1 /* Tail merging for gimple.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
190 #include "coretypes.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
205 #include "tree-ssa-sccvn.h"
208 #include "tree-cfgcleanup.h"
210 const int ignore_edge_flags
= EDGE_DFS_BACK
| EDGE_EXECUTABLE
;
212 /* Describes a group of bbs with the same successors. The successor bbs are
213 cached in succs, and the successor edge flags are cached in succ_flags.
214 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
215 it's marked in inverse.
216 Additionally, the hash value for the struct is cached in hashval, and
217 in_worklist indicates whether it's currently part of worklist. */
219 struct same_succ
: pointer_hash
<same_succ
>
221 /* The bbs that have the same successor bbs. */
223 /* The successor bbs. */
225 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
228 /* The edge flags for each of the successor bbs. */
230 /* Indicates whether the struct is currently in the worklist. */
232 /* The hash value of the struct. */
235 /* hash_table support. */
236 static inline hashval_t
hash (const same_succ
*);
237 static int equal (const same_succ
*, const same_succ
*);
238 static void remove (same_succ
*);
241 /* hash routine for hash_table support, returns hashval of E. */
244 same_succ::hash (const same_succ
*e
)
249 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
253 /* The bbs in the cluster. */
255 /* The preds of the bbs in the cluster. */
257 /* Index in all_clusters vector. */
259 /* The bb to replace the cluster with. */
267 /* The number of non-debug statements in the bb. */
269 /* The same_succ that this bb is a member of. */
270 same_succ
*bb_same_succ
;
271 /* The cluster that this bb is a member of. */
273 /* The vop state at the exit of a bb. This is shortlived data, used to
274 communicate data between update_block_by and update_vuses. */
276 /* The bb that either contains or is dominated by the dependencies of the
281 /* Macros to access the fields of struct aux_bb_info. */
283 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
284 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
285 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
286 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
287 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
289 /* Returns true if the only effect a statement STMT has, is to define locally
293 stmt_local_def (gimple
*stmt
)
295 basic_block bb
, def_bb
;
296 imm_use_iterator iter
;
301 if (gimple_vdef (stmt
) != NULL_TREE
302 || gimple_has_side_effects (stmt
)
303 || gimple_could_trap_p_1 (stmt
, false, false)
304 || gimple_vuse (stmt
) != NULL_TREE
)
307 def_p
= SINGLE_SSA_DEF_OPERAND (stmt
, SSA_OP_DEF
);
311 val
= DEF_FROM_PTR (def_p
);
312 if (val
== NULL_TREE
|| TREE_CODE (val
) != SSA_NAME
)
315 def_bb
= gimple_bb (stmt
);
317 FOR_EACH_IMM_USE_FAST (use_p
, iter
, val
)
319 if (is_gimple_debug (USE_STMT (use_p
)))
321 bb
= gimple_bb (USE_STMT (use_p
));
325 if (gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
326 && EDGE_PRED (bb
, PHI_ARG_INDEX_FROM_USE (use_p
))->src
== def_bb
)
335 /* Let GSI skip forwards over local defs. */
338 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
344 if (gsi_end_p (*gsi
))
346 stmt
= gsi_stmt (*gsi
);
347 if (!stmt_local_def (stmt
))
349 gsi_next_nondebug (gsi
);
353 /* VAL1 and VAL2 are either:
354 - uses in BB1 and BB2, or
355 - phi alternatives for BB1 and BB2.
356 Return true if the uses have the same gvn value. */
359 gvn_uses_equal (tree val1
, tree val2
)
361 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
366 if (vn_valueize (val1
) != vn_valueize (val2
))
369 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
370 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
373 /* Prints E to FILE. */
376 same_succ_print (FILE *file
, const same_succ
*e
)
379 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
380 bitmap_print (file
, e
->succs
, "succs:", "\n");
381 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
382 fprintf (file
, "flags:");
383 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
384 fprintf (file
, " %x", e
->succ_flags
[i
]);
385 fprintf (file
, "\n");
388 /* Prints same_succ VE to VFILE. */
391 ssa_same_succ_print_traverse (same_succ
**pe
, FILE *file
)
393 const same_succ
*e
= *pe
;
394 same_succ_print (file
, e
);
398 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
401 update_dep_bb (basic_block use_bb
, tree val
)
406 if (TREE_CODE (val
) != SSA_NAME
)
409 /* Skip use of global def. */
410 if (SSA_NAME_IS_DEFAULT_DEF (val
))
413 /* Skip use of local def. */
414 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
415 if (dep_bb
== use_bb
)
418 if (BB_DEP_BB (use_bb
) == NULL
419 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
420 BB_DEP_BB (use_bb
) = dep_bb
;
423 /* Update BB_DEP_BB, given the dependencies in STMT. */
426 stmt_update_dep_bb (gimple
*stmt
)
431 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
432 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
435 /* Calculates hash value for same_succ VE. */
438 same_succ_hash (const same_succ
*e
)
440 inchash::hash
hstate (bitmap_hash (e
->succs
));
443 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
444 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, first
);
451 for (gimple_stmt_iterator gsi
= gsi_start_nondebug_bb (bb
);
452 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
454 stmt
= gsi_stmt (gsi
);
455 stmt_update_dep_bb (stmt
);
456 if (stmt_local_def (stmt
))
460 hstate
.add_int (gimple_code (stmt
));
461 if (is_gimple_assign (stmt
))
462 hstate
.add_int (gimple_assign_rhs_code (stmt
));
463 if (!is_gimple_call (stmt
))
465 if (gimple_call_internal_p (stmt
))
466 hstate
.add_int (gimple_call_internal_fn (stmt
));
469 inchash::add_expr (gimple_call_fn (stmt
), hstate
);
470 if (gimple_call_chain (stmt
))
471 inchash::add_expr (gimple_call_chain (stmt
), hstate
);
473 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
475 arg
= gimple_call_arg (stmt
, i
);
476 arg
= vn_valueize (arg
);
477 inchash::add_expr (arg
, hstate
);
481 hstate
.add_int (size
);
484 hstate
.add_int (bb
->loop_father
->num
);
486 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
488 flags
= e
->succ_flags
[i
];
489 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
490 hstate
.add_int (flags
);
493 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
495 int n
= find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, s
))->dest_idx
;
496 for (gphi_iterator gsi
= gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun
, s
));
500 gphi
*phi
= gsi
.phi ();
501 tree lhs
= gimple_phi_result (phi
);
502 tree val
= gimple_phi_arg_def (phi
, n
);
504 if (virtual_operand_p (lhs
))
506 update_dep_bb (bb
, val
);
510 return hstate
.end ();
513 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
514 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
515 the other edge flags. */
518 inverse_flags (const same_succ
*e1
, const same_succ
*e2
)
520 int f1a
, f1b
, f2a
, f2b
;
521 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
523 if (e1
->succ_flags
.length () != 2)
526 f1a
= e1
->succ_flags
[0];
527 f1b
= e1
->succ_flags
[1];
528 f2a
= e2
->succ_flags
[0];
529 f2b
= e2
->succ_flags
[1];
531 if (f1a
== f2a
&& f1b
== f2b
)
534 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
537 /* Compares SAME_SUCCs E1 and E2. */
540 same_succ::equal (const same_succ
*e1
, const same_succ
*e2
)
542 unsigned int i
, first1
, first2
;
543 gimple_stmt_iterator gsi1
, gsi2
;
545 basic_block bb1
, bb2
;
550 if (e1
->hashval
!= e2
->hashval
)
553 if (e1
->succ_flags
.length () != e2
->succ_flags
.length ())
556 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
559 if (!inverse_flags (e1
, e2
))
561 for (i
= 0; i
< e1
->succ_flags
.length (); ++i
)
562 if (e1
->succ_flags
[i
] != e2
->succ_flags
[i
])
566 first1
= bitmap_first_set_bit (e1
->bbs
);
567 first2
= bitmap_first_set_bit (e2
->bbs
);
569 bb1
= BASIC_BLOCK_FOR_FN (cfun
, first1
);
570 bb2
= BASIC_BLOCK_FOR_FN (cfun
, first2
);
572 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
575 if (bb1
->loop_father
!= bb2
->loop_father
)
578 gsi1
= gsi_start_nondebug_bb (bb1
);
579 gsi2
= gsi_start_nondebug_bb (bb2
);
580 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
581 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
582 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
584 s1
= gsi_stmt (gsi1
);
585 s2
= gsi_stmt (gsi2
);
586 if (gimple_code (s1
) != gimple_code (s2
))
588 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
590 gsi_next_nondebug (&gsi1
);
591 gsi_next_nondebug (&gsi2
);
592 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
593 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
599 /* Alloc and init a new SAME_SUCC. */
602 same_succ_alloc (void)
604 same_succ
*same
= XNEW (struct same_succ
);
606 same
->bbs
= BITMAP_ALLOC (NULL
);
607 same
->succs
= BITMAP_ALLOC (NULL
);
608 same
->inverse
= BITMAP_ALLOC (NULL
);
609 same
->succ_flags
.create (10);
610 same
->in_worklist
= false;
615 /* Delete same_succ E. */
618 same_succ::remove (same_succ
*e
)
620 BITMAP_FREE (e
->bbs
);
621 BITMAP_FREE (e
->succs
);
622 BITMAP_FREE (e
->inverse
);
623 e
->succ_flags
.release ();
628 /* Reset same_succ SAME. */
631 same_succ_reset (same_succ
*same
)
633 bitmap_clear (same
->bbs
);
634 bitmap_clear (same
->succs
);
635 bitmap_clear (same
->inverse
);
636 same
->succ_flags
.truncate (0);
639 static hash_table
<same_succ
> *same_succ_htab
;
641 /* Array that is used to store the edge flags for a successor. */
643 static int *same_succ_edge_flags
;
645 /* Bitmap that is used to mark bbs that are recently deleted. */
647 static bitmap deleted_bbs
;
649 /* Bitmap that is used to mark predecessors of bbs that are
652 static bitmap deleted_bb_preds
;
654 /* Prints same_succ_htab to stderr. */
656 extern void debug_same_succ (void);
658 debug_same_succ ( void)
660 same_succ_htab
->traverse
<FILE *, ssa_same_succ_print_traverse
> (stderr
);
664 /* Vector of bbs to process. */
666 static vec
<same_succ
*> worklist
;
668 /* Prints worklist to FILE. */
671 print_worklist (FILE *file
)
674 for (i
= 0; i
< worklist
.length (); ++i
)
675 same_succ_print (file
, worklist
[i
]);
678 /* Adds SAME to worklist. */
681 add_to_worklist (same_succ
*same
)
683 if (same
->in_worklist
)
686 if (bitmap_count_bits (same
->bbs
) < 2)
689 same
->in_worklist
= true;
690 worklist
.safe_push (same
);
693 /* Add BB to same_succ_htab. */
696 find_same_succ_bb (basic_block bb
, same_succ
**same_p
)
700 same_succ
*same
= *same_p
;
707 bitmap_set_bit (same
->bbs
, bb
->index
);
708 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
710 int index
= e
->dest
->index
;
711 bitmap_set_bit (same
->succs
, index
);
712 same_succ_edge_flags
[index
] = (e
->flags
& ~ignore_edge_flags
);
714 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
715 same
->succ_flags
.safe_push (same_succ_edge_flags
[j
]);
717 same
->hashval
= same_succ_hash (same
);
719 slot
= same_succ_htab
->find_slot_with_hash (same
, same
->hashval
, INSERT
);
723 BB_SAME_SUCC (bb
) = same
;
724 add_to_worklist (same
);
729 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
730 BB_SAME_SUCC (bb
) = *slot
;
731 add_to_worklist (*slot
);
732 if (inverse_flags (same
, *slot
))
733 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
734 same_succ_reset (same
);
738 /* Find bbs with same successors. */
741 find_same_succ (void)
743 same_succ
*same
= same_succ_alloc ();
746 FOR_EACH_BB_FN (bb
, cfun
)
748 find_same_succ_bb (bb
, &same
);
750 same
= same_succ_alloc ();
753 same_succ::remove (same
);
756 /* Initializes worklist administration. */
761 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
762 same_succ_htab
= new hash_table
<same_succ
> (n_basic_blocks_for_fn (cfun
));
763 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
764 deleted_bbs
= BITMAP_ALLOC (NULL
);
765 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
766 worklist
.create (n_basic_blocks_for_fn (cfun
));
769 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
771 fprintf (dump_file
, "initial worklist:\n");
772 print_worklist (dump_file
);
776 /* Deletes worklist administration. */
779 delete_worklist (void)
781 free_aux_for_blocks ();
782 delete same_succ_htab
;
783 same_succ_htab
= NULL
;
784 XDELETEVEC (same_succ_edge_flags
);
785 same_succ_edge_flags
= NULL
;
786 BITMAP_FREE (deleted_bbs
);
787 BITMAP_FREE (deleted_bb_preds
);
791 /* Mark BB as deleted, and mark its predecessors. */
794 mark_basic_block_deleted (basic_block bb
)
799 bitmap_set_bit (deleted_bbs
, bb
->index
);
801 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
802 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
805 /* Removes BB from its corresponding same_succ. */
808 same_succ_flush_bb (basic_block bb
)
810 same_succ
*same
= BB_SAME_SUCC (bb
);
814 BB_SAME_SUCC (bb
) = NULL
;
815 if (bitmap_single_bit_set_p (same
->bbs
))
816 same_succ_htab
->remove_elt_with_hash (same
, same
->hashval
);
818 bitmap_clear_bit (same
->bbs
, bb
->index
);
821 /* Removes all bbs in BBS from their corresponding same_succ. */
824 same_succ_flush_bbs (bitmap bbs
)
829 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
830 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun
, i
));
833 /* Release the last vdef in BB, either normal or phi result. */
836 release_last_vdef (basic_block bb
)
838 for (gimple_stmt_iterator i
= gsi_last_bb (bb
); !gsi_end_p (i
);
839 gsi_prev_nondebug (&i
))
841 gimple
*stmt
= gsi_stmt (i
);
842 if (gimple_vdef (stmt
) == NULL_TREE
)
845 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
849 for (gphi_iterator i
= gsi_start_phis (bb
); !gsi_end_p (i
);
852 gphi
*phi
= i
.phi ();
853 tree res
= gimple_phi_result (phi
);
855 if (!virtual_operand_p (res
))
858 mark_virtual_phi_result_for_renaming (phi
);
863 /* For deleted_bb_preds, find bbs with same successors. */
866 update_worklist (void)
873 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
874 bitmap_clear (deleted_bbs
);
876 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
877 same_succ_flush_bbs (deleted_bb_preds
);
879 same
= same_succ_alloc ();
880 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
882 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
883 gcc_assert (bb
!= NULL
);
884 find_same_succ_bb (bb
, &same
);
886 same
= same_succ_alloc ();
888 same_succ::remove (same
);
889 bitmap_clear (deleted_bb_preds
);
892 /* Prints cluster C to FILE. */
895 print_cluster (FILE *file
, bb_cluster
*c
)
899 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
900 bitmap_print (file
, c
->preds
, "preds:", "\n");
903 /* Prints cluster C to stderr. */
905 extern void debug_cluster (bb_cluster
*);
907 debug_cluster (bb_cluster
*c
)
909 print_cluster (stderr
, c
);
912 /* Update C->rep_bb, given that BB is added to the cluster. */
915 update_rep_bb (bb_cluster
*c
, basic_block bb
)
918 if (c
->rep_bb
== NULL
)
924 /* Current needs no deps, keep it. */
925 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
928 /* Bb needs no deps, change rep_bb. */
929 if (BB_DEP_BB (bb
) == NULL
)
935 /* Bb needs last deps earlier than current, change rep_bb. A potential
936 problem with this, is that the first deps might also be earlier, which
937 would mean we prefer longer lifetimes for the deps. To be able to check
938 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
939 BB_DEP_BB, which is really BB_LAST_DEP_BB.
940 The benefit of choosing the bb with last deps earlier, is that it can
941 potentially be used as replacement for more bbs. */
942 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
946 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
949 add_bb_to_cluster (bb_cluster
*c
, basic_block bb
)
954 bitmap_set_bit (c
->bbs
, bb
->index
);
956 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
957 bitmap_set_bit (c
->preds
, e
->src
->index
);
959 update_rep_bb (c
, bb
);
962 /* Allocate and init new cluster. */
968 c
= XCNEW (bb_cluster
);
969 c
->bbs
= BITMAP_ALLOC (NULL
);
970 c
->preds
= BITMAP_ALLOC (NULL
);
975 /* Delete clusters. */
978 delete_cluster (bb_cluster
*c
)
982 BITMAP_FREE (c
->bbs
);
983 BITMAP_FREE (c
->preds
);
988 /* Array that contains all clusters. */
990 static vec
<bb_cluster
*> all_clusters
;
992 /* Allocate all cluster vectors. */
995 alloc_cluster_vectors (void)
997 all_clusters
.create (n_basic_blocks_for_fn (cfun
));
1000 /* Reset all cluster vectors. */
1003 reset_cluster_vectors (void)
1007 for (i
= 0; i
< all_clusters
.length (); ++i
)
1008 delete_cluster (all_clusters
[i
]);
1009 all_clusters
.truncate (0);
1010 FOR_EACH_BB_FN (bb
, cfun
)
1011 BB_CLUSTER (bb
) = NULL
;
1014 /* Delete all cluster vectors. */
1017 delete_cluster_vectors (void)
1020 for (i
= 0; i
< all_clusters
.length (); ++i
)
1021 delete_cluster (all_clusters
[i
]);
1022 all_clusters
.release ();
1025 /* Merge cluster C2 into C1. */
1028 merge_clusters (bb_cluster
*c1
, bb_cluster
*c2
)
1030 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
1031 bitmap_ior_into (c1
->preds
, c2
->preds
);
1034 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1035 all_clusters, or merge c with existing cluster. */
1038 set_cluster (basic_block bb1
, basic_block bb2
)
1040 basic_block merge_bb
, other_bb
;
1041 bb_cluster
*merge
, *old
, *c
;
1043 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
1046 add_bb_to_cluster (c
, bb1
);
1047 add_bb_to_cluster (c
, bb2
);
1048 BB_CLUSTER (bb1
) = c
;
1049 BB_CLUSTER (bb2
) = c
;
1050 c
->index
= all_clusters
.length ();
1051 all_clusters
.safe_push (c
);
1053 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1055 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1056 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1057 merge
= BB_CLUSTER (merge_bb
);
1058 add_bb_to_cluster (merge
, other_bb
);
1059 BB_CLUSTER (other_bb
) = merge
;
1061 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1066 old
= BB_CLUSTER (bb2
);
1067 merge
= BB_CLUSTER (bb1
);
1068 merge_clusters (merge
, old
);
1069 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1070 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun
, i
)) = merge
;
1071 all_clusters
[old
->index
] = NULL
;
1072 update_rep_bb (merge
, old
->rep_bb
);
1073 delete_cluster (old
);
1079 /* Return true if gimple operands T1 and T2 have the same value. */
1082 gimple_operand_equal_value_p (tree t1
, tree t2
)
1091 if (operand_equal_p (t1
, t2
, OEP_MATCH_SIDE_EFFECTS
))
1094 return gvn_uses_equal (t1
, t2
);
1097 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1098 gimple_bb (s2) are members of SAME_SUCC. */
1101 gimple_equal_p (same_succ
*same_succ
, gimple
*s1
, gimple
*s2
)
1105 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1108 enum tree_code code1
, code2
;
1110 if (gimple_code (s1
) != gimple_code (s2
))
1113 switch (gimple_code (s1
))
1116 if (!gimple_call_same_target_p (s1
, s2
))
1119 t1
= gimple_call_chain (s1
);
1120 t2
= gimple_call_chain (s2
);
1121 if (!gimple_operand_equal_value_p (t1
, t2
))
1124 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1127 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1129 t1
= gimple_call_arg (s1
, i
);
1130 t2
= gimple_call_arg (s2
, i
);
1131 if (!gimple_operand_equal_value_p (t1
, t2
))
1135 lhs1
= gimple_get_lhs (s1
);
1136 lhs2
= gimple_get_lhs (s2
);
1137 if (lhs1
== NULL_TREE
&& lhs2
== NULL_TREE
)
1139 if (lhs1
== NULL_TREE
|| lhs2
== NULL_TREE
)
1141 if (TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
)
1142 return vn_valueize (lhs1
) == vn_valueize (lhs2
);
1143 return operand_equal_p (lhs1
, lhs2
, 0);
1146 lhs1
= gimple_get_lhs (s1
);
1147 lhs2
= gimple_get_lhs (s2
);
1148 if (TREE_CODE (lhs1
) != SSA_NAME
1149 && TREE_CODE (lhs2
) != SSA_NAME
)
1150 return (operand_equal_p (lhs1
, lhs2
, 0)
1151 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1
),
1152 gimple_assign_rhs1 (s2
)));
1153 else if (TREE_CODE (lhs1
) == SSA_NAME
1154 && TREE_CODE (lhs2
) == SSA_NAME
)
1155 return operand_equal_p (gimple_assign_rhs1 (s1
),
1156 gimple_assign_rhs1 (s2
), 0);
1160 t1
= gimple_cond_lhs (s1
);
1161 t2
= gimple_cond_lhs (s2
);
1162 if (!gimple_operand_equal_value_p (t1
, t2
))
1165 t1
= gimple_cond_rhs (s1
);
1166 t2
= gimple_cond_rhs (s2
);
1167 if (!gimple_operand_equal_value_p (t1
, t2
))
1170 code1
= gimple_expr_code (s1
);
1171 code2
= gimple_expr_code (s2
);
1172 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1173 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1176 bool honor_nans
= HONOR_NANS (t1
);
1177 code2
= invert_tree_comparison (code2
, honor_nans
);
1179 return code1
== code2
;
1186 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1187 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1188 processed statements. */
1191 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
, tree
*vuse
,
1199 if (gsi_end_p (*gsi
))
1201 stmt
= gsi_stmt (*gsi
);
1203 lvuse
= gimple_vuse (stmt
);
1204 if (lvuse
!= NULL_TREE
)
1207 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_DEF
))
1208 *vuse_escaped
= true;
1211 if (!stmt_local_def (stmt
))
1213 gsi_prev_nondebug (gsi
);
1217 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1218 STMT2 are allowed to be merged. */
1221 merge_stmts_p (gimple
*stmt1
, gimple
*stmt2
)
1223 /* What could be better than this here is to blacklist the bb
1224 containing the stmt, when encountering the stmt f.i. in
1226 if (is_tm_ending (stmt1
))
1229 /* Verify EH landing pads. */
1230 if (lookup_stmt_eh_lp_fn (cfun
, stmt1
) != lookup_stmt_eh_lp_fn (cfun
, stmt2
))
1233 if (is_gimple_call (stmt1
)
1234 && gimple_call_internal_p (stmt1
))
1235 switch (gimple_call_internal_fn (stmt1
))
1237 case IFN_UBSAN_NULL
:
1238 case IFN_UBSAN_BOUNDS
:
1239 case IFN_UBSAN_VPTR
:
1240 case IFN_UBSAN_CHECK_ADD
:
1241 case IFN_UBSAN_CHECK_SUB
:
1242 case IFN_UBSAN_CHECK_MUL
:
1243 case IFN_UBSAN_OBJECT_SIZE
:
1244 case IFN_ASAN_CHECK
:
1245 /* For these internal functions, gimple_location is an implicit
1246 parameter, which will be used explicitly after expansion.
1247 Merging these statements may cause confusing line numbers in
1248 sanitizer messages. */
1249 return gimple_location (stmt1
) == gimple_location (stmt2
);
1257 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1261 find_duplicate (same_succ
*same_succ
, basic_block bb1
, basic_block bb2
)
1263 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1264 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1265 tree vuse1
= NULL_TREE
, vuse2
= NULL_TREE
;
1266 bool vuse_escaped
= false;
1268 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1269 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1271 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1273 gimple
*stmt1
= gsi_stmt (gsi1
);
1274 gimple
*stmt2
= gsi_stmt (gsi2
);
1276 if (gimple_code (stmt1
) == GIMPLE_LABEL
1277 && gimple_code (stmt2
) == GIMPLE_LABEL
)
1280 if (!gimple_equal_p (same_succ
, stmt1
, stmt2
))
1283 if (!merge_stmts_p (stmt1
, stmt2
))
1286 gsi_prev_nondebug (&gsi1
);
1287 gsi_prev_nondebug (&gsi2
);
1288 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1289 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1292 while (!gsi_end_p (gsi1
) && gimple_code (gsi_stmt (gsi1
)) == GIMPLE_LABEL
)
1294 tree label
= gimple_label_label (as_a
<glabel
*> (gsi_stmt (gsi1
)));
1295 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
1299 while (!gsi_end_p (gsi2
) && gimple_code (gsi_stmt (gsi2
)) == GIMPLE_LABEL
)
1301 tree label
= gimple_label_label (as_a
<glabel
*> (gsi_stmt (gsi2
)));
1302 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
1306 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1309 /* If the incoming vuses are not the same, and the vuse escaped into an
1310 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1311 which potentially means the semantics of one of the blocks will be changed.
1312 TODO: make this check more precise. */
1313 if (vuse_escaped
&& vuse1
!= vuse2
)
1317 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1318 bb1
->index
, bb2
->index
);
1320 set_cluster (bb1
, bb2
);
1323 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1327 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1329 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1332 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1334 gphi
*phi
= gsi
.phi ();
1335 tree lhs
= gimple_phi_result (phi
);
1336 tree val1
= gimple_phi_arg_def (phi
, n1
);
1337 tree val2
= gimple_phi_arg_def (phi
, n2
);
1339 if (virtual_operand_p (lhs
))
1342 if (operand_equal_for_phi_arg_p (val1
, val2
))
1344 if (gvn_uses_equal (val1
, val2
))
1353 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1354 phi alternatives for BB1 and BB2 are equal. */
1357 same_phi_alternatives (same_succ
*same_succ
, basic_block bb1
, basic_block bb2
)
1364 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1366 succ
= BASIC_BLOCK_FOR_FN (cfun
, s
);
1367 e1
= find_edge (bb1
, succ
);
1368 e2
= find_edge (bb2
, succ
);
1369 if (e1
->flags
& EDGE_COMPLEX
1370 || e2
->flags
& EDGE_COMPLEX
)
1373 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1375 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1382 /* Return true if BB has non-vop phis. */
1385 bb_has_non_vop_phi (basic_block bb
)
1387 gimple_seq phis
= phi_nodes (bb
);
1393 if (!gimple_seq_singleton_p (phis
))
1396 phi
= gimple_seq_first_stmt (phis
);
1397 return !virtual_operand_p (gimple_phi_result (phi
));
1400 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1401 invariant that uses in FROM are dominates by their defs. */
1404 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1406 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1413 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1414 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1415 bitmap_set_bit (from_preds
, e
->src
->index
);
1416 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1417 BITMAP_FREE (from_preds
);
1419 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1422 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1423 replacement bb) and vice versa maintains the invariant that uses in the
1424 replacement are dominates by their defs. */
1427 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1429 if (BB_CLUSTER (bb1
) != NULL
)
1430 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1432 if (BB_CLUSTER (bb2
) != NULL
)
1433 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1435 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1436 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1439 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1442 find_clusters_1 (same_succ
*same_succ
)
1444 basic_block bb1
, bb2
;
1446 bitmap_iterator bi
, bj
;
1448 int max_comparisons
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS
);
1450 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1452 bb1
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1454 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1455 phi-nodes in bb1 and bb2, with the same alternatives for the same
1457 if (bb_has_non_vop_phi (bb1
) || bb_has_eh_pred (bb1
))
1461 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1463 bb2
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1465 if (bb_has_non_vop_phi (bb2
) || bb_has_eh_pred (bb2
))
1468 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1471 /* Limit quadratic behavior. */
1473 if (nr_comparisons
> max_comparisons
)
1476 /* This is a conservative dependency check. We could test more
1477 precise for allowed replacement direction. */
1478 if (!deps_ok_for_redirect (bb1
, bb2
))
1481 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1484 find_duplicate (same_succ
, bb1
, bb2
);
1489 /* Find clusters of bbs which can be merged. */
1492 find_clusters (void)
1496 while (!worklist
.is_empty ())
1498 same
= worklist
.pop ();
1499 same
->in_worklist
= false;
1500 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1502 fprintf (dump_file
, "processing worklist entry\n");
1503 same_succ_print (dump_file
, same
);
1505 find_clusters_1 (same
);
1509 /* Returns the vop phi of BB, if any. */
1512 vop_phi (basic_block bb
)
1516 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1519 if (! virtual_operand_p (gimple_phi_result (stmt
)))
1526 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1529 replace_block_by (basic_block bb1
, basic_block bb2
)
1537 bb2_phi
= vop_phi (bb2
);
1539 /* Mark the basic block as deleted. */
1540 mark_basic_block_deleted (bb1
);
1542 /* Redirect the incoming edges of bb1 to bb2. */
1543 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1545 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1546 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1547 gcc_assert (pred_edge
!= NULL
);
1549 if (bb2_phi
== NULL
)
1552 /* The phi might have run out of capacity when the redirect added an
1553 argument, which means it could have been replaced. Refresh it. */
1554 bb2_phi
= vop_phi (bb2
);
1556 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1557 pred_edge
, UNKNOWN_LOCATION
);
1560 bb2
->count
+= bb1
->count
;
1562 /* Merge the outgoing edge counts from bb1 onto bb2. */
1563 profile_count out_sum
= profile_count::zero ();
1564 int out_freq_sum
= 0;
1566 /* Recompute the edge probabilities from the new merged edge count.
1567 Use the sum of the new merged edge counts computed above instead
1568 of bb2's merged count, in case there are profile count insanities
1569 making the bb count inconsistent with the edge weights. */
1570 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1572 if (e1
->count
.initialized_p ())
1573 out_sum
+= e1
->count
;
1574 out_freq_sum
+= EDGE_FREQUENCY (e1
);
1576 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1578 if (e1
->count
.initialized_p ())
1579 out_sum
+= e1
->count
;
1580 out_freq_sum
+= EDGE_FREQUENCY (e1
);
1583 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1585 e2
= find_edge (bb2
, e1
->dest
);
1587 e2
->count
+= e1
->count
;
1588 if (out_sum
> 0 && e2
->count
.initialized_p ())
1590 e2
->probability
= e2
->count
.probability_in (bb2
->count
);
1592 else if (bb1
->frequency
&& bb2
->frequency
)
1593 e2
->probability
= e1
->probability
;
1594 else if (bb2
->frequency
&& !bb1
->frequency
)
1596 else if (out_freq_sum
)
1597 e2
->probability
= profile_probability::from_reg_br_prob_base
1598 (GCOV_COMPUTE_SCALE (EDGE_FREQUENCY (e1
)
1599 + EDGE_FREQUENCY (e2
),
1601 out_sum
+= e2
->count
;
1603 bb2
->frequency
+= bb1
->frequency
;
1604 if (bb2
->frequency
> BB_FREQ_MAX
)
1605 bb2
->frequency
= BB_FREQ_MAX
;
1607 /* Move over any user labels from bb1 after the bb2 labels. */
1608 gimple_stmt_iterator gsi1
= gsi_start_bb (bb1
);
1609 if (!gsi_end_p (gsi1
) && gimple_code (gsi_stmt (gsi1
)) == GIMPLE_LABEL
)
1611 gimple_stmt_iterator gsi2
= gsi_after_labels (bb2
);
1612 while (!gsi_end_p (gsi1
)
1613 && gimple_code (gsi_stmt (gsi1
)) == GIMPLE_LABEL
)
1615 tree label
= gimple_label_label (as_a
<glabel
*> (gsi_stmt (gsi1
)));
1616 gcc_assert (!DECL_NONLOCAL (label
) && !FORCED_LABEL (label
));
1617 if (DECL_ARTIFICIAL (label
))
1620 gsi_move_before (&gsi1
, &gsi2
);
1624 /* Clear range info from all stmts in BB2 -- this transformation
1625 could make them out of date. */
1626 reset_flow_sensitive_info_in_bb (bb2
);
1628 /* Do updates that use bb1, before deleting bb1. */
1629 release_last_vdef (bb1
);
1630 same_succ_flush_bb (bb1
);
1632 delete_basic_block (bb1
);
1635 /* Bbs for which update_debug_stmt need to be called. */
1637 static bitmap update_bbs
;
1639 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1640 number of bbs removed. */
1643 apply_clusters (void)
1645 basic_block bb1
, bb2
;
1649 int nr_bbs_removed
= 0;
1651 for (i
= 0; i
< all_clusters
.length (); ++i
)
1653 c
= all_clusters
[i
];
1658 bitmap_set_bit (update_bbs
, bb2
->index
);
1660 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1661 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1663 bb1
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1664 bitmap_clear_bit (update_bbs
, bb1
->index
);
1666 replace_block_by (bb1
, bb2
);
1671 return nr_bbs_removed
;
1674 /* Resets debug statement STMT if it has uses that are not dominated by their
1678 update_debug_stmt (gimple
*stmt
)
1680 use_operand_p use_p
;
1684 if (!gimple_debug_bind_p (stmt
))
1687 bbuse
= gimple_bb (stmt
);
1688 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1690 tree name
= USE_FROM_PTR (use_p
);
1691 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1692 basic_block bbdef
= gimple_bb (def_stmt
);
1693 if (bbdef
== NULL
|| bbuse
== bbdef
1694 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1697 gimple_debug_bind_reset_value (stmt
);
1703 /* Resets all debug statements that have uses that are not
1704 dominated by their defs. */
1707 update_debug_stmts (void)
1713 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1716 gimple_stmt_iterator gsi
;
1718 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1719 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1721 stmt
= gsi_stmt (gsi
);
1722 if (!is_gimple_debug (stmt
))
1724 update_debug_stmt (stmt
);
1729 /* Runs tail merge optimization. */
1732 tail_merge_optimize (unsigned int todo
)
1734 int nr_bbs_removed_total
= 0;
1736 bool loop_entered
= false;
1737 int iteration_nr
= 0;
1738 int max_iterations
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS
);
1740 if (!flag_tree_tail_merge
1741 || max_iterations
== 0)
1744 timevar_push (TV_TREE_TAIL_MERGE
);
1746 /* We enter from PRE which has critical edges split. Elimination
1747 does not process trivially dead code so cleanup the CFG if we
1748 are told so. And re-split critical edges then. */
1749 if (todo
& TODO_cleanup_cfg
)
1751 cleanup_tree_cfg ();
1752 todo
&= ~TODO_cleanup_cfg
;
1753 split_critical_edges ();
1756 if (!dom_info_available_p (CDI_DOMINATORS
))
1758 /* PRE can leave us with unreachable blocks, remove them now. */
1759 delete_unreachable_blocks ();
1760 calculate_dominance_info (CDI_DOMINATORS
);
1764 while (!worklist
.is_empty ())
1768 loop_entered
= true;
1769 alloc_cluster_vectors ();
1770 update_bbs
= BITMAP_ALLOC (NULL
);
1773 reset_cluster_vectors ();
1776 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1777 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1780 gcc_assert (worklist
.is_empty ());
1781 if (all_clusters
.is_empty ())
1784 nr_bbs_removed
= apply_clusters ();
1785 nr_bbs_removed_total
+= nr_bbs_removed
;
1786 if (nr_bbs_removed
== 0)
1789 free_dominance_info (CDI_DOMINATORS
);
1791 if (iteration_nr
== max_iterations
)
1794 calculate_dominance_info (CDI_DOMINATORS
);
1798 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1799 fprintf (dump_file
, "htab collision / search: %f\n",
1800 same_succ_htab
->collisions ());
1802 if (nr_bbs_removed_total
> 0)
1804 if (MAY_HAVE_DEBUG_STMTS
)
1806 calculate_dominance_info (CDI_DOMINATORS
);
1807 update_debug_stmts ();
1810 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1812 fprintf (dump_file
, "Before TODOs.\n");
1813 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1816 mark_virtual_operands_for_renaming (cfun
);
1822 delete_cluster_vectors ();
1823 BITMAP_FREE (update_bbs
);
1826 timevar_pop (TV_TREE_TAIL_MERGE
);