[73/77] Pass scalar_mode to scalar_mode_supported_p
[official-gcc.git] / gcc / recog.c
blob4a54e88f5e8b0c76a99865536592c0f39dad396e
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
47 #else
48 #define STACK_POP_CODE POST_DEC
49 #endif
50 #endif
52 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
53 static void validate_replace_src_1 (rtx *, void *);
54 static rtx_insn *split_insn (rtx_insn *);
56 struct target_recog default_target_recog;
57 #if SWITCHABLE_TARGET
58 struct target_recog *this_target_recog = &default_target_recog;
59 #endif
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
67 init_recog and init_recog_no_volatile are responsible for setting this. */
69 int volatile_ok;
71 struct recog_data_d recog_data;
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative *recog_op_alt;
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES];
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
85 int which_alternative;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
91 int reload_completed;
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
100 void
101 init_recog_no_volatile (void)
103 volatile_ok = 0;
106 void
107 init_recog (void)
109 volatile_ok = 1;
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
115 static bool
116 asm_labels_ok (rtx body)
118 rtx asmop;
119 int i;
121 asmop = extract_asm_operands (body);
122 if (asmop == NULL_RTX)
123 return true;
125 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
127 return false;
129 return true;
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
136 check_asm_operands (rtx x)
138 int noperands;
139 rtx *operands;
140 const char **constraints;
141 int i;
143 if (!asm_labels_ok (x))
144 return 0;
146 /* Post-reload, be more strict with things. */
147 if (reload_completed)
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn *insn = make_insn_raw (x);
151 extract_insn (insn);
152 constrain_operands (1, get_enabled_alternatives (insn));
153 return which_alternative >= 0;
156 noperands = asm_noperands (x);
157 if (noperands < 0)
158 return 0;
159 if (noperands == 0)
160 return 1;
162 operands = XALLOCAVEC (rtx, noperands);
163 constraints = XALLOCAVEC (const char *, noperands);
165 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
167 for (i = 0; i < noperands; i++)
169 const char *c = constraints[i];
170 if (c[0] == '%')
171 c++;
172 if (! asm_operand_ok (operands[i], c, constraints))
173 return 0;
176 return 1;
179 /* Static data for the next two routines. */
181 struct change_t
183 rtx object;
184 int old_code;
185 bool unshare;
186 rtx *loc;
187 rtx old;
190 static change_t *changes;
191 static int changes_allocated;
193 static int num_changes = 0;
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
202 the change in place.
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
213 static bool
214 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
216 rtx old = *loc;
218 if (old == new_rtx || rtx_equal_p (old, new_rtx))
219 return 1;
221 gcc_assert (in_group != 0 || num_changes == 0);
223 *loc = new_rtx;
225 /* Save the information describing this change. */
226 if (num_changes >= changes_allocated)
228 if (changes_allocated == 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated = MAX_RECOG_OPERANDS * 5;
232 else
233 changes_allocated *= 2;
235 changes = XRESIZEVEC (change_t, changes, changes_allocated);
238 changes[num_changes].object = object;
239 changes[num_changes].loc = loc;
240 changes[num_changes].old = old;
241 changes[num_changes].unshare = unshare;
243 if (object && !MEM_P (object))
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
246 case invalid. */
247 changes[num_changes].old_code = INSN_CODE (object);
248 INSN_CODE (object) = -1;
251 num_changes++;
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
256 if (in_group)
257 return 1;
258 else
259 return apply_change_group ();
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
263 UNSHARE to false. */
265 bool
266 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
268 return validate_change_1 (object, loc, new_rtx, in_group, false);
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272 UNSHARE to true. */
274 bool
275 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
277 return validate_change_1 (object, loc, new_rtx, in_group, true);
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
285 Return true if anything was changed. */
286 bool
287 canonicalize_change_group (rtx_insn *insn, rtx x)
289 if (COMMUTATIVE_P (x)
290 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem = XEXP (x, 0);
295 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
296 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
297 return true;
299 else
300 return false;
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
312 insn_invalid_p (rtx_insn *insn, bool in_group)
314 rtx pat = PATTERN (insn);
315 int num_clobbers = 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
317 clobbers. */
318 int icode = recog (pat, insn,
319 (GET_CODE (pat) == SET
320 && ! reload_completed
321 && ! reload_in_progress)
322 ? &num_clobbers : 0);
323 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
329 || (!is_asm && icode < 0))
330 return 1;
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers > 0)
337 rtx newpat;
339 if (added_clobbers_hard_reg_p (icode))
340 return 1;
342 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
343 XVECEXP (newpat, 0, 0) = pat;
344 add_clobbers (newpat, icode);
345 if (in_group)
346 validate_change (insn, &PATTERN (insn), newpat, 1);
347 else
348 PATTERN (insn) = pat = newpat;
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed)
354 extract_insn (insn);
356 if (! constrain_operands (1, get_preferred_alternatives (insn)))
357 return 1;
360 INSN_CODE (insn) = icode;
361 return 0;
364 /* Return number of changes made and not validated yet. */
366 num_changes_pending (void)
368 return num_changes;
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
375 verify_changes (int num)
377 int i;
378 rtx last_validated = NULL_RTX;
380 /* The changes have been applied and all INSN_CODEs have been reset to force
381 rerecognition.
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
387 the insn. */
389 for (i = num; i < num_changes; i++)
391 rtx object = changes[i].object;
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object == 0 || object == last_validated)
396 continue;
398 if (MEM_P (object))
400 if (! memory_address_addr_space_p (GET_MODE (object),
401 XEXP (object, 0),
402 MEM_ADDR_SPACE (object)))
403 break;
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
407 changes[i].old
408 && REG_P (changes[i].old)
409 && asm_noperands (PATTERN (object)) > 0
410 && REG_EXPR (changes[i].old) != NULL_TREE
411 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
412 && DECL_REGISTER (REG_EXPR (changes[i].old)))
414 /* Don't allow changes of hard register operands to inline
415 assemblies if they have been defined as register asm ("x"). */
416 break;
418 else if (DEBUG_INSN_P (object))
419 continue;
420 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
422 rtx pat = PATTERN (object);
424 /* Perhaps we couldn't recognize the insn because there were
425 extra CLOBBERs at the end. If so, try to re-recognize
426 without the last CLOBBER (later iterations will cause each of
427 them to be eliminated, in turn). But don't do this if we
428 have an ASM_OPERAND. */
429 if (GET_CODE (pat) == PARALLEL
430 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
431 && asm_noperands (PATTERN (object)) < 0)
433 rtx newpat;
435 if (XVECLEN (pat, 0) == 2)
436 newpat = XVECEXP (pat, 0, 0);
437 else
439 int j;
441 newpat
442 = gen_rtx_PARALLEL (VOIDmode,
443 rtvec_alloc (XVECLEN (pat, 0) - 1));
444 for (j = 0; j < XVECLEN (newpat, 0); j++)
445 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
448 /* Add a new change to this group to replace the pattern
449 with this new pattern. Then consider this change
450 as having succeeded. The change we added will
451 cause the entire call to fail if things remain invalid.
453 Note that this can lose if a later change than the one
454 we are processing specified &XVECEXP (PATTERN (object), 0, X)
455 but this shouldn't occur. */
457 validate_change (object, &PATTERN (object), newpat, 1);
458 continue;
460 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
461 || GET_CODE (pat) == VAR_LOCATION)
462 /* If this insn is a CLOBBER or USE, it is always valid, but is
463 never recognized. */
464 continue;
465 else
466 break;
468 last_validated = object;
471 return (i == num_changes);
474 /* A group of changes has previously been issued with validate_change
475 and verified with verify_changes. Call df_insn_rescan for each of
476 the insn changed and clear num_changes. */
478 void
479 confirm_change_group (void)
481 int i;
482 rtx last_object = NULL;
484 for (i = 0; i < num_changes; i++)
486 rtx object = changes[i].object;
488 if (changes[i].unshare)
489 *changes[i].loc = copy_rtx (*changes[i].loc);
491 /* Avoid unnecessary rescanning when multiple changes to same instruction
492 are made. */
493 if (object)
495 if (object != last_object && last_object && INSN_P (last_object))
496 df_insn_rescan (as_a <rtx_insn *> (last_object));
497 last_object = object;
501 if (last_object && INSN_P (last_object))
502 df_insn_rescan (as_a <rtx_insn *> (last_object));
503 num_changes = 0;
506 /* Apply a group of changes previously issued with `validate_change'.
507 If all changes are valid, call confirm_change_group and return 1,
508 otherwise, call cancel_changes and return 0. */
511 apply_change_group (void)
513 if (verify_changes (0))
515 confirm_change_group ();
516 return 1;
518 else
520 cancel_changes (0);
521 return 0;
526 /* Return the number of changes so far in the current group. */
529 num_validated_changes (void)
531 return num_changes;
534 /* Retract the changes numbered NUM and up. */
536 void
537 cancel_changes (int num)
539 int i;
541 /* Back out all the changes. Do this in the opposite order in which
542 they were made. */
543 for (i = num_changes - 1; i >= num; i--)
545 *changes[i].loc = changes[i].old;
546 if (changes[i].object && !MEM_P (changes[i].object))
547 INSN_CODE (changes[i].object) = changes[i].old_code;
549 num_changes = num;
552 /* Reduce conditional compilation elsewhere. */
553 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
554 rtx. */
556 static void
557 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
558 machine_mode op0_mode)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx new_rtx = NULL_RTX;
563 scalar_int_mode is_mode;
565 if (SWAPPABLE_OPERANDS_P (x)
566 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
568 validate_unshare_change (object, loc,
569 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
570 : swap_condition (code),
571 GET_MODE (x), XEXP (x, 1),
572 XEXP (x, 0)), 1);
573 x = *loc;
574 code = GET_CODE (x);
577 /* Canonicalize arithmetics with all constant operands. */
578 switch (GET_RTX_CLASS (code))
580 case RTX_UNARY:
581 if (CONSTANT_P (XEXP (x, 0)))
582 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
583 op0_mode);
584 break;
585 case RTX_COMM_ARITH:
586 case RTX_BIN_ARITH:
587 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
588 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
589 XEXP (x, 1));
590 break;
591 case RTX_COMPARE:
592 case RTX_COMM_COMPARE:
593 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
594 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
595 XEXP (x, 0), XEXP (x, 1));
596 break;
597 default:
598 break;
600 if (new_rtx)
602 validate_change (object, loc, new_rtx, 1);
603 return;
606 switch (code)
608 case PLUS:
609 /* If we have a PLUS whose second operand is now a CONST_INT, use
610 simplify_gen_binary to try to simplify it.
611 ??? We may want later to remove this, once simplification is
612 separated from this function. */
613 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
614 validate_change (object, loc,
615 simplify_gen_binary
616 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
617 break;
618 case MINUS:
619 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
620 validate_change (object, loc,
621 simplify_gen_binary
622 (PLUS, GET_MODE (x), XEXP (x, 0),
623 simplify_gen_unary (NEG,
624 GET_MODE (x), XEXP (x, 1),
625 GET_MODE (x))), 1);
626 break;
627 case ZERO_EXTEND:
628 case SIGN_EXTEND:
629 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
631 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
632 op0_mode);
633 /* If any of the above failed, substitute in something that
634 we know won't be recognized. */
635 if (!new_rtx)
636 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
637 validate_change (object, loc, new_rtx, 1);
639 break;
640 case SUBREG:
641 /* All subregs possible to simplify should be simplified. */
642 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
643 SUBREG_BYTE (x));
645 /* Subregs of VOIDmode operands are incorrect. */
646 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
647 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
648 if (new_rtx)
649 validate_change (object, loc, new_rtx, 1);
650 break;
651 case ZERO_EXTRACT:
652 case SIGN_EXTRACT:
653 /* If we are replacing a register with memory, try to change the memory
654 to be the mode required for memory in extract operations (this isn't
655 likely to be an insertion operation; if it was, nothing bad will
656 happen, we might just fail in some cases). */
658 if (MEM_P (XEXP (x, 0))
659 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
660 && CONST_INT_P (XEXP (x, 1))
661 && CONST_INT_P (XEXP (x, 2))
662 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
663 MEM_ADDR_SPACE (XEXP (x, 0)))
664 && !MEM_VOLATILE_P (XEXP (x, 0)))
666 int pos = INTVAL (XEXP (x, 2));
667 machine_mode new_mode = is_mode;
668 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
669 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
670 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
671 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
672 scalar_int_mode wanted_mode = (new_mode == VOIDmode
673 ? word_mode
674 : as_a <scalar_int_mode> (new_mode));
676 /* If we have a narrower mode, we can do something. */
677 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
679 int offset = pos / BITS_PER_UNIT;
680 rtx newmem;
682 /* If the bytes and bits are counted differently, we
683 must adjust the offset. */
684 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
685 offset =
686 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
687 offset);
689 gcc_assert (GET_MODE_PRECISION (wanted_mode)
690 == GET_MODE_BITSIZE (wanted_mode));
691 pos %= GET_MODE_BITSIZE (wanted_mode);
693 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
695 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
696 validate_change (object, &XEXP (x, 0), newmem, 1);
700 break;
702 default:
703 break;
707 /* Replace every occurrence of FROM in X with TO. Mark each change with
708 validate_change passing OBJECT. */
710 static void
711 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
712 bool simplify)
714 int i, j;
715 const char *fmt;
716 rtx x = *loc;
717 enum rtx_code code;
718 machine_mode op0_mode = VOIDmode;
719 int prev_changes = num_changes;
721 if (!x)
722 return;
724 code = GET_CODE (x);
725 fmt = GET_RTX_FORMAT (code);
726 if (fmt[0] == 'e')
727 op0_mode = GET_MODE (XEXP (x, 0));
729 /* X matches FROM if it is the same rtx or they are both referring to the
730 same register in the same mode. Avoid calling rtx_equal_p unless the
731 operands look similar. */
733 if (x == from
734 || (REG_P (x) && REG_P (from)
735 && GET_MODE (x) == GET_MODE (from)
736 && REGNO (x) == REGNO (from))
737 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
738 && rtx_equal_p (x, from)))
740 validate_unshare_change (object, loc, to, 1);
741 return;
744 /* Call ourself recursively to perform the replacements.
745 We must not replace inside already replaced expression, otherwise we
746 get infinite recursion for replacements like (reg X)->(subreg (reg X))
747 so we must special case shared ASM_OPERANDS. */
749 if (GET_CODE (x) == PARALLEL)
751 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
753 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
754 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
756 /* Verify that operands are really shared. */
757 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
758 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
759 (x, 0, j))));
760 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
761 from, to, object, simplify);
763 else
764 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
765 simplify);
768 else
769 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
771 if (fmt[i] == 'e')
772 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
773 else if (fmt[i] == 'E')
774 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
775 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
776 simplify);
779 /* If we didn't substitute, there is nothing more to do. */
780 if (num_changes == prev_changes)
781 return;
783 /* ??? The regmove is no more, so is this aberration still necessary? */
784 /* Allow substituted expression to have different mode. This is used by
785 regmove to change mode of pseudo register. */
786 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
787 op0_mode = GET_MODE (XEXP (x, 0));
789 /* Do changes needed to keep rtx consistent. Don't do any other
790 simplifications, as it is not our job. */
791 if (simplify)
792 simplify_while_replacing (loc, to, object, op0_mode);
795 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
796 with TO. After all changes have been made, validate by seeing
797 if INSN is still valid. */
800 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
802 validate_replace_rtx_1 (loc, from, to, insn, true);
803 return apply_change_group ();
806 /* Try replacing every occurrence of FROM in INSN with TO. After all
807 changes have been made, validate by seeing if INSN is still valid. */
810 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
812 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
813 return apply_change_group ();
816 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
817 is a part of INSN. After all changes have been made, validate by seeing if
818 INSN is still valid.
819 validate_replace_rtx (from, to, insn) is equivalent to
820 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
823 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
825 validate_replace_rtx_1 (where, from, to, insn, true);
826 return apply_change_group ();
829 /* Same as above, but do not simplify rtx afterwards. */
831 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
832 rtx_insn *insn)
834 validate_replace_rtx_1 (where, from, to, insn, false);
835 return apply_change_group ();
839 /* Try replacing every occurrence of FROM in INSN with TO. This also
840 will replace in REG_EQUAL and REG_EQUIV notes. */
842 void
843 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
845 rtx note;
846 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
847 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
848 if (REG_NOTE_KIND (note) == REG_EQUAL
849 || REG_NOTE_KIND (note) == REG_EQUIV)
850 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
853 /* Function called by note_uses to replace used subexpressions. */
854 struct validate_replace_src_data
856 rtx from; /* Old RTX */
857 rtx to; /* New RTX */
858 rtx_insn *insn; /* Insn in which substitution is occurring. */
861 static void
862 validate_replace_src_1 (rtx *x, void *data)
864 struct validate_replace_src_data *d
865 = (struct validate_replace_src_data *) data;
867 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
870 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
871 SET_DESTs. */
873 void
874 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
876 struct validate_replace_src_data d;
878 d.from = from;
879 d.to = to;
880 d.insn = insn;
881 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
884 /* Try simplify INSN.
885 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
886 pattern and return true if something was simplified. */
888 bool
889 validate_simplify_insn (rtx_insn *insn)
891 int i;
892 rtx pat = NULL;
893 rtx newpat = NULL;
895 pat = PATTERN (insn);
897 if (GET_CODE (pat) == SET)
899 newpat = simplify_rtx (SET_SRC (pat));
900 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
901 validate_change (insn, &SET_SRC (pat), newpat, 1);
902 newpat = simplify_rtx (SET_DEST (pat));
903 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
904 validate_change (insn, &SET_DEST (pat), newpat, 1);
906 else if (GET_CODE (pat) == PARALLEL)
907 for (i = 0; i < XVECLEN (pat, 0); i++)
909 rtx s = XVECEXP (pat, 0, i);
911 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
913 newpat = simplify_rtx (SET_SRC (s));
914 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
915 validate_change (insn, &SET_SRC (s), newpat, 1);
916 newpat = simplify_rtx (SET_DEST (s));
917 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
918 validate_change (insn, &SET_DEST (s), newpat, 1);
921 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
924 /* Return 1 if the insn using CC0 set by INSN does not contain
925 any ordered tests applied to the condition codes.
926 EQ and NE tests do not count. */
929 next_insn_tests_no_inequality (rtx_insn *insn)
931 rtx_insn *next = next_cc0_user (insn);
933 /* If there is no next insn, we have to take the conservative choice. */
934 if (next == 0)
935 return 0;
937 return (INSN_P (next)
938 && ! inequality_comparisons_p (PATTERN (next)));
941 /* Return 1 if OP is a valid general operand for machine mode MODE.
942 This is either a register reference, a memory reference,
943 or a constant. In the case of a memory reference, the address
944 is checked for general validity for the target machine.
946 Register and memory references must have mode MODE in order to be valid,
947 but some constants have no machine mode and are valid for any mode.
949 If MODE is VOIDmode, OP is checked for validity for whatever mode
950 it has.
952 The main use of this function is as a predicate in match_operand
953 expressions in the machine description. */
956 general_operand (rtx op, machine_mode mode)
958 enum rtx_code code = GET_CODE (op);
960 if (mode == VOIDmode)
961 mode = GET_MODE (op);
963 /* Don't accept CONST_INT or anything similar
964 if the caller wants something floating. */
965 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
966 && GET_MODE_CLASS (mode) != MODE_INT
967 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
968 return 0;
970 if (CONST_INT_P (op)
971 && mode != VOIDmode
972 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
973 return 0;
975 if (CONSTANT_P (op))
976 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
977 || mode == VOIDmode)
978 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
979 && targetm.legitimate_constant_p (mode == VOIDmode
980 ? GET_MODE (op)
981 : mode, op));
983 /* Except for certain constants with VOIDmode, already checked for,
984 OP's mode must match MODE if MODE specifies a mode. */
986 if (GET_MODE (op) != mode)
987 return 0;
989 if (code == SUBREG)
991 rtx sub = SUBREG_REG (op);
993 #ifdef INSN_SCHEDULING
994 /* On machines that have insn scheduling, we want all memory
995 reference to be explicit, so outlaw paradoxical SUBREGs.
996 However, we must allow them after reload so that they can
997 get cleaned up by cleanup_subreg_operands. */
998 if (!reload_completed && MEM_P (sub)
999 && paradoxical_subreg_p (op))
1000 return 0;
1001 #endif
1002 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1003 may result in incorrect reference. We should simplify all valid
1004 subregs of MEM anyway. But allow this after reload because we
1005 might be called from cleanup_subreg_operands.
1007 ??? This is a kludge. */
1008 if (!reload_completed && SUBREG_BYTE (op) != 0
1009 && MEM_P (sub))
1010 return 0;
1012 #ifdef CANNOT_CHANGE_MODE_CLASS
1013 if (REG_P (sub)
1014 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1015 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1016 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1017 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1018 /* LRA can generate some invalid SUBREGS just for matched
1019 operand reload presentation. LRA needs to treat them as
1020 valid. */
1021 && ! LRA_SUBREG_P (op))
1022 return 0;
1023 #endif
1025 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1026 create such rtl, and we must reject it. */
1027 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1028 /* LRA can use subreg to store a floating point value in an
1029 integer mode. Although the floating point and the
1030 integer modes need the same number of hard registers, the
1031 size of floating point mode can be less than the integer
1032 mode. */
1033 && ! lra_in_progress
1034 && paradoxical_subreg_p (op))
1035 return 0;
1037 op = sub;
1038 code = GET_CODE (op);
1041 if (code == REG)
1042 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1043 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1045 if (code == MEM)
1047 rtx y = XEXP (op, 0);
1049 if (! volatile_ok && MEM_VOLATILE_P (op))
1050 return 0;
1052 /* Use the mem's mode, since it will be reloaded thus. LRA can
1053 generate move insn with invalid addresses which is made valid
1054 and efficiently calculated by LRA through further numerous
1055 transformations. */
1056 if (lra_in_progress
1057 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1058 return 1;
1061 return 0;
1064 /* Return 1 if OP is a valid memory address for a memory reference
1065 of mode MODE.
1067 The main use of this function is as a predicate in match_operand
1068 expressions in the machine description. */
1071 address_operand (rtx op, machine_mode mode)
1073 return memory_address_p (mode, op);
1076 /* Return 1 if OP is a register reference of mode MODE.
1077 If MODE is VOIDmode, accept a register in any mode.
1079 The main use of this function is as a predicate in match_operand
1080 expressions in the machine description. */
1083 register_operand (rtx op, machine_mode mode)
1085 if (GET_CODE (op) == SUBREG)
1087 rtx sub = SUBREG_REG (op);
1089 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1090 because it is guaranteed to be reloaded into one.
1091 Just make sure the MEM is valid in itself.
1092 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1093 but currently it does result from (SUBREG (REG)...) where the
1094 reg went on the stack.) */
1095 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1096 return 0;
1098 else if (!REG_P (op))
1099 return 0;
1100 return general_operand (op, mode);
1103 /* Return 1 for a register in Pmode; ignore the tested mode. */
1106 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1108 return register_operand (op, Pmode);
1111 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1112 or a hard register. */
1115 scratch_operand (rtx op, machine_mode mode)
1117 if (GET_MODE (op) != mode && mode != VOIDmode)
1118 return 0;
1120 return (GET_CODE (op) == SCRATCH
1121 || (REG_P (op)
1122 && (lra_in_progress
1123 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1124 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1127 /* Return 1 if OP is a valid immediate operand for mode MODE.
1129 The main use of this function is as a predicate in match_operand
1130 expressions in the machine description. */
1133 immediate_operand (rtx op, machine_mode mode)
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1138 && GET_MODE_CLASS (mode) != MODE_INT
1139 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1140 return 0;
1142 if (CONST_INT_P (op)
1143 && mode != VOIDmode
1144 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1145 return 0;
1147 return (CONSTANT_P (op)
1148 && (GET_MODE (op) == mode || mode == VOIDmode
1149 || GET_MODE (op) == VOIDmode)
1150 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1151 && targetm.legitimate_constant_p (mode == VOIDmode
1152 ? GET_MODE (op)
1153 : mode, op));
1156 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1159 const_int_operand (rtx op, machine_mode mode)
1161 if (!CONST_INT_P (op))
1162 return 0;
1164 if (mode != VOIDmode
1165 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1166 return 0;
1168 return 1;
1171 #if TARGET_SUPPORTS_WIDE_INT
1172 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1173 of mode MODE. */
1175 const_scalar_int_operand (rtx op, machine_mode mode)
1177 if (!CONST_SCALAR_INT_P (op))
1178 return 0;
1180 if (CONST_INT_P (op))
1181 return const_int_operand (op, mode);
1183 if (mode != VOIDmode)
1185 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1186 int prec = GET_MODE_PRECISION (int_mode);
1187 int bitsize = GET_MODE_BITSIZE (int_mode);
1189 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1190 return 0;
1192 if (prec == bitsize)
1193 return 1;
1194 else
1196 /* Multiword partial int. */
1197 HOST_WIDE_INT x
1198 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1199 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1202 return 1;
1205 /* Returns 1 if OP is an operand that is a constant integer or constant
1206 floating-point number of MODE. */
1209 const_double_operand (rtx op, machine_mode mode)
1211 return (GET_CODE (op) == CONST_DOUBLE)
1212 && (GET_MODE (op) == mode || mode == VOIDmode);
1214 #else
1215 /* Returns 1 if OP is an operand that is a constant integer or constant
1216 floating-point number of MODE. */
1219 const_double_operand (rtx op, machine_mode mode)
1221 /* Don't accept CONST_INT or anything similar
1222 if the caller wants something floating. */
1223 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1224 && GET_MODE_CLASS (mode) != MODE_INT
1225 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1226 return 0;
1228 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1229 && (mode == VOIDmode || GET_MODE (op) == mode
1230 || GET_MODE (op) == VOIDmode));
1232 #endif
1233 /* Return 1 if OP is a general operand that is not an immediate
1234 operand of mode MODE. */
1237 nonimmediate_operand (rtx op, machine_mode mode)
1239 return (general_operand (op, mode) && ! CONSTANT_P (op));
1242 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1245 nonmemory_operand (rtx op, machine_mode mode)
1247 if (CONSTANT_P (op))
1248 return immediate_operand (op, mode);
1249 return register_operand (op, mode);
1252 /* Return 1 if OP is a valid operand that stands for pushing a
1253 value of mode MODE onto the stack.
1255 The main use of this function is as a predicate in match_operand
1256 expressions in the machine description. */
1259 push_operand (rtx op, machine_mode mode)
1261 unsigned int rounded_size = GET_MODE_SIZE (mode);
1263 #ifdef PUSH_ROUNDING
1264 rounded_size = PUSH_ROUNDING (rounded_size);
1265 #endif
1267 if (!MEM_P (op))
1268 return 0;
1270 if (mode != VOIDmode && GET_MODE (op) != mode)
1271 return 0;
1273 op = XEXP (op, 0);
1275 if (rounded_size == GET_MODE_SIZE (mode))
1277 if (GET_CODE (op) != STACK_PUSH_CODE)
1278 return 0;
1280 else
1282 if (GET_CODE (op) != PRE_MODIFY
1283 || GET_CODE (XEXP (op, 1)) != PLUS
1284 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1285 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1286 || INTVAL (XEXP (XEXP (op, 1), 1))
1287 != ((STACK_GROWS_DOWNWARD ? -1 : 1) * (int) rounded_size))
1288 return 0;
1291 return XEXP (op, 0) == stack_pointer_rtx;
1294 /* Return 1 if OP is a valid operand that stands for popping a
1295 value of mode MODE off the stack.
1297 The main use of this function is as a predicate in match_operand
1298 expressions in the machine description. */
1301 pop_operand (rtx op, machine_mode mode)
1303 if (!MEM_P (op))
1304 return 0;
1306 if (mode != VOIDmode && GET_MODE (op) != mode)
1307 return 0;
1309 op = XEXP (op, 0);
1311 if (GET_CODE (op) != STACK_POP_CODE)
1312 return 0;
1314 return XEXP (op, 0) == stack_pointer_rtx;
1317 /* Return 1 if ADDR is a valid memory address
1318 for mode MODE in address space AS. */
1321 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1322 rtx addr, addr_space_t as)
1324 #ifdef GO_IF_LEGITIMATE_ADDRESS
1325 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1326 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1327 return 0;
1329 win:
1330 return 1;
1331 #else
1332 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1333 #endif
1336 /* Return 1 if OP is a valid memory reference with mode MODE,
1337 including a valid address.
1339 The main use of this function is as a predicate in match_operand
1340 expressions in the machine description. */
1343 memory_operand (rtx op, machine_mode mode)
1345 rtx inner;
1347 if (! reload_completed)
1348 /* Note that no SUBREG is a memory operand before end of reload pass,
1349 because (SUBREG (MEM...)) forces reloading into a register. */
1350 return MEM_P (op) && general_operand (op, mode);
1352 if (mode != VOIDmode && GET_MODE (op) != mode)
1353 return 0;
1355 inner = op;
1356 if (GET_CODE (inner) == SUBREG)
1357 inner = SUBREG_REG (inner);
1359 return (MEM_P (inner) && general_operand (op, mode));
1362 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1363 that is, a memory reference whose address is a general_operand. */
1366 indirect_operand (rtx op, machine_mode mode)
1368 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1369 if (! reload_completed
1370 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1372 int offset = SUBREG_BYTE (op);
1373 rtx inner = SUBREG_REG (op);
1375 if (mode != VOIDmode && GET_MODE (op) != mode)
1376 return 0;
1378 /* The only way that we can have a general_operand as the resulting
1379 address is if OFFSET is zero and the address already is an operand
1380 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1381 operand. */
1383 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1384 || (GET_CODE (XEXP (inner, 0)) == PLUS
1385 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1386 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1387 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1390 return (MEM_P (op)
1391 && memory_operand (op, mode)
1392 && general_operand (XEXP (op, 0), Pmode));
1395 /* Return 1 if this is an ordered comparison operator (not including
1396 ORDERED and UNORDERED). */
1399 ordered_comparison_operator (rtx op, machine_mode mode)
1401 if (mode != VOIDmode && GET_MODE (op) != mode)
1402 return false;
1403 switch (GET_CODE (op))
1405 case EQ:
1406 case NE:
1407 case LT:
1408 case LTU:
1409 case LE:
1410 case LEU:
1411 case GT:
1412 case GTU:
1413 case GE:
1414 case GEU:
1415 return true;
1416 default:
1417 return false;
1421 /* Return 1 if this is a comparison operator. This allows the use of
1422 MATCH_OPERATOR to recognize all the branch insns. */
1425 comparison_operator (rtx op, machine_mode mode)
1427 return ((mode == VOIDmode || GET_MODE (op) == mode)
1428 && COMPARISON_P (op));
1431 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1434 extract_asm_operands (rtx body)
1436 rtx tmp;
1437 switch (GET_CODE (body))
1439 case ASM_OPERANDS:
1440 return body;
1442 case SET:
1443 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1444 tmp = SET_SRC (body);
1445 if (GET_CODE (tmp) == ASM_OPERANDS)
1446 return tmp;
1447 break;
1449 case PARALLEL:
1450 tmp = XVECEXP (body, 0, 0);
1451 if (GET_CODE (tmp) == ASM_OPERANDS)
1452 return tmp;
1453 if (GET_CODE (tmp) == SET)
1455 tmp = SET_SRC (tmp);
1456 if (GET_CODE (tmp) == ASM_OPERANDS)
1457 return tmp;
1459 break;
1461 default:
1462 break;
1464 return NULL;
1467 /* If BODY is an insn body that uses ASM_OPERANDS,
1468 return the number of operands (both input and output) in the insn.
1469 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1470 return 0.
1471 Otherwise return -1. */
1474 asm_noperands (const_rtx body)
1476 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1477 int i, n_sets = 0;
1479 if (asm_op == NULL)
1481 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1482 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1484 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1485 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1486 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1487 return -1;
1488 return 0;
1490 return -1;
1493 if (GET_CODE (body) == SET)
1494 n_sets = 1;
1495 else if (GET_CODE (body) == PARALLEL)
1497 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1499 /* Multiple output operands, or 1 output plus some clobbers:
1500 body is
1501 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1502 /* Count backwards through CLOBBERs to determine number of SETs. */
1503 for (i = XVECLEN (body, 0); i > 0; i--)
1505 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1506 break;
1507 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1508 return -1;
1511 /* N_SETS is now number of output operands. */
1512 n_sets = i;
1514 /* Verify that all the SETs we have
1515 came from a single original asm_operands insn
1516 (so that invalid combinations are blocked). */
1517 for (i = 0; i < n_sets; i++)
1519 rtx elt = XVECEXP (body, 0, i);
1520 if (GET_CODE (elt) != SET)
1521 return -1;
1522 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1523 return -1;
1524 /* If these ASM_OPERANDS rtx's came from different original insns
1525 then they aren't allowed together. */
1526 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1527 != ASM_OPERANDS_INPUT_VEC (asm_op))
1528 return -1;
1531 else
1533 /* 0 outputs, but some clobbers:
1534 body is [(asm_operands ...) (clobber (reg ...))...]. */
1535 /* Make sure all the other parallel things really are clobbers. */
1536 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1537 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1538 return -1;
1542 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1543 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1546 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1547 copy its operands (both input and output) into the vector OPERANDS,
1548 the locations of the operands within the insn into the vector OPERAND_LOCS,
1549 and the constraints for the operands into CONSTRAINTS.
1550 Write the modes of the operands into MODES.
1551 Write the location info into LOC.
1552 Return the assembler-template.
1553 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1554 return the basic assembly string.
1556 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1557 we don't store that info. */
1559 const char *
1560 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1561 const char **constraints, machine_mode *modes,
1562 location_t *loc)
1564 int nbase = 0, n, i;
1565 rtx asmop;
1567 switch (GET_CODE (body))
1569 case ASM_OPERANDS:
1570 /* Zero output asm: BODY is (asm_operands ...). */
1571 asmop = body;
1572 break;
1574 case SET:
1575 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1576 asmop = SET_SRC (body);
1578 /* The output is in the SET.
1579 Its constraint is in the ASM_OPERANDS itself. */
1580 if (operands)
1581 operands[0] = SET_DEST (body);
1582 if (operand_locs)
1583 operand_locs[0] = &SET_DEST (body);
1584 if (constraints)
1585 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1586 if (modes)
1587 modes[0] = GET_MODE (SET_DEST (body));
1588 nbase = 1;
1589 break;
1591 case PARALLEL:
1593 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1595 asmop = XVECEXP (body, 0, 0);
1596 if (GET_CODE (asmop) == SET)
1598 asmop = SET_SRC (asmop);
1600 /* At least one output, plus some CLOBBERs. The outputs are in
1601 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1602 for (i = 0; i < nparallel; i++)
1604 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1605 break; /* Past last SET */
1606 if (operands)
1607 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1608 if (operand_locs)
1609 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1610 if (constraints)
1611 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1612 if (modes)
1613 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1615 nbase = i;
1617 else if (GET_CODE (asmop) == ASM_INPUT)
1619 if (loc)
1620 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1621 return XSTR (asmop, 0);
1623 break;
1626 default:
1627 gcc_unreachable ();
1630 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1631 for (i = 0; i < n; i++)
1633 if (operand_locs)
1634 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1635 if (operands)
1636 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1637 if (constraints)
1638 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1639 if (modes)
1640 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1642 nbase += n;
1644 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1645 for (i = 0; i < n; i++)
1647 if (operand_locs)
1648 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1649 if (operands)
1650 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1651 if (constraints)
1652 constraints[nbase + i] = "";
1653 if (modes)
1654 modes[nbase + i] = Pmode;
1657 if (loc)
1658 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1660 return ASM_OPERANDS_TEMPLATE (asmop);
1663 /* Parse inline assembly string STRING and determine which operands are
1664 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1665 to true if operand I is referenced.
1667 This is intended to distinguish barrier-like asms such as:
1669 asm ("" : "=m" (...));
1671 from real references such as:
1673 asm ("sw\t$0, %0" : "=m" (...)); */
1675 void
1676 get_referenced_operands (const char *string, bool *used,
1677 unsigned int noperands)
1679 memset (used, 0, sizeof (bool) * noperands);
1680 const char *p = string;
1681 while (*p)
1682 switch (*p)
1684 case '%':
1685 p += 1;
1686 /* A letter followed by a digit indicates an operand number. */
1687 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1688 p += 1;
1689 if (ISDIGIT (*p))
1691 char *endptr;
1692 unsigned long opnum = strtoul (p, &endptr, 10);
1693 if (endptr != p && opnum < noperands)
1694 used[opnum] = true;
1695 p = endptr;
1697 else
1698 p += 1;
1699 break;
1701 default:
1702 p++;
1703 break;
1707 /* Check if an asm_operand matches its constraints.
1708 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1711 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1713 int result = 0;
1714 bool incdec_ok = false;
1716 /* Use constrain_operands after reload. */
1717 gcc_assert (!reload_completed);
1719 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1720 many alternatives as required to match the other operands. */
1721 if (*constraint == '\0')
1722 result = 1;
1724 while (*constraint)
1726 enum constraint_num cn;
1727 char c = *constraint;
1728 int len;
1729 switch (c)
1731 case ',':
1732 constraint++;
1733 continue;
1735 case '0': case '1': case '2': case '3': case '4':
1736 case '5': case '6': case '7': case '8': case '9':
1737 /* If caller provided constraints pointer, look up
1738 the matching constraint. Otherwise, our caller should have
1739 given us the proper matching constraint, but we can't
1740 actually fail the check if they didn't. Indicate that
1741 results are inconclusive. */
1742 if (constraints)
1744 char *end;
1745 unsigned long match;
1747 match = strtoul (constraint, &end, 10);
1748 if (!result)
1749 result = asm_operand_ok (op, constraints[match], NULL);
1750 constraint = (const char *) end;
1752 else
1755 constraint++;
1756 while (ISDIGIT (*constraint));
1757 if (! result)
1758 result = -1;
1760 continue;
1762 /* The rest of the compiler assumes that reloading the address
1763 of a MEM into a register will make it fit an 'o' constraint.
1764 That is, if it sees a MEM operand for an 'o' constraint,
1765 it assumes that (mem (base-reg)) will fit.
1767 That assumption fails on targets that don't have offsettable
1768 addresses at all. We therefore need to treat 'o' asm
1769 constraints as a special case and only accept operands that
1770 are already offsettable, thus proving that at least one
1771 offsettable address exists. */
1772 case 'o': /* offsettable */
1773 if (offsettable_nonstrict_memref_p (op))
1774 result = 1;
1775 break;
1777 case 'g':
1778 if (general_operand (op, VOIDmode))
1779 result = 1;
1780 break;
1782 case '<':
1783 case '>':
1784 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1785 to exist, excepting those that expand_call created. Further,
1786 on some machines which do not have generalized auto inc/dec,
1787 an inc/dec is not a memory_operand.
1789 Match any memory and hope things are resolved after reload. */
1790 incdec_ok = true;
1791 /* FALLTHRU */
1792 default:
1793 cn = lookup_constraint (constraint);
1794 switch (get_constraint_type (cn))
1796 case CT_REGISTER:
1797 if (!result
1798 && reg_class_for_constraint (cn) != NO_REGS
1799 && GET_MODE (op) != BLKmode
1800 && register_operand (op, VOIDmode))
1801 result = 1;
1802 break;
1804 case CT_CONST_INT:
1805 if (!result
1806 && CONST_INT_P (op)
1807 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1808 result = 1;
1809 break;
1811 case CT_MEMORY:
1812 case CT_SPECIAL_MEMORY:
1813 /* Every memory operand can be reloaded to fit. */
1814 result = result || memory_operand (op, VOIDmode);
1815 break;
1817 case CT_ADDRESS:
1818 /* Every address operand can be reloaded to fit. */
1819 result = result || address_operand (op, VOIDmode);
1820 break;
1822 case CT_FIXED_FORM:
1823 result = result || constraint_satisfied_p (op, cn);
1824 break;
1826 break;
1828 len = CONSTRAINT_LEN (c, constraint);
1830 constraint++;
1831 while (--len && *constraint);
1832 if (len)
1833 return 0;
1836 /* For operands without < or > constraints reject side-effects. */
1837 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1838 switch (GET_CODE (XEXP (op, 0)))
1840 case PRE_INC:
1841 case POST_INC:
1842 case PRE_DEC:
1843 case POST_DEC:
1844 case PRE_MODIFY:
1845 case POST_MODIFY:
1846 return 0;
1847 default:
1848 break;
1851 return result;
1854 /* Given an rtx *P, if it is a sum containing an integer constant term,
1855 return the location (type rtx *) of the pointer to that constant term.
1856 Otherwise, return a null pointer. */
1858 rtx *
1859 find_constant_term_loc (rtx *p)
1861 rtx *tem;
1862 enum rtx_code code = GET_CODE (*p);
1864 /* If *P IS such a constant term, P is its location. */
1866 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1867 || code == CONST)
1868 return p;
1870 /* Otherwise, if not a sum, it has no constant term. */
1872 if (GET_CODE (*p) != PLUS)
1873 return 0;
1875 /* If one of the summands is constant, return its location. */
1877 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1878 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1879 return p;
1881 /* Otherwise, check each summand for containing a constant term. */
1883 if (XEXP (*p, 0) != 0)
1885 tem = find_constant_term_loc (&XEXP (*p, 0));
1886 if (tem != 0)
1887 return tem;
1890 if (XEXP (*p, 1) != 0)
1892 tem = find_constant_term_loc (&XEXP (*p, 1));
1893 if (tem != 0)
1894 return tem;
1897 return 0;
1900 /* Return 1 if OP is a memory reference
1901 whose address contains no side effects
1902 and remains valid after the addition
1903 of a positive integer less than the
1904 size of the object being referenced.
1906 We assume that the original address is valid and do not check it.
1908 This uses strict_memory_address_p as a subroutine, so
1909 don't use it before reload. */
1912 offsettable_memref_p (rtx op)
1914 return ((MEM_P (op))
1915 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1916 MEM_ADDR_SPACE (op)));
1919 /* Similar, but don't require a strictly valid mem ref:
1920 consider pseudo-regs valid as index or base regs. */
1923 offsettable_nonstrict_memref_p (rtx op)
1925 return ((MEM_P (op))
1926 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1927 MEM_ADDR_SPACE (op)));
1930 /* Return 1 if Y is a memory address which contains no side effects
1931 and would remain valid for address space AS after the addition of
1932 a positive integer less than the size of that mode.
1934 We assume that the original address is valid and do not check it.
1935 We do check that it is valid for narrower modes.
1937 If STRICTP is nonzero, we require a strictly valid address,
1938 for the sake of use in reload.c. */
1941 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1942 addr_space_t as)
1944 enum rtx_code ycode = GET_CODE (y);
1945 rtx z;
1946 rtx y1 = y;
1947 rtx *y2;
1948 int (*addressp) (machine_mode, rtx, addr_space_t) =
1949 (strictp ? strict_memory_address_addr_space_p
1950 : memory_address_addr_space_p);
1951 unsigned int mode_sz = GET_MODE_SIZE (mode);
1953 if (CONSTANT_ADDRESS_P (y))
1954 return 1;
1956 /* Adjusting an offsettable address involves changing to a narrower mode.
1957 Make sure that's OK. */
1959 if (mode_dependent_address_p (y, as))
1960 return 0;
1962 machine_mode address_mode = GET_MODE (y);
1963 if (address_mode == VOIDmode)
1964 address_mode = targetm.addr_space.address_mode (as);
1965 #ifdef POINTERS_EXTEND_UNSIGNED
1966 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1967 #endif
1969 /* ??? How much offset does an offsettable BLKmode reference need?
1970 Clearly that depends on the situation in which it's being used.
1971 However, the current situation in which we test 0xffffffff is
1972 less than ideal. Caveat user. */
1973 if (mode_sz == 0)
1974 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1976 /* If the expression contains a constant term,
1977 see if it remains valid when max possible offset is added. */
1979 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1981 int good;
1983 y1 = *y2;
1984 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1985 /* Use QImode because an odd displacement may be automatically invalid
1986 for any wider mode. But it should be valid for a single byte. */
1987 good = (*addressp) (QImode, y, as);
1989 /* In any case, restore old contents of memory. */
1990 *y2 = y1;
1991 return good;
1994 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1995 return 0;
1997 /* The offset added here is chosen as the maximum offset that
1998 any instruction could need to add when operating on something
1999 of the specified mode. We assume that if Y and Y+c are
2000 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2001 go inside a LO_SUM here, so we do so as well. */
2002 if (GET_CODE (y) == LO_SUM
2003 && mode != BLKmode
2004 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2005 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2006 plus_constant (address_mode, XEXP (y, 1),
2007 mode_sz - 1));
2008 #ifdef POINTERS_EXTEND_UNSIGNED
2009 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2010 else if (POINTERS_EXTEND_UNSIGNED > 0
2011 && GET_CODE (y) == ZERO_EXTEND
2012 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2013 z = gen_rtx_ZERO_EXTEND (address_mode,
2014 plus_constant (pointer_mode, XEXP (y, 0),
2015 mode_sz - 1));
2016 #endif
2017 else
2018 z = plus_constant (address_mode, y, mode_sz - 1);
2020 /* Use QImode because an odd displacement may be automatically invalid
2021 for any wider mode. But it should be valid for a single byte. */
2022 return (*addressp) (QImode, z, as);
2025 /* Return 1 if ADDR is an address-expression whose effect depends
2026 on the mode of the memory reference it is used in.
2028 ADDRSPACE is the address space associated with the address.
2030 Autoincrement addressing is a typical example of mode-dependence
2031 because the amount of the increment depends on the mode. */
2033 bool
2034 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2036 /* Auto-increment addressing with anything other than post_modify
2037 or pre_modify always introduces a mode dependency. Catch such
2038 cases now instead of deferring to the target. */
2039 if (GET_CODE (addr) == PRE_INC
2040 || GET_CODE (addr) == POST_INC
2041 || GET_CODE (addr) == PRE_DEC
2042 || GET_CODE (addr) == POST_DEC)
2043 return true;
2045 return targetm.mode_dependent_address_p (addr, addrspace);
2048 /* Return true if boolean attribute ATTR is supported. */
2050 static bool
2051 have_bool_attr (bool_attr attr)
2053 switch (attr)
2055 case BA_ENABLED:
2056 return HAVE_ATTR_enabled;
2057 case BA_PREFERRED_FOR_SIZE:
2058 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2059 case BA_PREFERRED_FOR_SPEED:
2060 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2062 gcc_unreachable ();
2065 /* Return the value of ATTR for instruction INSN. */
2067 static bool
2068 get_bool_attr (rtx_insn *insn, bool_attr attr)
2070 switch (attr)
2072 case BA_ENABLED:
2073 return get_attr_enabled (insn);
2074 case BA_PREFERRED_FOR_SIZE:
2075 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2076 case BA_PREFERRED_FOR_SPEED:
2077 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2079 gcc_unreachable ();
2082 /* Like get_bool_attr_mask, but don't use the cache. */
2084 static alternative_mask
2085 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2087 /* Temporarily install enough information for get_attr_<foo> to assume
2088 that the insn operands are already cached. As above, the attribute
2089 mustn't depend on the values of operands, so we don't provide their
2090 real values here. */
2091 rtx_insn *old_insn = recog_data.insn;
2092 int old_alternative = which_alternative;
2094 recog_data.insn = insn;
2095 alternative_mask mask = ALL_ALTERNATIVES;
2096 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2097 for (int i = 0; i < n_alternatives; i++)
2099 which_alternative = i;
2100 if (!get_bool_attr (insn, attr))
2101 mask &= ~ALTERNATIVE_BIT (i);
2104 recog_data.insn = old_insn;
2105 which_alternative = old_alternative;
2106 return mask;
2109 /* Return the mask of operand alternatives that are allowed for INSN
2110 by boolean attribute ATTR. This mask depends only on INSN and on
2111 the current target; it does not depend on things like the values of
2112 operands. */
2114 static alternative_mask
2115 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2117 /* Quick exit for asms and for targets that don't use these attributes. */
2118 int code = INSN_CODE (insn);
2119 if (code < 0 || !have_bool_attr (attr))
2120 return ALL_ALTERNATIVES;
2122 /* Calling get_attr_<foo> can be expensive, so cache the mask
2123 for speed. */
2124 if (!this_target_recog->x_bool_attr_masks[code][attr])
2125 this_target_recog->x_bool_attr_masks[code][attr]
2126 = get_bool_attr_mask_uncached (insn, attr);
2127 return this_target_recog->x_bool_attr_masks[code][attr];
2130 /* Return the set of alternatives of INSN that are allowed by the current
2131 target. */
2133 alternative_mask
2134 get_enabled_alternatives (rtx_insn *insn)
2136 return get_bool_attr_mask (insn, BA_ENABLED);
2139 /* Return the set of alternatives of INSN that are allowed by the current
2140 target and are preferred for the current size/speed optimization
2141 choice. */
2143 alternative_mask
2144 get_preferred_alternatives (rtx_insn *insn)
2146 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2147 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2148 else
2149 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2152 /* Return the set of alternatives of INSN that are allowed by the current
2153 target and are preferred for the size/speed optimization choice
2154 associated with BB. Passing a separate BB is useful if INSN has not
2155 been emitted yet or if we are considering moving it to a different
2156 block. */
2158 alternative_mask
2159 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2161 if (optimize_bb_for_speed_p (bb))
2162 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2163 else
2164 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2167 /* Assert that the cached boolean attributes for INSN are still accurate.
2168 The backend is required to define these attributes in a way that only
2169 depends on the current target (rather than operands, compiler phase,
2170 etc.). */
2172 bool
2173 check_bool_attrs (rtx_insn *insn)
2175 int code = INSN_CODE (insn);
2176 if (code >= 0)
2177 for (int i = 0; i <= BA_LAST; ++i)
2179 enum bool_attr attr = (enum bool_attr) i;
2180 if (this_target_recog->x_bool_attr_masks[code][attr])
2181 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2182 == get_bool_attr_mask_uncached (insn, attr));
2184 return true;
2187 /* Like extract_insn, but save insn extracted and don't extract again, when
2188 called again for the same insn expecting that recog_data still contain the
2189 valid information. This is used primary by gen_attr infrastructure that
2190 often does extract insn again and again. */
2191 void
2192 extract_insn_cached (rtx_insn *insn)
2194 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2195 return;
2196 extract_insn (insn);
2197 recog_data.insn = insn;
2200 /* Do uncached extract_insn, constrain_operands and complain about failures.
2201 This should be used when extracting a pre-existing constrained instruction
2202 if the caller wants to know which alternative was chosen. */
2203 void
2204 extract_constrain_insn (rtx_insn *insn)
2206 extract_insn (insn);
2207 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2208 fatal_insn_not_found (insn);
2211 /* Do cached extract_insn, constrain_operands and complain about failures.
2212 Used by insn_attrtab. */
2213 void
2214 extract_constrain_insn_cached (rtx_insn *insn)
2216 extract_insn_cached (insn);
2217 if (which_alternative == -1
2218 && !constrain_operands (reload_completed,
2219 get_enabled_alternatives (insn)))
2220 fatal_insn_not_found (insn);
2223 /* Do cached constrain_operands on INSN and complain about failures. */
2225 constrain_operands_cached (rtx_insn *insn, int strict)
2227 if (which_alternative == -1)
2228 return constrain_operands (strict, get_enabled_alternatives (insn));
2229 else
2230 return 1;
2233 /* Analyze INSN and fill in recog_data. */
2235 void
2236 extract_insn (rtx_insn *insn)
2238 int i;
2239 int icode;
2240 int noperands;
2241 rtx body = PATTERN (insn);
2243 recog_data.n_operands = 0;
2244 recog_data.n_alternatives = 0;
2245 recog_data.n_dups = 0;
2246 recog_data.is_asm = false;
2248 switch (GET_CODE (body))
2250 case USE:
2251 case CLOBBER:
2252 case ASM_INPUT:
2253 case ADDR_VEC:
2254 case ADDR_DIFF_VEC:
2255 case VAR_LOCATION:
2256 return;
2258 case SET:
2259 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2260 goto asm_insn;
2261 else
2262 goto normal_insn;
2263 case PARALLEL:
2264 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2265 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2266 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2267 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2268 goto asm_insn;
2269 else
2270 goto normal_insn;
2271 case ASM_OPERANDS:
2272 asm_insn:
2273 recog_data.n_operands = noperands = asm_noperands (body);
2274 if (noperands >= 0)
2276 /* This insn is an `asm' with operands. */
2278 /* expand_asm_operands makes sure there aren't too many operands. */
2279 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2281 /* Now get the operand values and constraints out of the insn. */
2282 decode_asm_operands (body, recog_data.operand,
2283 recog_data.operand_loc,
2284 recog_data.constraints,
2285 recog_data.operand_mode, NULL);
2286 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2287 if (noperands > 0)
2289 const char *p = recog_data.constraints[0];
2290 recog_data.n_alternatives = 1;
2291 while (*p)
2292 recog_data.n_alternatives += (*p++ == ',');
2294 recog_data.is_asm = true;
2295 break;
2297 fatal_insn_not_found (insn);
2299 default:
2300 normal_insn:
2301 /* Ordinary insn: recognize it, get the operands via insn_extract
2302 and get the constraints. */
2304 icode = recog_memoized (insn);
2305 if (icode < 0)
2306 fatal_insn_not_found (insn);
2308 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2309 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2310 recog_data.n_dups = insn_data[icode].n_dups;
2312 insn_extract (insn);
2314 for (i = 0; i < noperands; i++)
2316 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2317 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2318 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2319 /* VOIDmode match_operands gets mode from their real operand. */
2320 if (recog_data.operand_mode[i] == VOIDmode)
2321 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2324 for (i = 0; i < noperands; i++)
2325 recog_data.operand_type[i]
2326 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2327 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2328 : OP_IN);
2330 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2332 recog_data.insn = NULL;
2333 which_alternative = -1;
2336 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2337 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2338 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2339 has N_OPERANDS entries. */
2341 void
2342 preprocess_constraints (int n_operands, int n_alternatives,
2343 const char **constraints,
2344 operand_alternative *op_alt_base)
2346 for (int i = 0; i < n_operands; i++)
2348 int j;
2349 struct operand_alternative *op_alt;
2350 const char *p = constraints[i];
2352 op_alt = op_alt_base;
2354 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2356 op_alt[i].cl = NO_REGS;
2357 op_alt[i].constraint = p;
2358 op_alt[i].matches = -1;
2359 op_alt[i].matched = -1;
2361 if (*p == '\0' || *p == ',')
2363 op_alt[i].anything_ok = 1;
2364 continue;
2367 for (;;)
2369 char c = *p;
2370 if (c == '#')
2372 c = *++p;
2373 while (c != ',' && c != '\0');
2374 if (c == ',' || c == '\0')
2376 p++;
2377 break;
2380 switch (c)
2382 case '?':
2383 op_alt[i].reject += 6;
2384 break;
2385 case '!':
2386 op_alt[i].reject += 600;
2387 break;
2388 case '&':
2389 op_alt[i].earlyclobber = 1;
2390 break;
2392 case '0': case '1': case '2': case '3': case '4':
2393 case '5': case '6': case '7': case '8': case '9':
2395 char *end;
2396 op_alt[i].matches = strtoul (p, &end, 10);
2397 op_alt[op_alt[i].matches].matched = i;
2398 p = end;
2400 continue;
2402 case 'X':
2403 op_alt[i].anything_ok = 1;
2404 break;
2406 case 'g':
2407 op_alt[i].cl =
2408 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2409 break;
2411 default:
2412 enum constraint_num cn = lookup_constraint (p);
2413 enum reg_class cl;
2414 switch (get_constraint_type (cn))
2416 case CT_REGISTER:
2417 cl = reg_class_for_constraint (cn);
2418 if (cl != NO_REGS)
2419 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2420 break;
2422 case CT_CONST_INT:
2423 break;
2425 case CT_MEMORY:
2426 case CT_SPECIAL_MEMORY:
2427 op_alt[i].memory_ok = 1;
2428 break;
2430 case CT_ADDRESS:
2431 op_alt[i].is_address = 1;
2432 op_alt[i].cl
2433 = (reg_class_subunion
2434 [(int) op_alt[i].cl]
2435 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2436 ADDRESS, SCRATCH)]);
2437 break;
2439 case CT_FIXED_FORM:
2440 break;
2442 break;
2444 p += CONSTRAINT_LEN (c, p);
2450 /* Return an array of operand_alternative instructions for
2451 instruction ICODE. */
2453 const operand_alternative *
2454 preprocess_insn_constraints (unsigned int icode)
2456 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2457 if (this_target_recog->x_op_alt[icode])
2458 return this_target_recog->x_op_alt[icode];
2460 int n_operands = insn_data[icode].n_operands;
2461 if (n_operands == 0)
2462 return 0;
2463 /* Always provide at least one alternative so that which_op_alt ()
2464 works correctly. If the instruction has 0 alternatives (i.e. all
2465 constraint strings are empty) then each operand in this alternative
2466 will have anything_ok set. */
2467 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2468 int n_entries = n_operands * n_alternatives;
2470 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2471 const char **constraints = XALLOCAVEC (const char *, n_operands);
2473 for (int i = 0; i < n_operands; ++i)
2474 constraints[i] = insn_data[icode].operand[i].constraint;
2475 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2477 this_target_recog->x_op_alt[icode] = op_alt;
2478 return op_alt;
2481 /* After calling extract_insn, you can use this function to extract some
2482 information from the constraint strings into a more usable form.
2483 The collected data is stored in recog_op_alt. */
2485 void
2486 preprocess_constraints (rtx_insn *insn)
2488 int icode = INSN_CODE (insn);
2489 if (icode >= 0)
2490 recog_op_alt = preprocess_insn_constraints (icode);
2491 else
2493 int n_operands = recog_data.n_operands;
2494 int n_alternatives = recog_data.n_alternatives;
2495 int n_entries = n_operands * n_alternatives;
2496 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2497 preprocess_constraints (n_operands, n_alternatives,
2498 recog_data.constraints, asm_op_alt);
2499 recog_op_alt = asm_op_alt;
2503 /* Check the operands of an insn against the insn's operand constraints
2504 and return 1 if they match any of the alternatives in ALTERNATIVES.
2506 The information about the insn's operands, constraints, operand modes
2507 etc. is obtained from the global variables set up by extract_insn.
2509 WHICH_ALTERNATIVE is set to a number which indicates which
2510 alternative of constraints was matched: 0 for the first alternative,
2511 1 for the next, etc.
2513 In addition, when two operands are required to match
2514 and it happens that the output operand is (reg) while the
2515 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2516 make the output operand look like the input.
2517 This is because the output operand is the one the template will print.
2519 This is used in final, just before printing the assembler code and by
2520 the routines that determine an insn's attribute.
2522 If STRICT is a positive nonzero value, it means that we have been
2523 called after reload has been completed. In that case, we must
2524 do all checks strictly. If it is zero, it means that we have been called
2525 before reload has completed. In that case, we first try to see if we can
2526 find an alternative that matches strictly. If not, we try again, this
2527 time assuming that reload will fix up the insn. This provides a "best
2528 guess" for the alternative and is used to compute attributes of insns prior
2529 to reload. A negative value of STRICT is used for this internal call. */
2531 struct funny_match
2533 int this_op, other;
2537 constrain_operands (int strict, alternative_mask alternatives)
2539 const char *constraints[MAX_RECOG_OPERANDS];
2540 int matching_operands[MAX_RECOG_OPERANDS];
2541 int earlyclobber[MAX_RECOG_OPERANDS];
2542 int c;
2544 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2545 int funny_match_index;
2547 which_alternative = 0;
2548 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2549 return 1;
2551 for (c = 0; c < recog_data.n_operands; c++)
2553 constraints[c] = recog_data.constraints[c];
2554 matching_operands[c] = -1;
2559 int seen_earlyclobber_at = -1;
2560 int opno;
2561 int lose = 0;
2562 funny_match_index = 0;
2564 if (!TEST_BIT (alternatives, which_alternative))
2566 int i;
2568 for (i = 0; i < recog_data.n_operands; i++)
2569 constraints[i] = skip_alternative (constraints[i]);
2571 which_alternative++;
2572 continue;
2575 for (opno = 0; opno < recog_data.n_operands; opno++)
2577 rtx op = recog_data.operand[opno];
2578 machine_mode mode = GET_MODE (op);
2579 const char *p = constraints[opno];
2580 int offset = 0;
2581 int win = 0;
2582 int val;
2583 int len;
2585 earlyclobber[opno] = 0;
2587 /* A unary operator may be accepted by the predicate, but it
2588 is irrelevant for matching constraints. */
2589 if (UNARY_P (op))
2590 op = XEXP (op, 0);
2592 if (GET_CODE (op) == SUBREG)
2594 if (REG_P (SUBREG_REG (op))
2595 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2596 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2597 GET_MODE (SUBREG_REG (op)),
2598 SUBREG_BYTE (op),
2599 GET_MODE (op));
2600 op = SUBREG_REG (op);
2603 /* An empty constraint or empty alternative
2604 allows anything which matched the pattern. */
2605 if (*p == 0 || *p == ',')
2606 win = 1;
2609 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2611 case '\0':
2612 len = 0;
2613 break;
2614 case ',':
2615 c = '\0';
2616 break;
2618 case '#':
2619 /* Ignore rest of this alternative as far as
2620 constraint checking is concerned. */
2622 p++;
2623 while (*p && *p != ',');
2624 len = 0;
2625 break;
2627 case '&':
2628 earlyclobber[opno] = 1;
2629 if (seen_earlyclobber_at < 0)
2630 seen_earlyclobber_at = opno;
2631 break;
2633 case '0': case '1': case '2': case '3': case '4':
2634 case '5': case '6': case '7': case '8': case '9':
2636 /* This operand must be the same as a previous one.
2637 This kind of constraint is used for instructions such
2638 as add when they take only two operands.
2640 Note that the lower-numbered operand is passed first.
2642 If we are not testing strictly, assume that this
2643 constraint will be satisfied. */
2645 char *end;
2646 int match;
2648 match = strtoul (p, &end, 10);
2649 p = end;
2651 if (strict < 0)
2652 val = 1;
2653 else
2655 rtx op1 = recog_data.operand[match];
2656 rtx op2 = recog_data.operand[opno];
2658 /* A unary operator may be accepted by the predicate,
2659 but it is irrelevant for matching constraints. */
2660 if (UNARY_P (op1))
2661 op1 = XEXP (op1, 0);
2662 if (UNARY_P (op2))
2663 op2 = XEXP (op2, 0);
2665 val = operands_match_p (op1, op2);
2668 matching_operands[opno] = match;
2669 matching_operands[match] = opno;
2671 if (val != 0)
2672 win = 1;
2674 /* If output is *x and input is *--x, arrange later
2675 to change the output to *--x as well, since the
2676 output op is the one that will be printed. */
2677 if (val == 2 && strict > 0)
2679 funny_match[funny_match_index].this_op = opno;
2680 funny_match[funny_match_index++].other = match;
2683 len = 0;
2684 break;
2686 case 'p':
2687 /* p is used for address_operands. When we are called by
2688 gen_reload, no one will have checked that the address is
2689 strictly valid, i.e., that all pseudos requiring hard regs
2690 have gotten them. */
2691 if (strict <= 0
2692 || (strict_memory_address_p (recog_data.operand_mode[opno],
2693 op)))
2694 win = 1;
2695 break;
2697 /* No need to check general_operand again;
2698 it was done in insn-recog.c. Well, except that reload
2699 doesn't check the validity of its replacements, but
2700 that should only matter when there's a bug. */
2701 case 'g':
2702 /* Anything goes unless it is a REG and really has a hard reg
2703 but the hard reg is not in the class GENERAL_REGS. */
2704 if (REG_P (op))
2706 if (strict < 0
2707 || GENERAL_REGS == ALL_REGS
2708 || (reload_in_progress
2709 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2710 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2711 win = 1;
2713 else if (strict < 0 || general_operand (op, mode))
2714 win = 1;
2715 break;
2717 default:
2719 enum constraint_num cn = lookup_constraint (p);
2720 enum reg_class cl = reg_class_for_constraint (cn);
2721 if (cl != NO_REGS)
2723 if (strict < 0
2724 || (strict == 0
2725 && REG_P (op)
2726 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2727 || (strict == 0 && GET_CODE (op) == SCRATCH)
2728 || (REG_P (op)
2729 && reg_fits_class_p (op, cl, offset, mode)))
2730 win = 1;
2733 else if (constraint_satisfied_p (op, cn))
2734 win = 1;
2736 else if (insn_extra_memory_constraint (cn)
2737 /* Every memory operand can be reloaded to fit. */
2738 && ((strict < 0 && MEM_P (op))
2739 /* Before reload, accept what reload can turn
2740 into a mem. */
2741 || (strict < 0 && CONSTANT_P (op))
2742 /* Before reload, accept a pseudo,
2743 since LRA can turn it into a mem. */
2744 || (strict < 0 && targetm.lra_p () && REG_P (op)
2745 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2746 /* During reload, accept a pseudo */
2747 || (reload_in_progress && REG_P (op)
2748 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2749 win = 1;
2750 else if (insn_extra_address_constraint (cn)
2751 /* Every address operand can be reloaded to fit. */
2752 && strict < 0)
2753 win = 1;
2754 /* Cater to architectures like IA-64 that define extra memory
2755 constraints without using define_memory_constraint. */
2756 else if (reload_in_progress
2757 && REG_P (op)
2758 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2759 && reg_renumber[REGNO (op)] < 0
2760 && reg_equiv_mem (REGNO (op)) != 0
2761 && constraint_satisfied_p
2762 (reg_equiv_mem (REGNO (op)), cn))
2763 win = 1;
2764 break;
2767 while (p += len, c);
2769 constraints[opno] = p;
2770 /* If this operand did not win somehow,
2771 this alternative loses. */
2772 if (! win)
2773 lose = 1;
2775 /* This alternative won; the operands are ok.
2776 Change whichever operands this alternative says to change. */
2777 if (! lose)
2779 int opno, eopno;
2781 /* See if any earlyclobber operand conflicts with some other
2782 operand. */
2784 if (strict > 0 && seen_earlyclobber_at >= 0)
2785 for (eopno = seen_earlyclobber_at;
2786 eopno < recog_data.n_operands;
2787 eopno++)
2788 /* Ignore earlyclobber operands now in memory,
2789 because we would often report failure when we have
2790 two memory operands, one of which was formerly a REG. */
2791 if (earlyclobber[eopno]
2792 && REG_P (recog_data.operand[eopno]))
2793 for (opno = 0; opno < recog_data.n_operands; opno++)
2794 if ((MEM_P (recog_data.operand[opno])
2795 || recog_data.operand_type[opno] != OP_OUT)
2796 && opno != eopno
2797 /* Ignore things like match_operator operands. */
2798 && *recog_data.constraints[opno] != 0
2799 && ! (matching_operands[opno] == eopno
2800 && operands_match_p (recog_data.operand[opno],
2801 recog_data.operand[eopno]))
2802 && ! safe_from_earlyclobber (recog_data.operand[opno],
2803 recog_data.operand[eopno]))
2804 lose = 1;
2806 if (! lose)
2808 while (--funny_match_index >= 0)
2810 recog_data.operand[funny_match[funny_match_index].other]
2811 = recog_data.operand[funny_match[funny_match_index].this_op];
2814 /* For operands without < or > constraints reject side-effects. */
2815 if (AUTO_INC_DEC && recog_data.is_asm)
2817 for (opno = 0; opno < recog_data.n_operands; opno++)
2818 if (MEM_P (recog_data.operand[opno]))
2819 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2821 case PRE_INC:
2822 case POST_INC:
2823 case PRE_DEC:
2824 case POST_DEC:
2825 case PRE_MODIFY:
2826 case POST_MODIFY:
2827 if (strchr (recog_data.constraints[opno], '<') == NULL
2828 && strchr (recog_data.constraints[opno], '>')
2829 == NULL)
2830 return 0;
2831 break;
2832 default:
2833 break;
2837 return 1;
2841 which_alternative++;
2843 while (which_alternative < recog_data.n_alternatives);
2845 which_alternative = -1;
2846 /* If we are about to reject this, but we are not to test strictly,
2847 try a very loose test. Only return failure if it fails also. */
2848 if (strict == 0)
2849 return constrain_operands (-1, alternatives);
2850 else
2851 return 0;
2854 /* Return true iff OPERAND (assumed to be a REG rtx)
2855 is a hard reg in class CLASS when its regno is offset by OFFSET
2856 and changed to mode MODE.
2857 If REG occupies multiple hard regs, all of them must be in CLASS. */
2859 bool
2860 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2861 machine_mode mode)
2863 unsigned int regno = REGNO (operand);
2865 if (cl == NO_REGS)
2866 return false;
2868 /* Regno must not be a pseudo register. Offset may be negative. */
2869 return (HARD_REGISTER_NUM_P (regno)
2870 && HARD_REGISTER_NUM_P (regno + offset)
2871 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2872 regno + offset));
2875 /* Split single instruction. Helper function for split_all_insns and
2876 split_all_insns_noflow. Return last insn in the sequence if successful,
2877 or NULL if unsuccessful. */
2879 static rtx_insn *
2880 split_insn (rtx_insn *insn)
2882 /* Split insns here to get max fine-grain parallelism. */
2883 rtx_insn *first = PREV_INSN (insn);
2884 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2885 rtx insn_set, last_set, note;
2887 if (last == insn)
2888 return NULL;
2890 /* If the original instruction was a single set that was known to be
2891 equivalent to a constant, see if we can say the same about the last
2892 instruction in the split sequence. The two instructions must set
2893 the same destination. */
2894 insn_set = single_set (insn);
2895 if (insn_set)
2897 last_set = single_set (last);
2898 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2900 note = find_reg_equal_equiv_note (insn);
2901 if (note && CONSTANT_P (XEXP (note, 0)))
2902 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2903 else if (CONSTANT_P (SET_SRC (insn_set)))
2904 set_unique_reg_note (last, REG_EQUAL,
2905 copy_rtx (SET_SRC (insn_set)));
2909 /* try_split returns the NOTE that INSN became. */
2910 SET_INSN_DELETED (insn);
2912 /* ??? Coddle to md files that generate subregs in post-reload
2913 splitters instead of computing the proper hard register. */
2914 if (reload_completed && first != last)
2916 first = NEXT_INSN (first);
2917 for (;;)
2919 if (INSN_P (first))
2920 cleanup_subreg_operands (first);
2921 if (first == last)
2922 break;
2923 first = NEXT_INSN (first);
2927 return last;
2930 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2932 void
2933 split_all_insns (void)
2935 bool changed;
2936 basic_block bb;
2938 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2939 bitmap_clear (blocks);
2940 changed = false;
2942 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2944 rtx_insn *insn, *next;
2945 bool finish = false;
2947 rtl_profile_for_bb (bb);
2948 for (insn = BB_HEAD (bb); !finish ; insn = next)
2950 /* Can't use `next_real_insn' because that might go across
2951 CODE_LABELS and short-out basic blocks. */
2952 next = NEXT_INSN (insn);
2953 finish = (insn == BB_END (bb));
2954 if (INSN_P (insn))
2956 rtx set = single_set (insn);
2958 /* Don't split no-op move insns. These should silently
2959 disappear later in final. Splitting such insns would
2960 break the code that handles LIBCALL blocks. */
2961 if (set && set_noop_p (set))
2963 /* Nops get in the way while scheduling, so delete them
2964 now if register allocation has already been done. It
2965 is too risky to try to do this before register
2966 allocation, and there are unlikely to be very many
2967 nops then anyways. */
2968 if (reload_completed)
2969 delete_insn_and_edges (insn);
2971 else
2973 if (split_insn (insn))
2975 bitmap_set_bit (blocks, bb->index);
2976 changed = true;
2983 default_rtl_profile ();
2984 if (changed)
2985 find_many_sub_basic_blocks (blocks);
2987 checking_verify_flow_info ();
2990 /* Same as split_all_insns, but do not expect CFG to be available.
2991 Used by machine dependent reorg passes. */
2993 unsigned int
2994 split_all_insns_noflow (void)
2996 rtx_insn *next, *insn;
2998 for (insn = get_insns (); insn; insn = next)
3000 next = NEXT_INSN (insn);
3001 if (INSN_P (insn))
3003 /* Don't split no-op move insns. These should silently
3004 disappear later in final. Splitting such insns would
3005 break the code that handles LIBCALL blocks. */
3006 rtx set = single_set (insn);
3007 if (set && set_noop_p (set))
3009 /* Nops get in the way while scheduling, so delete them
3010 now if register allocation has already been done. It
3011 is too risky to try to do this before register
3012 allocation, and there are unlikely to be very many
3013 nops then anyways.
3015 ??? Should we use delete_insn when the CFG isn't valid? */
3016 if (reload_completed)
3017 delete_insn_and_edges (insn);
3019 else
3020 split_insn (insn);
3023 return 0;
3026 struct peep2_insn_data
3028 rtx_insn *insn;
3029 regset live_before;
3032 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3033 static int peep2_current;
3035 static bool peep2_do_rebuild_jump_labels;
3036 static bool peep2_do_cleanup_cfg;
3038 /* The number of instructions available to match a peep2. */
3039 int peep2_current_count;
3041 /* A marker indicating the last insn of the block. The live_before regset
3042 for this element is correct, indicating DF_LIVE_OUT for the block. */
3043 #define PEEP2_EOB invalid_insn_rtx
3045 /* Wrap N to fit into the peep2_insn_data buffer. */
3047 static int
3048 peep2_buf_position (int n)
3050 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3051 n -= MAX_INSNS_PER_PEEP2 + 1;
3052 return n;
3055 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3056 does not exist. Used by the recognizer to find the next insn to match
3057 in a multi-insn pattern. */
3059 rtx_insn *
3060 peep2_next_insn (int n)
3062 gcc_assert (n <= peep2_current_count);
3064 n = peep2_buf_position (peep2_current + n);
3066 return peep2_insn_data[n].insn;
3069 /* Return true if REGNO is dead before the Nth non-note insn
3070 after `current'. */
3073 peep2_regno_dead_p (int ofs, int regno)
3075 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3077 ofs = peep2_buf_position (peep2_current + ofs);
3079 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3081 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3084 /* Similarly for a REG. */
3087 peep2_reg_dead_p (int ofs, rtx reg)
3089 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3091 ofs = peep2_buf_position (peep2_current + ofs);
3093 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3095 unsigned int end_regno = END_REGNO (reg);
3096 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3097 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3098 return 0;
3099 return 1;
3102 /* Regno offset to be used in the register search. */
3103 static int search_ofs;
3105 /* Try to find a hard register of mode MODE, matching the register class in
3106 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3107 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3108 in which case the only condition is that the register must be available
3109 before CURRENT_INSN.
3110 Registers that already have bits set in REG_SET will not be considered.
3112 If an appropriate register is available, it will be returned and the
3113 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3114 returned. */
3117 peep2_find_free_register (int from, int to, const char *class_str,
3118 machine_mode mode, HARD_REG_SET *reg_set)
3120 enum reg_class cl;
3121 HARD_REG_SET live;
3122 df_ref def;
3123 int i;
3125 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3126 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3128 from = peep2_buf_position (peep2_current + from);
3129 to = peep2_buf_position (peep2_current + to);
3131 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3132 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3134 while (from != to)
3136 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3138 /* Don't use registers set or clobbered by the insn. */
3139 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3140 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3142 from = peep2_buf_position (from + 1);
3145 cl = reg_class_for_constraint (lookup_constraint (class_str));
3147 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3149 int raw_regno, regno, success, j;
3151 /* Distribute the free registers as much as possible. */
3152 raw_regno = search_ofs + i;
3153 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3154 raw_regno -= FIRST_PSEUDO_REGISTER;
3155 #ifdef REG_ALLOC_ORDER
3156 regno = reg_alloc_order[raw_regno];
3157 #else
3158 regno = raw_regno;
3159 #endif
3161 /* Can it support the mode we need? */
3162 if (! HARD_REGNO_MODE_OK (regno, mode))
3163 continue;
3165 success = 1;
3166 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3168 /* Don't allocate fixed registers. */
3169 if (fixed_regs[regno + j])
3171 success = 0;
3172 break;
3174 /* Don't allocate global registers. */
3175 if (global_regs[regno + j])
3177 success = 0;
3178 break;
3180 /* Make sure the register is of the right class. */
3181 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3183 success = 0;
3184 break;
3186 /* And that we don't create an extra save/restore. */
3187 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3189 success = 0;
3190 break;
3193 if (! targetm.hard_regno_scratch_ok (regno + j))
3195 success = 0;
3196 break;
3199 /* And we don't clobber traceback for noreturn functions. */
3200 if ((regno + j == FRAME_POINTER_REGNUM
3201 || regno + j == HARD_FRAME_POINTER_REGNUM)
3202 && (! reload_completed || frame_pointer_needed))
3204 success = 0;
3205 break;
3208 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3209 || TEST_HARD_REG_BIT (live, regno + j))
3211 success = 0;
3212 break;
3216 if (success)
3218 add_to_hard_reg_set (reg_set, mode, regno);
3220 /* Start the next search with the next register. */
3221 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3222 raw_regno = 0;
3223 search_ofs = raw_regno;
3225 return gen_rtx_REG (mode, regno);
3229 search_ofs = 0;
3230 return NULL_RTX;
3233 /* Forget all currently tracked instructions, only remember current
3234 LIVE regset. */
3236 static void
3237 peep2_reinit_state (regset live)
3239 int i;
3241 /* Indicate that all slots except the last holds invalid data. */
3242 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3243 peep2_insn_data[i].insn = NULL;
3244 peep2_current_count = 0;
3246 /* Indicate that the last slot contains live_after data. */
3247 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3248 peep2_current = MAX_INSNS_PER_PEEP2;
3250 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3253 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3254 starting at INSN. Perform the replacement, removing the old insns and
3255 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3256 if the replacement is rejected. */
3258 static rtx_insn *
3259 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3261 int i;
3262 rtx_insn *last, *before_try, *x;
3263 rtx eh_note, as_note;
3264 rtx_insn *old_insn;
3265 rtx_insn *new_insn;
3266 bool was_call = false;
3268 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3269 match more than one insn, or to be split into more than one insn. */
3270 old_insn = peep2_insn_data[peep2_current].insn;
3271 if (RTX_FRAME_RELATED_P (old_insn))
3273 bool any_note = false;
3274 rtx note;
3276 if (match_len != 0)
3277 return NULL;
3279 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3280 may be in the stream for the purpose of register allocation. */
3281 if (active_insn_p (attempt))
3282 new_insn = attempt;
3283 else
3284 new_insn = next_active_insn (attempt);
3285 if (next_active_insn (new_insn))
3286 return NULL;
3288 /* We have a 1-1 replacement. Copy over any frame-related info. */
3289 RTX_FRAME_RELATED_P (new_insn) = 1;
3291 /* Allow the backend to fill in a note during the split. */
3292 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3293 switch (REG_NOTE_KIND (note))
3295 case REG_FRAME_RELATED_EXPR:
3296 case REG_CFA_DEF_CFA:
3297 case REG_CFA_ADJUST_CFA:
3298 case REG_CFA_OFFSET:
3299 case REG_CFA_REGISTER:
3300 case REG_CFA_EXPRESSION:
3301 case REG_CFA_RESTORE:
3302 case REG_CFA_SET_VDRAP:
3303 any_note = true;
3304 break;
3305 default:
3306 break;
3309 /* If the backend didn't supply a note, copy one over. */
3310 if (!any_note)
3311 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3312 switch (REG_NOTE_KIND (note))
3314 case REG_FRAME_RELATED_EXPR:
3315 case REG_CFA_DEF_CFA:
3316 case REG_CFA_ADJUST_CFA:
3317 case REG_CFA_OFFSET:
3318 case REG_CFA_REGISTER:
3319 case REG_CFA_EXPRESSION:
3320 case REG_CFA_RESTORE:
3321 case REG_CFA_SET_VDRAP:
3322 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3323 any_note = true;
3324 break;
3325 default:
3326 break;
3329 /* If there still isn't a note, make sure the unwind info sees the
3330 same expression as before the split. */
3331 if (!any_note)
3333 rtx old_set, new_set;
3335 /* The old insn had better have been simple, or annotated. */
3336 old_set = single_set (old_insn);
3337 gcc_assert (old_set != NULL);
3339 new_set = single_set (new_insn);
3340 if (!new_set || !rtx_equal_p (new_set, old_set))
3341 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3344 /* Copy prologue/epilogue status. This is required in order to keep
3345 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3346 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3349 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3350 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3351 cfg-related call notes. */
3352 for (i = 0; i <= match_len; ++i)
3354 int j;
3355 rtx note;
3357 j = peep2_buf_position (peep2_current + i);
3358 old_insn = peep2_insn_data[j].insn;
3359 if (!CALL_P (old_insn))
3360 continue;
3361 was_call = true;
3363 new_insn = attempt;
3364 while (new_insn != NULL_RTX)
3366 if (CALL_P (new_insn))
3367 break;
3368 new_insn = NEXT_INSN (new_insn);
3371 gcc_assert (new_insn != NULL_RTX);
3373 CALL_INSN_FUNCTION_USAGE (new_insn)
3374 = CALL_INSN_FUNCTION_USAGE (old_insn);
3375 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3377 for (note = REG_NOTES (old_insn);
3378 note;
3379 note = XEXP (note, 1))
3380 switch (REG_NOTE_KIND (note))
3382 case REG_NORETURN:
3383 case REG_SETJMP:
3384 case REG_TM:
3385 add_reg_note (new_insn, REG_NOTE_KIND (note),
3386 XEXP (note, 0));
3387 break;
3388 default:
3389 /* Discard all other reg notes. */
3390 break;
3393 /* Croak if there is another call in the sequence. */
3394 while (++i <= match_len)
3396 j = peep2_buf_position (peep2_current + i);
3397 old_insn = peep2_insn_data[j].insn;
3398 gcc_assert (!CALL_P (old_insn));
3400 break;
3403 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3404 move those notes over to the new sequence. */
3405 as_note = NULL;
3406 for (i = match_len; i >= 0; --i)
3408 int j = peep2_buf_position (peep2_current + i);
3409 old_insn = peep2_insn_data[j].insn;
3411 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3412 if (as_note)
3413 break;
3416 i = peep2_buf_position (peep2_current + match_len);
3417 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3419 /* Replace the old sequence with the new. */
3420 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3421 last = emit_insn_after_setloc (attempt,
3422 peep2_insn_data[i].insn,
3423 INSN_LOCATION (peepinsn));
3424 before_try = PREV_INSN (insn);
3425 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3427 /* Re-insert the EH_REGION notes. */
3428 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3430 edge eh_edge;
3431 edge_iterator ei;
3433 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3434 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3435 break;
3437 if (eh_note)
3438 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3440 if (eh_edge)
3441 for (x = last; x != before_try; x = PREV_INSN (x))
3442 if (x != BB_END (bb)
3443 && (can_throw_internal (x)
3444 || can_nonlocal_goto (x)))
3446 edge nfte, nehe;
3447 int flags;
3449 nfte = split_block (bb, x);
3450 flags = (eh_edge->flags
3451 & (EDGE_EH | EDGE_ABNORMAL));
3452 if (CALL_P (x))
3453 flags |= EDGE_ABNORMAL_CALL;
3454 nehe = make_edge (nfte->src, eh_edge->dest,
3455 flags);
3457 nehe->probability = eh_edge->probability;
3458 nfte->probability = nehe->probability.invert ();
3460 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3461 bb = nfte->src;
3462 eh_edge = nehe;
3465 /* Converting possibly trapping insn to non-trapping is
3466 possible. Zap dummy outgoing edges. */
3467 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3470 /* Re-insert the ARGS_SIZE notes. */
3471 if (as_note)
3472 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3474 /* If we generated a jump instruction, it won't have
3475 JUMP_LABEL set. Recompute after we're done. */
3476 for (x = last; x != before_try; x = PREV_INSN (x))
3477 if (JUMP_P (x))
3479 peep2_do_rebuild_jump_labels = true;
3480 break;
3483 return last;
3486 /* After performing a replacement in basic block BB, fix up the life
3487 information in our buffer. LAST is the last of the insns that we
3488 emitted as a replacement. PREV is the insn before the start of
3489 the replacement. MATCH_LEN is the number of instructions that were
3490 matched, and which now need to be replaced in the buffer. */
3492 static void
3493 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3494 rtx_insn *prev)
3496 int i = peep2_buf_position (peep2_current + match_len + 1);
3497 rtx_insn *x;
3498 regset_head live;
3500 INIT_REG_SET (&live);
3501 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3503 gcc_assert (peep2_current_count >= match_len + 1);
3504 peep2_current_count -= match_len + 1;
3506 x = last;
3509 if (INSN_P (x))
3511 df_insn_rescan (x);
3512 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3514 peep2_current_count++;
3515 if (--i < 0)
3516 i = MAX_INSNS_PER_PEEP2;
3517 peep2_insn_data[i].insn = x;
3518 df_simulate_one_insn_backwards (bb, x, &live);
3519 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3522 x = PREV_INSN (x);
3524 while (x != prev);
3525 CLEAR_REG_SET (&live);
3527 peep2_current = i;
3530 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3531 Return true if we added it, false otherwise. The caller will try to match
3532 peepholes against the buffer if we return false; otherwise it will try to
3533 add more instructions to the buffer. */
3535 static bool
3536 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3538 int pos;
3540 /* Once we have filled the maximum number of insns the buffer can hold,
3541 allow the caller to match the insns against peepholes. We wait until
3542 the buffer is full in case the target has similar peepholes of different
3543 length; we always want to match the longest if possible. */
3544 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3545 return false;
3547 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3548 any other pattern, lest it change the semantics of the frame info. */
3549 if (RTX_FRAME_RELATED_P (insn))
3551 /* Let the buffer drain first. */
3552 if (peep2_current_count > 0)
3553 return false;
3554 /* Now the insn will be the only thing in the buffer. */
3557 pos = peep2_buf_position (peep2_current + peep2_current_count);
3558 peep2_insn_data[pos].insn = insn;
3559 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3560 peep2_current_count++;
3562 df_simulate_one_insn_forwards (bb, insn, live);
3563 return true;
3566 /* Perform the peephole2 optimization pass. */
3568 static void
3569 peephole2_optimize (void)
3571 rtx_insn *insn;
3572 bitmap live;
3573 int i;
3574 basic_block bb;
3576 peep2_do_cleanup_cfg = false;
3577 peep2_do_rebuild_jump_labels = false;
3579 df_set_flags (DF_LR_RUN_DCE);
3580 df_note_add_problem ();
3581 df_analyze ();
3583 /* Initialize the regsets we're going to use. */
3584 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3585 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3586 search_ofs = 0;
3587 live = BITMAP_ALLOC (&reg_obstack);
3589 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3591 bool past_end = false;
3592 int pos;
3594 rtl_profile_for_bb (bb);
3596 /* Start up propagation. */
3597 bitmap_copy (live, DF_LR_IN (bb));
3598 df_simulate_initialize_forwards (bb, live);
3599 peep2_reinit_state (live);
3601 insn = BB_HEAD (bb);
3602 for (;;)
3604 rtx_insn *attempt, *head;
3605 int match_len;
3607 if (!past_end && !NONDEBUG_INSN_P (insn))
3609 next_insn:
3610 insn = NEXT_INSN (insn);
3611 if (insn == NEXT_INSN (BB_END (bb)))
3612 past_end = true;
3613 continue;
3615 if (!past_end && peep2_fill_buffer (bb, insn, live))
3616 goto next_insn;
3618 /* If we did not fill an empty buffer, it signals the end of the
3619 block. */
3620 if (peep2_current_count == 0)
3621 break;
3623 /* The buffer filled to the current maximum, so try to match. */
3625 pos = peep2_buf_position (peep2_current + peep2_current_count);
3626 peep2_insn_data[pos].insn = PEEP2_EOB;
3627 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3629 /* Match the peephole. */
3630 head = peep2_insn_data[peep2_current].insn;
3631 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3632 if (attempt != NULL)
3634 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3635 if (last)
3637 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3638 continue;
3642 /* No match: advance the buffer by one insn. */
3643 peep2_current = peep2_buf_position (peep2_current + 1);
3644 peep2_current_count--;
3648 default_rtl_profile ();
3649 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3650 BITMAP_FREE (peep2_insn_data[i].live_before);
3651 BITMAP_FREE (live);
3652 if (peep2_do_rebuild_jump_labels)
3653 rebuild_jump_labels (get_insns ());
3654 if (peep2_do_cleanup_cfg)
3655 cleanup_cfg (CLEANUP_CFG_CHANGED);
3658 /* Common predicates for use with define_bypass. */
3660 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3661 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3662 must be either a single_set or a PARALLEL with SETs inside. */
3665 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3667 rtx out_set, in_set;
3668 rtx out_pat, in_pat;
3669 rtx out_exp, in_exp;
3670 int i, j;
3672 in_set = single_set (in_insn);
3673 if (in_set)
3675 if (!MEM_P (SET_DEST (in_set)))
3676 return false;
3678 out_set = single_set (out_insn);
3679 if (out_set)
3681 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3682 return false;
3684 else
3686 out_pat = PATTERN (out_insn);
3688 if (GET_CODE (out_pat) != PARALLEL)
3689 return false;
3691 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3693 out_exp = XVECEXP (out_pat, 0, i);
3695 if (GET_CODE (out_exp) == CLOBBER)
3696 continue;
3698 gcc_assert (GET_CODE (out_exp) == SET);
3700 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3701 return false;
3705 else
3707 in_pat = PATTERN (in_insn);
3708 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3710 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3712 in_exp = XVECEXP (in_pat, 0, i);
3714 if (GET_CODE (in_exp) == CLOBBER)
3715 continue;
3717 gcc_assert (GET_CODE (in_exp) == SET);
3719 if (!MEM_P (SET_DEST (in_exp)))
3720 return false;
3722 out_set = single_set (out_insn);
3723 if (out_set)
3725 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3726 return false;
3728 else
3730 out_pat = PATTERN (out_insn);
3731 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3733 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3735 out_exp = XVECEXP (out_pat, 0, j);
3737 if (GET_CODE (out_exp) == CLOBBER)
3738 continue;
3740 gcc_assert (GET_CODE (out_exp) == SET);
3742 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3743 return false;
3749 return true;
3752 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3753 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3754 or multiple set; IN_INSN should be single_set for truth, but for convenience
3755 of insn categorization may be any JUMP or CALL insn. */
3758 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3760 rtx out_set, in_set;
3762 in_set = single_set (in_insn);
3763 if (! in_set)
3765 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3766 return false;
3769 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3770 return false;
3771 in_set = SET_SRC (in_set);
3773 out_set = single_set (out_insn);
3774 if (out_set)
3776 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3777 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3778 return false;
3780 else
3782 rtx out_pat;
3783 int i;
3785 out_pat = PATTERN (out_insn);
3786 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3788 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3790 rtx exp = XVECEXP (out_pat, 0, i);
3792 if (GET_CODE (exp) == CLOBBER)
3793 continue;
3795 gcc_assert (GET_CODE (exp) == SET);
3797 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3798 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3799 return false;
3803 return true;
3806 static unsigned int
3807 rest_of_handle_peephole2 (void)
3809 if (HAVE_peephole2)
3810 peephole2_optimize ();
3812 return 0;
3815 namespace {
3817 const pass_data pass_data_peephole2 =
3819 RTL_PASS, /* type */
3820 "peephole2", /* name */
3821 OPTGROUP_NONE, /* optinfo_flags */
3822 TV_PEEPHOLE2, /* tv_id */
3823 0, /* properties_required */
3824 0, /* properties_provided */
3825 0, /* properties_destroyed */
3826 0, /* todo_flags_start */
3827 TODO_df_finish, /* todo_flags_finish */
3830 class pass_peephole2 : public rtl_opt_pass
3832 public:
3833 pass_peephole2 (gcc::context *ctxt)
3834 : rtl_opt_pass (pass_data_peephole2, ctxt)
3837 /* opt_pass methods: */
3838 /* The epiphany backend creates a second instance of this pass, so we need
3839 a clone method. */
3840 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3841 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3842 virtual unsigned int execute (function *)
3844 return rest_of_handle_peephole2 ();
3847 }; // class pass_peephole2
3849 } // anon namespace
3851 rtl_opt_pass *
3852 make_pass_peephole2 (gcc::context *ctxt)
3854 return new pass_peephole2 (ctxt);
3857 namespace {
3859 const pass_data pass_data_split_all_insns =
3861 RTL_PASS, /* type */
3862 "split1", /* name */
3863 OPTGROUP_NONE, /* optinfo_flags */
3864 TV_NONE, /* tv_id */
3865 0, /* properties_required */
3866 0, /* properties_provided */
3867 0, /* properties_destroyed */
3868 0, /* todo_flags_start */
3869 0, /* todo_flags_finish */
3872 class pass_split_all_insns : public rtl_opt_pass
3874 public:
3875 pass_split_all_insns (gcc::context *ctxt)
3876 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3879 /* opt_pass methods: */
3880 /* The epiphany backend creates a second instance of this pass, so
3881 we need a clone method. */
3882 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3883 virtual unsigned int execute (function *)
3885 split_all_insns ();
3886 return 0;
3889 }; // class pass_split_all_insns
3891 } // anon namespace
3893 rtl_opt_pass *
3894 make_pass_split_all_insns (gcc::context *ctxt)
3896 return new pass_split_all_insns (ctxt);
3899 namespace {
3901 const pass_data pass_data_split_after_reload =
3903 RTL_PASS, /* type */
3904 "split2", /* name */
3905 OPTGROUP_NONE, /* optinfo_flags */
3906 TV_NONE, /* tv_id */
3907 0, /* properties_required */
3908 0, /* properties_provided */
3909 0, /* properties_destroyed */
3910 0, /* todo_flags_start */
3911 0, /* todo_flags_finish */
3914 class pass_split_after_reload : public rtl_opt_pass
3916 public:
3917 pass_split_after_reload (gcc::context *ctxt)
3918 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3921 /* opt_pass methods: */
3922 virtual bool gate (function *)
3924 /* If optimizing, then go ahead and split insns now. */
3925 if (optimize > 0)
3926 return true;
3928 #ifdef STACK_REGS
3929 return true;
3930 #else
3931 return false;
3932 #endif
3935 virtual unsigned int execute (function *)
3937 split_all_insns ();
3938 return 0;
3941 }; // class pass_split_after_reload
3943 } // anon namespace
3945 rtl_opt_pass *
3946 make_pass_split_after_reload (gcc::context *ctxt)
3948 return new pass_split_after_reload (ctxt);
3951 namespace {
3953 const pass_data pass_data_split_before_regstack =
3955 RTL_PASS, /* type */
3956 "split3", /* name */
3957 OPTGROUP_NONE, /* optinfo_flags */
3958 TV_NONE, /* tv_id */
3959 0, /* properties_required */
3960 0, /* properties_provided */
3961 0, /* properties_destroyed */
3962 0, /* todo_flags_start */
3963 0, /* todo_flags_finish */
3966 class pass_split_before_regstack : public rtl_opt_pass
3968 public:
3969 pass_split_before_regstack (gcc::context *ctxt)
3970 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3973 /* opt_pass methods: */
3974 virtual bool gate (function *);
3975 virtual unsigned int execute (function *)
3977 split_all_insns ();
3978 return 0;
3981 }; // class pass_split_before_regstack
3983 bool
3984 pass_split_before_regstack::gate (function *)
3986 #if HAVE_ATTR_length && defined (STACK_REGS)
3987 /* If flow2 creates new instructions which need splitting
3988 and scheduling after reload is not done, they might not be
3989 split until final which doesn't allow splitting
3990 if HAVE_ATTR_length. */
3991 # ifdef INSN_SCHEDULING
3992 return (optimize && !flag_schedule_insns_after_reload);
3993 # else
3994 return (optimize);
3995 # endif
3996 #else
3997 return 0;
3998 #endif
4001 } // anon namespace
4003 rtl_opt_pass *
4004 make_pass_split_before_regstack (gcc::context *ctxt)
4006 return new pass_split_before_regstack (ctxt);
4009 static unsigned int
4010 rest_of_handle_split_before_sched2 (void)
4012 #ifdef INSN_SCHEDULING
4013 split_all_insns ();
4014 #endif
4015 return 0;
4018 namespace {
4020 const pass_data pass_data_split_before_sched2 =
4022 RTL_PASS, /* type */
4023 "split4", /* name */
4024 OPTGROUP_NONE, /* optinfo_flags */
4025 TV_NONE, /* tv_id */
4026 0, /* properties_required */
4027 0, /* properties_provided */
4028 0, /* properties_destroyed */
4029 0, /* todo_flags_start */
4030 0, /* todo_flags_finish */
4033 class pass_split_before_sched2 : public rtl_opt_pass
4035 public:
4036 pass_split_before_sched2 (gcc::context *ctxt)
4037 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4040 /* opt_pass methods: */
4041 virtual bool gate (function *)
4043 #ifdef INSN_SCHEDULING
4044 return optimize > 0 && flag_schedule_insns_after_reload;
4045 #else
4046 return false;
4047 #endif
4050 virtual unsigned int execute (function *)
4052 return rest_of_handle_split_before_sched2 ();
4055 }; // class pass_split_before_sched2
4057 } // anon namespace
4059 rtl_opt_pass *
4060 make_pass_split_before_sched2 (gcc::context *ctxt)
4062 return new pass_split_before_sched2 (ctxt);
4065 namespace {
4067 const pass_data pass_data_split_for_shorten_branches =
4069 RTL_PASS, /* type */
4070 "split5", /* name */
4071 OPTGROUP_NONE, /* optinfo_flags */
4072 TV_NONE, /* tv_id */
4073 0, /* properties_required */
4074 0, /* properties_provided */
4075 0, /* properties_destroyed */
4076 0, /* todo_flags_start */
4077 0, /* todo_flags_finish */
4080 class pass_split_for_shorten_branches : public rtl_opt_pass
4082 public:
4083 pass_split_for_shorten_branches (gcc::context *ctxt)
4084 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4087 /* opt_pass methods: */
4088 virtual bool gate (function *)
4090 /* The placement of the splitting that we do for shorten_branches
4091 depends on whether regstack is used by the target or not. */
4092 #if HAVE_ATTR_length && !defined (STACK_REGS)
4093 return true;
4094 #else
4095 return false;
4096 #endif
4099 virtual unsigned int execute (function *)
4101 return split_all_insns_noflow ();
4104 }; // class pass_split_for_shorten_branches
4106 } // anon namespace
4108 rtl_opt_pass *
4109 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4111 return new pass_split_for_shorten_branches (ctxt);
4114 /* (Re)initialize the target information after a change in target. */
4116 void
4117 recog_init ()
4119 /* The information is zero-initialized, so we don't need to do anything
4120 first time round. */
4121 if (!this_target_recog->x_initialized)
4123 this_target_recog->x_initialized = true;
4124 return;
4126 memset (this_target_recog->x_bool_attr_masks, 0,
4127 sizeof (this_target_recog->x_bool_attr_masks));
4128 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4129 if (this_target_recog->x_op_alt[i])
4131 free (this_target_recog->x_op_alt[i]);
4132 this_target_recog->x_op_alt[i] = 0;