* gcc-interface/ada-tree.h (TYPE_OBJECT_RECORD_TYPE,
[official-gcc.git] / gcc / doc / loop.texi
blobefeb42075e92360a125f17f2f035fcc00e419406
1 @c Copyright (C) 2006-2017 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
6 @c ---------------------------------------------------------------------
7 @c Loop Representation
8 @c ---------------------------------------------------------------------
10 @node Loop Analysis and Representation
11 @chapter Analysis and Representation of Loops
13 GCC provides extensive infrastructure for work with natural loops, i.e.,
14 strongly connected components of CFG with only one entry block.  This
15 chapter describes representation of loops in GCC, both on GIMPLE and in
16 RTL, as well as the interfaces to loop-related analyses (induction
17 variable analysis and number of iterations analysis).
19 @menu
20 * Loop representation::         Representation and analysis of loops.
21 * Loop querying::               Getting information about loops.
22 * Loop manipulation::           Loop manipulation functions.
23 * LCSSA::                       Loop-closed SSA form.
24 * Scalar evolutions::           Induction variables on GIMPLE.
25 * loop-iv::                     Induction variables on RTL.
26 * Number of iterations::        Number of iterations analysis.
27 * Dependency analysis::         Data dependency analysis.
28 @end menu
30 @node Loop representation
31 @section Loop representation
32 @cindex Loop representation
33 @cindex Loop analysis
35 This chapter describes the representation of loops in GCC, and functions
36 that can be used to build, modify and analyze this representation.  Most
37 of the interfaces and data structures are declared in @file{cfgloop.h}.
38 Loop structures are analyzed and this information disposed or updated
39 at the discretion of individual passes.  Still most of the generic
40 CFG manipulation routines are aware of loop structures and try to
41 keep them up-to-date.  By this means an increasing part of the
42 compilation pipeline is setup to maintain loop structure across
43 passes to allow attaching meta information to individual loops
44 for consumption by later passes.
46 In general, a natural loop has one entry block (header) and possibly
47 several back edges (latches) leading to the header from the inside of
48 the loop.  Loops with several latches may appear if several loops share
49 a single header, or if there is a branching in the middle of the loop.
50 The representation of loops in GCC however allows only loops with a
51 single latch.  During loop analysis, headers of such loops are split and
52 forwarder blocks are created in order to disambiguate their structures.
53 Heuristic based on profile information and structure of the induction
54 variables in the loops is used to determine whether the latches
55 correspond to sub-loops or to control flow in a single loop.  This means
56 that the analysis sometimes changes the CFG, and if you run it in the
57 middle of an optimization pass, you must be able to deal with the new
58 blocks.  You may avoid CFG changes by passing
59 @code{LOOPS_MAY_HAVE_MULTIPLE_LATCHES} flag to the loop discovery,
60 note however that most other loop manipulation functions will not work
61 correctly for loops with multiple latch edges (the functions that only
62 query membership of blocks to loops and subloop relationships, or
63 enumerate and test loop exits, can be expected to work).
65 Body of the loop is the set of blocks that are dominated by its header,
66 and reachable from its latch against the direction of edges in CFG@.  The
67 loops are organized in a containment hierarchy (tree) such that all the
68 loops immediately contained inside loop L are the children of L in the
69 tree.  This tree is represented by the @code{struct loops} structure.
70 The root of this tree is a fake loop that contains all blocks in the
71 function.  Each of the loops is represented in a @code{struct loop}
72 structure.  Each loop is assigned an index (@code{num} field of the
73 @code{struct loop} structure), and the pointer to the loop is stored in
74 the corresponding field of the @code{larray} vector in the loops
75 structure.  The indices do not have to be continuous, there may be
76 empty (@code{NULL}) entries in the @code{larray} created by deleting
77 loops.  Also, there is no guarantee on the relative order of a loop
78 and its subloops in the numbering.  The index of a loop never changes.
80 The entries of the @code{larray} field should not be accessed directly.
81 The function @code{get_loop} returns the loop description for a loop with
82 the given index.  @code{number_of_loops} function returns number of
83 loops in the function.  To traverse all loops, use @code{FOR_EACH_LOOP}
84 macro.  The @code{flags} argument of the macro is used to determine
85 the direction of traversal and the set of loops visited.  Each loop is
86 guaranteed to be visited exactly once, regardless of the changes to the
87 loop tree, and the loops may be removed during the traversal.  The newly
88 created loops are never traversed, if they need to be visited, this
89 must be done separately after their creation.  The @code{FOR_EACH_LOOP}
90 macro allocates temporary variables.  If the @code{FOR_EACH_LOOP} loop
91 were ended using break or goto, they would not be released;
92 @code{FOR_EACH_LOOP_BREAK} macro must be used instead.
94 Each basic block contains the reference to the innermost loop it belongs
95 to (@code{loop_father}).  For this reason, it is only possible to have
96 one @code{struct loops} structure initialized at the same time for each
97 CFG@.  The global variable @code{current_loops} contains the
98 @code{struct loops} structure.  Many of the loop manipulation functions
99 assume that dominance information is up-to-date.
101 The loops are analyzed through @code{loop_optimizer_init} function.  The
102 argument of this function is a set of flags represented in an integer
103 bitmask.  These flags specify what other properties of the loop
104 structures should be calculated/enforced and preserved later:
106 @itemize
107 @item @code{LOOPS_MAY_HAVE_MULTIPLE_LATCHES}: If this flag is set, no
108 changes to CFG will be performed in the loop analysis, in particular,
109 loops with multiple latch edges will not be disambiguated.  If a loop
110 has multiple latches, its latch block is set to NULL@.  Most of
111 the loop manipulation functions will not work for loops in this shape.
112 No other flags that require CFG changes can be passed to
113 loop_optimizer_init.
114 @item @code{LOOPS_HAVE_PREHEADERS}: Forwarder blocks are created in such
115 a way that each loop has only one entry edge, and additionally, the
116 source block of this entry edge has only one successor.  This creates a
117 natural place where the code can be moved out of the loop, and ensures
118 that the entry edge of the loop leads from its immediate super-loop.
119 @item @code{LOOPS_HAVE_SIMPLE_LATCHES}: Forwarder blocks are created to
120 force the latch block of each loop to have only one successor.  This
121 ensures that the latch of the loop does not belong to any of its
122 sub-loops, and makes manipulation with the loops significantly easier.
123 Most of the loop manipulation functions assume that the loops are in
124 this shape.  Note that with this flag, the ``normal'' loop without any
125 control flow inside and with one exit consists of two basic blocks.
126 @item @code{LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS}: Basic blocks and
127 edges in the strongly connected components that are not natural loops
128 (have more than one entry block) are marked with
129 @code{BB_IRREDUCIBLE_LOOP} and @code{EDGE_IRREDUCIBLE_LOOP} flags.  The
130 flag is not set for blocks and edges that belong to natural loops that
131 are in such an irreducible region (but it is set for the entry and exit
132 edges of such a loop, if they lead to/from this region).
133 @item @code{LOOPS_HAVE_RECORDED_EXITS}: The lists of exits are recorded
134 and updated for each loop.  This makes some functions (e.g.,
135 @code{get_loop_exit_edges}) more efficient.  Some functions (e.g.,
136 @code{single_exit}) can be used only if the lists of exits are
137 recorded.
138 @end itemize
140 These properties may also be computed/enforced later, using functions
141 @code{create_preheaders}, @code{force_single_succ_latches},
142 @code{mark_irreducible_loops} and @code{record_loop_exits}.
143 The properties can be queried using @code{loops_state_satisfies_p}.
145 The memory occupied by the loops structures should be freed with
146 @code{loop_optimizer_finalize} function.  When loop structures are
147 setup to be preserved across passes this function reduces the
148 information to be kept up-to-date to a minimum (only
149 @code{LOOPS_MAY_HAVE_MULTIPLE_LATCHES} set).
151 The CFG manipulation functions in general do not update loop structures.
152 Specialized versions that additionally do so are provided for the most
153 common tasks.  On GIMPLE, @code{cleanup_tree_cfg_loop} function can be
154 used to cleanup CFG while updating the loops structures if
155 @code{current_loops} is set.
157 At the moment loop structure is preserved from the start of GIMPLE
158 loop optimizations until the end of RTL loop optimizations.  During
159 this time a loop can be tracked by its @code{struct loop} and number.
161 @node Loop querying
162 @section Loop querying
163 @cindex Loop querying
165 The functions to query the information about loops are declared in
166 @file{cfgloop.h}.  Some of the information can be taken directly from
167 the structures.  @code{loop_father} field of each basic block contains
168 the innermost loop to that the block belongs.  The most useful fields of
169 loop structure (that are kept up-to-date at all times) are:
171 @itemize
172 @item @code{header}, @code{latch}: Header and latch basic blocks of the
173 loop.
174 @item @code{num_nodes}: Number of basic blocks in the loop (including
175 the basic blocks of the sub-loops).
176 @item @code{outer}, @code{inner}, @code{next}: The super-loop, the first
177 sub-loop, and the sibling of the loop in the loops tree.
178 @end itemize
180 There are other fields in the loop structures, many of them used only by
181 some of the passes, or not updated during CFG changes; in general, they
182 should not be accessed directly.
184 The most important functions to query loop structures are:
186 @itemize
187 @item @code{loop_depth}: The depth of the loop in the loops tree, i.e., the
188 number of super-loops of the loop.
189 @item @code{flow_loops_dump}: Dumps the information about loops to a
190 file.
191 @item @code{verify_loop_structure}: Checks consistency of the loop
192 structures.
193 @item @code{loop_latch_edge}: Returns the latch edge of a loop.
194 @item @code{loop_preheader_edge}: If loops have preheaders, returns
195 the preheader edge of a loop.
196 @item @code{flow_loop_nested_p}: Tests whether loop is a sub-loop of
197 another loop.
198 @item @code{flow_bb_inside_loop_p}: Tests whether a basic block belongs
199 to a loop (including its sub-loops).
200 @item @code{find_common_loop}: Finds the common super-loop of two loops.
201 @item @code{superloop_at_depth}: Returns the super-loop of a loop with
202 the given depth.
203 @item @code{tree_num_loop_insns}, @code{num_loop_insns}: Estimates the
204 number of insns in the loop, on GIMPLE and on RTL.
205 @item @code{loop_exit_edge_p}: Tests whether edge is an exit from a
206 loop.
207 @item @code{mark_loop_exit_edges}: Marks all exit edges of all loops
208 with @code{EDGE_LOOP_EXIT} flag.
209 @item @code{get_loop_body}, @code{get_loop_body_in_dom_order},
210 @code{get_loop_body_in_bfs_order}: Enumerates the basic blocks in the
211 loop in depth-first search order in reversed CFG, ordered by dominance
212 relation, and breath-first search order, respectively.
213 @item @code{single_exit}: Returns the single exit edge of the loop, or
214 @code{NULL} if the loop has more than one exit.  You can only use this
215 function if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used.
216 @item @code{get_loop_exit_edges}: Enumerates the exit edges of a loop.
217 @item @code{just_once_each_iteration_p}: Returns true if the basic block
218 is executed exactly once during each iteration of a loop (that is, it
219 does not belong to a sub-loop, and it dominates the latch of the loop).
220 @end itemize
222 @node Loop manipulation
223 @section Loop manipulation
224 @cindex Loop manipulation
226 The loops tree can be manipulated using the following functions:
228 @itemize
229 @item @code{flow_loop_tree_node_add}: Adds a node to the tree.
230 @item @code{flow_loop_tree_node_remove}: Removes a node from the tree.
231 @item @code{add_bb_to_loop}: Adds a basic block to a loop.
232 @item @code{remove_bb_from_loops}: Removes a basic block from loops.
233 @end itemize
235 Most low-level CFG functions update loops automatically.  The following
236 functions handle some more complicated cases of CFG manipulations:
238 @itemize
239 @item @code{remove_path}: Removes an edge and all blocks it dominates.
240 @item @code{split_loop_exit_edge}: Splits exit edge of the loop,
241 ensuring that PHI node arguments remain in the loop (this ensures that
242 loop-closed SSA form is preserved).  Only useful on GIMPLE.
243 @end itemize
245 Finally, there are some higher-level loop transformations implemented.
246 While some of them are written so that they should work on non-innermost
247 loops, they are mostly untested in that case, and at the moment, they
248 are only reliable for the innermost loops:
250 @itemize
251 @item @code{create_iv}: Creates a new induction variable.  Only works on
252 GIMPLE@.  @code{standard_iv_increment_position} can be used to find a
253 suitable place for the iv increment.
254 @item @code{duplicate_loop_to_header_edge},
255 @code{tree_duplicate_loop_to_header_edge}: These functions (on RTL and
256 on GIMPLE) duplicate the body of the loop prescribed number of times on
257 one of the edges entering loop header, thus performing either loop
258 unrolling or loop peeling.  @code{can_duplicate_loop_p}
259 (@code{can_unroll_loop_p} on GIMPLE) must be true for the duplicated
260 loop.
261 @item @code{loop_version}: This function creates a copy of a loop, and
262 a branch before them that selects one of them depending on the
263 prescribed condition.  This is useful for optimizations that need to
264 verify some assumptions in runtime (one of the copies of the loop is
265 usually left unchanged, while the other one is transformed in some way).
266 @item @code{tree_unroll_loop}: Unrolls the loop, including peeling the
267 extra iterations to make the number of iterations divisible by unroll
268 factor, updating the exit condition, and removing the exits that now
269 cannot be taken.  Works only on GIMPLE.
270 @end itemize
272 @node LCSSA
273 @section Loop-closed SSA form
274 @cindex LCSSA
275 @cindex Loop-closed SSA form
277 Throughout the loop optimizations on tree level, one extra condition is
278 enforced on the SSA form:  No SSA name is used outside of the loop in
279 that it is defined.  The SSA form satisfying this condition is called
280 ``loop-closed SSA form'' -- LCSSA@.  To enforce LCSSA, PHI nodes must be
281 created at the exits of the loops for the SSA names that are used
282 outside of them.  Only the real operands (not virtual SSA names) are
283 held in LCSSA, in order to save memory.
285 There are various benefits of LCSSA:
287 @itemize
288 @item Many optimizations (value range analysis, final value
289 replacement) are interested in the values that are defined in the loop
290 and used outside of it, i.e., exactly those for that we create new PHI
291 nodes.
292 @item In induction variable analysis, it is not necessary to specify the
293 loop in that the analysis should be performed -- the scalar evolution
294 analysis always returns the results with respect to the loop in that the
295 SSA name is defined.
296 @item It makes updating of SSA form during loop transformations simpler.
297 Without LCSSA, operations like loop unrolling may force creation of PHI
298 nodes arbitrarily far from the loop, while in LCSSA, the SSA form can be
299 updated locally.  However, since we only keep real operands in LCSSA, we
300 cannot use this advantage (we could have local updating of real
301 operands, but it is not much more efficient than to use generic SSA form
302 updating for it as well; the amount of changes to SSA is the same).
303 @end itemize
305 However, it also means LCSSA must be updated.  This is usually
306 straightforward, unless you create a new value in loop and use it
307 outside, or unless you manipulate loop exit edges (functions are
308 provided to make these manipulations simple).
309 @code{rewrite_into_loop_closed_ssa} is used to rewrite SSA form to
310 LCSSA, and @code{verify_loop_closed_ssa} to check that the invariant of
311 LCSSA is preserved.
313 @node Scalar evolutions
314 @section Scalar evolutions
315 @cindex Scalar evolutions
316 @cindex IV analysis on GIMPLE
318 Scalar evolutions (SCEV) are used to represent results of induction
319 variable analysis on GIMPLE@.  They enable us to represent variables with
320 complicated behavior in a simple and consistent way (we only use it to
321 express values of polynomial induction variables, but it is possible to
322 extend it).  The interfaces to SCEV analysis are declared in
323 @file{tree-scalar-evolution.h}.  To use scalar evolutions analysis,
324 @code{scev_initialize} must be used.  To stop using SCEV,
325 @code{scev_finalize} should be used.  SCEV analysis caches results in
326 order to save time and memory.  This cache however is made invalid by
327 most of the loop transformations, including removal of code.  If such a
328 transformation is performed, @code{scev_reset} must be called to clean
329 the caches.
331 Given an SSA name, its behavior in loops can be analyzed using the
332 @code{analyze_scalar_evolution} function.  The returned SCEV however
333 does not have to be fully analyzed and it may contain references to
334 other SSA names defined in the loop.  To resolve these (potentially
335 recursive) references, @code{instantiate_parameters} or
336 @code{resolve_mixers} functions must be used.
337 @code{instantiate_parameters} is useful when you use the results of SCEV
338 only for some analysis, and when you work with whole nest of loops at
339 once.  It will try replacing all SSA names by their SCEV in all loops,
340 including the super-loops of the current loop, thus providing a complete
341 information about the behavior of the variable in the loop nest.
342 @code{resolve_mixers} is useful if you work with only one loop at a
343 time, and if you possibly need to create code based on the value of the
344 induction variable.  It will only resolve the SSA names defined in the
345 current loop, leaving the SSA names defined outside unchanged, even if
346 their evolution in the outer loops is known.
348 The SCEV is a normal tree expression, except for the fact that it may
349 contain several special tree nodes.  One of them is
350 @code{SCEV_NOT_KNOWN}, used for SSA names whose value cannot be
351 expressed.  The other one is @code{POLYNOMIAL_CHREC}.  Polynomial chrec
352 has three arguments -- base, step and loop (both base and step may
353 contain further polynomial chrecs).  Type of the expression and of base
354 and step must be the same.  A variable has evolution
355 @code{POLYNOMIAL_CHREC(base, step, loop)} if it is (in the specified
356 loop) equivalent to @code{x_1} in the following example
358 @smallexample
359 while (@dots{})
360   @{
361     x_1 = phi (base, x_2);
362     x_2 = x_1 + step;
363   @}
364 @end smallexample
366 Note that this includes the language restrictions on the operations.
367 For example, if we compile C code and @code{x} has signed type, then the
368 overflow in addition would cause undefined behavior, and we may assume
369 that this does not happen.  Hence, the value with this SCEV cannot
370 overflow (which restricts the number of iterations of such a loop).
372 In many cases, one wants to restrict the attention just to affine
373 induction variables.  In this case, the extra expressive power of SCEV
374 is not useful, and may complicate the optimizations.  In this case,
375 @code{simple_iv} function may be used to analyze a value -- the result
376 is a loop-invariant base and step.
378 @node loop-iv
379 @section IV analysis on RTL
380 @cindex IV analysis on RTL
382 The induction variable on RTL is simple and only allows analysis of
383 affine induction variables, and only in one loop at once.  The interface
384 is declared in @file{cfgloop.h}.  Before analyzing induction variables
385 in a loop L, @code{iv_analysis_loop_init} function must be called on L.
386 After the analysis (possibly calling @code{iv_analysis_loop_init} for
387 several loops) is finished, @code{iv_analysis_done} should be called.
388 The following functions can be used to access the results of the
389 analysis:
391 @itemize
392 @item @code{iv_analyze}: Analyzes a single register used in the given
393 insn.  If no use of the register in this insn is found, the following
394 insns are scanned, so that this function can be called on the insn
395 returned by get_condition.
396 @item @code{iv_analyze_result}: Analyzes result of the assignment in the
397 given insn.
398 @item @code{iv_analyze_expr}: Analyzes a more complicated expression.
399 All its operands are analyzed by @code{iv_analyze}, and hence they must
400 be used in the specified insn or one of the following insns.
401 @end itemize
403 The description of the induction variable is provided in @code{struct
404 rtx_iv}.  In order to handle subregs, the representation is a bit
405 complicated; if the value of the @code{extend} field is not
406 @code{UNKNOWN}, the value of the induction variable in the i-th
407 iteration is
409 @smallexample
410 delta + mult * extend_@{extend_mode@} (subreg_@{mode@} (base + i * step)),
411 @end smallexample
413 with the following exception:  if @code{first_special} is true, then the
414 value in the first iteration (when @code{i} is zero) is @code{delta +
415 mult * base}.  However, if @code{extend} is equal to @code{UNKNOWN},
416 then @code{first_special} must be false, @code{delta} 0, @code{mult} 1
417 and the value in the i-th iteration is
419 @smallexample
420 subreg_@{mode@} (base + i * step)
421 @end smallexample
423 The function @code{get_iv_value} can be used to perform these
424 calculations.
426 @node Number of iterations
427 @section Number of iterations analysis
428 @cindex Number of iterations analysis
430 Both on GIMPLE and on RTL, there are functions available to determine
431 the number of iterations of a loop, with a similar interface.  The
432 number of iterations of a loop in GCC is defined as the number of
433 executions of the loop latch.  In many cases, it is not possible to
434 determine the number of iterations unconditionally -- the determined
435 number is correct only if some assumptions are satisfied.  The analysis
436 tries to verify these conditions using the information contained in the
437 program; if it fails, the conditions are returned together with the
438 result.  The following information and conditions are provided by the
439 analysis:
441 @itemize
442 @item @code{assumptions}: If this condition is false, the rest of
443 the information is invalid.
444 @item @code{noloop_assumptions} on RTL, @code{may_be_zero} on GIMPLE: If
445 this condition is true, the loop exits in the first iteration.
446 @item @code{infinite}: If this condition is true, the loop is infinite.
447 This condition is only available on RTL@.  On GIMPLE, conditions for
448 finiteness of the loop are included in @code{assumptions}.
449 @item @code{niter_expr} on RTL, @code{niter} on GIMPLE: The expression
450 that gives number of iterations.  The number of iterations is defined as
451 the number of executions of the loop latch.
452 @end itemize
454 Both on GIMPLE and on RTL, it necessary for the induction variable
455 analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL).
456 On GIMPLE, the results are stored to @code{struct tree_niter_desc}
457 structure.  Number of iterations before the loop is exited through a
458 given exit can be determined using @code{number_of_iterations_exit}
459 function.  On RTL, the results are returned in @code{struct niter_desc}
460 structure.  The corresponding function is named
461 @code{check_simple_exit}.  There are also functions that pass through
462 all the exits of a loop and try to find one with easy to determine
463 number of iterations -- @code{find_loop_niter} on GIMPLE and
464 @code{find_simple_exit} on RTL@.  Finally, there are functions that
465 provide the same information, but additionally cache it, so that
466 repeated calls to number of iterations are not so costly --
467 @code{number_of_latch_executions} on GIMPLE and @code{get_simple_loop_desc}
468 on RTL.
470 Note that some of these functions may behave slightly differently than
471 others -- some of them return only the expression for the number of
472 iterations, and fail if there are some assumptions.  The function
473 @code{number_of_latch_executions} works only for single-exit loops.
474 The function @code{number_of_cond_exit_executions} can be used to
475 determine number of executions of the exit condition of a single-exit
476 loop (i.e., the @code{number_of_latch_executions} increased by one).
478 On GIMPLE, below constraint flags affect semantics of some APIs of number
479 of iterations analyzer:
481 @itemize
482 @item @code{LOOP_C_INFINITE}: If this constraint flag is set, the loop
483 is known to be infinite.  APIs like @code{number_of_iterations_exit} can
484 return false directly without doing any analysis.
485 @item @code{LOOP_C_FINITE}: If this constraint flag is set, the loop is
486 known to be finite, in other words, loop's number of iterations can be
487 computed with @code{assumptions} be true.
488 @end itemize
490 Generally, the constraint flags are set/cleared by consumers which are
491 loop optimizers.  It's also the consumers' responsibility to set/clear
492 constraints correctly.  Failing to do that might result in hard to track
493 down bugs in scev/niter consumers.  One typical use case is vectorizer:
494 it drives number of iterations analyzer by setting @code{LOOP_C_FINITE}
495 and vectorizes possibly infinite loop by versioning loop with analysis
496 result.  In return, constraints set by consumers can also help number of
497 iterations analyzer in following optimizers.  For example, @code{niter}
498 of a loop versioned under @code{assumptions} is valid unconditionally.
500 Other constraints may be added in the future, for example, a constraint
501 indicating that loops' latch must roll thus @code{may_be_zero} would be
502 false unconditionally.
504 @node Dependency analysis
505 @section Data Dependency Analysis
506 @cindex Data Dependency Analysis
508 The code for the data dependence analysis can be found in
509 @file{tree-data-ref.c} and its interface and data structures are
510 described in @file{tree-data-ref.h}.  The function that computes the
511 data dependences for all the array and pointer references for a given
512 loop is @code{compute_data_dependences_for_loop}.  This function is
513 currently used by the linear loop transform and the vectorization
514 passes.  Before calling this function, one has to allocate two vectors:
515 a first vector will contain the set of data references that are
516 contained in the analyzed loop body, and the second vector will contain
517 the dependence relations between the data references.  Thus if the
518 vector of data references is of size @code{n}, the vector containing the
519 dependence relations will contain @code{n*n} elements.  However if the
520 analyzed loop contains side effects, such as calls that potentially can
521 interfere with the data references in the current analyzed loop, the
522 analysis stops while scanning the loop body for data references, and
523 inserts a single @code{chrec_dont_know} in the dependence relation
524 array.
526 The data references are discovered in a particular order during the
527 scanning of the loop body: the loop body is analyzed in execution order,
528 and the data references of each statement are pushed at the end of the
529 data reference array.  Two data references syntactically occur in the
530 program in the same order as in the array of data references.  This
531 syntactic order is important in some classical data dependence tests,
532 and mapping this order to the elements of this array avoids costly
533 queries to the loop body representation.
535 Three types of data references are currently handled: ARRAY_REF,
536 INDIRECT_REF and COMPONENT_REF@. The data structure for the data reference
537 is @code{data_reference}, where @code{data_reference_p} is a name of a
538 pointer to the data reference structure. The structure contains the
539 following elements:
541 @itemize
542 @item @code{base_object_info}: Provides information about the base object
543 of the data reference and its access functions. These access functions
544 represent the evolution of the data reference in the loop relative to
545 its base, in keeping with the classical meaning of the data reference
546 access function for the support of arrays. For example, for a reference
547 @code{a.b[i][j]}, the base object is @code{a.b} and the access functions,
548 one for each array subscript, are:
549 @code{@{i_init, + i_step@}_1, @{j_init, +, j_step@}_2}.
551 @item @code{first_location_in_loop}: Provides information about the first
552 location accessed by the data reference in the loop and about the access
553 function used to represent evolution relative to this location. This data
554 is used to support pointers, and is not used for arrays (for which we
555 have base objects). Pointer accesses are represented as a one-dimensional
556 access that starts from the first location accessed in the loop. For
557 example:
559 @smallexample
560       for1 i
561          for2 j
562           *((int *)p + i + j) = a[i][j];
563 @end smallexample
565 The access function of the pointer access is @code{@{0, + 4B@}_for2}
566 relative to @code{p + i}. The access functions of the array are
567 @code{@{i_init, + i_step@}_for1} and @code{@{j_init, +, j_step@}_for2}
568 relative to @code{a}.
570 Usually, the object the pointer refers to is either unknown, or we cannot
571 prove that the access is confined to the boundaries of a certain object.
573 Two data references can be compared only if at least one of these two
574 representations has all its fields filled for both data references.
576 The current strategy for data dependence tests is as follows:
577 If both @code{a} and @code{b} are represented as arrays, compare
578 @code{a.base_object} and @code{b.base_object};
579 if they are equal, apply dependence tests (use access functions based on
580 base_objects).
581 Else if both @code{a} and @code{b} are represented as pointers, compare
582 @code{a.first_location} and @code{b.first_location};
583 if they are equal, apply dependence tests (use access functions based on
584 first location).
585 However, if @code{a} and @code{b} are represented differently, only try
586 to prove that the bases are definitely different.
588 @item Aliasing information.
589 @item Alignment information.
590 @end itemize
592 The structure describing the relation between two data references is
593 @code{data_dependence_relation} and the shorter name for a pointer to
594 such a structure is @code{ddr_p}.  This structure contains:
596 @itemize
597 @item a pointer to each data reference,
598 @item a tree node @code{are_dependent} that is set to @code{chrec_known}
599 if the analysis has proved that there is no dependence between these two
600 data references, @code{chrec_dont_know} if the analysis was not able to
601 determine any useful result and potentially there could exist a
602 dependence between these data references, and @code{are_dependent} is
603 set to @code{NULL_TREE} if there exist a dependence relation between the
604 data references, and the description of this dependence relation is
605 given in the @code{subscripts}, @code{dir_vects}, and @code{dist_vects}
606 arrays,
607 @item a boolean that determines whether the dependence relation can be
608 represented by a classical distance vector,
609 @item an array @code{subscripts} that contains a description of each
610 subscript of the data references.  Given two array accesses a
611 subscript is the tuple composed of the access functions for a given
612 dimension.  For example, given @code{A[f1][f2][f3]} and
613 @code{B[g1][g2][g3]}, there are three subscripts: @code{(f1, g1), (f2,
614 g2), (f3, g3)}.
615 @item two arrays @code{dir_vects} and @code{dist_vects} that contain
616 classical representations of the data dependences under the form of
617 direction and distance dependence vectors,
618 @item an array of loops @code{loop_nest} that contains the loops to
619 which the distance and direction vectors refer to.
620 @end itemize
622 Several functions for pretty printing the information extracted by the
623 data dependence analysis are available: @code{dump_ddrs} prints with a
624 maximum verbosity the details of a data dependence relations array,
625 @code{dump_dist_dir_vectors} prints only the classical distance and
626 direction vectors for a data dependence relations array, and
627 @code{dump_data_references} prints the details of the data references
628 contained in a data reference array.