* configure: Regenerated.
[official-gcc.git] / gcc / tree-complex.c
blobc6c5227e287ac03925a6a226a313bf8e6642ad5a
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tree-flow.h"
28 #include "gimple.h"
29 #include "tree-iterator.h"
30 #include "tree-pass.h"
31 #include "tree-ssa-propagate.h"
34 /* For each complex ssa name, a lattice value. We're interested in finding
35 out whether a complex number is degenerate in some way, having only real
36 or only complex parts. */
38 enum
40 UNINITIALIZED = 0,
41 ONLY_REAL = 1,
42 ONLY_IMAG = 2,
43 VARYING = 3
46 /* The type complex_lattice_t holds combinations of the above
47 constants. */
48 typedef int complex_lattice_t;
50 #define PAIR(a, b) ((a) << 2 | (b))
52 DEF_VEC_I(complex_lattice_t);
53 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
55 static VEC(complex_lattice_t, heap) *complex_lattice_values;
57 /* For each complex variable, a pair of variables for the components exists in
58 the hashtable. */
59 static htab_t complex_variable_components;
61 /* For each complex SSA_NAME, a pair of ssa names for the components. */
62 static VEC(tree, heap) *complex_ssa_name_components;
64 /* Lookup UID in the complex_variable_components hashtable and return the
65 associated tree. */
66 static tree
67 cvc_lookup (unsigned int uid)
69 struct int_tree_map *h, in;
70 in.uid = uid;
71 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
72 return h ? h->to : NULL;
75 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
77 static void
78 cvc_insert (unsigned int uid, tree to)
80 struct int_tree_map *h;
81 void **loc;
83 h = XNEW (struct int_tree_map);
84 h->uid = uid;
85 h->to = to;
86 loc = htab_find_slot_with_hash (complex_variable_components, h,
87 uid, INSERT);
88 *(struct int_tree_map **) loc = h;
91 /* Return true if T is not a zero constant. In the case of real values,
92 we're only interested in +0.0. */
94 static int
95 some_nonzerop (tree t)
97 int zerop = false;
99 /* Operations with real or imaginary part of a complex number zero
100 cannot be treated the same as operations with a real or imaginary
101 operand if we care about the signs of zeros in the result. */
102 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
103 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
104 else if (TREE_CODE (t) == FIXED_CST)
105 zerop = fixed_zerop (t);
106 else if (TREE_CODE (t) == INTEGER_CST)
107 zerop = integer_zerop (t);
109 return !zerop;
113 /* Compute a lattice value from the components of a complex type REAL
114 and IMAG. */
116 static complex_lattice_t
117 find_lattice_value_parts (tree real, tree imag)
119 int r, i;
120 complex_lattice_t ret;
122 r = some_nonzerop (real);
123 i = some_nonzerop (imag);
124 ret = r * ONLY_REAL + i * ONLY_IMAG;
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret == UNINITIALIZED)
130 ret = ONLY_REAL;
132 return ret;
136 /* Compute a lattice value from gimple_val T. */
138 static complex_lattice_t
139 find_lattice_value (tree t)
141 tree real, imag;
143 switch (TREE_CODE (t))
145 case SSA_NAME:
146 return VEC_index (complex_lattice_t, complex_lattice_values,
147 SSA_NAME_VERSION (t));
149 case COMPLEX_CST:
150 real = TREE_REALPART (t);
151 imag = TREE_IMAGPART (t);
152 break;
154 default:
155 gcc_unreachable ();
158 return find_lattice_value_parts (real, imag);
161 /* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
164 static bool
165 is_complex_reg (tree lhs)
167 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
170 /* Mark the incoming parameters to the function as VARYING. */
172 static void
173 init_parameter_lattice_values (void)
175 tree parm, ssa_name;
177 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
178 if (is_complex_reg (parm)
179 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
180 VEC_replace (complex_lattice_t, complex_lattice_values,
181 SSA_NAME_VERSION (ssa_name), VARYING);
184 /* Initialize simulation state for each statement. Return false if we
185 found no statements we want to simulate, and thus there's nothing
186 for the entire pass to do. */
188 static bool
189 init_dont_simulate_again (void)
191 basic_block bb;
192 gimple_stmt_iterator gsi;
193 gimple phi;
194 bool saw_a_complex_op = false;
196 FOR_EACH_BB (bb)
198 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
200 phi = gsi_stmt (gsi);
201 prop_set_simulate_again (phi,
202 is_complex_reg (gimple_phi_result (phi)));
205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
207 gimple stmt;
208 tree op0, op1;
209 bool sim_again_p;
211 stmt = gsi_stmt (gsi);
212 op0 = op1 = NULL_TREE;
214 /* Most control-altering statements must be initially
215 simulated, else we won't cover the entire cfg. */
216 sim_again_p = stmt_ends_bb_p (stmt);
218 switch (gimple_code (stmt))
220 case GIMPLE_CALL:
221 if (gimple_call_lhs (stmt))
222 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
223 break;
225 case GIMPLE_ASSIGN:
226 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
227 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
228 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
229 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
230 else
231 op0 = gimple_assign_rhs1 (stmt);
232 if (gimple_num_ops (stmt) > 2)
233 op1 = gimple_assign_rhs2 (stmt);
234 break;
236 case GIMPLE_COND:
237 op0 = gimple_cond_lhs (stmt);
238 op1 = gimple_cond_rhs (stmt);
239 break;
241 default:
242 break;
245 if (op0 || op1)
246 switch (gimple_expr_code (stmt))
248 case EQ_EXPR:
249 case NE_EXPR:
250 case PLUS_EXPR:
251 case MINUS_EXPR:
252 case MULT_EXPR:
253 case TRUNC_DIV_EXPR:
254 case CEIL_DIV_EXPR:
255 case FLOOR_DIV_EXPR:
256 case ROUND_DIV_EXPR:
257 case RDIV_EXPR:
258 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
259 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
260 saw_a_complex_op = true;
261 break;
263 case NEGATE_EXPR:
264 case CONJ_EXPR:
265 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
266 saw_a_complex_op = true;
267 break;
269 case REALPART_EXPR:
270 case IMAGPART_EXPR:
271 /* The total store transformation performed during
272 gimplification creates such uninitialized loads
273 and we need to lower the statement to be able
274 to fix things up. */
275 if (TREE_CODE (op0) == SSA_NAME
276 && ssa_undefined_value_p (op0))
277 saw_a_complex_op = true;
278 break;
280 default:
281 break;
284 prop_set_simulate_again (stmt, sim_again_p);
288 return saw_a_complex_op;
292 /* Evaluate statement STMT against the complex lattice defined above. */
294 static enum ssa_prop_result
295 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
296 tree *result_p)
298 complex_lattice_t new_l, old_l, op1_l, op2_l;
299 unsigned int ver;
300 tree lhs;
302 lhs = gimple_get_lhs (stmt);
303 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
304 if (!lhs)
305 return SSA_PROP_VARYING;
307 /* These conditions should be satisfied due to the initial filter
308 set up in init_dont_simulate_again. */
309 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
310 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
312 *result_p = lhs;
313 ver = SSA_NAME_VERSION (lhs);
314 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
316 switch (gimple_expr_code (stmt))
318 case SSA_NAME:
319 case COMPLEX_CST:
320 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
321 break;
323 case COMPLEX_EXPR:
324 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
325 gimple_assign_rhs2 (stmt));
326 break;
328 case PLUS_EXPR:
329 case MINUS_EXPR:
330 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
331 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
333 /* We've set up the lattice values such that IOR neatly
334 models addition. */
335 new_l = op1_l | op2_l;
336 break;
338 case MULT_EXPR:
339 case RDIV_EXPR:
340 case TRUNC_DIV_EXPR:
341 case CEIL_DIV_EXPR:
342 case FLOOR_DIV_EXPR:
343 case ROUND_DIV_EXPR:
344 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
345 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
347 /* Obviously, if either varies, so does the result. */
348 if (op1_l == VARYING || op2_l == VARYING)
349 new_l = VARYING;
350 /* Don't prematurely promote variables if we've not yet seen
351 their inputs. */
352 else if (op1_l == UNINITIALIZED)
353 new_l = op2_l;
354 else if (op2_l == UNINITIALIZED)
355 new_l = op1_l;
356 else
358 /* At this point both numbers have only one component. If the
359 numbers are of opposite kind, the result is imaginary,
360 otherwise the result is real. The add/subtract translates
361 the real/imag from/to 0/1; the ^ performs the comparison. */
362 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
364 /* Don't allow the lattice value to flip-flop indefinitely. */
365 new_l |= old_l;
367 break;
369 case NEGATE_EXPR:
370 case CONJ_EXPR:
371 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
372 break;
374 default:
375 new_l = VARYING;
376 break;
379 /* If nothing changed this round, let the propagator know. */
380 if (new_l == old_l)
381 return SSA_PROP_NOT_INTERESTING;
383 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
384 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
387 /* Evaluate a PHI node against the complex lattice defined above. */
389 static enum ssa_prop_result
390 complex_visit_phi (gimple phi)
392 complex_lattice_t new_l, old_l;
393 unsigned int ver;
394 tree lhs;
395 int i;
397 lhs = gimple_phi_result (phi);
399 /* This condition should be satisfied due to the initial filter
400 set up in init_dont_simulate_again. */
401 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
403 /* We've set up the lattice values such that IOR neatly models PHI meet. */
404 new_l = UNINITIALIZED;
405 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
406 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
408 ver = SSA_NAME_VERSION (lhs);
409 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
411 if (new_l == old_l)
412 return SSA_PROP_NOT_INTERESTING;
414 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
415 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
418 /* Create one backing variable for a complex component of ORIG. */
420 static tree
421 create_one_component_var (tree type, tree orig, const char *prefix,
422 const char *suffix, enum tree_code code)
424 tree r = create_tmp_var (type, prefix);
426 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
427 DECL_ARTIFICIAL (r) = 1;
429 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
431 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
433 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
435 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
436 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
437 DECL_IGNORED_P (r) = 0;
438 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
440 else
442 DECL_IGNORED_P (r) = 1;
443 TREE_NO_WARNING (r) = 1;
446 return r;
449 /* Retrieve a value for a complex component of VAR. */
451 static tree
452 get_component_var (tree var, bool imag_p)
454 size_t decl_index = DECL_UID (var) * 2 + imag_p;
455 tree ret = cvc_lookup (decl_index);
457 if (ret == NULL)
459 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
460 imag_p ? "CI" : "CR",
461 imag_p ? "$imag" : "$real",
462 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
463 cvc_insert (decl_index, ret);
466 return ret;
469 /* Retrieve a value for a complex component of SSA_NAME. */
471 static tree
472 get_component_ssa_name (tree ssa_name, bool imag_p)
474 complex_lattice_t lattice = find_lattice_value (ssa_name);
475 size_t ssa_name_index;
476 tree ret;
478 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
480 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
481 if (SCALAR_FLOAT_TYPE_P (inner_type))
482 return build_real (inner_type, dconst0);
483 else
484 return build_int_cst (inner_type, 0);
487 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
488 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
489 if (ret == NULL)
491 if (SSA_NAME_VAR (ssa_name))
492 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
493 else
494 ret = TREE_TYPE (TREE_TYPE (ssa_name));
495 ret = make_ssa_name (ret, NULL);
497 /* Copy some properties from the original. In particular, whether it
498 is used in an abnormal phi, and whether it's uninitialized. */
499 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
500 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
501 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
502 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
504 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
505 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
508 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
511 return ret;
514 /* Set a value for a complex component of SSA_NAME, return a
515 gimple_seq of stuff that needs doing. */
517 static gimple_seq
518 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
520 complex_lattice_t lattice = find_lattice_value (ssa_name);
521 size_t ssa_name_index;
522 tree comp;
523 gimple last;
524 gimple_seq list;
526 /* We know the value must be zero, else there's a bug in our lattice
527 analysis. But the value may well be a variable known to contain
528 zero. We should be safe ignoring it. */
529 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
530 return NULL;
532 /* If we've already assigned an SSA_NAME to this component, then this
533 means that our walk of the basic blocks found a use before the set.
534 This is fine. Now we should create an initialization for the value
535 we created earlier. */
536 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
537 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
538 if (comp)
541 /* If we've nothing assigned, and the value we're given is already stable,
542 then install that as the value for this SSA_NAME. This preemptively
543 copy-propagates the value, which avoids unnecessary memory allocation. */
544 else if (is_gimple_min_invariant (value)
545 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
547 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
548 return NULL;
550 else if (TREE_CODE (value) == SSA_NAME
551 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
553 /* Replace an anonymous base value with the variable from cvc_lookup.
554 This should result in better debug info. */
555 if (SSA_NAME_VAR (ssa_name)
556 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
557 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
559 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
560 replace_ssa_name_symbol (value, comp);
563 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
564 return NULL;
567 /* Finally, we need to stabilize the result by installing the value into
568 a new ssa name. */
569 else
570 comp = get_component_ssa_name (ssa_name, imag_p);
572 /* Do all the work to assign VALUE to COMP. */
573 list = NULL;
574 value = force_gimple_operand (value, &list, false, NULL);
575 last = gimple_build_assign (comp, value);
576 gimple_seq_add_stmt (&list, last);
577 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
579 return list;
582 /* Extract the real or imaginary part of a complex variable or constant.
583 Make sure that it's a proper gimple_val and gimplify it if not.
584 Emit any new code before gsi. */
586 static tree
587 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
588 bool gimple_p)
590 switch (TREE_CODE (t))
592 case COMPLEX_CST:
593 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
595 case COMPLEX_EXPR:
596 gcc_unreachable ();
598 case VAR_DECL:
599 case RESULT_DECL:
600 case PARM_DECL:
601 case COMPONENT_REF:
602 case ARRAY_REF:
603 case VIEW_CONVERT_EXPR:
604 case MEM_REF:
606 tree inner_type = TREE_TYPE (TREE_TYPE (t));
608 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
609 inner_type, unshare_expr (t));
611 if (gimple_p)
612 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
613 GSI_SAME_STMT);
615 return t;
618 case SSA_NAME:
619 return get_component_ssa_name (t, imagpart_p);
621 default:
622 gcc_unreachable ();
626 /* Update the complex components of the ssa name on the lhs of STMT. */
628 static void
629 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
630 tree i)
632 tree lhs;
633 gimple_seq list;
635 lhs = gimple_get_lhs (stmt);
637 list = set_component_ssa_name (lhs, false, r);
638 if (list)
639 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
641 list = set_component_ssa_name (lhs, true, i);
642 if (list)
643 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
646 static void
647 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
649 gimple_seq list;
651 list = set_component_ssa_name (lhs, false, r);
652 if (list)
653 gsi_insert_seq_on_edge (e, list);
655 list = set_component_ssa_name (lhs, true, i);
656 if (list)
657 gsi_insert_seq_on_edge (e, list);
661 /* Update an assignment to a complex variable in place. */
663 static void
664 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
666 gimple stmt;
668 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
669 stmt = gsi_stmt (*gsi);
670 update_stmt (stmt);
671 if (maybe_clean_eh_stmt (stmt))
672 gimple_purge_dead_eh_edges (gimple_bb (stmt));
674 if (gimple_in_ssa_p (cfun))
675 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
679 /* Generate code at the entry point of the function to initialize the
680 component variables for a complex parameter. */
682 static void
683 update_parameter_components (void)
685 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
686 tree parm;
688 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
690 tree type = TREE_TYPE (parm);
691 tree ssa_name, r, i;
693 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
694 continue;
696 type = TREE_TYPE (type);
697 ssa_name = ssa_default_def (cfun, parm);
698 if (!ssa_name)
699 continue;
701 r = build1 (REALPART_EXPR, type, ssa_name);
702 i = build1 (IMAGPART_EXPR, type, ssa_name);
703 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
707 /* Generate code to set the component variables of a complex variable
708 to match the PHI statements in block BB. */
710 static void
711 update_phi_components (basic_block bb)
713 gimple_stmt_iterator gsi;
715 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
717 gimple phi = gsi_stmt (gsi);
719 if (is_complex_reg (gimple_phi_result (phi)))
721 tree lr, li;
722 gimple pr = NULL, pi = NULL;
723 unsigned int i, n;
725 lr = get_component_ssa_name (gimple_phi_result (phi), false);
726 if (TREE_CODE (lr) == SSA_NAME)
727 pr = create_phi_node (lr, bb);
729 li = get_component_ssa_name (gimple_phi_result (phi), true);
730 if (TREE_CODE (li) == SSA_NAME)
731 pi = create_phi_node (li, bb);
733 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
735 tree comp, arg = gimple_phi_arg_def (phi, i);
736 if (pr)
738 comp = extract_component (NULL, arg, false, false);
739 SET_PHI_ARG_DEF (pr, i, comp);
741 if (pi)
743 comp = extract_component (NULL, arg, true, false);
744 SET_PHI_ARG_DEF (pi, i, comp);
751 /* Expand a complex move to scalars. */
753 static void
754 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
756 tree inner_type = TREE_TYPE (type);
757 tree r, i, lhs, rhs;
758 gimple stmt = gsi_stmt (*gsi);
760 if (is_gimple_assign (stmt))
762 lhs = gimple_assign_lhs (stmt);
763 if (gimple_num_ops (stmt) == 2)
764 rhs = gimple_assign_rhs1 (stmt);
765 else
766 rhs = NULL_TREE;
768 else if (is_gimple_call (stmt))
770 lhs = gimple_call_lhs (stmt);
771 rhs = NULL_TREE;
773 else
774 gcc_unreachable ();
776 if (TREE_CODE (lhs) == SSA_NAME)
778 if (is_ctrl_altering_stmt (stmt))
780 edge e;
782 /* The value is not assigned on the exception edges, so we need not
783 concern ourselves there. We do need to update on the fallthru
784 edge. Find it. */
785 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
786 if (!e)
787 gcc_unreachable ();
789 r = build1 (REALPART_EXPR, inner_type, lhs);
790 i = build1 (IMAGPART_EXPR, inner_type, lhs);
791 update_complex_components_on_edge (e, lhs, r, i);
793 else if (is_gimple_call (stmt)
794 || gimple_has_side_effects (stmt)
795 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
797 r = build1 (REALPART_EXPR, inner_type, lhs);
798 i = build1 (IMAGPART_EXPR, inner_type, lhs);
799 update_complex_components (gsi, stmt, r, i);
801 else
803 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
805 r = extract_component (gsi, rhs, 0, true);
806 i = extract_component (gsi, rhs, 1, true);
808 else
810 r = gimple_assign_rhs1 (stmt);
811 i = gimple_assign_rhs2 (stmt);
813 update_complex_assignment (gsi, r, i);
816 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
818 tree x;
819 gimple t;
821 r = extract_component (gsi, rhs, 0, false);
822 i = extract_component (gsi, rhs, 1, false);
824 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
825 t = gimple_build_assign (x, r);
826 gsi_insert_before (gsi, t, GSI_SAME_STMT);
828 if (stmt == gsi_stmt (*gsi))
830 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
831 gimple_assign_set_lhs (stmt, x);
832 gimple_assign_set_rhs1 (stmt, i);
834 else
836 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
837 t = gimple_build_assign (x, i);
838 gsi_insert_before (gsi, t, GSI_SAME_STMT);
840 stmt = gsi_stmt (*gsi);
841 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
842 gimple_return_set_retval (stmt, lhs);
845 update_stmt (stmt);
849 /* Expand complex addition to scalars:
850 a + b = (ar + br) + i(ai + bi)
851 a - b = (ar - br) + i(ai + bi)
854 static void
855 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
856 tree ar, tree ai, tree br, tree bi,
857 enum tree_code code,
858 complex_lattice_t al, complex_lattice_t bl)
860 tree rr, ri;
862 switch (PAIR (al, bl))
864 case PAIR (ONLY_REAL, ONLY_REAL):
865 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
866 ri = ai;
867 break;
869 case PAIR (ONLY_REAL, ONLY_IMAG):
870 rr = ar;
871 if (code == MINUS_EXPR)
872 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
873 else
874 ri = bi;
875 break;
877 case PAIR (ONLY_IMAG, ONLY_REAL):
878 if (code == MINUS_EXPR)
879 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
880 else
881 rr = br;
882 ri = ai;
883 break;
885 case PAIR (ONLY_IMAG, ONLY_IMAG):
886 rr = ar;
887 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
888 break;
890 case PAIR (VARYING, ONLY_REAL):
891 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
892 ri = ai;
893 break;
895 case PAIR (VARYING, ONLY_IMAG):
896 rr = ar;
897 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
898 break;
900 case PAIR (ONLY_REAL, VARYING):
901 if (code == MINUS_EXPR)
902 goto general;
903 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
904 ri = bi;
905 break;
907 case PAIR (ONLY_IMAG, VARYING):
908 if (code == MINUS_EXPR)
909 goto general;
910 rr = br;
911 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
912 break;
914 case PAIR (VARYING, VARYING):
915 general:
916 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
917 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
918 break;
920 default:
921 gcc_unreachable ();
924 update_complex_assignment (gsi, rr, ri);
927 /* Expand a complex multiplication or division to a libcall to the c99
928 compliant routines. */
930 static void
931 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
932 tree br, tree bi, enum tree_code code)
934 enum machine_mode mode;
935 enum built_in_function bcode;
936 tree fn, type, lhs;
937 gimple old_stmt, stmt;
939 old_stmt = gsi_stmt (*gsi);
940 lhs = gimple_assign_lhs (old_stmt);
941 type = TREE_TYPE (lhs);
943 mode = TYPE_MODE (type);
944 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
946 if (code == MULT_EXPR)
947 bcode = ((enum built_in_function)
948 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
949 else if (code == RDIV_EXPR)
950 bcode = ((enum built_in_function)
951 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
952 else
953 gcc_unreachable ();
954 fn = builtin_decl_explicit (bcode);
956 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
957 gimple_call_set_lhs (stmt, lhs);
958 update_stmt (stmt);
959 gsi_replace (gsi, stmt, false);
961 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
962 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
964 if (gimple_in_ssa_p (cfun))
966 type = TREE_TYPE (type);
967 update_complex_components (gsi, stmt,
968 build1 (REALPART_EXPR, type, lhs),
969 build1 (IMAGPART_EXPR, type, lhs));
970 SSA_NAME_DEF_STMT (lhs) = stmt;
974 /* Expand complex multiplication to scalars:
975 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
978 static void
979 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
980 tree ar, tree ai, tree br, tree bi,
981 complex_lattice_t al, complex_lattice_t bl)
983 tree rr, ri;
985 if (al < bl)
987 complex_lattice_t tl;
988 rr = ar, ar = br, br = rr;
989 ri = ai, ai = bi, bi = ri;
990 tl = al, al = bl, bl = tl;
993 switch (PAIR (al, bl))
995 case PAIR (ONLY_REAL, ONLY_REAL):
996 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
997 ri = ai;
998 break;
1000 case PAIR (ONLY_IMAG, ONLY_REAL):
1001 rr = ar;
1002 if (TREE_CODE (ai) == REAL_CST
1003 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1004 ri = br;
1005 else
1006 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1007 break;
1009 case PAIR (ONLY_IMAG, ONLY_IMAG):
1010 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1011 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1012 ri = ar;
1013 break;
1015 case PAIR (VARYING, ONLY_REAL):
1016 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1017 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1018 break;
1020 case PAIR (VARYING, ONLY_IMAG):
1021 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1022 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1023 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1024 break;
1026 case PAIR (VARYING, VARYING):
1027 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1029 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1030 return;
1032 else
1034 tree t1, t2, t3, t4;
1036 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1037 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1038 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1040 /* Avoid expanding redundant multiplication for the common
1041 case of squaring a complex number. */
1042 if (ar == br && ai == bi)
1043 t4 = t3;
1044 else
1045 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1047 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1048 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1050 break;
1052 default:
1053 gcc_unreachable ();
1056 update_complex_assignment (gsi, rr, ri);
1059 /* Keep this algorithm in sync with fold-const.c:const_binop().
1061 Expand complex division to scalars, straightforward algorithm.
1062 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1063 t = br*br + bi*bi
1066 static void
1067 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1068 tree ar, tree ai, tree br, tree bi,
1069 enum tree_code code)
1071 tree rr, ri, div, t1, t2, t3;
1073 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1074 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1075 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1077 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1078 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1079 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1080 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1082 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1083 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1084 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1085 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1087 update_complex_assignment (gsi, rr, ri);
1090 /* Keep this algorithm in sync with fold-const.c:const_binop().
1092 Expand complex division to scalars, modified algorithm to minimize
1093 overflow with wide input ranges. */
1095 static void
1096 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1097 tree ar, tree ai, tree br, tree bi,
1098 enum tree_code code)
1100 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1101 basic_block bb_cond, bb_true, bb_false, bb_join;
1102 gimple stmt;
1104 /* Examine |br| < |bi|, and branch. */
1105 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1106 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1107 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1108 LT_EXPR, boolean_type_node, t1, t2);
1109 STRIP_NOPS (compare);
1111 bb_cond = bb_true = bb_false = bb_join = NULL;
1112 rr = ri = tr = ti = NULL;
1113 if (TREE_CODE (compare) != INTEGER_CST)
1115 edge e;
1116 gimple stmt;
1117 tree cond, tmp;
1119 tmp = create_tmp_var (boolean_type_node, NULL);
1120 stmt = gimple_build_assign (tmp, compare);
1121 if (gimple_in_ssa_p (cfun))
1123 tmp = make_ssa_name (tmp, stmt);
1124 gimple_assign_set_lhs (stmt, tmp);
1127 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1129 cond = fold_build2_loc (gimple_location (stmt),
1130 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1131 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1132 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1134 /* Split the original block, and create the TRUE and FALSE blocks. */
1135 e = split_block (gsi_bb (*gsi), stmt);
1136 bb_cond = e->src;
1137 bb_join = e->dest;
1138 bb_true = create_empty_bb (bb_cond);
1139 bb_false = create_empty_bb (bb_true);
1141 /* Wire the blocks together. */
1142 e->flags = EDGE_TRUE_VALUE;
1143 redirect_edge_succ (e, bb_true);
1144 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1145 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1146 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1148 /* Update dominance info. Note that bb_join's data was
1149 updated by split_block. */
1150 if (dom_info_available_p (CDI_DOMINATORS))
1152 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1153 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1156 rr = create_tmp_reg (inner_type, NULL);
1157 ri = create_tmp_reg (inner_type, NULL);
1160 /* In the TRUE branch, we compute
1161 ratio = br/bi;
1162 div = (br * ratio) + bi;
1163 tr = (ar * ratio) + ai;
1164 ti = (ai * ratio) - ar;
1165 tr = tr / div;
1166 ti = ti / div; */
1167 if (bb_true || integer_nonzerop (compare))
1169 if (bb_true)
1171 *gsi = gsi_last_bb (bb_true);
1172 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1175 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1177 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1178 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1180 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1181 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1183 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1184 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1186 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1187 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1189 if (bb_true)
1191 stmt = gimple_build_assign (rr, tr);
1192 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1193 stmt = gimple_build_assign (ri, ti);
1194 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1195 gsi_remove (gsi, true);
1199 /* In the FALSE branch, we compute
1200 ratio = d/c;
1201 divisor = (d * ratio) + c;
1202 tr = (b * ratio) + a;
1203 ti = b - (a * ratio);
1204 tr = tr / div;
1205 ti = ti / div; */
1206 if (bb_false || integer_zerop (compare))
1208 if (bb_false)
1210 *gsi = gsi_last_bb (bb_false);
1211 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1214 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1216 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1217 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1219 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1220 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1222 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1223 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1225 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1226 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1228 if (bb_false)
1230 stmt = gimple_build_assign (rr, tr);
1231 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1232 stmt = gimple_build_assign (ri, ti);
1233 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1234 gsi_remove (gsi, true);
1238 if (bb_join)
1239 *gsi = gsi_start_bb (bb_join);
1240 else
1241 rr = tr, ri = ti;
1243 update_complex_assignment (gsi, rr, ri);
1246 /* Expand complex division to scalars. */
1248 static void
1249 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1250 tree ar, tree ai, tree br, tree bi,
1251 enum tree_code code,
1252 complex_lattice_t al, complex_lattice_t bl)
1254 tree rr, ri;
1256 switch (PAIR (al, bl))
1258 case PAIR (ONLY_REAL, ONLY_REAL):
1259 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1260 ri = ai;
1261 break;
1263 case PAIR (ONLY_REAL, ONLY_IMAG):
1264 rr = ai;
1265 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1266 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1267 break;
1269 case PAIR (ONLY_IMAG, ONLY_REAL):
1270 rr = ar;
1271 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1272 break;
1274 case PAIR (ONLY_IMAG, ONLY_IMAG):
1275 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1276 ri = ar;
1277 break;
1279 case PAIR (VARYING, ONLY_REAL):
1280 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1281 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1282 break;
1284 case PAIR (VARYING, ONLY_IMAG):
1285 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1286 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1287 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1289 case PAIR (ONLY_REAL, VARYING):
1290 case PAIR (ONLY_IMAG, VARYING):
1291 case PAIR (VARYING, VARYING):
1292 switch (flag_complex_method)
1294 case 0:
1295 /* straightforward implementation of complex divide acceptable. */
1296 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1297 break;
1299 case 2:
1300 if (SCALAR_FLOAT_TYPE_P (inner_type))
1302 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1303 break;
1305 /* FALLTHRU */
1307 case 1:
1308 /* wide ranges of inputs must work for complex divide. */
1309 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1310 break;
1312 default:
1313 gcc_unreachable ();
1315 return;
1317 default:
1318 gcc_unreachable ();
1321 update_complex_assignment (gsi, rr, ri);
1324 /* Expand complex negation to scalars:
1325 -a = (-ar) + i(-ai)
1328 static void
1329 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1330 tree ar, tree ai)
1332 tree rr, ri;
1334 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1335 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1337 update_complex_assignment (gsi, rr, ri);
1340 /* Expand complex conjugate to scalars:
1341 ~a = (ar) + i(-ai)
1344 static void
1345 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1346 tree ar, tree ai)
1348 tree ri;
1350 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1352 update_complex_assignment (gsi, ar, ri);
1355 /* Expand complex comparison (EQ or NE only). */
1357 static void
1358 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1359 tree br, tree bi, enum tree_code code)
1361 tree cr, ci, cc, type;
1362 gimple stmt;
1364 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1365 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1366 cc = gimplify_build2 (gsi,
1367 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1368 boolean_type_node, cr, ci);
1370 stmt = gsi_stmt (*gsi);
1372 switch (gimple_code (stmt))
1374 case GIMPLE_RETURN:
1375 type = TREE_TYPE (gimple_return_retval (stmt));
1376 gimple_return_set_retval (stmt, fold_convert (type, cc));
1377 break;
1379 case GIMPLE_ASSIGN:
1380 type = TREE_TYPE (gimple_assign_lhs (stmt));
1381 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1382 stmt = gsi_stmt (*gsi);
1383 break;
1385 case GIMPLE_COND:
1386 gimple_cond_set_code (stmt, EQ_EXPR);
1387 gimple_cond_set_lhs (stmt, cc);
1388 gimple_cond_set_rhs (stmt, boolean_true_node);
1389 break;
1391 default:
1392 gcc_unreachable ();
1395 update_stmt (stmt);
1399 /* Process one statement. If we identify a complex operation, expand it. */
1401 static void
1402 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1404 gimple stmt = gsi_stmt (*gsi);
1405 tree type, inner_type, lhs;
1406 tree ac, ar, ai, bc, br, bi;
1407 complex_lattice_t al, bl;
1408 enum tree_code code;
1410 lhs = gimple_get_lhs (stmt);
1411 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1412 return;
1414 type = TREE_TYPE (gimple_op (stmt, 0));
1415 code = gimple_expr_code (stmt);
1417 /* Initial filter for operations we handle. */
1418 switch (code)
1420 case PLUS_EXPR:
1421 case MINUS_EXPR:
1422 case MULT_EXPR:
1423 case TRUNC_DIV_EXPR:
1424 case CEIL_DIV_EXPR:
1425 case FLOOR_DIV_EXPR:
1426 case ROUND_DIV_EXPR:
1427 case RDIV_EXPR:
1428 case NEGATE_EXPR:
1429 case CONJ_EXPR:
1430 if (TREE_CODE (type) != COMPLEX_TYPE)
1431 return;
1432 inner_type = TREE_TYPE (type);
1433 break;
1435 case EQ_EXPR:
1436 case NE_EXPR:
1437 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1438 subocde, so we need to access the operands using gimple_op. */
1439 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1440 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1441 return;
1442 break;
1444 default:
1446 tree rhs;
1448 /* GIMPLE_COND may also fallthru here, but we do not need to
1449 do anything with it. */
1450 if (gimple_code (stmt) == GIMPLE_COND)
1451 return;
1453 if (TREE_CODE (type) == COMPLEX_TYPE)
1454 expand_complex_move (gsi, type);
1455 else if (is_gimple_assign (stmt)
1456 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1457 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1458 && TREE_CODE (lhs) == SSA_NAME)
1460 rhs = gimple_assign_rhs1 (stmt);
1461 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1462 gimple_assign_rhs_code (stmt)
1463 == IMAGPART_EXPR,
1464 false);
1465 gimple_assign_set_rhs_from_tree (gsi, rhs);
1466 stmt = gsi_stmt (*gsi);
1467 update_stmt (stmt);
1470 return;
1473 /* Extract the components of the two complex values. Make sure and
1474 handle the common case of the same value used twice specially. */
1475 if (is_gimple_assign (stmt))
1477 ac = gimple_assign_rhs1 (stmt);
1478 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1480 /* GIMPLE_CALL can not get here. */
1481 else
1483 ac = gimple_cond_lhs (stmt);
1484 bc = gimple_cond_rhs (stmt);
1487 ar = extract_component (gsi, ac, false, true);
1488 ai = extract_component (gsi, ac, true, true);
1490 if (ac == bc)
1491 br = ar, bi = ai;
1492 else if (bc)
1494 br = extract_component (gsi, bc, 0, true);
1495 bi = extract_component (gsi, bc, 1, true);
1497 else
1498 br = bi = NULL_TREE;
1500 if (gimple_in_ssa_p (cfun))
1502 al = find_lattice_value (ac);
1503 if (al == UNINITIALIZED)
1504 al = VARYING;
1506 if (TREE_CODE_CLASS (code) == tcc_unary)
1507 bl = UNINITIALIZED;
1508 else if (ac == bc)
1509 bl = al;
1510 else
1512 bl = find_lattice_value (bc);
1513 if (bl == UNINITIALIZED)
1514 bl = VARYING;
1517 else
1518 al = bl = VARYING;
1520 switch (code)
1522 case PLUS_EXPR:
1523 case MINUS_EXPR:
1524 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1525 break;
1527 case MULT_EXPR:
1528 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1529 break;
1531 case TRUNC_DIV_EXPR:
1532 case CEIL_DIV_EXPR:
1533 case FLOOR_DIV_EXPR:
1534 case ROUND_DIV_EXPR:
1535 case RDIV_EXPR:
1536 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1537 break;
1539 case NEGATE_EXPR:
1540 expand_complex_negation (gsi, inner_type, ar, ai);
1541 break;
1543 case CONJ_EXPR:
1544 expand_complex_conjugate (gsi, inner_type, ar, ai);
1545 break;
1547 case EQ_EXPR:
1548 case NE_EXPR:
1549 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1550 break;
1552 default:
1553 gcc_unreachable ();
1558 /* Entry point for complex operation lowering during optimization. */
1560 static unsigned int
1561 tree_lower_complex (void)
1563 int old_last_basic_block;
1564 gimple_stmt_iterator gsi;
1565 basic_block bb;
1567 if (!init_dont_simulate_again ())
1568 return 0;
1570 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1571 VEC_safe_grow_cleared (complex_lattice_t, heap,
1572 complex_lattice_values, num_ssa_names);
1574 init_parameter_lattice_values ();
1575 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1577 complex_variable_components = htab_create (10, int_tree_map_hash,
1578 int_tree_map_eq, free);
1580 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1581 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1582 2 * num_ssa_names);
1584 update_parameter_components ();
1586 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1587 old_last_basic_block = last_basic_block;
1588 FOR_EACH_BB (bb)
1590 if (bb->index >= old_last_basic_block)
1591 continue;
1593 update_phi_components (bb);
1594 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1595 expand_complex_operations_1 (&gsi);
1598 gsi_commit_edge_inserts ();
1600 htab_delete (complex_variable_components);
1601 VEC_free (tree, heap, complex_ssa_name_components);
1602 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1603 return 0;
1606 struct gimple_opt_pass pass_lower_complex =
1609 GIMPLE_PASS,
1610 "cplxlower", /* name */
1611 0, /* gate */
1612 tree_lower_complex, /* execute */
1613 NULL, /* sub */
1614 NULL, /* next */
1615 0, /* static_pass_number */
1616 TV_NONE, /* tv_id */
1617 PROP_ssa, /* properties_required */
1618 PROP_gimple_lcx, /* properties_provided */
1619 0, /* properties_destroyed */
1620 0, /* todo_flags_start */
1621 TODO_ggc_collect
1622 | TODO_update_ssa
1623 | TODO_verify_stmts /* todo_flags_finish */
1628 static bool
1629 gate_no_optimization (void)
1631 /* With errors, normal optimization passes are not run. If we don't
1632 lower complex operations at all, rtl expansion will abort. */
1633 return !(cfun->curr_properties & PROP_gimple_lcx);
1636 struct gimple_opt_pass pass_lower_complex_O0 =
1639 GIMPLE_PASS,
1640 "cplxlower0", /* name */
1641 gate_no_optimization, /* gate */
1642 tree_lower_complex, /* execute */
1643 NULL, /* sub */
1644 NULL, /* next */
1645 0, /* static_pass_number */
1646 TV_NONE, /* tv_id */
1647 PROP_cfg, /* properties_required */
1648 PROP_gimple_lcx, /* properties_provided */
1649 0, /* properties_destroyed */
1650 0, /* todo_flags_start */
1651 TODO_ggc_collect
1652 | TODO_update_ssa
1653 | TODO_verify_stmts /* todo_flags_finish */