2013-05-15 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / combine.c
blobb737bc5529fc9d5607aae6ae7288968d8d1ba2bf
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "df.h"
103 #include "valtrack.h"
104 #include "cgraph.h"
105 #include "obstack.h"
107 /* Number of attempts to combine instructions in this function. */
109 static int combine_attempts;
111 /* Number of attempts that got as far as substitution in this function. */
113 static int combine_merges;
115 /* Number of instructions combined with added SETs in this function. */
117 static int combine_extras;
119 /* Number of instructions combined in this function. */
121 static int combine_successes;
123 /* Totals over entire compilation. */
125 static int total_attempts, total_merges, total_extras, total_successes;
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
134 static rtx i2mod;
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138 static rtx i2mod_old_rhs;
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142 static rtx i2mod_new_rhs;
144 typedef struct reg_stat_struct {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
243 int truncation_label;
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 } reg_stat_type;
254 static vec<reg_stat_type> reg_stat;
256 /* Record the luid of the last insn that invalidated memory
257 (anything that writes memory, and subroutine calls, but not pushes). */
259 static int mem_last_set;
261 /* Record the luid of the last CALL_INSN
262 so we can tell whether a potential combination crosses any calls. */
264 static int last_call_luid;
266 /* When `subst' is called, this is the insn that is being modified
267 (by combining in a previous insn). The PATTERN of this insn
268 is still the old pattern partially modified and it should not be
269 looked at, but this may be used to examine the successors of the insn
270 to judge whether a simplification is valid. */
272 static rtx subst_insn;
274 /* This is the lowest LUID that `subst' is currently dealing with.
275 get_last_value will not return a value if the register was set at or
276 after this LUID. If not for this mechanism, we could get confused if
277 I2 or I1 in try_combine were an insn that used the old value of a register
278 to obtain a new value. In that case, we might erroneously get the
279 new value of the register when we wanted the old one. */
281 static int subst_low_luid;
283 /* This contains any hard registers that are used in newpat; reg_dead_at_p
284 must consider all these registers to be always live. */
286 static HARD_REG_SET newpat_used_regs;
288 /* This is an insn to which a LOG_LINKS entry has been added. If this
289 insn is the earlier than I2 or I3, combine should rescan starting at
290 that location. */
292 static rtx added_links_insn;
294 /* Basic block in which we are performing combines. */
295 static basic_block this_basic_block;
296 static bool optimize_this_for_speed_p;
299 /* Length of the currently allocated uid_insn_cost array. */
301 static int max_uid_known;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost;
308 /* The following array records the LOG_LINKS for every insn in the
309 instruction stream as struct insn_link pointers. */
311 struct insn_link {
312 rtx insn;
313 struct insn_link *next;
316 static struct insn_link **uid_log_links;
318 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
319 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
321 #define FOR_EACH_LOG_LINK(L, INSN) \
322 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
324 /* Links for LOG_LINKS are allocated from this obstack. */
326 static struct obstack insn_link_obstack;
328 /* Allocate a link. */
330 static inline struct insn_link *
331 alloc_insn_link (rtx insn, struct insn_link *next)
333 struct insn_link *l
334 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
335 sizeof (struct insn_link));
336 l->insn = insn;
337 l->next = next;
338 return l;
341 /* Incremented for each basic block. */
343 static int label_tick;
345 /* Reset to label_tick for each extended basic block in scanning order. */
347 static int label_tick_ebb_start;
349 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
350 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
352 static enum machine_mode nonzero_bits_mode;
354 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
355 be safely used. It is zero while computing them and after combine has
356 completed. This former test prevents propagating values based on
357 previously set values, which can be incorrect if a variable is modified
358 in a loop. */
360 static int nonzero_sign_valid;
363 /* Record one modification to rtl structure
364 to be undone by storing old_contents into *where. */
366 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
368 struct undo
370 struct undo *next;
371 enum undo_kind kind;
372 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
373 union { rtx *r; int *i; struct insn_link **l; } where;
376 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
377 num_undo says how many are currently recorded.
379 other_insn is nonzero if we have modified some other insn in the process
380 of working on subst_insn. It must be verified too. */
382 struct undobuf
384 struct undo *undos;
385 struct undo *frees;
386 rtx other_insn;
389 static struct undobuf undobuf;
391 /* Number of times the pseudo being substituted for
392 was found and replaced. */
394 static int n_occurrences;
396 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
397 enum machine_mode,
398 unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned int, unsigned int *);
403 static void do_SUBST (rtx *, rtx);
404 static void do_SUBST_INT (int *, int);
405 static void init_reg_last (void);
406 static void setup_incoming_promotions (rtx);
407 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
408 static int cant_combine_insn_p (rtx);
409 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
410 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
411 static int contains_muldiv (rtx);
412 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
413 static void undo_all (void);
414 static void undo_commit (void);
415 static rtx *find_split_point (rtx *, rtx, bool);
416 static rtx subst (rtx, rtx, rtx, int, int, int);
417 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
418 static rtx simplify_if_then_else (rtx);
419 static rtx simplify_set (rtx);
420 static rtx simplify_logical (rtx);
421 static rtx expand_compound_operation (rtx);
422 static const_rtx expand_field_assignment (const_rtx);
423 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
424 rtx, unsigned HOST_WIDE_INT, int, int, int);
425 static rtx extract_left_shift (rtx, int);
426 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx canon_reg_for_combine (rtx, rtx);
429 static rtx force_to_mode (rtx, enum machine_mode,
430 unsigned HOST_WIDE_INT, int);
431 static rtx if_then_else_cond (rtx, rtx *, rtx *);
432 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
433 static int rtx_equal_for_field_assignment_p (rtx, rtx);
434 static rtx make_field_assignment (rtx);
435 static rtx apply_distributive_law (rtx);
436 static rtx distribute_and_simplify_rtx (rtx, int);
437 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
438 unsigned HOST_WIDE_INT);
439 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
440 unsigned HOST_WIDE_INT);
441 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
442 HOST_WIDE_INT, enum machine_mode, int *);
443 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
444 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
445 int);
446 static int recog_for_combine (rtx *, rtx, rtx *);
447 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
448 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
449 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
450 static void update_table_tick (rtx);
451 static void record_value_for_reg (rtx, rtx, rtx);
452 static void check_promoted_subreg (rtx, rtx);
453 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
454 static void record_dead_and_set_regs (rtx);
455 static int get_last_value_validate (rtx *, rtx, int, int);
456 static rtx get_last_value (const_rtx);
457 static int use_crosses_set_p (const_rtx, int);
458 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
459 static int reg_dead_at_p (rtx, rtx);
460 static void move_deaths (rtx, rtx, int, rtx, rtx *);
461 static int reg_bitfield_target_p (rtx, rtx);
462 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
463 static void distribute_links (struct insn_link *);
464 static void mark_used_regs_combine (rtx);
465 static void record_promoted_value (rtx, rtx);
466 static int unmentioned_reg_p_1 (rtx *, void *);
467 static bool unmentioned_reg_p (rtx, rtx);
468 static int record_truncated_value (rtx *, void *);
469 static void record_truncated_values (rtx *, void *);
470 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
471 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
474 /* It is not safe to use ordinary gen_lowpart in combine.
475 See comments in gen_lowpart_for_combine. */
476 #undef RTL_HOOKS_GEN_LOWPART
477 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
479 /* Our implementation of gen_lowpart never emits a new pseudo. */
480 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
481 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
483 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
484 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
486 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
487 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
489 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
490 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
492 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
495 /* Convenience wrapper for the canonicalize_comparison target hook.
496 Target hooks cannot use enum rtx_code. */
497 static inline void
498 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
499 bool op0_preserve_value)
501 int code_int = (int)*code;
502 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
503 *code = (enum rtx_code)code_int;
506 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
507 PATTERN can not be split. Otherwise, it returns an insn sequence.
508 This is a wrapper around split_insns which ensures that the
509 reg_stat vector is made larger if the splitter creates a new
510 register. */
512 static rtx
513 combine_split_insns (rtx pattern, rtx insn)
515 rtx ret;
516 unsigned int nregs;
518 ret = split_insns (pattern, insn);
519 nregs = max_reg_num ();
520 if (nregs > reg_stat.length ())
521 reg_stat.safe_grow_cleared (nregs);
522 return ret;
525 /* This is used by find_single_use to locate an rtx in LOC that
526 contains exactly one use of DEST, which is typically either a REG
527 or CC0. It returns a pointer to the innermost rtx expression
528 containing DEST. Appearances of DEST that are being used to
529 totally replace it are not counted. */
531 static rtx *
532 find_single_use_1 (rtx dest, rtx *loc)
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx *result = NULL;
537 rtx *this_result;
538 int i;
539 const char *fmt;
541 switch (code)
543 case CONST:
544 case LABEL_REF:
545 case SYMBOL_REF:
546 CASE_CONST_ANY:
547 case CLOBBER:
548 return 0;
550 case SET:
551 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
552 of a REG that occupies all of the REG, the insn uses DEST if
553 it is mentioned in the destination or the source. Otherwise, we
554 need just check the source. */
555 if (GET_CODE (SET_DEST (x)) != CC0
556 && GET_CODE (SET_DEST (x)) != PC
557 && !REG_P (SET_DEST (x))
558 && ! (GET_CODE (SET_DEST (x)) == SUBREG
559 && REG_P (SUBREG_REG (SET_DEST (x)))
560 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
562 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
564 break;
566 return find_single_use_1 (dest, &SET_SRC (x));
568 case MEM:
569 case SUBREG:
570 return find_single_use_1 (dest, &XEXP (x, 0));
572 default:
573 break;
576 /* If it wasn't one of the common cases above, check each expression and
577 vector of this code. Look for a unique usage of DEST. */
579 fmt = GET_RTX_FORMAT (code);
580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
582 if (fmt[i] == 'e')
584 if (dest == XEXP (x, i)
585 || (REG_P (dest) && REG_P (XEXP (x, i))
586 && REGNO (dest) == REGNO (XEXP (x, i))))
587 this_result = loc;
588 else
589 this_result = find_single_use_1 (dest, &XEXP (x, i));
591 if (result == NULL)
592 result = this_result;
593 else if (this_result)
594 /* Duplicate usage. */
595 return NULL;
597 else if (fmt[i] == 'E')
599 int j;
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
603 if (XVECEXP (x, i, j) == dest
604 || (REG_P (dest)
605 && REG_P (XVECEXP (x, i, j))
606 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
607 this_result = loc;
608 else
609 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
611 if (result == NULL)
612 result = this_result;
613 else if (this_result)
614 return NULL;
619 return result;
623 /* See if DEST, produced in INSN, is used only a single time in the
624 sequel. If so, return a pointer to the innermost rtx expression in which
625 it is used.
627 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
629 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
630 care about REG_DEAD notes or LOG_LINKS.
632 Otherwise, we find the single use by finding an insn that has a
633 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
634 only referenced once in that insn, we know that it must be the first
635 and last insn referencing DEST. */
637 static rtx *
638 find_single_use (rtx dest, rtx insn, rtx *ploc)
640 basic_block bb;
641 rtx next;
642 rtx *result;
643 struct insn_link *link;
645 #ifdef HAVE_cc0
646 if (dest == cc0_rtx)
648 next = NEXT_INSN (insn);
649 if (next == 0
650 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
651 return 0;
653 result = find_single_use_1 (dest, &PATTERN (next));
654 if (result && ploc)
655 *ploc = next;
656 return result;
658 #endif
660 if (!REG_P (dest))
661 return 0;
663 bb = BLOCK_FOR_INSN (insn);
664 for (next = NEXT_INSN (insn);
665 next && BLOCK_FOR_INSN (next) == bb;
666 next = NEXT_INSN (next))
667 if (INSN_P (next) && dead_or_set_p (next, dest))
669 FOR_EACH_LOG_LINK (link, next)
670 if (link->insn == insn)
671 break;
673 if (link)
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (ploc)
677 *ploc = next;
678 return result;
682 return 0;
685 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
686 insn. The substitution can be undone by undo_all. If INTO is already
687 set to NEWVAL, do not record this change. Because computing NEWVAL might
688 also call SUBST, we have to compute it before we put anything into
689 the undo table. */
691 static void
692 do_SUBST (rtx *into, rtx newval)
694 struct undo *buf;
695 rtx oldval = *into;
697 if (oldval == newval)
698 return;
700 /* We'd like to catch as many invalid transformations here as
701 possible. Unfortunately, there are way too many mode changes
702 that are perfectly valid, so we'd waste too much effort for
703 little gain doing the checks here. Focus on catching invalid
704 transformations involving integer constants. */
705 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
706 && CONST_INT_P (newval))
708 /* Sanity check that we're replacing oldval with a CONST_INT
709 that is a valid sign-extension for the original mode. */
710 gcc_assert (INTVAL (newval)
711 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
713 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
714 CONST_INT is not valid, because after the replacement, the
715 original mode would be gone. Unfortunately, we can't tell
716 when do_SUBST is called to replace the operand thereof, so we
717 perform this test on oldval instead, checking whether an
718 invalid replacement took place before we got here. */
719 gcc_assert (!(GET_CODE (oldval) == SUBREG
720 && CONST_INT_P (SUBREG_REG (oldval))));
721 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
722 && CONST_INT_P (XEXP (oldval, 0))));
725 if (undobuf.frees)
726 buf = undobuf.frees, undobuf.frees = buf->next;
727 else
728 buf = XNEW (struct undo);
730 buf->kind = UNDO_RTX;
731 buf->where.r = into;
732 buf->old_contents.r = oldval;
733 *into = newval;
735 buf->next = undobuf.undos, undobuf.undos = buf;
738 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
740 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
741 for the value of a HOST_WIDE_INT value (including CONST_INT) is
742 not safe. */
744 static void
745 do_SUBST_INT (int *into, int newval)
747 struct undo *buf;
748 int oldval = *into;
750 if (oldval == newval)
751 return;
753 if (undobuf.frees)
754 buf = undobuf.frees, undobuf.frees = buf->next;
755 else
756 buf = XNEW (struct undo);
758 buf->kind = UNDO_INT;
759 buf->where.i = into;
760 buf->old_contents.i = oldval;
761 *into = newval;
763 buf->next = undobuf.undos, undobuf.undos = buf;
766 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
768 /* Similar to SUBST, but just substitute the mode. This is used when
769 changing the mode of a pseudo-register, so that any other
770 references to the entry in the regno_reg_rtx array will change as
771 well. */
773 static void
774 do_SUBST_MODE (rtx *into, enum machine_mode newval)
776 struct undo *buf;
777 enum machine_mode oldval = GET_MODE (*into);
779 if (oldval == newval)
780 return;
782 if (undobuf.frees)
783 buf = undobuf.frees, undobuf.frees = buf->next;
784 else
785 buf = XNEW (struct undo);
787 buf->kind = UNDO_MODE;
788 buf->where.r = into;
789 buf->old_contents.m = oldval;
790 adjust_reg_mode (*into, newval);
792 buf->next = undobuf.undos, undobuf.undos = buf;
795 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
797 #ifndef HAVE_cc0
798 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
800 static void
801 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
803 struct undo *buf;
804 struct insn_link * oldval = *into;
806 if (oldval == newval)
807 return;
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
814 buf->kind = UNDO_LINKS;
815 buf->where.l = into;
816 buf->old_contents.l = oldval;
817 *into = newval;
819 buf->next = undobuf.undos, undobuf.undos = buf;
822 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
823 #endif
825 /* Subroutine of try_combine. Determine whether the replacement patterns
826 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
827 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
828 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
829 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
830 of all the instructions can be estimated and the replacements are more
831 expensive than the original sequence. */
833 static bool
834 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
835 rtx newi2pat, rtx newotherpat)
837 int i0_cost, i1_cost, i2_cost, i3_cost;
838 int new_i2_cost, new_i3_cost;
839 int old_cost, new_cost;
841 /* Lookup the original insn_rtx_costs. */
842 i2_cost = INSN_COST (i2);
843 i3_cost = INSN_COST (i3);
845 if (i1)
847 i1_cost = INSN_COST (i1);
848 if (i0)
850 i0_cost = INSN_COST (i0);
851 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
852 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
854 else
856 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
857 ? i1_cost + i2_cost + i3_cost : 0);
858 i0_cost = 0;
861 else
863 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
864 i1_cost = i0_cost = 0;
867 /* Calculate the replacement insn_rtx_costs. */
868 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
869 if (newi2pat)
871 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
872 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
873 ? new_i2_cost + new_i3_cost : 0;
875 else
877 new_cost = new_i3_cost;
878 new_i2_cost = 0;
881 if (undobuf.other_insn)
883 int old_other_cost, new_other_cost;
885 old_other_cost = INSN_COST (undobuf.other_insn);
886 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
887 if (old_other_cost > 0 && new_other_cost > 0)
889 old_cost += old_other_cost;
890 new_cost += new_other_cost;
892 else
893 old_cost = 0;
896 /* Disallow this combination if both new_cost and old_cost are greater than
897 zero, and new_cost is greater than old cost. */
898 if (old_cost > 0 && new_cost > old_cost)
900 if (dump_file)
902 if (i0)
904 fprintf (dump_file,
905 "rejecting combination of insns %d, %d, %d and %d\n",
906 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
907 INSN_UID (i3));
908 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
909 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
911 else if (i1)
913 fprintf (dump_file,
914 "rejecting combination of insns %d, %d and %d\n",
915 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
916 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
917 i1_cost, i2_cost, i3_cost, old_cost);
919 else
921 fprintf (dump_file,
922 "rejecting combination of insns %d and %d\n",
923 INSN_UID (i2), INSN_UID (i3));
924 fprintf (dump_file, "original costs %d + %d = %d\n",
925 i2_cost, i3_cost, old_cost);
928 if (newi2pat)
930 fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 new_i2_cost, new_i3_cost, new_cost);
933 else
934 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 return false;
940 /* Update the uid_insn_cost array with the replacement costs. */
941 INSN_COST (i2) = new_i2_cost;
942 INSN_COST (i3) = new_i3_cost;
943 if (i1)
945 INSN_COST (i1) = 0;
946 if (i0)
947 INSN_COST (i0) = 0;
950 return true;
954 /* Delete any insns that copy a register to itself. */
956 static void
957 delete_noop_moves (void)
959 rtx insn, next;
960 basic_block bb;
962 FOR_EACH_BB (bb)
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972 delete_insn_and_edges (insn);
979 /* Fill in log links field for all insns. */
981 static void
982 create_log_links (void)
984 basic_block bb;
985 rtx *next_use, insn;
986 df_ref *def_vec, *use_vec;
988 next_use = XCNEWVEC (rtx, max_reg_num ());
990 /* Pass through each block from the end, recording the uses of each
991 register and establishing log links when def is encountered.
992 Note that we do not clear next_use array in order to save time,
993 so we have to test whether the use is in the same basic block as def.
995 There are a few cases below when we do not consider the definition or
996 usage -- these are taken from original flow.c did. Don't ask me why it is
997 done this way; I don't know and if it works, I don't want to know. */
999 FOR_EACH_BB (bb)
1001 FOR_BB_INSNS_REVERSE (bb, insn)
1003 if (!NONDEBUG_INSN_P (insn))
1004 continue;
1006 /* Log links are created only once. */
1007 gcc_assert (!LOG_LINKS (insn));
1009 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1011 df_ref def = *def_vec;
1012 int regno = DF_REF_REGNO (def);
1013 rtx use_insn;
1015 if (!next_use[regno])
1016 continue;
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 continue;
1022 /* Do not make the log link for frame pointer. */
1023 if ((regno == FRAME_POINTER_REGNUM
1024 && (! reload_completed || frame_pointer_needed))
1025 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1026 || (regno == HARD_FRAME_POINTER_REGNUM
1027 && (! reload_completed || frame_pointer_needed))
1028 #endif
1029 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1030 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1031 #endif
1033 continue;
1035 use_insn = next_use[regno];
1036 if (BLOCK_FOR_INSN (use_insn) == bb)
1038 /* flow.c claimed:
1040 We don't build a LOG_LINK for hard registers contained
1041 in ASM_OPERANDs. If these registers get replaced,
1042 we might wind up changing the semantics of the insn,
1043 even if reload can make what appear to be valid
1044 assignments later. */
1045 if (regno >= FIRST_PSEUDO_REGISTER
1046 || asm_noperands (PATTERN (use_insn)) < 0)
1048 /* Don't add duplicate links between instructions. */
1049 struct insn_link *links;
1050 FOR_EACH_LOG_LINK (links, use_insn)
1051 if (insn == links->insn)
1052 break;
1054 if (!links)
1055 LOG_LINKS (use_insn)
1056 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1059 next_use[regno] = NULL_RTX;
1062 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1064 df_ref use = *use_vec;
1065 int regno = DF_REF_REGNO (use);
1067 /* Do not consider the usage of the stack pointer
1068 by function call. */
1069 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1070 continue;
1072 next_use[regno] = insn;
1077 free (next_use);
1080 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1081 true if we found a LOG_LINK that proves that A feeds B. This only works
1082 if there are no instructions between A and B which could have a link
1083 depending on A, since in that case we would not record a link for B.
1084 We also check the implicit dependency created by a cc0 setter/user
1085 pair. */
1087 static bool
1088 insn_a_feeds_b (rtx a, rtx b)
1090 struct insn_link *links;
1091 FOR_EACH_LOG_LINK (links, b)
1092 if (links->insn == a)
1093 return true;
1094 #ifdef HAVE_cc0
1095 if (sets_cc0_p (a))
1096 return true;
1097 #endif
1098 return false;
1101 /* Main entry point for combiner. F is the first insn of the function.
1102 NREGS is the first unused pseudo-reg number.
1104 Return nonzero if the combiner has turned an indirect jump
1105 instruction into a direct jump. */
1106 static int
1107 combine_instructions (rtx f, unsigned int nregs)
1109 rtx insn, next;
1110 #ifdef HAVE_cc0
1111 rtx prev;
1112 #endif
1113 struct insn_link *links, *nextlinks;
1114 rtx first;
1115 basic_block last_bb;
1117 int new_direct_jump_p = 0;
1119 for (first = f; first && !INSN_P (first); )
1120 first = NEXT_INSN (first);
1121 if (!first)
1122 return 0;
1124 combine_attempts = 0;
1125 combine_merges = 0;
1126 combine_extras = 0;
1127 combine_successes = 0;
1129 rtl_hooks = combine_rtl_hooks;
1131 reg_stat.safe_grow_cleared (nregs);
1133 init_recog_no_volatile ();
1135 /* Allocate array for insn info. */
1136 max_uid_known = get_max_uid ();
1137 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1138 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1139 gcc_obstack_init (&insn_link_obstack);
1141 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1143 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1144 problems when, for example, we have j <<= 1 in a loop. */
1146 nonzero_sign_valid = 0;
1147 label_tick = label_tick_ebb_start = 1;
1149 /* Scan all SETs and see if we can deduce anything about what
1150 bits are known to be zero for some registers and how many copies
1151 of the sign bit are known to exist for those registers.
1153 Also set any known values so that we can use it while searching
1154 for what bits are known to be set. */
1156 setup_incoming_promotions (first);
1157 /* Allow the entry block and the first block to fall into the same EBB.
1158 Conceptually the incoming promotions are assigned to the entry block. */
1159 last_bb = ENTRY_BLOCK_PTR;
1161 create_log_links ();
1162 FOR_EACH_BB (this_basic_block)
1164 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1165 last_call_luid = 0;
1166 mem_last_set = -1;
1168 label_tick++;
1169 if (!single_pred_p (this_basic_block)
1170 || single_pred (this_basic_block) != last_bb)
1171 label_tick_ebb_start = label_tick;
1172 last_bb = this_basic_block;
1174 FOR_BB_INSNS (this_basic_block, insn)
1175 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1177 #ifdef AUTO_INC_DEC
1178 rtx links;
1179 #endif
1181 subst_low_luid = DF_INSN_LUID (insn);
1182 subst_insn = insn;
1184 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1185 insn);
1186 record_dead_and_set_regs (insn);
1188 #ifdef AUTO_INC_DEC
1189 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1190 if (REG_NOTE_KIND (links) == REG_INC)
1191 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1192 insn);
1193 #endif
1195 /* Record the current insn_rtx_cost of this instruction. */
1196 if (NONJUMP_INSN_P (insn))
1197 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1198 optimize_this_for_speed_p);
1199 if (dump_file)
1200 fprintf(dump_file, "insn_cost %d: %d\n",
1201 INSN_UID (insn), INSN_COST (insn));
1205 nonzero_sign_valid = 1;
1207 /* Now scan all the insns in forward order. */
1208 label_tick = label_tick_ebb_start = 1;
1209 init_reg_last ();
1210 setup_incoming_promotions (first);
1211 last_bb = ENTRY_BLOCK_PTR;
1213 FOR_EACH_BB (this_basic_block)
1215 rtx last_combined_insn = NULL_RTX;
1216 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217 last_call_luid = 0;
1218 mem_last_set = -1;
1220 label_tick++;
1221 if (!single_pred_p (this_basic_block)
1222 || single_pred (this_basic_block) != last_bb)
1223 label_tick_ebb_start = label_tick;
1224 last_bb = this_basic_block;
1226 rtl_profile_for_bb (this_basic_block);
1227 for (insn = BB_HEAD (this_basic_block);
1228 insn != NEXT_INSN (BB_END (this_basic_block));
1229 insn = next ? next : NEXT_INSN (insn))
1231 next = 0;
1232 if (NONDEBUG_INSN_P (insn))
1234 while (last_combined_insn
1235 && INSN_DELETED_P (last_combined_insn))
1236 last_combined_insn = PREV_INSN (last_combined_insn);
1237 if (last_combined_insn == NULL_RTX
1238 || BARRIER_P (last_combined_insn)
1239 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1240 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1241 last_combined_insn = insn;
1243 /* See if we know about function return values before this
1244 insn based upon SUBREG flags. */
1245 check_promoted_subreg (insn, PATTERN (insn));
1247 /* See if we can find hardregs and subreg of pseudos in
1248 narrower modes. This could help turning TRUNCATEs
1249 into SUBREGs. */
1250 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1252 /* Try this insn with each insn it links back to. */
1254 FOR_EACH_LOG_LINK (links, insn)
1255 if ((next = try_combine (insn, links->insn, NULL_RTX,
1256 NULL_RTX, &new_direct_jump_p,
1257 last_combined_insn)) != 0)
1258 goto retry;
1260 /* Try each sequence of three linked insns ending with this one. */
1262 FOR_EACH_LOG_LINK (links, insn)
1264 rtx link = links->insn;
1266 /* If the linked insn has been replaced by a note, then there
1267 is no point in pursuing this chain any further. */
1268 if (NOTE_P (link))
1269 continue;
1271 FOR_EACH_LOG_LINK (nextlinks, link)
1272 if ((next = try_combine (insn, link, nextlinks->insn,
1273 NULL_RTX, &new_direct_jump_p,
1274 last_combined_insn)) != 0)
1275 goto retry;
1278 #ifdef HAVE_cc0
1279 /* Try to combine a jump insn that uses CC0
1280 with a preceding insn that sets CC0, and maybe with its
1281 logical predecessor as well.
1282 This is how we make decrement-and-branch insns.
1283 We need this special code because data flow connections
1284 via CC0 do not get entered in LOG_LINKS. */
1286 if (JUMP_P (insn)
1287 && (prev = prev_nonnote_insn (insn)) != 0
1288 && NONJUMP_INSN_P (prev)
1289 && sets_cc0_p (PATTERN (prev)))
1291 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1292 &new_direct_jump_p,
1293 last_combined_insn)) != 0)
1294 goto retry;
1296 FOR_EACH_LOG_LINK (nextlinks, prev)
1297 if ((next = try_combine (insn, prev, nextlinks->insn,
1298 NULL_RTX, &new_direct_jump_p,
1299 last_combined_insn)) != 0)
1300 goto retry;
1303 /* Do the same for an insn that explicitly references CC0. */
1304 if (NONJUMP_INSN_P (insn)
1305 && (prev = prev_nonnote_insn (insn)) != 0
1306 && NONJUMP_INSN_P (prev)
1307 && sets_cc0_p (PATTERN (prev))
1308 && GET_CODE (PATTERN (insn)) == SET
1309 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1311 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1312 &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 goto retry;
1316 FOR_EACH_LOG_LINK (nextlinks, prev)
1317 if ((next = try_combine (insn, prev, nextlinks->insn,
1318 NULL_RTX, &new_direct_jump_p,
1319 last_combined_insn)) != 0)
1320 goto retry;
1323 /* Finally, see if any of the insns that this insn links to
1324 explicitly references CC0. If so, try this insn, that insn,
1325 and its predecessor if it sets CC0. */
1326 FOR_EACH_LOG_LINK (links, insn)
1327 if (NONJUMP_INSN_P (links->insn)
1328 && GET_CODE (PATTERN (links->insn)) == SET
1329 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1330 && (prev = prev_nonnote_insn (links->insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && (next = try_combine (insn, links->insn,
1334 prev, NULL_RTX, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 #endif
1339 /* Try combining an insn with two different insns whose results it
1340 uses. */
1341 FOR_EACH_LOG_LINK (links, insn)
1342 for (nextlinks = links->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, links->insn,
1345 nextlinks->insn, NULL_RTX,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1350 /* Try four-instruction combinations. */
1351 FOR_EACH_LOG_LINK (links, insn)
1353 struct insn_link *next1;
1354 rtx link = links->insn;
1356 /* If the linked insn has been replaced by a note, then there
1357 is no point in pursuing this chain any further. */
1358 if (NOTE_P (link))
1359 continue;
1361 FOR_EACH_LOG_LINK (next1, link)
1363 rtx link1 = next1->insn;
1364 if (NOTE_P (link1))
1365 continue;
1366 /* I0 -> I1 -> I2 -> I3. */
1367 FOR_EACH_LOG_LINK (nextlinks, link1)
1368 if ((next = try_combine (insn, link, link1,
1369 nextlinks->insn,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373 /* I0, I1 -> I2, I2 -> I3. */
1374 for (nextlinks = next1->next; nextlinks;
1375 nextlinks = nextlinks->next)
1376 if ((next = try_combine (insn, link, link1,
1377 nextlinks->insn,
1378 &new_direct_jump_p,
1379 last_combined_insn)) != 0)
1380 goto retry;
1383 for (next1 = links->next; next1; next1 = next1->next)
1385 rtx link1 = next1->insn;
1386 if (NOTE_P (link1))
1387 continue;
1388 /* I0 -> I2; I1, I2 -> I3. */
1389 FOR_EACH_LOG_LINK (nextlinks, link)
1390 if ((next = try_combine (insn, link, link1,
1391 nextlinks->insn,
1392 &new_direct_jump_p,
1393 last_combined_insn)) != 0)
1394 goto retry;
1395 /* I0 -> I1; I1, I2 -> I3. */
1396 FOR_EACH_LOG_LINK (nextlinks, link1)
1397 if ((next = try_combine (insn, link, link1,
1398 nextlinks->insn,
1399 &new_direct_jump_p,
1400 last_combined_insn)) != 0)
1401 goto retry;
1405 /* Try this insn with each REG_EQUAL note it links back to. */
1406 FOR_EACH_LOG_LINK (links, insn)
1408 rtx set, note;
1409 rtx temp = links->insn;
1410 if ((set = single_set (temp)) != 0
1411 && (note = find_reg_equal_equiv_note (temp)) != 0
1412 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1413 /* Avoid using a register that may already been marked
1414 dead by an earlier instruction. */
1415 && ! unmentioned_reg_p (note, SET_SRC (set))
1416 && (GET_MODE (note) == VOIDmode
1417 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1418 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1420 /* Temporarily replace the set's source with the
1421 contents of the REG_EQUAL note. The insn will
1422 be deleted or recognized by try_combine. */
1423 rtx orig = SET_SRC (set);
1424 SET_SRC (set) = note;
1425 i2mod = temp;
1426 i2mod_old_rhs = copy_rtx (orig);
1427 i2mod_new_rhs = copy_rtx (note);
1428 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1429 &new_direct_jump_p,
1430 last_combined_insn);
1431 i2mod = NULL_RTX;
1432 if (next)
1433 goto retry;
1434 SET_SRC (set) = orig;
1438 if (!NOTE_P (insn))
1439 record_dead_and_set_regs (insn);
1441 retry:
1447 default_rtl_profile ();
1448 clear_bb_flags ();
1449 new_direct_jump_p |= purge_all_dead_edges ();
1450 delete_noop_moves ();
1452 /* Clean up. */
1453 obstack_free (&insn_link_obstack, NULL);
1454 free (uid_log_links);
1455 free (uid_insn_cost);
1456 reg_stat.release ();
1459 struct undo *undo, *next;
1460 for (undo = undobuf.frees; undo; undo = next)
1462 next = undo->next;
1463 free (undo);
1465 undobuf.frees = 0;
1468 total_attempts += combine_attempts;
1469 total_merges += combine_merges;
1470 total_extras += combine_extras;
1471 total_successes += combine_successes;
1473 nonzero_sign_valid = 0;
1474 rtl_hooks = general_rtl_hooks;
1476 /* Make recognizer allow volatile MEMs again. */
1477 init_recog ();
1479 return new_direct_jump_p;
1482 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1484 static void
1485 init_reg_last (void)
1487 unsigned int i;
1488 reg_stat_type *p;
1490 FOR_EACH_VEC_ELT (reg_stat, i, p)
1491 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1494 /* Set up any promoted values for incoming argument registers. */
1496 static void
1497 setup_incoming_promotions (rtx first)
1499 tree arg;
1500 bool strictly_local = false;
1502 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1503 arg = DECL_CHAIN (arg))
1505 rtx x, reg = DECL_INCOMING_RTL (arg);
1506 int uns1, uns3;
1507 enum machine_mode mode1, mode2, mode3, mode4;
1509 /* Only continue if the incoming argument is in a register. */
1510 if (!REG_P (reg))
1511 continue;
1513 /* Determine, if possible, whether all call sites of the current
1514 function lie within the current compilation unit. (This does
1515 take into account the exporting of a function via taking its
1516 address, and so forth.) */
1517 strictly_local = cgraph_local_info (current_function_decl)->local;
1519 /* The mode and signedness of the argument before any promotions happen
1520 (equal to the mode of the pseudo holding it at that stage). */
1521 mode1 = TYPE_MODE (TREE_TYPE (arg));
1522 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1524 /* The mode and signedness of the argument after any source language and
1525 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1526 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1527 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1529 /* The mode and signedness of the argument as it is actually passed,
1530 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1531 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1532 TREE_TYPE (cfun->decl), 0);
1534 /* The mode of the register in which the argument is being passed. */
1535 mode4 = GET_MODE (reg);
1537 /* Eliminate sign extensions in the callee when:
1538 (a) A mode promotion has occurred; */
1539 if (mode1 == mode3)
1540 continue;
1541 /* (b) The mode of the register is the same as the mode of
1542 the argument as it is passed; */
1543 if (mode3 != mode4)
1544 continue;
1545 /* (c) There's no language level extension; */
1546 if (mode1 == mode2)
1548 /* (c.1) All callers are from the current compilation unit. If that's
1549 the case we don't have to rely on an ABI, we only have to know
1550 what we're generating right now, and we know that we will do the
1551 mode1 to mode2 promotion with the given sign. */
1552 else if (!strictly_local)
1553 continue;
1554 /* (c.2) The combination of the two promotions is useful. This is
1555 true when the signs match, or if the first promotion is unsigned.
1556 In the later case, (sign_extend (zero_extend x)) is the same as
1557 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1558 else if (uns1)
1559 uns3 = true;
1560 else if (uns3)
1561 continue;
1563 /* Record that the value was promoted from mode1 to mode3,
1564 so that any sign extension at the head of the current
1565 function may be eliminated. */
1566 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1567 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1568 record_value_for_reg (reg, first, x);
1572 /* Called via note_stores. If X is a pseudo that is narrower than
1573 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1575 If we are setting only a portion of X and we can't figure out what
1576 portion, assume all bits will be used since we don't know what will
1577 be happening.
1579 Similarly, set how many bits of X are known to be copies of the sign bit
1580 at all locations in the function. This is the smallest number implied
1581 by any set of X. */
1583 static void
1584 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1586 rtx insn = (rtx) data;
1587 unsigned int num;
1589 if (REG_P (x)
1590 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1591 /* If this register is undefined at the start of the file, we can't
1592 say what its contents were. */
1593 && ! REGNO_REG_SET_P
1594 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1597 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1599 if (set == 0 || GET_CODE (set) == CLOBBER)
1601 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1602 rsp->sign_bit_copies = 1;
1603 return;
1606 /* If this register is being initialized using itself, and the
1607 register is uninitialized in this basic block, and there are
1608 no LOG_LINKS which set the register, then part of the
1609 register is uninitialized. In that case we can't assume
1610 anything about the number of nonzero bits.
1612 ??? We could do better if we checked this in
1613 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1614 could avoid making assumptions about the insn which initially
1615 sets the register, while still using the information in other
1616 insns. We would have to be careful to check every insn
1617 involved in the combination. */
1619 if (insn
1620 && reg_referenced_p (x, PATTERN (insn))
1621 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1622 REGNO (x)))
1624 struct insn_link *link;
1626 FOR_EACH_LOG_LINK (link, insn)
1627 if (dead_or_set_p (link->insn, x))
1628 break;
1629 if (!link)
1631 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1632 rsp->sign_bit_copies = 1;
1633 return;
1637 /* If this is a complex assignment, see if we can convert it into a
1638 simple assignment. */
1639 set = expand_field_assignment (set);
1641 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1642 set what we know about X. */
1644 if (SET_DEST (set) == x
1645 || (paradoxical_subreg_p (SET_DEST (set))
1646 && SUBREG_REG (SET_DEST (set)) == x))
1648 rtx src = SET_SRC (set);
1650 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1651 /* If X is narrower than a word and SRC is a non-negative
1652 constant that would appear negative in the mode of X,
1653 sign-extend it for use in reg_stat[].nonzero_bits because some
1654 machines (maybe most) will actually do the sign-extension
1655 and this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard
1658 instead of this kludge. */
1660 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1661 && CONST_INT_P (src)
1662 && INTVAL (src) > 0
1663 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1664 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1665 #endif
1667 /* Don't call nonzero_bits if it cannot change anything. */
1668 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1669 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1670 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1671 if (rsp->sign_bit_copies == 0
1672 || rsp->sign_bit_copies > num)
1673 rsp->sign_bit_copies = num;
1675 else
1677 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1678 rsp->sign_bit_copies = 1;
1683 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1684 optionally insns that were previously combined into I3 or that will be
1685 combined into the merger of INSN and I3. The order is PRED, PRED2,
1686 INSN, SUCC, SUCC2, I3.
1688 Return 0 if the combination is not allowed for any reason.
1690 If the combination is allowed, *PDEST will be set to the single
1691 destination of INSN and *PSRC to the single source, and this function
1692 will return 1. */
1694 static int
1695 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1696 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1697 rtx *pdest, rtx *psrc)
1699 int i;
1700 const_rtx set = 0;
1701 rtx src, dest;
1702 rtx p;
1703 #ifdef AUTO_INC_DEC
1704 rtx link;
1705 #endif
1706 bool all_adjacent = true;
1707 int (*is_volatile_p) (const_rtx);
1709 if (succ)
1711 if (succ2)
1713 if (next_active_insn (succ2) != i3)
1714 all_adjacent = false;
1715 if (next_active_insn (succ) != succ2)
1716 all_adjacent = false;
1718 else if (next_active_insn (succ) != i3)
1719 all_adjacent = false;
1720 if (next_active_insn (insn) != succ)
1721 all_adjacent = false;
1723 else if (next_active_insn (insn) != i3)
1724 all_adjacent = false;
1726 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1727 or a PARALLEL consisting of such a SET and CLOBBERs.
1729 If INSN has CLOBBER parallel parts, ignore them for our processing.
1730 By definition, these happen during the execution of the insn. When it
1731 is merged with another insn, all bets are off. If they are, in fact,
1732 needed and aren't also supplied in I3, they may be added by
1733 recog_for_combine. Otherwise, it won't match.
1735 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1736 note.
1738 Get the source and destination of INSN. If more than one, can't
1739 combine. */
1741 if (GET_CODE (PATTERN (insn)) == SET)
1742 set = PATTERN (insn);
1743 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1744 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1746 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1748 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1750 switch (GET_CODE (elt))
1752 /* This is important to combine floating point insns
1753 for the SH4 port. */
1754 case USE:
1755 /* Combining an isolated USE doesn't make sense.
1756 We depend here on combinable_i3pat to reject them. */
1757 /* The code below this loop only verifies that the inputs of
1758 the SET in INSN do not change. We call reg_set_between_p
1759 to verify that the REG in the USE does not change between
1760 I3 and INSN.
1761 If the USE in INSN was for a pseudo register, the matching
1762 insn pattern will likely match any register; combining this
1763 with any other USE would only be safe if we knew that the
1764 used registers have identical values, or if there was
1765 something to tell them apart, e.g. different modes. For
1766 now, we forgo such complicated tests and simply disallow
1767 combining of USES of pseudo registers with any other USE. */
1768 if (REG_P (XEXP (elt, 0))
1769 && GET_CODE (PATTERN (i3)) == PARALLEL)
1771 rtx i3pat = PATTERN (i3);
1772 int i = XVECLEN (i3pat, 0) - 1;
1773 unsigned int regno = REGNO (XEXP (elt, 0));
1777 rtx i3elt = XVECEXP (i3pat, 0, i);
1779 if (GET_CODE (i3elt) == USE
1780 && REG_P (XEXP (i3elt, 0))
1781 && (REGNO (XEXP (i3elt, 0)) == regno
1782 ? reg_set_between_p (XEXP (elt, 0),
1783 PREV_INSN (insn), i3)
1784 : regno >= FIRST_PSEUDO_REGISTER))
1785 return 0;
1787 while (--i >= 0);
1789 break;
1791 /* We can ignore CLOBBERs. */
1792 case CLOBBER:
1793 break;
1795 case SET:
1796 /* Ignore SETs whose result isn't used but not those that
1797 have side-effects. */
1798 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1799 && insn_nothrow_p (insn)
1800 && !side_effects_p (elt))
1801 break;
1803 /* If we have already found a SET, this is a second one and
1804 so we cannot combine with this insn. */
1805 if (set)
1806 return 0;
1808 set = elt;
1809 break;
1811 default:
1812 /* Anything else means we can't combine. */
1813 return 0;
1817 if (set == 0
1818 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1819 so don't do anything with it. */
1820 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1821 return 0;
1823 else
1824 return 0;
1826 if (set == 0)
1827 return 0;
1829 /* The simplification in expand_field_assignment may call back to
1830 get_last_value, so set safe guard here. */
1831 subst_low_luid = DF_INSN_LUID (insn);
1833 set = expand_field_assignment (set);
1834 src = SET_SRC (set), dest = SET_DEST (set);
1836 /* Don't eliminate a store in the stack pointer. */
1837 if (dest == stack_pointer_rtx
1838 /* Don't combine with an insn that sets a register to itself if it has
1839 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1840 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1841 /* Can't merge an ASM_OPERANDS. */
1842 || GET_CODE (src) == ASM_OPERANDS
1843 /* Can't merge a function call. */
1844 || GET_CODE (src) == CALL
1845 /* Don't eliminate a function call argument. */
1846 || (CALL_P (i3)
1847 && (find_reg_fusage (i3, USE, dest)
1848 || (REG_P (dest)
1849 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1850 && global_regs[REGNO (dest)])))
1851 /* Don't substitute into an incremented register. */
1852 || FIND_REG_INC_NOTE (i3, dest)
1853 || (succ && FIND_REG_INC_NOTE (succ, dest))
1854 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1855 /* Don't substitute into a non-local goto, this confuses CFG. */
1856 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1857 /* Make sure that DEST is not used after SUCC but before I3. */
1858 || (!all_adjacent
1859 && ((succ2
1860 && (reg_used_between_p (dest, succ2, i3)
1861 || reg_used_between_p (dest, succ, succ2)))
1862 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1863 /* Make sure that the value that is to be substituted for the register
1864 does not use any registers whose values alter in between. However,
1865 If the insns are adjacent, a use can't cross a set even though we
1866 think it might (this can happen for a sequence of insns each setting
1867 the same destination; last_set of that register might point to
1868 a NOTE). If INSN has a REG_EQUIV note, the register is always
1869 equivalent to the memory so the substitution is valid even if there
1870 are intervening stores. Also, don't move a volatile asm or
1871 UNSPEC_VOLATILE across any other insns. */
1872 || (! all_adjacent
1873 && (((!MEM_P (src)
1874 || ! find_reg_note (insn, REG_EQUIV, src))
1875 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1876 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1877 || GET_CODE (src) == UNSPEC_VOLATILE))
1878 /* Don't combine across a CALL_INSN, because that would possibly
1879 change whether the life span of some REGs crosses calls or not,
1880 and it is a pain to update that information.
1881 Exception: if source is a constant, moving it later can't hurt.
1882 Accept that as a special case. */
1883 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1884 return 0;
1886 /* DEST must either be a REG or CC0. */
1887 if (REG_P (dest))
1889 /* If register alignment is being enforced for multi-word items in all
1890 cases except for parameters, it is possible to have a register copy
1891 insn referencing a hard register that is not allowed to contain the
1892 mode being copied and which would not be valid as an operand of most
1893 insns. Eliminate this problem by not combining with such an insn.
1895 Also, on some machines we don't want to extend the life of a hard
1896 register. */
1898 if (REG_P (src)
1899 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1901 /* Don't extend the life of a hard register unless it is
1902 user variable (if we have few registers) or it can't
1903 fit into the desired register (meaning something special
1904 is going on).
1905 Also avoid substituting a return register into I3, because
1906 reload can't handle a conflict with constraints of other
1907 inputs. */
1908 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1909 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1910 return 0;
1912 else if (GET_CODE (dest) != CC0)
1913 return 0;
1916 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1917 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1918 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1920 /* Don't substitute for a register intended as a clobberable
1921 operand. */
1922 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1923 if (rtx_equal_p (reg, dest))
1924 return 0;
1926 /* If the clobber represents an earlyclobber operand, we must not
1927 substitute an expression containing the clobbered register.
1928 As we do not analyze the constraint strings here, we have to
1929 make the conservative assumption. However, if the register is
1930 a fixed hard reg, the clobber cannot represent any operand;
1931 we leave it up to the machine description to either accept or
1932 reject use-and-clobber patterns. */
1933 if (!REG_P (reg)
1934 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1935 || !fixed_regs[REGNO (reg)])
1936 if (reg_overlap_mentioned_p (reg, src))
1937 return 0;
1940 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1941 or not), reject, unless nothing volatile comes between it and I3 */
1943 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1945 /* Make sure neither succ nor succ2 contains a volatile reference. */
1946 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1947 return 0;
1948 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1949 return 0;
1950 /* We'll check insns between INSN and I3 below. */
1953 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1954 to be an explicit register variable, and was chosen for a reason. */
1956 if (GET_CODE (src) == ASM_OPERANDS
1957 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1958 return 0;
1960 /* If INSN contains volatile references (specifically volatile MEMs),
1961 we cannot combine across any other volatile references.
1962 Even if INSN doesn't contain volatile references, any intervening
1963 volatile insn might affect machine state. */
1965 is_volatile_p = volatile_refs_p (PATTERN (insn))
1966 ? volatile_refs_p
1967 : volatile_insn_p;
1969 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1970 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1971 return 0;
1973 /* If INSN contains an autoincrement or autodecrement, make sure that
1974 register is not used between there and I3, and not already used in
1975 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1976 Also insist that I3 not be a jump; if it were one
1977 and the incremented register were spilled, we would lose. */
1979 #ifdef AUTO_INC_DEC
1980 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1981 if (REG_NOTE_KIND (link) == REG_INC
1982 && (JUMP_P (i3)
1983 || reg_used_between_p (XEXP (link, 0), insn, i3)
1984 || (pred != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1986 || (pred2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1988 || (succ != NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1990 || (succ2 != NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1992 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1993 return 0;
1994 #endif
1996 #ifdef HAVE_cc0
1997 /* Don't combine an insn that follows a CC0-setting insn.
1998 An insn that uses CC0 must not be separated from the one that sets it.
1999 We do, however, allow I2 to follow a CC0-setting insn if that insn
2000 is passed as I1; in that case it will be deleted also.
2001 We also allow combining in this case if all the insns are adjacent
2002 because that would leave the two CC0 insns adjacent as well.
2003 It would be more logical to test whether CC0 occurs inside I1 or I2,
2004 but that would be much slower, and this ought to be equivalent. */
2006 p = prev_nonnote_insn (insn);
2007 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2008 && ! all_adjacent)
2009 return 0;
2010 #endif
2012 /* If we get here, we have passed all the tests and the combination is
2013 to be allowed. */
2015 *pdest = dest;
2016 *psrc = src;
2018 return 1;
2021 /* LOC is the location within I3 that contains its pattern or the component
2022 of a PARALLEL of the pattern. We validate that it is valid for combining.
2024 One problem is if I3 modifies its output, as opposed to replacing it
2025 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2026 doing so would produce an insn that is not equivalent to the original insns.
2028 Consider:
2030 (set (reg:DI 101) (reg:DI 100))
2031 (set (subreg:SI (reg:DI 101) 0) <foo>)
2033 This is NOT equivalent to:
2035 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2036 (set (reg:DI 101) (reg:DI 100))])
2038 Not only does this modify 100 (in which case it might still be valid
2039 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2041 We can also run into a problem if I2 sets a register that I1
2042 uses and I1 gets directly substituted into I3 (not via I2). In that
2043 case, we would be getting the wrong value of I2DEST into I3, so we
2044 must reject the combination. This case occurs when I2 and I1 both
2045 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2046 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2047 of a SET must prevent combination from occurring. The same situation
2048 can occur for I0, in which case I0_NOT_IN_SRC is set.
2050 Before doing the above check, we first try to expand a field assignment
2051 into a set of logical operations.
2053 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2054 we place a register that is both set and used within I3. If more than one
2055 such register is detected, we fail.
2057 Return 1 if the combination is valid, zero otherwise. */
2059 static int
2060 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2061 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2063 rtx x = *loc;
2065 if (GET_CODE (x) == SET)
2067 rtx set = x ;
2068 rtx dest = SET_DEST (set);
2069 rtx src = SET_SRC (set);
2070 rtx inner_dest = dest;
2071 rtx subdest;
2073 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2074 || GET_CODE (inner_dest) == SUBREG
2075 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2076 inner_dest = XEXP (inner_dest, 0);
2078 /* Check for the case where I3 modifies its output, as discussed
2079 above. We don't want to prevent pseudos from being combined
2080 into the address of a MEM, so only prevent the combination if
2081 i1 or i2 set the same MEM. */
2082 if ((inner_dest != dest &&
2083 (!MEM_P (inner_dest)
2084 || rtx_equal_p (i2dest, inner_dest)
2085 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2086 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2087 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2088 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2089 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2091 /* This is the same test done in can_combine_p except we can't test
2092 all_adjacent; we don't have to, since this instruction will stay
2093 in place, thus we are not considering increasing the lifetime of
2094 INNER_DEST.
2096 Also, if this insn sets a function argument, combining it with
2097 something that might need a spill could clobber a previous
2098 function argument; the all_adjacent test in can_combine_p also
2099 checks this; here, we do a more specific test for this case. */
2101 || (REG_P (inner_dest)
2102 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2103 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2104 GET_MODE (inner_dest))))
2105 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2106 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2107 return 0;
2109 /* If DEST is used in I3, it is being killed in this insn, so
2110 record that for later. We have to consider paradoxical
2111 subregs here, since they kill the whole register, but we
2112 ignore partial subregs, STRICT_LOW_PART, etc.
2113 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2114 STACK_POINTER_REGNUM, since these are always considered to be
2115 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2116 subdest = dest;
2117 if (GET_CODE (subdest) == SUBREG
2118 && (GET_MODE_SIZE (GET_MODE (subdest))
2119 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2120 subdest = SUBREG_REG (subdest);
2121 if (pi3dest_killed
2122 && REG_P (subdest)
2123 && reg_referenced_p (subdest, PATTERN (i3))
2124 && REGNO (subdest) != FRAME_POINTER_REGNUM
2125 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2126 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2127 #endif
2128 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2129 && (REGNO (subdest) != ARG_POINTER_REGNUM
2130 || ! fixed_regs [REGNO (subdest)])
2131 #endif
2132 && REGNO (subdest) != STACK_POINTER_REGNUM)
2134 if (*pi3dest_killed)
2135 return 0;
2137 *pi3dest_killed = subdest;
2141 else if (GET_CODE (x) == PARALLEL)
2143 int i;
2145 for (i = 0; i < XVECLEN (x, 0); i++)
2146 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2147 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2148 return 0;
2151 return 1;
2154 /* Return 1 if X is an arithmetic expression that contains a multiplication
2155 and division. We don't count multiplications by powers of two here. */
2157 static int
2158 contains_muldiv (rtx x)
2160 switch (GET_CODE (x))
2162 case MOD: case DIV: case UMOD: case UDIV:
2163 return 1;
2165 case MULT:
2166 return ! (CONST_INT_P (XEXP (x, 1))
2167 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2168 default:
2169 if (BINARY_P (x))
2170 return contains_muldiv (XEXP (x, 0))
2171 || contains_muldiv (XEXP (x, 1));
2173 if (UNARY_P (x))
2174 return contains_muldiv (XEXP (x, 0));
2176 return 0;
2180 /* Determine whether INSN can be used in a combination. Return nonzero if
2181 not. This is used in try_combine to detect early some cases where we
2182 can't perform combinations. */
2184 static int
2185 cant_combine_insn_p (rtx insn)
2187 rtx set;
2188 rtx src, dest;
2190 /* If this isn't really an insn, we can't do anything.
2191 This can occur when flow deletes an insn that it has merged into an
2192 auto-increment address. */
2193 if (! INSN_P (insn))
2194 return 1;
2196 /* Never combine loads and stores involving hard regs that are likely
2197 to be spilled. The register allocator can usually handle such
2198 reg-reg moves by tying. If we allow the combiner to make
2199 substitutions of likely-spilled regs, reload might die.
2200 As an exception, we allow combinations involving fixed regs; these are
2201 not available to the register allocator so there's no risk involved. */
2203 set = single_set (insn);
2204 if (! set)
2205 return 0;
2206 src = SET_SRC (set);
2207 dest = SET_DEST (set);
2208 if (GET_CODE (src) == SUBREG)
2209 src = SUBREG_REG (src);
2210 if (GET_CODE (dest) == SUBREG)
2211 dest = SUBREG_REG (dest);
2212 if (REG_P (src) && REG_P (dest)
2213 && ((HARD_REGISTER_P (src)
2214 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2215 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2216 || (HARD_REGISTER_P (dest)
2217 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2218 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2219 return 1;
2221 return 0;
2224 struct likely_spilled_retval_info
2226 unsigned regno, nregs;
2227 unsigned mask;
2230 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2231 hard registers that are known to be written to / clobbered in full. */
2232 static void
2233 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2235 struct likely_spilled_retval_info *const info =
2236 (struct likely_spilled_retval_info *) data;
2237 unsigned regno, nregs;
2238 unsigned new_mask;
2240 if (!REG_P (XEXP (set, 0)))
2241 return;
2242 regno = REGNO (x);
2243 if (regno >= info->regno + info->nregs)
2244 return;
2245 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2246 if (regno + nregs <= info->regno)
2247 return;
2248 new_mask = (2U << (nregs - 1)) - 1;
2249 if (regno < info->regno)
2250 new_mask >>= info->regno - regno;
2251 else
2252 new_mask <<= regno - info->regno;
2253 info->mask &= ~new_mask;
2256 /* Return nonzero iff part of the return value is live during INSN, and
2257 it is likely spilled. This can happen when more than one insn is needed
2258 to copy the return value, e.g. when we consider to combine into the
2259 second copy insn for a complex value. */
2261 static int
2262 likely_spilled_retval_p (rtx insn)
2264 rtx use = BB_END (this_basic_block);
2265 rtx reg, p;
2266 unsigned regno, nregs;
2267 /* We assume here that no machine mode needs more than
2268 32 hard registers when the value overlaps with a register
2269 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2270 unsigned mask;
2271 struct likely_spilled_retval_info info;
2273 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2274 return 0;
2275 reg = XEXP (PATTERN (use), 0);
2276 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2277 return 0;
2278 regno = REGNO (reg);
2279 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2280 if (nregs == 1)
2281 return 0;
2282 mask = (2U << (nregs - 1)) - 1;
2284 /* Disregard parts of the return value that are set later. */
2285 info.regno = regno;
2286 info.nregs = nregs;
2287 info.mask = mask;
2288 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2289 if (INSN_P (p))
2290 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2291 mask = info.mask;
2293 /* Check if any of the (probably) live return value registers is
2294 likely spilled. */
2295 nregs --;
2298 if ((mask & 1 << nregs)
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2300 return 1;
2301 } while (nregs--);
2302 return 0;
2305 /* Adjust INSN after we made a change to its destination.
2307 Changing the destination can invalidate notes that say something about
2308 the results of the insn and a LOG_LINK pointing to the insn. */
2310 static void
2311 adjust_for_new_dest (rtx insn)
2313 /* For notes, be conservative and simply remove them. */
2314 remove_reg_equal_equiv_notes (insn);
2316 /* The new insn will have a destination that was previously the destination
2317 of an insn just above it. Call distribute_links to make a LOG_LINK from
2318 the next use of that destination. */
2319 distribute_links (alloc_insn_link (insn, NULL));
2321 df_insn_rescan (insn);
2324 /* Return TRUE if combine can reuse reg X in mode MODE.
2325 ADDED_SETS is nonzero if the original set is still required. */
2326 static bool
2327 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2329 unsigned int regno;
2331 if (!REG_P(x))
2332 return false;
2334 regno = REGNO (x);
2335 /* Allow hard registers if the new mode is legal, and occupies no more
2336 registers than the old mode. */
2337 if (regno < FIRST_PSEUDO_REGISTER)
2338 return (HARD_REGNO_MODE_OK (regno, mode)
2339 && (hard_regno_nregs[regno][GET_MODE (x)]
2340 >= hard_regno_nregs[regno][mode]));
2342 /* Or a pseudo that is only used once. */
2343 return (REG_N_SETS (regno) == 1 && !added_sets
2344 && !REG_USERVAR_P (x));
2348 /* Check whether X, the destination of a set, refers to part of
2349 the register specified by REG. */
2351 static bool
2352 reg_subword_p (rtx x, rtx reg)
2354 /* Check that reg is an integer mode register. */
2355 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2356 return false;
2358 if (GET_CODE (x) == STRICT_LOW_PART
2359 || GET_CODE (x) == ZERO_EXTRACT)
2360 x = XEXP (x, 0);
2362 return GET_CODE (x) == SUBREG
2363 && SUBREG_REG (x) == reg
2364 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2367 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2368 Note that the INSN should be deleted *after* removing dead edges, so
2369 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2370 but not for a (set (pc) (label_ref FOO)). */
2372 static void
2373 update_cfg_for_uncondjump (rtx insn)
2375 basic_block bb = BLOCK_FOR_INSN (insn);
2376 gcc_assert (BB_END (bb) == insn);
2378 purge_dead_edges (bb);
2380 delete_insn (insn);
2381 if (EDGE_COUNT (bb->succs) == 1)
2383 rtx insn;
2385 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2387 /* Remove barriers from the footer if there are any. */
2388 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2389 if (BARRIER_P (insn))
2391 if (PREV_INSN (insn))
2392 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2393 else
2394 BB_FOOTER (bb) = NEXT_INSN (insn);
2395 if (NEXT_INSN (insn))
2396 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2398 else if (LABEL_P (insn))
2399 break;
2403 /* Try to combine the insns I0, I1 and I2 into I3.
2404 Here I0, I1 and I2 appear earlier than I3.
2405 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2408 If we are combining more than two insns and the resulting insn is not
2409 recognized, try splitting it into two insns. If that happens, I2 and I3
2410 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2411 Otherwise, I0, I1 and I2 are pseudo-deleted.
2413 Return 0 if the combination does not work. Then nothing is changed.
2414 If we did the combination, return the insn at which combine should
2415 resume scanning.
2417 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2418 new direct jump instruction.
2420 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2421 been I3 passed to an earlier try_combine within the same basic
2422 block. */
2424 static rtx
2425 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2426 rtx last_combined_insn)
2428 /* New patterns for I3 and I2, respectively. */
2429 rtx newpat, newi2pat = 0;
2430 rtvec newpat_vec_with_clobbers = 0;
2431 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2432 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2433 dead. */
2434 int added_sets_0, added_sets_1, added_sets_2;
2435 /* Total number of SETs to put into I3. */
2436 int total_sets;
2437 /* Nonzero if I2's or I1's body now appears in I3. */
2438 int i2_is_used = 0, i1_is_used = 0;
2439 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2440 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2441 /* Contains I3 if the destination of I3 is used in its source, which means
2442 that the old life of I3 is being killed. If that usage is placed into
2443 I2 and not in I3, a REG_DEAD note must be made. */
2444 rtx i3dest_killed = 0;
2445 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2446 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2447 /* Copy of SET_SRC of I1 and I0, if needed. */
2448 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2449 /* Set if I2DEST was reused as a scratch register. */
2450 bool i2scratch = false;
2451 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2452 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2454 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2455 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2456 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2457 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2458 /* Notes that must be added to REG_NOTES in I3 and I2. */
2459 rtx new_i3_notes, new_i2_notes;
2460 /* Notes that we substituted I3 into I2 instead of the normal case. */
2461 int i3_subst_into_i2 = 0;
2462 /* Notes that I1, I2 or I3 is a MULT operation. */
2463 int have_mult = 0;
2464 int swap_i2i3 = 0;
2465 int changed_i3_dest = 0;
2467 int maxreg;
2468 rtx temp;
2469 struct insn_link *link;
2470 rtx other_pat = 0;
2471 rtx new_other_notes;
2472 int i;
2474 /* Only try four-insn combinations when there's high likelihood of
2475 success. Look for simple insns, such as loads of constants or
2476 binary operations involving a constant. */
2477 if (i0)
2479 int i;
2480 int ngood = 0;
2481 int nshift = 0;
2483 if (!flag_expensive_optimizations)
2484 return 0;
2486 for (i = 0; i < 4; i++)
2488 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2489 rtx set = single_set (insn);
2490 rtx src;
2491 if (!set)
2492 continue;
2493 src = SET_SRC (set);
2494 if (CONSTANT_P (src))
2496 ngood += 2;
2497 break;
2499 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2500 ngood++;
2501 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2502 || GET_CODE (src) == LSHIFTRT)
2503 nshift++;
2505 if (ngood < 2 && nshift < 2)
2506 return 0;
2509 /* Exit early if one of the insns involved can't be used for
2510 combinations. */
2511 if (cant_combine_insn_p (i3)
2512 || cant_combine_insn_p (i2)
2513 || (i1 && cant_combine_insn_p (i1))
2514 || (i0 && cant_combine_insn_p (i0))
2515 || likely_spilled_retval_p (i3))
2516 return 0;
2518 combine_attempts++;
2519 undobuf.other_insn = 0;
2521 /* Reset the hard register usage information. */
2522 CLEAR_HARD_REG_SET (newpat_used_regs);
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2526 if (i0)
2527 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2528 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2529 else if (i1)
2530 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2531 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2532 else
2533 fprintf (dump_file, "\nTrying %d -> %d:\n",
2534 INSN_UID (i2), INSN_UID (i3));
2537 /* If multiple insns feed into one of I2 or I3, they can be in any
2538 order. To simplify the code below, reorder them in sequence. */
2539 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2540 temp = i2, i2 = i0, i0 = temp;
2541 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2542 temp = i1, i1 = i0, i0 = temp;
2543 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2544 temp = i1, i1 = i2, i2 = temp;
2546 added_links_insn = 0;
2548 /* First check for one important special case that the code below will
2549 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2550 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2551 we may be able to replace that destination with the destination of I3.
2552 This occurs in the common code where we compute both a quotient and
2553 remainder into a structure, in which case we want to do the computation
2554 directly into the structure to avoid register-register copies.
2556 Note that this case handles both multiple sets in I2 and also cases
2557 where I2 has a number of CLOBBERs inside the PARALLEL.
2559 We make very conservative checks below and only try to handle the
2560 most common cases of this. For example, we only handle the case
2561 where I2 and I3 are adjacent to avoid making difficult register
2562 usage tests. */
2564 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2565 && REG_P (SET_SRC (PATTERN (i3)))
2566 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2567 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2568 && GET_CODE (PATTERN (i2)) == PARALLEL
2569 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2570 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2571 below would need to check what is inside (and reg_overlap_mentioned_p
2572 doesn't support those codes anyway). Don't allow those destinations;
2573 the resulting insn isn't likely to be recognized anyway. */
2574 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2576 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2577 SET_DEST (PATTERN (i3)))
2578 && next_active_insn (i2) == i3)
2580 rtx p2 = PATTERN (i2);
2582 /* Make sure that the destination of I3,
2583 which we are going to substitute into one output of I2,
2584 is not used within another output of I2. We must avoid making this:
2585 (parallel [(set (mem (reg 69)) ...)
2586 (set (reg 69) ...)])
2587 which is not well-defined as to order of actions.
2588 (Besides, reload can't handle output reloads for this.)
2590 The problem can also happen if the dest of I3 is a memory ref,
2591 if another dest in I2 is an indirect memory ref. */
2592 for (i = 0; i < XVECLEN (p2, 0); i++)
2593 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2594 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2595 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2596 SET_DEST (XVECEXP (p2, 0, i))))
2597 break;
2599 if (i == XVECLEN (p2, 0))
2600 for (i = 0; i < XVECLEN (p2, 0); i++)
2601 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2602 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2604 combine_merges++;
2606 subst_insn = i3;
2607 subst_low_luid = DF_INSN_LUID (i2);
2609 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2610 i2src = SET_SRC (XVECEXP (p2, 0, i));
2611 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2612 i2dest_killed = dead_or_set_p (i2, i2dest);
2614 /* Replace the dest in I2 with our dest and make the resulting
2615 insn the new pattern for I3. Then skip to where we validate
2616 the pattern. Everything was set up above. */
2617 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2618 newpat = p2;
2619 i3_subst_into_i2 = 1;
2620 goto validate_replacement;
2624 /* If I2 is setting a pseudo to a constant and I3 is setting some
2625 sub-part of it to another constant, merge them by making a new
2626 constant. */
2627 if (i1 == 0
2628 && (temp = single_set (i2)) != 0
2629 && CONST_SCALAR_INT_P (SET_SRC (temp))
2630 && GET_CODE (PATTERN (i3)) == SET
2631 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2632 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2634 rtx dest = SET_DEST (PATTERN (i3));
2635 int offset = -1;
2636 int width = 0;
2638 if (GET_CODE (dest) == ZERO_EXTRACT)
2640 if (CONST_INT_P (XEXP (dest, 1))
2641 && CONST_INT_P (XEXP (dest, 2)))
2643 width = INTVAL (XEXP (dest, 1));
2644 offset = INTVAL (XEXP (dest, 2));
2645 dest = XEXP (dest, 0);
2646 if (BITS_BIG_ENDIAN)
2647 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2650 else
2652 if (GET_CODE (dest) == STRICT_LOW_PART)
2653 dest = XEXP (dest, 0);
2654 width = GET_MODE_PRECISION (GET_MODE (dest));
2655 offset = 0;
2658 if (offset >= 0)
2660 /* If this is the low part, we're done. */
2661 if (subreg_lowpart_p (dest))
2663 /* Handle the case where inner is twice the size of outer. */
2664 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2665 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2666 offset += GET_MODE_PRECISION (GET_MODE (dest));
2667 /* Otherwise give up for now. */
2668 else
2669 offset = -1;
2672 if (offset >= 0
2673 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2674 <= HOST_BITS_PER_DOUBLE_INT))
2676 double_int m, o, i;
2677 rtx inner = SET_SRC (PATTERN (i3));
2678 rtx outer = SET_SRC (temp);
2680 o = rtx_to_double_int (outer);
2681 i = rtx_to_double_int (inner);
2683 m = double_int::mask (width);
2684 i &= m;
2685 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2686 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2687 o = o.and_not (m) | i;
2689 combine_merges++;
2690 subst_insn = i3;
2691 subst_low_luid = DF_INSN_LUID (i2);
2692 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2693 i2dest = SET_DEST (temp);
2694 i2dest_killed = dead_or_set_p (i2, i2dest);
2696 /* Replace the source in I2 with the new constant and make the
2697 resulting insn the new pattern for I3. Then skip to where we
2698 validate the pattern. Everything was set up above. */
2699 SUBST (SET_SRC (temp),
2700 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2702 newpat = PATTERN (i2);
2704 /* The dest of I3 has been replaced with the dest of I2. */
2705 changed_i3_dest = 1;
2706 goto validate_replacement;
2710 #ifndef HAVE_cc0
2711 /* If we have no I1 and I2 looks like:
2712 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2713 (set Y OP)])
2714 make up a dummy I1 that is
2715 (set Y OP)
2716 and change I2 to be
2717 (set (reg:CC X) (compare:CC Y (const_int 0)))
2719 (We can ignore any trailing CLOBBERs.)
2721 This undoes a previous combination and allows us to match a branch-and-
2722 decrement insn. */
2724 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2725 && XVECLEN (PATTERN (i2), 0) >= 2
2726 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2727 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2728 == MODE_CC)
2729 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2730 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2731 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2732 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2733 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2734 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2736 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2737 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2738 break;
2740 if (i == 1)
2742 /* We make I1 with the same INSN_UID as I2. This gives it
2743 the same DF_INSN_LUID for value tracking. Our fake I1 will
2744 never appear in the insn stream so giving it the same INSN_UID
2745 as I2 will not cause a problem. */
2747 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2748 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2749 INSN_LOCATION (i2), -1, NULL_RTX);
2751 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2752 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2753 SET_DEST (PATTERN (i1)));
2754 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2757 #endif
2759 /* Verify that I2 and I1 are valid for combining. */
2760 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2761 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2762 &i1dest, &i1src))
2763 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2764 &i0dest, &i0src)))
2766 undo_all ();
2767 return 0;
2770 /* Record whether I2DEST is used in I2SRC and similarly for the other
2771 cases. Knowing this will help in register status updating below. */
2772 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2773 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2774 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2775 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2776 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2777 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2778 i2dest_killed = dead_or_set_p (i2, i2dest);
2779 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2780 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2782 /* For the earlier insns, determine which of the subsequent ones they
2783 feed. */
2784 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2785 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2786 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2787 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2788 && reg_overlap_mentioned_p (i0dest, i2src))));
2790 /* Ensure that I3's pattern can be the destination of combines. */
2791 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2792 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2793 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2794 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2795 &i3dest_killed))
2797 undo_all ();
2798 return 0;
2801 /* See if any of the insns is a MULT operation. Unless one is, we will
2802 reject a combination that is, since it must be slower. Be conservative
2803 here. */
2804 if (GET_CODE (i2src) == MULT
2805 || (i1 != 0 && GET_CODE (i1src) == MULT)
2806 || (i0 != 0 && GET_CODE (i0src) == MULT)
2807 || (GET_CODE (PATTERN (i3)) == SET
2808 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2809 have_mult = 1;
2811 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2812 We used to do this EXCEPT in one case: I3 has a post-inc in an
2813 output operand. However, that exception can give rise to insns like
2814 mov r3,(r3)+
2815 which is a famous insn on the PDP-11 where the value of r3 used as the
2816 source was model-dependent. Avoid this sort of thing. */
2818 #if 0
2819 if (!(GET_CODE (PATTERN (i3)) == SET
2820 && REG_P (SET_SRC (PATTERN (i3)))
2821 && MEM_P (SET_DEST (PATTERN (i3)))
2822 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2823 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2824 /* It's not the exception. */
2825 #endif
2826 #ifdef AUTO_INC_DEC
2828 rtx link;
2829 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2830 if (REG_NOTE_KIND (link) == REG_INC
2831 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2832 || (i1 != 0
2833 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2835 undo_all ();
2836 return 0;
2839 #endif
2841 /* See if the SETs in I1 or I2 need to be kept around in the merged
2842 instruction: whenever the value set there is still needed past I3.
2843 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2845 For the SET in I1, we have two cases: if I1 and I2 independently feed
2846 into I3, the set in I1 needs to be kept around unless I1DEST dies
2847 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2848 in I1 needs to be kept around unless I1DEST dies or is set in either
2849 I2 or I3. The same considerations apply to I0. */
2851 added_sets_2 = !dead_or_set_p (i3, i2dest);
2853 if (i1)
2854 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2855 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2856 else
2857 added_sets_1 = 0;
2859 if (i0)
2860 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2861 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
2862 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
2863 && dead_or_set_p (i2, i0dest)));
2864 else
2865 added_sets_0 = 0;
2867 /* We are about to copy insns for the case where they need to be kept
2868 around. Check that they can be copied in the merged instruction. */
2870 if (targetm.cannot_copy_insn_p
2871 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2872 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2873 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2875 undo_all ();
2876 return 0;
2879 /* If the set in I2 needs to be kept around, we must make a copy of
2880 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2881 PATTERN (I2), we are only substituting for the original I1DEST, not into
2882 an already-substituted copy. This also prevents making self-referential
2883 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2884 I2DEST. */
2886 if (added_sets_2)
2888 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2889 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2890 else
2891 i2pat = copy_rtx (PATTERN (i2));
2894 if (added_sets_1)
2896 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2897 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2898 else
2899 i1pat = copy_rtx (PATTERN (i1));
2902 if (added_sets_0)
2904 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2905 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2906 else
2907 i0pat = copy_rtx (PATTERN (i0));
2910 combine_merges++;
2912 /* Substitute in the latest insn for the regs set by the earlier ones. */
2914 maxreg = max_reg_num ();
2916 subst_insn = i3;
2918 #ifndef HAVE_cc0
2919 /* Many machines that don't use CC0 have insns that can both perform an
2920 arithmetic operation and set the condition code. These operations will
2921 be represented as a PARALLEL with the first element of the vector
2922 being a COMPARE of an arithmetic operation with the constant zero.
2923 The second element of the vector will set some pseudo to the result
2924 of the same arithmetic operation. If we simplify the COMPARE, we won't
2925 match such a pattern and so will generate an extra insn. Here we test
2926 for this case, where both the comparison and the operation result are
2927 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2928 I2SRC. Later we will make the PARALLEL that contains I2. */
2930 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2931 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2932 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2933 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2935 rtx newpat_dest;
2936 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2937 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2938 enum machine_mode compare_mode, orig_compare_mode;
2939 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2941 newpat = PATTERN (i3);
2942 newpat_dest = SET_DEST (newpat);
2943 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2945 if (undobuf.other_insn == 0
2946 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2947 &cc_use_insn)))
2949 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2950 compare_code = simplify_compare_const (compare_code,
2951 op0, &op1);
2952 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2955 /* Do the rest only if op1 is const0_rtx, which may be the
2956 result of simplification. */
2957 if (op1 == const0_rtx)
2959 /* If a single use of the CC is found, prepare to modify it
2960 when SELECT_CC_MODE returns a new CC-class mode, or when
2961 the above simplify_compare_const() returned a new comparison
2962 operator. undobuf.other_insn is assigned the CC use insn
2963 when modifying it. */
2964 if (cc_use_loc)
2966 #ifdef SELECT_CC_MODE
2967 enum machine_mode new_mode
2968 = SELECT_CC_MODE (compare_code, op0, op1);
2969 if (new_mode != orig_compare_mode
2970 && can_change_dest_mode (SET_DEST (newpat),
2971 added_sets_2, new_mode))
2973 unsigned int regno = REGNO (newpat_dest);
2974 compare_mode = new_mode;
2975 if (regno < FIRST_PSEUDO_REGISTER)
2976 newpat_dest = gen_rtx_REG (compare_mode, regno);
2977 else
2979 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2980 newpat_dest = regno_reg_rtx[regno];
2983 #endif
2984 /* Cases for modifying the CC-using comparison. */
2985 if (compare_code != orig_compare_code
2986 /* ??? Do we need to verify the zero rtx? */
2987 && XEXP (*cc_use_loc, 1) == const0_rtx)
2989 /* Replace cc_use_loc with entire new RTX. */
2990 SUBST (*cc_use_loc,
2991 gen_rtx_fmt_ee (compare_code, compare_mode,
2992 newpat_dest, const0_rtx));
2993 undobuf.other_insn = cc_use_insn;
2995 else if (compare_mode != orig_compare_mode)
2997 /* Just replace the CC reg with a new mode. */
2998 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
2999 undobuf.other_insn = cc_use_insn;
3003 /* Now we modify the current newpat:
3004 First, SET_DEST(newpat) is updated if the CC mode has been
3005 altered. For targets without SELECT_CC_MODE, this should be
3006 optimized away. */
3007 if (compare_mode != orig_compare_mode)
3008 SUBST (SET_DEST (newpat), newpat_dest);
3009 /* This is always done to propagate i2src into newpat. */
3010 SUBST (SET_SRC (newpat),
3011 gen_rtx_COMPARE (compare_mode, op0, op1));
3012 /* Create new version of i2pat if needed; the below PARALLEL
3013 creation needs this to work correctly. */
3014 if (! rtx_equal_p (i2src, op0))
3015 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3016 i2_is_used = 1;
3019 #endif
3021 if (i2_is_used == 0)
3023 /* It is possible that the source of I2 or I1 may be performing
3024 an unneeded operation, such as a ZERO_EXTEND of something
3025 that is known to have the high part zero. Handle that case
3026 by letting subst look at the inner insns.
3028 Another way to do this would be to have a function that tries
3029 to simplify a single insn instead of merging two or more
3030 insns. We don't do this because of the potential of infinite
3031 loops and because of the potential extra memory required.
3032 However, doing it the way we are is a bit of a kludge and
3033 doesn't catch all cases.
3035 But only do this if -fexpensive-optimizations since it slows
3036 things down and doesn't usually win.
3038 This is not done in the COMPARE case above because the
3039 unmodified I2PAT is used in the PARALLEL and so a pattern
3040 with a modified I2SRC would not match. */
3042 if (flag_expensive_optimizations)
3044 /* Pass pc_rtx so no substitutions are done, just
3045 simplifications. */
3046 if (i1)
3048 subst_low_luid = DF_INSN_LUID (i1);
3049 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3052 subst_low_luid = DF_INSN_LUID (i2);
3053 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3056 n_occurrences = 0; /* `subst' counts here */
3057 subst_low_luid = DF_INSN_LUID (i2);
3059 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3060 copy of I2SRC each time we substitute it, in order to avoid creating
3061 self-referential RTL when we will be substituting I1SRC for I1DEST
3062 later. Likewise if I0 feeds into I2, either directly or indirectly
3063 through I1, and I0DEST is in I0SRC. */
3064 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3065 (i1_feeds_i2_n && i1dest_in_i1src)
3066 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3067 && i0dest_in_i0src));
3068 substed_i2 = 1;
3070 /* Record whether I2's body now appears within I3's body. */
3071 i2_is_used = n_occurrences;
3074 /* If we already got a failure, don't try to do more. Otherwise, try to
3075 substitute I1 if we have it. */
3077 if (i1 && GET_CODE (newpat) != CLOBBER)
3079 /* Check that an autoincrement side-effect on I1 has not been lost.
3080 This happens if I1DEST is mentioned in I2 and dies there, and
3081 has disappeared from the new pattern. */
3082 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3083 && i1_feeds_i2_n
3084 && dead_or_set_p (i2, i1dest)
3085 && !reg_overlap_mentioned_p (i1dest, newpat))
3086 /* Before we can do this substitution, we must redo the test done
3087 above (see detailed comments there) that ensures I1DEST isn't
3088 mentioned in any SETs in NEWPAT that are field assignments. */
3089 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3090 0, 0, 0))
3092 undo_all ();
3093 return 0;
3096 n_occurrences = 0;
3097 subst_low_luid = DF_INSN_LUID (i1);
3099 /* If the following substitution will modify I1SRC, make a copy of it
3100 for the case where it is substituted for I1DEST in I2PAT later. */
3101 if (added_sets_2 && i1_feeds_i2_n)
3102 i1src_copy = copy_rtx (i1src);
3104 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3105 copy of I1SRC each time we substitute it, in order to avoid creating
3106 self-referential RTL when we will be substituting I0SRC for I0DEST
3107 later. */
3108 newpat = subst (newpat, i1dest, i1src, 0, 0,
3109 i0_feeds_i1_n && i0dest_in_i0src);
3110 substed_i1 = 1;
3112 /* Record whether I1's body now appears within I3's body. */
3113 i1_is_used = n_occurrences;
3116 /* Likewise for I0 if we have it. */
3118 if (i0 && GET_CODE (newpat) != CLOBBER)
3120 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3121 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3122 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3123 && !reg_overlap_mentioned_p (i0dest, newpat))
3124 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3125 0, 0, 0))
3127 undo_all ();
3128 return 0;
3131 /* If the following substitution will modify I0SRC, make a copy of it
3132 for the case where it is substituted for I0DEST in I1PAT later. */
3133 if (added_sets_1 && i0_feeds_i1_n)
3134 i0src_copy = copy_rtx (i0src);
3135 /* And a copy for I0DEST in I2PAT substitution. */
3136 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3137 || (i0_feeds_i2_n)))
3138 i0src_copy2 = copy_rtx (i0src);
3140 n_occurrences = 0;
3141 subst_low_luid = DF_INSN_LUID (i0);
3142 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3143 substed_i0 = 1;
3146 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3147 to count all the ways that I2SRC and I1SRC can be used. */
3148 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3149 && i2_is_used + added_sets_2 > 1)
3150 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3151 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3152 > 1))
3153 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3154 && (n_occurrences + added_sets_0
3155 + (added_sets_1 && i0_feeds_i1_n)
3156 + (added_sets_2 && i0_feeds_i2_n)
3157 > 1))
3158 /* Fail if we tried to make a new register. */
3159 || max_reg_num () != maxreg
3160 /* Fail if we couldn't do something and have a CLOBBER. */
3161 || GET_CODE (newpat) == CLOBBER
3162 /* Fail if this new pattern is a MULT and we didn't have one before
3163 at the outer level. */
3164 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3165 && ! have_mult))
3167 undo_all ();
3168 return 0;
3171 /* If the actions of the earlier insns must be kept
3172 in addition to substituting them into the latest one,
3173 we must make a new PARALLEL for the latest insn
3174 to hold additional the SETs. */
3176 if (added_sets_0 || added_sets_1 || added_sets_2)
3178 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3179 combine_extras++;
3181 if (GET_CODE (newpat) == PARALLEL)
3183 rtvec old = XVEC (newpat, 0);
3184 total_sets = XVECLEN (newpat, 0) + extra_sets;
3185 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3186 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3187 sizeof (old->elem[0]) * old->num_elem);
3189 else
3191 rtx old = newpat;
3192 total_sets = 1 + extra_sets;
3193 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3194 XVECEXP (newpat, 0, 0) = old;
3197 if (added_sets_0)
3198 XVECEXP (newpat, 0, --total_sets) = i0pat;
3200 if (added_sets_1)
3202 rtx t = i1pat;
3203 if (i0_feeds_i1_n)
3204 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3206 XVECEXP (newpat, 0, --total_sets) = t;
3208 if (added_sets_2)
3210 rtx t = i2pat;
3211 if (i1_feeds_i2_n)
3212 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3213 i0_feeds_i1_n && i0dest_in_i0src);
3214 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3215 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3217 XVECEXP (newpat, 0, --total_sets) = t;
3221 validate_replacement:
3223 /* Note which hard regs this insn has as inputs. */
3224 mark_used_regs_combine (newpat);
3226 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3227 consider splitting this pattern, we might need these clobbers. */
3228 if (i1 && GET_CODE (newpat) == PARALLEL
3229 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3231 int len = XVECLEN (newpat, 0);
3233 newpat_vec_with_clobbers = rtvec_alloc (len);
3234 for (i = 0; i < len; i++)
3235 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3238 /* Is the result of combination a valid instruction? */
3239 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3241 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3242 the second SET's destination is a register that is unused and isn't
3243 marked as an instruction that might trap in an EH region. In that case,
3244 we just need the first SET. This can occur when simplifying a divmod
3245 insn. We *must* test for this case here because the code below that
3246 splits two independent SETs doesn't handle this case correctly when it
3247 updates the register status.
3249 It's pointless doing this if we originally had two sets, one from
3250 i3, and one from i2. Combining then splitting the parallel results
3251 in the original i2 again plus an invalid insn (which we delete).
3252 The net effect is only to move instructions around, which makes
3253 debug info less accurate.
3255 Also check the case where the first SET's destination is unused.
3256 That would not cause incorrect code, but does cause an unneeded
3257 insn to remain. */
3259 if (insn_code_number < 0
3260 && !(added_sets_2 && i1 == 0)
3261 && GET_CODE (newpat) == PARALLEL
3262 && XVECLEN (newpat, 0) == 2
3263 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3264 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3265 && asm_noperands (newpat) < 0)
3267 rtx set0 = XVECEXP (newpat, 0, 0);
3268 rtx set1 = XVECEXP (newpat, 0, 1);
3270 if (((REG_P (SET_DEST (set1))
3271 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3272 || (GET_CODE (SET_DEST (set1)) == SUBREG
3273 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3274 && insn_nothrow_p (i3)
3275 && !side_effects_p (SET_SRC (set1)))
3277 newpat = set0;
3278 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3281 else if (((REG_P (SET_DEST (set0))
3282 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3283 || (GET_CODE (SET_DEST (set0)) == SUBREG
3284 && find_reg_note (i3, REG_UNUSED,
3285 SUBREG_REG (SET_DEST (set0)))))
3286 && insn_nothrow_p (i3)
3287 && !side_effects_p (SET_SRC (set0)))
3289 newpat = set1;
3290 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3292 if (insn_code_number >= 0)
3293 changed_i3_dest = 1;
3297 /* If we were combining three insns and the result is a simple SET
3298 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3299 insns. There are two ways to do this. It can be split using a
3300 machine-specific method (like when you have an addition of a large
3301 constant) or by combine in the function find_split_point. */
3303 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3304 && asm_noperands (newpat) < 0)
3306 rtx parallel, m_split, *split;
3308 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3309 use I2DEST as a scratch register will help. In the latter case,
3310 convert I2DEST to the mode of the source of NEWPAT if we can. */
3312 m_split = combine_split_insns (newpat, i3);
3314 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3315 inputs of NEWPAT. */
3317 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3318 possible to try that as a scratch reg. This would require adding
3319 more code to make it work though. */
3321 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3323 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3325 /* First try to split using the original register as a
3326 scratch register. */
3327 parallel = gen_rtx_PARALLEL (VOIDmode,
3328 gen_rtvec (2, newpat,
3329 gen_rtx_CLOBBER (VOIDmode,
3330 i2dest)));
3331 m_split = combine_split_insns (parallel, i3);
3333 /* If that didn't work, try changing the mode of I2DEST if
3334 we can. */
3335 if (m_split == 0
3336 && new_mode != GET_MODE (i2dest)
3337 && new_mode != VOIDmode
3338 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3340 enum machine_mode old_mode = GET_MODE (i2dest);
3341 rtx ni2dest;
3343 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3344 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3345 else
3347 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3348 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3351 parallel = (gen_rtx_PARALLEL
3352 (VOIDmode,
3353 gen_rtvec (2, newpat,
3354 gen_rtx_CLOBBER (VOIDmode,
3355 ni2dest))));
3356 m_split = combine_split_insns (parallel, i3);
3358 if (m_split == 0
3359 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3361 struct undo *buf;
3363 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3364 buf = undobuf.undos;
3365 undobuf.undos = buf->next;
3366 buf->next = undobuf.frees;
3367 undobuf.frees = buf;
3371 i2scratch = m_split != 0;
3374 /* If recog_for_combine has discarded clobbers, try to use them
3375 again for the split. */
3376 if (m_split == 0 && newpat_vec_with_clobbers)
3378 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3379 m_split = combine_split_insns (parallel, i3);
3382 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3384 m_split = PATTERN (m_split);
3385 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3386 if (insn_code_number >= 0)
3387 newpat = m_split;
3389 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3390 && (next_nonnote_nondebug_insn (i2) == i3
3391 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3393 rtx i2set, i3set;
3394 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3395 newi2pat = PATTERN (m_split);
3397 i3set = single_set (NEXT_INSN (m_split));
3398 i2set = single_set (m_split);
3400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3402 /* If I2 or I3 has multiple SETs, we won't know how to track
3403 register status, so don't use these insns. If I2's destination
3404 is used between I2 and I3, we also can't use these insns. */
3406 if (i2_code_number >= 0 && i2set && i3set
3407 && (next_nonnote_nondebug_insn (i2) == i3
3408 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3409 insn_code_number = recog_for_combine (&newi3pat, i3,
3410 &new_i3_notes);
3411 if (insn_code_number >= 0)
3412 newpat = newi3pat;
3414 /* It is possible that both insns now set the destination of I3.
3415 If so, we must show an extra use of it. */
3417 if (insn_code_number >= 0)
3419 rtx new_i3_dest = SET_DEST (i3set);
3420 rtx new_i2_dest = SET_DEST (i2set);
3422 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3423 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3424 || GET_CODE (new_i3_dest) == SUBREG)
3425 new_i3_dest = XEXP (new_i3_dest, 0);
3427 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3428 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3429 || GET_CODE (new_i2_dest) == SUBREG)
3430 new_i2_dest = XEXP (new_i2_dest, 0);
3432 if (REG_P (new_i3_dest)
3433 && REG_P (new_i2_dest)
3434 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3435 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3439 /* If we can split it and use I2DEST, go ahead and see if that
3440 helps things be recognized. Verify that none of the registers
3441 are set between I2 and I3. */
3442 if (insn_code_number < 0
3443 && (split = find_split_point (&newpat, i3, false)) != 0
3444 #ifdef HAVE_cc0
3445 && REG_P (i2dest)
3446 #endif
3447 /* We need I2DEST in the proper mode. If it is a hard register
3448 or the only use of a pseudo, we can change its mode.
3449 Make sure we don't change a hard register to have a mode that
3450 isn't valid for it, or change the number of registers. */
3451 && (GET_MODE (*split) == GET_MODE (i2dest)
3452 || GET_MODE (*split) == VOIDmode
3453 || can_change_dest_mode (i2dest, added_sets_2,
3454 GET_MODE (*split)))
3455 && (next_nonnote_nondebug_insn (i2) == i3
3456 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3457 /* We can't overwrite I2DEST if its value is still used by
3458 NEWPAT. */
3459 && ! reg_referenced_p (i2dest, newpat))
3461 rtx newdest = i2dest;
3462 enum rtx_code split_code = GET_CODE (*split);
3463 enum machine_mode split_mode = GET_MODE (*split);
3464 bool subst_done = false;
3465 newi2pat = NULL_RTX;
3467 i2scratch = true;
3469 /* *SPLIT may be part of I2SRC, so make sure we have the
3470 original expression around for later debug processing.
3471 We should not need I2SRC any more in other cases. */
3472 if (MAY_HAVE_DEBUG_INSNS)
3473 i2src = copy_rtx (i2src);
3474 else
3475 i2src = NULL;
3477 /* Get NEWDEST as a register in the proper mode. We have already
3478 validated that we can do this. */
3479 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3481 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3482 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3483 else
3485 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3486 newdest = regno_reg_rtx[REGNO (i2dest)];
3490 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3491 an ASHIFT. This can occur if it was inside a PLUS and hence
3492 appeared to be a memory address. This is a kludge. */
3493 if (split_code == MULT
3494 && CONST_INT_P (XEXP (*split, 1))
3495 && INTVAL (XEXP (*split, 1)) > 0
3496 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3498 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3499 XEXP (*split, 0), GEN_INT (i)));
3500 /* Update split_code because we may not have a multiply
3501 anymore. */
3502 split_code = GET_CODE (*split);
3505 #ifdef INSN_SCHEDULING
3506 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3507 be written as a ZERO_EXTEND. */
3508 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3510 #ifdef LOAD_EXTEND_OP
3511 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3512 what it really is. */
3513 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3514 == SIGN_EXTEND)
3515 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3516 SUBREG_REG (*split)));
3517 else
3518 #endif
3519 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3522 #endif
3524 /* Attempt to split binary operators using arithmetic identities. */
3525 if (BINARY_P (SET_SRC (newpat))
3526 && split_mode == GET_MODE (SET_SRC (newpat))
3527 && ! side_effects_p (SET_SRC (newpat)))
3529 rtx setsrc = SET_SRC (newpat);
3530 enum machine_mode mode = GET_MODE (setsrc);
3531 enum rtx_code code = GET_CODE (setsrc);
3532 rtx src_op0 = XEXP (setsrc, 0);
3533 rtx src_op1 = XEXP (setsrc, 1);
3535 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3536 if (rtx_equal_p (src_op0, src_op1))
3538 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3539 SUBST (XEXP (setsrc, 0), newdest);
3540 SUBST (XEXP (setsrc, 1), newdest);
3541 subst_done = true;
3543 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3544 else if ((code == PLUS || code == MULT)
3545 && GET_CODE (src_op0) == code
3546 && GET_CODE (XEXP (src_op0, 0)) == code
3547 && (INTEGRAL_MODE_P (mode)
3548 || (FLOAT_MODE_P (mode)
3549 && flag_unsafe_math_optimizations)))
3551 rtx p = XEXP (XEXP (src_op0, 0), 0);
3552 rtx q = XEXP (XEXP (src_op0, 0), 1);
3553 rtx r = XEXP (src_op0, 1);
3554 rtx s = src_op1;
3556 /* Split both "((X op Y) op X) op Y" and
3557 "((X op Y) op Y) op X" as "T op T" where T is
3558 "X op Y". */
3559 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3560 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3562 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3563 XEXP (src_op0, 0));
3564 SUBST (XEXP (setsrc, 0), newdest);
3565 SUBST (XEXP (setsrc, 1), newdest);
3566 subst_done = true;
3568 /* Split "((X op X) op Y) op Y)" as "T op T" where
3569 T is "X op Y". */
3570 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3572 rtx tmp = simplify_gen_binary (code, mode, p, r);
3573 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3574 SUBST (XEXP (setsrc, 0), newdest);
3575 SUBST (XEXP (setsrc, 1), newdest);
3576 subst_done = true;
3581 if (!subst_done)
3583 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3584 SUBST (*split, newdest);
3587 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3589 /* recog_for_combine might have added CLOBBERs to newi2pat.
3590 Make sure NEWPAT does not depend on the clobbered regs. */
3591 if (GET_CODE (newi2pat) == PARALLEL)
3592 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3593 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3595 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3596 if (reg_overlap_mentioned_p (reg, newpat))
3598 undo_all ();
3599 return 0;
3603 /* If the split point was a MULT and we didn't have one before,
3604 don't use one now. */
3605 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3606 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3610 /* Check for a case where we loaded from memory in a narrow mode and
3611 then sign extended it, but we need both registers. In that case,
3612 we have a PARALLEL with both loads from the same memory location.
3613 We can split this into a load from memory followed by a register-register
3614 copy. This saves at least one insn, more if register allocation can
3615 eliminate the copy.
3617 We cannot do this if the destination of the first assignment is a
3618 condition code register or cc0. We eliminate this case by making sure
3619 the SET_DEST and SET_SRC have the same mode.
3621 We cannot do this if the destination of the second assignment is
3622 a register that we have already assumed is zero-extended. Similarly
3623 for a SUBREG of such a register. */
3625 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3626 && GET_CODE (newpat) == PARALLEL
3627 && XVECLEN (newpat, 0) == 2
3628 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3629 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3630 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3631 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3632 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3633 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3634 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3635 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3636 DF_INSN_LUID (i2))
3637 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3639 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3640 (REG_P (temp)
3641 && reg_stat[REGNO (temp)].nonzero_bits != 0
3642 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3643 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3644 && (reg_stat[REGNO (temp)].nonzero_bits
3645 != GET_MODE_MASK (word_mode))))
3646 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3647 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3648 (REG_P (temp)
3649 && reg_stat[REGNO (temp)].nonzero_bits != 0
3650 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3651 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3652 && (reg_stat[REGNO (temp)].nonzero_bits
3653 != GET_MODE_MASK (word_mode)))))
3654 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3655 SET_SRC (XVECEXP (newpat, 0, 1)))
3656 && ! find_reg_note (i3, REG_UNUSED,
3657 SET_DEST (XVECEXP (newpat, 0, 0))))
3659 rtx ni2dest;
3661 newi2pat = XVECEXP (newpat, 0, 0);
3662 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3663 newpat = XVECEXP (newpat, 0, 1);
3664 SUBST (SET_SRC (newpat),
3665 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3666 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3668 if (i2_code_number >= 0)
3669 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3671 if (insn_code_number >= 0)
3672 swap_i2i3 = 1;
3675 /* Similarly, check for a case where we have a PARALLEL of two independent
3676 SETs but we started with three insns. In this case, we can do the sets
3677 as two separate insns. This case occurs when some SET allows two
3678 other insns to combine, but the destination of that SET is still live. */
3680 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3681 && GET_CODE (newpat) == PARALLEL
3682 && XVECLEN (newpat, 0) == 2
3683 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3684 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3685 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3686 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3687 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3689 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3690 XVECEXP (newpat, 0, 0))
3691 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3692 XVECEXP (newpat, 0, 1))
3693 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3694 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3696 /* Normally, it doesn't matter which of the two is done first,
3697 but the one that references cc0 can't be the second, and
3698 one which uses any regs/memory set in between i2 and i3 can't
3699 be first. */
3700 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3701 DF_INSN_LUID (i2))
3702 #ifdef HAVE_cc0
3703 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3704 #endif
3707 newi2pat = XVECEXP (newpat, 0, 1);
3708 newpat = XVECEXP (newpat, 0, 0);
3710 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3711 DF_INSN_LUID (i2))
3712 #ifdef HAVE_cc0
3713 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3714 #endif
3717 newi2pat = XVECEXP (newpat, 0, 0);
3718 newpat = XVECEXP (newpat, 0, 1);
3720 else
3722 undo_all ();
3723 return 0;
3726 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3728 if (i2_code_number >= 0)
3730 /* recog_for_combine might have added CLOBBERs to newi2pat.
3731 Make sure NEWPAT does not depend on the clobbered regs. */
3732 if (GET_CODE (newi2pat) == PARALLEL)
3734 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3735 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3737 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3738 if (reg_overlap_mentioned_p (reg, newpat))
3740 undo_all ();
3741 return 0;
3746 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3750 /* If it still isn't recognized, fail and change things back the way they
3751 were. */
3752 if ((insn_code_number < 0
3753 /* Is the result a reasonable ASM_OPERANDS? */
3754 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3756 undo_all ();
3757 return 0;
3760 /* If we had to change another insn, make sure it is valid also. */
3761 if (undobuf.other_insn)
3763 CLEAR_HARD_REG_SET (newpat_used_regs);
3765 other_pat = PATTERN (undobuf.other_insn);
3766 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3767 &new_other_notes);
3769 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3771 undo_all ();
3772 return 0;
3776 #ifdef HAVE_cc0
3777 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3778 they are adjacent to each other or not. */
3780 rtx p = prev_nonnote_insn (i3);
3781 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3782 && sets_cc0_p (newi2pat))
3784 undo_all ();
3785 return 0;
3788 #endif
3790 /* Only allow this combination if insn_rtx_costs reports that the
3791 replacement instructions are cheaper than the originals. */
3792 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3794 undo_all ();
3795 return 0;
3798 if (MAY_HAVE_DEBUG_INSNS)
3800 struct undo *undo;
3802 for (undo = undobuf.undos; undo; undo = undo->next)
3803 if (undo->kind == UNDO_MODE)
3805 rtx reg = *undo->where.r;
3806 enum machine_mode new_mode = GET_MODE (reg);
3807 enum machine_mode old_mode = undo->old_contents.m;
3809 /* Temporarily revert mode back. */
3810 adjust_reg_mode (reg, old_mode);
3812 if (reg == i2dest && i2scratch)
3814 /* If we used i2dest as a scratch register with a
3815 different mode, substitute it for the original
3816 i2src while its original mode is temporarily
3817 restored, and then clear i2scratch so that we don't
3818 do it again later. */
3819 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3820 this_basic_block);
3821 i2scratch = false;
3822 /* Put back the new mode. */
3823 adjust_reg_mode (reg, new_mode);
3825 else
3827 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3828 rtx first, last;
3830 if (reg == i2dest)
3832 first = i2;
3833 last = last_combined_insn;
3835 else
3837 first = i3;
3838 last = undobuf.other_insn;
3839 gcc_assert (last);
3840 if (DF_INSN_LUID (last)
3841 < DF_INSN_LUID (last_combined_insn))
3842 last = last_combined_insn;
3845 /* We're dealing with a reg that changed mode but not
3846 meaning, so we want to turn it into a subreg for
3847 the new mode. However, because of REG sharing and
3848 because its mode had already changed, we have to do
3849 it in two steps. First, replace any debug uses of
3850 reg, with its original mode temporarily restored,
3851 with this copy we have created; then, replace the
3852 copy with the SUBREG of the original shared reg,
3853 once again changed to the new mode. */
3854 propagate_for_debug (first, last, reg, tempreg,
3855 this_basic_block);
3856 adjust_reg_mode (reg, new_mode);
3857 propagate_for_debug (first, last, tempreg,
3858 lowpart_subreg (old_mode, reg, new_mode),
3859 this_basic_block);
3864 /* If we will be able to accept this, we have made a
3865 change to the destination of I3. This requires us to
3866 do a few adjustments. */
3868 if (changed_i3_dest)
3870 PATTERN (i3) = newpat;
3871 adjust_for_new_dest (i3);
3874 /* We now know that we can do this combination. Merge the insns and
3875 update the status of registers and LOG_LINKS. */
3877 if (undobuf.other_insn)
3879 rtx note, next;
3881 PATTERN (undobuf.other_insn) = other_pat;
3883 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3884 are still valid. Then add any non-duplicate notes added by
3885 recog_for_combine. */
3886 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3888 next = XEXP (note, 1);
3890 if (REG_NOTE_KIND (note) == REG_UNUSED
3891 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3892 remove_note (undobuf.other_insn, note);
3895 distribute_notes (new_other_notes, undobuf.other_insn,
3896 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3897 NULL_RTX);
3900 if (swap_i2i3)
3902 rtx insn;
3903 struct insn_link *link;
3904 rtx ni2dest;
3906 /* I3 now uses what used to be its destination and which is now
3907 I2's destination. This requires us to do a few adjustments. */
3908 PATTERN (i3) = newpat;
3909 adjust_for_new_dest (i3);
3911 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3912 so we still will.
3914 However, some later insn might be using I2's dest and have
3915 a LOG_LINK pointing at I3. We must remove this link.
3916 The simplest way to remove the link is to point it at I1,
3917 which we know will be a NOTE. */
3919 /* newi2pat is usually a SET here; however, recog_for_combine might
3920 have added some clobbers. */
3921 if (GET_CODE (newi2pat) == PARALLEL)
3922 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3923 else
3924 ni2dest = SET_DEST (newi2pat);
3926 for (insn = NEXT_INSN (i3);
3927 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3928 || insn != BB_HEAD (this_basic_block->next_bb));
3929 insn = NEXT_INSN (insn))
3931 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3933 FOR_EACH_LOG_LINK (link, insn)
3934 if (link->insn == i3)
3935 link->insn = i1;
3937 break;
3943 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3944 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3945 rtx midnotes = 0;
3946 int from_luid;
3947 /* Compute which registers we expect to eliminate. newi2pat may be setting
3948 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3949 same as i3dest, in which case newi2pat may be setting i1dest. */
3950 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3951 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3952 || !i2dest_killed
3953 ? 0 : i2dest);
3954 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3955 || (newi2pat && reg_set_p (i1dest, newi2pat))
3956 || !i1dest_killed
3957 ? 0 : i1dest);
3958 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3959 || (newi2pat && reg_set_p (i0dest, newi2pat))
3960 || !i0dest_killed
3961 ? 0 : i0dest);
3963 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3964 clear them. */
3965 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3966 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3967 if (i1)
3968 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3969 if (i0)
3970 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3972 /* Ensure that we do not have something that should not be shared but
3973 occurs multiple times in the new insns. Check this by first
3974 resetting all the `used' flags and then copying anything is shared. */
3976 reset_used_flags (i3notes);
3977 reset_used_flags (i2notes);
3978 reset_used_flags (i1notes);
3979 reset_used_flags (i0notes);
3980 reset_used_flags (newpat);
3981 reset_used_flags (newi2pat);
3982 if (undobuf.other_insn)
3983 reset_used_flags (PATTERN (undobuf.other_insn));
3985 i3notes = copy_rtx_if_shared (i3notes);
3986 i2notes = copy_rtx_if_shared (i2notes);
3987 i1notes = copy_rtx_if_shared (i1notes);
3988 i0notes = copy_rtx_if_shared (i0notes);
3989 newpat = copy_rtx_if_shared (newpat);
3990 newi2pat = copy_rtx_if_shared (newi2pat);
3991 if (undobuf.other_insn)
3992 reset_used_flags (PATTERN (undobuf.other_insn));
3994 INSN_CODE (i3) = insn_code_number;
3995 PATTERN (i3) = newpat;
3997 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3999 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4001 reset_used_flags (call_usage);
4002 call_usage = copy_rtx (call_usage);
4004 if (substed_i2)
4006 /* I2SRC must still be meaningful at this point. Some splitting
4007 operations can invalidate I2SRC, but those operations do not
4008 apply to calls. */
4009 gcc_assert (i2src);
4010 replace_rtx (call_usage, i2dest, i2src);
4013 if (substed_i1)
4014 replace_rtx (call_usage, i1dest, i1src);
4015 if (substed_i0)
4016 replace_rtx (call_usage, i0dest, i0src);
4018 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4021 if (undobuf.other_insn)
4022 INSN_CODE (undobuf.other_insn) = other_code_number;
4024 /* We had one special case above where I2 had more than one set and
4025 we replaced a destination of one of those sets with the destination
4026 of I3. In that case, we have to update LOG_LINKS of insns later
4027 in this basic block. Note that this (expensive) case is rare.
4029 Also, in this case, we must pretend that all REG_NOTEs for I2
4030 actually came from I3, so that REG_UNUSED notes from I2 will be
4031 properly handled. */
4033 if (i3_subst_into_i2)
4035 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4036 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4037 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4038 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4039 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4040 && ! find_reg_note (i2, REG_UNUSED,
4041 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4042 for (temp = NEXT_INSN (i2);
4043 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4044 || BB_HEAD (this_basic_block) != temp);
4045 temp = NEXT_INSN (temp))
4046 if (temp != i3 && INSN_P (temp))
4047 FOR_EACH_LOG_LINK (link, temp)
4048 if (link->insn == i2)
4049 link->insn = i3;
4051 if (i3notes)
4053 rtx link = i3notes;
4054 while (XEXP (link, 1))
4055 link = XEXP (link, 1);
4056 XEXP (link, 1) = i2notes;
4058 else
4059 i3notes = i2notes;
4060 i2notes = 0;
4063 LOG_LINKS (i3) = NULL;
4064 REG_NOTES (i3) = 0;
4065 LOG_LINKS (i2) = NULL;
4066 REG_NOTES (i2) = 0;
4068 if (newi2pat)
4070 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4071 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4072 this_basic_block);
4073 INSN_CODE (i2) = i2_code_number;
4074 PATTERN (i2) = newi2pat;
4076 else
4078 if (MAY_HAVE_DEBUG_INSNS && i2src)
4079 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4080 this_basic_block);
4081 SET_INSN_DELETED (i2);
4084 if (i1)
4086 LOG_LINKS (i1) = NULL;
4087 REG_NOTES (i1) = 0;
4088 if (MAY_HAVE_DEBUG_INSNS)
4089 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4090 this_basic_block);
4091 SET_INSN_DELETED (i1);
4094 if (i0)
4096 LOG_LINKS (i0) = NULL;
4097 REG_NOTES (i0) = 0;
4098 if (MAY_HAVE_DEBUG_INSNS)
4099 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4100 this_basic_block);
4101 SET_INSN_DELETED (i0);
4104 /* Get death notes for everything that is now used in either I3 or
4105 I2 and used to die in a previous insn. If we built two new
4106 patterns, move from I1 to I2 then I2 to I3 so that we get the
4107 proper movement on registers that I2 modifies. */
4109 if (i0)
4110 from_luid = DF_INSN_LUID (i0);
4111 else if (i1)
4112 from_luid = DF_INSN_LUID (i1);
4113 else
4114 from_luid = DF_INSN_LUID (i2);
4115 if (newi2pat)
4116 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4117 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4119 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4120 if (i3notes)
4121 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4122 elim_i2, elim_i1, elim_i0);
4123 if (i2notes)
4124 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4125 elim_i2, elim_i1, elim_i0);
4126 if (i1notes)
4127 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4128 elim_i2, elim_i1, elim_i0);
4129 if (i0notes)
4130 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4131 elim_i2, elim_i1, elim_i0);
4132 if (midnotes)
4133 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4134 elim_i2, elim_i1, elim_i0);
4136 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4137 know these are REG_UNUSED and want them to go to the desired insn,
4138 so we always pass it as i3. */
4140 if (newi2pat && new_i2_notes)
4141 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4142 NULL_RTX);
4144 if (new_i3_notes)
4145 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4146 NULL_RTX);
4148 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4149 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4150 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4151 in that case, it might delete I2. Similarly for I2 and I1.
4152 Show an additional death due to the REG_DEAD note we make here. If
4153 we discard it in distribute_notes, we will decrement it again. */
4155 if (i3dest_killed)
4157 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4158 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4159 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, elim_i2,
4160 elim_i1, elim_i0);
4161 else
4162 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4163 elim_i2, elim_i1, elim_i0);
4166 if (i2dest_in_i2src)
4168 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4169 if (newi2pat && reg_set_p (i2dest, newi2pat))
4170 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4171 NULL_RTX, NULL_RTX);
4172 else
4173 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4174 NULL_RTX, NULL_RTX, NULL_RTX);
4177 if (i1dest_in_i1src)
4179 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4180 if (newi2pat && reg_set_p (i1dest, newi2pat))
4181 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4182 NULL_RTX, NULL_RTX);
4183 else
4184 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4185 NULL_RTX, NULL_RTX, NULL_RTX);
4188 if (i0dest_in_i0src)
4190 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4191 if (newi2pat && reg_set_p (i0dest, newi2pat))
4192 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4193 NULL_RTX, NULL_RTX);
4194 else
4195 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4196 NULL_RTX, NULL_RTX, NULL_RTX);
4199 distribute_links (i3links);
4200 distribute_links (i2links);
4201 distribute_links (i1links);
4202 distribute_links (i0links);
4204 if (REG_P (i2dest))
4206 struct insn_link *link;
4207 rtx i2_insn = 0, i2_val = 0, set;
4209 /* The insn that used to set this register doesn't exist, and
4210 this life of the register may not exist either. See if one of
4211 I3's links points to an insn that sets I2DEST. If it does,
4212 that is now the last known value for I2DEST. If we don't update
4213 this and I2 set the register to a value that depended on its old
4214 contents, we will get confused. If this insn is used, thing
4215 will be set correctly in combine_instructions. */
4216 FOR_EACH_LOG_LINK (link, i3)
4217 if ((set = single_set (link->insn)) != 0
4218 && rtx_equal_p (i2dest, SET_DEST (set)))
4219 i2_insn = link->insn, i2_val = SET_SRC (set);
4221 record_value_for_reg (i2dest, i2_insn, i2_val);
4223 /* If the reg formerly set in I2 died only once and that was in I3,
4224 zero its use count so it won't make `reload' do any work. */
4225 if (! added_sets_2
4226 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4227 && ! i2dest_in_i2src)
4228 INC_REG_N_SETS (REGNO (i2dest), -1);
4231 if (i1 && REG_P (i1dest))
4233 struct insn_link *link;
4234 rtx i1_insn = 0, i1_val = 0, set;
4236 FOR_EACH_LOG_LINK (link, i3)
4237 if ((set = single_set (link->insn)) != 0
4238 && rtx_equal_p (i1dest, SET_DEST (set)))
4239 i1_insn = link->insn, i1_val = SET_SRC (set);
4241 record_value_for_reg (i1dest, i1_insn, i1_val);
4243 if (! added_sets_1 && ! i1dest_in_i1src)
4244 INC_REG_N_SETS (REGNO (i1dest), -1);
4247 if (i0 && REG_P (i0dest))
4249 struct insn_link *link;
4250 rtx i0_insn = 0, i0_val = 0, set;
4252 FOR_EACH_LOG_LINK (link, i3)
4253 if ((set = single_set (link->insn)) != 0
4254 && rtx_equal_p (i0dest, SET_DEST (set)))
4255 i0_insn = link->insn, i0_val = SET_SRC (set);
4257 record_value_for_reg (i0dest, i0_insn, i0_val);
4259 if (! added_sets_0 && ! i0dest_in_i0src)
4260 INC_REG_N_SETS (REGNO (i0dest), -1);
4263 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4264 been made to this insn. The order of
4265 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4266 can affect nonzero_bits of newpat */
4267 if (newi2pat)
4268 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4269 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4272 if (undobuf.other_insn != NULL_RTX)
4274 if (dump_file)
4276 fprintf (dump_file, "modifying other_insn ");
4277 dump_insn_slim (dump_file, undobuf.other_insn);
4279 df_insn_rescan (undobuf.other_insn);
4282 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4284 if (dump_file)
4286 fprintf (dump_file, "modifying insn i1 ");
4287 dump_insn_slim (dump_file, i0);
4289 df_insn_rescan (i0);
4292 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4294 if (dump_file)
4296 fprintf (dump_file, "modifying insn i1 ");
4297 dump_insn_slim (dump_file, i1);
4299 df_insn_rescan (i1);
4302 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4304 if (dump_file)
4306 fprintf (dump_file, "modifying insn i2 ");
4307 dump_insn_slim (dump_file, i2);
4309 df_insn_rescan (i2);
4312 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4314 if (dump_file)
4316 fprintf (dump_file, "modifying insn i3 ");
4317 dump_insn_slim (dump_file, i3);
4319 df_insn_rescan (i3);
4322 /* Set new_direct_jump_p if a new return or simple jump instruction
4323 has been created. Adjust the CFG accordingly. */
4325 if (returnjump_p (i3) || any_uncondjump_p (i3))
4327 *new_direct_jump_p = 1;
4328 mark_jump_label (PATTERN (i3), i3, 0);
4329 update_cfg_for_uncondjump (i3);
4332 if (undobuf.other_insn != NULL_RTX
4333 && (returnjump_p (undobuf.other_insn)
4334 || any_uncondjump_p (undobuf.other_insn)))
4336 *new_direct_jump_p = 1;
4337 update_cfg_for_uncondjump (undobuf.other_insn);
4340 /* A noop might also need cleaning up of CFG, if it comes from the
4341 simplification of a jump. */
4342 if (JUMP_P (i3)
4343 && GET_CODE (newpat) == SET
4344 && SET_SRC (newpat) == pc_rtx
4345 && SET_DEST (newpat) == pc_rtx)
4347 *new_direct_jump_p = 1;
4348 update_cfg_for_uncondjump (i3);
4351 if (undobuf.other_insn != NULL_RTX
4352 && JUMP_P (undobuf.other_insn)
4353 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4354 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4355 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4357 *new_direct_jump_p = 1;
4358 update_cfg_for_uncondjump (undobuf.other_insn);
4361 combine_successes++;
4362 undo_commit ();
4364 if (added_links_insn
4365 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4366 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4367 return added_links_insn;
4368 else
4369 return newi2pat ? i2 : i3;
4372 /* Undo all the modifications recorded in undobuf. */
4374 static void
4375 undo_all (void)
4377 struct undo *undo, *next;
4379 for (undo = undobuf.undos; undo; undo = next)
4381 next = undo->next;
4382 switch (undo->kind)
4384 case UNDO_RTX:
4385 *undo->where.r = undo->old_contents.r;
4386 break;
4387 case UNDO_INT:
4388 *undo->where.i = undo->old_contents.i;
4389 break;
4390 case UNDO_MODE:
4391 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4392 break;
4393 case UNDO_LINKS:
4394 *undo->where.l = undo->old_contents.l;
4395 break;
4396 default:
4397 gcc_unreachable ();
4400 undo->next = undobuf.frees;
4401 undobuf.frees = undo;
4404 undobuf.undos = 0;
4407 /* We've committed to accepting the changes we made. Move all
4408 of the undos to the free list. */
4410 static void
4411 undo_commit (void)
4413 struct undo *undo, *next;
4415 for (undo = undobuf.undos; undo; undo = next)
4417 next = undo->next;
4418 undo->next = undobuf.frees;
4419 undobuf.frees = undo;
4421 undobuf.undos = 0;
4424 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4425 where we have an arithmetic expression and return that point. LOC will
4426 be inside INSN.
4428 try_combine will call this function to see if an insn can be split into
4429 two insns. */
4431 static rtx *
4432 find_split_point (rtx *loc, rtx insn, bool set_src)
4434 rtx x = *loc;
4435 enum rtx_code code = GET_CODE (x);
4436 rtx *split;
4437 unsigned HOST_WIDE_INT len = 0;
4438 HOST_WIDE_INT pos = 0;
4439 int unsignedp = 0;
4440 rtx inner = NULL_RTX;
4442 /* First special-case some codes. */
4443 switch (code)
4445 case SUBREG:
4446 #ifdef INSN_SCHEDULING
4447 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4448 point. */
4449 if (MEM_P (SUBREG_REG (x)))
4450 return loc;
4451 #endif
4452 return find_split_point (&SUBREG_REG (x), insn, false);
4454 case MEM:
4455 #ifdef HAVE_lo_sum
4456 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4457 using LO_SUM and HIGH. */
4458 if (GET_CODE (XEXP (x, 0)) == CONST
4459 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4461 enum machine_mode address_mode = get_address_mode (x);
4463 SUBST (XEXP (x, 0),
4464 gen_rtx_LO_SUM (address_mode,
4465 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4466 XEXP (x, 0)));
4467 return &XEXP (XEXP (x, 0), 0);
4469 #endif
4471 /* If we have a PLUS whose second operand is a constant and the
4472 address is not valid, perhaps will can split it up using
4473 the machine-specific way to split large constants. We use
4474 the first pseudo-reg (one of the virtual regs) as a placeholder;
4475 it will not remain in the result. */
4476 if (GET_CODE (XEXP (x, 0)) == PLUS
4477 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4478 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4479 MEM_ADDR_SPACE (x)))
4481 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4482 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4483 XEXP (x, 0)),
4484 subst_insn);
4486 /* This should have produced two insns, each of which sets our
4487 placeholder. If the source of the second is a valid address,
4488 we can make put both sources together and make a split point
4489 in the middle. */
4491 if (seq
4492 && NEXT_INSN (seq) != NULL_RTX
4493 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4494 && NONJUMP_INSN_P (seq)
4495 && GET_CODE (PATTERN (seq)) == SET
4496 && SET_DEST (PATTERN (seq)) == reg
4497 && ! reg_mentioned_p (reg,
4498 SET_SRC (PATTERN (seq)))
4499 && NONJUMP_INSN_P (NEXT_INSN (seq))
4500 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4501 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4502 && memory_address_addr_space_p
4503 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4504 MEM_ADDR_SPACE (x)))
4506 rtx src1 = SET_SRC (PATTERN (seq));
4507 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4509 /* Replace the placeholder in SRC2 with SRC1. If we can
4510 find where in SRC2 it was placed, that can become our
4511 split point and we can replace this address with SRC2.
4512 Just try two obvious places. */
4514 src2 = replace_rtx (src2, reg, src1);
4515 split = 0;
4516 if (XEXP (src2, 0) == src1)
4517 split = &XEXP (src2, 0);
4518 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4519 && XEXP (XEXP (src2, 0), 0) == src1)
4520 split = &XEXP (XEXP (src2, 0), 0);
4522 if (split)
4524 SUBST (XEXP (x, 0), src2);
4525 return split;
4529 /* If that didn't work, perhaps the first operand is complex and
4530 needs to be computed separately, so make a split point there.
4531 This will occur on machines that just support REG + CONST
4532 and have a constant moved through some previous computation. */
4534 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4535 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4536 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4537 return &XEXP (XEXP (x, 0), 0);
4540 /* If we have a PLUS whose first operand is complex, try computing it
4541 separately by making a split there. */
4542 if (GET_CODE (XEXP (x, 0)) == PLUS
4543 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4544 MEM_ADDR_SPACE (x))
4545 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4546 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4547 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4548 return &XEXP (XEXP (x, 0), 0);
4549 break;
4551 case SET:
4552 #ifdef HAVE_cc0
4553 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4554 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4555 we need to put the operand into a register. So split at that
4556 point. */
4558 if (SET_DEST (x) == cc0_rtx
4559 && GET_CODE (SET_SRC (x)) != COMPARE
4560 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4561 && !OBJECT_P (SET_SRC (x))
4562 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4563 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4564 return &SET_SRC (x);
4565 #endif
4567 /* See if we can split SET_SRC as it stands. */
4568 split = find_split_point (&SET_SRC (x), insn, true);
4569 if (split && split != &SET_SRC (x))
4570 return split;
4572 /* See if we can split SET_DEST as it stands. */
4573 split = find_split_point (&SET_DEST (x), insn, false);
4574 if (split && split != &SET_DEST (x))
4575 return split;
4577 /* See if this is a bitfield assignment with everything constant. If
4578 so, this is an IOR of an AND, so split it into that. */
4579 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4580 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4581 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4582 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4583 && CONST_INT_P (SET_SRC (x))
4584 && ((INTVAL (XEXP (SET_DEST (x), 1))
4585 + INTVAL (XEXP (SET_DEST (x), 2)))
4586 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4587 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4589 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4590 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4591 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4592 rtx dest = XEXP (SET_DEST (x), 0);
4593 enum machine_mode mode = GET_MODE (dest);
4594 unsigned HOST_WIDE_INT mask
4595 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4596 rtx or_mask;
4598 if (BITS_BIG_ENDIAN)
4599 pos = GET_MODE_PRECISION (mode) - len - pos;
4601 or_mask = gen_int_mode (src << pos, mode);
4602 if (src == mask)
4603 SUBST (SET_SRC (x),
4604 simplify_gen_binary (IOR, mode, dest, or_mask));
4605 else
4607 rtx negmask = gen_int_mode (~(mask << pos), mode);
4608 SUBST (SET_SRC (x),
4609 simplify_gen_binary (IOR, mode,
4610 simplify_gen_binary (AND, mode,
4611 dest, negmask),
4612 or_mask));
4615 SUBST (SET_DEST (x), dest);
4617 split = find_split_point (&SET_SRC (x), insn, true);
4618 if (split && split != &SET_SRC (x))
4619 return split;
4622 /* Otherwise, see if this is an operation that we can split into two.
4623 If so, try to split that. */
4624 code = GET_CODE (SET_SRC (x));
4626 switch (code)
4628 case AND:
4629 /* If we are AND'ing with a large constant that is only a single
4630 bit and the result is only being used in a context where we
4631 need to know if it is zero or nonzero, replace it with a bit
4632 extraction. This will avoid the large constant, which might
4633 have taken more than one insn to make. If the constant were
4634 not a valid argument to the AND but took only one insn to make,
4635 this is no worse, but if it took more than one insn, it will
4636 be better. */
4638 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4639 && REG_P (XEXP (SET_SRC (x), 0))
4640 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4641 && REG_P (SET_DEST (x))
4642 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4643 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4644 && XEXP (*split, 0) == SET_DEST (x)
4645 && XEXP (*split, 1) == const0_rtx)
4647 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4648 XEXP (SET_SRC (x), 0),
4649 pos, NULL_RTX, 1, 1, 0, 0);
4650 if (extraction != 0)
4652 SUBST (SET_SRC (x), extraction);
4653 return find_split_point (loc, insn, false);
4656 break;
4658 case NE:
4659 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4660 is known to be on, this can be converted into a NEG of a shift. */
4661 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4662 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4663 && 1 <= (pos = exact_log2
4664 (nonzero_bits (XEXP (SET_SRC (x), 0),
4665 GET_MODE (XEXP (SET_SRC (x), 0))))))
4667 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4669 SUBST (SET_SRC (x),
4670 gen_rtx_NEG (mode,
4671 gen_rtx_LSHIFTRT (mode,
4672 XEXP (SET_SRC (x), 0),
4673 GEN_INT (pos))));
4675 split = find_split_point (&SET_SRC (x), insn, true);
4676 if (split && split != &SET_SRC (x))
4677 return split;
4679 break;
4681 case SIGN_EXTEND:
4682 inner = XEXP (SET_SRC (x), 0);
4684 /* We can't optimize if either mode is a partial integer
4685 mode as we don't know how many bits are significant
4686 in those modes. */
4687 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4688 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4689 break;
4691 pos = 0;
4692 len = GET_MODE_PRECISION (GET_MODE (inner));
4693 unsignedp = 0;
4694 break;
4696 case SIGN_EXTRACT:
4697 case ZERO_EXTRACT:
4698 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4699 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4701 inner = XEXP (SET_SRC (x), 0);
4702 len = INTVAL (XEXP (SET_SRC (x), 1));
4703 pos = INTVAL (XEXP (SET_SRC (x), 2));
4705 if (BITS_BIG_ENDIAN)
4706 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4707 unsignedp = (code == ZERO_EXTRACT);
4709 break;
4711 default:
4712 break;
4715 if (len && pos >= 0
4716 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4718 enum machine_mode mode = GET_MODE (SET_SRC (x));
4720 /* For unsigned, we have a choice of a shift followed by an
4721 AND or two shifts. Use two shifts for field sizes where the
4722 constant might be too large. We assume here that we can
4723 always at least get 8-bit constants in an AND insn, which is
4724 true for every current RISC. */
4726 if (unsignedp && len <= 8)
4728 SUBST (SET_SRC (x),
4729 gen_rtx_AND (mode,
4730 gen_rtx_LSHIFTRT
4731 (mode, gen_lowpart (mode, inner),
4732 GEN_INT (pos)),
4733 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4734 - 1)));
4736 split = find_split_point (&SET_SRC (x), insn, true);
4737 if (split && split != &SET_SRC (x))
4738 return split;
4740 else
4742 SUBST (SET_SRC (x),
4743 gen_rtx_fmt_ee
4744 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4745 gen_rtx_ASHIFT (mode,
4746 gen_lowpart (mode, inner),
4747 GEN_INT (GET_MODE_PRECISION (mode)
4748 - len - pos)),
4749 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4751 split = find_split_point (&SET_SRC (x), insn, true);
4752 if (split && split != &SET_SRC (x))
4753 return split;
4757 /* See if this is a simple operation with a constant as the second
4758 operand. It might be that this constant is out of range and hence
4759 could be used as a split point. */
4760 if (BINARY_P (SET_SRC (x))
4761 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4762 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4763 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4764 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4765 return &XEXP (SET_SRC (x), 1);
4767 /* Finally, see if this is a simple operation with its first operand
4768 not in a register. The operation might require this operand in a
4769 register, so return it as a split point. We can always do this
4770 because if the first operand were another operation, we would have
4771 already found it as a split point. */
4772 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4773 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4774 return &XEXP (SET_SRC (x), 0);
4776 return 0;
4778 case AND:
4779 case IOR:
4780 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4781 it is better to write this as (not (ior A B)) so we can split it.
4782 Similarly for IOR. */
4783 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4785 SUBST (*loc,
4786 gen_rtx_NOT (GET_MODE (x),
4787 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4788 GET_MODE (x),
4789 XEXP (XEXP (x, 0), 0),
4790 XEXP (XEXP (x, 1), 0))));
4791 return find_split_point (loc, insn, set_src);
4794 /* Many RISC machines have a large set of logical insns. If the
4795 second operand is a NOT, put it first so we will try to split the
4796 other operand first. */
4797 if (GET_CODE (XEXP (x, 1)) == NOT)
4799 rtx tem = XEXP (x, 0);
4800 SUBST (XEXP (x, 0), XEXP (x, 1));
4801 SUBST (XEXP (x, 1), tem);
4803 break;
4805 case PLUS:
4806 case MINUS:
4807 /* Canonicalization can produce (minus A (mult B C)), where C is a
4808 constant. It may be better to try splitting (plus (mult B -C) A)
4809 instead if this isn't a multiply by a power of two. */
4810 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4811 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4812 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4814 enum machine_mode mode = GET_MODE (x);
4815 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4816 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4817 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4818 XEXP (XEXP (x, 1), 0),
4819 GEN_INT (other_int)),
4820 XEXP (x, 0)));
4821 return find_split_point (loc, insn, set_src);
4824 /* Split at a multiply-accumulate instruction. However if this is
4825 the SET_SRC, we likely do not have such an instruction and it's
4826 worthless to try this split. */
4827 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4828 return loc;
4830 default:
4831 break;
4834 /* Otherwise, select our actions depending on our rtx class. */
4835 switch (GET_RTX_CLASS (code))
4837 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4838 case RTX_TERNARY:
4839 split = find_split_point (&XEXP (x, 2), insn, false);
4840 if (split)
4841 return split;
4842 /* ... fall through ... */
4843 case RTX_BIN_ARITH:
4844 case RTX_COMM_ARITH:
4845 case RTX_COMPARE:
4846 case RTX_COMM_COMPARE:
4847 split = find_split_point (&XEXP (x, 1), insn, false);
4848 if (split)
4849 return split;
4850 /* ... fall through ... */
4851 case RTX_UNARY:
4852 /* Some machines have (and (shift ...) ...) insns. If X is not
4853 an AND, but XEXP (X, 0) is, use it as our split point. */
4854 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4855 return &XEXP (x, 0);
4857 split = find_split_point (&XEXP (x, 0), insn, false);
4858 if (split)
4859 return split;
4860 return loc;
4862 default:
4863 /* Otherwise, we don't have a split point. */
4864 return 0;
4868 /* Throughout X, replace FROM with TO, and return the result.
4869 The result is TO if X is FROM;
4870 otherwise the result is X, but its contents may have been modified.
4871 If they were modified, a record was made in undobuf so that
4872 undo_all will (among other things) return X to its original state.
4874 If the number of changes necessary is too much to record to undo,
4875 the excess changes are not made, so the result is invalid.
4876 The changes already made can still be undone.
4877 undobuf.num_undo is incremented for such changes, so by testing that
4878 the caller can tell whether the result is valid.
4880 `n_occurrences' is incremented each time FROM is replaced.
4882 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4884 IN_COND is nonzero if we are at the top level of a condition.
4886 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4887 by copying if `n_occurrences' is nonzero. */
4889 static rtx
4890 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4892 enum rtx_code code = GET_CODE (x);
4893 enum machine_mode op0_mode = VOIDmode;
4894 const char *fmt;
4895 int len, i;
4896 rtx new_rtx;
4898 /* Two expressions are equal if they are identical copies of a shared
4899 RTX or if they are both registers with the same register number
4900 and mode. */
4902 #define COMBINE_RTX_EQUAL_P(X,Y) \
4903 ((X) == (Y) \
4904 || (REG_P (X) && REG_P (Y) \
4905 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4907 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4909 n_occurrences++;
4910 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4913 /* If X and FROM are the same register but different modes, they
4914 will not have been seen as equal above. However, the log links code
4915 will make a LOG_LINKS entry for that case. If we do nothing, we
4916 will try to rerecognize our original insn and, when it succeeds,
4917 we will delete the feeding insn, which is incorrect.
4919 So force this insn not to match in this (rare) case. */
4920 if (! in_dest && code == REG && REG_P (from)
4921 && reg_overlap_mentioned_p (x, from))
4922 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4924 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4925 of which may contain things that can be combined. */
4926 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4927 return x;
4929 /* It is possible to have a subexpression appear twice in the insn.
4930 Suppose that FROM is a register that appears within TO.
4931 Then, after that subexpression has been scanned once by `subst',
4932 the second time it is scanned, TO may be found. If we were
4933 to scan TO here, we would find FROM within it and create a
4934 self-referent rtl structure which is completely wrong. */
4935 if (COMBINE_RTX_EQUAL_P (x, to))
4936 return to;
4938 /* Parallel asm_operands need special attention because all of the
4939 inputs are shared across the arms. Furthermore, unsharing the
4940 rtl results in recognition failures. Failure to handle this case
4941 specially can result in circular rtl.
4943 Solve this by doing a normal pass across the first entry of the
4944 parallel, and only processing the SET_DESTs of the subsequent
4945 entries. Ug. */
4947 if (code == PARALLEL
4948 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4949 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4951 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4953 /* If this substitution failed, this whole thing fails. */
4954 if (GET_CODE (new_rtx) == CLOBBER
4955 && XEXP (new_rtx, 0) == const0_rtx)
4956 return new_rtx;
4958 SUBST (XVECEXP (x, 0, 0), new_rtx);
4960 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4962 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4964 if (!REG_P (dest)
4965 && GET_CODE (dest) != CC0
4966 && GET_CODE (dest) != PC)
4968 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4970 /* If this substitution failed, this whole thing fails. */
4971 if (GET_CODE (new_rtx) == CLOBBER
4972 && XEXP (new_rtx, 0) == const0_rtx)
4973 return new_rtx;
4975 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4979 else
4981 len = GET_RTX_LENGTH (code);
4982 fmt = GET_RTX_FORMAT (code);
4984 /* We don't need to process a SET_DEST that is a register, CC0,
4985 or PC, so set up to skip this common case. All other cases
4986 where we want to suppress replacing something inside a
4987 SET_SRC are handled via the IN_DEST operand. */
4988 if (code == SET
4989 && (REG_P (SET_DEST (x))
4990 || GET_CODE (SET_DEST (x)) == CC0
4991 || GET_CODE (SET_DEST (x)) == PC))
4992 fmt = "ie";
4994 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4995 constant. */
4996 if (fmt[0] == 'e')
4997 op0_mode = GET_MODE (XEXP (x, 0));
4999 for (i = 0; i < len; i++)
5001 if (fmt[i] == 'E')
5003 int j;
5004 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5006 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5008 new_rtx = (unique_copy && n_occurrences
5009 ? copy_rtx (to) : to);
5010 n_occurrences++;
5012 else
5014 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5015 unique_copy);
5017 /* If this substitution failed, this whole thing
5018 fails. */
5019 if (GET_CODE (new_rtx) == CLOBBER
5020 && XEXP (new_rtx, 0) == const0_rtx)
5021 return new_rtx;
5024 SUBST (XVECEXP (x, i, j), new_rtx);
5027 else if (fmt[i] == 'e')
5029 /* If this is a register being set, ignore it. */
5030 new_rtx = XEXP (x, i);
5031 if (in_dest
5032 && i == 0
5033 && (((code == SUBREG || code == ZERO_EXTRACT)
5034 && REG_P (new_rtx))
5035 || code == STRICT_LOW_PART))
5038 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5040 /* In general, don't install a subreg involving two
5041 modes not tieable. It can worsen register
5042 allocation, and can even make invalid reload
5043 insns, since the reg inside may need to be copied
5044 from in the outside mode, and that may be invalid
5045 if it is an fp reg copied in integer mode.
5047 We allow two exceptions to this: It is valid if
5048 it is inside another SUBREG and the mode of that
5049 SUBREG and the mode of the inside of TO is
5050 tieable and it is valid if X is a SET that copies
5051 FROM to CC0. */
5053 if (GET_CODE (to) == SUBREG
5054 && ! MODES_TIEABLE_P (GET_MODE (to),
5055 GET_MODE (SUBREG_REG (to)))
5056 && ! (code == SUBREG
5057 && MODES_TIEABLE_P (GET_MODE (x),
5058 GET_MODE (SUBREG_REG (to))))
5059 #ifdef HAVE_cc0
5060 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5061 #endif
5063 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5065 #ifdef CANNOT_CHANGE_MODE_CLASS
5066 if (code == SUBREG
5067 && REG_P (to)
5068 && REGNO (to) < FIRST_PSEUDO_REGISTER
5069 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5070 GET_MODE (to),
5071 GET_MODE (x)))
5072 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5073 #endif
5075 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5076 n_occurrences++;
5078 else
5079 /* If we are in a SET_DEST, suppress most cases unless we
5080 have gone inside a MEM, in which case we want to
5081 simplify the address. We assume here that things that
5082 are actually part of the destination have their inner
5083 parts in the first expression. This is true for SUBREG,
5084 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5085 things aside from REG and MEM that should appear in a
5086 SET_DEST. */
5087 new_rtx = subst (XEXP (x, i), from, to,
5088 (((in_dest
5089 && (code == SUBREG || code == STRICT_LOW_PART
5090 || code == ZERO_EXTRACT))
5091 || code == SET)
5092 && i == 0),
5093 code == IF_THEN_ELSE && i == 0,
5094 unique_copy);
5096 /* If we found that we will have to reject this combination,
5097 indicate that by returning the CLOBBER ourselves, rather than
5098 an expression containing it. This will speed things up as
5099 well as prevent accidents where two CLOBBERs are considered
5100 to be equal, thus producing an incorrect simplification. */
5102 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5103 return new_rtx;
5105 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5107 enum machine_mode mode = GET_MODE (x);
5109 x = simplify_subreg (GET_MODE (x), new_rtx,
5110 GET_MODE (SUBREG_REG (x)),
5111 SUBREG_BYTE (x));
5112 if (! x)
5113 x = gen_rtx_CLOBBER (mode, const0_rtx);
5115 else if (CONST_INT_P (new_rtx)
5116 && GET_CODE (x) == ZERO_EXTEND)
5118 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5119 new_rtx, GET_MODE (XEXP (x, 0)));
5120 gcc_assert (x);
5122 else
5123 SUBST (XEXP (x, i), new_rtx);
5128 /* Check if we are loading something from the constant pool via float
5129 extension; in this case we would undo compress_float_constant
5130 optimization and degenerate constant load to an immediate value. */
5131 if (GET_CODE (x) == FLOAT_EXTEND
5132 && MEM_P (XEXP (x, 0))
5133 && MEM_READONLY_P (XEXP (x, 0)))
5135 rtx tmp = avoid_constant_pool_reference (x);
5136 if (x != tmp)
5137 return x;
5140 /* Try to simplify X. If the simplification changed the code, it is likely
5141 that further simplification will help, so loop, but limit the number
5142 of repetitions that will be performed. */
5144 for (i = 0; i < 4; i++)
5146 /* If X is sufficiently simple, don't bother trying to do anything
5147 with it. */
5148 if (code != CONST_INT && code != REG && code != CLOBBER)
5149 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5151 if (GET_CODE (x) == code)
5152 break;
5154 code = GET_CODE (x);
5156 /* We no longer know the original mode of operand 0 since we
5157 have changed the form of X) */
5158 op0_mode = VOIDmode;
5161 return x;
5164 /* Simplify X, a piece of RTL. We just operate on the expression at the
5165 outer level; call `subst' to simplify recursively. Return the new
5166 expression.
5168 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5169 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5170 of a condition. */
5172 static rtx
5173 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5174 int in_cond)
5176 enum rtx_code code = GET_CODE (x);
5177 enum machine_mode mode = GET_MODE (x);
5178 rtx temp;
5179 int i;
5181 /* If this is a commutative operation, put a constant last and a complex
5182 expression first. We don't need to do this for comparisons here. */
5183 if (COMMUTATIVE_ARITH_P (x)
5184 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5186 temp = XEXP (x, 0);
5187 SUBST (XEXP (x, 0), XEXP (x, 1));
5188 SUBST (XEXP (x, 1), temp);
5191 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5192 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5193 things. Check for cases where both arms are testing the same
5194 condition.
5196 Don't do anything if all operands are very simple. */
5198 if ((BINARY_P (x)
5199 && ((!OBJECT_P (XEXP (x, 0))
5200 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5201 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5202 || (!OBJECT_P (XEXP (x, 1))
5203 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5204 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5205 || (UNARY_P (x)
5206 && (!OBJECT_P (XEXP (x, 0))
5207 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5208 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5210 rtx cond, true_rtx, false_rtx;
5212 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5213 if (cond != 0
5214 /* If everything is a comparison, what we have is highly unlikely
5215 to be simpler, so don't use it. */
5216 && ! (COMPARISON_P (x)
5217 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5219 rtx cop1 = const0_rtx;
5220 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5222 if (cond_code == NE && COMPARISON_P (cond))
5223 return x;
5225 /* Simplify the alternative arms; this may collapse the true and
5226 false arms to store-flag values. Be careful to use copy_rtx
5227 here since true_rtx or false_rtx might share RTL with x as a
5228 result of the if_then_else_cond call above. */
5229 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5230 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5232 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5233 is unlikely to be simpler. */
5234 if (general_operand (true_rtx, VOIDmode)
5235 && general_operand (false_rtx, VOIDmode))
5237 enum rtx_code reversed;
5239 /* Restarting if we generate a store-flag expression will cause
5240 us to loop. Just drop through in this case. */
5242 /* If the result values are STORE_FLAG_VALUE and zero, we can
5243 just make the comparison operation. */
5244 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5245 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5246 cond, cop1);
5247 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5248 && ((reversed = reversed_comparison_code_parts
5249 (cond_code, cond, cop1, NULL))
5250 != UNKNOWN))
5251 x = simplify_gen_relational (reversed, mode, VOIDmode,
5252 cond, cop1);
5254 /* Likewise, we can make the negate of a comparison operation
5255 if the result values are - STORE_FLAG_VALUE and zero. */
5256 else if (CONST_INT_P (true_rtx)
5257 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5258 && false_rtx == const0_rtx)
5259 x = simplify_gen_unary (NEG, mode,
5260 simplify_gen_relational (cond_code,
5261 mode, VOIDmode,
5262 cond, cop1),
5263 mode);
5264 else if (CONST_INT_P (false_rtx)
5265 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5266 && true_rtx == const0_rtx
5267 && ((reversed = reversed_comparison_code_parts
5268 (cond_code, cond, cop1, NULL))
5269 != UNKNOWN))
5270 x = simplify_gen_unary (NEG, mode,
5271 simplify_gen_relational (reversed,
5272 mode, VOIDmode,
5273 cond, cop1),
5274 mode);
5275 else
5276 return gen_rtx_IF_THEN_ELSE (mode,
5277 simplify_gen_relational (cond_code,
5278 mode,
5279 VOIDmode,
5280 cond,
5281 cop1),
5282 true_rtx, false_rtx);
5284 code = GET_CODE (x);
5285 op0_mode = VOIDmode;
5290 /* Try to fold this expression in case we have constants that weren't
5291 present before. */
5292 temp = 0;
5293 switch (GET_RTX_CLASS (code))
5295 case RTX_UNARY:
5296 if (op0_mode == VOIDmode)
5297 op0_mode = GET_MODE (XEXP (x, 0));
5298 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5299 break;
5300 case RTX_COMPARE:
5301 case RTX_COMM_COMPARE:
5303 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5304 if (cmp_mode == VOIDmode)
5306 cmp_mode = GET_MODE (XEXP (x, 1));
5307 if (cmp_mode == VOIDmode)
5308 cmp_mode = op0_mode;
5310 temp = simplify_relational_operation (code, mode, cmp_mode,
5311 XEXP (x, 0), XEXP (x, 1));
5313 break;
5314 case RTX_COMM_ARITH:
5315 case RTX_BIN_ARITH:
5316 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5317 break;
5318 case RTX_BITFIELD_OPS:
5319 case RTX_TERNARY:
5320 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5321 XEXP (x, 1), XEXP (x, 2));
5322 break;
5323 default:
5324 break;
5327 if (temp)
5329 x = temp;
5330 code = GET_CODE (temp);
5331 op0_mode = VOIDmode;
5332 mode = GET_MODE (temp);
5335 /* First see if we can apply the inverse distributive law. */
5336 if (code == PLUS || code == MINUS
5337 || code == AND || code == IOR || code == XOR)
5339 x = apply_distributive_law (x);
5340 code = GET_CODE (x);
5341 op0_mode = VOIDmode;
5344 /* If CODE is an associative operation not otherwise handled, see if we
5345 can associate some operands. This can win if they are constants or
5346 if they are logically related (i.e. (a & b) & a). */
5347 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5348 || code == AND || code == IOR || code == XOR
5349 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5350 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5351 || (flag_associative_math && FLOAT_MODE_P (mode))))
5353 if (GET_CODE (XEXP (x, 0)) == code)
5355 rtx other = XEXP (XEXP (x, 0), 0);
5356 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5357 rtx inner_op1 = XEXP (x, 1);
5358 rtx inner;
5360 /* Make sure we pass the constant operand if any as the second
5361 one if this is a commutative operation. */
5362 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5364 rtx tem = inner_op0;
5365 inner_op0 = inner_op1;
5366 inner_op1 = tem;
5368 inner = simplify_binary_operation (code == MINUS ? PLUS
5369 : code == DIV ? MULT
5370 : code,
5371 mode, inner_op0, inner_op1);
5373 /* For commutative operations, try the other pair if that one
5374 didn't simplify. */
5375 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5377 other = XEXP (XEXP (x, 0), 1);
5378 inner = simplify_binary_operation (code, mode,
5379 XEXP (XEXP (x, 0), 0),
5380 XEXP (x, 1));
5383 if (inner)
5384 return simplify_gen_binary (code, mode, other, inner);
5388 /* A little bit of algebraic simplification here. */
5389 switch (code)
5391 case MEM:
5392 /* Ensure that our address has any ASHIFTs converted to MULT in case
5393 address-recognizing predicates are called later. */
5394 temp = make_compound_operation (XEXP (x, 0), MEM);
5395 SUBST (XEXP (x, 0), temp);
5396 break;
5398 case SUBREG:
5399 if (op0_mode == VOIDmode)
5400 op0_mode = GET_MODE (SUBREG_REG (x));
5402 /* See if this can be moved to simplify_subreg. */
5403 if (CONSTANT_P (SUBREG_REG (x))
5404 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5405 /* Don't call gen_lowpart if the inner mode
5406 is VOIDmode and we cannot simplify it, as SUBREG without
5407 inner mode is invalid. */
5408 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5409 || gen_lowpart_common (mode, SUBREG_REG (x))))
5410 return gen_lowpart (mode, SUBREG_REG (x));
5412 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5413 break;
5415 rtx temp;
5416 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5417 SUBREG_BYTE (x));
5418 if (temp)
5419 return temp;
5421 /* If op is known to have all lower bits zero, the result is zero. */
5422 if (!in_dest
5423 && SCALAR_INT_MODE_P (mode)
5424 && SCALAR_INT_MODE_P (op0_mode)
5425 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5426 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5427 && HWI_COMPUTABLE_MODE_P (op0_mode)
5428 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5429 & GET_MODE_MASK (mode)) == 0)
5430 return CONST0_RTX (mode);
5433 /* Don't change the mode of the MEM if that would change the meaning
5434 of the address. */
5435 if (MEM_P (SUBREG_REG (x))
5436 && (MEM_VOLATILE_P (SUBREG_REG (x))
5437 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5438 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5439 return gen_rtx_CLOBBER (mode, const0_rtx);
5441 /* Note that we cannot do any narrowing for non-constants since
5442 we might have been counting on using the fact that some bits were
5443 zero. We now do this in the SET. */
5445 break;
5447 case NEG:
5448 temp = expand_compound_operation (XEXP (x, 0));
5450 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5451 replaced by (lshiftrt X C). This will convert
5452 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5454 if (GET_CODE (temp) == ASHIFTRT
5455 && CONST_INT_P (XEXP (temp, 1))
5456 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5457 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5458 INTVAL (XEXP (temp, 1)));
5460 /* If X has only a single bit that might be nonzero, say, bit I, convert
5461 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5462 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5463 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5464 or a SUBREG of one since we'd be making the expression more
5465 complex if it was just a register. */
5467 if (!REG_P (temp)
5468 && ! (GET_CODE (temp) == SUBREG
5469 && REG_P (SUBREG_REG (temp)))
5470 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5472 rtx temp1 = simplify_shift_const
5473 (NULL_RTX, ASHIFTRT, mode,
5474 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5475 GET_MODE_PRECISION (mode) - 1 - i),
5476 GET_MODE_PRECISION (mode) - 1 - i);
5478 /* If all we did was surround TEMP with the two shifts, we
5479 haven't improved anything, so don't use it. Otherwise,
5480 we are better off with TEMP1. */
5481 if (GET_CODE (temp1) != ASHIFTRT
5482 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5483 || XEXP (XEXP (temp1, 0), 0) != temp)
5484 return temp1;
5486 break;
5488 case TRUNCATE:
5489 /* We can't handle truncation to a partial integer mode here
5490 because we don't know the real bitsize of the partial
5491 integer mode. */
5492 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5493 break;
5495 if (HWI_COMPUTABLE_MODE_P (mode))
5496 SUBST (XEXP (x, 0),
5497 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5498 GET_MODE_MASK (mode), 0));
5500 /* We can truncate a constant value and return it. */
5501 if (CONST_INT_P (XEXP (x, 0)))
5502 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5504 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5505 whose value is a comparison can be replaced with a subreg if
5506 STORE_FLAG_VALUE permits. */
5507 if (HWI_COMPUTABLE_MODE_P (mode)
5508 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5509 && (temp = get_last_value (XEXP (x, 0)))
5510 && COMPARISON_P (temp))
5511 return gen_lowpart (mode, XEXP (x, 0));
5512 break;
5514 case CONST:
5515 /* (const (const X)) can become (const X). Do it this way rather than
5516 returning the inner CONST since CONST can be shared with a
5517 REG_EQUAL note. */
5518 if (GET_CODE (XEXP (x, 0)) == CONST)
5519 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5520 break;
5522 #ifdef HAVE_lo_sum
5523 case LO_SUM:
5524 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5525 can add in an offset. find_split_point will split this address up
5526 again if it doesn't match. */
5527 if (GET_CODE (XEXP (x, 0)) == HIGH
5528 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5529 return XEXP (x, 1);
5530 break;
5531 #endif
5533 case PLUS:
5534 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5535 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5536 bit-field and can be replaced by either a sign_extend or a
5537 sign_extract. The `and' may be a zero_extend and the two
5538 <c>, -<c> constants may be reversed. */
5539 if (GET_CODE (XEXP (x, 0)) == XOR
5540 && CONST_INT_P (XEXP (x, 1))
5541 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5542 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5543 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5544 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5545 && HWI_COMPUTABLE_MODE_P (mode)
5546 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5547 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5548 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5549 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5550 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5551 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5552 == (unsigned int) i + 1))))
5553 return simplify_shift_const
5554 (NULL_RTX, ASHIFTRT, mode,
5555 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5556 XEXP (XEXP (XEXP (x, 0), 0), 0),
5557 GET_MODE_PRECISION (mode) - (i + 1)),
5558 GET_MODE_PRECISION (mode) - (i + 1));
5560 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5561 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5562 the bitsize of the mode - 1. This allows simplification of
5563 "a = (b & 8) == 0;" */
5564 if (XEXP (x, 1) == constm1_rtx
5565 && !REG_P (XEXP (x, 0))
5566 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5567 && REG_P (SUBREG_REG (XEXP (x, 0))))
5568 && nonzero_bits (XEXP (x, 0), mode) == 1)
5569 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5570 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5571 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5572 GET_MODE_PRECISION (mode) - 1),
5573 GET_MODE_PRECISION (mode) - 1);
5575 /* If we are adding two things that have no bits in common, convert
5576 the addition into an IOR. This will often be further simplified,
5577 for example in cases like ((a & 1) + (a & 2)), which can
5578 become a & 3. */
5580 if (HWI_COMPUTABLE_MODE_P (mode)
5581 && (nonzero_bits (XEXP (x, 0), mode)
5582 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5584 /* Try to simplify the expression further. */
5585 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5586 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5588 /* If we could, great. If not, do not go ahead with the IOR
5589 replacement, since PLUS appears in many special purpose
5590 address arithmetic instructions. */
5591 if (GET_CODE (temp) != CLOBBER
5592 && (GET_CODE (temp) != IOR
5593 || ((XEXP (temp, 0) != XEXP (x, 0)
5594 || XEXP (temp, 1) != XEXP (x, 1))
5595 && (XEXP (temp, 0) != XEXP (x, 1)
5596 || XEXP (temp, 1) != XEXP (x, 0)))))
5597 return temp;
5599 break;
5601 case MINUS:
5602 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5603 (and <foo> (const_int pow2-1)) */
5604 if (GET_CODE (XEXP (x, 1)) == AND
5605 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5606 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5607 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5608 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5609 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5610 break;
5612 case MULT:
5613 /* If we have (mult (plus A B) C), apply the distributive law and then
5614 the inverse distributive law to see if things simplify. This
5615 occurs mostly in addresses, often when unrolling loops. */
5617 if (GET_CODE (XEXP (x, 0)) == PLUS)
5619 rtx result = distribute_and_simplify_rtx (x, 0);
5620 if (result)
5621 return result;
5624 /* Try simplify a*(b/c) as (a*b)/c. */
5625 if (FLOAT_MODE_P (mode) && flag_associative_math
5626 && GET_CODE (XEXP (x, 0)) == DIV)
5628 rtx tem = simplify_binary_operation (MULT, mode,
5629 XEXP (XEXP (x, 0), 0),
5630 XEXP (x, 1));
5631 if (tem)
5632 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5634 break;
5636 case UDIV:
5637 /* If this is a divide by a power of two, treat it as a shift if
5638 its first operand is a shift. */
5639 if (CONST_INT_P (XEXP (x, 1))
5640 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5641 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5642 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5643 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5644 || GET_CODE (XEXP (x, 0)) == ROTATE
5645 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5646 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5647 break;
5649 case EQ: case NE:
5650 case GT: case GTU: case GE: case GEU:
5651 case LT: case LTU: case LE: case LEU:
5652 case UNEQ: case LTGT:
5653 case UNGT: case UNGE:
5654 case UNLT: case UNLE:
5655 case UNORDERED: case ORDERED:
5656 /* If the first operand is a condition code, we can't do anything
5657 with it. */
5658 if (GET_CODE (XEXP (x, 0)) == COMPARE
5659 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5660 && ! CC0_P (XEXP (x, 0))))
5662 rtx op0 = XEXP (x, 0);
5663 rtx op1 = XEXP (x, 1);
5664 enum rtx_code new_code;
5666 if (GET_CODE (op0) == COMPARE)
5667 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5669 /* Simplify our comparison, if possible. */
5670 new_code = simplify_comparison (code, &op0, &op1);
5672 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5673 if only the low-order bit is possibly nonzero in X (such as when
5674 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5675 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5676 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5677 (plus X 1).
5679 Remove any ZERO_EXTRACT we made when thinking this was a
5680 comparison. It may now be simpler to use, e.g., an AND. If a
5681 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5682 the call to make_compound_operation in the SET case.
5684 Don't apply these optimizations if the caller would
5685 prefer a comparison rather than a value.
5686 E.g., for the condition in an IF_THEN_ELSE most targets need
5687 an explicit comparison. */
5689 if (in_cond)
5692 else if (STORE_FLAG_VALUE == 1
5693 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5694 && op1 == const0_rtx
5695 && mode == GET_MODE (op0)
5696 && nonzero_bits (op0, mode) == 1)
5697 return gen_lowpart (mode,
5698 expand_compound_operation (op0));
5700 else if (STORE_FLAG_VALUE == 1
5701 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5702 && op1 == const0_rtx
5703 && mode == GET_MODE (op0)
5704 && (num_sign_bit_copies (op0, mode)
5705 == GET_MODE_PRECISION (mode)))
5707 op0 = expand_compound_operation (op0);
5708 return simplify_gen_unary (NEG, mode,
5709 gen_lowpart (mode, op0),
5710 mode);
5713 else if (STORE_FLAG_VALUE == 1
5714 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5715 && op1 == const0_rtx
5716 && mode == GET_MODE (op0)
5717 && nonzero_bits (op0, mode) == 1)
5719 op0 = expand_compound_operation (op0);
5720 return simplify_gen_binary (XOR, mode,
5721 gen_lowpart (mode, op0),
5722 const1_rtx);
5725 else if (STORE_FLAG_VALUE == 1
5726 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5727 && op1 == const0_rtx
5728 && mode == GET_MODE (op0)
5729 && (num_sign_bit_copies (op0, mode)
5730 == GET_MODE_PRECISION (mode)))
5732 op0 = expand_compound_operation (op0);
5733 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5736 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5737 those above. */
5738 if (in_cond)
5741 else if (STORE_FLAG_VALUE == -1
5742 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5743 && op1 == const0_rtx
5744 && (num_sign_bit_copies (op0, mode)
5745 == GET_MODE_PRECISION (mode)))
5746 return gen_lowpart (mode,
5747 expand_compound_operation (op0));
5749 else if (STORE_FLAG_VALUE == -1
5750 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5751 && op1 == const0_rtx
5752 && mode == GET_MODE (op0)
5753 && nonzero_bits (op0, mode) == 1)
5755 op0 = expand_compound_operation (op0);
5756 return simplify_gen_unary (NEG, mode,
5757 gen_lowpart (mode, op0),
5758 mode);
5761 else if (STORE_FLAG_VALUE == -1
5762 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5763 && op1 == const0_rtx
5764 && mode == GET_MODE (op0)
5765 && (num_sign_bit_copies (op0, mode)
5766 == GET_MODE_PRECISION (mode)))
5768 op0 = expand_compound_operation (op0);
5769 return simplify_gen_unary (NOT, mode,
5770 gen_lowpart (mode, op0),
5771 mode);
5774 /* If X is 0/1, (eq X 0) is X-1. */
5775 else if (STORE_FLAG_VALUE == -1
5776 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5777 && op1 == const0_rtx
5778 && mode == GET_MODE (op0)
5779 && nonzero_bits (op0, mode) == 1)
5781 op0 = expand_compound_operation (op0);
5782 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5785 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5786 one bit that might be nonzero, we can convert (ne x 0) to
5787 (ashift x c) where C puts the bit in the sign bit. Remove any
5788 AND with STORE_FLAG_VALUE when we are done, since we are only
5789 going to test the sign bit. */
5790 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5791 && HWI_COMPUTABLE_MODE_P (mode)
5792 && val_signbit_p (mode, STORE_FLAG_VALUE)
5793 && op1 == const0_rtx
5794 && mode == GET_MODE (op0)
5795 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5797 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5798 expand_compound_operation (op0),
5799 GET_MODE_PRECISION (mode) - 1 - i);
5800 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5801 return XEXP (x, 0);
5802 else
5803 return x;
5806 /* If the code changed, return a whole new comparison. */
5807 if (new_code != code)
5808 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5810 /* Otherwise, keep this operation, but maybe change its operands.
5811 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5812 SUBST (XEXP (x, 0), op0);
5813 SUBST (XEXP (x, 1), op1);
5815 break;
5817 case IF_THEN_ELSE:
5818 return simplify_if_then_else (x);
5820 case ZERO_EXTRACT:
5821 case SIGN_EXTRACT:
5822 case ZERO_EXTEND:
5823 case SIGN_EXTEND:
5824 /* If we are processing SET_DEST, we are done. */
5825 if (in_dest)
5826 return x;
5828 return expand_compound_operation (x);
5830 case SET:
5831 return simplify_set (x);
5833 case AND:
5834 case IOR:
5835 return simplify_logical (x);
5837 case ASHIFT:
5838 case LSHIFTRT:
5839 case ASHIFTRT:
5840 case ROTATE:
5841 case ROTATERT:
5842 /* If this is a shift by a constant amount, simplify it. */
5843 if (CONST_INT_P (XEXP (x, 1)))
5844 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5845 INTVAL (XEXP (x, 1)));
5847 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5848 SUBST (XEXP (x, 1),
5849 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5850 ((unsigned HOST_WIDE_INT) 1
5851 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5852 - 1,
5853 0));
5854 break;
5856 default:
5857 break;
5860 return x;
5863 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5865 static rtx
5866 simplify_if_then_else (rtx x)
5868 enum machine_mode mode = GET_MODE (x);
5869 rtx cond = XEXP (x, 0);
5870 rtx true_rtx = XEXP (x, 1);
5871 rtx false_rtx = XEXP (x, 2);
5872 enum rtx_code true_code = GET_CODE (cond);
5873 int comparison_p = COMPARISON_P (cond);
5874 rtx temp;
5875 int i;
5876 enum rtx_code false_code;
5877 rtx reversed;
5879 /* Simplify storing of the truth value. */
5880 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5881 return simplify_gen_relational (true_code, mode, VOIDmode,
5882 XEXP (cond, 0), XEXP (cond, 1));
5884 /* Also when the truth value has to be reversed. */
5885 if (comparison_p
5886 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5887 && (reversed = reversed_comparison (cond, mode)))
5888 return reversed;
5890 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5891 in it is being compared against certain values. Get the true and false
5892 comparisons and see if that says anything about the value of each arm. */
5894 if (comparison_p
5895 && ((false_code = reversed_comparison_code (cond, NULL))
5896 != UNKNOWN)
5897 && REG_P (XEXP (cond, 0)))
5899 HOST_WIDE_INT nzb;
5900 rtx from = XEXP (cond, 0);
5901 rtx true_val = XEXP (cond, 1);
5902 rtx false_val = true_val;
5903 int swapped = 0;
5905 /* If FALSE_CODE is EQ, swap the codes and arms. */
5907 if (false_code == EQ)
5909 swapped = 1, true_code = EQ, false_code = NE;
5910 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5913 /* If we are comparing against zero and the expression being tested has
5914 only a single bit that might be nonzero, that is its value when it is
5915 not equal to zero. Similarly if it is known to be -1 or 0. */
5917 if (true_code == EQ && true_val == const0_rtx
5918 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5920 false_code = EQ;
5921 false_val = gen_int_mode (nzb, GET_MODE (from));
5923 else if (true_code == EQ && true_val == const0_rtx
5924 && (num_sign_bit_copies (from, GET_MODE (from))
5925 == GET_MODE_PRECISION (GET_MODE (from))))
5927 false_code = EQ;
5928 false_val = constm1_rtx;
5931 /* Now simplify an arm if we know the value of the register in the
5932 branch and it is used in the arm. Be careful due to the potential
5933 of locally-shared RTL. */
5935 if (reg_mentioned_p (from, true_rtx))
5936 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5937 from, true_val),
5938 pc_rtx, pc_rtx, 0, 0, 0);
5939 if (reg_mentioned_p (from, false_rtx))
5940 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5941 from, false_val),
5942 pc_rtx, pc_rtx, 0, 0, 0);
5944 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5945 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5947 true_rtx = XEXP (x, 1);
5948 false_rtx = XEXP (x, 2);
5949 true_code = GET_CODE (cond);
5952 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5953 reversed, do so to avoid needing two sets of patterns for
5954 subtract-and-branch insns. Similarly if we have a constant in the true
5955 arm, the false arm is the same as the first operand of the comparison, or
5956 the false arm is more complicated than the true arm. */
5958 if (comparison_p
5959 && reversed_comparison_code (cond, NULL) != UNKNOWN
5960 && (true_rtx == pc_rtx
5961 || (CONSTANT_P (true_rtx)
5962 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5963 || true_rtx == const0_rtx
5964 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5965 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5966 && !OBJECT_P (false_rtx))
5967 || reg_mentioned_p (true_rtx, false_rtx)
5968 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5970 true_code = reversed_comparison_code (cond, NULL);
5971 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5972 SUBST (XEXP (x, 1), false_rtx);
5973 SUBST (XEXP (x, 2), true_rtx);
5975 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5976 cond = XEXP (x, 0);
5978 /* It is possible that the conditional has been simplified out. */
5979 true_code = GET_CODE (cond);
5980 comparison_p = COMPARISON_P (cond);
5983 /* If the two arms are identical, we don't need the comparison. */
5985 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5986 return true_rtx;
5988 /* Convert a == b ? b : a to "a". */
5989 if (true_code == EQ && ! side_effects_p (cond)
5990 && !HONOR_NANS (mode)
5991 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5992 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5993 return false_rtx;
5994 else if (true_code == NE && ! side_effects_p (cond)
5995 && !HONOR_NANS (mode)
5996 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5997 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5998 return true_rtx;
6000 /* Look for cases where we have (abs x) or (neg (abs X)). */
6002 if (GET_MODE_CLASS (mode) == MODE_INT
6003 && comparison_p
6004 && XEXP (cond, 1) == const0_rtx
6005 && GET_CODE (false_rtx) == NEG
6006 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6007 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6008 && ! side_effects_p (true_rtx))
6009 switch (true_code)
6011 case GT:
6012 case GE:
6013 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6014 case LT:
6015 case LE:
6016 return
6017 simplify_gen_unary (NEG, mode,
6018 simplify_gen_unary (ABS, mode, true_rtx, mode),
6019 mode);
6020 default:
6021 break;
6024 /* Look for MIN or MAX. */
6026 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6027 && comparison_p
6028 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6029 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6030 && ! side_effects_p (cond))
6031 switch (true_code)
6033 case GE:
6034 case GT:
6035 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6036 case LE:
6037 case LT:
6038 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6039 case GEU:
6040 case GTU:
6041 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6042 case LEU:
6043 case LTU:
6044 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6045 default:
6046 break;
6049 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6050 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6051 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6052 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6053 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6054 neither 1 or -1, but it isn't worth checking for. */
6056 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6057 && comparison_p
6058 && GET_MODE_CLASS (mode) == MODE_INT
6059 && ! side_effects_p (x))
6061 rtx t = make_compound_operation (true_rtx, SET);
6062 rtx f = make_compound_operation (false_rtx, SET);
6063 rtx cond_op0 = XEXP (cond, 0);
6064 rtx cond_op1 = XEXP (cond, 1);
6065 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6066 enum machine_mode m = mode;
6067 rtx z = 0, c1 = NULL_RTX;
6069 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6070 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6071 || GET_CODE (t) == ASHIFT
6072 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6073 && rtx_equal_p (XEXP (t, 0), f))
6074 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6076 /* If an identity-zero op is commutative, check whether there
6077 would be a match if we swapped the operands. */
6078 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6079 || GET_CODE (t) == XOR)
6080 && rtx_equal_p (XEXP (t, 1), f))
6081 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6082 else if (GET_CODE (t) == SIGN_EXTEND
6083 && (GET_CODE (XEXP (t, 0)) == PLUS
6084 || GET_CODE (XEXP (t, 0)) == MINUS
6085 || GET_CODE (XEXP (t, 0)) == IOR
6086 || GET_CODE (XEXP (t, 0)) == XOR
6087 || GET_CODE (XEXP (t, 0)) == ASHIFT
6088 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6089 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6090 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6091 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6092 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6093 && (num_sign_bit_copies (f, GET_MODE (f))
6094 > (unsigned int)
6095 (GET_MODE_PRECISION (mode)
6096 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6098 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6099 extend_op = SIGN_EXTEND;
6100 m = GET_MODE (XEXP (t, 0));
6102 else if (GET_CODE (t) == SIGN_EXTEND
6103 && (GET_CODE (XEXP (t, 0)) == PLUS
6104 || GET_CODE (XEXP (t, 0)) == IOR
6105 || GET_CODE (XEXP (t, 0)) == XOR)
6106 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6107 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6108 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6109 && (num_sign_bit_copies (f, GET_MODE (f))
6110 > (unsigned int)
6111 (GET_MODE_PRECISION (mode)
6112 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6114 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6115 extend_op = SIGN_EXTEND;
6116 m = GET_MODE (XEXP (t, 0));
6118 else if (GET_CODE (t) == ZERO_EXTEND
6119 && (GET_CODE (XEXP (t, 0)) == PLUS
6120 || GET_CODE (XEXP (t, 0)) == MINUS
6121 || GET_CODE (XEXP (t, 0)) == IOR
6122 || GET_CODE (XEXP (t, 0)) == XOR
6123 || GET_CODE (XEXP (t, 0)) == ASHIFT
6124 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6125 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6126 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6127 && HWI_COMPUTABLE_MODE_P (mode)
6128 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6129 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6130 && ((nonzero_bits (f, GET_MODE (f))
6131 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6132 == 0))
6134 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6135 extend_op = ZERO_EXTEND;
6136 m = GET_MODE (XEXP (t, 0));
6138 else if (GET_CODE (t) == ZERO_EXTEND
6139 && (GET_CODE (XEXP (t, 0)) == PLUS
6140 || GET_CODE (XEXP (t, 0)) == IOR
6141 || GET_CODE (XEXP (t, 0)) == XOR)
6142 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6143 && HWI_COMPUTABLE_MODE_P (mode)
6144 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6145 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6146 && ((nonzero_bits (f, GET_MODE (f))
6147 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6148 == 0))
6150 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6151 extend_op = ZERO_EXTEND;
6152 m = GET_MODE (XEXP (t, 0));
6155 if (z)
6157 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6158 cond_op0, cond_op1),
6159 pc_rtx, pc_rtx, 0, 0, 0);
6160 temp = simplify_gen_binary (MULT, m, temp,
6161 simplify_gen_binary (MULT, m, c1,
6162 const_true_rtx));
6163 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6164 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6166 if (extend_op != UNKNOWN)
6167 temp = simplify_gen_unary (extend_op, mode, temp, m);
6169 return temp;
6173 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6174 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6175 negation of a single bit, we can convert this operation to a shift. We
6176 can actually do this more generally, but it doesn't seem worth it. */
6178 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6179 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6180 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6181 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6182 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6183 == GET_MODE_PRECISION (mode))
6184 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6185 return
6186 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6187 gen_lowpart (mode, XEXP (cond, 0)), i);
6189 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6190 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6191 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6192 && GET_MODE (XEXP (cond, 0)) == mode
6193 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6194 == nonzero_bits (XEXP (cond, 0), mode)
6195 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6196 return XEXP (cond, 0);
6198 return x;
6201 /* Simplify X, a SET expression. Return the new expression. */
6203 static rtx
6204 simplify_set (rtx x)
6206 rtx src = SET_SRC (x);
6207 rtx dest = SET_DEST (x);
6208 enum machine_mode mode
6209 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6210 rtx other_insn;
6211 rtx *cc_use;
6213 /* (set (pc) (return)) gets written as (return). */
6214 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6215 return src;
6217 /* Now that we know for sure which bits of SRC we are using, see if we can
6218 simplify the expression for the object knowing that we only need the
6219 low-order bits. */
6221 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6223 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6224 SUBST (SET_SRC (x), src);
6227 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6228 the comparison result and try to simplify it unless we already have used
6229 undobuf.other_insn. */
6230 if ((GET_MODE_CLASS (mode) == MODE_CC
6231 || GET_CODE (src) == COMPARE
6232 || CC0_P (dest))
6233 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6234 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6235 && COMPARISON_P (*cc_use)
6236 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6238 enum rtx_code old_code = GET_CODE (*cc_use);
6239 enum rtx_code new_code;
6240 rtx op0, op1, tmp;
6241 int other_changed = 0;
6242 rtx inner_compare = NULL_RTX;
6243 enum machine_mode compare_mode = GET_MODE (dest);
6245 if (GET_CODE (src) == COMPARE)
6247 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6248 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6250 inner_compare = op0;
6251 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6254 else
6255 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6257 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6258 op0, op1);
6259 if (!tmp)
6260 new_code = old_code;
6261 else if (!CONSTANT_P (tmp))
6263 new_code = GET_CODE (tmp);
6264 op0 = XEXP (tmp, 0);
6265 op1 = XEXP (tmp, 1);
6267 else
6269 rtx pat = PATTERN (other_insn);
6270 undobuf.other_insn = other_insn;
6271 SUBST (*cc_use, tmp);
6273 /* Attempt to simplify CC user. */
6274 if (GET_CODE (pat) == SET)
6276 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6277 if (new_rtx != NULL_RTX)
6278 SUBST (SET_SRC (pat), new_rtx);
6281 /* Convert X into a no-op move. */
6282 SUBST (SET_DEST (x), pc_rtx);
6283 SUBST (SET_SRC (x), pc_rtx);
6284 return x;
6287 /* Simplify our comparison, if possible. */
6288 new_code = simplify_comparison (new_code, &op0, &op1);
6290 #ifdef SELECT_CC_MODE
6291 /* If this machine has CC modes other than CCmode, check to see if we
6292 need to use a different CC mode here. */
6293 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6294 compare_mode = GET_MODE (op0);
6295 else if (inner_compare
6296 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6297 && new_code == old_code
6298 && op0 == XEXP (inner_compare, 0)
6299 && op1 == XEXP (inner_compare, 1))
6300 compare_mode = GET_MODE (inner_compare);
6301 else
6302 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6304 #ifndef HAVE_cc0
6305 /* If the mode changed, we have to change SET_DEST, the mode in the
6306 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6307 a hard register, just build new versions with the proper mode. If it
6308 is a pseudo, we lose unless it is only time we set the pseudo, in
6309 which case we can safely change its mode. */
6310 if (compare_mode != GET_MODE (dest))
6312 if (can_change_dest_mode (dest, 0, compare_mode))
6314 unsigned int regno = REGNO (dest);
6315 rtx new_dest;
6317 if (regno < FIRST_PSEUDO_REGISTER)
6318 new_dest = gen_rtx_REG (compare_mode, regno);
6319 else
6321 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6322 new_dest = regno_reg_rtx[regno];
6325 SUBST (SET_DEST (x), new_dest);
6326 SUBST (XEXP (*cc_use, 0), new_dest);
6327 other_changed = 1;
6329 dest = new_dest;
6332 #endif /* cc0 */
6333 #endif /* SELECT_CC_MODE */
6335 /* If the code changed, we have to build a new comparison in
6336 undobuf.other_insn. */
6337 if (new_code != old_code)
6339 int other_changed_previously = other_changed;
6340 unsigned HOST_WIDE_INT mask;
6341 rtx old_cc_use = *cc_use;
6343 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6344 dest, const0_rtx));
6345 other_changed = 1;
6347 /* If the only change we made was to change an EQ into an NE or
6348 vice versa, OP0 has only one bit that might be nonzero, and OP1
6349 is zero, check if changing the user of the condition code will
6350 produce a valid insn. If it won't, we can keep the original code
6351 in that insn by surrounding our operation with an XOR. */
6353 if (((old_code == NE && new_code == EQ)
6354 || (old_code == EQ && new_code == NE))
6355 && ! other_changed_previously && op1 == const0_rtx
6356 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6357 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6359 rtx pat = PATTERN (other_insn), note = 0;
6361 if ((recog_for_combine (&pat, other_insn, &note) < 0
6362 && ! check_asm_operands (pat)))
6364 *cc_use = old_cc_use;
6365 other_changed = 0;
6367 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6368 op0, GEN_INT (mask));
6373 if (other_changed)
6374 undobuf.other_insn = other_insn;
6376 /* Otherwise, if we didn't previously have a COMPARE in the
6377 correct mode, we need one. */
6378 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6380 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6381 src = SET_SRC (x);
6383 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6385 SUBST (SET_SRC (x), op0);
6386 src = SET_SRC (x);
6388 /* Otherwise, update the COMPARE if needed. */
6389 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6391 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6392 src = SET_SRC (x);
6395 else
6397 /* Get SET_SRC in a form where we have placed back any
6398 compound expressions. Then do the checks below. */
6399 src = make_compound_operation (src, SET);
6400 SUBST (SET_SRC (x), src);
6403 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6404 and X being a REG or (subreg (reg)), we may be able to convert this to
6405 (set (subreg:m2 x) (op)).
6407 We can always do this if M1 is narrower than M2 because that means that
6408 we only care about the low bits of the result.
6410 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6411 perform a narrower operation than requested since the high-order bits will
6412 be undefined. On machine where it is defined, this transformation is safe
6413 as long as M1 and M2 have the same number of words. */
6415 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6416 && !OBJECT_P (SUBREG_REG (src))
6417 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6418 / UNITS_PER_WORD)
6419 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6420 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6421 #ifndef WORD_REGISTER_OPERATIONS
6422 && (GET_MODE_SIZE (GET_MODE (src))
6423 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6424 #endif
6425 #ifdef CANNOT_CHANGE_MODE_CLASS
6426 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6427 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6428 GET_MODE (SUBREG_REG (src)),
6429 GET_MODE (src)))
6430 #endif
6431 && (REG_P (dest)
6432 || (GET_CODE (dest) == SUBREG
6433 && REG_P (SUBREG_REG (dest)))))
6435 SUBST (SET_DEST (x),
6436 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6437 dest));
6438 SUBST (SET_SRC (x), SUBREG_REG (src));
6440 src = SET_SRC (x), dest = SET_DEST (x);
6443 #ifdef HAVE_cc0
6444 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6445 in SRC. */
6446 if (dest == cc0_rtx
6447 && GET_CODE (src) == SUBREG
6448 && subreg_lowpart_p (src)
6449 && (GET_MODE_PRECISION (GET_MODE (src))
6450 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6452 rtx inner = SUBREG_REG (src);
6453 enum machine_mode inner_mode = GET_MODE (inner);
6455 /* Here we make sure that we don't have a sign bit on. */
6456 if (val_signbit_known_clear_p (GET_MODE (src),
6457 nonzero_bits (inner, inner_mode)))
6459 SUBST (SET_SRC (x), inner);
6460 src = SET_SRC (x);
6463 #endif
6465 #ifdef LOAD_EXTEND_OP
6466 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6467 would require a paradoxical subreg. Replace the subreg with a
6468 zero_extend to avoid the reload that would otherwise be required. */
6470 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6471 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6472 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6473 && SUBREG_BYTE (src) == 0
6474 && paradoxical_subreg_p (src)
6475 && MEM_P (SUBREG_REG (src)))
6477 SUBST (SET_SRC (x),
6478 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6479 GET_MODE (src), SUBREG_REG (src)));
6481 src = SET_SRC (x);
6483 #endif
6485 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6486 are comparing an item known to be 0 or -1 against 0, use a logical
6487 operation instead. Check for one of the arms being an IOR of the other
6488 arm with some value. We compute three terms to be IOR'ed together. In
6489 practice, at most two will be nonzero. Then we do the IOR's. */
6491 if (GET_CODE (dest) != PC
6492 && GET_CODE (src) == IF_THEN_ELSE
6493 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6494 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6495 && XEXP (XEXP (src, 0), 1) == const0_rtx
6496 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6497 #ifdef HAVE_conditional_move
6498 && ! can_conditionally_move_p (GET_MODE (src))
6499 #endif
6500 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6501 GET_MODE (XEXP (XEXP (src, 0), 0)))
6502 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6503 && ! side_effects_p (src))
6505 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6506 ? XEXP (src, 1) : XEXP (src, 2));
6507 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6508 ? XEXP (src, 2) : XEXP (src, 1));
6509 rtx term1 = const0_rtx, term2, term3;
6511 if (GET_CODE (true_rtx) == IOR
6512 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6513 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6514 else if (GET_CODE (true_rtx) == IOR
6515 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6516 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6517 else if (GET_CODE (false_rtx) == IOR
6518 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6519 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6520 else if (GET_CODE (false_rtx) == IOR
6521 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6522 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6524 term2 = simplify_gen_binary (AND, GET_MODE (src),
6525 XEXP (XEXP (src, 0), 0), true_rtx);
6526 term3 = simplify_gen_binary (AND, GET_MODE (src),
6527 simplify_gen_unary (NOT, GET_MODE (src),
6528 XEXP (XEXP (src, 0), 0),
6529 GET_MODE (src)),
6530 false_rtx);
6532 SUBST (SET_SRC (x),
6533 simplify_gen_binary (IOR, GET_MODE (src),
6534 simplify_gen_binary (IOR, GET_MODE (src),
6535 term1, term2),
6536 term3));
6538 src = SET_SRC (x);
6541 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6542 whole thing fail. */
6543 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6544 return src;
6545 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6546 return dest;
6547 else
6548 /* Convert this into a field assignment operation, if possible. */
6549 return make_field_assignment (x);
6552 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6553 result. */
6555 static rtx
6556 simplify_logical (rtx x)
6558 enum machine_mode mode = GET_MODE (x);
6559 rtx op0 = XEXP (x, 0);
6560 rtx op1 = XEXP (x, 1);
6562 switch (GET_CODE (x))
6564 case AND:
6565 /* We can call simplify_and_const_int only if we don't lose
6566 any (sign) bits when converting INTVAL (op1) to
6567 "unsigned HOST_WIDE_INT". */
6568 if (CONST_INT_P (op1)
6569 && (HWI_COMPUTABLE_MODE_P (mode)
6570 || INTVAL (op1) > 0))
6572 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6573 if (GET_CODE (x) != AND)
6574 return x;
6576 op0 = XEXP (x, 0);
6577 op1 = XEXP (x, 1);
6580 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6581 apply the distributive law and then the inverse distributive
6582 law to see if things simplify. */
6583 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6585 rtx result = distribute_and_simplify_rtx (x, 0);
6586 if (result)
6587 return result;
6589 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6591 rtx result = distribute_and_simplify_rtx (x, 1);
6592 if (result)
6593 return result;
6595 break;
6597 case IOR:
6598 /* If we have (ior (and A B) C), apply the distributive law and then
6599 the inverse distributive law to see if things simplify. */
6601 if (GET_CODE (op0) == AND)
6603 rtx result = distribute_and_simplify_rtx (x, 0);
6604 if (result)
6605 return result;
6608 if (GET_CODE (op1) == AND)
6610 rtx result = distribute_and_simplify_rtx (x, 1);
6611 if (result)
6612 return result;
6614 break;
6616 default:
6617 gcc_unreachable ();
6620 return x;
6623 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6624 operations" because they can be replaced with two more basic operations.
6625 ZERO_EXTEND is also considered "compound" because it can be replaced with
6626 an AND operation, which is simpler, though only one operation.
6628 The function expand_compound_operation is called with an rtx expression
6629 and will convert it to the appropriate shifts and AND operations,
6630 simplifying at each stage.
6632 The function make_compound_operation is called to convert an expression
6633 consisting of shifts and ANDs into the equivalent compound expression.
6634 It is the inverse of this function, loosely speaking. */
6636 static rtx
6637 expand_compound_operation (rtx x)
6639 unsigned HOST_WIDE_INT pos = 0, len;
6640 int unsignedp = 0;
6641 unsigned int modewidth;
6642 rtx tem;
6644 switch (GET_CODE (x))
6646 case ZERO_EXTEND:
6647 unsignedp = 1;
6648 case SIGN_EXTEND:
6649 /* We can't necessarily use a const_int for a multiword mode;
6650 it depends on implicitly extending the value.
6651 Since we don't know the right way to extend it,
6652 we can't tell whether the implicit way is right.
6654 Even for a mode that is no wider than a const_int,
6655 we can't win, because we need to sign extend one of its bits through
6656 the rest of it, and we don't know which bit. */
6657 if (CONST_INT_P (XEXP (x, 0)))
6658 return x;
6660 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6661 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6662 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6663 reloaded. If not for that, MEM's would very rarely be safe.
6665 Reject MODEs bigger than a word, because we might not be able
6666 to reference a two-register group starting with an arbitrary register
6667 (and currently gen_lowpart might crash for a SUBREG). */
6669 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6670 return x;
6672 /* Reject MODEs that aren't scalar integers because turning vector
6673 or complex modes into shifts causes problems. */
6675 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6676 return x;
6678 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6679 /* If the inner object has VOIDmode (the only way this can happen
6680 is if it is an ASM_OPERANDS), we can't do anything since we don't
6681 know how much masking to do. */
6682 if (len == 0)
6683 return x;
6685 break;
6687 case ZERO_EXTRACT:
6688 unsignedp = 1;
6690 /* ... fall through ... */
6692 case SIGN_EXTRACT:
6693 /* If the operand is a CLOBBER, just return it. */
6694 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6695 return XEXP (x, 0);
6697 if (!CONST_INT_P (XEXP (x, 1))
6698 || !CONST_INT_P (XEXP (x, 2))
6699 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6700 return x;
6702 /* Reject MODEs that aren't scalar integers because turning vector
6703 or complex modes into shifts causes problems. */
6705 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6706 return x;
6708 len = INTVAL (XEXP (x, 1));
6709 pos = INTVAL (XEXP (x, 2));
6711 /* This should stay within the object being extracted, fail otherwise. */
6712 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6713 return x;
6715 if (BITS_BIG_ENDIAN)
6716 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6718 break;
6720 default:
6721 return x;
6723 /* Convert sign extension to zero extension, if we know that the high
6724 bit is not set, as this is easier to optimize. It will be converted
6725 back to cheaper alternative in make_extraction. */
6726 if (GET_CODE (x) == SIGN_EXTEND
6727 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6728 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6729 & ~(((unsigned HOST_WIDE_INT)
6730 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6731 >> 1))
6732 == 0)))
6734 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6735 rtx temp2 = expand_compound_operation (temp);
6737 /* Make sure this is a profitable operation. */
6738 if (set_src_cost (x, optimize_this_for_speed_p)
6739 > set_src_cost (temp2, optimize_this_for_speed_p))
6740 return temp2;
6741 else if (set_src_cost (x, optimize_this_for_speed_p)
6742 > set_src_cost (temp, optimize_this_for_speed_p))
6743 return temp;
6744 else
6745 return x;
6748 /* We can optimize some special cases of ZERO_EXTEND. */
6749 if (GET_CODE (x) == ZERO_EXTEND)
6751 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6752 know that the last value didn't have any inappropriate bits
6753 set. */
6754 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6755 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6756 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6757 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6758 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6759 return XEXP (XEXP (x, 0), 0);
6761 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6762 if (GET_CODE (XEXP (x, 0)) == SUBREG
6763 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6764 && subreg_lowpart_p (XEXP (x, 0))
6765 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6766 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6767 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6768 return SUBREG_REG (XEXP (x, 0));
6770 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6771 is a comparison and STORE_FLAG_VALUE permits. This is like
6772 the first case, but it works even when GET_MODE (x) is larger
6773 than HOST_WIDE_INT. */
6774 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6775 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6776 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6777 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6778 <= HOST_BITS_PER_WIDE_INT)
6779 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6780 return XEXP (XEXP (x, 0), 0);
6782 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6783 if (GET_CODE (XEXP (x, 0)) == SUBREG
6784 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6785 && subreg_lowpart_p (XEXP (x, 0))
6786 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6787 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6788 <= HOST_BITS_PER_WIDE_INT)
6789 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6790 return SUBREG_REG (XEXP (x, 0));
6794 /* If we reach here, we want to return a pair of shifts. The inner
6795 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6796 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6797 logical depending on the value of UNSIGNEDP.
6799 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6800 converted into an AND of a shift.
6802 We must check for the case where the left shift would have a negative
6803 count. This can happen in a case like (x >> 31) & 255 on machines
6804 that can't shift by a constant. On those machines, we would first
6805 combine the shift with the AND to produce a variable-position
6806 extraction. Then the constant of 31 would be substituted in
6807 to produce such a position. */
6809 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6810 if (modewidth >= pos + len)
6812 enum machine_mode mode = GET_MODE (x);
6813 tem = gen_lowpart (mode, XEXP (x, 0));
6814 if (!tem || GET_CODE (tem) == CLOBBER)
6815 return x;
6816 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6817 tem, modewidth - pos - len);
6818 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6819 mode, tem, modewidth - len);
6821 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6822 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6823 simplify_shift_const (NULL_RTX, LSHIFTRT,
6824 GET_MODE (x),
6825 XEXP (x, 0), pos),
6826 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6827 else
6828 /* Any other cases we can't handle. */
6829 return x;
6831 /* If we couldn't do this for some reason, return the original
6832 expression. */
6833 if (GET_CODE (tem) == CLOBBER)
6834 return x;
6836 return tem;
6839 /* X is a SET which contains an assignment of one object into
6840 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6841 or certain SUBREGS). If possible, convert it into a series of
6842 logical operations.
6844 We half-heartedly support variable positions, but do not at all
6845 support variable lengths. */
6847 static const_rtx
6848 expand_field_assignment (const_rtx x)
6850 rtx inner;
6851 rtx pos; /* Always counts from low bit. */
6852 int len;
6853 rtx mask, cleared, masked;
6854 enum machine_mode compute_mode;
6856 /* Loop until we find something we can't simplify. */
6857 while (1)
6859 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6860 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6862 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6863 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6864 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6866 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6867 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6869 inner = XEXP (SET_DEST (x), 0);
6870 len = INTVAL (XEXP (SET_DEST (x), 1));
6871 pos = XEXP (SET_DEST (x), 2);
6873 /* A constant position should stay within the width of INNER. */
6874 if (CONST_INT_P (pos)
6875 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6876 break;
6878 if (BITS_BIG_ENDIAN)
6880 if (CONST_INT_P (pos))
6881 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6882 - INTVAL (pos));
6883 else if (GET_CODE (pos) == MINUS
6884 && CONST_INT_P (XEXP (pos, 1))
6885 && (INTVAL (XEXP (pos, 1))
6886 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6887 /* If position is ADJUST - X, new position is X. */
6888 pos = XEXP (pos, 0);
6889 else
6890 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6891 GEN_INT (GET_MODE_PRECISION (
6892 GET_MODE (inner))
6893 - len),
6894 pos);
6898 /* A SUBREG between two modes that occupy the same numbers of words
6899 can be done by moving the SUBREG to the source. */
6900 else if (GET_CODE (SET_DEST (x)) == SUBREG
6901 /* We need SUBREGs to compute nonzero_bits properly. */
6902 && nonzero_sign_valid
6903 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6904 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6905 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6906 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6908 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6909 gen_lowpart
6910 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6911 SET_SRC (x)));
6912 continue;
6914 else
6915 break;
6917 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6918 inner = SUBREG_REG (inner);
6920 compute_mode = GET_MODE (inner);
6922 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6923 if (! SCALAR_INT_MODE_P (compute_mode))
6925 enum machine_mode imode;
6927 /* Don't do anything for vector or complex integral types. */
6928 if (! FLOAT_MODE_P (compute_mode))
6929 break;
6931 /* Try to find an integral mode to pun with. */
6932 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6933 if (imode == BLKmode)
6934 break;
6936 compute_mode = imode;
6937 inner = gen_lowpart (imode, inner);
6940 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6941 if (len >= HOST_BITS_PER_WIDE_INT)
6942 break;
6944 /* Now compute the equivalent expression. Make a copy of INNER
6945 for the SET_DEST in case it is a MEM into which we will substitute;
6946 we don't want shared RTL in that case. */
6947 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6948 cleared = simplify_gen_binary (AND, compute_mode,
6949 simplify_gen_unary (NOT, compute_mode,
6950 simplify_gen_binary (ASHIFT,
6951 compute_mode,
6952 mask, pos),
6953 compute_mode),
6954 inner);
6955 masked = simplify_gen_binary (ASHIFT, compute_mode,
6956 simplify_gen_binary (
6957 AND, compute_mode,
6958 gen_lowpart (compute_mode, SET_SRC (x)),
6959 mask),
6960 pos);
6962 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6963 simplify_gen_binary (IOR, compute_mode,
6964 cleared, masked));
6967 return x;
6970 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6971 it is an RTX that represents the (variable) starting position; otherwise,
6972 POS is the (constant) starting bit position. Both are counted from the LSB.
6974 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
6976 IN_DEST is nonzero if this is a reference in the destination of a SET.
6977 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6978 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6979 be used.
6981 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6982 ZERO_EXTRACT should be built even for bits starting at bit 0.
6984 MODE is the desired mode of the result (if IN_DEST == 0).
6986 The result is an RTX for the extraction or NULL_RTX if the target
6987 can't handle it. */
6989 static rtx
6990 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6991 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6992 int in_dest, int in_compare)
6994 /* This mode describes the size of the storage area
6995 to fetch the overall value from. Within that, we
6996 ignore the POS lowest bits, etc. */
6997 enum machine_mode is_mode = GET_MODE (inner);
6998 enum machine_mode inner_mode;
6999 enum machine_mode wanted_inner_mode;
7000 enum machine_mode wanted_inner_reg_mode = word_mode;
7001 enum machine_mode pos_mode = word_mode;
7002 enum machine_mode extraction_mode = word_mode;
7003 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7004 rtx new_rtx = 0;
7005 rtx orig_pos_rtx = pos_rtx;
7006 HOST_WIDE_INT orig_pos;
7008 if (pos_rtx && CONST_INT_P (pos_rtx))
7009 pos = INTVAL (pos_rtx), pos_rtx = 0;
7011 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7013 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7014 consider just the QI as the memory to extract from.
7015 The subreg adds or removes high bits; its mode is
7016 irrelevant to the meaning of this extraction,
7017 since POS and LEN count from the lsb. */
7018 if (MEM_P (SUBREG_REG (inner)))
7019 is_mode = GET_MODE (SUBREG_REG (inner));
7020 inner = SUBREG_REG (inner);
7022 else if (GET_CODE (inner) == ASHIFT
7023 && CONST_INT_P (XEXP (inner, 1))
7024 && pos_rtx == 0 && pos == 0
7025 && len > UINTVAL (XEXP (inner, 1)))
7027 /* We're extracting the least significant bits of an rtx
7028 (ashift X (const_int C)), where LEN > C. Extract the
7029 least significant (LEN - C) bits of X, giving an rtx
7030 whose mode is MODE, then shift it left C times. */
7031 new_rtx = make_extraction (mode, XEXP (inner, 0),
7032 0, 0, len - INTVAL (XEXP (inner, 1)),
7033 unsignedp, in_dest, in_compare);
7034 if (new_rtx != 0)
7035 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7037 else if (GET_CODE (inner) == TRUNCATE)
7038 inner = XEXP (inner, 0);
7040 inner_mode = GET_MODE (inner);
7042 /* See if this can be done without an extraction. We never can if the
7043 width of the field is not the same as that of some integer mode. For
7044 registers, we can only avoid the extraction if the position is at the
7045 low-order bit and this is either not in the destination or we have the
7046 appropriate STRICT_LOW_PART operation available.
7048 For MEM, we can avoid an extract if the field starts on an appropriate
7049 boundary and we can change the mode of the memory reference. */
7051 if (tmode != BLKmode
7052 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7053 && !MEM_P (inner)
7054 && (inner_mode == tmode
7055 || !REG_P (inner)
7056 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7057 || reg_truncated_to_mode (tmode, inner))
7058 && (! in_dest
7059 || (REG_P (inner)
7060 && have_insn_for (STRICT_LOW_PART, tmode))))
7061 || (MEM_P (inner) && pos_rtx == 0
7062 && (pos
7063 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7064 : BITS_PER_UNIT)) == 0
7065 /* We can't do this if we are widening INNER_MODE (it
7066 may not be aligned, for one thing). */
7067 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7068 && (inner_mode == tmode
7069 || (! mode_dependent_address_p (XEXP (inner, 0),
7070 MEM_ADDR_SPACE (inner))
7071 && ! MEM_VOLATILE_P (inner))))))
7073 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7074 field. If the original and current mode are the same, we need not
7075 adjust the offset. Otherwise, we do if bytes big endian.
7077 If INNER is not a MEM, get a piece consisting of just the field
7078 of interest (in this case POS % BITS_PER_WORD must be 0). */
7080 if (MEM_P (inner))
7082 HOST_WIDE_INT offset;
7084 /* POS counts from lsb, but make OFFSET count in memory order. */
7085 if (BYTES_BIG_ENDIAN)
7086 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7087 else
7088 offset = pos / BITS_PER_UNIT;
7090 new_rtx = adjust_address_nv (inner, tmode, offset);
7092 else if (REG_P (inner))
7094 if (tmode != inner_mode)
7096 /* We can't call gen_lowpart in a DEST since we
7097 always want a SUBREG (see below) and it would sometimes
7098 return a new hard register. */
7099 if (pos || in_dest)
7101 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7103 if (WORDS_BIG_ENDIAN
7104 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7105 final_word = ((GET_MODE_SIZE (inner_mode)
7106 - GET_MODE_SIZE (tmode))
7107 / UNITS_PER_WORD) - final_word;
7109 final_word *= UNITS_PER_WORD;
7110 if (BYTES_BIG_ENDIAN &&
7111 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7112 final_word += (GET_MODE_SIZE (inner_mode)
7113 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7115 /* Avoid creating invalid subregs, for example when
7116 simplifying (x>>32)&255. */
7117 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7118 return NULL_RTX;
7120 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7122 else
7123 new_rtx = gen_lowpart (tmode, inner);
7125 else
7126 new_rtx = inner;
7128 else
7129 new_rtx = force_to_mode (inner, tmode,
7130 len >= HOST_BITS_PER_WIDE_INT
7131 ? ~(unsigned HOST_WIDE_INT) 0
7132 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7135 /* If this extraction is going into the destination of a SET,
7136 make a STRICT_LOW_PART unless we made a MEM. */
7138 if (in_dest)
7139 return (MEM_P (new_rtx) ? new_rtx
7140 : (GET_CODE (new_rtx) != SUBREG
7141 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7142 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7144 if (mode == tmode)
7145 return new_rtx;
7147 if (CONST_SCALAR_INT_P (new_rtx))
7148 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7149 mode, new_rtx, tmode);
7151 /* If we know that no extraneous bits are set, and that the high
7152 bit is not set, convert the extraction to the cheaper of
7153 sign and zero extension, that are equivalent in these cases. */
7154 if (flag_expensive_optimizations
7155 && (HWI_COMPUTABLE_MODE_P (tmode)
7156 && ((nonzero_bits (new_rtx, tmode)
7157 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7158 == 0)))
7160 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7161 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7163 /* Prefer ZERO_EXTENSION, since it gives more information to
7164 backends. */
7165 if (set_src_cost (temp, optimize_this_for_speed_p)
7166 <= set_src_cost (temp1, optimize_this_for_speed_p))
7167 return temp;
7168 return temp1;
7171 /* Otherwise, sign- or zero-extend unless we already are in the
7172 proper mode. */
7174 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7175 mode, new_rtx));
7178 /* Unless this is a COMPARE or we have a funny memory reference,
7179 don't do anything with zero-extending field extracts starting at
7180 the low-order bit since they are simple AND operations. */
7181 if (pos_rtx == 0 && pos == 0 && ! in_dest
7182 && ! in_compare && unsignedp)
7183 return 0;
7185 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7186 if the position is not a constant and the length is not 1. In all
7187 other cases, we would only be going outside our object in cases when
7188 an original shift would have been undefined. */
7189 if (MEM_P (inner)
7190 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7191 || (pos_rtx != 0 && len != 1)))
7192 return 0;
7194 enum extraction_pattern pattern = (in_dest ? EP_insv
7195 : unsignedp ? EP_extzv : EP_extv);
7197 /* If INNER is not from memory, we want it to have the mode of a register
7198 extraction pattern's structure operand, or word_mode if there is no
7199 such pattern. The same applies to extraction_mode and pos_mode
7200 and their respective operands.
7202 For memory, assume that the desired extraction_mode and pos_mode
7203 are the same as for a register operation, since at present we don't
7204 have named patterns for aligned memory structures. */
7205 struct extraction_insn insn;
7206 if (get_best_reg_extraction_insn (&insn, pattern,
7207 GET_MODE_BITSIZE (inner_mode), mode))
7209 wanted_inner_reg_mode = insn.struct_mode;
7210 pos_mode = insn.pos_mode;
7211 extraction_mode = insn.field_mode;
7214 /* Never narrow an object, since that might not be safe. */
7216 if (mode != VOIDmode
7217 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7218 extraction_mode = mode;
7220 if (!MEM_P (inner))
7221 wanted_inner_mode = wanted_inner_reg_mode;
7222 else
7224 /* Be careful not to go beyond the extracted object and maintain the
7225 natural alignment of the memory. */
7226 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7227 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7228 > GET_MODE_BITSIZE (wanted_inner_mode))
7230 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7231 gcc_assert (wanted_inner_mode != VOIDmode);
7235 orig_pos = pos;
7237 if (BITS_BIG_ENDIAN)
7239 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7240 BITS_BIG_ENDIAN style. If position is constant, compute new
7241 position. Otherwise, build subtraction.
7242 Note that POS is relative to the mode of the original argument.
7243 If it's a MEM we need to recompute POS relative to that.
7244 However, if we're extracting from (or inserting into) a register,
7245 we want to recompute POS relative to wanted_inner_mode. */
7246 int width = (MEM_P (inner)
7247 ? GET_MODE_BITSIZE (is_mode)
7248 : GET_MODE_BITSIZE (wanted_inner_mode));
7250 if (pos_rtx == 0)
7251 pos = width - len - pos;
7252 else
7253 pos_rtx
7254 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7255 /* POS may be less than 0 now, but we check for that below.
7256 Note that it can only be less than 0 if !MEM_P (inner). */
7259 /* If INNER has a wider mode, and this is a constant extraction, try to
7260 make it smaller and adjust the byte to point to the byte containing
7261 the value. */
7262 if (wanted_inner_mode != VOIDmode
7263 && inner_mode != wanted_inner_mode
7264 && ! pos_rtx
7265 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7266 && MEM_P (inner)
7267 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7268 && ! MEM_VOLATILE_P (inner))
7270 int offset = 0;
7272 /* The computations below will be correct if the machine is big
7273 endian in both bits and bytes or little endian in bits and bytes.
7274 If it is mixed, we must adjust. */
7276 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7277 adjust OFFSET to compensate. */
7278 if (BYTES_BIG_ENDIAN
7279 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7280 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7282 /* We can now move to the desired byte. */
7283 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7284 * GET_MODE_SIZE (wanted_inner_mode);
7285 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7287 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7288 && is_mode != wanted_inner_mode)
7289 offset = (GET_MODE_SIZE (is_mode)
7290 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7292 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7295 /* If INNER is not memory, get it into the proper mode. If we are changing
7296 its mode, POS must be a constant and smaller than the size of the new
7297 mode. */
7298 else if (!MEM_P (inner))
7300 /* On the LHS, don't create paradoxical subregs implicitely truncating
7301 the register unless TRULY_NOOP_TRUNCATION. */
7302 if (in_dest
7303 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7304 wanted_inner_mode))
7305 return NULL_RTX;
7307 if (GET_MODE (inner) != wanted_inner_mode
7308 && (pos_rtx != 0
7309 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7310 return NULL_RTX;
7312 if (orig_pos < 0)
7313 return NULL_RTX;
7315 inner = force_to_mode (inner, wanted_inner_mode,
7316 pos_rtx
7317 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7318 ? ~(unsigned HOST_WIDE_INT) 0
7319 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7320 << orig_pos),
7324 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7325 have to zero extend. Otherwise, we can just use a SUBREG. */
7326 if (pos_rtx != 0
7327 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7329 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7331 /* If we know that no extraneous bits are set, and that the high
7332 bit is not set, convert extraction to cheaper one - either
7333 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7334 cases. */
7335 if (flag_expensive_optimizations
7336 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7337 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7338 & ~(((unsigned HOST_WIDE_INT)
7339 GET_MODE_MASK (GET_MODE (pos_rtx)))
7340 >> 1))
7341 == 0)))
7343 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7345 /* Prefer ZERO_EXTENSION, since it gives more information to
7346 backends. */
7347 if (set_src_cost (temp1, optimize_this_for_speed_p)
7348 < set_src_cost (temp, optimize_this_for_speed_p))
7349 temp = temp1;
7351 pos_rtx = temp;
7354 /* Make POS_RTX unless we already have it and it is correct. If we don't
7355 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7356 be a CONST_INT. */
7357 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7358 pos_rtx = orig_pos_rtx;
7360 else if (pos_rtx == 0)
7361 pos_rtx = GEN_INT (pos);
7363 /* Make the required operation. See if we can use existing rtx. */
7364 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7365 extraction_mode, inner, GEN_INT (len), pos_rtx);
7366 if (! in_dest)
7367 new_rtx = gen_lowpart (mode, new_rtx);
7369 return new_rtx;
7372 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7373 with any other operations in X. Return X without that shift if so. */
7375 static rtx
7376 extract_left_shift (rtx x, int count)
7378 enum rtx_code code = GET_CODE (x);
7379 enum machine_mode mode = GET_MODE (x);
7380 rtx tem;
7382 switch (code)
7384 case ASHIFT:
7385 /* This is the shift itself. If it is wide enough, we will return
7386 either the value being shifted if the shift count is equal to
7387 COUNT or a shift for the difference. */
7388 if (CONST_INT_P (XEXP (x, 1))
7389 && INTVAL (XEXP (x, 1)) >= count)
7390 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7391 INTVAL (XEXP (x, 1)) - count);
7392 break;
7394 case NEG: case NOT:
7395 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7396 return simplify_gen_unary (code, mode, tem, mode);
7398 break;
7400 case PLUS: case IOR: case XOR: case AND:
7401 /* If we can safely shift this constant and we find the inner shift,
7402 make a new operation. */
7403 if (CONST_INT_P (XEXP (x, 1))
7404 && (UINTVAL (XEXP (x, 1))
7405 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7406 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7407 return simplify_gen_binary (code, mode, tem,
7408 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7410 break;
7412 default:
7413 break;
7416 return 0;
7419 /* Look at the expression rooted at X. Look for expressions
7420 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7421 Form these expressions.
7423 Return the new rtx, usually just X.
7425 Also, for machines like the VAX that don't have logical shift insns,
7426 try to convert logical to arithmetic shift operations in cases where
7427 they are equivalent. This undoes the canonicalizations to logical
7428 shifts done elsewhere.
7430 We try, as much as possible, to re-use rtl expressions to save memory.
7432 IN_CODE says what kind of expression we are processing. Normally, it is
7433 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7434 being kludges), it is MEM. When processing the arguments of a comparison
7435 or a COMPARE against zero, it is COMPARE. */
7438 make_compound_operation (rtx x, enum rtx_code in_code)
7440 enum rtx_code code = GET_CODE (x);
7441 enum machine_mode mode = GET_MODE (x);
7442 int mode_width = GET_MODE_PRECISION (mode);
7443 rtx rhs, lhs;
7444 enum rtx_code next_code;
7445 int i, j;
7446 rtx new_rtx = 0;
7447 rtx tem;
7448 const char *fmt;
7450 /* Select the code to be used in recursive calls. Once we are inside an
7451 address, we stay there. If we have a comparison, set to COMPARE,
7452 but once inside, go back to our default of SET. */
7454 next_code = (code == MEM ? MEM
7455 : ((code == PLUS || code == MINUS)
7456 && SCALAR_INT_MODE_P (mode)) ? MEM
7457 : ((code == COMPARE || COMPARISON_P (x))
7458 && XEXP (x, 1) == const0_rtx) ? COMPARE
7459 : in_code == COMPARE ? SET : in_code);
7461 /* Process depending on the code of this operation. If NEW is set
7462 nonzero, it will be returned. */
7464 switch (code)
7466 case ASHIFT:
7467 /* Convert shifts by constants into multiplications if inside
7468 an address. */
7469 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7470 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7471 && INTVAL (XEXP (x, 1)) >= 0
7472 && SCALAR_INT_MODE_P (mode))
7474 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7475 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7477 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7478 if (GET_CODE (new_rtx) == NEG)
7480 new_rtx = XEXP (new_rtx, 0);
7481 multval = -multval;
7483 multval = trunc_int_for_mode (multval, mode);
7484 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7486 break;
7488 case PLUS:
7489 lhs = XEXP (x, 0);
7490 rhs = XEXP (x, 1);
7491 lhs = make_compound_operation (lhs, next_code);
7492 rhs = make_compound_operation (rhs, next_code);
7493 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7494 && SCALAR_INT_MODE_P (mode))
7496 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7497 XEXP (lhs, 1));
7498 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7500 else if (GET_CODE (lhs) == MULT
7501 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7503 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7504 simplify_gen_unary (NEG, mode,
7505 XEXP (lhs, 1),
7506 mode));
7507 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7509 else
7511 SUBST (XEXP (x, 0), lhs);
7512 SUBST (XEXP (x, 1), rhs);
7513 goto maybe_swap;
7515 x = gen_lowpart (mode, new_rtx);
7516 goto maybe_swap;
7518 case MINUS:
7519 lhs = XEXP (x, 0);
7520 rhs = XEXP (x, 1);
7521 lhs = make_compound_operation (lhs, next_code);
7522 rhs = make_compound_operation (rhs, next_code);
7523 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7524 && SCALAR_INT_MODE_P (mode))
7526 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7527 XEXP (rhs, 1));
7528 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7530 else if (GET_CODE (rhs) == MULT
7531 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7533 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7534 simplify_gen_unary (NEG, mode,
7535 XEXP (rhs, 1),
7536 mode));
7537 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7539 else
7541 SUBST (XEXP (x, 0), lhs);
7542 SUBST (XEXP (x, 1), rhs);
7543 return x;
7545 return gen_lowpart (mode, new_rtx);
7547 case AND:
7548 /* If the second operand is not a constant, we can't do anything
7549 with it. */
7550 if (!CONST_INT_P (XEXP (x, 1)))
7551 break;
7553 /* If the constant is a power of two minus one and the first operand
7554 is a logical right shift, make an extraction. */
7555 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7556 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7558 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7559 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7560 0, in_code == COMPARE);
7563 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7564 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7565 && subreg_lowpart_p (XEXP (x, 0))
7566 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7567 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7569 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7570 next_code);
7571 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7572 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7573 0, in_code == COMPARE);
7575 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7576 else if ((GET_CODE (XEXP (x, 0)) == XOR
7577 || GET_CODE (XEXP (x, 0)) == IOR)
7578 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7579 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7580 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7582 /* Apply the distributive law, and then try to make extractions. */
7583 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7584 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7585 XEXP (x, 1)),
7586 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7587 XEXP (x, 1)));
7588 new_rtx = make_compound_operation (new_rtx, in_code);
7591 /* If we are have (and (rotate X C) M) and C is larger than the number
7592 of bits in M, this is an extraction. */
7594 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7595 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7596 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7597 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7599 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7600 new_rtx = make_extraction (mode, new_rtx,
7601 (GET_MODE_PRECISION (mode)
7602 - INTVAL (XEXP (XEXP (x, 0), 1))),
7603 NULL_RTX, i, 1, 0, in_code == COMPARE);
7606 /* On machines without logical shifts, if the operand of the AND is
7607 a logical shift and our mask turns off all the propagated sign
7608 bits, we can replace the logical shift with an arithmetic shift. */
7609 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7610 && !have_insn_for (LSHIFTRT, mode)
7611 && have_insn_for (ASHIFTRT, mode)
7612 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7613 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7614 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7615 && mode_width <= HOST_BITS_PER_WIDE_INT)
7617 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7619 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7620 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7621 SUBST (XEXP (x, 0),
7622 gen_rtx_ASHIFTRT (mode,
7623 make_compound_operation
7624 (XEXP (XEXP (x, 0), 0), next_code),
7625 XEXP (XEXP (x, 0), 1)));
7628 /* If the constant is one less than a power of two, this might be
7629 representable by an extraction even if no shift is present.
7630 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7631 we are in a COMPARE. */
7632 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7633 new_rtx = make_extraction (mode,
7634 make_compound_operation (XEXP (x, 0),
7635 next_code),
7636 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7638 /* If we are in a comparison and this is an AND with a power of two,
7639 convert this into the appropriate bit extract. */
7640 else if (in_code == COMPARE
7641 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7642 new_rtx = make_extraction (mode,
7643 make_compound_operation (XEXP (x, 0),
7644 next_code),
7645 i, NULL_RTX, 1, 1, 0, 1);
7647 break;
7649 case LSHIFTRT:
7650 /* If the sign bit is known to be zero, replace this with an
7651 arithmetic shift. */
7652 if (have_insn_for (ASHIFTRT, mode)
7653 && ! have_insn_for (LSHIFTRT, mode)
7654 && mode_width <= HOST_BITS_PER_WIDE_INT
7655 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7657 new_rtx = gen_rtx_ASHIFTRT (mode,
7658 make_compound_operation (XEXP (x, 0),
7659 next_code),
7660 XEXP (x, 1));
7661 break;
7664 /* ... fall through ... */
7666 case ASHIFTRT:
7667 lhs = XEXP (x, 0);
7668 rhs = XEXP (x, 1);
7670 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7671 this is a SIGN_EXTRACT. */
7672 if (CONST_INT_P (rhs)
7673 && GET_CODE (lhs) == ASHIFT
7674 && CONST_INT_P (XEXP (lhs, 1))
7675 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7676 && INTVAL (XEXP (lhs, 1)) >= 0
7677 && INTVAL (rhs) < mode_width)
7679 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7680 new_rtx = make_extraction (mode, new_rtx,
7681 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7682 NULL_RTX, mode_width - INTVAL (rhs),
7683 code == LSHIFTRT, 0, in_code == COMPARE);
7684 break;
7687 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7688 If so, try to merge the shifts into a SIGN_EXTEND. We could
7689 also do this for some cases of SIGN_EXTRACT, but it doesn't
7690 seem worth the effort; the case checked for occurs on Alpha. */
7692 if (!OBJECT_P (lhs)
7693 && ! (GET_CODE (lhs) == SUBREG
7694 && (OBJECT_P (SUBREG_REG (lhs))))
7695 && CONST_INT_P (rhs)
7696 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7697 && INTVAL (rhs) < mode_width
7698 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7699 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7700 0, NULL_RTX, mode_width - INTVAL (rhs),
7701 code == LSHIFTRT, 0, in_code == COMPARE);
7703 break;
7705 case SUBREG:
7706 /* Call ourselves recursively on the inner expression. If we are
7707 narrowing the object and it has a different RTL code from
7708 what it originally did, do this SUBREG as a force_to_mode. */
7710 rtx inner = SUBREG_REG (x), simplified;
7711 enum rtx_code subreg_code = in_code;
7713 /* If in_code is COMPARE, it isn't always safe to pass it through
7714 to the recursive make_compound_operation call. */
7715 if (subreg_code == COMPARE
7716 && (!subreg_lowpart_p (x)
7717 || GET_CODE (inner) == SUBREG
7718 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7719 is (const_int 0), rather than
7720 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7721 || (GET_CODE (inner) == AND
7722 && CONST_INT_P (XEXP (inner, 1))
7723 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7724 && exact_log2 (UINTVAL (XEXP (inner, 1)))
7725 >= GET_MODE_BITSIZE (mode))))
7726 subreg_code = SET;
7728 tem = make_compound_operation (inner, subreg_code);
7730 simplified
7731 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7732 if (simplified)
7733 tem = simplified;
7735 if (GET_CODE (tem) != GET_CODE (inner)
7736 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7737 && subreg_lowpart_p (x))
7739 rtx newer
7740 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7742 /* If we have something other than a SUBREG, we might have
7743 done an expansion, so rerun ourselves. */
7744 if (GET_CODE (newer) != SUBREG)
7745 newer = make_compound_operation (newer, in_code);
7747 /* force_to_mode can expand compounds. If it just re-expanded the
7748 compound, use gen_lowpart to convert to the desired mode. */
7749 if (rtx_equal_p (newer, x)
7750 /* Likewise if it re-expanded the compound only partially.
7751 This happens for SUBREG of ZERO_EXTRACT if they extract
7752 the same number of bits. */
7753 || (GET_CODE (newer) == SUBREG
7754 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7755 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7756 && GET_CODE (inner) == AND
7757 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7758 return gen_lowpart (GET_MODE (x), tem);
7760 return newer;
7763 if (simplified)
7764 return tem;
7766 break;
7768 default:
7769 break;
7772 if (new_rtx)
7774 x = gen_lowpart (mode, new_rtx);
7775 code = GET_CODE (x);
7778 /* Now recursively process each operand of this operation. We need to
7779 handle ZERO_EXTEND specially so that we don't lose track of the
7780 inner mode. */
7781 if (GET_CODE (x) == ZERO_EXTEND)
7783 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7784 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7785 new_rtx, GET_MODE (XEXP (x, 0)));
7786 if (tem)
7787 return tem;
7788 SUBST (XEXP (x, 0), new_rtx);
7789 return x;
7792 fmt = GET_RTX_FORMAT (code);
7793 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7794 if (fmt[i] == 'e')
7796 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7797 SUBST (XEXP (x, i), new_rtx);
7799 else if (fmt[i] == 'E')
7800 for (j = 0; j < XVECLEN (x, i); j++)
7802 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7803 SUBST (XVECEXP (x, i, j), new_rtx);
7806 maybe_swap:
7807 /* If this is a commutative operation, the changes to the operands
7808 may have made it noncanonical. */
7809 if (COMMUTATIVE_ARITH_P (x)
7810 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7812 tem = XEXP (x, 0);
7813 SUBST (XEXP (x, 0), XEXP (x, 1));
7814 SUBST (XEXP (x, 1), tem);
7817 return x;
7820 /* Given M see if it is a value that would select a field of bits
7821 within an item, but not the entire word. Return -1 if not.
7822 Otherwise, return the starting position of the field, where 0 is the
7823 low-order bit.
7825 *PLEN is set to the length of the field. */
7827 static int
7828 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7830 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7831 int pos = m ? ctz_hwi (m) : -1;
7832 int len = 0;
7834 if (pos >= 0)
7835 /* Now shift off the low-order zero bits and see if we have a
7836 power of two minus 1. */
7837 len = exact_log2 ((m >> pos) + 1);
7839 if (len <= 0)
7840 pos = -1;
7842 *plen = len;
7843 return pos;
7846 /* If X refers to a register that equals REG in value, replace these
7847 references with REG. */
7848 static rtx
7849 canon_reg_for_combine (rtx x, rtx reg)
7851 rtx op0, op1, op2;
7852 const char *fmt;
7853 int i;
7854 bool copied;
7856 enum rtx_code code = GET_CODE (x);
7857 switch (GET_RTX_CLASS (code))
7859 case RTX_UNARY:
7860 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7861 if (op0 != XEXP (x, 0))
7862 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7863 GET_MODE (reg));
7864 break;
7866 case RTX_BIN_ARITH:
7867 case RTX_COMM_ARITH:
7868 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7869 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7870 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7871 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7872 break;
7874 case RTX_COMPARE:
7875 case RTX_COMM_COMPARE:
7876 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7877 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7878 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7879 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7880 GET_MODE (op0), op0, op1);
7881 break;
7883 case RTX_TERNARY:
7884 case RTX_BITFIELD_OPS:
7885 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7886 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7887 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7888 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7889 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7890 GET_MODE (op0), op0, op1, op2);
7892 case RTX_OBJ:
7893 if (REG_P (x))
7895 if (rtx_equal_p (get_last_value (reg), x)
7896 || rtx_equal_p (reg, get_last_value (x)))
7897 return reg;
7898 else
7899 break;
7902 /* fall through */
7904 default:
7905 fmt = GET_RTX_FORMAT (code);
7906 copied = false;
7907 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7908 if (fmt[i] == 'e')
7910 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7911 if (op != XEXP (x, i))
7913 if (!copied)
7915 copied = true;
7916 x = copy_rtx (x);
7918 XEXP (x, i) = op;
7921 else if (fmt[i] == 'E')
7923 int j;
7924 for (j = 0; j < XVECLEN (x, i); j++)
7926 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7927 if (op != XVECEXP (x, i, j))
7929 if (!copied)
7931 copied = true;
7932 x = copy_rtx (x);
7934 XVECEXP (x, i, j) = op;
7939 break;
7942 return x;
7945 /* Return X converted to MODE. If the value is already truncated to
7946 MODE we can just return a subreg even though in the general case we
7947 would need an explicit truncation. */
7949 static rtx
7950 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7952 if (!CONST_INT_P (x)
7953 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7954 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7955 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7957 /* Bit-cast X into an integer mode. */
7958 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7959 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7960 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7961 x, GET_MODE (x));
7964 return gen_lowpart (mode, x);
7967 /* See if X can be simplified knowing that we will only refer to it in
7968 MODE and will only refer to those bits that are nonzero in MASK.
7969 If other bits are being computed or if masking operations are done
7970 that select a superset of the bits in MASK, they can sometimes be
7971 ignored.
7973 Return a possibly simplified expression, but always convert X to
7974 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7976 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7977 are all off in X. This is used when X will be complemented, by either
7978 NOT, NEG, or XOR. */
7980 static rtx
7981 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7982 int just_select)
7984 enum rtx_code code = GET_CODE (x);
7985 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7986 enum machine_mode op_mode;
7987 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7988 rtx op0, op1, temp;
7990 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7991 code below will do the wrong thing since the mode of such an
7992 expression is VOIDmode.
7994 Also do nothing if X is a CLOBBER; this can happen if X was
7995 the return value from a call to gen_lowpart. */
7996 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7997 return x;
7999 /* We want to perform the operation is its present mode unless we know
8000 that the operation is valid in MODE, in which case we do the operation
8001 in MODE. */
8002 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8003 && have_insn_for (code, mode))
8004 ? mode : GET_MODE (x));
8006 /* It is not valid to do a right-shift in a narrower mode
8007 than the one it came in with. */
8008 if ((code == LSHIFTRT || code == ASHIFTRT)
8009 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8010 op_mode = GET_MODE (x);
8012 /* Truncate MASK to fit OP_MODE. */
8013 if (op_mode)
8014 mask &= GET_MODE_MASK (op_mode);
8016 /* When we have an arithmetic operation, or a shift whose count we
8017 do not know, we need to assume that all bits up to the highest-order
8018 bit in MASK will be needed. This is how we form such a mask. */
8019 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8020 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8021 else
8022 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8023 - 1);
8025 /* Determine what bits of X are guaranteed to be (non)zero. */
8026 nonzero = nonzero_bits (x, mode);
8028 /* If none of the bits in X are needed, return a zero. */
8029 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8030 x = const0_rtx;
8032 /* If X is a CONST_INT, return a new one. Do this here since the
8033 test below will fail. */
8034 if (CONST_INT_P (x))
8036 if (SCALAR_INT_MODE_P (mode))
8037 return gen_int_mode (INTVAL (x) & mask, mode);
8038 else
8040 x = GEN_INT (INTVAL (x) & mask);
8041 return gen_lowpart_common (mode, x);
8045 /* If X is narrower than MODE and we want all the bits in X's mode, just
8046 get X in the proper mode. */
8047 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8048 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8049 return gen_lowpart (mode, x);
8051 /* We can ignore the effect of a SUBREG if it narrows the mode or
8052 if the constant masks to zero all the bits the mode doesn't have. */
8053 if (GET_CODE (x) == SUBREG
8054 && subreg_lowpart_p (x)
8055 && ((GET_MODE_SIZE (GET_MODE (x))
8056 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8057 || (0 == (mask
8058 & GET_MODE_MASK (GET_MODE (x))
8059 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8060 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8062 /* The arithmetic simplifications here only work for scalar integer modes. */
8063 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8064 return gen_lowpart_or_truncate (mode, x);
8066 switch (code)
8068 case CLOBBER:
8069 /* If X is a (clobber (const_int)), return it since we know we are
8070 generating something that won't match. */
8071 return x;
8073 case SIGN_EXTEND:
8074 case ZERO_EXTEND:
8075 case ZERO_EXTRACT:
8076 case SIGN_EXTRACT:
8077 x = expand_compound_operation (x);
8078 if (GET_CODE (x) != code)
8079 return force_to_mode (x, mode, mask, next_select);
8080 break;
8082 case TRUNCATE:
8083 /* Similarly for a truncate. */
8084 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8086 case AND:
8087 /* If this is an AND with a constant, convert it into an AND
8088 whose constant is the AND of that constant with MASK. If it
8089 remains an AND of MASK, delete it since it is redundant. */
8091 if (CONST_INT_P (XEXP (x, 1)))
8093 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8094 mask & INTVAL (XEXP (x, 1)));
8096 /* If X is still an AND, see if it is an AND with a mask that
8097 is just some low-order bits. If so, and it is MASK, we don't
8098 need it. */
8100 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8101 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8102 == mask))
8103 x = XEXP (x, 0);
8105 /* If it remains an AND, try making another AND with the bits
8106 in the mode mask that aren't in MASK turned on. If the
8107 constant in the AND is wide enough, this might make a
8108 cheaper constant. */
8110 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8111 && GET_MODE_MASK (GET_MODE (x)) != mask
8112 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8114 unsigned HOST_WIDE_INT cval
8115 = UINTVAL (XEXP (x, 1))
8116 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8117 int width = GET_MODE_PRECISION (GET_MODE (x));
8118 rtx y;
8120 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8121 number, sign extend it. */
8122 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8123 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8124 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8126 y = simplify_gen_binary (AND, GET_MODE (x),
8127 XEXP (x, 0), GEN_INT (cval));
8128 if (set_src_cost (y, optimize_this_for_speed_p)
8129 < set_src_cost (x, optimize_this_for_speed_p))
8130 x = y;
8133 break;
8136 goto binop;
8138 case PLUS:
8139 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8140 low-order bits (as in an alignment operation) and FOO is already
8141 aligned to that boundary, mask C1 to that boundary as well.
8142 This may eliminate that PLUS and, later, the AND. */
8145 unsigned int width = GET_MODE_PRECISION (mode);
8146 unsigned HOST_WIDE_INT smask = mask;
8148 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8149 number, sign extend it. */
8151 if (width < HOST_BITS_PER_WIDE_INT
8152 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8153 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8155 if (CONST_INT_P (XEXP (x, 1))
8156 && exact_log2 (- smask) >= 0
8157 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8158 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8159 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8160 (INTVAL (XEXP (x, 1)) & smask)),
8161 mode, smask, next_select);
8164 /* ... fall through ... */
8166 case MULT:
8167 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8168 most significant bit in MASK since carries from those bits will
8169 affect the bits we are interested in. */
8170 mask = fuller_mask;
8171 goto binop;
8173 case MINUS:
8174 /* If X is (minus C Y) where C's least set bit is larger than any bit
8175 in the mask, then we may replace with (neg Y). */
8176 if (CONST_INT_P (XEXP (x, 0))
8177 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8178 & -INTVAL (XEXP (x, 0))))
8179 > mask))
8181 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8182 GET_MODE (x));
8183 return force_to_mode (x, mode, mask, next_select);
8186 /* Similarly, if C contains every bit in the fuller_mask, then we may
8187 replace with (not Y). */
8188 if (CONST_INT_P (XEXP (x, 0))
8189 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8191 x = simplify_gen_unary (NOT, GET_MODE (x),
8192 XEXP (x, 1), GET_MODE (x));
8193 return force_to_mode (x, mode, mask, next_select);
8196 mask = fuller_mask;
8197 goto binop;
8199 case IOR:
8200 case XOR:
8201 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8202 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8203 operation which may be a bitfield extraction. Ensure that the
8204 constant we form is not wider than the mode of X. */
8206 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8207 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8208 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8209 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8210 && CONST_INT_P (XEXP (x, 1))
8211 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8212 + floor_log2 (INTVAL (XEXP (x, 1))))
8213 < GET_MODE_PRECISION (GET_MODE (x)))
8214 && (UINTVAL (XEXP (x, 1))
8215 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8217 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8218 << INTVAL (XEXP (XEXP (x, 0), 1)));
8219 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8220 XEXP (XEXP (x, 0), 0), temp);
8221 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8222 XEXP (XEXP (x, 0), 1));
8223 return force_to_mode (x, mode, mask, next_select);
8226 binop:
8227 /* For most binary operations, just propagate into the operation and
8228 change the mode if we have an operation of that mode. */
8230 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8231 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8233 /* If we ended up truncating both operands, truncate the result of the
8234 operation instead. */
8235 if (GET_CODE (op0) == TRUNCATE
8236 && GET_CODE (op1) == TRUNCATE)
8238 op0 = XEXP (op0, 0);
8239 op1 = XEXP (op1, 0);
8242 op0 = gen_lowpart_or_truncate (op_mode, op0);
8243 op1 = gen_lowpart_or_truncate (op_mode, op1);
8245 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8246 x = simplify_gen_binary (code, op_mode, op0, op1);
8247 break;
8249 case ASHIFT:
8250 /* For left shifts, do the same, but just for the first operand.
8251 However, we cannot do anything with shifts where we cannot
8252 guarantee that the counts are smaller than the size of the mode
8253 because such a count will have a different meaning in a
8254 wider mode. */
8256 if (! (CONST_INT_P (XEXP (x, 1))
8257 && INTVAL (XEXP (x, 1)) >= 0
8258 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8259 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8260 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8261 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8262 break;
8264 /* If the shift count is a constant and we can do arithmetic in
8265 the mode of the shift, refine which bits we need. Otherwise, use the
8266 conservative form of the mask. */
8267 if (CONST_INT_P (XEXP (x, 1))
8268 && INTVAL (XEXP (x, 1)) >= 0
8269 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8270 && HWI_COMPUTABLE_MODE_P (op_mode))
8271 mask >>= INTVAL (XEXP (x, 1));
8272 else
8273 mask = fuller_mask;
8275 op0 = gen_lowpart_or_truncate (op_mode,
8276 force_to_mode (XEXP (x, 0), op_mode,
8277 mask, next_select));
8279 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8280 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8281 break;
8283 case LSHIFTRT:
8284 /* Here we can only do something if the shift count is a constant,
8285 this shift constant is valid for the host, and we can do arithmetic
8286 in OP_MODE. */
8288 if (CONST_INT_P (XEXP (x, 1))
8289 && INTVAL (XEXP (x, 1)) >= 0
8290 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8291 && HWI_COMPUTABLE_MODE_P (op_mode))
8293 rtx inner = XEXP (x, 0);
8294 unsigned HOST_WIDE_INT inner_mask;
8296 /* Select the mask of the bits we need for the shift operand. */
8297 inner_mask = mask << INTVAL (XEXP (x, 1));
8299 /* We can only change the mode of the shift if we can do arithmetic
8300 in the mode of the shift and INNER_MASK is no wider than the
8301 width of X's mode. */
8302 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8303 op_mode = GET_MODE (x);
8305 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8307 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8308 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8311 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8312 shift and AND produces only copies of the sign bit (C2 is one less
8313 than a power of two), we can do this with just a shift. */
8315 if (GET_CODE (x) == LSHIFTRT
8316 && CONST_INT_P (XEXP (x, 1))
8317 /* The shift puts one of the sign bit copies in the least significant
8318 bit. */
8319 && ((INTVAL (XEXP (x, 1))
8320 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8321 >= GET_MODE_PRECISION (GET_MODE (x)))
8322 && exact_log2 (mask + 1) >= 0
8323 /* Number of bits left after the shift must be more than the mask
8324 needs. */
8325 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8326 <= GET_MODE_PRECISION (GET_MODE (x)))
8327 /* Must be more sign bit copies than the mask needs. */
8328 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8329 >= exact_log2 (mask + 1)))
8330 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8331 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8332 - exact_log2 (mask + 1)));
8334 goto shiftrt;
8336 case ASHIFTRT:
8337 /* If we are just looking for the sign bit, we don't need this shift at
8338 all, even if it has a variable count. */
8339 if (val_signbit_p (GET_MODE (x), mask))
8340 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8342 /* If this is a shift by a constant, get a mask that contains those bits
8343 that are not copies of the sign bit. We then have two cases: If
8344 MASK only includes those bits, this can be a logical shift, which may
8345 allow simplifications. If MASK is a single-bit field not within
8346 those bits, we are requesting a copy of the sign bit and hence can
8347 shift the sign bit to the appropriate location. */
8349 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8350 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8352 int i;
8354 /* If the considered data is wider than HOST_WIDE_INT, we can't
8355 represent a mask for all its bits in a single scalar.
8356 But we only care about the lower bits, so calculate these. */
8358 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8360 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8362 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8363 is the number of bits a full-width mask would have set.
8364 We need only shift if these are fewer than nonzero can
8365 hold. If not, we must keep all bits set in nonzero. */
8367 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8368 < HOST_BITS_PER_WIDE_INT)
8369 nonzero >>= INTVAL (XEXP (x, 1))
8370 + HOST_BITS_PER_WIDE_INT
8371 - GET_MODE_PRECISION (GET_MODE (x)) ;
8373 else
8375 nonzero = GET_MODE_MASK (GET_MODE (x));
8376 nonzero >>= INTVAL (XEXP (x, 1));
8379 if ((mask & ~nonzero) == 0)
8381 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8382 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8383 if (GET_CODE (x) != ASHIFTRT)
8384 return force_to_mode (x, mode, mask, next_select);
8387 else if ((i = exact_log2 (mask)) >= 0)
8389 x = simplify_shift_const
8390 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8391 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8393 if (GET_CODE (x) != ASHIFTRT)
8394 return force_to_mode (x, mode, mask, next_select);
8398 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8399 even if the shift count isn't a constant. */
8400 if (mask == 1)
8401 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8402 XEXP (x, 0), XEXP (x, 1));
8404 shiftrt:
8406 /* If this is a zero- or sign-extension operation that just affects bits
8407 we don't care about, remove it. Be sure the call above returned
8408 something that is still a shift. */
8410 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8411 && CONST_INT_P (XEXP (x, 1))
8412 && INTVAL (XEXP (x, 1)) >= 0
8413 && (INTVAL (XEXP (x, 1))
8414 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8415 && GET_CODE (XEXP (x, 0)) == ASHIFT
8416 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8417 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8418 next_select);
8420 break;
8422 case ROTATE:
8423 case ROTATERT:
8424 /* If the shift count is constant and we can do computations
8425 in the mode of X, compute where the bits we care about are.
8426 Otherwise, we can't do anything. Don't change the mode of
8427 the shift or propagate MODE into the shift, though. */
8428 if (CONST_INT_P (XEXP (x, 1))
8429 && INTVAL (XEXP (x, 1)) >= 0)
8431 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8432 GET_MODE (x), GEN_INT (mask),
8433 XEXP (x, 1));
8434 if (temp && CONST_INT_P (temp))
8435 SUBST (XEXP (x, 0),
8436 force_to_mode (XEXP (x, 0), GET_MODE (x),
8437 INTVAL (temp), next_select));
8439 break;
8441 case NEG:
8442 /* If we just want the low-order bit, the NEG isn't needed since it
8443 won't change the low-order bit. */
8444 if (mask == 1)
8445 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8447 /* We need any bits less significant than the most significant bit in
8448 MASK since carries from those bits will affect the bits we are
8449 interested in. */
8450 mask = fuller_mask;
8451 goto unop;
8453 case NOT:
8454 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8455 same as the XOR case above. Ensure that the constant we form is not
8456 wider than the mode of X. */
8458 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8459 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8460 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8461 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8462 < GET_MODE_PRECISION (GET_MODE (x)))
8463 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8465 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8466 GET_MODE (x));
8467 temp = simplify_gen_binary (XOR, GET_MODE (x),
8468 XEXP (XEXP (x, 0), 0), temp);
8469 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8470 temp, XEXP (XEXP (x, 0), 1));
8472 return force_to_mode (x, mode, mask, next_select);
8475 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8476 use the full mask inside the NOT. */
8477 mask = fuller_mask;
8479 unop:
8480 op0 = gen_lowpart_or_truncate (op_mode,
8481 force_to_mode (XEXP (x, 0), mode, mask,
8482 next_select));
8483 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8484 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8485 break;
8487 case NE:
8488 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8489 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8490 which is equal to STORE_FLAG_VALUE. */
8491 if ((mask & ~STORE_FLAG_VALUE) == 0
8492 && XEXP (x, 1) == const0_rtx
8493 && GET_MODE (XEXP (x, 0)) == mode
8494 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8495 && (nonzero_bits (XEXP (x, 0), mode)
8496 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8497 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8499 break;
8501 case IF_THEN_ELSE:
8502 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8503 written in a narrower mode. We play it safe and do not do so. */
8505 SUBST (XEXP (x, 1),
8506 gen_lowpart_or_truncate (GET_MODE (x),
8507 force_to_mode (XEXP (x, 1), mode,
8508 mask, next_select)));
8509 SUBST (XEXP (x, 2),
8510 gen_lowpart_or_truncate (GET_MODE (x),
8511 force_to_mode (XEXP (x, 2), mode,
8512 mask, next_select)));
8513 break;
8515 default:
8516 break;
8519 /* Ensure we return a value of the proper mode. */
8520 return gen_lowpart_or_truncate (mode, x);
8523 /* Return nonzero if X is an expression that has one of two values depending on
8524 whether some other value is zero or nonzero. In that case, we return the
8525 value that is being tested, *PTRUE is set to the value if the rtx being
8526 returned has a nonzero value, and *PFALSE is set to the other alternative.
8528 If we return zero, we set *PTRUE and *PFALSE to X. */
8530 static rtx
8531 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8533 enum machine_mode mode = GET_MODE (x);
8534 enum rtx_code code = GET_CODE (x);
8535 rtx cond0, cond1, true0, true1, false0, false1;
8536 unsigned HOST_WIDE_INT nz;
8538 /* If we are comparing a value against zero, we are done. */
8539 if ((code == NE || code == EQ)
8540 && XEXP (x, 1) == const0_rtx)
8542 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8543 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8544 return XEXP (x, 0);
8547 /* If this is a unary operation whose operand has one of two values, apply
8548 our opcode to compute those values. */
8549 else if (UNARY_P (x)
8550 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8552 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8553 *pfalse = simplify_gen_unary (code, mode, false0,
8554 GET_MODE (XEXP (x, 0)));
8555 return cond0;
8558 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8559 make can't possibly match and would suppress other optimizations. */
8560 else if (code == COMPARE)
8563 /* If this is a binary operation, see if either side has only one of two
8564 values. If either one does or if both do and they are conditional on
8565 the same value, compute the new true and false values. */
8566 else if (BINARY_P (x))
8568 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8569 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8571 if ((cond0 != 0 || cond1 != 0)
8572 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8574 /* If if_then_else_cond returned zero, then true/false are the
8575 same rtl. We must copy one of them to prevent invalid rtl
8576 sharing. */
8577 if (cond0 == 0)
8578 true0 = copy_rtx (true0);
8579 else if (cond1 == 0)
8580 true1 = copy_rtx (true1);
8582 if (COMPARISON_P (x))
8584 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8585 true0, true1);
8586 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8587 false0, false1);
8589 else
8591 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8592 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8595 return cond0 ? cond0 : cond1;
8598 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8599 operands is zero when the other is nonzero, and vice-versa,
8600 and STORE_FLAG_VALUE is 1 or -1. */
8602 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8603 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8604 || code == UMAX)
8605 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8607 rtx op0 = XEXP (XEXP (x, 0), 1);
8608 rtx op1 = XEXP (XEXP (x, 1), 1);
8610 cond0 = XEXP (XEXP (x, 0), 0);
8611 cond1 = XEXP (XEXP (x, 1), 0);
8613 if (COMPARISON_P (cond0)
8614 && COMPARISON_P (cond1)
8615 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8616 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8617 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8618 || ((swap_condition (GET_CODE (cond0))
8619 == reversed_comparison_code (cond1, NULL))
8620 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8621 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8622 && ! side_effects_p (x))
8624 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8625 *pfalse = simplify_gen_binary (MULT, mode,
8626 (code == MINUS
8627 ? simplify_gen_unary (NEG, mode,
8628 op1, mode)
8629 : op1),
8630 const_true_rtx);
8631 return cond0;
8635 /* Similarly for MULT, AND and UMIN, except that for these the result
8636 is always zero. */
8637 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8638 && (code == MULT || code == AND || code == UMIN)
8639 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8641 cond0 = XEXP (XEXP (x, 0), 0);
8642 cond1 = XEXP (XEXP (x, 1), 0);
8644 if (COMPARISON_P (cond0)
8645 && COMPARISON_P (cond1)
8646 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8647 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8648 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8649 || ((swap_condition (GET_CODE (cond0))
8650 == reversed_comparison_code (cond1, NULL))
8651 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8652 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8653 && ! side_effects_p (x))
8655 *ptrue = *pfalse = const0_rtx;
8656 return cond0;
8661 else if (code == IF_THEN_ELSE)
8663 /* If we have IF_THEN_ELSE already, extract the condition and
8664 canonicalize it if it is NE or EQ. */
8665 cond0 = XEXP (x, 0);
8666 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8667 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8668 return XEXP (cond0, 0);
8669 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8671 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8672 return XEXP (cond0, 0);
8674 else
8675 return cond0;
8678 /* If X is a SUBREG, we can narrow both the true and false values
8679 if the inner expression, if there is a condition. */
8680 else if (code == SUBREG
8681 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8682 &true0, &false0)))
8684 true0 = simplify_gen_subreg (mode, true0,
8685 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8686 false0 = simplify_gen_subreg (mode, false0,
8687 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8688 if (true0 && false0)
8690 *ptrue = true0;
8691 *pfalse = false0;
8692 return cond0;
8696 /* If X is a constant, this isn't special and will cause confusions
8697 if we treat it as such. Likewise if it is equivalent to a constant. */
8698 else if (CONSTANT_P (x)
8699 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8702 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8703 will be least confusing to the rest of the compiler. */
8704 else if (mode == BImode)
8706 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8707 return x;
8710 /* If X is known to be either 0 or -1, those are the true and
8711 false values when testing X. */
8712 else if (x == constm1_rtx || x == const0_rtx
8713 || (mode != VOIDmode
8714 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8716 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8717 return x;
8720 /* Likewise for 0 or a single bit. */
8721 else if (HWI_COMPUTABLE_MODE_P (mode)
8722 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8724 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8725 return x;
8728 /* Otherwise fail; show no condition with true and false values the same. */
8729 *ptrue = *pfalse = x;
8730 return 0;
8733 /* Return the value of expression X given the fact that condition COND
8734 is known to be true when applied to REG as its first operand and VAL
8735 as its second. X is known to not be shared and so can be modified in
8736 place.
8738 We only handle the simplest cases, and specifically those cases that
8739 arise with IF_THEN_ELSE expressions. */
8741 static rtx
8742 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8744 enum rtx_code code = GET_CODE (x);
8745 rtx temp;
8746 const char *fmt;
8747 int i, j;
8749 if (side_effects_p (x))
8750 return x;
8752 /* If either operand of the condition is a floating point value,
8753 then we have to avoid collapsing an EQ comparison. */
8754 if (cond == EQ
8755 && rtx_equal_p (x, reg)
8756 && ! FLOAT_MODE_P (GET_MODE (x))
8757 && ! FLOAT_MODE_P (GET_MODE (val)))
8758 return val;
8760 if (cond == UNEQ && rtx_equal_p (x, reg))
8761 return val;
8763 /* If X is (abs REG) and we know something about REG's relationship
8764 with zero, we may be able to simplify this. */
8766 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8767 switch (cond)
8769 case GE: case GT: case EQ:
8770 return XEXP (x, 0);
8771 case LT: case LE:
8772 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8773 XEXP (x, 0),
8774 GET_MODE (XEXP (x, 0)));
8775 default:
8776 break;
8779 /* The only other cases we handle are MIN, MAX, and comparisons if the
8780 operands are the same as REG and VAL. */
8782 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8784 if (rtx_equal_p (XEXP (x, 0), val))
8785 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8787 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8789 if (COMPARISON_P (x))
8791 if (comparison_dominates_p (cond, code))
8792 return const_true_rtx;
8794 code = reversed_comparison_code (x, NULL);
8795 if (code != UNKNOWN
8796 && comparison_dominates_p (cond, code))
8797 return const0_rtx;
8798 else
8799 return x;
8801 else if (code == SMAX || code == SMIN
8802 || code == UMIN || code == UMAX)
8804 int unsignedp = (code == UMIN || code == UMAX);
8806 /* Do not reverse the condition when it is NE or EQ.
8807 This is because we cannot conclude anything about
8808 the value of 'SMAX (x, y)' when x is not equal to y,
8809 but we can when x equals y. */
8810 if ((code == SMAX || code == UMAX)
8811 && ! (cond == EQ || cond == NE))
8812 cond = reverse_condition (cond);
8814 switch (cond)
8816 case GE: case GT:
8817 return unsignedp ? x : XEXP (x, 1);
8818 case LE: case LT:
8819 return unsignedp ? x : XEXP (x, 0);
8820 case GEU: case GTU:
8821 return unsignedp ? XEXP (x, 1) : x;
8822 case LEU: case LTU:
8823 return unsignedp ? XEXP (x, 0) : x;
8824 default:
8825 break;
8830 else if (code == SUBREG)
8832 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8833 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8835 if (SUBREG_REG (x) != r)
8837 /* We must simplify subreg here, before we lose track of the
8838 original inner_mode. */
8839 new_rtx = simplify_subreg (GET_MODE (x), r,
8840 inner_mode, SUBREG_BYTE (x));
8841 if (new_rtx)
8842 return new_rtx;
8843 else
8844 SUBST (SUBREG_REG (x), r);
8847 return x;
8849 /* We don't have to handle SIGN_EXTEND here, because even in the
8850 case of replacing something with a modeless CONST_INT, a
8851 CONST_INT is already (supposed to be) a valid sign extension for
8852 its narrower mode, which implies it's already properly
8853 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8854 story is different. */
8855 else if (code == ZERO_EXTEND)
8857 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8858 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8860 if (XEXP (x, 0) != r)
8862 /* We must simplify the zero_extend here, before we lose
8863 track of the original inner_mode. */
8864 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8865 r, inner_mode);
8866 if (new_rtx)
8867 return new_rtx;
8868 else
8869 SUBST (XEXP (x, 0), r);
8872 return x;
8875 fmt = GET_RTX_FORMAT (code);
8876 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8878 if (fmt[i] == 'e')
8879 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8880 else if (fmt[i] == 'E')
8881 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8882 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8883 cond, reg, val));
8886 return x;
8889 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8890 assignment as a field assignment. */
8892 static int
8893 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8895 if (x == y || rtx_equal_p (x, y))
8896 return 1;
8898 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8899 return 0;
8901 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8902 Note that all SUBREGs of MEM are paradoxical; otherwise they
8903 would have been rewritten. */
8904 if (MEM_P (x) && GET_CODE (y) == SUBREG
8905 && MEM_P (SUBREG_REG (y))
8906 && rtx_equal_p (SUBREG_REG (y),
8907 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8908 return 1;
8910 if (MEM_P (y) && GET_CODE (x) == SUBREG
8911 && MEM_P (SUBREG_REG (x))
8912 && rtx_equal_p (SUBREG_REG (x),
8913 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8914 return 1;
8916 /* We used to see if get_last_value of X and Y were the same but that's
8917 not correct. In one direction, we'll cause the assignment to have
8918 the wrong destination and in the case, we'll import a register into this
8919 insn that might have already have been dead. So fail if none of the
8920 above cases are true. */
8921 return 0;
8924 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8925 Return that assignment if so.
8927 We only handle the most common cases. */
8929 static rtx
8930 make_field_assignment (rtx x)
8932 rtx dest = SET_DEST (x);
8933 rtx src = SET_SRC (x);
8934 rtx assign;
8935 rtx rhs, lhs;
8936 HOST_WIDE_INT c1;
8937 HOST_WIDE_INT pos;
8938 unsigned HOST_WIDE_INT len;
8939 rtx other;
8940 enum machine_mode mode;
8942 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8943 a clear of a one-bit field. We will have changed it to
8944 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8945 for a SUBREG. */
8947 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8948 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8949 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8950 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8952 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8953 1, 1, 1, 0);
8954 if (assign != 0)
8955 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8956 return x;
8959 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8960 && subreg_lowpart_p (XEXP (src, 0))
8961 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8962 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8963 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8964 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8965 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8966 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8968 assign = make_extraction (VOIDmode, dest, 0,
8969 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8970 1, 1, 1, 0);
8971 if (assign != 0)
8972 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8973 return x;
8976 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8977 one-bit field. */
8978 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8979 && XEXP (XEXP (src, 0), 0) == const1_rtx
8980 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8982 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8983 1, 1, 1, 0);
8984 if (assign != 0)
8985 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8986 return x;
8989 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8990 SRC is an AND with all bits of that field set, then we can discard
8991 the AND. */
8992 if (GET_CODE (dest) == ZERO_EXTRACT
8993 && CONST_INT_P (XEXP (dest, 1))
8994 && GET_CODE (src) == AND
8995 && CONST_INT_P (XEXP (src, 1)))
8997 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8998 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8999 unsigned HOST_WIDE_INT ze_mask;
9001 if (width >= HOST_BITS_PER_WIDE_INT)
9002 ze_mask = -1;
9003 else
9004 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9006 /* Complete overlap. We can remove the source AND. */
9007 if ((and_mask & ze_mask) == ze_mask)
9008 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9010 /* Partial overlap. We can reduce the source AND. */
9011 if ((and_mask & ze_mask) != and_mask)
9013 mode = GET_MODE (src);
9014 src = gen_rtx_AND (mode, XEXP (src, 0),
9015 gen_int_mode (and_mask & ze_mask, mode));
9016 return gen_rtx_SET (VOIDmode, dest, src);
9020 /* The other case we handle is assignments into a constant-position
9021 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9022 a mask that has all one bits except for a group of zero bits and
9023 OTHER is known to have zeros where C1 has ones, this is such an
9024 assignment. Compute the position and length from C1. Shift OTHER
9025 to the appropriate position, force it to the required mode, and
9026 make the extraction. Check for the AND in both operands. */
9028 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9029 return x;
9031 rhs = expand_compound_operation (XEXP (src, 0));
9032 lhs = expand_compound_operation (XEXP (src, 1));
9034 if (GET_CODE (rhs) == AND
9035 && CONST_INT_P (XEXP (rhs, 1))
9036 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9037 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9038 else if (GET_CODE (lhs) == AND
9039 && CONST_INT_P (XEXP (lhs, 1))
9040 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9041 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9042 else
9043 return x;
9045 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9046 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9047 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9048 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9049 return x;
9051 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9052 if (assign == 0)
9053 return x;
9055 /* The mode to use for the source is the mode of the assignment, or of
9056 what is inside a possible STRICT_LOW_PART. */
9057 mode = (GET_CODE (assign) == STRICT_LOW_PART
9058 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9060 /* Shift OTHER right POS places and make it the source, restricting it
9061 to the proper length and mode. */
9063 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9064 GET_MODE (src),
9065 other, pos),
9066 dest);
9067 src = force_to_mode (src, mode,
9068 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9069 ? ~(unsigned HOST_WIDE_INT) 0
9070 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9073 /* If SRC is masked by an AND that does not make a difference in
9074 the value being stored, strip it. */
9075 if (GET_CODE (assign) == ZERO_EXTRACT
9076 && CONST_INT_P (XEXP (assign, 1))
9077 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9078 && GET_CODE (src) == AND
9079 && CONST_INT_P (XEXP (src, 1))
9080 && UINTVAL (XEXP (src, 1))
9081 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9082 src = XEXP (src, 0);
9084 return gen_rtx_SET (VOIDmode, assign, src);
9087 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9088 if so. */
9090 static rtx
9091 apply_distributive_law (rtx x)
9093 enum rtx_code code = GET_CODE (x);
9094 enum rtx_code inner_code;
9095 rtx lhs, rhs, other;
9096 rtx tem;
9098 /* Distributivity is not true for floating point as it can change the
9099 value. So we don't do it unless -funsafe-math-optimizations. */
9100 if (FLOAT_MODE_P (GET_MODE (x))
9101 && ! flag_unsafe_math_optimizations)
9102 return x;
9104 /* The outer operation can only be one of the following: */
9105 if (code != IOR && code != AND && code != XOR
9106 && code != PLUS && code != MINUS)
9107 return x;
9109 lhs = XEXP (x, 0);
9110 rhs = XEXP (x, 1);
9112 /* If either operand is a primitive we can't do anything, so get out
9113 fast. */
9114 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9115 return x;
9117 lhs = expand_compound_operation (lhs);
9118 rhs = expand_compound_operation (rhs);
9119 inner_code = GET_CODE (lhs);
9120 if (inner_code != GET_CODE (rhs))
9121 return x;
9123 /* See if the inner and outer operations distribute. */
9124 switch (inner_code)
9126 case LSHIFTRT:
9127 case ASHIFTRT:
9128 case AND:
9129 case IOR:
9130 /* These all distribute except over PLUS. */
9131 if (code == PLUS || code == MINUS)
9132 return x;
9133 break;
9135 case MULT:
9136 if (code != PLUS && code != MINUS)
9137 return x;
9138 break;
9140 case ASHIFT:
9141 /* This is also a multiply, so it distributes over everything. */
9142 break;
9144 /* This used to handle SUBREG, but this turned out to be counter-
9145 productive, since (subreg (op ...)) usually is not handled by
9146 insn patterns, and this "optimization" therefore transformed
9147 recognizable patterns into unrecognizable ones. Therefore the
9148 SUBREG case was removed from here.
9150 It is possible that distributing SUBREG over arithmetic operations
9151 leads to an intermediate result than can then be optimized further,
9152 e.g. by moving the outer SUBREG to the other side of a SET as done
9153 in simplify_set. This seems to have been the original intent of
9154 handling SUBREGs here.
9156 However, with current GCC this does not appear to actually happen,
9157 at least on major platforms. If some case is found where removing
9158 the SUBREG case here prevents follow-on optimizations, distributing
9159 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9161 default:
9162 return x;
9165 /* Set LHS and RHS to the inner operands (A and B in the example
9166 above) and set OTHER to the common operand (C in the example).
9167 There is only one way to do this unless the inner operation is
9168 commutative. */
9169 if (COMMUTATIVE_ARITH_P (lhs)
9170 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9171 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9172 else if (COMMUTATIVE_ARITH_P (lhs)
9173 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9174 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9175 else if (COMMUTATIVE_ARITH_P (lhs)
9176 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9177 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9178 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9179 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9180 else
9181 return x;
9183 /* Form the new inner operation, seeing if it simplifies first. */
9184 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9186 /* There is one exception to the general way of distributing:
9187 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9188 if (code == XOR && inner_code == IOR)
9190 inner_code = AND;
9191 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9194 /* We may be able to continuing distributing the result, so call
9195 ourselves recursively on the inner operation before forming the
9196 outer operation, which we return. */
9197 return simplify_gen_binary (inner_code, GET_MODE (x),
9198 apply_distributive_law (tem), other);
9201 /* See if X is of the form (* (+ A B) C), and if so convert to
9202 (+ (* A C) (* B C)) and try to simplify.
9204 Most of the time, this results in no change. However, if some of
9205 the operands are the same or inverses of each other, simplifications
9206 will result.
9208 For example, (and (ior A B) (not B)) can occur as the result of
9209 expanding a bit field assignment. When we apply the distributive
9210 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9211 which then simplifies to (and (A (not B))).
9213 Note that no checks happen on the validity of applying the inverse
9214 distributive law. This is pointless since we can do it in the
9215 few places where this routine is called.
9217 N is the index of the term that is decomposed (the arithmetic operation,
9218 i.e. (+ A B) in the first example above). !N is the index of the term that
9219 is distributed, i.e. of C in the first example above. */
9220 static rtx
9221 distribute_and_simplify_rtx (rtx x, int n)
9223 enum machine_mode mode;
9224 enum rtx_code outer_code, inner_code;
9225 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9227 /* Distributivity is not true for floating point as it can change the
9228 value. So we don't do it unless -funsafe-math-optimizations. */
9229 if (FLOAT_MODE_P (GET_MODE (x))
9230 && ! flag_unsafe_math_optimizations)
9231 return NULL_RTX;
9233 decomposed = XEXP (x, n);
9234 if (!ARITHMETIC_P (decomposed))
9235 return NULL_RTX;
9237 mode = GET_MODE (x);
9238 outer_code = GET_CODE (x);
9239 distributed = XEXP (x, !n);
9241 inner_code = GET_CODE (decomposed);
9242 inner_op0 = XEXP (decomposed, 0);
9243 inner_op1 = XEXP (decomposed, 1);
9245 /* Special case (and (xor B C) (not A)), which is equivalent to
9246 (xor (ior A B) (ior A C)) */
9247 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9249 distributed = XEXP (distributed, 0);
9250 outer_code = IOR;
9253 if (n == 0)
9255 /* Distribute the second term. */
9256 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9257 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9259 else
9261 /* Distribute the first term. */
9262 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9263 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9266 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9267 new_op0, new_op1));
9268 if (GET_CODE (tmp) != outer_code
9269 && (set_src_cost (tmp, optimize_this_for_speed_p)
9270 < set_src_cost (x, optimize_this_for_speed_p)))
9271 return tmp;
9273 return NULL_RTX;
9276 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9277 in MODE. Return an equivalent form, if different from (and VAROP
9278 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9280 static rtx
9281 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9282 unsigned HOST_WIDE_INT constop)
9284 unsigned HOST_WIDE_INT nonzero;
9285 unsigned HOST_WIDE_INT orig_constop;
9286 rtx orig_varop;
9287 int i;
9289 orig_varop = varop;
9290 orig_constop = constop;
9291 if (GET_CODE (varop) == CLOBBER)
9292 return NULL_RTX;
9294 /* Simplify VAROP knowing that we will be only looking at some of the
9295 bits in it.
9297 Note by passing in CONSTOP, we guarantee that the bits not set in
9298 CONSTOP are not significant and will never be examined. We must
9299 ensure that is the case by explicitly masking out those bits
9300 before returning. */
9301 varop = force_to_mode (varop, mode, constop, 0);
9303 /* If VAROP is a CLOBBER, we will fail so return it. */
9304 if (GET_CODE (varop) == CLOBBER)
9305 return varop;
9307 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9308 to VAROP and return the new constant. */
9309 if (CONST_INT_P (varop))
9310 return gen_int_mode (INTVAL (varop) & constop, mode);
9312 /* See what bits may be nonzero in VAROP. Unlike the general case of
9313 a call to nonzero_bits, here we don't care about bits outside
9314 MODE. */
9316 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9318 /* Turn off all bits in the constant that are known to already be zero.
9319 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9320 which is tested below. */
9322 constop &= nonzero;
9324 /* If we don't have any bits left, return zero. */
9325 if (constop == 0)
9326 return const0_rtx;
9328 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9329 a power of two, we can replace this with an ASHIFT. */
9330 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9331 && (i = exact_log2 (constop)) >= 0)
9332 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9334 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9335 or XOR, then try to apply the distributive law. This may eliminate
9336 operations if either branch can be simplified because of the AND.
9337 It may also make some cases more complex, but those cases probably
9338 won't match a pattern either with or without this. */
9340 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9341 return
9342 gen_lowpart
9343 (mode,
9344 apply_distributive_law
9345 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9346 simplify_and_const_int (NULL_RTX,
9347 GET_MODE (varop),
9348 XEXP (varop, 0),
9349 constop),
9350 simplify_and_const_int (NULL_RTX,
9351 GET_MODE (varop),
9352 XEXP (varop, 1),
9353 constop))));
9355 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9356 the AND and see if one of the operands simplifies to zero. If so, we
9357 may eliminate it. */
9359 if (GET_CODE (varop) == PLUS
9360 && exact_log2 (constop + 1) >= 0)
9362 rtx o0, o1;
9364 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9365 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9366 if (o0 == const0_rtx)
9367 return o1;
9368 if (o1 == const0_rtx)
9369 return o0;
9372 /* Make a SUBREG if necessary. If we can't make it, fail. */
9373 varop = gen_lowpart (mode, varop);
9374 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9375 return NULL_RTX;
9377 /* If we are only masking insignificant bits, return VAROP. */
9378 if (constop == nonzero)
9379 return varop;
9381 if (varop == orig_varop && constop == orig_constop)
9382 return NULL_RTX;
9384 /* Otherwise, return an AND. */
9385 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9389 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9390 in MODE.
9392 Return an equivalent form, if different from X. Otherwise, return X. If
9393 X is zero, we are to always construct the equivalent form. */
9395 static rtx
9396 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9397 unsigned HOST_WIDE_INT constop)
9399 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9400 if (tem)
9401 return tem;
9403 if (!x)
9404 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9405 gen_int_mode (constop, mode));
9406 if (GET_MODE (x) != mode)
9407 x = gen_lowpart (mode, x);
9408 return x;
9411 /* Given a REG, X, compute which bits in X can be nonzero.
9412 We don't care about bits outside of those defined in MODE.
9414 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9415 a shift, AND, or zero_extract, we can do better. */
9417 static rtx
9418 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9419 const_rtx known_x ATTRIBUTE_UNUSED,
9420 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9421 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9422 unsigned HOST_WIDE_INT *nonzero)
9424 rtx tem;
9425 reg_stat_type *rsp;
9427 /* If X is a register whose nonzero bits value is current, use it.
9428 Otherwise, if X is a register whose value we can find, use that
9429 value. Otherwise, use the previously-computed global nonzero bits
9430 for this register. */
9432 rsp = &reg_stat[REGNO (x)];
9433 if (rsp->last_set_value != 0
9434 && (rsp->last_set_mode == mode
9435 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9436 && GET_MODE_CLASS (mode) == MODE_INT))
9437 && ((rsp->last_set_label >= label_tick_ebb_start
9438 && rsp->last_set_label < label_tick)
9439 || (rsp->last_set_label == label_tick
9440 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9441 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9442 && REG_N_SETS (REGNO (x)) == 1
9443 && !REGNO_REG_SET_P
9444 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9446 *nonzero &= rsp->last_set_nonzero_bits;
9447 return NULL;
9450 tem = get_last_value (x);
9452 if (tem)
9454 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9455 /* If X is narrower than MODE and TEM is a non-negative
9456 constant that would appear negative in the mode of X,
9457 sign-extend it for use in reg_nonzero_bits because some
9458 machines (maybe most) will actually do the sign-extension
9459 and this is the conservative approach.
9461 ??? For 2.5, try to tighten up the MD files in this regard
9462 instead of this kludge. */
9464 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9465 && CONST_INT_P (tem)
9466 && INTVAL (tem) > 0
9467 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9468 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9469 #endif
9470 return tem;
9472 else if (nonzero_sign_valid && rsp->nonzero_bits)
9474 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9476 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9477 /* We don't know anything about the upper bits. */
9478 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9479 *nonzero &= mask;
9482 return NULL;
9485 /* Return the number of bits at the high-order end of X that are known to
9486 be equal to the sign bit. X will be used in mode MODE; if MODE is
9487 VOIDmode, X will be used in its own mode. The returned value will always
9488 be between 1 and the number of bits in MODE. */
9490 static rtx
9491 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9492 const_rtx known_x ATTRIBUTE_UNUSED,
9493 enum machine_mode known_mode
9494 ATTRIBUTE_UNUSED,
9495 unsigned int known_ret ATTRIBUTE_UNUSED,
9496 unsigned int *result)
9498 rtx tem;
9499 reg_stat_type *rsp;
9501 rsp = &reg_stat[REGNO (x)];
9502 if (rsp->last_set_value != 0
9503 && rsp->last_set_mode == mode
9504 && ((rsp->last_set_label >= label_tick_ebb_start
9505 && rsp->last_set_label < label_tick)
9506 || (rsp->last_set_label == label_tick
9507 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9508 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9509 && REG_N_SETS (REGNO (x)) == 1
9510 && !REGNO_REG_SET_P
9511 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9513 *result = rsp->last_set_sign_bit_copies;
9514 return NULL;
9517 tem = get_last_value (x);
9518 if (tem != 0)
9519 return tem;
9521 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9522 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9523 *result = rsp->sign_bit_copies;
9525 return NULL;
9528 /* Return the number of "extended" bits there are in X, when interpreted
9529 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9530 unsigned quantities, this is the number of high-order zero bits.
9531 For signed quantities, this is the number of copies of the sign bit
9532 minus 1. In both case, this function returns the number of "spare"
9533 bits. For example, if two quantities for which this function returns
9534 at least 1 are added, the addition is known not to overflow.
9536 This function will always return 0 unless called during combine, which
9537 implies that it must be called from a define_split. */
9539 unsigned int
9540 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9542 if (nonzero_sign_valid == 0)
9543 return 0;
9545 return (unsignedp
9546 ? (HWI_COMPUTABLE_MODE_P (mode)
9547 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9548 - floor_log2 (nonzero_bits (x, mode)))
9549 : 0)
9550 : num_sign_bit_copies (x, mode) - 1);
9553 /* This function is called from `simplify_shift_const' to merge two
9554 outer operations. Specifically, we have already found that we need
9555 to perform operation *POP0 with constant *PCONST0 at the outermost
9556 position. We would now like to also perform OP1 with constant CONST1
9557 (with *POP0 being done last).
9559 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9560 the resulting operation. *PCOMP_P is set to 1 if we would need to
9561 complement the innermost operand, otherwise it is unchanged.
9563 MODE is the mode in which the operation will be done. No bits outside
9564 the width of this mode matter. It is assumed that the width of this mode
9565 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9567 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9568 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9569 result is simply *PCONST0.
9571 If the resulting operation cannot be expressed as one operation, we
9572 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9574 static int
9575 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9577 enum rtx_code op0 = *pop0;
9578 HOST_WIDE_INT const0 = *pconst0;
9580 const0 &= GET_MODE_MASK (mode);
9581 const1 &= GET_MODE_MASK (mode);
9583 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9584 if (op0 == AND)
9585 const1 &= const0;
9587 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9588 if OP0 is SET. */
9590 if (op1 == UNKNOWN || op0 == SET)
9591 return 1;
9593 else if (op0 == UNKNOWN)
9594 op0 = op1, const0 = const1;
9596 else if (op0 == op1)
9598 switch (op0)
9600 case AND:
9601 const0 &= const1;
9602 break;
9603 case IOR:
9604 const0 |= const1;
9605 break;
9606 case XOR:
9607 const0 ^= const1;
9608 break;
9609 case PLUS:
9610 const0 += const1;
9611 break;
9612 case NEG:
9613 op0 = UNKNOWN;
9614 break;
9615 default:
9616 break;
9620 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9621 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9622 return 0;
9624 /* If the two constants aren't the same, we can't do anything. The
9625 remaining six cases can all be done. */
9626 else if (const0 != const1)
9627 return 0;
9629 else
9630 switch (op0)
9632 case IOR:
9633 if (op1 == AND)
9634 /* (a & b) | b == b */
9635 op0 = SET;
9636 else /* op1 == XOR */
9637 /* (a ^ b) | b == a | b */
9639 break;
9641 case XOR:
9642 if (op1 == AND)
9643 /* (a & b) ^ b == (~a) & b */
9644 op0 = AND, *pcomp_p = 1;
9645 else /* op1 == IOR */
9646 /* (a | b) ^ b == a & ~b */
9647 op0 = AND, const0 = ~const0;
9648 break;
9650 case AND:
9651 if (op1 == IOR)
9652 /* (a | b) & b == b */
9653 op0 = SET;
9654 else /* op1 == XOR */
9655 /* (a ^ b) & b) == (~a) & b */
9656 *pcomp_p = 1;
9657 break;
9658 default:
9659 break;
9662 /* Check for NO-OP cases. */
9663 const0 &= GET_MODE_MASK (mode);
9664 if (const0 == 0
9665 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9666 op0 = UNKNOWN;
9667 else if (const0 == 0 && op0 == AND)
9668 op0 = SET;
9669 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9670 && op0 == AND)
9671 op0 = UNKNOWN;
9673 *pop0 = op0;
9675 /* ??? Slightly redundant with the above mask, but not entirely.
9676 Moving this above means we'd have to sign-extend the mode mask
9677 for the final test. */
9678 if (op0 != UNKNOWN && op0 != NEG)
9679 *pconst0 = trunc_int_for_mode (const0, mode);
9681 return 1;
9684 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9685 the shift in. The original shift operation CODE is performed on OP in
9686 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9687 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9688 result of the shift is subject to operation OUTER_CODE with operand
9689 OUTER_CONST. */
9691 static enum machine_mode
9692 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9693 enum machine_mode orig_mode, enum machine_mode mode,
9694 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9696 if (orig_mode == mode)
9697 return mode;
9698 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9700 /* In general we can't perform in wider mode for right shift and rotate. */
9701 switch (code)
9703 case ASHIFTRT:
9704 /* We can still widen if the bits brought in from the left are identical
9705 to the sign bit of ORIG_MODE. */
9706 if (num_sign_bit_copies (op, mode)
9707 > (unsigned) (GET_MODE_PRECISION (mode)
9708 - GET_MODE_PRECISION (orig_mode)))
9709 return mode;
9710 return orig_mode;
9712 case LSHIFTRT:
9713 /* Similarly here but with zero bits. */
9714 if (HWI_COMPUTABLE_MODE_P (mode)
9715 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9716 return mode;
9718 /* We can also widen if the bits brought in will be masked off. This
9719 operation is performed in ORIG_MODE. */
9720 if (outer_code == AND)
9722 int care_bits = low_bitmask_len (orig_mode, outer_const);
9724 if (care_bits >= 0
9725 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9726 return mode;
9728 /* fall through */
9730 case ROTATE:
9731 return orig_mode;
9733 case ROTATERT:
9734 gcc_unreachable ();
9736 default:
9737 return mode;
9741 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9742 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9743 if we cannot simplify it. Otherwise, return a simplified value.
9745 The shift is normally computed in the widest mode we find in VAROP, as
9746 long as it isn't a different number of words than RESULT_MODE. Exceptions
9747 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9749 static rtx
9750 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9751 rtx varop, int orig_count)
9753 enum rtx_code orig_code = code;
9754 rtx orig_varop = varop;
9755 int count;
9756 enum machine_mode mode = result_mode;
9757 enum machine_mode shift_mode, tmode;
9758 unsigned int mode_words
9759 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9760 /* We form (outer_op (code varop count) (outer_const)). */
9761 enum rtx_code outer_op = UNKNOWN;
9762 HOST_WIDE_INT outer_const = 0;
9763 int complement_p = 0;
9764 rtx new_rtx, x;
9766 /* Make sure and truncate the "natural" shift on the way in. We don't
9767 want to do this inside the loop as it makes it more difficult to
9768 combine shifts. */
9769 if (SHIFT_COUNT_TRUNCATED)
9770 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9772 /* If we were given an invalid count, don't do anything except exactly
9773 what was requested. */
9775 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9776 return NULL_RTX;
9778 count = orig_count;
9780 /* Unless one of the branches of the `if' in this loop does a `continue',
9781 we will `break' the loop after the `if'. */
9783 while (count != 0)
9785 /* If we have an operand of (clobber (const_int 0)), fail. */
9786 if (GET_CODE (varop) == CLOBBER)
9787 return NULL_RTX;
9789 /* Convert ROTATERT to ROTATE. */
9790 if (code == ROTATERT)
9792 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9793 code = ROTATE;
9794 if (VECTOR_MODE_P (result_mode))
9795 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9796 else
9797 count = bitsize - count;
9800 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9801 mode, outer_op, outer_const);
9803 /* Handle cases where the count is greater than the size of the mode
9804 minus 1. For ASHIFT, use the size minus one as the count (this can
9805 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9806 take the count modulo the size. For other shifts, the result is
9807 zero.
9809 Since these shifts are being produced by the compiler by combining
9810 multiple operations, each of which are defined, we know what the
9811 result is supposed to be. */
9813 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9815 if (code == ASHIFTRT)
9816 count = GET_MODE_PRECISION (shift_mode) - 1;
9817 else if (code == ROTATE || code == ROTATERT)
9818 count %= GET_MODE_PRECISION (shift_mode);
9819 else
9821 /* We can't simply return zero because there may be an
9822 outer op. */
9823 varop = const0_rtx;
9824 count = 0;
9825 break;
9829 /* If we discovered we had to complement VAROP, leave. Making a NOT
9830 here would cause an infinite loop. */
9831 if (complement_p)
9832 break;
9834 /* An arithmetic right shift of a quantity known to be -1 or 0
9835 is a no-op. */
9836 if (code == ASHIFTRT
9837 && (num_sign_bit_copies (varop, shift_mode)
9838 == GET_MODE_PRECISION (shift_mode)))
9840 count = 0;
9841 break;
9844 /* If we are doing an arithmetic right shift and discarding all but
9845 the sign bit copies, this is equivalent to doing a shift by the
9846 bitsize minus one. Convert it into that shift because it will often
9847 allow other simplifications. */
9849 if (code == ASHIFTRT
9850 && (count + num_sign_bit_copies (varop, shift_mode)
9851 >= GET_MODE_PRECISION (shift_mode)))
9852 count = GET_MODE_PRECISION (shift_mode) - 1;
9854 /* We simplify the tests below and elsewhere by converting
9855 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9856 `make_compound_operation' will convert it to an ASHIFTRT for
9857 those machines (such as VAX) that don't have an LSHIFTRT. */
9858 if (code == ASHIFTRT
9859 && val_signbit_known_clear_p (shift_mode,
9860 nonzero_bits (varop, shift_mode)))
9861 code = LSHIFTRT;
9863 if (((code == LSHIFTRT
9864 && HWI_COMPUTABLE_MODE_P (shift_mode)
9865 && !(nonzero_bits (varop, shift_mode) >> count))
9866 || (code == ASHIFT
9867 && HWI_COMPUTABLE_MODE_P (shift_mode)
9868 && !((nonzero_bits (varop, shift_mode) << count)
9869 & GET_MODE_MASK (shift_mode))))
9870 && !side_effects_p (varop))
9871 varop = const0_rtx;
9873 switch (GET_CODE (varop))
9875 case SIGN_EXTEND:
9876 case ZERO_EXTEND:
9877 case SIGN_EXTRACT:
9878 case ZERO_EXTRACT:
9879 new_rtx = expand_compound_operation (varop);
9880 if (new_rtx != varop)
9882 varop = new_rtx;
9883 continue;
9885 break;
9887 case MEM:
9888 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9889 minus the width of a smaller mode, we can do this with a
9890 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9891 if ((code == ASHIFTRT || code == LSHIFTRT)
9892 && ! mode_dependent_address_p (XEXP (varop, 0),
9893 MEM_ADDR_SPACE (varop))
9894 && ! MEM_VOLATILE_P (varop)
9895 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9896 MODE_INT, 1)) != BLKmode)
9898 new_rtx = adjust_address_nv (varop, tmode,
9899 BYTES_BIG_ENDIAN ? 0
9900 : count / BITS_PER_UNIT);
9902 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9903 : ZERO_EXTEND, mode, new_rtx);
9904 count = 0;
9905 continue;
9907 break;
9909 case SUBREG:
9910 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9911 the same number of words as what we've seen so far. Then store
9912 the widest mode in MODE. */
9913 if (subreg_lowpart_p (varop)
9914 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9915 > GET_MODE_SIZE (GET_MODE (varop)))
9916 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9917 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9918 == mode_words
9919 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9920 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9922 varop = SUBREG_REG (varop);
9923 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9924 mode = GET_MODE (varop);
9925 continue;
9927 break;
9929 case MULT:
9930 /* Some machines use MULT instead of ASHIFT because MULT
9931 is cheaper. But it is still better on those machines to
9932 merge two shifts into one. */
9933 if (CONST_INT_P (XEXP (varop, 1))
9934 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9936 varop
9937 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9938 XEXP (varop, 0),
9939 GEN_INT (exact_log2 (
9940 UINTVAL (XEXP (varop, 1)))));
9941 continue;
9943 break;
9945 case UDIV:
9946 /* Similar, for when divides are cheaper. */
9947 if (CONST_INT_P (XEXP (varop, 1))
9948 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9950 varop
9951 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9952 XEXP (varop, 0),
9953 GEN_INT (exact_log2 (
9954 UINTVAL (XEXP (varop, 1)))));
9955 continue;
9957 break;
9959 case ASHIFTRT:
9960 /* If we are extracting just the sign bit of an arithmetic
9961 right shift, that shift is not needed. However, the sign
9962 bit of a wider mode may be different from what would be
9963 interpreted as the sign bit in a narrower mode, so, if
9964 the result is narrower, don't discard the shift. */
9965 if (code == LSHIFTRT
9966 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9967 && (GET_MODE_BITSIZE (result_mode)
9968 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9970 varop = XEXP (varop, 0);
9971 continue;
9974 /* ... fall through ... */
9976 case LSHIFTRT:
9977 case ASHIFT:
9978 case ROTATE:
9979 /* Here we have two nested shifts. The result is usually the
9980 AND of a new shift with a mask. We compute the result below. */
9981 if (CONST_INT_P (XEXP (varop, 1))
9982 && INTVAL (XEXP (varop, 1)) >= 0
9983 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
9984 && HWI_COMPUTABLE_MODE_P (result_mode)
9985 && HWI_COMPUTABLE_MODE_P (mode)
9986 && !VECTOR_MODE_P (result_mode))
9988 enum rtx_code first_code = GET_CODE (varop);
9989 unsigned int first_count = INTVAL (XEXP (varop, 1));
9990 unsigned HOST_WIDE_INT mask;
9991 rtx mask_rtx;
9993 /* We have one common special case. We can't do any merging if
9994 the inner code is an ASHIFTRT of a smaller mode. However, if
9995 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9996 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9997 we can convert it to
9998 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
9999 This simplifies certain SIGN_EXTEND operations. */
10000 if (code == ASHIFT && first_code == ASHIFTRT
10001 && count == (GET_MODE_PRECISION (result_mode)
10002 - GET_MODE_PRECISION (GET_MODE (varop))))
10004 /* C3 has the low-order C1 bits zero. */
10006 mask = GET_MODE_MASK (mode)
10007 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10009 varop = simplify_and_const_int (NULL_RTX, result_mode,
10010 XEXP (varop, 0), mask);
10011 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10012 varop, count);
10013 count = first_count;
10014 code = ASHIFTRT;
10015 continue;
10018 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10019 than C1 high-order bits equal to the sign bit, we can convert
10020 this to either an ASHIFT or an ASHIFTRT depending on the
10021 two counts.
10023 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10025 if (code == ASHIFTRT && first_code == ASHIFT
10026 && GET_MODE (varop) == shift_mode
10027 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10028 > first_count))
10030 varop = XEXP (varop, 0);
10031 count -= first_count;
10032 if (count < 0)
10034 count = -count;
10035 code = ASHIFT;
10038 continue;
10041 /* There are some cases we can't do. If CODE is ASHIFTRT,
10042 we can only do this if FIRST_CODE is also ASHIFTRT.
10044 We can't do the case when CODE is ROTATE and FIRST_CODE is
10045 ASHIFTRT.
10047 If the mode of this shift is not the mode of the outer shift,
10048 we can't do this if either shift is a right shift or ROTATE.
10050 Finally, we can't do any of these if the mode is too wide
10051 unless the codes are the same.
10053 Handle the case where the shift codes are the same
10054 first. */
10056 if (code == first_code)
10058 if (GET_MODE (varop) != result_mode
10059 && (code == ASHIFTRT || code == LSHIFTRT
10060 || code == ROTATE))
10061 break;
10063 count += first_count;
10064 varop = XEXP (varop, 0);
10065 continue;
10068 if (code == ASHIFTRT
10069 || (code == ROTATE && first_code == ASHIFTRT)
10070 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10071 || (GET_MODE (varop) != result_mode
10072 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10073 || first_code == ROTATE
10074 || code == ROTATE)))
10075 break;
10077 /* To compute the mask to apply after the shift, shift the
10078 nonzero bits of the inner shift the same way the
10079 outer shift will. */
10081 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10083 mask_rtx
10084 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10085 GEN_INT (count));
10087 /* Give up if we can't compute an outer operation to use. */
10088 if (mask_rtx == 0
10089 || !CONST_INT_P (mask_rtx)
10090 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10091 INTVAL (mask_rtx),
10092 result_mode, &complement_p))
10093 break;
10095 /* If the shifts are in the same direction, we add the
10096 counts. Otherwise, we subtract them. */
10097 if ((code == ASHIFTRT || code == LSHIFTRT)
10098 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10099 count += first_count;
10100 else
10101 count -= first_count;
10103 /* If COUNT is positive, the new shift is usually CODE,
10104 except for the two exceptions below, in which case it is
10105 FIRST_CODE. If the count is negative, FIRST_CODE should
10106 always be used */
10107 if (count > 0
10108 && ((first_code == ROTATE && code == ASHIFT)
10109 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10110 code = first_code;
10111 else if (count < 0)
10112 code = first_code, count = -count;
10114 varop = XEXP (varop, 0);
10115 continue;
10118 /* If we have (A << B << C) for any shift, we can convert this to
10119 (A << C << B). This wins if A is a constant. Only try this if
10120 B is not a constant. */
10122 else if (GET_CODE (varop) == code
10123 && CONST_INT_P (XEXP (varop, 0))
10124 && !CONST_INT_P (XEXP (varop, 1)))
10126 rtx new_rtx = simplify_const_binary_operation (code, mode,
10127 XEXP (varop, 0),
10128 GEN_INT (count));
10129 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10130 count = 0;
10131 continue;
10133 break;
10135 case NOT:
10136 if (VECTOR_MODE_P (mode))
10137 break;
10139 /* Make this fit the case below. */
10140 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10141 continue;
10143 case IOR:
10144 case AND:
10145 case XOR:
10146 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10147 with C the size of VAROP - 1 and the shift is logical if
10148 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10149 we have an (le X 0) operation. If we have an arithmetic shift
10150 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10151 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10153 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10154 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10155 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10156 && (code == LSHIFTRT || code == ASHIFTRT)
10157 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10158 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10160 count = 0;
10161 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10162 const0_rtx);
10164 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10165 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10167 continue;
10170 /* If we have (shift (logical)), move the logical to the outside
10171 to allow it to possibly combine with another logical and the
10172 shift to combine with another shift. This also canonicalizes to
10173 what a ZERO_EXTRACT looks like. Also, some machines have
10174 (and (shift)) insns. */
10176 if (CONST_INT_P (XEXP (varop, 1))
10177 /* We can't do this if we have (ashiftrt (xor)) and the
10178 constant has its sign bit set in shift_mode. */
10179 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10180 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10181 shift_mode))
10182 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10183 XEXP (varop, 1),
10184 GEN_INT (count))) != 0
10185 && CONST_INT_P (new_rtx)
10186 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10187 INTVAL (new_rtx), result_mode, &complement_p))
10189 varop = XEXP (varop, 0);
10190 continue;
10193 /* If we can't do that, try to simplify the shift in each arm of the
10194 logical expression, make a new logical expression, and apply
10195 the inverse distributive law. This also can't be done
10196 for some (ashiftrt (xor)). */
10197 if (CONST_INT_P (XEXP (varop, 1))
10198 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10199 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10200 shift_mode)))
10202 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10203 XEXP (varop, 0), count);
10204 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10205 XEXP (varop, 1), count);
10207 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10208 lhs, rhs);
10209 varop = apply_distributive_law (varop);
10211 count = 0;
10212 continue;
10214 break;
10216 case EQ:
10217 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10218 says that the sign bit can be tested, FOO has mode MODE, C is
10219 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10220 that may be nonzero. */
10221 if (code == LSHIFTRT
10222 && XEXP (varop, 1) == const0_rtx
10223 && GET_MODE (XEXP (varop, 0)) == result_mode
10224 && count == (GET_MODE_PRECISION (result_mode) - 1)
10225 && HWI_COMPUTABLE_MODE_P (result_mode)
10226 && STORE_FLAG_VALUE == -1
10227 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10228 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10229 &complement_p))
10231 varop = XEXP (varop, 0);
10232 count = 0;
10233 continue;
10235 break;
10237 case NEG:
10238 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10239 than the number of bits in the mode is equivalent to A. */
10240 if (code == LSHIFTRT
10241 && count == (GET_MODE_PRECISION (result_mode) - 1)
10242 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10244 varop = XEXP (varop, 0);
10245 count = 0;
10246 continue;
10249 /* NEG commutes with ASHIFT since it is multiplication. Move the
10250 NEG outside to allow shifts to combine. */
10251 if (code == ASHIFT
10252 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10253 &complement_p))
10255 varop = XEXP (varop, 0);
10256 continue;
10258 break;
10260 case PLUS:
10261 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10262 is one less than the number of bits in the mode is
10263 equivalent to (xor A 1). */
10264 if (code == LSHIFTRT
10265 && count == (GET_MODE_PRECISION (result_mode) - 1)
10266 && XEXP (varop, 1) == constm1_rtx
10267 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10268 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10269 &complement_p))
10271 count = 0;
10272 varop = XEXP (varop, 0);
10273 continue;
10276 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10277 that might be nonzero in BAR are those being shifted out and those
10278 bits are known zero in FOO, we can replace the PLUS with FOO.
10279 Similarly in the other operand order. This code occurs when
10280 we are computing the size of a variable-size array. */
10282 if ((code == ASHIFTRT || code == LSHIFTRT)
10283 && count < HOST_BITS_PER_WIDE_INT
10284 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10285 && (nonzero_bits (XEXP (varop, 1), result_mode)
10286 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10288 varop = XEXP (varop, 0);
10289 continue;
10291 else if ((code == ASHIFTRT || code == LSHIFTRT)
10292 && count < HOST_BITS_PER_WIDE_INT
10293 && HWI_COMPUTABLE_MODE_P (result_mode)
10294 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10295 >> count)
10296 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10297 & nonzero_bits (XEXP (varop, 1),
10298 result_mode)))
10300 varop = XEXP (varop, 1);
10301 continue;
10304 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10305 if (code == ASHIFT
10306 && CONST_INT_P (XEXP (varop, 1))
10307 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10308 XEXP (varop, 1),
10309 GEN_INT (count))) != 0
10310 && CONST_INT_P (new_rtx)
10311 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10312 INTVAL (new_rtx), result_mode, &complement_p))
10314 varop = XEXP (varop, 0);
10315 continue;
10318 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10319 signbit', and attempt to change the PLUS to an XOR and move it to
10320 the outer operation as is done above in the AND/IOR/XOR case
10321 leg for shift(logical). See details in logical handling above
10322 for reasoning in doing so. */
10323 if (code == LSHIFTRT
10324 && CONST_INT_P (XEXP (varop, 1))
10325 && mode_signbit_p (result_mode, XEXP (varop, 1))
10326 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10327 XEXP (varop, 1),
10328 GEN_INT (count))) != 0
10329 && CONST_INT_P (new_rtx)
10330 && merge_outer_ops (&outer_op, &outer_const, XOR,
10331 INTVAL (new_rtx), result_mode, &complement_p))
10333 varop = XEXP (varop, 0);
10334 continue;
10337 break;
10339 case MINUS:
10340 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10341 with C the size of VAROP - 1 and the shift is logical if
10342 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10343 we have a (gt X 0) operation. If the shift is arithmetic with
10344 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10345 we have a (neg (gt X 0)) operation. */
10347 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10348 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10349 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10350 && (code == LSHIFTRT || code == ASHIFTRT)
10351 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10352 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10353 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10355 count = 0;
10356 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10357 const0_rtx);
10359 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10360 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10362 continue;
10364 break;
10366 case TRUNCATE:
10367 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10368 if the truncate does not affect the value. */
10369 if (code == LSHIFTRT
10370 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10371 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10372 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10373 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10374 - GET_MODE_PRECISION (GET_MODE (varop)))))
10376 rtx varop_inner = XEXP (varop, 0);
10378 varop_inner
10379 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10380 XEXP (varop_inner, 0),
10381 GEN_INT
10382 (count + INTVAL (XEXP (varop_inner, 1))));
10383 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10384 count = 0;
10385 continue;
10387 break;
10389 default:
10390 break;
10393 break;
10396 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10397 outer_op, outer_const);
10399 /* We have now finished analyzing the shift. The result should be
10400 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10401 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10402 to the result of the shift. OUTER_CONST is the relevant constant,
10403 but we must turn off all bits turned off in the shift. */
10405 if (outer_op == UNKNOWN
10406 && orig_code == code && orig_count == count
10407 && varop == orig_varop
10408 && shift_mode == GET_MODE (varop))
10409 return NULL_RTX;
10411 /* Make a SUBREG if necessary. If we can't make it, fail. */
10412 varop = gen_lowpart (shift_mode, varop);
10413 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10414 return NULL_RTX;
10416 /* If we have an outer operation and we just made a shift, it is
10417 possible that we could have simplified the shift were it not
10418 for the outer operation. So try to do the simplification
10419 recursively. */
10421 if (outer_op != UNKNOWN)
10422 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10423 else
10424 x = NULL_RTX;
10426 if (x == NULL_RTX)
10427 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10429 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10430 turn off all the bits that the shift would have turned off. */
10431 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10432 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10433 GET_MODE_MASK (result_mode) >> orig_count);
10435 /* Do the remainder of the processing in RESULT_MODE. */
10436 x = gen_lowpart_or_truncate (result_mode, x);
10438 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10439 operation. */
10440 if (complement_p)
10441 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10443 if (outer_op != UNKNOWN)
10445 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10446 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10447 outer_const = trunc_int_for_mode (outer_const, result_mode);
10449 if (outer_op == AND)
10450 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10451 else if (outer_op == SET)
10453 /* This means that we have determined that the result is
10454 equivalent to a constant. This should be rare. */
10455 if (!side_effects_p (x))
10456 x = GEN_INT (outer_const);
10458 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10459 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10460 else
10461 x = simplify_gen_binary (outer_op, result_mode, x,
10462 GEN_INT (outer_const));
10465 return x;
10468 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10469 The result of the shift is RESULT_MODE. If we cannot simplify it,
10470 return X or, if it is NULL, synthesize the expression with
10471 simplify_gen_binary. Otherwise, return a simplified value.
10473 The shift is normally computed in the widest mode we find in VAROP, as
10474 long as it isn't a different number of words than RESULT_MODE. Exceptions
10475 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10477 static rtx
10478 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10479 rtx varop, int count)
10481 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10482 if (tem)
10483 return tem;
10485 if (!x)
10486 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10487 if (GET_MODE (x) != result_mode)
10488 x = gen_lowpart (result_mode, x);
10489 return x;
10493 /* Like recog, but we receive the address of a pointer to a new pattern.
10494 We try to match the rtx that the pointer points to.
10495 If that fails, we may try to modify or replace the pattern,
10496 storing the replacement into the same pointer object.
10498 Modifications include deletion or addition of CLOBBERs.
10500 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10501 the CLOBBERs are placed.
10503 The value is the final insn code from the pattern ultimately matched,
10504 or -1. */
10506 static int
10507 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10509 rtx pat = *pnewpat;
10510 rtx pat_without_clobbers;
10511 int insn_code_number;
10512 int num_clobbers_to_add = 0;
10513 int i;
10514 rtx notes = NULL_RTX;
10515 rtx old_notes, old_pat;
10516 int old_icode;
10518 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10519 we use to indicate that something didn't match. If we find such a
10520 thing, force rejection. */
10521 if (GET_CODE (pat) == PARALLEL)
10522 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10523 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10524 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10525 return -1;
10527 old_pat = PATTERN (insn);
10528 old_notes = REG_NOTES (insn);
10529 PATTERN (insn) = pat;
10530 REG_NOTES (insn) = NULL_RTX;
10532 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10533 if (dump_file && (dump_flags & TDF_DETAILS))
10535 if (insn_code_number < 0)
10536 fputs ("Failed to match this instruction:\n", dump_file);
10537 else
10538 fputs ("Successfully matched this instruction:\n", dump_file);
10539 print_rtl_single (dump_file, pat);
10542 /* If it isn't, there is the possibility that we previously had an insn
10543 that clobbered some register as a side effect, but the combined
10544 insn doesn't need to do that. So try once more without the clobbers
10545 unless this represents an ASM insn. */
10547 if (insn_code_number < 0 && ! check_asm_operands (pat)
10548 && GET_CODE (pat) == PARALLEL)
10550 int pos;
10552 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10553 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10555 if (i != pos)
10556 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10557 pos++;
10560 SUBST_INT (XVECLEN (pat, 0), pos);
10562 if (pos == 1)
10563 pat = XVECEXP (pat, 0, 0);
10565 PATTERN (insn) = pat;
10566 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10567 if (dump_file && (dump_flags & TDF_DETAILS))
10569 if (insn_code_number < 0)
10570 fputs ("Failed to match this instruction:\n", dump_file);
10571 else
10572 fputs ("Successfully matched this instruction:\n", dump_file);
10573 print_rtl_single (dump_file, pat);
10577 pat_without_clobbers = pat;
10579 PATTERN (insn) = old_pat;
10580 REG_NOTES (insn) = old_notes;
10582 /* Recognize all noop sets, these will be killed by followup pass. */
10583 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10584 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10586 /* If we had any clobbers to add, make a new pattern than contains
10587 them. Then check to make sure that all of them are dead. */
10588 if (num_clobbers_to_add)
10590 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10591 rtvec_alloc (GET_CODE (pat) == PARALLEL
10592 ? (XVECLEN (pat, 0)
10593 + num_clobbers_to_add)
10594 : num_clobbers_to_add + 1));
10596 if (GET_CODE (pat) == PARALLEL)
10597 for (i = 0; i < XVECLEN (pat, 0); i++)
10598 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10599 else
10600 XVECEXP (newpat, 0, 0) = pat;
10602 add_clobbers (newpat, insn_code_number);
10604 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10605 i < XVECLEN (newpat, 0); i++)
10607 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10608 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10609 return -1;
10610 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10612 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10613 notes = alloc_reg_note (REG_UNUSED,
10614 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10617 pat = newpat;
10620 if (insn_code_number >= 0
10621 && insn_code_number != NOOP_MOVE_INSN_CODE)
10623 old_pat = PATTERN (insn);
10624 old_notes = REG_NOTES (insn);
10625 old_icode = INSN_CODE (insn);
10626 PATTERN (insn) = pat;
10627 REG_NOTES (insn) = notes;
10629 /* Allow targets to reject combined insn. */
10630 if (!targetm.legitimate_combined_insn (insn))
10632 if (dump_file && (dump_flags & TDF_DETAILS))
10633 fputs ("Instruction not appropriate for target.",
10634 dump_file);
10636 /* Callers expect recog_for_combine to strip
10637 clobbers from the pattern on failure. */
10638 pat = pat_without_clobbers;
10639 notes = NULL_RTX;
10641 insn_code_number = -1;
10644 PATTERN (insn) = old_pat;
10645 REG_NOTES (insn) = old_notes;
10646 INSN_CODE (insn) = old_icode;
10649 *pnewpat = pat;
10650 *pnotes = notes;
10652 return insn_code_number;
10655 /* Like gen_lowpart_general but for use by combine. In combine it
10656 is not possible to create any new pseudoregs. However, it is
10657 safe to create invalid memory addresses, because combine will
10658 try to recognize them and all they will do is make the combine
10659 attempt fail.
10661 If for some reason this cannot do its job, an rtx
10662 (clobber (const_int 0)) is returned.
10663 An insn containing that will not be recognized. */
10665 static rtx
10666 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10668 enum machine_mode imode = GET_MODE (x);
10669 unsigned int osize = GET_MODE_SIZE (omode);
10670 unsigned int isize = GET_MODE_SIZE (imode);
10671 rtx result;
10673 if (omode == imode)
10674 return x;
10676 /* We can only support MODE being wider than a word if X is a
10677 constant integer or has a mode the same size. */
10678 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10679 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10680 goto fail;
10682 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10683 won't know what to do. So we will strip off the SUBREG here and
10684 process normally. */
10685 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10687 x = SUBREG_REG (x);
10689 /* For use in case we fall down into the address adjustments
10690 further below, we need to adjust the known mode and size of
10691 x; imode and isize, since we just adjusted x. */
10692 imode = GET_MODE (x);
10694 if (imode == omode)
10695 return x;
10697 isize = GET_MODE_SIZE (imode);
10700 result = gen_lowpart_common (omode, x);
10702 if (result)
10703 return result;
10705 if (MEM_P (x))
10707 int offset = 0;
10709 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10710 address. */
10711 if (MEM_VOLATILE_P (x)
10712 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10713 goto fail;
10715 /* If we want to refer to something bigger than the original memref,
10716 generate a paradoxical subreg instead. That will force a reload
10717 of the original memref X. */
10718 if (isize < osize)
10719 return gen_rtx_SUBREG (omode, x, 0);
10721 if (WORDS_BIG_ENDIAN)
10722 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10724 /* Adjust the address so that the address-after-the-data is
10725 unchanged. */
10726 if (BYTES_BIG_ENDIAN)
10727 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10729 return adjust_address_nv (x, omode, offset);
10732 /* If X is a comparison operator, rewrite it in a new mode. This
10733 probably won't match, but may allow further simplifications. */
10734 else if (COMPARISON_P (x))
10735 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10737 /* If we couldn't simplify X any other way, just enclose it in a
10738 SUBREG. Normally, this SUBREG won't match, but some patterns may
10739 include an explicit SUBREG or we may simplify it further in combine. */
10740 else
10742 int offset = 0;
10743 rtx res;
10745 offset = subreg_lowpart_offset (omode, imode);
10746 if (imode == VOIDmode)
10748 imode = int_mode_for_mode (omode);
10749 x = gen_lowpart_common (imode, x);
10750 if (x == NULL)
10751 goto fail;
10753 res = simplify_gen_subreg (omode, x, imode, offset);
10754 if (res)
10755 return res;
10758 fail:
10759 return gen_rtx_CLOBBER (omode, const0_rtx);
10762 /* Try to simplify a comparison between OP0 and a constant OP1,
10763 where CODE is the comparison code that will be tested, into a
10764 (CODE OP0 const0_rtx) form.
10766 The result is a possibly different comparison code to use.
10767 *POP1 may be updated. */
10769 static enum rtx_code
10770 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10772 enum machine_mode mode = GET_MODE (op0);
10773 unsigned int mode_width = GET_MODE_PRECISION (mode);
10774 HOST_WIDE_INT const_op = INTVAL (*pop1);
10776 /* Get the constant we are comparing against and turn off all bits
10777 not on in our mode. */
10778 if (mode != VOIDmode)
10779 const_op = trunc_int_for_mode (const_op, mode);
10781 /* If we are comparing against a constant power of two and the value
10782 being compared can only have that single bit nonzero (e.g., it was
10783 `and'ed with that bit), we can replace this with a comparison
10784 with zero. */
10785 if (const_op
10786 && (code == EQ || code == NE || code == GE || code == GEU
10787 || code == LT || code == LTU)
10788 && mode_width <= HOST_BITS_PER_WIDE_INT
10789 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
10790 && (nonzero_bits (op0, mode)
10791 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
10793 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10794 const_op = 0;
10797 /* Similarly, if we are comparing a value known to be either -1 or
10798 0 with -1, change it to the opposite comparison against zero. */
10799 if (const_op == -1
10800 && (code == EQ || code == NE || code == GT || code == LE
10801 || code == GEU || code == LTU)
10802 && num_sign_bit_copies (op0, mode) == mode_width)
10804 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10805 const_op = 0;
10808 /* Do some canonicalizations based on the comparison code. We prefer
10809 comparisons against zero and then prefer equality comparisons.
10810 If we can reduce the size of a constant, we will do that too. */
10811 switch (code)
10813 case LT:
10814 /* < C is equivalent to <= (C - 1) */
10815 if (const_op > 0)
10817 const_op -= 1;
10818 code = LE;
10819 /* ... fall through to LE case below. */
10821 else
10822 break;
10824 case LE:
10825 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10826 if (const_op < 0)
10828 const_op += 1;
10829 code = LT;
10832 /* If we are doing a <= 0 comparison on a value known to have
10833 a zero sign bit, we can replace this with == 0. */
10834 else if (const_op == 0
10835 && mode_width <= HOST_BITS_PER_WIDE_INT
10836 && (nonzero_bits (op0, mode)
10837 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10838 == 0)
10839 code = EQ;
10840 break;
10842 case GE:
10843 /* >= C is equivalent to > (C - 1). */
10844 if (const_op > 0)
10846 const_op -= 1;
10847 code = GT;
10848 /* ... fall through to GT below. */
10850 else
10851 break;
10853 case GT:
10854 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10855 if (const_op < 0)
10857 const_op += 1;
10858 code = GE;
10861 /* If we are doing a > 0 comparison on a value known to have
10862 a zero sign bit, we can replace this with != 0. */
10863 else if (const_op == 0
10864 && mode_width <= HOST_BITS_PER_WIDE_INT
10865 && (nonzero_bits (op0, mode)
10866 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10867 == 0)
10868 code = NE;
10869 break;
10871 case LTU:
10872 /* < C is equivalent to <= (C - 1). */
10873 if (const_op > 0)
10875 const_op -= 1;
10876 code = LEU;
10877 /* ... fall through ... */
10879 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10880 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10881 && (unsigned HOST_WIDE_INT) const_op
10882 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10884 const_op = 0;
10885 code = GE;
10886 break;
10888 else
10889 break;
10891 case LEU:
10892 /* unsigned <= 0 is equivalent to == 0 */
10893 if (const_op == 0)
10894 code = EQ;
10895 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10896 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10897 && (unsigned HOST_WIDE_INT) const_op
10898 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10900 const_op = 0;
10901 code = GE;
10903 break;
10905 case GEU:
10906 /* >= C is equivalent to > (C - 1). */
10907 if (const_op > 1)
10909 const_op -= 1;
10910 code = GTU;
10911 /* ... fall through ... */
10914 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10915 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10916 && (unsigned HOST_WIDE_INT) const_op
10917 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10919 const_op = 0;
10920 code = LT;
10921 break;
10923 else
10924 break;
10926 case GTU:
10927 /* unsigned > 0 is equivalent to != 0 */
10928 if (const_op == 0)
10929 code = NE;
10930 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10931 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10932 && (unsigned HOST_WIDE_INT) const_op
10933 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10935 const_op = 0;
10936 code = LT;
10938 break;
10940 default:
10941 break;
10944 *pop1 = GEN_INT (const_op);
10945 return code;
10948 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10949 comparison code that will be tested.
10951 The result is a possibly different comparison code to use. *POP0 and
10952 *POP1 may be updated.
10954 It is possible that we might detect that a comparison is either always
10955 true or always false. However, we do not perform general constant
10956 folding in combine, so this knowledge isn't useful. Such tautologies
10957 should have been detected earlier. Hence we ignore all such cases. */
10959 static enum rtx_code
10960 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10962 rtx op0 = *pop0;
10963 rtx op1 = *pop1;
10964 rtx tem, tem1;
10965 int i;
10966 enum machine_mode mode, tmode;
10968 /* Try a few ways of applying the same transformation to both operands. */
10969 while (1)
10971 #ifndef WORD_REGISTER_OPERATIONS
10972 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10973 so check specially. */
10974 if (code != GTU && code != GEU && code != LTU && code != LEU
10975 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10976 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10977 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10978 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10979 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10980 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10981 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10982 && CONST_INT_P (XEXP (op0, 1))
10983 && XEXP (op0, 1) == XEXP (op1, 1)
10984 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10985 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10986 && (INTVAL (XEXP (op0, 1))
10987 == (GET_MODE_PRECISION (GET_MODE (op0))
10988 - (GET_MODE_PRECISION
10989 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10991 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10992 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10994 #endif
10996 /* If both operands are the same constant shift, see if we can ignore the
10997 shift. We can if the shift is a rotate or if the bits shifted out of
10998 this shift are known to be zero for both inputs and if the type of
10999 comparison is compatible with the shift. */
11000 if (GET_CODE (op0) == GET_CODE (op1)
11001 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11002 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11003 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11004 && (code != GT && code != LT && code != GE && code != LE))
11005 || (GET_CODE (op0) == ASHIFTRT
11006 && (code != GTU && code != LTU
11007 && code != GEU && code != LEU)))
11008 && CONST_INT_P (XEXP (op0, 1))
11009 && INTVAL (XEXP (op0, 1)) >= 0
11010 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11011 && XEXP (op0, 1) == XEXP (op1, 1))
11013 enum machine_mode mode = GET_MODE (op0);
11014 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11015 int shift_count = INTVAL (XEXP (op0, 1));
11017 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11018 mask &= (mask >> shift_count) << shift_count;
11019 else if (GET_CODE (op0) == ASHIFT)
11020 mask = (mask & (mask << shift_count)) >> shift_count;
11022 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11023 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11024 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11025 else
11026 break;
11029 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11030 SUBREGs are of the same mode, and, in both cases, the AND would
11031 be redundant if the comparison was done in the narrower mode,
11032 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11033 and the operand's possibly nonzero bits are 0xffffff01; in that case
11034 if we only care about QImode, we don't need the AND). This case
11035 occurs if the output mode of an scc insn is not SImode and
11036 STORE_FLAG_VALUE == 1 (e.g., the 386).
11038 Similarly, check for a case where the AND's are ZERO_EXTEND
11039 operations from some narrower mode even though a SUBREG is not
11040 present. */
11042 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11043 && CONST_INT_P (XEXP (op0, 1))
11044 && CONST_INT_P (XEXP (op1, 1)))
11046 rtx inner_op0 = XEXP (op0, 0);
11047 rtx inner_op1 = XEXP (op1, 0);
11048 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11049 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11050 int changed = 0;
11052 if (paradoxical_subreg_p (inner_op0)
11053 && GET_CODE (inner_op1) == SUBREG
11054 && (GET_MODE (SUBREG_REG (inner_op0))
11055 == GET_MODE (SUBREG_REG (inner_op1)))
11056 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11057 <= HOST_BITS_PER_WIDE_INT)
11058 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11059 GET_MODE (SUBREG_REG (inner_op0)))))
11060 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11061 GET_MODE (SUBREG_REG (inner_op1))))))
11063 op0 = SUBREG_REG (inner_op0);
11064 op1 = SUBREG_REG (inner_op1);
11066 /* The resulting comparison is always unsigned since we masked
11067 off the original sign bit. */
11068 code = unsigned_condition (code);
11070 changed = 1;
11073 else if (c0 == c1)
11074 for (tmode = GET_CLASS_NARROWEST_MODE
11075 (GET_MODE_CLASS (GET_MODE (op0)));
11076 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11077 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11079 op0 = gen_lowpart (tmode, inner_op0);
11080 op1 = gen_lowpart (tmode, inner_op1);
11081 code = unsigned_condition (code);
11082 changed = 1;
11083 break;
11086 if (! changed)
11087 break;
11090 /* If both operands are NOT, we can strip off the outer operation
11091 and adjust the comparison code for swapped operands; similarly for
11092 NEG, except that this must be an equality comparison. */
11093 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11094 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11095 && (code == EQ || code == NE)))
11096 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11098 else
11099 break;
11102 /* If the first operand is a constant, swap the operands and adjust the
11103 comparison code appropriately, but don't do this if the second operand
11104 is already a constant integer. */
11105 if (swap_commutative_operands_p (op0, op1))
11107 tem = op0, op0 = op1, op1 = tem;
11108 code = swap_condition (code);
11111 /* We now enter a loop during which we will try to simplify the comparison.
11112 For the most part, we only are concerned with comparisons with zero,
11113 but some things may really be comparisons with zero but not start
11114 out looking that way. */
11116 while (CONST_INT_P (op1))
11118 enum machine_mode mode = GET_MODE (op0);
11119 unsigned int mode_width = GET_MODE_PRECISION (mode);
11120 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11121 int equality_comparison_p;
11122 int sign_bit_comparison_p;
11123 int unsigned_comparison_p;
11124 HOST_WIDE_INT const_op;
11126 /* We only want to handle integral modes. This catches VOIDmode,
11127 CCmode, and the floating-point modes. An exception is that we
11128 can handle VOIDmode if OP0 is a COMPARE or a comparison
11129 operation. */
11131 if (GET_MODE_CLASS (mode) != MODE_INT
11132 && ! (mode == VOIDmode
11133 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11134 break;
11136 /* Try to simplify the compare to constant, possibly changing the
11137 comparison op, and/or changing op1 to zero. */
11138 code = simplify_compare_const (code, op0, &op1);
11139 const_op = INTVAL (op1);
11141 /* Compute some predicates to simplify code below. */
11143 equality_comparison_p = (code == EQ || code == NE);
11144 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11145 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11146 || code == GEU);
11148 /* If this is a sign bit comparison and we can do arithmetic in
11149 MODE, say that we will only be needing the sign bit of OP0. */
11150 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11151 op0 = force_to_mode (op0, mode,
11152 (unsigned HOST_WIDE_INT) 1
11153 << (GET_MODE_PRECISION (mode) - 1),
11156 /* Now try cases based on the opcode of OP0. If none of the cases
11157 does a "continue", we exit this loop immediately after the
11158 switch. */
11160 switch (GET_CODE (op0))
11162 case ZERO_EXTRACT:
11163 /* If we are extracting a single bit from a variable position in
11164 a constant that has only a single bit set and are comparing it
11165 with zero, we can convert this into an equality comparison
11166 between the position and the location of the single bit. */
11167 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11168 have already reduced the shift count modulo the word size. */
11169 if (!SHIFT_COUNT_TRUNCATED
11170 && CONST_INT_P (XEXP (op0, 0))
11171 && XEXP (op0, 1) == const1_rtx
11172 && equality_comparison_p && const_op == 0
11173 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11175 if (BITS_BIG_ENDIAN)
11176 i = BITS_PER_WORD - 1 - i;
11178 op0 = XEXP (op0, 2);
11179 op1 = GEN_INT (i);
11180 const_op = i;
11182 /* Result is nonzero iff shift count is equal to I. */
11183 code = reverse_condition (code);
11184 continue;
11187 /* ... fall through ... */
11189 case SIGN_EXTRACT:
11190 tem = expand_compound_operation (op0);
11191 if (tem != op0)
11193 op0 = tem;
11194 continue;
11196 break;
11198 case NOT:
11199 /* If testing for equality, we can take the NOT of the constant. */
11200 if (equality_comparison_p
11201 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11203 op0 = XEXP (op0, 0);
11204 op1 = tem;
11205 continue;
11208 /* If just looking at the sign bit, reverse the sense of the
11209 comparison. */
11210 if (sign_bit_comparison_p)
11212 op0 = XEXP (op0, 0);
11213 code = (code == GE ? LT : GE);
11214 continue;
11216 break;
11218 case NEG:
11219 /* If testing for equality, we can take the NEG of the constant. */
11220 if (equality_comparison_p
11221 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11223 op0 = XEXP (op0, 0);
11224 op1 = tem;
11225 continue;
11228 /* The remaining cases only apply to comparisons with zero. */
11229 if (const_op != 0)
11230 break;
11232 /* When X is ABS or is known positive,
11233 (neg X) is < 0 if and only if X != 0. */
11235 if (sign_bit_comparison_p
11236 && (GET_CODE (XEXP (op0, 0)) == ABS
11237 || (mode_width <= HOST_BITS_PER_WIDE_INT
11238 && (nonzero_bits (XEXP (op0, 0), mode)
11239 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11240 == 0)))
11242 op0 = XEXP (op0, 0);
11243 code = (code == LT ? NE : EQ);
11244 continue;
11247 /* If we have NEG of something whose two high-order bits are the
11248 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11249 if (num_sign_bit_copies (op0, mode) >= 2)
11251 op0 = XEXP (op0, 0);
11252 code = swap_condition (code);
11253 continue;
11255 break;
11257 case ROTATE:
11258 /* If we are testing equality and our count is a constant, we
11259 can perform the inverse operation on our RHS. */
11260 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11261 && (tem = simplify_binary_operation (ROTATERT, mode,
11262 op1, XEXP (op0, 1))) != 0)
11264 op0 = XEXP (op0, 0);
11265 op1 = tem;
11266 continue;
11269 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11270 a particular bit. Convert it to an AND of a constant of that
11271 bit. This will be converted into a ZERO_EXTRACT. */
11272 if (const_op == 0 && sign_bit_comparison_p
11273 && CONST_INT_P (XEXP (op0, 1))
11274 && mode_width <= HOST_BITS_PER_WIDE_INT)
11276 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11277 ((unsigned HOST_WIDE_INT) 1
11278 << (mode_width - 1
11279 - INTVAL (XEXP (op0, 1)))));
11280 code = (code == LT ? NE : EQ);
11281 continue;
11284 /* Fall through. */
11286 case ABS:
11287 /* ABS is ignorable inside an equality comparison with zero. */
11288 if (const_op == 0 && equality_comparison_p)
11290 op0 = XEXP (op0, 0);
11291 continue;
11293 break;
11295 case SIGN_EXTEND:
11296 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11297 (compare FOO CONST) if CONST fits in FOO's mode and we
11298 are either testing inequality or have an unsigned
11299 comparison with ZERO_EXTEND or a signed comparison with
11300 SIGN_EXTEND. But don't do it if we don't have a compare
11301 insn of the given mode, since we'd have to revert it
11302 later on, and then we wouldn't know whether to sign- or
11303 zero-extend. */
11304 mode = GET_MODE (XEXP (op0, 0));
11305 if (GET_MODE_CLASS (mode) == MODE_INT
11306 && ! unsigned_comparison_p
11307 && HWI_COMPUTABLE_MODE_P (mode)
11308 && trunc_int_for_mode (const_op, mode) == const_op
11309 && have_insn_for (COMPARE, mode))
11311 op0 = XEXP (op0, 0);
11312 continue;
11314 break;
11316 case SUBREG:
11317 /* Check for the case where we are comparing A - C1 with C2, that is
11319 (subreg:MODE (plus (A) (-C1))) op (C2)
11321 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11322 comparison in the wider mode. One of the following two conditions
11323 must be true in order for this to be valid:
11325 1. The mode extension results in the same bit pattern being added
11326 on both sides and the comparison is equality or unsigned. As
11327 C2 has been truncated to fit in MODE, the pattern can only be
11328 all 0s or all 1s.
11330 2. The mode extension results in the sign bit being copied on
11331 each side.
11333 The difficulty here is that we have predicates for A but not for
11334 (A - C1) so we need to check that C1 is within proper bounds so
11335 as to perturbate A as little as possible. */
11337 if (mode_width <= HOST_BITS_PER_WIDE_INT
11338 && subreg_lowpart_p (op0)
11339 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11340 && GET_CODE (SUBREG_REG (op0)) == PLUS
11341 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11343 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11344 rtx a = XEXP (SUBREG_REG (op0), 0);
11345 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11347 if ((c1 > 0
11348 && (unsigned HOST_WIDE_INT) c1
11349 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11350 && (equality_comparison_p || unsigned_comparison_p)
11351 /* (A - C1) zero-extends if it is positive and sign-extends
11352 if it is negative, C2 both zero- and sign-extends. */
11353 && ((0 == (nonzero_bits (a, inner_mode)
11354 & ~GET_MODE_MASK (mode))
11355 && const_op >= 0)
11356 /* (A - C1) sign-extends if it is positive and 1-extends
11357 if it is negative, C2 both sign- and 1-extends. */
11358 || (num_sign_bit_copies (a, inner_mode)
11359 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11360 - mode_width)
11361 && const_op < 0)))
11362 || ((unsigned HOST_WIDE_INT) c1
11363 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11364 /* (A - C1) always sign-extends, like C2. */
11365 && num_sign_bit_copies (a, inner_mode)
11366 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11367 - (mode_width - 1))))
11369 op0 = SUBREG_REG (op0);
11370 continue;
11374 /* If the inner mode is narrower and we are extracting the low part,
11375 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11376 if (subreg_lowpart_p (op0)
11377 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11378 /* Fall through */ ;
11379 else
11380 break;
11382 /* ... fall through ... */
11384 case ZERO_EXTEND:
11385 mode = GET_MODE (XEXP (op0, 0));
11386 if (GET_MODE_CLASS (mode) == MODE_INT
11387 && (unsigned_comparison_p || equality_comparison_p)
11388 && HWI_COMPUTABLE_MODE_P (mode)
11389 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11390 && const_op >= 0
11391 && have_insn_for (COMPARE, mode))
11393 op0 = XEXP (op0, 0);
11394 continue;
11396 break;
11398 case PLUS:
11399 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11400 this for equality comparisons due to pathological cases involving
11401 overflows. */
11402 if (equality_comparison_p
11403 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11404 op1, XEXP (op0, 1))))
11406 op0 = XEXP (op0, 0);
11407 op1 = tem;
11408 continue;
11411 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11412 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11413 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11415 op0 = XEXP (XEXP (op0, 0), 0);
11416 code = (code == LT ? EQ : NE);
11417 continue;
11419 break;
11421 case MINUS:
11422 /* We used to optimize signed comparisons against zero, but that
11423 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11424 arrive here as equality comparisons, or (GEU, LTU) are
11425 optimized away. No need to special-case them. */
11427 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11428 (eq B (minus A C)), whichever simplifies. We can only do
11429 this for equality comparisons due to pathological cases involving
11430 overflows. */
11431 if (equality_comparison_p
11432 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11433 XEXP (op0, 1), op1)))
11435 op0 = XEXP (op0, 0);
11436 op1 = tem;
11437 continue;
11440 if (equality_comparison_p
11441 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11442 XEXP (op0, 0), op1)))
11444 op0 = XEXP (op0, 1);
11445 op1 = tem;
11446 continue;
11449 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11450 of bits in X minus 1, is one iff X > 0. */
11451 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11452 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11453 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11454 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11456 op0 = XEXP (op0, 1);
11457 code = (code == GE ? LE : GT);
11458 continue;
11460 break;
11462 case XOR:
11463 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11464 if C is zero or B is a constant. */
11465 if (equality_comparison_p
11466 && 0 != (tem = simplify_binary_operation (XOR, mode,
11467 XEXP (op0, 1), op1)))
11469 op0 = XEXP (op0, 0);
11470 op1 = tem;
11471 continue;
11473 break;
11475 case EQ: case NE:
11476 case UNEQ: case LTGT:
11477 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11478 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11479 case UNORDERED: case ORDERED:
11480 /* We can't do anything if OP0 is a condition code value, rather
11481 than an actual data value. */
11482 if (const_op != 0
11483 || CC0_P (XEXP (op0, 0))
11484 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11485 break;
11487 /* Get the two operands being compared. */
11488 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11489 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11490 else
11491 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11493 /* Check for the cases where we simply want the result of the
11494 earlier test or the opposite of that result. */
11495 if (code == NE || code == EQ
11496 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11497 && (code == LT || code == GE)))
11499 enum rtx_code new_code;
11500 if (code == LT || code == NE)
11501 new_code = GET_CODE (op0);
11502 else
11503 new_code = reversed_comparison_code (op0, NULL);
11505 if (new_code != UNKNOWN)
11507 code = new_code;
11508 op0 = tem;
11509 op1 = tem1;
11510 continue;
11513 break;
11515 case IOR:
11516 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11517 iff X <= 0. */
11518 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11519 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11520 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11522 op0 = XEXP (op0, 1);
11523 code = (code == GE ? GT : LE);
11524 continue;
11526 break;
11528 case AND:
11529 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11530 will be converted to a ZERO_EXTRACT later. */
11531 if (const_op == 0 && equality_comparison_p
11532 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11533 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11535 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11536 XEXP (XEXP (op0, 0), 1));
11537 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11538 continue;
11541 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11542 zero and X is a comparison and C1 and C2 describe only bits set
11543 in STORE_FLAG_VALUE, we can compare with X. */
11544 if (const_op == 0 && equality_comparison_p
11545 && mode_width <= HOST_BITS_PER_WIDE_INT
11546 && CONST_INT_P (XEXP (op0, 1))
11547 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11548 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11549 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11550 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11552 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11553 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11554 if ((~STORE_FLAG_VALUE & mask) == 0
11555 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11556 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11557 && COMPARISON_P (tem))))
11559 op0 = XEXP (XEXP (op0, 0), 0);
11560 continue;
11564 /* If we are doing an equality comparison of an AND of a bit equal
11565 to the sign bit, replace this with a LT or GE comparison of
11566 the underlying value. */
11567 if (equality_comparison_p
11568 && const_op == 0
11569 && CONST_INT_P (XEXP (op0, 1))
11570 && mode_width <= HOST_BITS_PER_WIDE_INT
11571 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11572 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11574 op0 = XEXP (op0, 0);
11575 code = (code == EQ ? GE : LT);
11576 continue;
11579 /* If this AND operation is really a ZERO_EXTEND from a narrower
11580 mode, the constant fits within that mode, and this is either an
11581 equality or unsigned comparison, try to do this comparison in
11582 the narrower mode.
11584 Note that in:
11586 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11587 -> (ne:DI (reg:SI 4) (const_int 0))
11589 unless TRULY_NOOP_TRUNCATION allows it or the register is
11590 known to hold a value of the required mode the
11591 transformation is invalid. */
11592 if ((equality_comparison_p || unsigned_comparison_p)
11593 && CONST_INT_P (XEXP (op0, 1))
11594 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11595 & GET_MODE_MASK (mode))
11596 + 1)) >= 0
11597 && const_op >> i == 0
11598 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11599 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11600 || (REG_P (XEXP (op0, 0))
11601 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11603 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11604 continue;
11607 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11608 fits in both M1 and M2 and the SUBREG is either paradoxical
11609 or represents the low part, permute the SUBREG and the AND
11610 and try again. */
11611 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11613 unsigned HOST_WIDE_INT c1;
11614 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11615 /* Require an integral mode, to avoid creating something like
11616 (AND:SF ...). */
11617 if (SCALAR_INT_MODE_P (tmode)
11618 /* It is unsafe to commute the AND into the SUBREG if the
11619 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11620 not defined. As originally written the upper bits
11621 have a defined value due to the AND operation.
11622 However, if we commute the AND inside the SUBREG then
11623 they no longer have defined values and the meaning of
11624 the code has been changed. */
11625 && (0
11626 #ifdef WORD_REGISTER_OPERATIONS
11627 || (mode_width > GET_MODE_PRECISION (tmode)
11628 && mode_width <= BITS_PER_WORD)
11629 #endif
11630 || (mode_width <= GET_MODE_PRECISION (tmode)
11631 && subreg_lowpart_p (XEXP (op0, 0))))
11632 && CONST_INT_P (XEXP (op0, 1))
11633 && mode_width <= HOST_BITS_PER_WIDE_INT
11634 && HWI_COMPUTABLE_MODE_P (tmode)
11635 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11636 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11637 && c1 != mask
11638 && c1 != GET_MODE_MASK (tmode))
11640 op0 = simplify_gen_binary (AND, tmode,
11641 SUBREG_REG (XEXP (op0, 0)),
11642 gen_int_mode (c1, tmode));
11643 op0 = gen_lowpart (mode, op0);
11644 continue;
11648 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11649 if (const_op == 0 && equality_comparison_p
11650 && XEXP (op0, 1) == const1_rtx
11651 && GET_CODE (XEXP (op0, 0)) == NOT)
11653 op0 = simplify_and_const_int (NULL_RTX, mode,
11654 XEXP (XEXP (op0, 0), 0), 1);
11655 code = (code == NE ? EQ : NE);
11656 continue;
11659 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11660 (eq (and (lshiftrt X) 1) 0).
11661 Also handle the case where (not X) is expressed using xor. */
11662 if (const_op == 0 && equality_comparison_p
11663 && XEXP (op0, 1) == const1_rtx
11664 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11666 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11667 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11669 if (GET_CODE (shift_op) == NOT
11670 || (GET_CODE (shift_op) == XOR
11671 && CONST_INT_P (XEXP (shift_op, 1))
11672 && CONST_INT_P (shift_count)
11673 && HWI_COMPUTABLE_MODE_P (mode)
11674 && (UINTVAL (XEXP (shift_op, 1))
11675 == (unsigned HOST_WIDE_INT) 1
11676 << INTVAL (shift_count))))
11679 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11680 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11681 code = (code == NE ? EQ : NE);
11682 continue;
11685 break;
11687 case ASHIFT:
11688 /* If we have (compare (ashift FOO N) (const_int C)) and
11689 the high order N bits of FOO (N+1 if an inequality comparison)
11690 are known to be zero, we can do this by comparing FOO with C
11691 shifted right N bits so long as the low-order N bits of C are
11692 zero. */
11693 if (CONST_INT_P (XEXP (op0, 1))
11694 && INTVAL (XEXP (op0, 1)) >= 0
11695 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11696 < HOST_BITS_PER_WIDE_INT)
11697 && (((unsigned HOST_WIDE_INT) const_op
11698 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11699 - 1)) == 0)
11700 && mode_width <= HOST_BITS_PER_WIDE_INT
11701 && (nonzero_bits (XEXP (op0, 0), mode)
11702 & ~(mask >> (INTVAL (XEXP (op0, 1))
11703 + ! equality_comparison_p))) == 0)
11705 /* We must perform a logical shift, not an arithmetic one,
11706 as we want the top N bits of C to be zero. */
11707 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11709 temp >>= INTVAL (XEXP (op0, 1));
11710 op1 = gen_int_mode (temp, mode);
11711 op0 = XEXP (op0, 0);
11712 continue;
11715 /* If we are doing a sign bit comparison, it means we are testing
11716 a particular bit. Convert it to the appropriate AND. */
11717 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11718 && mode_width <= HOST_BITS_PER_WIDE_INT)
11720 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11721 ((unsigned HOST_WIDE_INT) 1
11722 << (mode_width - 1
11723 - INTVAL (XEXP (op0, 1)))));
11724 code = (code == LT ? NE : EQ);
11725 continue;
11728 /* If this an equality comparison with zero and we are shifting
11729 the low bit to the sign bit, we can convert this to an AND of the
11730 low-order bit. */
11731 if (const_op == 0 && equality_comparison_p
11732 && CONST_INT_P (XEXP (op0, 1))
11733 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11735 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11736 continue;
11738 break;
11740 case ASHIFTRT:
11741 /* If this is an equality comparison with zero, we can do this
11742 as a logical shift, which might be much simpler. */
11743 if (equality_comparison_p && const_op == 0
11744 && CONST_INT_P (XEXP (op0, 1)))
11746 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11747 XEXP (op0, 0),
11748 INTVAL (XEXP (op0, 1)));
11749 continue;
11752 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11753 do the comparison in a narrower mode. */
11754 if (! unsigned_comparison_p
11755 && CONST_INT_P (XEXP (op0, 1))
11756 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11757 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11758 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11759 MODE_INT, 1)) != BLKmode
11760 && (((unsigned HOST_WIDE_INT) const_op
11761 + (GET_MODE_MASK (tmode) >> 1) + 1)
11762 <= GET_MODE_MASK (tmode)))
11764 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11765 continue;
11768 /* Likewise if OP0 is a PLUS of a sign extension with a
11769 constant, which is usually represented with the PLUS
11770 between the shifts. */
11771 if (! unsigned_comparison_p
11772 && CONST_INT_P (XEXP (op0, 1))
11773 && GET_CODE (XEXP (op0, 0)) == PLUS
11774 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11775 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11776 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11777 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11778 MODE_INT, 1)) != BLKmode
11779 && (((unsigned HOST_WIDE_INT) const_op
11780 + (GET_MODE_MASK (tmode) >> 1) + 1)
11781 <= GET_MODE_MASK (tmode)))
11783 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11784 rtx add_const = XEXP (XEXP (op0, 0), 1);
11785 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11786 add_const, XEXP (op0, 1));
11788 op0 = simplify_gen_binary (PLUS, tmode,
11789 gen_lowpart (tmode, inner),
11790 new_const);
11791 continue;
11794 /* ... fall through ... */
11795 case LSHIFTRT:
11796 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11797 the low order N bits of FOO are known to be zero, we can do this
11798 by comparing FOO with C shifted left N bits so long as no
11799 overflow occurs. Even if the low order N bits of FOO aren't known
11800 to be zero, if the comparison is >= or < we can use the same
11801 optimization and for > or <= by setting all the low
11802 order N bits in the comparison constant. */
11803 if (CONST_INT_P (XEXP (op0, 1))
11804 && INTVAL (XEXP (op0, 1)) > 0
11805 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11806 && mode_width <= HOST_BITS_PER_WIDE_INT
11807 && (((unsigned HOST_WIDE_INT) const_op
11808 + (GET_CODE (op0) != LSHIFTRT
11809 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11810 + 1)
11811 : 0))
11812 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11814 unsigned HOST_WIDE_INT low_bits
11815 = (nonzero_bits (XEXP (op0, 0), mode)
11816 & (((unsigned HOST_WIDE_INT) 1
11817 << INTVAL (XEXP (op0, 1))) - 1));
11818 if (low_bits == 0 || !equality_comparison_p)
11820 /* If the shift was logical, then we must make the condition
11821 unsigned. */
11822 if (GET_CODE (op0) == LSHIFTRT)
11823 code = unsigned_condition (code);
11825 const_op <<= INTVAL (XEXP (op0, 1));
11826 if (low_bits != 0
11827 && (code == GT || code == GTU
11828 || code == LE || code == LEU))
11829 const_op
11830 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11831 op1 = GEN_INT (const_op);
11832 op0 = XEXP (op0, 0);
11833 continue;
11837 /* If we are using this shift to extract just the sign bit, we
11838 can replace this with an LT or GE comparison. */
11839 if (const_op == 0
11840 && (equality_comparison_p || sign_bit_comparison_p)
11841 && CONST_INT_P (XEXP (op0, 1))
11842 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11844 op0 = XEXP (op0, 0);
11845 code = (code == NE || code == GT ? LT : GE);
11846 continue;
11848 break;
11850 default:
11851 break;
11854 break;
11857 /* Now make any compound operations involved in this comparison. Then,
11858 check for an outmost SUBREG on OP0 that is not doing anything or is
11859 paradoxical. The latter transformation must only be performed when
11860 it is known that the "extra" bits will be the same in op0 and op1 or
11861 that they don't matter. There are three cases to consider:
11863 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11864 care bits and we can assume they have any convenient value. So
11865 making the transformation is safe.
11867 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11868 In this case the upper bits of op0 are undefined. We should not make
11869 the simplification in that case as we do not know the contents of
11870 those bits.
11872 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11873 UNKNOWN. In that case we know those bits are zeros or ones. We must
11874 also be sure that they are the same as the upper bits of op1.
11876 We can never remove a SUBREG for a non-equality comparison because
11877 the sign bit is in a different place in the underlying object. */
11879 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11880 op1 = make_compound_operation (op1, SET);
11882 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11883 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11884 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11885 && (code == NE || code == EQ))
11887 if (paradoxical_subreg_p (op0))
11889 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11890 implemented. */
11891 if (REG_P (SUBREG_REG (op0)))
11893 op0 = SUBREG_REG (op0);
11894 op1 = gen_lowpart (GET_MODE (op0), op1);
11897 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11898 <= HOST_BITS_PER_WIDE_INT)
11899 && (nonzero_bits (SUBREG_REG (op0),
11900 GET_MODE (SUBREG_REG (op0)))
11901 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11903 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11905 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11906 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11907 op0 = SUBREG_REG (op0), op1 = tem;
11911 /* We now do the opposite procedure: Some machines don't have compare
11912 insns in all modes. If OP0's mode is an integer mode smaller than a
11913 word and we can't do a compare in that mode, see if there is a larger
11914 mode for which we can do the compare. There are a number of cases in
11915 which we can use the wider mode. */
11917 mode = GET_MODE (op0);
11918 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11919 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11920 && ! have_insn_for (COMPARE, mode))
11921 for (tmode = GET_MODE_WIDER_MODE (mode);
11922 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11923 tmode = GET_MODE_WIDER_MODE (tmode))
11924 if (have_insn_for (COMPARE, tmode))
11926 int zero_extended;
11928 /* If this is a test for negative, we can make an explicit
11929 test of the sign bit. Test this first so we can use
11930 a paradoxical subreg to extend OP0. */
11932 if (op1 == const0_rtx && (code == LT || code == GE)
11933 && HWI_COMPUTABLE_MODE_P (mode))
11935 op0 = simplify_gen_binary (AND, tmode,
11936 gen_lowpart (tmode, op0),
11937 GEN_INT ((unsigned HOST_WIDE_INT) 1
11938 << (GET_MODE_BITSIZE (mode)
11939 - 1)));
11940 code = (code == LT) ? NE : EQ;
11941 break;
11944 /* If the only nonzero bits in OP0 and OP1 are those in the
11945 narrower mode and this is an equality or unsigned comparison,
11946 we can use the wider mode. Similarly for sign-extended
11947 values, in which case it is true for all comparisons. */
11948 zero_extended = ((code == EQ || code == NE
11949 || code == GEU || code == GTU
11950 || code == LEU || code == LTU)
11951 && (nonzero_bits (op0, tmode)
11952 & ~GET_MODE_MASK (mode)) == 0
11953 && ((CONST_INT_P (op1)
11954 || (nonzero_bits (op1, tmode)
11955 & ~GET_MODE_MASK (mode)) == 0)));
11957 if (zero_extended
11958 || ((num_sign_bit_copies (op0, tmode)
11959 > (unsigned int) (GET_MODE_PRECISION (tmode)
11960 - GET_MODE_PRECISION (mode)))
11961 && (num_sign_bit_copies (op1, tmode)
11962 > (unsigned int) (GET_MODE_PRECISION (tmode)
11963 - GET_MODE_PRECISION (mode)))))
11965 /* If OP0 is an AND and we don't have an AND in MODE either,
11966 make a new AND in the proper mode. */
11967 if (GET_CODE (op0) == AND
11968 && !have_insn_for (AND, mode))
11969 op0 = simplify_gen_binary (AND, tmode,
11970 gen_lowpart (tmode,
11971 XEXP (op0, 0)),
11972 gen_lowpart (tmode,
11973 XEXP (op0, 1)));
11974 else
11976 if (zero_extended)
11978 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11979 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11981 else
11983 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11984 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11986 break;
11991 /* If this machine only supports a subset of valid comparisons, see if we
11992 can convert an unsupported one into a supported one. */
11993 target_canonicalize_comparison (&code, &op0, &op1, 0);
11995 *pop0 = op0;
11996 *pop1 = op1;
11998 return code;
12001 /* Utility function for record_value_for_reg. Count number of
12002 rtxs in X. */
12003 static int
12004 count_rtxs (rtx x)
12006 enum rtx_code code = GET_CODE (x);
12007 const char *fmt;
12008 int i, j, ret = 1;
12010 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12011 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12013 rtx x0 = XEXP (x, 0);
12014 rtx x1 = XEXP (x, 1);
12016 if (x0 == x1)
12017 return 1 + 2 * count_rtxs (x0);
12019 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12020 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12021 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12022 return 2 + 2 * count_rtxs (x0)
12023 + count_rtxs (x == XEXP (x1, 0)
12024 ? XEXP (x1, 1) : XEXP (x1, 0));
12026 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12027 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12028 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12029 return 2 + 2 * count_rtxs (x1)
12030 + count_rtxs (x == XEXP (x0, 0)
12031 ? XEXP (x0, 1) : XEXP (x0, 0));
12034 fmt = GET_RTX_FORMAT (code);
12035 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12036 if (fmt[i] == 'e')
12037 ret += count_rtxs (XEXP (x, i));
12038 else if (fmt[i] == 'E')
12039 for (j = 0; j < XVECLEN (x, i); j++)
12040 ret += count_rtxs (XVECEXP (x, i, j));
12042 return ret;
12045 /* Utility function for following routine. Called when X is part of a value
12046 being stored into last_set_value. Sets last_set_table_tick
12047 for each register mentioned. Similar to mention_regs in cse.c */
12049 static void
12050 update_table_tick (rtx x)
12052 enum rtx_code code = GET_CODE (x);
12053 const char *fmt = GET_RTX_FORMAT (code);
12054 int i, j;
12056 if (code == REG)
12058 unsigned int regno = REGNO (x);
12059 unsigned int endregno = END_REGNO (x);
12060 unsigned int r;
12062 for (r = regno; r < endregno; r++)
12064 reg_stat_type *rsp = &reg_stat[r];
12065 rsp->last_set_table_tick = label_tick;
12068 return;
12071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12072 if (fmt[i] == 'e')
12074 /* Check for identical subexpressions. If x contains
12075 identical subexpression we only have to traverse one of
12076 them. */
12077 if (i == 0 && ARITHMETIC_P (x))
12079 /* Note that at this point x1 has already been
12080 processed. */
12081 rtx x0 = XEXP (x, 0);
12082 rtx x1 = XEXP (x, 1);
12084 /* If x0 and x1 are identical then there is no need to
12085 process x0. */
12086 if (x0 == x1)
12087 break;
12089 /* If x0 is identical to a subexpression of x1 then while
12090 processing x1, x0 has already been processed. Thus we
12091 are done with x. */
12092 if (ARITHMETIC_P (x1)
12093 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12094 break;
12096 /* If x1 is identical to a subexpression of x0 then we
12097 still have to process the rest of x0. */
12098 if (ARITHMETIC_P (x0)
12099 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12101 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12102 break;
12106 update_table_tick (XEXP (x, i));
12108 else if (fmt[i] == 'E')
12109 for (j = 0; j < XVECLEN (x, i); j++)
12110 update_table_tick (XVECEXP (x, i, j));
12113 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12114 are saying that the register is clobbered and we no longer know its
12115 value. If INSN is zero, don't update reg_stat[].last_set; this is
12116 only permitted with VALUE also zero and is used to invalidate the
12117 register. */
12119 static void
12120 record_value_for_reg (rtx reg, rtx insn, rtx value)
12122 unsigned int regno = REGNO (reg);
12123 unsigned int endregno = END_REGNO (reg);
12124 unsigned int i;
12125 reg_stat_type *rsp;
12127 /* If VALUE contains REG and we have a previous value for REG, substitute
12128 the previous value. */
12129 if (value && insn && reg_overlap_mentioned_p (reg, value))
12131 rtx tem;
12133 /* Set things up so get_last_value is allowed to see anything set up to
12134 our insn. */
12135 subst_low_luid = DF_INSN_LUID (insn);
12136 tem = get_last_value (reg);
12138 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12139 it isn't going to be useful and will take a lot of time to process,
12140 so just use the CLOBBER. */
12142 if (tem)
12144 if (ARITHMETIC_P (tem)
12145 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12146 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12147 tem = XEXP (tem, 0);
12148 else if (count_occurrences (value, reg, 1) >= 2)
12150 /* If there are two or more occurrences of REG in VALUE,
12151 prevent the value from growing too much. */
12152 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12153 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12156 value = replace_rtx (copy_rtx (value), reg, tem);
12160 /* For each register modified, show we don't know its value, that
12161 we don't know about its bitwise content, that its value has been
12162 updated, and that we don't know the location of the death of the
12163 register. */
12164 for (i = regno; i < endregno; i++)
12166 rsp = &reg_stat[i];
12168 if (insn)
12169 rsp->last_set = insn;
12171 rsp->last_set_value = 0;
12172 rsp->last_set_mode = VOIDmode;
12173 rsp->last_set_nonzero_bits = 0;
12174 rsp->last_set_sign_bit_copies = 0;
12175 rsp->last_death = 0;
12176 rsp->truncated_to_mode = VOIDmode;
12179 /* Mark registers that are being referenced in this value. */
12180 if (value)
12181 update_table_tick (value);
12183 /* Now update the status of each register being set.
12184 If someone is using this register in this block, set this register
12185 to invalid since we will get confused between the two lives in this
12186 basic block. This makes using this register always invalid. In cse, we
12187 scan the table to invalidate all entries using this register, but this
12188 is too much work for us. */
12190 for (i = regno; i < endregno; i++)
12192 rsp = &reg_stat[i];
12193 rsp->last_set_label = label_tick;
12194 if (!insn
12195 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12196 rsp->last_set_invalid = 1;
12197 else
12198 rsp->last_set_invalid = 0;
12201 /* The value being assigned might refer to X (like in "x++;"). In that
12202 case, we must replace it with (clobber (const_int 0)) to prevent
12203 infinite loops. */
12204 rsp = &reg_stat[regno];
12205 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12207 value = copy_rtx (value);
12208 if (!get_last_value_validate (&value, insn, label_tick, 1))
12209 value = 0;
12212 /* For the main register being modified, update the value, the mode, the
12213 nonzero bits, and the number of sign bit copies. */
12215 rsp->last_set_value = value;
12217 if (value)
12219 enum machine_mode mode = GET_MODE (reg);
12220 subst_low_luid = DF_INSN_LUID (insn);
12221 rsp->last_set_mode = mode;
12222 if (GET_MODE_CLASS (mode) == MODE_INT
12223 && HWI_COMPUTABLE_MODE_P (mode))
12224 mode = nonzero_bits_mode;
12225 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12226 rsp->last_set_sign_bit_copies
12227 = num_sign_bit_copies (value, GET_MODE (reg));
12231 /* Called via note_stores from record_dead_and_set_regs to handle one
12232 SET or CLOBBER in an insn. DATA is the instruction in which the
12233 set is occurring. */
12235 static void
12236 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12238 rtx record_dead_insn = (rtx) data;
12240 if (GET_CODE (dest) == SUBREG)
12241 dest = SUBREG_REG (dest);
12243 if (!record_dead_insn)
12245 if (REG_P (dest))
12246 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12247 return;
12250 if (REG_P (dest))
12252 /* If we are setting the whole register, we know its value. Otherwise
12253 show that we don't know the value. We can handle SUBREG in
12254 some cases. */
12255 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12256 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12257 else if (GET_CODE (setter) == SET
12258 && GET_CODE (SET_DEST (setter)) == SUBREG
12259 && SUBREG_REG (SET_DEST (setter)) == dest
12260 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12261 && subreg_lowpart_p (SET_DEST (setter)))
12262 record_value_for_reg (dest, record_dead_insn,
12263 gen_lowpart (GET_MODE (dest),
12264 SET_SRC (setter)));
12265 else
12266 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12268 else if (MEM_P (dest)
12269 /* Ignore pushes, they clobber nothing. */
12270 && ! push_operand (dest, GET_MODE (dest)))
12271 mem_last_set = DF_INSN_LUID (record_dead_insn);
12274 /* Update the records of when each REG was most recently set or killed
12275 for the things done by INSN. This is the last thing done in processing
12276 INSN in the combiner loop.
12278 We update reg_stat[], in particular fields last_set, last_set_value,
12279 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12280 last_death, and also the similar information mem_last_set (which insn
12281 most recently modified memory) and last_call_luid (which insn was the
12282 most recent subroutine call). */
12284 static void
12285 record_dead_and_set_regs (rtx insn)
12287 rtx link;
12288 unsigned int i;
12290 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12292 if (REG_NOTE_KIND (link) == REG_DEAD
12293 && REG_P (XEXP (link, 0)))
12295 unsigned int regno = REGNO (XEXP (link, 0));
12296 unsigned int endregno = END_REGNO (XEXP (link, 0));
12298 for (i = regno; i < endregno; i++)
12300 reg_stat_type *rsp;
12302 rsp = &reg_stat[i];
12303 rsp->last_death = insn;
12306 else if (REG_NOTE_KIND (link) == REG_INC)
12307 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12310 if (CALL_P (insn))
12312 hard_reg_set_iterator hrsi;
12313 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12315 reg_stat_type *rsp;
12317 rsp = &reg_stat[i];
12318 rsp->last_set_invalid = 1;
12319 rsp->last_set = insn;
12320 rsp->last_set_value = 0;
12321 rsp->last_set_mode = VOIDmode;
12322 rsp->last_set_nonzero_bits = 0;
12323 rsp->last_set_sign_bit_copies = 0;
12324 rsp->last_death = 0;
12325 rsp->truncated_to_mode = VOIDmode;
12328 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12330 /* We can't combine into a call pattern. Remember, though, that
12331 the return value register is set at this LUID. We could
12332 still replace a register with the return value from the
12333 wrong subroutine call! */
12334 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12336 else
12337 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12340 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12341 register present in the SUBREG, so for each such SUBREG go back and
12342 adjust nonzero and sign bit information of the registers that are
12343 known to have some zero/sign bits set.
12345 This is needed because when combine blows the SUBREGs away, the
12346 information on zero/sign bits is lost and further combines can be
12347 missed because of that. */
12349 static void
12350 record_promoted_value (rtx insn, rtx subreg)
12352 struct insn_link *links;
12353 rtx set;
12354 unsigned int regno = REGNO (SUBREG_REG (subreg));
12355 enum machine_mode mode = GET_MODE (subreg);
12357 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12358 return;
12360 for (links = LOG_LINKS (insn); links;)
12362 reg_stat_type *rsp;
12364 insn = links->insn;
12365 set = single_set (insn);
12367 if (! set || !REG_P (SET_DEST (set))
12368 || REGNO (SET_DEST (set)) != regno
12369 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12371 links = links->next;
12372 continue;
12375 rsp = &reg_stat[regno];
12376 if (rsp->last_set == insn)
12378 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12379 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12382 if (REG_P (SET_SRC (set)))
12384 regno = REGNO (SET_SRC (set));
12385 links = LOG_LINKS (insn);
12387 else
12388 break;
12392 /* Check if X, a register, is known to contain a value already
12393 truncated to MODE. In this case we can use a subreg to refer to
12394 the truncated value even though in the generic case we would need
12395 an explicit truncation. */
12397 static bool
12398 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12400 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12401 enum machine_mode truncated = rsp->truncated_to_mode;
12403 if (truncated == 0
12404 || rsp->truncation_label < label_tick_ebb_start)
12405 return false;
12406 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12407 return true;
12408 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12409 return true;
12410 return false;
12413 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12414 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12415 might be able to turn a truncate into a subreg using this information.
12416 Return -1 if traversing *P is complete or 0 otherwise. */
12418 static int
12419 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12421 rtx x = *p;
12422 enum machine_mode truncated_mode;
12423 reg_stat_type *rsp;
12425 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12427 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12428 truncated_mode = GET_MODE (x);
12430 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12431 return -1;
12433 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12434 return -1;
12436 x = SUBREG_REG (x);
12438 /* ??? For hard-regs we now record everything. We might be able to
12439 optimize this using last_set_mode. */
12440 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12441 truncated_mode = GET_MODE (x);
12442 else
12443 return 0;
12445 rsp = &reg_stat[REGNO (x)];
12446 if (rsp->truncated_to_mode == 0
12447 || rsp->truncation_label < label_tick_ebb_start
12448 || (GET_MODE_SIZE (truncated_mode)
12449 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12451 rsp->truncated_to_mode = truncated_mode;
12452 rsp->truncation_label = label_tick;
12455 return -1;
12458 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12459 the modes they are used in. This can help truning TRUNCATEs into
12460 SUBREGs. */
12462 static void
12463 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12465 for_each_rtx (x, record_truncated_value, NULL);
12468 /* Scan X for promoted SUBREGs. For each one found,
12469 note what it implies to the registers used in it. */
12471 static void
12472 check_promoted_subreg (rtx insn, rtx x)
12474 if (GET_CODE (x) == SUBREG
12475 && SUBREG_PROMOTED_VAR_P (x)
12476 && REG_P (SUBREG_REG (x)))
12477 record_promoted_value (insn, x);
12478 else
12480 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12481 int i, j;
12483 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12484 switch (format[i])
12486 case 'e':
12487 check_promoted_subreg (insn, XEXP (x, i));
12488 break;
12489 case 'V':
12490 case 'E':
12491 if (XVEC (x, i) != 0)
12492 for (j = 0; j < XVECLEN (x, i); j++)
12493 check_promoted_subreg (insn, XVECEXP (x, i, j));
12494 break;
12499 /* Verify that all the registers and memory references mentioned in *LOC are
12500 still valid. *LOC was part of a value set in INSN when label_tick was
12501 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12502 the invalid references with (clobber (const_int 0)) and return 1. This
12503 replacement is useful because we often can get useful information about
12504 the form of a value (e.g., if it was produced by a shift that always
12505 produces -1 or 0) even though we don't know exactly what registers it
12506 was produced from. */
12508 static int
12509 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12511 rtx x = *loc;
12512 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12513 int len = GET_RTX_LENGTH (GET_CODE (x));
12514 int i, j;
12516 if (REG_P (x))
12518 unsigned int regno = REGNO (x);
12519 unsigned int endregno = END_REGNO (x);
12520 unsigned int j;
12522 for (j = regno; j < endregno; j++)
12524 reg_stat_type *rsp = &reg_stat[j];
12525 if (rsp->last_set_invalid
12526 /* If this is a pseudo-register that was only set once and not
12527 live at the beginning of the function, it is always valid. */
12528 || (! (regno >= FIRST_PSEUDO_REGISTER
12529 && REG_N_SETS (regno) == 1
12530 && (!REGNO_REG_SET_P
12531 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12532 && rsp->last_set_label > tick))
12534 if (replace)
12535 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12536 return replace;
12540 return 1;
12542 /* If this is a memory reference, make sure that there were no stores after
12543 it that might have clobbered the value. We don't have alias info, so we
12544 assume any store invalidates it. Moreover, we only have local UIDs, so
12545 we also assume that there were stores in the intervening basic blocks. */
12546 else if (MEM_P (x) && !MEM_READONLY_P (x)
12547 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12549 if (replace)
12550 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12551 return replace;
12554 for (i = 0; i < len; i++)
12556 if (fmt[i] == 'e')
12558 /* Check for identical subexpressions. If x contains
12559 identical subexpression we only have to traverse one of
12560 them. */
12561 if (i == 1 && ARITHMETIC_P (x))
12563 /* Note that at this point x0 has already been checked
12564 and found valid. */
12565 rtx x0 = XEXP (x, 0);
12566 rtx x1 = XEXP (x, 1);
12568 /* If x0 and x1 are identical then x is also valid. */
12569 if (x0 == x1)
12570 return 1;
12572 /* If x1 is identical to a subexpression of x0 then
12573 while checking x0, x1 has already been checked. Thus
12574 it is valid and so as x. */
12575 if (ARITHMETIC_P (x0)
12576 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12577 return 1;
12579 /* If x0 is identical to a subexpression of x1 then x is
12580 valid iff the rest of x1 is valid. */
12581 if (ARITHMETIC_P (x1)
12582 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12583 return
12584 get_last_value_validate (&XEXP (x1,
12585 x0 == XEXP (x1, 0) ? 1 : 0),
12586 insn, tick, replace);
12589 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12590 replace) == 0)
12591 return 0;
12593 else if (fmt[i] == 'E')
12594 for (j = 0; j < XVECLEN (x, i); j++)
12595 if (get_last_value_validate (&XVECEXP (x, i, j),
12596 insn, tick, replace) == 0)
12597 return 0;
12600 /* If we haven't found a reason for it to be invalid, it is valid. */
12601 return 1;
12604 /* Get the last value assigned to X, if known. Some registers
12605 in the value may be replaced with (clobber (const_int 0)) if their value
12606 is known longer known reliably. */
12608 static rtx
12609 get_last_value (const_rtx x)
12611 unsigned int regno;
12612 rtx value;
12613 reg_stat_type *rsp;
12615 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12616 then convert it to the desired mode. If this is a paradoxical SUBREG,
12617 we cannot predict what values the "extra" bits might have. */
12618 if (GET_CODE (x) == SUBREG
12619 && subreg_lowpart_p (x)
12620 && !paradoxical_subreg_p (x)
12621 && (value = get_last_value (SUBREG_REG (x))) != 0)
12622 return gen_lowpart (GET_MODE (x), value);
12624 if (!REG_P (x))
12625 return 0;
12627 regno = REGNO (x);
12628 rsp = &reg_stat[regno];
12629 value = rsp->last_set_value;
12631 /* If we don't have a value, or if it isn't for this basic block and
12632 it's either a hard register, set more than once, or it's a live
12633 at the beginning of the function, return 0.
12635 Because if it's not live at the beginning of the function then the reg
12636 is always set before being used (is never used without being set).
12637 And, if it's set only once, and it's always set before use, then all
12638 uses must have the same last value, even if it's not from this basic
12639 block. */
12641 if (value == 0
12642 || (rsp->last_set_label < label_tick_ebb_start
12643 && (regno < FIRST_PSEUDO_REGISTER
12644 || REG_N_SETS (regno) != 1
12645 || REGNO_REG_SET_P
12646 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12647 return 0;
12649 /* If the value was set in a later insn than the ones we are processing,
12650 we can't use it even if the register was only set once. */
12651 if (rsp->last_set_label == label_tick
12652 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12653 return 0;
12655 /* If the value has all its registers valid, return it. */
12656 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12657 return value;
12659 /* Otherwise, make a copy and replace any invalid register with
12660 (clobber (const_int 0)). If that fails for some reason, return 0. */
12662 value = copy_rtx (value);
12663 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12664 return value;
12666 return 0;
12669 /* Return nonzero if expression X refers to a REG or to memory
12670 that is set in an instruction more recent than FROM_LUID. */
12672 static int
12673 use_crosses_set_p (const_rtx x, int from_luid)
12675 const char *fmt;
12676 int i;
12677 enum rtx_code code = GET_CODE (x);
12679 if (code == REG)
12681 unsigned int regno = REGNO (x);
12682 unsigned endreg = END_REGNO (x);
12684 #ifdef PUSH_ROUNDING
12685 /* Don't allow uses of the stack pointer to be moved,
12686 because we don't know whether the move crosses a push insn. */
12687 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12688 return 1;
12689 #endif
12690 for (; regno < endreg; regno++)
12692 reg_stat_type *rsp = &reg_stat[regno];
12693 if (rsp->last_set
12694 && rsp->last_set_label == label_tick
12695 && DF_INSN_LUID (rsp->last_set) > from_luid)
12696 return 1;
12698 return 0;
12701 if (code == MEM && mem_last_set > from_luid)
12702 return 1;
12704 fmt = GET_RTX_FORMAT (code);
12706 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12708 if (fmt[i] == 'E')
12710 int j;
12711 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12712 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12713 return 1;
12715 else if (fmt[i] == 'e'
12716 && use_crosses_set_p (XEXP (x, i), from_luid))
12717 return 1;
12719 return 0;
12722 /* Define three variables used for communication between the following
12723 routines. */
12725 static unsigned int reg_dead_regno, reg_dead_endregno;
12726 static int reg_dead_flag;
12728 /* Function called via note_stores from reg_dead_at_p.
12730 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12731 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12733 static void
12734 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12736 unsigned int regno, endregno;
12738 if (!REG_P (dest))
12739 return;
12741 regno = REGNO (dest);
12742 endregno = END_REGNO (dest);
12743 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12744 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12747 /* Return nonzero if REG is known to be dead at INSN.
12749 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12750 referencing REG, it is dead. If we hit a SET referencing REG, it is
12751 live. Otherwise, see if it is live or dead at the start of the basic
12752 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12753 must be assumed to be always live. */
12755 static int
12756 reg_dead_at_p (rtx reg, rtx insn)
12758 basic_block block;
12759 unsigned int i;
12761 /* Set variables for reg_dead_at_p_1. */
12762 reg_dead_regno = REGNO (reg);
12763 reg_dead_endregno = END_REGNO (reg);
12765 reg_dead_flag = 0;
12767 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12768 we allow the machine description to decide whether use-and-clobber
12769 patterns are OK. */
12770 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12772 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12773 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12774 return 0;
12777 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12778 beginning of basic block. */
12779 block = BLOCK_FOR_INSN (insn);
12780 for (;;)
12782 if (INSN_P (insn))
12784 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12785 if (reg_dead_flag)
12786 return reg_dead_flag == 1 ? 1 : 0;
12788 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12789 return 1;
12792 if (insn == BB_HEAD (block))
12793 break;
12795 insn = PREV_INSN (insn);
12798 /* Look at live-in sets for the basic block that we were in. */
12799 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12800 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12801 return 0;
12803 return 1;
12806 /* Note hard registers in X that are used. */
12808 static void
12809 mark_used_regs_combine (rtx x)
12811 RTX_CODE code = GET_CODE (x);
12812 unsigned int regno;
12813 int i;
12815 switch (code)
12817 case LABEL_REF:
12818 case SYMBOL_REF:
12819 case CONST:
12820 CASE_CONST_ANY:
12821 case PC:
12822 case ADDR_VEC:
12823 case ADDR_DIFF_VEC:
12824 case ASM_INPUT:
12825 #ifdef HAVE_cc0
12826 /* CC0 must die in the insn after it is set, so we don't need to take
12827 special note of it here. */
12828 case CC0:
12829 #endif
12830 return;
12832 case CLOBBER:
12833 /* If we are clobbering a MEM, mark any hard registers inside the
12834 address as used. */
12835 if (MEM_P (XEXP (x, 0)))
12836 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12837 return;
12839 case REG:
12840 regno = REGNO (x);
12841 /* A hard reg in a wide mode may really be multiple registers.
12842 If so, mark all of them just like the first. */
12843 if (regno < FIRST_PSEUDO_REGISTER)
12845 /* None of this applies to the stack, frame or arg pointers. */
12846 if (regno == STACK_POINTER_REGNUM
12847 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12848 || regno == HARD_FRAME_POINTER_REGNUM
12849 #endif
12850 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12851 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12852 #endif
12853 || regno == FRAME_POINTER_REGNUM)
12854 return;
12856 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12858 return;
12860 case SET:
12862 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12863 the address. */
12864 rtx testreg = SET_DEST (x);
12866 while (GET_CODE (testreg) == SUBREG
12867 || GET_CODE (testreg) == ZERO_EXTRACT
12868 || GET_CODE (testreg) == STRICT_LOW_PART)
12869 testreg = XEXP (testreg, 0);
12871 if (MEM_P (testreg))
12872 mark_used_regs_combine (XEXP (testreg, 0));
12874 mark_used_regs_combine (SET_SRC (x));
12876 return;
12878 default:
12879 break;
12882 /* Recursively scan the operands of this expression. */
12885 const char *fmt = GET_RTX_FORMAT (code);
12887 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12889 if (fmt[i] == 'e')
12890 mark_used_regs_combine (XEXP (x, i));
12891 else if (fmt[i] == 'E')
12893 int j;
12895 for (j = 0; j < XVECLEN (x, i); j++)
12896 mark_used_regs_combine (XVECEXP (x, i, j));
12902 /* Remove register number REGNO from the dead registers list of INSN.
12904 Return the note used to record the death, if there was one. */
12907 remove_death (unsigned int regno, rtx insn)
12909 rtx note = find_regno_note (insn, REG_DEAD, regno);
12911 if (note)
12912 remove_note (insn, note);
12914 return note;
12917 /* For each register (hardware or pseudo) used within expression X, if its
12918 death is in an instruction with luid between FROM_LUID (inclusive) and
12919 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12920 list headed by PNOTES.
12922 That said, don't move registers killed by maybe_kill_insn.
12924 This is done when X is being merged by combination into TO_INSN. These
12925 notes will then be distributed as needed. */
12927 static void
12928 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12929 rtx *pnotes)
12931 const char *fmt;
12932 int len, i;
12933 enum rtx_code code = GET_CODE (x);
12935 if (code == REG)
12937 unsigned int regno = REGNO (x);
12938 rtx where_dead = reg_stat[regno].last_death;
12940 /* Don't move the register if it gets killed in between from and to. */
12941 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12942 && ! reg_referenced_p (x, maybe_kill_insn))
12943 return;
12945 if (where_dead
12946 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12947 && DF_INSN_LUID (where_dead) >= from_luid
12948 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12950 rtx note = remove_death (regno, where_dead);
12952 /* It is possible for the call above to return 0. This can occur
12953 when last_death points to I2 or I1 that we combined with.
12954 In that case make a new note.
12956 We must also check for the case where X is a hard register
12957 and NOTE is a death note for a range of hard registers
12958 including X. In that case, we must put REG_DEAD notes for
12959 the remaining registers in place of NOTE. */
12961 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12962 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12963 > GET_MODE_SIZE (GET_MODE (x))))
12965 unsigned int deadregno = REGNO (XEXP (note, 0));
12966 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12967 unsigned int ourend = END_HARD_REGNO (x);
12968 unsigned int i;
12970 for (i = deadregno; i < deadend; i++)
12971 if (i < regno || i >= ourend)
12972 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12975 /* If we didn't find any note, or if we found a REG_DEAD note that
12976 covers only part of the given reg, and we have a multi-reg hard
12977 register, then to be safe we must check for REG_DEAD notes
12978 for each register other than the first. They could have
12979 their own REG_DEAD notes lying around. */
12980 else if ((note == 0
12981 || (note != 0
12982 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12983 < GET_MODE_SIZE (GET_MODE (x)))))
12984 && regno < FIRST_PSEUDO_REGISTER
12985 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12987 unsigned int ourend = END_HARD_REGNO (x);
12988 unsigned int i, offset;
12989 rtx oldnotes = 0;
12991 if (note)
12992 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12993 else
12994 offset = 1;
12996 for (i = regno + offset; i < ourend; i++)
12997 move_deaths (regno_reg_rtx[i],
12998 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13001 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13003 XEXP (note, 1) = *pnotes;
13004 *pnotes = note;
13006 else
13007 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13010 return;
13013 else if (GET_CODE (x) == SET)
13015 rtx dest = SET_DEST (x);
13017 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13019 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13020 that accesses one word of a multi-word item, some
13021 piece of everything register in the expression is used by
13022 this insn, so remove any old death. */
13023 /* ??? So why do we test for equality of the sizes? */
13025 if (GET_CODE (dest) == ZERO_EXTRACT
13026 || GET_CODE (dest) == STRICT_LOW_PART
13027 || (GET_CODE (dest) == SUBREG
13028 && (((GET_MODE_SIZE (GET_MODE (dest))
13029 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13030 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13031 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13033 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13034 return;
13037 /* If this is some other SUBREG, we know it replaces the entire
13038 value, so use that as the destination. */
13039 if (GET_CODE (dest) == SUBREG)
13040 dest = SUBREG_REG (dest);
13042 /* If this is a MEM, adjust deaths of anything used in the address.
13043 For a REG (the only other possibility), the entire value is
13044 being replaced so the old value is not used in this insn. */
13046 if (MEM_P (dest))
13047 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13048 to_insn, pnotes);
13049 return;
13052 else if (GET_CODE (x) == CLOBBER)
13053 return;
13055 len = GET_RTX_LENGTH (code);
13056 fmt = GET_RTX_FORMAT (code);
13058 for (i = 0; i < len; i++)
13060 if (fmt[i] == 'E')
13062 int j;
13063 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13064 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13065 to_insn, pnotes);
13067 else if (fmt[i] == 'e')
13068 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13072 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13073 pattern of an insn. X must be a REG. */
13075 static int
13076 reg_bitfield_target_p (rtx x, rtx body)
13078 int i;
13080 if (GET_CODE (body) == SET)
13082 rtx dest = SET_DEST (body);
13083 rtx target;
13084 unsigned int regno, tregno, endregno, endtregno;
13086 if (GET_CODE (dest) == ZERO_EXTRACT)
13087 target = XEXP (dest, 0);
13088 else if (GET_CODE (dest) == STRICT_LOW_PART)
13089 target = SUBREG_REG (XEXP (dest, 0));
13090 else
13091 return 0;
13093 if (GET_CODE (target) == SUBREG)
13094 target = SUBREG_REG (target);
13096 if (!REG_P (target))
13097 return 0;
13099 tregno = REGNO (target), regno = REGNO (x);
13100 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13101 return target == x;
13103 endtregno = end_hard_regno (GET_MODE (target), tregno);
13104 endregno = end_hard_regno (GET_MODE (x), regno);
13106 return endregno > tregno && regno < endtregno;
13109 else if (GET_CODE (body) == PARALLEL)
13110 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13111 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13112 return 1;
13114 return 0;
13117 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13118 as appropriate. I3 and I2 are the insns resulting from the combination
13119 insns including FROM (I2 may be zero).
13121 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13122 not need REG_DEAD notes because they are being substituted for. This
13123 saves searching in the most common cases.
13125 Each note in the list is either ignored or placed on some insns, depending
13126 on the type of note. */
13128 static void
13129 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13130 rtx elim_i1, rtx elim_i0)
13132 rtx note, next_note;
13133 rtx tem;
13135 for (note = notes; note; note = next_note)
13137 rtx place = 0, place2 = 0;
13139 next_note = XEXP (note, 1);
13140 switch (REG_NOTE_KIND (note))
13142 case REG_BR_PROB:
13143 case REG_BR_PRED:
13144 /* Doesn't matter much where we put this, as long as it's somewhere.
13145 It is preferable to keep these notes on branches, which is most
13146 likely to be i3. */
13147 place = i3;
13148 break;
13150 case REG_NON_LOCAL_GOTO:
13151 if (JUMP_P (i3))
13152 place = i3;
13153 else
13155 gcc_assert (i2 && JUMP_P (i2));
13156 place = i2;
13158 break;
13160 case REG_EH_REGION:
13161 /* These notes must remain with the call or trapping instruction. */
13162 if (CALL_P (i3))
13163 place = i3;
13164 else if (i2 && CALL_P (i2))
13165 place = i2;
13166 else
13168 gcc_assert (cfun->can_throw_non_call_exceptions);
13169 if (may_trap_p (i3))
13170 place = i3;
13171 else if (i2 && may_trap_p (i2))
13172 place = i2;
13173 /* ??? Otherwise assume we've combined things such that we
13174 can now prove that the instructions can't trap. Drop the
13175 note in this case. */
13177 break;
13179 case REG_ARGS_SIZE:
13180 /* ??? How to distribute between i3-i1. Assume i3 contains the
13181 entire adjustment. Assert i3 contains at least some adjust. */
13182 if (!noop_move_p (i3))
13184 int old_size, args_size = INTVAL (XEXP (note, 0));
13185 /* fixup_args_size_notes looks at REG_NORETURN note,
13186 so ensure the note is placed there first. */
13187 if (CALL_P (i3))
13189 rtx *np;
13190 for (np = &next_note; *np; np = &XEXP (*np, 1))
13191 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13193 rtx n = *np;
13194 *np = XEXP (n, 1);
13195 XEXP (n, 1) = REG_NOTES (i3);
13196 REG_NOTES (i3) = n;
13197 break;
13200 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13201 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13202 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13203 gcc_assert (old_size != args_size
13204 || (CALL_P (i3)
13205 && !ACCUMULATE_OUTGOING_ARGS
13206 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13208 break;
13210 case REG_NORETURN:
13211 case REG_SETJMP:
13212 case REG_TM:
13213 /* These notes must remain with the call. It should not be
13214 possible for both I2 and I3 to be a call. */
13215 if (CALL_P (i3))
13216 place = i3;
13217 else
13219 gcc_assert (i2 && CALL_P (i2));
13220 place = i2;
13222 break;
13224 case REG_UNUSED:
13225 /* Any clobbers for i3 may still exist, and so we must process
13226 REG_UNUSED notes from that insn.
13228 Any clobbers from i2 or i1 can only exist if they were added by
13229 recog_for_combine. In that case, recog_for_combine created the
13230 necessary REG_UNUSED notes. Trying to keep any original
13231 REG_UNUSED notes from these insns can cause incorrect output
13232 if it is for the same register as the original i3 dest.
13233 In that case, we will notice that the register is set in i3,
13234 and then add a REG_UNUSED note for the destination of i3, which
13235 is wrong. However, it is possible to have REG_UNUSED notes from
13236 i2 or i1 for register which were both used and clobbered, so
13237 we keep notes from i2 or i1 if they will turn into REG_DEAD
13238 notes. */
13240 /* If this register is set or clobbered in I3, put the note there
13241 unless there is one already. */
13242 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13244 if (from_insn != i3)
13245 break;
13247 if (! (REG_P (XEXP (note, 0))
13248 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13249 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13250 place = i3;
13252 /* Otherwise, if this register is used by I3, then this register
13253 now dies here, so we must put a REG_DEAD note here unless there
13254 is one already. */
13255 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13256 && ! (REG_P (XEXP (note, 0))
13257 ? find_regno_note (i3, REG_DEAD,
13258 REGNO (XEXP (note, 0)))
13259 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13261 PUT_REG_NOTE_KIND (note, REG_DEAD);
13262 place = i3;
13264 break;
13266 case REG_EQUAL:
13267 case REG_EQUIV:
13268 case REG_NOALIAS:
13269 /* These notes say something about results of an insn. We can
13270 only support them if they used to be on I3 in which case they
13271 remain on I3. Otherwise they are ignored.
13273 If the note refers to an expression that is not a constant, we
13274 must also ignore the note since we cannot tell whether the
13275 equivalence is still true. It might be possible to do
13276 slightly better than this (we only have a problem if I2DEST
13277 or I1DEST is present in the expression), but it doesn't
13278 seem worth the trouble. */
13280 if (from_insn == i3
13281 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13282 place = i3;
13283 break;
13285 case REG_INC:
13286 /* These notes say something about how a register is used. They must
13287 be present on any use of the register in I2 or I3. */
13288 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13289 place = i3;
13291 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13293 if (place)
13294 place2 = i2;
13295 else
13296 place = i2;
13298 break;
13300 case REG_LABEL_TARGET:
13301 case REG_LABEL_OPERAND:
13302 /* This can show up in several ways -- either directly in the
13303 pattern, or hidden off in the constant pool with (or without?)
13304 a REG_EQUAL note. */
13305 /* ??? Ignore the without-reg_equal-note problem for now. */
13306 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13307 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13308 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13309 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13310 place = i3;
13312 if (i2
13313 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13314 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13315 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13316 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13318 if (place)
13319 place2 = i2;
13320 else
13321 place = i2;
13324 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13325 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13326 there. */
13327 if (place && JUMP_P (place)
13328 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13329 && (JUMP_LABEL (place) == NULL
13330 || JUMP_LABEL (place) == XEXP (note, 0)))
13332 rtx label = JUMP_LABEL (place);
13334 if (!label)
13335 JUMP_LABEL (place) = XEXP (note, 0);
13336 else if (LABEL_P (label))
13337 LABEL_NUSES (label)--;
13340 if (place2 && JUMP_P (place2)
13341 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13342 && (JUMP_LABEL (place2) == NULL
13343 || JUMP_LABEL (place2) == XEXP (note, 0)))
13345 rtx label = JUMP_LABEL (place2);
13347 if (!label)
13348 JUMP_LABEL (place2) = XEXP (note, 0);
13349 else if (LABEL_P (label))
13350 LABEL_NUSES (label)--;
13351 place2 = 0;
13353 break;
13355 case REG_NONNEG:
13356 /* This note says something about the value of a register prior
13357 to the execution of an insn. It is too much trouble to see
13358 if the note is still correct in all situations. It is better
13359 to simply delete it. */
13360 break;
13362 case REG_DEAD:
13363 /* If we replaced the right hand side of FROM_INSN with a
13364 REG_EQUAL note, the original use of the dying register
13365 will not have been combined into I3 and I2. In such cases,
13366 FROM_INSN is guaranteed to be the first of the combined
13367 instructions, so we simply need to search back before
13368 FROM_INSN for the previous use or set of this register,
13369 then alter the notes there appropriately.
13371 If the register is used as an input in I3, it dies there.
13372 Similarly for I2, if it is nonzero and adjacent to I3.
13374 If the register is not used as an input in either I3 or I2
13375 and it is not one of the registers we were supposed to eliminate,
13376 there are two possibilities. We might have a non-adjacent I2
13377 or we might have somehow eliminated an additional register
13378 from a computation. For example, we might have had A & B where
13379 we discover that B will always be zero. In this case we will
13380 eliminate the reference to A.
13382 In both cases, we must search to see if we can find a previous
13383 use of A and put the death note there. */
13385 if (from_insn
13386 && from_insn == i2mod
13387 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13388 tem = from_insn;
13389 else
13391 if (from_insn
13392 && CALL_P (from_insn)
13393 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13394 place = from_insn;
13395 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13396 place = i3;
13397 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13398 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13399 place = i2;
13400 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13401 && !(i2mod
13402 && reg_overlap_mentioned_p (XEXP (note, 0),
13403 i2mod_old_rhs)))
13404 || rtx_equal_p (XEXP (note, 0), elim_i1)
13405 || rtx_equal_p (XEXP (note, 0), elim_i0))
13406 break;
13407 tem = i3;
13410 if (place == 0)
13412 basic_block bb = this_basic_block;
13414 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13416 if (!NONDEBUG_INSN_P (tem))
13418 if (tem == BB_HEAD (bb))
13419 break;
13420 continue;
13423 /* If the register is being set at TEM, see if that is all
13424 TEM is doing. If so, delete TEM. Otherwise, make this
13425 into a REG_UNUSED note instead. Don't delete sets to
13426 global register vars. */
13427 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13428 || !global_regs[REGNO (XEXP (note, 0))])
13429 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13431 rtx set = single_set (tem);
13432 rtx inner_dest = 0;
13433 #ifdef HAVE_cc0
13434 rtx cc0_setter = NULL_RTX;
13435 #endif
13437 if (set != 0)
13438 for (inner_dest = SET_DEST (set);
13439 (GET_CODE (inner_dest) == STRICT_LOW_PART
13440 || GET_CODE (inner_dest) == SUBREG
13441 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13442 inner_dest = XEXP (inner_dest, 0))
13445 /* Verify that it was the set, and not a clobber that
13446 modified the register.
13448 CC0 targets must be careful to maintain setter/user
13449 pairs. If we cannot delete the setter due to side
13450 effects, mark the user with an UNUSED note instead
13451 of deleting it. */
13453 if (set != 0 && ! side_effects_p (SET_SRC (set))
13454 && rtx_equal_p (XEXP (note, 0), inner_dest)
13455 #ifdef HAVE_cc0
13456 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13457 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13458 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13459 #endif
13462 /* Move the notes and links of TEM elsewhere.
13463 This might delete other dead insns recursively.
13464 First set the pattern to something that won't use
13465 any register. */
13466 rtx old_notes = REG_NOTES (tem);
13468 PATTERN (tem) = pc_rtx;
13469 REG_NOTES (tem) = NULL;
13471 distribute_notes (old_notes, tem, tem, NULL_RTX,
13472 NULL_RTX, NULL_RTX, NULL_RTX);
13473 distribute_links (LOG_LINKS (tem));
13475 SET_INSN_DELETED (tem);
13476 if (tem == i2)
13477 i2 = NULL_RTX;
13479 #ifdef HAVE_cc0
13480 /* Delete the setter too. */
13481 if (cc0_setter)
13483 PATTERN (cc0_setter) = pc_rtx;
13484 old_notes = REG_NOTES (cc0_setter);
13485 REG_NOTES (cc0_setter) = NULL;
13487 distribute_notes (old_notes, cc0_setter,
13488 cc0_setter, NULL_RTX,
13489 NULL_RTX, NULL_RTX, NULL_RTX);
13490 distribute_links (LOG_LINKS (cc0_setter));
13492 SET_INSN_DELETED (cc0_setter);
13493 if (cc0_setter == i2)
13494 i2 = NULL_RTX;
13496 #endif
13498 else
13500 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13502 /* If there isn't already a REG_UNUSED note, put one
13503 here. Do not place a REG_DEAD note, even if
13504 the register is also used here; that would not
13505 match the algorithm used in lifetime analysis
13506 and can cause the consistency check in the
13507 scheduler to fail. */
13508 if (! find_regno_note (tem, REG_UNUSED,
13509 REGNO (XEXP (note, 0))))
13510 place = tem;
13511 break;
13514 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13515 || (CALL_P (tem)
13516 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13518 place = tem;
13520 /* If we are doing a 3->2 combination, and we have a
13521 register which formerly died in i3 and was not used
13522 by i2, which now no longer dies in i3 and is used in
13523 i2 but does not die in i2, and place is between i2
13524 and i3, then we may need to move a link from place to
13525 i2. */
13526 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13527 && from_insn
13528 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13529 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13531 struct insn_link *links = LOG_LINKS (place);
13532 LOG_LINKS (place) = NULL;
13533 distribute_links (links);
13535 break;
13538 if (tem == BB_HEAD (bb))
13539 break;
13544 /* If the register is set or already dead at PLACE, we needn't do
13545 anything with this note if it is still a REG_DEAD note.
13546 We check here if it is set at all, not if is it totally replaced,
13547 which is what `dead_or_set_p' checks, so also check for it being
13548 set partially. */
13550 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13552 unsigned int regno = REGNO (XEXP (note, 0));
13553 reg_stat_type *rsp = &reg_stat[regno];
13555 if (dead_or_set_p (place, XEXP (note, 0))
13556 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13558 /* Unless the register previously died in PLACE, clear
13559 last_death. [I no longer understand why this is
13560 being done.] */
13561 if (rsp->last_death != place)
13562 rsp->last_death = 0;
13563 place = 0;
13565 else
13566 rsp->last_death = place;
13568 /* If this is a death note for a hard reg that is occupying
13569 multiple registers, ensure that we are still using all
13570 parts of the object. If we find a piece of the object
13571 that is unused, we must arrange for an appropriate REG_DEAD
13572 note to be added for it. However, we can't just emit a USE
13573 and tag the note to it, since the register might actually
13574 be dead; so we recourse, and the recursive call then finds
13575 the previous insn that used this register. */
13577 if (place && regno < FIRST_PSEUDO_REGISTER
13578 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13580 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13581 int all_used = 1;
13582 unsigned int i;
13584 for (i = regno; i < endregno; i++)
13585 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13586 && ! find_regno_fusage (place, USE, i))
13587 || dead_or_set_regno_p (place, i))
13588 all_used = 0;
13590 if (! all_used)
13592 /* Put only REG_DEAD notes for pieces that are
13593 not already dead or set. */
13595 for (i = regno; i < endregno;
13596 i += hard_regno_nregs[i][reg_raw_mode[i]])
13598 rtx piece = regno_reg_rtx[i];
13599 basic_block bb = this_basic_block;
13601 if (! dead_or_set_p (place, piece)
13602 && ! reg_bitfield_target_p (piece,
13603 PATTERN (place)))
13605 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13606 NULL_RTX);
13608 distribute_notes (new_note, place, place,
13609 NULL_RTX, NULL_RTX, NULL_RTX,
13610 NULL_RTX);
13612 else if (! refers_to_regno_p (i, i + 1,
13613 PATTERN (place), 0)
13614 && ! find_regno_fusage (place, USE, i))
13615 for (tem = PREV_INSN (place); ;
13616 tem = PREV_INSN (tem))
13618 if (!NONDEBUG_INSN_P (tem))
13620 if (tem == BB_HEAD (bb))
13621 break;
13622 continue;
13624 if (dead_or_set_p (tem, piece)
13625 || reg_bitfield_target_p (piece,
13626 PATTERN (tem)))
13628 add_reg_note (tem, REG_UNUSED, piece);
13629 break;
13635 place = 0;
13639 break;
13641 default:
13642 /* Any other notes should not be present at this point in the
13643 compilation. */
13644 gcc_unreachable ();
13647 if (place)
13649 XEXP (note, 1) = REG_NOTES (place);
13650 REG_NOTES (place) = note;
13653 if (place2)
13654 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13658 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13659 I3, I2, and I1 to new locations. This is also called to add a link
13660 pointing at I3 when I3's destination is changed. */
13662 static void
13663 distribute_links (struct insn_link *links)
13665 struct insn_link *link, *next_link;
13667 for (link = links; link; link = next_link)
13669 rtx place = 0;
13670 rtx insn;
13671 rtx set, reg;
13673 next_link = link->next;
13675 /* If the insn that this link points to is a NOTE or isn't a single
13676 set, ignore it. In the latter case, it isn't clear what we
13677 can do other than ignore the link, since we can't tell which
13678 register it was for. Such links wouldn't be used by combine
13679 anyway.
13681 It is not possible for the destination of the target of the link to
13682 have been changed by combine. The only potential of this is if we
13683 replace I3, I2, and I1 by I3 and I2. But in that case the
13684 destination of I2 also remains unchanged. */
13686 if (NOTE_P (link->insn)
13687 || (set = single_set (link->insn)) == 0)
13688 continue;
13690 reg = SET_DEST (set);
13691 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13692 || GET_CODE (reg) == STRICT_LOW_PART)
13693 reg = XEXP (reg, 0);
13695 /* A LOG_LINK is defined as being placed on the first insn that uses
13696 a register and points to the insn that sets the register. Start
13697 searching at the next insn after the target of the link and stop
13698 when we reach a set of the register or the end of the basic block.
13700 Note that this correctly handles the link that used to point from
13701 I3 to I2. Also note that not much searching is typically done here
13702 since most links don't point very far away. */
13704 for (insn = NEXT_INSN (link->insn);
13705 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13706 || BB_HEAD (this_basic_block->next_bb) != insn));
13707 insn = NEXT_INSN (insn))
13708 if (DEBUG_INSN_P (insn))
13709 continue;
13710 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13712 if (reg_referenced_p (reg, PATTERN (insn)))
13713 place = insn;
13714 break;
13716 else if (CALL_P (insn)
13717 && find_reg_fusage (insn, USE, reg))
13719 place = insn;
13720 break;
13722 else if (INSN_P (insn) && reg_set_p (reg, insn))
13723 break;
13725 /* If we found a place to put the link, place it there unless there
13726 is already a link to the same insn as LINK at that point. */
13728 if (place)
13730 struct insn_link *link2;
13732 FOR_EACH_LOG_LINK (link2, place)
13733 if (link2->insn == link->insn)
13734 break;
13736 if (link2 == NULL)
13738 link->next = LOG_LINKS (place);
13739 LOG_LINKS (place) = link;
13741 /* Set added_links_insn to the earliest insn we added a
13742 link to. */
13743 if (added_links_insn == 0
13744 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13745 added_links_insn = place;
13751 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13752 Check whether the expression pointer to by LOC is a register or
13753 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13754 Otherwise return zero. */
13756 static int
13757 unmentioned_reg_p_1 (rtx *loc, void *expr)
13759 rtx x = *loc;
13761 if (x != NULL_RTX
13762 && (REG_P (x) || MEM_P (x))
13763 && ! reg_mentioned_p (x, (rtx) expr))
13764 return 1;
13765 return 0;
13768 /* Check for any register or memory mentioned in EQUIV that is not
13769 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13770 of EXPR where some registers may have been replaced by constants. */
13772 static bool
13773 unmentioned_reg_p (rtx equiv, rtx expr)
13775 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13778 DEBUG_FUNCTION void
13779 dump_combine_stats (FILE *file)
13781 fprintf
13782 (file,
13783 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13784 combine_attempts, combine_merges, combine_extras, combine_successes);
13787 void
13788 dump_combine_total_stats (FILE *file)
13790 fprintf
13791 (file,
13792 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13793 total_attempts, total_merges, total_extras, total_successes);
13796 static bool
13797 gate_handle_combine (void)
13799 return (optimize > 0);
13802 /* Try combining insns through substitution. */
13803 static unsigned int
13804 rest_of_handle_combine (void)
13806 int rebuild_jump_labels_after_combine;
13808 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13809 df_note_add_problem ();
13810 df_analyze ();
13812 regstat_init_n_sets_and_refs ();
13814 rebuild_jump_labels_after_combine
13815 = combine_instructions (get_insns (), max_reg_num ());
13817 /* Combining insns may have turned an indirect jump into a
13818 direct jump. Rebuild the JUMP_LABEL fields of jumping
13819 instructions. */
13820 if (rebuild_jump_labels_after_combine)
13822 timevar_push (TV_JUMP);
13823 rebuild_jump_labels (get_insns ());
13824 cleanup_cfg (0);
13825 timevar_pop (TV_JUMP);
13828 regstat_free_n_sets_and_refs ();
13829 return 0;
13832 struct rtl_opt_pass pass_combine =
13835 RTL_PASS,
13836 "combine", /* name */
13837 OPTGROUP_NONE, /* optinfo_flags */
13838 gate_handle_combine, /* gate */
13839 rest_of_handle_combine, /* execute */
13840 NULL, /* sub */
13841 NULL, /* next */
13842 0, /* static_pass_number */
13843 TV_COMBINE, /* tv_id */
13844 PROP_cfglayout, /* properties_required */
13845 0, /* properties_provided */
13846 0, /* properties_destroyed */
13847 0, /* todo_flags_start */
13848 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */