(PREDICATE_CODES): Remove duplicate defintion of seth_add3_operand.
[official-gcc.git] / gcc / gcse.c
blob16d76fe4d6c760cc9cfe9d9c7735f893ba347d43
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing register.
269 **********************
271 A fair bit of simplicity is created by creating small functions for simple
272 tasks, even when the function is only called in one place. This may
273 measurably slow things down [or may not] by creating more function call
274 overhead than is necessary. The source is laid out so that it's trivial
275 to make the affected functions inline so that one can measure what speed
276 up, if any, can be achieved, and maybe later when things settle things can
277 be rearranged.
279 Help stamp out big monolithic functions! */
281 /* GCSE global vars. */
283 /* -dG dump file. */
284 static FILE *gcse_file;
286 /* Note whether or not we should run jump optimization after gcse. We
287 want to do this for two cases.
289 * If we changed any jumps via cprop.
291 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 struct reg_use {rtx reg_rtx; };
306 /* Hash table of expressions. */
308 struct expr
310 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 rtx expr;
312 /* Index in the available expression bitmaps. */
313 int bitmap_index;
314 /* Next entry with the same hash. */
315 struct expr *next_same_hash;
316 /* List of anticipatable occurrences in basic blocks in the function.
317 An "anticipatable occurrence" is one that is the first occurrence in the
318 basic block, the operands are not modified in the basic block prior
319 to the occurrence and the output is not used between the start of
320 the block and the occurrence. */
321 struct occr *antic_occr;
322 /* List of available occurrence in basic blocks in the function.
323 An "available occurrence" is one that is the last occurrence in the
324 basic block and the operands are not modified by following statements in
325 the basic block [including this insn]. */
326 struct occr *avail_occr;
327 /* Non-null if the computation is PRE redundant.
328 The value is the newly created pseudo-reg to record a copy of the
329 expression in all the places that reach the redundant copy. */
330 rtx reaching_reg;
333 /* Occurrence of an expression.
334 There is one per basic block. If a pattern appears more than once the
335 last appearance is used [or first for anticipatable expressions]. */
337 struct occr
339 /* Next occurrence of this expression. */
340 struct occr *next;
341 /* The insn that computes the expression. */
342 rtx insn;
343 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 char deleted_p;
345 /* Nonzero if this [available] occurrence has been copied to
346 reaching_reg. */
347 /* ??? This is mutually exclusive with deleted_p, so they could share
348 the same byte. */
349 char copied_p;
352 /* Expression and copy propagation hash tables.
353 Each hash table is an array of buckets.
354 ??? It is known that if it were an array of entries, structure elements
355 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
356 not clear whether in the final analysis a sufficient amount of memory would
357 be saved as the size of the available expression bitmaps would be larger
358 [one could build a mapping table without holes afterwards though].
359 Someday I'll perform the computation and figure it out. */
361 struct hash_table
363 /* The table itself.
364 This is an array of `expr_hash_table_size' elements. */
365 struct expr **table;
367 /* Size of the hash table, in elements. */
368 unsigned int size;
370 /* Number of hash table elements. */
371 unsigned int n_elems;
373 /* Whether the table is expression of copy propagation one. */
374 int set_p;
377 /* Expression hash table. */
378 static struct hash_table expr_hash_table;
380 /* Copy propagation hash table. */
381 static struct hash_table set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
393 #else
394 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
395 #endif
397 /* Number of cuids. */
398 static int max_cuid;
400 /* Mapping of cuids to insns. */
401 static rtx *cuid_insn;
403 /* Get insn from cuid. */
404 #define CUID_INSN(CUID) (cuid_insn[CUID])
406 /* Maximum register number in function prior to doing gcse + 1.
407 Registers created during this pass have regno >= max_gcse_regno.
408 This is named with "gcse" to not collide with global of same name. */
409 static unsigned int max_gcse_regno;
411 /* Table of registers that are modified.
413 For each register, each element is a list of places where the pseudo-reg
414 is set.
416 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
417 requires knowledge of which blocks kill which regs [and thus could use
418 a bitmap instead of the lists `reg_set_table' uses].
420 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
421 num-regs) [however perhaps it may be useful to keep the data as is]. One
422 advantage of recording things this way is that `reg_set_table' is fairly
423 sparse with respect to pseudo regs but for hard regs could be fairly dense
424 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
425 up functions like compute_transp since in the case of pseudo-regs we only
426 need to iterate over the number of times a pseudo-reg is set, not over the
427 number of basic blocks [clearly there is a bit of a slow down in the cases
428 where a pseudo is set more than once in a block, however it is believed
429 that the net effect is to speed things up]. This isn't done for hard-regs
430 because recording call-clobbered hard-regs in `reg_set_table' at each
431 function call can consume a fair bit of memory, and iterating over
432 hard-regs stored this way in compute_transp will be more expensive. */
434 typedef struct reg_set
436 /* The next setting of this register. */
437 struct reg_set *next;
438 /* The insn where it was set. */
439 rtx insn;
440 } reg_set;
442 static reg_set **reg_set_table;
444 /* Size of `reg_set_table'.
445 The table starts out at max_gcse_regno + slop, and is enlarged as
446 necessary. */
447 static int reg_set_table_size;
449 /* Amount to grow `reg_set_table' by when it's full. */
450 #define REG_SET_TABLE_SLOP 100
452 /* This is a list of expressions which are MEMs and will be used by load
453 or store motion.
454 Load motion tracks MEMs which aren't killed by
455 anything except itself. (ie, loads and stores to a single location).
456 We can then allow movement of these MEM refs with a little special
457 allowance. (all stores copy the same value to the reaching reg used
458 for the loads). This means all values used to store into memory must have
459 no side effects so we can re-issue the setter value.
460 Store Motion uses this structure as an expression table to track stores
461 which look interesting, and might be moveable towards the exit block. */
463 struct ls_expr
465 struct expr * expr; /* Gcse expression reference for LM. */
466 rtx pattern; /* Pattern of this mem. */
467 rtx pattern_regs; /* List of registers mentioned by the mem. */
468 rtx loads; /* INSN list of loads seen. */
469 rtx stores; /* INSN list of stores seen. */
470 struct ls_expr * next; /* Next in the list. */
471 int invalid; /* Invalid for some reason. */
472 int index; /* If it maps to a bitmap index. */
473 unsigned int hash_index; /* Index when in a hash table. */
474 rtx reaching_reg; /* Register to use when re-writing. */
477 /* Array of implicit set patterns indexed by basic block index. */
478 static rtx *implicit_sets;
480 /* Head of the list of load/store memory refs. */
481 static struct ls_expr * pre_ldst_mems = NULL;
483 /* Bitmap containing one bit for each register in the program.
484 Used when performing GCSE to track which registers have been set since
485 the start of the basic block. */
486 static regset reg_set_bitmap;
488 /* For each block, a bitmap of registers set in the block.
489 This is used by compute_transp.
490 It is computed during hash table computation and not by compute_sets
491 as it includes registers added since the last pass (or between cprop and
492 gcse) and it's currently not easy to realloc sbitmap vectors. */
493 static sbitmap *reg_set_in_block;
495 /* Array, indexed by basic block number for a list of insns which modify
496 memory within that block. */
497 static rtx * modify_mem_list;
498 static bitmap modify_mem_list_set;
500 /* This array parallels modify_mem_list, but is kept canonicalized. */
501 static rtx * canon_modify_mem_list;
502 static bitmap canon_modify_mem_list_set;
504 /* Various variables for statistics gathering. */
506 /* Memory used in a pass.
507 This isn't intended to be absolutely precise. Its intent is only
508 to keep an eye on memory usage. */
509 static int bytes_used;
511 /* GCSE substitutions made. */
512 static int gcse_subst_count;
513 /* Number of copy instructions created. */
514 static int gcse_create_count;
515 /* Number of local constants propagated. */
516 static int local_const_prop_count;
517 /* Number of local copys propagated. */
518 static int local_copy_prop_count;
519 /* Number of global constants propagated. */
520 static int global_const_prop_count;
521 /* Number of global copys propagated. */
522 static int global_copy_prop_count;
524 /* For available exprs */
525 static sbitmap *ae_kill, *ae_gen;
527 /* Objects of this type are passed around by the null-pointer check
528 removal routines. */
529 struct null_pointer_info
531 /* The basic block being processed. */
532 basic_block current_block;
533 /* The first register to be handled in this pass. */
534 unsigned int min_reg;
535 /* One greater than the last register to be handled in this pass. */
536 unsigned int max_reg;
537 sbitmap *nonnull_local;
538 sbitmap *nonnull_killed;
541 static void compute_can_copy (void);
542 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
543 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
544 static void *grealloc (void *, size_t);
545 static void *gcse_alloc (unsigned long);
546 static void alloc_gcse_mem (rtx);
547 static void free_gcse_mem (void);
548 static void alloc_reg_set_mem (int);
549 static void free_reg_set_mem (void);
550 static void record_one_set (int, rtx);
551 static void replace_one_set (int, rtx, rtx);
552 static void record_set_info (rtx, rtx, void *);
553 static void compute_sets (rtx);
554 static void hash_scan_insn (rtx, struct hash_table *, int);
555 static void hash_scan_set (rtx, rtx, struct hash_table *);
556 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
557 static void hash_scan_call (rtx, rtx, struct hash_table *);
558 static int want_to_gcse_p (rtx);
559 static bool can_assign_to_reg_p (rtx);
560 static bool gcse_constant_p (rtx);
561 static int oprs_unchanged_p (rtx, rtx, int);
562 static int oprs_anticipatable_p (rtx, rtx);
563 static int oprs_available_p (rtx, rtx);
564 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
565 struct hash_table *);
566 static void insert_set_in_table (rtx, rtx, struct hash_table *);
567 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
568 static unsigned int hash_set (int, int);
569 static int expr_equiv_p (rtx, rtx);
570 static void record_last_reg_set_info (rtx, int);
571 static void record_last_mem_set_info (rtx);
572 static void record_last_set_info (rtx, rtx, void *);
573 static void compute_hash_table (struct hash_table *);
574 static void alloc_hash_table (int, struct hash_table *, int);
575 static void free_hash_table (struct hash_table *);
576 static void compute_hash_table_work (struct hash_table *);
577 static void dump_hash_table (FILE *, const char *, struct hash_table *);
578 static struct expr *lookup_set (unsigned int, struct hash_table *);
579 static struct expr *next_set (unsigned int, struct expr *);
580 static void reset_opr_set_tables (void);
581 static int oprs_not_set_p (rtx, rtx);
582 static void mark_call (rtx);
583 static void mark_set (rtx, rtx);
584 static void mark_clobber (rtx, rtx);
585 static void mark_oprs_set (rtx);
586 static void alloc_cprop_mem (int, int);
587 static void free_cprop_mem (void);
588 static void compute_transp (rtx, int, sbitmap *, int);
589 static void compute_transpout (void);
590 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
591 struct hash_table *);
592 static void compute_cprop_data (void);
593 static void find_used_regs (rtx *, void *);
594 static int try_replace_reg (rtx, rtx, rtx);
595 static struct expr *find_avail_set (int, rtx);
596 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
597 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
598 static int load_killed_in_block_p (basic_block, int, rtx, int);
599 static void canon_list_insert (rtx, rtx, void *);
600 static int cprop_insn (rtx, int);
601 static int cprop (int);
602 static void find_implicit_sets (void);
603 static int one_cprop_pass (int, int, int);
604 static bool constprop_register (rtx, rtx, rtx, int);
605 static struct expr *find_bypass_set (int, int);
606 static bool reg_killed_on_edge (rtx, edge);
607 static int bypass_block (basic_block, rtx, rtx);
608 static int bypass_conditional_jumps (void);
609 static void alloc_pre_mem (int, int);
610 static void free_pre_mem (void);
611 static void compute_pre_data (void);
612 static int pre_expr_reaches_here_p (basic_block, struct expr *,
613 basic_block);
614 static void insert_insn_end_bb (struct expr *, basic_block, int);
615 static void pre_insert_copy_insn (struct expr *, rtx);
616 static void pre_insert_copies (void);
617 static int pre_delete (void);
618 static int pre_gcse (void);
619 static int one_pre_gcse_pass (int);
620 static void add_label_notes (rtx, rtx);
621 static void alloc_code_hoist_mem (int, int);
622 static void free_code_hoist_mem (void);
623 static void compute_code_hoist_vbeinout (void);
624 static void compute_code_hoist_data (void);
625 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
626 static void hoist_code (void);
627 static int one_code_hoisting_pass (void);
628 static rtx process_insert_insn (struct expr *);
629 static int pre_edge_insert (struct edge_list *, struct expr **);
630 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
631 basic_block, char *);
632 static struct ls_expr * ldst_entry (rtx);
633 static void free_ldst_entry (struct ls_expr *);
634 static void free_ldst_mems (void);
635 static void print_ldst_list (FILE *);
636 static struct ls_expr * find_rtx_in_ldst (rtx);
637 static int enumerate_ldsts (void);
638 static inline struct ls_expr * first_ls_expr (void);
639 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
640 static int simple_mem (rtx);
641 static void invalidate_any_buried_refs (rtx);
642 static void compute_ld_motion_mems (void);
643 static void trim_ld_motion_mems (void);
644 static void update_ld_motion_stores (struct expr *);
645 static void reg_set_info (rtx, rtx, void *);
646 static void reg_clear_last_set (rtx, rtx, void *);
647 static bool store_ops_ok (rtx, int *);
648 static rtx extract_mentioned_regs (rtx);
649 static rtx extract_mentioned_regs_helper (rtx, rtx);
650 static void find_moveable_store (rtx, int *, int *);
651 static int compute_store_table (void);
652 static bool load_kills_store (rtx, rtx, int);
653 static bool find_loads (rtx, rtx, int);
654 static bool store_killed_in_insn (rtx, rtx, rtx, int);
655 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
656 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
657 static void build_store_vectors (void);
658 static void insert_insn_start_bb (rtx, basic_block);
659 static int insert_store (struct ls_expr *, edge);
660 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
661 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
662 static void delete_store (struct ls_expr *, basic_block);
663 static void free_store_memory (void);
664 static void store_motion (void);
665 static void free_insn_expr_list_list (rtx *);
666 static void clear_modify_mem_tables (void);
667 static void free_modify_mem_tables (void);
668 static rtx gcse_emit_move_after (rtx, rtx, rtx);
669 static void local_cprop_find_used_regs (rtx *, void *);
670 static bool do_local_cprop (rtx, rtx, int, rtx*);
671 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
672 static void local_cprop_pass (int);
673 static bool is_too_expensive (const char *);
676 /* Entry point for global common subexpression elimination.
677 F is the first instruction in the function. */
680 gcse_main (rtx f, FILE *file)
682 int changed, pass;
683 /* Bytes used at start of pass. */
684 int initial_bytes_used;
685 /* Maximum number of bytes used by a pass. */
686 int max_pass_bytes;
687 /* Point to release obstack data from for each pass. */
688 char *gcse_obstack_bottom;
690 /* We do not construct an accurate cfg in functions which call
691 setjmp, so just punt to be safe. */
692 if (current_function_calls_setjmp)
693 return 0;
695 /* Assume that we do not need to run jump optimizations after gcse. */
696 run_jump_opt_after_gcse = 0;
698 /* For calling dump_foo fns from gdb. */
699 debug_stderr = stderr;
700 gcse_file = file;
702 /* Identify the basic block information for this function, including
703 successors and predecessors. */
704 max_gcse_regno = max_reg_num ();
706 if (file)
707 dump_flow_info (file);
709 /* Return if there's nothing to do, or it is too expensive. */
710 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
711 return 0;
713 gcc_obstack_init (&gcse_obstack);
714 bytes_used = 0;
716 /* We need alias. */
717 init_alias_analysis ();
718 /* Record where pseudo-registers are set. This data is kept accurate
719 during each pass. ??? We could also record hard-reg information here
720 [since it's unchanging], however it is currently done during hash table
721 computation.
723 It may be tempting to compute MEM set information here too, but MEM sets
724 will be subject to code motion one day and thus we need to compute
725 information about memory sets when we build the hash tables. */
727 alloc_reg_set_mem (max_gcse_regno);
728 compute_sets (f);
730 pass = 0;
731 initial_bytes_used = bytes_used;
732 max_pass_bytes = 0;
733 gcse_obstack_bottom = gcse_alloc (1);
734 changed = 1;
735 while (changed && pass < MAX_GCSE_PASSES)
737 changed = 0;
738 if (file)
739 fprintf (file, "GCSE pass %d\n\n", pass + 1);
741 /* Initialize bytes_used to the space for the pred/succ lists,
742 and the reg_set_table data. */
743 bytes_used = initial_bytes_used;
745 /* Each pass may create new registers, so recalculate each time. */
746 max_gcse_regno = max_reg_num ();
748 alloc_gcse_mem (f);
750 /* Don't allow constant propagation to modify jumps
751 during this pass. */
752 timevar_push (TV_CPROP1);
753 changed = one_cprop_pass (pass + 1, 0, 0);
754 timevar_pop (TV_CPROP1);
756 if (optimize_size)
757 /* Do nothing. */ ;
758 else
760 timevar_push (TV_PRE);
761 changed |= one_pre_gcse_pass (pass + 1);
762 /* We may have just created new basic blocks. Release and
763 recompute various things which are sized on the number of
764 basic blocks. */
765 if (changed)
767 free_modify_mem_tables ();
768 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
769 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
771 free_reg_set_mem ();
772 alloc_reg_set_mem (max_reg_num ());
773 compute_sets (f);
774 run_jump_opt_after_gcse = 1;
775 timevar_pop (TV_PRE);
778 if (max_pass_bytes < bytes_used)
779 max_pass_bytes = bytes_used;
781 /* Free up memory, then reallocate for code hoisting. We can
782 not re-use the existing allocated memory because the tables
783 will not have info for the insns or registers created by
784 partial redundancy elimination. */
785 free_gcse_mem ();
787 /* It does not make sense to run code hoisting unless we are optimizing
788 for code size -- it rarely makes programs faster, and can make
789 them bigger if we did partial redundancy elimination (when optimizing
790 for space, we don't run the partial redundancy algorithms). */
791 if (optimize_size)
793 timevar_push (TV_HOIST);
794 max_gcse_regno = max_reg_num ();
795 alloc_gcse_mem (f);
796 changed |= one_code_hoisting_pass ();
797 free_gcse_mem ();
799 if (max_pass_bytes < bytes_used)
800 max_pass_bytes = bytes_used;
801 timevar_pop (TV_HOIST);
804 if (file)
806 fprintf (file, "\n");
807 fflush (file);
810 obstack_free (&gcse_obstack, gcse_obstack_bottom);
811 pass++;
814 /* Do one last pass of copy propagation, including cprop into
815 conditional jumps. */
817 max_gcse_regno = max_reg_num ();
818 alloc_gcse_mem (f);
819 /* This time, go ahead and allow cprop to alter jumps. */
820 timevar_push (TV_CPROP2);
821 one_cprop_pass (pass + 1, 1, 0);
822 timevar_pop (TV_CPROP2);
823 free_gcse_mem ();
825 if (file)
827 fprintf (file, "GCSE of %s: %d basic blocks, ",
828 current_function_name (), n_basic_blocks);
829 fprintf (file, "%d pass%s, %d bytes\n\n",
830 pass, pass > 1 ? "es" : "", max_pass_bytes);
833 obstack_free (&gcse_obstack, NULL);
834 free_reg_set_mem ();
836 /* We are finished with alias. */
837 end_alias_analysis ();
838 allocate_reg_info (max_reg_num (), FALSE, FALSE);
840 if (!optimize_size && flag_gcse_sm)
842 timevar_push (TV_LSM);
843 store_motion ();
844 timevar_pop (TV_LSM);
847 /* Record where pseudo-registers are set. */
848 return run_jump_opt_after_gcse;
851 /* Misc. utilities. */
853 /* Nonzero for each mode that supports (set (reg) (reg)).
854 This is trivially true for integer and floating point values.
855 It may or may not be true for condition codes. */
856 static char can_copy[(int) NUM_MACHINE_MODES];
858 /* Compute which modes support reg/reg copy operations. */
860 static void
861 compute_can_copy (void)
863 int i;
864 #ifndef AVOID_CCMODE_COPIES
865 rtx reg, insn;
866 #endif
867 memset (can_copy, 0, NUM_MACHINE_MODES);
869 start_sequence ();
870 for (i = 0; i < NUM_MACHINE_MODES; i++)
871 if (GET_MODE_CLASS (i) == MODE_CC)
873 #ifdef AVOID_CCMODE_COPIES
874 can_copy[i] = 0;
875 #else
876 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
877 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
878 if (recog (PATTERN (insn), insn, NULL) >= 0)
879 can_copy[i] = 1;
880 #endif
882 else
883 can_copy[i] = 1;
885 end_sequence ();
888 /* Returns whether the mode supports reg/reg copy operations. */
890 bool
891 can_copy_p (enum machine_mode mode)
893 static bool can_copy_init_p = false;
895 if (! can_copy_init_p)
897 compute_can_copy ();
898 can_copy_init_p = true;
901 return can_copy[mode] != 0;
904 /* Cover function to xmalloc to record bytes allocated. */
906 static void *
907 gmalloc (size_t size)
909 bytes_used += size;
910 return xmalloc (size);
913 /* Cover function to xcalloc to record bytes allocated. */
915 static void *
916 gcalloc (size_t nelem, size_t elsize)
918 bytes_used += nelem * elsize;
919 return xcalloc (nelem, elsize);
922 /* Cover function to xrealloc.
923 We don't record the additional size since we don't know it.
924 It won't affect memory usage stats much anyway. */
926 static void *
927 grealloc (void *ptr, size_t size)
929 return xrealloc (ptr, size);
932 /* Cover function to obstack_alloc. */
934 static void *
935 gcse_alloc (unsigned long size)
937 bytes_used += size;
938 return obstack_alloc (&gcse_obstack, size);
941 /* Allocate memory for the cuid mapping array,
942 and reg/memory set tracking tables.
944 This is called at the start of each pass. */
946 static void
947 alloc_gcse_mem (rtx f)
949 int i;
950 rtx insn;
952 /* Find the largest UID and create a mapping from UIDs to CUIDs.
953 CUIDs are like UIDs except they increase monotonically, have no gaps,
954 and only apply to real insns. */
956 max_uid = get_max_uid ();
957 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
958 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
960 if (INSN_P (insn))
961 uid_cuid[INSN_UID (insn)] = i++;
962 else
963 uid_cuid[INSN_UID (insn)] = i;
966 /* Create a table mapping cuids to insns. */
968 max_cuid = i;
969 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
970 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
971 if (INSN_P (insn))
972 CUID_INSN (i++) = insn;
974 /* Allocate vars to track sets of regs. */
975 reg_set_bitmap = BITMAP_XMALLOC ();
977 /* Allocate vars to track sets of regs, memory per block. */
978 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
979 /* Allocate array to keep a list of insns which modify memory in each
980 basic block. */
981 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
982 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
983 modify_mem_list_set = BITMAP_XMALLOC ();
984 canon_modify_mem_list_set = BITMAP_XMALLOC ();
987 /* Free memory allocated by alloc_gcse_mem. */
989 static void
990 free_gcse_mem (void)
992 free (uid_cuid);
993 free (cuid_insn);
995 BITMAP_XFREE (reg_set_bitmap);
997 sbitmap_vector_free (reg_set_in_block);
998 free_modify_mem_tables ();
999 BITMAP_XFREE (modify_mem_list_set);
1000 BITMAP_XFREE (canon_modify_mem_list_set);
1003 /* Compute the local properties of each recorded expression.
1005 Local properties are those that are defined by the block, irrespective of
1006 other blocks.
1008 An expression is transparent in a block if its operands are not modified
1009 in the block.
1011 An expression is computed (locally available) in a block if it is computed
1012 at least once and expression would contain the same value if the
1013 computation was moved to the end of the block.
1015 An expression is locally anticipatable in a block if it is computed at
1016 least once and expression would contain the same value if the computation
1017 was moved to the beginning of the block.
1019 We call this routine for cprop, pre and code hoisting. They all compute
1020 basically the same information and thus can easily share this code.
1022 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1023 properties. If NULL, then it is not necessary to compute or record that
1024 particular property.
1026 TABLE controls which hash table to look at. If it is set hash table,
1027 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1028 ABSALTERED. */
1030 static void
1031 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1032 struct hash_table *table)
1034 unsigned int i;
1036 /* Initialize any bitmaps that were passed in. */
1037 if (transp)
1039 if (table->set_p)
1040 sbitmap_vector_zero (transp, last_basic_block);
1041 else
1042 sbitmap_vector_ones (transp, last_basic_block);
1045 if (comp)
1046 sbitmap_vector_zero (comp, last_basic_block);
1047 if (antloc)
1048 sbitmap_vector_zero (antloc, last_basic_block);
1050 for (i = 0; i < table->size; i++)
1052 struct expr *expr;
1054 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1056 int indx = expr->bitmap_index;
1057 struct occr *occr;
1059 /* The expression is transparent in this block if it is not killed.
1060 We start by assuming all are transparent [none are killed], and
1061 then reset the bits for those that are. */
1062 if (transp)
1063 compute_transp (expr->expr, indx, transp, table->set_p);
1065 /* The occurrences recorded in antic_occr are exactly those that
1066 we want to set to nonzero in ANTLOC. */
1067 if (antloc)
1068 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1070 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1072 /* While we're scanning the table, this is a good place to
1073 initialize this. */
1074 occr->deleted_p = 0;
1077 /* The occurrences recorded in avail_occr are exactly those that
1078 we want to set to nonzero in COMP. */
1079 if (comp)
1080 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1082 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1084 /* While we're scanning the table, this is a good place to
1085 initialize this. */
1086 occr->copied_p = 0;
1089 /* While we're scanning the table, this is a good place to
1090 initialize this. */
1091 expr->reaching_reg = 0;
1096 /* Register set information.
1098 `reg_set_table' records where each register is set or otherwise
1099 modified. */
1101 static struct obstack reg_set_obstack;
1103 static void
1104 alloc_reg_set_mem (int n_regs)
1106 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1107 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1109 gcc_obstack_init (&reg_set_obstack);
1112 static void
1113 free_reg_set_mem (void)
1115 free (reg_set_table);
1116 obstack_free (&reg_set_obstack, NULL);
1119 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1120 Update the corresponding `reg_set_table' entry accordingly.
1121 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1123 static void
1124 replace_one_set (int regno, rtx old_insn, rtx new_insn)
1126 struct reg_set *reg_info;
1127 if (regno >= reg_set_table_size)
1128 return;
1129 for (reg_info = reg_set_table[regno]; reg_info; reg_info = reg_info->next)
1130 if (reg_info->insn == old_insn)
1132 reg_info->insn = new_insn;
1133 break;
1137 /* Record REGNO in the reg_set table. */
1139 static void
1140 record_one_set (int regno, rtx insn)
1142 /* Allocate a new reg_set element and link it onto the list. */
1143 struct reg_set *new_reg_info;
1145 /* If the table isn't big enough, enlarge it. */
1146 if (regno >= reg_set_table_size)
1148 int new_size = regno + REG_SET_TABLE_SLOP;
1150 reg_set_table = grealloc (reg_set_table,
1151 new_size * sizeof (struct reg_set *));
1152 memset (reg_set_table + reg_set_table_size, 0,
1153 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1154 reg_set_table_size = new_size;
1157 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1158 bytes_used += sizeof (struct reg_set);
1159 new_reg_info->insn = insn;
1160 new_reg_info->next = reg_set_table[regno];
1161 reg_set_table[regno] = new_reg_info;
1164 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1165 an insn. The DATA is really the instruction in which the SET is
1166 occurring. */
1168 static void
1169 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1171 rtx record_set_insn = (rtx) data;
1173 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1174 record_one_set (REGNO (dest), record_set_insn);
1177 /* Scan the function and record each set of each pseudo-register.
1179 This is called once, at the start of the gcse pass. See the comments for
1180 `reg_set_table' for further documentation. */
1182 static void
1183 compute_sets (rtx f)
1185 rtx insn;
1187 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1188 if (INSN_P (insn))
1189 note_stores (PATTERN (insn), record_set_info, insn);
1192 /* Hash table support. */
1194 struct reg_avail_info
1196 basic_block last_bb;
1197 int first_set;
1198 int last_set;
1201 static struct reg_avail_info *reg_avail_info;
1202 static basic_block current_bb;
1205 /* See whether X, the source of a set, is something we want to consider for
1206 GCSE. */
1208 static int
1209 want_to_gcse_p (rtx x)
1211 switch (GET_CODE (x))
1213 case REG:
1214 case SUBREG:
1215 case CONST_INT:
1216 case CONST_DOUBLE:
1217 case CONST_VECTOR:
1218 case CALL:
1219 return 0;
1221 default:
1222 return can_assign_to_reg_p (x);
1226 /* Used internally by can_assign_to_reg_p. */
1228 static GTY(()) rtx test_insn;
1230 /* Return true if we can assign X to a pseudo register. */
1232 static bool
1233 can_assign_to_reg_p (rtx x)
1235 int num_clobbers = 0;
1236 int icode;
1238 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1239 if (general_operand (x, GET_MODE (x)))
1240 return 1;
1241 else if (GET_MODE (x) == VOIDmode)
1242 return 0;
1244 /* Otherwise, check if we can make a valid insn from it. First initialize
1245 our test insn if we haven't already. */
1246 if (test_insn == 0)
1248 test_insn
1249 = make_insn_raw (gen_rtx_SET (VOIDmode,
1250 gen_rtx_REG (word_mode,
1251 FIRST_PSEUDO_REGISTER * 2),
1252 const0_rtx));
1253 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1256 /* Now make an insn like the one we would make when GCSE'ing and see if
1257 valid. */
1258 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1259 SET_SRC (PATTERN (test_insn)) = x;
1260 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1261 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1264 /* Return nonzero if the operands of expression X are unchanged from the
1265 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1266 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1268 static int
1269 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1271 int i, j;
1272 enum rtx_code code;
1273 const char *fmt;
1275 if (x == 0)
1276 return 1;
1278 code = GET_CODE (x);
1279 switch (code)
1281 case REG:
1283 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1285 if (info->last_bb != current_bb)
1286 return 1;
1287 if (avail_p)
1288 return info->last_set < INSN_CUID (insn);
1289 else
1290 return info->first_set >= INSN_CUID (insn);
1293 case MEM:
1294 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1295 x, avail_p))
1296 return 0;
1297 else
1298 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1300 case PRE_DEC:
1301 case PRE_INC:
1302 case POST_DEC:
1303 case POST_INC:
1304 case PRE_MODIFY:
1305 case POST_MODIFY:
1306 return 0;
1308 case PC:
1309 case CC0: /*FIXME*/
1310 case CONST:
1311 case CONST_INT:
1312 case CONST_DOUBLE:
1313 case CONST_VECTOR:
1314 case SYMBOL_REF:
1315 case LABEL_REF:
1316 case ADDR_VEC:
1317 case ADDR_DIFF_VEC:
1318 return 1;
1320 default:
1321 break;
1324 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1326 if (fmt[i] == 'e')
1328 /* If we are about to do the last recursive call needed at this
1329 level, change it into iteration. This function is called enough
1330 to be worth it. */
1331 if (i == 0)
1332 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1334 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1335 return 0;
1337 else if (fmt[i] == 'E')
1338 for (j = 0; j < XVECLEN (x, i); j++)
1339 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1340 return 0;
1343 return 1;
1346 /* Used for communication between mems_conflict_for_gcse_p and
1347 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1348 conflict between two memory references. */
1349 static int gcse_mems_conflict_p;
1351 /* Used for communication between mems_conflict_for_gcse_p and
1352 load_killed_in_block_p. A memory reference for a load instruction,
1353 mems_conflict_for_gcse_p will see if a memory store conflicts with
1354 this memory load. */
1355 static rtx gcse_mem_operand;
1357 /* DEST is the output of an instruction. If it is a memory reference, and
1358 possibly conflicts with the load found in gcse_mem_operand, then set
1359 gcse_mems_conflict_p to a nonzero value. */
1361 static void
1362 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1363 void *data ATTRIBUTE_UNUSED)
1365 while (GET_CODE (dest) == SUBREG
1366 || GET_CODE (dest) == ZERO_EXTRACT
1367 || GET_CODE (dest) == SIGN_EXTRACT
1368 || GET_CODE (dest) == STRICT_LOW_PART)
1369 dest = XEXP (dest, 0);
1371 /* If DEST is not a MEM, then it will not conflict with the load. Note
1372 that function calls are assumed to clobber memory, but are handled
1373 elsewhere. */
1374 if (! MEM_P (dest))
1375 return;
1377 /* If we are setting a MEM in our list of specially recognized MEMs,
1378 don't mark as killed this time. */
1380 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1382 if (!find_rtx_in_ldst (dest))
1383 gcse_mems_conflict_p = 1;
1384 return;
1387 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1388 rtx_addr_varies_p))
1389 gcse_mems_conflict_p = 1;
1392 /* Return nonzero if the expression in X (a memory reference) is killed
1393 in block BB before or after the insn with the CUID in UID_LIMIT.
1394 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1395 before UID_LIMIT.
1397 To check the entire block, set UID_LIMIT to max_uid + 1 and
1398 AVAIL_P to 0. */
1400 static int
1401 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1403 rtx list_entry = modify_mem_list[bb->index];
1404 while (list_entry)
1406 rtx setter;
1407 /* Ignore entries in the list that do not apply. */
1408 if ((avail_p
1409 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1410 || (! avail_p
1411 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1413 list_entry = XEXP (list_entry, 1);
1414 continue;
1417 setter = XEXP (list_entry, 0);
1419 /* If SETTER is a call everything is clobbered. Note that calls
1420 to pure functions are never put on the list, so we need not
1421 worry about them. */
1422 if (CALL_P (setter))
1423 return 1;
1425 /* SETTER must be an INSN of some kind that sets memory. Call
1426 note_stores to examine each hunk of memory that is modified.
1428 The note_stores interface is pretty limited, so we have to
1429 communicate via global variables. Yuk. */
1430 gcse_mem_operand = x;
1431 gcse_mems_conflict_p = 0;
1432 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1433 if (gcse_mems_conflict_p)
1434 return 1;
1435 list_entry = XEXP (list_entry, 1);
1437 return 0;
1440 /* Return nonzero if the operands of expression X are unchanged from
1441 the start of INSN's basic block up to but not including INSN. */
1443 static int
1444 oprs_anticipatable_p (rtx x, rtx insn)
1446 return oprs_unchanged_p (x, insn, 0);
1449 /* Return nonzero if the operands of expression X are unchanged from
1450 INSN to the end of INSN's basic block. */
1452 static int
1453 oprs_available_p (rtx x, rtx insn)
1455 return oprs_unchanged_p (x, insn, 1);
1458 /* Hash expression X.
1460 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1461 indicating if a volatile operand is found or if the expression contains
1462 something we don't want to insert in the table. HASH_TABLE_SIZE is
1463 the current size of the hash table to be probed. */
1465 static unsigned int
1466 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1467 int hash_table_size)
1469 unsigned int hash;
1471 *do_not_record_p = 0;
1473 hash = hash_rtx (x, mode, do_not_record_p,
1474 NULL, /*have_reg_qty=*/false);
1475 return hash % hash_table_size;
1478 /* Hash a set of register REGNO.
1480 Sets are hashed on the register that is set. This simplifies the PRE copy
1481 propagation code.
1483 ??? May need to make things more elaborate. Later, as necessary. */
1485 static unsigned int
1486 hash_set (int regno, int hash_table_size)
1488 unsigned int hash;
1490 hash = regno;
1491 return hash % hash_table_size;
1494 /* Return nonzero if exp1 is equivalent to exp2. */
1496 static int
1497 expr_equiv_p (rtx x, rtx y)
1499 return exp_equiv_p (x, y, 0, true);
1502 /* Insert expression X in INSN in the hash TABLE.
1503 If it is already present, record it as the last occurrence in INSN's
1504 basic block.
1506 MODE is the mode of the value X is being stored into.
1507 It is only used if X is a CONST_INT.
1509 ANTIC_P is nonzero if X is an anticipatable expression.
1510 AVAIL_P is nonzero if X is an available expression. */
1512 static void
1513 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1514 int avail_p, struct hash_table *table)
1516 int found, do_not_record_p;
1517 unsigned int hash;
1518 struct expr *cur_expr, *last_expr = NULL;
1519 struct occr *antic_occr, *avail_occr;
1520 struct occr *last_occr = NULL;
1522 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1524 /* Do not insert expression in table if it contains volatile operands,
1525 or if hash_expr determines the expression is something we don't want
1526 to or can't handle. */
1527 if (do_not_record_p)
1528 return;
1530 cur_expr = table->table[hash];
1531 found = 0;
1533 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1535 /* If the expression isn't found, save a pointer to the end of
1536 the list. */
1537 last_expr = cur_expr;
1538 cur_expr = cur_expr->next_same_hash;
1541 if (! found)
1543 cur_expr = gcse_alloc (sizeof (struct expr));
1544 bytes_used += sizeof (struct expr);
1545 if (table->table[hash] == NULL)
1546 /* This is the first pattern that hashed to this index. */
1547 table->table[hash] = cur_expr;
1548 else
1549 /* Add EXPR to end of this hash chain. */
1550 last_expr->next_same_hash = cur_expr;
1552 /* Set the fields of the expr element. */
1553 cur_expr->expr = x;
1554 cur_expr->bitmap_index = table->n_elems++;
1555 cur_expr->next_same_hash = NULL;
1556 cur_expr->antic_occr = NULL;
1557 cur_expr->avail_occr = NULL;
1560 /* Now record the occurrence(s). */
1561 if (antic_p)
1563 antic_occr = cur_expr->antic_occr;
1565 /* Search for another occurrence in the same basic block. */
1566 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1568 /* If an occurrence isn't found, save a pointer to the end of
1569 the list. */
1570 last_occr = antic_occr;
1571 antic_occr = antic_occr->next;
1574 if (antic_occr)
1575 /* Found another instance of the expression in the same basic block.
1576 Prefer the currently recorded one. We want the first one in the
1577 block and the block is scanned from start to end. */
1578 ; /* nothing to do */
1579 else
1581 /* First occurrence of this expression in this basic block. */
1582 antic_occr = gcse_alloc (sizeof (struct occr));
1583 bytes_used += sizeof (struct occr);
1584 /* First occurrence of this expression in any block? */
1585 if (cur_expr->antic_occr == NULL)
1586 cur_expr->antic_occr = antic_occr;
1587 else
1588 last_occr->next = antic_occr;
1590 antic_occr->insn = insn;
1591 antic_occr->next = NULL;
1592 antic_occr->deleted_p = 0;
1596 if (avail_p)
1598 avail_occr = cur_expr->avail_occr;
1600 /* Search for another occurrence in the same basic block. */
1601 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1603 /* If an occurrence isn't found, save a pointer to the end of
1604 the list. */
1605 last_occr = avail_occr;
1606 avail_occr = avail_occr->next;
1609 if (avail_occr)
1610 /* Found another instance of the expression in the same basic block.
1611 Prefer this occurrence to the currently recorded one. We want
1612 the last one in the block and the block is scanned from start
1613 to end. */
1614 avail_occr->insn = insn;
1615 else
1617 /* First occurrence of this expression in this basic block. */
1618 avail_occr = gcse_alloc (sizeof (struct occr));
1619 bytes_used += sizeof (struct occr);
1621 /* First occurrence of this expression in any block? */
1622 if (cur_expr->avail_occr == NULL)
1623 cur_expr->avail_occr = avail_occr;
1624 else
1625 last_occr->next = avail_occr;
1627 avail_occr->insn = insn;
1628 avail_occr->next = NULL;
1629 avail_occr->deleted_p = 0;
1634 /* Insert pattern X in INSN in the hash table.
1635 X is a SET of a reg to either another reg or a constant.
1636 If it is already present, record it as the last occurrence in INSN's
1637 basic block. */
1639 static void
1640 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1642 int found;
1643 unsigned int hash;
1644 struct expr *cur_expr, *last_expr = NULL;
1645 struct occr *cur_occr, *last_occr = NULL;
1647 if (GET_CODE (x) != SET
1648 || ! REG_P (SET_DEST (x)))
1649 abort ();
1651 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1653 cur_expr = table->table[hash];
1654 found = 0;
1656 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1658 /* If the expression isn't found, save a pointer to the end of
1659 the list. */
1660 last_expr = cur_expr;
1661 cur_expr = cur_expr->next_same_hash;
1664 if (! found)
1666 cur_expr = gcse_alloc (sizeof (struct expr));
1667 bytes_used += sizeof (struct expr);
1668 if (table->table[hash] == NULL)
1669 /* This is the first pattern that hashed to this index. */
1670 table->table[hash] = cur_expr;
1671 else
1672 /* Add EXPR to end of this hash chain. */
1673 last_expr->next_same_hash = cur_expr;
1675 /* Set the fields of the expr element.
1676 We must copy X because it can be modified when copy propagation is
1677 performed on its operands. */
1678 cur_expr->expr = copy_rtx (x);
1679 cur_expr->bitmap_index = table->n_elems++;
1680 cur_expr->next_same_hash = NULL;
1681 cur_expr->antic_occr = NULL;
1682 cur_expr->avail_occr = NULL;
1685 /* Now record the occurrence. */
1686 cur_occr = cur_expr->avail_occr;
1688 /* Search for another occurrence in the same basic block. */
1689 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1691 /* If an occurrence isn't found, save a pointer to the end of
1692 the list. */
1693 last_occr = cur_occr;
1694 cur_occr = cur_occr->next;
1697 if (cur_occr)
1698 /* Found another instance of the expression in the same basic block.
1699 Prefer this occurrence to the currently recorded one. We want the
1700 last one in the block and the block is scanned from start to end. */
1701 cur_occr->insn = insn;
1702 else
1704 /* First occurrence of this expression in this basic block. */
1705 cur_occr = gcse_alloc (sizeof (struct occr));
1706 bytes_used += sizeof (struct occr);
1708 /* First occurrence of this expression in any block? */
1709 if (cur_expr->avail_occr == NULL)
1710 cur_expr->avail_occr = cur_occr;
1711 else
1712 last_occr->next = cur_occr;
1714 cur_occr->insn = insn;
1715 cur_occr->next = NULL;
1716 cur_occr->deleted_p = 0;
1720 /* Determine whether the rtx X should be treated as a constant for
1721 the purposes of GCSE's constant propagation. */
1723 static bool
1724 gcse_constant_p (rtx x)
1726 /* Consider a COMPARE of two integers constant. */
1727 if (GET_CODE (x) == COMPARE
1728 && GET_CODE (XEXP (x, 0)) == CONST_INT
1729 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1730 return true;
1732 /* Consider a COMPARE of the same registers is a constant
1733 if they are not floating point registers. */
1734 if (GET_CODE(x) == COMPARE
1735 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1736 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1737 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1738 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1739 return true;
1741 return CONSTANT_P (x);
1744 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1745 expression one). */
1747 static void
1748 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1750 rtx src = SET_SRC (pat);
1751 rtx dest = SET_DEST (pat);
1752 rtx note;
1754 if (GET_CODE (src) == CALL)
1755 hash_scan_call (src, insn, table);
1757 else if (REG_P (dest))
1759 unsigned int regno = REGNO (dest);
1760 rtx tmp;
1762 /* If this is a single set and we are doing constant propagation,
1763 see if a REG_NOTE shows this equivalent to a constant. */
1764 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1765 && gcse_constant_p (XEXP (note, 0)))
1766 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1768 /* Only record sets of pseudo-regs in the hash table. */
1769 if (! table->set_p
1770 && regno >= FIRST_PSEUDO_REGISTER
1771 /* Don't GCSE something if we can't do a reg/reg copy. */
1772 && can_copy_p (GET_MODE (dest))
1773 /* GCSE commonly inserts instruction after the insn. We can't
1774 do that easily for EH_REGION notes so disable GCSE on these
1775 for now. */
1776 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1777 /* Is SET_SRC something we want to gcse? */
1778 && want_to_gcse_p (src)
1779 /* Don't CSE a nop. */
1780 && ! set_noop_p (pat)
1781 /* Don't GCSE if it has attached REG_EQUIV note.
1782 At this point this only function parameters should have
1783 REG_EQUIV notes and if the argument slot is used somewhere
1784 explicitly, it means address of parameter has been taken,
1785 so we should not extend the lifetime of the pseudo. */
1786 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1787 || ! MEM_P (XEXP (note, 0))))
1789 /* An expression is not anticipatable if its operands are
1790 modified before this insn or if this is not the only SET in
1791 this insn. */
1792 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1793 /* An expression is not available if its operands are
1794 subsequently modified, including this insn. It's also not
1795 available if this is a branch, because we can't insert
1796 a set after the branch. */
1797 int avail_p = (oprs_available_p (src, insn)
1798 && ! JUMP_P (insn));
1800 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1803 /* Record sets for constant/copy propagation. */
1804 else if (table->set_p
1805 && regno >= FIRST_PSEUDO_REGISTER
1806 && ((REG_P (src)
1807 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1808 && can_copy_p (GET_MODE (dest))
1809 && REGNO (src) != regno)
1810 || gcse_constant_p (src))
1811 /* A copy is not available if its src or dest is subsequently
1812 modified. Here we want to search from INSN+1 on, but
1813 oprs_available_p searches from INSN on. */
1814 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1815 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1816 && oprs_available_p (pat, tmp))))
1817 insert_set_in_table (pat, insn, table);
1819 /* In case of store we want to consider the memory value as available in
1820 the REG stored in that memory. This makes it possible to remove
1821 redundant loads from due to stores to the same location. */
1822 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1824 unsigned int regno = REGNO (src);
1826 /* Do not do this for constant/copy propagation. */
1827 if (! table->set_p
1828 /* Only record sets of pseudo-regs in the hash table. */
1829 && regno >= FIRST_PSEUDO_REGISTER
1830 /* Don't GCSE something if we can't do a reg/reg copy. */
1831 && can_copy_p (GET_MODE (src))
1832 /* GCSE commonly inserts instruction after the insn. We can't
1833 do that easily for EH_REGION notes so disable GCSE on these
1834 for now. */
1835 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1836 /* Is SET_DEST something we want to gcse? */
1837 && want_to_gcse_p (dest)
1838 /* Don't CSE a nop. */
1839 && ! set_noop_p (pat)
1840 /* Don't GCSE if it has attached REG_EQUIV note.
1841 At this point this only function parameters should have
1842 REG_EQUIV notes and if the argument slot is used somewhere
1843 explicitly, it means address of parameter has been taken,
1844 so we should not extend the lifetime of the pseudo. */
1845 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1846 || ! MEM_P (XEXP (note, 0))))
1848 /* Stores are never anticipatable. */
1849 int antic_p = 0;
1850 /* An expression is not available if its operands are
1851 subsequently modified, including this insn. It's also not
1852 available if this is a branch, because we can't insert
1853 a set after the branch. */
1854 int avail_p = oprs_available_p (dest, insn)
1855 && ! JUMP_P (insn);
1857 /* Record the memory expression (DEST) in the hash table. */
1858 insert_expr_in_table (dest, GET_MODE (dest), insn,
1859 antic_p, avail_p, table);
1864 static void
1865 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1866 struct hash_table *table ATTRIBUTE_UNUSED)
1868 /* Currently nothing to do. */
1871 static void
1872 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1873 struct hash_table *table ATTRIBUTE_UNUSED)
1875 /* Currently nothing to do. */
1878 /* Process INSN and add hash table entries as appropriate.
1880 Only available expressions that set a single pseudo-reg are recorded.
1882 Single sets in a PARALLEL could be handled, but it's an extra complication
1883 that isn't dealt with right now. The trick is handling the CLOBBERs that
1884 are also in the PARALLEL. Later.
1886 If SET_P is nonzero, this is for the assignment hash table,
1887 otherwise it is for the expression hash table.
1888 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1889 not record any expressions. */
1891 static void
1892 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1894 rtx pat = PATTERN (insn);
1895 int i;
1897 if (in_libcall_block)
1898 return;
1900 /* Pick out the sets of INSN and for other forms of instructions record
1901 what's been modified. */
1903 if (GET_CODE (pat) == SET)
1904 hash_scan_set (pat, insn, table);
1905 else if (GET_CODE (pat) == PARALLEL)
1906 for (i = 0; i < XVECLEN (pat, 0); i++)
1908 rtx x = XVECEXP (pat, 0, i);
1910 if (GET_CODE (x) == SET)
1911 hash_scan_set (x, insn, table);
1912 else if (GET_CODE (x) == CLOBBER)
1913 hash_scan_clobber (x, insn, table);
1914 else if (GET_CODE (x) == CALL)
1915 hash_scan_call (x, insn, table);
1918 else if (GET_CODE (pat) == CLOBBER)
1919 hash_scan_clobber (pat, insn, table);
1920 else if (GET_CODE (pat) == CALL)
1921 hash_scan_call (pat, insn, table);
1924 static void
1925 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1927 int i;
1928 /* Flattened out table, so it's printed in proper order. */
1929 struct expr **flat_table;
1930 unsigned int *hash_val;
1931 struct expr *expr;
1933 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1934 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1936 for (i = 0; i < (int) table->size; i++)
1937 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1939 flat_table[expr->bitmap_index] = expr;
1940 hash_val[expr->bitmap_index] = i;
1943 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1944 name, table->size, table->n_elems);
1946 for (i = 0; i < (int) table->n_elems; i++)
1947 if (flat_table[i] != 0)
1949 expr = flat_table[i];
1950 fprintf (file, "Index %d (hash value %d)\n ",
1951 expr->bitmap_index, hash_val[i]);
1952 print_rtl (file, expr->expr);
1953 fprintf (file, "\n");
1956 fprintf (file, "\n");
1958 free (flat_table);
1959 free (hash_val);
1962 /* Record register first/last/block set information for REGNO in INSN.
1964 first_set records the first place in the block where the register
1965 is set and is used to compute "anticipatability".
1967 last_set records the last place in the block where the register
1968 is set and is used to compute "availability".
1970 last_bb records the block for which first_set and last_set are
1971 valid, as a quick test to invalidate them.
1973 reg_set_in_block records whether the register is set in the block
1974 and is used to compute "transparency". */
1976 static void
1977 record_last_reg_set_info (rtx insn, int regno)
1979 struct reg_avail_info *info = &reg_avail_info[regno];
1980 int cuid = INSN_CUID (insn);
1982 info->last_set = cuid;
1983 if (info->last_bb != current_bb)
1985 info->last_bb = current_bb;
1986 info->first_set = cuid;
1987 SET_BIT (reg_set_in_block[current_bb->index], regno);
1992 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1993 Note we store a pair of elements in the list, so they have to be
1994 taken off pairwise. */
1996 static void
1997 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1998 void * v_insn)
2000 rtx dest_addr, insn;
2001 int bb;
2003 while (GET_CODE (dest) == SUBREG
2004 || GET_CODE (dest) == ZERO_EXTRACT
2005 || GET_CODE (dest) == SIGN_EXTRACT
2006 || GET_CODE (dest) == STRICT_LOW_PART)
2007 dest = XEXP (dest, 0);
2009 /* If DEST is not a MEM, then it will not conflict with a load. Note
2010 that function calls are assumed to clobber memory, but are handled
2011 elsewhere. */
2013 if (! MEM_P (dest))
2014 return;
2016 dest_addr = get_addr (XEXP (dest, 0));
2017 dest_addr = canon_rtx (dest_addr);
2018 insn = (rtx) v_insn;
2019 bb = BLOCK_NUM (insn);
2021 canon_modify_mem_list[bb] =
2022 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2023 canon_modify_mem_list[bb] =
2024 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2025 bitmap_set_bit (canon_modify_mem_list_set, bb);
2028 /* Record memory modification information for INSN. We do not actually care
2029 about the memory location(s) that are set, or even how they are set (consider
2030 a CALL_INSN). We merely need to record which insns modify memory. */
2032 static void
2033 record_last_mem_set_info (rtx insn)
2035 int bb = BLOCK_NUM (insn);
2037 /* load_killed_in_block_p will handle the case of calls clobbering
2038 everything. */
2039 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2040 bitmap_set_bit (modify_mem_list_set, bb);
2042 if (CALL_P (insn))
2044 /* Note that traversals of this loop (other than for free-ing)
2045 will break after encountering a CALL_INSN. So, there's no
2046 need to insert a pair of items, as canon_list_insert does. */
2047 canon_modify_mem_list[bb] =
2048 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2049 bitmap_set_bit (canon_modify_mem_list_set, bb);
2051 else
2052 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2055 /* Called from compute_hash_table via note_stores to handle one
2056 SET or CLOBBER in an insn. DATA is really the instruction in which
2057 the SET is taking place. */
2059 static void
2060 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2062 rtx last_set_insn = (rtx) data;
2064 if (GET_CODE (dest) == SUBREG)
2065 dest = SUBREG_REG (dest);
2067 if (REG_P (dest))
2068 record_last_reg_set_info (last_set_insn, REGNO (dest));
2069 else if (MEM_P (dest)
2070 /* Ignore pushes, they clobber nothing. */
2071 && ! push_operand (dest, GET_MODE (dest)))
2072 record_last_mem_set_info (last_set_insn);
2075 /* Top level function to create an expression or assignment hash table.
2077 Expression entries are placed in the hash table if
2078 - they are of the form (set (pseudo-reg) src),
2079 - src is something we want to perform GCSE on,
2080 - none of the operands are subsequently modified in the block
2082 Assignment entries are placed in the hash table if
2083 - they are of the form (set (pseudo-reg) src),
2084 - src is something we want to perform const/copy propagation on,
2085 - none of the operands or target are subsequently modified in the block
2087 Currently src must be a pseudo-reg or a const_int.
2089 TABLE is the table computed. */
2091 static void
2092 compute_hash_table_work (struct hash_table *table)
2094 unsigned int i;
2096 /* While we compute the hash table we also compute a bit array of which
2097 registers are set in which blocks.
2098 ??? This isn't needed during const/copy propagation, but it's cheap to
2099 compute. Later. */
2100 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2102 /* re-Cache any INSN_LIST nodes we have allocated. */
2103 clear_modify_mem_tables ();
2104 /* Some working arrays used to track first and last set in each block. */
2105 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2107 for (i = 0; i < max_gcse_regno; ++i)
2108 reg_avail_info[i].last_bb = NULL;
2110 FOR_EACH_BB (current_bb)
2112 rtx insn;
2113 unsigned int regno;
2114 int in_libcall_block;
2116 /* First pass over the instructions records information used to
2117 determine when registers and memory are first and last set.
2118 ??? hard-reg reg_set_in_block computation
2119 could be moved to compute_sets since they currently don't change. */
2121 for (insn = BB_HEAD (current_bb);
2122 insn && insn != NEXT_INSN (BB_END (current_bb));
2123 insn = NEXT_INSN (insn))
2125 if (! INSN_P (insn))
2126 continue;
2128 if (CALL_P (insn))
2130 bool clobbers_all = false;
2131 #ifdef NON_SAVING_SETJMP
2132 if (NON_SAVING_SETJMP
2133 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2134 clobbers_all = true;
2135 #endif
2137 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2138 if (clobbers_all
2139 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2140 record_last_reg_set_info (insn, regno);
2142 mark_call (insn);
2145 note_stores (PATTERN (insn), record_last_set_info, insn);
2148 /* Insert implicit sets in the hash table. */
2149 if (table->set_p
2150 && implicit_sets[current_bb->index] != NULL_RTX)
2151 hash_scan_set (implicit_sets[current_bb->index],
2152 BB_HEAD (current_bb), table);
2154 /* The next pass builds the hash table. */
2156 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2157 insn && insn != NEXT_INSN (BB_END (current_bb));
2158 insn = NEXT_INSN (insn))
2159 if (INSN_P (insn))
2161 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2162 in_libcall_block = 1;
2163 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2164 in_libcall_block = 0;
2165 hash_scan_insn (insn, table, in_libcall_block);
2166 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2167 in_libcall_block = 0;
2171 free (reg_avail_info);
2172 reg_avail_info = NULL;
2175 /* Allocate space for the set/expr hash TABLE.
2176 N_INSNS is the number of instructions in the function.
2177 It is used to determine the number of buckets to use.
2178 SET_P determines whether set or expression table will
2179 be created. */
2181 static void
2182 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2184 int n;
2186 table->size = n_insns / 4;
2187 if (table->size < 11)
2188 table->size = 11;
2190 /* Attempt to maintain efficient use of hash table.
2191 Making it an odd number is simplest for now.
2192 ??? Later take some measurements. */
2193 table->size |= 1;
2194 n = table->size * sizeof (struct expr *);
2195 table->table = gmalloc (n);
2196 table->set_p = set_p;
2199 /* Free things allocated by alloc_hash_table. */
2201 static void
2202 free_hash_table (struct hash_table *table)
2204 free (table->table);
2207 /* Compute the hash TABLE for doing copy/const propagation or
2208 expression hash table. */
2210 static void
2211 compute_hash_table (struct hash_table *table)
2213 /* Initialize count of number of entries in hash table. */
2214 table->n_elems = 0;
2215 memset (table->table, 0, table->size * sizeof (struct expr *));
2217 compute_hash_table_work (table);
2220 /* Expression tracking support. */
2222 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2223 table entry, or NULL if not found. */
2225 static struct expr *
2226 lookup_set (unsigned int regno, struct hash_table *table)
2228 unsigned int hash = hash_set (regno, table->size);
2229 struct expr *expr;
2231 expr = table->table[hash];
2233 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2234 expr = expr->next_same_hash;
2236 return expr;
2239 /* Return the next entry for REGNO in list EXPR. */
2241 static struct expr *
2242 next_set (unsigned int regno, struct expr *expr)
2245 expr = expr->next_same_hash;
2246 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2248 return expr;
2251 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2252 types may be mixed. */
2254 static void
2255 free_insn_expr_list_list (rtx *listp)
2257 rtx list, next;
2259 for (list = *listp; list ; list = next)
2261 next = XEXP (list, 1);
2262 if (GET_CODE (list) == EXPR_LIST)
2263 free_EXPR_LIST_node (list);
2264 else
2265 free_INSN_LIST_node (list);
2268 *listp = NULL;
2271 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2272 static void
2273 clear_modify_mem_tables (void)
2275 int i;
2277 EXECUTE_IF_SET_IN_BITMAP
2278 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2279 bitmap_clear (modify_mem_list_set);
2281 EXECUTE_IF_SET_IN_BITMAP
2282 (canon_modify_mem_list_set, 0, i,
2283 free_insn_expr_list_list (canon_modify_mem_list + i));
2284 bitmap_clear (canon_modify_mem_list_set);
2287 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2289 static void
2290 free_modify_mem_tables (void)
2292 clear_modify_mem_tables ();
2293 free (modify_mem_list);
2294 free (canon_modify_mem_list);
2295 modify_mem_list = 0;
2296 canon_modify_mem_list = 0;
2299 /* Reset tables used to keep track of what's still available [since the
2300 start of the block]. */
2302 static void
2303 reset_opr_set_tables (void)
2305 /* Maintain a bitmap of which regs have been set since beginning of
2306 the block. */
2307 CLEAR_REG_SET (reg_set_bitmap);
2309 /* Also keep a record of the last instruction to modify memory.
2310 For now this is very trivial, we only record whether any memory
2311 location has been modified. */
2312 clear_modify_mem_tables ();
2315 /* Return nonzero if the operands of X are not set before INSN in
2316 INSN's basic block. */
2318 static int
2319 oprs_not_set_p (rtx x, rtx insn)
2321 int i, j;
2322 enum rtx_code code;
2323 const char *fmt;
2325 if (x == 0)
2326 return 1;
2328 code = GET_CODE (x);
2329 switch (code)
2331 case PC:
2332 case CC0:
2333 case CONST:
2334 case CONST_INT:
2335 case CONST_DOUBLE:
2336 case CONST_VECTOR:
2337 case SYMBOL_REF:
2338 case LABEL_REF:
2339 case ADDR_VEC:
2340 case ADDR_DIFF_VEC:
2341 return 1;
2343 case MEM:
2344 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2345 INSN_CUID (insn), x, 0))
2346 return 0;
2347 else
2348 return oprs_not_set_p (XEXP (x, 0), insn);
2350 case REG:
2351 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2353 default:
2354 break;
2357 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2359 if (fmt[i] == 'e')
2361 /* If we are about to do the last recursive call
2362 needed at this level, change it into iteration.
2363 This function is called enough to be worth it. */
2364 if (i == 0)
2365 return oprs_not_set_p (XEXP (x, i), insn);
2367 if (! oprs_not_set_p (XEXP (x, i), insn))
2368 return 0;
2370 else if (fmt[i] == 'E')
2371 for (j = 0; j < XVECLEN (x, i); j++)
2372 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2373 return 0;
2376 return 1;
2379 /* Mark things set by a CALL. */
2381 static void
2382 mark_call (rtx insn)
2384 if (! CONST_OR_PURE_CALL_P (insn))
2385 record_last_mem_set_info (insn);
2388 /* Mark things set by a SET. */
2390 static void
2391 mark_set (rtx pat, rtx insn)
2393 rtx dest = SET_DEST (pat);
2395 while (GET_CODE (dest) == SUBREG
2396 || GET_CODE (dest) == ZERO_EXTRACT
2397 || GET_CODE (dest) == SIGN_EXTRACT
2398 || GET_CODE (dest) == STRICT_LOW_PART)
2399 dest = XEXP (dest, 0);
2401 if (REG_P (dest))
2402 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2403 else if (MEM_P (dest))
2404 record_last_mem_set_info (insn);
2406 if (GET_CODE (SET_SRC (pat)) == CALL)
2407 mark_call (insn);
2410 /* Record things set by a CLOBBER. */
2412 static void
2413 mark_clobber (rtx pat, rtx insn)
2415 rtx clob = XEXP (pat, 0);
2417 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2418 clob = XEXP (clob, 0);
2420 if (REG_P (clob))
2421 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2422 else
2423 record_last_mem_set_info (insn);
2426 /* Record things set by INSN.
2427 This data is used by oprs_not_set_p. */
2429 static void
2430 mark_oprs_set (rtx insn)
2432 rtx pat = PATTERN (insn);
2433 int i;
2435 if (GET_CODE (pat) == SET)
2436 mark_set (pat, insn);
2437 else if (GET_CODE (pat) == PARALLEL)
2438 for (i = 0; i < XVECLEN (pat, 0); i++)
2440 rtx x = XVECEXP (pat, 0, i);
2442 if (GET_CODE (x) == SET)
2443 mark_set (x, insn);
2444 else if (GET_CODE (x) == CLOBBER)
2445 mark_clobber (x, insn);
2446 else if (GET_CODE (x) == CALL)
2447 mark_call (insn);
2450 else if (GET_CODE (pat) == CLOBBER)
2451 mark_clobber (pat, insn);
2452 else if (GET_CODE (pat) == CALL)
2453 mark_call (insn);
2457 /* Compute copy/constant propagation working variables. */
2459 /* Local properties of assignments. */
2460 static sbitmap *cprop_pavloc;
2461 static sbitmap *cprop_absaltered;
2463 /* Global properties of assignments (computed from the local properties). */
2464 static sbitmap *cprop_avin;
2465 static sbitmap *cprop_avout;
2467 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2468 basic blocks. N_SETS is the number of sets. */
2470 static void
2471 alloc_cprop_mem (int n_blocks, int n_sets)
2473 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2474 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2476 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2477 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2480 /* Free vars used by copy/const propagation. */
2482 static void
2483 free_cprop_mem (void)
2485 sbitmap_vector_free (cprop_pavloc);
2486 sbitmap_vector_free (cprop_absaltered);
2487 sbitmap_vector_free (cprop_avin);
2488 sbitmap_vector_free (cprop_avout);
2491 /* For each block, compute whether X is transparent. X is either an
2492 expression or an assignment [though we don't care which, for this context
2493 an assignment is treated as an expression]. For each block where an
2494 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2495 bit in BMAP. */
2497 static void
2498 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2500 int i, j;
2501 basic_block bb;
2502 enum rtx_code code;
2503 reg_set *r;
2504 const char *fmt;
2506 /* repeat is used to turn tail-recursion into iteration since GCC
2507 can't do it when there's no return value. */
2508 repeat:
2510 if (x == 0)
2511 return;
2513 code = GET_CODE (x);
2514 switch (code)
2516 case REG:
2517 if (set_p)
2519 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2521 FOR_EACH_BB (bb)
2522 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2523 SET_BIT (bmap[bb->index], indx);
2525 else
2527 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2528 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2531 else
2533 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2535 FOR_EACH_BB (bb)
2536 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2537 RESET_BIT (bmap[bb->index], indx);
2539 else
2541 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2542 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2546 return;
2548 case MEM:
2549 FOR_EACH_BB (bb)
2551 rtx list_entry = canon_modify_mem_list[bb->index];
2553 while (list_entry)
2555 rtx dest, dest_addr;
2557 if (CALL_P (XEXP (list_entry, 0)))
2559 if (set_p)
2560 SET_BIT (bmap[bb->index], indx);
2561 else
2562 RESET_BIT (bmap[bb->index], indx);
2563 break;
2565 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2566 Examine each hunk of memory that is modified. */
2568 dest = XEXP (list_entry, 0);
2569 list_entry = XEXP (list_entry, 1);
2570 dest_addr = XEXP (list_entry, 0);
2572 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2573 x, rtx_addr_varies_p))
2575 if (set_p)
2576 SET_BIT (bmap[bb->index], indx);
2577 else
2578 RESET_BIT (bmap[bb->index], indx);
2579 break;
2581 list_entry = XEXP (list_entry, 1);
2585 x = XEXP (x, 0);
2586 goto repeat;
2588 case PC:
2589 case CC0: /*FIXME*/
2590 case CONST:
2591 case CONST_INT:
2592 case CONST_DOUBLE:
2593 case CONST_VECTOR:
2594 case SYMBOL_REF:
2595 case LABEL_REF:
2596 case ADDR_VEC:
2597 case ADDR_DIFF_VEC:
2598 return;
2600 default:
2601 break;
2604 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2606 if (fmt[i] == 'e')
2608 /* If we are about to do the last recursive call
2609 needed at this level, change it into iteration.
2610 This function is called enough to be worth it. */
2611 if (i == 0)
2613 x = XEXP (x, i);
2614 goto repeat;
2617 compute_transp (XEXP (x, i), indx, bmap, set_p);
2619 else if (fmt[i] == 'E')
2620 for (j = 0; j < XVECLEN (x, i); j++)
2621 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2625 /* Top level routine to do the dataflow analysis needed by copy/const
2626 propagation. */
2628 static void
2629 compute_cprop_data (void)
2631 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2632 compute_available (cprop_pavloc, cprop_absaltered,
2633 cprop_avout, cprop_avin);
2636 /* Copy/constant propagation. */
2638 /* Maximum number of register uses in an insn that we handle. */
2639 #define MAX_USES 8
2641 /* Table of uses found in an insn.
2642 Allocated statically to avoid alloc/free complexity and overhead. */
2643 static struct reg_use reg_use_table[MAX_USES];
2645 /* Index into `reg_use_table' while building it. */
2646 static int reg_use_count;
2648 /* Set up a list of register numbers used in INSN. The found uses are stored
2649 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2650 and contains the number of uses in the table upon exit.
2652 ??? If a register appears multiple times we will record it multiple times.
2653 This doesn't hurt anything but it will slow things down. */
2655 static void
2656 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2658 int i, j;
2659 enum rtx_code code;
2660 const char *fmt;
2661 rtx x = *xptr;
2663 /* repeat is used to turn tail-recursion into iteration since GCC
2664 can't do it when there's no return value. */
2665 repeat:
2666 if (x == 0)
2667 return;
2669 code = GET_CODE (x);
2670 if (REG_P (x))
2672 if (reg_use_count == MAX_USES)
2673 return;
2675 reg_use_table[reg_use_count].reg_rtx = x;
2676 reg_use_count++;
2679 /* Recursively scan the operands of this expression. */
2681 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2683 if (fmt[i] == 'e')
2685 /* If we are about to do the last recursive call
2686 needed at this level, change it into iteration.
2687 This function is called enough to be worth it. */
2688 if (i == 0)
2690 x = XEXP (x, 0);
2691 goto repeat;
2694 find_used_regs (&XEXP (x, i), data);
2696 else if (fmt[i] == 'E')
2697 for (j = 0; j < XVECLEN (x, i); j++)
2698 find_used_regs (&XVECEXP (x, i, j), data);
2702 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2703 Returns nonzero is successful. */
2705 static int
2706 try_replace_reg (rtx from, rtx to, rtx insn)
2708 rtx note = find_reg_equal_equiv_note (insn);
2709 rtx src = 0;
2710 int success = 0;
2711 rtx set = single_set (insn);
2713 validate_replace_src_group (from, to, insn);
2714 if (num_changes_pending () && apply_change_group ())
2715 success = 1;
2717 /* Try to simplify SET_SRC if we have substituted a constant. */
2718 if (success && set && CONSTANT_P (to))
2720 src = simplify_rtx (SET_SRC (set));
2722 if (src)
2723 validate_change (insn, &SET_SRC (set), src, 0);
2726 /* If there is already a NOTE, update the expression in it with our
2727 replacement. */
2728 if (note != 0)
2729 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2731 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2733 /* If above failed and this is a single set, try to simplify the source of
2734 the set given our substitution. We could perhaps try this for multiple
2735 SETs, but it probably won't buy us anything. */
2736 src = simplify_replace_rtx (SET_SRC (set), from, to);
2738 if (!rtx_equal_p (src, SET_SRC (set))
2739 && validate_change (insn, &SET_SRC (set), src, 0))
2740 success = 1;
2742 /* If we've failed to do replacement, have a single SET, don't already
2743 have a note, and have no special SET, add a REG_EQUAL note to not
2744 lose information. */
2745 if (!success && note == 0 && set != 0
2746 && GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
2747 && GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
2748 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2751 /* REG_EQUAL may get simplified into register.
2752 We don't allow that. Remove that note. This code ought
2753 not to happen, because previous code ought to synthesize
2754 reg-reg move, but be on the safe side. */
2755 if (note && REG_P (XEXP (note, 0)))
2756 remove_note (insn, note);
2758 return success;
2761 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2762 NULL no such set is found. */
2764 static struct expr *
2765 find_avail_set (int regno, rtx insn)
2767 /* SET1 contains the last set found that can be returned to the caller for
2768 use in a substitution. */
2769 struct expr *set1 = 0;
2771 /* Loops are not possible here. To get a loop we would need two sets
2772 available at the start of the block containing INSN. ie we would
2773 need two sets like this available at the start of the block:
2775 (set (reg X) (reg Y))
2776 (set (reg Y) (reg X))
2778 This can not happen since the set of (reg Y) would have killed the
2779 set of (reg X) making it unavailable at the start of this block. */
2780 while (1)
2782 rtx src;
2783 struct expr *set = lookup_set (regno, &set_hash_table);
2785 /* Find a set that is available at the start of the block
2786 which contains INSN. */
2787 while (set)
2789 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2790 break;
2791 set = next_set (regno, set);
2794 /* If no available set was found we've reached the end of the
2795 (possibly empty) copy chain. */
2796 if (set == 0)
2797 break;
2799 if (GET_CODE (set->expr) != SET)
2800 abort ();
2802 src = SET_SRC (set->expr);
2804 /* We know the set is available.
2805 Now check that SRC is ANTLOC (i.e. none of the source operands
2806 have changed since the start of the block).
2808 If the source operand changed, we may still use it for the next
2809 iteration of this loop, but we may not use it for substitutions. */
2811 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2812 set1 = set;
2814 /* If the source of the set is anything except a register, then
2815 we have reached the end of the copy chain. */
2816 if (! REG_P (src))
2817 break;
2819 /* Follow the copy chain, ie start another iteration of the loop
2820 and see if we have an available copy into SRC. */
2821 regno = REGNO (src);
2824 /* SET1 holds the last set that was available and anticipatable at
2825 INSN. */
2826 return set1;
2829 /* Subroutine of cprop_insn that tries to propagate constants into
2830 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2831 it is the instruction that immediately precedes JUMP, and must be a
2832 single SET of a register. FROM is what we will try to replace,
2833 SRC is the constant we will try to substitute for it. Returns nonzero
2834 if a change was made. */
2836 static int
2837 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2839 rtx new, set_src, note_src;
2840 rtx set = pc_set (jump);
2841 rtx note = find_reg_equal_equiv_note (jump);
2843 if (note)
2845 note_src = XEXP (note, 0);
2846 if (GET_CODE (note_src) == EXPR_LIST)
2847 note_src = NULL_RTX;
2849 else note_src = NULL_RTX;
2851 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2852 set_src = note_src ? note_src : SET_SRC (set);
2854 /* First substitute the SETCC condition into the JUMP instruction,
2855 then substitute that given values into this expanded JUMP. */
2856 if (setcc != NULL_RTX
2857 && !modified_between_p (from, setcc, jump)
2858 && !modified_between_p (src, setcc, jump))
2860 rtx setcc_src;
2861 rtx setcc_set = single_set (setcc);
2862 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2863 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2864 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2865 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2866 setcc_src);
2868 else
2869 setcc = NULL_RTX;
2871 new = simplify_replace_rtx (set_src, from, src);
2873 /* If no simplification can be made, then try the next register. */
2874 if (rtx_equal_p (new, SET_SRC (set)))
2875 return 0;
2877 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2878 if (new == pc_rtx)
2879 delete_insn (jump);
2880 else
2882 /* Ensure the value computed inside the jump insn to be equivalent
2883 to one computed by setcc. */
2884 if (setcc && modified_in_p (new, setcc))
2885 return 0;
2886 if (! validate_change (jump, &SET_SRC (set), new, 0))
2888 /* When (some) constants are not valid in a comparison, and there
2889 are two registers to be replaced by constants before the entire
2890 comparison can be folded into a constant, we need to keep
2891 intermediate information in REG_EQUAL notes. For targets with
2892 separate compare insns, such notes are added by try_replace_reg.
2893 When we have a combined compare-and-branch instruction, however,
2894 we need to attach a note to the branch itself to make this
2895 optimization work. */
2897 if (!rtx_equal_p (new, note_src))
2898 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2899 return 0;
2902 /* Remove REG_EQUAL note after simplification. */
2903 if (note_src)
2904 remove_note (jump, note);
2906 /* If this has turned into an unconditional jump,
2907 then put a barrier after it so that the unreachable
2908 code will be deleted. */
2909 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2910 emit_barrier_after (jump);
2913 #ifdef HAVE_cc0
2914 /* Delete the cc0 setter. */
2915 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2916 delete_insn (setcc);
2917 #endif
2919 run_jump_opt_after_gcse = 1;
2921 global_const_prop_count++;
2922 if (gcse_file != NULL)
2924 fprintf (gcse_file,
2925 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2926 REGNO (from), INSN_UID (jump));
2927 print_rtl (gcse_file, src);
2928 fprintf (gcse_file, "\n");
2930 purge_dead_edges (bb);
2932 return 1;
2935 static bool
2936 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
2938 rtx sset;
2940 /* Check for reg or cc0 setting instructions followed by
2941 conditional branch instructions first. */
2942 if (alter_jumps
2943 && (sset = single_set (insn)) != NULL
2944 && NEXT_INSN (insn)
2945 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2947 rtx dest = SET_DEST (sset);
2948 if ((REG_P (dest) || CC0_P (dest))
2949 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2950 return 1;
2953 /* Handle normal insns next. */
2954 if (NONJUMP_INSN_P (insn)
2955 && try_replace_reg (from, to, insn))
2956 return 1;
2958 /* Try to propagate a CONST_INT into a conditional jump.
2959 We're pretty specific about what we will handle in this
2960 code, we can extend this as necessary over time.
2962 Right now the insn in question must look like
2963 (set (pc) (if_then_else ...)) */
2964 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2965 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2966 return 0;
2969 /* Perform constant and copy propagation on INSN.
2970 The result is nonzero if a change was made. */
2972 static int
2973 cprop_insn (rtx insn, int alter_jumps)
2975 struct reg_use *reg_used;
2976 int changed = 0;
2977 rtx note;
2979 if (!INSN_P (insn))
2980 return 0;
2982 reg_use_count = 0;
2983 note_uses (&PATTERN (insn), find_used_regs, NULL);
2985 note = find_reg_equal_equiv_note (insn);
2987 /* We may win even when propagating constants into notes. */
2988 if (note)
2989 find_used_regs (&XEXP (note, 0), NULL);
2991 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2992 reg_used++, reg_use_count--)
2994 unsigned int regno = REGNO (reg_used->reg_rtx);
2995 rtx pat, src;
2996 struct expr *set;
2998 /* Ignore registers created by GCSE.
2999 We do this because ... */
3000 if (regno >= max_gcse_regno)
3001 continue;
3003 /* If the register has already been set in this block, there's
3004 nothing we can do. */
3005 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3006 continue;
3008 /* Find an assignment that sets reg_used and is available
3009 at the start of the block. */
3010 set = find_avail_set (regno, insn);
3011 if (! set)
3012 continue;
3014 pat = set->expr;
3015 /* ??? We might be able to handle PARALLELs. Later. */
3016 if (GET_CODE (pat) != SET)
3017 abort ();
3019 src = SET_SRC (pat);
3021 /* Constant propagation. */
3022 if (gcse_constant_p (src))
3024 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
3026 changed = 1;
3027 global_const_prop_count++;
3028 if (gcse_file != NULL)
3030 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
3031 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
3032 print_rtl (gcse_file, src);
3033 fprintf (gcse_file, "\n");
3035 if (INSN_DELETED_P (insn))
3036 return 1;
3039 else if (REG_P (src)
3040 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3041 && REGNO (src) != regno)
3043 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3045 changed = 1;
3046 global_copy_prop_count++;
3047 if (gcse_file != NULL)
3049 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3050 regno, INSN_UID (insn));
3051 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3054 /* The original insn setting reg_used may or may not now be
3055 deletable. We leave the deletion to flow. */
3056 /* FIXME: If it turns out that the insn isn't deletable,
3057 then we may have unnecessarily extended register lifetimes
3058 and made things worse. */
3063 return changed;
3066 /* Like find_used_regs, but avoid recording uses that appear in
3067 input-output contexts such as zero_extract or pre_dec. This
3068 restricts the cases we consider to those for which local cprop
3069 can legitimately make replacements. */
3071 static void
3072 local_cprop_find_used_regs (rtx *xptr, void *data)
3074 rtx x = *xptr;
3076 if (x == 0)
3077 return;
3079 switch (GET_CODE (x))
3081 case ZERO_EXTRACT:
3082 case SIGN_EXTRACT:
3083 case STRICT_LOW_PART:
3084 return;
3086 case PRE_DEC:
3087 case PRE_INC:
3088 case POST_DEC:
3089 case POST_INC:
3090 case PRE_MODIFY:
3091 case POST_MODIFY:
3092 /* Can only legitimately appear this early in the context of
3093 stack pushes for function arguments, but handle all of the
3094 codes nonetheless. */
3095 return;
3097 case SUBREG:
3098 /* Setting a subreg of a register larger than word_mode leaves
3099 the non-written words unchanged. */
3100 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3101 return;
3102 break;
3104 default:
3105 break;
3108 find_used_regs (xptr, data);
3111 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3112 their REG_EQUAL notes need updating. */
3114 static bool
3115 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3117 rtx newreg = NULL, newcnst = NULL;
3119 /* Rule out USE instructions and ASM statements as we don't want to
3120 change the hard registers mentioned. */
3121 if (REG_P (x)
3122 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3123 || (GET_CODE (PATTERN (insn)) != USE
3124 && asm_noperands (PATTERN (insn)) < 0)))
3126 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3127 struct elt_loc_list *l;
3129 if (!val)
3130 return false;
3131 for (l = val->locs; l; l = l->next)
3133 rtx this_rtx = l->loc;
3134 rtx note;
3136 if (l->in_libcall)
3137 continue;
3139 if (gcse_constant_p (this_rtx))
3140 newcnst = this_rtx;
3141 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3142 /* Don't copy propagate if it has attached REG_EQUIV note.
3143 At this point this only function parameters should have
3144 REG_EQUIV notes and if the argument slot is used somewhere
3145 explicitly, it means address of parameter has been taken,
3146 so we should not extend the lifetime of the pseudo. */
3147 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3148 || ! MEM_P (XEXP (note, 0))))
3149 newreg = this_rtx;
3151 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3153 /* If we find a case where we can't fix the retval REG_EQUAL notes
3154 match the new register, we either have to abandon this replacement
3155 or fix delete_trivially_dead_insns to preserve the setting insn,
3156 or make it delete the REG_EUAQL note, and fix up all passes that
3157 require the REG_EQUAL note there. */
3158 if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
3159 abort ();
3160 if (gcse_file != NULL)
3162 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3163 REGNO (x));
3164 fprintf (gcse_file, "insn %d with constant ",
3165 INSN_UID (insn));
3166 print_rtl (gcse_file, newcnst);
3167 fprintf (gcse_file, "\n");
3169 local_const_prop_count++;
3170 return true;
3172 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3174 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3175 if (gcse_file != NULL)
3177 fprintf (gcse_file,
3178 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3179 REGNO (x), INSN_UID (insn));
3180 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3182 local_copy_prop_count++;
3183 return true;
3186 return false;
3189 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3190 their REG_EQUAL notes need updating to reflect that OLDREG has been
3191 replaced with NEWVAL in INSN. Return true if all substitutions could
3192 be made. */
3193 static bool
3194 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3196 rtx end;
3198 while ((end = *libcall_sp++))
3200 rtx note = find_reg_equal_equiv_note (end);
3202 if (! note)
3203 continue;
3205 if (REG_P (newval))
3207 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3211 note = find_reg_equal_equiv_note (end);
3212 if (! note)
3213 continue;
3214 if (reg_mentioned_p (newval, XEXP (note, 0)))
3215 return false;
3217 while ((end = *libcall_sp++));
3218 return true;
3221 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
3222 insn = end;
3224 return true;
3227 #define MAX_NESTED_LIBCALLS 9
3229 static void
3230 local_cprop_pass (int alter_jumps)
3232 rtx insn;
3233 struct reg_use *reg_used;
3234 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3235 bool changed = false;
3237 cselib_init (false);
3238 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3239 *libcall_sp = 0;
3240 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3242 if (INSN_P (insn))
3244 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3246 if (note)
3248 if (libcall_sp == libcall_stack)
3249 abort ();
3250 *--libcall_sp = XEXP (note, 0);
3252 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3253 if (note)
3254 libcall_sp++;
3255 note = find_reg_equal_equiv_note (insn);
3258 reg_use_count = 0;
3259 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3260 if (note)
3261 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3263 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3264 reg_used++, reg_use_count--)
3265 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3266 libcall_sp))
3268 changed = true;
3269 break;
3271 if (INSN_DELETED_P (insn))
3272 break;
3274 while (reg_use_count);
3276 cselib_process_insn (insn);
3278 cselib_finish ();
3279 /* Global analysis may get into infinite loops for unreachable blocks. */
3280 if (changed && alter_jumps)
3282 delete_unreachable_blocks ();
3283 free_reg_set_mem ();
3284 alloc_reg_set_mem (max_reg_num ());
3285 compute_sets (get_insns ());
3289 /* Forward propagate copies. This includes copies and constants. Return
3290 nonzero if a change was made. */
3292 static int
3293 cprop (int alter_jumps)
3295 int changed;
3296 basic_block bb;
3297 rtx insn;
3299 /* Note we start at block 1. */
3300 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3302 if (gcse_file != NULL)
3303 fprintf (gcse_file, "\n");
3304 return 0;
3307 changed = 0;
3308 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3310 /* Reset tables used to keep track of what's still valid [since the
3311 start of the block]. */
3312 reset_opr_set_tables ();
3314 for (insn = BB_HEAD (bb);
3315 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3316 insn = NEXT_INSN (insn))
3317 if (INSN_P (insn))
3319 changed |= cprop_insn (insn, alter_jumps);
3321 /* Keep track of everything modified by this insn. */
3322 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3323 call mark_oprs_set if we turned the insn into a NOTE. */
3324 if (! NOTE_P (insn))
3325 mark_oprs_set (insn);
3329 if (gcse_file != NULL)
3330 fprintf (gcse_file, "\n");
3332 return changed;
3335 /* Similar to get_condition, only the resulting condition must be
3336 valid at JUMP, instead of at EARLIEST.
3338 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3339 settle for the condition variable in the jump instruction being integral.
3340 We prefer to be able to record the value of a user variable, rather than
3341 the value of a temporary used in a condition. This could be solved by
3342 recording the value of *every* register scaned by canonicalize_condition,
3343 but this would require some code reorganization. */
3346 fis_get_condition (rtx jump)
3348 return get_condition (jump, NULL, false, true);
3351 /* Check the comparison COND to see if we can safely form an implicit set from
3352 it. COND is either an EQ or NE comparison. */
3354 static bool
3355 implicit_set_cond_p (rtx cond)
3357 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3358 rtx cst = XEXP (cond, 1);
3360 /* We can't perform this optimization if either operand might be or might
3361 contain a signed zero. */
3362 if (HONOR_SIGNED_ZEROS (mode))
3364 /* It is sufficient to check if CST is or contains a zero. We must
3365 handle float, complex, and vector. If any subpart is a zero, then
3366 the optimization can't be performed. */
3367 /* ??? The complex and vector checks are not implemented yet. We just
3368 always return zero for them. */
3369 if (GET_CODE (cst) == CONST_DOUBLE)
3371 REAL_VALUE_TYPE d;
3372 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3373 if (REAL_VALUES_EQUAL (d, dconst0))
3374 return 0;
3376 else
3377 return 0;
3380 return gcse_constant_p (cst);
3383 /* Find the implicit sets of a function. An "implicit set" is a constraint
3384 on the value of a variable, implied by a conditional jump. For example,
3385 following "if (x == 2)", the then branch may be optimized as though the
3386 conditional performed an "explicit set", in this example, "x = 2". This
3387 function records the set patterns that are implicit at the start of each
3388 basic block. */
3390 static void
3391 find_implicit_sets (void)
3393 basic_block bb, dest;
3394 unsigned int count;
3395 rtx cond, new;
3397 count = 0;
3398 FOR_EACH_BB (bb)
3399 /* Check for more than one successor. */
3400 if (bb->succ && bb->succ->succ_next)
3402 cond = fis_get_condition (BB_END (bb));
3404 if (cond
3405 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3406 && REG_P (XEXP (cond, 0))
3407 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3408 && implicit_set_cond_p (cond))
3410 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3411 : FALLTHRU_EDGE (bb)->dest;
3413 if (dest && ! dest->pred->pred_next
3414 && dest != EXIT_BLOCK_PTR)
3416 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3417 XEXP (cond, 1));
3418 implicit_sets[dest->index] = new;
3419 if (gcse_file)
3421 fprintf(gcse_file, "Implicit set of reg %d in ",
3422 REGNO (XEXP (cond, 0)));
3423 fprintf(gcse_file, "basic block %d\n", dest->index);
3425 count++;
3430 if (gcse_file)
3431 fprintf (gcse_file, "Found %d implicit sets\n", count);
3434 /* Perform one copy/constant propagation pass.
3435 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3436 propagation into conditional jumps. If BYPASS_JUMPS is true,
3437 perform conditional jump bypassing optimizations. */
3439 static int
3440 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3442 int changed = 0;
3444 global_const_prop_count = local_const_prop_count = 0;
3445 global_copy_prop_count = local_copy_prop_count = 0;
3447 local_cprop_pass (cprop_jumps);
3449 /* Determine implicit sets. */
3450 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3451 find_implicit_sets ();
3453 alloc_hash_table (max_cuid, &set_hash_table, 1);
3454 compute_hash_table (&set_hash_table);
3456 /* Free implicit_sets before peak usage. */
3457 free (implicit_sets);
3458 implicit_sets = NULL;
3460 if (gcse_file)
3461 dump_hash_table (gcse_file, "SET", &set_hash_table);
3462 if (set_hash_table.n_elems > 0)
3464 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3465 compute_cprop_data ();
3466 changed = cprop (cprop_jumps);
3467 if (bypass_jumps)
3468 changed |= bypass_conditional_jumps ();
3469 free_cprop_mem ();
3472 free_hash_table (&set_hash_table);
3474 if (gcse_file)
3476 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3477 current_function_name (), pass, bytes_used);
3478 fprintf (gcse_file, "%d local const props, %d local copy props\n\n",
3479 local_const_prop_count, local_copy_prop_count);
3480 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3481 global_const_prop_count, global_copy_prop_count);
3483 /* Global analysis may get into infinite loops for unreachable blocks. */
3484 if (changed && cprop_jumps)
3485 delete_unreachable_blocks ();
3487 return changed;
3490 /* Bypass conditional jumps. */
3492 /* The value of last_basic_block at the beginning of the jump_bypass
3493 pass. The use of redirect_edge_and_branch_force may introduce new
3494 basic blocks, but the data flow analysis is only valid for basic
3495 block indices less than bypass_last_basic_block. */
3497 static int bypass_last_basic_block;
3499 /* Find a set of REGNO to a constant that is available at the end of basic
3500 block BB. Returns NULL if no such set is found. Based heavily upon
3501 find_avail_set. */
3503 static struct expr *
3504 find_bypass_set (int regno, int bb)
3506 struct expr *result = 0;
3508 for (;;)
3510 rtx src;
3511 struct expr *set = lookup_set (regno, &set_hash_table);
3513 while (set)
3515 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3516 break;
3517 set = next_set (regno, set);
3520 if (set == 0)
3521 break;
3523 if (GET_CODE (set->expr) != SET)
3524 abort ();
3526 src = SET_SRC (set->expr);
3527 if (gcse_constant_p (src))
3528 result = set;
3530 if (! REG_P (src))
3531 break;
3533 regno = REGNO (src);
3535 return result;
3539 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3540 any of the instructions inserted on an edge. Jump bypassing places
3541 condition code setters on CFG edges using insert_insn_on_edge. This
3542 function is required to check that our data flow analysis is still
3543 valid prior to commit_edge_insertions. */
3545 static bool
3546 reg_killed_on_edge (rtx reg, edge e)
3548 rtx insn;
3550 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3551 if (INSN_P (insn) && reg_set_p (reg, insn))
3552 return true;
3554 return false;
3557 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3558 basic block BB which has more than one predecessor. If not NULL, SETCC
3559 is the first instruction of BB, which is immediately followed by JUMP_INSN
3560 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3561 Returns nonzero if a change was made.
3563 During the jump bypassing pass, we may place copies of SETCC instructions
3564 on CFG edges. The following routine must be careful to pay attention to
3565 these inserted insns when performing its transformations. */
3567 static int
3568 bypass_block (basic_block bb, rtx setcc, rtx jump)
3570 rtx insn, note;
3571 edge e, enext, edest;
3572 int i, change;
3573 int may_be_loop_header;
3575 insn = (setcc != NULL) ? setcc : jump;
3577 /* Determine set of register uses in INSN. */
3578 reg_use_count = 0;
3579 note_uses (&PATTERN (insn), find_used_regs, NULL);
3580 note = find_reg_equal_equiv_note (insn);
3581 if (note)
3582 find_used_regs (&XEXP (note, 0), NULL);
3584 may_be_loop_header = false;
3585 for (e = bb->pred; e; e = e->pred_next)
3586 if (e->flags & EDGE_DFS_BACK)
3588 may_be_loop_header = true;
3589 break;
3592 change = 0;
3593 for (e = bb->pred; e; e = enext)
3595 enext = e->pred_next;
3596 if (e->flags & EDGE_COMPLEX)
3597 continue;
3599 /* We can't redirect edges from new basic blocks. */
3600 if (e->src->index >= bypass_last_basic_block)
3601 continue;
3603 /* The irreducible loops created by redirecting of edges entering the
3604 loop from outside would decrease effectiveness of some of the following
3605 optimizations, so prevent this. */
3606 if (may_be_loop_header
3607 && !(e->flags & EDGE_DFS_BACK))
3608 continue;
3610 for (i = 0; i < reg_use_count; i++)
3612 struct reg_use *reg_used = &reg_use_table[i];
3613 unsigned int regno = REGNO (reg_used->reg_rtx);
3614 basic_block dest, old_dest;
3615 struct expr *set;
3616 rtx src, new;
3618 if (regno >= max_gcse_regno)
3619 continue;
3621 set = find_bypass_set (regno, e->src->index);
3623 if (! set)
3624 continue;
3626 /* Check the data flow is valid after edge insertions. */
3627 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3628 continue;
3630 src = SET_SRC (pc_set (jump));
3632 if (setcc != NULL)
3633 src = simplify_replace_rtx (src,
3634 SET_DEST (PATTERN (setcc)),
3635 SET_SRC (PATTERN (setcc)));
3637 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3638 SET_SRC (set->expr));
3640 /* Jump bypassing may have already placed instructions on
3641 edges of the CFG. We can't bypass an outgoing edge that
3642 has instructions associated with it, as these insns won't
3643 get executed if the incoming edge is redirected. */
3645 if (new == pc_rtx)
3647 edest = FALLTHRU_EDGE (bb);
3648 dest = edest->insns.r ? NULL : edest->dest;
3650 else if (GET_CODE (new) == LABEL_REF)
3652 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3653 /* Don't bypass edges containing instructions. */
3654 for (edest = bb->succ; edest; edest = edest->succ_next)
3655 if (edest->dest == dest && edest->insns.r)
3657 dest = NULL;
3658 break;
3661 else
3662 dest = NULL;
3664 /* Avoid unification of the edge with other edges from original
3665 branch. We would end up emitting the instruction on "both"
3666 edges. */
3668 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
3670 edge e2;
3671 for (e2 = e->src->succ; e2; e2 = e2->succ_next)
3672 if (e2->dest == dest)
3674 dest = NULL;
3675 break;
3679 old_dest = e->dest;
3680 if (dest != NULL
3681 && dest != old_dest
3682 && dest != EXIT_BLOCK_PTR)
3684 redirect_edge_and_branch_force (e, dest);
3686 /* Copy the register setter to the redirected edge.
3687 Don't copy CC0 setters, as CC0 is dead after jump. */
3688 if (setcc)
3690 rtx pat = PATTERN (setcc);
3691 if (!CC0_P (SET_DEST (pat)))
3692 insert_insn_on_edge (copy_insn (pat), e);
3695 if (gcse_file != NULL)
3697 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3698 "in jump_insn %d equals constant ",
3699 regno, INSN_UID (jump));
3700 print_rtl (gcse_file, SET_SRC (set->expr));
3701 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3702 e->src->index, old_dest->index, dest->index);
3704 change = 1;
3705 break;
3709 return change;
3712 /* Find basic blocks with more than one predecessor that only contain a
3713 single conditional jump. If the result of the comparison is known at
3714 compile-time from any incoming edge, redirect that edge to the
3715 appropriate target. Returns nonzero if a change was made.
3717 This function is now mis-named, because we also handle indirect jumps. */
3719 static int
3720 bypass_conditional_jumps (void)
3722 basic_block bb;
3723 int changed;
3724 rtx setcc;
3725 rtx insn;
3726 rtx dest;
3728 /* Note we start at block 1. */
3729 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3730 return 0;
3732 bypass_last_basic_block = last_basic_block;
3733 mark_dfs_back_edges ();
3735 changed = 0;
3736 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3737 EXIT_BLOCK_PTR, next_bb)
3739 /* Check for more than one predecessor. */
3740 if (bb->pred && bb->pred->pred_next)
3742 setcc = NULL_RTX;
3743 for (insn = BB_HEAD (bb);
3744 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3745 insn = NEXT_INSN (insn))
3746 if (NONJUMP_INSN_P (insn))
3748 if (setcc)
3749 break;
3750 if (GET_CODE (PATTERN (insn)) != SET)
3751 break;
3753 dest = SET_DEST (PATTERN (insn));
3754 if (REG_P (dest) || CC0_P (dest))
3755 setcc = insn;
3756 else
3757 break;
3759 else if (JUMP_P (insn))
3761 if ((any_condjump_p (insn) || computed_jump_p (insn))
3762 && onlyjump_p (insn))
3763 changed |= bypass_block (bb, setcc, insn);
3764 break;
3766 else if (INSN_P (insn))
3767 break;
3771 /* If we bypassed any register setting insns, we inserted a
3772 copy on the redirected edge. These need to be committed. */
3773 if (changed)
3774 commit_edge_insertions();
3776 return changed;
3779 /* Compute PRE+LCM working variables. */
3781 /* Local properties of expressions. */
3782 /* Nonzero for expressions that are transparent in the block. */
3783 static sbitmap *transp;
3785 /* Nonzero for expressions that are transparent at the end of the block.
3786 This is only zero for expressions killed by abnormal critical edge
3787 created by a calls. */
3788 static sbitmap *transpout;
3790 /* Nonzero for expressions that are computed (available) in the block. */
3791 static sbitmap *comp;
3793 /* Nonzero for expressions that are locally anticipatable in the block. */
3794 static sbitmap *antloc;
3796 /* Nonzero for expressions where this block is an optimal computation
3797 point. */
3798 static sbitmap *pre_optimal;
3800 /* Nonzero for expressions which are redundant in a particular block. */
3801 static sbitmap *pre_redundant;
3803 /* Nonzero for expressions which should be inserted on a specific edge. */
3804 static sbitmap *pre_insert_map;
3806 /* Nonzero for expressions which should be deleted in a specific block. */
3807 static sbitmap *pre_delete_map;
3809 /* Contains the edge_list returned by pre_edge_lcm. */
3810 static struct edge_list *edge_list;
3812 /* Redundant insns. */
3813 static sbitmap pre_redundant_insns;
3815 /* Allocate vars used for PRE analysis. */
3817 static void
3818 alloc_pre_mem (int n_blocks, int n_exprs)
3820 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3821 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3822 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3824 pre_optimal = NULL;
3825 pre_redundant = NULL;
3826 pre_insert_map = NULL;
3827 pre_delete_map = NULL;
3828 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3830 /* pre_insert and pre_delete are allocated later. */
3833 /* Free vars used for PRE analysis. */
3835 static void
3836 free_pre_mem (void)
3838 sbitmap_vector_free (transp);
3839 sbitmap_vector_free (comp);
3841 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3843 if (pre_optimal)
3844 sbitmap_vector_free (pre_optimal);
3845 if (pre_redundant)
3846 sbitmap_vector_free (pre_redundant);
3847 if (pre_insert_map)
3848 sbitmap_vector_free (pre_insert_map);
3849 if (pre_delete_map)
3850 sbitmap_vector_free (pre_delete_map);
3852 transp = comp = NULL;
3853 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3856 /* Top level routine to do the dataflow analysis needed by PRE. */
3858 static void
3859 compute_pre_data (void)
3861 sbitmap trapping_expr;
3862 basic_block bb;
3863 unsigned int ui;
3865 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3866 sbitmap_vector_zero (ae_kill, last_basic_block);
3868 /* Collect expressions which might trap. */
3869 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3870 sbitmap_zero (trapping_expr);
3871 for (ui = 0; ui < expr_hash_table.size; ui++)
3873 struct expr *e;
3874 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3875 if (may_trap_p (e->expr))
3876 SET_BIT (trapping_expr, e->bitmap_index);
3879 /* Compute ae_kill for each basic block using:
3881 ~(TRANSP | COMP)
3884 FOR_EACH_BB (bb)
3886 edge e;
3888 /* If the current block is the destination of an abnormal edge, we
3889 kill all trapping expressions because we won't be able to properly
3890 place the instruction on the edge. So make them neither
3891 anticipatable nor transparent. This is fairly conservative. */
3892 for (e = bb->pred; e ; e = e->pred_next)
3893 if (e->flags & EDGE_ABNORMAL)
3895 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3896 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3897 break;
3900 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3901 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3904 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3905 ae_kill, &pre_insert_map, &pre_delete_map);
3906 sbitmap_vector_free (antloc);
3907 antloc = NULL;
3908 sbitmap_vector_free (ae_kill);
3909 ae_kill = NULL;
3910 sbitmap_free (trapping_expr);
3913 /* PRE utilities */
3915 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3916 block BB.
3918 VISITED is a pointer to a working buffer for tracking which BB's have
3919 been visited. It is NULL for the top-level call.
3921 We treat reaching expressions that go through blocks containing the same
3922 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3923 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3924 2 as not reaching. The intent is to improve the probability of finding
3925 only one reaching expression and to reduce register lifetimes by picking
3926 the closest such expression. */
3928 static int
3929 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3931 edge pred;
3933 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3935 basic_block pred_bb = pred->src;
3937 if (pred->src == ENTRY_BLOCK_PTR
3938 /* Has predecessor has already been visited? */
3939 || visited[pred_bb->index])
3940 ;/* Nothing to do. */
3942 /* Does this predecessor generate this expression? */
3943 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3945 /* Is this the occurrence we're looking for?
3946 Note that there's only one generating occurrence per block
3947 so we just need to check the block number. */
3948 if (occr_bb == pred_bb)
3949 return 1;
3951 visited[pred_bb->index] = 1;
3953 /* Ignore this predecessor if it kills the expression. */
3954 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3955 visited[pred_bb->index] = 1;
3957 /* Neither gen nor kill. */
3958 else
3960 visited[pred_bb->index] = 1;
3961 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3962 return 1;
3966 /* All paths have been checked. */
3967 return 0;
3970 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3971 memory allocated for that function is returned. */
3973 static int
3974 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3976 int rval;
3977 char *visited = xcalloc (last_basic_block, 1);
3979 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3981 free (visited);
3982 return rval;
3986 /* Given an expr, generate RTL which we can insert at the end of a BB,
3987 or on an edge. Set the block number of any insns generated to
3988 the value of BB. */
3990 static rtx
3991 process_insert_insn (struct expr *expr)
3993 rtx reg = expr->reaching_reg;
3994 rtx exp = copy_rtx (expr->expr);
3995 rtx pat;
3997 start_sequence ();
3999 /* If the expression is something that's an operand, like a constant,
4000 just copy it to a register. */
4001 if (general_operand (exp, GET_MODE (reg)))
4002 emit_move_insn (reg, exp);
4004 /* Otherwise, make a new insn to compute this expression and make sure the
4005 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4006 expression to make sure we don't have any sharing issues. */
4007 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4008 abort ();
4010 pat = get_insns ();
4011 end_sequence ();
4013 return pat;
4016 /* Add EXPR to the end of basic block BB.
4018 This is used by both the PRE and code hoisting.
4020 For PRE, we want to verify that the expr is either transparent
4021 or locally anticipatable in the target block. This check makes
4022 no sense for code hoisting. */
4024 static void
4025 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
4027 rtx insn = BB_END (bb);
4028 rtx new_insn;
4029 rtx reg = expr->reaching_reg;
4030 int regno = REGNO (reg);
4031 rtx pat, pat_end;
4033 pat = process_insert_insn (expr);
4034 if (pat == NULL_RTX || ! INSN_P (pat))
4035 abort ();
4037 pat_end = pat;
4038 while (NEXT_INSN (pat_end) != NULL_RTX)
4039 pat_end = NEXT_INSN (pat_end);
4041 /* If the last insn is a jump, insert EXPR in front [taking care to
4042 handle cc0, etc. properly]. Similarly we need to care trapping
4043 instructions in presence of non-call exceptions. */
4045 if (JUMP_P (insn)
4046 || (NONJUMP_INSN_P (insn)
4047 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4049 #ifdef HAVE_cc0
4050 rtx note;
4051 #endif
4052 /* It should always be the case that we can put these instructions
4053 anywhere in the basic block with performing PRE optimizations.
4054 Check this. */
4055 if (NONJUMP_INSN_P (insn) && pre
4056 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4057 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4058 abort ();
4060 /* If this is a jump table, then we can't insert stuff here. Since
4061 we know the previous real insn must be the tablejump, we insert
4062 the new instruction just before the tablejump. */
4063 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4064 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4065 insn = prev_real_insn (insn);
4067 #ifdef HAVE_cc0
4068 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4069 if cc0 isn't set. */
4070 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4071 if (note)
4072 insn = XEXP (note, 0);
4073 else
4075 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4076 if (maybe_cc0_setter
4077 && INSN_P (maybe_cc0_setter)
4078 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4079 insn = maybe_cc0_setter;
4081 #endif
4082 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4083 new_insn = emit_insn_before (pat, insn);
4086 /* Likewise if the last insn is a call, as will happen in the presence
4087 of exception handling. */
4088 else if (CALL_P (insn)
4089 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
4091 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4092 we search backward and place the instructions before the first
4093 parameter is loaded. Do this for everyone for consistency and a
4094 presumption that we'll get better code elsewhere as well.
4096 It should always be the case that we can put these instructions
4097 anywhere in the basic block with performing PRE optimizations.
4098 Check this. */
4100 if (pre
4101 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4102 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4103 abort ();
4105 /* Since different machines initialize their parameter registers
4106 in different orders, assume nothing. Collect the set of all
4107 parameter registers. */
4108 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4110 /* If we found all the parameter loads, then we want to insert
4111 before the first parameter load.
4113 If we did not find all the parameter loads, then we might have
4114 stopped on the head of the block, which could be a CODE_LABEL.
4115 If we inserted before the CODE_LABEL, then we would be putting
4116 the insn in the wrong basic block. In that case, put the insn
4117 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4118 while (LABEL_P (insn)
4119 || NOTE_INSN_BASIC_BLOCK_P (insn))
4120 insn = NEXT_INSN (insn);
4122 new_insn = emit_insn_before (pat, insn);
4124 else
4125 new_insn = emit_insn_after (pat, insn);
4127 while (1)
4129 if (INSN_P (pat))
4131 add_label_notes (PATTERN (pat), new_insn);
4132 note_stores (PATTERN (pat), record_set_info, pat);
4134 if (pat == pat_end)
4135 break;
4136 pat = NEXT_INSN (pat);
4139 gcse_create_count++;
4141 if (gcse_file)
4143 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4144 bb->index, INSN_UID (new_insn));
4145 fprintf (gcse_file, "copying expression %d to reg %d\n",
4146 expr->bitmap_index, regno);
4150 /* Insert partially redundant expressions on edges in the CFG to make
4151 the expressions fully redundant. */
4153 static int
4154 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4156 int e, i, j, num_edges, set_size, did_insert = 0;
4157 sbitmap *inserted;
4159 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4160 if it reaches any of the deleted expressions. */
4162 set_size = pre_insert_map[0]->size;
4163 num_edges = NUM_EDGES (edge_list);
4164 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4165 sbitmap_vector_zero (inserted, num_edges);
4167 for (e = 0; e < num_edges; e++)
4169 int indx;
4170 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4172 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4174 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4176 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4177 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4179 struct expr *expr = index_map[j];
4180 struct occr *occr;
4182 /* Now look at each deleted occurrence of this expression. */
4183 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4185 if (! occr->deleted_p)
4186 continue;
4188 /* Insert this expression on this edge if if it would
4189 reach the deleted occurrence in BB. */
4190 if (!TEST_BIT (inserted[e], j))
4192 rtx insn;
4193 edge eg = INDEX_EDGE (edge_list, e);
4195 /* We can't insert anything on an abnormal and
4196 critical edge, so we insert the insn at the end of
4197 the previous block. There are several alternatives
4198 detailed in Morgans book P277 (sec 10.5) for
4199 handling this situation. This one is easiest for
4200 now. */
4202 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4203 insert_insn_end_bb (index_map[j], bb, 0);
4204 else
4206 insn = process_insert_insn (index_map[j]);
4207 insert_insn_on_edge (insn, eg);
4210 if (gcse_file)
4212 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4213 bb->index,
4214 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4215 fprintf (gcse_file, "copy expression %d\n",
4216 expr->bitmap_index);
4219 update_ld_motion_stores (expr);
4220 SET_BIT (inserted[e], j);
4221 did_insert = 1;
4222 gcse_create_count++;
4229 sbitmap_vector_free (inserted);
4230 return did_insert;
4233 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4234 Given "old_reg <- expr" (INSN), instead of adding after it
4235 reaching_reg <- old_reg
4236 it's better to do the following:
4237 reaching_reg <- expr
4238 old_reg <- reaching_reg
4239 because this way copy propagation can discover additional PRE
4240 opportunities. But if this fails, we try the old way.
4241 When "expr" is a store, i.e.
4242 given "MEM <- old_reg", instead of adding after it
4243 reaching_reg <- old_reg
4244 it's better to add it before as follows:
4245 reaching_reg <- old_reg
4246 MEM <- reaching_reg. */
4248 static void
4249 pre_insert_copy_insn (struct expr *expr, rtx insn)
4251 rtx reg = expr->reaching_reg;
4252 int regno = REGNO (reg);
4253 int indx = expr->bitmap_index;
4254 rtx pat = PATTERN (insn);
4255 rtx set, new_insn;
4256 rtx old_reg;
4257 int i;
4259 /* This block matches the logic in hash_scan_insn. */
4260 if (GET_CODE (pat) == SET)
4261 set = pat;
4262 else if (GET_CODE (pat) == PARALLEL)
4264 /* Search through the parallel looking for the set whose
4265 source was the expression that we're interested in. */
4266 set = NULL_RTX;
4267 for (i = 0; i < XVECLEN (pat, 0); i++)
4269 rtx x = XVECEXP (pat, 0, i);
4270 if (GET_CODE (x) == SET
4271 && expr_equiv_p (SET_SRC (x), expr->expr))
4273 set = x;
4274 break;
4278 else
4279 abort ();
4281 if (REG_P (SET_DEST (set)))
4283 old_reg = SET_DEST (set);
4284 /* Check if we can modify the set destination in the original insn. */
4285 if (validate_change (insn, &SET_DEST (set), reg, 0))
4287 new_insn = gen_move_insn (old_reg, reg);
4288 new_insn = emit_insn_after (new_insn, insn);
4290 /* Keep register set table up to date. */
4291 replace_one_set (REGNO (old_reg), insn, new_insn);
4292 record_one_set (regno, insn);
4294 else
4296 new_insn = gen_move_insn (reg, old_reg);
4297 new_insn = emit_insn_after (new_insn, insn);
4299 /* Keep register set table up to date. */
4300 record_one_set (regno, new_insn);
4303 else /* This is possible only in case of a store to memory. */
4305 old_reg = SET_SRC (set);
4306 new_insn = gen_move_insn (reg, old_reg);
4308 /* Check if we can modify the set source in the original insn. */
4309 if (validate_change (insn, &SET_SRC (set), reg, 0))
4310 new_insn = emit_insn_before (new_insn, insn);
4311 else
4312 new_insn = emit_insn_after (new_insn, insn);
4314 /* Keep register set table up to date. */
4315 record_one_set (regno, new_insn);
4318 gcse_create_count++;
4320 if (gcse_file)
4321 fprintf (gcse_file,
4322 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4323 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4324 INSN_UID (insn), regno);
4327 /* Copy available expressions that reach the redundant expression
4328 to `reaching_reg'. */
4330 static void
4331 pre_insert_copies (void)
4333 unsigned int i, added_copy;
4334 struct expr *expr;
4335 struct occr *occr;
4336 struct occr *avail;
4338 /* For each available expression in the table, copy the result to
4339 `reaching_reg' if the expression reaches a deleted one.
4341 ??? The current algorithm is rather brute force.
4342 Need to do some profiling. */
4344 for (i = 0; i < expr_hash_table.size; i++)
4345 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4347 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4348 we don't want to insert a copy here because the expression may not
4349 really be redundant. So only insert an insn if the expression was
4350 deleted. This test also avoids further processing if the
4351 expression wasn't deleted anywhere. */
4352 if (expr->reaching_reg == NULL)
4353 continue;
4355 /* Set when we add a copy for that expression. */
4356 added_copy = 0;
4358 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4360 if (! occr->deleted_p)
4361 continue;
4363 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4365 rtx insn = avail->insn;
4367 /* No need to handle this one if handled already. */
4368 if (avail->copied_p)
4369 continue;
4371 /* Don't handle this one if it's a redundant one. */
4372 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4373 continue;
4375 /* Or if the expression doesn't reach the deleted one. */
4376 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4377 expr,
4378 BLOCK_FOR_INSN (occr->insn)))
4379 continue;
4381 added_copy = 1;
4383 /* Copy the result of avail to reaching_reg. */
4384 pre_insert_copy_insn (expr, insn);
4385 avail->copied_p = 1;
4389 if (added_copy)
4390 update_ld_motion_stores (expr);
4394 /* Emit move from SRC to DEST noting the equivalence with expression computed
4395 in INSN. */
4396 static rtx
4397 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4399 rtx new;
4400 rtx set = single_set (insn), set2;
4401 rtx note;
4402 rtx eqv;
4404 /* This should never fail since we're creating a reg->reg copy
4405 we've verified to be valid. */
4407 new = emit_insn_after (gen_move_insn (dest, src), insn);
4409 /* Note the equivalence for local CSE pass. */
4410 set2 = single_set (new);
4411 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4412 return new;
4413 if ((note = find_reg_equal_equiv_note (insn)))
4414 eqv = XEXP (note, 0);
4415 else
4416 eqv = SET_SRC (set);
4418 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4420 return new;
4423 /* Delete redundant computations.
4424 Deletion is done by changing the insn to copy the `reaching_reg' of
4425 the expression into the result of the SET. It is left to later passes
4426 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4428 Returns nonzero if a change is made. */
4430 static int
4431 pre_delete (void)
4433 unsigned int i;
4434 int changed;
4435 struct expr *expr;
4436 struct occr *occr;
4438 changed = 0;
4439 for (i = 0; i < expr_hash_table.size; i++)
4440 for (expr = expr_hash_table.table[i];
4441 expr != NULL;
4442 expr = expr->next_same_hash)
4444 int indx = expr->bitmap_index;
4446 /* We only need to search antic_occr since we require
4447 ANTLOC != 0. */
4449 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4451 rtx insn = occr->insn;
4452 rtx set;
4453 basic_block bb = BLOCK_FOR_INSN (insn);
4455 /* We only delete insns that have a single_set. */
4456 if (TEST_BIT (pre_delete_map[bb->index], indx)
4457 && (set = single_set (insn)) != 0)
4459 /* Create a pseudo-reg to store the result of reaching
4460 expressions into. Get the mode for the new pseudo from
4461 the mode of the original destination pseudo. */
4462 if (expr->reaching_reg == NULL)
4463 expr->reaching_reg
4464 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4466 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4467 delete_insn (insn);
4468 occr->deleted_p = 1;
4469 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4470 changed = 1;
4471 gcse_subst_count++;
4473 if (gcse_file)
4475 fprintf (gcse_file,
4476 "PRE: redundant insn %d (expression %d) in ",
4477 INSN_UID (insn), indx);
4478 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4479 bb->index, REGNO (expr->reaching_reg));
4485 return changed;
4488 /* Perform GCSE optimizations using PRE.
4489 This is called by one_pre_gcse_pass after all the dataflow analysis
4490 has been done.
4492 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4493 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4494 Compiler Design and Implementation.
4496 ??? A new pseudo reg is created to hold the reaching expression. The nice
4497 thing about the classical approach is that it would try to use an existing
4498 reg. If the register can't be adequately optimized [i.e. we introduce
4499 reload problems], one could add a pass here to propagate the new register
4500 through the block.
4502 ??? We don't handle single sets in PARALLELs because we're [currently] not
4503 able to copy the rest of the parallel when we insert copies to create full
4504 redundancies from partial redundancies. However, there's no reason why we
4505 can't handle PARALLELs in the cases where there are no partial
4506 redundancies. */
4508 static int
4509 pre_gcse (void)
4511 unsigned int i;
4512 int did_insert, changed;
4513 struct expr **index_map;
4514 struct expr *expr;
4516 /* Compute a mapping from expression number (`bitmap_index') to
4517 hash table entry. */
4519 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4520 for (i = 0; i < expr_hash_table.size; i++)
4521 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4522 index_map[expr->bitmap_index] = expr;
4524 /* Reset bitmap used to track which insns are redundant. */
4525 pre_redundant_insns = sbitmap_alloc (max_cuid);
4526 sbitmap_zero (pre_redundant_insns);
4528 /* Delete the redundant insns first so that
4529 - we know what register to use for the new insns and for the other
4530 ones with reaching expressions
4531 - we know which insns are redundant when we go to create copies */
4533 changed = pre_delete ();
4535 did_insert = pre_edge_insert (edge_list, index_map);
4537 /* In other places with reaching expressions, copy the expression to the
4538 specially allocated pseudo-reg that reaches the redundant expr. */
4539 pre_insert_copies ();
4540 if (did_insert)
4542 commit_edge_insertions ();
4543 changed = 1;
4546 free (index_map);
4547 sbitmap_free (pre_redundant_insns);
4548 return changed;
4551 /* Top level routine to perform one PRE GCSE pass.
4553 Return nonzero if a change was made. */
4555 static int
4556 one_pre_gcse_pass (int pass)
4558 int changed = 0;
4560 gcse_subst_count = 0;
4561 gcse_create_count = 0;
4563 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4564 add_noreturn_fake_exit_edges ();
4565 if (flag_gcse_lm)
4566 compute_ld_motion_mems ();
4568 compute_hash_table (&expr_hash_table);
4569 trim_ld_motion_mems ();
4570 if (gcse_file)
4571 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4573 if (expr_hash_table.n_elems > 0)
4575 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4576 compute_pre_data ();
4577 changed |= pre_gcse ();
4578 free_edge_list (edge_list);
4579 free_pre_mem ();
4582 free_ldst_mems ();
4583 remove_fake_exit_edges ();
4584 free_hash_table (&expr_hash_table);
4586 if (gcse_file)
4588 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4589 current_function_name (), pass, bytes_used);
4590 fprintf (gcse_file, "%d substs, %d insns created\n",
4591 gcse_subst_count, gcse_create_count);
4594 return changed;
4597 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4598 If notes are added to an insn which references a CODE_LABEL, the
4599 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4600 because the following loop optimization pass requires them. */
4602 /* ??? This is very similar to the loop.c add_label_notes function. We
4603 could probably share code here. */
4605 /* ??? If there was a jump optimization pass after gcse and before loop,
4606 then we would not need to do this here, because jump would add the
4607 necessary REG_LABEL notes. */
4609 static void
4610 add_label_notes (rtx x, rtx insn)
4612 enum rtx_code code = GET_CODE (x);
4613 int i, j;
4614 const char *fmt;
4616 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4618 /* This code used to ignore labels that referred to dispatch tables to
4619 avoid flow generating (slightly) worse code.
4621 We no longer ignore such label references (see LABEL_REF handling in
4622 mark_jump_label for additional information). */
4624 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4625 REG_NOTES (insn));
4626 if (LABEL_P (XEXP (x, 0)))
4627 LABEL_NUSES (XEXP (x, 0))++;
4628 return;
4631 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4633 if (fmt[i] == 'e')
4634 add_label_notes (XEXP (x, i), insn);
4635 else if (fmt[i] == 'E')
4636 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4637 add_label_notes (XVECEXP (x, i, j), insn);
4641 /* Compute transparent outgoing information for each block.
4643 An expression is transparent to an edge unless it is killed by
4644 the edge itself. This can only happen with abnormal control flow,
4645 when the edge is traversed through a call. This happens with
4646 non-local labels and exceptions.
4648 This would not be necessary if we split the edge. While this is
4649 normally impossible for abnormal critical edges, with some effort
4650 it should be possible with exception handling, since we still have
4651 control over which handler should be invoked. But due to increased
4652 EH table sizes, this may not be worthwhile. */
4654 static void
4655 compute_transpout (void)
4657 basic_block bb;
4658 unsigned int i;
4659 struct expr *expr;
4661 sbitmap_vector_ones (transpout, last_basic_block);
4663 FOR_EACH_BB (bb)
4665 /* Note that flow inserted a nop a the end of basic blocks that
4666 end in call instructions for reasons other than abnormal
4667 control flow. */
4668 if (! CALL_P (BB_END (bb)))
4669 continue;
4671 for (i = 0; i < expr_hash_table.size; i++)
4672 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4673 if (MEM_P (expr->expr))
4675 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4676 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4677 continue;
4679 /* ??? Optimally, we would use interprocedural alias
4680 analysis to determine if this mem is actually killed
4681 by this call. */
4682 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4687 /* Code Hoisting variables and subroutines. */
4689 /* Very busy expressions. */
4690 static sbitmap *hoist_vbein;
4691 static sbitmap *hoist_vbeout;
4693 /* Hoistable expressions. */
4694 static sbitmap *hoist_exprs;
4696 /* ??? We could compute post dominators and run this algorithm in
4697 reverse to perform tail merging, doing so would probably be
4698 more effective than the tail merging code in jump.c.
4700 It's unclear if tail merging could be run in parallel with
4701 code hoisting. It would be nice. */
4703 /* Allocate vars used for code hoisting analysis. */
4705 static void
4706 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4708 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4709 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4710 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4712 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4713 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4714 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4715 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4718 /* Free vars used for code hoisting analysis. */
4720 static void
4721 free_code_hoist_mem (void)
4723 sbitmap_vector_free (antloc);
4724 sbitmap_vector_free (transp);
4725 sbitmap_vector_free (comp);
4727 sbitmap_vector_free (hoist_vbein);
4728 sbitmap_vector_free (hoist_vbeout);
4729 sbitmap_vector_free (hoist_exprs);
4730 sbitmap_vector_free (transpout);
4732 free_dominance_info (CDI_DOMINATORS);
4735 /* Compute the very busy expressions at entry/exit from each block.
4737 An expression is very busy if all paths from a given point
4738 compute the expression. */
4740 static void
4741 compute_code_hoist_vbeinout (void)
4743 int changed, passes;
4744 basic_block bb;
4746 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4747 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4749 passes = 0;
4750 changed = 1;
4752 while (changed)
4754 changed = 0;
4756 /* We scan the blocks in the reverse order to speed up
4757 the convergence. */
4758 FOR_EACH_BB_REVERSE (bb)
4760 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4761 hoist_vbeout[bb->index], transp[bb->index]);
4762 if (bb->next_bb != EXIT_BLOCK_PTR)
4763 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4766 passes++;
4769 if (gcse_file)
4770 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4773 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4775 static void
4776 compute_code_hoist_data (void)
4778 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4779 compute_transpout ();
4780 compute_code_hoist_vbeinout ();
4781 calculate_dominance_info (CDI_DOMINATORS);
4782 if (gcse_file)
4783 fprintf (gcse_file, "\n");
4786 /* Determine if the expression identified by EXPR_INDEX would
4787 reach BB unimpared if it was placed at the end of EXPR_BB.
4789 It's unclear exactly what Muchnick meant by "unimpared". It seems
4790 to me that the expression must either be computed or transparent in
4791 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4792 would allow the expression to be hoisted out of loops, even if
4793 the expression wasn't a loop invariant.
4795 Contrast this to reachability for PRE where an expression is
4796 considered reachable if *any* path reaches instead of *all*
4797 paths. */
4799 static int
4800 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4802 edge pred;
4803 int visited_allocated_locally = 0;
4806 if (visited == NULL)
4808 visited_allocated_locally = 1;
4809 visited = xcalloc (last_basic_block, 1);
4812 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4814 basic_block pred_bb = pred->src;
4816 if (pred->src == ENTRY_BLOCK_PTR)
4817 break;
4818 else if (pred_bb == expr_bb)
4819 continue;
4820 else if (visited[pred_bb->index])
4821 continue;
4823 /* Does this predecessor generate this expression? */
4824 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4825 break;
4826 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4827 break;
4829 /* Not killed. */
4830 else
4832 visited[pred_bb->index] = 1;
4833 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4834 pred_bb, visited))
4835 break;
4838 if (visited_allocated_locally)
4839 free (visited);
4841 return (pred == NULL);
4844 /* Actually perform code hoisting. */
4846 static void
4847 hoist_code (void)
4849 basic_block bb, dominated;
4850 basic_block *domby;
4851 unsigned int domby_len;
4852 unsigned int i,j;
4853 struct expr **index_map;
4854 struct expr *expr;
4856 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4858 /* Compute a mapping from expression number (`bitmap_index') to
4859 hash table entry. */
4861 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4862 for (i = 0; i < expr_hash_table.size; i++)
4863 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4864 index_map[expr->bitmap_index] = expr;
4866 /* Walk over each basic block looking for potentially hoistable
4867 expressions, nothing gets hoisted from the entry block. */
4868 FOR_EACH_BB (bb)
4870 int found = 0;
4871 int insn_inserted_p;
4873 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4874 /* Examine each expression that is very busy at the exit of this
4875 block. These are the potentially hoistable expressions. */
4876 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4878 int hoistable = 0;
4880 if (TEST_BIT (hoist_vbeout[bb->index], i)
4881 && TEST_BIT (transpout[bb->index], i))
4883 /* We've found a potentially hoistable expression, now
4884 we look at every block BB dominates to see if it
4885 computes the expression. */
4886 for (j = 0; j < domby_len; j++)
4888 dominated = domby[j];
4889 /* Ignore self dominance. */
4890 if (bb == dominated)
4891 continue;
4892 /* We've found a dominated block, now see if it computes
4893 the busy expression and whether or not moving that
4894 expression to the "beginning" of that block is safe. */
4895 if (!TEST_BIT (antloc[dominated->index], i))
4896 continue;
4898 /* Note if the expression would reach the dominated block
4899 unimpared if it was placed at the end of BB.
4901 Keep track of how many times this expression is hoistable
4902 from a dominated block into BB. */
4903 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4904 hoistable++;
4907 /* If we found more than one hoistable occurrence of this
4908 expression, then note it in the bitmap of expressions to
4909 hoist. It makes no sense to hoist things which are computed
4910 in only one BB, and doing so tends to pessimize register
4911 allocation. One could increase this value to try harder
4912 to avoid any possible code expansion due to register
4913 allocation issues; however experiments have shown that
4914 the vast majority of hoistable expressions are only movable
4915 from two successors, so raising this threshold is likely
4916 to nullify any benefit we get from code hoisting. */
4917 if (hoistable > 1)
4919 SET_BIT (hoist_exprs[bb->index], i);
4920 found = 1;
4924 /* If we found nothing to hoist, then quit now. */
4925 if (! found)
4927 free (domby);
4928 continue;
4931 /* Loop over all the hoistable expressions. */
4932 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4934 /* We want to insert the expression into BB only once, so
4935 note when we've inserted it. */
4936 insn_inserted_p = 0;
4938 /* These tests should be the same as the tests above. */
4939 if (TEST_BIT (hoist_vbeout[bb->index], i))
4941 /* We've found a potentially hoistable expression, now
4942 we look at every block BB dominates to see if it
4943 computes the expression. */
4944 for (j = 0; j < domby_len; j++)
4946 dominated = domby[j];
4947 /* Ignore self dominance. */
4948 if (bb == dominated)
4949 continue;
4951 /* We've found a dominated block, now see if it computes
4952 the busy expression and whether or not moving that
4953 expression to the "beginning" of that block is safe. */
4954 if (!TEST_BIT (antloc[dominated->index], i))
4955 continue;
4957 /* The expression is computed in the dominated block and
4958 it would be safe to compute it at the start of the
4959 dominated block. Now we have to determine if the
4960 expression would reach the dominated block if it was
4961 placed at the end of BB. */
4962 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4964 struct expr *expr = index_map[i];
4965 struct occr *occr = expr->antic_occr;
4966 rtx insn;
4967 rtx set;
4969 /* Find the right occurrence of this expression. */
4970 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4971 occr = occr->next;
4973 /* Should never happen. */
4974 if (!occr)
4975 abort ();
4977 insn = occr->insn;
4979 set = single_set (insn);
4980 if (! set)
4981 abort ();
4983 /* Create a pseudo-reg to store the result of reaching
4984 expressions into. Get the mode for the new pseudo
4985 from the mode of the original destination pseudo. */
4986 if (expr->reaching_reg == NULL)
4987 expr->reaching_reg
4988 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4990 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4991 delete_insn (insn);
4992 occr->deleted_p = 1;
4993 if (!insn_inserted_p)
4995 insert_insn_end_bb (index_map[i], bb, 0);
4996 insn_inserted_p = 1;
5002 free (domby);
5005 free (index_map);
5008 /* Top level routine to perform one code hoisting (aka unification) pass
5010 Return nonzero if a change was made. */
5012 static int
5013 one_code_hoisting_pass (void)
5015 int changed = 0;
5017 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5018 compute_hash_table (&expr_hash_table);
5019 if (gcse_file)
5020 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
5022 if (expr_hash_table.n_elems > 0)
5024 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5025 compute_code_hoist_data ();
5026 hoist_code ();
5027 free_code_hoist_mem ();
5030 free_hash_table (&expr_hash_table);
5032 return changed;
5035 /* Here we provide the things required to do store motion towards
5036 the exit. In order for this to be effective, gcse also needed to
5037 be taught how to move a load when it is kill only by a store to itself.
5039 int i;
5040 float a[10];
5042 void foo(float scale)
5044 for (i=0; i<10; i++)
5045 a[i] *= scale;
5048 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5049 the load out since its live around the loop, and stored at the bottom
5050 of the loop.
5052 The 'Load Motion' referred to and implemented in this file is
5053 an enhancement to gcse which when using edge based lcm, recognizes
5054 this situation and allows gcse to move the load out of the loop.
5056 Once gcse has hoisted the load, store motion can then push this
5057 load towards the exit, and we end up with no loads or stores of 'i'
5058 in the loop. */
5060 /* This will search the ldst list for a matching expression. If it
5061 doesn't find one, we create one and initialize it. */
5063 static struct ls_expr *
5064 ldst_entry (rtx x)
5066 int do_not_record_p = 0;
5067 struct ls_expr * ptr;
5068 unsigned int hash;
5070 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5071 NULL, /*have_reg_qty=*/false);
5073 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5074 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5075 return ptr;
5077 ptr = xmalloc (sizeof (struct ls_expr));
5079 ptr->next = pre_ldst_mems;
5080 ptr->expr = NULL;
5081 ptr->pattern = x;
5082 ptr->pattern_regs = NULL_RTX;
5083 ptr->loads = NULL_RTX;
5084 ptr->stores = NULL_RTX;
5085 ptr->reaching_reg = NULL_RTX;
5086 ptr->invalid = 0;
5087 ptr->index = 0;
5088 ptr->hash_index = hash;
5089 pre_ldst_mems = ptr;
5091 return ptr;
5094 /* Free up an individual ldst entry. */
5096 static void
5097 free_ldst_entry (struct ls_expr * ptr)
5099 free_INSN_LIST_list (& ptr->loads);
5100 free_INSN_LIST_list (& ptr->stores);
5102 free (ptr);
5105 /* Free up all memory associated with the ldst list. */
5107 static void
5108 free_ldst_mems (void)
5110 while (pre_ldst_mems)
5112 struct ls_expr * tmp = pre_ldst_mems;
5114 pre_ldst_mems = pre_ldst_mems->next;
5116 free_ldst_entry (tmp);
5119 pre_ldst_mems = NULL;
5122 /* Dump debugging info about the ldst list. */
5124 static void
5125 print_ldst_list (FILE * file)
5127 struct ls_expr * ptr;
5129 fprintf (file, "LDST list: \n");
5131 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5133 fprintf (file, " Pattern (%3d): ", ptr->index);
5135 print_rtl (file, ptr->pattern);
5137 fprintf (file, "\n Loads : ");
5139 if (ptr->loads)
5140 print_rtl (file, ptr->loads);
5141 else
5142 fprintf (file, "(nil)");
5144 fprintf (file, "\n Stores : ");
5146 if (ptr->stores)
5147 print_rtl (file, ptr->stores);
5148 else
5149 fprintf (file, "(nil)");
5151 fprintf (file, "\n\n");
5154 fprintf (file, "\n");
5157 /* Returns 1 if X is in the list of ldst only expressions. */
5159 static struct ls_expr *
5160 find_rtx_in_ldst (rtx x)
5162 struct ls_expr * ptr;
5164 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5165 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5166 return ptr;
5168 return NULL;
5171 /* Assign each element of the list of mems a monotonically increasing value. */
5173 static int
5174 enumerate_ldsts (void)
5176 struct ls_expr * ptr;
5177 int n = 0;
5179 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5180 ptr->index = n++;
5182 return n;
5185 /* Return first item in the list. */
5187 static inline struct ls_expr *
5188 first_ls_expr (void)
5190 return pre_ldst_mems;
5193 /* Return the next item in the list after the specified one. */
5195 static inline struct ls_expr *
5196 next_ls_expr (struct ls_expr * ptr)
5198 return ptr->next;
5201 /* Load Motion for loads which only kill themselves. */
5203 /* Return true if x is a simple MEM operation, with no registers or
5204 side effects. These are the types of loads we consider for the
5205 ld_motion list, otherwise we let the usual aliasing take care of it. */
5207 static int
5208 simple_mem (rtx x)
5210 if (! MEM_P (x))
5211 return 0;
5213 if (MEM_VOLATILE_P (x))
5214 return 0;
5216 if (GET_MODE (x) == BLKmode)
5217 return 0;
5219 /* If we are handling exceptions, we must be careful with memory references
5220 that may trap. If we are not, the behavior is undefined, so we may just
5221 continue. */
5222 if (flag_non_call_exceptions && may_trap_p (x))
5223 return 0;
5225 if (side_effects_p (x))
5226 return 0;
5228 /* Do not consider function arguments passed on stack. */
5229 if (reg_mentioned_p (stack_pointer_rtx, x))
5230 return 0;
5232 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5233 return 0;
5235 return 1;
5238 /* Make sure there isn't a buried reference in this pattern anywhere.
5239 If there is, invalidate the entry for it since we're not capable
5240 of fixing it up just yet.. We have to be sure we know about ALL
5241 loads since the aliasing code will allow all entries in the
5242 ld_motion list to not-alias itself. If we miss a load, we will get
5243 the wrong value since gcse might common it and we won't know to
5244 fix it up. */
5246 static void
5247 invalidate_any_buried_refs (rtx x)
5249 const char * fmt;
5250 int i, j;
5251 struct ls_expr * ptr;
5253 /* Invalidate it in the list. */
5254 if (MEM_P (x) && simple_mem (x))
5256 ptr = ldst_entry (x);
5257 ptr->invalid = 1;
5260 /* Recursively process the insn. */
5261 fmt = GET_RTX_FORMAT (GET_CODE (x));
5263 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5265 if (fmt[i] == 'e')
5266 invalidate_any_buried_refs (XEXP (x, i));
5267 else if (fmt[i] == 'E')
5268 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5269 invalidate_any_buried_refs (XVECEXP (x, i, j));
5273 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5274 being defined as MEM loads and stores to symbols, with no side effects
5275 and no registers in the expression. For a MEM destination, we also
5276 check that the insn is still valid if we replace the destination with a
5277 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5278 which don't match this criteria, they are invalidated and trimmed out
5279 later. */
5281 static void
5282 compute_ld_motion_mems (void)
5284 struct ls_expr * ptr;
5285 basic_block bb;
5286 rtx insn;
5288 pre_ldst_mems = NULL;
5290 FOR_EACH_BB (bb)
5292 for (insn = BB_HEAD (bb);
5293 insn && insn != NEXT_INSN (BB_END (bb));
5294 insn = NEXT_INSN (insn))
5296 if (INSN_P (insn))
5298 if (GET_CODE (PATTERN (insn)) == SET)
5300 rtx src = SET_SRC (PATTERN (insn));
5301 rtx dest = SET_DEST (PATTERN (insn));
5303 /* Check for a simple LOAD... */
5304 if (MEM_P (src) && simple_mem (src))
5306 ptr = ldst_entry (src);
5307 if (REG_P (dest))
5308 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5309 else
5310 ptr->invalid = 1;
5312 else
5314 /* Make sure there isn't a buried load somewhere. */
5315 invalidate_any_buried_refs (src);
5318 /* Check for stores. Don't worry about aliased ones, they
5319 will block any movement we might do later. We only care
5320 about this exact pattern since those are the only
5321 circumstance that we will ignore the aliasing info. */
5322 if (MEM_P (dest) && simple_mem (dest))
5324 ptr = ldst_entry (dest);
5326 if (! MEM_P (src)
5327 && GET_CODE (src) != ASM_OPERANDS
5328 /* Check for REG manually since want_to_gcse_p
5329 returns 0 for all REGs. */
5330 && can_assign_to_reg_p (src))
5331 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5332 else
5333 ptr->invalid = 1;
5336 else
5337 invalidate_any_buried_refs (PATTERN (insn));
5343 /* Remove any references that have been either invalidated or are not in the
5344 expression list for pre gcse. */
5346 static void
5347 trim_ld_motion_mems (void)
5349 struct ls_expr * * last = & pre_ldst_mems;
5350 struct ls_expr * ptr = pre_ldst_mems;
5352 while (ptr != NULL)
5354 struct expr * expr;
5356 /* Delete if entry has been made invalid. */
5357 if (! ptr->invalid)
5359 /* Delete if we cannot find this mem in the expression list. */
5360 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5362 for (expr = expr_hash_table.table[hash];
5363 expr != NULL;
5364 expr = expr->next_same_hash)
5365 if (expr_equiv_p (expr->expr, ptr->pattern))
5366 break;
5368 else
5369 expr = (struct expr *) 0;
5371 if (expr)
5373 /* Set the expression field if we are keeping it. */
5374 ptr->expr = expr;
5375 last = & ptr->next;
5376 ptr = ptr->next;
5378 else
5380 *last = ptr->next;
5381 free_ldst_entry (ptr);
5382 ptr = * last;
5386 /* Show the world what we've found. */
5387 if (gcse_file && pre_ldst_mems != NULL)
5388 print_ldst_list (gcse_file);
5391 /* This routine will take an expression which we are replacing with
5392 a reaching register, and update any stores that are needed if
5393 that expression is in the ld_motion list. Stores are updated by
5394 copying their SRC to the reaching register, and then storing
5395 the reaching register into the store location. These keeps the
5396 correct value in the reaching register for the loads. */
5398 static void
5399 update_ld_motion_stores (struct expr * expr)
5401 struct ls_expr * mem_ptr;
5403 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5405 /* We can try to find just the REACHED stores, but is shouldn't
5406 matter to set the reaching reg everywhere... some might be
5407 dead and should be eliminated later. */
5409 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5410 where reg is the reaching reg used in the load. We checked in
5411 compute_ld_motion_mems that we can replace (set mem expr) with
5412 (set reg expr) in that insn. */
5413 rtx list = mem_ptr->stores;
5415 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5417 rtx insn = XEXP (list, 0);
5418 rtx pat = PATTERN (insn);
5419 rtx src = SET_SRC (pat);
5420 rtx reg = expr->reaching_reg;
5421 rtx copy, new;
5423 /* If we've already copied it, continue. */
5424 if (expr->reaching_reg == src)
5425 continue;
5427 if (gcse_file)
5429 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5430 print_rtl (gcse_file, expr->reaching_reg);
5431 fprintf (gcse_file, ":\n ");
5432 print_inline_rtx (gcse_file, insn, 8);
5433 fprintf (gcse_file, "\n");
5436 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5437 new = emit_insn_before (copy, insn);
5438 record_one_set (REGNO (reg), new);
5439 SET_SRC (pat) = reg;
5441 /* un-recognize this pattern since it's probably different now. */
5442 INSN_CODE (insn) = -1;
5443 gcse_create_count++;
5448 /* Store motion code. */
5450 #define ANTIC_STORE_LIST(x) ((x)->loads)
5451 #define AVAIL_STORE_LIST(x) ((x)->stores)
5452 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5454 /* This is used to communicate the target bitvector we want to use in the
5455 reg_set_info routine when called via the note_stores mechanism. */
5456 static int * regvec;
5458 /* And current insn, for the same routine. */
5459 static rtx compute_store_table_current_insn;
5461 /* Used in computing the reverse edge graph bit vectors. */
5462 static sbitmap * st_antloc;
5464 /* Global holding the number of store expressions we are dealing with. */
5465 static int num_stores;
5467 /* Checks to set if we need to mark a register set. Called from
5468 note_stores. */
5470 static void
5471 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5472 void *data)
5474 sbitmap bb_reg = data;
5476 if (GET_CODE (dest) == SUBREG)
5477 dest = SUBREG_REG (dest);
5479 if (REG_P (dest))
5481 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5482 if (bb_reg)
5483 SET_BIT (bb_reg, REGNO (dest));
5487 /* Clear any mark that says that this insn sets dest. Called from
5488 note_stores. */
5490 static void
5491 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5492 void *data)
5494 int *dead_vec = data;
5496 if (GET_CODE (dest) == SUBREG)
5497 dest = SUBREG_REG (dest);
5499 if (REG_P (dest) &&
5500 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5501 dead_vec[REGNO (dest)] = 0;
5504 /* Return zero if some of the registers in list X are killed
5505 due to set of registers in bitmap REGS_SET. */
5507 static bool
5508 store_ops_ok (rtx x, int *regs_set)
5510 rtx reg;
5512 for (; x; x = XEXP (x, 1))
5514 reg = XEXP (x, 0);
5515 if (regs_set[REGNO(reg)])
5516 return false;
5519 return true;
5522 /* Returns a list of registers mentioned in X. */
5523 static rtx
5524 extract_mentioned_regs (rtx x)
5526 return extract_mentioned_regs_helper (x, NULL_RTX);
5529 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5530 registers. */
5531 static rtx
5532 extract_mentioned_regs_helper (rtx x, rtx accum)
5534 int i;
5535 enum rtx_code code;
5536 const char * fmt;
5538 /* Repeat is used to turn tail-recursion into iteration. */
5539 repeat:
5541 if (x == 0)
5542 return accum;
5544 code = GET_CODE (x);
5545 switch (code)
5547 case REG:
5548 return alloc_EXPR_LIST (0, x, accum);
5550 case MEM:
5551 x = XEXP (x, 0);
5552 goto repeat;
5554 case PRE_DEC:
5555 case PRE_INC:
5556 case POST_DEC:
5557 case POST_INC:
5558 /* We do not run this function with arguments having side effects. */
5559 abort ();
5561 case PC:
5562 case CC0: /*FIXME*/
5563 case CONST:
5564 case CONST_INT:
5565 case CONST_DOUBLE:
5566 case CONST_VECTOR:
5567 case SYMBOL_REF:
5568 case LABEL_REF:
5569 case ADDR_VEC:
5570 case ADDR_DIFF_VEC:
5571 return accum;
5573 default:
5574 break;
5577 i = GET_RTX_LENGTH (code) - 1;
5578 fmt = GET_RTX_FORMAT (code);
5580 for (; i >= 0; i--)
5582 if (fmt[i] == 'e')
5584 rtx tem = XEXP (x, i);
5586 /* If we are about to do the last recursive call
5587 needed at this level, change it into iteration. */
5588 if (i == 0)
5590 x = tem;
5591 goto repeat;
5594 accum = extract_mentioned_regs_helper (tem, accum);
5596 else if (fmt[i] == 'E')
5598 int j;
5600 for (j = 0; j < XVECLEN (x, i); j++)
5601 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5605 return accum;
5608 /* Determine whether INSN is MEM store pattern that we will consider moving.
5609 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5610 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5611 including) the insn in this basic block. We must be passing through BB from
5612 head to end, as we are using this fact to speed things up.
5614 The results are stored this way:
5616 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5617 -- if the processed expression is not anticipatable, NULL_RTX is added
5618 there instead, so that we can use it as indicator that no further
5619 expression of this type may be anticipatable
5620 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5621 consequently, all of them but this head are dead and may be deleted.
5622 -- if the expression is not available, the insn due to that it fails to be
5623 available is stored in reaching_reg.
5625 The things are complicated a bit by fact that there already may be stores
5626 to the same MEM from other blocks; also caller must take care of the
5627 necessary cleanup of the temporary markers after end of the basic block.
5630 static void
5631 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5633 struct ls_expr * ptr;
5634 rtx dest, set, tmp;
5635 int check_anticipatable, check_available;
5636 basic_block bb = BLOCK_FOR_INSN (insn);
5638 set = single_set (insn);
5639 if (!set)
5640 return;
5642 dest = SET_DEST (set);
5644 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5645 || GET_MODE (dest) == BLKmode)
5646 return;
5648 if (side_effects_p (dest))
5649 return;
5651 /* If we are handling exceptions, we must be careful with memory references
5652 that may trap. If we are not, the behavior is undefined, so we may just
5653 continue. */
5654 if (flag_non_call_exceptions && may_trap_p (dest))
5655 return;
5657 /* Even if the destination cannot trap, the source may. In this case we'd
5658 need to handle updating the REG_EH_REGION note. */
5659 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5660 return;
5662 ptr = ldst_entry (dest);
5663 if (!ptr->pattern_regs)
5664 ptr->pattern_regs = extract_mentioned_regs (dest);
5666 /* Do not check for anticipatability if we either found one anticipatable
5667 store already, or tested for one and found out that it was killed. */
5668 check_anticipatable = 0;
5669 if (!ANTIC_STORE_LIST (ptr))
5670 check_anticipatable = 1;
5671 else
5673 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5674 if (tmp != NULL_RTX
5675 && BLOCK_FOR_INSN (tmp) != bb)
5676 check_anticipatable = 1;
5678 if (check_anticipatable)
5680 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5681 tmp = NULL_RTX;
5682 else
5683 tmp = insn;
5684 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5685 ANTIC_STORE_LIST (ptr));
5688 /* It is not necessary to check whether store is available if we did
5689 it successfully before; if we failed before, do not bother to check
5690 until we reach the insn that caused us to fail. */
5691 check_available = 0;
5692 if (!AVAIL_STORE_LIST (ptr))
5693 check_available = 1;
5694 else
5696 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5697 if (BLOCK_FOR_INSN (tmp) != bb)
5698 check_available = 1;
5700 if (check_available)
5702 /* Check that we have already reached the insn at that the check
5703 failed last time. */
5704 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5706 for (tmp = BB_END (bb);
5707 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5708 tmp = PREV_INSN (tmp))
5709 continue;
5710 if (tmp == insn)
5711 check_available = 0;
5713 else
5714 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5715 bb, regs_set_after,
5716 &LAST_AVAIL_CHECK_FAILURE (ptr));
5718 if (!check_available)
5719 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5722 /* Find available and anticipatable stores. */
5724 static int
5725 compute_store_table (void)
5727 int ret;
5728 basic_block bb;
5729 unsigned regno;
5730 rtx insn, pat, tmp;
5731 int *last_set_in, *already_set;
5732 struct ls_expr * ptr, **prev_next_ptr_ptr;
5734 max_gcse_regno = max_reg_num ();
5736 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5737 max_gcse_regno);
5738 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5739 pre_ldst_mems = 0;
5740 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5741 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5743 /* Find all the stores we care about. */
5744 FOR_EACH_BB (bb)
5746 /* First compute the registers set in this block. */
5747 regvec = last_set_in;
5749 for (insn = BB_HEAD (bb);
5750 insn != NEXT_INSN (BB_END (bb));
5751 insn = NEXT_INSN (insn))
5753 if (! INSN_P (insn))
5754 continue;
5756 if (CALL_P (insn))
5758 bool clobbers_all = false;
5759 #ifdef NON_SAVING_SETJMP
5760 if (NON_SAVING_SETJMP
5761 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5762 clobbers_all = true;
5763 #endif
5765 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5766 if (clobbers_all
5767 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5769 last_set_in[regno] = INSN_UID (insn);
5770 SET_BIT (reg_set_in_block[bb->index], regno);
5774 pat = PATTERN (insn);
5775 compute_store_table_current_insn = insn;
5776 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5779 /* Now find the stores. */
5780 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5781 regvec = already_set;
5782 for (insn = BB_HEAD (bb);
5783 insn != NEXT_INSN (BB_END (bb));
5784 insn = NEXT_INSN (insn))
5786 if (! INSN_P (insn))
5787 continue;
5789 if (CALL_P (insn))
5791 bool clobbers_all = false;
5792 #ifdef NON_SAVING_SETJMP
5793 if (NON_SAVING_SETJMP
5794 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5795 clobbers_all = true;
5796 #endif
5798 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5799 if (clobbers_all
5800 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5801 already_set[regno] = 1;
5804 pat = PATTERN (insn);
5805 note_stores (pat, reg_set_info, NULL);
5807 /* Now that we've marked regs, look for stores. */
5808 find_moveable_store (insn, already_set, last_set_in);
5810 /* Unmark regs that are no longer set. */
5811 compute_store_table_current_insn = insn;
5812 note_stores (pat, reg_clear_last_set, last_set_in);
5813 if (CALL_P (insn))
5815 bool clobbers_all = false;
5816 #ifdef NON_SAVING_SETJMP
5817 if (NON_SAVING_SETJMP
5818 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5819 clobbers_all = true;
5820 #endif
5822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5823 if ((clobbers_all
5824 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5825 && last_set_in[regno] == INSN_UID (insn))
5826 last_set_in[regno] = 0;
5830 #ifdef ENABLE_CHECKING
5831 /* last_set_in should now be all-zero. */
5832 for (regno = 0; regno < max_gcse_regno; regno++)
5833 if (last_set_in[regno] != 0)
5834 abort ();
5835 #endif
5837 /* Clear temporary marks. */
5838 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5840 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5841 if (ANTIC_STORE_LIST (ptr)
5842 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5843 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5847 /* Remove the stores that are not available anywhere, as there will
5848 be no opportunity to optimize them. */
5849 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5850 ptr != NULL;
5851 ptr = *prev_next_ptr_ptr)
5853 if (!AVAIL_STORE_LIST (ptr))
5855 *prev_next_ptr_ptr = ptr->next;
5856 free_ldst_entry (ptr);
5858 else
5859 prev_next_ptr_ptr = &ptr->next;
5862 ret = enumerate_ldsts ();
5864 if (gcse_file)
5866 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5867 print_ldst_list (gcse_file);
5870 free (last_set_in);
5871 free (already_set);
5872 return ret;
5875 /* Check to see if the load X is aliased with STORE_PATTERN.
5876 AFTER is true if we are checking the case when STORE_PATTERN occurs
5877 after the X. */
5879 static bool
5880 load_kills_store (rtx x, rtx store_pattern, int after)
5882 if (after)
5883 return anti_dependence (x, store_pattern);
5884 else
5885 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5886 rtx_addr_varies_p);
5889 /* Go through the entire insn X, looking for any loads which might alias
5890 STORE_PATTERN. Return true if found.
5891 AFTER is true if we are checking the case when STORE_PATTERN occurs
5892 after the insn X. */
5894 static bool
5895 find_loads (rtx x, rtx store_pattern, int after)
5897 const char * fmt;
5898 int i, j;
5899 int ret = false;
5901 if (!x)
5902 return false;
5904 if (GET_CODE (x) == SET)
5905 x = SET_SRC (x);
5907 if (MEM_P (x))
5909 if (load_kills_store (x, store_pattern, after))
5910 return true;
5913 /* Recursively process the insn. */
5914 fmt = GET_RTX_FORMAT (GET_CODE (x));
5916 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5918 if (fmt[i] == 'e')
5919 ret |= find_loads (XEXP (x, i), store_pattern, after);
5920 else if (fmt[i] == 'E')
5921 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5922 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5924 return ret;
5927 /* Check if INSN kills the store pattern X (is aliased with it).
5928 AFTER is true if we are checking the case when store X occurs
5929 after the insn. Return true if it it does. */
5931 static bool
5932 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5934 rtx reg, base, note;
5936 if (!INSN_P (insn))
5937 return false;
5939 if (CALL_P (insn))
5941 /* A normal or pure call might read from pattern,
5942 but a const call will not. */
5943 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5944 return true;
5946 /* But even a const call reads its parameters. Check whether the
5947 base of some of registers used in mem is stack pointer. */
5948 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5950 base = find_base_term (XEXP (reg, 0));
5951 if (!base
5952 || (GET_CODE (base) == ADDRESS
5953 && GET_MODE (base) == Pmode
5954 && XEXP (base, 0) == stack_pointer_rtx))
5955 return true;
5958 return false;
5961 if (GET_CODE (PATTERN (insn)) == SET)
5963 rtx pat = PATTERN (insn);
5964 rtx dest = SET_DEST (pat);
5966 if (GET_CODE (dest) == SIGN_EXTRACT
5967 || GET_CODE (dest) == ZERO_EXTRACT)
5968 dest = XEXP (dest, 0);
5970 /* Check for memory stores to aliased objects. */
5971 if (MEM_P (dest)
5972 && !expr_equiv_p (dest, x))
5974 if (after)
5976 if (output_dependence (dest, x))
5977 return true;
5979 else
5981 if (output_dependence (x, dest))
5982 return true;
5985 if (find_loads (SET_SRC (pat), x, after))
5986 return true;
5988 else if (find_loads (PATTERN (insn), x, after))
5989 return true;
5991 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5992 location aliased with X, then this insn kills X. */
5993 note = find_reg_equal_equiv_note (insn);
5994 if (! note)
5995 return false;
5996 note = XEXP (note, 0);
5998 /* However, if the note represents a must alias rather than a may
5999 alias relationship, then it does not kill X. */
6000 if (expr_equiv_p (note, x))
6001 return false;
6003 /* See if there are any aliased loads in the note. */
6004 return find_loads (note, x, after);
6007 /* Returns true if the expression X is loaded or clobbered on or after INSN
6008 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6009 or after the insn. X_REGS is list of registers mentioned in X. If the store
6010 is killed, return the last insn in that it occurs in FAIL_INSN. */
6012 static bool
6013 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6014 int *regs_set_after, rtx *fail_insn)
6016 rtx last = BB_END (bb), act;
6018 if (!store_ops_ok (x_regs, regs_set_after))
6020 /* We do not know where it will happen. */
6021 if (fail_insn)
6022 *fail_insn = NULL_RTX;
6023 return true;
6026 /* Scan from the end, so that fail_insn is determined correctly. */
6027 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6028 if (store_killed_in_insn (x, x_regs, act, false))
6030 if (fail_insn)
6031 *fail_insn = act;
6032 return true;
6035 return false;
6038 /* Returns true if the expression X is loaded or clobbered on or before INSN
6039 within basic block BB. X_REGS is list of registers mentioned in X.
6040 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6041 static bool
6042 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6043 int *regs_set_before)
6045 rtx first = BB_HEAD (bb);
6047 if (!store_ops_ok (x_regs, regs_set_before))
6048 return true;
6050 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6051 if (store_killed_in_insn (x, x_regs, insn, true))
6052 return true;
6054 return false;
6057 /* Fill in available, anticipatable, transparent and kill vectors in
6058 STORE_DATA, based on lists of available and anticipatable stores. */
6059 static void
6060 build_store_vectors (void)
6062 basic_block bb;
6063 int *regs_set_in_block;
6064 rtx insn, st;
6065 struct ls_expr * ptr;
6066 unsigned regno;
6068 /* Build the gen_vector. This is any store in the table which is not killed
6069 by aliasing later in its block. */
6070 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6071 sbitmap_vector_zero (ae_gen, last_basic_block);
6073 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6074 sbitmap_vector_zero (st_antloc, last_basic_block);
6076 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6078 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6080 insn = XEXP (st, 0);
6081 bb = BLOCK_FOR_INSN (insn);
6083 /* If we've already seen an available expression in this block,
6084 we can delete this one (It occurs earlier in the block). We'll
6085 copy the SRC expression to an unused register in case there
6086 are any side effects. */
6087 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6089 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6090 if (gcse_file)
6091 fprintf (gcse_file, "Removing redundant store:\n");
6092 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6093 continue;
6095 SET_BIT (ae_gen[bb->index], ptr->index);
6098 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6100 insn = XEXP (st, 0);
6101 bb = BLOCK_FOR_INSN (insn);
6102 SET_BIT (st_antloc[bb->index], ptr->index);
6106 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6107 sbitmap_vector_zero (ae_kill, last_basic_block);
6109 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6110 sbitmap_vector_zero (transp, last_basic_block);
6111 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6113 FOR_EACH_BB (bb)
6115 for (regno = 0; regno < max_gcse_regno; regno++)
6116 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6118 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6120 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6121 bb, regs_set_in_block, NULL))
6123 /* It should not be necessary to consider the expression
6124 killed if it is both anticipatable and available. */
6125 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6126 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6127 SET_BIT (ae_kill[bb->index], ptr->index);
6129 else
6130 SET_BIT (transp[bb->index], ptr->index);
6134 free (regs_set_in_block);
6136 if (gcse_file)
6138 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6139 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6140 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6141 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6145 /* Insert an instruction at the beginning of a basic block, and update
6146 the BB_HEAD if needed. */
6148 static void
6149 insert_insn_start_bb (rtx insn, basic_block bb)
6151 /* Insert at start of successor block. */
6152 rtx prev = PREV_INSN (BB_HEAD (bb));
6153 rtx before = BB_HEAD (bb);
6154 while (before != 0)
6156 if (! LABEL_P (before)
6157 && (! NOTE_P (before)
6158 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6159 break;
6160 prev = before;
6161 if (prev == BB_END (bb))
6162 break;
6163 before = NEXT_INSN (before);
6166 insn = emit_insn_after (insn, prev);
6168 if (gcse_file)
6170 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6171 bb->index);
6172 print_inline_rtx (gcse_file, insn, 6);
6173 fprintf (gcse_file, "\n");
6177 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6178 the memory reference, and E is the edge to insert it on. Returns nonzero
6179 if an edge insertion was performed. */
6181 static int
6182 insert_store (struct ls_expr * expr, edge e)
6184 rtx reg, insn;
6185 basic_block bb;
6186 edge tmp;
6188 /* We did all the deleted before this insert, so if we didn't delete a
6189 store, then we haven't set the reaching reg yet either. */
6190 if (expr->reaching_reg == NULL_RTX)
6191 return 0;
6193 if (e->flags & EDGE_FAKE)
6194 return 0;
6196 reg = expr->reaching_reg;
6197 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6199 /* If we are inserting this expression on ALL predecessor edges of a BB,
6200 insert it at the start of the BB, and reset the insert bits on the other
6201 edges so we don't try to insert it on the other edges. */
6202 bb = e->dest;
6203 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6204 if (!(tmp->flags & EDGE_FAKE))
6206 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6207 if (index == EDGE_INDEX_NO_EDGE)
6208 abort ();
6209 if (! TEST_BIT (pre_insert_map[index], expr->index))
6210 break;
6213 /* If tmp is NULL, we found an insertion on every edge, blank the
6214 insertion vector for these edges, and insert at the start of the BB. */
6215 if (!tmp && bb != EXIT_BLOCK_PTR)
6217 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6219 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6220 RESET_BIT (pre_insert_map[index], expr->index);
6222 insert_insn_start_bb (insn, bb);
6223 return 0;
6226 /* We can't insert on this edge, so we'll insert at the head of the
6227 successors block. See Morgan, sec 10.5. */
6228 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6230 insert_insn_start_bb (insn, bb);
6231 return 0;
6234 insert_insn_on_edge (insn, e);
6236 if (gcse_file)
6238 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6239 e->src->index, e->dest->index);
6240 print_inline_rtx (gcse_file, insn, 6);
6241 fprintf (gcse_file, "\n");
6244 return 1;
6247 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6248 memory location in SMEXPR set in basic block BB.
6250 This could be rather expensive. */
6252 static void
6253 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6255 edge *stack = xmalloc (sizeof (edge) * n_basic_blocks), act;
6256 sbitmap visited = sbitmap_alloc (last_basic_block);
6257 int stack_top = 0;
6258 rtx last, insn, note;
6259 rtx mem = smexpr->pattern;
6261 sbitmap_zero (visited);
6262 act = bb->succ;
6264 while (1)
6266 if (!act)
6268 if (!stack_top)
6270 free (stack);
6271 sbitmap_free (visited);
6272 return;
6274 act = stack[--stack_top];
6276 bb = act->dest;
6278 if (bb == EXIT_BLOCK_PTR
6279 || TEST_BIT (visited, bb->index))
6281 act = act->succ_next;
6282 continue;
6284 SET_BIT (visited, bb->index);
6286 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6288 for (last = ANTIC_STORE_LIST (smexpr);
6289 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6290 last = XEXP (last, 1))
6291 continue;
6292 last = XEXP (last, 0);
6294 else
6295 last = NEXT_INSN (BB_END (bb));
6297 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6298 if (INSN_P (insn))
6300 note = find_reg_equal_equiv_note (insn);
6301 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6302 continue;
6304 if (gcse_file)
6305 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6306 INSN_UID (insn));
6307 remove_note (insn, note);
6309 act = act->succ_next;
6310 if (bb->succ)
6312 if (act)
6313 stack[stack_top++] = act;
6314 act = bb->succ;
6319 /* This routine will replace a store with a SET to a specified register. */
6321 static void
6322 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6324 rtx insn, mem, note, set, ptr;
6326 mem = smexpr->pattern;
6327 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6328 insn = emit_insn_after (insn, del);
6330 if (gcse_file)
6332 fprintf (gcse_file,
6333 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6334 print_inline_rtx (gcse_file, del, 6);
6335 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6336 print_inline_rtx (gcse_file, insn, 6);
6337 fprintf (gcse_file, "\n");
6340 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6341 if (XEXP (ptr, 0) == del)
6343 XEXP (ptr, 0) = insn;
6344 break;
6346 delete_insn (del);
6348 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6349 they are no longer accurate provided that they are reached by this
6350 definition, so drop them. */
6351 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6352 if (INSN_P (insn))
6354 set = single_set (insn);
6355 if (!set)
6356 continue;
6357 if (expr_equiv_p (SET_DEST (set), mem))
6358 return;
6359 note = find_reg_equal_equiv_note (insn);
6360 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6361 continue;
6363 if (gcse_file)
6364 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6365 INSN_UID (insn));
6366 remove_note (insn, note);
6368 remove_reachable_equiv_notes (bb, smexpr);
6372 /* Delete a store, but copy the value that would have been stored into
6373 the reaching_reg for later storing. */
6375 static void
6376 delete_store (struct ls_expr * expr, basic_block bb)
6378 rtx reg, i, del;
6380 if (expr->reaching_reg == NULL_RTX)
6381 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6383 reg = expr->reaching_reg;
6385 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6387 del = XEXP (i, 0);
6388 if (BLOCK_FOR_INSN (del) == bb)
6390 /* We know there is only one since we deleted redundant
6391 ones during the available computation. */
6392 replace_store_insn (reg, del, bb, expr);
6393 break;
6398 /* Free memory used by store motion. */
6400 static void
6401 free_store_memory (void)
6403 free_ldst_mems ();
6405 if (ae_gen)
6406 sbitmap_vector_free (ae_gen);
6407 if (ae_kill)
6408 sbitmap_vector_free (ae_kill);
6409 if (transp)
6410 sbitmap_vector_free (transp);
6411 if (st_antloc)
6412 sbitmap_vector_free (st_antloc);
6413 if (pre_insert_map)
6414 sbitmap_vector_free (pre_insert_map);
6415 if (pre_delete_map)
6416 sbitmap_vector_free (pre_delete_map);
6417 if (reg_set_in_block)
6418 sbitmap_vector_free (reg_set_in_block);
6420 ae_gen = ae_kill = transp = st_antloc = NULL;
6421 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6424 /* Perform store motion. Much like gcse, except we move expressions the
6425 other way by looking at the flowgraph in reverse. */
6427 static void
6428 store_motion (void)
6430 basic_block bb;
6431 int x;
6432 struct ls_expr * ptr;
6433 int update_flow = 0;
6435 if (gcse_file)
6437 fprintf (gcse_file, "before store motion\n");
6438 print_rtl (gcse_file, get_insns ());
6441 init_alias_analysis ();
6443 /* Find all the available and anticipatable stores. */
6444 num_stores = compute_store_table ();
6445 if (num_stores == 0)
6447 sbitmap_vector_free (reg_set_in_block);
6448 end_alias_analysis ();
6449 return;
6452 /* Now compute kill & transp vectors. */
6453 build_store_vectors ();
6454 add_noreturn_fake_exit_edges ();
6455 connect_infinite_loops_to_exit ();
6457 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6458 st_antloc, ae_kill, &pre_insert_map,
6459 &pre_delete_map);
6461 /* Now we want to insert the new stores which are going to be needed. */
6462 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6464 FOR_EACH_BB (bb)
6465 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6466 delete_store (ptr, bb);
6468 for (x = 0; x < NUM_EDGES (edge_list); x++)
6469 if (TEST_BIT (pre_insert_map[x], ptr->index))
6470 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6473 if (update_flow)
6474 commit_edge_insertions ();
6476 free_store_memory ();
6477 free_edge_list (edge_list);
6478 remove_fake_exit_edges ();
6479 end_alias_analysis ();
6483 /* Entry point for jump bypassing optimization pass. */
6486 bypass_jumps (FILE *file)
6488 int changed;
6490 /* We do not construct an accurate cfg in functions which call
6491 setjmp, so just punt to be safe. */
6492 if (current_function_calls_setjmp)
6493 return 0;
6495 /* For calling dump_foo fns from gdb. */
6496 debug_stderr = stderr;
6497 gcse_file = file;
6499 /* Identify the basic block information for this function, including
6500 successors and predecessors. */
6501 max_gcse_regno = max_reg_num ();
6503 if (file)
6504 dump_flow_info (file);
6506 /* Return if there's nothing to do, or it is too expensive. */
6507 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6508 return 0;
6510 gcc_obstack_init (&gcse_obstack);
6511 bytes_used = 0;
6513 /* We need alias. */
6514 init_alias_analysis ();
6516 /* Record where pseudo-registers are set. This data is kept accurate
6517 during each pass. ??? We could also record hard-reg information here
6518 [since it's unchanging], however it is currently done during hash table
6519 computation.
6521 It may be tempting to compute MEM set information here too, but MEM sets
6522 will be subject to code motion one day and thus we need to compute
6523 information about memory sets when we build the hash tables. */
6525 alloc_reg_set_mem (max_gcse_regno);
6526 compute_sets (get_insns ());
6528 max_gcse_regno = max_reg_num ();
6529 alloc_gcse_mem (get_insns ());
6530 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, 1, 1);
6531 free_gcse_mem ();
6533 if (file)
6535 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6536 current_function_name (), n_basic_blocks);
6537 fprintf (file, "%d bytes\n\n", bytes_used);
6540 obstack_free (&gcse_obstack, NULL);
6541 free_reg_set_mem ();
6543 /* We are finished with alias. */
6544 end_alias_analysis ();
6545 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6547 return changed;
6550 /* Return true if the graph is too expensive to optimize. PASS is the
6551 optimization about to be performed. */
6553 static bool
6554 is_too_expensive (const char *pass)
6556 /* Trying to perform global optimizations on flow graphs which have
6557 a high connectivity will take a long time and is unlikely to be
6558 particularly useful.
6560 In normal circumstances a cfg should have about twice as many
6561 edges as blocks. But we do not want to punish small functions
6562 which have a couple switch statements. Rather than simply
6563 threshold the number of blocks, uses something with a more
6564 graceful degradation. */
6565 if (n_edges > 20000 + n_basic_blocks * 4)
6567 if (warn_disabled_optimization)
6568 warning ("%s: %d basic blocks and %d edges/basic block",
6569 pass, n_basic_blocks, n_edges / n_basic_blocks);
6571 return true;
6574 /* If allocating memory for the cprop bitmap would take up too much
6575 storage it's better just to disable the optimization. */
6576 if ((n_basic_blocks
6577 * SBITMAP_SET_SIZE (max_reg_num ())
6578 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6580 if (warn_disabled_optimization)
6581 warning ("%s: %d basic blocks and %d registers",
6582 pass, n_basic_blocks, max_reg_num ());
6584 return true;
6587 return false;
6590 #include "gt-gcse.h"