[73/77] Pass scalar_mode to scalar_mode_supported_p
[official-gcc.git] / gcc / lra-constraints.c
blob3ebc803ed9573f2404c12d3f15483f1de600b5e6
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs[hard_regno][reg_mode];
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 lra_eliminate_reg_if_possible (m_base_loc);
363 if (m_ad->base_term2 != NULL)
364 *m_ad->base_term2 = *m_ad->base_term;
366 if (m_index_loc != NULL)
368 m_index_reg = *m_index_loc;
369 lra_eliminate_reg_if_possible (m_index_loc);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc && *m_base_loc != m_base_reg)
377 *m_base_loc = m_base_reg;
378 if (m_ad->base_term2 != NULL)
379 *m_ad->base_term2 = *m_ad->base_term;
381 if (m_index_loc && *m_index_loc != m_index_reg)
382 *m_index_loc = m_index_reg;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
386 static bool
387 valid_address_p (struct address_info *ad)
389 address_eliminator eliminator (ad);
390 return valid_address_p (ad->mode, *ad->outer, ad->as);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
395 static bool
396 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
398 struct address_info ad;
400 decompose_mem_address (&ad, op);
401 address_eliminator eliminator (&ad);
402 return constraint_satisfied_p (op, constraint);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
407 static bool
408 satisfies_address_constraint_p (struct address_info *ad,
409 enum constraint_num constraint)
411 address_eliminator eliminator (ad);
412 return constraint_satisfied_p (*ad->outer, constraint);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
417 static bool
418 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
420 struct address_info ad;
422 decompose_lea_address (&ad, &op);
423 return satisfies_address_constraint_p (&ad, constraint);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
429 void
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
435 rtx res;
437 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
438 ira_reg_equiv[i].memory = copy_rtx (res);
439 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
440 ira_reg_equiv[i].invariant = copy_rtx (res);
444 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
448 equivalences. */
449 static void
450 update_equiv (int regno)
452 rtx x;
454 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
455 ira_reg_equiv[regno].memory
456 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
457 NULL_RTX);
458 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
459 ira_reg_equiv[regno].invariant
460 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
461 NULL_RTX);
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
466 static rtx
467 get_equiv (rtx x)
469 int regno;
470 rtx res;
472 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv[regno].defined_p
474 || ! ira_reg_equiv[regno].profitable_p
475 || lra_get_regno_hard_regno (regno) >= 0)
476 return x;
477 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
479 if (targetm.cannot_substitute_mem_equiv_p (res))
480 return x;
481 return res;
483 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
484 return res;
485 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
486 return res;
487 gcc_unreachable ();
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
492 X. */
493 static rtx
494 get_equiv_with_elimination (rtx x, rtx_insn *insn)
496 rtx res = get_equiv (x);
498 if (x == res || CONSTANT_P (res))
499 return res;
500 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
505 static void
506 init_curr_operand_mode (void)
508 int nop = curr_static_id->n_operands;
509 for (int i = 0; i < nop; i++)
511 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
512 if (mode == VOIDmode)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
517 mode = Pmode;
518 else
519 mode = curr_static_id->operand[i].mode;
521 curr_operand_mode[i] = mode;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
530 struct input_reload
532 /* True for input reload of matched operands. */
533 bool match_p;
534 /* Reloaded value. */
535 rtx input;
536 /* Reload pseudo used. */
537 rtx reg;
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
546 /* Initiate data concerning reuse of input reloads for the current
547 insn. */
548 static void
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num = 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
561 static bool
562 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
563 enum reg_class rclass, bool in_subreg_p,
564 const char *title, rtx *result_reg)
566 int i, regno;
567 enum reg_class new_class;
568 bool unique_p = false;
570 if (type == OP_OUT)
572 *result_reg
573 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
574 return true;
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original))
579 for (i = 0; i < curr_insn_input_reloads_num; i++)
581 if (! curr_insn_input_reloads[i].match_p
582 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
583 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
585 rtx reg = curr_insn_input_reloads[i].reg;
586 regno = REGNO (reg);
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg) != mode)
592 if (in_subreg_p)
593 continue;
594 if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
595 continue;
596 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
597 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
598 continue;
600 *result_reg = reg;
601 if (lra_dump_file != NULL)
603 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
604 dump_value_slim (lra_dump_file, original, 1);
606 if (new_class != lra_get_allocno_class (regno))
607 lra_change_class (regno, new_class, ", change to", false);
608 if (lra_dump_file != NULL)
609 fprintf (lra_dump_file, "\n");
610 return false;
612 /* If we have an input reload with a different mode, make sure it
613 will get a different hard reg. */
614 else if (REG_P (original)
615 && REG_P (curr_insn_input_reloads[i].input)
616 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
617 && (GET_MODE (original)
618 != GET_MODE (curr_insn_input_reloads[i].input)))
619 unique_p = true;
621 *result_reg = (unique_p
622 ? lra_create_new_reg_with_unique_value
623 : lra_create_new_reg) (mode, original, rclass, title);
624 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
625 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
626 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
627 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
628 return true;
633 /* The page contains code to extract memory address parts. */
635 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
636 static inline bool
637 ok_for_index_p_nonstrict (rtx reg)
639 unsigned regno = REGNO (reg);
641 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
644 /* A version of regno_ok_for_base_p for use here, when all pseudos
645 should count as OK. Arguments as for regno_ok_for_base_p. */
646 static inline bool
647 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
648 enum rtx_code outer_code, enum rtx_code index_code)
650 unsigned regno = REGNO (reg);
652 if (regno >= FIRST_PSEUDO_REGISTER)
653 return true;
654 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
659 /* The page contains major code to choose the current insn alternative
660 and generate reloads for it. */
662 /* Return the offset from REGNO of the least significant register
663 in (reg:MODE REGNO).
665 This function is used to tell whether two registers satisfy
666 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
668 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
669 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
671 lra_constraint_offset (int regno, machine_mode mode)
673 lra_assert (regno < FIRST_PSEUDO_REGISTER);
675 scalar_int_mode int_mode;
676 if (WORDS_BIG_ENDIAN
677 && is_a <scalar_int_mode> (mode, &int_mode)
678 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
679 return hard_regno_nregs[regno][mode] - 1;
680 return 0;
683 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
684 if they are the same hard reg, and has special hacks for
685 auto-increment and auto-decrement. This is specifically intended for
686 process_alt_operands to use in determining whether two operands
687 match. X is the operand whose number is the lower of the two.
689 It is supposed that X is the output operand and Y is the input
690 operand. Y_HARD_REGNO is the final hard regno of register Y or
691 register in subreg Y as we know it now. Otherwise, it is a
692 negative value. */
693 static bool
694 operands_match_p (rtx x, rtx y, int y_hard_regno)
696 int i;
697 RTX_CODE code = GET_CODE (x);
698 const char *fmt;
700 if (x == y)
701 return true;
702 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
703 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
705 int j;
707 i = get_hard_regno (x, false);
708 if (i < 0)
709 goto slow;
711 if ((j = y_hard_regno) < 0)
712 goto slow;
714 i += lra_constraint_offset (i, GET_MODE (x));
715 j += lra_constraint_offset (j, GET_MODE (y));
717 return i == j;
720 /* If two operands must match, because they are really a single
721 operand of an assembler insn, then two post-increments are invalid
722 because the assembler insn would increment only once. On the
723 other hand, a post-increment matches ordinary indexing if the
724 post-increment is the output operand. */
725 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
726 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
728 /* Two pre-increments are invalid because the assembler insn would
729 increment only once. On the other hand, a pre-increment matches
730 ordinary indexing if the pre-increment is the input operand. */
731 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
732 || GET_CODE (y) == PRE_MODIFY)
733 return operands_match_p (x, XEXP (y, 0), -1);
735 slow:
737 if (code == REG && REG_P (y))
738 return REGNO (x) == REGNO (y);
740 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
741 && x == SUBREG_REG (y))
742 return true;
743 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
744 && SUBREG_REG (x) == y)
745 return true;
747 /* Now we have disposed of all the cases in which different rtx
748 codes can match. */
749 if (code != GET_CODE (y))
750 return false;
752 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
753 if (GET_MODE (x) != GET_MODE (y))
754 return false;
756 switch (code)
758 CASE_CONST_UNIQUE:
759 return false;
761 case LABEL_REF:
762 return label_ref_label (x) == label_ref_label (y);
763 case SYMBOL_REF:
764 return XSTR (x, 0) == XSTR (y, 0);
766 default:
767 break;
770 /* Compare the elements. If any pair of corresponding elements fail
771 to match, return false for the whole things. */
773 fmt = GET_RTX_FORMAT (code);
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
776 int val, j;
777 switch (fmt[i])
779 case 'w':
780 if (XWINT (x, i) != XWINT (y, i))
781 return false;
782 break;
784 case 'i':
785 if (XINT (x, i) != XINT (y, i))
786 return false;
787 break;
789 case 'e':
790 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
791 if (val == 0)
792 return false;
793 break;
795 case '0':
796 break;
798 case 'E':
799 if (XVECLEN (x, i) != XVECLEN (y, i))
800 return false;
801 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
803 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
804 if (val == 0)
805 return false;
807 break;
809 /* It is believed that rtx's at this level will never
810 contain anything but integers and other rtx's, except for
811 within LABEL_REFs and SYMBOL_REFs. */
812 default:
813 gcc_unreachable ();
816 return true;
819 /* True if X is a constant that can be forced into the constant pool.
820 MODE is the mode of the operand, or VOIDmode if not known. */
821 #define CONST_POOL_OK_P(MODE, X) \
822 ((MODE) != VOIDmode \
823 && CONSTANT_P (X) \
824 && GET_CODE (X) != HIGH \
825 && !targetm.cannot_force_const_mem (MODE, X))
827 /* True if C is a non-empty register class that has too few registers
828 to be safely used as a reload target class. */
829 #define SMALL_REGISTER_CLASS_P(C) \
830 (ira_class_hard_regs_num [(C)] == 1 \
831 || (ira_class_hard_regs_num [(C)] >= 1 \
832 && targetm.class_likely_spilled_p (C)))
834 /* If REG is a reload pseudo, try to make its class satisfying CL. */
835 static void
836 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
838 enum reg_class rclass;
840 /* Do not make more accurate class from reloads generated. They are
841 mostly moves with a lot of constraints. Making more accurate
842 class may results in very narrow class and impossibility of find
843 registers for several reloads of one insn. */
844 if (INSN_UID (curr_insn) >= new_insn_uid_start)
845 return;
846 if (GET_CODE (reg) == SUBREG)
847 reg = SUBREG_REG (reg);
848 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
849 return;
850 if (in_class_p (reg, cl, &rclass) && rclass != cl)
851 lra_change_class (REGNO (reg), rclass, " Change to", true);
854 /* Searches X for any reference to a reg with the same value as REGNO,
855 returning the rtx of the reference found if any. Otherwise,
856 returns NULL_RTX. */
857 static rtx
858 regno_val_use_in (unsigned int regno, rtx x)
860 const char *fmt;
861 int i, j;
862 rtx tem;
864 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
865 return x;
867 fmt = GET_RTX_FORMAT (GET_CODE (x));
868 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
870 if (fmt[i] == 'e')
872 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
873 return tem;
875 else if (fmt[i] == 'E')
876 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
877 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
878 return tem;
881 return NULL_RTX;
884 /* Return true if all current insn non-output operands except INS (it
885 has a negaitve end marker) do not use pseudos with the same value
886 as REGNO. */
887 static bool
888 check_conflict_input_operands (int regno, signed char *ins)
890 int in;
891 int n_operands = curr_static_id->n_operands;
893 for (int nop = 0; nop < n_operands; nop++)
894 if (! curr_static_id->operand[nop].is_operator
895 && curr_static_id->operand[nop].type != OP_OUT)
897 for (int i = 0; (in = ins[i]) >= 0; i++)
898 if (in == nop)
899 break;
900 if (in < 0
901 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
902 return false;
904 return true;
907 /* Generate reloads for matching OUT and INS (array of input operand
908 numbers with end marker -1) with reg class GOAL_CLASS, considering
909 output operands OUTS (similar array to INS) needing to be in different
910 registers. Add input and output reloads correspondingly to the lists
911 *BEFORE and *AFTER. OUT might be negative. In this case we generate
912 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
913 that the output operand is early clobbered for chosen alternative. */
914 static void
915 match_reload (signed char out, signed char *ins, signed char *outs,
916 enum reg_class goal_class, rtx_insn **before,
917 rtx_insn **after, bool early_clobber_p)
919 bool out_conflict;
920 int i, in;
921 rtx new_in_reg, new_out_reg, reg;
922 machine_mode inmode, outmode;
923 rtx in_rtx = *curr_id->operand_loc[ins[0]];
924 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
926 inmode = curr_operand_mode[ins[0]];
927 outmode = out < 0 ? inmode : curr_operand_mode[out];
928 push_to_sequence (*before);
929 if (inmode != outmode)
931 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
933 reg = new_in_reg
934 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
935 goal_class, "");
936 if (SCALAR_INT_MODE_P (inmode))
937 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
938 else
939 new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
940 LRA_SUBREG_P (new_out_reg) = 1;
941 /* If the input reg is dying here, we can use the same hard
942 register for REG and IN_RTX. We do it only for original
943 pseudos as reload pseudos can die although original
944 pseudos still live where reload pseudos dies. */
945 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
946 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
947 && (!early_clobber_p
948 || check_conflict_input_operands(REGNO (in_rtx), ins)))
949 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
951 else
953 reg = new_out_reg
954 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
955 goal_class, "");
956 if (SCALAR_INT_MODE_P (outmode))
957 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
958 else
959 new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
960 /* NEW_IN_REG is non-paradoxical subreg. We don't want
961 NEW_OUT_REG living above. We add clobber clause for
962 this. This is just a temporary clobber. We can remove
963 it at the end of LRA work. */
964 rtx_insn *clobber = emit_clobber (new_out_reg);
965 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
966 LRA_SUBREG_P (new_in_reg) = 1;
967 if (GET_CODE (in_rtx) == SUBREG)
969 rtx subreg_reg = SUBREG_REG (in_rtx);
971 /* If SUBREG_REG is dying here and sub-registers IN_RTX
972 and NEW_IN_REG are similar, we can use the same hard
973 register for REG and SUBREG_REG. */
974 if (REG_P (subreg_reg)
975 && (int) REGNO (subreg_reg) < lra_new_regno_start
976 && GET_MODE (subreg_reg) == outmode
977 && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
978 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
979 && (! early_clobber_p
980 || check_conflict_input_operands (REGNO (subreg_reg),
981 ins)))
982 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
986 else
988 /* Pseudos have values -- see comments for lra_reg_info.
989 Different pseudos with the same value do not conflict even if
990 they live in the same place. When we create a pseudo we
991 assign value of original pseudo (if any) from which we
992 created the new pseudo. If we create the pseudo from the
993 input pseudo, the new pseudo will have no conflict with the
994 input pseudo which is wrong when the input pseudo lives after
995 the insn and as the new pseudo value is changed by the insn
996 output. Therefore we create the new pseudo from the output
997 except the case when we have single matched dying input
998 pseudo.
1000 We cannot reuse the current output register because we might
1001 have a situation like "a <- a op b", where the constraints
1002 force the second input operand ("b") to match the output
1003 operand ("a"). "b" must then be copied into a new register
1004 so that it doesn't clobber the current value of "a".
1006 We can not use the same value if the output pseudo is
1007 early clobbered or the input pseudo is mentioned in the
1008 output, e.g. as an address part in memory, because
1009 output reload will actually extend the pseudo liveness.
1010 We don't care about eliminable hard regs here as we are
1011 interesting only in pseudos. */
1013 /* Matching input's register value is the same as one of the other
1014 output operand. Output operands in a parallel insn must be in
1015 different registers. */
1016 out_conflict = false;
1017 if (REG_P (in_rtx))
1019 for (i = 0; outs[i] >= 0; i++)
1021 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1022 if (REG_P (other_out_rtx)
1023 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1024 != NULL_RTX))
1026 out_conflict = true;
1027 break;
1032 new_in_reg = new_out_reg
1033 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1034 && (int) REGNO (in_rtx) < lra_new_regno_start
1035 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1036 && (! early_clobber_p
1037 || check_conflict_input_operands (REGNO (in_rtx), ins))
1038 && (out < 0
1039 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1040 && !out_conflict
1041 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1042 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1043 goal_class, ""));
1045 /* In operand can be got from transformations before processing insn
1046 constraints. One example of such transformations is subreg
1047 reloading (see function simplify_operand_subreg). The new
1048 pseudos created by the transformations might have inaccurate
1049 class (ALL_REGS) and we should make their classes more
1050 accurate. */
1051 narrow_reload_pseudo_class (in_rtx, goal_class);
1052 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1053 *before = get_insns ();
1054 end_sequence ();
1055 /* Add the new pseudo to consider values of subsequent input reload
1056 pseudos. */
1057 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1058 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1059 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1060 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1061 for (i = 0; (in = ins[i]) >= 0; i++)
1063 lra_assert
1064 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1065 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1066 *curr_id->operand_loc[in] = new_in_reg;
1068 lra_update_dups (curr_id, ins);
1069 if (out < 0)
1070 return;
1071 /* See a comment for the input operand above. */
1072 narrow_reload_pseudo_class (out_rtx, goal_class);
1073 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1075 start_sequence ();
1076 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1077 emit_insn (*after);
1078 *after = get_insns ();
1079 end_sequence ();
1081 *curr_id->operand_loc[out] = new_out_reg;
1082 lra_update_dup (curr_id, out);
1085 /* Return register class which is union of all reg classes in insn
1086 constraint alternative string starting with P. */
1087 static enum reg_class
1088 reg_class_from_constraints (const char *p)
1090 int c, len;
1091 enum reg_class op_class = NO_REGS;
1094 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1096 case '#':
1097 case ',':
1098 return op_class;
1100 case 'g':
1101 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1102 break;
1104 default:
1105 enum constraint_num cn = lookup_constraint (p);
1106 enum reg_class cl = reg_class_for_constraint (cn);
1107 if (cl == NO_REGS)
1109 if (insn_extra_address_constraint (cn))
1110 op_class
1111 = (reg_class_subunion
1112 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1113 ADDRESS, SCRATCH)]);
1114 break;
1117 op_class = reg_class_subunion[op_class][cl];
1118 break;
1120 while ((p += len), c);
1121 return op_class;
1124 /* If OP is a register, return the class of the register as per
1125 get_reg_class, otherwise return NO_REGS. */
1126 static inline enum reg_class
1127 get_op_class (rtx op)
1129 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1132 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1133 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1134 SUBREG for VAL to make them equal. */
1135 static rtx_insn *
1136 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1138 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1140 /* Usually size of mem_pseudo is greater than val size but in
1141 rare cases it can be less as it can be defined by target
1142 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1143 if (! MEM_P (val))
1145 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1146 GET_CODE (val) == SUBREG
1147 ? SUBREG_REG (val) : val);
1148 LRA_SUBREG_P (val) = 1;
1150 else
1152 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1153 LRA_SUBREG_P (mem_pseudo) = 1;
1156 return to_p ? gen_move_insn (mem_pseudo, val)
1157 : gen_move_insn (val, mem_pseudo);
1160 /* Process a special case insn (register move), return true if we
1161 don't need to process it anymore. INSN should be a single set
1162 insn. Set up that RTL was changed through CHANGE_P and macro
1163 SECONDARY_MEMORY_NEEDED says to use secondary memory through
1164 SEC_MEM_P. */
1165 static bool
1166 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1168 int sregno, dregno;
1169 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1170 rtx_insn *before;
1171 enum reg_class dclass, sclass, secondary_class;
1172 secondary_reload_info sri;
1174 lra_assert (curr_insn_set != NULL_RTX);
1175 dreg = dest = SET_DEST (curr_insn_set);
1176 sreg = src = SET_SRC (curr_insn_set);
1177 if (GET_CODE (dest) == SUBREG)
1178 dreg = SUBREG_REG (dest);
1179 if (GET_CODE (src) == SUBREG)
1180 sreg = SUBREG_REG (src);
1181 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1182 return false;
1183 sclass = dclass = NO_REGS;
1184 if (REG_P (dreg))
1185 dclass = get_reg_class (REGNO (dreg));
1186 gcc_assert (dclass < LIM_REG_CLASSES);
1187 if (dclass == ALL_REGS)
1188 /* ALL_REGS is used for new pseudos created by transformations
1189 like reload of SUBREG_REG (see function
1190 simplify_operand_subreg). We don't know their class yet. We
1191 should figure out the class from processing the insn
1192 constraints not in this fast path function. Even if ALL_REGS
1193 were a right class for the pseudo, secondary_... hooks usually
1194 are not define for ALL_REGS. */
1195 return false;
1196 if (REG_P (sreg))
1197 sclass = get_reg_class (REGNO (sreg));
1198 gcc_assert (sclass < LIM_REG_CLASSES);
1199 if (sclass == ALL_REGS)
1200 /* See comments above. */
1201 return false;
1202 if (sclass == NO_REGS && dclass == NO_REGS)
1203 return false;
1204 #ifdef SECONDARY_MEMORY_NEEDED
1205 if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
1206 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1207 && ((sclass != NO_REGS && dclass != NO_REGS)
1208 || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
1209 #endif
1212 *sec_mem_p = true;
1213 return false;
1215 #endif
1216 if (! REG_P (dreg) || ! REG_P (sreg))
1217 return false;
1218 sri.prev_sri = NULL;
1219 sri.icode = CODE_FOR_nothing;
1220 sri.extra_cost = 0;
1221 secondary_class = NO_REGS;
1222 /* Set up hard register for a reload pseudo for hook
1223 secondary_reload because some targets just ignore unassigned
1224 pseudos in the hook. */
1225 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1227 dregno = REGNO (dreg);
1228 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1230 else
1231 dregno = -1;
1232 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1234 sregno = REGNO (sreg);
1235 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1237 else
1238 sregno = -1;
1239 if (sclass != NO_REGS)
1240 secondary_class
1241 = (enum reg_class) targetm.secondary_reload (false, dest,
1242 (reg_class_t) sclass,
1243 GET_MODE (src), &sri);
1244 if (sclass == NO_REGS
1245 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1246 && dclass != NO_REGS))
1248 enum reg_class old_sclass = secondary_class;
1249 secondary_reload_info old_sri = sri;
1251 sri.prev_sri = NULL;
1252 sri.icode = CODE_FOR_nothing;
1253 sri.extra_cost = 0;
1254 secondary_class
1255 = (enum reg_class) targetm.secondary_reload (true, src,
1256 (reg_class_t) dclass,
1257 GET_MODE (src), &sri);
1258 /* Check the target hook consistency. */
1259 lra_assert
1260 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1261 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1262 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1264 if (sregno >= 0)
1265 reg_renumber [sregno] = -1;
1266 if (dregno >= 0)
1267 reg_renumber [dregno] = -1;
1268 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1269 return false;
1270 *change_p = true;
1271 new_reg = NULL_RTX;
1272 if (secondary_class != NO_REGS)
1273 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1274 secondary_class,
1275 "secondary");
1276 start_sequence ();
1277 if (sri.icode == CODE_FOR_nothing)
1278 lra_emit_move (new_reg, src);
1279 else
1281 enum reg_class scratch_class;
1283 scratch_class = (reg_class_from_constraints
1284 (insn_data[sri.icode].operand[2].constraint));
1285 scratch_reg = (lra_create_new_reg_with_unique_value
1286 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1287 scratch_class, "scratch"));
1288 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1289 src, scratch_reg));
1291 before = get_insns ();
1292 end_sequence ();
1293 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1294 if (new_reg != NULL_RTX)
1295 SET_SRC (curr_insn_set) = new_reg;
1296 else
1298 if (lra_dump_file != NULL)
1300 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1301 dump_insn_slim (lra_dump_file, curr_insn);
1303 lra_set_insn_deleted (curr_insn);
1304 return true;
1306 return false;
1309 /* The following data describe the result of process_alt_operands.
1310 The data are used in curr_insn_transform to generate reloads. */
1312 /* The chosen reg classes which should be used for the corresponding
1313 operands. */
1314 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1315 /* True if the operand should be the same as another operand and that
1316 other operand does not need a reload. */
1317 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1318 /* True if the operand does not need a reload. */
1319 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1320 /* True if the operand can be offsetable memory. */
1321 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1322 /* The number of an operand to which given operand can be matched to. */
1323 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1324 /* The number of elements in the following array. */
1325 static int goal_alt_dont_inherit_ops_num;
1326 /* Numbers of operands whose reload pseudos should not be inherited. */
1327 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1328 /* True if the insn commutative operands should be swapped. */
1329 static bool goal_alt_swapped;
1330 /* The chosen insn alternative. */
1331 static int goal_alt_number;
1333 /* True if the corresponding operand is the result of an equivalence
1334 substitution. */
1335 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1337 /* The following five variables are used to choose the best insn
1338 alternative. They reflect final characteristics of the best
1339 alternative. */
1341 /* Number of necessary reloads and overall cost reflecting the
1342 previous value and other unpleasantness of the best alternative. */
1343 static int best_losers, best_overall;
1344 /* Overall number hard registers used for reloads. For example, on
1345 some targets we need 2 general registers to reload DFmode and only
1346 one floating point register. */
1347 static int best_reload_nregs;
1348 /* Overall number reflecting distances of previous reloading the same
1349 value. The distances are counted from the current BB start. It is
1350 used to improve inheritance chances. */
1351 static int best_reload_sum;
1353 /* True if the current insn should have no correspondingly input or
1354 output reloads. */
1355 static bool no_input_reloads_p, no_output_reloads_p;
1357 /* True if we swapped the commutative operands in the current
1358 insn. */
1359 static int curr_swapped;
1361 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1362 register of class CL. Add any input reloads to list BEFORE. AFTER
1363 is nonnull if *LOC is an automodified value; handle that case by
1364 adding the required output reloads to list AFTER. Return true if
1365 the RTL was changed.
1367 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1368 register. Return false if the address register is correct. */
1369 static bool
1370 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1371 enum reg_class cl)
1373 int regno;
1374 enum reg_class rclass, new_class;
1375 rtx reg;
1376 rtx new_reg;
1377 machine_mode mode;
1378 bool subreg_p, before_p = false;
1380 subreg_p = GET_CODE (*loc) == SUBREG;
1381 if (subreg_p)
1383 reg = SUBREG_REG (*loc);
1384 mode = GET_MODE (reg);
1386 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1387 between two registers with different classes, but there normally will
1388 be "mov" which transfers element of vector register into the general
1389 register, and this normally will be a subreg which should be reloaded
1390 as a whole. This is particularly likely to be triggered when
1391 -fno-split-wide-types specified. */
1392 if (!REG_P (reg)
1393 || in_class_p (reg, cl, &new_class)
1394 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (ptr_mode))
1395 loc = &SUBREG_REG (*loc);
1398 reg = *loc;
1399 mode = GET_MODE (reg);
1400 if (! REG_P (reg))
1402 if (check_only_p)
1403 return true;
1404 /* Always reload memory in an address even if the target supports
1405 such addresses. */
1406 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1407 before_p = true;
1409 else
1411 regno = REGNO (reg);
1412 rclass = get_reg_class (regno);
1413 if (! check_only_p
1414 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1416 if (lra_dump_file != NULL)
1418 fprintf (lra_dump_file,
1419 "Changing pseudo %d in address of insn %u on equiv ",
1420 REGNO (reg), INSN_UID (curr_insn));
1421 dump_value_slim (lra_dump_file, *loc, 1);
1422 fprintf (lra_dump_file, "\n");
1424 *loc = copy_rtx (*loc);
1426 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1428 if (check_only_p)
1429 return true;
1430 reg = *loc;
1431 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1432 mode, reg, cl, subreg_p, "address", &new_reg))
1433 before_p = true;
1435 else if (new_class != NO_REGS && rclass != new_class)
1437 if (check_only_p)
1438 return true;
1439 lra_change_class (regno, new_class, " Change to", true);
1440 return false;
1442 else
1443 return false;
1445 if (before_p)
1447 push_to_sequence (*before);
1448 lra_emit_move (new_reg, reg);
1449 *before = get_insns ();
1450 end_sequence ();
1452 *loc = new_reg;
1453 if (after != NULL)
1455 start_sequence ();
1456 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1457 emit_insn (*after);
1458 *after = get_insns ();
1459 end_sequence ();
1461 return true;
1464 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1465 the insn to be inserted before curr insn. AFTER returns the
1466 the insn to be inserted after curr insn. ORIGREG and NEWREG
1467 are the original reg and new reg for reload. */
1468 static void
1469 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1470 rtx newreg)
1472 if (before)
1474 push_to_sequence (*before);
1475 lra_emit_move (newreg, origreg);
1476 *before = get_insns ();
1477 end_sequence ();
1479 if (after)
1481 start_sequence ();
1482 lra_emit_move (origreg, newreg);
1483 emit_insn (*after);
1484 *after = get_insns ();
1485 end_sequence ();
1489 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1490 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1492 /* Make reloads for subreg in operand NOP with internal subreg mode
1493 REG_MODE, add new reloads for further processing. Return true if
1494 any change was done. */
1495 static bool
1496 simplify_operand_subreg (int nop, machine_mode reg_mode)
1498 int hard_regno;
1499 rtx_insn *before, *after;
1500 machine_mode mode, innermode;
1501 rtx reg, new_reg;
1502 rtx operand = *curr_id->operand_loc[nop];
1503 enum reg_class regclass;
1504 enum op_type type;
1506 before = after = NULL;
1508 if (GET_CODE (operand) != SUBREG)
1509 return false;
1511 mode = GET_MODE (operand);
1512 reg = SUBREG_REG (operand);
1513 innermode = GET_MODE (reg);
1514 type = curr_static_id->operand[nop].type;
1515 if (MEM_P (reg))
1517 const bool addr_was_valid
1518 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1519 alter_subreg (curr_id->operand_loc[nop], false);
1520 rtx subst = *curr_id->operand_loc[nop];
1521 lra_assert (MEM_P (subst));
1523 if (!addr_was_valid
1524 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1525 MEM_ADDR_SPACE (subst))
1526 || ((get_constraint_type (lookup_constraint
1527 (curr_static_id->operand[nop].constraint))
1528 != CT_SPECIAL_MEMORY)
1529 /* We still can reload address and if the address is
1530 valid, we can remove subreg without reloading its
1531 inner memory. */
1532 && valid_address_p (GET_MODE (subst),
1533 regno_reg_rtx
1534 [ira_class_hard_regs
1535 [base_reg_class (GET_MODE (subst),
1536 MEM_ADDR_SPACE (subst),
1537 ADDRESS, SCRATCH)][0]],
1538 MEM_ADDR_SPACE (subst))))
1540 /* If we change the address for a paradoxical subreg of memory, the
1541 new address might violate the necessary alignment or the access
1542 might be slow; take this into consideration. We need not worry
1543 about accesses beyond allocated memory for paradoxical memory
1544 subregs as we don't substitute such equiv memory (see processing
1545 equivalences in function lra_constraints) and because for spilled
1546 pseudos we allocate stack memory enough for the biggest
1547 corresponding paradoxical subreg.
1549 However, do not blindly simplify a (subreg (mem ...)) for
1550 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1551 data into a register when the inner is narrower than outer or
1552 missing important data from memory when the inner is wider than
1553 outer. This rule only applies to modes that are no wider than
1554 a word. */
1555 if (!(GET_MODE_PRECISION (mode) != GET_MODE_PRECISION (innermode)
1556 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
1557 && GET_MODE_SIZE (innermode) <= UNITS_PER_WORD
1558 && WORD_REGISTER_OPERATIONS)
1559 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1560 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (subst)))
1561 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1562 && SLOW_UNALIGNED_ACCESS (innermode, MEM_ALIGN (reg)))))
1563 return true;
1565 *curr_id->operand_loc[nop] = operand;
1567 /* But if the address was not valid, we cannot reload the MEM without
1568 reloading the address first. */
1569 if (!addr_was_valid)
1570 process_address (nop, false, &before, &after);
1572 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1573 enum reg_class rclass
1574 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1575 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1576 reg, rclass, TRUE, "slow mem", &new_reg))
1578 bool insert_before, insert_after;
1579 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1581 insert_before = (type != OP_OUT
1582 || GET_MODE_SIZE (innermode)
1583 > GET_MODE_SIZE (mode));
1584 insert_after = type != OP_IN;
1585 insert_move_for_subreg (insert_before ? &before : NULL,
1586 insert_after ? &after : NULL,
1587 reg, new_reg);
1589 SUBREG_REG (operand) = new_reg;
1591 /* Convert to MODE. */
1592 reg = operand;
1593 rclass
1594 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1595 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1596 rclass, TRUE, "slow mem", &new_reg))
1598 bool insert_before, insert_after;
1599 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1601 insert_before = type != OP_OUT;
1602 insert_after = type != OP_IN;
1603 insert_move_for_subreg (insert_before ? &before : NULL,
1604 insert_after ? &after : NULL,
1605 reg, new_reg);
1607 *curr_id->operand_loc[nop] = new_reg;
1608 lra_process_new_insns (curr_insn, before, after,
1609 "Inserting slow mem reload");
1610 return true;
1613 /* If the address was valid and became invalid, prefer to reload
1614 the memory. Typical case is when the index scale should
1615 correspond the memory. */
1616 *curr_id->operand_loc[nop] = operand;
1617 /* Do not return false here as the MEM_P (reg) will be processed
1618 later in this function. */
1620 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1622 alter_subreg (curr_id->operand_loc[nop], false);
1623 return true;
1625 else if (CONSTANT_P (reg))
1627 /* Try to simplify subreg of constant. It is usually result of
1628 equivalence substitution. */
1629 if (innermode == VOIDmode
1630 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1631 innermode = curr_static_id->operand[nop].mode;
1632 if ((new_reg = simplify_subreg (mode, reg, innermode,
1633 SUBREG_BYTE (operand))) != NULL_RTX)
1635 *curr_id->operand_loc[nop] = new_reg;
1636 return true;
1639 /* Put constant into memory when we have mixed modes. It generates
1640 a better code in most cases as it does not need a secondary
1641 reload memory. It also prevents LRA looping when LRA is using
1642 secondary reload memory again and again. */
1643 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1644 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1646 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1647 alter_subreg (curr_id->operand_loc[nop], false);
1648 return true;
1650 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1651 if there may be a problem accessing OPERAND in the outer
1652 mode. */
1653 if ((REG_P (reg)
1654 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1655 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1656 /* Don't reload paradoxical subregs because we could be looping
1657 having repeatedly final regno out of hard regs range. */
1658 && (hard_regno_nregs[hard_regno][innermode]
1659 >= hard_regno_nregs[hard_regno][mode])
1660 && simplify_subreg_regno (hard_regno, innermode,
1661 SUBREG_BYTE (operand), mode) < 0
1662 /* Don't reload subreg for matching reload. It is actually
1663 valid subreg in LRA. */
1664 && ! LRA_SUBREG_P (operand))
1665 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1667 enum reg_class rclass;
1669 if (REG_P (reg))
1670 /* There is a big probability that we will get the same class
1671 for the new pseudo and we will get the same insn which
1672 means infinite looping. So spill the new pseudo. */
1673 rclass = NO_REGS;
1674 else
1675 /* The class will be defined later in curr_insn_transform. */
1676 rclass
1677 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1679 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1680 rclass, TRUE, "subreg reg", &new_reg))
1682 bool insert_before, insert_after;
1683 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1685 insert_before = (type != OP_OUT
1686 || GET_MODE_SIZE (innermode) > GET_MODE_SIZE (mode));
1687 insert_after = (type != OP_IN);
1688 insert_move_for_subreg (insert_before ? &before : NULL,
1689 insert_after ? &after : NULL,
1690 reg, new_reg);
1692 SUBREG_REG (operand) = new_reg;
1693 lra_process_new_insns (curr_insn, before, after,
1694 "Inserting subreg reload");
1695 return true;
1697 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1698 IRA allocates hardreg to the inner pseudo reg according to its mode
1699 instead of the outermode, so the size of the hardreg may not be enough
1700 to contain the outermode operand, in that case we may need to insert
1701 reload for the reg. For the following two types of paradoxical subreg,
1702 we need to insert reload:
1703 1. If the op_type is OP_IN, and the hardreg could not be paired with
1704 other hardreg to contain the outermode operand
1705 (checked by in_hard_reg_set_p), we need to insert the reload.
1706 2. If the op_type is OP_OUT or OP_INOUT.
1708 Here is a paradoxical subreg example showing how the reload is generated:
1710 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1711 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1713 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1714 here, if reg107 is assigned to hardreg R15, because R15 is the last
1715 hardreg, compiler cannot find another hardreg to pair with R15 to
1716 contain TImode data. So we insert a TImode reload reg180 for it.
1717 After reload is inserted:
1719 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1720 (reg:DI 107 [ __comp ])) -1
1721 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1722 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1724 Two reload hard registers will be allocated to reg180 to save TImode data
1725 in LRA_assign. */
1726 else if (REG_P (reg)
1727 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1728 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1729 && (hard_regno_nregs[hard_regno][innermode]
1730 < hard_regno_nregs[hard_regno][mode])
1731 && (regclass = lra_get_allocno_class (REGNO (reg)))
1732 && (type != OP_IN
1733 || !in_hard_reg_set_p (reg_class_contents[regclass],
1734 mode, hard_regno)))
1736 /* The class will be defined later in curr_insn_transform. */
1737 enum reg_class rclass
1738 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1740 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1741 rclass, TRUE, "paradoxical subreg", &new_reg))
1743 rtx subreg;
1744 bool insert_before, insert_after;
1746 PUT_MODE (new_reg, mode);
1747 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1748 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1750 insert_before = (type != OP_OUT);
1751 insert_after = (type != OP_IN);
1752 insert_move_for_subreg (insert_before ? &before : NULL,
1753 insert_after ? &after : NULL,
1754 reg, subreg);
1756 SUBREG_REG (operand) = new_reg;
1757 lra_process_new_insns (curr_insn, before, after,
1758 "Inserting paradoxical subreg reload");
1759 return true;
1761 return false;
1764 /* Return TRUE if X refers for a hard register from SET. */
1765 static bool
1766 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1768 int i, j, x_hard_regno;
1769 machine_mode mode;
1770 const char *fmt;
1771 enum rtx_code code;
1773 if (x == NULL_RTX)
1774 return false;
1775 code = GET_CODE (x);
1776 mode = GET_MODE (x);
1777 if (code == SUBREG)
1779 x = SUBREG_REG (x);
1780 code = GET_CODE (x);
1781 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1782 mode = GET_MODE (x);
1785 if (REG_P (x))
1787 x_hard_regno = get_hard_regno (x, true);
1788 return (x_hard_regno >= 0
1789 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1791 if (MEM_P (x))
1793 struct address_info ad;
1795 decompose_mem_address (&ad, x);
1796 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1797 return true;
1798 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1799 return true;
1801 fmt = GET_RTX_FORMAT (code);
1802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1804 if (fmt[i] == 'e')
1806 if (uses_hard_regs_p (XEXP (x, i), set))
1807 return true;
1809 else if (fmt[i] == 'E')
1811 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1812 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1813 return true;
1816 return false;
1819 /* Return true if OP is a spilled pseudo. */
1820 static inline bool
1821 spilled_pseudo_p (rtx op)
1823 return (REG_P (op)
1824 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1827 /* Return true if X is a general constant. */
1828 static inline bool
1829 general_constant_p (rtx x)
1831 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1834 static bool
1835 reg_in_class_p (rtx reg, enum reg_class cl)
1837 if (cl == NO_REGS)
1838 return get_reg_class (REGNO (reg)) == NO_REGS;
1839 return in_class_p (reg, cl, NULL);
1842 /* Return true if SET of RCLASS contains no hard regs which can be
1843 used in MODE. */
1844 static bool
1845 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1846 HARD_REG_SET &set,
1847 machine_mode mode)
1849 HARD_REG_SET temp;
1851 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1852 COPY_HARD_REG_SET (temp, set);
1853 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1854 return (hard_reg_set_subset_p
1855 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1859 /* Used to check validity info about small class input operands. It
1860 should be incremented at start of processing an insn
1861 alternative. */
1862 static unsigned int curr_small_class_check = 0;
1864 /* Update number of used inputs of class OP_CLASS for operand NOP.
1865 Return true if we have more such class operands than the number of
1866 available regs. */
1867 static bool
1868 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1870 static unsigned int small_class_check[LIM_REG_CLASSES];
1871 static int small_class_input_nums[LIM_REG_CLASSES];
1873 if (SMALL_REGISTER_CLASS_P (op_class)
1874 /* We are interesting in classes became small because of fixing
1875 some hard regs, e.g. by an user through GCC options. */
1876 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1877 ira_no_alloc_regs)
1878 && (curr_static_id->operand[nop].type != OP_OUT
1879 || curr_static_id->operand[nop].early_clobber))
1881 if (small_class_check[op_class] == curr_small_class_check)
1882 small_class_input_nums[op_class]++;
1883 else
1885 small_class_check[op_class] = curr_small_class_check;
1886 small_class_input_nums[op_class] = 1;
1888 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1889 return true;
1891 return false;
1894 /* Major function to choose the current insn alternative and what
1895 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1896 negative we should consider only this alternative. Return false if
1897 we can not choose the alternative or find how to reload the
1898 operands. */
1899 static bool
1900 process_alt_operands (int only_alternative)
1902 bool ok_p = false;
1903 int nop, overall, nalt;
1904 int n_alternatives = curr_static_id->n_alternatives;
1905 int n_operands = curr_static_id->n_operands;
1906 /* LOSERS counts the operands that don't fit this alternative and
1907 would require loading. */
1908 int losers;
1909 int addr_losers;
1910 /* REJECT is a count of how undesirable this alternative says it is
1911 if any reloading is required. If the alternative matches exactly
1912 then REJECT is ignored, but otherwise it gets this much counted
1913 against it in addition to the reloading needed. */
1914 int reject;
1915 /* This is defined by '!' or '?' alternative constraint and added to
1916 reject. But in some cases it can be ignored. */
1917 int static_reject;
1918 int op_reject;
1919 /* The number of elements in the following array. */
1920 int early_clobbered_regs_num;
1921 /* Numbers of operands which are early clobber registers. */
1922 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1923 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1924 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1925 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1926 bool curr_alt_win[MAX_RECOG_OPERANDS];
1927 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1928 int curr_alt_matches[MAX_RECOG_OPERANDS];
1929 /* The number of elements in the following array. */
1930 int curr_alt_dont_inherit_ops_num;
1931 /* Numbers of operands whose reload pseudos should not be inherited. */
1932 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1933 rtx op;
1934 /* The register when the operand is a subreg of register, otherwise the
1935 operand itself. */
1936 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1937 /* The register if the operand is a register or subreg of register,
1938 otherwise NULL. */
1939 rtx operand_reg[MAX_RECOG_OPERANDS];
1940 int hard_regno[MAX_RECOG_OPERANDS];
1941 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1942 int reload_nregs, reload_sum;
1943 bool costly_p;
1944 enum reg_class cl;
1946 /* Calculate some data common for all alternatives to speed up the
1947 function. */
1948 for (nop = 0; nop < n_operands; nop++)
1950 rtx reg;
1952 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1953 /* The real hard regno of the operand after the allocation. */
1954 hard_regno[nop] = get_hard_regno (op, true);
1956 operand_reg[nop] = reg = op;
1957 biggest_mode[nop] = GET_MODE (op);
1958 if (GET_CODE (op) == SUBREG)
1960 operand_reg[nop] = reg = SUBREG_REG (op);
1961 if (GET_MODE_SIZE (biggest_mode[nop])
1962 < GET_MODE_SIZE (GET_MODE (reg)))
1963 biggest_mode[nop] = GET_MODE (reg);
1965 if (! REG_P (reg))
1966 operand_reg[nop] = NULL_RTX;
1967 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1968 || ((int) REGNO (reg)
1969 == lra_get_elimination_hard_regno (REGNO (reg))))
1970 no_subreg_reg_operand[nop] = reg;
1971 else
1972 operand_reg[nop] = no_subreg_reg_operand[nop]
1973 /* Just use natural mode for elimination result. It should
1974 be enough for extra constraints hooks. */
1975 = regno_reg_rtx[hard_regno[nop]];
1978 /* The constraints are made of several alternatives. Each operand's
1979 constraint looks like foo,bar,... with commas separating the
1980 alternatives. The first alternatives for all operands go
1981 together, the second alternatives go together, etc.
1983 First loop over alternatives. */
1984 alternative_mask preferred = curr_id->preferred_alternatives;
1985 if (only_alternative >= 0)
1986 preferred &= ALTERNATIVE_BIT (only_alternative);
1988 for (nalt = 0; nalt < n_alternatives; nalt++)
1990 /* Loop over operands for one constraint alternative. */
1991 if (!TEST_BIT (preferred, nalt))
1992 continue;
1994 curr_small_class_check++;
1995 overall = losers = addr_losers = 0;
1996 static_reject = reject = reload_nregs = reload_sum = 0;
1997 for (nop = 0; nop < n_operands; nop++)
1999 int inc = (curr_static_id
2000 ->operand_alternative[nalt * n_operands + nop].reject);
2001 if (lra_dump_file != NULL && inc != 0)
2002 fprintf (lra_dump_file,
2003 " Staticly defined alt reject+=%d\n", inc);
2004 static_reject += inc;
2006 reject += static_reject;
2007 early_clobbered_regs_num = 0;
2009 for (nop = 0; nop < n_operands; nop++)
2011 const char *p;
2012 char *end;
2013 int len, c, m, i, opalt_num, this_alternative_matches;
2014 bool win, did_match, offmemok, early_clobber_p;
2015 /* false => this operand can be reloaded somehow for this
2016 alternative. */
2017 bool badop;
2018 /* true => this operand can be reloaded if the alternative
2019 allows regs. */
2020 bool winreg;
2021 /* True if a constant forced into memory would be OK for
2022 this operand. */
2023 bool constmemok;
2024 enum reg_class this_alternative, this_costly_alternative;
2025 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2026 bool this_alternative_match_win, this_alternative_win;
2027 bool this_alternative_offmemok;
2028 bool scratch_p;
2029 machine_mode mode;
2030 enum constraint_num cn;
2032 opalt_num = nalt * n_operands + nop;
2033 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2035 /* Fast track for no constraints at all. */
2036 curr_alt[nop] = NO_REGS;
2037 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2038 curr_alt_win[nop] = true;
2039 curr_alt_match_win[nop] = false;
2040 curr_alt_offmemok[nop] = false;
2041 curr_alt_matches[nop] = -1;
2042 continue;
2045 op = no_subreg_reg_operand[nop];
2046 mode = curr_operand_mode[nop];
2048 win = did_match = winreg = offmemok = constmemok = false;
2049 badop = true;
2051 early_clobber_p = false;
2052 p = curr_static_id->operand_alternative[opalt_num].constraint;
2054 this_costly_alternative = this_alternative = NO_REGS;
2055 /* We update set of possible hard regs besides its class
2056 because reg class might be inaccurate. For example,
2057 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2058 is translated in HI_REGS because classes are merged by
2059 pairs and there is no accurate intermediate class. */
2060 CLEAR_HARD_REG_SET (this_alternative_set);
2061 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2062 this_alternative_win = false;
2063 this_alternative_match_win = false;
2064 this_alternative_offmemok = false;
2065 this_alternative_matches = -1;
2067 /* An empty constraint should be excluded by the fast
2068 track. */
2069 lra_assert (*p != 0 && *p != ',');
2071 op_reject = 0;
2072 /* Scan this alternative's specs for this operand; set WIN
2073 if the operand fits any letter in this alternative.
2074 Otherwise, clear BADOP if this operand could fit some
2075 letter after reloads, or set WINREG if this operand could
2076 fit after reloads provided the constraint allows some
2077 registers. */
2078 costly_p = false;
2081 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2083 case '\0':
2084 len = 0;
2085 break;
2086 case ',':
2087 c = '\0';
2088 break;
2090 case '&':
2091 early_clobber_p = true;
2092 break;
2094 case '$':
2095 op_reject += LRA_MAX_REJECT;
2096 break;
2097 case '^':
2098 op_reject += LRA_LOSER_COST_FACTOR;
2099 break;
2101 case '#':
2102 /* Ignore rest of this alternative. */
2103 c = '\0';
2104 break;
2106 case '0': case '1': case '2': case '3': case '4':
2107 case '5': case '6': case '7': case '8': case '9':
2109 int m_hregno;
2110 bool match_p;
2112 m = strtoul (p, &end, 10);
2113 p = end;
2114 len = 0;
2115 lra_assert (nop > m);
2117 this_alternative_matches = m;
2118 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2119 /* We are supposed to match a previous operand.
2120 If we do, we win if that one did. If we do
2121 not, count both of the operands as losers.
2122 (This is too conservative, since most of the
2123 time only a single reload insn will be needed
2124 to make the two operands win. As a result,
2125 this alternative may be rejected when it is
2126 actually desirable.) */
2127 match_p = false;
2128 if (operands_match_p (*curr_id->operand_loc[nop],
2129 *curr_id->operand_loc[m], m_hregno))
2131 /* We should reject matching of an early
2132 clobber operand if the matching operand is
2133 not dying in the insn. */
2134 if (! curr_static_id->operand[m].early_clobber
2135 || operand_reg[nop] == NULL_RTX
2136 || (find_regno_note (curr_insn, REG_DEAD,
2137 REGNO (op))
2138 || REGNO (op) == REGNO (operand_reg[m])))
2139 match_p = true;
2141 if (match_p)
2143 /* If we are matching a non-offsettable
2144 address where an offsettable address was
2145 expected, then we must reject this
2146 combination, because we can't reload
2147 it. */
2148 if (curr_alt_offmemok[m]
2149 && MEM_P (*curr_id->operand_loc[m])
2150 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2151 continue;
2153 else
2155 /* Operands don't match. Both operands must
2156 allow a reload register, otherwise we
2157 cannot make them match. */
2158 if (curr_alt[m] == NO_REGS)
2159 break;
2160 /* Retroactively mark the operand we had to
2161 match as a loser, if it wasn't already and
2162 it wasn't matched to a register constraint
2163 (e.g it might be matched by memory). */
2164 if (curr_alt_win[m]
2165 && (operand_reg[m] == NULL_RTX
2166 || hard_regno[m] < 0))
2168 losers++;
2169 reload_nregs
2170 += (ira_reg_class_max_nregs[curr_alt[m]]
2171 [GET_MODE (*curr_id->operand_loc[m])]);
2174 /* Prefer matching earlyclobber alternative as
2175 it results in less hard regs required for
2176 the insn than a non-matching earlyclobber
2177 alternative. */
2178 if (curr_static_id->operand[m].early_clobber)
2180 if (lra_dump_file != NULL)
2181 fprintf
2182 (lra_dump_file,
2183 " %d Matching earlyclobber alt:"
2184 " reject--\n",
2185 nop);
2186 reject--;
2188 /* Otherwise we prefer no matching
2189 alternatives because it gives more freedom
2190 in RA. */
2191 else if (operand_reg[nop] == NULL_RTX
2192 || (find_regno_note (curr_insn, REG_DEAD,
2193 REGNO (operand_reg[nop]))
2194 == NULL_RTX))
2196 if (lra_dump_file != NULL)
2197 fprintf
2198 (lra_dump_file,
2199 " %d Matching alt: reject+=2\n",
2200 nop);
2201 reject += 2;
2204 /* If we have to reload this operand and some
2205 previous operand also had to match the same
2206 thing as this operand, we don't know how to do
2207 that. */
2208 if (!match_p || !curr_alt_win[m])
2210 for (i = 0; i < nop; i++)
2211 if (curr_alt_matches[i] == m)
2212 break;
2213 if (i < nop)
2214 break;
2216 else
2217 did_match = true;
2219 /* This can be fixed with reloads if the operand
2220 we are supposed to match can be fixed with
2221 reloads. */
2222 badop = false;
2223 this_alternative = curr_alt[m];
2224 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2225 winreg = this_alternative != NO_REGS;
2226 break;
2229 case 'g':
2230 if (MEM_P (op)
2231 || general_constant_p (op)
2232 || spilled_pseudo_p (op))
2233 win = true;
2234 cl = GENERAL_REGS;
2235 goto reg;
2237 default:
2238 cn = lookup_constraint (p);
2239 switch (get_constraint_type (cn))
2241 case CT_REGISTER:
2242 cl = reg_class_for_constraint (cn);
2243 if (cl != NO_REGS)
2244 goto reg;
2245 break;
2247 case CT_CONST_INT:
2248 if (CONST_INT_P (op)
2249 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2250 win = true;
2251 break;
2253 case CT_MEMORY:
2254 if (MEM_P (op)
2255 && satisfies_memory_constraint_p (op, cn))
2256 win = true;
2257 else if (spilled_pseudo_p (op))
2258 win = true;
2260 /* If we didn't already win, we can reload constants
2261 via force_const_mem or put the pseudo value into
2262 memory, or make other memory by reloading the
2263 address like for 'o'. */
2264 if (CONST_POOL_OK_P (mode, op)
2265 || MEM_P (op) || REG_P (op)
2266 /* We can restore the equiv insn by a
2267 reload. */
2268 || equiv_substition_p[nop])
2269 badop = false;
2270 constmemok = true;
2271 offmemok = true;
2272 break;
2274 case CT_ADDRESS:
2275 /* If we didn't already win, we can reload the address
2276 into a base register. */
2277 if (satisfies_address_constraint_p (op, cn))
2278 win = true;
2279 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2280 ADDRESS, SCRATCH);
2281 badop = false;
2282 goto reg;
2284 case CT_FIXED_FORM:
2285 if (constraint_satisfied_p (op, cn))
2286 win = true;
2287 break;
2289 case CT_SPECIAL_MEMORY:
2290 if (MEM_P (op)
2291 && satisfies_memory_constraint_p (op, cn))
2292 win = true;
2293 else if (spilled_pseudo_p (op))
2294 win = true;
2295 break;
2297 break;
2299 reg:
2300 this_alternative = reg_class_subunion[this_alternative][cl];
2301 IOR_HARD_REG_SET (this_alternative_set,
2302 reg_class_contents[cl]);
2303 if (costly_p)
2305 this_costly_alternative
2306 = reg_class_subunion[this_costly_alternative][cl];
2307 IOR_HARD_REG_SET (this_costly_alternative_set,
2308 reg_class_contents[cl]);
2310 if (mode == BLKmode)
2311 break;
2312 winreg = true;
2313 if (REG_P (op))
2315 if (hard_regno[nop] >= 0
2316 && in_hard_reg_set_p (this_alternative_set,
2317 mode, hard_regno[nop]))
2318 win = true;
2319 else if (hard_regno[nop] < 0
2320 && in_class_p (op, this_alternative, NULL))
2321 win = true;
2323 break;
2325 if (c != ' ' && c != '\t')
2326 costly_p = c == '*';
2328 while ((p += len), c);
2330 scratch_p = (operand_reg[nop] != NULL_RTX
2331 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2332 /* Record which operands fit this alternative. */
2333 if (win)
2335 this_alternative_win = true;
2336 if (operand_reg[nop] != NULL_RTX)
2338 if (hard_regno[nop] >= 0)
2340 if (in_hard_reg_set_p (this_costly_alternative_set,
2341 mode, hard_regno[nop]))
2343 if (lra_dump_file != NULL)
2344 fprintf (lra_dump_file,
2345 " %d Costly set: reject++\n",
2346 nop);
2347 reject++;
2350 else
2352 /* Prefer won reg to spilled pseudo under other
2353 equal conditions for possibe inheritance. */
2354 if (! scratch_p)
2356 if (lra_dump_file != NULL)
2357 fprintf
2358 (lra_dump_file,
2359 " %d Non pseudo reload: reject++\n",
2360 nop);
2361 reject++;
2363 if (in_class_p (operand_reg[nop],
2364 this_costly_alternative, NULL))
2366 if (lra_dump_file != NULL)
2367 fprintf
2368 (lra_dump_file,
2369 " %d Non pseudo costly reload:"
2370 " reject++\n",
2371 nop);
2372 reject++;
2375 /* We simulate the behavior of old reload here.
2376 Although scratches need hard registers and it
2377 might result in spilling other pseudos, no reload
2378 insns are generated for the scratches. So it
2379 might cost something but probably less than old
2380 reload pass believes. */
2381 if (scratch_p)
2383 if (lra_dump_file != NULL)
2384 fprintf (lra_dump_file,
2385 " %d Scratch win: reject+=2\n",
2386 nop);
2387 reject += 2;
2391 else if (did_match)
2392 this_alternative_match_win = true;
2393 else
2395 int const_to_mem = 0;
2396 bool no_regs_p;
2398 reject += op_reject;
2399 /* Never do output reload of stack pointer. It makes
2400 impossible to do elimination when SP is changed in
2401 RTL. */
2402 if (op == stack_pointer_rtx && ! frame_pointer_needed
2403 && curr_static_id->operand[nop].type != OP_IN)
2404 goto fail;
2406 /* If this alternative asks for a specific reg class, see if there
2407 is at least one allocatable register in that class. */
2408 no_regs_p
2409 = (this_alternative == NO_REGS
2410 || (hard_reg_set_subset_p
2411 (reg_class_contents[this_alternative],
2412 lra_no_alloc_regs)));
2414 /* For asms, verify that the class for this alternative is possible
2415 for the mode that is specified. */
2416 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2418 int i;
2419 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2420 if (HARD_REGNO_MODE_OK (i, mode)
2421 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2422 mode, i))
2423 break;
2424 if (i == FIRST_PSEUDO_REGISTER)
2425 winreg = false;
2428 /* If this operand accepts a register, and if the
2429 register class has at least one allocatable register,
2430 then this operand can be reloaded. */
2431 if (winreg && !no_regs_p)
2432 badop = false;
2434 if (badop)
2436 if (lra_dump_file != NULL)
2437 fprintf (lra_dump_file,
2438 " alt=%d: Bad operand -- refuse\n",
2439 nalt);
2440 goto fail;
2443 if (this_alternative != NO_REGS)
2445 HARD_REG_SET available_regs;
2447 COPY_HARD_REG_SET (available_regs,
2448 reg_class_contents[this_alternative]);
2449 AND_COMPL_HARD_REG_SET
2450 (available_regs,
2451 ira_prohibited_class_mode_regs[this_alternative][mode]);
2452 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2453 if (hard_reg_set_empty_p (available_regs))
2455 /* There are no hard regs holding a value of given
2456 mode. */
2457 if (offmemok)
2459 this_alternative = NO_REGS;
2460 if (lra_dump_file != NULL)
2461 fprintf (lra_dump_file,
2462 " %d Using memory because of"
2463 " a bad mode: reject+=2\n",
2464 nop);
2465 reject += 2;
2467 else
2469 if (lra_dump_file != NULL)
2470 fprintf (lra_dump_file,
2471 " alt=%d: Wrong mode -- refuse\n",
2472 nalt);
2473 goto fail;
2478 /* If not assigned pseudo has a class which a subset of
2479 required reg class, it is a less costly alternative
2480 as the pseudo still can get a hard reg of necessary
2481 class. */
2482 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2483 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2484 && ira_class_subset_p[this_alternative][cl])
2486 if (lra_dump_file != NULL)
2487 fprintf
2488 (lra_dump_file,
2489 " %d Super set class reg: reject-=3\n", nop);
2490 reject -= 3;
2493 this_alternative_offmemok = offmemok;
2494 if (this_costly_alternative != NO_REGS)
2496 if (lra_dump_file != NULL)
2497 fprintf (lra_dump_file,
2498 " %d Costly loser: reject++\n", nop);
2499 reject++;
2501 /* If the operand is dying, has a matching constraint,
2502 and satisfies constraints of the matched operand
2503 which failed to satisfy the own constraints, most probably
2504 the reload for this operand will be gone. */
2505 if (this_alternative_matches >= 0
2506 && !curr_alt_win[this_alternative_matches]
2507 && REG_P (op)
2508 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2509 && (hard_regno[nop] >= 0
2510 ? in_hard_reg_set_p (this_alternative_set,
2511 mode, hard_regno[nop])
2512 : in_class_p (op, this_alternative, NULL)))
2514 if (lra_dump_file != NULL)
2515 fprintf
2516 (lra_dump_file,
2517 " %d Dying matched operand reload: reject++\n",
2518 nop);
2519 reject++;
2521 else
2523 /* Strict_low_part requires to reload the register
2524 not the sub-register. In this case we should
2525 check that a final reload hard reg can hold the
2526 value mode. */
2527 if (curr_static_id->operand[nop].strict_low
2528 && REG_P (op)
2529 && hard_regno[nop] < 0
2530 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2531 && ira_class_hard_regs_num[this_alternative] > 0
2532 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2533 [this_alternative][0],
2534 GET_MODE
2535 (*curr_id->operand_loc[nop])))
2537 if (lra_dump_file != NULL)
2538 fprintf
2539 (lra_dump_file,
2540 " alt=%d: Strict low subreg reload -- refuse\n",
2541 nalt);
2542 goto fail;
2544 losers++;
2546 if (operand_reg[nop] != NULL_RTX
2547 /* Output operands and matched input operands are
2548 not inherited. The following conditions do not
2549 exactly describe the previous statement but they
2550 are pretty close. */
2551 && curr_static_id->operand[nop].type != OP_OUT
2552 && (this_alternative_matches < 0
2553 || curr_static_id->operand[nop].type != OP_IN))
2555 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2556 (operand_reg[nop])]
2557 .last_reload);
2559 /* The value of reload_sum has sense only if we
2560 process insns in their order. It happens only on
2561 the first constraints sub-pass when we do most of
2562 reload work. */
2563 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2564 reload_sum += last_reload - bb_reload_num;
2566 /* If this is a constant that is reloaded into the
2567 desired class by copying it to memory first, count
2568 that as another reload. This is consistent with
2569 other code and is required to avoid choosing another
2570 alternative when the constant is moved into memory.
2571 Note that the test here is precisely the same as in
2572 the code below that calls force_const_mem. */
2573 if (CONST_POOL_OK_P (mode, op)
2574 && ((targetm.preferred_reload_class
2575 (op, this_alternative) == NO_REGS)
2576 || no_input_reloads_p))
2578 const_to_mem = 1;
2579 if (! no_regs_p)
2580 losers++;
2583 /* Alternative loses if it requires a type of reload not
2584 permitted for this insn. We can always reload
2585 objects with a REG_UNUSED note. */
2586 if ((curr_static_id->operand[nop].type != OP_IN
2587 && no_output_reloads_p
2588 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2589 || (curr_static_id->operand[nop].type != OP_OUT
2590 && no_input_reloads_p && ! const_to_mem)
2591 || (this_alternative_matches >= 0
2592 && (no_input_reloads_p
2593 || (no_output_reloads_p
2594 && (curr_static_id->operand
2595 [this_alternative_matches].type != OP_IN)
2596 && ! find_reg_note (curr_insn, REG_UNUSED,
2597 no_subreg_reg_operand
2598 [this_alternative_matches])))))
2600 if (lra_dump_file != NULL)
2601 fprintf
2602 (lra_dump_file,
2603 " alt=%d: No input/otput reload -- refuse\n",
2604 nalt);
2605 goto fail;
2608 /* Alternative loses if it required class pseudo can not
2609 hold value of required mode. Such insns can be
2610 described by insn definitions with mode iterators. */
2611 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2612 && ! hard_reg_set_empty_p (this_alternative_set)
2613 /* It is common practice for constraints to use a
2614 class which does not have actually enough regs to
2615 hold the value (e.g. x86 AREG for mode requiring
2616 more one general reg). Therefore we have 2
2617 conditions to check that the reload pseudo can
2618 not hold the mode value. */
2619 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2620 [this_alternative][0],
2621 GET_MODE (*curr_id->operand_loc[nop]))
2622 /* The above condition is not enough as the first
2623 reg in ira_class_hard_regs can be not aligned for
2624 multi-words mode values. */
2625 && (prohibited_class_reg_set_mode_p
2626 (this_alternative, this_alternative_set,
2627 GET_MODE (*curr_id->operand_loc[nop]))))
2629 if (lra_dump_file != NULL)
2630 fprintf (lra_dump_file,
2631 " alt=%d: reload pseudo for op %d "
2632 " can not hold the mode value -- refuse\n",
2633 nalt, nop);
2634 goto fail;
2637 /* Check strong discouragement of reload of non-constant
2638 into class THIS_ALTERNATIVE. */
2639 if (! CONSTANT_P (op) && ! no_regs_p
2640 && (targetm.preferred_reload_class
2641 (op, this_alternative) == NO_REGS
2642 || (curr_static_id->operand[nop].type == OP_OUT
2643 && (targetm.preferred_output_reload_class
2644 (op, this_alternative) == NO_REGS))))
2646 if (lra_dump_file != NULL)
2647 fprintf (lra_dump_file,
2648 " %d Non-prefered reload: reject+=%d\n",
2649 nop, LRA_MAX_REJECT);
2650 reject += LRA_MAX_REJECT;
2653 if (! (MEM_P (op) && offmemok)
2654 && ! (const_to_mem && constmemok))
2656 /* We prefer to reload pseudos over reloading other
2657 things, since such reloads may be able to be
2658 eliminated later. So bump REJECT in other cases.
2659 Don't do this in the case where we are forcing a
2660 constant into memory and it will then win since
2661 we don't want to have a different alternative
2662 match then. */
2663 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2665 if (lra_dump_file != NULL)
2666 fprintf
2667 (lra_dump_file,
2668 " %d Non-pseudo reload: reject+=2\n",
2669 nop);
2670 reject += 2;
2673 if (! no_regs_p)
2674 reload_nregs
2675 += ira_reg_class_max_nregs[this_alternative][mode];
2677 if (SMALL_REGISTER_CLASS_P (this_alternative))
2679 if (lra_dump_file != NULL)
2680 fprintf
2681 (lra_dump_file,
2682 " %d Small class reload: reject+=%d\n",
2683 nop, LRA_LOSER_COST_FACTOR / 2);
2684 reject += LRA_LOSER_COST_FACTOR / 2;
2688 /* We are trying to spill pseudo into memory. It is
2689 usually more costly than moving to a hard register
2690 although it might takes the same number of
2691 reloads.
2693 Non-pseudo spill may happen also. Suppose a target allows both
2694 register and memory in the operand constraint alternatives,
2695 then it's typical that an eliminable register has a substition
2696 of "base + offset" which can either be reloaded by a simple
2697 "new_reg <= base + offset" which will match the register
2698 constraint, or a similar reg addition followed by further spill
2699 to and reload from memory which will match the memory
2700 constraint, but this memory spill will be much more costly
2701 usually.
2703 Code below increases the reject for both pseudo and non-pseudo
2704 spill. */
2705 if (no_regs_p
2706 && !(MEM_P (op) && offmemok)
2707 && !(REG_P (op) && hard_regno[nop] < 0))
2709 if (lra_dump_file != NULL)
2710 fprintf
2711 (lra_dump_file,
2712 " %d Spill %spseudo into memory: reject+=3\n",
2713 nop, REG_P (op) ? "" : "Non-");
2714 reject += 3;
2715 if (VECTOR_MODE_P (mode))
2717 /* Spilling vectors into memory is usually more
2718 costly as they contain big values. */
2719 if (lra_dump_file != NULL)
2720 fprintf
2721 (lra_dump_file,
2722 " %d Spill vector pseudo: reject+=2\n",
2723 nop);
2724 reject += 2;
2728 /* When we use an operand requiring memory in given
2729 alternative, the insn should write *and* read the
2730 value to/from memory it is costly in comparison with
2731 an insn alternative which does not use memory
2732 (e.g. register or immediate operand). We exclude
2733 memory operand for such case as we can satisfy the
2734 memory constraints by reloading address. */
2735 if (no_regs_p && offmemok && !MEM_P (op))
2737 if (lra_dump_file != NULL)
2738 fprintf
2739 (lra_dump_file,
2740 " Using memory insn operand %d: reject+=3\n",
2741 nop);
2742 reject += 3;
2745 #ifdef SECONDARY_MEMORY_NEEDED
2746 /* If reload requires moving value through secondary
2747 memory, it will need one more insn at least. */
2748 if (this_alternative != NO_REGS
2749 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2750 && ((curr_static_id->operand[nop].type != OP_OUT
2751 && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2752 GET_MODE (op)))
2753 || (curr_static_id->operand[nop].type != OP_IN
2754 && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2755 GET_MODE (op)))))
2756 losers++;
2757 #endif
2758 /* Input reloads can be inherited more often than output
2759 reloads can be removed, so penalize output
2760 reloads. */
2761 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2763 if (lra_dump_file != NULL)
2764 fprintf
2765 (lra_dump_file,
2766 " %d Non input pseudo reload: reject++\n",
2767 nop);
2768 reject++;
2771 if (MEM_P (op) && offmemok)
2772 addr_losers++;
2773 else if (curr_static_id->operand[nop].type == OP_INOUT)
2775 if (lra_dump_file != NULL)
2776 fprintf
2777 (lra_dump_file,
2778 " %d Input/Output reload: reject+=%d\n",
2779 nop, LRA_LOSER_COST_FACTOR);
2780 reject += LRA_LOSER_COST_FACTOR;
2784 if (early_clobber_p && ! scratch_p)
2786 if (lra_dump_file != NULL)
2787 fprintf (lra_dump_file,
2788 " %d Early clobber: reject++\n", nop);
2789 reject++;
2791 /* ??? We check early clobbers after processing all operands
2792 (see loop below) and there we update the costs more.
2793 Should we update the cost (may be approximately) here
2794 because of early clobber register reloads or it is a rare
2795 or non-important thing to be worth to do it. */
2796 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2797 - (addr_losers == losers ? static_reject : 0));
2798 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2800 if (lra_dump_file != NULL)
2801 fprintf (lra_dump_file,
2802 " alt=%d,overall=%d,losers=%d -- refuse\n",
2803 nalt, overall, losers);
2804 goto fail;
2807 if (update_and_check_small_class_inputs (nop, this_alternative))
2809 if (lra_dump_file != NULL)
2810 fprintf (lra_dump_file,
2811 " alt=%d, not enough small class regs -- refuse\n",
2812 nalt);
2813 goto fail;
2815 curr_alt[nop] = this_alternative;
2816 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2817 curr_alt_win[nop] = this_alternative_win;
2818 curr_alt_match_win[nop] = this_alternative_match_win;
2819 curr_alt_offmemok[nop] = this_alternative_offmemok;
2820 curr_alt_matches[nop] = this_alternative_matches;
2822 if (this_alternative_matches >= 0
2823 && !did_match && !this_alternative_win)
2824 curr_alt_win[this_alternative_matches] = false;
2826 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2827 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2830 if (curr_insn_set != NULL_RTX && n_operands == 2
2831 /* Prevent processing non-move insns. */
2832 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2833 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2834 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2835 && REG_P (no_subreg_reg_operand[0])
2836 && REG_P (no_subreg_reg_operand[1])
2837 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2838 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2839 || (! curr_alt_win[0] && curr_alt_win[1]
2840 && REG_P (no_subreg_reg_operand[1])
2841 /* Check that we reload memory not the memory
2842 address. */
2843 && ! (curr_alt_offmemok[0]
2844 && MEM_P (no_subreg_reg_operand[0]))
2845 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2846 || (curr_alt_win[0] && ! curr_alt_win[1]
2847 && REG_P (no_subreg_reg_operand[0])
2848 /* Check that we reload memory not the memory
2849 address. */
2850 && ! (curr_alt_offmemok[1]
2851 && MEM_P (no_subreg_reg_operand[1]))
2852 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2853 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2854 no_subreg_reg_operand[1])
2855 || (targetm.preferred_reload_class
2856 (no_subreg_reg_operand[1],
2857 (enum reg_class) curr_alt[1]) != NO_REGS))
2858 /* If it is a result of recent elimination in move
2859 insn we can transform it into an add still by
2860 using this alternative. */
2861 && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2863 /* We have a move insn and a new reload insn will be similar
2864 to the current insn. We should avoid such situation as
2865 it results in LRA cycling. */
2866 if (lra_dump_file != NULL)
2867 fprintf (lra_dump_file,
2868 " Cycle danger: overall += LRA_MAX_REJECT\n");
2869 overall += LRA_MAX_REJECT;
2871 ok_p = true;
2872 curr_alt_dont_inherit_ops_num = 0;
2873 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2875 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2876 HARD_REG_SET temp_set;
2878 i = early_clobbered_nops[nop];
2879 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2880 || hard_regno[i] < 0)
2881 continue;
2882 lra_assert (operand_reg[i] != NULL_RTX);
2883 clobbered_hard_regno = hard_regno[i];
2884 CLEAR_HARD_REG_SET (temp_set);
2885 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2886 first_conflict_j = last_conflict_j = -1;
2887 for (j = 0; j < n_operands; j++)
2888 if (j == i
2889 /* We don't want process insides of match_operator and
2890 match_parallel because otherwise we would process
2891 their operands once again generating a wrong
2892 code. */
2893 || curr_static_id->operand[j].is_operator)
2894 continue;
2895 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2896 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2897 continue;
2898 /* If we don't reload j-th operand, check conflicts. */
2899 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2900 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2902 if (first_conflict_j < 0)
2903 first_conflict_j = j;
2904 last_conflict_j = j;
2906 if (last_conflict_j < 0)
2907 continue;
2908 /* If earlyclobber operand conflicts with another
2909 non-matching operand which is actually the same register
2910 as the earlyclobber operand, it is better to reload the
2911 another operand as an operand matching the earlyclobber
2912 operand can be also the same. */
2913 if (first_conflict_j == last_conflict_j
2914 && operand_reg[last_conflict_j] != NULL_RTX
2915 && ! curr_alt_match_win[last_conflict_j]
2916 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2918 curr_alt_win[last_conflict_j] = false;
2919 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2920 = last_conflict_j;
2921 losers++;
2922 /* Early clobber was already reflected in REJECT. */
2923 lra_assert (reject > 0);
2924 if (lra_dump_file != NULL)
2925 fprintf
2926 (lra_dump_file,
2927 " %d Conflict early clobber reload: reject--\n",
2929 reject--;
2930 overall += LRA_LOSER_COST_FACTOR - 1;
2932 else
2934 /* We need to reload early clobbered register and the
2935 matched registers. */
2936 for (j = 0; j < n_operands; j++)
2937 if (curr_alt_matches[j] == i)
2939 curr_alt_match_win[j] = false;
2940 losers++;
2941 overall += LRA_LOSER_COST_FACTOR;
2943 if (! curr_alt_match_win[i])
2944 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2945 else
2947 /* Remember pseudos used for match reloads are never
2948 inherited. */
2949 lra_assert (curr_alt_matches[i] >= 0);
2950 curr_alt_win[curr_alt_matches[i]] = false;
2952 curr_alt_win[i] = curr_alt_match_win[i] = false;
2953 losers++;
2954 /* Early clobber was already reflected in REJECT. */
2955 lra_assert (reject > 0);
2956 if (lra_dump_file != NULL)
2957 fprintf
2958 (lra_dump_file,
2959 " %d Matched conflict early clobber reloads: "
2960 "reject--\n",
2962 reject--;
2963 overall += LRA_LOSER_COST_FACTOR - 1;
2966 if (lra_dump_file != NULL)
2967 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2968 nalt, overall, losers, reload_nregs);
2970 /* If this alternative can be made to work by reloading, and it
2971 needs less reloading than the others checked so far, record
2972 it as the chosen goal for reloading. */
2973 if ((best_losers != 0 && losers == 0)
2974 || (((best_losers == 0 && losers == 0)
2975 || (best_losers != 0 && losers != 0))
2976 && (best_overall > overall
2977 || (best_overall == overall
2978 /* If the cost of the reloads is the same,
2979 prefer alternative which requires minimal
2980 number of reload regs. */
2981 && (reload_nregs < best_reload_nregs
2982 || (reload_nregs == best_reload_nregs
2983 && (best_reload_sum < reload_sum
2984 || (best_reload_sum == reload_sum
2985 && nalt < goal_alt_number))))))))
2987 for (nop = 0; nop < n_operands; nop++)
2989 goal_alt_win[nop] = curr_alt_win[nop];
2990 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2991 goal_alt_matches[nop] = curr_alt_matches[nop];
2992 goal_alt[nop] = curr_alt[nop];
2993 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2995 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2996 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2997 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2998 goal_alt_swapped = curr_swapped;
2999 best_overall = overall;
3000 best_losers = losers;
3001 best_reload_nregs = reload_nregs;
3002 best_reload_sum = reload_sum;
3003 goal_alt_number = nalt;
3005 if (losers == 0)
3006 /* Everything is satisfied. Do not process alternatives
3007 anymore. */
3008 break;
3009 fail:
3012 return ok_p;
3015 /* Make reload base reg from address AD. */
3016 static rtx
3017 base_to_reg (struct address_info *ad)
3019 enum reg_class cl;
3020 int code = -1;
3021 rtx new_inner = NULL_RTX;
3022 rtx new_reg = NULL_RTX;
3023 rtx_insn *insn;
3024 rtx_insn *last_insn = get_last_insn();
3026 lra_assert (ad->disp == ad->disp_term);
3027 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3028 get_index_code (ad));
3029 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3030 cl, "base");
3031 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3032 ad->disp_term == NULL
3033 ? const0_rtx
3034 : *ad->disp_term);
3035 if (!valid_address_p (ad->mode, new_inner, ad->as))
3036 return NULL_RTX;
3037 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3038 code = recog_memoized (insn);
3039 if (code < 0)
3041 delete_insns_since (last_insn);
3042 return NULL_RTX;
3045 return new_inner;
3048 /* Make reload base reg + disp from address AD. Return the new pseudo. */
3049 static rtx
3050 base_plus_disp_to_reg (struct address_info *ad)
3052 enum reg_class cl;
3053 rtx new_reg;
3055 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
3056 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3057 get_index_code (ad));
3058 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3059 cl, "base + disp");
3060 lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
3061 return new_reg;
3064 /* Make reload of index part of address AD. Return the new
3065 pseudo. */
3066 static rtx
3067 index_part_to_reg (struct address_info *ad)
3069 rtx new_reg;
3071 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3072 INDEX_REG_CLASS, "index term");
3073 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3074 GEN_INT (get_index_scale (ad)), new_reg, 1);
3075 return new_reg;
3078 /* Return true if we can add a displacement to address AD, even if that
3079 makes the address invalid. The fix-up code requires any new address
3080 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3081 static bool
3082 can_add_disp_p (struct address_info *ad)
3084 return (!ad->autoinc_p
3085 && ad->segment == NULL
3086 && ad->base == ad->base_term
3087 && ad->disp == ad->disp_term);
3090 /* Make equiv substitution in address AD. Return true if a substitution
3091 was made. */
3092 static bool
3093 equiv_address_substitution (struct address_info *ad)
3095 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3096 HOST_WIDE_INT disp, scale;
3097 bool change_p;
3099 base_term = strip_subreg (ad->base_term);
3100 if (base_term == NULL)
3101 base_reg = new_base_reg = NULL_RTX;
3102 else
3104 base_reg = *base_term;
3105 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3107 index_term = strip_subreg (ad->index_term);
3108 if (index_term == NULL)
3109 index_reg = new_index_reg = NULL_RTX;
3110 else
3112 index_reg = *index_term;
3113 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3115 if (base_reg == new_base_reg && index_reg == new_index_reg)
3116 return false;
3117 disp = 0;
3118 change_p = false;
3119 if (lra_dump_file != NULL)
3121 fprintf (lra_dump_file, "Changing address in insn %d ",
3122 INSN_UID (curr_insn));
3123 dump_value_slim (lra_dump_file, *ad->outer, 1);
3125 if (base_reg != new_base_reg)
3127 if (REG_P (new_base_reg))
3129 *base_term = new_base_reg;
3130 change_p = true;
3132 else if (GET_CODE (new_base_reg) == PLUS
3133 && REG_P (XEXP (new_base_reg, 0))
3134 && CONST_INT_P (XEXP (new_base_reg, 1))
3135 && can_add_disp_p (ad))
3137 disp += INTVAL (XEXP (new_base_reg, 1));
3138 *base_term = XEXP (new_base_reg, 0);
3139 change_p = true;
3141 if (ad->base_term2 != NULL)
3142 *ad->base_term2 = *ad->base_term;
3144 if (index_reg != new_index_reg)
3146 if (REG_P (new_index_reg))
3148 *index_term = new_index_reg;
3149 change_p = true;
3151 else if (GET_CODE (new_index_reg) == PLUS
3152 && REG_P (XEXP (new_index_reg, 0))
3153 && CONST_INT_P (XEXP (new_index_reg, 1))
3154 && can_add_disp_p (ad)
3155 && (scale = get_index_scale (ad)))
3157 disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
3158 *index_term = XEXP (new_index_reg, 0);
3159 change_p = true;
3162 if (disp != 0)
3164 if (ad->disp != NULL)
3165 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3166 else
3168 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3169 update_address (ad);
3171 change_p = true;
3173 if (lra_dump_file != NULL)
3175 if (! change_p)
3176 fprintf (lra_dump_file, " -- no change\n");
3177 else
3179 fprintf (lra_dump_file, " on equiv ");
3180 dump_value_slim (lra_dump_file, *ad->outer, 1);
3181 fprintf (lra_dump_file, "\n");
3184 return change_p;
3187 /* Major function to make reloads for an address in operand NOP or
3188 check its correctness (If CHECK_ONLY_P is true). The supported
3189 cases are:
3191 1) an address that existed before LRA started, at which point it
3192 must have been valid. These addresses are subject to elimination
3193 and may have become invalid due to the elimination offset being out
3194 of range.
3196 2) an address created by forcing a constant to memory
3197 (force_const_to_mem). The initial form of these addresses might
3198 not be valid, and it is this function's job to make them valid.
3200 3) a frame address formed from a register and a (possibly zero)
3201 constant offset. As above, these addresses might not be valid and
3202 this function must make them so.
3204 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3205 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3206 address. Return true for any RTL change.
3208 The function is a helper function which does not produce all
3209 transformations (when CHECK_ONLY_P is false) which can be
3210 necessary. It does just basic steps. To do all necessary
3211 transformations use function process_address. */
3212 static bool
3213 process_address_1 (int nop, bool check_only_p,
3214 rtx_insn **before, rtx_insn **after)
3216 struct address_info ad;
3217 rtx new_reg;
3218 HOST_WIDE_INT scale;
3219 rtx op = *curr_id->operand_loc[nop];
3220 const char *constraint = curr_static_id->operand[nop].constraint;
3221 enum constraint_num cn = lookup_constraint (constraint);
3222 bool change_p = false;
3224 if (MEM_P (op)
3225 && GET_MODE (op) == BLKmode
3226 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3227 return false;
3229 if (insn_extra_address_constraint (cn))
3230 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3231 /* Do not attempt to decompose arbitrary addresses generated by combine
3232 for asm operands with loose constraints, e.g 'X'. */
3233 else if (MEM_P (op)
3234 && !(get_constraint_type (cn) == CT_FIXED_FORM
3235 && constraint_satisfied_p (op, cn)))
3236 decompose_mem_address (&ad, op);
3237 else if (GET_CODE (op) == SUBREG
3238 && MEM_P (SUBREG_REG (op)))
3239 decompose_mem_address (&ad, SUBREG_REG (op));
3240 else
3241 return false;
3242 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3243 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3244 when INDEX_REG_CLASS is a single register class. */
3245 if (ad.base_term != NULL
3246 && ad.index_term != NULL
3247 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3248 && REG_P (*ad.base_term)
3249 && REG_P (*ad.index_term)
3250 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3251 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3253 std::swap (ad.base, ad.index);
3254 std::swap (ad.base_term, ad.index_term);
3256 if (! check_only_p)
3257 change_p = equiv_address_substitution (&ad);
3258 if (ad.base_term != NULL
3259 && (process_addr_reg
3260 (ad.base_term, check_only_p, before,
3261 (ad.autoinc_p
3262 && !(REG_P (*ad.base_term)
3263 && find_regno_note (curr_insn, REG_DEAD,
3264 REGNO (*ad.base_term)) != NULL_RTX)
3265 ? after : NULL),
3266 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3267 get_index_code (&ad)))))
3269 change_p = true;
3270 if (ad.base_term2 != NULL)
3271 *ad.base_term2 = *ad.base_term;
3273 if (ad.index_term != NULL
3274 && process_addr_reg (ad.index_term, check_only_p,
3275 before, NULL, INDEX_REG_CLASS))
3276 change_p = true;
3278 /* Target hooks sometimes don't treat extra-constraint addresses as
3279 legitimate address_operands, so handle them specially. */
3280 if (insn_extra_address_constraint (cn)
3281 && satisfies_address_constraint_p (&ad, cn))
3282 return change_p;
3284 if (check_only_p)
3285 return change_p;
3287 /* There are three cases where the shape of *AD.INNER may now be invalid:
3289 1) the original address was valid, but either elimination or
3290 equiv_address_substitution was applied and that made
3291 the address invalid.
3293 2) the address is an invalid symbolic address created by
3294 force_const_to_mem.
3296 3) the address is a frame address with an invalid offset.
3298 4) the address is a frame address with an invalid base.
3300 All these cases involve a non-autoinc address, so there is no
3301 point revalidating other types. */
3302 if (ad.autoinc_p || valid_address_p (&ad))
3303 return change_p;
3305 /* Any index existed before LRA started, so we can assume that the
3306 presence and shape of the index is valid. */
3307 push_to_sequence (*before);
3308 lra_assert (ad.disp == ad.disp_term);
3309 if (ad.base == NULL)
3311 if (ad.index == NULL)
3313 rtx_insn *insn;
3314 rtx_insn *last = get_last_insn ();
3315 int code = -1;
3316 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3317 SCRATCH, SCRATCH);
3318 rtx addr = *ad.inner;
3320 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3321 if (HAVE_lo_sum)
3323 /* addr => lo_sum (new_base, addr), case (2) above. */
3324 insn = emit_insn (gen_rtx_SET
3325 (new_reg,
3326 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3327 code = recog_memoized (insn);
3328 if (code >= 0)
3330 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3331 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3333 /* Try to put lo_sum into register. */
3334 insn = emit_insn (gen_rtx_SET
3335 (new_reg,
3336 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3337 code = recog_memoized (insn);
3338 if (code >= 0)
3340 *ad.inner = new_reg;
3341 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3343 *ad.inner = addr;
3344 code = -1;
3350 if (code < 0)
3351 delete_insns_since (last);
3354 if (code < 0)
3356 /* addr => new_base, case (2) above. */
3357 lra_emit_move (new_reg, addr);
3359 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3360 insn != NULL_RTX;
3361 insn = NEXT_INSN (insn))
3362 if (recog_memoized (insn) < 0)
3363 break;
3364 if (insn != NULL_RTX)
3366 /* Do nothing if we cannot generate right insns.
3367 This is analogous to reload pass behavior. */
3368 delete_insns_since (last);
3369 end_sequence ();
3370 return false;
3372 *ad.inner = new_reg;
3375 else
3377 /* index * scale + disp => new base + index * scale,
3378 case (1) above. */
3379 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3380 GET_CODE (*ad.index));
3382 lra_assert (INDEX_REG_CLASS != NO_REGS);
3383 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3384 lra_emit_move (new_reg, *ad.disp);
3385 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3386 new_reg, *ad.index);
3389 else if (ad.index == NULL)
3391 int regno;
3392 enum reg_class cl;
3393 rtx set;
3394 rtx_insn *insns, *last_insn;
3395 /* Try to reload base into register only if the base is invalid
3396 for the address but with valid offset, case (4) above. */
3397 start_sequence ();
3398 new_reg = base_to_reg (&ad);
3400 /* base + disp => new base, cases (1) and (3) above. */
3401 /* Another option would be to reload the displacement into an
3402 index register. However, postreload has code to optimize
3403 address reloads that have the same base and different
3404 displacements, so reloading into an index register would
3405 not necessarily be a win. */
3406 if (new_reg == NULL_RTX)
3407 new_reg = base_plus_disp_to_reg (&ad);
3408 insns = get_insns ();
3409 last_insn = get_last_insn ();
3410 /* If we generated at least two insns, try last insn source as
3411 an address. If we succeed, we generate one less insn. */
3412 if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
3413 && GET_CODE (SET_SRC (set)) == PLUS
3414 && REG_P (XEXP (SET_SRC (set), 0))
3415 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3417 *ad.inner = SET_SRC (set);
3418 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3420 *ad.base_term = XEXP (SET_SRC (set), 0);
3421 *ad.disp_term = XEXP (SET_SRC (set), 1);
3422 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3423 get_index_code (&ad));
3424 regno = REGNO (*ad.base_term);
3425 if (regno >= FIRST_PSEUDO_REGISTER
3426 && cl != lra_get_allocno_class (regno))
3427 lra_change_class (regno, cl, " Change to", true);
3428 new_reg = SET_SRC (set);
3429 delete_insns_since (PREV_INSN (last_insn));
3432 /* Try if target can split displacement into legitimite new disp
3433 and offset. If it's the case, we replace the last insn with
3434 insns for base + offset => new_reg and set new_reg + new disp
3435 to *ad.inner. */
3436 last_insn = get_last_insn ();
3437 if ((set = single_set (last_insn)) != NULL_RTX
3438 && GET_CODE (SET_SRC (set)) == PLUS
3439 && REG_P (XEXP (SET_SRC (set), 0))
3440 && REGNO (XEXP (SET_SRC (set), 0)) < FIRST_PSEUDO_REGISTER
3441 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3443 rtx addend, disp = XEXP (SET_SRC (set), 1);
3444 if (targetm.legitimize_address_displacement (&disp, &addend,
3445 ad.mode))
3447 rtx_insn *new_insns;
3448 start_sequence ();
3449 lra_emit_add (new_reg, XEXP (SET_SRC (set), 0), addend);
3450 new_insns = get_insns ();
3451 end_sequence ();
3452 new_reg = gen_rtx_PLUS (Pmode, new_reg, disp);
3453 delete_insns_since (PREV_INSN (last_insn));
3454 add_insn (new_insns);
3455 insns = get_insns ();
3458 end_sequence ();
3459 emit_insn (insns);
3460 *ad.inner = new_reg;
3462 else if (ad.disp_term != NULL)
3464 /* base + scale * index + disp => new base + scale * index,
3465 case (1) above. */
3466 new_reg = base_plus_disp_to_reg (&ad);
3467 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3468 new_reg, *ad.index);
3470 else if ((scale = get_index_scale (&ad)) == 1)
3472 /* The last transformation to one reg will be made in
3473 curr_insn_transform function. */
3474 end_sequence ();
3475 return false;
3477 else if (scale != 0)
3479 /* base + scale * index => base + new_reg,
3480 case (1) above.
3481 Index part of address may become invalid. For example, we
3482 changed pseudo on the equivalent memory and a subreg of the
3483 pseudo onto the memory of different mode for which the scale is
3484 prohibitted. */
3485 new_reg = index_part_to_reg (&ad);
3486 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3487 *ad.base_term, new_reg);
3489 else
3491 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3492 SCRATCH, SCRATCH);
3493 rtx addr = *ad.inner;
3495 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3496 /* addr => new_base. */
3497 lra_emit_move (new_reg, addr);
3498 *ad.inner = new_reg;
3500 *before = get_insns ();
3501 end_sequence ();
3502 return true;
3505 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3506 Use process_address_1 as a helper function. Return true for any
3507 RTL changes.
3509 If CHECK_ONLY_P is true, just check address correctness. Return
3510 false if the address correct. */
3511 static bool
3512 process_address (int nop, bool check_only_p,
3513 rtx_insn **before, rtx_insn **after)
3515 bool res = false;
3517 while (process_address_1 (nop, check_only_p, before, after))
3519 if (check_only_p)
3520 return true;
3521 res = true;
3523 return res;
3526 /* Emit insns to reload VALUE into a new register. VALUE is an
3527 auto-increment or auto-decrement RTX whose operand is a register or
3528 memory location; so reloading involves incrementing that location.
3529 IN is either identical to VALUE, or some cheaper place to reload
3530 value being incremented/decremented from.
3532 INC_AMOUNT is the number to increment or decrement by (always
3533 positive and ignored for POST_MODIFY/PRE_MODIFY).
3535 Return pseudo containing the result. */
3536 static rtx
3537 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
3539 /* REG or MEM to be copied and incremented. */
3540 rtx incloc = XEXP (value, 0);
3541 /* Nonzero if increment after copying. */
3542 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3543 || GET_CODE (value) == POST_MODIFY);
3544 rtx_insn *last;
3545 rtx inc;
3546 rtx_insn *add_insn;
3547 int code;
3548 rtx real_in = in == value ? incloc : in;
3549 rtx result;
3550 bool plus_p = true;
3552 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3554 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3555 || GET_CODE (XEXP (value, 1)) == MINUS);
3556 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3557 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3558 inc = XEXP (XEXP (value, 1), 1);
3560 else
3562 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3563 inc_amount = -inc_amount;
3565 inc = GEN_INT (inc_amount);
3568 if (! post && REG_P (incloc))
3569 result = incloc;
3570 else
3571 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3572 "INC/DEC result");
3574 if (real_in != result)
3576 /* First copy the location to the result register. */
3577 lra_assert (REG_P (result));
3578 emit_insn (gen_move_insn (result, real_in));
3581 /* We suppose that there are insns to add/sub with the constant
3582 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3583 old reload worked with this assumption. If the assumption
3584 becomes wrong, we should use approach in function
3585 base_plus_disp_to_reg. */
3586 if (in == value)
3588 /* See if we can directly increment INCLOC. */
3589 last = get_last_insn ();
3590 add_insn = emit_insn (plus_p
3591 ? gen_add2_insn (incloc, inc)
3592 : gen_sub2_insn (incloc, inc));
3594 code = recog_memoized (add_insn);
3595 if (code >= 0)
3597 if (! post && result != incloc)
3598 emit_insn (gen_move_insn (result, incloc));
3599 return result;
3601 delete_insns_since (last);
3604 /* If couldn't do the increment directly, must increment in RESULT.
3605 The way we do this depends on whether this is pre- or
3606 post-increment. For pre-increment, copy INCLOC to the reload
3607 register, increment it there, then save back. */
3608 if (! post)
3610 if (real_in != result)
3611 emit_insn (gen_move_insn (result, real_in));
3612 if (plus_p)
3613 emit_insn (gen_add2_insn (result, inc));
3614 else
3615 emit_insn (gen_sub2_insn (result, inc));
3616 if (result != incloc)
3617 emit_insn (gen_move_insn (incloc, result));
3619 else
3621 /* Post-increment.
3623 Because this might be a jump insn or a compare, and because
3624 RESULT may not be available after the insn in an input
3625 reload, we must do the incrementing before the insn being
3626 reloaded for.
3628 We have already copied IN to RESULT. Increment the copy in
3629 RESULT, save that back, then decrement RESULT so it has
3630 the original value. */
3631 if (plus_p)
3632 emit_insn (gen_add2_insn (result, inc));
3633 else
3634 emit_insn (gen_sub2_insn (result, inc));
3635 emit_insn (gen_move_insn (incloc, result));
3636 /* Restore non-modified value for the result. We prefer this
3637 way because it does not require an additional hard
3638 register. */
3639 if (plus_p)
3641 if (CONST_INT_P (inc))
3642 emit_insn (gen_add2_insn (result,
3643 gen_int_mode (-INTVAL (inc),
3644 GET_MODE (result))));
3645 else
3646 emit_insn (gen_sub2_insn (result, inc));
3648 else
3649 emit_insn (gen_add2_insn (result, inc));
3651 return result;
3654 /* Return true if the current move insn does not need processing as we
3655 already know that it satisfies its constraints. */
3656 static bool
3657 simple_move_p (void)
3659 rtx dest, src;
3660 enum reg_class dclass, sclass;
3662 lra_assert (curr_insn_set != NULL_RTX);
3663 dest = SET_DEST (curr_insn_set);
3664 src = SET_SRC (curr_insn_set);
3666 /* If the instruction has multiple sets we need to process it even if it
3667 is single_set. This can happen if one or more of the SETs are dead.
3668 See PR73650. */
3669 if (multiple_sets (curr_insn))
3670 return false;
3672 return ((dclass = get_op_class (dest)) != NO_REGS
3673 && (sclass = get_op_class (src)) != NO_REGS
3674 /* The backend guarantees that register moves of cost 2
3675 never need reloads. */
3676 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3679 /* Swap operands NOP and NOP + 1. */
3680 static inline void
3681 swap_operands (int nop)
3683 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3684 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3685 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3686 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3687 /* Swap the duplicates too. */
3688 lra_update_dup (curr_id, nop);
3689 lra_update_dup (curr_id, nop + 1);
3692 /* Main entry point of the constraint code: search the body of the
3693 current insn to choose the best alternative. It is mimicking insn
3694 alternative cost calculation model of former reload pass. That is
3695 because machine descriptions were written to use this model. This
3696 model can be changed in future. Make commutative operand exchange
3697 if it is chosen.
3699 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3700 constraints. Return true if any change happened during function
3701 call.
3703 If CHECK_ONLY_P is true then don't do any transformation. Just
3704 check that the insn satisfies all constraints. If the insn does
3705 not satisfy any constraint, return true. */
3706 static bool
3707 curr_insn_transform (bool check_only_p)
3709 int i, j, k;
3710 int n_operands;
3711 int n_alternatives;
3712 int n_outputs;
3713 int commutative;
3714 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3715 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3716 signed char outputs[MAX_RECOG_OPERANDS + 1];
3717 rtx_insn *before, *after;
3718 bool alt_p = false;
3719 /* Flag that the insn has been changed through a transformation. */
3720 bool change_p;
3721 bool sec_mem_p;
3722 #ifdef SECONDARY_MEMORY_NEEDED
3723 bool use_sec_mem_p;
3724 #endif
3725 int max_regno_before;
3726 int reused_alternative_num;
3728 curr_insn_set = single_set (curr_insn);
3729 if (curr_insn_set != NULL_RTX && simple_move_p ())
3730 return false;
3732 no_input_reloads_p = no_output_reloads_p = false;
3733 goal_alt_number = -1;
3734 change_p = sec_mem_p = false;
3735 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3736 reloads; neither are insns that SET cc0. Insns that use CC0 are
3737 not allowed to have any input reloads. */
3738 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3739 no_output_reloads_p = true;
3741 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3742 no_input_reloads_p = true;
3743 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3744 no_output_reloads_p = true;
3746 n_operands = curr_static_id->n_operands;
3747 n_alternatives = curr_static_id->n_alternatives;
3749 /* Just return "no reloads" if insn has no operands with
3750 constraints. */
3751 if (n_operands == 0 || n_alternatives == 0)
3752 return false;
3754 max_regno_before = max_reg_num ();
3756 for (i = 0; i < n_operands; i++)
3758 goal_alt_matched[i][0] = -1;
3759 goal_alt_matches[i] = -1;
3762 commutative = curr_static_id->commutative;
3764 /* Now see what we need for pseudos that didn't get hard regs or got
3765 the wrong kind of hard reg. For this, we must consider all the
3766 operands together against the register constraints. */
3768 best_losers = best_overall = INT_MAX;
3769 best_reload_sum = 0;
3771 curr_swapped = false;
3772 goal_alt_swapped = false;
3774 if (! check_only_p)
3775 /* Make equivalence substitution and memory subreg elimination
3776 before address processing because an address legitimacy can
3777 depend on memory mode. */
3778 for (i = 0; i < n_operands; i++)
3780 rtx op, subst, old;
3781 bool op_change_p = false;
3783 if (curr_static_id->operand[i].is_operator)
3784 continue;
3786 old = op = *curr_id->operand_loc[i];
3787 if (GET_CODE (old) == SUBREG)
3788 old = SUBREG_REG (old);
3789 subst = get_equiv_with_elimination (old, curr_insn);
3790 original_subreg_reg_mode[i] = VOIDmode;
3791 equiv_substition_p[i] = false;
3792 if (subst != old)
3794 equiv_substition_p[i] = true;
3795 subst = copy_rtx (subst);
3796 lra_assert (REG_P (old));
3797 if (GET_CODE (op) != SUBREG)
3798 *curr_id->operand_loc[i] = subst;
3799 else
3801 SUBREG_REG (op) = subst;
3802 if (GET_MODE (subst) == VOIDmode)
3803 original_subreg_reg_mode[i] = GET_MODE (old);
3805 if (lra_dump_file != NULL)
3807 fprintf (lra_dump_file,
3808 "Changing pseudo %d in operand %i of insn %u on equiv ",
3809 REGNO (old), i, INSN_UID (curr_insn));
3810 dump_value_slim (lra_dump_file, subst, 1);
3811 fprintf (lra_dump_file, "\n");
3813 op_change_p = change_p = true;
3815 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3817 change_p = true;
3818 lra_update_dup (curr_id, i);
3822 /* Reload address registers and displacements. We do it before
3823 finding an alternative because of memory constraints. */
3824 before = after = NULL;
3825 for (i = 0; i < n_operands; i++)
3826 if (! curr_static_id->operand[i].is_operator
3827 && process_address (i, check_only_p, &before, &after))
3829 if (check_only_p)
3830 return true;
3831 change_p = true;
3832 lra_update_dup (curr_id, i);
3835 if (change_p)
3836 /* If we've changed the instruction then any alternative that
3837 we chose previously may no longer be valid. */
3838 lra_set_used_insn_alternative (curr_insn, -1);
3840 if (! check_only_p && curr_insn_set != NULL_RTX
3841 && check_and_process_move (&change_p, &sec_mem_p))
3842 return change_p;
3844 try_swapped:
3846 reused_alternative_num = check_only_p ? -1 : curr_id->used_insn_alternative;
3847 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3848 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3849 reused_alternative_num, INSN_UID (curr_insn));
3851 if (process_alt_operands (reused_alternative_num))
3852 alt_p = true;
3854 if (check_only_p)
3855 return ! alt_p || best_losers != 0;
3857 /* If insn is commutative (it's safe to exchange a certain pair of
3858 operands) then we need to try each alternative twice, the second
3859 time matching those two operands as if we had exchanged them. To
3860 do this, really exchange them in operands.
3862 If we have just tried the alternatives the second time, return
3863 operands to normal and drop through. */
3865 if (reused_alternative_num < 0 && commutative >= 0)
3867 curr_swapped = !curr_swapped;
3868 if (curr_swapped)
3870 swap_operands (commutative);
3871 goto try_swapped;
3873 else
3874 swap_operands (commutative);
3877 if (! alt_p && ! sec_mem_p)
3879 /* No alternative works with reloads?? */
3880 if (INSN_CODE (curr_insn) >= 0)
3881 fatal_insn ("unable to generate reloads for:", curr_insn);
3882 error_for_asm (curr_insn,
3883 "inconsistent operand constraints in an %<asm%>");
3884 /* Avoid further trouble with this insn. Don't generate use
3885 pattern here as we could use the insn SP offset. */
3886 lra_set_insn_deleted (curr_insn);
3887 return true;
3890 /* If the best alternative is with operands 1 and 2 swapped, swap
3891 them. Update the operand numbers of any reloads already
3892 pushed. */
3894 if (goal_alt_swapped)
3896 if (lra_dump_file != NULL)
3897 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3898 INSN_UID (curr_insn));
3900 /* Swap the duplicates too. */
3901 swap_operands (commutative);
3902 change_p = true;
3905 #ifdef SECONDARY_MEMORY_NEEDED
3906 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3907 too conservatively. So we use the secondary memory only if there
3908 is no any alternative without reloads. */
3909 use_sec_mem_p = false;
3910 if (! alt_p)
3911 use_sec_mem_p = true;
3912 else if (sec_mem_p)
3914 for (i = 0; i < n_operands; i++)
3915 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3916 break;
3917 use_sec_mem_p = i < n_operands;
3920 if (use_sec_mem_p)
3922 int in = -1, out = -1;
3923 rtx new_reg, src, dest, rld;
3924 machine_mode sec_mode, rld_mode;
3926 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
3927 dest = SET_DEST (curr_insn_set);
3928 src = SET_SRC (curr_insn_set);
3929 for (i = 0; i < n_operands; i++)
3930 if (*curr_id->operand_loc[i] == dest)
3931 out = i;
3932 else if (*curr_id->operand_loc[i] == src)
3933 in = i;
3934 for (i = 0; i < curr_static_id->n_dups; i++)
3935 if (out < 0 && *curr_id->dup_loc[i] == dest)
3936 out = curr_static_id->dup_num[i];
3937 else if (in < 0 && *curr_id->dup_loc[i] == src)
3938 in = curr_static_id->dup_num[i];
3939 lra_assert (out >= 0 && in >= 0
3940 && curr_static_id->operand[out].type == OP_OUT
3941 && curr_static_id->operand[in].type == OP_IN);
3942 rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3943 ? dest : src);
3944 rld_mode = GET_MODE (rld);
3945 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3946 sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3947 #else
3948 sec_mode = rld_mode;
3949 #endif
3950 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3951 NO_REGS, "secondary");
3952 /* If the mode is changed, it should be wider. */
3953 lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3954 if (sec_mode != rld_mode)
3956 /* If the target says specifically to use another mode for
3957 secondary memory moves we can not reuse the original
3958 insn. */
3959 after = emit_spill_move (false, new_reg, dest);
3960 lra_process_new_insns (curr_insn, NULL, after,
3961 "Inserting the sec. move");
3962 /* We may have non null BEFORE here (e.g. after address
3963 processing. */
3964 push_to_sequence (before);
3965 before = emit_spill_move (true, new_reg, src);
3966 emit_insn (before);
3967 before = get_insns ();
3968 end_sequence ();
3969 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3970 lra_set_insn_deleted (curr_insn);
3972 else if (dest == rld)
3974 *curr_id->operand_loc[out] = new_reg;
3975 lra_update_dup (curr_id, out);
3976 after = emit_spill_move (false, new_reg, dest);
3977 lra_process_new_insns (curr_insn, NULL, after,
3978 "Inserting the sec. move");
3980 else
3982 *curr_id->operand_loc[in] = new_reg;
3983 lra_update_dup (curr_id, in);
3984 /* See comments above. */
3985 push_to_sequence (before);
3986 before = emit_spill_move (true, new_reg, src);
3987 emit_insn (before);
3988 before = get_insns ();
3989 end_sequence ();
3990 lra_process_new_insns (curr_insn, before, NULL,
3991 "Inserting the sec. move");
3993 lra_update_insn_regno_info (curr_insn);
3994 return true;
3996 #endif
3998 lra_assert (goal_alt_number >= 0);
3999 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4001 if (lra_dump_file != NULL)
4003 const char *p;
4005 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4006 goal_alt_number, INSN_UID (curr_insn));
4007 for (i = 0; i < n_operands; i++)
4009 p = (curr_static_id->operand_alternative
4010 [goal_alt_number * n_operands + i].constraint);
4011 if (*p == '\0')
4012 continue;
4013 fprintf (lra_dump_file, " (%d) ", i);
4014 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4015 fputc (*p, lra_dump_file);
4017 if (INSN_CODE (curr_insn) >= 0
4018 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4019 fprintf (lra_dump_file, " {%s}", p);
4020 if (curr_id->sp_offset != 0)
4021 fprintf (lra_dump_file, " (sp_off=%" HOST_WIDE_INT_PRINT "d)",
4022 curr_id->sp_offset);
4023 fprintf (lra_dump_file, "\n");
4026 /* Right now, for any pair of operands I and J that are required to
4027 match, with J < I, goal_alt_matches[I] is J. Add I to
4028 goal_alt_matched[J]. */
4030 for (i = 0; i < n_operands; i++)
4031 if ((j = goal_alt_matches[i]) >= 0)
4033 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4035 /* We allow matching one output operand and several input
4036 operands. */
4037 lra_assert (k == 0
4038 || (curr_static_id->operand[j].type == OP_OUT
4039 && curr_static_id->operand[i].type == OP_IN
4040 && (curr_static_id->operand
4041 [goal_alt_matched[j][0]].type == OP_IN)));
4042 goal_alt_matched[j][k] = i;
4043 goal_alt_matched[j][k + 1] = -1;
4046 for (i = 0; i < n_operands; i++)
4047 goal_alt_win[i] |= goal_alt_match_win[i];
4049 /* Any constants that aren't allowed and can't be reloaded into
4050 registers are here changed into memory references. */
4051 for (i = 0; i < n_operands; i++)
4052 if (goal_alt_win[i])
4054 int regno;
4055 enum reg_class new_class;
4056 rtx reg = *curr_id->operand_loc[i];
4058 if (GET_CODE (reg) == SUBREG)
4059 reg = SUBREG_REG (reg);
4061 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4063 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4065 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4067 lra_assert (ok_p);
4068 lra_change_class (regno, new_class, " Change to", true);
4072 else
4074 const char *constraint;
4075 char c;
4076 rtx op = *curr_id->operand_loc[i];
4077 rtx subreg = NULL_RTX;
4078 machine_mode mode = curr_operand_mode[i];
4080 if (GET_CODE (op) == SUBREG)
4082 subreg = op;
4083 op = SUBREG_REG (op);
4084 mode = GET_MODE (op);
4087 if (CONST_POOL_OK_P (mode, op)
4088 && ((targetm.preferred_reload_class
4089 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4090 || no_input_reloads_p))
4092 rtx tem = force_const_mem (mode, op);
4094 change_p = true;
4095 if (subreg != NULL_RTX)
4096 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4098 *curr_id->operand_loc[i] = tem;
4099 lra_update_dup (curr_id, i);
4100 process_address (i, false, &before, &after);
4102 /* If the alternative accepts constant pool refs directly
4103 there will be no reload needed at all. */
4104 if (subreg != NULL_RTX)
4105 continue;
4106 /* Skip alternatives before the one requested. */
4107 constraint = (curr_static_id->operand_alternative
4108 [goal_alt_number * n_operands + i].constraint);
4109 for (;
4110 (c = *constraint) && c != ',' && c != '#';
4111 constraint += CONSTRAINT_LEN (c, constraint))
4113 enum constraint_num cn = lookup_constraint (constraint);
4114 if ((insn_extra_memory_constraint (cn)
4115 || insn_extra_special_memory_constraint (cn))
4116 && satisfies_memory_constraint_p (tem, cn))
4117 break;
4119 if (c == '\0' || c == ',' || c == '#')
4120 continue;
4122 goal_alt_win[i] = true;
4126 n_outputs = 0;
4127 outputs[0] = -1;
4128 for (i = 0; i < n_operands; i++)
4130 int regno;
4131 bool optional_p = false;
4132 rtx old, new_reg;
4133 rtx op = *curr_id->operand_loc[i];
4135 if (goal_alt_win[i])
4137 if (goal_alt[i] == NO_REGS
4138 && REG_P (op)
4139 /* When we assign NO_REGS it means that we will not
4140 assign a hard register to the scratch pseudo by
4141 assigment pass and the scratch pseudo will be
4142 spilled. Spilled scratch pseudos are transformed
4143 back to scratches at the LRA end. */
4144 && lra_former_scratch_operand_p (curr_insn, i)
4145 && lra_former_scratch_p (REGNO (op)))
4147 int regno = REGNO (op);
4148 lra_change_class (regno, NO_REGS, " Change to", true);
4149 if (lra_get_regno_hard_regno (regno) >= 0)
4150 /* We don't have to mark all insn affected by the
4151 spilled pseudo as there is only one such insn, the
4152 current one. */
4153 reg_renumber[regno] = -1;
4154 lra_assert (bitmap_single_bit_set_p
4155 (&lra_reg_info[REGNO (op)].insn_bitmap));
4157 /* We can do an optional reload. If the pseudo got a hard
4158 reg, we might improve the code through inheritance. If
4159 it does not get a hard register we coalesce memory/memory
4160 moves later. Ignore move insns to avoid cycling. */
4161 if (! lra_simple_p
4162 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4163 && goal_alt[i] != NO_REGS && REG_P (op)
4164 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4165 && regno < new_regno_start
4166 && ! lra_former_scratch_p (regno)
4167 && reg_renumber[regno] < 0
4168 /* Check that the optional reload pseudo will be able to
4169 hold given mode value. */
4170 && ! (prohibited_class_reg_set_mode_p
4171 (goal_alt[i], reg_class_contents[goal_alt[i]],
4172 PSEUDO_REGNO_MODE (regno)))
4173 && (curr_insn_set == NULL_RTX
4174 || !((REG_P (SET_SRC (curr_insn_set))
4175 || MEM_P (SET_SRC (curr_insn_set))
4176 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4177 && (REG_P (SET_DEST (curr_insn_set))
4178 || MEM_P (SET_DEST (curr_insn_set))
4179 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4180 optional_p = true;
4181 else
4182 continue;
4185 /* Operands that match previous ones have already been handled. */
4186 if (goal_alt_matches[i] >= 0)
4187 continue;
4189 /* We should not have an operand with a non-offsettable address
4190 appearing where an offsettable address will do. It also may
4191 be a case when the address should be special in other words
4192 not a general one (e.g. it needs no index reg). */
4193 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4195 enum reg_class rclass;
4196 rtx *loc = &XEXP (op, 0);
4197 enum rtx_code code = GET_CODE (*loc);
4199 push_to_sequence (before);
4200 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4201 MEM, SCRATCH);
4202 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4203 new_reg = emit_inc (rclass, *loc, *loc,
4204 /* This value does not matter for MODIFY. */
4205 GET_MODE_SIZE (GET_MODE (op)));
4206 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4207 "offsetable address", &new_reg))
4208 lra_emit_move (new_reg, *loc);
4209 before = get_insns ();
4210 end_sequence ();
4211 *loc = new_reg;
4212 lra_update_dup (curr_id, i);
4214 else if (goal_alt_matched[i][0] == -1)
4216 machine_mode mode;
4217 rtx reg, *loc;
4218 int hard_regno, byte;
4219 enum op_type type = curr_static_id->operand[i].type;
4221 loc = curr_id->operand_loc[i];
4222 mode = curr_operand_mode[i];
4223 if (GET_CODE (*loc) == SUBREG)
4225 reg = SUBREG_REG (*loc);
4226 byte = SUBREG_BYTE (*loc);
4227 if (REG_P (reg)
4228 /* Strict_low_part requires reload the register not
4229 the sub-register. */
4230 && (curr_static_id->operand[i].strict_low
4231 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4232 && (hard_regno
4233 = get_try_hard_regno (REGNO (reg))) >= 0
4234 && (simplify_subreg_regno
4235 (hard_regno,
4236 GET_MODE (reg), byte, mode) < 0)
4237 && (goal_alt[i] == NO_REGS
4238 || (simplify_subreg_regno
4239 (ira_class_hard_regs[goal_alt[i]][0],
4240 GET_MODE (reg), byte, mode) >= 0)))))
4242 /* An OP_INOUT is required when reloading a subreg of a
4243 mode wider than a word to ensure that data beyond the
4244 word being reloaded is preserved. Also automatically
4245 ensure that strict_low_part reloads are made into
4246 OP_INOUT which should already be true from the backend
4247 constraints. */
4248 if (type == OP_OUT
4249 && (curr_static_id->operand[i].strict_low
4250 || (GET_MODE_SIZE (GET_MODE (reg)) > UNITS_PER_WORD
4251 && (GET_MODE_SIZE (mode)
4252 < GET_MODE_SIZE (GET_MODE (reg))))))
4253 type = OP_INOUT;
4254 loc = &SUBREG_REG (*loc);
4255 mode = GET_MODE (*loc);
4258 old = *loc;
4259 if (get_reload_reg (type, mode, old, goal_alt[i],
4260 loc != curr_id->operand_loc[i], "", &new_reg)
4261 && type != OP_OUT)
4263 push_to_sequence (before);
4264 lra_emit_move (new_reg, old);
4265 before = get_insns ();
4266 end_sequence ();
4268 *loc = new_reg;
4269 if (type != OP_IN
4270 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4272 start_sequence ();
4273 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4274 emit_insn (after);
4275 after = get_insns ();
4276 end_sequence ();
4277 *loc = new_reg;
4279 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4280 if (goal_alt_dont_inherit_ops[j] == i)
4282 lra_set_regno_unique_value (REGNO (new_reg));
4283 break;
4285 lra_update_dup (curr_id, i);
4287 else if (curr_static_id->operand[i].type == OP_IN
4288 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4289 == OP_OUT))
4291 /* generate reloads for input and matched outputs. */
4292 match_inputs[0] = i;
4293 match_inputs[1] = -1;
4294 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4295 goal_alt[i], &before, &after,
4296 curr_static_id->operand_alternative
4297 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4298 .earlyclobber);
4300 else if (curr_static_id->operand[i].type == OP_OUT
4301 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4302 == OP_IN))
4303 /* Generate reloads for output and matched inputs. */
4304 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4305 &after, curr_static_id->operand_alternative
4306 [goal_alt_number * n_operands + i].earlyclobber);
4307 else if (curr_static_id->operand[i].type == OP_IN
4308 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4309 == OP_IN))
4311 /* Generate reloads for matched inputs. */
4312 match_inputs[0] = i;
4313 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4314 match_inputs[j + 1] = k;
4315 match_inputs[j + 1] = -1;
4316 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4317 &after, false);
4319 else
4320 /* We must generate code in any case when function
4321 process_alt_operands decides that it is possible. */
4322 gcc_unreachable ();
4324 /* Memorise processed outputs so that output remaining to be processed
4325 can avoid using the same register value (see match_reload). */
4326 if (curr_static_id->operand[i].type == OP_OUT)
4328 outputs[n_outputs++] = i;
4329 outputs[n_outputs] = -1;
4332 if (optional_p)
4334 rtx reg = op;
4336 lra_assert (REG_P (reg));
4337 regno = REGNO (reg);
4338 op = *curr_id->operand_loc[i]; /* Substitution. */
4339 if (GET_CODE (op) == SUBREG)
4340 op = SUBREG_REG (op);
4341 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4342 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4343 lra_reg_info[REGNO (op)].restore_rtx = reg;
4344 if (lra_dump_file != NULL)
4345 fprintf (lra_dump_file,
4346 " Making reload reg %d for reg %d optional\n",
4347 REGNO (op), regno);
4350 if (before != NULL_RTX || after != NULL_RTX
4351 || max_regno_before != max_reg_num ())
4352 change_p = true;
4353 if (change_p)
4355 lra_update_operator_dups (curr_id);
4356 /* Something changes -- process the insn. */
4357 lra_update_insn_regno_info (curr_insn);
4359 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4360 return change_p;
4363 /* Return true if INSN satisfies all constraints. In other words, no
4364 reload insns are needed. */
4365 bool
4366 lra_constrain_insn (rtx_insn *insn)
4368 int saved_new_regno_start = new_regno_start;
4369 int saved_new_insn_uid_start = new_insn_uid_start;
4370 bool change_p;
4372 curr_insn = insn;
4373 curr_id = lra_get_insn_recog_data (curr_insn);
4374 curr_static_id = curr_id->insn_static_data;
4375 new_insn_uid_start = get_max_uid ();
4376 new_regno_start = max_reg_num ();
4377 change_p = curr_insn_transform (true);
4378 new_regno_start = saved_new_regno_start;
4379 new_insn_uid_start = saved_new_insn_uid_start;
4380 return ! change_p;
4383 /* Return true if X is in LIST. */
4384 static bool
4385 in_list_p (rtx x, rtx list)
4387 for (; list != NULL_RTX; list = XEXP (list, 1))
4388 if (XEXP (list, 0) == x)
4389 return true;
4390 return false;
4393 /* Return true if X contains an allocatable hard register (if
4394 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4395 static bool
4396 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4398 int i, j;
4399 const char *fmt;
4400 enum rtx_code code;
4402 code = GET_CODE (x);
4403 if (REG_P (x))
4405 int regno = REGNO (x);
4406 HARD_REG_SET alloc_regs;
4408 if (hard_reg_p)
4410 if (regno >= FIRST_PSEUDO_REGISTER)
4411 regno = lra_get_regno_hard_regno (regno);
4412 if (regno < 0)
4413 return false;
4414 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4415 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4417 else
4419 if (regno < FIRST_PSEUDO_REGISTER)
4420 return false;
4421 if (! spilled_p)
4422 return true;
4423 return lra_get_regno_hard_regno (regno) < 0;
4426 fmt = GET_RTX_FORMAT (code);
4427 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4429 if (fmt[i] == 'e')
4431 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4432 return true;
4434 else if (fmt[i] == 'E')
4436 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4437 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4438 return true;
4441 return false;
4444 /* Process all regs in location *LOC and change them on equivalent
4445 substitution. Return true if any change was done. */
4446 static bool
4447 loc_equivalence_change_p (rtx *loc)
4449 rtx subst, reg, x = *loc;
4450 bool result = false;
4451 enum rtx_code code = GET_CODE (x);
4452 const char *fmt;
4453 int i, j;
4455 if (code == SUBREG)
4457 reg = SUBREG_REG (x);
4458 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4459 && GET_MODE (subst) == VOIDmode)
4461 /* We cannot reload debug location. Simplify subreg here
4462 while we know the inner mode. */
4463 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4464 GET_MODE (reg), SUBREG_BYTE (x));
4465 return true;
4468 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4470 *loc = subst;
4471 return true;
4474 /* Scan all the operand sub-expressions. */
4475 fmt = GET_RTX_FORMAT (code);
4476 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4478 if (fmt[i] == 'e')
4479 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4480 else if (fmt[i] == 'E')
4481 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4482 result
4483 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4485 return result;
4488 /* Similar to loc_equivalence_change_p, but for use as
4489 simplify_replace_fn_rtx callback. DATA is insn for which the
4490 elimination is done. If it null we don't do the elimination. */
4491 static rtx
4492 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4494 if (!REG_P (loc))
4495 return NULL_RTX;
4497 rtx subst = (data == NULL
4498 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4499 if (subst != loc)
4500 return subst;
4502 return NULL_RTX;
4505 /* Maximum number of generated reload insns per an insn. It is for
4506 preventing this pass cycling in a bug case. */
4507 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4509 /* The current iteration number of this LRA pass. */
4510 int lra_constraint_iter;
4512 /* True if we substituted equiv which needs checking register
4513 allocation correctness because the equivalent value contains
4514 allocatable hard registers or when we restore multi-register
4515 pseudo. */
4516 bool lra_risky_transformations_p;
4518 /* Return true if REGNO is referenced in more than one block. */
4519 static bool
4520 multi_block_pseudo_p (int regno)
4522 basic_block bb = NULL;
4523 unsigned int uid;
4524 bitmap_iterator bi;
4526 if (regno < FIRST_PSEUDO_REGISTER)
4527 return false;
4529 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4530 if (bb == NULL)
4531 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4532 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4533 return true;
4534 return false;
4537 /* Return true if LIST contains a deleted insn. */
4538 static bool
4539 contains_deleted_insn_p (rtx_insn_list *list)
4541 for (; list != NULL_RTX; list = list->next ())
4542 if (NOTE_P (list->insn ())
4543 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4544 return true;
4545 return false;
4548 /* Return true if X contains a pseudo dying in INSN. */
4549 static bool
4550 dead_pseudo_p (rtx x, rtx_insn *insn)
4552 int i, j;
4553 const char *fmt;
4554 enum rtx_code code;
4556 if (REG_P (x))
4557 return (insn != NULL_RTX
4558 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4559 code = GET_CODE (x);
4560 fmt = GET_RTX_FORMAT (code);
4561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4563 if (fmt[i] == 'e')
4565 if (dead_pseudo_p (XEXP (x, i), insn))
4566 return true;
4568 else if (fmt[i] == 'E')
4570 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4571 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4572 return true;
4575 return false;
4578 /* Return true if INSN contains a dying pseudo in INSN right hand
4579 side. */
4580 static bool
4581 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4583 rtx set = single_set (insn);
4585 gcc_assert (set != NULL);
4586 return dead_pseudo_p (SET_SRC (set), insn);
4589 /* Return true if any init insn of REGNO contains a dying pseudo in
4590 insn right hand side. */
4591 static bool
4592 init_insn_rhs_dead_pseudo_p (int regno)
4594 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4596 if (insns == NULL)
4597 return false;
4598 for (; insns != NULL_RTX; insns = insns->next ())
4599 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4600 return true;
4601 return false;
4604 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4605 reverse only if we have one init insn with given REGNO as a
4606 source. */
4607 static bool
4608 reverse_equiv_p (int regno)
4610 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4611 rtx set;
4613 if (insns == NULL)
4614 return false;
4615 if (! INSN_P (insns->insn ())
4616 || insns->next () != NULL)
4617 return false;
4618 if ((set = single_set (insns->insn ())) == NULL_RTX)
4619 return false;
4620 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4623 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4624 call this function only for non-reverse equivalence. */
4625 static bool
4626 contains_reloaded_insn_p (int regno)
4628 rtx set;
4629 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4631 for (; list != NULL; list = list->next ())
4632 if ((set = single_set (list->insn ())) == NULL_RTX
4633 || ! REG_P (SET_DEST (set))
4634 || (int) REGNO (SET_DEST (set)) != regno)
4635 return true;
4636 return false;
4639 /* Entry function of LRA constraint pass. Return true if the
4640 constraint pass did change the code. */
4641 bool
4642 lra_constraints (bool first_p)
4644 bool changed_p;
4645 int i, hard_regno, new_insns_num;
4646 unsigned int min_len, new_min_len, uid;
4647 rtx set, x, reg, dest_reg;
4648 basic_block last_bb;
4649 bitmap_iterator bi;
4651 lra_constraint_iter++;
4652 if (lra_dump_file != NULL)
4653 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4654 lra_constraint_iter);
4655 changed_p = false;
4656 if (pic_offset_table_rtx
4657 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4658 lra_risky_transformations_p = true;
4659 else
4660 /* On the first iteration we should check IRA assignment
4661 correctness. In rare cases, the assignments can be wrong as
4662 early clobbers operands are ignored in IRA. */
4663 lra_risky_transformations_p = first_p;
4664 new_insn_uid_start = get_max_uid ();
4665 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4666 /* Mark used hard regs for target stack size calulations. */
4667 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4668 if (lra_reg_info[i].nrefs != 0
4669 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4671 int j, nregs;
4673 nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
4674 for (j = 0; j < nregs; j++)
4675 df_set_regs_ever_live (hard_regno + j, true);
4677 /* Do elimination before the equivalence processing as we can spill
4678 some pseudos during elimination. */
4679 lra_eliminate (false, first_p);
4680 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4681 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4682 if (lra_reg_info[i].nrefs != 0)
4684 ira_reg_equiv[i].profitable_p = true;
4685 reg = regno_reg_rtx[i];
4686 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4688 bool pseudo_p = contains_reg_p (x, false, false);
4690 /* After RTL transformation, we can not guarantee that
4691 pseudo in the substitution was not reloaded which might
4692 make equivalence invalid. For example, in reverse
4693 equiv of p0
4695 p0 <- ...
4697 equiv_mem <- p0
4699 the memory address register was reloaded before the 2nd
4700 insn. */
4701 if ((! first_p && pseudo_p)
4702 /* We don't use DF for compilation speed sake. So it
4703 is problematic to update live info when we use an
4704 equivalence containing pseudos in more than one
4705 BB. */
4706 || (pseudo_p && multi_block_pseudo_p (i))
4707 /* If an init insn was deleted for some reason, cancel
4708 the equiv. We could update the equiv insns after
4709 transformations including an equiv insn deletion
4710 but it is not worthy as such cases are extremely
4711 rare. */
4712 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4713 /* If it is not a reverse equivalence, we check that a
4714 pseudo in rhs of the init insn is not dying in the
4715 insn. Otherwise, the live info at the beginning of
4716 the corresponding BB might be wrong after we
4717 removed the insn. When the equiv can be a
4718 constant, the right hand side of the init insn can
4719 be a pseudo. */
4720 || (! reverse_equiv_p (i)
4721 && (init_insn_rhs_dead_pseudo_p (i)
4722 /* If we reloaded the pseudo in an equivalence
4723 init insn, we can not remove the equiv init
4724 insns and the init insns might write into
4725 const memory in this case. */
4726 || contains_reloaded_insn_p (i)))
4727 /* Prevent access beyond equivalent memory for
4728 paradoxical subregs. */
4729 || (MEM_P (x)
4730 && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
4731 > GET_MODE_SIZE (GET_MODE (x))))
4732 || (pic_offset_table_rtx
4733 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4734 && (targetm.preferred_reload_class
4735 (x, lra_get_allocno_class (i)) == NO_REGS))
4736 || contains_symbol_ref_p (x))))
4737 ira_reg_equiv[i].defined_p = false;
4738 if (contains_reg_p (x, false, true))
4739 ira_reg_equiv[i].profitable_p = false;
4740 if (get_equiv (reg) != reg)
4741 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4744 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4745 update_equiv (i);
4746 /* We should add all insns containing pseudos which should be
4747 substituted by their equivalences. */
4748 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4749 lra_push_insn_by_uid (uid);
4750 min_len = lra_insn_stack_length ();
4751 new_insns_num = 0;
4752 last_bb = NULL;
4753 changed_p = false;
4754 while ((new_min_len = lra_insn_stack_length ()) != 0)
4756 curr_insn = lra_pop_insn ();
4757 --new_min_len;
4758 curr_bb = BLOCK_FOR_INSN (curr_insn);
4759 if (curr_bb != last_bb)
4761 last_bb = curr_bb;
4762 bb_reload_num = lra_curr_reload_num;
4764 if (min_len > new_min_len)
4766 min_len = new_min_len;
4767 new_insns_num = 0;
4769 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4770 internal_error
4771 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4772 MAX_RELOAD_INSNS_NUMBER);
4773 new_insns_num++;
4774 if (DEBUG_INSN_P (curr_insn))
4776 /* We need to check equivalence in debug insn and change
4777 pseudo to the equivalent value if necessary. */
4778 curr_id = lra_get_insn_recog_data (curr_insn);
4779 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4781 rtx old = *curr_id->operand_loc[0];
4782 *curr_id->operand_loc[0]
4783 = simplify_replace_fn_rtx (old, NULL_RTX,
4784 loc_equivalence_callback, curr_insn);
4785 if (old != *curr_id->operand_loc[0])
4787 lra_update_insn_regno_info (curr_insn);
4788 changed_p = true;
4792 else if (INSN_P (curr_insn))
4794 if ((set = single_set (curr_insn)) != NULL_RTX)
4796 dest_reg = SET_DEST (set);
4797 /* The equivalence pseudo could be set up as SUBREG in a
4798 case when it is a call restore insn in a mode
4799 different from the pseudo mode. */
4800 if (GET_CODE (dest_reg) == SUBREG)
4801 dest_reg = SUBREG_REG (dest_reg);
4802 if ((REG_P (dest_reg)
4803 && (x = get_equiv (dest_reg)) != dest_reg
4804 /* Remove insns which set up a pseudo whose value
4805 can not be changed. Such insns might be not in
4806 init_insns because we don't update equiv data
4807 during insn transformations.
4809 As an example, let suppose that a pseudo got
4810 hard register and on the 1st pass was not
4811 changed to equivalent constant. We generate an
4812 additional insn setting up the pseudo because of
4813 secondary memory movement. Then the pseudo is
4814 spilled and we use the equiv constant. In this
4815 case we should remove the additional insn and
4816 this insn is not init_insns list. */
4817 && (! MEM_P (x) || MEM_READONLY_P (x)
4818 /* Check that this is actually an insn setting
4819 up the equivalence. */
4820 || in_list_p (curr_insn,
4821 ira_reg_equiv
4822 [REGNO (dest_reg)].init_insns)))
4823 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4824 && in_list_p (curr_insn,
4825 ira_reg_equiv
4826 [REGNO (SET_SRC (set))].init_insns)))
4828 /* This is equiv init insn of pseudo which did not get a
4829 hard register -- remove the insn. */
4830 if (lra_dump_file != NULL)
4832 fprintf (lra_dump_file,
4833 " Removing equiv init insn %i (freq=%d)\n",
4834 INSN_UID (curr_insn),
4835 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4836 dump_insn_slim (lra_dump_file, curr_insn);
4838 if (contains_reg_p (x, true, false))
4839 lra_risky_transformations_p = true;
4840 lra_set_insn_deleted (curr_insn);
4841 continue;
4844 curr_id = lra_get_insn_recog_data (curr_insn);
4845 curr_static_id = curr_id->insn_static_data;
4846 init_curr_insn_input_reloads ();
4847 init_curr_operand_mode ();
4848 if (curr_insn_transform (false))
4849 changed_p = true;
4850 /* Check non-transformed insns too for equiv change as USE
4851 or CLOBBER don't need reloads but can contain pseudos
4852 being changed on their equivalences. */
4853 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
4854 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4856 lra_update_insn_regno_info (curr_insn);
4857 changed_p = true;
4862 /* If we used a new hard regno, changed_p should be true because the
4863 hard reg is assigned to a new pseudo. */
4864 if (flag_checking && !changed_p)
4866 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4867 if (lra_reg_info[i].nrefs != 0
4868 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4870 int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
4872 for (j = 0; j < nregs; j++)
4873 lra_assert (df_regs_ever_live_p (hard_regno + j));
4876 return changed_p;
4879 static void initiate_invariants (void);
4880 static void finish_invariants (void);
4882 /* Initiate the LRA constraint pass. It is done once per
4883 function. */
4884 void
4885 lra_constraints_init (void)
4887 initiate_invariants ();
4890 /* Finalize the LRA constraint pass. It is done once per
4891 function. */
4892 void
4893 lra_constraints_finish (void)
4895 finish_invariants ();
4900 /* Structure describes invariants for ineheritance. */
4901 struct lra_invariant
4903 /* The order number of the invariant. */
4904 int num;
4905 /* The invariant RTX. */
4906 rtx invariant_rtx;
4907 /* The origin insn of the invariant. */
4908 rtx_insn *insn;
4911 typedef lra_invariant invariant_t;
4912 typedef invariant_t *invariant_ptr_t;
4913 typedef const invariant_t *const_invariant_ptr_t;
4915 /* Pointer to the inheritance invariants. */
4916 static vec<invariant_ptr_t> invariants;
4918 /* Allocation pool for the invariants. */
4919 static object_allocator<lra_invariant> *invariants_pool;
4921 /* Hash table for the invariants. */
4922 static htab_t invariant_table;
4924 /* Hash function for INVARIANT. */
4925 static hashval_t
4926 invariant_hash (const void *invariant)
4928 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
4929 return lra_rtx_hash (inv);
4932 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4933 static int
4934 invariant_eq_p (const void *invariant1, const void *invariant2)
4936 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
4937 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
4939 return rtx_equal_p (inv1, inv2);
4942 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4943 invariant which is in the table. */
4944 static invariant_ptr_t
4945 insert_invariant (rtx invariant_rtx)
4947 void **entry_ptr;
4948 invariant_t invariant;
4949 invariant_ptr_t invariant_ptr;
4951 invariant.invariant_rtx = invariant_rtx;
4952 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
4953 if (*entry_ptr == NULL)
4955 invariant_ptr = invariants_pool->allocate ();
4956 invariant_ptr->invariant_rtx = invariant_rtx;
4957 invariant_ptr->insn = NULL;
4958 invariants.safe_push (invariant_ptr);
4959 *entry_ptr = (void *) invariant_ptr;
4961 return (invariant_ptr_t) *entry_ptr;
4964 /* Initiate the invariant table. */
4965 static void
4966 initiate_invariants (void)
4968 invariants.create (100);
4969 invariants_pool
4970 = new object_allocator<lra_invariant> ("Inheritance invariants");
4971 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
4974 /* Finish the invariant table. */
4975 static void
4976 finish_invariants (void)
4978 htab_delete (invariant_table);
4979 delete invariants_pool;
4980 invariants.release ();
4983 /* Make the invariant table empty. */
4984 static void
4985 clear_invariants (void)
4987 htab_empty (invariant_table);
4988 invariants_pool->release ();
4989 invariants.truncate (0);
4994 /* This page contains code to do inheritance/split
4995 transformations. */
4997 /* Number of reloads passed so far in current EBB. */
4998 static int reloads_num;
5000 /* Number of calls passed so far in current EBB. */
5001 static int calls_num;
5003 /* Current reload pseudo check for validity of elements in
5004 USAGE_INSNS. */
5005 static int curr_usage_insns_check;
5007 /* Info about last usage of registers in EBB to do inheritance/split
5008 transformation. Inheritance transformation is done from a spilled
5009 pseudo and split transformations from a hard register or a pseudo
5010 assigned to a hard register. */
5011 struct usage_insns
5013 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5014 value INSNS is valid. The insns is chain of optional debug insns
5015 and a finishing non-debug insn using the corresponding reg. The
5016 value is also used to mark the registers which are set up in the
5017 current insn. The negated insn uid is used for this. */
5018 int check;
5019 /* Value of global reloads_num at the last insn in INSNS. */
5020 int reloads_num;
5021 /* Value of global reloads_nums at the last insn in INSNS. */
5022 int calls_num;
5023 /* It can be true only for splitting. And it means that the restore
5024 insn should be put after insn given by the following member. */
5025 bool after_p;
5026 /* Next insns in the current EBB which use the original reg and the
5027 original reg value is not changed between the current insn and
5028 the next insns. In order words, e.g. for inheritance, if we need
5029 to use the original reg value again in the next insns we can try
5030 to use the value in a hard register from a reload insn of the
5031 current insn. */
5032 rtx insns;
5035 /* Map: regno -> corresponding pseudo usage insns. */
5036 static struct usage_insns *usage_insns;
5038 static void
5039 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5041 usage_insns[regno].check = curr_usage_insns_check;
5042 usage_insns[regno].insns = insn;
5043 usage_insns[regno].reloads_num = reloads_num;
5044 usage_insns[regno].calls_num = calls_num;
5045 usage_insns[regno].after_p = after_p;
5048 /* The function is used to form list REGNO usages which consists of
5049 optional debug insns finished by a non-debug insn using REGNO.
5050 RELOADS_NUM is current number of reload insns processed so far. */
5051 static void
5052 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5054 rtx next_usage_insns;
5056 if (usage_insns[regno].check == curr_usage_insns_check
5057 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5058 && DEBUG_INSN_P (insn))
5060 /* Check that we did not add the debug insn yet. */
5061 if (next_usage_insns != insn
5062 && (GET_CODE (next_usage_insns) != INSN_LIST
5063 || XEXP (next_usage_insns, 0) != insn))
5064 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5065 next_usage_insns);
5067 else if (NONDEBUG_INSN_P (insn))
5068 setup_next_usage_insn (regno, insn, reloads_num, false);
5069 else
5070 usage_insns[regno].check = 0;
5073 /* Return first non-debug insn in list USAGE_INSNS. */
5074 static rtx_insn *
5075 skip_usage_debug_insns (rtx usage_insns)
5077 rtx insn;
5079 /* Skip debug insns. */
5080 for (insn = usage_insns;
5081 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5082 insn = XEXP (insn, 1))
5084 return safe_as_a <rtx_insn *> (insn);
5087 /* Return true if we need secondary memory moves for insn in
5088 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5089 into the insn. */
5090 static bool
5091 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5092 rtx usage_insns ATTRIBUTE_UNUSED)
5094 #ifndef SECONDARY_MEMORY_NEEDED
5095 return false;
5096 #else
5097 rtx_insn *insn;
5098 rtx set, dest;
5099 enum reg_class cl;
5101 if (inher_cl == ALL_REGS
5102 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5103 return false;
5104 lra_assert (INSN_P (insn));
5105 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5106 return false;
5107 dest = SET_DEST (set);
5108 if (! REG_P (dest))
5109 return false;
5110 lra_assert (inher_cl != NO_REGS);
5111 cl = get_reg_class (REGNO (dest));
5112 return (cl != NO_REGS && cl != ALL_REGS
5113 && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
5114 #endif
5117 /* Registers involved in inheritance/split in the current EBB
5118 (inheritance/split pseudos and original registers). */
5119 static bitmap_head check_only_regs;
5121 /* Reload pseudos can not be involded in invariant inheritance in the
5122 current EBB. */
5123 static bitmap_head invalid_invariant_regs;
5125 /* Do inheritance transformations for insn INSN, which defines (if
5126 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5127 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5128 form as the "insns" field of usage_insns. Return true if we
5129 succeed in such transformation.
5131 The transformations look like:
5133 p <- ... i <- ...
5134 ... p <- i (new insn)
5135 ... =>
5136 <- ... p ... <- ... i ...
5138 ... i <- p (new insn)
5139 <- ... p ... <- ... i ...
5140 ... =>
5141 <- ... p ... <- ... i ...
5142 where p is a spilled original pseudo and i is a new inheritance pseudo.
5145 The inheritance pseudo has the smallest class of two classes CL and
5146 class of ORIGINAL REGNO. */
5147 static bool
5148 inherit_reload_reg (bool def_p, int original_regno,
5149 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5151 if (optimize_function_for_size_p (cfun))
5152 return false;
5154 enum reg_class rclass = lra_get_allocno_class (original_regno);
5155 rtx original_reg = regno_reg_rtx[original_regno];
5156 rtx new_reg, usage_insn;
5157 rtx_insn *new_insns;
5159 lra_assert (! usage_insns[original_regno].after_p);
5160 if (lra_dump_file != NULL)
5161 fprintf (lra_dump_file,
5162 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5163 if (! ira_reg_classes_intersect_p[cl][rclass])
5165 if (lra_dump_file != NULL)
5167 fprintf (lra_dump_file,
5168 " Rejecting inheritance for %d "
5169 "because of disjoint classes %s and %s\n",
5170 original_regno, reg_class_names[cl],
5171 reg_class_names[rclass]);
5172 fprintf (lra_dump_file,
5173 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5175 return false;
5177 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5178 /* We don't use a subset of two classes because it can be
5179 NO_REGS. This transformation is still profitable in most
5180 cases even if the classes are not intersected as register
5181 move is probably cheaper than a memory load. */
5182 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5184 if (lra_dump_file != NULL)
5185 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5186 reg_class_names[cl], reg_class_names[rclass]);
5188 rclass = cl;
5190 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5192 /* Reject inheritance resulting in secondary memory moves.
5193 Otherwise, there is a danger in LRA cycling. Also such
5194 transformation will be unprofitable. */
5195 if (lra_dump_file != NULL)
5197 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5198 rtx set = single_set (insn);
5200 lra_assert (set != NULL_RTX);
5202 rtx dest = SET_DEST (set);
5204 lra_assert (REG_P (dest));
5205 fprintf (lra_dump_file,
5206 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5207 "as secondary mem is needed\n",
5208 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5209 original_regno, reg_class_names[rclass]);
5210 fprintf (lra_dump_file,
5211 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5213 return false;
5215 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5216 rclass, "inheritance");
5217 start_sequence ();
5218 if (def_p)
5219 lra_emit_move (original_reg, new_reg);
5220 else
5221 lra_emit_move (new_reg, original_reg);
5222 new_insns = get_insns ();
5223 end_sequence ();
5224 if (NEXT_INSN (new_insns) != NULL_RTX)
5226 if (lra_dump_file != NULL)
5228 fprintf (lra_dump_file,
5229 " Rejecting inheritance %d->%d "
5230 "as it results in 2 or more insns:\n",
5231 original_regno, REGNO (new_reg));
5232 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5233 fprintf (lra_dump_file,
5234 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5236 return false;
5238 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5239 lra_update_insn_regno_info (insn);
5240 if (! def_p)
5241 /* We now have a new usage insn for original regno. */
5242 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5243 if (lra_dump_file != NULL)
5244 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5245 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5246 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5247 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5248 bitmap_set_bit (&check_only_regs, original_regno);
5249 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5250 if (def_p)
5251 lra_process_new_insns (insn, NULL, new_insns,
5252 "Add original<-inheritance");
5253 else
5254 lra_process_new_insns (insn, new_insns, NULL,
5255 "Add inheritance<-original");
5256 while (next_usage_insns != NULL_RTX)
5258 if (GET_CODE (next_usage_insns) != INSN_LIST)
5260 usage_insn = next_usage_insns;
5261 lra_assert (NONDEBUG_INSN_P (usage_insn));
5262 next_usage_insns = NULL;
5264 else
5266 usage_insn = XEXP (next_usage_insns, 0);
5267 lra_assert (DEBUG_INSN_P (usage_insn));
5268 next_usage_insns = XEXP (next_usage_insns, 1);
5270 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5271 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5272 if (lra_dump_file != NULL)
5274 fprintf (lra_dump_file,
5275 " Inheritance reuse change %d->%d (bb%d):\n",
5276 original_regno, REGNO (new_reg),
5277 BLOCK_FOR_INSN (usage_insn)->index);
5278 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5281 if (lra_dump_file != NULL)
5282 fprintf (lra_dump_file,
5283 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5284 return true;
5287 /* Return true if we need a caller save/restore for pseudo REGNO which
5288 was assigned to a hard register. */
5289 static inline bool
5290 need_for_call_save_p (int regno)
5292 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5293 return (usage_insns[regno].calls_num < calls_num
5294 && (overlaps_hard_reg_set_p
5295 ((flag_ipa_ra &&
5296 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5297 ? lra_reg_info[regno].actual_call_used_reg_set
5298 : call_used_reg_set,
5299 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5300 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber[regno],
5301 PSEUDO_REGNO_MODE (regno))));
5304 /* Global registers occurring in the current EBB. */
5305 static bitmap_head ebb_global_regs;
5307 /* Return true if we need a split for hard register REGNO or pseudo
5308 REGNO which was assigned to a hard register.
5309 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5310 used for reloads since the EBB end. It is an approximation of the
5311 used hard registers in the split range. The exact value would
5312 require expensive calculations. If we were aggressive with
5313 splitting because of the approximation, the split pseudo will save
5314 the same hard register assignment and will be removed in the undo
5315 pass. We still need the approximation because too aggressive
5316 splitting would result in too inaccurate cost calculation in the
5317 assignment pass because of too many generated moves which will be
5318 probably removed in the undo pass. */
5319 static inline bool
5320 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5322 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5324 lra_assert (hard_regno >= 0);
5325 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5326 /* Don't split eliminable hard registers, otherwise we can
5327 split hard registers like hard frame pointer, which
5328 lives on BB start/end according to DF-infrastructure,
5329 when there is a pseudo assigned to the register and
5330 living in the same BB. */
5331 && (regno >= FIRST_PSEUDO_REGISTER
5332 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5333 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5334 /* Don't split call clobbered hard regs living through
5335 calls, otherwise we might have a check problem in the
5336 assign sub-pass as in the most cases (exception is a
5337 situation when lra_risky_transformations_p value is
5338 true) the assign pass assumes that all pseudos living
5339 through calls are assigned to call saved hard regs. */
5340 && (regno >= FIRST_PSEUDO_REGISTER
5341 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5342 || usage_insns[regno].calls_num == calls_num)
5343 /* We need at least 2 reloads to make pseudo splitting
5344 profitable. We should provide hard regno splitting in
5345 any case to solve 1st insn scheduling problem when
5346 moving hard register definition up might result in
5347 impossibility to find hard register for reload pseudo of
5348 small register class. */
5349 && (usage_insns[regno].reloads_num
5350 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5351 && (regno < FIRST_PSEUDO_REGISTER
5352 /* For short living pseudos, spilling + inheritance can
5353 be considered a substitution for splitting.
5354 Therefore we do not splitting for local pseudos. It
5355 decreases also aggressiveness of splitting. The
5356 minimal number of references is chosen taking into
5357 account that for 2 references splitting has no sense
5358 as we can just spill the pseudo. */
5359 || (regno >= FIRST_PSEUDO_REGISTER
5360 && lra_reg_info[regno].nrefs > 3
5361 && bitmap_bit_p (&ebb_global_regs, regno))))
5362 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5365 /* Return class for the split pseudo created from original pseudo with
5366 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5367 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5368 results in no secondary memory movements. */
5369 static enum reg_class
5370 choose_split_class (enum reg_class allocno_class,
5371 int hard_regno ATTRIBUTE_UNUSED,
5372 machine_mode mode ATTRIBUTE_UNUSED)
5374 #ifndef SECONDARY_MEMORY_NEEDED
5375 return allocno_class;
5376 #else
5377 int i;
5378 enum reg_class cl, best_cl = NO_REGS;
5379 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5380 = REGNO_REG_CLASS (hard_regno);
5382 if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
5383 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5384 return allocno_class;
5385 for (i = 0;
5386 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5387 i++)
5388 if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
5389 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
5390 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5391 && (best_cl == NO_REGS
5392 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5393 best_cl = cl;
5394 return best_cl;
5395 #endif
5398 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5399 It only makes sense to call this function if NEW_REGNO is always
5400 equal to ORIGINAL_REGNO. */
5402 static void
5403 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5405 if (!ira_reg_equiv[original_regno].defined_p)
5406 return;
5408 ira_expand_reg_equiv ();
5409 ira_reg_equiv[new_regno].defined_p = true;
5410 if (ira_reg_equiv[original_regno].memory)
5411 ira_reg_equiv[new_regno].memory
5412 = copy_rtx (ira_reg_equiv[original_regno].memory);
5413 if (ira_reg_equiv[original_regno].constant)
5414 ira_reg_equiv[new_regno].constant
5415 = copy_rtx (ira_reg_equiv[original_regno].constant);
5416 if (ira_reg_equiv[original_regno].invariant)
5417 ira_reg_equiv[new_regno].invariant
5418 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5421 /* Do split transformations for insn INSN, which defines or uses
5422 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5423 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5424 "insns" field of usage_insns.
5426 The transformations look like:
5428 p <- ... p <- ...
5429 ... s <- p (new insn -- save)
5430 ... =>
5431 ... p <- s (new insn -- restore)
5432 <- ... p ... <- ... p ...
5434 <- ... p ... <- ... p ...
5435 ... s <- p (new insn -- save)
5436 ... =>
5437 ... p <- s (new insn -- restore)
5438 <- ... p ... <- ... p ...
5440 where p is an original pseudo got a hard register or a hard
5441 register and s is a new split pseudo. The save is put before INSN
5442 if BEFORE_P is true. Return true if we succeed in such
5443 transformation. */
5444 static bool
5445 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5446 rtx next_usage_insns)
5448 enum reg_class rclass;
5449 rtx original_reg;
5450 int hard_regno, nregs;
5451 rtx new_reg, usage_insn;
5452 rtx_insn *restore, *save;
5453 bool after_p;
5454 bool call_save_p;
5455 machine_mode mode;
5457 if (original_regno < FIRST_PSEUDO_REGISTER)
5459 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5460 hard_regno = original_regno;
5461 call_save_p = false;
5462 nregs = 1;
5463 mode = lra_reg_info[hard_regno].biggest_mode;
5464 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5465 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5466 as part of a multi-word register. In that case, or if the biggest
5467 mode was larger than a register, just use the reg_rtx. Otherwise,
5468 limit the size to that of the biggest access in the function. */
5469 if (mode == VOIDmode
5470 || paradoxical_subreg_p (mode, reg_rtx_mode))
5472 original_reg = regno_reg_rtx[hard_regno];
5473 mode = reg_rtx_mode;
5475 else
5476 original_reg = gen_rtx_REG (mode, hard_regno);
5478 else
5480 mode = PSEUDO_REGNO_MODE (original_regno);
5481 hard_regno = reg_renumber[original_regno];
5482 nregs = hard_regno_nregs[hard_regno][mode];
5483 rclass = lra_get_allocno_class (original_regno);
5484 original_reg = regno_reg_rtx[original_regno];
5485 call_save_p = need_for_call_save_p (original_regno);
5487 lra_assert (hard_regno >= 0);
5488 if (lra_dump_file != NULL)
5489 fprintf (lra_dump_file,
5490 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5492 if (call_save_p)
5494 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5495 hard_regno_nregs[hard_regno][mode],
5496 mode);
5497 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5499 else
5501 rclass = choose_split_class (rclass, hard_regno, mode);
5502 if (rclass == NO_REGS)
5504 if (lra_dump_file != NULL)
5506 fprintf (lra_dump_file,
5507 " Rejecting split of %d(%s): "
5508 "no good reg class for %d(%s)\n",
5509 original_regno,
5510 reg_class_names[lra_get_allocno_class (original_regno)],
5511 hard_regno,
5512 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5513 fprintf
5514 (lra_dump_file,
5515 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5517 return false;
5519 /* Split_if_necessary can split hard registers used as part of a
5520 multi-register mode but splits each register individually. The
5521 mode used for each independent register may not be supported
5522 so reject the split. Splitting the wider mode should theoretically
5523 be possible but is not implemented. */
5524 if (! HARD_REGNO_MODE_OK (hard_regno, mode))
5526 if (lra_dump_file != NULL)
5528 fprintf (lra_dump_file,
5529 " Rejecting split of %d(%s): unsuitable mode %s\n",
5530 original_regno,
5531 reg_class_names[lra_get_allocno_class (original_regno)],
5532 GET_MODE_NAME (mode));
5533 fprintf
5534 (lra_dump_file,
5535 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5537 return false;
5539 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5540 reg_renumber[REGNO (new_reg)] = hard_regno;
5542 int new_regno = REGNO (new_reg);
5543 save = emit_spill_move (true, new_reg, original_reg);
5544 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5546 if (lra_dump_file != NULL)
5548 fprintf
5549 (lra_dump_file,
5550 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5551 original_regno, new_regno);
5552 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5553 fprintf (lra_dump_file,
5554 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5556 return false;
5558 restore = emit_spill_move (false, new_reg, original_reg);
5559 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5561 if (lra_dump_file != NULL)
5563 fprintf (lra_dump_file,
5564 " Rejecting split %d->%d "
5565 "resulting in > 2 restore insns:\n",
5566 original_regno, new_regno);
5567 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5568 fprintf (lra_dump_file,
5569 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5571 return false;
5573 /* Transfer equivalence information to the spill register, so that
5574 if we fail to allocate the spill register, we have the option of
5575 rematerializing the original value instead of spilling to the stack. */
5576 if (!HARD_REGISTER_NUM_P (original_regno)
5577 && mode == PSEUDO_REGNO_MODE (original_regno))
5578 lra_copy_reg_equiv (new_regno, original_regno);
5579 after_p = usage_insns[original_regno].after_p;
5580 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5581 bitmap_set_bit (&check_only_regs, new_regno);
5582 bitmap_set_bit (&check_only_regs, original_regno);
5583 bitmap_set_bit (&lra_split_regs, new_regno);
5584 for (;;)
5586 if (GET_CODE (next_usage_insns) != INSN_LIST)
5588 usage_insn = next_usage_insns;
5589 break;
5591 usage_insn = XEXP (next_usage_insns, 0);
5592 lra_assert (DEBUG_INSN_P (usage_insn));
5593 next_usage_insns = XEXP (next_usage_insns, 1);
5594 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5595 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5596 if (lra_dump_file != NULL)
5598 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5599 original_regno, new_regno);
5600 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5603 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5604 lra_assert (usage_insn != insn || (after_p && before_p));
5605 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5606 after_p ? NULL : restore,
5607 after_p ? restore : NULL,
5608 call_save_p
5609 ? "Add reg<-save" : "Add reg<-split");
5610 lra_process_new_insns (insn, before_p ? save : NULL,
5611 before_p ? NULL : save,
5612 call_save_p
5613 ? "Add save<-reg" : "Add split<-reg");
5614 if (nregs > 1)
5615 /* If we are trying to split multi-register. We should check
5616 conflicts on the next assignment sub-pass. IRA can allocate on
5617 sub-register levels, LRA do this on pseudos level right now and
5618 this discrepancy may create allocation conflicts after
5619 splitting. */
5620 lra_risky_transformations_p = true;
5621 if (lra_dump_file != NULL)
5622 fprintf (lra_dump_file,
5623 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5624 return true;
5627 /* Recognize that we need a split transformation for insn INSN, which
5628 defines or uses REGNO in its insn biggest MODE (we use it only if
5629 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5630 hard registers which might be used for reloads since the EBB end.
5631 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5632 uid before starting INSN processing. Return true if we succeed in
5633 such transformation. */
5634 static bool
5635 split_if_necessary (int regno, machine_mode mode,
5636 HARD_REG_SET potential_reload_hard_regs,
5637 bool before_p, rtx_insn *insn, int max_uid)
5639 bool res = false;
5640 int i, nregs = 1;
5641 rtx next_usage_insns;
5643 if (regno < FIRST_PSEUDO_REGISTER)
5644 nregs = hard_regno_nregs[regno][mode];
5645 for (i = 0; i < nregs; i++)
5646 if (usage_insns[regno + i].check == curr_usage_insns_check
5647 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5648 /* To avoid processing the register twice or more. */
5649 && ((GET_CODE (next_usage_insns) != INSN_LIST
5650 && INSN_UID (next_usage_insns) < max_uid)
5651 || (GET_CODE (next_usage_insns) == INSN_LIST
5652 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5653 && need_for_split_p (potential_reload_hard_regs, regno + i)
5654 && split_reg (before_p, regno + i, insn, next_usage_insns))
5655 res = true;
5656 return res;
5659 /* Return TRUE if rtx X is considered as an invariant for
5660 inheritance. */
5661 static bool
5662 invariant_p (const_rtx x)
5664 machine_mode mode;
5665 const char *fmt;
5666 enum rtx_code code;
5667 int i, j;
5669 code = GET_CODE (x);
5670 mode = GET_MODE (x);
5671 if (code == SUBREG)
5673 x = SUBREG_REG (x);
5674 code = GET_CODE (x);
5675 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
5676 mode = GET_MODE (x);
5679 if (MEM_P (x))
5680 return false;
5682 if (REG_P (x))
5684 int i, nregs, regno = REGNO (x);
5686 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5687 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5688 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5689 return false;
5690 nregs = hard_regno_nregs[regno][mode];
5691 for (i = 0; i < nregs; i++)
5692 if (! fixed_regs[regno + i]
5693 /* A hard register may be clobbered in the current insn
5694 but we can ignore this case because if the hard
5695 register is used it should be set somewhere after the
5696 clobber. */
5697 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5698 return false;
5700 fmt = GET_RTX_FORMAT (code);
5701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5703 if (fmt[i] == 'e')
5705 if (! invariant_p (XEXP (x, i)))
5706 return false;
5708 else if (fmt[i] == 'E')
5710 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5711 if (! invariant_p (XVECEXP (x, i, j)))
5712 return false;
5715 return true;
5718 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5719 inheritance transformation (using dest_reg instead invariant in a
5720 subsequent insn). */
5721 static bool
5722 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5724 invariant_ptr_t invariant_ptr;
5725 rtx_insn *insn, *new_insns;
5726 rtx insn_set, insn_reg, new_reg;
5727 int insn_regno;
5728 bool succ_p = false;
5729 int dst_regno = REGNO (dst_reg);
5730 machine_mode dst_mode = GET_MODE (dst_reg);
5731 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5733 invariant_ptr = insert_invariant (invariant_rtx);
5734 if ((insn = invariant_ptr->insn) != NULL_RTX)
5736 /* We have a subsequent insn using the invariant. */
5737 insn_set = single_set (insn);
5738 lra_assert (insn_set != NULL);
5739 insn_reg = SET_DEST (insn_set);
5740 lra_assert (REG_P (insn_reg));
5741 insn_regno = REGNO (insn_reg);
5742 insn_reg_cl = lra_get_allocno_class (insn_regno);
5744 if (dst_mode == GET_MODE (insn_reg)
5745 /* We should consider only result move reg insns which are
5746 cheap. */
5747 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5748 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5750 if (lra_dump_file != NULL)
5751 fprintf (lra_dump_file,
5752 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5753 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5754 cl, "invariant inheritance");
5755 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5756 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5757 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5758 start_sequence ();
5759 lra_emit_move (new_reg, dst_reg);
5760 new_insns = get_insns ();
5761 end_sequence ();
5762 lra_process_new_insns (curr_insn, NULL, new_insns,
5763 "Add invariant inheritance<-original");
5764 start_sequence ();
5765 lra_emit_move (SET_DEST (insn_set), new_reg);
5766 new_insns = get_insns ();
5767 end_sequence ();
5768 lra_process_new_insns (insn, NULL, new_insns,
5769 "Changing reload<-inheritance");
5770 lra_set_insn_deleted (insn);
5771 succ_p = true;
5772 if (lra_dump_file != NULL)
5774 fprintf (lra_dump_file,
5775 " Invariant inheritance reuse change %d (bb%d):\n",
5776 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5777 dump_insn_slim (lra_dump_file, insn);
5778 fprintf (lra_dump_file,
5779 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5783 invariant_ptr->insn = curr_insn;
5784 return succ_p;
5787 /* Check only registers living at the current program point in the
5788 current EBB. */
5789 static bitmap_head live_regs;
5791 /* Update live info in EBB given by its HEAD and TAIL insns after
5792 inheritance/split transformation. The function removes dead moves
5793 too. */
5794 static void
5795 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5797 unsigned int j;
5798 int i, regno;
5799 bool live_p;
5800 rtx_insn *prev_insn;
5801 rtx set;
5802 bool remove_p;
5803 basic_block last_bb, prev_bb, curr_bb;
5804 bitmap_iterator bi;
5805 struct lra_insn_reg *reg;
5806 edge e;
5807 edge_iterator ei;
5809 last_bb = BLOCK_FOR_INSN (tail);
5810 prev_bb = NULL;
5811 for (curr_insn = tail;
5812 curr_insn != PREV_INSN (head);
5813 curr_insn = prev_insn)
5815 prev_insn = PREV_INSN (curr_insn);
5816 /* We need to process empty blocks too. They contain
5817 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5818 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5819 continue;
5820 curr_bb = BLOCK_FOR_INSN (curr_insn);
5821 if (curr_bb != prev_bb)
5823 if (prev_bb != NULL)
5825 /* Update df_get_live_in (prev_bb): */
5826 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5827 if (bitmap_bit_p (&live_regs, j))
5828 bitmap_set_bit (df_get_live_in (prev_bb), j);
5829 else
5830 bitmap_clear_bit (df_get_live_in (prev_bb), j);
5832 if (curr_bb != last_bb)
5834 /* Update df_get_live_out (curr_bb): */
5835 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5837 live_p = bitmap_bit_p (&live_regs, j);
5838 if (! live_p)
5839 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5840 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5842 live_p = true;
5843 break;
5845 if (live_p)
5846 bitmap_set_bit (df_get_live_out (curr_bb), j);
5847 else
5848 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5851 prev_bb = curr_bb;
5852 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5854 if (! NONDEBUG_INSN_P (curr_insn))
5855 continue;
5856 curr_id = lra_get_insn_recog_data (curr_insn);
5857 curr_static_id = curr_id->insn_static_data;
5858 remove_p = false;
5859 if ((set = single_set (curr_insn)) != NULL_RTX
5860 && REG_P (SET_DEST (set))
5861 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5862 && SET_DEST (set) != pic_offset_table_rtx
5863 && bitmap_bit_p (&check_only_regs, regno)
5864 && ! bitmap_bit_p (&live_regs, regno))
5865 remove_p = true;
5866 /* See which defined values die here. */
5867 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5868 if (reg->type == OP_OUT && ! reg->subreg_p)
5869 bitmap_clear_bit (&live_regs, reg->regno);
5870 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5871 if (reg->type == OP_OUT && ! reg->subreg_p)
5872 bitmap_clear_bit (&live_regs, reg->regno);
5873 if (curr_id->arg_hard_regs != NULL)
5874 /* Make clobbered argument hard registers die. */
5875 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5876 if (regno >= FIRST_PSEUDO_REGISTER)
5877 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
5878 /* Mark each used value as live. */
5879 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5880 if (reg->type != OP_OUT
5881 && bitmap_bit_p (&check_only_regs, reg->regno))
5882 bitmap_set_bit (&live_regs, reg->regno);
5883 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5884 if (reg->type != OP_OUT
5885 && bitmap_bit_p (&check_only_regs, reg->regno))
5886 bitmap_set_bit (&live_regs, reg->regno);
5887 if (curr_id->arg_hard_regs != NULL)
5888 /* Make used argument hard registers live. */
5889 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5890 if (regno < FIRST_PSEUDO_REGISTER
5891 && bitmap_bit_p (&check_only_regs, regno))
5892 bitmap_set_bit (&live_regs, regno);
5893 /* It is quite important to remove dead move insns because it
5894 means removing dead store. We don't need to process them for
5895 constraints. */
5896 if (remove_p)
5898 if (lra_dump_file != NULL)
5900 fprintf (lra_dump_file, " Removing dead insn:\n ");
5901 dump_insn_slim (lra_dump_file, curr_insn);
5903 lra_set_insn_deleted (curr_insn);
5908 /* The structure describes info to do an inheritance for the current
5909 insn. We need to collect such info first before doing the
5910 transformations because the transformations change the insn
5911 internal representation. */
5912 struct to_inherit
5914 /* Original regno. */
5915 int regno;
5916 /* Subsequent insns which can inherit original reg value. */
5917 rtx insns;
5920 /* Array containing all info for doing inheritance from the current
5921 insn. */
5922 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5924 /* Number elements in the previous array. */
5925 static int to_inherit_num;
5927 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5928 structure to_inherit. */
5929 static void
5930 add_to_inherit (int regno, rtx insns)
5932 int i;
5934 for (i = 0; i < to_inherit_num; i++)
5935 if (to_inherit[i].regno == regno)
5936 return;
5937 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5938 to_inherit[to_inherit_num].regno = regno;
5939 to_inherit[to_inherit_num++].insns = insns;
5942 /* Return the last non-debug insn in basic block BB, or the block begin
5943 note if none. */
5944 static rtx_insn *
5945 get_last_insertion_point (basic_block bb)
5947 rtx_insn *insn;
5949 FOR_BB_INSNS_REVERSE (bb, insn)
5950 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5951 return insn;
5952 gcc_unreachable ();
5955 /* Set up RES by registers living on edges FROM except the edge (FROM,
5956 TO) or by registers set up in a jump insn in BB FROM. */
5957 static void
5958 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5960 rtx_insn *last;
5961 struct lra_insn_reg *reg;
5962 edge e;
5963 edge_iterator ei;
5965 lra_assert (to != NULL);
5966 bitmap_clear (res);
5967 FOR_EACH_EDGE (e, ei, from->succs)
5968 if (e->dest != to)
5969 bitmap_ior_into (res, df_get_live_in (e->dest));
5970 last = get_last_insertion_point (from);
5971 if (! JUMP_P (last))
5972 return;
5973 curr_id = lra_get_insn_recog_data (last);
5974 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5975 if (reg->type != OP_IN)
5976 bitmap_set_bit (res, reg->regno);
5979 /* Used as a temporary results of some bitmap calculations. */
5980 static bitmap_head temp_bitmap;
5982 /* We split for reloads of small class of hard regs. The following
5983 defines how many hard regs the class should have to be qualified as
5984 small. The code is mostly oriented to x86/x86-64 architecture
5985 where some insns need to use only specific register or pair of
5986 registers and these register can live in RTL explicitly, e.g. for
5987 parameter passing. */
5988 static const int max_small_class_regs_num = 2;
5990 /* Do inheritance/split transformations in EBB starting with HEAD and
5991 finishing on TAIL. We process EBB insns in the reverse order.
5992 Return true if we did any inheritance/split transformation in the
5993 EBB.
5995 We should avoid excessive splitting which results in worse code
5996 because of inaccurate cost calculations for spilling new split
5997 pseudos in such case. To achieve this we do splitting only if
5998 register pressure is high in given basic block and there are reload
5999 pseudos requiring hard registers. We could do more register
6000 pressure calculations at any given program point to avoid necessary
6001 splitting even more but it is to expensive and the current approach
6002 works well enough. */
6003 static bool
6004 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6006 int i, src_regno, dst_regno, nregs;
6007 bool change_p, succ_p, update_reloads_num_p;
6008 rtx_insn *prev_insn, *last_insn;
6009 rtx next_usage_insns, curr_set;
6010 enum reg_class cl;
6011 struct lra_insn_reg *reg;
6012 basic_block last_processed_bb, curr_bb = NULL;
6013 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6014 bitmap to_process;
6015 unsigned int j;
6016 bitmap_iterator bi;
6017 bool head_p, after_p;
6019 change_p = false;
6020 curr_usage_insns_check++;
6021 clear_invariants ();
6022 reloads_num = calls_num = 0;
6023 bitmap_clear (&check_only_regs);
6024 bitmap_clear (&invalid_invariant_regs);
6025 last_processed_bb = NULL;
6026 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6027 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6028 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6029 /* We don't process new insns generated in the loop. */
6030 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6032 prev_insn = PREV_INSN (curr_insn);
6033 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6034 curr_bb = BLOCK_FOR_INSN (curr_insn);
6035 if (last_processed_bb != curr_bb)
6037 /* We are at the end of BB. Add qualified living
6038 pseudos for potential splitting. */
6039 to_process = df_get_live_out (curr_bb);
6040 if (last_processed_bb != NULL)
6042 /* We are somewhere in the middle of EBB. */
6043 get_live_on_other_edges (curr_bb, last_processed_bb,
6044 &temp_bitmap);
6045 to_process = &temp_bitmap;
6047 last_processed_bb = curr_bb;
6048 last_insn = get_last_insertion_point (curr_bb);
6049 after_p = (! JUMP_P (last_insn)
6050 && (! CALL_P (last_insn)
6051 || (find_reg_note (last_insn,
6052 REG_NORETURN, NULL_RTX) == NULL_RTX
6053 && ! SIBLING_CALL_P (last_insn))));
6054 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6055 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6057 if ((int) j >= lra_constraint_new_regno_start)
6058 break;
6059 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6061 if (j < FIRST_PSEUDO_REGISTER)
6062 SET_HARD_REG_BIT (live_hard_regs, j);
6063 else
6064 add_to_hard_reg_set (&live_hard_regs,
6065 PSEUDO_REGNO_MODE (j),
6066 reg_renumber[j]);
6067 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6071 src_regno = dst_regno = -1;
6072 curr_set = single_set (curr_insn);
6073 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6074 dst_regno = REGNO (SET_DEST (curr_set));
6075 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6076 src_regno = REGNO (SET_SRC (curr_set));
6077 update_reloads_num_p = true;
6078 if (src_regno < lra_constraint_new_regno_start
6079 && src_regno >= FIRST_PSEUDO_REGISTER
6080 && reg_renumber[src_regno] < 0
6081 && dst_regno >= lra_constraint_new_regno_start
6082 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6084 /* 'reload_pseudo <- original_pseudo'. */
6085 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6086 reloads_num++;
6087 update_reloads_num_p = false;
6088 succ_p = false;
6089 if (usage_insns[src_regno].check == curr_usage_insns_check
6090 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6091 succ_p = inherit_reload_reg (false, src_regno, cl,
6092 curr_insn, next_usage_insns);
6093 if (succ_p)
6094 change_p = true;
6095 else
6096 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6097 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6098 IOR_HARD_REG_SET (potential_reload_hard_regs,
6099 reg_class_contents[cl]);
6101 else if (src_regno < 0
6102 && dst_regno >= lra_constraint_new_regno_start
6103 && invariant_p (SET_SRC (curr_set))
6104 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6105 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6106 && ! bitmap_bit_p (&invalid_invariant_regs,
6107 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6109 /* 'reload_pseudo <- invariant'. */
6110 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6111 reloads_num++;
6112 update_reloads_num_p = false;
6113 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6114 change_p = true;
6115 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6116 IOR_HARD_REG_SET (potential_reload_hard_regs,
6117 reg_class_contents[cl]);
6119 else if (src_regno >= lra_constraint_new_regno_start
6120 && dst_regno < lra_constraint_new_regno_start
6121 && dst_regno >= FIRST_PSEUDO_REGISTER
6122 && reg_renumber[dst_regno] < 0
6123 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6124 && usage_insns[dst_regno].check == curr_usage_insns_check
6125 && (next_usage_insns
6126 = usage_insns[dst_regno].insns) != NULL_RTX)
6128 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6129 reloads_num++;
6130 update_reloads_num_p = false;
6131 /* 'original_pseudo <- reload_pseudo'. */
6132 if (! JUMP_P (curr_insn)
6133 && inherit_reload_reg (true, dst_regno, cl,
6134 curr_insn, next_usage_insns))
6135 change_p = true;
6136 /* Invalidate. */
6137 usage_insns[dst_regno].check = 0;
6138 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6139 IOR_HARD_REG_SET (potential_reload_hard_regs,
6140 reg_class_contents[cl]);
6142 else if (INSN_P (curr_insn))
6144 int iter;
6145 int max_uid = get_max_uid ();
6147 curr_id = lra_get_insn_recog_data (curr_insn);
6148 curr_static_id = curr_id->insn_static_data;
6149 to_inherit_num = 0;
6150 /* Process insn definitions. */
6151 for (iter = 0; iter < 2; iter++)
6152 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6153 reg != NULL;
6154 reg = reg->next)
6155 if (reg->type != OP_IN
6156 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6158 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6159 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6160 && usage_insns[dst_regno].check == curr_usage_insns_check
6161 && (next_usage_insns
6162 = usage_insns[dst_regno].insns) != NULL_RTX)
6164 struct lra_insn_reg *r;
6166 for (r = curr_id->regs; r != NULL; r = r->next)
6167 if (r->type != OP_OUT && r->regno == dst_regno)
6168 break;
6169 /* Don't do inheritance if the pseudo is also
6170 used in the insn. */
6171 if (r == NULL)
6172 /* We can not do inheritance right now
6173 because the current insn reg info (chain
6174 regs) can change after that. */
6175 add_to_inherit (dst_regno, next_usage_insns);
6177 /* We can not process one reg twice here because of
6178 usage_insns invalidation. */
6179 if ((dst_regno < FIRST_PSEUDO_REGISTER
6180 || reg_renumber[dst_regno] >= 0)
6181 && ! reg->subreg_p && reg->type != OP_IN)
6183 HARD_REG_SET s;
6185 if (split_if_necessary (dst_regno, reg->biggest_mode,
6186 potential_reload_hard_regs,
6187 false, curr_insn, max_uid))
6188 change_p = true;
6189 CLEAR_HARD_REG_SET (s);
6190 if (dst_regno < FIRST_PSEUDO_REGISTER)
6191 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6192 else
6193 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6194 reg_renumber[dst_regno]);
6195 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6197 /* We should invalidate potential inheritance or
6198 splitting for the current insn usages to the next
6199 usage insns (see code below) as the output pseudo
6200 prevents this. */
6201 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6202 && reg_renumber[dst_regno] < 0)
6203 || (reg->type == OP_OUT && ! reg->subreg_p
6204 && (dst_regno < FIRST_PSEUDO_REGISTER
6205 || reg_renumber[dst_regno] >= 0)))
6207 /* Invalidate and mark definitions. */
6208 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6209 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6210 else
6212 nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
6213 for (i = 0; i < nregs; i++)
6214 usage_insns[dst_regno + i].check
6215 = -(int) INSN_UID (curr_insn);
6219 /* Process clobbered call regs. */
6220 if (curr_id->arg_hard_regs != NULL)
6221 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6222 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6223 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6224 = -(int) INSN_UID (curr_insn);
6225 if (! JUMP_P (curr_insn))
6226 for (i = 0; i < to_inherit_num; i++)
6227 if (inherit_reload_reg (true, to_inherit[i].regno,
6228 ALL_REGS, curr_insn,
6229 to_inherit[i].insns))
6230 change_p = true;
6231 if (CALL_P (curr_insn))
6233 rtx cheap, pat, dest;
6234 rtx_insn *restore;
6235 int regno, hard_regno;
6237 calls_num++;
6238 if ((cheap = find_reg_note (curr_insn,
6239 REG_RETURNED, NULL_RTX)) != NULL_RTX
6240 && ((cheap = XEXP (cheap, 0)), true)
6241 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6242 && (hard_regno = reg_renumber[regno]) >= 0
6243 /* If there are pending saves/restores, the
6244 optimization is not worth. */
6245 && usage_insns[regno].calls_num == calls_num - 1
6246 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6248 /* Restore the pseudo from the call result as
6249 REG_RETURNED note says that the pseudo value is
6250 in the call result and the pseudo is an argument
6251 of the call. */
6252 pat = PATTERN (curr_insn);
6253 if (GET_CODE (pat) == PARALLEL)
6254 pat = XVECEXP (pat, 0, 0);
6255 dest = SET_DEST (pat);
6256 /* For multiple return values dest is PARALLEL.
6257 Currently we handle only single return value case. */
6258 if (REG_P (dest))
6260 start_sequence ();
6261 emit_move_insn (cheap, copy_rtx (dest));
6262 restore = get_insns ();
6263 end_sequence ();
6264 lra_process_new_insns (curr_insn, NULL, restore,
6265 "Inserting call parameter restore");
6266 /* We don't need to save/restore of the pseudo from
6267 this call. */
6268 usage_insns[regno].calls_num = calls_num;
6269 bitmap_set_bit (&check_only_regs, regno);
6273 to_inherit_num = 0;
6274 /* Process insn usages. */
6275 for (iter = 0; iter < 2; iter++)
6276 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6277 reg != NULL;
6278 reg = reg->next)
6279 if ((reg->type != OP_OUT
6280 || (reg->type == OP_OUT && reg->subreg_p))
6281 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6283 if (src_regno >= FIRST_PSEUDO_REGISTER
6284 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6286 if (usage_insns[src_regno].check == curr_usage_insns_check
6287 && (next_usage_insns
6288 = usage_insns[src_regno].insns) != NULL_RTX
6289 && NONDEBUG_INSN_P (curr_insn))
6290 add_to_inherit (src_regno, next_usage_insns);
6291 else if (usage_insns[src_regno].check
6292 != -(int) INSN_UID (curr_insn))
6293 /* Add usages but only if the reg is not set up
6294 in the same insn. */
6295 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6297 else if (src_regno < FIRST_PSEUDO_REGISTER
6298 || reg_renumber[src_regno] >= 0)
6300 bool before_p;
6301 rtx_insn *use_insn = curr_insn;
6303 before_p = (JUMP_P (curr_insn)
6304 || (CALL_P (curr_insn) && reg->type == OP_IN));
6305 if (NONDEBUG_INSN_P (curr_insn)
6306 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6307 && split_if_necessary (src_regno, reg->biggest_mode,
6308 potential_reload_hard_regs,
6309 before_p, curr_insn, max_uid))
6311 if (reg->subreg_p)
6312 lra_risky_transformations_p = true;
6313 change_p = true;
6314 /* Invalidate. */
6315 usage_insns[src_regno].check = 0;
6316 if (before_p)
6317 use_insn = PREV_INSN (curr_insn);
6319 if (NONDEBUG_INSN_P (curr_insn))
6321 if (src_regno < FIRST_PSEUDO_REGISTER)
6322 add_to_hard_reg_set (&live_hard_regs,
6323 reg->biggest_mode, src_regno);
6324 else
6325 add_to_hard_reg_set (&live_hard_regs,
6326 PSEUDO_REGNO_MODE (src_regno),
6327 reg_renumber[src_regno]);
6329 add_next_usage_insn (src_regno, use_insn, reloads_num);
6332 /* Process used call regs. */
6333 if (curr_id->arg_hard_regs != NULL)
6334 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6335 if (src_regno < FIRST_PSEUDO_REGISTER)
6337 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6338 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6340 for (i = 0; i < to_inherit_num; i++)
6342 src_regno = to_inherit[i].regno;
6343 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6344 curr_insn, to_inherit[i].insns))
6345 change_p = true;
6346 else
6347 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6350 if (update_reloads_num_p
6351 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6353 int regno = -1;
6354 if ((REG_P (SET_DEST (curr_set))
6355 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6356 && reg_renumber[regno] < 0
6357 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6358 || (REG_P (SET_SRC (curr_set))
6359 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6360 && reg_renumber[regno] < 0
6361 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6363 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6364 reloads_num++;
6365 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6366 IOR_HARD_REG_SET (potential_reload_hard_regs,
6367 reg_class_contents[cl]);
6370 if (NONDEBUG_INSN_P (curr_insn))
6372 int regno;
6374 /* Invalidate invariants with changed regs. */
6375 curr_id = lra_get_insn_recog_data (curr_insn);
6376 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6377 if (reg->type != OP_IN)
6379 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6380 bitmap_set_bit (&invalid_invariant_regs,
6381 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6383 curr_static_id = curr_id->insn_static_data;
6384 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6385 if (reg->type != OP_IN)
6386 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6387 if (curr_id->arg_hard_regs != NULL)
6388 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6389 if (regno >= FIRST_PSEUDO_REGISTER)
6390 bitmap_set_bit (&invalid_invariant_regs,
6391 regno - FIRST_PSEUDO_REGISTER);
6393 /* We reached the start of the current basic block. */
6394 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6395 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6397 /* We reached the beginning of the current block -- do
6398 rest of spliting in the current BB. */
6399 to_process = df_get_live_in (curr_bb);
6400 if (BLOCK_FOR_INSN (head) != curr_bb)
6402 /* We are somewhere in the middle of EBB. */
6403 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6404 curr_bb, &temp_bitmap);
6405 to_process = &temp_bitmap;
6407 head_p = true;
6408 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6410 if ((int) j >= lra_constraint_new_regno_start)
6411 break;
6412 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6413 && usage_insns[j].check == curr_usage_insns_check
6414 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6416 if (need_for_split_p (potential_reload_hard_regs, j))
6418 if (lra_dump_file != NULL && head_p)
6420 fprintf (lra_dump_file,
6421 " ----------------------------------\n");
6422 head_p = false;
6424 if (split_reg (false, j, bb_note (curr_bb),
6425 next_usage_insns))
6426 change_p = true;
6428 usage_insns[j].check = 0;
6433 return change_p;
6436 /* This value affects EBB forming. If probability of edge from EBB to
6437 a BB is not greater than the following value, we don't add the BB
6438 to EBB. */
6439 #define EBB_PROBABILITY_CUTOFF \
6440 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6442 /* Current number of inheritance/split iteration. */
6443 int lra_inheritance_iter;
6445 /* Entry function for inheritance/split pass. */
6446 void
6447 lra_inheritance (void)
6449 int i;
6450 basic_block bb, start_bb;
6451 edge e;
6453 lra_inheritance_iter++;
6454 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6455 return;
6456 timevar_push (TV_LRA_INHERITANCE);
6457 if (lra_dump_file != NULL)
6458 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6459 lra_inheritance_iter);
6460 curr_usage_insns_check = 0;
6461 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6462 for (i = 0; i < lra_constraint_new_regno_start; i++)
6463 usage_insns[i].check = 0;
6464 bitmap_initialize (&check_only_regs, &reg_obstack);
6465 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6466 bitmap_initialize (&live_regs, &reg_obstack);
6467 bitmap_initialize (&temp_bitmap, &reg_obstack);
6468 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6469 FOR_EACH_BB_FN (bb, cfun)
6471 start_bb = bb;
6472 if (lra_dump_file != NULL)
6473 fprintf (lra_dump_file, "EBB");
6474 /* Form a EBB starting with BB. */
6475 bitmap_clear (&ebb_global_regs);
6476 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6477 for (;;)
6479 if (lra_dump_file != NULL)
6480 fprintf (lra_dump_file, " %d", bb->index);
6481 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6482 || LABEL_P (BB_HEAD (bb->next_bb)))
6483 break;
6484 e = find_fallthru_edge (bb->succs);
6485 if (! e)
6486 break;
6487 if (e->probability.initialized_p ()
6488 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6489 break;
6490 bb = bb->next_bb;
6492 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6493 if (lra_dump_file != NULL)
6494 fprintf (lra_dump_file, "\n");
6495 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6496 /* Remember that the EBB head and tail can change in
6497 inherit_in_ebb. */
6498 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6500 bitmap_clear (&ebb_global_regs);
6501 bitmap_clear (&temp_bitmap);
6502 bitmap_clear (&live_regs);
6503 bitmap_clear (&invalid_invariant_regs);
6504 bitmap_clear (&check_only_regs);
6505 free (usage_insns);
6507 timevar_pop (TV_LRA_INHERITANCE);
6512 /* This page contains code to undo failed inheritance/split
6513 transformations. */
6515 /* Current number of iteration undoing inheritance/split. */
6516 int lra_undo_inheritance_iter;
6518 /* Fix BB live info LIVE after removing pseudos created on pass doing
6519 inheritance/split which are REMOVED_PSEUDOS. */
6520 static void
6521 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6523 unsigned int regno;
6524 bitmap_iterator bi;
6526 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6527 if (bitmap_clear_bit (live, regno)
6528 && REG_P (lra_reg_info[regno].restore_rtx))
6529 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6532 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6533 number. */
6534 static int
6535 get_regno (rtx reg)
6537 if (GET_CODE (reg) == SUBREG)
6538 reg = SUBREG_REG (reg);
6539 if (REG_P (reg))
6540 return REGNO (reg);
6541 return -1;
6544 /* Delete a move INSN with destination reg DREGNO and a previous
6545 clobber insn with the same regno. The inheritance/split code can
6546 generate moves with preceding clobber and when we delete such moves
6547 we should delete the clobber insn too to keep the correct life
6548 info. */
6549 static void
6550 delete_move_and_clobber (rtx_insn *insn, int dregno)
6552 rtx_insn *prev_insn = PREV_INSN (insn);
6554 lra_set_insn_deleted (insn);
6555 lra_assert (dregno >= 0);
6556 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6557 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6558 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6559 lra_set_insn_deleted (prev_insn);
6562 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6563 return true if we did any change. The undo transformations for
6564 inheritance looks like
6565 i <- i2
6566 p <- i => p <- i2
6567 or removing
6568 p <- i, i <- p, and i <- i3
6569 where p is original pseudo from which inheritance pseudo i was
6570 created, i and i3 are removed inheritance pseudos, i2 is another
6571 not removed inheritance pseudo. All split pseudos or other
6572 occurrences of removed inheritance pseudos are changed on the
6573 corresponding original pseudos.
6575 The function also schedules insns changed and created during
6576 inheritance/split pass for processing by the subsequent constraint
6577 pass. */
6578 static bool
6579 remove_inheritance_pseudos (bitmap remove_pseudos)
6581 basic_block bb;
6582 int regno, sregno, prev_sregno, dregno;
6583 rtx restore_rtx;
6584 rtx set, prev_set;
6585 rtx_insn *prev_insn;
6586 bool change_p, done_p;
6588 change_p = ! bitmap_empty_p (remove_pseudos);
6589 /* We can not finish the function right away if CHANGE_P is true
6590 because we need to marks insns affected by previous
6591 inheritance/split pass for processing by the subsequent
6592 constraint pass. */
6593 FOR_EACH_BB_FN (bb, cfun)
6595 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6596 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6597 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6599 if (! INSN_P (curr_insn))
6600 continue;
6601 done_p = false;
6602 sregno = dregno = -1;
6603 if (change_p && NONDEBUG_INSN_P (curr_insn)
6604 && (set = single_set (curr_insn)) != NULL_RTX)
6606 dregno = get_regno (SET_DEST (set));
6607 sregno = get_regno (SET_SRC (set));
6610 if (sregno >= 0 && dregno >= 0)
6612 if (bitmap_bit_p (remove_pseudos, dregno)
6613 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6615 /* invariant inheritance pseudo <- original pseudo */
6616 if (lra_dump_file != NULL)
6618 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6619 dump_insn_slim (lra_dump_file, curr_insn);
6620 fprintf (lra_dump_file, "\n");
6622 delete_move_and_clobber (curr_insn, dregno);
6623 done_p = true;
6625 else if (bitmap_bit_p (remove_pseudos, sregno)
6626 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6628 /* reload pseudo <- invariant inheritance pseudo */
6629 start_sequence ();
6630 /* We can not just change the source. It might be
6631 an insn different from the move. */
6632 emit_insn (lra_reg_info[sregno].restore_rtx);
6633 rtx_insn *new_insns = get_insns ();
6634 end_sequence ();
6635 lra_assert (single_set (new_insns) != NULL
6636 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6637 lra_process_new_insns (curr_insn, NULL, new_insns,
6638 "Changing reload<-invariant inheritance");
6639 delete_move_and_clobber (curr_insn, dregno);
6640 done_p = true;
6642 else if ((bitmap_bit_p (remove_pseudos, sregno)
6643 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6644 || (bitmap_bit_p (remove_pseudos, dregno)
6645 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6646 && (get_regno (lra_reg_info[sregno].restore_rtx)
6647 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6648 || (bitmap_bit_p (remove_pseudos, dregno)
6649 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6650 /* One of the following cases:
6651 original <- removed inheritance pseudo
6652 removed inherit pseudo <- another removed inherit pseudo
6653 removed inherit pseudo <- original pseudo
6655 removed_split_pseudo <- original_reg
6656 original_reg <- removed_split_pseudo */
6658 if (lra_dump_file != NULL)
6660 fprintf (lra_dump_file, " Removing %s:\n",
6661 bitmap_bit_p (&lra_split_regs, sregno)
6662 || bitmap_bit_p (&lra_split_regs, dregno)
6663 ? "split" : "inheritance");
6664 dump_insn_slim (lra_dump_file, curr_insn);
6666 delete_move_and_clobber (curr_insn, dregno);
6667 done_p = true;
6669 else if (bitmap_bit_p (remove_pseudos, sregno)
6670 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6672 /* Search the following pattern:
6673 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6674 original_pseudo <- inherit_or_split_pseudo1
6675 where the 2nd insn is the current insn and
6676 inherit_or_split_pseudo2 is not removed. If it is found,
6677 change the current insn onto:
6678 original_pseudo <- inherit_or_split_pseudo2. */
6679 for (prev_insn = PREV_INSN (curr_insn);
6680 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6681 prev_insn = PREV_INSN (prev_insn))
6683 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6684 && (prev_set = single_set (prev_insn)) != NULL_RTX
6685 /* There should be no subregs in insn we are
6686 searching because only the original reg might
6687 be in subreg when we changed the mode of
6688 load/store for splitting. */
6689 && REG_P (SET_DEST (prev_set))
6690 && REG_P (SET_SRC (prev_set))
6691 && (int) REGNO (SET_DEST (prev_set)) == sregno
6692 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6693 >= FIRST_PSEUDO_REGISTER)
6694 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6696 /* As we consider chain of inheritance or
6697 splitting described in above comment we should
6698 check that sregno and prev_sregno were
6699 inheritance/split pseudos created from the
6700 same original regno. */
6701 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6702 && (get_regno (lra_reg_info[sregno].restore_rtx)
6703 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6704 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6706 lra_assert (GET_MODE (SET_SRC (prev_set))
6707 == GET_MODE (regno_reg_rtx[sregno]));
6708 if (GET_CODE (SET_SRC (set)) == SUBREG)
6709 SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
6710 else
6711 SET_SRC (set) = SET_SRC (prev_set);
6712 /* As we are finishing with processing the insn
6713 here, check the destination too as it might
6714 inheritance pseudo for another pseudo. */
6715 if (bitmap_bit_p (remove_pseudos, dregno)
6716 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6717 && (restore_rtx
6718 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6720 if (GET_CODE (SET_DEST (set)) == SUBREG)
6721 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6722 else
6723 SET_DEST (set) = restore_rtx;
6725 lra_push_insn_and_update_insn_regno_info (curr_insn);
6726 lra_set_used_insn_alternative_by_uid
6727 (INSN_UID (curr_insn), -1);
6728 done_p = true;
6729 if (lra_dump_file != NULL)
6731 fprintf (lra_dump_file, " Change reload insn:\n");
6732 dump_insn_slim (lra_dump_file, curr_insn);
6737 if (! done_p)
6739 struct lra_insn_reg *reg;
6740 bool restored_regs_p = false;
6741 bool kept_regs_p = false;
6743 curr_id = lra_get_insn_recog_data (curr_insn);
6744 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6746 regno = reg->regno;
6747 restore_rtx = lra_reg_info[regno].restore_rtx;
6748 if (restore_rtx != NULL_RTX)
6750 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6752 lra_substitute_pseudo_within_insn
6753 (curr_insn, regno, restore_rtx, false);
6754 restored_regs_p = true;
6756 else
6757 kept_regs_p = true;
6760 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6762 /* The instruction has changed since the previous
6763 constraints pass. */
6764 lra_push_insn_and_update_insn_regno_info (curr_insn);
6765 lra_set_used_insn_alternative_by_uid
6766 (INSN_UID (curr_insn), -1);
6768 else if (restored_regs_p)
6769 /* The instruction has been restored to the form that
6770 it had during the previous constraints pass. */
6771 lra_update_insn_regno_info (curr_insn);
6772 if (restored_regs_p && lra_dump_file != NULL)
6774 fprintf (lra_dump_file, " Insn after restoring regs:\n");
6775 dump_insn_slim (lra_dump_file, curr_insn);
6780 return change_p;
6783 /* If optional reload pseudos failed to get a hard register or was not
6784 inherited, it is better to remove optional reloads. We do this
6785 transformation after undoing inheritance to figure out necessity to
6786 remove optional reloads easier. Return true if we do any
6787 change. */
6788 static bool
6789 undo_optional_reloads (void)
6791 bool change_p, keep_p;
6792 unsigned int regno, uid;
6793 bitmap_iterator bi, bi2;
6794 rtx_insn *insn;
6795 rtx set, src, dest;
6796 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
6798 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6799 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6801 keep_p = false;
6802 /* Keep optional reloads from previous subpasses. */
6803 if (lra_reg_info[regno].restore_rtx == NULL_RTX
6804 /* If the original pseudo changed its allocation, just
6805 removing the optional pseudo is dangerous as the original
6806 pseudo will have longer live range. */
6807 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6808 keep_p = true;
6809 else if (reg_renumber[regno] >= 0)
6810 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6812 insn = lra_insn_recog_data[uid]->insn;
6813 if ((set = single_set (insn)) == NULL_RTX)
6814 continue;
6815 src = SET_SRC (set);
6816 dest = SET_DEST (set);
6817 if (! REG_P (src) || ! REG_P (dest))
6818 continue;
6819 if (REGNO (dest) == regno
6820 /* Ignore insn for optional reloads itself. */
6821 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
6822 /* Check only inheritance on last inheritance pass. */
6823 && (int) REGNO (src) >= new_regno_start
6824 /* Check that the optional reload was inherited. */
6825 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6827 keep_p = true;
6828 break;
6831 if (keep_p)
6833 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
6834 if (lra_dump_file != NULL)
6835 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6838 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
6839 auto_bitmap insn_bitmap (&reg_obstack);
6840 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
6842 if (lra_dump_file != NULL)
6843 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6844 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6845 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
6847 insn = lra_insn_recog_data[uid]->insn;
6848 if ((set = single_set (insn)) != NULL_RTX)
6850 src = SET_SRC (set);
6851 dest = SET_DEST (set);
6852 if (REG_P (src) && REG_P (dest)
6853 && ((REGNO (src) == regno
6854 && (REGNO (lra_reg_info[regno].restore_rtx)
6855 == REGNO (dest)))
6856 || (REGNO (dest) == regno
6857 && (REGNO (lra_reg_info[regno].restore_rtx)
6858 == REGNO (src)))))
6860 if (lra_dump_file != NULL)
6862 fprintf (lra_dump_file, " Deleting move %u\n",
6863 INSN_UID (insn));
6864 dump_insn_slim (lra_dump_file, insn);
6866 delete_move_and_clobber (insn, REGNO (dest));
6867 continue;
6869 /* We should not worry about generation memory-memory
6870 moves here as if the corresponding inheritance did
6871 not work (inheritance pseudo did not get a hard reg),
6872 we remove the inheritance pseudo and the optional
6873 reload. */
6875 lra_substitute_pseudo_within_insn
6876 (insn, regno, lra_reg_info[regno].restore_rtx, false);
6877 lra_update_insn_regno_info (insn);
6878 if (lra_dump_file != NULL)
6880 fprintf (lra_dump_file,
6881 " Restoring original insn:\n");
6882 dump_insn_slim (lra_dump_file, insn);
6886 /* Clear restore_regnos. */
6887 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6888 lra_reg_info[regno].restore_rtx = NULL_RTX;
6889 return change_p;
6892 /* Entry function for undoing inheritance/split transformation. Return true
6893 if we did any RTL change in this pass. */
6894 bool
6895 lra_undo_inheritance (void)
6897 unsigned int regno;
6898 int hard_regno;
6899 int n_all_inherit, n_inherit, n_all_split, n_split;
6900 rtx restore_rtx;
6901 bitmap_iterator bi;
6902 bool change_p;
6904 lra_undo_inheritance_iter++;
6905 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6906 return false;
6907 if (lra_dump_file != NULL)
6908 fprintf (lra_dump_file,
6909 "\n********** Undoing inheritance #%d: **********\n\n",
6910 lra_undo_inheritance_iter);
6911 auto_bitmap remove_pseudos (&reg_obstack);
6912 n_inherit = n_all_inherit = 0;
6913 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6914 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
6916 n_all_inherit++;
6917 if (reg_renumber[regno] < 0
6918 /* If the original pseudo changed its allocation, just
6919 removing inheritance is dangerous as for changing
6920 allocation we used shorter live-ranges. */
6921 && (! REG_P (lra_reg_info[regno].restore_rtx)
6922 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
6923 bitmap_set_bit (remove_pseudos, regno);
6924 else
6925 n_inherit++;
6927 if (lra_dump_file != NULL && n_all_inherit != 0)
6928 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
6929 n_inherit, n_all_inherit,
6930 (double) n_inherit / n_all_inherit * 100);
6931 n_split = n_all_split = 0;
6932 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6933 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
6935 int restore_regno = REGNO (restore_rtx);
6937 n_all_split++;
6938 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
6939 ? reg_renumber[restore_regno] : restore_regno);
6940 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
6941 bitmap_set_bit (remove_pseudos, regno);
6942 else
6944 n_split++;
6945 if (lra_dump_file != NULL)
6946 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
6947 regno, restore_regno);
6950 if (lra_dump_file != NULL && n_all_split != 0)
6951 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
6952 n_split, n_all_split,
6953 (double) n_split / n_all_split * 100);
6954 change_p = remove_inheritance_pseudos (remove_pseudos);
6955 /* Clear restore_regnos. */
6956 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6957 lra_reg_info[regno].restore_rtx = NULL_RTX;
6958 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6959 lra_reg_info[regno].restore_rtx = NULL_RTX;
6960 change_p = undo_optional_reloads () || change_p;
6961 return change_p;