. For a derived type that is an actual of the instance, the
4102 -- desired component may be found in any ancestor.
4104 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4105 -- It is known that the parent of N denotes a subprogram call. Comp
4106 -- is an overloadable component of the concurrent type of the prefix.
4107 -- Determine whether all formals of the parent of N and Comp are mode
4108 -- conformant. If the parent node is not analyzed yet it may be an
4109 -- indexed component rather than a function call.
4111 --------------------------------
4112 -- Find_Component_In_Instance --
4113 --------------------------------
4115 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4116 Comp : Entity_Id;
4117 Typ : Entity_Id;
4119 begin
4120 Typ := Rec;
4121 while Present (Typ) loop
4122 Comp := First_Component (Typ);
4123 while Present (Comp) loop
4124 if Chars (Comp) = Chars (Sel) then
4125 Set_Entity_With_Checks (Sel, Comp);
4126 Set_Etype (Sel, Etype (Comp));
4127 Set_Etype (N, Etype (Comp));
4128 return;
4129 end if;
4131 Next_Component (Comp);
4132 end loop;
4134 -- If not found, the component may be declared in the parent
4135 -- type or its full view, if any.
4137 if Is_Derived_Type (Typ) then
4138 Typ := Etype (Typ);
4140 if Is_Private_Type (Typ) then
4141 Typ := Full_View (Typ);
4142 end if;
4144 else
4145 return;
4146 end if;
4147 end loop;
4149 -- If we fall through, no match, so no changes made
4151 return;
4152 end Find_Component_In_Instance;
4154 ------------------------------
4155 -- Has_Mode_Conformant_Spec --
4156 ------------------------------
4158 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4159 Comp_Param : Entity_Id;
4160 Param : Node_Id;
4161 Param_Typ : Entity_Id;
4163 begin
4164 Comp_Param := First_Formal (Comp);
4166 if Nkind (Parent (N)) = N_Indexed_Component then
4167 Param := First (Expressions (Parent (N)));
4168 else
4169 Param := First (Parameter_Associations (Parent (N)));
4170 end if;
4172 while Present (Comp_Param)
4173 and then Present (Param)
4174 loop
4175 Param_Typ := Find_Parameter_Type (Param);
4177 if Present (Param_Typ)
4178 and then
4179 not Conforming_Types
4180 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4181 then
4182 return False;
4183 end if;
4185 Next_Formal (Comp_Param);
4186 Next (Param);
4187 end loop;
4189 -- One of the specs has additional formals; there is no match, unless
4190 -- this may be an indexing of a parameterless call.
4192 -- Note that when expansion is disabled, the corresponding record
4193 -- type of synchronized types is not constructed, so that there is
4194 -- no point is attempting an interpretation as a prefixed call, as
4195 -- this is bound to fail because the primitive operations will not
4196 -- be properly located.
4198 if Present (Comp_Param) or else Present (Param) then
4199 if Needs_No_Actuals (Comp)
4200 and then Is_Array_Type (Etype (Comp))
4201 and then not Expander_Active
4202 then
4203 return True;
4204 else
4205 return False;
4206 end if;
4207 end if;
4209 return True;
4210 end Has_Mode_Conformant_Spec;
4212 -- Start of processing for Analyze_Selected_Component
4214 begin
4215 Set_Etype (N, Any_Type);
4217 if Is_Overloaded (Name) then
4218 Analyze_Overloaded_Selected_Component (N);
4219 return;
4221 elsif Etype (Name) = Any_Type then
4222 Set_Entity (Sel, Any_Id);
4223 Set_Etype (Sel, Any_Type);
4224 return;
4226 else
4227 Prefix_Type := Etype (Name);
4228 end if;
4230 if Is_Access_Type (Prefix_Type) then
4232 -- A RACW object can never be used as prefix of a selected component
4233 -- since that means it is dereferenced without being a controlling
4234 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4235 -- reporting an error, we must check whether this is actually a
4236 -- dispatching call in prefix form.
4238 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4239 and then Comes_From_Source (N)
4240 then
4241 if Try_Object_Operation (N) then
4242 return;
4243 else
4244 Error_Msg_N
4245 ("invalid dereference of a remote access-to-class-wide value",
4247 end if;
4249 -- Normal case of selected component applied to access type
4251 else
4252 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4254 if Is_Entity_Name (Name) then
4255 Pent := Entity (Name);
4256 elsif Nkind (Name) = N_Selected_Component
4257 and then Is_Entity_Name (Selector_Name (Name))
4258 then
4259 Pent := Entity (Selector_Name (Name));
4260 end if;
4262 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4263 end if;
4265 -- If we have an explicit dereference of a remote access-to-class-wide
4266 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4267 -- have to check for the case of a prefix that is a controlling operand
4268 -- of a prefixed dispatching call, as the dereference is legal in that
4269 -- case. Normally this condition is checked in Validate_Remote_Access_
4270 -- To_Class_Wide_Type, but we have to defer the checking for selected
4271 -- component prefixes because of the prefixed dispatching call case.
4272 -- Note that implicit dereferences are checked for this just above.
4274 elsif Nkind (Name) = N_Explicit_Dereference
4275 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4276 and then Comes_From_Source (N)
4277 then
4278 if Try_Object_Operation (N) then
4279 return;
4280 else
4281 Error_Msg_N
4282 ("invalid dereference of a remote access-to-class-wide value",
4284 end if;
4285 end if;
4287 -- (Ada 2005): if the prefix is the limited view of a type, and
4288 -- the context already includes the full view, use the full view
4289 -- in what follows, either to retrieve a component of to find
4290 -- a primitive operation. If the prefix is an explicit dereference,
4291 -- set the type of the prefix to reflect this transformation.
4292 -- If the non-limited view is itself an incomplete type, get the
4293 -- full view if available.
4295 if From_Limited_With (Prefix_Type)
4296 and then Has_Non_Limited_View (Prefix_Type)
4297 then
4298 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4300 if Nkind (N) = N_Explicit_Dereference then
4301 Set_Etype (Prefix (N), Prefix_Type);
4302 end if;
4303 end if;
4305 if Ekind (Prefix_Type) = E_Private_Subtype then
4306 Prefix_Type := Base_Type (Prefix_Type);
4307 end if;
4309 Type_To_Use := Prefix_Type;
4311 -- For class-wide types, use the entity list of the root type. This
4312 -- indirection is specially important for private extensions because
4313 -- only the root type get switched (not the class-wide type).
4315 if Is_Class_Wide_Type (Prefix_Type) then
4316 Type_To_Use := Root_Type (Prefix_Type);
4317 end if;
4319 -- If the prefix is a single concurrent object, use its name in error
4320 -- messages, rather than that of its anonymous type.
4322 Is_Single_Concurrent_Object :=
4323 Is_Concurrent_Type (Prefix_Type)
4324 and then Is_Internal_Name (Chars (Prefix_Type))
4325 and then not Is_Derived_Type (Prefix_Type)
4326 and then Is_Entity_Name (Name);
4328 Comp := First_Entity (Type_To_Use);
4330 -- If the selector has an original discriminant, the node appears in
4331 -- an instance. Replace the discriminant with the corresponding one
4332 -- in the current discriminated type. For nested generics, this must
4333 -- be done transitively, so note the new original discriminant.
4335 if Nkind (Sel) = N_Identifier
4336 and then In_Instance
4337 and then Present (Original_Discriminant (Sel))
4338 then
4339 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4341 -- Mark entity before rewriting, for completeness and because
4342 -- subsequent semantic checks might examine the original node.
4344 Set_Entity (Sel, Comp);
4345 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4346 Set_Original_Discriminant (Selector_Name (N), Comp);
4347 Set_Etype (N, Etype (Comp));
4348 Check_Implicit_Dereference (N, Etype (Comp));
4350 if Is_Access_Type (Etype (Name)) then
4351 Insert_Explicit_Dereference (Name);
4352 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4353 end if;
4355 elsif Is_Record_Type (Prefix_Type) then
4357 -- Find component with given name. In an instance, if the node is
4358 -- known as a prefixed call, do not examine components whose
4359 -- visibility may be accidental.
4361 while Present (Comp) and then not Is_Prefixed_Call (N) loop
4362 if Chars (Comp) = Chars (Sel)
4363 and then Is_Visible_Component (Comp, N)
4364 then
4365 Set_Entity_With_Checks (Sel, Comp);
4366 Set_Etype (Sel, Etype (Comp));
4368 if Ekind (Comp) = E_Discriminant then
4369 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4370 Error_Msg_N
4371 ("cannot reference discriminant of unchecked union",
4372 Sel);
4373 end if;
4375 if Is_Generic_Type (Prefix_Type)
4376 or else
4377 Is_Generic_Type (Root_Type (Prefix_Type))
4378 then
4379 Set_Original_Discriminant (Sel, Comp);
4380 end if;
4381 end if;
4383 -- Resolve the prefix early otherwise it is not possible to
4384 -- build the actual subtype of the component: it may need
4385 -- to duplicate this prefix and duplication is only allowed
4386 -- on fully resolved expressions.
4388 Resolve (Name);
4390 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4391 -- subtypes in a package specification.
4392 -- Example:
4394 -- limited with Pkg;
4395 -- package Pkg is
4396 -- type Acc_Inc is access Pkg.T;
4397 -- X : Acc_Inc;
4398 -- N : Natural := X.all.Comp; -- ERROR, limited view
4399 -- end Pkg; -- Comp is not visible
4401 if Nkind (Name) = N_Explicit_Dereference
4402 and then From_Limited_With (Etype (Prefix (Name)))
4403 and then not Is_Potentially_Use_Visible (Etype (Name))
4404 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4405 N_Package_Specification
4406 then
4407 Error_Msg_NE
4408 ("premature usage of incomplete}", Prefix (Name),
4409 Etype (Prefix (Name)));
4410 end if;
4412 -- We never need an actual subtype for the case of a selection
4413 -- for a indexed component of a non-packed array, since in
4414 -- this case gigi generates all the checks and can find the
4415 -- necessary bounds information.
4417 -- We also do not need an actual subtype for the case of a
4418 -- first, last, length, or range attribute applied to a
4419 -- non-packed array, since gigi can again get the bounds in
4420 -- these cases (gigi cannot handle the packed case, since it
4421 -- has the bounds of the packed array type, not the original
4422 -- bounds of the type). However, if the prefix is itself a
4423 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4424 -- as a dynamic-sized temporary, so we do generate an actual
4425 -- subtype for this case.
4427 Parent_N := Parent (N);
4429 if not Is_Packed (Etype (Comp))
4430 and then
4431 ((Nkind (Parent_N) = N_Indexed_Component
4432 and then Nkind (Name) /= N_Selected_Component)
4433 or else
4434 (Nkind (Parent_N) = N_Attribute_Reference
4435 and then
4436 Nam_In (Attribute_Name (Parent_N), Name_First,
4437 Name_Last,
4438 Name_Length,
4439 Name_Range)))
4440 then
4441 Set_Etype (N, Etype (Comp));
4443 -- If full analysis is not enabled, we do not generate an
4444 -- actual subtype, because in the absence of expansion
4445 -- reference to a formal of a protected type, for example,
4446 -- will not be properly transformed, and will lead to
4447 -- out-of-scope references in gigi.
4449 -- In all other cases, we currently build an actual subtype.
4450 -- It seems likely that many of these cases can be avoided,
4451 -- but right now, the front end makes direct references to the
4452 -- bounds (e.g. in generating a length check), and if we do
4453 -- not make an actual subtype, we end up getting a direct
4454 -- reference to a discriminant, which will not do.
4456 elsif Full_Analysis then
4457 Act_Decl :=
4458 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4459 Insert_Action (N, Act_Decl);
4461 if No (Act_Decl) then
4462 Set_Etype (N, Etype (Comp));
4464 else
4465 -- Component type depends on discriminants. Enter the
4466 -- main attributes of the subtype.
4468 declare
4469 Subt : constant Entity_Id :=
4470 Defining_Identifier (Act_Decl);
4472 begin
4473 Set_Etype (Subt, Base_Type (Etype (Comp)));
4474 Set_Ekind (Subt, Ekind (Etype (Comp)));
4475 Set_Etype (N, Subt);
4476 end;
4477 end if;
4479 -- If Full_Analysis not enabled, just set the Etype
4481 else
4482 Set_Etype (N, Etype (Comp));
4483 end if;
4485 Check_Implicit_Dereference (N, Etype (N));
4486 return;
4487 end if;
4489 -- If the prefix is a private extension, check only the visible
4490 -- components of the partial view. This must include the tag,
4491 -- which can appear in expanded code in a tag check.
4493 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4494 and then Chars (Selector_Name (N)) /= Name_uTag
4495 then
4496 exit when Comp = Last_Entity (Type_To_Use);
4497 end if;
4499 Next_Entity (Comp);
4500 end loop;
4502 -- Ada 2005 (AI-252): The selected component can be interpreted as
4503 -- a prefixed view of a subprogram. Depending on the context, this is
4504 -- either a name that can appear in a renaming declaration, or part
4505 -- of an enclosing call given in prefix form.
4507 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4508 -- selected component should resolve to a name.
4510 if Ada_Version >= Ada_2005
4511 and then Is_Tagged_Type (Prefix_Type)
4512 and then not Is_Concurrent_Type (Prefix_Type)
4513 then
4514 if Nkind (Parent (N)) = N_Generic_Association
4515 or else Nkind (Parent (N)) = N_Requeue_Statement
4516 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4517 then
4518 if Find_Primitive_Operation (N) then
4519 return;
4520 end if;
4522 elsif Try_Object_Operation (N) then
4523 return;
4524 end if;
4526 -- If the transformation fails, it will be necessary to redo the
4527 -- analysis with all errors enabled, to indicate candidate
4528 -- interpretations and reasons for each failure ???
4530 end if;
4532 elsif Is_Private_Type (Prefix_Type) then
4534 -- Allow access only to discriminants of the type. If the type has
4535 -- no full view, gigi uses the parent type for the components, so we
4536 -- do the same here.
4538 if No (Full_View (Prefix_Type)) then
4539 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4540 Comp := First_Entity (Type_To_Use);
4541 end if;
4543 while Present (Comp) loop
4544 if Chars (Comp) = Chars (Sel) then
4545 if Ekind (Comp) = E_Discriminant then
4546 Set_Entity_With_Checks (Sel, Comp);
4547 Generate_Reference (Comp, Sel);
4549 Set_Etype (Sel, Etype (Comp));
4550 Set_Etype (N, Etype (Comp));
4551 Check_Implicit_Dereference (N, Etype (N));
4553 if Is_Generic_Type (Prefix_Type)
4554 or else Is_Generic_Type (Root_Type (Prefix_Type))
4555 then
4556 Set_Original_Discriminant (Sel, Comp);
4557 end if;
4559 -- Before declaring an error, check whether this is tagged
4560 -- private type and a call to a primitive operation.
4562 elsif Ada_Version >= Ada_2005
4563 and then Is_Tagged_Type (Prefix_Type)
4564 and then Try_Object_Operation (N)
4565 then
4566 return;
4568 else
4569 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4570 Error_Msg_NE ("invisible selector& for }", N, Sel);
4571 Set_Entity (Sel, Any_Id);
4572 Set_Etype (N, Any_Type);
4573 end if;
4575 return;
4576 end if;
4578 Next_Entity (Comp);
4579 end loop;
4581 elsif Is_Concurrent_Type (Prefix_Type) then
4583 -- Find visible operation with given name. For a protected type,
4584 -- the possible candidates are discriminants, entries or protected
4585 -- procedures. For a task type, the set can only include entries or
4586 -- discriminants if the task type is not an enclosing scope. If it
4587 -- is an enclosing scope (e.g. in an inner task) then all entities
4588 -- are visible, but the prefix must denote the enclosing scope, i.e.
4589 -- can only be a direct name or an expanded name.
4591 Set_Etype (Sel, Any_Type);
4592 In_Scope := In_Open_Scopes (Prefix_Type);
4594 while Present (Comp) loop
4595 if Chars (Comp) = Chars (Sel) then
4596 if Is_Overloadable (Comp) then
4597 Add_One_Interp (Sel, Comp, Etype (Comp));
4599 -- If the prefix is tagged, the correct interpretation may
4600 -- lie in the primitive or class-wide operations of the
4601 -- type. Perform a simple conformance check to determine
4602 -- whether Try_Object_Operation should be invoked even if
4603 -- a visible entity is found.
4605 if Is_Tagged_Type (Prefix_Type)
4606 and then
4607 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4608 N_Function_Call,
4609 N_Indexed_Component)
4610 and then Has_Mode_Conformant_Spec (Comp)
4611 then
4612 Has_Candidate := True;
4613 end if;
4615 -- Note: a selected component may not denote a component of a
4616 -- protected type (4.1.3(7)).
4618 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4619 or else (In_Scope
4620 and then not Is_Protected_Type (Prefix_Type)
4621 and then Is_Entity_Name (Name))
4622 then
4623 Set_Entity_With_Checks (Sel, Comp);
4624 Generate_Reference (Comp, Sel);
4626 -- The selector is not overloadable, so we have a candidate
4627 -- interpretation.
4629 Has_Candidate := True;
4631 else
4632 goto Next_Comp;
4633 end if;
4635 Set_Etype (Sel, Etype (Comp));
4636 Set_Etype (N, Etype (Comp));
4638 if Ekind (Comp) = E_Discriminant then
4639 Set_Original_Discriminant (Sel, Comp);
4640 end if;
4642 -- For access type case, introduce explicit dereference for
4643 -- more uniform treatment of entry calls.
4645 if Is_Access_Type (Etype (Name)) then
4646 Insert_Explicit_Dereference (Name);
4647 Error_Msg_NW
4648 (Warn_On_Dereference, "?d?implicit dereference", N);
4649 end if;
4650 end if;
4652 <<Next_Comp>>
4653 Next_Entity (Comp);
4654 exit when not In_Scope
4655 and then
4656 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4657 end loop;
4659 -- If the scope is a current instance, the prefix cannot be an
4660 -- expression of the same type (that would represent an attempt
4661 -- to reach an internal operation of another synchronized object).
4662 -- This is legal if prefix is an access to such type and there is
4663 -- a dereference.
4665 if In_Scope
4666 and then not Is_Entity_Name (Name)
4667 and then Nkind (Name) /= N_Explicit_Dereference
4668 then
4669 Error_Msg_NE
4670 ("invalid reference to internal operation of some object of "
4671 & "type &", N, Type_To_Use);
4672 Set_Entity (Sel, Any_Id);
4673 Set_Etype (Sel, Any_Type);
4674 return;
4675 end if;
4677 -- If there is no visible entity with the given name or none of the
4678 -- visible entities are plausible interpretations, check whether
4679 -- there is some other primitive operation with that name.
4681 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
4682 if (Etype (N) = Any_Type
4683 or else not Has_Candidate)
4684 and then Try_Object_Operation (N)
4685 then
4686 return;
4688 -- If the context is not syntactically a procedure call, it
4689 -- may be a call to a primitive function declared outside of
4690 -- the synchronized type.
4692 -- If the context is a procedure call, there might still be
4693 -- an overloading between an entry and a primitive procedure
4694 -- declared outside of the synchronized type, called in prefix
4695 -- notation. This is harder to disambiguate because in one case
4696 -- the controlling formal is implicit ???
4698 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4699 and then Nkind (Parent (N)) /= N_Indexed_Component
4700 and then Try_Object_Operation (N)
4701 then
4702 return;
4703 end if;
4705 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4706 -- entry or procedure of a tagged concurrent type we must check
4707 -- if there are class-wide subprograms covering the primitive. If
4708 -- true then Try_Object_Operation reports the error.
4710 if Has_Candidate
4711 and then Is_Concurrent_Type (Prefix_Type)
4712 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4713 then
4714 -- Duplicate the call. This is required to avoid problems with
4715 -- the tree transformations performed by Try_Object_Operation.
4716 -- Set properly the parent of the copied call, because it is
4717 -- about to be reanalyzed.
4719 declare
4720 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4722 begin
4723 Set_Parent (Par, Parent (Parent (N)));
4725 if Try_Object_Operation
4726 (Sinfo.Name (Par), CW_Test_Only => True)
4727 then
4728 return;
4729 end if;
4730 end;
4731 end if;
4732 end if;
4734 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4736 -- Case of a prefix of a protected type: selector might denote
4737 -- an invisible private component.
4739 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4740 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4741 Next_Entity (Comp);
4742 end loop;
4744 if Present (Comp) then
4745 if Is_Single_Concurrent_Object then
4746 Error_Msg_Node_2 := Entity (Name);
4747 Error_Msg_NE ("invisible selector& for &", N, Sel);
4749 else
4750 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4751 Error_Msg_NE ("invisible selector& for }", N, Sel);
4752 end if;
4753 return;
4754 end if;
4755 end if;
4757 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4759 else
4760 -- Invalid prefix
4762 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4763 end if;
4765 -- If N still has no type, the component is not defined in the prefix
4767 if Etype (N) = Any_Type then
4769 if Is_Single_Concurrent_Object then
4770 Error_Msg_Node_2 := Entity (Name);
4771 Error_Msg_NE ("no selector& for&", N, Sel);
4773 Check_Misspelled_Selector (Type_To_Use, Sel);
4775 -- If this is a derived formal type, the parent may have different
4776 -- visibility at this point. Try for an inherited component before
4777 -- reporting an error.
4779 elsif Is_Generic_Type (Prefix_Type)
4780 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4781 and then Prefix_Type /= Etype (Prefix_Type)
4782 and then Is_Record_Type (Etype (Prefix_Type))
4783 then
4784 Set_Etype (Prefix (N), Etype (Prefix_Type));
4785 Analyze_Selected_Component (N);
4786 return;
4788 -- Similarly, if this is the actual for a formal derived type, or
4789 -- a derived type thereof, the component inherited from the generic
4790 -- parent may not be visible in the actual, but the selected
4791 -- component is legal. Climb up the derivation chain of the generic
4792 -- parent type until we find the proper ancestor type.
4794 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4795 declare
4796 Par : Entity_Id := Prefix_Type;
4797 begin
4798 -- Climb up derivation chain to generic actual subtype
4800 while not Is_Generic_Actual_Type (Par) loop
4801 if Ekind (Par) = E_Record_Type then
4802 Par := Parent_Subtype (Par);
4803 exit when No (Par);
4804 else
4805 exit when Par = Etype (Par);
4806 Par := Etype (Par);
4807 end if;
4808 end loop;
4810 if Present (Par) and then Is_Generic_Actual_Type (Par) then
4812 -- Now look for component in ancestor types
4814 Par := Generic_Parent_Type (Declaration_Node (Par));
4815 loop
4816 Find_Component_In_Instance (Par);
4817 exit when Present (Entity (Sel))
4818 or else Par = Etype (Par);
4819 Par := Etype (Par);
4820 end loop;
4822 -- Another special case: the type is an extension of a private
4823 -- type T, is an actual in an instance, and we are in the body
4824 -- of the instance, so the generic body had a full view of the
4825 -- type declaration for T or of some ancestor that defines the
4826 -- component in question.
4828 elsif Is_Derived_Type (Type_To_Use)
4829 and then Used_As_Generic_Actual (Type_To_Use)
4830 and then In_Instance_Body
4831 then
4832 Find_Component_In_Instance (Parent_Subtype (Type_To_Use));
4834 -- In ASIS mode the generic parent type may be absent. Examine
4835 -- the parent type directly for a component that may have been
4836 -- visible in a parent generic unit.
4838 elsif Is_Derived_Type (Prefix_Type) then
4839 Par := Etype (Prefix_Type);
4840 Find_Component_In_Instance (Par);
4841 end if;
4842 end;
4844 -- The search above must have eventually succeeded, since the
4845 -- selected component was legal in the generic.
4847 if No (Entity (Sel)) then
4848 raise Program_Error;
4849 end if;
4851 return;
4853 -- Component not found, specialize error message when appropriate
4855 else
4856 if Ekind (Prefix_Type) = E_Record_Subtype then
4858 -- Check whether this is a component of the base type which
4859 -- is absent from a statically constrained subtype. This will
4860 -- raise constraint error at run time, but is not a compile-
4861 -- time error. When the selector is illegal for base type as
4862 -- well fall through and generate a compilation error anyway.
4864 Comp := First_Component (Base_Type (Prefix_Type));
4865 while Present (Comp) loop
4866 if Chars (Comp) = Chars (Sel)
4867 and then Is_Visible_Component (Comp)
4868 then
4869 Set_Entity_With_Checks (Sel, Comp);
4870 Generate_Reference (Comp, Sel);
4871 Set_Etype (Sel, Etype (Comp));
4872 Set_Etype (N, Etype (Comp));
4874 -- Emit appropriate message. The node will be replaced
4875 -- by an appropriate raise statement.
4877 -- Note that in SPARK mode, as with all calls to apply a
4878 -- compile time constraint error, this will be made into
4879 -- an error to simplify the processing of the formal
4880 -- verification backend.
4882 Apply_Compile_Time_Constraint_Error
4883 (N, "component not present in }??",
4884 CE_Discriminant_Check_Failed,
4885 Ent => Prefix_Type, Rep => False);
4887 Set_Raises_Constraint_Error (N);
4888 return;
4889 end if;
4891 Next_Component (Comp);
4892 end loop;
4894 end if;
4896 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4897 Error_Msg_NE ("no selector& for}", N, Sel);
4899 -- Add information in the case of an incomplete prefix
4901 if Is_Incomplete_Type (Type_To_Use) then
4902 declare
4903 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4905 begin
4906 if From_Limited_With (Scope (Type_To_Use)) then
4907 Error_Msg_NE
4908 ("\limited view of& has no components", N, Inc);
4910 else
4911 Error_Msg_NE
4912 ("\premature usage of incomplete type&", N, Inc);
4914 if Nkind (Parent (Inc)) =
4915 N_Incomplete_Type_Declaration
4916 then
4917 -- Record location of premature use in entity so that
4918 -- a continuation message is generated when the
4919 -- completion is seen.
4921 Set_Premature_Use (Parent (Inc), N);
4922 end if;
4923 end if;
4924 end;
4925 end if;
4927 Check_Misspelled_Selector (Type_To_Use, Sel);
4928 end if;
4930 Set_Entity (Sel, Any_Id);
4931 Set_Etype (Sel, Any_Type);
4932 end if;
4933 end Analyze_Selected_Component;
4935 ---------------------------
4936 -- Analyze_Short_Circuit --
4937 ---------------------------
4939 procedure Analyze_Short_Circuit (N : Node_Id) is
4940 L : constant Node_Id := Left_Opnd (N);
4941 R : constant Node_Id := Right_Opnd (N);
4942 Ind : Interp_Index;
4943 It : Interp;
4945 begin
4946 Analyze_Expression (L);
4947 Analyze_Expression (R);
4948 Set_Etype (N, Any_Type);
4950 if not Is_Overloaded (L) then
4951 if Root_Type (Etype (L)) = Standard_Boolean
4952 and then Has_Compatible_Type (R, Etype (L))
4953 then
4954 Add_One_Interp (N, Etype (L), Etype (L));
4955 end if;
4957 else
4958 Get_First_Interp (L, Ind, It);
4959 while Present (It.Typ) loop
4960 if Root_Type (It.Typ) = Standard_Boolean
4961 and then Has_Compatible_Type (R, It.Typ)
4962 then
4963 Add_One_Interp (N, It.Typ, It.Typ);
4964 end if;
4966 Get_Next_Interp (Ind, It);
4967 end loop;
4968 end if;
4970 -- Here we have failed to find an interpretation. Clearly we know that
4971 -- it is not the case that both operands can have an interpretation of
4972 -- Boolean, but this is by far the most likely intended interpretation.
4973 -- So we simply resolve both operands as Booleans, and at least one of
4974 -- these resolutions will generate an error message, and we do not need
4975 -- to give another error message on the short circuit operation itself.
4977 if Etype (N) = Any_Type then
4978 Resolve (L, Standard_Boolean);
4979 Resolve (R, Standard_Boolean);
4980 Set_Etype (N, Standard_Boolean);
4981 end if;
4982 end Analyze_Short_Circuit;
4984 -------------------
4985 -- Analyze_Slice --
4986 -------------------
4988 procedure Analyze_Slice (N : Node_Id) is
4989 D : constant Node_Id := Discrete_Range (N);
4990 P : constant Node_Id := Prefix (N);
4991 Array_Type : Entity_Id;
4992 Index_Type : Entity_Id;
4994 procedure Analyze_Overloaded_Slice;
4995 -- If the prefix is overloaded, select those interpretations that
4996 -- yield a one-dimensional array type.
4998 ------------------------------
4999 -- Analyze_Overloaded_Slice --
5000 ------------------------------
5002 procedure Analyze_Overloaded_Slice is
5003 I : Interp_Index;
5004 It : Interp;
5005 Typ : Entity_Id;
5007 begin
5008 Set_Etype (N, Any_Type);
5010 Get_First_Interp (P, I, It);
5011 while Present (It.Nam) loop
5012 Typ := It.Typ;
5014 if Is_Access_Type (Typ) then
5015 Typ := Designated_Type (Typ);
5016 Error_Msg_NW
5017 (Warn_On_Dereference, "?d?implicit dereference", N);
5018 end if;
5020 if Is_Array_Type (Typ)
5021 and then Number_Dimensions (Typ) = 1
5022 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
5023 then
5024 Add_One_Interp (N, Typ, Typ);
5025 end if;
5027 Get_Next_Interp (I, It);
5028 end loop;
5030 if Etype (N) = Any_Type then
5031 Error_Msg_N ("expect array type in prefix of slice", N);
5032 end if;
5033 end Analyze_Overloaded_Slice;
5035 -- Start of processing for Analyze_Slice
5037 begin
5038 if Comes_From_Source (N) then
5039 Check_SPARK_05_Restriction ("slice is not allowed", N);
5040 end if;
5042 Analyze (P);
5043 Analyze (D);
5045 if Is_Overloaded (P) then
5046 Analyze_Overloaded_Slice;
5048 else
5049 Array_Type := Etype (P);
5050 Set_Etype (N, Any_Type);
5052 if Is_Access_Type (Array_Type) then
5053 Array_Type := Designated_Type (Array_Type);
5054 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5055 end if;
5057 if not Is_Array_Type (Array_Type) then
5058 Wrong_Type (P, Any_Array);
5060 elsif Number_Dimensions (Array_Type) > 1 then
5061 Error_Msg_N
5062 ("type is not one-dimensional array in slice prefix", N);
5064 else
5065 if Ekind (Array_Type) = E_String_Literal_Subtype then
5066 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
5067 else
5068 Index_Type := Etype (First_Index (Array_Type));
5069 end if;
5071 if not Has_Compatible_Type (D, Index_Type) then
5072 Wrong_Type (D, Index_Type);
5073 else
5074 Set_Etype (N, Array_Type);
5075 end if;
5076 end if;
5077 end if;
5078 end Analyze_Slice;
5080 -----------------------------
5081 -- Analyze_Type_Conversion --
5082 -----------------------------
5084 procedure Analyze_Type_Conversion (N : Node_Id) is
5085 Expr : constant Node_Id := Expression (N);
5086 Typ : Entity_Id;
5088 begin
5089 -- If Conversion_OK is set, then the Etype is already set, and the only
5090 -- processing required is to analyze the expression. This is used to
5091 -- construct certain "illegal" conversions which are not allowed by Ada
5092 -- semantics, but can be handled by Gigi, see Sinfo for further details.
5094 if Conversion_OK (N) then
5095 Analyze (Expr);
5096 return;
5097 end if;
5099 -- Otherwise full type analysis is required, as well as some semantic
5100 -- checks to make sure the argument of the conversion is appropriate.
5102 Find_Type (Subtype_Mark (N));
5103 Typ := Entity (Subtype_Mark (N));
5104 Set_Etype (N, Typ);
5105 Check_Fully_Declared (Typ, N);
5106 Analyze_Expression (Expr);
5107 Validate_Remote_Type_Type_Conversion (N);
5109 -- Only remaining step is validity checks on the argument. These
5110 -- are skipped if the conversion does not come from the source.
5112 if not Comes_From_Source (N) then
5113 return;
5115 -- If there was an error in a generic unit, no need to replicate the
5116 -- error message. Conversely, constant-folding in the generic may
5117 -- transform the argument of a conversion into a string literal, which
5118 -- is legal. Therefore the following tests are not performed in an
5119 -- instance. The same applies to an inlined body.
5121 elsif In_Instance or In_Inlined_Body then
5122 return;
5124 elsif Nkind (Expr) = N_Null then
5125 Error_Msg_N ("argument of conversion cannot be null", N);
5126 Error_Msg_N ("\use qualified expression instead", N);
5127 Set_Etype (N, Any_Type);
5129 elsif Nkind (Expr) = N_Aggregate then
5130 Error_Msg_N ("argument of conversion cannot be aggregate", N);
5131 Error_Msg_N ("\use qualified expression instead", N);
5133 elsif Nkind (Expr) = N_Allocator then
5134 Error_Msg_N ("argument of conversion cannot be an allocator", N);
5135 Error_Msg_N ("\use qualified expression instead", N);
5137 elsif Nkind (Expr) = N_String_Literal then
5138 Error_Msg_N ("argument of conversion cannot be string literal", N);
5139 Error_Msg_N ("\use qualified expression instead", N);
5141 elsif Nkind (Expr) = N_Character_Literal then
5142 if Ada_Version = Ada_83 then
5143 Resolve (Expr, Typ);
5144 else
5145 Error_Msg_N ("argument of conversion cannot be character literal",
5147 Error_Msg_N ("\use qualified expression instead", N);
5148 end if;
5150 elsif Nkind (Expr) = N_Attribute_Reference
5151 and then Nam_In (Attribute_Name (Expr), Name_Access,
5152 Name_Unchecked_Access,
5153 Name_Unrestricted_Access)
5154 then
5155 Error_Msg_N ("argument of conversion cannot be access", N);
5156 Error_Msg_N ("\use qualified expression instead", N);
5157 end if;
5159 -- A formal parameter of a specific tagged type whose related subprogram
5160 -- is subject to pragma Extensions_Visible with value "False" cannot
5161 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)).
5163 if Is_Class_Wide_Type (Typ) and then Is_EVF_Expression (Expr) then
5164 Error_Msg_N
5165 ("formal parameter with Extensions_Visible False cannot be "
5166 & "converted to class-wide type", Expr);
5167 end if;
5168 end Analyze_Type_Conversion;
5170 ----------------------
5171 -- Analyze_Unary_Op --
5172 ----------------------
5174 procedure Analyze_Unary_Op (N : Node_Id) is
5175 R : constant Node_Id := Right_Opnd (N);
5176 Op_Id : Entity_Id := Entity (N);
5178 begin
5179 Set_Etype (N, Any_Type);
5180 Candidate_Type := Empty;
5182 Analyze_Expression (R);
5184 if Present (Op_Id) then
5185 if Ekind (Op_Id) = E_Operator then
5186 Find_Unary_Types (R, Op_Id, N);
5187 else
5188 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5189 end if;
5191 else
5192 Op_Id := Get_Name_Entity_Id (Chars (N));
5193 while Present (Op_Id) loop
5194 if Ekind (Op_Id) = E_Operator then
5195 if No (Next_Entity (First_Entity (Op_Id))) then
5196 Find_Unary_Types (R, Op_Id, N);
5197 end if;
5199 elsif Is_Overloadable (Op_Id) then
5200 Analyze_User_Defined_Unary_Op (N, Op_Id);
5201 end if;
5203 Op_Id := Homonym (Op_Id);
5204 end loop;
5205 end if;
5207 Operator_Check (N);
5208 end Analyze_Unary_Op;
5210 ----------------------------------
5211 -- Analyze_Unchecked_Expression --
5212 ----------------------------------
5214 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5215 begin
5216 Analyze (Expression (N), Suppress => All_Checks);
5217 Set_Etype (N, Etype (Expression (N)));
5218 Save_Interps (Expression (N), N);
5219 end Analyze_Unchecked_Expression;
5221 ---------------------------------------
5222 -- Analyze_Unchecked_Type_Conversion --
5223 ---------------------------------------
5225 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5226 begin
5227 Find_Type (Subtype_Mark (N));
5228 Analyze_Expression (Expression (N));
5229 Set_Etype (N, Entity (Subtype_Mark (N)));
5230 end Analyze_Unchecked_Type_Conversion;
5232 ------------------------------------
5233 -- Analyze_User_Defined_Binary_Op --
5234 ------------------------------------
5236 procedure Analyze_User_Defined_Binary_Op
5237 (N : Node_Id;
5238 Op_Id : Entity_Id)
5240 begin
5241 -- Only do analysis if the operator Comes_From_Source, since otherwise
5242 -- the operator was generated by the expander, and all such operators
5243 -- always refer to the operators in package Standard.
5245 if Comes_From_Source (N) then
5246 declare
5247 F1 : constant Entity_Id := First_Formal (Op_Id);
5248 F2 : constant Entity_Id := Next_Formal (F1);
5250 begin
5251 -- Verify that Op_Id is a visible binary function. Note that since
5252 -- we know Op_Id is overloaded, potentially use visible means use
5253 -- visible for sure (RM 9.4(11)).
5255 if Ekind (Op_Id) = E_Function
5256 and then Present (F2)
5257 and then (Is_Immediately_Visible (Op_Id)
5258 or else Is_Potentially_Use_Visible (Op_Id))
5259 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5260 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5261 then
5262 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5264 -- If the left operand is overloaded, indicate that the current
5265 -- type is a viable candidate. This is redundant in most cases,
5266 -- but for equality and comparison operators where the context
5267 -- does not impose a type on the operands, setting the proper
5268 -- type is necessary to avoid subsequent ambiguities during
5269 -- resolution, when both user-defined and predefined operators
5270 -- may be candidates.
5272 if Is_Overloaded (Left_Opnd (N)) then
5273 Set_Etype (Left_Opnd (N), Etype (F1));
5274 end if;
5276 if Debug_Flag_E then
5277 Write_Str ("user defined operator ");
5278 Write_Name (Chars (Op_Id));
5279 Write_Str (" on node ");
5280 Write_Int (Int (N));
5281 Write_Eol;
5282 end if;
5283 end if;
5284 end;
5285 end if;
5286 end Analyze_User_Defined_Binary_Op;
5288 -----------------------------------
5289 -- Analyze_User_Defined_Unary_Op --
5290 -----------------------------------
5292 procedure Analyze_User_Defined_Unary_Op
5293 (N : Node_Id;
5294 Op_Id : Entity_Id)
5296 begin
5297 -- Only do analysis if the operator Comes_From_Source, since otherwise
5298 -- the operator was generated by the expander, and all such operators
5299 -- always refer to the operators in package Standard.
5301 if Comes_From_Source (N) then
5302 declare
5303 F : constant Entity_Id := First_Formal (Op_Id);
5305 begin
5306 -- Verify that Op_Id is a visible unary function. Note that since
5307 -- we know Op_Id is overloaded, potentially use visible means use
5308 -- visible for sure (RM 9.4(11)).
5310 if Ekind (Op_Id) = E_Function
5311 and then No (Next_Formal (F))
5312 and then (Is_Immediately_Visible (Op_Id)
5313 or else Is_Potentially_Use_Visible (Op_Id))
5314 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5315 then
5316 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5317 end if;
5318 end;
5319 end if;
5320 end Analyze_User_Defined_Unary_Op;
5322 ---------------------------
5323 -- Check_Arithmetic_Pair --
5324 ---------------------------
5326 procedure Check_Arithmetic_Pair
5327 (T1, T2 : Entity_Id;
5328 Op_Id : Entity_Id;
5329 N : Node_Id)
5331 Op_Name : constant Name_Id := Chars (Op_Id);
5333 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5334 -- Check whether the fixed-point type Typ has a user-defined operator
5335 -- (multiplication or division) that should hide the corresponding
5336 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5337 -- such operators more visible and therefore useful.
5339 -- If the name of the operation is an expanded name with prefix
5340 -- Standard, the predefined universal fixed operator is available,
5341 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5343 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5344 -- Get specific type (i.e. non-universal type if there is one)
5346 ------------------
5347 -- Has_Fixed_Op --
5348 ------------------
5350 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5351 Bas : constant Entity_Id := Base_Type (Typ);
5352 Ent : Entity_Id;
5353 F1 : Entity_Id;
5354 F2 : Entity_Id;
5356 begin
5357 -- If the universal_fixed operation is given explicitly the rule
5358 -- concerning primitive operations of the type do not apply.
5360 if Nkind (N) = N_Function_Call
5361 and then Nkind (Name (N)) = N_Expanded_Name
5362 and then Entity (Prefix (Name (N))) = Standard_Standard
5363 then
5364 return False;
5365 end if;
5367 -- The operation is treated as primitive if it is declared in the
5368 -- same scope as the type, and therefore on the same entity chain.
5370 Ent := Next_Entity (Typ);
5371 while Present (Ent) loop
5372 if Chars (Ent) = Chars (Op) then
5373 F1 := First_Formal (Ent);
5374 F2 := Next_Formal (F1);
5376 -- The operation counts as primitive if either operand or
5377 -- result are of the given base type, and both operands are
5378 -- fixed point types.
5380 if (Base_Type (Etype (F1)) = Bas
5381 and then Is_Fixed_Point_Type (Etype (F2)))
5383 or else
5384 (Base_Type (Etype (F2)) = Bas
5385 and then Is_Fixed_Point_Type (Etype (F1)))
5387 or else
5388 (Base_Type (Etype (Ent)) = Bas
5389 and then Is_Fixed_Point_Type (Etype (F1))
5390 and then Is_Fixed_Point_Type (Etype (F2)))
5391 then
5392 return True;
5393 end if;
5394 end if;
5396 Next_Entity (Ent);
5397 end loop;
5399 return False;
5400 end Has_Fixed_Op;
5402 -------------------
5403 -- Specific_Type --
5404 -------------------
5406 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5407 begin
5408 if T1 = Universal_Integer or else T1 = Universal_Real then
5409 return Base_Type (T2);
5410 else
5411 return Base_Type (T1);
5412 end if;
5413 end Specific_Type;
5415 -- Start of processing for Check_Arithmetic_Pair
5417 begin
5418 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5419 if Is_Numeric_Type (T1)
5420 and then Is_Numeric_Type (T2)
5421 and then (Covers (T1 => T1, T2 => T2)
5422 or else
5423 Covers (T1 => T2, T2 => T1))
5424 then
5425 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5426 end if;
5428 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5429 if Is_Fixed_Point_Type (T1)
5430 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5431 then
5432 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5433 -- and no further processing is required (this is the case of an
5434 -- operator constructed by Exp_Fixd for a fixed point operation)
5435 -- Otherwise add one interpretation with universal fixed result
5436 -- If the operator is given in functional notation, it comes
5437 -- from source and Fixed_As_Integer cannot apply.
5439 if (Nkind (N) not in N_Op
5440 or else not Treat_Fixed_As_Integer (N))
5441 and then
5442 (not Has_Fixed_Op (T1, Op_Id)
5443 or else Nkind (Parent (N)) = N_Type_Conversion)
5444 then
5445 Add_One_Interp (N, Op_Id, Universal_Fixed);
5446 end if;
5448 elsif Is_Fixed_Point_Type (T2)
5449 and then (Nkind (N) not in N_Op
5450 or else not Treat_Fixed_As_Integer (N))
5451 and then T1 = Universal_Real
5452 and then
5453 (not Has_Fixed_Op (T1, Op_Id)
5454 or else Nkind (Parent (N)) = N_Type_Conversion)
5455 then
5456 Add_One_Interp (N, Op_Id, Universal_Fixed);
5458 elsif Is_Numeric_Type (T1)
5459 and then Is_Numeric_Type (T2)
5460 and then (Covers (T1 => T1, T2 => T2)
5461 or else
5462 Covers (T1 => T2, T2 => T1))
5463 then
5464 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5466 elsif Is_Fixed_Point_Type (T1)
5467 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5468 or else T2 = Universal_Integer)
5469 then
5470 Add_One_Interp (N, Op_Id, T1);
5472 elsif T2 = Universal_Real
5473 and then Base_Type (T1) = Base_Type (Standard_Integer)
5474 and then Op_Name = Name_Op_Multiply
5475 then
5476 Add_One_Interp (N, Op_Id, Any_Fixed);
5478 elsif T1 = Universal_Real
5479 and then Base_Type (T2) = Base_Type (Standard_Integer)
5480 then
5481 Add_One_Interp (N, Op_Id, Any_Fixed);
5483 elsif Is_Fixed_Point_Type (T2)
5484 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5485 or else T1 = Universal_Integer)
5486 and then Op_Name = Name_Op_Multiply
5487 then
5488 Add_One_Interp (N, Op_Id, T2);
5490 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5491 Add_One_Interp (N, Op_Id, T1);
5493 elsif T2 = Universal_Real
5494 and then T1 = Universal_Integer
5495 and then Op_Name = Name_Op_Multiply
5496 then
5497 Add_One_Interp (N, Op_Id, T2);
5498 end if;
5500 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5502 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5503 -- set does not require any special processing, since the Etype is
5504 -- already set (case of operation constructed by Exp_Fixed).
5506 if Is_Integer_Type (T1)
5507 and then (Covers (T1 => T1, T2 => T2)
5508 or else
5509 Covers (T1 => T2, T2 => T1))
5510 then
5511 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5512 end if;
5514 elsif Op_Name = Name_Op_Expon then
5515 if Is_Numeric_Type (T1)
5516 and then not Is_Fixed_Point_Type (T1)
5517 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5518 or else T2 = Universal_Integer)
5519 then
5520 Add_One_Interp (N, Op_Id, Base_Type (T1));
5521 end if;
5523 else pragma Assert (Nkind (N) in N_Op_Shift);
5525 -- If not one of the predefined operators, the node may be one
5526 -- of the intrinsic functions. Its kind is always specific, and
5527 -- we can use it directly, rather than the name of the operation.
5529 if Is_Integer_Type (T1)
5530 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5531 or else T2 = Universal_Integer)
5532 then
5533 Add_One_Interp (N, Op_Id, Base_Type (T1));
5534 end if;
5535 end if;
5536 end Check_Arithmetic_Pair;
5538 -------------------------------
5539 -- Check_Misspelled_Selector --
5540 -------------------------------
5542 procedure Check_Misspelled_Selector
5543 (Prefix : Entity_Id;
5544 Sel : Node_Id)
5546 Max_Suggestions : constant := 2;
5547 Nr_Of_Suggestions : Natural := 0;
5549 Suggestion_1 : Entity_Id := Empty;
5550 Suggestion_2 : Entity_Id := Empty;
5552 Comp : Entity_Id;
5554 begin
5555 -- All the components of the prefix of selector Sel are matched against
5556 -- Sel and a count is maintained of possible misspellings. When at
5557 -- the end of the analysis there are one or two (not more) possible
5558 -- misspellings, these misspellings will be suggested as possible
5559 -- correction.
5561 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5563 -- Concurrent types should be handled as well ???
5565 return;
5566 end if;
5568 Comp := First_Entity (Prefix);
5569 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5570 if Is_Visible_Component (Comp) then
5571 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5572 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5574 case Nr_Of_Suggestions is
5575 when 1 => Suggestion_1 := Comp;
5576 when 2 => Suggestion_2 := Comp;
5577 when others => exit;
5578 end case;
5579 end if;
5580 end if;
5582 Comp := Next_Entity (Comp);
5583 end loop;
5585 -- Report at most two suggestions
5587 if Nr_Of_Suggestions = 1 then
5588 Error_Msg_NE -- CODEFIX
5589 ("\possible misspelling of&", Sel, Suggestion_1);
5591 elsif Nr_Of_Suggestions = 2 then
5592 Error_Msg_Node_2 := Suggestion_2;
5593 Error_Msg_NE -- CODEFIX
5594 ("\possible misspelling of& or&", Sel, Suggestion_1);
5595 end if;
5596 end Check_Misspelled_Selector;
5598 ----------------------
5599 -- Defined_In_Scope --
5600 ----------------------
5602 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5604 S1 : constant Entity_Id := Scope (Base_Type (T));
5605 begin
5606 return S1 = S
5607 or else (S1 = System_Aux_Id and then S = Scope (S1));
5608 end Defined_In_Scope;
5610 -------------------
5611 -- Diagnose_Call --
5612 -------------------
5614 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5615 Actual : Node_Id;
5616 X : Interp_Index;
5617 It : Interp;
5618 Err_Mode : Boolean;
5619 New_Nam : Node_Id;
5620 Void_Interp_Seen : Boolean := False;
5622 Success : Boolean;
5623 pragma Warnings (Off, Boolean);
5625 begin
5626 if Ada_Version >= Ada_2005 then
5627 Actual := First_Actual (N);
5628 while Present (Actual) loop
5630 -- Ada 2005 (AI-50217): Post an error in case of premature
5631 -- usage of an entity from the limited view.
5633 if not Analyzed (Etype (Actual))
5634 and then From_Limited_With (Etype (Actual))
5635 then
5636 Error_Msg_Qual_Level := 1;
5637 Error_Msg_NE
5638 ("missing with_clause for scope of imported type&",
5639 Actual, Etype (Actual));
5640 Error_Msg_Qual_Level := 0;
5641 end if;
5643 Next_Actual (Actual);
5644 end loop;
5645 end if;
5647 -- Analyze each candidate call again, with full error reporting
5648 -- for each.
5650 Error_Msg_N
5651 ("no candidate interpretations match the actuals:!", Nam);
5652 Err_Mode := All_Errors_Mode;
5653 All_Errors_Mode := True;
5655 -- If this is a call to an operation of a concurrent type,
5656 -- the failed interpretations have been removed from the
5657 -- name. Recover them to provide full diagnostics.
5659 if Nkind (Parent (Nam)) = N_Selected_Component then
5660 Set_Entity (Nam, Empty);
5661 New_Nam := New_Copy_Tree (Parent (Nam));
5662 Set_Is_Overloaded (New_Nam, False);
5663 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5664 Set_Parent (New_Nam, Parent (Parent (Nam)));
5665 Analyze_Selected_Component (New_Nam);
5666 Get_First_Interp (Selector_Name (New_Nam), X, It);
5667 else
5668 Get_First_Interp (Nam, X, It);
5669 end if;
5671 while Present (It.Nam) loop
5672 if Etype (It.Nam) = Standard_Void_Type then
5673 Void_Interp_Seen := True;
5674 end if;
5676 Analyze_One_Call (N, It.Nam, True, Success);
5677 Get_Next_Interp (X, It);
5678 end loop;
5680 if Nkind (N) = N_Function_Call then
5681 Get_First_Interp (Nam, X, It);
5682 while Present (It.Nam) loop
5683 if Ekind_In (It.Nam, E_Function, E_Operator) then
5684 return;
5685 else
5686 Get_Next_Interp (X, It);
5687 end if;
5688 end loop;
5690 -- If all interpretations are procedures, this deserves a
5691 -- more precise message. Ditto if this appears as the prefix
5692 -- of a selected component, which may be a lexical error.
5694 Error_Msg_N
5695 ("\context requires function call, found procedure name", Nam);
5697 if Nkind (Parent (N)) = N_Selected_Component
5698 and then N = Prefix (Parent (N))
5699 then
5700 Error_Msg_N -- CODEFIX
5701 ("\period should probably be semicolon", Parent (N));
5702 end if;
5704 elsif Nkind (N) = N_Procedure_Call_Statement
5705 and then not Void_Interp_Seen
5706 then
5707 Error_Msg_N (
5708 "\function name found in procedure call", Nam);
5709 end if;
5711 All_Errors_Mode := Err_Mode;
5712 end Diagnose_Call;
5714 ---------------------------
5715 -- Find_Arithmetic_Types --
5716 ---------------------------
5718 procedure Find_Arithmetic_Types
5719 (L, R : Node_Id;
5720 Op_Id : Entity_Id;
5721 N : Node_Id)
5723 Index1 : Interp_Index;
5724 Index2 : Interp_Index;
5725 It1 : Interp;
5726 It2 : Interp;
5728 procedure Check_Right_Argument (T : Entity_Id);
5729 -- Check right operand of operator
5731 --------------------------
5732 -- Check_Right_Argument --
5733 --------------------------
5735 procedure Check_Right_Argument (T : Entity_Id) is
5736 begin
5737 if not Is_Overloaded (R) then
5738 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5739 else
5740 Get_First_Interp (R, Index2, It2);
5741 while Present (It2.Typ) loop
5742 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5743 Get_Next_Interp (Index2, It2);
5744 end loop;
5745 end if;
5746 end Check_Right_Argument;
5748 -- Start of processing for Find_Arithmetic_Types
5750 begin
5751 if not Is_Overloaded (L) then
5752 Check_Right_Argument (Etype (L));
5754 else
5755 Get_First_Interp (L, Index1, It1);
5756 while Present (It1.Typ) loop
5757 Check_Right_Argument (It1.Typ);
5758 Get_Next_Interp (Index1, It1);
5759 end loop;
5760 end if;
5762 end Find_Arithmetic_Types;
5764 ------------------------
5765 -- Find_Boolean_Types --
5766 ------------------------
5768 procedure Find_Boolean_Types
5769 (L, R : Node_Id;
5770 Op_Id : Entity_Id;
5771 N : Node_Id)
5773 Index : Interp_Index;
5774 It : Interp;
5776 procedure Check_Numeric_Argument (T : Entity_Id);
5777 -- Special case for logical operations one of whose operands is an
5778 -- integer literal. If both are literal the result is any modular type.
5780 ----------------------------
5781 -- Check_Numeric_Argument --
5782 ----------------------------
5784 procedure Check_Numeric_Argument (T : Entity_Id) is
5785 begin
5786 if T = Universal_Integer then
5787 Add_One_Interp (N, Op_Id, Any_Modular);
5789 elsif Is_Modular_Integer_Type (T) then
5790 Add_One_Interp (N, Op_Id, T);
5791 end if;
5792 end Check_Numeric_Argument;
5794 -- Start of processing for Find_Boolean_Types
5796 begin
5797 if not Is_Overloaded (L) then
5798 if Etype (L) = Universal_Integer
5799 or else Etype (L) = Any_Modular
5800 then
5801 if not Is_Overloaded (R) then
5802 Check_Numeric_Argument (Etype (R));
5804 else
5805 Get_First_Interp (R, Index, It);
5806 while Present (It.Typ) loop
5807 Check_Numeric_Argument (It.Typ);
5808 Get_Next_Interp (Index, It);
5809 end loop;
5810 end if;
5812 -- If operands are aggregates, we must assume that they may be
5813 -- boolean arrays, and leave disambiguation for the second pass.
5814 -- If only one is an aggregate, verify that the other one has an
5815 -- interpretation as a boolean array
5817 elsif Nkind (L) = N_Aggregate then
5818 if Nkind (R) = N_Aggregate then
5819 Add_One_Interp (N, Op_Id, Etype (L));
5821 elsif not Is_Overloaded (R) then
5822 if Valid_Boolean_Arg (Etype (R)) then
5823 Add_One_Interp (N, Op_Id, Etype (R));
5824 end if;
5826 else
5827 Get_First_Interp (R, Index, It);
5828 while Present (It.Typ) loop
5829 if Valid_Boolean_Arg (It.Typ) then
5830 Add_One_Interp (N, Op_Id, It.Typ);
5831 end if;
5833 Get_Next_Interp (Index, It);
5834 end loop;
5835 end if;
5837 elsif Valid_Boolean_Arg (Etype (L))
5838 and then Has_Compatible_Type (R, Etype (L))
5839 then
5840 Add_One_Interp (N, Op_Id, Etype (L));
5841 end if;
5843 else
5844 Get_First_Interp (L, Index, It);
5845 while Present (It.Typ) loop
5846 if Valid_Boolean_Arg (It.Typ)
5847 and then Has_Compatible_Type (R, It.Typ)
5848 then
5849 Add_One_Interp (N, Op_Id, It.Typ);
5850 end if;
5852 Get_Next_Interp (Index, It);
5853 end loop;
5854 end if;
5855 end Find_Boolean_Types;
5857 ---------------------------
5858 -- Find_Comparison_Types --
5859 ---------------------------
5861 procedure Find_Comparison_Types
5862 (L, R : Node_Id;
5863 Op_Id : Entity_Id;
5864 N : Node_Id)
5866 Index : Interp_Index;
5867 It : Interp;
5868 Found : Boolean := False;
5869 I_F : Interp_Index;
5870 T_F : Entity_Id;
5871 Scop : Entity_Id := Empty;
5873 procedure Try_One_Interp (T1 : Entity_Id);
5874 -- Routine to try one proposed interpretation. Note that the context
5875 -- of the operator plays no role in resolving the arguments, so that
5876 -- if there is more than one interpretation of the operands that is
5877 -- compatible with comparison, the operation is ambiguous.
5879 --------------------
5880 -- Try_One_Interp --
5881 --------------------
5883 procedure Try_One_Interp (T1 : Entity_Id) is
5884 begin
5886 -- If the operator is an expanded name, then the type of the operand
5887 -- must be defined in the corresponding scope. If the type is
5888 -- universal, the context will impose the correct type.
5890 if Present (Scop)
5891 and then not Defined_In_Scope (T1, Scop)
5892 and then T1 /= Universal_Integer
5893 and then T1 /= Universal_Real
5894 and then T1 /= Any_String
5895 and then T1 /= Any_Composite
5896 then
5897 return;
5898 end if;
5900 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5901 if Found and then Base_Type (T1) /= Base_Type (T_F) then
5902 It := Disambiguate (L, I_F, Index, Any_Type);
5904 if It = No_Interp then
5905 Ambiguous_Operands (N);
5906 Set_Etype (L, Any_Type);
5907 return;
5909 else
5910 T_F := It.Typ;
5911 end if;
5913 else
5914 Found := True;
5915 T_F := T1;
5916 I_F := Index;
5917 end if;
5919 Set_Etype (L, T_F);
5920 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5922 end if;
5923 end Try_One_Interp;
5925 -- Start of processing for Find_Comparison_Types
5927 begin
5928 -- If left operand is aggregate, the right operand has to
5929 -- provide a usable type for it.
5931 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
5932 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5933 return;
5934 end if;
5936 if Nkind (N) = N_Function_Call
5937 and then Nkind (Name (N)) = N_Expanded_Name
5938 then
5939 Scop := Entity (Prefix (Name (N)));
5941 -- The prefix may be a package renaming, and the subsequent test
5942 -- requires the original package.
5944 if Ekind (Scop) = E_Package
5945 and then Present (Renamed_Entity (Scop))
5946 then
5947 Scop := Renamed_Entity (Scop);
5948 Set_Entity (Prefix (Name (N)), Scop);
5949 end if;
5950 end if;
5952 if not Is_Overloaded (L) then
5953 Try_One_Interp (Etype (L));
5955 else
5956 Get_First_Interp (L, Index, It);
5957 while Present (It.Typ) loop
5958 Try_One_Interp (It.Typ);
5959 Get_Next_Interp (Index, It);
5960 end loop;
5961 end if;
5962 end Find_Comparison_Types;
5964 ----------------------------------------
5965 -- Find_Non_Universal_Interpretations --
5966 ----------------------------------------
5968 procedure Find_Non_Universal_Interpretations
5969 (N : Node_Id;
5970 R : Node_Id;
5971 Op_Id : Entity_Id;
5972 T1 : Entity_Id)
5974 Index : Interp_Index;
5975 It : Interp;
5977 begin
5978 if T1 = Universal_Integer or else T1 = Universal_Real
5980 -- If the left operand of an equality operator is null, the visibility
5981 -- of the operator must be determined from the interpretation of the
5982 -- right operand. This processing must be done for Any_Access, which
5983 -- is the internal representation of the type of the literal null.
5985 or else T1 = Any_Access
5986 then
5987 if not Is_Overloaded (R) then
5988 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5989 else
5990 Get_First_Interp (R, Index, It);
5991 while Present (It.Typ) loop
5992 if Covers (It.Typ, T1) then
5993 Add_One_Interp
5994 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5995 end if;
5997 Get_Next_Interp (Index, It);
5998 end loop;
5999 end if;
6000 else
6001 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
6002 end if;
6003 end Find_Non_Universal_Interpretations;
6005 ------------------------------
6006 -- Find_Concatenation_Types --
6007 ------------------------------
6009 procedure Find_Concatenation_Types
6010 (L, R : Node_Id;
6011 Op_Id : Entity_Id;
6012 N : Node_Id)
6014 Op_Type : constant Entity_Id := Etype (Op_Id);
6016 begin
6017 if Is_Array_Type (Op_Type)
6018 and then not Is_Limited_Type (Op_Type)
6020 and then (Has_Compatible_Type (L, Op_Type)
6021 or else
6022 Has_Compatible_Type (L, Component_Type (Op_Type)))
6024 and then (Has_Compatible_Type (R, Op_Type)
6025 or else
6026 Has_Compatible_Type (R, Component_Type (Op_Type)))
6027 then
6028 Add_One_Interp (N, Op_Id, Op_Type);
6029 end if;
6030 end Find_Concatenation_Types;
6032 -------------------------
6033 -- Find_Equality_Types --
6034 -------------------------
6036 procedure Find_Equality_Types
6037 (L, R : Node_Id;
6038 Op_Id : Entity_Id;
6039 N : Node_Id)
6041 Index : Interp_Index;
6042 It : Interp;
6043 Found : Boolean := False;
6044 I_F : Interp_Index;
6045 T_F : Entity_Id;
6046 Scop : Entity_Id := Empty;
6048 procedure Try_One_Interp (T1 : Entity_Id);
6049 -- The context of the equality operator plays no role in resolving the
6050 -- arguments, so that if there is more than one interpretation of the
6051 -- operands that is compatible with equality, the construct is ambiguous
6052 -- and an error can be emitted now, after trying to disambiguate, i.e.
6053 -- applying preference rules.
6055 --------------------
6056 -- Try_One_Interp --
6057 --------------------
6059 procedure Try_One_Interp (T1 : Entity_Id) is
6060 Bas : constant Entity_Id := Base_Type (T1);
6062 begin
6063 -- If the operator is an expanded name, then the type of the operand
6064 -- must be defined in the corresponding scope. If the type is
6065 -- universal, the context will impose the correct type. An anonymous
6066 -- type for a 'Access reference is also universal in this sense, as
6067 -- the actual type is obtained from context.
6069 -- In Ada 2005, the equality operator for anonymous access types
6070 -- is declared in Standard, and preference rules apply to it.
6072 if Present (Scop) then
6073 if Defined_In_Scope (T1, Scop)
6074 or else T1 = Universal_Integer
6075 or else T1 = Universal_Real
6076 or else T1 = Any_Access
6077 or else T1 = Any_String
6078 or else T1 = Any_Composite
6079 or else (Ekind (T1) = E_Access_Subprogram_Type
6080 and then not Comes_From_Source (T1))
6081 then
6082 null;
6084 elsif Ekind (T1) = E_Anonymous_Access_Type
6085 and then Scop = Standard_Standard
6086 then
6087 null;
6089 else
6090 -- The scope does not contain an operator for the type
6092 return;
6093 end if;
6095 -- If we have infix notation, the operator must be usable. Within
6096 -- an instance, if the type is already established we know it is
6097 -- correct. If an operand is universal it is compatible with any
6098 -- numeric type.
6100 elsif In_Open_Scopes (Scope (Bas))
6101 or else Is_Potentially_Use_Visible (Bas)
6102 or else In_Use (Bas)
6103 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
6105 -- In an instance, the type may have been immediately visible.
6106 -- Either the types are compatible, or one operand is universal
6107 -- (numeric or null).
6109 or else (In_Instance
6110 and then
6111 (First_Subtype (T1) = First_Subtype (Etype (R))
6112 or else Nkind (R) = N_Null
6113 or else
6114 (Is_Numeric_Type (T1)
6115 and then Is_Universal_Numeric_Type (Etype (R)))))
6117 -- In Ada 2005, the equality on anonymous access types is declared
6118 -- in Standard, and is always visible.
6120 or else Ekind (T1) = E_Anonymous_Access_Type
6121 then
6122 null;
6124 else
6125 -- Save candidate type for subsequent error message, if any
6127 if not Is_Limited_Type (T1) then
6128 Candidate_Type := T1;
6129 end if;
6131 return;
6132 end if;
6134 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6135 -- Do not allow anonymous access types in equality operators.
6137 if Ada_Version < Ada_2005
6138 and then Ekind (T1) = E_Anonymous_Access_Type
6139 then
6140 return;
6141 end if;
6143 -- If the right operand has a type compatible with T1, check for an
6144 -- acceptable interpretation, unless T1 is limited (no predefined
6145 -- equality available), or this is use of a "/=" for a tagged type.
6146 -- In the latter case, possible interpretations of equality need
6147 -- to be considered, we don't want the default inequality declared
6148 -- in Standard to be chosen, and the "/=" will be rewritten as a
6149 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6150 -- that rewriting happens during analysis rather than being
6151 -- delayed until expansion (this is needed for ASIS, which only sees
6152 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6153 -- is Name_Op_Eq then we still proceed with the interpretation,
6154 -- because that indicates the potential rewriting case where the
6155 -- interpretation to consider is actually "=" and the node may be
6156 -- about to be rewritten by Analyze_Equality_Op.
6158 if T1 /= Standard_Void_Type
6159 and then Has_Compatible_Type (R, T1)
6161 and then
6162 ((not Is_Limited_Type (T1)
6163 and then not Is_Limited_Composite (T1))
6165 or else
6166 (Is_Array_Type (T1)
6167 and then not Is_Limited_Type (Component_Type (T1))
6168 and then Available_Full_View_Of_Component (T1)))
6170 and then
6171 (Nkind (N) /= N_Op_Ne
6172 or else not Is_Tagged_Type (T1)
6173 or else Chars (Op_Id) = Name_Op_Eq)
6174 then
6175 if Found
6176 and then Base_Type (T1) /= Base_Type (T_F)
6177 then
6178 It := Disambiguate (L, I_F, Index, Any_Type);
6180 if It = No_Interp then
6181 Ambiguous_Operands (N);
6182 Set_Etype (L, Any_Type);
6183 return;
6185 else
6186 T_F := It.Typ;
6187 end if;
6189 else
6190 Found := True;
6191 T_F := T1;
6192 I_F := Index;
6193 end if;
6195 if not Analyzed (L) then
6196 Set_Etype (L, T_F);
6197 end if;
6199 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6201 -- Case of operator was not visible, Etype still set to Any_Type
6203 if Etype (N) = Any_Type then
6204 Found := False;
6205 end if;
6207 elsif Scop = Standard_Standard
6208 and then Ekind (T1) = E_Anonymous_Access_Type
6209 then
6210 Found := True;
6211 end if;
6212 end Try_One_Interp;
6214 -- Start of processing for Find_Equality_Types
6216 begin
6217 -- If left operand is aggregate, the right operand has to
6218 -- provide a usable type for it.
6220 if Nkind (L) = N_Aggregate
6221 and then Nkind (R) /= N_Aggregate
6222 then
6223 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6224 return;
6225 end if;
6227 if Nkind (N) = N_Function_Call
6228 and then Nkind (Name (N)) = N_Expanded_Name
6229 then
6230 Scop := Entity (Prefix (Name (N)));
6232 -- The prefix may be a package renaming, and the subsequent test
6233 -- requires the original package.
6235 if Ekind (Scop) = E_Package
6236 and then Present (Renamed_Entity (Scop))
6237 then
6238 Scop := Renamed_Entity (Scop);
6239 Set_Entity (Prefix (Name (N)), Scop);
6240 end if;
6241 end if;
6243 if not Is_Overloaded (L) then
6244 Try_One_Interp (Etype (L));
6246 else
6247 Get_First_Interp (L, Index, It);
6248 while Present (It.Typ) loop
6249 Try_One_Interp (It.Typ);
6250 Get_Next_Interp (Index, It);
6251 end loop;
6252 end if;
6253 end Find_Equality_Types;
6255 -------------------------
6256 -- Find_Negation_Types --
6257 -------------------------
6259 procedure Find_Negation_Types
6260 (R : Node_Id;
6261 Op_Id : Entity_Id;
6262 N : Node_Id)
6264 Index : Interp_Index;
6265 It : Interp;
6267 begin
6268 if not Is_Overloaded (R) then
6269 if Etype (R) = Universal_Integer then
6270 Add_One_Interp (N, Op_Id, Any_Modular);
6271 elsif Valid_Boolean_Arg (Etype (R)) then
6272 Add_One_Interp (N, Op_Id, Etype (R));
6273 end if;
6275 else
6276 Get_First_Interp (R, Index, It);
6277 while Present (It.Typ) loop
6278 if Valid_Boolean_Arg (It.Typ) then
6279 Add_One_Interp (N, Op_Id, It.Typ);
6280 end if;
6282 Get_Next_Interp (Index, It);
6283 end loop;
6284 end if;
6285 end Find_Negation_Types;
6287 ------------------------------
6288 -- Find_Primitive_Operation --
6289 ------------------------------
6291 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6292 Obj : constant Node_Id := Prefix (N);
6293 Op : constant Node_Id := Selector_Name (N);
6295 Prim : Elmt_Id;
6296 Prims : Elist_Id;
6297 Typ : Entity_Id;
6299 begin
6300 Set_Etype (Op, Any_Type);
6302 if Is_Access_Type (Etype (Obj)) then
6303 Typ := Designated_Type (Etype (Obj));
6304 else
6305 Typ := Etype (Obj);
6306 end if;
6308 if Is_Class_Wide_Type (Typ) then
6309 Typ := Root_Type (Typ);
6310 end if;
6312 Prims := Primitive_Operations (Typ);
6314 Prim := First_Elmt (Prims);
6315 while Present (Prim) loop
6316 if Chars (Node (Prim)) = Chars (Op) then
6317 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6318 Set_Etype (N, Etype (Node (Prim)));
6319 end if;
6321 Next_Elmt (Prim);
6322 end loop;
6324 -- Now look for class-wide operations of the type or any of its
6325 -- ancestors by iterating over the homonyms of the selector.
6327 declare
6328 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6329 Hom : Entity_Id;
6331 begin
6332 Hom := Current_Entity (Op);
6333 while Present (Hom) loop
6334 if (Ekind (Hom) = E_Procedure
6335 or else
6336 Ekind (Hom) = E_Function)
6337 and then Scope (Hom) = Scope (Typ)
6338 and then Present (First_Formal (Hom))
6339 and then
6340 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6341 or else
6342 (Is_Access_Type (Etype (First_Formal (Hom)))
6343 and then
6344 Ekind (Etype (First_Formal (Hom))) =
6345 E_Anonymous_Access_Type
6346 and then
6347 Base_Type
6348 (Designated_Type (Etype (First_Formal (Hom)))) =
6349 Cls_Type))
6350 then
6351 Add_One_Interp (Op, Hom, Etype (Hom));
6352 Set_Etype (N, Etype (Hom));
6353 end if;
6355 Hom := Homonym (Hom);
6356 end loop;
6357 end;
6359 return Etype (Op) /= Any_Type;
6360 end Find_Primitive_Operation;
6362 ----------------------
6363 -- Find_Unary_Types --
6364 ----------------------
6366 procedure Find_Unary_Types
6367 (R : Node_Id;
6368 Op_Id : Entity_Id;
6369 N : Node_Id)
6371 Index : Interp_Index;
6372 It : Interp;
6374 begin
6375 if not Is_Overloaded (R) then
6376 if Is_Numeric_Type (Etype (R)) then
6378 -- In an instance a generic actual may be a numeric type even if
6379 -- the formal in the generic unit was not. In that case, the
6380 -- predefined operator was not a possible interpretation in the
6381 -- generic, and cannot be one in the instance, unless the operator
6382 -- is an actual of an instance.
6384 if In_Instance
6385 and then
6386 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6387 then
6388 null;
6389 else
6390 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6391 end if;
6392 end if;
6394 else
6395 Get_First_Interp (R, Index, It);
6396 while Present (It.Typ) loop
6397 if Is_Numeric_Type (It.Typ) then
6398 if In_Instance
6399 and then
6400 not Is_Numeric_Type
6401 (Corresponding_Generic_Type (Etype (It.Typ)))
6402 then
6403 null;
6405 else
6406 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6407 end if;
6408 end if;
6410 Get_Next_Interp (Index, It);
6411 end loop;
6412 end if;
6413 end Find_Unary_Types;
6415 ------------------
6416 -- Junk_Operand --
6417 ------------------
6419 function Junk_Operand (N : Node_Id) return Boolean is
6420 Enode : Node_Id;
6422 begin
6423 if Error_Posted (N) then
6424 return False;
6425 end if;
6427 -- Get entity to be tested
6429 if Is_Entity_Name (N)
6430 and then Present (Entity (N))
6431 then
6432 Enode := N;
6434 -- An odd case, a procedure name gets converted to a very peculiar
6435 -- function call, and here is where we detect this happening.
6437 elsif Nkind (N) = N_Function_Call
6438 and then Is_Entity_Name (Name (N))
6439 and then Present (Entity (Name (N)))
6440 then
6441 Enode := Name (N);
6443 -- Another odd case, there are at least some cases of selected
6444 -- components where the selected component is not marked as having
6445 -- an entity, even though the selector does have an entity
6447 elsif Nkind (N) = N_Selected_Component
6448 and then Present (Entity (Selector_Name (N)))
6449 then
6450 Enode := Selector_Name (N);
6452 else
6453 return False;
6454 end if;
6456 -- Now test the entity we got to see if it is a bad case
6458 case Ekind (Entity (Enode)) is
6460 when E_Package =>
6461 Error_Msg_N
6462 ("package name cannot be used as operand", Enode);
6464 when Generic_Unit_Kind =>
6465 Error_Msg_N
6466 ("generic unit name cannot be used as operand", Enode);
6468 when Type_Kind =>
6469 Error_Msg_N
6470 ("subtype name cannot be used as operand", Enode);
6472 when Entry_Kind =>
6473 Error_Msg_N
6474 ("entry name cannot be used as operand", Enode);
6476 when E_Procedure =>
6477 Error_Msg_N
6478 ("procedure name cannot be used as operand", Enode);
6480 when E_Exception =>
6481 Error_Msg_N
6482 ("exception name cannot be used as operand", Enode);
6484 when E_Block | E_Label | E_Loop =>
6485 Error_Msg_N
6486 ("label name cannot be used as operand", Enode);
6488 when others =>
6489 return False;
6491 end case;
6493 return True;
6494 end Junk_Operand;
6496 --------------------
6497 -- Operator_Check --
6498 --------------------
6500 procedure Operator_Check (N : Node_Id) is
6501 begin
6502 Remove_Abstract_Operations (N);
6504 -- Test for case of no interpretation found for operator
6506 if Etype (N) = Any_Type then
6507 declare
6508 L : Node_Id;
6509 R : Node_Id;
6510 Op_Id : Entity_Id := Empty;
6512 begin
6513 R := Right_Opnd (N);
6515 if Nkind (N) in N_Binary_Op then
6516 L := Left_Opnd (N);
6517 else
6518 L := Empty;
6519 end if;
6521 -- If either operand has no type, then don't complain further,
6522 -- since this simply means that we have a propagated error.
6524 if R = Error
6525 or else Etype (R) = Any_Type
6526 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6527 then
6528 -- For the rather unusual case where one of the operands is
6529 -- a Raise_Expression, whose initial type is Any_Type, use
6530 -- the type of the other operand.
6532 if Nkind (L) = N_Raise_Expression then
6533 Set_Etype (L, Etype (R));
6534 Set_Etype (N, Etype (R));
6536 elsif Nkind (R) = N_Raise_Expression then
6537 Set_Etype (R, Etype (L));
6538 Set_Etype (N, Etype (L));
6539 end if;
6541 return;
6543 -- We explicitly check for the case of concatenation of component
6544 -- with component to avoid reporting spurious matching array types
6545 -- that might happen to be lurking in distant packages (such as
6546 -- run-time packages). This also prevents inconsistencies in the
6547 -- messages for certain ACVC B tests, which can vary depending on
6548 -- types declared in run-time interfaces. Another improvement when
6549 -- aggregates are present is to look for a well-typed operand.
6551 elsif Present (Candidate_Type)
6552 and then (Nkind (N) /= N_Op_Concat
6553 or else Is_Array_Type (Etype (L))
6554 or else Is_Array_Type (Etype (R)))
6555 then
6556 if Nkind (N) = N_Op_Concat then
6557 if Etype (L) /= Any_Composite
6558 and then Is_Array_Type (Etype (L))
6559 then
6560 Candidate_Type := Etype (L);
6562 elsif Etype (R) /= Any_Composite
6563 and then Is_Array_Type (Etype (R))
6564 then
6565 Candidate_Type := Etype (R);
6566 end if;
6567 end if;
6569 Error_Msg_NE -- CODEFIX
6570 ("operator for} is not directly visible!",
6571 N, First_Subtype (Candidate_Type));
6573 declare
6574 U : constant Node_Id :=
6575 Cunit (Get_Source_Unit (Candidate_Type));
6576 begin
6577 if Unit_Is_Visible (U) then
6578 Error_Msg_N -- CODEFIX
6579 ("use clause would make operation legal!", N);
6580 else
6581 Error_Msg_NE -- CODEFIX
6582 ("add with_clause and use_clause for&!",
6583 N, Defining_Entity (Unit (U)));
6584 end if;
6585 end;
6586 return;
6588 -- If either operand is a junk operand (e.g. package name), then
6589 -- post appropriate error messages, but do not complain further.
6591 -- Note that the use of OR in this test instead of OR ELSE is
6592 -- quite deliberate, we may as well check both operands in the
6593 -- binary operator case.
6595 elsif Junk_Operand (R)
6596 or -- really mean OR here and not OR ELSE, see above
6597 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6598 then
6599 return;
6601 -- If we have a logical operator, one of whose operands is
6602 -- Boolean, then we know that the other operand cannot resolve to
6603 -- Boolean (since we got no interpretations), but in that case we
6604 -- pretty much know that the other operand should be Boolean, so
6605 -- resolve it that way (generating an error)
6607 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6608 if Etype (L) = Standard_Boolean then
6609 Resolve (R, Standard_Boolean);
6610 return;
6611 elsif Etype (R) = Standard_Boolean then
6612 Resolve (L, Standard_Boolean);
6613 return;
6614 end if;
6616 -- For an arithmetic operator or comparison operator, if one
6617 -- of the operands is numeric, then we know the other operand
6618 -- is not the same numeric type. If it is a non-numeric type,
6619 -- then probably it is intended to match the other operand.
6621 elsif Nkind_In (N, N_Op_Add,
6622 N_Op_Divide,
6623 N_Op_Ge,
6624 N_Op_Gt,
6625 N_Op_Le)
6626 or else
6627 Nkind_In (N, N_Op_Lt,
6628 N_Op_Mod,
6629 N_Op_Multiply,
6630 N_Op_Rem,
6631 N_Op_Subtract)
6632 then
6633 -- If Allow_Integer_Address is active, check whether the
6634 -- operation becomes legal after converting an operand.
6636 if Is_Numeric_Type (Etype (L))
6637 and then not Is_Numeric_Type (Etype (R))
6638 then
6639 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6640 Rewrite (R,
6641 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6643 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6644 Analyze_Comparison_Op (N);
6645 else
6646 Analyze_Arithmetic_Op (N);
6647 end if;
6648 else
6649 Resolve (R, Etype (L));
6650 end if;
6652 return;
6654 elsif Is_Numeric_Type (Etype (R))
6655 and then not Is_Numeric_Type (Etype (L))
6656 then
6657 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6658 Rewrite (L,
6659 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6661 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6662 Analyze_Comparison_Op (N);
6663 else
6664 Analyze_Arithmetic_Op (N);
6665 end if;
6667 return;
6669 else
6670 Resolve (L, Etype (R));
6671 end if;
6673 return;
6675 elsif Allow_Integer_Address
6676 and then Is_Descendent_Of_Address (Etype (L))
6677 and then Is_Descendent_Of_Address (Etype (R))
6678 and then not Error_Posted (N)
6679 then
6680 declare
6681 Addr_Type : constant Entity_Id := Etype (L);
6683 begin
6684 Rewrite (L,
6685 Unchecked_Convert_To (
6686 Standard_Integer, Relocate_Node (L)));
6687 Rewrite (R,
6688 Unchecked_Convert_To (
6689 Standard_Integer, Relocate_Node (R)));
6691 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6692 Analyze_Comparison_Op (N);
6693 else
6694 Analyze_Arithmetic_Op (N);
6695 end if;
6697 -- If this is an operand in an enclosing arithmetic
6698 -- operation, Convert the result as an address so that
6699 -- arithmetic folding of address can continue.
6701 if Nkind (Parent (N)) in N_Op then
6702 Rewrite (N,
6703 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6704 end if;
6706 return;
6707 end;
6708 end if;
6710 -- Comparisons on A'Access are common enough to deserve a
6711 -- special message.
6713 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6714 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6715 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6716 then
6717 Error_Msg_N
6718 ("two access attributes cannot be compared directly", N);
6719 Error_Msg_N
6720 ("\use qualified expression for one of the operands",
6722 return;
6724 -- Another one for C programmers
6726 elsif Nkind (N) = N_Op_Concat
6727 and then Valid_Boolean_Arg (Etype (L))
6728 and then Valid_Boolean_Arg (Etype (R))
6729 then
6730 Error_Msg_N ("invalid operands for concatenation", N);
6731 Error_Msg_N -- CODEFIX
6732 ("\maybe AND was meant", N);
6733 return;
6735 -- A special case for comparison of access parameter with null
6737 elsif Nkind (N) = N_Op_Eq
6738 and then Is_Entity_Name (L)
6739 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6740 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6741 N_Access_Definition
6742 and then Nkind (R) = N_Null
6743 then
6744 Error_Msg_N ("access parameter is not allowed to be null", L);
6745 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6746 return;
6748 -- Another special case for exponentiation, where the right
6749 -- operand must be Natural, independently of the base.
6751 elsif Nkind (N) = N_Op_Expon
6752 and then Is_Numeric_Type (Etype (L))
6753 and then not Is_Overloaded (R)
6754 and then
6755 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6756 and then Base_Type (Etype (R)) /= Universal_Integer
6757 then
6758 if Ada_Version >= Ada_2012
6759 and then Has_Dimension_System (Etype (L))
6760 then
6761 Error_Msg_NE
6762 ("exponent for dimensioned type must be a rational" &
6763 ", found}", R, Etype (R));
6764 else
6765 Error_Msg_NE
6766 ("exponent must be of type Natural, found}", R, Etype (R));
6767 end if;
6769 return;
6771 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6772 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6773 Rewrite (R,
6774 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6775 Analyze_Equality_Op (N);
6776 return;
6777 end if;
6778 end if;
6780 -- If we fall through then just give general message. Note that in
6781 -- the following messages, if the operand is overloaded we choose
6782 -- an arbitrary type to complain about, but that is probably more
6783 -- useful than not giving a type at all.
6785 if Nkind (N) in N_Unary_Op then
6786 Error_Msg_Node_2 := Etype (R);
6787 Error_Msg_N ("operator& not defined for}", N);
6788 return;
6790 else
6791 if Nkind (N) in N_Binary_Op then
6792 if not Is_Overloaded (L)
6793 and then not Is_Overloaded (R)
6794 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6795 then
6796 Error_Msg_Node_2 := First_Subtype (Etype (R));
6797 Error_Msg_N ("there is no applicable operator& for}", N);
6799 else
6800 -- Another attempt to find a fix: one of the candidate
6801 -- interpretations may not be use-visible. This has
6802 -- already been checked for predefined operators, so
6803 -- we examine only user-defined functions.
6805 Op_Id := Get_Name_Entity_Id (Chars (N));
6807 while Present (Op_Id) loop
6808 if Ekind (Op_Id) /= E_Operator
6809 and then Is_Overloadable (Op_Id)
6810 then
6811 if not Is_Immediately_Visible (Op_Id)
6812 and then not In_Use (Scope (Op_Id))
6813 and then not Is_Abstract_Subprogram (Op_Id)
6814 and then not Is_Hidden (Op_Id)
6815 and then Ekind (Scope (Op_Id)) = E_Package
6816 and then
6817 Has_Compatible_Type
6818 (L, Etype (First_Formal (Op_Id)))
6819 and then Present
6820 (Next_Formal (First_Formal (Op_Id)))
6821 and then
6822 Has_Compatible_Type
6824 Etype (Next_Formal (First_Formal (Op_Id))))
6825 then
6826 Error_Msg_N
6827 ("No legal interpretation for operator&", N);
6828 Error_Msg_NE
6829 ("\use clause on& would make operation legal",
6830 N, Scope (Op_Id));
6831 exit;
6832 end if;
6833 end if;
6835 Op_Id := Homonym (Op_Id);
6836 end loop;
6838 if No (Op_Id) then
6839 Error_Msg_N ("invalid operand types for operator&", N);
6841 if Nkind (N) /= N_Op_Concat then
6842 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6843 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6845 -- For concatenation operators it is more difficult to
6846 -- determine which is the wrong operand. It is worth
6847 -- flagging explicitly an access type, for those who
6848 -- might think that a dereference happens here.
6850 elsif Is_Access_Type (Etype (L)) then
6851 Error_Msg_N ("\left operand is access type", N);
6853 elsif Is_Access_Type (Etype (R)) then
6854 Error_Msg_N ("\right operand is access type", N);
6855 end if;
6856 end if;
6857 end if;
6858 end if;
6859 end if;
6860 end;
6861 end if;
6862 end Operator_Check;
6864 -----------------------------------------
6865 -- Process_Implicit_Dereference_Prefix --
6866 -----------------------------------------
6868 function Process_Implicit_Dereference_Prefix
6869 (E : Entity_Id;
6870 P : Entity_Id) return Entity_Id
6872 Ref : Node_Id;
6873 Typ : constant Entity_Id := Designated_Type (Etype (P));
6875 begin
6876 if Present (E)
6877 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6878 then
6879 -- We create a dummy reference to E to ensure that the reference is
6880 -- not considered as part of an assignment (an implicit dereference
6881 -- can never assign to its prefix). The Comes_From_Source attribute
6882 -- needs to be propagated for accurate warnings.
6884 Ref := New_Occurrence_Of (E, Sloc (P));
6885 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6886 Generate_Reference (E, Ref);
6887 end if;
6889 -- An implicit dereference is a legal occurrence of an incomplete type
6890 -- imported through a limited_with clause, if the full view is visible.
6892 if From_Limited_With (Typ)
6893 and then not From_Limited_With (Scope (Typ))
6894 and then
6895 (Is_Immediately_Visible (Scope (Typ))
6896 or else
6897 (Is_Child_Unit (Scope (Typ))
6898 and then Is_Visible_Lib_Unit (Scope (Typ))))
6899 then
6900 return Available_View (Typ);
6901 else
6902 return Typ;
6903 end if;
6904 end Process_Implicit_Dereference_Prefix;
6906 --------------------------------
6907 -- Remove_Abstract_Operations --
6908 --------------------------------
6910 procedure Remove_Abstract_Operations (N : Node_Id) is
6911 Abstract_Op : Entity_Id := Empty;
6912 Address_Descendent : Boolean := False;
6913 I : Interp_Index;
6914 It : Interp;
6916 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6917 -- activate this if either extensions are enabled, or if the abstract
6918 -- operation in question comes from a predefined file. This latter test
6919 -- allows us to use abstract to make operations invisible to users. In
6920 -- particular, if type Address is non-private and abstract subprograms
6921 -- are used to hide its operators, they will be truly hidden.
6923 type Operand_Position is (First_Op, Second_Op);
6924 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6926 procedure Remove_Address_Interpretations (Op : Operand_Position);
6927 -- Ambiguities may arise when the operands are literal and the address
6928 -- operations in s-auxdec are visible. In that case, remove the
6929 -- interpretation of a literal as Address, to retain the semantics
6930 -- of Address as a private type.
6932 ------------------------------------
6933 -- Remove_Address_Interpretations --
6934 ------------------------------------
6936 procedure Remove_Address_Interpretations (Op : Operand_Position) is
6937 Formal : Entity_Id;
6939 begin
6940 if Is_Overloaded (N) then
6941 Get_First_Interp (N, I, It);
6942 while Present (It.Nam) loop
6943 Formal := First_Entity (It.Nam);
6945 if Op = Second_Op then
6946 Formal := Next_Entity (Formal);
6947 end if;
6949 if Is_Descendent_Of_Address (Etype (Formal)) then
6950 Address_Descendent := True;
6951 Remove_Interp (I);
6952 end if;
6954 Get_Next_Interp (I, It);
6955 end loop;
6956 end if;
6957 end Remove_Address_Interpretations;
6959 -- Start of processing for Remove_Abstract_Operations
6961 begin
6962 if Is_Overloaded (N) then
6963 if Debug_Flag_V then
6964 Write_Str ("Remove_Abstract_Operations: ");
6965 Write_Overloads (N);
6966 end if;
6968 Get_First_Interp (N, I, It);
6970 while Present (It.Nam) loop
6971 if Is_Overloadable (It.Nam)
6972 and then Is_Abstract_Subprogram (It.Nam)
6973 and then not Is_Dispatching_Operation (It.Nam)
6974 then
6975 Abstract_Op := It.Nam;
6977 if Is_Descendent_Of_Address (It.Typ) then
6978 Address_Descendent := True;
6979 Remove_Interp (I);
6980 exit;
6982 -- In Ada 2005, this operation does not participate in overload
6983 -- resolution. If the operation is defined in a predefined
6984 -- unit, it is one of the operations declared abstract in some
6985 -- variants of System, and it must be removed as well.
6987 elsif Ada_Version >= Ada_2005
6988 or else Is_Predefined_File_Name
6989 (Unit_File_Name (Get_Source_Unit (It.Nam)))
6990 then
6991 Remove_Interp (I);
6992 exit;
6993 end if;
6994 end if;
6996 Get_Next_Interp (I, It);
6997 end loop;
6999 if No (Abstract_Op) then
7001 -- If some interpretation yields an integer type, it is still
7002 -- possible that there are address interpretations. Remove them
7003 -- if one operand is a literal, to avoid spurious ambiguities
7004 -- on systems where Address is a visible integer type.
7006 if Is_Overloaded (N)
7007 and then Nkind (N) in N_Op
7008 and then Is_Integer_Type (Etype (N))
7009 then
7010 if Nkind (N) in N_Binary_Op then
7011 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7012 Remove_Address_Interpretations (Second_Op);
7014 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
7015 Remove_Address_Interpretations (First_Op);
7016 end if;
7017 end if;
7018 end if;
7020 elsif Nkind (N) in N_Op then
7022 -- Remove interpretations that treat literals as addresses. This
7023 -- is never appropriate, even when Address is defined as a visible
7024 -- Integer type. The reason is that we would really prefer Address
7025 -- to behave as a private type, even in this case. If Address is a
7026 -- visible integer type, we get lots of overload ambiguities.
7028 if Nkind (N) in N_Binary_Op then
7029 declare
7030 U1 : constant Boolean :=
7031 Present (Universal_Interpretation (Right_Opnd (N)));
7032 U2 : constant Boolean :=
7033 Present (Universal_Interpretation (Left_Opnd (N)));
7035 begin
7036 if U1 then
7037 Remove_Address_Interpretations (Second_Op);
7038 end if;
7040 if U2 then
7041 Remove_Address_Interpretations (First_Op);
7042 end if;
7044 if not (U1 and U2) then
7046 -- Remove corresponding predefined operator, which is
7047 -- always added to the overload set.
7049 Get_First_Interp (N, I, It);
7050 while Present (It.Nam) loop
7051 if Scope (It.Nam) = Standard_Standard
7052 and then Base_Type (It.Typ) =
7053 Base_Type (Etype (Abstract_Op))
7054 then
7055 Remove_Interp (I);
7056 end if;
7058 Get_Next_Interp (I, It);
7059 end loop;
7061 elsif Is_Overloaded (N)
7062 and then Present (Univ_Type)
7063 then
7064 -- If both operands have a universal interpretation,
7065 -- it is still necessary to remove interpretations that
7066 -- yield Address. Any remaining ambiguities will be
7067 -- removed in Disambiguate.
7069 Get_First_Interp (N, I, It);
7070 while Present (It.Nam) loop
7071 if Is_Descendent_Of_Address (It.Typ) then
7072 Remove_Interp (I);
7074 elsif not Is_Type (It.Nam) then
7075 Set_Entity (N, It.Nam);
7076 end if;
7078 Get_Next_Interp (I, It);
7079 end loop;
7080 end if;
7081 end;
7082 end if;
7084 elsif Nkind (N) = N_Function_Call
7085 and then
7086 (Nkind (Name (N)) = N_Operator_Symbol
7087 or else
7088 (Nkind (Name (N)) = N_Expanded_Name
7089 and then
7090 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
7091 then
7093 declare
7094 Arg1 : constant Node_Id := First (Parameter_Associations (N));
7095 U1 : constant Boolean :=
7096 Present (Universal_Interpretation (Arg1));
7097 U2 : constant Boolean :=
7098 Present (Next (Arg1)) and then
7099 Present (Universal_Interpretation (Next (Arg1)));
7101 begin
7102 if U1 then
7103 Remove_Address_Interpretations (First_Op);
7104 end if;
7106 if U2 then
7107 Remove_Address_Interpretations (Second_Op);
7108 end if;
7110 if not (U1 and U2) then
7111 Get_First_Interp (N, I, It);
7112 while Present (It.Nam) loop
7113 if Scope (It.Nam) = Standard_Standard
7114 and then It.Typ = Base_Type (Etype (Abstract_Op))
7115 then
7116 Remove_Interp (I);
7117 end if;
7119 Get_Next_Interp (I, It);
7120 end loop;
7121 end if;
7122 end;
7123 end if;
7125 -- If the removal has left no valid interpretations, emit an error
7126 -- message now and label node as illegal.
7128 if Present (Abstract_Op) then
7129 Get_First_Interp (N, I, It);
7131 if No (It.Nam) then
7133 -- Removal of abstract operation left no viable candidate
7135 Set_Etype (N, Any_Type);
7136 Error_Msg_Sloc := Sloc (Abstract_Op);
7137 Error_Msg_NE
7138 ("cannot call abstract operation& declared#", N, Abstract_Op);
7140 -- In Ada 2005, an abstract operation may disable predefined
7141 -- operators. Since the context is not yet known, we mark the
7142 -- predefined operators as potentially hidden. Do not include
7143 -- predefined operators when addresses are involved since this
7144 -- case is handled separately.
7146 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
7147 while Present (It.Nam) loop
7148 if Is_Numeric_Type (It.Typ)
7149 and then Scope (It.Typ) = Standard_Standard
7150 then
7151 Set_Abstract_Op (I, Abstract_Op);
7152 end if;
7154 Get_Next_Interp (I, It);
7155 end loop;
7156 end if;
7157 end if;
7159 if Debug_Flag_V then
7160 Write_Str ("Remove_Abstract_Operations done: ");
7161 Write_Overloads (N);
7162 end if;
7163 end if;
7164 end Remove_Abstract_Operations;
7166 ----------------------------
7167 -- Try_Container_Indexing --
7168 ----------------------------
7170 function Try_Container_Indexing
7171 (N : Node_Id;
7172 Prefix : Node_Id;
7173 Exprs : List_Id) return Boolean
7175 function Constant_Indexing_OK return Boolean;
7176 -- Constant_Indexing is legal if there is no Variable_Indexing defined
7177 -- for the type, or else node not a target of assignment, or an actual
7178 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
7180 --------------------------
7181 -- Constant_Indexing_OK --
7182 --------------------------
7184 function Constant_Indexing_OK return Boolean is
7185 Par : Node_Id;
7187 begin
7188 if No (Find_Value_Of_Aspect
7189 (Etype (Prefix), Aspect_Variable_Indexing))
7190 then
7191 return True;
7193 elsif not Is_Variable (Prefix) then
7194 return True;
7195 end if;
7197 Par := N;
7198 while Present (Par) loop
7199 if Nkind (Parent (Par)) = N_Assignment_Statement
7200 and then Par = Name (Parent (Par))
7201 then
7202 return False;
7204 -- The call may be overloaded, in which case we assume that its
7205 -- resolution does not depend on the type of the parameter that
7206 -- includes the indexing operation.
7208 elsif Nkind_In (Parent (Par), N_Function_Call,
7209 N_Procedure_Call_Statement)
7210 and then Is_Entity_Name (Name (Parent (Par)))
7211 then
7212 declare
7213 Actual : Node_Id;
7214 Formal : Entity_Id;
7215 Proc : Entity_Id;
7217 begin
7218 -- We should look for an interpretation with the proper
7219 -- number of formals, and determine whether it is an
7220 -- In_Parameter, but for now we examine the formal that
7221 -- corresponds to the indexing, and assume that variable
7222 -- indexing is required if some interpretation has an
7223 -- assignable formal at that position. Still does not
7224 -- cover the most complex cases ???
7226 if Is_Overloaded (Name (Parent (Par))) then
7227 declare
7228 Proc : constant Node_Id := Name (Parent (Par));
7229 A : Node_Id;
7230 F : Entity_Id;
7231 I : Interp_Index;
7232 It : Interp;
7234 begin
7235 Get_First_Interp (Proc, I, It);
7236 while Present (It.Nam) loop
7237 F := First_Formal (It.Nam);
7238 A := First (Parameter_Associations (Parent (Par)));
7240 while Present (F) and then Present (A) loop
7241 if A = Par then
7242 if Ekind (F) /= E_In_Parameter then
7243 return False;
7244 else
7245 exit; -- interpretation is safe
7246 end if;
7247 end if;
7249 Next_Formal (F);
7250 Next_Actual (A);
7251 end loop;
7253 Get_Next_Interp (I, It);
7254 end loop;
7255 end;
7257 return True;
7259 else
7260 Proc := Entity (Name (Parent (Par)));
7262 -- If this is an indirect call, get formals from
7263 -- designated type.
7265 if Is_Access_Subprogram_Type (Etype (Proc)) then
7266 Proc := Designated_Type (Etype (Proc));
7267 end if;
7268 end if;
7270 Formal := First_Formal (Proc);
7271 Actual := First_Actual (Parent (Par));
7273 -- Find corresponding actual
7275 while Present (Actual) loop
7276 exit when Actual = Par;
7277 Next_Actual (Actual);
7279 if Present (Formal) then
7280 Next_Formal (Formal);
7282 -- Otherwise this is a parameter mismatch, the error is
7283 -- reported elsewhere.
7285 else
7286 return False;
7287 end if;
7288 end loop;
7290 return Ekind (Formal) = E_In_Parameter;
7291 end;
7293 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
7294 return False;
7296 -- If the indexed component is a prefix it may be the first actual
7297 -- of a prefixed call. Retrieve the called entity, if any, and
7298 -- check its first formal. Determine if the context is a procedure
7299 -- or function call.
7301 elsif Nkind (Parent (Par)) = N_Selected_Component then
7302 declare
7303 Sel : constant Node_Id := Selector_Name (Parent (Par));
7304 Nam : constant Entity_Id := Current_Entity (Sel);
7306 begin
7307 if Present (Nam) and then Is_Overloadable (Nam) then
7308 if Nkind (Parent (Parent (Par))) =
7309 N_Procedure_Call_Statement
7310 then
7311 return False;
7313 elsif Ekind (Nam) = E_Function
7314 and then Present (First_Formal (Nam))
7315 then
7316 return Ekind (First_Formal (Nam)) = E_In_Parameter;
7317 end if;
7318 end if;
7319 end;
7321 elsif Nkind ((Par)) in N_Op then
7322 return True;
7323 end if;
7325 Par := Parent (Par);
7326 end loop;
7328 -- In all other cases, constant indexing is legal
7330 return True;
7331 end Constant_Indexing_OK;
7333 -- Local variables
7335 Loc : constant Source_Ptr := Sloc (N);
7336 Assoc : List_Id;
7337 C_Type : Entity_Id;
7338 Func : Entity_Id;
7339 Func_Name : Node_Id;
7340 Indexing : Node_Id;
7342 -- Start of processing for Try_Container_Indexing
7344 begin
7345 -- Node may have been analyzed already when testing for a prefixed
7346 -- call, in which case do not redo analysis.
7348 if Present (Generalized_Indexing (N)) then
7349 return True;
7350 end if;
7352 C_Type := Etype (Prefix);
7354 -- If indexing a class-wide container, obtain indexing primitive from
7355 -- specific type.
7357 if Is_Class_Wide_Type (C_Type) then
7358 C_Type := Etype (Base_Type (C_Type));
7359 end if;
7361 -- Check whether type has a specified indexing aspect
7363 Func_Name := Empty;
7365 if Constant_Indexing_OK then
7366 Func_Name :=
7367 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
7368 end if;
7370 if No (Func_Name) then
7371 Func_Name :=
7372 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
7373 end if;
7375 -- If aspect does not exist the expression is illegal. Error is
7376 -- diagnosed in caller.
7378 if No (Func_Name) then
7380 -- The prefix itself may be an indexing of a container: rewrite as
7381 -- such and re-analyze.
7383 if Has_Implicit_Dereference (Etype (Prefix)) then
7384 Build_Explicit_Dereference
7385 (Prefix, First_Discriminant (Etype (Prefix)));
7386 return Try_Container_Indexing (N, Prefix, Exprs);
7388 else
7389 return False;
7390 end if;
7392 -- If the container type is derived from another container type, the
7393 -- value of the inherited aspect is the Reference operation declared
7394 -- for the parent type.
7396 -- However, Reference is also a primitive operation of the type, and the
7397 -- inherited operation has a different signature. We retrieve the right
7398 -- ones (the function may be overloaded) from the list of primitive
7399 -- operations of the derived type.
7401 -- Note that predefined containers are typically all derived from one of
7402 -- the Controlled types. The code below is motivated by containers that
7403 -- are derived from other types with a Reference aspect.
7405 elsif Is_Derived_Type (C_Type)
7406 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7407 then
7408 Func_Name := Find_Primitive_Operations (C_Type, Chars (Func_Name));
7409 end if;
7411 Assoc := New_List (Relocate_Node (Prefix));
7413 -- A generalized indexing may have nore than one index expression, so
7414 -- transfer all of them to the argument list to be used in the call.
7415 -- Note that there may be named associations, in which case the node
7416 -- was rewritten earlier as a call, and has been transformed back into
7417 -- an indexed expression to share the following processing.
7419 -- The generalized indexing node is the one on which analysis and
7420 -- resolution take place. Before expansion the original node is replaced
7421 -- with the generalized indexing node, which is a call, possibly with a
7422 -- dereference operation.
7424 if Comes_From_Source (N) then
7425 Check_Compiler_Unit ("generalized indexing", N);
7426 end if;
7428 -- Create argument list for function call that represents generalized
7429 -- indexing. Note that indices (i.e. actuals) may themselves be
7430 -- overloaded.
7432 declare
7433 Arg : Node_Id;
7434 New_Arg : Node_Id;
7436 begin
7437 Arg := First (Exprs);
7438 while Present (Arg) loop
7439 New_Arg := Relocate_Node (Arg);
7441 -- The arguments can be parameter associations, in which case the
7442 -- explicit actual parameter carries the overloadings.
7444 if Nkind (New_Arg) /= N_Parameter_Association then
7445 Save_Interps (Arg, New_Arg);
7446 end if;
7448 Append (New_Arg, Assoc);
7449 Next (Arg);
7450 end loop;
7451 end;
7453 if not Is_Overloaded (Func_Name) then
7454 Func := Entity (Func_Name);
7455 Indexing :=
7456 Make_Function_Call (Loc,
7457 Name => New_Occurrence_Of (Func, Loc),
7458 Parameter_Associations => Assoc);
7459 Set_Parent (Indexing, Parent (N));
7460 Set_Generalized_Indexing (N, Indexing);
7461 Analyze (Indexing);
7462 Set_Etype (N, Etype (Indexing));
7464 -- If the return type of the indexing function is a reference type,
7465 -- add the dereference as a possible interpretation. Note that the
7466 -- indexing aspect may be a function that returns the element type
7467 -- with no intervening implicit dereference, and that the reference
7468 -- discriminant is not the first discriminant.
7470 if Has_Discriminants (Etype (Func)) then
7471 Check_Implicit_Dereference (N, Etype (Func));
7472 end if;
7474 else
7475 -- If there are multiple indexing functions, build a function call
7476 -- and analyze it for each of the possible interpretations.
7478 Indexing :=
7479 Make_Function_Call (Loc,
7480 Name =>
7481 Make_Identifier (Loc, Chars (Func_Name)),
7482 Parameter_Associations => Assoc);
7484 Set_Parent (Indexing, Parent (N));
7485 Set_Generalized_Indexing (N, Indexing);
7486 Set_Etype (N, Any_Type);
7487 Set_Etype (Name (Indexing), Any_Type);
7489 declare
7490 I : Interp_Index;
7491 It : Interp;
7492 Success : Boolean;
7494 begin
7495 Get_First_Interp (Func_Name, I, It);
7496 Set_Etype (Indexing, Any_Type);
7498 while Present (It.Nam) loop
7499 Analyze_One_Call (Indexing, It.Nam, False, Success);
7501 if Success then
7503 -- Function in current interpretation is a valid candidate.
7504 -- Its result type is also a potential type for the
7505 -- original Indexed_Component node.
7507 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
7508 Add_One_Interp (N, It.Nam, It.Typ);
7510 -- Add implicit dereference interpretation to original node
7512 if Has_Discriminants (Etype (It.Nam)) then
7513 Check_Implicit_Dereference (N, Etype (It.Nam));
7514 end if;
7515 end if;
7517 Get_Next_Interp (I, It);
7518 end loop;
7519 end;
7520 end if;
7522 if Etype (Indexing) = Any_Type then
7523 Error_Msg_NE
7524 ("container cannot be indexed with&", N, Etype (First (Exprs)));
7525 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
7526 end if;
7528 return True;
7529 end Try_Container_Indexing;
7531 -----------------------
7532 -- Try_Indirect_Call --
7533 -----------------------
7535 function Try_Indirect_Call
7536 (N : Node_Id;
7537 Nam : Entity_Id;
7538 Typ : Entity_Id) return Boolean
7540 Actual : Node_Id;
7541 Formal : Entity_Id;
7543 Call_OK : Boolean;
7544 pragma Warnings (Off, Call_OK);
7546 begin
7547 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
7549 Actual := First_Actual (N);
7550 Formal := First_Formal (Designated_Type (Typ));
7551 while Present (Actual) and then Present (Formal) loop
7552 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7553 return False;
7554 end if;
7556 Next (Actual);
7557 Next_Formal (Formal);
7558 end loop;
7560 if No (Actual) and then No (Formal) then
7561 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7563 -- Nam is a candidate interpretation for the name in the call,
7564 -- if it is not an indirect call.
7566 if not Is_Type (Nam)
7567 and then Is_Entity_Name (Name (N))
7568 then
7569 Set_Entity (Name (N), Nam);
7570 end if;
7572 return True;
7574 else
7575 return False;
7576 end if;
7577 end Try_Indirect_Call;
7579 ----------------------
7580 -- Try_Indexed_Call --
7581 ----------------------
7583 function Try_Indexed_Call
7584 (N : Node_Id;
7585 Nam : Entity_Id;
7586 Typ : Entity_Id;
7587 Skip_First : Boolean) return Boolean
7589 Loc : constant Source_Ptr := Sloc (N);
7590 Actuals : constant List_Id := Parameter_Associations (N);
7591 Actual : Node_Id;
7592 Index : Entity_Id;
7594 begin
7595 Actual := First (Actuals);
7597 -- If the call was originally written in prefix form, skip the first
7598 -- actual, which is obviously not defaulted.
7600 if Skip_First then
7601 Next (Actual);
7602 end if;
7604 Index := First_Index (Typ);
7605 while Present (Actual) and then Present (Index) loop
7607 -- If the parameter list has a named association, the expression
7608 -- is definitely a call and not an indexed component.
7610 if Nkind (Actual) = N_Parameter_Association then
7611 return False;
7612 end if;
7614 if Is_Entity_Name (Actual)
7615 and then Is_Type (Entity (Actual))
7616 and then No (Next (Actual))
7617 then
7618 -- A single actual that is a type name indicates a slice if the
7619 -- type is discrete, and an error otherwise.
7621 if Is_Discrete_Type (Entity (Actual)) then
7622 Rewrite (N,
7623 Make_Slice (Loc,
7624 Prefix =>
7625 Make_Function_Call (Loc,
7626 Name => Relocate_Node (Name (N))),
7627 Discrete_Range =>
7628 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7630 Analyze (N);
7632 else
7633 Error_Msg_N ("invalid use of type in expression", Actual);
7634 Set_Etype (N, Any_Type);
7635 end if;
7637 return True;
7639 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
7640 return False;
7641 end if;
7643 Next (Actual);
7644 Next_Index (Index);
7645 end loop;
7647 if No (Actual) and then No (Index) then
7648 Add_One_Interp (N, Nam, Component_Type (Typ));
7650 -- Nam is a candidate interpretation for the name in the call,
7651 -- if it is not an indirect call.
7653 if not Is_Type (Nam)
7654 and then Is_Entity_Name (Name (N))
7655 then
7656 Set_Entity (Name (N), Nam);
7657 end if;
7659 return True;
7660 else
7661 return False;
7662 end if;
7663 end Try_Indexed_Call;
7665 --------------------------
7666 -- Try_Object_Operation --
7667 --------------------------
7669 function Try_Object_Operation
7670 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7672 K : constant Node_Kind := Nkind (Parent (N));
7673 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
7674 Loc : constant Source_Ptr := Sloc (N);
7675 Obj : constant Node_Id := Prefix (N);
7677 Subprog : constant Node_Id :=
7678 Make_Identifier (Sloc (Selector_Name (N)),
7679 Chars => Chars (Selector_Name (N)));
7680 -- Identifier on which possible interpretations will be collected
7682 Report_Error : Boolean := False;
7683 -- If no candidate interpretation matches the context, redo analysis
7684 -- with Report_Error True to provide additional information.
7686 Actual : Node_Id;
7687 Candidate : Entity_Id := Empty;
7688 New_Call_Node : Node_Id := Empty;
7689 Node_To_Replace : Node_Id;
7690 Obj_Type : Entity_Id := Etype (Obj);
7691 Success : Boolean := False;
7693 function Valid_Candidate
7694 (Success : Boolean;
7695 Call : Node_Id;
7696 Subp : Entity_Id) return Entity_Id;
7697 -- If the subprogram is a valid interpretation, record it, and add
7698 -- to the list of interpretations of Subprog. Otherwise return Empty.
7700 procedure Complete_Object_Operation
7701 (Call_Node : Node_Id;
7702 Node_To_Replace : Node_Id);
7703 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7704 -- Call_Node, insert the object (or its dereference) as the first actual
7705 -- in the call, and complete the analysis of the call.
7707 procedure Report_Ambiguity (Op : Entity_Id);
7708 -- If a prefixed procedure call is ambiguous, indicate whether the
7709 -- call includes an implicit dereference or an implicit 'Access.
7711 procedure Transform_Object_Operation
7712 (Call_Node : out Node_Id;
7713 Node_To_Replace : out Node_Id);
7714 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
7715 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7716 -- either N or the parent of N, and Subprog is a reference to the
7717 -- subprogram we are trying to match.
7719 function Try_Class_Wide_Operation
7720 (Call_Node : Node_Id;
7721 Node_To_Replace : Node_Id) return Boolean;
7722 -- Traverse all ancestor types looking for a class-wide subprogram
7723 -- for which the current operation is a valid non-dispatching call.
7725 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7726 -- If prefix is overloaded, its interpretation may include different
7727 -- tagged types, and we must examine the primitive operations and
7728 -- the class-wide operations of each in order to find candidate
7729 -- interpretations for the call as a whole.
7731 function Try_Primitive_Operation
7732 (Call_Node : Node_Id;
7733 Node_To_Replace : Node_Id) return Boolean;
7734 -- Traverse the list of primitive subprograms looking for a dispatching
7735 -- operation for which the current node is a valid call .
7737 ---------------------
7738 -- Valid_Candidate --
7739 ---------------------
7741 function Valid_Candidate
7742 (Success : Boolean;
7743 Call : Node_Id;
7744 Subp : Entity_Id) return Entity_Id
7746 Arr_Type : Entity_Id;
7747 Comp_Type : Entity_Id;
7749 begin
7750 -- If the subprogram is a valid interpretation, record it in global
7751 -- variable Subprog, to collect all possible overloadings.
7753 if Success then
7754 if Subp /= Entity (Subprog) then
7755 Add_One_Interp (Subprog, Subp, Etype (Subp));
7756 end if;
7757 end if;
7759 -- If the call may be an indexed call, retrieve component type of
7760 -- resulting expression, and add possible interpretation.
7762 Arr_Type := Empty;
7763 Comp_Type := Empty;
7765 if Nkind (Call) = N_Function_Call
7766 and then Nkind (Parent (N)) = N_Indexed_Component
7767 and then Needs_One_Actual (Subp)
7768 then
7769 if Is_Array_Type (Etype (Subp)) then
7770 Arr_Type := Etype (Subp);
7772 elsif Is_Access_Type (Etype (Subp))
7773 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7774 then
7775 Arr_Type := Designated_Type (Etype (Subp));
7776 end if;
7777 end if;
7779 if Present (Arr_Type) then
7781 -- Verify that the actuals (excluding the object) match the types
7782 -- of the indexes.
7784 declare
7785 Actual : Node_Id;
7786 Index : Node_Id;
7788 begin
7789 Actual := Next (First_Actual (Call));
7790 Index := First_Index (Arr_Type);
7791 while Present (Actual) and then Present (Index) loop
7792 if not Has_Compatible_Type (Actual, Etype (Index)) then
7793 Arr_Type := Empty;
7794 exit;
7795 end if;
7797 Next_Actual (Actual);
7798 Next_Index (Index);
7799 end loop;
7801 if No (Actual)
7802 and then No (Index)
7803 and then Present (Arr_Type)
7804 then
7805 Comp_Type := Component_Type (Arr_Type);
7806 end if;
7807 end;
7809 if Present (Comp_Type)
7810 and then Etype (Subprog) /= Comp_Type
7811 then
7812 Add_One_Interp (Subprog, Subp, Comp_Type);
7813 end if;
7814 end if;
7816 if Etype (Call) /= Any_Type then
7817 return Subp;
7818 else
7819 return Empty;
7820 end if;
7821 end Valid_Candidate;
7823 -------------------------------
7824 -- Complete_Object_Operation --
7825 -------------------------------
7827 procedure Complete_Object_Operation
7828 (Call_Node : Node_Id;
7829 Node_To_Replace : Node_Id)
7831 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7832 Formal_Type : constant Entity_Id := Etype (Control);
7833 First_Actual : Node_Id;
7835 begin
7836 -- Place the name of the operation, with its interpretations,
7837 -- on the rewritten call.
7839 Set_Name (Call_Node, Subprog);
7841 First_Actual := First (Parameter_Associations (Call_Node));
7843 -- For cross-reference purposes, treat the new node as being in the
7844 -- source if the original one is. Set entity and type, even though
7845 -- they may be overwritten during resolution if overloaded.
7847 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7848 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7850 if Nkind (N) = N_Selected_Component
7851 and then not Inside_A_Generic
7852 then
7853 Set_Entity (Selector_Name (N), Entity (Subprog));
7854 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
7855 end if;
7857 -- If need be, rewrite first actual as an explicit dereference. If
7858 -- the call is overloaded, the rewriting can only be done once the
7859 -- primitive operation is identified.
7861 if Is_Overloaded (Subprog) then
7863 -- The prefix itself may be overloaded, and its interpretations
7864 -- must be propagated to the new actual in the call.
7866 if Is_Overloaded (Obj) then
7867 Save_Interps (Obj, First_Actual);
7868 end if;
7870 Rewrite (First_Actual, Obj);
7872 elsif not Is_Access_Type (Formal_Type)
7873 and then Is_Access_Type (Etype (Obj))
7874 then
7875 Rewrite (First_Actual,
7876 Make_Explicit_Dereference (Sloc (Obj), Obj));
7877 Analyze (First_Actual);
7879 -- If we need to introduce an explicit dereference, verify that
7880 -- the resulting actual is compatible with the mode of the formal.
7882 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7883 and then Is_Access_Constant (Etype (Obj))
7884 then
7885 Error_Msg_NE
7886 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7887 end if;
7889 -- Conversely, if the formal is an access parameter and the object
7890 -- is not, replace the actual with a 'Access reference. Its analysis
7891 -- will check that the object is aliased.
7893 elsif Is_Access_Type (Formal_Type)
7894 and then not Is_Access_Type (Etype (Obj))
7895 then
7896 -- A special case: A.all'access is illegal if A is an access to a
7897 -- constant and the context requires an access to a variable.
7899 if not Is_Access_Constant (Formal_Type) then
7900 if (Nkind (Obj) = N_Explicit_Dereference
7901 and then Is_Access_Constant (Etype (Prefix (Obj))))
7902 or else not Is_Variable (Obj)
7903 then
7904 Error_Msg_NE
7905 ("actual for & must be a variable", Obj, Control);
7906 end if;
7907 end if;
7909 Rewrite (First_Actual,
7910 Make_Attribute_Reference (Loc,
7911 Attribute_Name => Name_Access,
7912 Prefix => Relocate_Node (Obj)));
7914 if not Is_Aliased_View (Obj) then
7915 Error_Msg_NE
7916 ("object in prefixed call to & must be aliased "
7917 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
7918 end if;
7920 Analyze (First_Actual);
7922 else
7923 if Is_Overloaded (Obj) then
7924 Save_Interps (Obj, First_Actual);
7925 end if;
7927 Rewrite (First_Actual, Obj);
7928 end if;
7930 -- The operation is obtained from the dispatch table and not by
7931 -- visibility, and may be declared in a unit that is not explicitly
7932 -- referenced in the source, but is nevertheless required in the
7933 -- context of the current unit. Indicate that operation and its scope
7934 -- are referenced, to prevent spurious and misleading warnings. If
7935 -- the operation is overloaded, all primitives are in the same scope
7936 -- and we can use any of them.
7938 Set_Referenced (Entity (Subprog), True);
7939 Set_Referenced (Scope (Entity (Subprog)), True);
7941 Rewrite (Node_To_Replace, Call_Node);
7943 -- Propagate the interpretations collected in subprog to the new
7944 -- function call node, to be resolved from context.
7946 if Is_Overloaded (Subprog) then
7947 Save_Interps (Subprog, Node_To_Replace);
7949 else
7950 -- The type of the subprogram may be a limited view obtained
7951 -- transitively from another unit. If full view is available,
7952 -- use it to analyze call.
7954 declare
7955 T : constant Entity_Id := Etype (Subprog);
7956 begin
7957 if From_Limited_With (T) then
7958 Set_Etype (Entity (Subprog), Available_View (T));
7959 end if;
7960 end;
7962 Analyze (Node_To_Replace);
7964 -- If the operation has been rewritten into a call, which may get
7965 -- subsequently an explicit dereference, preserve the type on the
7966 -- original node (selected component or indexed component) for
7967 -- subsequent legality tests, e.g. Is_Variable. which examines
7968 -- the original node.
7970 if Nkind (Node_To_Replace) = N_Function_Call then
7971 Set_Etype
7972 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7973 end if;
7974 end if;
7975 end Complete_Object_Operation;
7977 ----------------------
7978 -- Report_Ambiguity --
7979 ----------------------
7981 procedure Report_Ambiguity (Op : Entity_Id) is
7982 Access_Actual : constant Boolean :=
7983 Is_Access_Type (Etype (Prefix (N)));
7984 Access_Formal : Boolean := False;
7986 begin
7987 Error_Msg_Sloc := Sloc (Op);
7989 if Present (First_Formal (Op)) then
7990 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7991 end if;
7993 if Access_Formal and then not Access_Actual then
7994 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7995 Error_Msg_N
7996 ("\possible interpretation "
7997 & "(inherited, with implicit 'Access) #", N);
7998 else
7999 Error_Msg_N
8000 ("\possible interpretation (with implicit 'Access) #", N);
8001 end if;
8003 elsif not Access_Formal and then Access_Actual then
8004 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8005 Error_Msg_N
8006 ("\possible interpretation "
8007 & "(inherited, with implicit dereference) #", N);
8008 else
8009 Error_Msg_N
8010 ("\possible interpretation (with implicit dereference) #", N);
8011 end if;
8013 else
8014 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8015 Error_Msg_N ("\possible interpretation (inherited)#", N);
8016 else
8017 Error_Msg_N -- CODEFIX
8018 ("\possible interpretation#", N);
8019 end if;
8020 end if;
8021 end Report_Ambiguity;
8023 --------------------------------
8024 -- Transform_Object_Operation --
8025 --------------------------------
8027 procedure Transform_Object_Operation
8028 (Call_Node : out Node_Id;
8029 Node_To_Replace : out Node_Id)
8031 Dummy : constant Node_Id := New_Copy (Obj);
8032 -- Placeholder used as a first parameter in the call, replaced
8033 -- eventually by the proper object.
8035 Parent_Node : constant Node_Id := Parent (N);
8037 Actual : Node_Id;
8038 Actuals : List_Id;
8040 begin
8041 -- Common case covering 1) Call to a procedure and 2) Call to a
8042 -- function that has some additional actuals.
8044 if Nkind (Parent_Node) in N_Subprogram_Call
8046 -- N is a selected component node containing the name of the
8047 -- subprogram. If N is not the name of the parent node we must
8048 -- not replace the parent node by the new construct. This case
8049 -- occurs when N is a parameterless call to a subprogram that
8050 -- is an actual parameter of a call to another subprogram. For
8051 -- example:
8052 -- Some_Subprogram (..., Obj.Operation, ...)
8054 and then Name (Parent_Node) = N
8055 then
8056 Node_To_Replace := Parent_Node;
8058 Actuals := Parameter_Associations (Parent_Node);
8060 if Present (Actuals) then
8061 Prepend (Dummy, Actuals);
8062 else
8063 Actuals := New_List (Dummy);
8064 end if;
8066 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
8067 Call_Node :=
8068 Make_Procedure_Call_Statement (Loc,
8069 Name => New_Copy (Subprog),
8070 Parameter_Associations => Actuals);
8072 else
8073 Call_Node :=
8074 Make_Function_Call (Loc,
8075 Name => New_Copy (Subprog),
8076 Parameter_Associations => Actuals);
8077 end if;
8079 -- Before analysis, a function call appears as an indexed component
8080 -- if there are no named associations.
8082 elsif Nkind (Parent_Node) = N_Indexed_Component
8083 and then N = Prefix (Parent_Node)
8084 then
8085 Node_To_Replace := Parent_Node;
8086 Actuals := Expressions (Parent_Node);
8088 Actual := First (Actuals);
8089 while Present (Actual) loop
8090 Analyze (Actual);
8091 Next (Actual);
8092 end loop;
8094 Prepend (Dummy, Actuals);
8096 Call_Node :=
8097 Make_Function_Call (Loc,
8098 Name => New_Copy (Subprog),
8099 Parameter_Associations => Actuals);
8101 -- Parameterless call: Obj.F is rewritten as F (Obj)
8103 else
8104 Node_To_Replace := N;
8106 Call_Node :=
8107 Make_Function_Call (Loc,
8108 Name => New_Copy (Subprog),
8109 Parameter_Associations => New_List (Dummy));
8110 end if;
8111 end Transform_Object_Operation;
8113 ------------------------------
8114 -- Try_Class_Wide_Operation --
8115 ------------------------------
8117 function Try_Class_Wide_Operation
8118 (Call_Node : Node_Id;
8119 Node_To_Replace : Node_Id) return Boolean
8121 Anc_Type : Entity_Id;
8122 Matching_Op : Entity_Id := Empty;
8123 Error : Boolean;
8125 procedure Traverse_Homonyms
8126 (Anc_Type : Entity_Id;
8127 Error : out Boolean);
8128 -- Traverse the homonym chain of the subprogram searching for those
8129 -- homonyms whose first formal has the Anc_Type's class-wide type,
8130 -- or an anonymous access type designating the class-wide type. If
8131 -- an ambiguity is detected, then Error is set to True.
8133 procedure Traverse_Interfaces
8134 (Anc_Type : Entity_Id;
8135 Error : out Boolean);
8136 -- Traverse the list of interfaces, if any, associated with Anc_Type
8137 -- and search for acceptable class-wide homonyms associated with each
8138 -- interface. If an ambiguity is detected, then Error is set to True.
8140 -----------------------
8141 -- Traverse_Homonyms --
8142 -----------------------
8144 procedure Traverse_Homonyms
8145 (Anc_Type : Entity_Id;
8146 Error : out Boolean)
8148 Cls_Type : Entity_Id;
8149 Hom : Entity_Id;
8150 Hom_Ref : Node_Id;
8151 Success : Boolean;
8153 begin
8154 Error := False;
8156 Cls_Type := Class_Wide_Type (Anc_Type);
8158 Hom := Current_Entity (Subprog);
8160 -- Find a non-hidden operation whose first parameter is of the
8161 -- class-wide type, a subtype thereof, or an anonymous access
8162 -- to same. If in an instance, the operation can be considered
8163 -- even if hidden (it may be hidden because the instantiation
8164 -- is expanded after the containing package has been analyzed).
8166 while Present (Hom) loop
8167 if Ekind_In (Hom, E_Procedure, E_Function)
8168 and then (not Is_Hidden (Hom) or else In_Instance)
8169 and then Scope (Hom) = Scope (Anc_Type)
8170 and then Present (First_Formal (Hom))
8171 and then
8172 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
8173 or else
8174 (Is_Access_Type (Etype (First_Formal (Hom)))
8175 and then
8176 Ekind (Etype (First_Formal (Hom))) =
8177 E_Anonymous_Access_Type
8178 and then
8179 Base_Type
8180 (Designated_Type (Etype (First_Formal (Hom)))) =
8181 Cls_Type))
8182 then
8183 -- If the context is a procedure call, ignore functions
8184 -- in the name of the call.
8186 if Ekind (Hom) = E_Function
8187 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
8188 and then N = Name (Parent (N))
8189 then
8190 goto Next_Hom;
8192 -- If the context is a function call, ignore procedures
8193 -- in the name of the call.
8195 elsif Ekind (Hom) = E_Procedure
8196 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
8197 then
8198 goto Next_Hom;
8199 end if;
8201 Set_Etype (Call_Node, Any_Type);
8202 Set_Is_Overloaded (Call_Node, False);
8203 Success := False;
8205 if No (Matching_Op) then
8206 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
8207 Set_Etype (Call_Node, Any_Type);
8208 Set_Parent (Call_Node, Parent (Node_To_Replace));
8210 Set_Name (Call_Node, Hom_Ref);
8212 Analyze_One_Call
8213 (N => Call_Node,
8214 Nam => Hom,
8215 Report => Report_Error,
8216 Success => Success,
8217 Skip_First => True);
8219 Matching_Op :=
8220 Valid_Candidate (Success, Call_Node, Hom);
8222 else
8223 Analyze_One_Call
8224 (N => Call_Node,
8225 Nam => Hom,
8226 Report => Report_Error,
8227 Success => Success,
8228 Skip_First => True);
8230 if Present (Valid_Candidate (Success, Call_Node, Hom))
8231 and then Nkind (Call_Node) /= N_Function_Call
8232 then
8233 Error_Msg_NE ("ambiguous call to&", N, Hom);
8234 Report_Ambiguity (Matching_Op);
8235 Report_Ambiguity (Hom);
8236 Error := True;
8237 return;
8238 end if;
8239 end if;
8240 end if;
8242 <<Next_Hom>>
8243 Hom := Homonym (Hom);
8244 end loop;
8245 end Traverse_Homonyms;
8247 -------------------------
8248 -- Traverse_Interfaces --
8249 -------------------------
8251 procedure Traverse_Interfaces
8252 (Anc_Type : Entity_Id;
8253 Error : out Boolean)
8255 Intface_List : constant List_Id :=
8256 Abstract_Interface_List (Anc_Type);
8257 Intface : Node_Id;
8259 begin
8260 Error := False;
8262 if Is_Non_Empty_List (Intface_List) then
8263 Intface := First (Intface_List);
8264 while Present (Intface) loop
8266 -- Look for acceptable class-wide homonyms associated with
8267 -- the interface.
8269 Traverse_Homonyms (Etype (Intface), Error);
8271 if Error then
8272 return;
8273 end if;
8275 -- Continue the search by looking at each of the interface's
8276 -- associated interface ancestors.
8278 Traverse_Interfaces (Etype (Intface), Error);
8280 if Error then
8281 return;
8282 end if;
8284 Next (Intface);
8285 end loop;
8286 end if;
8287 end Traverse_Interfaces;
8289 -- Start of processing for Try_Class_Wide_Operation
8291 begin
8292 -- If we are searching only for conflicting class-wide subprograms
8293 -- then initialize directly Matching_Op with the target entity.
8295 if CW_Test_Only then
8296 Matching_Op := Entity (Selector_Name (N));
8297 end if;
8299 -- Loop through ancestor types (including interfaces), traversing
8300 -- the homonym chain of the subprogram, trying out those homonyms
8301 -- whose first formal has the class-wide type of the ancestor, or
8302 -- an anonymous access type designating the class-wide type.
8304 Anc_Type := Obj_Type;
8305 loop
8306 -- Look for a match among homonyms associated with the ancestor
8308 Traverse_Homonyms (Anc_Type, Error);
8310 if Error then
8311 return True;
8312 end if;
8314 -- Continue the search for matches among homonyms associated with
8315 -- any interfaces implemented by the ancestor.
8317 Traverse_Interfaces (Anc_Type, Error);
8319 if Error then
8320 return True;
8321 end if;
8323 exit when Etype (Anc_Type) = Anc_Type;
8324 Anc_Type := Etype (Anc_Type);
8325 end loop;
8327 if Present (Matching_Op) then
8328 Set_Etype (Call_Node, Etype (Matching_Op));
8329 end if;
8331 return Present (Matching_Op);
8332 end Try_Class_Wide_Operation;
8334 -----------------------------------
8335 -- Try_One_Prefix_Interpretation --
8336 -----------------------------------
8338 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
8340 -- If the interpretation does not have a valid candidate type,
8341 -- preserve current value of Obj_Type for subsequent errors.
8343 Prev_Obj_Type : constant Entity_Id := Obj_Type;
8345 begin
8346 Obj_Type := T;
8348 if Is_Access_Type (Obj_Type) then
8349 Obj_Type := Designated_Type (Obj_Type);
8350 end if;
8352 if Ekind (Obj_Type) = E_Private_Subtype then
8353 Obj_Type := Base_Type (Obj_Type);
8354 end if;
8356 if Is_Class_Wide_Type (Obj_Type) then
8357 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8358 end if;
8360 -- The type may have be obtained through a limited_with clause,
8361 -- in which case the primitive operations are available on its
8362 -- non-limited view. If still incomplete, retrieve full view.
8364 if Ekind (Obj_Type) = E_Incomplete_Type
8365 and then From_Limited_With (Obj_Type)
8366 and then Has_Non_Limited_View (Obj_Type)
8367 then
8368 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
8369 end if;
8371 -- If the object is not tagged, or the type is still an incomplete
8372 -- type, this is not a prefixed call.
8374 if not Is_Tagged_Type (Obj_Type)
8375 or else Is_Incomplete_Type (Obj_Type)
8376 then
8378 -- Restore previous type if current one is not legal candidate
8380 Obj_Type := Prev_Obj_Type;
8381 return;
8382 end if;
8384 declare
8385 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8386 CW_Result : Boolean;
8387 Prim_Result : Boolean;
8388 pragma Unreferenced (CW_Result);
8390 begin
8391 if not CW_Test_Only then
8392 Prim_Result :=
8393 Try_Primitive_Operation
8394 (Call_Node => New_Call_Node,
8395 Node_To_Replace => Node_To_Replace);
8396 end if;
8398 -- Check if there is a class-wide subprogram covering the
8399 -- primitive. This check must be done even if a candidate
8400 -- was found in order to report ambiguous calls.
8402 if not (Prim_Result) then
8403 CW_Result :=
8404 Try_Class_Wide_Operation
8405 (Call_Node => New_Call_Node,
8406 Node_To_Replace => Node_To_Replace);
8408 -- If we found a primitive we search for class-wide subprograms
8409 -- using a duplicate of the call node (done to avoid missing its
8410 -- decoration if there is no ambiguity).
8412 else
8413 CW_Result :=
8414 Try_Class_Wide_Operation
8415 (Call_Node => Dup_Call_Node,
8416 Node_To_Replace => Node_To_Replace);
8417 end if;
8418 end;
8419 end Try_One_Prefix_Interpretation;
8421 -----------------------------
8422 -- Try_Primitive_Operation --
8423 -----------------------------
8425 function Try_Primitive_Operation
8426 (Call_Node : Node_Id;
8427 Node_To_Replace : Node_Id) return Boolean
8429 Elmt : Elmt_Id;
8430 Prim_Op : Entity_Id;
8431 Matching_Op : Entity_Id := Empty;
8432 Prim_Op_Ref : Node_Id := Empty;
8434 Corr_Type : Entity_Id := Empty;
8435 -- If the prefix is a synchronized type, the controlling type of
8436 -- the primitive operation is the corresponding record type, else
8437 -- this is the object type itself.
8439 Success : Boolean := False;
8441 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8442 -- For tagged types the candidate interpretations are found in
8443 -- the list of primitive operations of the type and its ancestors.
8444 -- For formal tagged types we have to find the operations declared
8445 -- in the same scope as the type (including in the generic formal
8446 -- part) because the type itself carries no primitive operations,
8447 -- except for formal derived types that inherit the operations of
8448 -- the parent and progenitors.
8450 -- If the context is a generic subprogram body, the generic formals
8451 -- are visible by name, but are not in the entity list of the
8452 -- subprogram because that list starts with the subprogram formals.
8453 -- We retrieve the candidate operations from the generic declaration.
8455 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
8456 -- Prefix notation can also be used on operations that are not
8457 -- primitives of the type, but are declared in the same immediate
8458 -- declarative part, which can only mean the corresponding package
8459 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
8460 -- list of primitives with body operations with the same name that
8461 -- may be candidates, so that Try_Primitive_Operations can examine
8462 -- them if no real primitive is found.
8464 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8465 -- An operation that overrides an inherited operation in the private
8466 -- part of its package may be hidden, but if the inherited operation
8467 -- is visible a direct call to it will dispatch to the private one,
8468 -- which is therefore a valid candidate.
8470 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8471 -- Verify that the prefix, dereferenced if need be, is a valid
8472 -- controlling argument in a call to Op. The remaining actuals
8473 -- are checked in the subsequent call to Analyze_One_Call.
8475 ------------------------------
8476 -- Collect_Generic_Type_Ops --
8477 ------------------------------
8479 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8480 Bas : constant Entity_Id := Base_Type (T);
8481 Candidates : constant Elist_Id := New_Elmt_List;
8482 Subp : Entity_Id;
8483 Formal : Entity_Id;
8485 procedure Check_Candidate;
8486 -- The operation is a candidate if its first parameter is a
8487 -- controlling operand of the desired type.
8489 -----------------------
8490 -- Check_Candidate; --
8491 -----------------------
8493 procedure Check_Candidate is
8494 begin
8495 Formal := First_Formal (Subp);
8497 if Present (Formal)
8498 and then Is_Controlling_Formal (Formal)
8499 and then
8500 (Base_Type (Etype (Formal)) = Bas
8501 or else
8502 (Is_Access_Type (Etype (Formal))
8503 and then Designated_Type (Etype (Formal)) = Bas))
8504 then
8505 Append_Elmt (Subp, Candidates);
8506 end if;
8507 end Check_Candidate;
8509 -- Start of processing for Collect_Generic_Type_Ops
8511 begin
8512 if Is_Derived_Type (T) then
8513 return Primitive_Operations (T);
8515 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8517 -- Scan the list of generic formals to find subprograms
8518 -- that may have a first controlling formal of the type.
8520 if Nkind (Unit_Declaration_Node (Scope (T))) =
8521 N_Generic_Subprogram_Declaration
8522 then
8523 declare
8524 Decl : Node_Id;
8526 begin
8527 Decl :=
8528 First (Generic_Formal_Declarations
8529 (Unit_Declaration_Node (Scope (T))));
8530 while Present (Decl) loop
8531 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8532 Subp := Defining_Entity (Decl);
8533 Check_Candidate;
8534 end if;
8536 Next (Decl);
8537 end loop;
8538 end;
8539 end if;
8540 return Candidates;
8542 else
8543 -- Scan the list of entities declared in the same scope as
8544 -- the type. In general this will be an open scope, given that
8545 -- the call we are analyzing can only appear within a generic
8546 -- declaration or body (either the one that declares T, or a
8547 -- child unit).
8549 -- For a subtype representing a generic actual type, go to the
8550 -- base type.
8552 if Is_Generic_Actual_Type (T) then
8553 Subp := First_Entity (Scope (Base_Type (T)));
8554 else
8555 Subp := First_Entity (Scope (T));
8556 end if;
8558 while Present (Subp) loop
8559 if Is_Overloadable (Subp) then
8560 Check_Candidate;
8561 end if;
8563 Next_Entity (Subp);
8564 end loop;
8566 return Candidates;
8567 end if;
8568 end Collect_Generic_Type_Ops;
8570 ----------------------------
8571 -- Extended_Primitive_Ops --
8572 ----------------------------
8574 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
8575 Type_Scope : constant Entity_Id := Scope (T);
8577 Body_Decls : List_Id;
8578 Op_Found : Boolean;
8579 Op : Entity_Id;
8580 Op_List : Elist_Id;
8582 begin
8583 Op_List := Primitive_Operations (T);
8585 if Ekind (Type_Scope) = E_Package
8586 and then In_Package_Body (Type_Scope)
8587 and then In_Open_Scopes (Type_Scope)
8588 then
8589 -- Retrieve list of declarations of package body.
8591 Body_Decls :=
8592 Declarations
8593 (Unit_Declaration_Node
8594 (Corresponding_Body
8595 (Unit_Declaration_Node (Type_Scope))));
8597 Op := Current_Entity (Subprog);
8598 Op_Found := False;
8599 while Present (Op) loop
8600 if Comes_From_Source (Op)
8601 and then Is_Overloadable (Op)
8603 -- Exclude overriding primitive operations of a type
8604 -- extension declared in the package body, to prevent
8605 -- duplicates in extended list.
8607 and then not Is_Primitive (Op)
8608 and then Is_List_Member (Unit_Declaration_Node (Op))
8609 and then List_Containing (Unit_Declaration_Node (Op)) =
8610 Body_Decls
8611 then
8612 if not Op_Found then
8614 -- Copy list of primitives so it is not affected for
8615 -- other uses.
8617 Op_List := New_Copy_Elist (Op_List);
8618 Op_Found := True;
8619 end if;
8621 Append_Elmt (Op, Op_List);
8622 end if;
8624 Op := Homonym (Op);
8625 end loop;
8626 end if;
8628 return Op_List;
8629 end Extended_Primitive_Ops;
8631 ---------------------------
8632 -- Is_Private_Overriding --
8633 ---------------------------
8635 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8636 Visible_Op : constant Entity_Id := Homonym (Op);
8638 begin
8639 return Present (Visible_Op)
8640 and then Scope (Op) = Scope (Visible_Op)
8641 and then not Comes_From_Source (Visible_Op)
8642 and then Alias (Visible_Op) = Op
8643 and then not Is_Hidden (Visible_Op);
8644 end Is_Private_Overriding;
8646 -----------------------------
8647 -- Valid_First_Argument_Of --
8648 -----------------------------
8650 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
8651 Typ : Entity_Id := Etype (First_Formal (Op));
8653 begin
8654 if Is_Concurrent_Type (Typ)
8655 and then Present (Corresponding_Record_Type (Typ))
8656 then
8657 Typ := Corresponding_Record_Type (Typ);
8658 end if;
8660 -- Simple case. Object may be a subtype of the tagged type or
8661 -- may be the corresponding record of a synchronized type.
8663 return Obj_Type = Typ
8664 or else Base_Type (Obj_Type) = Typ
8665 or else Corr_Type = Typ
8667 -- Prefix can be dereferenced
8669 or else
8670 (Is_Access_Type (Corr_Type)
8671 and then Designated_Type (Corr_Type) = Typ)
8673 -- Formal is an access parameter, for which the object
8674 -- can provide an access.
8676 or else
8677 (Ekind (Typ) = E_Anonymous_Access_Type
8678 and then
8679 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
8680 end Valid_First_Argument_Of;
8682 -- Start of processing for Try_Primitive_Operation
8684 begin
8685 -- Look for subprograms in the list of primitive operations. The name
8686 -- must be identical, and the kind of call indicates the expected
8687 -- kind of operation (function or procedure). If the type is a
8688 -- (tagged) synchronized type, the primitive ops are attached to the
8689 -- corresponding record (base) type.
8691 if Is_Concurrent_Type (Obj_Type) then
8692 if Present (Corresponding_Record_Type (Obj_Type)) then
8693 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8694 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8695 else
8696 Corr_Type := Obj_Type;
8697 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8698 end if;
8700 elsif not Is_Generic_Type (Obj_Type) then
8701 Corr_Type := Obj_Type;
8702 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
8704 else
8705 Corr_Type := Obj_Type;
8706 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8707 end if;
8709 while Present (Elmt) loop
8710 Prim_Op := Node (Elmt);
8712 if Chars (Prim_Op) = Chars (Subprog)
8713 and then Present (First_Formal (Prim_Op))
8714 and then Valid_First_Argument_Of (Prim_Op)
8715 and then
8716 (Nkind (Call_Node) = N_Function_Call)
8718 (Ekind (Prim_Op) = E_Function)
8719 then
8720 -- Ada 2005 (AI-251): If this primitive operation corresponds
8721 -- to an immediate ancestor interface there is no need to add
8722 -- it to the list of interpretations; the corresponding aliased
8723 -- primitive is also in this list of primitive operations and
8724 -- will be used instead.
8726 if (Present (Interface_Alias (Prim_Op))
8727 and then Is_Ancestor (Find_Dispatching_Type
8728 (Alias (Prim_Op)), Corr_Type))
8730 -- Do not consider hidden primitives unless the type is in an
8731 -- open scope or we are within an instance, where visibility
8732 -- is known to be correct, or else if this is an overriding
8733 -- operation in the private part for an inherited operation.
8735 or else (Is_Hidden (Prim_Op)
8736 and then not Is_Immediately_Visible (Obj_Type)
8737 and then not In_Instance
8738 and then not Is_Private_Overriding (Prim_Op))
8739 then
8740 goto Continue;
8741 end if;
8743 Set_Etype (Call_Node, Any_Type);
8744 Set_Is_Overloaded (Call_Node, False);
8746 if No (Matching_Op) then
8747 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
8748 Candidate := Prim_Op;
8750 Set_Parent (Call_Node, Parent (Node_To_Replace));
8752 Set_Name (Call_Node, Prim_Op_Ref);
8753 Success := False;
8755 Analyze_One_Call
8756 (N => Call_Node,
8757 Nam => Prim_Op,
8758 Report => Report_Error,
8759 Success => Success,
8760 Skip_First => True);
8762 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
8764 -- More than one interpretation, collect for subsequent
8765 -- disambiguation. If this is a procedure call and there
8766 -- is another match, report ambiguity now.
8768 else
8769 Analyze_One_Call
8770 (N => Call_Node,
8771 Nam => Prim_Op,
8772 Report => Report_Error,
8773 Success => Success,
8774 Skip_First => True);
8776 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8777 and then Nkind (Call_Node) /= N_Function_Call
8778 then
8779 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
8780 Report_Ambiguity (Matching_Op);
8781 Report_Ambiguity (Prim_Op);
8782 return True;
8783 end if;
8784 end if;
8785 end if;
8787 <<Continue>>
8788 Next_Elmt (Elmt);
8789 end loop;
8791 if Present (Matching_Op) then
8792 Set_Etype (Call_Node, Etype (Matching_Op));
8793 end if;
8795 return Present (Matching_Op);
8796 end Try_Primitive_Operation;
8798 -- Start of processing for Try_Object_Operation
8800 begin
8801 Analyze_Expression (Obj);
8803 -- Analyze the actuals if node is known to be a subprogram call
8805 if Is_Subprg_Call and then N = Name (Parent (N)) then
8806 Actual := First (Parameter_Associations (Parent (N)));
8807 while Present (Actual) loop
8808 Analyze_Expression (Actual);
8809 Next (Actual);
8810 end loop;
8811 end if;
8813 -- Build a subprogram call node, using a copy of Obj as its first
8814 -- actual. This is a placeholder, to be replaced by an explicit
8815 -- dereference when needed.
8817 Transform_Object_Operation
8818 (Call_Node => New_Call_Node,
8819 Node_To_Replace => Node_To_Replace);
8821 Set_Etype (New_Call_Node, Any_Type);
8822 Set_Etype (Subprog, Any_Type);
8823 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
8825 if not Is_Overloaded (Obj) then
8826 Try_One_Prefix_Interpretation (Obj_Type);
8828 else
8829 declare
8830 I : Interp_Index;
8831 It : Interp;
8832 begin
8833 Get_First_Interp (Obj, I, It);
8834 while Present (It.Nam) loop
8835 Try_One_Prefix_Interpretation (It.Typ);
8836 Get_Next_Interp (I, It);
8837 end loop;
8838 end;
8839 end if;
8841 if Etype (New_Call_Node) /= Any_Type then
8843 -- No need to complete the tree transformations if we are only
8844 -- searching for conflicting class-wide subprograms
8846 if CW_Test_Only then
8847 return False;
8848 else
8849 Complete_Object_Operation
8850 (Call_Node => New_Call_Node,
8851 Node_To_Replace => Node_To_Replace);
8852 return True;
8853 end if;
8855 elsif Present (Candidate) then
8857 -- The argument list is not type correct. Re-analyze with error
8858 -- reporting enabled, and use one of the possible candidates.
8859 -- In All_Errors_Mode, re-analyze all failed interpretations.
8861 if All_Errors_Mode then
8862 Report_Error := True;
8863 if Try_Primitive_Operation
8864 (Call_Node => New_Call_Node,
8865 Node_To_Replace => Node_To_Replace)
8867 or else
8868 Try_Class_Wide_Operation
8869 (Call_Node => New_Call_Node,
8870 Node_To_Replace => Node_To_Replace)
8871 then
8872 null;
8873 end if;
8875 else
8876 Analyze_One_Call
8877 (N => New_Call_Node,
8878 Nam => Candidate,
8879 Report => True,
8880 Success => Success,
8881 Skip_First => True);
8882 end if;
8884 -- No need for further errors
8886 return True;
8888 else
8889 -- There was no candidate operation, so report it as an error
8890 -- in the caller: Analyze_Selected_Component.
8892 return False;
8893 end if;
8894 end Try_Object_Operation;
8896 ---------
8897 -- wpo --
8898 ---------
8900 procedure wpo (T : Entity_Id) is
8901 Op : Entity_Id;
8902 E : Elmt_Id;
8904 begin
8905 if not Is_Tagged_Type (T) then
8906 return;
8907 end if;
8909 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8910 while Present (E) loop
8911 Op := Node (E);
8912 Write_Int (Int (Op));
8913 Write_Str (" === ");
8914 Write_Name (Chars (Op));
8915 Write_Str (" in ");
8916 Write_Name (Chars (Scope (Op)));
8917 Next_Elmt (E);
8918 Write_Eol;
8919 end loop;
8920 end wpo;
8922 end Sem_Ch4;