* configure: Regenerated.
[official-gcc.git] / gcc / sel-sched.c
blobb5bffa11978cadd7a613b71ad7e5ec729b3667b1
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "sched-int.h"
39 #include "ggc.h"
40 #include "tree.h"
41 #include "vec.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h"
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
66 Terminology
67 ===========
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
93 High-level overview
94 ===================
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
116 Computing available expressions
117 ===============================
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
133 Choosing the best expression
134 ============================
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
147 Scheduling the best expression
148 ==============================
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
160 Finalizing the schedule
161 =======================
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
167 Dependence analysis changes
168 ===========================
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
179 Initialization changes
180 ======================
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
191 Target contexts
192 ===============
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
202 Various speedups
203 ================
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
261 /* Definitions of local types and macros. */
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
282 /* What we are searching for. */
283 rtx x;
285 /* The occurrence counter. */
286 int n;
289 typedef struct rtx_search_arg *rtx_search_arg_p;
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
347 /* Local params used in move_op_* functions. */
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
369 /* Destination register. */
370 rtx dest;
372 /* Current C_EXPR. */
373 expr_t c_expr;
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
461 /* Current fences. */
462 flist_t fences;
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
502 /* A vector of expressions is used to be able to sort them. */
503 DEF_VEC_P(expr_t);
504 DEF_VEC_ALLOC_P(expr_t,heap);
505 static VEC(expr_t, heap) *vec_av_set = NULL;
507 /* A vector of vinsns is used to hold temporary lists of vinsns. */
508 DEF_VEC_P(vinsn_t);
509 DEF_VEC_ALLOC_P(vinsn_t,heap);
510 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
512 /* This vector has the exprs which may still present in av_sets, but actually
513 can't be moved up due to bookkeeping created during code motion to another
514 fence. See comment near the call to update_and_record_unavailable_insns
515 for the detailed explanations. */
516 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
518 /* This vector has vinsns which are scheduled with renaming on the first fence
519 and then seen on the second. For expressions with such vinsns, target
520 availability information may be wrong. */
521 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
523 /* Vector to store temporary nops inserted in move_op to prevent removal
524 of empty bbs. */
525 DEF_VEC_P(insn_t);
526 DEF_VEC_ALLOC_P(insn_t,heap);
527 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
529 /* These bitmaps record original instructions scheduled on the current
530 iteration and bookkeeping copies created by them. */
531 static bitmap current_originators = NULL;
532 static bitmap current_copies = NULL;
534 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
535 visit them afterwards. */
536 static bitmap code_motion_visited_blocks = NULL;
538 /* Variables to accumulate different statistics. */
540 /* The number of bookkeeping copies created. */
541 static int stat_bookkeeping_copies;
543 /* The number of insns that required bookkeeiping for their scheduling. */
544 static int stat_insns_needed_bookkeeping;
546 /* The number of insns that got renamed. */
547 static int stat_renamed_scheduled;
549 /* The number of substitutions made during scheduling. */
550 static int stat_substitutions_total;
553 /* Forward declarations of static functions. */
554 static bool rtx_ok_for_substitution_p (rtx, rtx);
555 static int sel_rank_for_schedule (const void *, const void *);
556 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
557 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
559 static rtx get_dest_from_orig_ops (av_set_t);
560 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
561 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
562 def_list_t *);
563 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
564 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
565 cmpd_local_params_p, void *);
566 static void sel_sched_region_1 (void);
567 static void sel_sched_region_2 (int);
568 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
570 static void debug_state (state_t);
573 /* Functions that work with fences. */
575 /* Advance one cycle on FENCE. */
576 static void
577 advance_one_cycle (fence_t fence)
579 unsigned i;
580 int cycle;
581 rtx insn;
583 advance_state (FENCE_STATE (fence));
584 cycle = ++FENCE_CYCLE (fence);
585 FENCE_ISSUED_INSNS (fence) = 0;
586 FENCE_STARTS_CYCLE_P (fence) = 1;
587 can_issue_more = issue_rate;
588 FENCE_ISSUE_MORE (fence) = can_issue_more;
590 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
592 if (INSN_READY_CYCLE (insn) < cycle)
594 remove_from_deps (FENCE_DC (fence), insn);
595 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
596 continue;
598 i++;
600 if (sched_verbose >= 2)
602 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
603 debug_state (FENCE_STATE (fence));
607 /* Returns true when SUCC in a fallthru bb of INSN, possibly
608 skipping empty basic blocks. */
609 static bool
610 in_fallthru_bb_p (rtx insn, rtx succ)
612 basic_block bb = BLOCK_FOR_INSN (insn);
613 edge e;
615 if (bb == BLOCK_FOR_INSN (succ))
616 return true;
618 e = find_fallthru_edge_from (bb);
619 if (e)
620 bb = e->dest;
621 else
622 return false;
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
627 return bb == BLOCK_FOR_INSN (succ);
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
649 gcc_assert (!was_here_p);
650 was_here_p = true;
652 gcc_assert (was_here_p && insn != NULL_RTX);
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
661 insn_t succ;
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
678 return;
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
684 int seqno = INSN_SEQNO (succ);
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
710 /* Functions to support substitution. */
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
733 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
762 rtx new_insn;
763 rtx *where_replace;
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_reg (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
798 return true;
800 else
801 return false;
803 else
804 return false;
807 /* Helper function for count_occurences_equiv. */
808 static int
809 count_occurrences_1 (rtx *cur_rtx, void *arg)
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
813 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
815 /* Bail out if mode is different or more than one register is used. */
816 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
817 || (HARD_REGISTER_P (*cur_rtx)
818 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
820 p->n = 0;
821 return 1;
824 p->n++;
826 /* Do not traverse subexprs. */
827 return -1;
830 if (GET_CODE (*cur_rtx) == SUBREG
831 && (!REG_P (SUBREG_REG (*cur_rtx))
832 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
834 /* ??? Do not support substituting regs inside subregs. In that case,
835 simplify_subreg will be called by validate_replace_rtx, and
836 unsubstitution will fail later. */
837 p->n = 0;
838 return 1;
841 /* Continue search. */
842 return 0;
845 /* Return the number of places WHAT appears within WHERE.
846 Bail out when we found a reference occupying several hard registers. */
847 static int
848 count_occurrences_equiv (rtx what, rtx where)
850 struct rtx_search_arg arg;
852 gcc_assert (REG_P (what));
853 arg.x = what;
854 arg.n = 0;
856 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
858 return arg.n;
861 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
862 static bool
863 rtx_ok_for_substitution_p (rtx what, rtx where)
865 return (count_occurrences_equiv (what, where) > 0);
869 /* Functions to support register renaming. */
871 /* Substitute VI's set source with REGNO. Returns newly created pattern
872 that has REGNO as its source. */
873 static rtx
874 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
876 rtx lhs_rtx;
877 rtx pattern;
878 rtx insn_rtx;
880 lhs_rtx = copy_rtx (VINSN_LHS (vi));
882 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
883 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
885 return insn_rtx;
888 /* Returns whether INSN's src can be replaced with register number
889 NEW_SRC_REG. E.g. the following insn is valid for i386:
891 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
892 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
893 (reg:SI 0 ax [orig:770 c1 ] [770]))
894 (const_int 288 [0x120])) [0 str S1 A8])
895 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
896 (nil))
898 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
899 because of operand constraints:
901 (define_insn "*movqi_1"
902 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
903 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
906 So do constrain_operands here, before choosing NEW_SRC_REG as best
907 reg for rhs. */
909 static bool
910 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
912 vinsn_t vi = INSN_VINSN (insn);
913 enum machine_mode mode;
914 rtx dst_loc;
915 bool res;
917 gcc_assert (VINSN_SEPARABLE_P (vi));
919 get_dest_and_mode (insn, &dst_loc, &mode);
920 gcc_assert (mode == GET_MODE (new_src_reg));
922 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
923 return true;
925 /* See whether SET_SRC can be replaced with this register. */
926 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
927 res = verify_changes (0);
928 cancel_changes (0);
930 return res;
933 /* Returns whether INSN still be valid after replacing it's DEST with
934 register NEW_REG. */
935 static bool
936 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
938 vinsn_t vi = INSN_VINSN (insn);
939 bool res;
941 /* We should deal here only with separable insns. */
942 gcc_assert (VINSN_SEPARABLE_P (vi));
943 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
945 /* See whether SET_DEST can be replaced with this register. */
946 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
947 res = verify_changes (0);
948 cancel_changes (0);
950 return res;
953 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
954 static rtx
955 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
957 rtx rhs_rtx;
958 rtx pattern;
959 rtx insn_rtx;
961 rhs_rtx = copy_rtx (VINSN_RHS (vi));
963 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
964 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
966 return insn_rtx;
969 /* Substitute lhs in the given expression EXPR for the register with number
970 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
971 static void
972 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
974 rtx insn_rtx;
975 vinsn_t vinsn;
977 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
978 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
980 change_vinsn_in_expr (expr, vinsn);
981 EXPR_WAS_RENAMED (expr) = 1;
982 EXPR_TARGET_AVAILABLE (expr) = 1;
985 /* Returns whether VI writes either one of the USED_REGS registers or,
986 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
987 static bool
988 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
989 HARD_REG_SET unavailable_hard_regs)
991 unsigned regno;
992 reg_set_iterator rsi;
994 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
996 if (REGNO_REG_SET_P (used_regs, regno))
997 return true;
998 if (HARD_REGISTER_NUM_P (regno)
999 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1000 return true;
1003 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1005 if (REGNO_REG_SET_P (used_regs, regno))
1006 return true;
1007 if (HARD_REGISTER_NUM_P (regno)
1008 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1009 return true;
1012 return false;
1015 /* Returns register class of the output register in INSN.
1016 Returns NO_REGS for call insns because some targets have constraints on
1017 destination register of a call insn.
1019 Code adopted from regrename.c::build_def_use. */
1020 static enum reg_class
1021 get_reg_class (rtx insn)
1023 int alt, i, n_ops;
1025 extract_insn (insn);
1026 if (! constrain_operands (1))
1027 fatal_insn_not_found (insn);
1028 preprocess_constraints ();
1029 alt = which_alternative;
1030 n_ops = recog_data.n_operands;
1032 for (i = 0; i < n_ops; ++i)
1034 int matches = recog_op_alt[i][alt].matches;
1035 if (matches >= 0)
1036 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1039 if (asm_noperands (PATTERN (insn)) > 0)
1041 for (i = 0; i < n_ops; i++)
1042 if (recog_data.operand_type[i] == OP_OUT)
1044 rtx *loc = recog_data.operand_loc[i];
1045 rtx op = *loc;
1046 enum reg_class cl = recog_op_alt[i][alt].cl;
1048 if (REG_P (op)
1049 && REGNO (op) == ORIGINAL_REGNO (op))
1050 continue;
1052 return cl;
1055 else if (!CALL_P (insn))
1057 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1059 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1060 enum reg_class cl = recog_op_alt[opn][alt].cl;
1062 if (recog_data.operand_type[opn] == OP_OUT ||
1063 recog_data.operand_type[opn] == OP_INOUT)
1064 return cl;
1068 /* Insns like
1069 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1070 may result in returning NO_REGS, cause flags is written implicitly through
1071 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1072 return NO_REGS;
1075 #ifdef HARD_REGNO_RENAME_OK
1076 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1077 static void
1078 init_hard_regno_rename (int regno)
1080 int cur_reg;
1082 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1084 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1086 /* We are not interested in renaming in other regs. */
1087 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1088 continue;
1090 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1091 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1094 #endif
1096 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1097 data first. */
1098 static inline bool
1099 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1101 #ifdef HARD_REGNO_RENAME_OK
1102 /* Check whether this is all calculated. */
1103 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1104 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1106 init_hard_regno_rename (from);
1108 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1109 #else
1110 return true;
1111 #endif
1114 /* Calculate set of registers that are capable of holding MODE. */
1115 static void
1116 init_regs_for_mode (enum machine_mode mode)
1118 int cur_reg;
1120 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1121 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1123 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1125 int nregs = hard_regno_nregs[cur_reg][mode];
1126 int i;
1128 for (i = nregs - 1; i >= 0; --i)
1129 if (fixed_regs[cur_reg + i]
1130 || global_regs[cur_reg + i]
1131 /* Can't use regs which aren't saved by
1132 the prologue. */
1133 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1134 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1135 it affects aliasing globally and invalidates all AV sets. */
1136 || get_reg_base_value (cur_reg + i)
1137 #ifdef LEAF_REGISTERS
1138 /* We can't use a non-leaf register if we're in a
1139 leaf function. */
1140 || (crtl->is_leaf
1141 && !LEAF_REGISTERS[cur_reg + i])
1142 #endif
1144 break;
1146 if (i >= 0)
1147 continue;
1149 /* See whether it accepts all modes that occur in
1150 original insns. */
1151 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1152 continue;
1154 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1155 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1156 cur_reg);
1158 /* If the CUR_REG passed all the checks above,
1159 then it's ok. */
1160 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1163 sel_hrd.regs_for_mode_ok[mode] = true;
1166 /* Init all register sets gathered in HRD. */
1167 static void
1168 init_hard_regs_data (void)
1170 int cur_reg = 0;
1171 int cur_mode = 0;
1173 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1174 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1175 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1176 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1178 /* Initialize registers that are valid based on mode when this is
1179 really needed. */
1180 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1181 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1183 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1184 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1185 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1187 #ifdef STACK_REGS
1188 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1190 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1191 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1192 #endif
1195 /* Mark hardware regs in REG_RENAME_P that are not suitable
1196 for renaming rhs in INSN due to hardware restrictions (register class,
1197 modes compatibility etc). This doesn't affect original insn's dest reg,
1198 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1199 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1200 Registers that are in used_regs are always marked in
1201 unavailable_hard_regs as well. */
1203 static void
1204 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1205 regset used_regs ATTRIBUTE_UNUSED)
1207 enum machine_mode mode;
1208 enum reg_class cl = NO_REGS;
1209 rtx orig_dest;
1210 unsigned cur_reg, regno;
1211 hard_reg_set_iterator hrsi;
1213 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1214 gcc_assert (reg_rename_p);
1216 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1218 /* We have decided not to rename 'mem = something;' insns, as 'something'
1219 is usually a register. */
1220 if (!REG_P (orig_dest))
1221 return;
1223 regno = REGNO (orig_dest);
1225 /* If before reload, don't try to work with pseudos. */
1226 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1227 return;
1229 if (reload_completed)
1230 cl = get_reg_class (def->orig_insn);
1232 /* Stop if the original register is one of the fixed_regs, global_regs or
1233 frame pointer, or we could not discover its class. */
1234 if (fixed_regs[regno]
1235 || global_regs[regno]
1236 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1237 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1238 #else
1239 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1240 #endif
1241 || (reload_completed && cl == NO_REGS))
1243 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1245 /* Give a chance for original register, if it isn't in used_regs. */
1246 if (!def->crosses_call)
1247 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1249 return;
1252 /* If something allocated on stack in this function, mark frame pointer
1253 register unavailable, considering also modes.
1254 FIXME: it is enough to do this once per all original defs. */
1255 if (frame_pointer_needed)
1257 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1258 Pmode, FRAME_POINTER_REGNUM);
1260 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1261 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1262 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1265 #ifdef STACK_REGS
1266 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1267 is equivalent to as if all stack regs were in this set.
1268 I.e. no stack register can be renamed, and even if it's an original
1269 register here we make sure it won't be lifted over it's previous def
1270 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1271 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1272 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1273 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1274 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1275 sel_hrd.stack_regs);
1276 #endif
1278 /* If there's a call on this path, make regs from call_used_reg_set
1279 unavailable. */
1280 if (def->crosses_call)
1281 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1282 call_used_reg_set);
1284 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1285 but not register classes. */
1286 if (!reload_completed)
1287 return;
1289 /* Leave regs as 'available' only from the current
1290 register class. */
1291 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1292 reg_class_contents[cl]);
1294 mode = GET_MODE (orig_dest);
1296 /* Leave only registers available for this mode. */
1297 if (!sel_hrd.regs_for_mode_ok[mode])
1298 init_regs_for_mode (mode);
1299 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 sel_hrd.regs_for_mode[mode]);
1302 /* Exclude registers that are partially call clobbered. */
1303 if (def->crosses_call
1304 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1305 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 sel_hrd.regs_for_call_clobbered[mode]);
1308 /* Leave only those that are ok to rename. */
1309 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1310 0, cur_reg, hrsi)
1312 int nregs;
1313 int i;
1315 nregs = hard_regno_nregs[cur_reg][mode];
1316 gcc_assert (nregs > 0);
1318 for (i = nregs - 1; i >= 0; --i)
1319 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1320 break;
1322 if (i >= 0)
1323 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1324 cur_reg);
1327 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1328 reg_rename_p->unavailable_hard_regs);
1330 /* Regno is always ok from the renaming part of view, but it really
1331 could be in *unavailable_hard_regs already, so set it here instead
1332 of there. */
1333 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1336 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1337 best register more recently than REG2. */
1338 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1340 /* Indicates the number of times renaming happened before the current one. */
1341 static int reg_rename_this_tick;
1343 /* Choose the register among free, that is suitable for storing
1344 the rhs value.
1346 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1347 originally appears. There could be multiple original operations
1348 for single rhs since we moving it up and merging along different
1349 paths.
1351 Some code is adapted from regrename.c (regrename_optimize).
1352 If original register is available, function returns it.
1353 Otherwise it performs the checks, so the new register should
1354 comply with the following:
1355 - it should not violate any live ranges (such registers are in
1356 REG_RENAME_P->available_for_renaming set);
1357 - it should not be in the HARD_REGS_USED regset;
1358 - it should be in the class compatible with original uses;
1359 - it should not be clobbered through reference with different mode;
1360 - if we're in the leaf function, then the new register should
1361 not be in the LEAF_REGISTERS;
1362 - etc.
1364 If several registers meet the conditions, the register with smallest
1365 tick is returned to achieve more even register allocation.
1367 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1369 If no register satisfies the above conditions, NULL_RTX is returned. */
1370 static rtx
1371 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1372 struct reg_rename *reg_rename_p,
1373 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1375 int best_new_reg;
1376 unsigned cur_reg;
1377 enum machine_mode mode = VOIDmode;
1378 unsigned regno, i, n;
1379 hard_reg_set_iterator hrsi;
1380 def_list_iterator di;
1381 def_t def;
1383 /* If original register is available, return it. */
1384 *is_orig_reg_p_ptr = true;
1386 FOR_EACH_DEF (def, di, original_insns)
1388 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1390 gcc_assert (REG_P (orig_dest));
1392 /* Check that all original operations have the same mode.
1393 This is done for the next loop; if we'd return from this
1394 loop, we'd check only part of them, but in this case
1395 it doesn't matter. */
1396 if (mode == VOIDmode)
1397 mode = GET_MODE (orig_dest);
1398 gcc_assert (mode == GET_MODE (orig_dest));
1400 regno = REGNO (orig_dest);
1401 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1402 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1403 break;
1405 /* All hard registers are available. */
1406 if (i == n)
1408 gcc_assert (mode != VOIDmode);
1410 /* Hard registers should not be shared. */
1411 return gen_rtx_REG (mode, regno);
1415 *is_orig_reg_p_ptr = false;
1416 best_new_reg = -1;
1418 /* Among all available regs choose the register that was
1419 allocated earliest. */
1420 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1421 0, cur_reg, hrsi)
1422 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1424 /* Check that all hard regs for mode are available. */
1425 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1426 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1427 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1428 cur_reg + i))
1429 break;
1431 if (i < n)
1432 continue;
1434 /* All hard registers are available. */
1435 if (best_new_reg < 0
1436 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1438 best_new_reg = cur_reg;
1440 /* Return immediately when we know there's no better reg. */
1441 if (! reg_rename_tick[best_new_reg])
1442 break;
1446 if (best_new_reg >= 0)
1448 /* Use the check from the above loop. */
1449 gcc_assert (mode != VOIDmode);
1450 return gen_rtx_REG (mode, best_new_reg);
1453 return NULL_RTX;
1456 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1457 assumptions about available registers in the function. */
1458 static rtx
1459 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1460 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1462 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1463 original_insns, is_orig_reg_p_ptr);
1465 /* FIXME loop over hard_regno_nregs here. */
1466 gcc_assert (best_reg == NULL_RTX
1467 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1469 return best_reg;
1472 /* Choose the pseudo register for storing rhs value. As this is supposed
1473 to work before reload, we return either the original register or make
1474 the new one. The parameters are the same that in choose_nest_reg_1
1475 functions, except that USED_REGS may contain pseudos.
1476 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1478 TODO: take into account register pressure while doing this. Up to this
1479 moment, this function would never return NULL for pseudos, but we should
1480 not rely on this. */
1481 static rtx
1482 choose_best_pseudo_reg (regset used_regs,
1483 struct reg_rename *reg_rename_p,
1484 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1486 def_list_iterator i;
1487 def_t def;
1488 enum machine_mode mode = VOIDmode;
1489 bool bad_hard_regs = false;
1491 /* We should not use this after reload. */
1492 gcc_assert (!reload_completed);
1494 /* If original register is available, return it. */
1495 *is_orig_reg_p_ptr = true;
1497 FOR_EACH_DEF (def, i, original_insns)
1499 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1500 int orig_regno;
1502 gcc_assert (REG_P (dest));
1504 /* Check that all original operations have the same mode. */
1505 if (mode == VOIDmode)
1506 mode = GET_MODE (dest);
1507 else
1508 gcc_assert (mode == GET_MODE (dest));
1509 orig_regno = REGNO (dest);
1511 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1513 if (orig_regno < FIRST_PSEUDO_REGISTER)
1515 gcc_assert (df_regs_ever_live_p (orig_regno));
1517 /* For hard registers, we have to check hardware imposed
1518 limitations (frame/stack registers, calls crossed). */
1519 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1520 orig_regno))
1522 /* Don't let register cross a call if it doesn't already
1523 cross one. This condition is written in accordance with
1524 that in sched-deps.c sched_analyze_reg(). */
1525 if (!reg_rename_p->crosses_call
1526 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1527 return gen_rtx_REG (mode, orig_regno);
1530 bad_hard_regs = true;
1532 else
1533 return dest;
1537 *is_orig_reg_p_ptr = false;
1539 /* We had some original hard registers that couldn't be used.
1540 Those were likely special. Don't try to create a pseudo. */
1541 if (bad_hard_regs)
1542 return NULL_RTX;
1544 /* We haven't found a register from original operations. Get a new one.
1545 FIXME: control register pressure somehow. */
1547 rtx new_reg = gen_reg_rtx (mode);
1549 gcc_assert (mode != VOIDmode);
1551 max_regno = max_reg_num ();
1552 maybe_extend_reg_info_p ();
1553 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1555 return new_reg;
1559 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1560 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1561 static void
1562 verify_target_availability (expr_t expr, regset used_regs,
1563 struct reg_rename *reg_rename_p)
1565 unsigned n, i, regno;
1566 enum machine_mode mode;
1567 bool target_available, live_available, hard_available;
1569 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1570 return;
1572 regno = expr_dest_regno (expr);
1573 mode = GET_MODE (EXPR_LHS (expr));
1574 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1575 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1577 live_available = hard_available = true;
1578 for (i = 0; i < n; i++)
1580 if (bitmap_bit_p (used_regs, regno + i))
1581 live_available = false;
1582 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1583 hard_available = false;
1586 /* When target is not available, it may be due to hard register
1587 restrictions, e.g. crosses calls, so we check hard_available too. */
1588 if (target_available)
1589 gcc_assert (live_available);
1590 else
1591 /* Check only if we haven't scheduled something on the previous fence,
1592 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1593 and having more than one fence, we may end having targ_un in a block
1594 in which successors target register is actually available.
1596 The last condition handles the case when a dependence from a call insn
1597 was created in sched-deps.c for insns with destination registers that
1598 never crossed a call before, but do cross one after our code motion.
1600 FIXME: in the latter case, we just uselessly called find_used_regs,
1601 because we can't move this expression with any other register
1602 as well. */
1603 gcc_assert (scheduled_something_on_previous_fence || !live_available
1604 || !hard_available
1605 || (!reload_completed && reg_rename_p->crosses_call
1606 && REG_N_CALLS_CROSSED (regno) == 0));
1609 /* Collect unavailable registers due to liveness for EXPR from BNDS
1610 into USED_REGS. Save additional information about available
1611 registers and unavailable due to hardware restriction registers
1612 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1613 list. */
1614 static void
1615 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1616 struct reg_rename *reg_rename_p,
1617 def_list_t *original_insns)
1619 for (; bnds; bnds = BLIST_NEXT (bnds))
1621 bool res;
1622 av_set_t orig_ops = NULL;
1623 bnd_t bnd = BLIST_BND (bnds);
1625 /* If the chosen best expr doesn't belong to current boundary,
1626 skip it. */
1627 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1628 continue;
1630 /* Put in ORIG_OPS all exprs from this boundary that became
1631 RES on top. */
1632 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1634 /* Compute used regs and OR it into the USED_REGS. */
1635 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1636 reg_rename_p, original_insns);
1638 /* FIXME: the assert is true until we'd have several boundaries. */
1639 gcc_assert (res);
1640 av_set_clear (&orig_ops);
1644 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1645 If BEST_REG is valid, replace LHS of EXPR with it. */
1646 static bool
1647 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1649 /* Try whether we'll be able to generate the insn
1650 'dest := best_reg' at the place of the original operation. */
1651 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1653 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1655 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1657 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1658 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1659 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1660 return false;
1663 /* Make sure that EXPR has the right destination
1664 register. */
1665 if (expr_dest_regno (expr) != REGNO (best_reg))
1666 replace_dest_with_reg_in_expr (expr, best_reg);
1667 else
1668 EXPR_TARGET_AVAILABLE (expr) = 1;
1670 return true;
1673 /* Select and assign best register to EXPR searching from BNDS.
1674 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1675 Return FALSE if no register can be chosen, which could happen when:
1676 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1677 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1678 that are used on the moving path. */
1679 static bool
1680 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1682 static struct reg_rename reg_rename_data;
1684 regset used_regs;
1685 def_list_t original_insns = NULL;
1686 bool reg_ok;
1688 *is_orig_reg_p = false;
1690 /* Don't bother to do anything if this insn doesn't set any registers. */
1691 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1692 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1693 return true;
1695 used_regs = get_clear_regset_from_pool ();
1696 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1698 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1699 &original_insns);
1701 #ifdef ENABLE_CHECKING
1702 /* If after reload, make sure we're working with hard regs here. */
1703 if (reload_completed)
1705 reg_set_iterator rsi;
1706 unsigned i;
1708 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1709 gcc_unreachable ();
1711 #endif
1713 if (EXPR_SEPARABLE_P (expr))
1715 rtx best_reg = NULL_RTX;
1716 /* Check that we have computed availability of a target register
1717 correctly. */
1718 verify_target_availability (expr, used_regs, &reg_rename_data);
1720 /* Turn everything in hard regs after reload. */
1721 if (reload_completed)
1723 HARD_REG_SET hard_regs_used;
1724 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1726 /* Join hard registers unavailable due to register class
1727 restrictions and live range intersection. */
1728 IOR_HARD_REG_SET (hard_regs_used,
1729 reg_rename_data.unavailable_hard_regs);
1731 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1732 original_insns, is_orig_reg_p);
1734 else
1735 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1736 original_insns, is_orig_reg_p);
1738 if (!best_reg)
1739 reg_ok = false;
1740 else if (*is_orig_reg_p)
1742 /* In case of unification BEST_REG may be different from EXPR's LHS
1743 when EXPR's LHS is unavailable, and there is another LHS among
1744 ORIGINAL_INSNS. */
1745 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1747 else
1749 /* Forbid renaming of low-cost insns. */
1750 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1751 reg_ok = false;
1752 else
1753 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1756 else
1758 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1759 any of the HARD_REGS_USED set. */
1760 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1761 reg_rename_data.unavailable_hard_regs))
1763 reg_ok = false;
1764 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1766 else
1768 reg_ok = true;
1769 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1773 ilist_clear (&original_insns);
1774 return_regset_to_pool (used_regs);
1776 return reg_ok;
1780 /* Return true if dependence described by DS can be overcomed. */
1781 static bool
1782 can_speculate_dep_p (ds_t ds)
1784 if (spec_info == NULL)
1785 return false;
1787 /* Leave only speculative data. */
1788 ds &= SPECULATIVE;
1790 if (ds == 0)
1791 return false;
1794 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1795 that we can overcome. */
1796 ds_t spec_mask = spec_info->mask;
1798 if ((ds & spec_mask) != ds)
1799 return false;
1802 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1803 return false;
1805 return true;
1808 /* Get a speculation check instruction.
1809 C_EXPR is a speculative expression,
1810 CHECK_DS describes speculations that should be checked,
1811 ORIG_INSN is the original non-speculative insn in the stream. */
1812 static insn_t
1813 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1815 rtx check_pattern;
1816 rtx insn_rtx;
1817 insn_t insn;
1818 basic_block recovery_block;
1819 rtx label;
1821 /* Create a recovery block if target is going to emit branchy check, or if
1822 ORIG_INSN was speculative already. */
1823 if (targetm.sched.needs_block_p (check_ds)
1824 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1826 recovery_block = sel_create_recovery_block (orig_insn);
1827 label = BB_HEAD (recovery_block);
1829 else
1831 recovery_block = NULL;
1832 label = NULL_RTX;
1835 /* Get pattern of the check. */
1836 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1837 check_ds);
1839 gcc_assert (check_pattern != NULL);
1841 /* Emit check. */
1842 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1844 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1845 INSN_SEQNO (orig_insn), orig_insn);
1847 /* Make check to be non-speculative. */
1848 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1849 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1851 /* Decrease priority of check by difference of load/check instruction
1852 latencies. */
1853 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1854 - sel_vinsn_cost (INSN_VINSN (insn)));
1856 /* Emit copy of original insn (though with replaced target register,
1857 if needed) to the recovery block. */
1858 if (recovery_block != NULL)
1860 rtx twin_rtx;
1862 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1863 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1864 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1865 INSN_EXPR (orig_insn),
1866 INSN_SEQNO (insn),
1867 bb_note (recovery_block));
1870 /* If we've generated a data speculation check, make sure
1871 that all the bookkeeping instruction we'll create during
1872 this move_op () will allocate an ALAT entry so that the
1873 check won't fail.
1874 In case of control speculation we must convert C_EXPR to control
1875 speculative mode, because failing to do so will bring us an exception
1876 thrown by the non-control-speculative load. */
1877 check_ds = ds_get_max_dep_weak (check_ds);
1878 speculate_expr (c_expr, check_ds);
1880 return insn;
1883 /* True when INSN is a "regN = regN" copy. */
1884 static bool
1885 identical_copy_p (rtx insn)
1887 rtx lhs, rhs, pat;
1889 pat = PATTERN (insn);
1891 if (GET_CODE (pat) != SET)
1892 return false;
1894 lhs = SET_DEST (pat);
1895 if (!REG_P (lhs))
1896 return false;
1898 rhs = SET_SRC (pat);
1899 if (!REG_P (rhs))
1900 return false;
1902 return REGNO (lhs) == REGNO (rhs);
1905 /* Undo all transformations on *AV_PTR that were done when
1906 moving through INSN. */
1907 static void
1908 undo_transformations (av_set_t *av_ptr, rtx insn)
1910 av_set_iterator av_iter;
1911 expr_t expr;
1912 av_set_t new_set = NULL;
1914 /* First, kill any EXPR that uses registers set by an insn. This is
1915 required for correctness. */
1916 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1917 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1918 && bitmap_intersect_p (INSN_REG_SETS (insn),
1919 VINSN_REG_USES (EXPR_VINSN (expr)))
1920 /* When an insn looks like 'r1 = r1', we could substitute through
1921 it, but the above condition will still hold. This happened with
1922 gcc.c-torture/execute/961125-1.c. */
1923 && !identical_copy_p (insn))
1925 if (sched_verbose >= 6)
1926 sel_print ("Expr %d removed due to use/set conflict\n",
1927 INSN_UID (EXPR_INSN_RTX (expr)));
1928 av_set_iter_remove (&av_iter);
1931 /* Undo transformations looking at the history vector. */
1932 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1934 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1935 insn, EXPR_VINSN (expr), true);
1937 if (index >= 0)
1939 expr_history_def *phist;
1941 phist = &VEC_index (expr_history_def,
1942 EXPR_HISTORY_OF_CHANGES (expr),
1943 index);
1945 switch (phist->type)
1947 case TRANS_SPECULATION:
1949 ds_t old_ds, new_ds;
1951 /* Compute the difference between old and new speculative
1952 statuses: that's what we need to check.
1953 Earlier we used to assert that the status will really
1954 change. This no longer works because only the probability
1955 bits in the status may have changed during compute_av_set,
1956 and in the case of merging different probabilities of the
1957 same speculative status along different paths we do not
1958 record this in the history vector. */
1959 old_ds = phist->spec_ds;
1960 new_ds = EXPR_SPEC_DONE_DS (expr);
1962 old_ds &= SPECULATIVE;
1963 new_ds &= SPECULATIVE;
1964 new_ds &= ~old_ds;
1966 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1967 break;
1969 case TRANS_SUBSTITUTION:
1971 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1972 vinsn_t new_vi;
1973 bool add = true;
1975 new_vi = phist->old_expr_vinsn;
1977 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1978 == EXPR_SEPARABLE_P (expr));
1979 copy_expr (tmp_expr, expr);
1981 if (vinsn_equal_p (phist->new_expr_vinsn,
1982 EXPR_VINSN (tmp_expr)))
1983 change_vinsn_in_expr (tmp_expr, new_vi);
1984 else
1985 /* This happens when we're unsubstituting on a bookkeeping
1986 copy, which was in turn substituted. The history is wrong
1987 in this case. Do it the hard way. */
1988 add = substitute_reg_in_expr (tmp_expr, insn, true);
1989 if (add)
1990 av_set_add (&new_set, tmp_expr);
1991 clear_expr (tmp_expr);
1992 break;
1994 default:
1995 gcc_unreachable ();
2001 av_set_union_and_clear (av_ptr, &new_set, NULL);
2005 /* Moveup_* helpers for code motion and computing av sets. */
2007 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2008 The difference from the below function is that only substitution is
2009 performed. */
2010 static enum MOVEUP_EXPR_CODE
2011 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2013 vinsn_t vi = EXPR_VINSN (expr);
2014 ds_t *has_dep_p;
2015 ds_t full_ds;
2017 /* Do this only inside insn group. */
2018 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2020 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2021 if (full_ds == 0)
2022 return MOVEUP_EXPR_SAME;
2024 /* Substitution is the possible choice in this case. */
2025 if (has_dep_p[DEPS_IN_RHS])
2027 /* Can't substitute UNIQUE VINSNs. */
2028 gcc_assert (!VINSN_UNIQUE_P (vi));
2030 if (can_substitute_through_p (through_insn,
2031 has_dep_p[DEPS_IN_RHS])
2032 && substitute_reg_in_expr (expr, through_insn, false))
2034 EXPR_WAS_SUBSTITUTED (expr) = true;
2035 return MOVEUP_EXPR_CHANGED;
2038 /* Don't care about this, as even true dependencies may be allowed
2039 in an insn group. */
2040 return MOVEUP_EXPR_SAME;
2043 /* This can catch output dependencies in COND_EXECs. */
2044 if (has_dep_p[DEPS_IN_INSN])
2045 return MOVEUP_EXPR_NULL;
2047 /* This is either an output or an anti dependence, which usually have
2048 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2049 will fix this. */
2050 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2051 return MOVEUP_EXPR_AS_RHS;
2054 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2055 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2056 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2057 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2058 && !sel_insn_is_speculation_check (through_insn))
2060 /* True when a conflict on a target register was found during moveup_expr. */
2061 static bool was_target_conflict = false;
2063 /* Return true when moving a debug INSN across THROUGH_INSN will
2064 create a bookkeeping block. We don't want to create such blocks,
2065 for they would cause codegen differences between compilations with
2066 and without debug info. */
2068 static bool
2069 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2070 insn_t through_insn)
2072 basic_block bbi, bbt;
2073 edge e1, e2;
2074 edge_iterator ei1, ei2;
2076 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2078 if (sched_verbose >= 9)
2079 sel_print ("no bookkeeping required: ");
2080 return FALSE;
2083 bbi = BLOCK_FOR_INSN (insn);
2085 if (EDGE_COUNT (bbi->preds) == 1)
2087 if (sched_verbose >= 9)
2088 sel_print ("only one pred edge: ");
2089 return TRUE;
2092 bbt = BLOCK_FOR_INSN (through_insn);
2094 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2096 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2098 if (find_block_for_bookkeeping (e1, e2, TRUE))
2100 if (sched_verbose >= 9)
2101 sel_print ("found existing block: ");
2102 return FALSE;
2107 if (sched_verbose >= 9)
2108 sel_print ("would create bookkeeping block: ");
2110 return TRUE;
2113 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2114 performing necessary transformations. Record the type of transformation
2115 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2116 permit all dependencies except true ones, and try to remove those
2117 too via forward substitution. All cases when a non-eliminable
2118 non-zero cost dependency exists inside an insn group will be fixed
2119 in tick_check_p instead. */
2120 static enum MOVEUP_EXPR_CODE
2121 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2122 enum local_trans_type *ptrans_type)
2124 vinsn_t vi = EXPR_VINSN (expr);
2125 insn_t insn = VINSN_INSN_RTX (vi);
2126 bool was_changed = false;
2127 bool as_rhs = false;
2128 ds_t *has_dep_p;
2129 ds_t full_ds;
2131 /* ??? We use dependencies of non-debug insns on debug insns to
2132 indicate that the debug insns need to be reset if the non-debug
2133 insn is pulled ahead of it. It's hard to figure out how to
2134 introduce such a notion in sel-sched, but it already fails to
2135 support debug insns in other ways, so we just go ahead and
2136 let the deug insns go corrupt for now. */
2137 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2138 return MOVEUP_EXPR_SAME;
2140 /* When inside_insn_group, delegate to the helper. */
2141 if (inside_insn_group)
2142 return moveup_expr_inside_insn_group (expr, through_insn);
2144 /* Deal with unique insns and control dependencies. */
2145 if (VINSN_UNIQUE_P (vi))
2147 /* We can move jumps without side-effects or jumps that are
2148 mutually exclusive with instruction THROUGH_INSN (all in cases
2149 dependencies allow to do so and jump is not speculative). */
2150 if (control_flow_insn_p (insn))
2152 basic_block fallthru_bb;
2154 /* Do not move checks and do not move jumps through other
2155 jumps. */
2156 if (control_flow_insn_p (through_insn)
2157 || sel_insn_is_speculation_check (insn))
2158 return MOVEUP_EXPR_NULL;
2160 /* Don't move jumps through CFG joins. */
2161 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2162 return MOVEUP_EXPR_NULL;
2164 /* The jump should have a clear fallthru block, and
2165 this block should be in the current region. */
2166 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2167 || ! in_current_region_p (fallthru_bb))
2168 return MOVEUP_EXPR_NULL;
2170 /* And it should be mutually exclusive with through_insn. */
2171 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2172 && ! DEBUG_INSN_P (through_insn))
2173 return MOVEUP_EXPR_NULL;
2176 /* Don't move what we can't move. */
2177 if (EXPR_CANT_MOVE (expr)
2178 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2179 return MOVEUP_EXPR_NULL;
2181 /* Don't move SCHED_GROUP instruction through anything.
2182 If we don't force this, then it will be possible to start
2183 scheduling a sched_group before all its dependencies are
2184 resolved.
2185 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2186 as late as possible through rank_for_schedule. */
2187 if (SCHED_GROUP_P (insn))
2188 return MOVEUP_EXPR_NULL;
2190 else
2191 gcc_assert (!control_flow_insn_p (insn));
2193 /* Don't move debug insns if this would require bookkeeping. */
2194 if (DEBUG_INSN_P (insn)
2195 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2196 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2197 return MOVEUP_EXPR_NULL;
2199 /* Deal with data dependencies. */
2200 was_target_conflict = false;
2201 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2202 if (full_ds == 0)
2204 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2205 return MOVEUP_EXPR_SAME;
2207 else
2209 /* We can move UNIQUE insn up only as a whole and unchanged,
2210 so it shouldn't have any dependencies. */
2211 if (VINSN_UNIQUE_P (vi))
2212 return MOVEUP_EXPR_NULL;
2215 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2217 int res;
2219 res = speculate_expr (expr, full_ds);
2220 if (res >= 0)
2222 /* Speculation was successful. */
2223 full_ds = 0;
2224 was_changed = (res > 0);
2225 if (res == 2)
2226 was_target_conflict = true;
2227 if (ptrans_type)
2228 *ptrans_type = TRANS_SPECULATION;
2229 sel_clear_has_dependence ();
2233 if (has_dep_p[DEPS_IN_INSN])
2234 /* We have some dependency that cannot be discarded. */
2235 return MOVEUP_EXPR_NULL;
2237 if (has_dep_p[DEPS_IN_LHS])
2239 /* Only separable insns can be moved up with the new register.
2240 Anyways, we should mark that the original register is
2241 unavailable. */
2242 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2243 return MOVEUP_EXPR_NULL;
2245 EXPR_TARGET_AVAILABLE (expr) = false;
2246 was_target_conflict = true;
2247 as_rhs = true;
2250 /* At this point we have either separable insns, that will be lifted
2251 up only as RHSes, or non-separable insns with no dependency in lhs.
2252 If dependency is in RHS, then try to perform substitution and move up
2253 substituted RHS:
2255 Ex. 1: Ex.2
2256 y = x; y = x;
2257 z = y*2; y = y*2;
2259 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2260 moved above y=x assignment as z=x*2.
2262 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2263 side can be moved because of the output dependency. The operation was
2264 cropped to its rhs above. */
2265 if (has_dep_p[DEPS_IN_RHS])
2267 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2269 /* Can't substitute UNIQUE VINSNs. */
2270 gcc_assert (!VINSN_UNIQUE_P (vi));
2272 if (can_speculate_dep_p (*rhs_dsp))
2274 int res;
2276 res = speculate_expr (expr, *rhs_dsp);
2277 if (res >= 0)
2279 /* Speculation was successful. */
2280 *rhs_dsp = 0;
2281 was_changed = (res > 0);
2282 if (res == 2)
2283 was_target_conflict = true;
2284 if (ptrans_type)
2285 *ptrans_type = TRANS_SPECULATION;
2287 else
2288 return MOVEUP_EXPR_NULL;
2290 else if (can_substitute_through_p (through_insn,
2291 *rhs_dsp)
2292 && substitute_reg_in_expr (expr, through_insn, false))
2294 /* ??? We cannot perform substitution AND speculation on the same
2295 insn. */
2296 gcc_assert (!was_changed);
2297 was_changed = true;
2298 if (ptrans_type)
2299 *ptrans_type = TRANS_SUBSTITUTION;
2300 EXPR_WAS_SUBSTITUTED (expr) = true;
2302 else
2303 return MOVEUP_EXPR_NULL;
2306 /* Don't move trapping insns through jumps.
2307 This check should be at the end to give a chance to control speculation
2308 to perform its duties. */
2309 if (CANT_MOVE_TRAPPING (expr, through_insn))
2310 return MOVEUP_EXPR_NULL;
2312 return (was_changed
2313 ? MOVEUP_EXPR_CHANGED
2314 : (as_rhs
2315 ? MOVEUP_EXPR_AS_RHS
2316 : MOVEUP_EXPR_SAME));
2319 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2320 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2321 that can exist within a parallel group. Write to RES the resulting
2322 code for moveup_expr. */
2323 static bool
2324 try_bitmap_cache (expr_t expr, insn_t insn,
2325 bool inside_insn_group,
2326 enum MOVEUP_EXPR_CODE *res)
2328 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2330 /* First check whether we've analyzed this situation already. */
2331 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2333 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2335 if (sched_verbose >= 6)
2336 sel_print ("removed (cached)\n");
2337 *res = MOVEUP_EXPR_NULL;
2338 return true;
2340 else
2342 if (sched_verbose >= 6)
2343 sel_print ("unchanged (cached)\n");
2344 *res = MOVEUP_EXPR_SAME;
2345 return true;
2348 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2350 if (inside_insn_group)
2352 if (sched_verbose >= 6)
2353 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2354 *res = MOVEUP_EXPR_SAME;
2355 return true;
2358 else
2359 EXPR_TARGET_AVAILABLE (expr) = false;
2361 /* This is the only case when propagation result can change over time,
2362 as we can dynamically switch off scheduling as RHS. In this case,
2363 just check the flag to reach the correct decision. */
2364 if (enable_schedule_as_rhs_p)
2366 if (sched_verbose >= 6)
2367 sel_print ("unchanged (as RHS, cached)\n");
2368 *res = MOVEUP_EXPR_AS_RHS;
2369 return true;
2371 else
2373 if (sched_verbose >= 6)
2374 sel_print ("removed (cached as RHS, but renaming"
2375 " is now disabled)\n");
2376 *res = MOVEUP_EXPR_NULL;
2377 return true;
2381 return false;
2384 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2385 if successful. Write to RES the resulting code for moveup_expr. */
2386 static bool
2387 try_transformation_cache (expr_t expr, insn_t insn,
2388 enum MOVEUP_EXPR_CODE *res)
2390 struct transformed_insns *pti
2391 = (struct transformed_insns *)
2392 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2393 &EXPR_VINSN (expr),
2394 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2395 if (pti)
2397 /* This EXPR was already moved through this insn and was
2398 changed as a result. Fetch the proper data from
2399 the hashtable. */
2400 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2401 INSN_UID (insn), pti->type,
2402 pti->vinsn_old, pti->vinsn_new,
2403 EXPR_SPEC_DONE_DS (expr));
2405 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2406 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2407 change_vinsn_in_expr (expr, pti->vinsn_new);
2408 if (pti->was_target_conflict)
2409 EXPR_TARGET_AVAILABLE (expr) = false;
2410 if (pti->type == TRANS_SPECULATION)
2412 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2413 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2416 if (sched_verbose >= 6)
2418 sel_print ("changed (cached): ");
2419 dump_expr (expr);
2420 sel_print ("\n");
2423 *res = MOVEUP_EXPR_CHANGED;
2424 return true;
2427 return false;
2430 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2431 static void
2432 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2433 enum MOVEUP_EXPR_CODE res)
2435 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2437 /* Do not cache result of propagating jumps through an insn group,
2438 as it is always true, which is not useful outside the group. */
2439 if (inside_insn_group)
2440 return;
2442 if (res == MOVEUP_EXPR_NULL)
2444 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2445 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2447 else if (res == MOVEUP_EXPR_SAME)
2449 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2450 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2452 else if (res == MOVEUP_EXPR_AS_RHS)
2454 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2455 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2457 else
2458 gcc_unreachable ();
2461 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2462 and transformation type TRANS_TYPE. */
2463 static void
2464 update_transformation_cache (expr_t expr, insn_t insn,
2465 bool inside_insn_group,
2466 enum local_trans_type trans_type,
2467 vinsn_t expr_old_vinsn)
2469 struct transformed_insns *pti;
2471 if (inside_insn_group)
2472 return;
2474 pti = XNEW (struct transformed_insns);
2475 pti->vinsn_old = expr_old_vinsn;
2476 pti->vinsn_new = EXPR_VINSN (expr);
2477 pti->type = trans_type;
2478 pti->was_target_conflict = was_target_conflict;
2479 pti->ds = EXPR_SPEC_DONE_DS (expr);
2480 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2481 vinsn_attach (pti->vinsn_old);
2482 vinsn_attach (pti->vinsn_new);
2483 *((struct transformed_insns **)
2484 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2485 pti, VINSN_HASH_RTX (expr_old_vinsn),
2486 INSERT)) = pti;
2489 /* Same as moveup_expr, but first looks up the result of
2490 transformation in caches. */
2491 static enum MOVEUP_EXPR_CODE
2492 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2494 enum MOVEUP_EXPR_CODE res;
2495 bool got_answer = false;
2497 if (sched_verbose >= 6)
2499 sel_print ("Moving ");
2500 dump_expr (expr);
2501 sel_print (" through %d: ", INSN_UID (insn));
2504 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2505 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2506 == EXPR_INSN_RTX (expr)))
2507 /* Don't use cached information for debug insns that are heads of
2508 basic blocks. */;
2509 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2510 /* When inside insn group, we do not want remove stores conflicting
2511 with previosly issued loads. */
2512 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2513 else if (try_transformation_cache (expr, insn, &res))
2514 got_answer = true;
2516 if (! got_answer)
2518 /* Invoke moveup_expr and record the results. */
2519 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2520 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2521 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2522 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2523 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2525 /* ??? Invent something better than this. We can't allow old_vinsn
2526 to go, we need it for the history vector. */
2527 vinsn_attach (expr_old_vinsn);
2529 res = moveup_expr (expr, insn, inside_insn_group,
2530 &trans_type);
2531 switch (res)
2533 case MOVEUP_EXPR_NULL:
2534 update_bitmap_cache (expr, insn, inside_insn_group, res);
2535 if (sched_verbose >= 6)
2536 sel_print ("removed\n");
2537 break;
2539 case MOVEUP_EXPR_SAME:
2540 update_bitmap_cache (expr, insn, inside_insn_group, res);
2541 if (sched_verbose >= 6)
2542 sel_print ("unchanged\n");
2543 break;
2545 case MOVEUP_EXPR_AS_RHS:
2546 gcc_assert (!unique_p || inside_insn_group);
2547 update_bitmap_cache (expr, insn, inside_insn_group, res);
2548 if (sched_verbose >= 6)
2549 sel_print ("unchanged (as RHS)\n");
2550 break;
2552 case MOVEUP_EXPR_CHANGED:
2553 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2554 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2555 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2556 INSN_UID (insn), trans_type,
2557 expr_old_vinsn, EXPR_VINSN (expr),
2558 expr_old_spec_ds);
2559 update_transformation_cache (expr, insn, inside_insn_group,
2560 trans_type, expr_old_vinsn);
2561 if (sched_verbose >= 6)
2563 sel_print ("changed: ");
2564 dump_expr (expr);
2565 sel_print ("\n");
2567 break;
2568 default:
2569 gcc_unreachable ();
2572 vinsn_detach (expr_old_vinsn);
2575 return res;
2578 /* Moves an av set AVP up through INSN, performing necessary
2579 transformations. */
2580 static void
2581 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2583 av_set_iterator i;
2584 expr_t expr;
2586 FOR_EACH_EXPR_1 (expr, i, avp)
2589 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2591 case MOVEUP_EXPR_SAME:
2592 case MOVEUP_EXPR_AS_RHS:
2593 break;
2595 case MOVEUP_EXPR_NULL:
2596 av_set_iter_remove (&i);
2597 break;
2599 case MOVEUP_EXPR_CHANGED:
2600 expr = merge_with_other_exprs (avp, &i, expr);
2601 break;
2603 default:
2604 gcc_unreachable ();
2609 /* Moves AVP set along PATH. */
2610 static void
2611 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2613 int last_cycle;
2615 if (sched_verbose >= 6)
2616 sel_print ("Moving expressions up in the insn group...\n");
2617 if (! path)
2618 return;
2619 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2620 while (path
2621 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2623 moveup_set_expr (avp, ILIST_INSN (path), true);
2624 path = ILIST_NEXT (path);
2628 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2629 static bool
2630 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2632 expr_def _tmp, *tmp = &_tmp;
2633 int last_cycle;
2634 bool res = true;
2636 copy_expr_onside (tmp, expr);
2637 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2638 while (path
2639 && res
2640 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2642 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2643 != MOVEUP_EXPR_NULL);
2644 path = ILIST_NEXT (path);
2647 if (res)
2649 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2650 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2652 if (tmp_vinsn != expr_vliw_vinsn)
2653 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2656 clear_expr (tmp);
2657 return res;
2661 /* Functions that compute av and lv sets. */
2663 /* Returns true if INSN is not a downward continuation of the given path P in
2664 the current stage. */
2665 static bool
2666 is_ineligible_successor (insn_t insn, ilist_t p)
2668 insn_t prev_insn;
2670 /* Check if insn is not deleted. */
2671 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2672 gcc_unreachable ();
2673 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2674 gcc_unreachable ();
2676 /* If it's the first insn visited, then the successor is ok. */
2677 if (!p)
2678 return false;
2680 prev_insn = ILIST_INSN (p);
2682 if (/* a backward edge. */
2683 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2684 /* is already visited. */
2685 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2686 && (ilist_is_in_p (p, insn)
2687 /* We can reach another fence here and still seqno of insn
2688 would be equal to seqno of prev_insn. This is possible
2689 when prev_insn is a previously created bookkeeping copy.
2690 In that case it'd get a seqno of insn. Thus, check here
2691 whether insn is in current fence too. */
2692 || IN_CURRENT_FENCE_P (insn)))
2693 /* Was already scheduled on this round. */
2694 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2695 && IN_CURRENT_FENCE_P (insn))
2696 /* An insn from another fence could also be
2697 scheduled earlier even if this insn is not in
2698 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2699 || (!pipelining_p
2700 && INSN_SCHED_TIMES (insn) > 0))
2701 return true;
2702 else
2703 return false;
2706 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2707 of handling multiple successors and properly merging its av_sets. P is
2708 the current path traversed. WS is the size of lookahead window.
2709 Return the av set computed. */
2710 static av_set_t
2711 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2713 struct succs_info *sinfo;
2714 av_set_t expr_in_all_succ_branches = NULL;
2715 int is;
2716 insn_t succ, zero_succ = NULL;
2717 av_set_t av1 = NULL;
2719 gcc_assert (sel_bb_end_p (insn));
2721 /* Find different kind of successors needed for correct computing of
2722 SPEC and TARGET_AVAILABLE attributes. */
2723 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2725 /* Debug output. */
2726 if (sched_verbose >= 6)
2728 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2729 dump_insn_vector (sinfo->succs_ok);
2730 sel_print ("\n");
2731 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2732 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2735 /* Add insn to the tail of current path. */
2736 ilist_add (&p, insn);
2738 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2740 av_set_t succ_set;
2742 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2743 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2745 av_set_split_usefulness (succ_set,
2746 VEC_index (int, sinfo->probs_ok, is),
2747 sinfo->all_prob);
2749 if (sinfo->all_succs_n > 1)
2751 /* Find EXPR'es that came from *all* successors and save them
2752 into expr_in_all_succ_branches. This set will be used later
2753 for calculating speculation attributes of EXPR'es. */
2754 if (is == 0)
2756 expr_in_all_succ_branches = av_set_copy (succ_set);
2758 /* Remember the first successor for later. */
2759 zero_succ = succ;
2761 else
2763 av_set_iterator i;
2764 expr_t expr;
2766 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2767 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2768 av_set_iter_remove (&i);
2772 /* Union the av_sets. Check liveness restrictions on target registers
2773 in special case of two successors. */
2774 if (sinfo->succs_ok_n == 2 && is == 1)
2776 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2777 basic_block bb1 = BLOCK_FOR_INSN (succ);
2779 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2780 av_set_union_and_live (&av1, &succ_set,
2781 BB_LV_SET (bb0),
2782 BB_LV_SET (bb1),
2783 insn);
2785 else
2786 av_set_union_and_clear (&av1, &succ_set, insn);
2789 /* Check liveness restrictions via hard way when there are more than
2790 two successors. */
2791 if (sinfo->succs_ok_n > 2)
2792 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2794 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2796 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2797 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2798 BB_LV_SET (succ_bb));
2801 /* Finally, check liveness restrictions on paths leaving the region. */
2802 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2803 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2804 mark_unavailable_targets
2805 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2807 if (sinfo->all_succs_n > 1)
2809 av_set_iterator i;
2810 expr_t expr;
2812 /* Increase the spec attribute of all EXPR'es that didn't come
2813 from all successors. */
2814 FOR_EACH_EXPR (expr, i, av1)
2815 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2816 EXPR_SPEC (expr)++;
2818 av_set_clear (&expr_in_all_succ_branches);
2820 /* Do not move conditional branches through other
2821 conditional branches. So, remove all conditional
2822 branches from av_set if current operator is a conditional
2823 branch. */
2824 av_set_substract_cond_branches (&av1);
2827 ilist_remove (&p);
2828 free_succs_info (sinfo);
2830 if (sched_verbose >= 6)
2832 sel_print ("av_succs (%d): ", INSN_UID (insn));
2833 dump_av_set (av1);
2834 sel_print ("\n");
2837 return av1;
2840 /* This function computes av_set for the FIRST_INSN by dragging valid
2841 av_set through all basic block insns either from the end of basic block
2842 (computed using compute_av_set_at_bb_end) or from the insn on which
2843 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2844 below the basic block and handling conditional branches.
2845 FIRST_INSN - the basic block head, P - path consisting of the insns
2846 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2847 and bb ends are added to the path), WS - current window size,
2848 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2849 static av_set_t
2850 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2851 bool need_copy_p)
2853 insn_t cur_insn;
2854 int end_ws = ws;
2855 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2856 insn_t after_bb_end = NEXT_INSN (bb_end);
2857 insn_t last_insn;
2858 av_set_t av = NULL;
2859 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2861 /* Return NULL if insn is not on the legitimate downward path. */
2862 if (is_ineligible_successor (first_insn, p))
2864 if (sched_verbose >= 6)
2865 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2867 return NULL;
2870 /* If insn already has valid av(insn) computed, just return it. */
2871 if (AV_SET_VALID_P (first_insn))
2873 av_set_t av_set;
2875 if (sel_bb_head_p (first_insn))
2876 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2877 else
2878 av_set = NULL;
2880 if (sched_verbose >= 6)
2882 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2883 dump_av_set (av_set);
2884 sel_print ("\n");
2887 return need_copy_p ? av_set_copy (av_set) : av_set;
2890 ilist_add (&p, first_insn);
2892 /* As the result after this loop have completed, in LAST_INSN we'll
2893 have the insn which has valid av_set to start backward computation
2894 from: it either will be NULL because on it the window size was exceeded
2895 or other valid av_set as returned by compute_av_set for the last insn
2896 of the basic block. */
2897 for (last_insn = first_insn; last_insn != after_bb_end;
2898 last_insn = NEXT_INSN (last_insn))
2900 /* We may encounter valid av_set not only on bb_head, but also on
2901 those insns on which previously MAX_WS was exceeded. */
2902 if (AV_SET_VALID_P (last_insn))
2904 if (sched_verbose >= 6)
2905 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2906 break;
2909 /* The special case: the last insn of the BB may be an
2910 ineligible_successor due to its SEQ_NO that was set on
2911 it as a bookkeeping. */
2912 if (last_insn != first_insn
2913 && is_ineligible_successor (last_insn, p))
2915 if (sched_verbose >= 6)
2916 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2917 break;
2920 if (DEBUG_INSN_P (last_insn))
2921 continue;
2923 if (end_ws > max_ws)
2925 /* We can reach max lookahead size at bb_header, so clean av_set
2926 first. */
2927 INSN_WS_LEVEL (last_insn) = global_level;
2929 if (sched_verbose >= 6)
2930 sel_print ("Insn %d is beyond the software lookahead window size\n",
2931 INSN_UID (last_insn));
2932 break;
2935 end_ws++;
2938 /* Get the valid av_set into AV above the LAST_INSN to start backward
2939 computation from. It either will be empty av_set or av_set computed from
2940 the successors on the last insn of the current bb. */
2941 if (last_insn != after_bb_end)
2943 av = NULL;
2945 /* This is needed only to obtain av_sets that are identical to
2946 those computed by the old compute_av_set version. */
2947 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2948 av_set_add (&av, INSN_EXPR (last_insn));
2950 else
2951 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2952 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2954 /* Compute av_set in AV starting from below the LAST_INSN up to
2955 location above the FIRST_INSN. */
2956 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2957 cur_insn = PREV_INSN (cur_insn))
2958 if (!INSN_NOP_P (cur_insn))
2960 expr_t expr;
2962 moveup_set_expr (&av, cur_insn, false);
2964 /* If the expression for CUR_INSN is already in the set,
2965 replace it by the new one. */
2966 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2967 if (expr != NULL)
2969 clear_expr (expr);
2970 copy_expr (expr, INSN_EXPR (cur_insn));
2972 else
2973 av_set_add (&av, INSN_EXPR (cur_insn));
2976 /* Clear stale bb_av_set. */
2977 if (sel_bb_head_p (first_insn))
2979 av_set_clear (&BB_AV_SET (cur_bb));
2980 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2981 BB_AV_LEVEL (cur_bb) = global_level;
2984 if (sched_verbose >= 6)
2986 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2987 dump_av_set (av);
2988 sel_print ("\n");
2991 ilist_remove (&p);
2992 return av;
2995 /* Compute av set before INSN.
2996 INSN - the current operation (actual rtx INSN)
2997 P - the current path, which is list of insns visited so far
2998 WS - software lookahead window size.
2999 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3000 if we want to save computed av_set in s_i_d, we should make a copy of it.
3002 In the resulting set we will have only expressions that don't have delay
3003 stalls and nonsubstitutable dependences. */
3004 static av_set_t
3005 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3007 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3010 /* Propagate a liveness set LV through INSN. */
3011 static void
3012 propagate_lv_set (regset lv, insn_t insn)
3014 gcc_assert (INSN_P (insn));
3016 if (INSN_NOP_P (insn))
3017 return;
3019 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3022 /* Return livness set at the end of BB. */
3023 static regset
3024 compute_live_after_bb (basic_block bb)
3026 edge e;
3027 edge_iterator ei;
3028 regset lv = get_clear_regset_from_pool ();
3030 gcc_assert (!ignore_first);
3032 FOR_EACH_EDGE (e, ei, bb->succs)
3033 if (sel_bb_empty_p (e->dest))
3035 if (! BB_LV_SET_VALID_P (e->dest))
3037 gcc_unreachable ();
3038 gcc_assert (BB_LV_SET (e->dest) == NULL);
3039 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3040 BB_LV_SET_VALID_P (e->dest) = true;
3042 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3044 else
3045 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3047 return lv;
3050 /* Compute the set of all live registers at the point before INSN and save
3051 it at INSN if INSN is bb header. */
3052 regset
3053 compute_live (insn_t insn)
3055 basic_block bb = BLOCK_FOR_INSN (insn);
3056 insn_t final, temp;
3057 regset lv;
3059 /* Return the valid set if we're already on it. */
3060 if (!ignore_first)
3062 regset src = NULL;
3064 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3065 src = BB_LV_SET (bb);
3066 else
3068 gcc_assert (in_current_region_p (bb));
3069 if (INSN_LIVE_VALID_P (insn))
3070 src = INSN_LIVE (insn);
3073 if (src)
3075 lv = get_regset_from_pool ();
3076 COPY_REG_SET (lv, src);
3078 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3080 COPY_REG_SET (BB_LV_SET (bb), lv);
3081 BB_LV_SET_VALID_P (bb) = true;
3084 return_regset_to_pool (lv);
3085 return lv;
3089 /* We've skipped the wrong lv_set. Don't skip the right one. */
3090 ignore_first = false;
3091 gcc_assert (in_current_region_p (bb));
3093 /* Find a valid LV set in this block or below, if needed.
3094 Start searching from the next insn: either ignore_first is true, or
3095 INSN doesn't have a correct live set. */
3096 temp = NEXT_INSN (insn);
3097 final = NEXT_INSN (BB_END (bb));
3098 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3099 temp = NEXT_INSN (temp);
3100 if (temp == final)
3102 lv = compute_live_after_bb (bb);
3103 temp = PREV_INSN (temp);
3105 else
3107 lv = get_regset_from_pool ();
3108 COPY_REG_SET (lv, INSN_LIVE (temp));
3111 /* Put correct lv sets on the insns which have bad sets. */
3112 final = PREV_INSN (insn);
3113 while (temp != final)
3115 propagate_lv_set (lv, temp);
3116 COPY_REG_SET (INSN_LIVE (temp), lv);
3117 INSN_LIVE_VALID_P (temp) = true;
3118 temp = PREV_INSN (temp);
3121 /* Also put it in a BB. */
3122 if (sel_bb_head_p (insn))
3124 basic_block bb = BLOCK_FOR_INSN (insn);
3126 COPY_REG_SET (BB_LV_SET (bb), lv);
3127 BB_LV_SET_VALID_P (bb) = true;
3130 /* We return LV to the pool, but will not clear it there. Thus we can
3131 legimatelly use LV till the next use of regset_pool_get (). */
3132 return_regset_to_pool (lv);
3133 return lv;
3136 /* Update liveness sets for INSN. */
3137 static inline void
3138 update_liveness_on_insn (rtx insn)
3140 ignore_first = true;
3141 compute_live (insn);
3144 /* Compute liveness below INSN and write it into REGS. */
3145 static inline void
3146 compute_live_below_insn (rtx insn, regset regs)
3148 rtx succ;
3149 succ_iterator si;
3151 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3152 IOR_REG_SET (regs, compute_live (succ));
3155 /* Update the data gathered in av and lv sets starting from INSN. */
3156 static void
3157 update_data_sets (rtx insn)
3159 update_liveness_on_insn (insn);
3160 if (sel_bb_head_p (insn))
3162 gcc_assert (AV_LEVEL (insn) != 0);
3163 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3164 compute_av_set (insn, NULL, 0, 0);
3169 /* Helper for move_op () and find_used_regs ().
3170 Return speculation type for which a check should be created on the place
3171 of INSN. EXPR is one of the original ops we are searching for. */
3172 static ds_t
3173 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3175 ds_t to_check_ds;
3176 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3178 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3180 if (targetm.sched.get_insn_checked_ds)
3181 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3183 if (spec_info != NULL
3184 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3185 already_checked_ds |= BEGIN_CONTROL;
3187 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3189 to_check_ds &= ~already_checked_ds;
3191 return to_check_ds;
3194 /* Find the set of registers that are unavailable for storing expres
3195 while moving ORIG_OPS up on the path starting from INSN due to
3196 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3198 All the original operations found during the traversal are saved in the
3199 ORIGINAL_INSNS list.
3201 REG_RENAME_P denotes the set of hardware registers that
3202 can not be used with renaming due to the register class restrictions,
3203 mode restrictions and other (the register we'll choose should be
3204 compatible class with the original uses, shouldn't be in call_used_regs,
3205 should be HARD_REGNO_RENAME_OK etc).
3207 Returns TRUE if we've found all original insns, FALSE otherwise.
3209 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3210 to traverse the code motion paths. This helper function finds registers
3211 that are not available for storing expres while moving ORIG_OPS up on the
3212 path starting from INSN. A register considered as used on the moving path,
3213 if one of the following conditions is not satisfied:
3215 (1) a register not set or read on any path from xi to an instance of
3216 the original operation,
3217 (2) not among the live registers of the point immediately following the
3218 first original operation on a given downward path, except for the
3219 original target register of the operation,
3220 (3) not live on the other path of any conditional branch that is passed
3221 by the operation, in case original operations are not present on
3222 both paths of the conditional branch.
3224 All the original operations found during the traversal are saved in the
3225 ORIGINAL_INSNS list.
3227 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3228 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3229 to unavailable hard regs at the point original operation is found. */
3231 static bool
3232 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3233 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3235 def_list_iterator i;
3236 def_t def;
3237 int res;
3238 bool needs_spec_check_p = false;
3239 expr_t expr;
3240 av_set_iterator expr_iter;
3241 struct fur_static_params sparams;
3242 struct cmpd_local_params lparams;
3244 /* We haven't visited any blocks yet. */
3245 bitmap_clear (code_motion_visited_blocks);
3247 /* Init parameters for code_motion_path_driver. */
3248 sparams.crosses_call = false;
3249 sparams.original_insns = original_insns;
3250 sparams.used_regs = used_regs;
3252 /* Set the appropriate hooks and data. */
3253 code_motion_path_driver_info = &fur_hooks;
3255 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3257 reg_rename_p->crosses_call |= sparams.crosses_call;
3259 gcc_assert (res == 1);
3260 gcc_assert (original_insns && *original_insns);
3262 /* ??? We calculate whether an expression needs a check when computing
3263 av sets. This information is not as precise as it could be due to
3264 merging this bit in merge_expr. We can do better in find_used_regs,
3265 but we want to avoid multiple traversals of the same code motion
3266 paths. */
3267 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3268 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3270 /* Mark hardware regs in REG_RENAME_P that are not suitable
3271 for renaming expr in INSN due to hardware restrictions (register class,
3272 modes compatibility etc). */
3273 FOR_EACH_DEF (def, i, *original_insns)
3275 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3277 if (VINSN_SEPARABLE_P (vinsn))
3278 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3280 /* Do not allow clobbering of ld.[sa] address in case some of the
3281 original operations need a check. */
3282 if (needs_spec_check_p)
3283 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3286 return true;
3290 /* Functions to choose the best insn from available ones. */
3292 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3293 static int
3294 sel_target_adjust_priority (expr_t expr)
3296 int priority = EXPR_PRIORITY (expr);
3297 int new_priority;
3299 if (targetm.sched.adjust_priority)
3300 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3301 else
3302 new_priority = priority;
3304 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3305 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3307 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3309 if (sched_verbose >= 4)
3310 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3311 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3312 EXPR_PRIORITY_ADJ (expr), new_priority);
3314 return new_priority;
3317 /* Rank two available exprs for schedule. Never return 0 here. */
3318 static int
3319 sel_rank_for_schedule (const void *x, const void *y)
3321 expr_t tmp = *(const expr_t *) y;
3322 expr_t tmp2 = *(const expr_t *) x;
3323 insn_t tmp_insn, tmp2_insn;
3324 vinsn_t tmp_vinsn, tmp2_vinsn;
3325 int val;
3327 tmp_vinsn = EXPR_VINSN (tmp);
3328 tmp2_vinsn = EXPR_VINSN (tmp2);
3329 tmp_insn = EXPR_INSN_RTX (tmp);
3330 tmp2_insn = EXPR_INSN_RTX (tmp2);
3332 /* Schedule debug insns as early as possible. */
3333 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3334 return -1;
3335 else if (DEBUG_INSN_P (tmp2_insn))
3336 return 1;
3338 /* Prefer SCHED_GROUP_P insns to any others. */
3339 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3341 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3342 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3344 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3345 cannot be cloned. */
3346 if (VINSN_UNIQUE_P (tmp2_vinsn))
3347 return 1;
3348 return -1;
3351 /* Discourage scheduling of speculative checks. */
3352 val = (sel_insn_is_speculation_check (tmp_insn)
3353 - sel_insn_is_speculation_check (tmp2_insn));
3354 if (val)
3355 return val;
3357 /* Prefer not scheduled insn over scheduled one. */
3358 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3360 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3361 if (val)
3362 return val;
3365 /* Prefer jump over non-jump instruction. */
3366 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3367 return -1;
3368 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3369 return 1;
3371 /* Prefer an expr with greater priority. */
3372 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3374 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3375 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3377 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3379 else
3380 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3381 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3382 if (val)
3383 return val;
3385 if (spec_info != NULL && spec_info->mask != 0)
3386 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3388 ds_t ds1, ds2;
3389 dw_t dw1, dw2;
3390 int dw;
3392 ds1 = EXPR_SPEC_DONE_DS (tmp);
3393 if (ds1)
3394 dw1 = ds_weak (ds1);
3395 else
3396 dw1 = NO_DEP_WEAK;
3398 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3399 if (ds2)
3400 dw2 = ds_weak (ds2);
3401 else
3402 dw2 = NO_DEP_WEAK;
3404 dw = dw2 - dw1;
3405 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3406 return dw;
3409 /* Prefer an old insn to a bookkeeping insn. */
3410 if (INSN_UID (tmp_insn) < first_emitted_uid
3411 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3412 return -1;
3413 if (INSN_UID (tmp_insn) >= first_emitted_uid
3414 && INSN_UID (tmp2_insn) < first_emitted_uid)
3415 return 1;
3417 /* Prefer an insn with smaller UID, as a last resort.
3418 We can't safely use INSN_LUID as it is defined only for those insns
3419 that are in the stream. */
3420 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3423 /* Filter out expressions from av set pointed to by AV_PTR
3424 that are pipelined too many times. */
3425 static void
3426 process_pipelined_exprs (av_set_t *av_ptr)
3428 expr_t expr;
3429 av_set_iterator si;
3431 /* Don't pipeline already pipelined code as that would increase
3432 number of unnecessary register moves. */
3433 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3435 if (EXPR_SCHED_TIMES (expr)
3436 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3437 av_set_iter_remove (&si);
3441 /* Filter speculative insns from AV_PTR if we don't want them. */
3442 static void
3443 process_spec_exprs (av_set_t *av_ptr)
3445 bool try_data_p = true;
3446 bool try_control_p = true;
3447 expr_t expr;
3448 av_set_iterator si;
3450 if (spec_info == NULL)
3451 return;
3453 /* Scan *AV_PTR to find out if we want to consider speculative
3454 instructions for scheduling. */
3455 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3457 ds_t ds;
3459 ds = EXPR_SPEC_DONE_DS (expr);
3461 /* The probability of a success is too low - don't speculate. */
3462 if ((ds & SPECULATIVE)
3463 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3464 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3465 || (pipelining_p && false
3466 && (ds & DATA_SPEC)
3467 && (ds & CONTROL_SPEC))))
3469 av_set_iter_remove (&si);
3470 continue;
3473 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3474 && !(ds & BEGIN_DATA))
3475 try_data_p = false;
3477 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3478 && !(ds & BEGIN_CONTROL))
3479 try_control_p = false;
3482 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3484 ds_t ds;
3486 ds = EXPR_SPEC_DONE_DS (expr);
3488 if (ds & SPECULATIVE)
3490 if ((ds & BEGIN_DATA) && !try_data_p)
3491 /* We don't want any data speculative instructions right
3492 now. */
3493 av_set_iter_remove (&si);
3495 if ((ds & BEGIN_CONTROL) && !try_control_p)
3496 /* We don't want any control speculative instructions right
3497 now. */
3498 av_set_iter_remove (&si);
3503 /* Search for any use-like insns in AV_PTR and decide on scheduling
3504 them. Return one when found, and NULL otherwise.
3505 Note that we check here whether a USE could be scheduled to avoid
3506 an infinite loop later. */
3507 static expr_t
3508 process_use_exprs (av_set_t *av_ptr)
3510 expr_t expr;
3511 av_set_iterator si;
3512 bool uses_present_p = false;
3513 bool try_uses_p = true;
3515 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3517 /* This will also initialize INSN_CODE for later use. */
3518 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3520 /* If we have a USE in *AV_PTR that was not scheduled yet,
3521 do so because it will do good only. */
3522 if (EXPR_SCHED_TIMES (expr) <= 0)
3524 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3525 return expr;
3527 av_set_iter_remove (&si);
3529 else
3531 gcc_assert (pipelining_p);
3533 uses_present_p = true;
3536 else
3537 try_uses_p = false;
3540 if (uses_present_p)
3542 /* If we don't want to schedule any USEs right now and we have some
3543 in *AV_PTR, remove them, else just return the first one found. */
3544 if (!try_uses_p)
3546 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3547 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3548 av_set_iter_remove (&si);
3550 else
3552 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3554 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3556 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3557 return expr;
3559 av_set_iter_remove (&si);
3564 return NULL;
3567 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3568 EXPR's history of changes. */
3569 static bool
3570 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3572 vinsn_t vinsn, expr_vinsn;
3573 int n;
3574 unsigned i;
3576 /* Start with checking expr itself and then proceed with all the old forms
3577 of expr taken from its history vector. */
3578 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3579 expr_vinsn;
3580 expr_vinsn = (i < VEC_length (expr_history_def,
3581 EXPR_HISTORY_OF_CHANGES (expr))
3582 ? VEC_index (expr_history_def,
3583 EXPR_HISTORY_OF_CHANGES (expr),
3584 i++).old_expr_vinsn
3585 : NULL))
3586 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3587 if (VINSN_SEPARABLE_P (vinsn))
3589 if (vinsn_equal_p (vinsn, expr_vinsn))
3590 return true;
3592 else
3594 /* For non-separable instructions, the blocking insn can have
3595 another pattern due to substitution, and we can't choose
3596 different register as in the above case. Check all registers
3597 being written instead. */
3598 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3599 VINSN_REG_SETS (expr_vinsn)))
3600 return true;
3603 return false;
3606 #ifdef ENABLE_CHECKING
3607 /* Return true if either of expressions from ORIG_OPS can be blocked
3608 by previously created bookkeeping code. STATIC_PARAMS points to static
3609 parameters of move_op. */
3610 static bool
3611 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3613 expr_t expr;
3614 av_set_iterator iter;
3615 moveop_static_params_p sparams;
3617 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3618 created while scheduling on another fence. */
3619 FOR_EACH_EXPR (expr, iter, orig_ops)
3620 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3621 return true;
3623 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3624 sparams = (moveop_static_params_p) static_params;
3626 /* Expressions can be also blocked by bookkeeping created during current
3627 move_op. */
3628 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3629 FOR_EACH_EXPR (expr, iter, orig_ops)
3630 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3631 return true;
3633 /* Expressions in ORIG_OPS may have wrong destination register due to
3634 renaming. Check with the right register instead. */
3635 if (sparams->dest && REG_P (sparams->dest))
3637 rtx reg = sparams->dest;
3638 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3640 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3641 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3642 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3643 return true;
3646 return false;
3648 #endif
3650 /* Clear VINSN_VEC and detach vinsns. */
3651 static void
3652 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3654 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3655 if (len > 0)
3657 vinsn_t vinsn;
3658 int n;
3660 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3661 vinsn_detach (vinsn);
3662 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3666 /* Add the vinsn of EXPR to the VINSN_VEC. */
3667 static void
3668 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3670 vinsn_attach (EXPR_VINSN (expr));
3671 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3674 /* Free the vector representing blocked expressions. */
3675 static void
3676 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3678 if (*vinsn_vec)
3679 VEC_free (vinsn_t, heap, *vinsn_vec);
3682 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3684 void sel_add_to_insn_priority (rtx insn, int amount)
3686 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3688 if (sched_verbose >= 2)
3689 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3690 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3691 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3694 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3695 true if there is something to schedule. BNDS and FENCE are current
3696 boundaries and fence, respectively. If we need to stall for some cycles
3697 before an expr from AV would become available, write this number to
3698 *PNEED_STALL. */
3699 static bool
3700 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3701 int *pneed_stall)
3703 av_set_iterator si;
3704 expr_t expr;
3705 int sched_next_worked = 0, stalled, n;
3706 static int av_max_prio, est_ticks_till_branch;
3707 int min_need_stall = -1;
3708 deps_t dc = BND_DC (BLIST_BND (bnds));
3710 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3711 already scheduled. */
3712 if (av == NULL)
3713 return false;
3715 /* Empty vector from the previous stuff. */
3716 if (VEC_length (expr_t, vec_av_set) > 0)
3717 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3719 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3720 for each insn. */
3721 gcc_assert (VEC_empty (expr_t, vec_av_set));
3722 FOR_EACH_EXPR (expr, si, av)
3724 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3726 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3728 /* Adjust priority using target backend hook. */
3729 sel_target_adjust_priority (expr);
3732 /* Sort the vector. */
3733 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3735 /* We record maximal priority of insns in av set for current instruction
3736 group. */
3737 if (FENCE_STARTS_CYCLE_P (fence))
3738 av_max_prio = est_ticks_till_branch = INT_MIN;
3740 /* Filter out inappropriate expressions. Loop's direction is reversed to
3741 visit "best" instructions first. We assume that VEC_unordered_remove
3742 moves last element in place of one being deleted. */
3743 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3745 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3746 insn_t insn = EXPR_INSN_RTX (expr);
3747 signed char target_available;
3748 bool is_orig_reg_p = true;
3749 int need_cycles, new_prio;
3751 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3752 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3754 VEC_unordered_remove (expr_t, vec_av_set, n);
3755 continue;
3758 /* Set number of sched_next insns (just in case there
3759 could be several). */
3760 if (FENCE_SCHED_NEXT (fence))
3761 sched_next_worked++;
3763 /* Check all liveness requirements and try renaming.
3764 FIXME: try to minimize calls to this. */
3765 target_available = EXPR_TARGET_AVAILABLE (expr);
3767 /* If insn was already scheduled on the current fence,
3768 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3769 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3770 target_available = -1;
3772 /* If the availability of the EXPR is invalidated by the insertion of
3773 bookkeeping earlier, make sure that we won't choose this expr for
3774 scheduling if it's not separable, and if it is separable, then
3775 we have to recompute the set of available registers for it. */
3776 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3778 VEC_unordered_remove (expr_t, vec_av_set, n);
3779 if (sched_verbose >= 4)
3780 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3781 INSN_UID (insn));
3782 continue;
3785 if (target_available == true)
3787 /* Do nothing -- we can use an existing register. */
3788 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3790 else if (/* Non-separable instruction will never
3791 get another register. */
3792 (target_available == false
3793 && !EXPR_SEPARABLE_P (expr))
3794 /* Don't try to find a register for low-priority expression. */
3795 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3796 /* ??? FIXME: Don't try to rename data speculation. */
3797 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3798 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3800 VEC_unordered_remove (expr_t, vec_av_set, n);
3801 if (sched_verbose >= 4)
3802 sel_print ("Expr %d has no suitable target register\n",
3803 INSN_UID (insn));
3804 continue;
3807 /* Filter expressions that need to be renamed or speculated when
3808 pipelining, because compensating register copies or speculation
3809 checks are likely to be placed near the beginning of the loop,
3810 causing a stall. */
3811 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3812 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3814 /* Estimation of number of cycles until loop branch for
3815 renaming/speculation to be successful. */
3816 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3818 if ((int) current_loop_nest->ninsns < 9)
3820 VEC_unordered_remove (expr_t, vec_av_set, n);
3821 if (sched_verbose >= 4)
3822 sel_print ("Pipelining expr %d will likely cause stall\n",
3823 INSN_UID (insn));
3824 continue;
3827 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3828 < need_n_ticks_till_branch * issue_rate / 2
3829 && est_ticks_till_branch < need_n_ticks_till_branch)
3831 VEC_unordered_remove (expr_t, vec_av_set, n);
3832 if (sched_verbose >= 4)
3833 sel_print ("Pipelining expr %d will likely cause stall\n",
3834 INSN_UID (insn));
3835 continue;
3839 /* We want to schedule speculation checks as late as possible. Discard
3840 them from av set if there are instructions with higher priority. */
3841 if (sel_insn_is_speculation_check (insn)
3842 && EXPR_PRIORITY (expr) < av_max_prio)
3844 stalled++;
3845 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3846 VEC_unordered_remove (expr_t, vec_av_set, n);
3847 if (sched_verbose >= 4)
3848 sel_print ("Delaying speculation check %d until its first use\n",
3849 INSN_UID (insn));
3850 continue;
3853 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3854 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3857 /* Don't allow any insns whose data is not yet ready.
3858 Check first whether we've already tried them and failed. */
3859 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3861 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3862 - FENCE_CYCLE (fence));
3863 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3864 est_ticks_till_branch = MAX (est_ticks_till_branch,
3865 EXPR_PRIORITY (expr) + need_cycles);
3867 if (need_cycles > 0)
3869 stalled++;
3870 min_need_stall = (min_need_stall < 0
3871 ? need_cycles
3872 : MIN (min_need_stall, need_cycles));
3873 VEC_unordered_remove (expr_t, vec_av_set, n);
3875 if (sched_verbose >= 4)
3876 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3877 INSN_UID (insn),
3878 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3879 continue;
3883 /* Now resort to dependence analysis to find whether EXPR might be
3884 stalled due to dependencies from FENCE's context. */
3885 need_cycles = tick_check_p (expr, dc, fence);
3886 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3888 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3889 est_ticks_till_branch = MAX (est_ticks_till_branch,
3890 new_prio);
3892 if (need_cycles > 0)
3894 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3896 int new_size = INSN_UID (insn) * 3 / 2;
3898 FENCE_READY_TICKS (fence)
3899 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3900 new_size, FENCE_READY_TICKS_SIZE (fence),
3901 sizeof (int));
3903 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3904 = FENCE_CYCLE (fence) + need_cycles;
3906 stalled++;
3907 min_need_stall = (min_need_stall < 0
3908 ? need_cycles
3909 : MIN (min_need_stall, need_cycles));
3911 VEC_unordered_remove (expr_t, vec_av_set, n);
3913 if (sched_verbose >= 4)
3914 sel_print ("Expr %d is not ready yet until cycle %d\n",
3915 INSN_UID (insn),
3916 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3917 continue;
3920 if (sched_verbose >= 4)
3921 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3922 min_need_stall = 0;
3925 /* Clear SCHED_NEXT. */
3926 if (FENCE_SCHED_NEXT (fence))
3928 gcc_assert (sched_next_worked == 1);
3929 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3932 /* No need to stall if this variable was not initialized. */
3933 if (min_need_stall < 0)
3934 min_need_stall = 0;
3936 if (VEC_empty (expr_t, vec_av_set))
3938 /* We need to set *pneed_stall here, because later we skip this code
3939 when ready list is empty. */
3940 *pneed_stall = min_need_stall;
3941 return false;
3943 else
3944 gcc_assert (min_need_stall == 0);
3946 /* Sort the vector. */
3947 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3949 if (sched_verbose >= 4)
3951 sel_print ("Total ready exprs: %d, stalled: %d\n",
3952 VEC_length (expr_t, vec_av_set), stalled);
3953 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3954 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3955 dump_expr (expr);
3956 sel_print ("\n");
3959 *pneed_stall = 0;
3960 return true;
3963 /* Convert a vectored and sorted av set to the ready list that
3964 the rest of the backend wants to see. */
3965 static void
3966 convert_vec_av_set_to_ready (void)
3968 int n;
3969 expr_t expr;
3971 /* Allocate and fill the ready list from the sorted vector. */
3972 ready.n_ready = VEC_length (expr_t, vec_av_set);
3973 ready.first = ready.n_ready - 1;
3975 gcc_assert (ready.n_ready > 0);
3977 if (ready.n_ready > max_issue_size)
3979 max_issue_size = ready.n_ready;
3980 sched_extend_ready_list (ready.n_ready);
3983 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3985 vinsn_t vi = EXPR_VINSN (expr);
3986 insn_t insn = VINSN_INSN_RTX (vi);
3988 ready_try[n] = 0;
3989 ready.vec[n] = insn;
3993 /* Initialize ready list from *AV_PTR for the max_issue () call.
3994 If any unrecognizable insn found in *AV_PTR, return it (and skip
3995 max_issue). BND and FENCE are current boundary and fence,
3996 respectively. If we need to stall for some cycles before an expr
3997 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3998 static expr_t
3999 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4000 int *pneed_stall)
4002 expr_t expr;
4004 /* We do not support multiple boundaries per fence. */
4005 gcc_assert (BLIST_NEXT (bnds) == NULL);
4007 /* Process expressions required special handling, i.e. pipelined,
4008 speculative and recog() < 0 expressions first. */
4009 process_pipelined_exprs (av_ptr);
4010 process_spec_exprs (av_ptr);
4012 /* A USE could be scheduled immediately. */
4013 expr = process_use_exprs (av_ptr);
4014 if (expr)
4016 *pneed_stall = 0;
4017 return expr;
4020 /* Turn the av set to a vector for sorting. */
4021 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4023 ready.n_ready = 0;
4024 return NULL;
4027 /* Build the final ready list. */
4028 convert_vec_av_set_to_ready ();
4029 return NULL;
4032 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4033 static bool
4034 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4036 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4037 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4038 : FENCE_CYCLE (fence) - 1;
4039 bool res = false;
4040 int sort_p = 0;
4042 if (!targetm.sched.dfa_new_cycle)
4043 return false;
4045 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4047 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4048 insn, last_scheduled_cycle,
4049 FENCE_CYCLE (fence), &sort_p))
4051 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4052 advance_one_cycle (fence);
4053 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4054 res = true;
4057 return res;
4060 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4061 we can issue. FENCE is the current fence. */
4062 static int
4063 invoke_reorder_hooks (fence_t fence)
4065 int issue_more;
4066 bool ran_hook = false;
4068 /* Call the reorder hook at the beginning of the cycle, and call
4069 the reorder2 hook in the middle of the cycle. */
4070 if (FENCE_ISSUED_INSNS (fence) == 0)
4072 if (targetm.sched.reorder
4073 && !SCHED_GROUP_P (ready_element (&ready, 0))
4074 && ready.n_ready > 1)
4076 /* Don't give reorder the most prioritized insn as it can break
4077 pipelining. */
4078 if (pipelining_p)
4079 --ready.n_ready;
4081 issue_more
4082 = targetm.sched.reorder (sched_dump, sched_verbose,
4083 ready_lastpos (&ready),
4084 &ready.n_ready, FENCE_CYCLE (fence));
4086 if (pipelining_p)
4087 ++ready.n_ready;
4089 ran_hook = true;
4091 else
4092 /* Initialize can_issue_more for variable_issue. */
4093 issue_more = issue_rate;
4095 else if (targetm.sched.reorder2
4096 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4098 if (ready.n_ready == 1)
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready_lastpos (&ready),
4102 &ready.n_ready, FENCE_CYCLE (fence));
4103 else
4105 if (pipelining_p)
4106 --ready.n_ready;
4108 issue_more =
4109 targetm.sched.reorder2 (sched_dump, sched_verbose,
4110 ready.n_ready
4111 ? ready_lastpos (&ready) : NULL,
4112 &ready.n_ready, FENCE_CYCLE (fence));
4114 if (pipelining_p)
4115 ++ready.n_ready;
4118 ran_hook = true;
4120 else
4121 issue_more = FENCE_ISSUE_MORE (fence);
4123 /* Ensure that ready list and vec_av_set are in line with each other,
4124 i.e. vec_av_set[i] == ready_element (&ready, i). */
4125 if (issue_more && ran_hook)
4127 int i, j, n;
4128 rtx *arr = ready.vec;
4129 expr_t *vec = VEC_address (expr_t, vec_av_set);
4131 for (i = 0, n = ready.n_ready; i < n; i++)
4132 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4134 expr_t tmp;
4136 for (j = i; j < n; j++)
4137 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4138 break;
4139 gcc_assert (j < n);
4141 tmp = vec[i];
4142 vec[i] = vec[j];
4143 vec[j] = tmp;
4147 return issue_more;
4150 /* Return an EXPR corresponding to INDEX element of ready list, if
4151 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4152 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4153 ready.vec otherwise. */
4154 static inline expr_t
4155 find_expr_for_ready (int index, bool follow_ready_element)
4157 expr_t expr;
4158 int real_index;
4160 real_index = follow_ready_element ? ready.first - index : index;
4162 expr = VEC_index (expr_t, vec_av_set, real_index);
4163 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4165 return expr;
4168 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4169 of such insns found. */
4170 static int
4171 invoke_dfa_lookahead_guard (void)
4173 int i, n;
4174 bool have_hook
4175 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4177 if (sched_verbose >= 2)
4178 sel_print ("ready after reorder: ");
4180 for (i = 0, n = 0; i < ready.n_ready; i++)
4182 expr_t expr;
4183 insn_t insn;
4184 int r;
4186 /* In this loop insn is Ith element of the ready list given by
4187 ready_element, not Ith element of ready.vec. */
4188 insn = ready_element (&ready, i);
4190 if (! have_hook || i == 0)
4191 r = 0;
4192 else
4193 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4195 gcc_assert (INSN_CODE (insn) >= 0);
4197 /* Only insns with ready_try = 0 can get here
4198 from fill_ready_list. */
4199 gcc_assert (ready_try [i] == 0);
4200 ready_try[i] = r;
4201 if (!r)
4202 n++;
4204 expr = find_expr_for_ready (i, true);
4206 if (sched_verbose >= 2)
4208 dump_vinsn (EXPR_VINSN (expr));
4209 sel_print (":%d; ", ready_try[i]);
4213 if (sched_verbose >= 2)
4214 sel_print ("\n");
4215 return n;
4218 /* Calculate the number of privileged insns and return it. */
4219 static int
4220 calculate_privileged_insns (void)
4222 expr_t cur_expr, min_spec_expr = NULL;
4223 int privileged_n = 0, i;
4225 for (i = 0; i < ready.n_ready; i++)
4227 if (ready_try[i])
4228 continue;
4230 if (! min_spec_expr)
4231 min_spec_expr = find_expr_for_ready (i, true);
4233 cur_expr = find_expr_for_ready (i, true);
4235 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4236 break;
4238 ++privileged_n;
4241 if (i == ready.n_ready)
4242 privileged_n = 0;
4244 if (sched_verbose >= 2)
4245 sel_print ("privileged_n: %d insns with SPEC %d\n",
4246 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4247 return privileged_n;
4250 /* Call the rest of the hooks after the choice was made. Return
4251 the number of insns that still can be issued given that the current
4252 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4253 and the insn chosen for scheduling, respectively. */
4254 static int
4255 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4257 gcc_assert (INSN_P (best_insn));
4259 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4260 sel_dfa_new_cycle (best_insn, fence);
4262 if (targetm.sched.variable_issue)
4264 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4265 issue_more =
4266 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4267 issue_more);
4268 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4270 else if (GET_CODE (PATTERN (best_insn)) != USE
4271 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4272 issue_more--;
4274 return issue_more;
4277 /* Estimate the cost of issuing INSN on DFA state STATE. */
4278 static int
4279 estimate_insn_cost (rtx insn, state_t state)
4281 static state_t temp = NULL;
4282 int cost;
4284 if (!temp)
4285 temp = xmalloc (dfa_state_size);
4287 memcpy (temp, state, dfa_state_size);
4288 cost = state_transition (temp, insn);
4290 if (cost < 0)
4291 return 0;
4292 else if (cost == 0)
4293 return 1;
4294 return cost;
4297 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4298 This function properly handles ASMs, USEs etc. */
4299 static int
4300 get_expr_cost (expr_t expr, fence_t fence)
4302 rtx insn = EXPR_INSN_RTX (expr);
4304 if (recog_memoized (insn) < 0)
4306 if (!FENCE_STARTS_CYCLE_P (fence)
4307 && INSN_ASM_P (insn))
4308 /* This is asm insn which is tryed to be issued on the
4309 cycle not first. Issue it on the next cycle. */
4310 return 1;
4311 else
4312 /* A USE insn, or something else we don't need to
4313 understand. We can't pass these directly to
4314 state_transition because it will trigger a
4315 fatal error for unrecognizable insns. */
4316 return 0;
4318 else
4319 return estimate_insn_cost (insn, FENCE_STATE (fence));
4322 /* Find the best insn for scheduling, either via max_issue or just take
4323 the most prioritized available. */
4324 static int
4325 choose_best_insn (fence_t fence, int privileged_n, int *index)
4327 int can_issue = 0;
4329 if (dfa_lookahead > 0)
4331 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4332 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4333 can_issue = max_issue (&ready, privileged_n,
4334 FENCE_STATE (fence), true, index);
4335 if (sched_verbose >= 2)
4336 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4337 can_issue, FENCE_ISSUED_INSNS (fence));
4339 else
4341 /* We can't use max_issue; just return the first available element. */
4342 int i;
4344 for (i = 0; i < ready.n_ready; i++)
4346 expr_t expr = find_expr_for_ready (i, true);
4348 if (get_expr_cost (expr, fence) < 1)
4350 can_issue = can_issue_more;
4351 *index = i;
4353 if (sched_verbose >= 2)
4354 sel_print ("using %dth insn from the ready list\n", i + 1);
4356 break;
4360 if (i == ready.n_ready)
4362 can_issue = 0;
4363 *index = -1;
4367 return can_issue;
4370 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4371 BNDS and FENCE are current boundaries and scheduling fence respectively.
4372 Return the expr found and NULL if nothing can be issued atm.
4373 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4374 static expr_t
4375 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4376 int *pneed_stall)
4378 expr_t best;
4380 /* Choose the best insn for scheduling via:
4381 1) sorting the ready list based on priority;
4382 2) calling the reorder hook;
4383 3) calling max_issue. */
4384 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4385 if (best == NULL && ready.n_ready > 0)
4387 int privileged_n, index;
4389 can_issue_more = invoke_reorder_hooks (fence);
4390 if (can_issue_more > 0)
4392 /* Try choosing the best insn until we find one that is could be
4393 scheduled due to liveness restrictions on its destination register.
4394 In the future, we'd like to choose once and then just probe insns
4395 in the order of their priority. */
4396 invoke_dfa_lookahead_guard ();
4397 privileged_n = calculate_privileged_insns ();
4398 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4399 if (can_issue_more)
4400 best = find_expr_for_ready (index, true);
4402 /* We had some available insns, so if we can't issue them,
4403 we have a stall. */
4404 if (can_issue_more == 0)
4406 best = NULL;
4407 *pneed_stall = 1;
4411 if (best != NULL)
4413 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4414 can_issue_more);
4415 if (targetm.sched.variable_issue
4416 && can_issue_more == 0)
4417 *pneed_stall = 1;
4420 if (sched_verbose >= 2)
4422 if (best != NULL)
4424 sel_print ("Best expression (vliw form): ");
4425 dump_expr (best);
4426 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4428 else
4429 sel_print ("No best expr found!\n");
4432 return best;
4436 /* Functions that implement the core of the scheduler. */
4439 /* Emit an instruction from EXPR with SEQNO and VINSN after
4440 PLACE_TO_INSERT. */
4441 static insn_t
4442 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4443 insn_t place_to_insert)
4445 /* This assert fails when we have identical instructions
4446 one of which dominates the other. In this case move_op ()
4447 finds the first instruction and doesn't search for second one.
4448 The solution would be to compute av_set after the first found
4449 insn and, if insn present in that set, continue searching.
4450 For now we workaround this issue in move_op. */
4451 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4453 if (EXPR_WAS_RENAMED (expr))
4455 unsigned regno = expr_dest_regno (expr);
4457 if (HARD_REGISTER_NUM_P (regno))
4459 df_set_regs_ever_live (regno, true);
4460 reg_rename_tick[regno] = ++reg_rename_this_tick;
4464 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4465 place_to_insert);
4468 /* Return TRUE if BB can hold bookkeeping code. */
4469 static bool
4470 block_valid_for_bookkeeping_p (basic_block bb)
4472 insn_t bb_end = BB_END (bb);
4474 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4475 return false;
4477 if (INSN_P (bb_end))
4479 if (INSN_SCHED_TIMES (bb_end) > 0)
4480 return false;
4482 else
4483 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4485 return true;
4488 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4489 into E2->dest, except from E1->src (there may be a sequence of empty basic
4490 blocks between E1->src and E2->dest). Return found block, or NULL if new
4491 one must be created. If LAX holds, don't assume there is a simple path
4492 from E1->src to E2->dest. */
4493 static basic_block
4494 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4496 basic_block candidate_block = NULL;
4497 edge e;
4499 /* Loop over edges from E1 to E2, inclusive. */
4500 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4502 if (EDGE_COUNT (e->dest->preds) == 2)
4504 if (candidate_block == NULL)
4505 candidate_block = (EDGE_PRED (e->dest, 0) == e
4506 ? EDGE_PRED (e->dest, 1)->src
4507 : EDGE_PRED (e->dest, 0)->src);
4508 else
4509 /* Found additional edge leading to path from e1 to e2
4510 from aside. */
4511 return NULL;
4513 else if (EDGE_COUNT (e->dest->preds) > 2)
4514 /* Several edges leading to path from e1 to e2 from aside. */
4515 return NULL;
4517 if (e == e2)
4518 return ((!lax || candidate_block)
4519 && block_valid_for_bookkeeping_p (candidate_block)
4520 ? candidate_block
4521 : NULL);
4523 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4524 return NULL;
4527 if (lax)
4528 return NULL;
4530 gcc_unreachable ();
4533 /* Create new basic block for bookkeeping code for path(s) incoming into
4534 E2->dest, except from E1->src. Return created block. */
4535 static basic_block
4536 create_block_for_bookkeeping (edge e1, edge e2)
4538 basic_block new_bb, bb = e2->dest;
4540 /* Check that we don't spoil the loop structure. */
4541 if (current_loop_nest)
4543 basic_block latch = current_loop_nest->latch;
4545 /* We do not split header. */
4546 gcc_assert (e2->dest != current_loop_nest->header);
4548 /* We do not redirect the only edge to the latch block. */
4549 gcc_assert (e1->dest != latch
4550 || !single_pred_p (latch)
4551 || e1 != single_pred_edge (latch));
4554 /* Split BB to insert BOOK_INSN there. */
4555 new_bb = sched_split_block (bb, NULL);
4557 /* Move note_list from the upper bb. */
4558 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4559 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4560 BB_NOTE_LIST (bb) = NULL_RTX;
4562 gcc_assert (e2->dest == bb);
4564 /* Skip block for bookkeeping copy when leaving E1->src. */
4565 if (e1->flags & EDGE_FALLTHRU)
4566 sel_redirect_edge_and_branch_force (e1, new_bb);
4567 else
4568 sel_redirect_edge_and_branch (e1, new_bb);
4570 gcc_assert (e1->dest == new_bb);
4571 gcc_assert (sel_bb_empty_p (bb));
4573 /* To keep basic block numbers in sync between debug and non-debug
4574 compilations, we have to rotate blocks here. Consider that we
4575 started from (a,b)->d, (c,d)->e, and d contained only debug
4576 insns. It would have been removed before if the debug insns
4577 weren't there, so we'd have split e rather than d. So what we do
4578 now is to swap the block numbers of new_bb and
4579 single_succ(new_bb) == e, so that the insns that were in e before
4580 get the new block number. */
4582 if (MAY_HAVE_DEBUG_INSNS)
4584 basic_block succ;
4585 insn_t insn = sel_bb_head (new_bb);
4586 insn_t last;
4588 if (DEBUG_INSN_P (insn)
4589 && single_succ_p (new_bb)
4590 && (succ = single_succ (new_bb))
4591 && succ != EXIT_BLOCK_PTR
4592 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4594 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4595 insn = NEXT_INSN (insn);
4597 if (insn == last)
4599 sel_global_bb_info_def gbi;
4600 sel_region_bb_info_def rbi;
4601 int i;
4603 if (sched_verbose >= 2)
4604 sel_print ("Swapping block ids %i and %i\n",
4605 new_bb->index, succ->index);
4607 i = new_bb->index;
4608 new_bb->index = succ->index;
4609 succ->index = i;
4611 SET_BASIC_BLOCK (new_bb->index, new_bb);
4612 SET_BASIC_BLOCK (succ->index, succ);
4614 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4615 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4616 sizeof (gbi));
4617 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4619 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4620 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4621 sizeof (rbi));
4622 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4624 i = BLOCK_TO_BB (new_bb->index);
4625 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4626 BLOCK_TO_BB (succ->index) = i;
4628 i = CONTAINING_RGN (new_bb->index);
4629 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4630 CONTAINING_RGN (succ->index) = i;
4632 for (i = 0; i < current_nr_blocks; i++)
4633 if (BB_TO_BLOCK (i) == succ->index)
4634 BB_TO_BLOCK (i) = new_bb->index;
4635 else if (BB_TO_BLOCK (i) == new_bb->index)
4636 BB_TO_BLOCK (i) = succ->index;
4638 FOR_BB_INSNS (new_bb, insn)
4639 if (INSN_P (insn))
4640 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4642 FOR_BB_INSNS (succ, insn)
4643 if (INSN_P (insn))
4644 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4646 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4647 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4649 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4650 && LABEL_P (BB_HEAD (succ)));
4652 if (sched_verbose >= 4)
4653 sel_print ("Swapping code labels %i and %i\n",
4654 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4655 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4657 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4658 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4659 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4660 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4665 return bb;
4668 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4669 into E2->dest, except from E1->src. If the returned insn immediately
4670 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4671 static insn_t
4672 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4674 insn_t place_to_insert;
4675 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4676 create new basic block, but insert bookkeeping there. */
4677 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4679 if (book_block)
4681 place_to_insert = BB_END (book_block);
4683 /* Don't use a block containing only debug insns for
4684 bookkeeping, this causes scheduling differences between debug
4685 and non-debug compilations, for the block would have been
4686 removed already. */
4687 if (DEBUG_INSN_P (place_to_insert))
4689 rtx insn = sel_bb_head (book_block);
4691 while (insn != place_to_insert &&
4692 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4693 insn = NEXT_INSN (insn);
4695 if (insn == place_to_insert)
4696 book_block = NULL;
4700 if (!book_block)
4702 book_block = create_block_for_bookkeeping (e1, e2);
4703 place_to_insert = BB_END (book_block);
4704 if (sched_verbose >= 9)
4705 sel_print ("New block is %i, split from bookkeeping block %i\n",
4706 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4708 else
4710 if (sched_verbose >= 9)
4711 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4714 *fence_to_rewind = NULL;
4715 /* If basic block ends with a jump, insert bookkeeping code right before it.
4716 Notice if we are crossing a fence when taking PREV_INSN. */
4717 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4719 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4720 place_to_insert = PREV_INSN (place_to_insert);
4723 return place_to_insert;
4726 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4727 for JOIN_POINT. */
4728 static int
4729 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4731 int seqno;
4732 rtx next;
4734 /* Check if we are about to insert bookkeeping copy before a jump, and use
4735 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4736 next = NEXT_INSN (place_to_insert);
4737 if (INSN_P (next)
4738 && JUMP_P (next)
4739 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4741 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4742 seqno = INSN_SEQNO (next);
4744 else if (INSN_SEQNO (join_point) > 0)
4745 seqno = INSN_SEQNO (join_point);
4746 else
4748 seqno = get_seqno_by_preds (place_to_insert);
4750 /* Sometimes the fences can move in such a way that there will be
4751 no instructions with positive seqno around this bookkeeping.
4752 This means that there will be no way to get to it by a regular
4753 fence movement. Never mind because we pick up such pieces for
4754 rescheduling anyways, so any positive value will do for now. */
4755 if (seqno < 0)
4757 gcc_assert (pipelining_p);
4758 seqno = 1;
4762 gcc_assert (seqno > 0);
4763 return seqno;
4766 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4767 NEW_SEQNO to it. Return created insn. */
4768 static insn_t
4769 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4771 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4773 vinsn_t new_vinsn
4774 = create_vinsn_from_insn_rtx (new_insn_rtx,
4775 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4777 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4778 place_to_insert);
4780 INSN_SCHED_TIMES (new_insn) = 0;
4781 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4783 return new_insn;
4786 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4787 E2->dest, except from E1->src (there may be a sequence of empty blocks
4788 between E1->src and E2->dest). Return block containing the copy.
4789 All scheduler data is initialized for the newly created insn. */
4790 static basic_block
4791 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4793 insn_t join_point, place_to_insert, new_insn;
4794 int new_seqno;
4795 bool need_to_exchange_data_sets;
4796 fence_t fence_to_rewind;
4798 if (sched_verbose >= 4)
4799 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4800 e2->dest->index);
4802 join_point = sel_bb_head (e2->dest);
4803 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4804 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4805 need_to_exchange_data_sets
4806 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4808 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4810 if (fence_to_rewind)
4811 FENCE_INSN (fence_to_rewind) = new_insn;
4813 /* When inserting bookkeeping insn in new block, av sets should be
4814 following: old basic block (that now holds bookkeeping) data sets are
4815 the same as was before generation of bookkeeping, and new basic block
4816 (that now hold all other insns of old basic block) data sets are
4817 invalid. So exchange data sets for these basic blocks as sel_split_block
4818 mistakenly exchanges them in this case. Cannot do it earlier because
4819 when single instruction is added to new basic block it should hold NULL
4820 lv_set. */
4821 if (need_to_exchange_data_sets)
4822 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4823 BLOCK_FOR_INSN (join_point));
4825 stat_bookkeeping_copies++;
4826 return BLOCK_FOR_INSN (new_insn);
4829 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4830 on FENCE, but we are unable to copy them. */
4831 static void
4832 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4834 expr_t expr;
4835 av_set_iterator i;
4837 /* An expression does not need bookkeeping if it is available on all paths
4838 from current block to original block and current block dominates
4839 original block. We check availability on all paths by examining
4840 EXPR_SPEC; this is not equivalent, because it may be positive even
4841 if expr is available on all paths (but if expr is not available on
4842 any path, EXPR_SPEC will be positive). */
4844 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4846 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4847 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4848 && (EXPR_SPEC (expr)
4849 || !EXPR_ORIG_BB_INDEX (expr)
4850 || !dominated_by_p (CDI_DOMINATORS,
4851 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4852 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4854 if (sched_verbose >= 4)
4855 sel_print ("Expr %d removed because it would need bookkeeping, which "
4856 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4857 av_set_iter_remove (&i);
4862 /* Moving conditional jump through some instructions.
4864 Consider example:
4866 ... <- current scheduling point
4867 NOTE BASIC BLOCK: <- bb header
4868 (p8) add r14=r14+0x9;;
4869 (p8) mov [r14]=r23
4870 (!p8) jump L1;;
4871 NOTE BASIC BLOCK:
4874 We can schedule jump one cycle earlier, than mov, because they cannot be
4875 executed together as their predicates are mutually exclusive.
4877 This is done in this way: first, new fallthrough basic block is created
4878 after jump (it is always can be done, because there already should be a
4879 fallthrough block, where control flow goes in case of predicate being true -
4880 in our example; otherwise there should be a dependence between those
4881 instructions and jump and we cannot schedule jump right now);
4882 next, all instructions between jump and current scheduling point are moved
4883 to this new block. And the result is this:
4885 NOTE BASIC BLOCK:
4886 (!p8) jump L1 <- current scheduling point
4887 NOTE BASIC BLOCK: <- bb header
4888 (p8) add r14=r14+0x9;;
4889 (p8) mov [r14]=r23
4890 NOTE BASIC BLOCK:
4893 static void
4894 move_cond_jump (rtx insn, bnd_t bnd)
4896 edge ft_edge;
4897 basic_block block_from, block_next, block_new, block_bnd, bb;
4898 rtx next, prev, link, head;
4900 block_from = BLOCK_FOR_INSN (insn);
4901 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4902 prev = BND_TO (bnd);
4904 #ifdef ENABLE_CHECKING
4905 /* Moving of jump should not cross any other jumps or beginnings of new
4906 basic blocks. The only exception is when we move a jump through
4907 mutually exclusive insns along fallthru edges. */
4908 if (block_from != block_bnd)
4910 bb = block_from;
4911 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4912 link = PREV_INSN (link))
4914 if (INSN_P (link))
4915 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4916 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4918 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4919 bb = BLOCK_FOR_INSN (link);
4923 #endif
4925 /* Jump is moved to the boundary. */
4926 next = PREV_INSN (insn);
4927 BND_TO (bnd) = insn;
4929 ft_edge = find_fallthru_edge_from (block_from);
4930 block_next = ft_edge->dest;
4931 /* There must be a fallthrough block (or where should go
4932 control flow in case of false jump predicate otherwise?). */
4933 gcc_assert (block_next);
4935 /* Create new empty basic block after source block. */
4936 block_new = sel_split_edge (ft_edge);
4937 gcc_assert (block_new->next_bb == block_next
4938 && block_from->next_bb == block_new);
4940 /* Move all instructions except INSN to BLOCK_NEW. */
4941 bb = block_bnd;
4942 head = BB_HEAD (block_new);
4943 while (bb != block_from->next_bb)
4945 rtx from, to;
4946 from = bb == block_bnd ? prev : sel_bb_head (bb);
4947 to = bb == block_from ? next : sel_bb_end (bb);
4949 /* The jump being moved can be the first insn in the block.
4950 In this case we don't have to move anything in this block. */
4951 if (NEXT_INSN (to) != from)
4953 reorder_insns (from, to, head);
4955 for (link = to; link != head; link = PREV_INSN (link))
4956 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4957 head = to;
4960 /* Cleanup possibly empty blocks left. */
4961 block_next = bb->next_bb;
4962 if (bb != block_from)
4963 tidy_control_flow (bb, false);
4964 bb = block_next;
4967 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4968 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4970 gcc_assert (!sel_bb_empty_p (block_from)
4971 && !sel_bb_empty_p (block_new));
4973 /* Update data sets for BLOCK_NEW to represent that INSN and
4974 instructions from the other branch of INSN is no longer
4975 available at BLOCK_NEW. */
4976 BB_AV_LEVEL (block_new) = global_level;
4977 gcc_assert (BB_LV_SET (block_new) == NULL);
4978 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4979 update_data_sets (sel_bb_head (block_new));
4981 /* INSN is a new basic block header - so prepare its data
4982 structures and update availability and liveness sets. */
4983 update_data_sets (insn);
4985 if (sched_verbose >= 4)
4986 sel_print ("Moving jump %d\n", INSN_UID (insn));
4989 /* Remove nops generated during move_op for preventing removal of empty
4990 basic blocks. */
4991 static void
4992 remove_temp_moveop_nops (bool full_tidying)
4994 int i;
4995 insn_t insn;
4997 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4999 gcc_assert (INSN_NOP_P (insn));
5000 return_nop_to_pool (insn, full_tidying);
5003 /* Empty the vector. */
5004 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
5005 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
5006 VEC_length (insn_t, vec_temp_moveop_nops));
5009 /* Records the maximal UID before moving up an instruction. Used for
5010 distinguishing between bookkeeping copies and original insns. */
5011 static int max_uid_before_move_op = 0;
5013 /* Remove from AV_VLIW_P all instructions but next when debug counter
5014 tells us so. Next instruction is fetched from BNDS. */
5015 static void
5016 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5018 if (! dbg_cnt (sel_sched_insn_cnt))
5019 /* Leave only the next insn in av_vliw. */
5021 av_set_iterator av_it;
5022 expr_t expr;
5023 bnd_t bnd = BLIST_BND (bnds);
5024 insn_t next = BND_TO (bnd);
5026 gcc_assert (BLIST_NEXT (bnds) == NULL);
5028 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5029 if (EXPR_INSN_RTX (expr) != next)
5030 av_set_iter_remove (&av_it);
5034 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5035 the computed set to *AV_VLIW_P. */
5036 static void
5037 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5039 if (sched_verbose >= 2)
5041 sel_print ("Boundaries: ");
5042 dump_blist (bnds);
5043 sel_print ("\n");
5046 for (; bnds; bnds = BLIST_NEXT (bnds))
5048 bnd_t bnd = BLIST_BND (bnds);
5049 av_set_t av1_copy;
5050 insn_t bnd_to = BND_TO (bnd);
5052 /* Rewind BND->TO to the basic block header in case some bookkeeping
5053 instructions were inserted before BND->TO and it needs to be
5054 adjusted. */
5055 if (sel_bb_head_p (bnd_to))
5056 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5057 else
5058 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5060 bnd_to = PREV_INSN (bnd_to);
5061 if (sel_bb_head_p (bnd_to))
5062 break;
5065 if (BND_TO (bnd) != bnd_to)
5067 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5068 FENCE_INSN (fence) = bnd_to;
5069 BND_TO (bnd) = bnd_to;
5072 av_set_clear (&BND_AV (bnd));
5073 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5075 av_set_clear (&BND_AV1 (bnd));
5076 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5078 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5080 av1_copy = av_set_copy (BND_AV1 (bnd));
5081 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5084 if (sched_verbose >= 2)
5086 sel_print ("Available exprs (vliw form): ");
5087 dump_av_set (*av_vliw_p);
5088 sel_print ("\n");
5092 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5093 expression. When FOR_MOVEOP is true, also replace the register of
5094 expressions found with the register from EXPR_VLIW. */
5095 static av_set_t
5096 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5098 av_set_t expr_seq = NULL;
5099 expr_t expr;
5100 av_set_iterator i;
5102 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5104 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5106 if (for_moveop)
5108 /* The sequential expression has the right form to pass
5109 to move_op except when renaming happened. Put the
5110 correct register in EXPR then. */
5111 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5113 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5115 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5116 stat_renamed_scheduled++;
5118 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5119 This is needed when renaming came up with original
5120 register. */
5121 else if (EXPR_TARGET_AVAILABLE (expr)
5122 != EXPR_TARGET_AVAILABLE (expr_vliw))
5124 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5125 EXPR_TARGET_AVAILABLE (expr) = 1;
5128 if (EXPR_WAS_SUBSTITUTED (expr))
5129 stat_substitutions_total++;
5132 av_set_add (&expr_seq, expr);
5134 /* With substitution inside insn group, it is possible
5135 that more than one expression in expr_seq will correspond
5136 to expr_vliw. In this case, choose one as the attempt to
5137 move both leads to miscompiles. */
5138 break;
5142 if (for_moveop && sched_verbose >= 2)
5144 sel_print ("Best expression(s) (sequential form): ");
5145 dump_av_set (expr_seq);
5146 sel_print ("\n");
5149 return expr_seq;
5153 /* Move nop to previous block. */
5154 static void ATTRIBUTE_UNUSED
5155 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5157 insn_t prev_insn, next_insn, note;
5159 gcc_assert (sel_bb_head_p (nop)
5160 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5161 note = bb_note (BLOCK_FOR_INSN (nop));
5162 prev_insn = sel_bb_end (prev_bb);
5163 next_insn = NEXT_INSN (nop);
5164 gcc_assert (prev_insn != NULL_RTX
5165 && PREV_INSN (note) == prev_insn);
5167 NEXT_INSN (prev_insn) = nop;
5168 PREV_INSN (nop) = prev_insn;
5170 PREV_INSN (note) = nop;
5171 NEXT_INSN (note) = next_insn;
5173 NEXT_INSN (nop) = note;
5174 PREV_INSN (next_insn) = note;
5176 BB_END (prev_bb) = nop;
5177 BLOCK_FOR_INSN (nop) = prev_bb;
5180 /* Prepare a place to insert the chosen expression on BND. */
5181 static insn_t
5182 prepare_place_to_insert (bnd_t bnd)
5184 insn_t place_to_insert;
5186 /* Init place_to_insert before calling move_op, as the later
5187 can possibly remove BND_TO (bnd). */
5188 if (/* If this is not the first insn scheduled. */
5189 BND_PTR (bnd))
5191 /* Add it after last scheduled. */
5192 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5193 if (DEBUG_INSN_P (place_to_insert))
5195 ilist_t l = BND_PTR (bnd);
5196 while ((l = ILIST_NEXT (l)) &&
5197 DEBUG_INSN_P (ILIST_INSN (l)))
5199 if (!l)
5200 place_to_insert = NULL;
5203 else
5204 place_to_insert = NULL;
5206 if (!place_to_insert)
5208 /* Add it before BND_TO. The difference is in the
5209 basic block, where INSN will be added. */
5210 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5211 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5212 == BLOCK_FOR_INSN (BND_TO (bnd)));
5215 return place_to_insert;
5218 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5219 Return the expression to emit in C_EXPR. */
5220 static bool
5221 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5222 av_set_t expr_seq, expr_t c_expr)
5224 bool b, should_move;
5225 unsigned book_uid;
5226 bitmap_iterator bi;
5227 int n_bookkeeping_copies_before_moveop;
5229 /* Make a move. This call will remove the original operation,
5230 insert all necessary bookkeeping instructions and update the
5231 data sets. After that all we have to do is add the operation
5232 at before BND_TO (BND). */
5233 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5234 max_uid_before_move_op = get_max_uid ();
5235 bitmap_clear (current_copies);
5236 bitmap_clear (current_originators);
5238 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5239 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5241 /* We should be able to find the expression we've chosen for
5242 scheduling. */
5243 gcc_assert (b);
5245 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5246 stat_insns_needed_bookkeeping++;
5248 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5250 unsigned uid;
5251 bitmap_iterator bi;
5253 /* We allocate these bitmaps lazily. */
5254 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5255 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5257 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5258 current_originators);
5260 /* Transitively add all originators' originators. */
5261 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5262 if (INSN_ORIGINATORS_BY_UID (uid))
5263 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5264 INSN_ORIGINATORS_BY_UID (uid));
5267 return should_move;
5271 /* Debug a DFA state as an array of bytes. */
5272 static void
5273 debug_state (state_t state)
5275 unsigned char *p;
5276 unsigned int i, size = dfa_state_size;
5278 sel_print ("state (%u):", size);
5279 for (i = 0, p = (unsigned char *) state; i < size; i++)
5280 sel_print (" %d", p[i]);
5281 sel_print ("\n");
5284 /* Advance state on FENCE with INSN. Return true if INSN is
5285 an ASM, and we should advance state once more. */
5286 static bool
5287 advance_state_on_fence (fence_t fence, insn_t insn)
5289 bool asm_p;
5291 if (recog_memoized (insn) >= 0)
5293 int res;
5294 state_t temp_state = alloca (dfa_state_size);
5296 gcc_assert (!INSN_ASM_P (insn));
5297 asm_p = false;
5299 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5300 res = state_transition (FENCE_STATE (fence), insn);
5301 gcc_assert (res < 0);
5303 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5305 FENCE_ISSUED_INSNS (fence)++;
5307 /* We should never issue more than issue_rate insns. */
5308 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5309 gcc_unreachable ();
5312 else
5314 /* This could be an ASM insn which we'd like to schedule
5315 on the next cycle. */
5316 asm_p = INSN_ASM_P (insn);
5317 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5318 advance_one_cycle (fence);
5321 if (sched_verbose >= 2)
5322 debug_state (FENCE_STATE (fence));
5323 if (!DEBUG_INSN_P (insn))
5324 FENCE_STARTS_CYCLE_P (fence) = 0;
5325 FENCE_ISSUE_MORE (fence) = can_issue_more;
5326 return asm_p;
5329 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5330 is nonzero if we need to stall after issuing INSN. */
5331 static void
5332 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5334 bool asm_p;
5336 /* First, reflect that something is scheduled on this fence. */
5337 asm_p = advance_state_on_fence (fence, insn);
5338 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5339 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5340 if (SCHED_GROUP_P (insn))
5342 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5343 SCHED_GROUP_P (insn) = 0;
5345 else
5346 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5347 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5348 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5350 /* Set instruction scheduling info. This will be used in bundling,
5351 pipelining, tick computations etc. */
5352 ++INSN_SCHED_TIMES (insn);
5353 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5354 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5355 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5356 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5358 /* This does not account for adjust_cost hooks, just add the biggest
5359 constant the hook may add to the latency. TODO: make this
5360 a target dependent constant. */
5361 INSN_READY_CYCLE (insn)
5362 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5364 : maximal_insn_latency (insn) + 1);
5366 /* Change these fields last, as they're used above. */
5367 FENCE_AFTER_STALL_P (fence) = 0;
5368 if (asm_p || need_stall)
5369 advance_one_cycle (fence);
5371 /* Indicate that we've scheduled something on this fence. */
5372 FENCE_SCHEDULED_P (fence) = true;
5373 scheduled_something_on_previous_fence = true;
5375 /* Print debug information when insn's fields are updated. */
5376 if (sched_verbose >= 2)
5378 sel_print ("Scheduling insn: ");
5379 dump_insn_1 (insn, 1);
5380 sel_print ("\n");
5384 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5385 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5386 return it. */
5387 static blist_t *
5388 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5389 blist_t *bnds_tailp)
5391 succ_iterator si;
5392 insn_t succ;
5394 advance_deps_context (BND_DC (bnd), insn);
5395 FOR_EACH_SUCC_1 (succ, si, insn,
5396 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5398 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5400 ilist_add (&ptr, insn);
5402 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5403 && is_ineligible_successor (succ, ptr))
5405 ilist_clear (&ptr);
5406 continue;
5409 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5411 if (sched_verbose >= 9)
5412 sel_print ("Updating fence insn from %i to %i\n",
5413 INSN_UID (insn), INSN_UID (succ));
5414 FENCE_INSN (fence) = succ;
5416 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5417 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5420 blist_remove (bndsp);
5421 return bnds_tailp;
5424 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5425 static insn_t
5426 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5428 av_set_t expr_seq;
5429 expr_t c_expr = XALLOCA (expr_def);
5430 insn_t place_to_insert;
5431 insn_t insn;
5432 bool should_move;
5434 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5436 /* In case of scheduling a jump skipping some other instructions,
5437 prepare CFG. After this, jump is at the boundary and can be
5438 scheduled as usual insn by MOVE_OP. */
5439 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5441 insn = EXPR_INSN_RTX (expr_vliw);
5443 /* Speculative jumps are not handled. */
5444 if (insn != BND_TO (bnd)
5445 && !sel_insn_is_speculation_check (insn))
5446 move_cond_jump (insn, bnd);
5449 /* Find a place for C_EXPR to schedule. */
5450 place_to_insert = prepare_place_to_insert (bnd);
5451 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5452 clear_expr (c_expr);
5454 /* Add the instruction. The corner case to care about is when
5455 the expr_seq set has more than one expr, and we chose the one that
5456 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5457 we can't use it. Generate the new vinsn. */
5458 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5460 vinsn_t vinsn_new;
5462 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5463 change_vinsn_in_expr (expr_vliw, vinsn_new);
5464 should_move = false;
5466 if (should_move)
5467 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5468 else
5469 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5470 place_to_insert);
5472 /* Return the nops generated for preserving of data sets back
5473 into pool. */
5474 if (INSN_NOP_P (place_to_insert))
5475 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5476 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5478 av_set_clear (&expr_seq);
5480 /* Save the expression scheduled so to reset target availability if we'll
5481 meet it later on the same fence. */
5482 if (EXPR_WAS_RENAMED (expr_vliw))
5483 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5485 /* Check that the recent movement didn't destroyed loop
5486 structure. */
5487 gcc_assert (!pipelining_p
5488 || current_loop_nest == NULL
5489 || loop_latch_edge (current_loop_nest));
5490 return insn;
5493 /* Stall for N cycles on FENCE. */
5494 static void
5495 stall_for_cycles (fence_t fence, int n)
5497 int could_more;
5499 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5500 while (n--)
5501 advance_one_cycle (fence);
5502 if (could_more)
5503 FENCE_AFTER_STALL_P (fence) = 1;
5506 /* Gather a parallel group of insns at FENCE and assign their seqno
5507 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5508 list for later recalculation of seqnos. */
5509 static void
5510 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5512 blist_t bnds = NULL, *bnds_tailp;
5513 av_set_t av_vliw = NULL;
5514 insn_t insn = FENCE_INSN (fence);
5516 if (sched_verbose >= 2)
5517 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5518 INSN_UID (insn), FENCE_CYCLE (fence));
5520 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5521 bnds_tailp = &BLIST_NEXT (bnds);
5522 set_target_context (FENCE_TC (fence));
5523 can_issue_more = FENCE_ISSUE_MORE (fence);
5524 target_bb = INSN_BB (insn);
5526 /* Do while we can add any operation to the current group. */
5529 blist_t *bnds_tailp1, *bndsp;
5530 expr_t expr_vliw;
5531 int need_stall = false;
5532 int was_stall = 0, scheduled_insns = 0;
5533 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5534 int max_stall = pipelining_p ? 1 : 3;
5535 bool last_insn_was_debug = false;
5536 bool was_debug_bb_end_p = false;
5538 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5539 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5540 remove_insns_for_debug (bnds, &av_vliw);
5542 /* Return early if we have nothing to schedule. */
5543 if (av_vliw == NULL)
5544 break;
5546 /* Choose the best expression and, if needed, destination register
5547 for it. */
5550 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5551 if (! expr_vliw && need_stall)
5553 /* All expressions required a stall. Do not recompute av sets
5554 as we'll get the same answer (modulo the insns between
5555 the fence and its boundary, which will not be available for
5556 pipelining).
5557 If we are going to stall for too long, break to recompute av
5558 sets and bring more insns for pipelining. */
5559 was_stall++;
5560 if (need_stall <= 3)
5561 stall_for_cycles (fence, need_stall);
5562 else
5564 stall_for_cycles (fence, 1);
5565 break;
5569 while (! expr_vliw && need_stall);
5571 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5572 if (!expr_vliw)
5574 av_set_clear (&av_vliw);
5575 break;
5578 bndsp = &bnds;
5579 bnds_tailp1 = bnds_tailp;
5582 /* This code will be executed only once until we'd have several
5583 boundaries per fence. */
5585 bnd_t bnd = BLIST_BND (*bndsp);
5587 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5589 bndsp = &BLIST_NEXT (*bndsp);
5590 continue;
5593 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5594 last_insn_was_debug = DEBUG_INSN_P (insn);
5595 if (last_insn_was_debug)
5596 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5597 update_fence_and_insn (fence, insn, need_stall);
5598 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5600 /* Add insn to the list of scheduled on this cycle instructions. */
5601 ilist_add (*scheduled_insns_tailpp, insn);
5602 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5604 while (*bndsp != *bnds_tailp1);
5606 av_set_clear (&av_vliw);
5607 if (!last_insn_was_debug)
5608 scheduled_insns++;
5610 /* We currently support information about candidate blocks only for
5611 one 'target_bb' block. Hence we can't schedule after jump insn,
5612 as this will bring two boundaries and, hence, necessity to handle
5613 information for two or more blocks concurrently. */
5614 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5615 || (was_stall
5616 && (was_stall >= max_stall
5617 || scheduled_insns >= max_insns)))
5618 break;
5620 while (bnds);
5622 gcc_assert (!FENCE_BNDS (fence));
5624 /* Update boundaries of the FENCE. */
5625 while (bnds)
5627 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5629 if (ptr)
5631 insn = ILIST_INSN (ptr);
5633 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5634 ilist_add (&FENCE_BNDS (fence), insn);
5637 blist_remove (&bnds);
5640 /* Update target context on the fence. */
5641 reset_target_context (FENCE_TC (fence), false);
5644 /* All exprs in ORIG_OPS must have the same destination register or memory.
5645 Return that destination. */
5646 static rtx
5647 get_dest_from_orig_ops (av_set_t orig_ops)
5649 rtx dest = NULL_RTX;
5650 av_set_iterator av_it;
5651 expr_t expr;
5652 bool first_p = true;
5654 FOR_EACH_EXPR (expr, av_it, orig_ops)
5656 rtx x = EXPR_LHS (expr);
5658 if (first_p)
5660 first_p = false;
5661 dest = x;
5663 else
5664 gcc_assert (dest == x
5665 || (dest != NULL_RTX && x != NULL_RTX
5666 && rtx_equal_p (dest, x)));
5669 return dest;
5672 /* Update data sets for the bookkeeping block and record those expressions
5673 which become no longer available after inserting this bookkeeping. */
5674 static void
5675 update_and_record_unavailable_insns (basic_block book_block)
5677 av_set_iterator i;
5678 av_set_t old_av_set = NULL;
5679 expr_t cur_expr;
5680 rtx bb_end = sel_bb_end (book_block);
5682 /* First, get correct liveness in the bookkeeping block. The problem is
5683 the range between the bookeeping insn and the end of block. */
5684 update_liveness_on_insn (bb_end);
5685 if (control_flow_insn_p (bb_end))
5686 update_liveness_on_insn (PREV_INSN (bb_end));
5688 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5689 fence above, where we may choose to schedule an insn which is
5690 actually blocked from moving up with the bookkeeping we create here. */
5691 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5693 old_av_set = av_set_copy (BB_AV_SET (book_block));
5694 update_data_sets (sel_bb_head (book_block));
5696 /* Traverse all the expressions in the old av_set and check whether
5697 CUR_EXPR is in new AV_SET. */
5698 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5700 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5701 EXPR_VINSN (cur_expr));
5703 if (! new_expr
5704 /* In this case, we can just turn off the E_T_A bit, but we can't
5705 represent this information with the current vector. */
5706 || EXPR_TARGET_AVAILABLE (new_expr)
5707 != EXPR_TARGET_AVAILABLE (cur_expr))
5708 /* Unfortunately, the below code could be also fired up on
5709 separable insns, e.g. when moving insns through the new
5710 speculation check as in PR 53701. */
5711 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5714 av_set_clear (&old_av_set);
5718 /* The main effect of this function is that sparams->c_expr is merged
5719 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5720 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5721 lparams->c_expr_merged is copied back to sparams->c_expr after all
5722 successors has been traversed. lparams->c_expr_local is an expr allocated
5723 on stack in the caller function, and is used if there is more than one
5724 successor.
5726 SUCC is one of the SUCCS_NORMAL successors of INSN,
5727 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5728 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5729 static void
5730 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5731 insn_t succ ATTRIBUTE_UNUSED,
5732 int moveop_drv_call_res,
5733 cmpd_local_params_p lparams, void *static_params)
5735 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5737 /* Nothing to do, if original expr wasn't found below. */
5738 if (moveop_drv_call_res != 1)
5739 return;
5741 /* If this is a first successor. */
5742 if (!lparams->c_expr_merged)
5744 lparams->c_expr_merged = sparams->c_expr;
5745 sparams->c_expr = lparams->c_expr_local;
5747 else
5749 /* We must merge all found expressions to get reasonable
5750 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5751 do so then we can first find the expr with epsilon
5752 speculation success probability and only then with the
5753 good probability. As a result the insn will get epsilon
5754 probability and will never be scheduled because of
5755 weakness_cutoff in find_best_expr.
5757 We call merge_expr_data here instead of merge_expr
5758 because due to speculation C_EXPR and X may have the
5759 same insns with different speculation types. And as of
5760 now such insns are considered non-equal.
5762 However, EXPR_SCHED_TIMES is different -- we must get
5763 SCHED_TIMES from a real insn, not a bookkeeping copy.
5764 We force this here. Instead, we may consider merging
5765 SCHED_TIMES to the maximum instead of minimum in the
5766 below function. */
5767 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5769 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5770 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5771 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5773 clear_expr (sparams->c_expr);
5777 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5779 SUCC is one of the SUCCS_NORMAL successors of INSN,
5780 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5781 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5782 STATIC_PARAMS contain USED_REGS set. */
5783 static void
5784 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5785 int moveop_drv_call_res,
5786 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5787 void *static_params)
5789 regset succ_live;
5790 fur_static_params_p sparams = (fur_static_params_p) static_params;
5792 /* Here we compute live regsets only for branches that do not lie
5793 on the code motion paths. These branches correspond to value
5794 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5795 for such branches code_motion_path_driver is not called. */
5796 if (moveop_drv_call_res != 0)
5797 return;
5799 /* Mark all registers that do not meet the following condition:
5800 (3) not live on the other path of any conditional branch
5801 that is passed by the operation, in case original
5802 operations are not present on both paths of the
5803 conditional branch. */
5804 succ_live = compute_live (succ);
5805 IOR_REG_SET (sparams->used_regs, succ_live);
5808 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5809 into SP->CEXPR. */
5810 static void
5811 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5813 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5815 sp->c_expr = lp->c_expr_merged;
5818 /* Track bookkeeping copies created, insns scheduled, and blocks for
5819 rescheduling when INSN is found by move_op. */
5820 static void
5821 track_scheduled_insns_and_blocks (rtx insn)
5823 /* Even if this insn can be a copy that will be removed during current move_op,
5824 we still need to count it as an originator. */
5825 bitmap_set_bit (current_originators, INSN_UID (insn));
5827 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5829 /* Note that original block needs to be rescheduled, as we pulled an
5830 instruction out of it. */
5831 if (INSN_SCHED_TIMES (insn) > 0)
5832 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5833 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5834 num_insns_scheduled++;
5837 /* For instructions we must immediately remove insn from the
5838 stream, so subsequent update_data_sets () won't include this
5839 insn into av_set.
5840 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5841 if (INSN_UID (insn) > max_uid_before_move_op)
5842 stat_bookkeeping_copies--;
5845 /* Emit a register-register copy for INSN if needed. Return true if
5846 emitted one. PARAMS is the move_op static parameters. */
5847 static bool
5848 maybe_emit_renaming_copy (rtx insn,
5849 moveop_static_params_p params)
5851 bool insn_emitted = false;
5852 rtx cur_reg;
5854 /* Bail out early when expression can not be renamed at all. */
5855 if (!EXPR_SEPARABLE_P (params->c_expr))
5856 return false;
5858 cur_reg = expr_dest_reg (params->c_expr);
5859 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5861 /* If original operation has expr and the register chosen for
5862 that expr is not original operation's dest reg, substitute
5863 operation's right hand side with the register chosen. */
5864 if (REGNO (params->dest) != REGNO (cur_reg))
5866 insn_t reg_move_insn, reg_move_insn_rtx;
5868 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5869 params->dest);
5870 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5871 INSN_EXPR (insn),
5872 INSN_SEQNO (insn),
5873 insn);
5874 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5875 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5877 insn_emitted = true;
5878 params->was_renamed = true;
5881 return insn_emitted;
5884 /* Emit a speculative check for INSN speculated as EXPR if needed.
5885 Return true if we've emitted one. PARAMS is the move_op static
5886 parameters. */
5887 static bool
5888 maybe_emit_speculative_check (rtx insn, expr_t expr,
5889 moveop_static_params_p params)
5891 bool insn_emitted = false;
5892 insn_t x;
5893 ds_t check_ds;
5895 check_ds = get_spec_check_type_for_insn (insn, expr);
5896 if (check_ds != 0)
5898 /* A speculation check should be inserted. */
5899 x = create_speculation_check (params->c_expr, check_ds, insn);
5900 insn_emitted = true;
5902 else
5904 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5905 x = insn;
5908 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5909 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5910 return insn_emitted;
5913 /* Handle transformations that leave an insn in place of original
5914 insn such as renaming/speculation. Return true if one of such
5915 transformations actually happened, and we have emitted this insn. */
5916 static bool
5917 handle_emitting_transformations (rtx insn, expr_t expr,
5918 moveop_static_params_p params)
5920 bool insn_emitted = false;
5922 insn_emitted = maybe_emit_renaming_copy (insn, params);
5923 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5925 return insn_emitted;
5928 /* If INSN is the only insn in the basic block (not counting JUMP,
5929 which may be a jump to next insn, and DEBUG_INSNs), we want to
5930 leave a NOP there till the return to fill_insns. */
5932 static bool
5933 need_nop_to_preserve_insn_bb (rtx insn)
5935 insn_t bb_head, bb_end, bb_next, in_next;
5936 basic_block bb = BLOCK_FOR_INSN (insn);
5938 bb_head = sel_bb_head (bb);
5939 bb_end = sel_bb_end (bb);
5941 if (bb_head == bb_end)
5942 return true;
5944 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5945 bb_head = NEXT_INSN (bb_head);
5947 if (bb_head == bb_end)
5948 return true;
5950 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5951 bb_end = PREV_INSN (bb_end);
5953 if (bb_head == bb_end)
5954 return true;
5956 bb_next = NEXT_INSN (bb_head);
5957 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5958 bb_next = NEXT_INSN (bb_next);
5960 if (bb_next == bb_end && JUMP_P (bb_end))
5961 return true;
5963 in_next = NEXT_INSN (insn);
5964 while (DEBUG_INSN_P (in_next))
5965 in_next = NEXT_INSN (in_next);
5967 if (IN_CURRENT_FENCE_P (in_next))
5968 return true;
5970 return false;
5973 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5974 is not removed but reused when INSN is re-emitted. */
5975 static void
5976 remove_insn_from_stream (rtx insn, bool only_disconnect)
5978 /* If there's only one insn in the BB, make sure that a nop is
5979 inserted into it, so the basic block won't disappear when we'll
5980 delete INSN below with sel_remove_insn. It should also survive
5981 till the return to fill_insns. */
5982 if (need_nop_to_preserve_insn_bb (insn))
5984 insn_t nop = get_nop_from_pool (insn);
5985 gcc_assert (INSN_NOP_P (nop));
5986 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5989 sel_remove_insn (insn, only_disconnect, false);
5992 /* This function is called when original expr is found.
5993 INSN - current insn traversed, EXPR - the corresponding expr found.
5994 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5995 is static parameters of move_op. */
5996 static void
5997 move_op_orig_expr_found (insn_t insn, expr_t expr,
5998 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5999 void *static_params)
6001 bool only_disconnect, insn_emitted;
6002 moveop_static_params_p params = (moveop_static_params_p) static_params;
6004 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6005 track_scheduled_insns_and_blocks (insn);
6006 insn_emitted = handle_emitting_transformations (insn, expr, params);
6007 only_disconnect = (params->uid == INSN_UID (insn)
6008 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
6010 /* Mark that we've disconnected an insn. */
6011 if (only_disconnect)
6012 params->uid = -1;
6013 remove_insn_from_stream (insn, only_disconnect);
6016 /* The function is called when original expr is found.
6017 INSN - current insn traversed, EXPR - the corresponding expr found,
6018 crosses_call and original_insns in STATIC_PARAMS are updated. */
6019 static void
6020 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6021 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6022 void *static_params)
6024 fur_static_params_p params = (fur_static_params_p) static_params;
6025 regset tmp;
6027 if (CALL_P (insn))
6028 params->crosses_call = true;
6030 def_list_add (params->original_insns, insn, params->crosses_call);
6032 /* Mark the registers that do not meet the following condition:
6033 (2) not among the live registers of the point
6034 immediately following the first original operation on
6035 a given downward path, except for the original target
6036 register of the operation. */
6037 tmp = get_clear_regset_from_pool ();
6038 compute_live_below_insn (insn, tmp);
6039 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6040 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6041 IOR_REG_SET (params->used_regs, tmp);
6042 return_regset_to_pool (tmp);
6044 /* (*1) We need to add to USED_REGS registers that are read by
6045 INSN's lhs. This may lead to choosing wrong src register.
6046 E.g. (scheduling const expr enabled):
6048 429: ax=0x0 <- Can't use AX for this expr (0x0)
6049 433: dx=[bp-0x18]
6050 427: [ax+dx+0x1]=ax
6051 REG_DEAD: ax
6052 168: di=dx
6053 REG_DEAD: dx
6055 /* FIXME: see comment above and enable MEM_P
6056 in vinsn_separable_p. */
6057 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6058 || !MEM_P (INSN_LHS (insn)));
6061 /* This function is called on the ascending pass, before returning from
6062 current basic block. */
6063 static void
6064 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6065 void *static_params)
6067 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6068 basic_block book_block = NULL;
6070 /* When we have removed the boundary insn for scheduling, which also
6071 happened to be the end insn in its bb, we don't need to update sets. */
6072 if (!lparams->removed_last_insn
6073 && lparams->e1
6074 && sel_bb_head_p (insn))
6076 /* We should generate bookkeeping code only if we are not at the
6077 top level of the move_op. */
6078 if (sel_num_cfg_preds_gt_1 (insn))
6079 book_block = generate_bookkeeping_insn (sparams->c_expr,
6080 lparams->e1, lparams->e2);
6081 /* Update data sets for the current insn. */
6082 update_data_sets (insn);
6085 /* If bookkeeping code was inserted, we need to update av sets of basic
6086 block that received bookkeeping. After generation of bookkeeping insn,
6087 bookkeeping block does not contain valid av set because we are not following
6088 the original algorithm in every detail with regards to e.g. renaming
6089 simple reg-reg copies. Consider example:
6091 bookkeeping block scheduling fence
6093 \ join /
6094 ----------
6096 ----------
6099 r1 := r2 r1 := r3
6101 We try to schedule insn "r1 := r3" on the current
6102 scheduling fence. Also, note that av set of bookkeeping block
6103 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6104 been scheduled, the CFG is as follows:
6106 r1 := r3 r1 := r3
6107 bookkeeping block scheduling fence
6109 \ join /
6110 ----------
6112 ----------
6115 r1 := r2
6117 Here, insn "r1 := r3" was scheduled at the current scheduling point
6118 and bookkeeping code was generated at the bookeeping block. This
6119 way insn "r1 := r2" is no longer available as a whole instruction
6120 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6121 This situation is handled by calling update_data_sets.
6123 Since update_data_sets is called only on the bookkeeping block, and
6124 it also may have predecessors with av_sets, containing instructions that
6125 are no longer available, we save all such expressions that become
6126 unavailable during data sets update on the bookkeeping block in
6127 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6128 expressions for scheduling. This allows us to avoid recomputation of
6129 av_sets outside the code motion path. */
6131 if (book_block)
6132 update_and_record_unavailable_insns (book_block);
6134 /* If INSN was previously marked for deletion, it's time to do it. */
6135 if (lparams->removed_last_insn)
6136 insn = PREV_INSN (insn);
6138 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6139 kill a block with a single nop in which the insn should be emitted. */
6140 if (lparams->e1)
6141 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6144 /* This function is called on the ascending pass, before returning from the
6145 current basic block. */
6146 static void
6147 fur_at_first_insn (insn_t insn,
6148 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6149 void *static_params ATTRIBUTE_UNUSED)
6151 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6152 || AV_LEVEL (insn) == -1);
6155 /* Called on the backward stage of recursion to call moveup_expr for insn
6156 and sparams->c_expr. */
6157 static void
6158 move_op_ascend (insn_t insn, void *static_params)
6160 enum MOVEUP_EXPR_CODE res;
6161 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6163 if (! INSN_NOP_P (insn))
6165 res = moveup_expr_cached (sparams->c_expr, insn, false);
6166 gcc_assert (res != MOVEUP_EXPR_NULL);
6169 /* Update liveness for this insn as it was invalidated. */
6170 update_liveness_on_insn (insn);
6173 /* This function is called on enter to the basic block.
6174 Returns TRUE if this block already have been visited and
6175 code_motion_path_driver should return 1, FALSE otherwise. */
6176 static int
6177 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6178 void *static_params, bool visited_p)
6180 fur_static_params_p sparams = (fur_static_params_p) static_params;
6182 if (visited_p)
6184 /* If we have found something below this block, there should be at
6185 least one insn in ORIGINAL_INSNS. */
6186 gcc_assert (*sparams->original_insns);
6188 /* Adjust CROSSES_CALL, since we may have come to this block along
6189 different path. */
6190 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6191 |= sparams->crosses_call;
6193 else
6194 local_params->old_original_insns = *sparams->original_insns;
6196 return 1;
6199 /* Same as above but for move_op. */
6200 static int
6201 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6202 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6203 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6205 if (visited_p)
6206 return -1;
6207 return 1;
6210 /* This function is called while descending current basic block if current
6211 insn is not the original EXPR we're searching for.
6213 Return value: FALSE, if code_motion_path_driver should perform a local
6214 cleanup and return 0 itself;
6215 TRUE, if code_motion_path_driver should continue. */
6216 static bool
6217 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6218 void *static_params)
6220 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6222 #ifdef ENABLE_CHECKING
6223 sparams->failed_insn = insn;
6224 #endif
6226 /* If we're scheduling separate expr, in order to generate correct code
6227 we need to stop the search at bookkeeping code generated with the
6228 same destination register or memory. */
6229 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6230 return false;
6231 return true;
6234 /* This function is called while descending current basic block if current
6235 insn is not the original EXPR we're searching for.
6237 Return value: TRUE (code_motion_path_driver should continue). */
6238 static bool
6239 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6241 bool mutexed;
6242 expr_t r;
6243 av_set_iterator avi;
6244 fur_static_params_p sparams = (fur_static_params_p) static_params;
6246 if (CALL_P (insn))
6247 sparams->crosses_call = true;
6248 else if (DEBUG_INSN_P (insn))
6249 return true;
6251 /* If current insn we are looking at cannot be executed together
6252 with original insn, then we can skip it safely.
6254 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6255 INSN = (!p6) r14 = r14 + 1;
6257 Here we can schedule ORIG_OP with lhs = r14, though only
6258 looking at the set of used and set registers of INSN we must
6259 forbid it. So, add set/used in INSN registers to the
6260 untouchable set only if there is an insn in ORIG_OPS that can
6261 affect INSN. */
6262 mutexed = true;
6263 FOR_EACH_EXPR (r, avi, orig_ops)
6264 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6266 mutexed = false;
6267 break;
6270 /* Mark all registers that do not meet the following condition:
6271 (1) Not set or read on any path from xi to an instance of the
6272 original operation. */
6273 if (!mutexed)
6275 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6276 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6277 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6280 return true;
6283 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6284 struct code_motion_path_driver_info_def move_op_hooks = {
6285 move_op_on_enter,
6286 move_op_orig_expr_found,
6287 move_op_orig_expr_not_found,
6288 move_op_merge_succs,
6289 move_op_after_merge_succs,
6290 move_op_ascend,
6291 move_op_at_first_insn,
6292 SUCCS_NORMAL,
6293 "move_op"
6296 /* Hooks and data to perform find_used_regs operations
6297 with code_motion_path_driver. */
6298 struct code_motion_path_driver_info_def fur_hooks = {
6299 fur_on_enter,
6300 fur_orig_expr_found,
6301 fur_orig_expr_not_found,
6302 fur_merge_succs,
6303 NULL, /* fur_after_merge_succs */
6304 NULL, /* fur_ascend */
6305 fur_at_first_insn,
6306 SUCCS_ALL,
6307 "find_used_regs"
6310 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6311 code_motion_path_driver is called recursively. Original operation
6312 was found at least on one path that is starting with one of INSN's
6313 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6314 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6315 of either move_op or find_used_regs depending on the caller.
6317 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6318 know for sure at this point. */
6319 static int
6320 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6321 ilist_t path, void *static_params)
6323 int res = 0;
6324 succ_iterator succ_i;
6325 rtx succ;
6326 basic_block bb;
6327 int old_index;
6328 unsigned old_succs;
6330 struct cmpd_local_params lparams;
6331 expr_def _x;
6333 lparams.c_expr_local = &_x;
6334 lparams.c_expr_merged = NULL;
6336 /* We need to process only NORMAL succs for move_op, and collect live
6337 registers from ALL branches (including those leading out of the
6338 region) for find_used_regs.
6340 In move_op, there can be a case when insn's bb number has changed
6341 due to created bookkeeping. This happens very rare, as we need to
6342 move expression from the beginning to the end of the same block.
6343 Rescan successors in this case. */
6345 rescan:
6346 bb = BLOCK_FOR_INSN (insn);
6347 old_index = bb->index;
6348 old_succs = EDGE_COUNT (bb->succs);
6350 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6352 int b;
6354 lparams.e1 = succ_i.e1;
6355 lparams.e2 = succ_i.e2;
6357 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6358 current region). */
6359 if (succ_i.current_flags == SUCCS_NORMAL)
6360 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6361 static_params);
6362 else
6363 b = 0;
6365 /* Merge c_expres found or unify live register sets from different
6366 successors. */
6367 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6368 static_params);
6369 if (b == 1)
6370 res = b;
6371 else if (b == -1 && res != 1)
6372 res = b;
6374 /* We have simplified the control flow below this point. In this case,
6375 the iterator becomes invalid. We need to try again. */
6376 if (BLOCK_FOR_INSN (insn)->index != old_index
6377 || EDGE_COUNT (bb->succs) != old_succs)
6379 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6380 goto rescan;
6384 #ifdef ENABLE_CHECKING
6385 /* Here, RES==1 if original expr was found at least for one of the
6386 successors. After the loop, RES may happen to have zero value
6387 only if at some point the expr searched is present in av_set, but is
6388 not found below. In most cases, this situation is an error.
6389 The exception is when the original operation is blocked by
6390 bookkeeping generated for another fence or for another path in current
6391 move_op. */
6392 gcc_assert (res == 1
6393 || (res == 0
6394 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6395 static_params))
6396 || res == -1);
6397 #endif
6399 /* Merge data, clean up, etc. */
6400 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6401 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6403 return res;
6407 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6408 is the pointer to the av set with expressions we were looking for,
6409 PATH_P is the pointer to the traversed path. */
6410 static inline void
6411 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6413 ilist_remove (path_p);
6414 av_set_clear (orig_ops_p);
6417 /* The driver function that implements move_op or find_used_regs
6418 functionality dependent whether code_motion_path_driver_INFO is set to
6419 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6420 of code (CFG traversal etc) that are shared among both functions. INSN
6421 is the insn we're starting the search from, ORIG_OPS are the expressions
6422 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6423 parameters of the driver, and STATIC_PARAMS are static parameters of
6424 the caller.
6426 Returns whether original instructions were found. Note that top-level
6427 code_motion_path_driver always returns true. */
6428 static int
6429 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6430 cmpd_local_params_p local_params_in,
6431 void *static_params)
6433 expr_t expr = NULL;
6434 basic_block bb = BLOCK_FOR_INSN (insn);
6435 insn_t first_insn, bb_tail, before_first;
6436 bool removed_last_insn = false;
6438 if (sched_verbose >= 6)
6440 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6441 dump_insn (insn);
6442 sel_print (",");
6443 dump_av_set (orig_ops);
6444 sel_print (")\n");
6447 gcc_assert (orig_ops);
6449 /* If no original operations exist below this insn, return immediately. */
6450 if (is_ineligible_successor (insn, path))
6452 if (sched_verbose >= 6)
6453 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6454 return false;
6457 /* The block can have invalid av set, in which case it was created earlier
6458 during move_op. Return immediately. */
6459 if (sel_bb_head_p (insn))
6461 if (! AV_SET_VALID_P (insn))
6463 if (sched_verbose >= 6)
6464 sel_print ("Returned from block %d as it had invalid av set\n",
6465 bb->index);
6466 return false;
6469 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6471 /* We have already found an original operation on this branch, do not
6472 go any further and just return TRUE here. If we don't stop here,
6473 function can have exponential behaviour even on the small code
6474 with many different paths (e.g. with data speculation and
6475 recovery blocks). */
6476 if (sched_verbose >= 6)
6477 sel_print ("Block %d already visited in this traversal\n", bb->index);
6478 if (code_motion_path_driver_info->on_enter)
6479 return code_motion_path_driver_info->on_enter (insn,
6480 local_params_in,
6481 static_params,
6482 true);
6486 if (code_motion_path_driver_info->on_enter)
6487 code_motion_path_driver_info->on_enter (insn, local_params_in,
6488 static_params, false);
6489 orig_ops = av_set_copy (orig_ops);
6491 /* Filter the orig_ops set. */
6492 if (AV_SET_VALID_P (insn))
6493 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6495 /* If no more original ops, return immediately. */
6496 if (!orig_ops)
6498 if (sched_verbose >= 6)
6499 sel_print ("No intersection with av set of block %d\n", bb->index);
6500 return false;
6503 /* For non-speculative insns we have to leave only one form of the
6504 original operation, because if we don't, we may end up with
6505 different C_EXPRes and, consequently, with bookkeepings for different
6506 expression forms along the same code motion path. That may lead to
6507 generation of incorrect code. So for each code motion we stick to
6508 the single form of the instruction, except for speculative insns
6509 which we need to keep in different forms with all speculation
6510 types. */
6511 av_set_leave_one_nonspec (&orig_ops);
6513 /* It is not possible that all ORIG_OPS are filtered out. */
6514 gcc_assert (orig_ops);
6516 /* It is enough to place only heads and tails of visited basic blocks into
6517 the PATH. */
6518 ilist_add (&path, insn);
6519 first_insn = insn;
6520 bb_tail = sel_bb_end (bb);
6522 /* Descend the basic block in search of the original expr; this part
6523 corresponds to the part of the original move_op procedure executed
6524 before the recursive call. */
6525 for (;;)
6527 /* Look at the insn and decide if it could be an ancestor of currently
6528 scheduling operation. If it is so, then the insn "dest = op" could
6529 either be replaced with "dest = reg", because REG now holds the result
6530 of OP, or just removed, if we've scheduled the insn as a whole.
6532 If this insn doesn't contain currently scheduling OP, then proceed
6533 with searching and look at its successors. Operations we're searching
6534 for could have changed when moving up through this insn via
6535 substituting. In this case, perform unsubstitution on them first.
6537 When traversing the DAG below this insn is finished, insert
6538 bookkeeping code, if the insn is a joint point, and remove
6539 leftovers. */
6541 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6542 if (expr)
6544 insn_t last_insn = PREV_INSN (insn);
6546 /* We have found the original operation. */
6547 if (sched_verbose >= 6)
6548 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6550 code_motion_path_driver_info->orig_expr_found
6551 (insn, expr, local_params_in, static_params);
6553 /* Step back, so on the way back we'll start traversing from the
6554 previous insn (or we'll see that it's bb_note and skip that
6555 loop). */
6556 if (insn == first_insn)
6558 first_insn = NEXT_INSN (last_insn);
6559 removed_last_insn = sel_bb_end_p (last_insn);
6561 insn = last_insn;
6562 break;
6564 else
6566 /* We haven't found the original expr, continue descending the basic
6567 block. */
6568 if (code_motion_path_driver_info->orig_expr_not_found
6569 (insn, orig_ops, static_params))
6571 /* Av set ops could have been changed when moving through this
6572 insn. To find them below it, we have to un-substitute them. */
6573 undo_transformations (&orig_ops, insn);
6575 else
6577 /* Clean up and return, if the hook tells us to do so. It may
6578 happen if we've encountered the previously created
6579 bookkeeping. */
6580 code_motion_path_driver_cleanup (&orig_ops, &path);
6581 return -1;
6584 gcc_assert (orig_ops);
6587 /* Stop at insn if we got to the end of BB. */
6588 if (insn == bb_tail)
6589 break;
6591 insn = NEXT_INSN (insn);
6594 /* Here INSN either points to the insn before the original insn (may be
6595 bb_note, if original insn was a bb_head) or to the bb_end. */
6596 if (!expr)
6598 int res;
6599 rtx last_insn = PREV_INSN (insn);
6600 bool added_to_path;
6602 gcc_assert (insn == sel_bb_end (bb));
6604 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6605 it's already in PATH then). */
6606 if (insn != first_insn)
6608 ilist_add (&path, insn);
6609 added_to_path = true;
6611 else
6612 added_to_path = false;
6614 /* Process_successors should be able to find at least one
6615 successor for which code_motion_path_driver returns TRUE. */
6616 res = code_motion_process_successors (insn, orig_ops,
6617 path, static_params);
6619 /* Jump in the end of basic block could have been removed or replaced
6620 during code_motion_process_successors, so recompute insn as the
6621 last insn in bb. */
6622 if (NEXT_INSN (last_insn) != insn)
6624 insn = sel_bb_end (bb);
6625 first_insn = sel_bb_head (bb);
6628 /* Remove bb tail from path. */
6629 if (added_to_path)
6630 ilist_remove (&path);
6632 if (res != 1)
6634 /* This is the case when one of the original expr is no longer available
6635 due to bookkeeping created on this branch with the same register.
6636 In the original algorithm, which doesn't have update_data_sets call
6637 on a bookkeeping block, it would simply result in returning
6638 FALSE when we've encountered a previously generated bookkeeping
6639 insn in moveop_orig_expr_not_found. */
6640 code_motion_path_driver_cleanup (&orig_ops, &path);
6641 return res;
6645 /* Don't need it any more. */
6646 av_set_clear (&orig_ops);
6648 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6649 the beginning of the basic block. */
6650 before_first = PREV_INSN (first_insn);
6651 while (insn != before_first)
6653 if (code_motion_path_driver_info->ascend)
6654 code_motion_path_driver_info->ascend (insn, static_params);
6656 insn = PREV_INSN (insn);
6659 /* Now we're at the bb head. */
6660 insn = first_insn;
6661 ilist_remove (&path);
6662 local_params_in->removed_last_insn = removed_last_insn;
6663 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6665 /* This should be the very last operation as at bb head we could change
6666 the numbering by creating bookkeeping blocks. */
6667 if (removed_last_insn)
6668 insn = PREV_INSN (insn);
6669 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6670 return true;
6673 /* Move up the operations from ORIG_OPS set traversing the dag starting
6674 from INSN. PATH represents the edges traversed so far.
6675 DEST is the register chosen for scheduling the current expr. Insert
6676 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6677 C_EXPR is how it looks like at the given cfg point.
6678 Set *SHOULD_MOVE to indicate whether we have only disconnected
6679 one of the insns found.
6681 Returns whether original instructions were found, which is asserted
6682 to be true in the caller. */
6683 static bool
6684 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6685 rtx dest, expr_t c_expr, bool *should_move)
6687 struct moveop_static_params sparams;
6688 struct cmpd_local_params lparams;
6689 int res;
6691 /* Init params for code_motion_path_driver. */
6692 sparams.dest = dest;
6693 sparams.c_expr = c_expr;
6694 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6695 #ifdef ENABLE_CHECKING
6696 sparams.failed_insn = NULL;
6697 #endif
6698 sparams.was_renamed = false;
6699 lparams.e1 = NULL;
6701 /* We haven't visited any blocks yet. */
6702 bitmap_clear (code_motion_visited_blocks);
6704 /* Set appropriate hooks and data. */
6705 code_motion_path_driver_info = &move_op_hooks;
6706 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6708 gcc_assert (res != -1);
6710 if (sparams.was_renamed)
6711 EXPR_WAS_RENAMED (expr_vliw) = true;
6713 *should_move = (sparams.uid == -1);
6715 return res;
6719 /* Functions that work with regions. */
6721 /* Current number of seqno used in init_seqno and init_seqno_1. */
6722 static int cur_seqno;
6724 /* A helper for init_seqno. Traverse the region starting from BB and
6725 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6726 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6727 static void
6728 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6730 int bbi = BLOCK_TO_BB (bb->index);
6731 insn_t insn, note = bb_note (bb);
6732 insn_t succ_insn;
6733 succ_iterator si;
6735 SET_BIT (visited_bbs, bbi);
6736 if (blocks_to_reschedule)
6737 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6739 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6740 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6742 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6743 int succ_bbi = BLOCK_TO_BB (succ->index);
6745 gcc_assert (in_current_region_p (succ));
6747 if (!TEST_BIT (visited_bbs, succ_bbi))
6749 gcc_assert (succ_bbi > bbi);
6751 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6753 else if (blocks_to_reschedule)
6754 bitmap_set_bit (forced_ebb_heads, succ->index);
6757 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6758 INSN_SEQNO (insn) = cur_seqno--;
6761 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6762 blocks on which we're rescheduling when pipelining, FROM is the block where
6763 traversing region begins (it may not be the head of the region when
6764 pipelining, but the head of the loop instead).
6766 Returns the maximal seqno found. */
6767 static int
6768 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6770 sbitmap visited_bbs;
6771 bitmap_iterator bi;
6772 unsigned bbi;
6774 visited_bbs = sbitmap_alloc (current_nr_blocks);
6776 if (blocks_to_reschedule)
6778 sbitmap_ones (visited_bbs);
6779 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6781 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6782 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6785 else
6787 sbitmap_zero (visited_bbs);
6788 from = EBB_FIRST_BB (0);
6791 cur_seqno = sched_max_luid - 1;
6792 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6794 /* cur_seqno may be positive if the number of instructions is less than
6795 sched_max_luid - 1 (when rescheduling or if some instructions have been
6796 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6797 gcc_assert (cur_seqno >= 0);
6799 sbitmap_free (visited_bbs);
6800 return sched_max_luid - 1;
6803 /* Initialize scheduling parameters for current region. */
6804 static void
6805 sel_setup_region_sched_flags (void)
6807 enable_schedule_as_rhs_p = 1;
6808 bookkeeping_p = 1;
6809 pipelining_p = (bookkeeping_p
6810 && (flag_sel_sched_pipelining != 0)
6811 && current_loop_nest != NULL
6812 && loop_has_exit_edges (current_loop_nest));
6813 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6814 max_ws = MAX_WS;
6817 /* Return true if all basic blocks of current region are empty. */
6818 static bool
6819 current_region_empty_p (void)
6821 int i;
6822 for (i = 0; i < current_nr_blocks; i++)
6823 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6824 return false;
6826 return true;
6829 /* Prepare and verify loop nest for pipelining. */
6830 static void
6831 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6833 current_loop_nest = get_loop_nest_for_rgn (rgn);
6835 if (!current_loop_nest)
6836 return;
6838 /* If this loop has any saved loop preheaders from nested loops,
6839 add these basic blocks to the current region. */
6840 sel_add_loop_preheaders (bbs);
6842 /* Check that we're starting with a valid information. */
6843 gcc_assert (loop_latch_edge (current_loop_nest));
6844 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6847 /* Compute instruction priorities for current region. */
6848 static void
6849 sel_compute_priorities (int rgn)
6851 sched_rgn_compute_dependencies (rgn);
6853 /* Compute insn priorities in haifa style. Then free haifa style
6854 dependencies that we've calculated for this. */
6855 compute_priorities ();
6857 if (sched_verbose >= 5)
6858 debug_rgn_dependencies (0);
6860 free_rgn_deps ();
6863 /* Init scheduling data for RGN. Returns true when this region should not
6864 be scheduled. */
6865 static bool
6866 sel_region_init (int rgn)
6868 int i;
6869 bb_vec_t bbs;
6871 rgn_setup_region (rgn);
6873 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6874 do region initialization here so the region can be bundled correctly,
6875 but we'll skip the scheduling in sel_sched_region (). */
6876 if (current_region_empty_p ())
6877 return true;
6879 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6881 for (i = 0; i < current_nr_blocks; i++)
6882 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6884 sel_init_bbs (bbs);
6886 if (flag_sel_sched_pipelining)
6887 setup_current_loop_nest (rgn, &bbs);
6889 sel_setup_region_sched_flags ();
6891 /* Initialize luids and dependence analysis which both sel-sched and haifa
6892 need. */
6893 sched_init_luids (bbs);
6894 sched_deps_init (false);
6896 /* Initialize haifa data. */
6897 rgn_setup_sched_infos ();
6898 sel_set_sched_flags ();
6899 haifa_init_h_i_d (bbs);
6901 sel_compute_priorities (rgn);
6902 init_deps_global ();
6904 /* Main initialization. */
6905 sel_setup_sched_infos ();
6906 sel_init_global_and_expr (bbs);
6908 VEC_free (basic_block, heap, bbs);
6910 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6912 /* Init correct liveness sets on each instruction of a single-block loop.
6913 This is the only situation when we can't update liveness when calling
6914 compute_live for the first insn of the loop. */
6915 if (current_loop_nest)
6917 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6919 : 0);
6921 if (current_nr_blocks == header + 1)
6922 update_liveness_on_insn
6923 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6926 /* Set hooks so that no newly generated insn will go out unnoticed. */
6927 sel_register_cfg_hooks ();
6929 /* !!! We call target.sched.init () for the whole region, but we invoke
6930 targetm.sched.finish () for every ebb. */
6931 if (targetm.sched.init)
6932 /* None of the arguments are actually used in any target. */
6933 targetm.sched.init (sched_dump, sched_verbose, -1);
6935 first_emitted_uid = get_max_uid () + 1;
6936 preheader_removed = false;
6938 /* Reset register allocation ticks array. */
6939 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6940 reg_rename_this_tick = 0;
6942 bitmap_initialize (forced_ebb_heads, 0);
6943 bitmap_clear (forced_ebb_heads);
6945 setup_nop_vinsn ();
6946 current_copies = BITMAP_ALLOC (NULL);
6947 current_originators = BITMAP_ALLOC (NULL);
6948 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6950 return false;
6953 /* Simplify insns after the scheduling. */
6954 static void
6955 simplify_changed_insns (void)
6957 int i;
6959 for (i = 0; i < current_nr_blocks; i++)
6961 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6962 rtx insn;
6964 FOR_BB_INSNS (bb, insn)
6965 if (INSN_P (insn))
6967 expr_t expr = INSN_EXPR (insn);
6969 if (EXPR_WAS_SUBSTITUTED (expr))
6970 validate_simplify_insn (insn);
6975 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6976 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6977 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6978 static void
6979 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6981 insn_t head, tail;
6982 basic_block bb1 = bb;
6983 if (sched_verbose >= 2)
6984 sel_print ("Finishing schedule in bbs: ");
6988 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6990 if (sched_verbose >= 2)
6991 sel_print ("%d; ", bb1->index);
6993 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6995 if (sched_verbose >= 2)
6996 sel_print ("\n");
6998 get_ebb_head_tail (bb, bb1, &head, &tail);
7000 current_sched_info->head = head;
7001 current_sched_info->tail = tail;
7002 current_sched_info->prev_head = PREV_INSN (head);
7003 current_sched_info->next_tail = NEXT_INSN (tail);
7006 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7007 static void
7008 reset_sched_cycles_in_current_ebb (void)
7010 int last_clock = 0;
7011 int haifa_last_clock = -1;
7012 int haifa_clock = 0;
7013 int issued_insns = 0;
7014 insn_t insn;
7016 if (targetm.sched.init)
7018 /* None of the arguments are actually used in any target.
7019 NB: We should have md_reset () hook for cases like this. */
7020 targetm.sched.init (sched_dump, sched_verbose, -1);
7023 state_reset (curr_state);
7024 advance_state (curr_state);
7026 for (insn = current_sched_info->head;
7027 insn != current_sched_info->next_tail;
7028 insn = NEXT_INSN (insn))
7030 int cost, haifa_cost;
7031 int sort_p;
7032 bool asm_p, real_insn, after_stall, all_issued;
7033 int clock;
7035 if (!INSN_P (insn))
7036 continue;
7038 asm_p = false;
7039 real_insn = recog_memoized (insn) >= 0;
7040 clock = INSN_SCHED_CYCLE (insn);
7042 cost = clock - last_clock;
7044 /* Initialize HAIFA_COST. */
7045 if (! real_insn)
7047 asm_p = INSN_ASM_P (insn);
7049 if (asm_p)
7050 /* This is asm insn which *had* to be scheduled first
7051 on the cycle. */
7052 haifa_cost = 1;
7053 else
7054 /* This is a use/clobber insn. It should not change
7055 cost. */
7056 haifa_cost = 0;
7058 else
7059 haifa_cost = estimate_insn_cost (insn, curr_state);
7061 /* Stall for whatever cycles we've stalled before. */
7062 after_stall = 0;
7063 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7065 haifa_cost = cost;
7066 after_stall = 1;
7068 all_issued = issued_insns == issue_rate;
7069 if (haifa_cost == 0 && all_issued)
7070 haifa_cost = 1;
7071 if (haifa_cost > 0)
7073 int i = 0;
7075 while (haifa_cost--)
7077 advance_state (curr_state);
7078 issued_insns = 0;
7079 i++;
7081 if (sched_verbose >= 2)
7083 sel_print ("advance_state (state_transition)\n");
7084 debug_state (curr_state);
7087 /* The DFA may report that e.g. insn requires 2 cycles to be
7088 issued, but on the next cycle it says that insn is ready
7089 to go. Check this here. */
7090 if (!after_stall
7091 && real_insn
7092 && haifa_cost > 0
7093 && estimate_insn_cost (insn, curr_state) == 0)
7094 break;
7096 /* When the data dependency stall is longer than the DFA stall,
7097 and when we have issued exactly issue_rate insns and stalled,
7098 it could be that after this longer stall the insn will again
7099 become unavailable to the DFA restrictions. Looks strange
7100 but happens e.g. on x86-64. So recheck DFA on the last
7101 iteration. */
7102 if ((after_stall || all_issued)
7103 && real_insn
7104 && haifa_cost == 0)
7105 haifa_cost = estimate_insn_cost (insn, curr_state);
7108 haifa_clock += i;
7109 if (sched_verbose >= 2)
7110 sel_print ("haifa clock: %d\n", haifa_clock);
7112 else
7113 gcc_assert (haifa_cost == 0);
7115 if (sched_verbose >= 2)
7116 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7118 if (targetm.sched.dfa_new_cycle)
7119 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7120 haifa_last_clock, haifa_clock,
7121 &sort_p))
7123 advance_state (curr_state);
7124 issued_insns = 0;
7125 haifa_clock++;
7126 if (sched_verbose >= 2)
7128 sel_print ("advance_state (dfa_new_cycle)\n");
7129 debug_state (curr_state);
7130 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7134 if (real_insn)
7136 static state_t temp = NULL;
7138 if (!temp)
7139 temp = xmalloc (dfa_state_size);
7140 memcpy (temp, curr_state, dfa_state_size);
7142 cost = state_transition (curr_state, insn);
7143 if (memcmp (temp, curr_state, dfa_state_size))
7144 issued_insns++;
7146 if (sched_verbose >= 2)
7148 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7149 haifa_clock + 1);
7150 debug_state (curr_state);
7152 gcc_assert (cost < 0);
7155 if (targetm.sched.variable_issue)
7156 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7158 INSN_SCHED_CYCLE (insn) = haifa_clock;
7160 last_clock = clock;
7161 haifa_last_clock = haifa_clock;
7165 /* Put TImode markers on insns starting a new issue group. */
7166 static void
7167 put_TImodes (void)
7169 int last_clock = -1;
7170 insn_t insn;
7172 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7173 insn = NEXT_INSN (insn))
7175 int cost, clock;
7177 if (!INSN_P (insn))
7178 continue;
7180 clock = INSN_SCHED_CYCLE (insn);
7181 cost = (last_clock == -1) ? 1 : clock - last_clock;
7183 gcc_assert (cost >= 0);
7185 if (issue_rate > 1
7186 && GET_CODE (PATTERN (insn)) != USE
7187 && GET_CODE (PATTERN (insn)) != CLOBBER)
7189 if (reload_completed && cost > 0)
7190 PUT_MODE (insn, TImode);
7192 last_clock = clock;
7195 if (sched_verbose >= 2)
7196 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7200 /* Perform MD_FINISH on EBBs comprising current region. When
7201 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7202 to produce correct sched cycles on insns. */
7203 static void
7204 sel_region_target_finish (bool reset_sched_cycles_p)
7206 int i;
7207 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7209 for (i = 0; i < current_nr_blocks; i++)
7211 if (bitmap_bit_p (scheduled_blocks, i))
7212 continue;
7214 /* While pipelining outer loops, skip bundling for loop
7215 preheaders. Those will be rescheduled in the outer loop. */
7216 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7217 continue;
7219 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7221 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7222 continue;
7224 if (reset_sched_cycles_p)
7225 reset_sched_cycles_in_current_ebb ();
7227 if (targetm.sched.init)
7228 targetm.sched.init (sched_dump, sched_verbose, -1);
7230 put_TImodes ();
7232 if (targetm.sched.finish)
7234 targetm.sched.finish (sched_dump, sched_verbose);
7236 /* Extend luids so that insns generated by the target will
7237 get zero luid. */
7238 sched_extend_luids ();
7242 BITMAP_FREE (scheduled_blocks);
7245 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7246 is true, make an additional pass emulating scheduler to get correct insn
7247 cycles for md_finish calls. */
7248 static void
7249 sel_region_finish (bool reset_sched_cycles_p)
7251 simplify_changed_insns ();
7252 sched_finish_ready_list ();
7253 free_nop_pool ();
7255 /* Free the vectors. */
7256 if (vec_av_set)
7257 VEC_free (expr_t, heap, vec_av_set);
7258 BITMAP_FREE (current_copies);
7259 BITMAP_FREE (current_originators);
7260 BITMAP_FREE (code_motion_visited_blocks);
7261 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7262 vinsn_vec_free (&vec_target_unavailable_vinsns);
7264 /* If LV_SET of the region head should be updated, do it now because
7265 there will be no other chance. */
7267 succ_iterator si;
7268 insn_t insn;
7270 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7271 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7273 basic_block bb = BLOCK_FOR_INSN (insn);
7275 if (!BB_LV_SET_VALID_P (bb))
7276 compute_live (insn);
7280 /* Emulate the Haifa scheduler for bundling. */
7281 if (reload_completed)
7282 sel_region_target_finish (reset_sched_cycles_p);
7284 sel_finish_global_and_expr ();
7286 bitmap_clear (forced_ebb_heads);
7288 free_nop_vinsn ();
7290 finish_deps_global ();
7291 sched_finish_luids ();
7292 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
7294 sel_finish_bbs ();
7295 BITMAP_FREE (blocks_to_reschedule);
7297 sel_unregister_cfg_hooks ();
7299 max_issue_size = 0;
7303 /* Functions that implement the scheduler driver. */
7305 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7306 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7307 of insns scheduled -- these would be postprocessed later. */
7308 static void
7309 schedule_on_fences (flist_t fences, int max_seqno,
7310 ilist_t **scheduled_insns_tailpp)
7312 flist_t old_fences = fences;
7314 if (sched_verbose >= 1)
7316 sel_print ("\nScheduling on fences: ");
7317 dump_flist (fences);
7318 sel_print ("\n");
7321 scheduled_something_on_previous_fence = false;
7322 for (; fences; fences = FLIST_NEXT (fences))
7324 fence_t fence = NULL;
7325 int seqno = 0;
7326 flist_t fences2;
7327 bool first_p = true;
7329 /* Choose the next fence group to schedule.
7330 The fact that insn can be scheduled only once
7331 on the cycle is guaranteed by two properties:
7332 1. seqnos of parallel groups decrease with each iteration.
7333 2. If is_ineligible_successor () sees the larger seqno, it
7334 checks if candidate insn is_in_current_fence_p (). */
7335 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7337 fence_t f = FLIST_FENCE (fences2);
7339 if (!FENCE_PROCESSED_P (f))
7341 int i = INSN_SEQNO (FENCE_INSN (f));
7343 if (first_p || i > seqno)
7345 seqno = i;
7346 fence = f;
7347 first_p = false;
7349 else
7350 /* ??? Seqnos of different groups should be different. */
7351 gcc_assert (1 || i != seqno);
7355 gcc_assert (fence);
7357 /* As FENCE is nonnull, SEQNO is initialized. */
7358 seqno -= max_seqno + 1;
7359 fill_insns (fence, seqno, scheduled_insns_tailpp);
7360 FENCE_PROCESSED_P (fence) = true;
7363 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7364 don't need to keep bookkeeping-invalidated and target-unavailable
7365 vinsns any more. */
7366 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7367 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7370 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7371 static void
7372 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7374 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7376 /* The first element is already processed. */
7377 while ((fences = FLIST_NEXT (fences)))
7379 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7381 if (*min_seqno > seqno)
7382 *min_seqno = seqno;
7383 else if (*max_seqno < seqno)
7384 *max_seqno = seqno;
7388 /* Calculate new fences from FENCES. */
7389 static flist_t
7390 calculate_new_fences (flist_t fences, int orig_max_seqno)
7392 flist_t old_fences = fences;
7393 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7395 flist_tail_init (new_fences);
7396 for (; fences; fences = FLIST_NEXT (fences))
7398 fence_t fence = FLIST_FENCE (fences);
7399 insn_t insn;
7401 if (!FENCE_BNDS (fence))
7403 /* This fence doesn't have any successors. */
7404 if (!FENCE_SCHEDULED_P (fence))
7406 /* Nothing was scheduled on this fence. */
7407 int seqno;
7409 insn = FENCE_INSN (fence);
7410 seqno = INSN_SEQNO (insn);
7411 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7413 if (sched_verbose >= 1)
7414 sel_print ("Fence %d[%d] has not changed\n",
7415 INSN_UID (insn),
7416 BLOCK_NUM (insn));
7417 move_fence_to_fences (fences, new_fences);
7420 else
7421 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7424 flist_clear (&old_fences);
7425 return FLIST_TAIL_HEAD (new_fences);
7428 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7429 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7430 the highest seqno used in a region. Return the updated highest seqno. */
7431 static int
7432 update_seqnos_and_stage (int min_seqno, int max_seqno,
7433 int highest_seqno_in_use,
7434 ilist_t *pscheduled_insns)
7436 int new_hs;
7437 ilist_iterator ii;
7438 insn_t insn;
7440 /* Actually, new_hs is the seqno of the instruction, that was
7441 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7442 if (*pscheduled_insns)
7444 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7445 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7446 gcc_assert (new_hs > highest_seqno_in_use);
7448 else
7449 new_hs = highest_seqno_in_use;
7451 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7453 gcc_assert (INSN_SEQNO (insn) < 0);
7454 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7455 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7457 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7458 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7459 require > 1GB of memory e.g. on limit-fnargs.c. */
7460 if (! pipelining_p)
7461 free_data_for_scheduled_insn (insn);
7464 ilist_clear (pscheduled_insns);
7465 global_level++;
7467 return new_hs;
7470 /* The main driver for scheduling a region. This function is responsible
7471 for correct propagation of fences (i.e. scheduling points) and creating
7472 a group of parallel insns at each of them. It also supports
7473 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7474 of scheduling. */
7475 static void
7476 sel_sched_region_2 (int orig_max_seqno)
7478 int highest_seqno_in_use = orig_max_seqno;
7480 stat_bookkeeping_copies = 0;
7481 stat_insns_needed_bookkeeping = 0;
7482 stat_renamed_scheduled = 0;
7483 stat_substitutions_total = 0;
7484 num_insns_scheduled = 0;
7486 while (fences)
7488 int min_seqno, max_seqno;
7489 ilist_t scheduled_insns = NULL;
7490 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7492 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7493 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7494 fences = calculate_new_fences (fences, orig_max_seqno);
7495 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7496 highest_seqno_in_use,
7497 &scheduled_insns);
7500 if (sched_verbose >= 1)
7501 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7502 "bookkeeping, %d insns renamed, %d insns substituted\n",
7503 stat_bookkeeping_copies,
7504 stat_insns_needed_bookkeeping,
7505 stat_renamed_scheduled,
7506 stat_substitutions_total);
7509 /* Schedule a region. When pipelining, search for possibly never scheduled
7510 bookkeeping code and schedule it. Reschedule pipelined code without
7511 pipelining after. */
7512 static void
7513 sel_sched_region_1 (void)
7515 int orig_max_seqno;
7517 /* Remove empty blocks that might be in the region from the beginning. */
7518 purge_empty_blocks ();
7520 orig_max_seqno = init_seqno (NULL, NULL);
7521 gcc_assert (orig_max_seqno >= 1);
7523 /* When pipelining outer loops, create fences on the loop header,
7524 not preheader. */
7525 fences = NULL;
7526 if (current_loop_nest)
7527 init_fences (BB_END (EBB_FIRST_BB (0)));
7528 else
7529 init_fences (bb_note (EBB_FIRST_BB (0)));
7530 global_level = 1;
7532 sel_sched_region_2 (orig_max_seqno);
7534 gcc_assert (fences == NULL);
7536 if (pipelining_p)
7538 int i;
7539 basic_block bb;
7540 struct flist_tail_def _new_fences;
7541 flist_tail_t new_fences = &_new_fences;
7542 bool do_p = true;
7544 pipelining_p = false;
7545 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7546 bookkeeping_p = false;
7547 enable_schedule_as_rhs_p = false;
7549 /* Schedule newly created code, that has not been scheduled yet. */
7550 do_p = true;
7552 while (do_p)
7554 do_p = false;
7556 for (i = 0; i < current_nr_blocks; i++)
7558 basic_block bb = EBB_FIRST_BB (i);
7560 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7562 if (! bb_ends_ebb_p (bb))
7563 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7564 if (sel_bb_empty_p (bb))
7566 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7567 continue;
7569 clear_outdated_rtx_info (bb);
7570 if (sel_insn_is_speculation_check (BB_END (bb))
7571 && JUMP_P (BB_END (bb)))
7572 bitmap_set_bit (blocks_to_reschedule,
7573 BRANCH_EDGE (bb)->dest->index);
7575 else if (! sel_bb_empty_p (bb)
7576 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7577 bitmap_set_bit (blocks_to_reschedule, bb->index);
7580 for (i = 0; i < current_nr_blocks; i++)
7582 bb = EBB_FIRST_BB (i);
7584 /* While pipelining outer loops, skip bundling for loop
7585 preheaders. Those will be rescheduled in the outer
7586 loop. */
7587 if (sel_is_loop_preheader_p (bb))
7589 clear_outdated_rtx_info (bb);
7590 continue;
7593 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7595 flist_tail_init (new_fences);
7597 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7599 /* Mark BB as head of the new ebb. */
7600 bitmap_set_bit (forced_ebb_heads, bb->index);
7602 gcc_assert (fences == NULL);
7604 init_fences (bb_note (bb));
7606 sel_sched_region_2 (orig_max_seqno);
7608 do_p = true;
7609 break;
7616 /* Schedule the RGN region. */
7617 void
7618 sel_sched_region (int rgn)
7620 bool schedule_p;
7621 bool reset_sched_cycles_p;
7623 if (sel_region_init (rgn))
7624 return;
7626 if (sched_verbose >= 1)
7627 sel_print ("Scheduling region %d\n", rgn);
7629 schedule_p = (!sched_is_disabled_for_current_region_p ()
7630 && dbg_cnt (sel_sched_region_cnt));
7631 reset_sched_cycles_p = pipelining_p;
7632 if (schedule_p)
7633 sel_sched_region_1 ();
7634 else
7635 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7636 reset_sched_cycles_p = true;
7638 sel_region_finish (reset_sched_cycles_p);
7641 /* Perform global init for the scheduler. */
7642 static void
7643 sel_global_init (void)
7645 calculate_dominance_info (CDI_DOMINATORS);
7646 alloc_sched_pools ();
7648 /* Setup the infos for sched_init. */
7649 sel_setup_sched_infos ();
7650 setup_sched_dump ();
7652 sched_rgn_init (false);
7653 sched_init ();
7655 sched_init_bbs ();
7656 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7657 after_recovery = 0;
7658 can_issue_more = issue_rate;
7660 sched_extend_target ();
7661 sched_deps_init (true);
7662 setup_nop_and_exit_insns ();
7663 sel_extend_global_bb_info ();
7664 init_lv_sets ();
7665 init_hard_regs_data ();
7668 /* Free the global data of the scheduler. */
7669 static void
7670 sel_global_finish (void)
7672 free_bb_note_pool ();
7673 free_lv_sets ();
7674 sel_finish_global_bb_info ();
7676 free_regset_pool ();
7677 free_nop_and_exit_insns ();
7679 sched_rgn_finish ();
7680 sched_deps_finish ();
7681 sched_finish ();
7683 if (current_loops)
7684 sel_finish_pipelining ();
7686 free_sched_pools ();
7687 free_dominance_info (CDI_DOMINATORS);
7690 /* Return true when we need to skip selective scheduling. Used for debugging. */
7691 bool
7692 maybe_skip_selective_scheduling (void)
7694 return ! dbg_cnt (sel_sched_cnt);
7697 /* The entry point. */
7698 void
7699 run_selective_scheduling (void)
7701 int rgn;
7703 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7704 return;
7706 sel_global_init ();
7708 for (rgn = 0; rgn < nr_regions; rgn++)
7709 sel_sched_region (rgn);
7711 sel_global_finish ();
7714 #endif