debug7.adb: Skip on hppa*-*-hpux*.
[official-gcc.git] / gcc / combine.c
blob727299bdf501d8cf0a9d1d9d5ea1d0df677b89d9
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
310 /* Length of the currently allocated uid_insn_cost array. */
312 static int max_uid_known;
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
317 static int *uid_insn_cost;
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
328 static struct insn_link **uid_log_links;
330 static inline int
331 insn_uid_check (const_rtx insn)
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
344 /* Links for LOG_LINKS are allocated from this obstack. */
346 static struct obstack insn_link_obstack;
348 /* Allocate a link. */
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
362 /* Incremented for each basic block. */
364 static int label_tick;
366 /* Reset to label_tick for each extended basic block in scanning order. */
368 static int label_tick_ebb_start;
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
373 static machine_mode nonzero_bits_mode;
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
381 static int nonzero_sign_valid;
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
389 struct undo
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
403 struct undobuf
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
410 static struct undobuf undobuf;
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
415 static int n_occurrences;
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
537 rtx_insn *ret;
538 unsigned int nregs;
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
563 switch (code)
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
588 return find_single_use_1 (dest, &SET_SRC (x));
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
594 default:
595 break;
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 if (fmt[i] == 'e')
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
619 else if (fmt[i] == 'E')
621 int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
641 return result;
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
667 if (dest == cc0_rtx)
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
680 if (!REG_P (dest))
681 return 0;
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
693 if (link)
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
702 return 0;
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
711 static void
712 do_SUBST (rtx *into, rtx newval)
714 struct undo *buf;
715 rtx oldval = *into;
717 if (oldval == newval)
718 return;
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
755 buf->next = undobuf.undos, undobuf.undos = buf;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
764 static void
765 do_SUBST_INT (int *into, int newval)
767 struct undo *buf;
768 int oldval = *into;
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
799 if (oldval == newval)
800 return;
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
812 buf->next = undobuf.undos, undobuf.undos = buf;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 struct undo *buf;
823 struct insn_link * oldval = *into;
825 if (oldval == newval)
826 return;
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
838 buf->next = undobuf.undos, undobuf.undos = buf;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
863 if (i1)
865 i1_cost = INSN_COST (i1);
866 if (i0)
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 else
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
879 else
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
899 else
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
905 if (undobuf.other_insn)
907 int old_other_cost, new_other_cost;
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
916 else
917 old_cost = 0;
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
924 if (dump_file)
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
948 if (reject)
949 return false;
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
961 return true;
965 /* Delete any insns that copy a register to itself. */
967 static void
968 delete_noop_moves (void)
970 rtx_insn *insn, *next;
971 basic_block bb;
973 FOR_EACH_BB_FN (bb, cfun)
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
983 delete_insn_and_edges (insn);
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
998 unsigned int regno = DF_REF_REGNO (def);
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1010 return true;
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1021 return true;
1024 /* Fill in log links field for all insns. */
1026 static void
1027 create_log_links (void)
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1045 FOR_EACH_BB_FN (bb, cfun)
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1055 FOR_EACH_INSN_DEF (def, insn)
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1060 if (!next_use[regno])
1061 continue;
1063 if (!can_combine_def_p (def))
1064 continue;
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1072 /* flow.c claimed:
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1100 free (next_use);
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1136 int new_direct_jump_p = 0;
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1148 rtl_hooks = combine_rtl_hooks;
1150 reg_stat.safe_grow_cleared (nregs);
1152 init_recog_no_volatile ();
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1196 rtx links;
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 fprintf (dump_file, "insn_cost %d: %d\n",
1217 INSN_UID (insn), INSN_COST (insn));
1221 nonzero_sign_valid = 1;
1223 /* Now scan all the insns in forward order. */
1224 label_tick = label_tick_ebb_start = 1;
1225 init_reg_last ();
1226 setup_incoming_promotions (first);
1227 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1230 FOR_EACH_BB_FN (this_basic_block, cfun)
1232 rtx_insn *last_combined_insn = NULL;
1233 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234 last_call_luid = 0;
1235 mem_last_set = -1;
1237 label_tick++;
1238 if (!single_pred_p (this_basic_block)
1239 || single_pred (this_basic_block) != last_bb)
1240 label_tick_ebb_start = label_tick;
1241 last_bb = this_basic_block;
1243 rtl_profile_for_bb (this_basic_block);
1244 for (insn = BB_HEAD (this_basic_block);
1245 insn != NEXT_INSN (BB_END (this_basic_block));
1246 insn = next ? next : NEXT_INSN (insn))
1248 next = 0;
1249 if (!NONDEBUG_INSN_P (insn))
1250 continue;
1252 while (last_combined_insn
1253 && last_combined_insn->deleted ())
1254 last_combined_insn = PREV_INSN (last_combined_insn);
1255 if (last_combined_insn == NULL_RTX
1256 || BARRIER_P (last_combined_insn)
1257 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 last_combined_insn = insn;
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn, PATTERN (insn));
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1267 into SUBREGs. */
1268 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1270 /* Try this insn with each insn it links back to. */
1272 FOR_EACH_LOG_LINK (links, insn)
1273 if ((next = try_combine (insn, links->insn, NULL,
1274 NULL, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1277 statistics_counter_event (cfun, "two-insn combine", 1);
1278 goto retry;
1281 /* Try each sequence of three linked insns ending with this one. */
1283 if (max_combine >= 3)
1284 FOR_EACH_LOG_LINK (links, insn)
1286 rtx_insn *link = links->insn;
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1293 FOR_EACH_LOG_LINK (nextlinks, link)
1294 if ((next = try_combine (insn, link, nextlinks->insn,
1295 NULL, &new_direct_jump_p,
1296 last_combined_insn)) != 0)
1298 statistics_counter_event (cfun, "three-insn combine", 1);
1299 goto retry;
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1310 if (HAVE_cc0
1311 && JUMP_P (insn)
1312 && (prev = prev_nonnote_insn (insn)) != 0
1313 && NONJUMP_INSN_P (prev)
1314 && sets_cc0_p (PATTERN (prev)))
1316 if ((next = try_combine (insn, prev, NULL, NULL,
1317 &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1321 FOR_EACH_LOG_LINK (nextlinks, prev)
1322 if ((next = try_combine (insn, prev, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 goto retry;
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 && (prev = prev_nonnote_insn (insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && GET_CODE (PATTERN (insn)) == SET
1334 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1336 if ((next = try_combine (insn, prev, NULL, NULL,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1341 FOR_EACH_LOG_LINK (nextlinks, prev)
1342 if ((next = try_combine (insn, prev, nextlinks->insn,
1343 NULL, &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1351 if (HAVE_cc0)
1353 FOR_EACH_LOG_LINK (links, insn)
1354 if (NONJUMP_INSN_P (links->insn)
1355 && GET_CODE (PATTERN (links->insn)) == SET
1356 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 && (prev = prev_nonnote_insn (links->insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && (next = try_combine (insn, links->insn,
1361 prev, NULL, &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1366 /* Try combining an insn with two different insns whose results it
1367 uses. */
1368 if (max_combine >= 3)
1369 FOR_EACH_LOG_LINK (links, insn)
1370 for (nextlinks = links->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, links->insn,
1373 nextlinks->insn, NULL,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1378 statistics_counter_event (cfun, "three-insn combine", 1);
1379 goto retry;
1382 /* Try four-instruction combinations. */
1383 if (max_combine >= 4)
1384 FOR_EACH_LOG_LINK (links, insn)
1386 struct insn_link *next1;
1387 rtx_insn *link = links->insn;
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1391 if (NOTE_P (link))
1392 continue;
1394 FOR_EACH_LOG_LINK (next1, link)
1396 rtx_insn *link1 = next1->insn;
1397 if (NOTE_P (link1))
1398 continue;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks, link1)
1401 if ((next = try_combine (insn, link, link1,
1402 nextlinks->insn,
1403 &new_direct_jump_p,
1404 last_combined_insn)) != 0)
1406 statistics_counter_event (cfun, "four-insn combine", 1);
1407 goto retry;
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks = next1->next; nextlinks;
1411 nextlinks = nextlinks->next)
1412 if ((next = try_combine (insn, link, link1,
1413 nextlinks->insn,
1414 &new_direct_jump_p,
1415 last_combined_insn)) != 0)
1417 statistics_counter_event (cfun, "four-insn combine", 1);
1418 goto retry;
1422 for (next1 = links->next; next1; next1 = next1->next)
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks, link1)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links, insn)
1453 rtx set, note;
1454 rtx_insn *temp = links->insn;
1455 if ((set = single_set (temp)) != 0
1456 && (note = find_reg_equal_equiv_note (temp)) != 0
1457 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note, SET_SRC (set))
1461 && (GET_MODE (note) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 == GET_MODE (note))))))
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src = SET_SRC (set);
1472 rtx orig_dest = SET_DEST (set);
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 SET_SRC (set) = note;
1476 i2mod = temp;
1477 i2mod_old_rhs = copy_rtx (orig_src);
1478 i2mod_new_rhs = copy_rtx (note);
1479 next = try_combine (insn, i2mod, NULL, NULL,
1480 &new_direct_jump_p,
1481 last_combined_insn);
1482 i2mod = NULL;
1483 if (next)
1485 statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 goto retry;
1488 SET_SRC (set) = orig_src;
1489 SET_DEST (set) = orig_dest;
1493 if (!NOTE_P (insn))
1494 record_dead_and_set_regs (insn);
1496 retry:
1501 default_rtl_profile ();
1502 clear_bb_flags ();
1503 new_direct_jump_p |= purge_all_dead_edges ();
1504 delete_noop_moves ();
1506 /* Clean up. */
1507 obstack_free (&insn_link_obstack, NULL);
1508 free (uid_log_links);
1509 free (uid_insn_cost);
1510 reg_stat.release ();
1513 struct undo *undo, *next;
1514 for (undo = undobuf.frees; undo; undo = next)
1516 next = undo->next;
1517 free (undo);
1519 undobuf.frees = 0;
1522 total_attempts += combine_attempts;
1523 total_merges += combine_merges;
1524 total_extras += combine_extras;
1525 total_successes += combine_successes;
1527 nonzero_sign_valid = 0;
1528 rtl_hooks = general_rtl_hooks;
1530 /* Make recognizer allow volatile MEMs again. */
1531 init_recog ();
1533 return new_direct_jump_p;
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1538 static void
1539 init_reg_last (void)
1541 unsigned int i;
1542 reg_stat_type *p;
1544 FOR_EACH_VEC_ELT (reg_stat, i, p)
1545 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1548 /* Set up any promoted values for incoming argument registers. */
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1553 tree arg;
1554 bool strictly_local = false;
1556 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557 arg = DECL_CHAIN (arg))
1559 rtx x, reg = DECL_INCOMING_RTL (arg);
1560 int uns1, uns3;
1561 machine_mode mode1, mode2, mode3, mode4;
1563 /* Only continue if the incoming argument is in a register. */
1564 if (!REG_P (reg))
1565 continue;
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1 = TYPE_MODE (TREE_TYPE (arg));
1576 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 TREE_TYPE (cfun->decl), 0);
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4 = GET_MODE (reg);
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1593 if (mode1 == mode3)
1594 continue;
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1597 if (mode3 != mode4)
1598 continue;
1599 /* (c) There's no language level extension; */
1600 if (mode1 == mode2)
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local)
1607 continue;
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1612 else if (uns1)
1613 uns3 = true;
1614 else if (uns3)
1615 continue;
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622 record_value_for_reg (reg, first, x);
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632 kludge. */
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1637 if (GET_MODE_PRECISION (mode) < prec
1638 && CONST_INT_P (src)
1639 && INTVAL (src) > 0
1640 && val_signbit_known_set_p (mode, INTVAL (src)))
1641 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1643 return src;
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647 and SET. */
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 rtx x)
1653 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654 unsigned HOST_WIDE_INT bits = 0;
1655 rtx reg_equal = NULL, src = SET_SRC (set);
1656 unsigned int num = 0;
1658 if (reg_equal_note)
1659 reg_equal = XEXP (reg_equal_note, 0);
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1663 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664 if (reg_equal)
1665 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1671 bits = nonzero_bits (src, nonzero_bits_mode);
1672 if (reg_equal && bits)
1673 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674 rsp->nonzero_bits |= bits;
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp->sign_bit_copies != 1)
1680 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1683 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 if (num == 0 || numeq > num)
1685 num = numeq;
1687 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 rsp->sign_bit_copies = num;
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1697 be happening.
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1701 by any set of X. */
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1706 rtx_insn *insn = (rtx_insn *) data;
1708 if (REG_P (x)
1709 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1716 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1718 if (set == 0 || GET_CODE (set) == CLOBBER)
1720 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 rsp->sign_bit_copies = 1;
1722 return;
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1738 if (insn
1739 && reg_referenced_p (x, PATTERN (insn))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 REGNO (x)))
1743 struct insn_link *link;
1745 FOR_EACH_LOG_LINK (link, insn)
1746 if (dead_or_set_p (link->insn, x))
1747 break;
1748 if (!link)
1750 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 rsp->sign_bit_copies = 1;
1752 return;
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set = expand_field_assignment (set);
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1763 if (SET_DEST (set) == x
1764 || (paradoxical_subreg_p (SET_DEST (set))
1765 && SUBREG_REG (SET_DEST (set)) == x))
1766 update_rsp_from_reg_equal (rsp, insn, set, x);
1767 else
1769 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 rsp->sign_bit_copies = 1;
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1780 Return 0 if the combination is not allowed for any reason.
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1784 will return 1. */
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 rtx *pdest, rtx *psrc)
1791 int i;
1792 const_rtx set = 0;
1793 rtx src, dest;
1794 rtx_insn *p;
1795 rtx link;
1796 bool all_adjacent = true;
1797 int (*is_volatile_p) (const_rtx);
1799 if (succ)
1801 if (succ2)
1803 if (next_active_insn (succ2) != i3)
1804 all_adjacent = false;
1805 if (next_active_insn (succ) != succ2)
1806 all_adjacent = false;
1808 else if (next_active_insn (succ) != i3)
1809 all_adjacent = false;
1810 if (next_active_insn (insn) != succ)
1811 all_adjacent = false;
1813 else if (next_active_insn (insn) != i3)
1814 all_adjacent = false;
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826 note.
1828 Get the source and destination of INSN. If more than one, can't
1829 combine. */
1831 if (GET_CODE (PATTERN (insn)) == SET)
1832 set = PATTERN (insn);
1833 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1836 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1838 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1840 switch (GET_CODE (elt))
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1844 case USE:
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1850 I3 and INSN.
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt, 0))
1859 && GET_CODE (PATTERN (i3)) == PARALLEL)
1861 rtx i3pat = PATTERN (i3);
1862 int i = XVECLEN (i3pat, 0) - 1;
1863 unsigned int regno = REGNO (XEXP (elt, 0));
1867 rtx i3elt = XVECEXP (i3pat, 0, i);
1869 if (GET_CODE (i3elt) == USE
1870 && REG_P (XEXP (i3elt, 0))
1871 && (REGNO (XEXP (i3elt, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt, 0),
1873 PREV_INSN (insn), i3)
1874 : regno >= FIRST_PSEUDO_REGISTER))
1875 return 0;
1877 while (--i >= 0);
1879 break;
1881 /* We can ignore CLOBBERs. */
1882 case CLOBBER:
1883 break;
1885 case SET:
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 && insn_nothrow_p (insn)
1890 && !side_effects_p (elt))
1891 break;
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1895 if (set)
1896 return 0;
1898 set = elt;
1899 break;
1901 default:
1902 /* Anything else means we can't combine. */
1903 return 0;
1907 if (set == 0
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 return 0;
1913 else
1914 return 0;
1916 if (set == 0)
1917 return 0;
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid = DF_INSN_LUID (insn);
1923 set = expand_field_assignment (set);
1924 src = SET_SRC (set), dest = SET_DEST (set);
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932 && extract_asm_operands (PATTERN (i3)))
1933 return 0;
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest == stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src) == CALL
1944 /* Don't eliminate a function call argument. */
1945 || (CALL_P (i3)
1946 && (find_reg_fusage (i3, USE, dest)
1947 || (REG_P (dest)
1948 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 && global_regs[REGNO (dest)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3, dest)
1952 || (succ && FIND_REG_INC_NOTE (succ, dest))
1953 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956 /* Make sure that DEST is not used after SUCC but before I3. */
1957 || (!all_adjacent
1958 && ((succ2
1959 && (reg_used_between_p (dest, succ2, i3)
1960 || reg_used_between_p (dest, succ, succ2)))
1961 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1962 /* Make sure that the value that is to be substituted for the register
1963 does not use any registers whose values alter in between. However,
1964 If the insns are adjacent, a use can't cross a set even though we
1965 think it might (this can happen for a sequence of insns each setting
1966 the same destination; last_set of that register might point to
1967 a NOTE). If INSN has a REG_EQUIV note, the register is always
1968 equivalent to the memory so the substitution is valid even if there
1969 are intervening stores. Also, don't move a volatile asm or
1970 UNSPEC_VOLATILE across any other insns. */
1971 || (! all_adjacent
1972 && (((!MEM_P (src)
1973 || ! find_reg_note (insn, REG_EQUIV, src))
1974 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1975 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1976 || GET_CODE (src) == UNSPEC_VOLATILE))
1977 /* Don't combine across a CALL_INSN, because that would possibly
1978 change whether the life span of some REGs crosses calls or not,
1979 and it is a pain to update that information.
1980 Exception: if source is a constant, moving it later can't hurt.
1981 Accept that as a special case. */
1982 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1983 return 0;
1985 /* DEST must either be a REG or CC0. */
1986 if (REG_P (dest))
1988 /* If register alignment is being enforced for multi-word items in all
1989 cases except for parameters, it is possible to have a register copy
1990 insn referencing a hard register that is not allowed to contain the
1991 mode being copied and which would not be valid as an operand of most
1992 insns. Eliminate this problem by not combining with such an insn.
1994 Also, on some machines we don't want to extend the life of a hard
1995 register. */
1997 if (REG_P (src)
1998 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2000 /* Don't extend the life of a hard register unless it is
2001 user variable (if we have few registers) or it can't
2002 fit into the desired register (meaning something special
2003 is going on).
2004 Also avoid substituting a return register into I3, because
2005 reload can't handle a conflict with constraints of other
2006 inputs. */
2007 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2009 return 0;
2011 else if (GET_CODE (dest) != CC0)
2012 return 0;
2015 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2016 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2017 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2019 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2021 /* If the clobber represents an earlyclobber operand, we must not
2022 substitute an expression containing the clobbered register.
2023 As we do not analyze the constraint strings here, we have to
2024 make the conservative assumption. However, if the register is
2025 a fixed hard reg, the clobber cannot represent any operand;
2026 we leave it up to the machine description to either accept or
2027 reject use-and-clobber patterns. */
2028 if (!REG_P (reg)
2029 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2030 || !fixed_regs[REGNO (reg)])
2031 if (reg_overlap_mentioned_p (reg, src))
2032 return 0;
2035 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2036 or not), reject, unless nothing volatile comes between it and I3 */
2038 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2040 /* Make sure neither succ nor succ2 contains a volatile reference. */
2041 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2042 return 0;
2043 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2044 return 0;
2045 /* We'll check insns between INSN and I3 below. */
2048 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2049 to be an explicit register variable, and was chosen for a reason. */
2051 if (GET_CODE (src) == ASM_OPERANDS
2052 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2053 return 0;
2055 /* If INSN contains volatile references (specifically volatile MEMs),
2056 we cannot combine across any other volatile references.
2057 Even if INSN doesn't contain volatile references, any intervening
2058 volatile insn might affect machine state. */
2060 is_volatile_p = volatile_refs_p (PATTERN (insn))
2061 ? volatile_refs_p
2062 : volatile_insn_p;
2064 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2065 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2066 return 0;
2068 /* If INSN contains an autoincrement or autodecrement, make sure that
2069 register is not used between there and I3, and not already used in
2070 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2071 Also insist that I3 not be a jump; if it were one
2072 and the incremented register were spilled, we would lose. */
2074 if (AUTO_INC_DEC)
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == REG_INC
2077 && (JUMP_P (i3)
2078 || reg_used_between_p (XEXP (link, 0), insn, i3)
2079 || (pred != NULL_RTX
2080 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2081 || (pred2 != NULL_RTX
2082 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2083 || (succ != NULL_RTX
2084 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2085 || (succ2 != NULL_RTX
2086 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2087 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2088 return 0;
2090 /* Don't combine an insn that follows a CC0-setting insn.
2091 An insn that uses CC0 must not be separated from the one that sets it.
2092 We do, however, allow I2 to follow a CC0-setting insn if that insn
2093 is passed as I1; in that case it will be deleted also.
2094 We also allow combining in this case if all the insns are adjacent
2095 because that would leave the two CC0 insns adjacent as well.
2096 It would be more logical to test whether CC0 occurs inside I1 or I2,
2097 but that would be much slower, and this ought to be equivalent. */
2099 if (HAVE_cc0)
2101 p = prev_nonnote_insn (insn);
2102 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2103 && ! all_adjacent)
2104 return 0;
2107 /* If we get here, we have passed all the tests and the combination is
2108 to be allowed. */
2110 *pdest = dest;
2111 *psrc = src;
2113 return 1;
2116 /* LOC is the location within I3 that contains its pattern or the component
2117 of a PARALLEL of the pattern. We validate that it is valid for combining.
2119 One problem is if I3 modifies its output, as opposed to replacing it
2120 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2121 doing so would produce an insn that is not equivalent to the original insns.
2123 Consider:
2125 (set (reg:DI 101) (reg:DI 100))
2126 (set (subreg:SI (reg:DI 101) 0) <foo>)
2128 This is NOT equivalent to:
2130 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2131 (set (reg:DI 101) (reg:DI 100))])
2133 Not only does this modify 100 (in which case it might still be valid
2134 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2136 We can also run into a problem if I2 sets a register that I1
2137 uses and I1 gets directly substituted into I3 (not via I2). In that
2138 case, we would be getting the wrong value of I2DEST into I3, so we
2139 must reject the combination. This case occurs when I2 and I1 both
2140 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2141 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2142 of a SET must prevent combination from occurring. The same situation
2143 can occur for I0, in which case I0_NOT_IN_SRC is set.
2145 Before doing the above check, we first try to expand a field assignment
2146 into a set of logical operations.
2148 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2149 we place a register that is both set and used within I3. If more than one
2150 such register is detected, we fail.
2152 Return 1 if the combination is valid, zero otherwise. */
2154 static int
2155 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2156 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2158 rtx x = *loc;
2160 if (GET_CODE (x) == SET)
2162 rtx set = x ;
2163 rtx dest = SET_DEST (set);
2164 rtx src = SET_SRC (set);
2165 rtx inner_dest = dest;
2166 rtx subdest;
2168 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2169 || GET_CODE (inner_dest) == SUBREG
2170 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2171 inner_dest = XEXP (inner_dest, 0);
2173 /* Check for the case where I3 modifies its output, as discussed
2174 above. We don't want to prevent pseudos from being combined
2175 into the address of a MEM, so only prevent the combination if
2176 i1 or i2 set the same MEM. */
2177 if ((inner_dest != dest &&
2178 (!MEM_P (inner_dest)
2179 || rtx_equal_p (i2dest, inner_dest)
2180 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2181 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2182 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2183 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2184 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2186 /* This is the same test done in can_combine_p except we can't test
2187 all_adjacent; we don't have to, since this instruction will stay
2188 in place, thus we are not considering increasing the lifetime of
2189 INNER_DEST.
2191 Also, if this insn sets a function argument, combining it with
2192 something that might need a spill could clobber a previous
2193 function argument; the all_adjacent test in can_combine_p also
2194 checks this; here, we do a more specific test for this case. */
2196 || (REG_P (inner_dest)
2197 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2198 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2199 GET_MODE (inner_dest))))
2200 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2201 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2202 return 0;
2204 /* If DEST is used in I3, it is being killed in this insn, so
2205 record that for later. We have to consider paradoxical
2206 subregs here, since they kill the whole register, but we
2207 ignore partial subregs, STRICT_LOW_PART, etc.
2208 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2209 STACK_POINTER_REGNUM, since these are always considered to be
2210 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2211 subdest = dest;
2212 if (GET_CODE (subdest) == SUBREG
2213 && (GET_MODE_SIZE (GET_MODE (subdest))
2214 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2215 subdest = SUBREG_REG (subdest);
2216 if (pi3dest_killed
2217 && REG_P (subdest)
2218 && reg_referenced_p (subdest, PATTERN (i3))
2219 && REGNO (subdest) != FRAME_POINTER_REGNUM
2220 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2221 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2222 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2223 || (REGNO (subdest) != ARG_POINTER_REGNUM
2224 || ! fixed_regs [REGNO (subdest)]))
2225 && REGNO (subdest) != STACK_POINTER_REGNUM)
2227 if (*pi3dest_killed)
2228 return 0;
2230 *pi3dest_killed = subdest;
2234 else if (GET_CODE (x) == PARALLEL)
2236 int i;
2238 for (i = 0; i < XVECLEN (x, 0); i++)
2239 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2240 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2241 return 0;
2244 return 1;
2247 /* Return 1 if X is an arithmetic expression that contains a multiplication
2248 and division. We don't count multiplications by powers of two here. */
2250 static int
2251 contains_muldiv (rtx x)
2253 switch (GET_CODE (x))
2255 case MOD: case DIV: case UMOD: case UDIV:
2256 return 1;
2258 case MULT:
2259 return ! (CONST_INT_P (XEXP (x, 1))
2260 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2261 default:
2262 if (BINARY_P (x))
2263 return contains_muldiv (XEXP (x, 0))
2264 || contains_muldiv (XEXP (x, 1));
2266 if (UNARY_P (x))
2267 return contains_muldiv (XEXP (x, 0));
2269 return 0;
2273 /* Determine whether INSN can be used in a combination. Return nonzero if
2274 not. This is used in try_combine to detect early some cases where we
2275 can't perform combinations. */
2277 static int
2278 cant_combine_insn_p (rtx_insn *insn)
2280 rtx set;
2281 rtx src, dest;
2283 /* If this isn't really an insn, we can't do anything.
2284 This can occur when flow deletes an insn that it has merged into an
2285 auto-increment address. */
2286 if (!NONDEBUG_INSN_P (insn))
2287 return 1;
2289 /* Never combine loads and stores involving hard regs that are likely
2290 to be spilled. The register allocator can usually handle such
2291 reg-reg moves by tying. If we allow the combiner to make
2292 substitutions of likely-spilled regs, reload might die.
2293 As an exception, we allow combinations involving fixed regs; these are
2294 not available to the register allocator so there's no risk involved. */
2296 set = single_set (insn);
2297 if (! set)
2298 return 0;
2299 src = SET_SRC (set);
2300 dest = SET_DEST (set);
2301 if (GET_CODE (src) == SUBREG)
2302 src = SUBREG_REG (src);
2303 if (GET_CODE (dest) == SUBREG)
2304 dest = SUBREG_REG (dest);
2305 if (REG_P (src) && REG_P (dest)
2306 && ((HARD_REGISTER_P (src)
2307 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2308 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2309 || (HARD_REGISTER_P (dest)
2310 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2311 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2312 return 1;
2314 return 0;
2317 struct likely_spilled_retval_info
2319 unsigned regno, nregs;
2320 unsigned mask;
2323 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2324 hard registers that are known to be written to / clobbered in full. */
2325 static void
2326 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2328 struct likely_spilled_retval_info *const info =
2329 (struct likely_spilled_retval_info *) data;
2330 unsigned regno, nregs;
2331 unsigned new_mask;
2333 if (!REG_P (XEXP (set, 0)))
2334 return;
2335 regno = REGNO (x);
2336 if (regno >= info->regno + info->nregs)
2337 return;
2338 nregs = REG_NREGS (x);
2339 if (regno + nregs <= info->regno)
2340 return;
2341 new_mask = (2U << (nregs - 1)) - 1;
2342 if (regno < info->regno)
2343 new_mask >>= info->regno - regno;
2344 else
2345 new_mask <<= regno - info->regno;
2346 info->mask &= ~new_mask;
2349 /* Return nonzero iff part of the return value is live during INSN, and
2350 it is likely spilled. This can happen when more than one insn is needed
2351 to copy the return value, e.g. when we consider to combine into the
2352 second copy insn for a complex value. */
2354 static int
2355 likely_spilled_retval_p (rtx_insn *insn)
2357 rtx_insn *use = BB_END (this_basic_block);
2358 rtx reg;
2359 rtx_insn *p;
2360 unsigned regno, nregs;
2361 /* We assume here that no machine mode needs more than
2362 32 hard registers when the value overlaps with a register
2363 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2364 unsigned mask;
2365 struct likely_spilled_retval_info info;
2367 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2368 return 0;
2369 reg = XEXP (PATTERN (use), 0);
2370 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2371 return 0;
2372 regno = REGNO (reg);
2373 nregs = REG_NREGS (reg);
2374 if (nregs == 1)
2375 return 0;
2376 mask = (2U << (nregs - 1)) - 1;
2378 /* Disregard parts of the return value that are set later. */
2379 info.regno = regno;
2380 info.nregs = nregs;
2381 info.mask = mask;
2382 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2383 if (INSN_P (p))
2384 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2385 mask = info.mask;
2387 /* Check if any of the (probably) live return value registers is
2388 likely spilled. */
2389 nregs --;
2392 if ((mask & 1 << nregs)
2393 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2394 return 1;
2395 } while (nregs--);
2396 return 0;
2399 /* Adjust INSN after we made a change to its destination.
2401 Changing the destination can invalidate notes that say something about
2402 the results of the insn and a LOG_LINK pointing to the insn. */
2404 static void
2405 adjust_for_new_dest (rtx_insn *insn)
2407 /* For notes, be conservative and simply remove them. */
2408 remove_reg_equal_equiv_notes (insn);
2410 /* The new insn will have a destination that was previously the destination
2411 of an insn just above it. Call distribute_links to make a LOG_LINK from
2412 the next use of that destination. */
2414 rtx set = single_set (insn);
2415 gcc_assert (set);
2417 rtx reg = SET_DEST (set);
2419 while (GET_CODE (reg) == ZERO_EXTRACT
2420 || GET_CODE (reg) == STRICT_LOW_PART
2421 || GET_CODE (reg) == SUBREG)
2422 reg = XEXP (reg, 0);
2423 gcc_assert (REG_P (reg));
2425 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2427 df_insn_rescan (insn);
2430 /* Return TRUE if combine can reuse reg X in mode MODE.
2431 ADDED_SETS is nonzero if the original set is still required. */
2432 static bool
2433 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2435 unsigned int regno;
2437 if (!REG_P (x))
2438 return false;
2440 regno = REGNO (x);
2441 /* Allow hard registers if the new mode is legal, and occupies no more
2442 registers than the old mode. */
2443 if (regno < FIRST_PSEUDO_REGISTER)
2444 return (HARD_REGNO_MODE_OK (regno, mode)
2445 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2447 /* Or a pseudo that is only used once. */
2448 return (regno < reg_n_sets_max
2449 && REG_N_SETS (regno) == 1
2450 && !added_sets
2451 && !REG_USERVAR_P (x));
2455 /* Check whether X, the destination of a set, refers to part of
2456 the register specified by REG. */
2458 static bool
2459 reg_subword_p (rtx x, rtx reg)
2461 /* Check that reg is an integer mode register. */
2462 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2463 return false;
2465 if (GET_CODE (x) == STRICT_LOW_PART
2466 || GET_CODE (x) == ZERO_EXTRACT)
2467 x = XEXP (x, 0);
2469 return GET_CODE (x) == SUBREG
2470 && SUBREG_REG (x) == reg
2471 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2474 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2475 Note that the INSN should be deleted *after* removing dead edges, so
2476 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2477 but not for a (set (pc) (label_ref FOO)). */
2479 static void
2480 update_cfg_for_uncondjump (rtx_insn *insn)
2482 basic_block bb = BLOCK_FOR_INSN (insn);
2483 gcc_assert (BB_END (bb) == insn);
2485 purge_dead_edges (bb);
2487 delete_insn (insn);
2488 if (EDGE_COUNT (bb->succs) == 1)
2490 rtx_insn *insn;
2492 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2494 /* Remove barriers from the footer if there are any. */
2495 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2496 if (BARRIER_P (insn))
2498 if (PREV_INSN (insn))
2499 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2500 else
2501 BB_FOOTER (bb) = NEXT_INSN (insn);
2502 if (NEXT_INSN (insn))
2503 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2505 else if (LABEL_P (insn))
2506 break;
2510 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2511 by an arbitrary number of CLOBBERs. */
2512 static bool
2513 is_parallel_of_n_reg_sets (rtx pat, int n)
2515 if (GET_CODE (pat) != PARALLEL)
2516 return false;
2518 int len = XVECLEN (pat, 0);
2519 if (len < n)
2520 return false;
2522 int i;
2523 for (i = 0; i < n; i++)
2524 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2525 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2526 return false;
2527 for ( ; i < len; i++)
2528 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2529 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2530 return false;
2532 return true;
2535 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2536 CLOBBERs), can be split into individual SETs in that order, without
2537 changing semantics. */
2538 static bool
2539 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2541 if (!insn_nothrow_p (insn))
2542 return false;
2544 rtx pat = PATTERN (insn);
2546 int i, j;
2547 for (i = 0; i < n; i++)
2549 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2550 return false;
2552 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2554 for (j = i + 1; j < n; j++)
2555 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2556 return false;
2559 return true;
2562 /* Try to combine the insns I0, I1 and I2 into I3.
2563 Here I0, I1 and I2 appear earlier than I3.
2564 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2567 If we are combining more than two insns and the resulting insn is not
2568 recognized, try splitting it into two insns. If that happens, I2 and I3
2569 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2570 Otherwise, I0, I1 and I2 are pseudo-deleted.
2572 Return 0 if the combination does not work. Then nothing is changed.
2573 If we did the combination, return the insn at which combine should
2574 resume scanning.
2576 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2577 new direct jump instruction.
2579 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2580 been I3 passed to an earlier try_combine within the same basic
2581 block. */
2583 static rtx_insn *
2584 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2585 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2587 /* New patterns for I3 and I2, respectively. */
2588 rtx newpat, newi2pat = 0;
2589 rtvec newpat_vec_with_clobbers = 0;
2590 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2591 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2592 dead. */
2593 int added_sets_0, added_sets_1, added_sets_2;
2594 /* Total number of SETs to put into I3. */
2595 int total_sets;
2596 /* Nonzero if I2's or I1's body now appears in I3. */
2597 int i2_is_used = 0, i1_is_used = 0;
2598 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2599 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2600 /* Contains I3 if the destination of I3 is used in its source, which means
2601 that the old life of I3 is being killed. If that usage is placed into
2602 I2 and not in I3, a REG_DEAD note must be made. */
2603 rtx i3dest_killed = 0;
2604 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2605 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2606 /* Copy of SET_SRC of I1 and I0, if needed. */
2607 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2608 /* Set if I2DEST was reused as a scratch register. */
2609 bool i2scratch = false;
2610 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2611 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2612 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2613 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2614 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2615 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2616 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2617 /* Notes that must be added to REG_NOTES in I3 and I2. */
2618 rtx new_i3_notes, new_i2_notes;
2619 /* Notes that we substituted I3 into I2 instead of the normal case. */
2620 int i3_subst_into_i2 = 0;
2621 /* Notes that I1, I2 or I3 is a MULT operation. */
2622 int have_mult = 0;
2623 int swap_i2i3 = 0;
2624 int changed_i3_dest = 0;
2626 int maxreg;
2627 rtx_insn *temp_insn;
2628 rtx temp_expr;
2629 struct insn_link *link;
2630 rtx other_pat = 0;
2631 rtx new_other_notes;
2632 int i;
2634 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2635 never be). */
2636 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2637 return 0;
2639 /* Only try four-insn combinations when there's high likelihood of
2640 success. Look for simple insns, such as loads of constants or
2641 binary operations involving a constant. */
2642 if (i0)
2644 int i;
2645 int ngood = 0;
2646 int nshift = 0;
2647 rtx set0, set3;
2649 if (!flag_expensive_optimizations)
2650 return 0;
2652 for (i = 0; i < 4; i++)
2654 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2655 rtx set = single_set (insn);
2656 rtx src;
2657 if (!set)
2658 continue;
2659 src = SET_SRC (set);
2660 if (CONSTANT_P (src))
2662 ngood += 2;
2663 break;
2665 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2666 ngood++;
2667 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2668 || GET_CODE (src) == LSHIFTRT)
2669 nshift++;
2672 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2673 are likely manipulating its value. Ideally we'll be able to combine
2674 all four insns into a bitfield insertion of some kind.
2676 Note the source in I0 might be inside a sign/zero extension and the
2677 memory modes in I0 and I3 might be different. So extract the address
2678 from the destination of I3 and search for it in the source of I0.
2680 In the event that there's a match but the source/dest do not actually
2681 refer to the same memory, the worst that happens is we try some
2682 combinations that we wouldn't have otherwise. */
2683 if ((set0 = single_set (i0))
2684 /* Ensure the source of SET0 is a MEM, possibly buried inside
2685 an extension. */
2686 && (GET_CODE (SET_SRC (set0)) == MEM
2687 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2688 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2689 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2690 && (set3 = single_set (i3))
2691 /* Ensure the destination of SET3 is a MEM. */
2692 && GET_CODE (SET_DEST (set3)) == MEM
2693 /* Would it be better to extract the base address for the MEM
2694 in SET3 and look for that? I don't have cases where it matters
2695 but I could envision such cases. */
2696 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2697 ngood += 2;
2699 if (ngood < 2 && nshift < 2)
2700 return 0;
2703 /* Exit early if one of the insns involved can't be used for
2704 combinations. */
2705 if (CALL_P (i2)
2706 || (i1 && CALL_P (i1))
2707 || (i0 && CALL_P (i0))
2708 || cant_combine_insn_p (i3)
2709 || cant_combine_insn_p (i2)
2710 || (i1 && cant_combine_insn_p (i1))
2711 || (i0 && cant_combine_insn_p (i0))
2712 || likely_spilled_retval_p (i3))
2713 return 0;
2715 combine_attempts++;
2716 undobuf.other_insn = 0;
2718 /* Reset the hard register usage information. */
2719 CLEAR_HARD_REG_SET (newpat_used_regs);
2721 if (dump_file && (dump_flags & TDF_DETAILS))
2723 if (i0)
2724 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2725 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2726 else if (i1)
2727 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2728 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2729 else
2730 fprintf (dump_file, "\nTrying %d -> %d:\n",
2731 INSN_UID (i2), INSN_UID (i3));
2734 /* If multiple insns feed into one of I2 or I3, they can be in any
2735 order. To simplify the code below, reorder them in sequence. */
2736 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2737 std::swap (i0, i2);
2738 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2739 std::swap (i0, i1);
2740 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2741 std::swap (i1, i2);
2743 added_links_insn = 0;
2745 /* First check for one important special case that the code below will
2746 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2747 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2748 we may be able to replace that destination with the destination of I3.
2749 This occurs in the common code where we compute both a quotient and
2750 remainder into a structure, in which case we want to do the computation
2751 directly into the structure to avoid register-register copies.
2753 Note that this case handles both multiple sets in I2 and also cases
2754 where I2 has a number of CLOBBERs inside the PARALLEL.
2756 We make very conservative checks below and only try to handle the
2757 most common cases of this. For example, we only handle the case
2758 where I2 and I3 are adjacent to avoid making difficult register
2759 usage tests. */
2761 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2762 && REG_P (SET_SRC (PATTERN (i3)))
2763 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2764 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2765 && GET_CODE (PATTERN (i2)) == PARALLEL
2766 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2767 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2768 below would need to check what is inside (and reg_overlap_mentioned_p
2769 doesn't support those codes anyway). Don't allow those destinations;
2770 the resulting insn isn't likely to be recognized anyway. */
2771 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2772 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2773 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2774 SET_DEST (PATTERN (i3)))
2775 && next_active_insn (i2) == i3)
2777 rtx p2 = PATTERN (i2);
2779 /* Make sure that the destination of I3,
2780 which we are going to substitute into one output of I2,
2781 is not used within another output of I2. We must avoid making this:
2782 (parallel [(set (mem (reg 69)) ...)
2783 (set (reg 69) ...)])
2784 which is not well-defined as to order of actions.
2785 (Besides, reload can't handle output reloads for this.)
2787 The problem can also happen if the dest of I3 is a memory ref,
2788 if another dest in I2 is an indirect memory ref.
2790 Neither can this PARALLEL be an asm. We do not allow combining
2791 that usually (see can_combine_p), so do not here either. */
2792 bool ok = true;
2793 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2795 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2796 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2797 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2798 SET_DEST (XVECEXP (p2, 0, i))))
2799 ok = false;
2800 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2801 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2802 ok = false;
2805 if (ok)
2806 for (i = 0; i < XVECLEN (p2, 0); i++)
2807 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2808 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2810 combine_merges++;
2812 subst_insn = i3;
2813 subst_low_luid = DF_INSN_LUID (i2);
2815 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2816 i2src = SET_SRC (XVECEXP (p2, 0, i));
2817 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2818 i2dest_killed = dead_or_set_p (i2, i2dest);
2820 /* Replace the dest in I2 with our dest and make the resulting
2821 insn the new pattern for I3. Then skip to where we validate
2822 the pattern. Everything was set up above. */
2823 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2824 newpat = p2;
2825 i3_subst_into_i2 = 1;
2826 goto validate_replacement;
2830 /* If I2 is setting a pseudo to a constant and I3 is setting some
2831 sub-part of it to another constant, merge them by making a new
2832 constant. */
2833 if (i1 == 0
2834 && (temp_expr = single_set (i2)) != 0
2835 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2836 && GET_CODE (PATTERN (i3)) == SET
2837 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2838 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2840 rtx dest = SET_DEST (PATTERN (i3));
2841 int offset = -1;
2842 int width = 0;
2844 if (GET_CODE (dest) == ZERO_EXTRACT)
2846 if (CONST_INT_P (XEXP (dest, 1))
2847 && CONST_INT_P (XEXP (dest, 2)))
2849 width = INTVAL (XEXP (dest, 1));
2850 offset = INTVAL (XEXP (dest, 2));
2851 dest = XEXP (dest, 0);
2852 if (BITS_BIG_ENDIAN)
2853 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2856 else
2858 if (GET_CODE (dest) == STRICT_LOW_PART)
2859 dest = XEXP (dest, 0);
2860 width = GET_MODE_PRECISION (GET_MODE (dest));
2861 offset = 0;
2864 if (offset >= 0)
2866 /* If this is the low part, we're done. */
2867 if (subreg_lowpart_p (dest))
2869 /* Handle the case where inner is twice the size of outer. */
2870 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2871 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2872 offset += GET_MODE_PRECISION (GET_MODE (dest));
2873 /* Otherwise give up for now. */
2874 else
2875 offset = -1;
2878 if (offset >= 0)
2880 rtx inner = SET_SRC (PATTERN (i3));
2881 rtx outer = SET_SRC (temp_expr);
2883 wide_int o
2884 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2885 rtx_mode_t (inner, GET_MODE (dest)),
2886 offset, width);
2888 combine_merges++;
2889 subst_insn = i3;
2890 subst_low_luid = DF_INSN_LUID (i2);
2891 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2892 i2dest = SET_DEST (temp_expr);
2893 i2dest_killed = dead_or_set_p (i2, i2dest);
2895 /* Replace the source in I2 with the new constant and make the
2896 resulting insn the new pattern for I3. Then skip to where we
2897 validate the pattern. Everything was set up above. */
2898 SUBST (SET_SRC (temp_expr),
2899 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2901 newpat = PATTERN (i2);
2903 /* The dest of I3 has been replaced with the dest of I2. */
2904 changed_i3_dest = 1;
2905 goto validate_replacement;
2909 /* If we have no I1 and I2 looks like:
2910 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2911 (set Y OP)])
2912 make up a dummy I1 that is
2913 (set Y OP)
2914 and change I2 to be
2915 (set (reg:CC X) (compare:CC Y (const_int 0)))
2917 (We can ignore any trailing CLOBBERs.)
2919 This undoes a previous combination and allows us to match a branch-and-
2920 decrement insn. */
2922 if (!HAVE_cc0 && i1 == 0
2923 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2924 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2925 == MODE_CC)
2926 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2927 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2928 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2929 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2930 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2931 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2933 /* We make I1 with the same INSN_UID as I2. This gives it
2934 the same DF_INSN_LUID for value tracking. Our fake I1 will
2935 never appear in the insn stream so giving it the same INSN_UID
2936 as I2 will not cause a problem. */
2938 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2939 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2940 -1, NULL_RTX);
2941 INSN_UID (i1) = INSN_UID (i2);
2943 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2944 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2945 SET_DEST (PATTERN (i1)));
2946 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2947 SUBST_LINK (LOG_LINKS (i2),
2948 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2951 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2952 make those two SETs separate I1 and I2 insns, and make an I0 that is
2953 the original I1. */
2954 if (!HAVE_cc0 && i0 == 0
2955 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2956 && can_split_parallel_of_n_reg_sets (i2, 2)
2957 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2958 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2960 /* If there is no I1, there is no I0 either. */
2961 i0 = i1;
2963 /* We make I1 with the same INSN_UID as I2. This gives it
2964 the same DF_INSN_LUID for value tracking. Our fake I1 will
2965 never appear in the insn stream so giving it the same INSN_UID
2966 as I2 will not cause a problem. */
2968 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2969 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2970 -1, NULL_RTX);
2971 INSN_UID (i1) = INSN_UID (i2);
2973 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2976 /* Verify that I2 and I1 are valid for combining. */
2977 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2978 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2979 &i1dest, &i1src))
2980 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2981 &i0dest, &i0src)))
2983 undo_all ();
2984 return 0;
2987 /* Record whether I2DEST is used in I2SRC and similarly for the other
2988 cases. Knowing this will help in register status updating below. */
2989 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2990 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2991 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2992 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2993 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2994 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2995 i2dest_killed = dead_or_set_p (i2, i2dest);
2996 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2997 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2999 /* For the earlier insns, determine which of the subsequent ones they
3000 feed. */
3001 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3002 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3003 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3004 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3005 && reg_overlap_mentioned_p (i0dest, i2src))));
3007 /* Ensure that I3's pattern can be the destination of combines. */
3008 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3009 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3010 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3011 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3012 &i3dest_killed))
3014 undo_all ();
3015 return 0;
3018 /* See if any of the insns is a MULT operation. Unless one is, we will
3019 reject a combination that is, since it must be slower. Be conservative
3020 here. */
3021 if (GET_CODE (i2src) == MULT
3022 || (i1 != 0 && GET_CODE (i1src) == MULT)
3023 || (i0 != 0 && GET_CODE (i0src) == MULT)
3024 || (GET_CODE (PATTERN (i3)) == SET
3025 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3026 have_mult = 1;
3028 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3029 We used to do this EXCEPT in one case: I3 has a post-inc in an
3030 output operand. However, that exception can give rise to insns like
3031 mov r3,(r3)+
3032 which is a famous insn on the PDP-11 where the value of r3 used as the
3033 source was model-dependent. Avoid this sort of thing. */
3035 #if 0
3036 if (!(GET_CODE (PATTERN (i3)) == SET
3037 && REG_P (SET_SRC (PATTERN (i3)))
3038 && MEM_P (SET_DEST (PATTERN (i3)))
3039 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3040 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3041 /* It's not the exception. */
3042 #endif
3043 if (AUTO_INC_DEC)
3045 rtx link;
3046 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3047 if (REG_NOTE_KIND (link) == REG_INC
3048 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3049 || (i1 != 0
3050 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3052 undo_all ();
3053 return 0;
3057 /* See if the SETs in I1 or I2 need to be kept around in the merged
3058 instruction: whenever the value set there is still needed past I3.
3059 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3061 For the SET in I1, we have two cases: if I1 and I2 independently feed
3062 into I3, the set in I1 needs to be kept around unless I1DEST dies
3063 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3064 in I1 needs to be kept around unless I1DEST dies or is set in either
3065 I2 or I3. The same considerations apply to I0. */
3067 added_sets_2 = !dead_or_set_p (i3, i2dest);
3069 if (i1)
3070 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3071 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3072 else
3073 added_sets_1 = 0;
3075 if (i0)
3076 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3077 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3078 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3079 && dead_or_set_p (i2, i0dest)));
3080 else
3081 added_sets_0 = 0;
3083 /* We are about to copy insns for the case where they need to be kept
3084 around. Check that they can be copied in the merged instruction. */
3086 if (targetm.cannot_copy_insn_p
3087 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3088 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3089 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3091 undo_all ();
3092 return 0;
3095 /* If the set in I2 needs to be kept around, we must make a copy of
3096 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3097 PATTERN (I2), we are only substituting for the original I1DEST, not into
3098 an already-substituted copy. This also prevents making self-referential
3099 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3100 I2DEST. */
3102 if (added_sets_2)
3104 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3105 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3106 else
3107 i2pat = copy_rtx (PATTERN (i2));
3110 if (added_sets_1)
3112 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3113 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3114 else
3115 i1pat = copy_rtx (PATTERN (i1));
3118 if (added_sets_0)
3120 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3121 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3122 else
3123 i0pat = copy_rtx (PATTERN (i0));
3126 combine_merges++;
3128 /* Substitute in the latest insn for the regs set by the earlier ones. */
3130 maxreg = max_reg_num ();
3132 subst_insn = i3;
3134 /* Many machines that don't use CC0 have insns that can both perform an
3135 arithmetic operation and set the condition code. These operations will
3136 be represented as a PARALLEL with the first element of the vector
3137 being a COMPARE of an arithmetic operation with the constant zero.
3138 The second element of the vector will set some pseudo to the result
3139 of the same arithmetic operation. If we simplify the COMPARE, we won't
3140 match such a pattern and so will generate an extra insn. Here we test
3141 for this case, where both the comparison and the operation result are
3142 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3143 I2SRC. Later we will make the PARALLEL that contains I2. */
3145 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3146 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3147 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3148 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3150 rtx newpat_dest;
3151 rtx *cc_use_loc = NULL;
3152 rtx_insn *cc_use_insn = NULL;
3153 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3154 machine_mode compare_mode, orig_compare_mode;
3155 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3157 newpat = PATTERN (i3);
3158 newpat_dest = SET_DEST (newpat);
3159 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3161 if (undobuf.other_insn == 0
3162 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3163 &cc_use_insn)))
3165 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3166 compare_code = simplify_compare_const (compare_code,
3167 GET_MODE (i2dest), op0, &op1);
3168 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3171 /* Do the rest only if op1 is const0_rtx, which may be the
3172 result of simplification. */
3173 if (op1 == const0_rtx)
3175 /* If a single use of the CC is found, prepare to modify it
3176 when SELECT_CC_MODE returns a new CC-class mode, or when
3177 the above simplify_compare_const() returned a new comparison
3178 operator. undobuf.other_insn is assigned the CC use insn
3179 when modifying it. */
3180 if (cc_use_loc)
3182 #ifdef SELECT_CC_MODE
3183 machine_mode new_mode
3184 = SELECT_CC_MODE (compare_code, op0, op1);
3185 if (new_mode != orig_compare_mode
3186 && can_change_dest_mode (SET_DEST (newpat),
3187 added_sets_2, new_mode))
3189 unsigned int regno = REGNO (newpat_dest);
3190 compare_mode = new_mode;
3191 if (regno < FIRST_PSEUDO_REGISTER)
3192 newpat_dest = gen_rtx_REG (compare_mode, regno);
3193 else
3195 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3196 newpat_dest = regno_reg_rtx[regno];
3199 #endif
3200 /* Cases for modifying the CC-using comparison. */
3201 if (compare_code != orig_compare_code
3202 /* ??? Do we need to verify the zero rtx? */
3203 && XEXP (*cc_use_loc, 1) == const0_rtx)
3205 /* Replace cc_use_loc with entire new RTX. */
3206 SUBST (*cc_use_loc,
3207 gen_rtx_fmt_ee (compare_code, compare_mode,
3208 newpat_dest, const0_rtx));
3209 undobuf.other_insn = cc_use_insn;
3211 else if (compare_mode != orig_compare_mode)
3213 /* Just replace the CC reg with a new mode. */
3214 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3215 undobuf.other_insn = cc_use_insn;
3219 /* Now we modify the current newpat:
3220 First, SET_DEST(newpat) is updated if the CC mode has been
3221 altered. For targets without SELECT_CC_MODE, this should be
3222 optimized away. */
3223 if (compare_mode != orig_compare_mode)
3224 SUBST (SET_DEST (newpat), newpat_dest);
3225 /* This is always done to propagate i2src into newpat. */
3226 SUBST (SET_SRC (newpat),
3227 gen_rtx_COMPARE (compare_mode, op0, op1));
3228 /* Create new version of i2pat if needed; the below PARALLEL
3229 creation needs this to work correctly. */
3230 if (! rtx_equal_p (i2src, op0))
3231 i2pat = gen_rtx_SET (i2dest, op0);
3232 i2_is_used = 1;
3236 if (i2_is_used == 0)
3238 /* It is possible that the source of I2 or I1 may be performing
3239 an unneeded operation, such as a ZERO_EXTEND of something
3240 that is known to have the high part zero. Handle that case
3241 by letting subst look at the inner insns.
3243 Another way to do this would be to have a function that tries
3244 to simplify a single insn instead of merging two or more
3245 insns. We don't do this because of the potential of infinite
3246 loops and because of the potential extra memory required.
3247 However, doing it the way we are is a bit of a kludge and
3248 doesn't catch all cases.
3250 But only do this if -fexpensive-optimizations since it slows
3251 things down and doesn't usually win.
3253 This is not done in the COMPARE case above because the
3254 unmodified I2PAT is used in the PARALLEL and so a pattern
3255 with a modified I2SRC would not match. */
3257 if (flag_expensive_optimizations)
3259 /* Pass pc_rtx so no substitutions are done, just
3260 simplifications. */
3261 if (i1)
3263 subst_low_luid = DF_INSN_LUID (i1);
3264 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3267 subst_low_luid = DF_INSN_LUID (i2);
3268 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3271 n_occurrences = 0; /* `subst' counts here */
3272 subst_low_luid = DF_INSN_LUID (i2);
3274 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3275 copy of I2SRC each time we substitute it, in order to avoid creating
3276 self-referential RTL when we will be substituting I1SRC for I1DEST
3277 later. Likewise if I0 feeds into I2, either directly or indirectly
3278 through I1, and I0DEST is in I0SRC. */
3279 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3280 (i1_feeds_i2_n && i1dest_in_i1src)
3281 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3282 && i0dest_in_i0src));
3283 substed_i2 = 1;
3285 /* Record whether I2's body now appears within I3's body. */
3286 i2_is_used = n_occurrences;
3289 /* If we already got a failure, don't try to do more. Otherwise, try to
3290 substitute I1 if we have it. */
3292 if (i1 && GET_CODE (newpat) != CLOBBER)
3294 /* Check that an autoincrement side-effect on I1 has not been lost.
3295 This happens if I1DEST is mentioned in I2 and dies there, and
3296 has disappeared from the new pattern. */
3297 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3298 && i1_feeds_i2_n
3299 && dead_or_set_p (i2, i1dest)
3300 && !reg_overlap_mentioned_p (i1dest, newpat))
3301 /* Before we can do this substitution, we must redo the test done
3302 above (see detailed comments there) that ensures I1DEST isn't
3303 mentioned in any SETs in NEWPAT that are field assignments. */
3304 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3305 0, 0, 0))
3307 undo_all ();
3308 return 0;
3311 n_occurrences = 0;
3312 subst_low_luid = DF_INSN_LUID (i1);
3314 /* If the following substitution will modify I1SRC, make a copy of it
3315 for the case where it is substituted for I1DEST in I2PAT later. */
3316 if (added_sets_2 && i1_feeds_i2_n)
3317 i1src_copy = copy_rtx (i1src);
3319 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3320 copy of I1SRC each time we substitute it, in order to avoid creating
3321 self-referential RTL when we will be substituting I0SRC for I0DEST
3322 later. */
3323 newpat = subst (newpat, i1dest, i1src, 0, 0,
3324 i0_feeds_i1_n && i0dest_in_i0src);
3325 substed_i1 = 1;
3327 /* Record whether I1's body now appears within I3's body. */
3328 i1_is_used = n_occurrences;
3331 /* Likewise for I0 if we have it. */
3333 if (i0 && GET_CODE (newpat) != CLOBBER)
3335 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3336 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3337 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3338 && !reg_overlap_mentioned_p (i0dest, newpat))
3339 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3340 0, 0, 0))
3342 undo_all ();
3343 return 0;
3346 /* If the following substitution will modify I0SRC, make a copy of it
3347 for the case where it is substituted for I0DEST in I1PAT later. */
3348 if (added_sets_1 && i0_feeds_i1_n)
3349 i0src_copy = copy_rtx (i0src);
3350 /* And a copy for I0DEST in I2PAT substitution. */
3351 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3352 || (i0_feeds_i2_n)))
3353 i0src_copy2 = copy_rtx (i0src);
3355 n_occurrences = 0;
3356 subst_low_luid = DF_INSN_LUID (i0);
3357 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3358 substed_i0 = 1;
3361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3362 to count all the ways that I2SRC and I1SRC can be used. */
3363 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3364 && i2_is_used + added_sets_2 > 1)
3365 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3366 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3367 > 1))
3368 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3369 && (n_occurrences + added_sets_0
3370 + (added_sets_1 && i0_feeds_i1_n)
3371 + (added_sets_2 && i0_feeds_i2_n)
3372 > 1))
3373 /* Fail if we tried to make a new register. */
3374 || max_reg_num () != maxreg
3375 /* Fail if we couldn't do something and have a CLOBBER. */
3376 || GET_CODE (newpat) == CLOBBER
3377 /* Fail if this new pattern is a MULT and we didn't have one before
3378 at the outer level. */
3379 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3380 && ! have_mult))
3382 undo_all ();
3383 return 0;
3386 /* If the actions of the earlier insns must be kept
3387 in addition to substituting them into the latest one,
3388 we must make a new PARALLEL for the latest insn
3389 to hold additional the SETs. */
3391 if (added_sets_0 || added_sets_1 || added_sets_2)
3393 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3394 combine_extras++;
3396 if (GET_CODE (newpat) == PARALLEL)
3398 rtvec old = XVEC (newpat, 0);
3399 total_sets = XVECLEN (newpat, 0) + extra_sets;
3400 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3401 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3402 sizeof (old->elem[0]) * old->num_elem);
3404 else
3406 rtx old = newpat;
3407 total_sets = 1 + extra_sets;
3408 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3409 XVECEXP (newpat, 0, 0) = old;
3412 if (added_sets_0)
3413 XVECEXP (newpat, 0, --total_sets) = i0pat;
3415 if (added_sets_1)
3417 rtx t = i1pat;
3418 if (i0_feeds_i1_n)
3419 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3421 XVECEXP (newpat, 0, --total_sets) = t;
3423 if (added_sets_2)
3425 rtx t = i2pat;
3426 if (i1_feeds_i2_n)
3427 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3428 i0_feeds_i1_n && i0dest_in_i0src);
3429 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3430 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3432 XVECEXP (newpat, 0, --total_sets) = t;
3436 validate_replacement:
3438 /* Note which hard regs this insn has as inputs. */
3439 mark_used_regs_combine (newpat);
3441 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3442 consider splitting this pattern, we might need these clobbers. */
3443 if (i1 && GET_CODE (newpat) == PARALLEL
3444 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3446 int len = XVECLEN (newpat, 0);
3448 newpat_vec_with_clobbers = rtvec_alloc (len);
3449 for (i = 0; i < len; i++)
3450 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3453 /* We have recognized nothing yet. */
3454 insn_code_number = -1;
3456 /* See if this is a PARALLEL of two SETs where one SET's destination is
3457 a register that is unused and this isn't marked as an instruction that
3458 might trap in an EH region. In that case, we just need the other SET.
3459 We prefer this over the PARALLEL.
3461 This can occur when simplifying a divmod insn. We *must* test for this
3462 case here because the code below that splits two independent SETs doesn't
3463 handle this case correctly when it updates the register status.
3465 It's pointless doing this if we originally had two sets, one from
3466 i3, and one from i2. Combining then splitting the parallel results
3467 in the original i2 again plus an invalid insn (which we delete).
3468 The net effect is only to move instructions around, which makes
3469 debug info less accurate. */
3471 if (!(added_sets_2 && i1 == 0)
3472 && is_parallel_of_n_reg_sets (newpat, 2)
3473 && asm_noperands (newpat) < 0)
3475 rtx set0 = XVECEXP (newpat, 0, 0);
3476 rtx set1 = XVECEXP (newpat, 0, 1);
3477 rtx oldpat = newpat;
3479 if (((REG_P (SET_DEST (set1))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3481 || (GET_CODE (SET_DEST (set1)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3483 && insn_nothrow_p (i3)
3484 && !side_effects_p (SET_SRC (set1)))
3486 newpat = set0;
3487 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3490 else if (((REG_P (SET_DEST (set0))
3491 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3492 || (GET_CODE (SET_DEST (set0)) == SUBREG
3493 && find_reg_note (i3, REG_UNUSED,
3494 SUBREG_REG (SET_DEST (set0)))))
3495 && insn_nothrow_p (i3)
3496 && !side_effects_p (SET_SRC (set0)))
3498 newpat = set1;
3499 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501 if (insn_code_number >= 0)
3502 changed_i3_dest = 1;
3505 if (insn_code_number < 0)
3506 newpat = oldpat;
3509 /* Is the result of combination a valid instruction? */
3510 if (insn_code_number < 0)
3511 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3513 /* If we were combining three insns and the result is a simple SET
3514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3515 insns. There are two ways to do this. It can be split using a
3516 machine-specific method (like when you have an addition of a large
3517 constant) or by combine in the function find_split_point. */
3519 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3520 && asm_noperands (newpat) < 0)
3522 rtx parallel, *split;
3523 rtx_insn *m_split_insn;
3525 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3526 use I2DEST as a scratch register will help. In the latter case,
3527 convert I2DEST to the mode of the source of NEWPAT if we can. */
3529 m_split_insn = combine_split_insns (newpat, i3);
3531 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3532 inputs of NEWPAT. */
3534 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3535 possible to try that as a scratch reg. This would require adding
3536 more code to make it work though. */
3538 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3540 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3542 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3543 (temporarily, until we are committed to this instruction
3544 combination) does not work: for example, any call to nonzero_bits
3545 on the register (from a splitter in the MD file, for example)
3546 will get the old information, which is invalid.
3548 Since nowadays we can create registers during combine just fine,
3549 we should just create a new one here, not reuse i2dest. */
3551 /* First try to split using the original register as a
3552 scratch register. */
3553 parallel = gen_rtx_PARALLEL (VOIDmode,
3554 gen_rtvec (2, newpat,
3555 gen_rtx_CLOBBER (VOIDmode,
3556 i2dest)));
3557 m_split_insn = combine_split_insns (parallel, i3);
3559 /* If that didn't work, try changing the mode of I2DEST if
3560 we can. */
3561 if (m_split_insn == 0
3562 && new_mode != GET_MODE (i2dest)
3563 && new_mode != VOIDmode
3564 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3566 machine_mode old_mode = GET_MODE (i2dest);
3567 rtx ni2dest;
3569 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3570 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3571 else
3573 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3574 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3577 parallel = (gen_rtx_PARALLEL
3578 (VOIDmode,
3579 gen_rtvec (2, newpat,
3580 gen_rtx_CLOBBER (VOIDmode,
3581 ni2dest))));
3582 m_split_insn = combine_split_insns (parallel, i3);
3584 if (m_split_insn == 0
3585 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3587 struct undo *buf;
3589 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3590 buf = undobuf.undos;
3591 undobuf.undos = buf->next;
3592 buf->next = undobuf.frees;
3593 undobuf.frees = buf;
3597 i2scratch = m_split_insn != 0;
3600 /* If recog_for_combine has discarded clobbers, try to use them
3601 again for the split. */
3602 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3604 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3605 m_split_insn = combine_split_insns (parallel, i3);
3608 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3610 rtx m_split_pat = PATTERN (m_split_insn);
3611 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3612 if (insn_code_number >= 0)
3613 newpat = m_split_pat;
3615 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3616 && (next_nonnote_nondebug_insn (i2) == i3
3617 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3619 rtx i2set, i3set;
3620 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3621 newi2pat = PATTERN (m_split_insn);
3623 i3set = single_set (NEXT_INSN (m_split_insn));
3624 i2set = single_set (m_split_insn);
3626 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3628 /* If I2 or I3 has multiple SETs, we won't know how to track
3629 register status, so don't use these insns. If I2's destination
3630 is used between I2 and I3, we also can't use these insns. */
3632 if (i2_code_number >= 0 && i2set && i3set
3633 && (next_nonnote_nondebug_insn (i2) == i3
3634 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3635 insn_code_number = recog_for_combine (&newi3pat, i3,
3636 &new_i3_notes);
3637 if (insn_code_number >= 0)
3638 newpat = newi3pat;
3640 /* It is possible that both insns now set the destination of I3.
3641 If so, we must show an extra use of it. */
3643 if (insn_code_number >= 0)
3645 rtx new_i3_dest = SET_DEST (i3set);
3646 rtx new_i2_dest = SET_DEST (i2set);
3648 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3649 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3650 || GET_CODE (new_i3_dest) == SUBREG)
3651 new_i3_dest = XEXP (new_i3_dest, 0);
3653 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3654 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3655 || GET_CODE (new_i2_dest) == SUBREG)
3656 new_i2_dest = XEXP (new_i2_dest, 0);
3658 if (REG_P (new_i3_dest)
3659 && REG_P (new_i2_dest)
3660 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3661 && REGNO (new_i2_dest) < reg_n_sets_max)
3662 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3666 /* If we can split it and use I2DEST, go ahead and see if that
3667 helps things be recognized. Verify that none of the registers
3668 are set between I2 and I3. */
3669 if (insn_code_number < 0
3670 && (split = find_split_point (&newpat, i3, false)) != 0
3671 && (!HAVE_cc0 || REG_P (i2dest))
3672 /* We need I2DEST in the proper mode. If it is a hard register
3673 or the only use of a pseudo, we can change its mode.
3674 Make sure we don't change a hard register to have a mode that
3675 isn't valid for it, or change the number of registers. */
3676 && (GET_MODE (*split) == GET_MODE (i2dest)
3677 || GET_MODE (*split) == VOIDmode
3678 || can_change_dest_mode (i2dest, added_sets_2,
3679 GET_MODE (*split)))
3680 && (next_nonnote_nondebug_insn (i2) == i3
3681 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3682 /* We can't overwrite I2DEST if its value is still used by
3683 NEWPAT. */
3684 && ! reg_referenced_p (i2dest, newpat))
3686 rtx newdest = i2dest;
3687 enum rtx_code split_code = GET_CODE (*split);
3688 machine_mode split_mode = GET_MODE (*split);
3689 bool subst_done = false;
3690 newi2pat = NULL_RTX;
3692 i2scratch = true;
3694 /* *SPLIT may be part of I2SRC, so make sure we have the
3695 original expression around for later debug processing.
3696 We should not need I2SRC any more in other cases. */
3697 if (MAY_HAVE_DEBUG_INSNS)
3698 i2src = copy_rtx (i2src);
3699 else
3700 i2src = NULL;
3702 /* Get NEWDEST as a register in the proper mode. We have already
3703 validated that we can do this. */
3704 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3706 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3707 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3708 else
3710 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3711 newdest = regno_reg_rtx[REGNO (i2dest)];
3715 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3716 an ASHIFT. This can occur if it was inside a PLUS and hence
3717 appeared to be a memory address. This is a kludge. */
3718 if (split_code == MULT
3719 && CONST_INT_P (XEXP (*split, 1))
3720 && INTVAL (XEXP (*split, 1)) > 0
3721 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3723 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3724 XEXP (*split, 0), GEN_INT (i)));
3725 /* Update split_code because we may not have a multiply
3726 anymore. */
3727 split_code = GET_CODE (*split);
3730 /* Similarly for (plus (mult FOO (const_int pow2))). */
3731 if (split_code == PLUS
3732 && GET_CODE (XEXP (*split, 0)) == MULT
3733 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3734 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3735 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3737 rtx nsplit = XEXP (*split, 0);
3738 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3739 XEXP (nsplit, 0), GEN_INT (i)));
3740 /* Update split_code because we may not have a multiply
3741 anymore. */
3742 split_code = GET_CODE (*split);
3745 #ifdef INSN_SCHEDULING
3746 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3747 be written as a ZERO_EXTEND. */
3748 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3750 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3751 what it really is. */
3752 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3753 == SIGN_EXTEND)
3754 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3755 SUBREG_REG (*split)));
3756 else
3757 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3758 SUBREG_REG (*split)));
3760 #endif
3762 /* Attempt to split binary operators using arithmetic identities. */
3763 if (BINARY_P (SET_SRC (newpat))
3764 && split_mode == GET_MODE (SET_SRC (newpat))
3765 && ! side_effects_p (SET_SRC (newpat)))
3767 rtx setsrc = SET_SRC (newpat);
3768 machine_mode mode = GET_MODE (setsrc);
3769 enum rtx_code code = GET_CODE (setsrc);
3770 rtx src_op0 = XEXP (setsrc, 0);
3771 rtx src_op1 = XEXP (setsrc, 1);
3773 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3774 if (rtx_equal_p (src_op0, src_op1))
3776 newi2pat = gen_rtx_SET (newdest, src_op0);
3777 SUBST (XEXP (setsrc, 0), newdest);
3778 SUBST (XEXP (setsrc, 1), newdest);
3779 subst_done = true;
3781 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3782 else if ((code == PLUS || code == MULT)
3783 && GET_CODE (src_op0) == code
3784 && GET_CODE (XEXP (src_op0, 0)) == code
3785 && (INTEGRAL_MODE_P (mode)
3786 || (FLOAT_MODE_P (mode)
3787 && flag_unsafe_math_optimizations)))
3789 rtx p = XEXP (XEXP (src_op0, 0), 0);
3790 rtx q = XEXP (XEXP (src_op0, 0), 1);
3791 rtx r = XEXP (src_op0, 1);
3792 rtx s = src_op1;
3794 /* Split both "((X op Y) op X) op Y" and
3795 "((X op Y) op Y) op X" as "T op T" where T is
3796 "X op Y". */
3797 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3798 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3800 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3801 SUBST (XEXP (setsrc, 0), newdest);
3802 SUBST (XEXP (setsrc, 1), newdest);
3803 subst_done = true;
3805 /* Split "((X op X) op Y) op Y)" as "T op T" where
3806 T is "X op Y". */
3807 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3809 rtx tmp = simplify_gen_binary (code, mode, p, r);
3810 newi2pat = gen_rtx_SET (newdest, tmp);
3811 SUBST (XEXP (setsrc, 0), newdest);
3812 SUBST (XEXP (setsrc, 1), newdest);
3813 subst_done = true;
3818 if (!subst_done)
3820 newi2pat = gen_rtx_SET (newdest, *split);
3821 SUBST (*split, newdest);
3824 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3826 /* recog_for_combine might have added CLOBBERs to newi2pat.
3827 Make sure NEWPAT does not depend on the clobbered regs. */
3828 if (GET_CODE (newi2pat) == PARALLEL)
3829 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3830 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3832 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3833 if (reg_overlap_mentioned_p (reg, newpat))
3835 undo_all ();
3836 return 0;
3840 /* If the split point was a MULT and we didn't have one before,
3841 don't use one now. */
3842 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3843 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3847 /* Check for a case where we loaded from memory in a narrow mode and
3848 then sign extended it, but we need both registers. In that case,
3849 we have a PARALLEL with both loads from the same memory location.
3850 We can split this into a load from memory followed by a register-register
3851 copy. This saves at least one insn, more if register allocation can
3852 eliminate the copy.
3854 We cannot do this if the destination of the first assignment is a
3855 condition code register or cc0. We eliminate this case by making sure
3856 the SET_DEST and SET_SRC have the same mode.
3858 We cannot do this if the destination of the second assignment is
3859 a register that we have already assumed is zero-extended. Similarly
3860 for a SUBREG of such a register. */
3862 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3863 && GET_CODE (newpat) == PARALLEL
3864 && XVECLEN (newpat, 0) == 2
3865 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3866 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3867 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3868 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3869 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3870 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3871 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3872 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3873 DF_INSN_LUID (i2))
3874 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3875 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3876 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3877 (REG_P (temp_expr)
3878 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3879 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3880 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3881 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3882 != GET_MODE_MASK (word_mode))))
3883 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3884 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3885 (REG_P (temp_expr)
3886 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3887 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3889 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3890 != GET_MODE_MASK (word_mode)))))
3891 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3892 SET_SRC (XVECEXP (newpat, 0, 1)))
3893 && ! find_reg_note (i3, REG_UNUSED,
3894 SET_DEST (XVECEXP (newpat, 0, 0))))
3896 rtx ni2dest;
3898 newi2pat = XVECEXP (newpat, 0, 0);
3899 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3900 newpat = XVECEXP (newpat, 0, 1);
3901 SUBST (SET_SRC (newpat),
3902 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3903 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3905 if (i2_code_number >= 0)
3906 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3908 if (insn_code_number >= 0)
3909 swap_i2i3 = 1;
3912 /* Similarly, check for a case where we have a PARALLEL of two independent
3913 SETs but we started with three insns. In this case, we can do the sets
3914 as two separate insns. This case occurs when some SET allows two
3915 other insns to combine, but the destination of that SET is still live.
3917 Also do this if we started with two insns and (at least) one of the
3918 resulting sets is a noop; this noop will be deleted later. */
3920 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3921 && GET_CODE (newpat) == PARALLEL
3922 && XVECLEN (newpat, 0) == 2
3923 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3924 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3925 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3926 || set_noop_p (XVECEXP (newpat, 0, 1)))
3927 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3928 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3929 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3930 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3931 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3932 XVECEXP (newpat, 0, 0))
3933 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3934 XVECEXP (newpat, 0, 1))
3935 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3936 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3938 rtx set0 = XVECEXP (newpat, 0, 0);
3939 rtx set1 = XVECEXP (newpat, 0, 1);
3941 /* Normally, it doesn't matter which of the two is done first,
3942 but the one that references cc0 can't be the second, and
3943 one which uses any regs/memory set in between i2 and i3 can't
3944 be first. The PARALLEL might also have been pre-existing in i3,
3945 so we need to make sure that we won't wrongly hoist a SET to i2
3946 that would conflict with a death note present in there. */
3947 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3948 && !(REG_P (SET_DEST (set1))
3949 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3950 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3951 && find_reg_note (i2, REG_DEAD,
3952 SUBREG_REG (SET_DEST (set1))))
3953 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3954 /* If I3 is a jump, ensure that set0 is a jump so that
3955 we do not create invalid RTL. */
3956 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3959 newi2pat = set1;
3960 newpat = set0;
3962 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3963 && !(REG_P (SET_DEST (set0))
3964 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3965 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3966 && find_reg_note (i2, REG_DEAD,
3967 SUBREG_REG (SET_DEST (set0))))
3968 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3969 /* If I3 is a jump, ensure that set1 is a jump so that
3970 we do not create invalid RTL. */
3971 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3974 newi2pat = set0;
3975 newpat = set1;
3977 else
3979 undo_all ();
3980 return 0;
3983 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3985 if (i2_code_number >= 0)
3987 /* recog_for_combine might have added CLOBBERs to newi2pat.
3988 Make sure NEWPAT does not depend on the clobbered regs. */
3989 if (GET_CODE (newi2pat) == PARALLEL)
3991 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3992 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3994 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3995 if (reg_overlap_mentioned_p (reg, newpat))
3997 undo_all ();
3998 return 0;
4003 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4007 /* If it still isn't recognized, fail and change things back the way they
4008 were. */
4009 if ((insn_code_number < 0
4010 /* Is the result a reasonable ASM_OPERANDS? */
4011 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4013 undo_all ();
4014 return 0;
4017 /* If we had to change another insn, make sure it is valid also. */
4018 if (undobuf.other_insn)
4020 CLEAR_HARD_REG_SET (newpat_used_regs);
4022 other_pat = PATTERN (undobuf.other_insn);
4023 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4024 &new_other_notes);
4026 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4028 undo_all ();
4029 return 0;
4033 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4034 they are adjacent to each other or not. */
4035 if (HAVE_cc0)
4037 rtx_insn *p = prev_nonnote_insn (i3);
4038 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4039 && sets_cc0_p (newi2pat))
4041 undo_all ();
4042 return 0;
4046 /* Only allow this combination if insn_rtx_costs reports that the
4047 replacement instructions are cheaper than the originals. */
4048 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4050 undo_all ();
4051 return 0;
4054 if (MAY_HAVE_DEBUG_INSNS)
4056 struct undo *undo;
4058 for (undo = undobuf.undos; undo; undo = undo->next)
4059 if (undo->kind == UNDO_MODE)
4061 rtx reg = *undo->where.r;
4062 machine_mode new_mode = GET_MODE (reg);
4063 machine_mode old_mode = undo->old_contents.m;
4065 /* Temporarily revert mode back. */
4066 adjust_reg_mode (reg, old_mode);
4068 if (reg == i2dest && i2scratch)
4070 /* If we used i2dest as a scratch register with a
4071 different mode, substitute it for the original
4072 i2src while its original mode is temporarily
4073 restored, and then clear i2scratch so that we don't
4074 do it again later. */
4075 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4076 this_basic_block);
4077 i2scratch = false;
4078 /* Put back the new mode. */
4079 adjust_reg_mode (reg, new_mode);
4081 else
4083 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4084 rtx_insn *first, *last;
4086 if (reg == i2dest)
4088 first = i2;
4089 last = last_combined_insn;
4091 else
4093 first = i3;
4094 last = undobuf.other_insn;
4095 gcc_assert (last);
4096 if (DF_INSN_LUID (last)
4097 < DF_INSN_LUID (last_combined_insn))
4098 last = last_combined_insn;
4101 /* We're dealing with a reg that changed mode but not
4102 meaning, so we want to turn it into a subreg for
4103 the new mode. However, because of REG sharing and
4104 because its mode had already changed, we have to do
4105 it in two steps. First, replace any debug uses of
4106 reg, with its original mode temporarily restored,
4107 with this copy we have created; then, replace the
4108 copy with the SUBREG of the original shared reg,
4109 once again changed to the new mode. */
4110 propagate_for_debug (first, last, reg, tempreg,
4111 this_basic_block);
4112 adjust_reg_mode (reg, new_mode);
4113 propagate_for_debug (first, last, tempreg,
4114 lowpart_subreg (old_mode, reg, new_mode),
4115 this_basic_block);
4120 /* If we will be able to accept this, we have made a
4121 change to the destination of I3. This requires us to
4122 do a few adjustments. */
4124 if (changed_i3_dest)
4126 PATTERN (i3) = newpat;
4127 adjust_for_new_dest (i3);
4130 /* We now know that we can do this combination. Merge the insns and
4131 update the status of registers and LOG_LINKS. */
4133 if (undobuf.other_insn)
4135 rtx note, next;
4137 PATTERN (undobuf.other_insn) = other_pat;
4139 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4140 ensure that they are still valid. Then add any non-duplicate
4141 notes added by recog_for_combine. */
4142 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4144 next = XEXP (note, 1);
4146 if ((REG_NOTE_KIND (note) == REG_DEAD
4147 && !reg_referenced_p (XEXP (note, 0),
4148 PATTERN (undobuf.other_insn)))
4149 ||(REG_NOTE_KIND (note) == REG_UNUSED
4150 && !reg_set_p (XEXP (note, 0),
4151 PATTERN (undobuf.other_insn)))
4152 /* Simply drop equal note since it may be no longer valid
4153 for other_insn. It may be possible to record that CC
4154 register is changed and only discard those notes, but
4155 in practice it's unnecessary complication and doesn't
4156 give any meaningful improvement.
4158 See PR78559. */
4159 || REG_NOTE_KIND (note) == REG_EQUAL
4160 || REG_NOTE_KIND (note) == REG_EQUIV)
4161 remove_note (undobuf.other_insn, note);
4164 distribute_notes (new_other_notes, undobuf.other_insn,
4165 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4166 NULL_RTX);
4169 if (swap_i2i3)
4171 rtx_insn *insn;
4172 struct insn_link *link;
4173 rtx ni2dest;
4175 /* I3 now uses what used to be its destination and which is now
4176 I2's destination. This requires us to do a few adjustments. */
4177 PATTERN (i3) = newpat;
4178 adjust_for_new_dest (i3);
4180 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4181 so we still will.
4183 However, some later insn might be using I2's dest and have
4184 a LOG_LINK pointing at I3. We must remove this link.
4185 The simplest way to remove the link is to point it at I1,
4186 which we know will be a NOTE. */
4188 /* newi2pat is usually a SET here; however, recog_for_combine might
4189 have added some clobbers. */
4190 if (GET_CODE (newi2pat) == PARALLEL)
4191 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4192 else
4193 ni2dest = SET_DEST (newi2pat);
4195 for (insn = NEXT_INSN (i3);
4196 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4197 || insn != BB_HEAD (this_basic_block->next_bb));
4198 insn = NEXT_INSN (insn))
4200 if (NONDEBUG_INSN_P (insn)
4201 && reg_referenced_p (ni2dest, PATTERN (insn)))
4203 FOR_EACH_LOG_LINK (link, insn)
4204 if (link->insn == i3)
4205 link->insn = i1;
4207 break;
4213 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4214 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4215 rtx midnotes = 0;
4216 int from_luid;
4217 /* Compute which registers we expect to eliminate. newi2pat may be setting
4218 either i3dest or i2dest, so we must check it. */
4219 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4220 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4221 || !i2dest_killed
4222 ? 0 : i2dest);
4223 /* For i1, we need to compute both local elimination and global
4224 elimination information with respect to newi2pat because i1dest
4225 may be the same as i3dest, in which case newi2pat may be setting
4226 i1dest. Global information is used when distributing REG_DEAD
4227 note for i2 and i3, in which case it does matter if newi2pat sets
4228 i1dest or not.
4230 Local information is used when distributing REG_DEAD note for i1,
4231 in which case it doesn't matter if newi2pat sets i1dest or not.
4232 See PR62151, if we have four insns combination:
4233 i0: r0 <- i0src
4234 i1: r1 <- i1src (using r0)
4235 REG_DEAD (r0)
4236 i2: r0 <- i2src (using r1)
4237 i3: r3 <- i3src (using r0)
4238 ix: using r0
4239 From i1's point of view, r0 is eliminated, no matter if it is set
4240 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4241 should be discarded.
4243 Note local information only affects cases in forms like "I1->I2->I3",
4244 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4245 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4246 i0dest anyway. */
4247 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4248 || !i1dest_killed
4249 ? 0 : i1dest);
4250 rtx elim_i1 = (local_elim_i1 == 0
4251 || (newi2pat && reg_set_p (i1dest, newi2pat))
4252 ? 0 : i1dest);
4253 /* Same case as i1. */
4254 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4255 ? 0 : i0dest);
4256 rtx elim_i0 = (local_elim_i0 == 0
4257 || (newi2pat && reg_set_p (i0dest, newi2pat))
4258 ? 0 : i0dest);
4260 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4261 clear them. */
4262 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4263 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4264 if (i1)
4265 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4266 if (i0)
4267 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4269 /* Ensure that we do not have something that should not be shared but
4270 occurs multiple times in the new insns. Check this by first
4271 resetting all the `used' flags and then copying anything is shared. */
4273 reset_used_flags (i3notes);
4274 reset_used_flags (i2notes);
4275 reset_used_flags (i1notes);
4276 reset_used_flags (i0notes);
4277 reset_used_flags (newpat);
4278 reset_used_flags (newi2pat);
4279 if (undobuf.other_insn)
4280 reset_used_flags (PATTERN (undobuf.other_insn));
4282 i3notes = copy_rtx_if_shared (i3notes);
4283 i2notes = copy_rtx_if_shared (i2notes);
4284 i1notes = copy_rtx_if_shared (i1notes);
4285 i0notes = copy_rtx_if_shared (i0notes);
4286 newpat = copy_rtx_if_shared (newpat);
4287 newi2pat = copy_rtx_if_shared (newi2pat);
4288 if (undobuf.other_insn)
4289 reset_used_flags (PATTERN (undobuf.other_insn));
4291 INSN_CODE (i3) = insn_code_number;
4292 PATTERN (i3) = newpat;
4294 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4296 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4298 reset_used_flags (call_usage);
4299 call_usage = copy_rtx (call_usage);
4301 if (substed_i2)
4303 /* I2SRC must still be meaningful at this point. Some splitting
4304 operations can invalidate I2SRC, but those operations do not
4305 apply to calls. */
4306 gcc_assert (i2src);
4307 replace_rtx (call_usage, i2dest, i2src);
4310 if (substed_i1)
4311 replace_rtx (call_usage, i1dest, i1src);
4312 if (substed_i0)
4313 replace_rtx (call_usage, i0dest, i0src);
4315 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4318 if (undobuf.other_insn)
4319 INSN_CODE (undobuf.other_insn) = other_code_number;
4321 /* We had one special case above where I2 had more than one set and
4322 we replaced a destination of one of those sets with the destination
4323 of I3. In that case, we have to update LOG_LINKS of insns later
4324 in this basic block. Note that this (expensive) case is rare.
4326 Also, in this case, we must pretend that all REG_NOTEs for I2
4327 actually came from I3, so that REG_UNUSED notes from I2 will be
4328 properly handled. */
4330 if (i3_subst_into_i2)
4332 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4333 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4334 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4335 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4336 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4337 && ! find_reg_note (i2, REG_UNUSED,
4338 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4339 for (temp_insn = NEXT_INSN (i2);
4340 temp_insn
4341 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4342 || BB_HEAD (this_basic_block) != temp_insn);
4343 temp_insn = NEXT_INSN (temp_insn))
4344 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4345 FOR_EACH_LOG_LINK (link, temp_insn)
4346 if (link->insn == i2)
4347 link->insn = i3;
4349 if (i3notes)
4351 rtx link = i3notes;
4352 while (XEXP (link, 1))
4353 link = XEXP (link, 1);
4354 XEXP (link, 1) = i2notes;
4356 else
4357 i3notes = i2notes;
4358 i2notes = 0;
4361 LOG_LINKS (i3) = NULL;
4362 REG_NOTES (i3) = 0;
4363 LOG_LINKS (i2) = NULL;
4364 REG_NOTES (i2) = 0;
4366 if (newi2pat)
4368 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4369 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4370 this_basic_block);
4371 INSN_CODE (i2) = i2_code_number;
4372 PATTERN (i2) = newi2pat;
4374 else
4376 if (MAY_HAVE_DEBUG_INSNS && i2src)
4377 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4378 this_basic_block);
4379 SET_INSN_DELETED (i2);
4382 if (i1)
4384 LOG_LINKS (i1) = NULL;
4385 REG_NOTES (i1) = 0;
4386 if (MAY_HAVE_DEBUG_INSNS)
4387 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4388 this_basic_block);
4389 SET_INSN_DELETED (i1);
4392 if (i0)
4394 LOG_LINKS (i0) = NULL;
4395 REG_NOTES (i0) = 0;
4396 if (MAY_HAVE_DEBUG_INSNS)
4397 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4398 this_basic_block);
4399 SET_INSN_DELETED (i0);
4402 /* Get death notes for everything that is now used in either I3 or
4403 I2 and used to die in a previous insn. If we built two new
4404 patterns, move from I1 to I2 then I2 to I3 so that we get the
4405 proper movement on registers that I2 modifies. */
4407 if (i0)
4408 from_luid = DF_INSN_LUID (i0);
4409 else if (i1)
4410 from_luid = DF_INSN_LUID (i1);
4411 else
4412 from_luid = DF_INSN_LUID (i2);
4413 if (newi2pat)
4414 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4415 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4417 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4418 if (i3notes)
4419 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4420 elim_i2, elim_i1, elim_i0);
4421 if (i2notes)
4422 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4423 elim_i2, elim_i1, elim_i0);
4424 if (i1notes)
4425 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4426 elim_i2, local_elim_i1, local_elim_i0);
4427 if (i0notes)
4428 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4429 elim_i2, elim_i1, local_elim_i0);
4430 if (midnotes)
4431 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4432 elim_i2, elim_i1, elim_i0);
4434 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4435 know these are REG_UNUSED and want them to go to the desired insn,
4436 so we always pass it as i3. */
4438 if (newi2pat && new_i2_notes)
4439 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4440 NULL_RTX);
4442 if (new_i3_notes)
4443 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4444 NULL_RTX);
4446 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4447 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4448 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4449 in that case, it might delete I2. Similarly for I2 and I1.
4450 Show an additional death due to the REG_DEAD note we make here. If
4451 we discard it in distribute_notes, we will decrement it again. */
4453 if (i3dest_killed)
4455 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4456 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4457 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4458 elim_i1, elim_i0);
4459 else
4460 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4461 elim_i2, elim_i1, elim_i0);
4464 if (i2dest_in_i2src)
4466 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4467 if (newi2pat && reg_set_p (i2dest, newi2pat))
4468 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4469 NULL_RTX, NULL_RTX);
4470 else
4471 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4472 NULL_RTX, NULL_RTX, NULL_RTX);
4475 if (i1dest_in_i1src)
4477 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4478 if (newi2pat && reg_set_p (i1dest, newi2pat))
4479 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4480 NULL_RTX, NULL_RTX);
4481 else
4482 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4483 NULL_RTX, NULL_RTX, NULL_RTX);
4486 if (i0dest_in_i0src)
4488 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4489 if (newi2pat && reg_set_p (i0dest, newi2pat))
4490 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4491 NULL_RTX, NULL_RTX);
4492 else
4493 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4494 NULL_RTX, NULL_RTX, NULL_RTX);
4497 distribute_links (i3links);
4498 distribute_links (i2links);
4499 distribute_links (i1links);
4500 distribute_links (i0links);
4502 if (REG_P (i2dest))
4504 struct insn_link *link;
4505 rtx_insn *i2_insn = 0;
4506 rtx i2_val = 0, set;
4508 /* The insn that used to set this register doesn't exist, and
4509 this life of the register may not exist either. See if one of
4510 I3's links points to an insn that sets I2DEST. If it does,
4511 that is now the last known value for I2DEST. If we don't update
4512 this and I2 set the register to a value that depended on its old
4513 contents, we will get confused. If this insn is used, thing
4514 will be set correctly in combine_instructions. */
4515 FOR_EACH_LOG_LINK (link, i3)
4516 if ((set = single_set (link->insn)) != 0
4517 && rtx_equal_p (i2dest, SET_DEST (set)))
4518 i2_insn = link->insn, i2_val = SET_SRC (set);
4520 record_value_for_reg (i2dest, i2_insn, i2_val);
4522 /* If the reg formerly set in I2 died only once and that was in I3,
4523 zero its use count so it won't make `reload' do any work. */
4524 if (! added_sets_2
4525 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4526 && ! i2dest_in_i2src
4527 && REGNO (i2dest) < reg_n_sets_max)
4528 INC_REG_N_SETS (REGNO (i2dest), -1);
4531 if (i1 && REG_P (i1dest))
4533 struct insn_link *link;
4534 rtx_insn *i1_insn = 0;
4535 rtx i1_val = 0, set;
4537 FOR_EACH_LOG_LINK (link, i3)
4538 if ((set = single_set (link->insn)) != 0
4539 && rtx_equal_p (i1dest, SET_DEST (set)))
4540 i1_insn = link->insn, i1_val = SET_SRC (set);
4542 record_value_for_reg (i1dest, i1_insn, i1_val);
4544 if (! added_sets_1
4545 && ! i1dest_in_i1src
4546 && REGNO (i1dest) < reg_n_sets_max)
4547 INC_REG_N_SETS (REGNO (i1dest), -1);
4550 if (i0 && REG_P (i0dest))
4552 struct insn_link *link;
4553 rtx_insn *i0_insn = 0;
4554 rtx i0_val = 0, set;
4556 FOR_EACH_LOG_LINK (link, i3)
4557 if ((set = single_set (link->insn)) != 0
4558 && rtx_equal_p (i0dest, SET_DEST (set)))
4559 i0_insn = link->insn, i0_val = SET_SRC (set);
4561 record_value_for_reg (i0dest, i0_insn, i0_val);
4563 if (! added_sets_0
4564 && ! i0dest_in_i0src
4565 && REGNO (i0dest) < reg_n_sets_max)
4566 INC_REG_N_SETS (REGNO (i0dest), -1);
4569 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4570 been made to this insn. The order is important, because newi2pat
4571 can affect nonzero_bits of newpat. */
4572 if (newi2pat)
4573 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4574 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4577 if (undobuf.other_insn != NULL_RTX)
4579 if (dump_file)
4581 fprintf (dump_file, "modifying other_insn ");
4582 dump_insn_slim (dump_file, undobuf.other_insn);
4584 df_insn_rescan (undobuf.other_insn);
4587 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4589 if (dump_file)
4591 fprintf (dump_file, "modifying insn i0 ");
4592 dump_insn_slim (dump_file, i0);
4594 df_insn_rescan (i0);
4597 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4599 if (dump_file)
4601 fprintf (dump_file, "modifying insn i1 ");
4602 dump_insn_slim (dump_file, i1);
4604 df_insn_rescan (i1);
4607 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4609 if (dump_file)
4611 fprintf (dump_file, "modifying insn i2 ");
4612 dump_insn_slim (dump_file, i2);
4614 df_insn_rescan (i2);
4617 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4619 if (dump_file)
4621 fprintf (dump_file, "modifying insn i3 ");
4622 dump_insn_slim (dump_file, i3);
4624 df_insn_rescan (i3);
4627 /* Set new_direct_jump_p if a new return or simple jump instruction
4628 has been created. Adjust the CFG accordingly. */
4629 if (returnjump_p (i3) || any_uncondjump_p (i3))
4631 *new_direct_jump_p = 1;
4632 mark_jump_label (PATTERN (i3), i3, 0);
4633 update_cfg_for_uncondjump (i3);
4636 if (undobuf.other_insn != NULL_RTX
4637 && (returnjump_p (undobuf.other_insn)
4638 || any_uncondjump_p (undobuf.other_insn)))
4640 *new_direct_jump_p = 1;
4641 update_cfg_for_uncondjump (undobuf.other_insn);
4644 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4645 && XEXP (PATTERN (i3), 0) == const1_rtx)
4647 basic_block bb = BLOCK_FOR_INSN (i3);
4648 gcc_assert (bb);
4649 remove_edge (split_block (bb, i3));
4650 emit_barrier_after_bb (bb);
4651 *new_direct_jump_p = 1;
4654 if (undobuf.other_insn
4655 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4656 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4658 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4659 gcc_assert (bb);
4660 remove_edge (split_block (bb, undobuf.other_insn));
4661 emit_barrier_after_bb (bb);
4662 *new_direct_jump_p = 1;
4665 /* A noop might also need cleaning up of CFG, if it comes from the
4666 simplification of a jump. */
4667 if (JUMP_P (i3)
4668 && GET_CODE (newpat) == SET
4669 && SET_SRC (newpat) == pc_rtx
4670 && SET_DEST (newpat) == pc_rtx)
4672 *new_direct_jump_p = 1;
4673 update_cfg_for_uncondjump (i3);
4676 if (undobuf.other_insn != NULL_RTX
4677 && JUMP_P (undobuf.other_insn)
4678 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4679 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4680 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4682 *new_direct_jump_p = 1;
4683 update_cfg_for_uncondjump (undobuf.other_insn);
4686 combine_successes++;
4687 undo_commit ();
4689 if (added_links_insn
4690 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4691 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4692 return added_links_insn;
4693 else
4694 return newi2pat ? i2 : i3;
4697 /* Get a marker for undoing to the current state. */
4699 static void *
4700 get_undo_marker (void)
4702 return undobuf.undos;
4705 /* Undo the modifications up to the marker. */
4707 static void
4708 undo_to_marker (void *marker)
4710 struct undo *undo, *next;
4712 for (undo = undobuf.undos; undo != marker; undo = next)
4714 gcc_assert (undo);
4716 next = undo->next;
4717 switch (undo->kind)
4719 case UNDO_RTX:
4720 *undo->where.r = undo->old_contents.r;
4721 break;
4722 case UNDO_INT:
4723 *undo->where.i = undo->old_contents.i;
4724 break;
4725 case UNDO_MODE:
4726 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4727 break;
4728 case UNDO_LINKS:
4729 *undo->where.l = undo->old_contents.l;
4730 break;
4731 default:
4732 gcc_unreachable ();
4735 undo->next = undobuf.frees;
4736 undobuf.frees = undo;
4739 undobuf.undos = (struct undo *) marker;
4742 /* Undo all the modifications recorded in undobuf. */
4744 static void
4745 undo_all (void)
4747 undo_to_marker (0);
4750 /* We've committed to accepting the changes we made. Move all
4751 of the undos to the free list. */
4753 static void
4754 undo_commit (void)
4756 struct undo *undo, *next;
4758 for (undo = undobuf.undos; undo; undo = next)
4760 next = undo->next;
4761 undo->next = undobuf.frees;
4762 undobuf.frees = undo;
4764 undobuf.undos = 0;
4767 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4768 where we have an arithmetic expression and return that point. LOC will
4769 be inside INSN.
4771 try_combine will call this function to see if an insn can be split into
4772 two insns. */
4774 static rtx *
4775 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4777 rtx x = *loc;
4778 enum rtx_code code = GET_CODE (x);
4779 rtx *split;
4780 unsigned HOST_WIDE_INT len = 0;
4781 HOST_WIDE_INT pos = 0;
4782 int unsignedp = 0;
4783 rtx inner = NULL_RTX;
4785 /* First special-case some codes. */
4786 switch (code)
4788 case SUBREG:
4789 #ifdef INSN_SCHEDULING
4790 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4791 point. */
4792 if (MEM_P (SUBREG_REG (x)))
4793 return loc;
4794 #endif
4795 return find_split_point (&SUBREG_REG (x), insn, false);
4797 case MEM:
4798 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4799 using LO_SUM and HIGH. */
4800 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4801 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4803 machine_mode address_mode = get_address_mode (x);
4805 SUBST (XEXP (x, 0),
4806 gen_rtx_LO_SUM (address_mode,
4807 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4808 XEXP (x, 0)));
4809 return &XEXP (XEXP (x, 0), 0);
4812 /* If we have a PLUS whose second operand is a constant and the
4813 address is not valid, perhaps will can split it up using
4814 the machine-specific way to split large constants. We use
4815 the first pseudo-reg (one of the virtual regs) as a placeholder;
4816 it will not remain in the result. */
4817 if (GET_CODE (XEXP (x, 0)) == PLUS
4818 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4819 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4820 MEM_ADDR_SPACE (x)))
4822 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4823 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4824 subst_insn);
4826 /* This should have produced two insns, each of which sets our
4827 placeholder. If the source of the second is a valid address,
4828 we can make put both sources together and make a split point
4829 in the middle. */
4831 if (seq
4832 && NEXT_INSN (seq) != NULL_RTX
4833 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4834 && NONJUMP_INSN_P (seq)
4835 && GET_CODE (PATTERN (seq)) == SET
4836 && SET_DEST (PATTERN (seq)) == reg
4837 && ! reg_mentioned_p (reg,
4838 SET_SRC (PATTERN (seq)))
4839 && NONJUMP_INSN_P (NEXT_INSN (seq))
4840 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4841 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4842 && memory_address_addr_space_p
4843 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4844 MEM_ADDR_SPACE (x)))
4846 rtx src1 = SET_SRC (PATTERN (seq));
4847 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4849 /* Replace the placeholder in SRC2 with SRC1. If we can
4850 find where in SRC2 it was placed, that can become our
4851 split point and we can replace this address with SRC2.
4852 Just try two obvious places. */
4854 src2 = replace_rtx (src2, reg, src1);
4855 split = 0;
4856 if (XEXP (src2, 0) == src1)
4857 split = &XEXP (src2, 0);
4858 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4859 && XEXP (XEXP (src2, 0), 0) == src1)
4860 split = &XEXP (XEXP (src2, 0), 0);
4862 if (split)
4864 SUBST (XEXP (x, 0), src2);
4865 return split;
4869 /* If that didn't work, perhaps the first operand is complex and
4870 needs to be computed separately, so make a split point there.
4871 This will occur on machines that just support REG + CONST
4872 and have a constant moved through some previous computation. */
4874 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4875 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4876 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4877 return &XEXP (XEXP (x, 0), 0);
4880 /* If we have a PLUS whose first operand is complex, try computing it
4881 separately by making a split there. */
4882 if (GET_CODE (XEXP (x, 0)) == PLUS
4883 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4884 MEM_ADDR_SPACE (x))
4885 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4886 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4887 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4888 return &XEXP (XEXP (x, 0), 0);
4889 break;
4891 case SET:
4892 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4893 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4894 we need to put the operand into a register. So split at that
4895 point. */
4897 if (SET_DEST (x) == cc0_rtx
4898 && GET_CODE (SET_SRC (x)) != COMPARE
4899 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4900 && !OBJECT_P (SET_SRC (x))
4901 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4902 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4903 return &SET_SRC (x);
4905 /* See if we can split SET_SRC as it stands. */
4906 split = find_split_point (&SET_SRC (x), insn, true);
4907 if (split && split != &SET_SRC (x))
4908 return split;
4910 /* See if we can split SET_DEST as it stands. */
4911 split = find_split_point (&SET_DEST (x), insn, false);
4912 if (split && split != &SET_DEST (x))
4913 return split;
4915 /* See if this is a bitfield assignment with everything constant. If
4916 so, this is an IOR of an AND, so split it into that. */
4917 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4918 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4919 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4920 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4921 && CONST_INT_P (SET_SRC (x))
4922 && ((INTVAL (XEXP (SET_DEST (x), 1))
4923 + INTVAL (XEXP (SET_DEST (x), 2)))
4924 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4925 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4927 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4928 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4929 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4930 rtx dest = XEXP (SET_DEST (x), 0);
4931 machine_mode mode = GET_MODE (dest);
4932 unsigned HOST_WIDE_INT mask
4933 = (HOST_WIDE_INT_1U << len) - 1;
4934 rtx or_mask;
4936 if (BITS_BIG_ENDIAN)
4937 pos = GET_MODE_PRECISION (mode) - len - pos;
4939 or_mask = gen_int_mode (src << pos, mode);
4940 if (src == mask)
4941 SUBST (SET_SRC (x),
4942 simplify_gen_binary (IOR, mode, dest, or_mask));
4943 else
4945 rtx negmask = gen_int_mode (~(mask << pos), mode);
4946 SUBST (SET_SRC (x),
4947 simplify_gen_binary (IOR, mode,
4948 simplify_gen_binary (AND, mode,
4949 dest, negmask),
4950 or_mask));
4953 SUBST (SET_DEST (x), dest);
4955 split = find_split_point (&SET_SRC (x), insn, true);
4956 if (split && split != &SET_SRC (x))
4957 return split;
4960 /* Otherwise, see if this is an operation that we can split into two.
4961 If so, try to split that. */
4962 code = GET_CODE (SET_SRC (x));
4964 switch (code)
4966 case AND:
4967 /* If we are AND'ing with a large constant that is only a single
4968 bit and the result is only being used in a context where we
4969 need to know if it is zero or nonzero, replace it with a bit
4970 extraction. This will avoid the large constant, which might
4971 have taken more than one insn to make. If the constant were
4972 not a valid argument to the AND but took only one insn to make,
4973 this is no worse, but if it took more than one insn, it will
4974 be better. */
4976 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4977 && REG_P (XEXP (SET_SRC (x), 0))
4978 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4979 && REG_P (SET_DEST (x))
4980 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4981 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4982 && XEXP (*split, 0) == SET_DEST (x)
4983 && XEXP (*split, 1) == const0_rtx)
4985 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4986 XEXP (SET_SRC (x), 0),
4987 pos, NULL_RTX, 1, 1, 0, 0);
4988 if (extraction != 0)
4990 SUBST (SET_SRC (x), extraction);
4991 return find_split_point (loc, insn, false);
4994 break;
4996 case NE:
4997 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4998 is known to be on, this can be converted into a NEG of a shift. */
4999 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5000 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5001 && 1 <= (pos = exact_log2
5002 (nonzero_bits (XEXP (SET_SRC (x), 0),
5003 GET_MODE (XEXP (SET_SRC (x), 0))))))
5005 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5007 SUBST (SET_SRC (x),
5008 gen_rtx_NEG (mode,
5009 gen_rtx_LSHIFTRT (mode,
5010 XEXP (SET_SRC (x), 0),
5011 GEN_INT (pos))));
5013 split = find_split_point (&SET_SRC (x), insn, true);
5014 if (split && split != &SET_SRC (x))
5015 return split;
5017 break;
5019 case SIGN_EXTEND:
5020 inner = XEXP (SET_SRC (x), 0);
5022 /* We can't optimize if either mode is a partial integer
5023 mode as we don't know how many bits are significant
5024 in those modes. */
5025 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5026 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5027 break;
5029 pos = 0;
5030 len = GET_MODE_PRECISION (GET_MODE (inner));
5031 unsignedp = 0;
5032 break;
5034 case SIGN_EXTRACT:
5035 case ZERO_EXTRACT:
5036 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5037 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5039 inner = XEXP (SET_SRC (x), 0);
5040 len = INTVAL (XEXP (SET_SRC (x), 1));
5041 pos = INTVAL (XEXP (SET_SRC (x), 2));
5043 if (BITS_BIG_ENDIAN)
5044 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5045 unsignedp = (code == ZERO_EXTRACT);
5047 break;
5049 default:
5050 break;
5053 if (len && pos >= 0
5054 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5056 machine_mode mode = GET_MODE (SET_SRC (x));
5058 /* For unsigned, we have a choice of a shift followed by an
5059 AND or two shifts. Use two shifts for field sizes where the
5060 constant might be too large. We assume here that we can
5061 always at least get 8-bit constants in an AND insn, which is
5062 true for every current RISC. */
5064 if (unsignedp && len <= 8)
5066 unsigned HOST_WIDE_INT mask
5067 = (HOST_WIDE_INT_1U << len) - 1;
5068 SUBST (SET_SRC (x),
5069 gen_rtx_AND (mode,
5070 gen_rtx_LSHIFTRT
5071 (mode, gen_lowpart (mode, inner),
5072 GEN_INT (pos)),
5073 gen_int_mode (mask, mode)));
5075 split = find_split_point (&SET_SRC (x), insn, true);
5076 if (split && split != &SET_SRC (x))
5077 return split;
5079 else
5081 SUBST (SET_SRC (x),
5082 gen_rtx_fmt_ee
5083 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5084 gen_rtx_ASHIFT (mode,
5085 gen_lowpart (mode, inner),
5086 GEN_INT (GET_MODE_PRECISION (mode)
5087 - len - pos)),
5088 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5090 split = find_split_point (&SET_SRC (x), insn, true);
5091 if (split && split != &SET_SRC (x))
5092 return split;
5096 /* See if this is a simple operation with a constant as the second
5097 operand. It might be that this constant is out of range and hence
5098 could be used as a split point. */
5099 if (BINARY_P (SET_SRC (x))
5100 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5101 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5102 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5103 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5104 return &XEXP (SET_SRC (x), 1);
5106 /* Finally, see if this is a simple operation with its first operand
5107 not in a register. The operation might require this operand in a
5108 register, so return it as a split point. We can always do this
5109 because if the first operand were another operation, we would have
5110 already found it as a split point. */
5111 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5112 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5113 return &XEXP (SET_SRC (x), 0);
5115 return 0;
5117 case AND:
5118 case IOR:
5119 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5120 it is better to write this as (not (ior A B)) so we can split it.
5121 Similarly for IOR. */
5122 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5124 SUBST (*loc,
5125 gen_rtx_NOT (GET_MODE (x),
5126 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5127 GET_MODE (x),
5128 XEXP (XEXP (x, 0), 0),
5129 XEXP (XEXP (x, 1), 0))));
5130 return find_split_point (loc, insn, set_src);
5133 /* Many RISC machines have a large set of logical insns. If the
5134 second operand is a NOT, put it first so we will try to split the
5135 other operand first. */
5136 if (GET_CODE (XEXP (x, 1)) == NOT)
5138 rtx tem = XEXP (x, 0);
5139 SUBST (XEXP (x, 0), XEXP (x, 1));
5140 SUBST (XEXP (x, 1), tem);
5142 break;
5144 case PLUS:
5145 case MINUS:
5146 /* Canonicalization can produce (minus A (mult B C)), where C is a
5147 constant. It may be better to try splitting (plus (mult B -C) A)
5148 instead if this isn't a multiply by a power of two. */
5149 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5150 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5151 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5153 machine_mode mode = GET_MODE (x);
5154 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5155 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5156 SUBST (*loc, gen_rtx_PLUS (mode,
5157 gen_rtx_MULT (mode,
5158 XEXP (XEXP (x, 1), 0),
5159 gen_int_mode (other_int,
5160 mode)),
5161 XEXP (x, 0)));
5162 return find_split_point (loc, insn, set_src);
5165 /* Split at a multiply-accumulate instruction. However if this is
5166 the SET_SRC, we likely do not have such an instruction and it's
5167 worthless to try this split. */
5168 if (!set_src
5169 && (GET_CODE (XEXP (x, 0)) == MULT
5170 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5171 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5172 return loc;
5174 default:
5175 break;
5178 /* Otherwise, select our actions depending on our rtx class. */
5179 switch (GET_RTX_CLASS (code))
5181 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5182 case RTX_TERNARY:
5183 split = find_split_point (&XEXP (x, 2), insn, false);
5184 if (split)
5185 return split;
5186 /* fall through */
5187 case RTX_BIN_ARITH:
5188 case RTX_COMM_ARITH:
5189 case RTX_COMPARE:
5190 case RTX_COMM_COMPARE:
5191 split = find_split_point (&XEXP (x, 1), insn, false);
5192 if (split)
5193 return split;
5194 /* fall through */
5195 case RTX_UNARY:
5196 /* Some machines have (and (shift ...) ...) insns. If X is not
5197 an AND, but XEXP (X, 0) is, use it as our split point. */
5198 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5199 return &XEXP (x, 0);
5201 split = find_split_point (&XEXP (x, 0), insn, false);
5202 if (split)
5203 return split;
5204 return loc;
5206 default:
5207 /* Otherwise, we don't have a split point. */
5208 return 0;
5212 /* Throughout X, replace FROM with TO, and return the result.
5213 The result is TO if X is FROM;
5214 otherwise the result is X, but its contents may have been modified.
5215 If they were modified, a record was made in undobuf so that
5216 undo_all will (among other things) return X to its original state.
5218 If the number of changes necessary is too much to record to undo,
5219 the excess changes are not made, so the result is invalid.
5220 The changes already made can still be undone.
5221 undobuf.num_undo is incremented for such changes, so by testing that
5222 the caller can tell whether the result is valid.
5224 `n_occurrences' is incremented each time FROM is replaced.
5226 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5228 IN_COND is nonzero if we are at the top level of a condition.
5230 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5231 by copying if `n_occurrences' is nonzero. */
5233 static rtx
5234 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5236 enum rtx_code code = GET_CODE (x);
5237 machine_mode op0_mode = VOIDmode;
5238 const char *fmt;
5239 int len, i;
5240 rtx new_rtx;
5242 /* Two expressions are equal if they are identical copies of a shared
5243 RTX or if they are both registers with the same register number
5244 and mode. */
5246 #define COMBINE_RTX_EQUAL_P(X,Y) \
5247 ((X) == (Y) \
5248 || (REG_P (X) && REG_P (Y) \
5249 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5251 /* Do not substitute into clobbers of regs -- this will never result in
5252 valid RTL. */
5253 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5254 return x;
5256 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5258 n_occurrences++;
5259 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5262 /* If X and FROM are the same register but different modes, they
5263 will not have been seen as equal above. However, the log links code
5264 will make a LOG_LINKS entry for that case. If we do nothing, we
5265 will try to rerecognize our original insn and, when it succeeds,
5266 we will delete the feeding insn, which is incorrect.
5268 So force this insn not to match in this (rare) case. */
5269 if (! in_dest && code == REG && REG_P (from)
5270 && reg_overlap_mentioned_p (x, from))
5271 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5273 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5274 of which may contain things that can be combined. */
5275 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5276 return x;
5278 /* It is possible to have a subexpression appear twice in the insn.
5279 Suppose that FROM is a register that appears within TO.
5280 Then, after that subexpression has been scanned once by `subst',
5281 the second time it is scanned, TO may be found. If we were
5282 to scan TO here, we would find FROM within it and create a
5283 self-referent rtl structure which is completely wrong. */
5284 if (COMBINE_RTX_EQUAL_P (x, to))
5285 return to;
5287 /* Parallel asm_operands need special attention because all of the
5288 inputs are shared across the arms. Furthermore, unsharing the
5289 rtl results in recognition failures. Failure to handle this case
5290 specially can result in circular rtl.
5292 Solve this by doing a normal pass across the first entry of the
5293 parallel, and only processing the SET_DESTs of the subsequent
5294 entries. Ug. */
5296 if (code == PARALLEL
5297 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5298 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5300 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5302 /* If this substitution failed, this whole thing fails. */
5303 if (GET_CODE (new_rtx) == CLOBBER
5304 && XEXP (new_rtx, 0) == const0_rtx)
5305 return new_rtx;
5307 SUBST (XVECEXP (x, 0, 0), new_rtx);
5309 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5311 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5313 if (!REG_P (dest)
5314 && GET_CODE (dest) != CC0
5315 && GET_CODE (dest) != PC)
5317 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5319 /* If this substitution failed, this whole thing fails. */
5320 if (GET_CODE (new_rtx) == CLOBBER
5321 && XEXP (new_rtx, 0) == const0_rtx)
5322 return new_rtx;
5324 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5328 else
5330 len = GET_RTX_LENGTH (code);
5331 fmt = GET_RTX_FORMAT (code);
5333 /* We don't need to process a SET_DEST that is a register, CC0,
5334 or PC, so set up to skip this common case. All other cases
5335 where we want to suppress replacing something inside a
5336 SET_SRC are handled via the IN_DEST operand. */
5337 if (code == SET
5338 && (REG_P (SET_DEST (x))
5339 || GET_CODE (SET_DEST (x)) == CC0
5340 || GET_CODE (SET_DEST (x)) == PC))
5341 fmt = "ie";
5343 /* Trying to simplify the operands of a widening MULT is not likely
5344 to create RTL matching a machine insn. */
5345 if (code == MULT
5346 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5347 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5348 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5349 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5350 && REG_P (XEXP (XEXP (x, 0), 0))
5351 && REG_P (XEXP (XEXP (x, 1), 0))
5352 && from == to)
5353 return x;
5356 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5357 constant. */
5358 if (fmt[0] == 'e')
5359 op0_mode = GET_MODE (XEXP (x, 0));
5361 for (i = 0; i < len; i++)
5363 if (fmt[i] == 'E')
5365 int j;
5366 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5368 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5370 new_rtx = (unique_copy && n_occurrences
5371 ? copy_rtx (to) : to);
5372 n_occurrences++;
5374 else
5376 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5377 unique_copy);
5379 /* If this substitution failed, this whole thing
5380 fails. */
5381 if (GET_CODE (new_rtx) == CLOBBER
5382 && XEXP (new_rtx, 0) == const0_rtx)
5383 return new_rtx;
5386 SUBST (XVECEXP (x, i, j), new_rtx);
5389 else if (fmt[i] == 'e')
5391 /* If this is a register being set, ignore it. */
5392 new_rtx = XEXP (x, i);
5393 if (in_dest
5394 && i == 0
5395 && (((code == SUBREG || code == ZERO_EXTRACT)
5396 && REG_P (new_rtx))
5397 || code == STRICT_LOW_PART))
5400 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5402 /* In general, don't install a subreg involving two
5403 modes not tieable. It can worsen register
5404 allocation, and can even make invalid reload
5405 insns, since the reg inside may need to be copied
5406 from in the outside mode, and that may be invalid
5407 if it is an fp reg copied in integer mode.
5409 We allow two exceptions to this: It is valid if
5410 it is inside another SUBREG and the mode of that
5411 SUBREG and the mode of the inside of TO is
5412 tieable and it is valid if X is a SET that copies
5413 FROM to CC0. */
5415 if (GET_CODE (to) == SUBREG
5416 && ! MODES_TIEABLE_P (GET_MODE (to),
5417 GET_MODE (SUBREG_REG (to)))
5418 && ! (code == SUBREG
5419 && MODES_TIEABLE_P (GET_MODE (x),
5420 GET_MODE (SUBREG_REG (to))))
5421 && (!HAVE_cc0
5422 || (! (code == SET
5423 && i == 1
5424 && XEXP (x, 0) == cc0_rtx))))
5425 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5427 if (code == SUBREG
5428 && REG_P (to)
5429 && REGNO (to) < FIRST_PSEUDO_REGISTER
5430 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5431 SUBREG_BYTE (x),
5432 GET_MODE (x)) < 0)
5433 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5435 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5436 n_occurrences++;
5438 else
5439 /* If we are in a SET_DEST, suppress most cases unless we
5440 have gone inside a MEM, in which case we want to
5441 simplify the address. We assume here that things that
5442 are actually part of the destination have their inner
5443 parts in the first expression. This is true for SUBREG,
5444 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5445 things aside from REG and MEM that should appear in a
5446 SET_DEST. */
5447 new_rtx = subst (XEXP (x, i), from, to,
5448 (((in_dest
5449 && (code == SUBREG || code == STRICT_LOW_PART
5450 || code == ZERO_EXTRACT))
5451 || code == SET)
5452 && i == 0),
5453 code == IF_THEN_ELSE && i == 0,
5454 unique_copy);
5456 /* If we found that we will have to reject this combination,
5457 indicate that by returning the CLOBBER ourselves, rather than
5458 an expression containing it. This will speed things up as
5459 well as prevent accidents where two CLOBBERs are considered
5460 to be equal, thus producing an incorrect simplification. */
5462 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5463 return new_rtx;
5465 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5467 machine_mode mode = GET_MODE (x);
5469 x = simplify_subreg (GET_MODE (x), new_rtx,
5470 GET_MODE (SUBREG_REG (x)),
5471 SUBREG_BYTE (x));
5472 if (! x)
5473 x = gen_rtx_CLOBBER (mode, const0_rtx);
5475 else if (CONST_SCALAR_INT_P (new_rtx)
5476 && GET_CODE (x) == ZERO_EXTEND)
5478 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5479 new_rtx, GET_MODE (XEXP (x, 0)));
5480 gcc_assert (x);
5482 else
5483 SUBST (XEXP (x, i), new_rtx);
5488 /* Check if we are loading something from the constant pool via float
5489 extension; in this case we would undo compress_float_constant
5490 optimization and degenerate constant load to an immediate value. */
5491 if (GET_CODE (x) == FLOAT_EXTEND
5492 && MEM_P (XEXP (x, 0))
5493 && MEM_READONLY_P (XEXP (x, 0)))
5495 rtx tmp = avoid_constant_pool_reference (x);
5496 if (x != tmp)
5497 return x;
5500 /* Try to simplify X. If the simplification changed the code, it is likely
5501 that further simplification will help, so loop, but limit the number
5502 of repetitions that will be performed. */
5504 for (i = 0; i < 4; i++)
5506 /* If X is sufficiently simple, don't bother trying to do anything
5507 with it. */
5508 if (code != CONST_INT && code != REG && code != CLOBBER)
5509 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5511 if (GET_CODE (x) == code)
5512 break;
5514 code = GET_CODE (x);
5516 /* We no longer know the original mode of operand 0 since we
5517 have changed the form of X) */
5518 op0_mode = VOIDmode;
5521 return x;
5524 /* If X is a commutative operation whose operands are not in the canonical
5525 order, use substitutions to swap them. */
5527 static void
5528 maybe_swap_commutative_operands (rtx x)
5530 if (COMMUTATIVE_ARITH_P (x)
5531 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5533 rtx temp = XEXP (x, 0);
5534 SUBST (XEXP (x, 0), XEXP (x, 1));
5535 SUBST (XEXP (x, 1), temp);
5539 /* Simplify X, a piece of RTL. We just operate on the expression at the
5540 outer level; call `subst' to simplify recursively. Return the new
5541 expression.
5543 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5544 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5545 of a condition. */
5547 static rtx
5548 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5549 int in_cond)
5551 enum rtx_code code = GET_CODE (x);
5552 machine_mode mode = GET_MODE (x);
5553 rtx temp;
5554 int i;
5556 /* If this is a commutative operation, put a constant last and a complex
5557 expression first. We don't need to do this for comparisons here. */
5558 maybe_swap_commutative_operands (x);
5560 /* Try to fold this expression in case we have constants that weren't
5561 present before. */
5562 temp = 0;
5563 switch (GET_RTX_CLASS (code))
5565 case RTX_UNARY:
5566 if (op0_mode == VOIDmode)
5567 op0_mode = GET_MODE (XEXP (x, 0));
5568 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5569 break;
5570 case RTX_COMPARE:
5571 case RTX_COMM_COMPARE:
5573 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5574 if (cmp_mode == VOIDmode)
5576 cmp_mode = GET_MODE (XEXP (x, 1));
5577 if (cmp_mode == VOIDmode)
5578 cmp_mode = op0_mode;
5580 temp = simplify_relational_operation (code, mode, cmp_mode,
5581 XEXP (x, 0), XEXP (x, 1));
5583 break;
5584 case RTX_COMM_ARITH:
5585 case RTX_BIN_ARITH:
5586 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5587 break;
5588 case RTX_BITFIELD_OPS:
5589 case RTX_TERNARY:
5590 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5591 XEXP (x, 1), XEXP (x, 2));
5592 break;
5593 default:
5594 break;
5597 if (temp)
5599 x = temp;
5600 code = GET_CODE (temp);
5601 op0_mode = VOIDmode;
5602 mode = GET_MODE (temp);
5605 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5606 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5607 things. Check for cases where both arms are testing the same
5608 condition.
5610 Don't do anything if all operands are very simple. */
5612 if ((BINARY_P (x)
5613 && ((!OBJECT_P (XEXP (x, 0))
5614 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5615 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5616 || (!OBJECT_P (XEXP (x, 1))
5617 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5618 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5619 || (UNARY_P (x)
5620 && (!OBJECT_P (XEXP (x, 0))
5621 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5622 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5624 rtx cond, true_rtx, false_rtx;
5626 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5627 if (cond != 0
5628 /* If everything is a comparison, what we have is highly unlikely
5629 to be simpler, so don't use it. */
5630 && ! (COMPARISON_P (x)
5631 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5633 rtx cop1 = const0_rtx;
5634 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5636 if (cond_code == NE && COMPARISON_P (cond))
5637 return x;
5639 /* Simplify the alternative arms; this may collapse the true and
5640 false arms to store-flag values. Be careful to use copy_rtx
5641 here since true_rtx or false_rtx might share RTL with x as a
5642 result of the if_then_else_cond call above. */
5643 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5644 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5646 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5647 is unlikely to be simpler. */
5648 if (general_operand (true_rtx, VOIDmode)
5649 && general_operand (false_rtx, VOIDmode))
5651 enum rtx_code reversed;
5653 /* Restarting if we generate a store-flag expression will cause
5654 us to loop. Just drop through in this case. */
5656 /* If the result values are STORE_FLAG_VALUE and zero, we can
5657 just make the comparison operation. */
5658 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5659 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5660 cond, cop1);
5661 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5662 && ((reversed = reversed_comparison_code_parts
5663 (cond_code, cond, cop1, NULL))
5664 != UNKNOWN))
5665 x = simplify_gen_relational (reversed, mode, VOIDmode,
5666 cond, cop1);
5668 /* Likewise, we can make the negate of a comparison operation
5669 if the result values are - STORE_FLAG_VALUE and zero. */
5670 else if (CONST_INT_P (true_rtx)
5671 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5672 && false_rtx == const0_rtx)
5673 x = simplify_gen_unary (NEG, mode,
5674 simplify_gen_relational (cond_code,
5675 mode, VOIDmode,
5676 cond, cop1),
5677 mode);
5678 else if (CONST_INT_P (false_rtx)
5679 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5680 && true_rtx == const0_rtx
5681 && ((reversed = reversed_comparison_code_parts
5682 (cond_code, cond, cop1, NULL))
5683 != UNKNOWN))
5684 x = simplify_gen_unary (NEG, mode,
5685 simplify_gen_relational (reversed,
5686 mode, VOIDmode,
5687 cond, cop1),
5688 mode);
5689 else
5690 return gen_rtx_IF_THEN_ELSE (mode,
5691 simplify_gen_relational (cond_code,
5692 mode,
5693 VOIDmode,
5694 cond,
5695 cop1),
5696 true_rtx, false_rtx);
5698 code = GET_CODE (x);
5699 op0_mode = VOIDmode;
5704 /* First see if we can apply the inverse distributive law. */
5705 if (code == PLUS || code == MINUS
5706 || code == AND || code == IOR || code == XOR)
5708 x = apply_distributive_law (x);
5709 code = GET_CODE (x);
5710 op0_mode = VOIDmode;
5713 /* If CODE is an associative operation not otherwise handled, see if we
5714 can associate some operands. This can win if they are constants or
5715 if they are logically related (i.e. (a & b) & a). */
5716 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5717 || code == AND || code == IOR || code == XOR
5718 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5719 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5720 || (flag_associative_math && FLOAT_MODE_P (mode))))
5722 if (GET_CODE (XEXP (x, 0)) == code)
5724 rtx other = XEXP (XEXP (x, 0), 0);
5725 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5726 rtx inner_op1 = XEXP (x, 1);
5727 rtx inner;
5729 /* Make sure we pass the constant operand if any as the second
5730 one if this is a commutative operation. */
5731 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5732 std::swap (inner_op0, inner_op1);
5733 inner = simplify_binary_operation (code == MINUS ? PLUS
5734 : code == DIV ? MULT
5735 : code,
5736 mode, inner_op0, inner_op1);
5738 /* For commutative operations, try the other pair if that one
5739 didn't simplify. */
5740 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5742 other = XEXP (XEXP (x, 0), 1);
5743 inner = simplify_binary_operation (code, mode,
5744 XEXP (XEXP (x, 0), 0),
5745 XEXP (x, 1));
5748 if (inner)
5749 return simplify_gen_binary (code, mode, other, inner);
5753 /* A little bit of algebraic simplification here. */
5754 switch (code)
5756 case MEM:
5757 /* Ensure that our address has any ASHIFTs converted to MULT in case
5758 address-recognizing predicates are called later. */
5759 temp = make_compound_operation (XEXP (x, 0), MEM);
5760 SUBST (XEXP (x, 0), temp);
5761 break;
5763 case SUBREG:
5764 if (op0_mode == VOIDmode)
5765 op0_mode = GET_MODE (SUBREG_REG (x));
5767 /* See if this can be moved to simplify_subreg. */
5768 if (CONSTANT_P (SUBREG_REG (x))
5769 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5770 /* Don't call gen_lowpart if the inner mode
5771 is VOIDmode and we cannot simplify it, as SUBREG without
5772 inner mode is invalid. */
5773 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5774 || gen_lowpart_common (mode, SUBREG_REG (x))))
5775 return gen_lowpart (mode, SUBREG_REG (x));
5777 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5778 break;
5780 rtx temp;
5781 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5782 SUBREG_BYTE (x));
5783 if (temp)
5784 return temp;
5786 /* If op is known to have all lower bits zero, the result is zero. */
5787 if (!in_dest
5788 && SCALAR_INT_MODE_P (mode)
5789 && SCALAR_INT_MODE_P (op0_mode)
5790 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5791 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5792 && HWI_COMPUTABLE_MODE_P (op0_mode)
5793 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5794 & GET_MODE_MASK (mode)) == 0)
5795 return CONST0_RTX (mode);
5798 /* Don't change the mode of the MEM if that would change the meaning
5799 of the address. */
5800 if (MEM_P (SUBREG_REG (x))
5801 && (MEM_VOLATILE_P (SUBREG_REG (x))
5802 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5803 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5804 return gen_rtx_CLOBBER (mode, const0_rtx);
5806 /* Note that we cannot do any narrowing for non-constants since
5807 we might have been counting on using the fact that some bits were
5808 zero. We now do this in the SET. */
5810 break;
5812 case NEG:
5813 temp = expand_compound_operation (XEXP (x, 0));
5815 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5816 replaced by (lshiftrt X C). This will convert
5817 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5819 if (GET_CODE (temp) == ASHIFTRT
5820 && CONST_INT_P (XEXP (temp, 1))
5821 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5822 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5823 INTVAL (XEXP (temp, 1)));
5825 /* If X has only a single bit that might be nonzero, say, bit I, convert
5826 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5827 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5828 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5829 or a SUBREG of one since we'd be making the expression more
5830 complex if it was just a register. */
5832 if (!REG_P (temp)
5833 && ! (GET_CODE (temp) == SUBREG
5834 && REG_P (SUBREG_REG (temp)))
5835 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5837 rtx temp1 = simplify_shift_const
5838 (NULL_RTX, ASHIFTRT, mode,
5839 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5840 GET_MODE_PRECISION (mode) - 1 - i),
5841 GET_MODE_PRECISION (mode) - 1 - i);
5843 /* If all we did was surround TEMP with the two shifts, we
5844 haven't improved anything, so don't use it. Otherwise,
5845 we are better off with TEMP1. */
5846 if (GET_CODE (temp1) != ASHIFTRT
5847 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5848 || XEXP (XEXP (temp1, 0), 0) != temp)
5849 return temp1;
5851 break;
5853 case TRUNCATE:
5854 /* We can't handle truncation to a partial integer mode here
5855 because we don't know the real bitsize of the partial
5856 integer mode. */
5857 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5858 break;
5860 if (HWI_COMPUTABLE_MODE_P (mode))
5861 SUBST (XEXP (x, 0),
5862 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5863 GET_MODE_MASK (mode), 0));
5865 /* We can truncate a constant value and return it. */
5866 if (CONST_INT_P (XEXP (x, 0)))
5867 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5869 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5870 whose value is a comparison can be replaced with a subreg if
5871 STORE_FLAG_VALUE permits. */
5872 if (HWI_COMPUTABLE_MODE_P (mode)
5873 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5874 && (temp = get_last_value (XEXP (x, 0)))
5875 && COMPARISON_P (temp))
5876 return gen_lowpart (mode, XEXP (x, 0));
5877 break;
5879 case CONST:
5880 /* (const (const X)) can become (const X). Do it this way rather than
5881 returning the inner CONST since CONST can be shared with a
5882 REG_EQUAL note. */
5883 if (GET_CODE (XEXP (x, 0)) == CONST)
5884 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5885 break;
5887 case LO_SUM:
5888 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5889 can add in an offset. find_split_point will split this address up
5890 again if it doesn't match. */
5891 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5892 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5893 return XEXP (x, 1);
5894 break;
5896 case PLUS:
5897 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5898 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5899 bit-field and can be replaced by either a sign_extend or a
5900 sign_extract. The `and' may be a zero_extend and the two
5901 <c>, -<c> constants may be reversed. */
5902 if (GET_CODE (XEXP (x, 0)) == XOR
5903 && CONST_INT_P (XEXP (x, 1))
5904 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5905 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5906 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5907 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5908 && HWI_COMPUTABLE_MODE_P (mode)
5909 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5910 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5911 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5912 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5913 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5914 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5915 == (unsigned int) i + 1))))
5916 return simplify_shift_const
5917 (NULL_RTX, ASHIFTRT, mode,
5918 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5919 XEXP (XEXP (XEXP (x, 0), 0), 0),
5920 GET_MODE_PRECISION (mode) - (i + 1)),
5921 GET_MODE_PRECISION (mode) - (i + 1));
5923 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5924 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5925 the bitsize of the mode - 1. This allows simplification of
5926 "a = (b & 8) == 0;" */
5927 if (XEXP (x, 1) == constm1_rtx
5928 && !REG_P (XEXP (x, 0))
5929 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5930 && REG_P (SUBREG_REG (XEXP (x, 0))))
5931 && nonzero_bits (XEXP (x, 0), mode) == 1)
5932 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5933 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5934 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5935 GET_MODE_PRECISION (mode) - 1),
5936 GET_MODE_PRECISION (mode) - 1);
5938 /* If we are adding two things that have no bits in common, convert
5939 the addition into an IOR. This will often be further simplified,
5940 for example in cases like ((a & 1) + (a & 2)), which can
5941 become a & 3. */
5943 if (HWI_COMPUTABLE_MODE_P (mode)
5944 && (nonzero_bits (XEXP (x, 0), mode)
5945 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5947 /* Try to simplify the expression further. */
5948 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5949 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5951 /* If we could, great. If not, do not go ahead with the IOR
5952 replacement, since PLUS appears in many special purpose
5953 address arithmetic instructions. */
5954 if (GET_CODE (temp) != CLOBBER
5955 && (GET_CODE (temp) != IOR
5956 || ((XEXP (temp, 0) != XEXP (x, 0)
5957 || XEXP (temp, 1) != XEXP (x, 1))
5958 && (XEXP (temp, 0) != XEXP (x, 1)
5959 || XEXP (temp, 1) != XEXP (x, 0)))))
5960 return temp;
5963 /* Canonicalize x + x into x << 1. */
5964 if (GET_MODE_CLASS (mode) == MODE_INT
5965 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5966 && !side_effects_p (XEXP (x, 0)))
5967 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5969 break;
5971 case MINUS:
5972 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5973 (and <foo> (const_int pow2-1)) */
5974 if (GET_CODE (XEXP (x, 1)) == AND
5975 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5976 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5977 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5978 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5979 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5980 break;
5982 case MULT:
5983 /* If we have (mult (plus A B) C), apply the distributive law and then
5984 the inverse distributive law to see if things simplify. This
5985 occurs mostly in addresses, often when unrolling loops. */
5987 if (GET_CODE (XEXP (x, 0)) == PLUS)
5989 rtx result = distribute_and_simplify_rtx (x, 0);
5990 if (result)
5991 return result;
5994 /* Try simplify a*(b/c) as (a*b)/c. */
5995 if (FLOAT_MODE_P (mode) && flag_associative_math
5996 && GET_CODE (XEXP (x, 0)) == DIV)
5998 rtx tem = simplify_binary_operation (MULT, mode,
5999 XEXP (XEXP (x, 0), 0),
6000 XEXP (x, 1));
6001 if (tem)
6002 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6004 break;
6006 case UDIV:
6007 /* If this is a divide by a power of two, treat it as a shift if
6008 its first operand is a shift. */
6009 if (CONST_INT_P (XEXP (x, 1))
6010 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6011 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6012 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6013 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6014 || GET_CODE (XEXP (x, 0)) == ROTATE
6015 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6016 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6017 break;
6019 case EQ: case NE:
6020 case GT: case GTU: case GE: case GEU:
6021 case LT: case LTU: case LE: case LEU:
6022 case UNEQ: case LTGT:
6023 case UNGT: case UNGE:
6024 case UNLT: case UNLE:
6025 case UNORDERED: case ORDERED:
6026 /* If the first operand is a condition code, we can't do anything
6027 with it. */
6028 if (GET_CODE (XEXP (x, 0)) == COMPARE
6029 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6030 && ! CC0_P (XEXP (x, 0))))
6032 rtx op0 = XEXP (x, 0);
6033 rtx op1 = XEXP (x, 1);
6034 enum rtx_code new_code;
6036 if (GET_CODE (op0) == COMPARE)
6037 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6039 /* Simplify our comparison, if possible. */
6040 new_code = simplify_comparison (code, &op0, &op1);
6042 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6043 if only the low-order bit is possibly nonzero in X (such as when
6044 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6045 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6046 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6047 (plus X 1).
6049 Remove any ZERO_EXTRACT we made when thinking this was a
6050 comparison. It may now be simpler to use, e.g., an AND. If a
6051 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6052 the call to make_compound_operation in the SET case.
6054 Don't apply these optimizations if the caller would
6055 prefer a comparison rather than a value.
6056 E.g., for the condition in an IF_THEN_ELSE most targets need
6057 an explicit comparison. */
6059 if (in_cond)
6062 else if (STORE_FLAG_VALUE == 1
6063 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6064 && op1 == const0_rtx
6065 && mode == GET_MODE (op0)
6066 && nonzero_bits (op0, mode) == 1)
6067 return gen_lowpart (mode,
6068 expand_compound_operation (op0));
6070 else if (STORE_FLAG_VALUE == 1
6071 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6072 && op1 == const0_rtx
6073 && mode == GET_MODE (op0)
6074 && (num_sign_bit_copies (op0, mode)
6075 == GET_MODE_PRECISION (mode)))
6077 op0 = expand_compound_operation (op0);
6078 return simplify_gen_unary (NEG, mode,
6079 gen_lowpart (mode, op0),
6080 mode);
6083 else if (STORE_FLAG_VALUE == 1
6084 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6085 && op1 == const0_rtx
6086 && mode == GET_MODE (op0)
6087 && nonzero_bits (op0, mode) == 1)
6089 op0 = expand_compound_operation (op0);
6090 return simplify_gen_binary (XOR, mode,
6091 gen_lowpart (mode, op0),
6092 const1_rtx);
6095 else if (STORE_FLAG_VALUE == 1
6096 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6097 && op1 == const0_rtx
6098 && mode == GET_MODE (op0)
6099 && (num_sign_bit_copies (op0, mode)
6100 == GET_MODE_PRECISION (mode)))
6102 op0 = expand_compound_operation (op0);
6103 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6106 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6107 those above. */
6108 if (in_cond)
6111 else if (STORE_FLAG_VALUE == -1
6112 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6113 && op1 == const0_rtx
6114 && mode == GET_MODE (op0)
6115 && (num_sign_bit_copies (op0, mode)
6116 == GET_MODE_PRECISION (mode)))
6117 return gen_lowpart (mode,
6118 expand_compound_operation (op0));
6120 else if (STORE_FLAG_VALUE == -1
6121 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6122 && op1 == const0_rtx
6123 && mode == GET_MODE (op0)
6124 && nonzero_bits (op0, mode) == 1)
6126 op0 = expand_compound_operation (op0);
6127 return simplify_gen_unary (NEG, mode,
6128 gen_lowpart (mode, op0),
6129 mode);
6132 else if (STORE_FLAG_VALUE == -1
6133 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6134 && op1 == const0_rtx
6135 && mode == GET_MODE (op0)
6136 && (num_sign_bit_copies (op0, mode)
6137 == GET_MODE_PRECISION (mode)))
6139 op0 = expand_compound_operation (op0);
6140 return simplify_gen_unary (NOT, mode,
6141 gen_lowpart (mode, op0),
6142 mode);
6145 /* If X is 0/1, (eq X 0) is X-1. */
6146 else if (STORE_FLAG_VALUE == -1
6147 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6148 && op1 == const0_rtx
6149 && mode == GET_MODE (op0)
6150 && nonzero_bits (op0, mode) == 1)
6152 op0 = expand_compound_operation (op0);
6153 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6156 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6157 one bit that might be nonzero, we can convert (ne x 0) to
6158 (ashift x c) where C puts the bit in the sign bit. Remove any
6159 AND with STORE_FLAG_VALUE when we are done, since we are only
6160 going to test the sign bit. */
6161 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6162 && HWI_COMPUTABLE_MODE_P (mode)
6163 && val_signbit_p (mode, STORE_FLAG_VALUE)
6164 && op1 == const0_rtx
6165 && mode == GET_MODE (op0)
6166 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6168 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6169 expand_compound_operation (op0),
6170 GET_MODE_PRECISION (mode) - 1 - i);
6171 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6172 return XEXP (x, 0);
6173 else
6174 return x;
6177 /* If the code changed, return a whole new comparison.
6178 We also need to avoid using SUBST in cases where
6179 simplify_comparison has widened a comparison with a CONST_INT,
6180 since in that case the wider CONST_INT may fail the sanity
6181 checks in do_SUBST. */
6182 if (new_code != code
6183 || (CONST_INT_P (op1)
6184 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6185 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6186 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6188 /* Otherwise, keep this operation, but maybe change its operands.
6189 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6190 SUBST (XEXP (x, 0), op0);
6191 SUBST (XEXP (x, 1), op1);
6193 break;
6195 case IF_THEN_ELSE:
6196 return simplify_if_then_else (x);
6198 case ZERO_EXTRACT:
6199 case SIGN_EXTRACT:
6200 case ZERO_EXTEND:
6201 case SIGN_EXTEND:
6202 /* If we are processing SET_DEST, we are done. */
6203 if (in_dest)
6204 return x;
6206 return expand_compound_operation (x);
6208 case SET:
6209 return simplify_set (x);
6211 case AND:
6212 case IOR:
6213 return simplify_logical (x);
6215 case ASHIFT:
6216 case LSHIFTRT:
6217 case ASHIFTRT:
6218 case ROTATE:
6219 case ROTATERT:
6220 /* If this is a shift by a constant amount, simplify it. */
6221 if (CONST_INT_P (XEXP (x, 1)))
6222 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6223 INTVAL (XEXP (x, 1)));
6225 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6226 SUBST (XEXP (x, 1),
6227 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6228 (HOST_WIDE_INT_1U
6229 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6230 - 1,
6231 0));
6232 break;
6234 default:
6235 break;
6238 return x;
6241 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6243 static rtx
6244 simplify_if_then_else (rtx x)
6246 machine_mode mode = GET_MODE (x);
6247 rtx cond = XEXP (x, 0);
6248 rtx true_rtx = XEXP (x, 1);
6249 rtx false_rtx = XEXP (x, 2);
6250 enum rtx_code true_code = GET_CODE (cond);
6251 int comparison_p = COMPARISON_P (cond);
6252 rtx temp;
6253 int i;
6254 enum rtx_code false_code;
6255 rtx reversed;
6257 /* Simplify storing of the truth value. */
6258 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6259 return simplify_gen_relational (true_code, mode, VOIDmode,
6260 XEXP (cond, 0), XEXP (cond, 1));
6262 /* Also when the truth value has to be reversed. */
6263 if (comparison_p
6264 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6265 && (reversed = reversed_comparison (cond, mode)))
6266 return reversed;
6268 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6269 in it is being compared against certain values. Get the true and false
6270 comparisons and see if that says anything about the value of each arm. */
6272 if (comparison_p
6273 && ((false_code = reversed_comparison_code (cond, NULL))
6274 != UNKNOWN)
6275 && REG_P (XEXP (cond, 0)))
6277 HOST_WIDE_INT nzb;
6278 rtx from = XEXP (cond, 0);
6279 rtx true_val = XEXP (cond, 1);
6280 rtx false_val = true_val;
6281 int swapped = 0;
6283 /* If FALSE_CODE is EQ, swap the codes and arms. */
6285 if (false_code == EQ)
6287 swapped = 1, true_code = EQ, false_code = NE;
6288 std::swap (true_rtx, false_rtx);
6291 /* If we are comparing against zero and the expression being tested has
6292 only a single bit that might be nonzero, that is its value when it is
6293 not equal to zero. Similarly if it is known to be -1 or 0. */
6295 if (true_code == EQ && true_val == const0_rtx
6296 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6298 false_code = EQ;
6299 false_val = gen_int_mode (nzb, GET_MODE (from));
6301 else if (true_code == EQ && true_val == const0_rtx
6302 && (num_sign_bit_copies (from, GET_MODE (from))
6303 == GET_MODE_PRECISION (GET_MODE (from))))
6305 false_code = EQ;
6306 false_val = constm1_rtx;
6309 /* Now simplify an arm if we know the value of the register in the
6310 branch and it is used in the arm. Be careful due to the potential
6311 of locally-shared RTL. */
6313 if (reg_mentioned_p (from, true_rtx))
6314 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6315 from, true_val),
6316 pc_rtx, pc_rtx, 0, 0, 0);
6317 if (reg_mentioned_p (from, false_rtx))
6318 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6319 from, false_val),
6320 pc_rtx, pc_rtx, 0, 0, 0);
6322 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6323 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6325 true_rtx = XEXP (x, 1);
6326 false_rtx = XEXP (x, 2);
6327 true_code = GET_CODE (cond);
6330 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6331 reversed, do so to avoid needing two sets of patterns for
6332 subtract-and-branch insns. Similarly if we have a constant in the true
6333 arm, the false arm is the same as the first operand of the comparison, or
6334 the false arm is more complicated than the true arm. */
6336 if (comparison_p
6337 && reversed_comparison_code (cond, NULL) != UNKNOWN
6338 && (true_rtx == pc_rtx
6339 || (CONSTANT_P (true_rtx)
6340 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6341 || true_rtx == const0_rtx
6342 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6343 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6344 && !OBJECT_P (false_rtx))
6345 || reg_mentioned_p (true_rtx, false_rtx)
6346 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6348 true_code = reversed_comparison_code (cond, NULL);
6349 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6350 SUBST (XEXP (x, 1), false_rtx);
6351 SUBST (XEXP (x, 2), true_rtx);
6353 std::swap (true_rtx, false_rtx);
6354 cond = XEXP (x, 0);
6356 /* It is possible that the conditional has been simplified out. */
6357 true_code = GET_CODE (cond);
6358 comparison_p = COMPARISON_P (cond);
6361 /* If the two arms are identical, we don't need the comparison. */
6363 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6364 return true_rtx;
6366 /* Convert a == b ? b : a to "a". */
6367 if (true_code == EQ && ! side_effects_p (cond)
6368 && !HONOR_NANS (mode)
6369 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6370 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6371 return false_rtx;
6372 else if (true_code == NE && ! side_effects_p (cond)
6373 && !HONOR_NANS (mode)
6374 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6375 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6376 return true_rtx;
6378 /* Look for cases where we have (abs x) or (neg (abs X)). */
6380 if (GET_MODE_CLASS (mode) == MODE_INT
6381 && comparison_p
6382 && XEXP (cond, 1) == const0_rtx
6383 && GET_CODE (false_rtx) == NEG
6384 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6385 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6386 && ! side_effects_p (true_rtx))
6387 switch (true_code)
6389 case GT:
6390 case GE:
6391 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6392 case LT:
6393 case LE:
6394 return
6395 simplify_gen_unary (NEG, mode,
6396 simplify_gen_unary (ABS, mode, true_rtx, mode),
6397 mode);
6398 default:
6399 break;
6402 /* Look for MIN or MAX. */
6404 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6405 && comparison_p
6406 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6407 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6408 && ! side_effects_p (cond))
6409 switch (true_code)
6411 case GE:
6412 case GT:
6413 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6414 case LE:
6415 case LT:
6416 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6417 case GEU:
6418 case GTU:
6419 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6420 case LEU:
6421 case LTU:
6422 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6423 default:
6424 break;
6427 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6428 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6429 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6430 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6431 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6432 neither 1 or -1, but it isn't worth checking for. */
6434 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6435 && comparison_p
6436 && GET_MODE_CLASS (mode) == MODE_INT
6437 && ! side_effects_p (x))
6439 rtx t = make_compound_operation (true_rtx, SET);
6440 rtx f = make_compound_operation (false_rtx, SET);
6441 rtx cond_op0 = XEXP (cond, 0);
6442 rtx cond_op1 = XEXP (cond, 1);
6443 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6444 machine_mode m = mode;
6445 rtx z = 0, c1 = NULL_RTX;
6447 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6448 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6449 || GET_CODE (t) == ASHIFT
6450 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6451 && rtx_equal_p (XEXP (t, 0), f))
6452 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6454 /* If an identity-zero op is commutative, check whether there
6455 would be a match if we swapped the operands. */
6456 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6457 || GET_CODE (t) == XOR)
6458 && rtx_equal_p (XEXP (t, 1), f))
6459 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6460 else if (GET_CODE (t) == SIGN_EXTEND
6461 && (GET_CODE (XEXP (t, 0)) == PLUS
6462 || GET_CODE (XEXP (t, 0)) == MINUS
6463 || GET_CODE (XEXP (t, 0)) == IOR
6464 || GET_CODE (XEXP (t, 0)) == XOR
6465 || GET_CODE (XEXP (t, 0)) == ASHIFT
6466 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6467 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6468 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6469 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6470 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6471 && (num_sign_bit_copies (f, GET_MODE (f))
6472 > (unsigned int)
6473 (GET_MODE_PRECISION (mode)
6474 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6476 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6477 extend_op = SIGN_EXTEND;
6478 m = GET_MODE (XEXP (t, 0));
6480 else if (GET_CODE (t) == SIGN_EXTEND
6481 && (GET_CODE (XEXP (t, 0)) == PLUS
6482 || GET_CODE (XEXP (t, 0)) == IOR
6483 || GET_CODE (XEXP (t, 0)) == XOR)
6484 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6485 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6486 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6487 && (num_sign_bit_copies (f, GET_MODE (f))
6488 > (unsigned int)
6489 (GET_MODE_PRECISION (mode)
6490 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6492 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6493 extend_op = SIGN_EXTEND;
6494 m = GET_MODE (XEXP (t, 0));
6496 else if (GET_CODE (t) == ZERO_EXTEND
6497 && (GET_CODE (XEXP (t, 0)) == PLUS
6498 || GET_CODE (XEXP (t, 0)) == MINUS
6499 || GET_CODE (XEXP (t, 0)) == IOR
6500 || GET_CODE (XEXP (t, 0)) == XOR
6501 || GET_CODE (XEXP (t, 0)) == ASHIFT
6502 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6503 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6504 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6505 && HWI_COMPUTABLE_MODE_P (mode)
6506 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6507 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6508 && ((nonzero_bits (f, GET_MODE (f))
6509 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6510 == 0))
6512 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6513 extend_op = ZERO_EXTEND;
6514 m = GET_MODE (XEXP (t, 0));
6516 else if (GET_CODE (t) == ZERO_EXTEND
6517 && (GET_CODE (XEXP (t, 0)) == PLUS
6518 || GET_CODE (XEXP (t, 0)) == IOR
6519 || GET_CODE (XEXP (t, 0)) == XOR)
6520 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6521 && HWI_COMPUTABLE_MODE_P (mode)
6522 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6523 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6524 && ((nonzero_bits (f, GET_MODE (f))
6525 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6526 == 0))
6528 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6529 extend_op = ZERO_EXTEND;
6530 m = GET_MODE (XEXP (t, 0));
6533 if (z)
6535 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6536 cond_op0, cond_op1),
6537 pc_rtx, pc_rtx, 0, 0, 0);
6538 temp = simplify_gen_binary (MULT, m, temp,
6539 simplify_gen_binary (MULT, m, c1,
6540 const_true_rtx));
6541 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6542 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6544 if (extend_op != UNKNOWN)
6545 temp = simplify_gen_unary (extend_op, mode, temp, m);
6547 return temp;
6551 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6552 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6553 negation of a single bit, we can convert this operation to a shift. We
6554 can actually do this more generally, but it doesn't seem worth it. */
6556 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6557 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6558 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6559 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6560 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6561 == GET_MODE_PRECISION (mode))
6562 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6563 return
6564 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6565 gen_lowpart (mode, XEXP (cond, 0)), i);
6567 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6568 non-zero bit in A is C1. */
6569 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6570 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6571 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6572 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6573 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6574 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6576 rtx val = XEXP (cond, 0);
6577 enum machine_mode val_mode = GET_MODE (val);
6578 if (val_mode == mode)
6579 return val;
6580 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6581 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6584 return x;
6587 /* Simplify X, a SET expression. Return the new expression. */
6589 static rtx
6590 simplify_set (rtx x)
6592 rtx src = SET_SRC (x);
6593 rtx dest = SET_DEST (x);
6594 machine_mode mode
6595 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6596 rtx_insn *other_insn;
6597 rtx *cc_use;
6599 /* (set (pc) (return)) gets written as (return). */
6600 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6601 return src;
6603 /* Now that we know for sure which bits of SRC we are using, see if we can
6604 simplify the expression for the object knowing that we only need the
6605 low-order bits. */
6607 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6609 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6610 SUBST (SET_SRC (x), src);
6613 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6614 the comparison result and try to simplify it unless we already have used
6615 undobuf.other_insn. */
6616 if ((GET_MODE_CLASS (mode) == MODE_CC
6617 || GET_CODE (src) == COMPARE
6618 || CC0_P (dest))
6619 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6620 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6621 && COMPARISON_P (*cc_use)
6622 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6624 enum rtx_code old_code = GET_CODE (*cc_use);
6625 enum rtx_code new_code;
6626 rtx op0, op1, tmp;
6627 int other_changed = 0;
6628 rtx inner_compare = NULL_RTX;
6629 machine_mode compare_mode = GET_MODE (dest);
6631 if (GET_CODE (src) == COMPARE)
6633 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6634 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6636 inner_compare = op0;
6637 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6640 else
6641 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6643 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6644 op0, op1);
6645 if (!tmp)
6646 new_code = old_code;
6647 else if (!CONSTANT_P (tmp))
6649 new_code = GET_CODE (tmp);
6650 op0 = XEXP (tmp, 0);
6651 op1 = XEXP (tmp, 1);
6653 else
6655 rtx pat = PATTERN (other_insn);
6656 undobuf.other_insn = other_insn;
6657 SUBST (*cc_use, tmp);
6659 /* Attempt to simplify CC user. */
6660 if (GET_CODE (pat) == SET)
6662 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6663 if (new_rtx != NULL_RTX)
6664 SUBST (SET_SRC (pat), new_rtx);
6667 /* Convert X into a no-op move. */
6668 SUBST (SET_DEST (x), pc_rtx);
6669 SUBST (SET_SRC (x), pc_rtx);
6670 return x;
6673 /* Simplify our comparison, if possible. */
6674 new_code = simplify_comparison (new_code, &op0, &op1);
6676 #ifdef SELECT_CC_MODE
6677 /* If this machine has CC modes other than CCmode, check to see if we
6678 need to use a different CC mode here. */
6679 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6680 compare_mode = GET_MODE (op0);
6681 else if (inner_compare
6682 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6683 && new_code == old_code
6684 && op0 == XEXP (inner_compare, 0)
6685 && op1 == XEXP (inner_compare, 1))
6686 compare_mode = GET_MODE (inner_compare);
6687 else
6688 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6690 /* If the mode changed, we have to change SET_DEST, the mode in the
6691 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6692 a hard register, just build new versions with the proper mode. If it
6693 is a pseudo, we lose unless it is only time we set the pseudo, in
6694 which case we can safely change its mode. */
6695 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6697 if (can_change_dest_mode (dest, 0, compare_mode))
6699 unsigned int regno = REGNO (dest);
6700 rtx new_dest;
6702 if (regno < FIRST_PSEUDO_REGISTER)
6703 new_dest = gen_rtx_REG (compare_mode, regno);
6704 else
6706 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6707 new_dest = regno_reg_rtx[regno];
6710 SUBST (SET_DEST (x), new_dest);
6711 SUBST (XEXP (*cc_use, 0), new_dest);
6712 other_changed = 1;
6714 dest = new_dest;
6717 #endif /* SELECT_CC_MODE */
6719 /* If the code changed, we have to build a new comparison in
6720 undobuf.other_insn. */
6721 if (new_code != old_code)
6723 int other_changed_previously = other_changed;
6724 unsigned HOST_WIDE_INT mask;
6725 rtx old_cc_use = *cc_use;
6727 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6728 dest, const0_rtx));
6729 other_changed = 1;
6731 /* If the only change we made was to change an EQ into an NE or
6732 vice versa, OP0 has only one bit that might be nonzero, and OP1
6733 is zero, check if changing the user of the condition code will
6734 produce a valid insn. If it won't, we can keep the original code
6735 in that insn by surrounding our operation with an XOR. */
6737 if (((old_code == NE && new_code == EQ)
6738 || (old_code == EQ && new_code == NE))
6739 && ! other_changed_previously && op1 == const0_rtx
6740 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6741 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6743 rtx pat = PATTERN (other_insn), note = 0;
6745 if ((recog_for_combine (&pat, other_insn, &note) < 0
6746 && ! check_asm_operands (pat)))
6748 *cc_use = old_cc_use;
6749 other_changed = 0;
6751 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6752 gen_int_mode (mask,
6753 GET_MODE (op0)));
6758 if (other_changed)
6759 undobuf.other_insn = other_insn;
6761 /* Don't generate a compare of a CC with 0, just use that CC. */
6762 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6764 SUBST (SET_SRC (x), op0);
6765 src = SET_SRC (x);
6767 /* Otherwise, if we didn't previously have the same COMPARE we
6768 want, create it from scratch. */
6769 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6770 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6772 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6773 src = SET_SRC (x);
6776 else
6778 /* Get SET_SRC in a form where we have placed back any
6779 compound expressions. Then do the checks below. */
6780 src = make_compound_operation (src, SET);
6781 SUBST (SET_SRC (x), src);
6784 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6785 and X being a REG or (subreg (reg)), we may be able to convert this to
6786 (set (subreg:m2 x) (op)).
6788 We can always do this if M1 is narrower than M2 because that means that
6789 we only care about the low bits of the result.
6791 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6792 perform a narrower operation than requested since the high-order bits will
6793 be undefined. On machine where it is defined, this transformation is safe
6794 as long as M1 and M2 have the same number of words. */
6796 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6797 && !OBJECT_P (SUBREG_REG (src))
6798 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6799 / UNITS_PER_WORD)
6800 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6801 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6802 && (WORD_REGISTER_OPERATIONS
6803 || (GET_MODE_SIZE (GET_MODE (src))
6804 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6805 #ifdef CANNOT_CHANGE_MODE_CLASS
6806 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6807 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6808 GET_MODE (SUBREG_REG (src)),
6809 GET_MODE (src)))
6810 #endif
6811 && (REG_P (dest)
6812 || (GET_CODE (dest) == SUBREG
6813 && REG_P (SUBREG_REG (dest)))))
6815 SUBST (SET_DEST (x),
6816 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6817 dest));
6818 SUBST (SET_SRC (x), SUBREG_REG (src));
6820 src = SET_SRC (x), dest = SET_DEST (x);
6823 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6824 in SRC. */
6825 if (dest == cc0_rtx
6826 && GET_CODE (src) == SUBREG
6827 && subreg_lowpart_p (src)
6828 && (GET_MODE_PRECISION (GET_MODE (src))
6829 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6831 rtx inner = SUBREG_REG (src);
6832 machine_mode inner_mode = GET_MODE (inner);
6834 /* Here we make sure that we don't have a sign bit on. */
6835 if (val_signbit_known_clear_p (GET_MODE (src),
6836 nonzero_bits (inner, inner_mode)))
6838 SUBST (SET_SRC (x), inner);
6839 src = SET_SRC (x);
6843 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6844 would require a paradoxical subreg. Replace the subreg with a
6845 zero_extend to avoid the reload that would otherwise be required. */
6847 enum rtx_code extend_op;
6848 if (paradoxical_subreg_p (src)
6849 && MEM_P (SUBREG_REG (src))
6850 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6852 SUBST (SET_SRC (x),
6853 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6855 src = SET_SRC (x);
6858 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6859 are comparing an item known to be 0 or -1 against 0, use a logical
6860 operation instead. Check for one of the arms being an IOR of the other
6861 arm with some value. We compute three terms to be IOR'ed together. In
6862 practice, at most two will be nonzero. Then we do the IOR's. */
6864 if (GET_CODE (dest) != PC
6865 && GET_CODE (src) == IF_THEN_ELSE
6866 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6867 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6868 && XEXP (XEXP (src, 0), 1) == const0_rtx
6869 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6870 && (!HAVE_conditional_move
6871 || ! can_conditionally_move_p (GET_MODE (src)))
6872 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6873 GET_MODE (XEXP (XEXP (src, 0), 0)))
6874 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6875 && ! side_effects_p (src))
6877 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6878 ? XEXP (src, 1) : XEXP (src, 2));
6879 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6880 ? XEXP (src, 2) : XEXP (src, 1));
6881 rtx term1 = const0_rtx, term2, term3;
6883 if (GET_CODE (true_rtx) == IOR
6884 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6885 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6886 else if (GET_CODE (true_rtx) == IOR
6887 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6888 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6889 else if (GET_CODE (false_rtx) == IOR
6890 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6891 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6892 else if (GET_CODE (false_rtx) == IOR
6893 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6894 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6896 term2 = simplify_gen_binary (AND, GET_MODE (src),
6897 XEXP (XEXP (src, 0), 0), true_rtx);
6898 term3 = simplify_gen_binary (AND, GET_MODE (src),
6899 simplify_gen_unary (NOT, GET_MODE (src),
6900 XEXP (XEXP (src, 0), 0),
6901 GET_MODE (src)),
6902 false_rtx);
6904 SUBST (SET_SRC (x),
6905 simplify_gen_binary (IOR, GET_MODE (src),
6906 simplify_gen_binary (IOR, GET_MODE (src),
6907 term1, term2),
6908 term3));
6910 src = SET_SRC (x);
6913 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6914 whole thing fail. */
6915 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6916 return src;
6917 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6918 return dest;
6919 else
6920 /* Convert this into a field assignment operation, if possible. */
6921 return make_field_assignment (x);
6924 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6925 result. */
6927 static rtx
6928 simplify_logical (rtx x)
6930 machine_mode mode = GET_MODE (x);
6931 rtx op0 = XEXP (x, 0);
6932 rtx op1 = XEXP (x, 1);
6934 switch (GET_CODE (x))
6936 case AND:
6937 /* We can call simplify_and_const_int only if we don't lose
6938 any (sign) bits when converting INTVAL (op1) to
6939 "unsigned HOST_WIDE_INT". */
6940 if (CONST_INT_P (op1)
6941 && (HWI_COMPUTABLE_MODE_P (mode)
6942 || INTVAL (op1) > 0))
6944 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6945 if (GET_CODE (x) != AND)
6946 return x;
6948 op0 = XEXP (x, 0);
6949 op1 = XEXP (x, 1);
6952 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6953 apply the distributive law and then the inverse distributive
6954 law to see if things simplify. */
6955 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6957 rtx result = distribute_and_simplify_rtx (x, 0);
6958 if (result)
6959 return result;
6961 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6963 rtx result = distribute_and_simplify_rtx (x, 1);
6964 if (result)
6965 return result;
6967 break;
6969 case IOR:
6970 /* If we have (ior (and A B) C), apply the distributive law and then
6971 the inverse distributive law to see if things simplify. */
6973 if (GET_CODE (op0) == AND)
6975 rtx result = distribute_and_simplify_rtx (x, 0);
6976 if (result)
6977 return result;
6980 if (GET_CODE (op1) == AND)
6982 rtx result = distribute_and_simplify_rtx (x, 1);
6983 if (result)
6984 return result;
6986 break;
6988 default:
6989 gcc_unreachable ();
6992 return x;
6995 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6996 operations" because they can be replaced with two more basic operations.
6997 ZERO_EXTEND is also considered "compound" because it can be replaced with
6998 an AND operation, which is simpler, though only one operation.
7000 The function expand_compound_operation is called with an rtx expression
7001 and will convert it to the appropriate shifts and AND operations,
7002 simplifying at each stage.
7004 The function make_compound_operation is called to convert an expression
7005 consisting of shifts and ANDs into the equivalent compound expression.
7006 It is the inverse of this function, loosely speaking. */
7008 static rtx
7009 expand_compound_operation (rtx x)
7011 unsigned HOST_WIDE_INT pos = 0, len;
7012 int unsignedp = 0;
7013 unsigned int modewidth;
7014 rtx tem;
7016 switch (GET_CODE (x))
7018 case ZERO_EXTEND:
7019 unsignedp = 1;
7020 /* FALLTHRU */
7021 case SIGN_EXTEND:
7022 /* We can't necessarily use a const_int for a multiword mode;
7023 it depends on implicitly extending the value.
7024 Since we don't know the right way to extend it,
7025 we can't tell whether the implicit way is right.
7027 Even for a mode that is no wider than a const_int,
7028 we can't win, because we need to sign extend one of its bits through
7029 the rest of it, and we don't know which bit. */
7030 if (CONST_INT_P (XEXP (x, 0)))
7031 return x;
7033 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7034 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7035 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7036 reloaded. If not for that, MEM's would very rarely be safe.
7038 Reject MODEs bigger than a word, because we might not be able
7039 to reference a two-register group starting with an arbitrary register
7040 (and currently gen_lowpart might crash for a SUBREG). */
7042 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7043 return x;
7045 /* Reject MODEs that aren't scalar integers because turning vector
7046 or complex modes into shifts causes problems. */
7048 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7049 return x;
7051 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7052 /* If the inner object has VOIDmode (the only way this can happen
7053 is if it is an ASM_OPERANDS), we can't do anything since we don't
7054 know how much masking to do. */
7055 if (len == 0)
7056 return x;
7058 break;
7060 case ZERO_EXTRACT:
7061 unsignedp = 1;
7063 /* fall through */
7065 case SIGN_EXTRACT:
7066 /* If the operand is a CLOBBER, just return it. */
7067 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7068 return XEXP (x, 0);
7070 if (!CONST_INT_P (XEXP (x, 1))
7071 || !CONST_INT_P (XEXP (x, 2))
7072 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7073 return x;
7075 /* Reject MODEs that aren't scalar integers because turning vector
7076 or complex modes into shifts causes problems. */
7078 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7079 return x;
7081 len = INTVAL (XEXP (x, 1));
7082 pos = INTVAL (XEXP (x, 2));
7084 /* This should stay within the object being extracted, fail otherwise. */
7085 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7086 return x;
7088 if (BITS_BIG_ENDIAN)
7089 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7091 break;
7093 default:
7094 return x;
7096 /* Convert sign extension to zero extension, if we know that the high
7097 bit is not set, as this is easier to optimize. It will be converted
7098 back to cheaper alternative in make_extraction. */
7099 if (GET_CODE (x) == SIGN_EXTEND
7100 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7101 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7102 & ~(((unsigned HOST_WIDE_INT)
7103 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7104 >> 1))
7105 == 0)))
7107 machine_mode mode = GET_MODE (x);
7108 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7109 rtx temp2 = expand_compound_operation (temp);
7111 /* Make sure this is a profitable operation. */
7112 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7113 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7114 return temp2;
7115 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7116 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7117 return temp;
7118 else
7119 return x;
7122 /* We can optimize some special cases of ZERO_EXTEND. */
7123 if (GET_CODE (x) == ZERO_EXTEND)
7125 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7126 know that the last value didn't have any inappropriate bits
7127 set. */
7128 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7129 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7130 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7131 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7132 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7133 return XEXP (XEXP (x, 0), 0);
7135 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7136 if (GET_CODE (XEXP (x, 0)) == SUBREG
7137 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7138 && subreg_lowpart_p (XEXP (x, 0))
7139 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7140 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7141 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7142 return SUBREG_REG (XEXP (x, 0));
7144 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7145 is a comparison and STORE_FLAG_VALUE permits. This is like
7146 the first case, but it works even when GET_MODE (x) is larger
7147 than HOST_WIDE_INT. */
7148 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7149 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7150 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7151 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7152 <= HOST_BITS_PER_WIDE_INT)
7153 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7154 return XEXP (XEXP (x, 0), 0);
7156 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7157 if (GET_CODE (XEXP (x, 0)) == SUBREG
7158 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7159 && subreg_lowpart_p (XEXP (x, 0))
7160 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7161 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7162 <= HOST_BITS_PER_WIDE_INT)
7163 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7164 return SUBREG_REG (XEXP (x, 0));
7168 /* If we reach here, we want to return a pair of shifts. The inner
7169 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7170 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7171 logical depending on the value of UNSIGNEDP.
7173 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7174 converted into an AND of a shift.
7176 We must check for the case where the left shift would have a negative
7177 count. This can happen in a case like (x >> 31) & 255 on machines
7178 that can't shift by a constant. On those machines, we would first
7179 combine the shift with the AND to produce a variable-position
7180 extraction. Then the constant of 31 would be substituted in
7181 to produce such a position. */
7183 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7184 if (modewidth >= pos + len)
7186 machine_mode mode = GET_MODE (x);
7187 tem = gen_lowpart (mode, XEXP (x, 0));
7188 if (!tem || GET_CODE (tem) == CLOBBER)
7189 return x;
7190 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7191 tem, modewidth - pos - len);
7192 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7193 mode, tem, modewidth - len);
7195 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7196 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7197 simplify_shift_const (NULL_RTX, LSHIFTRT,
7198 GET_MODE (x),
7199 XEXP (x, 0), pos),
7200 (HOST_WIDE_INT_1U << len) - 1);
7201 else
7202 /* Any other cases we can't handle. */
7203 return x;
7205 /* If we couldn't do this for some reason, return the original
7206 expression. */
7207 if (GET_CODE (tem) == CLOBBER)
7208 return x;
7210 return tem;
7213 /* X is a SET which contains an assignment of one object into
7214 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7215 or certain SUBREGS). If possible, convert it into a series of
7216 logical operations.
7218 We half-heartedly support variable positions, but do not at all
7219 support variable lengths. */
7221 static const_rtx
7222 expand_field_assignment (const_rtx x)
7224 rtx inner;
7225 rtx pos; /* Always counts from low bit. */
7226 int len;
7227 rtx mask, cleared, masked;
7228 machine_mode compute_mode;
7230 /* Loop until we find something we can't simplify. */
7231 while (1)
7233 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7234 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7236 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7237 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7238 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7240 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7241 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7243 inner = XEXP (SET_DEST (x), 0);
7244 len = INTVAL (XEXP (SET_DEST (x), 1));
7245 pos = XEXP (SET_DEST (x), 2);
7247 /* A constant position should stay within the width of INNER. */
7248 if (CONST_INT_P (pos)
7249 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7250 break;
7252 if (BITS_BIG_ENDIAN)
7254 if (CONST_INT_P (pos))
7255 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7256 - INTVAL (pos));
7257 else if (GET_CODE (pos) == MINUS
7258 && CONST_INT_P (XEXP (pos, 1))
7259 && (INTVAL (XEXP (pos, 1))
7260 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7261 /* If position is ADJUST - X, new position is X. */
7262 pos = XEXP (pos, 0);
7263 else
7265 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7266 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7267 gen_int_mode (prec - len,
7268 GET_MODE (pos)),
7269 pos);
7274 /* A SUBREG between two modes that occupy the same numbers of words
7275 can be done by moving the SUBREG to the source. */
7276 else if (GET_CODE (SET_DEST (x)) == SUBREG
7277 /* We need SUBREGs to compute nonzero_bits properly. */
7278 && nonzero_sign_valid
7279 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7280 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7281 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7282 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7284 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7285 gen_lowpart
7286 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7287 SET_SRC (x)));
7288 continue;
7290 else
7291 break;
7293 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7294 inner = SUBREG_REG (inner);
7296 compute_mode = GET_MODE (inner);
7298 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7299 if (! SCALAR_INT_MODE_P (compute_mode))
7301 machine_mode imode;
7303 /* Don't do anything for vector or complex integral types. */
7304 if (! FLOAT_MODE_P (compute_mode))
7305 break;
7307 /* Try to find an integral mode to pun with. */
7308 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7309 if (imode == BLKmode)
7310 break;
7312 compute_mode = imode;
7313 inner = gen_lowpart (imode, inner);
7316 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7317 if (len >= HOST_BITS_PER_WIDE_INT)
7318 break;
7320 /* Don't try to compute in too wide unsupported modes. */
7321 if (!targetm.scalar_mode_supported_p (compute_mode))
7322 break;
7324 /* Now compute the equivalent expression. Make a copy of INNER
7325 for the SET_DEST in case it is a MEM into which we will substitute;
7326 we don't want shared RTL in that case. */
7327 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7328 compute_mode);
7329 cleared = simplify_gen_binary (AND, compute_mode,
7330 simplify_gen_unary (NOT, compute_mode,
7331 simplify_gen_binary (ASHIFT,
7332 compute_mode,
7333 mask, pos),
7334 compute_mode),
7335 inner);
7336 masked = simplify_gen_binary (ASHIFT, compute_mode,
7337 simplify_gen_binary (
7338 AND, compute_mode,
7339 gen_lowpart (compute_mode, SET_SRC (x)),
7340 mask),
7341 pos);
7343 x = gen_rtx_SET (copy_rtx (inner),
7344 simplify_gen_binary (IOR, compute_mode,
7345 cleared, masked));
7348 return x;
7351 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7352 it is an RTX that represents the (variable) starting position; otherwise,
7353 POS is the (constant) starting bit position. Both are counted from the LSB.
7355 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7357 IN_DEST is nonzero if this is a reference in the destination of a SET.
7358 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7359 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7360 be used.
7362 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7363 ZERO_EXTRACT should be built even for bits starting at bit 0.
7365 MODE is the desired mode of the result (if IN_DEST == 0).
7367 The result is an RTX for the extraction or NULL_RTX if the target
7368 can't handle it. */
7370 static rtx
7371 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7372 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7373 int in_dest, int in_compare)
7375 /* This mode describes the size of the storage area
7376 to fetch the overall value from. Within that, we
7377 ignore the POS lowest bits, etc. */
7378 machine_mode is_mode = GET_MODE (inner);
7379 machine_mode inner_mode;
7380 machine_mode wanted_inner_mode;
7381 machine_mode wanted_inner_reg_mode = word_mode;
7382 machine_mode pos_mode = word_mode;
7383 machine_mode extraction_mode = word_mode;
7384 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7385 rtx new_rtx = 0;
7386 rtx orig_pos_rtx = pos_rtx;
7387 HOST_WIDE_INT orig_pos;
7389 if (pos_rtx && CONST_INT_P (pos_rtx))
7390 pos = INTVAL (pos_rtx), pos_rtx = 0;
7392 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7394 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7395 consider just the QI as the memory to extract from.
7396 The subreg adds or removes high bits; its mode is
7397 irrelevant to the meaning of this extraction,
7398 since POS and LEN count from the lsb. */
7399 if (MEM_P (SUBREG_REG (inner)))
7400 is_mode = GET_MODE (SUBREG_REG (inner));
7401 inner = SUBREG_REG (inner);
7403 else if (GET_CODE (inner) == ASHIFT
7404 && CONST_INT_P (XEXP (inner, 1))
7405 && pos_rtx == 0 && pos == 0
7406 && len > UINTVAL (XEXP (inner, 1)))
7408 /* We're extracting the least significant bits of an rtx
7409 (ashift X (const_int C)), where LEN > C. Extract the
7410 least significant (LEN - C) bits of X, giving an rtx
7411 whose mode is MODE, then shift it left C times. */
7412 new_rtx = make_extraction (mode, XEXP (inner, 0),
7413 0, 0, len - INTVAL (XEXP (inner, 1)),
7414 unsignedp, in_dest, in_compare);
7415 if (new_rtx != 0)
7416 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7418 else if (GET_CODE (inner) == TRUNCATE)
7419 inner = XEXP (inner, 0);
7421 inner_mode = GET_MODE (inner);
7423 /* See if this can be done without an extraction. We never can if the
7424 width of the field is not the same as that of some integer mode. For
7425 registers, we can only avoid the extraction if the position is at the
7426 low-order bit and this is either not in the destination or we have the
7427 appropriate STRICT_LOW_PART operation available.
7429 For MEM, we can avoid an extract if the field starts on an appropriate
7430 boundary and we can change the mode of the memory reference. */
7432 if (tmode != BLKmode
7433 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7434 && !MEM_P (inner)
7435 && (pos == 0 || REG_P (inner))
7436 && (inner_mode == tmode
7437 || !REG_P (inner)
7438 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7439 || reg_truncated_to_mode (tmode, inner))
7440 && (! in_dest
7441 || (REG_P (inner)
7442 && have_insn_for (STRICT_LOW_PART, tmode))))
7443 || (MEM_P (inner) && pos_rtx == 0
7444 && (pos
7445 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7446 : BITS_PER_UNIT)) == 0
7447 /* We can't do this if we are widening INNER_MODE (it
7448 may not be aligned, for one thing). */
7449 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7450 && (inner_mode == tmode
7451 || (! mode_dependent_address_p (XEXP (inner, 0),
7452 MEM_ADDR_SPACE (inner))
7453 && ! MEM_VOLATILE_P (inner))))))
7455 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7456 field. If the original and current mode are the same, we need not
7457 adjust the offset. Otherwise, we do if bytes big endian.
7459 If INNER is not a MEM, get a piece consisting of just the field
7460 of interest (in this case POS % BITS_PER_WORD must be 0). */
7462 if (MEM_P (inner))
7464 HOST_WIDE_INT offset;
7466 /* POS counts from lsb, but make OFFSET count in memory order. */
7467 if (BYTES_BIG_ENDIAN)
7468 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7469 else
7470 offset = pos / BITS_PER_UNIT;
7472 new_rtx = adjust_address_nv (inner, tmode, offset);
7474 else if (REG_P (inner))
7476 if (tmode != inner_mode)
7478 /* We can't call gen_lowpart in a DEST since we
7479 always want a SUBREG (see below) and it would sometimes
7480 return a new hard register. */
7481 if (pos || in_dest)
7483 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7485 if (WORDS_BIG_ENDIAN
7486 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7487 final_word = ((GET_MODE_SIZE (inner_mode)
7488 - GET_MODE_SIZE (tmode))
7489 / UNITS_PER_WORD) - final_word;
7491 final_word *= UNITS_PER_WORD;
7492 if (BYTES_BIG_ENDIAN &&
7493 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7494 final_word += (GET_MODE_SIZE (inner_mode)
7495 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7497 /* Avoid creating invalid subregs, for example when
7498 simplifying (x>>32)&255. */
7499 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7500 return NULL_RTX;
7502 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7504 else
7505 new_rtx = gen_lowpart (tmode, inner);
7507 else
7508 new_rtx = inner;
7510 else
7511 new_rtx = force_to_mode (inner, tmode,
7512 len >= HOST_BITS_PER_WIDE_INT
7513 ? HOST_WIDE_INT_M1U
7514 : (HOST_WIDE_INT_1U << len) - 1, 0);
7516 /* If this extraction is going into the destination of a SET,
7517 make a STRICT_LOW_PART unless we made a MEM. */
7519 if (in_dest)
7520 return (MEM_P (new_rtx) ? new_rtx
7521 : (GET_CODE (new_rtx) != SUBREG
7522 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7523 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7525 if (mode == tmode)
7526 return new_rtx;
7528 if (CONST_SCALAR_INT_P (new_rtx))
7529 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7530 mode, new_rtx, tmode);
7532 /* If we know that no extraneous bits are set, and that the high
7533 bit is not set, convert the extraction to the cheaper of
7534 sign and zero extension, that are equivalent in these cases. */
7535 if (flag_expensive_optimizations
7536 && (HWI_COMPUTABLE_MODE_P (tmode)
7537 && ((nonzero_bits (new_rtx, tmode)
7538 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7539 == 0)))
7541 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7542 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7544 /* Prefer ZERO_EXTENSION, since it gives more information to
7545 backends. */
7546 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7547 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7548 return temp;
7549 return temp1;
7552 /* Otherwise, sign- or zero-extend unless we already are in the
7553 proper mode. */
7555 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7556 mode, new_rtx));
7559 /* Unless this is a COMPARE or we have a funny memory reference,
7560 don't do anything with zero-extending field extracts starting at
7561 the low-order bit since they are simple AND operations. */
7562 if (pos_rtx == 0 && pos == 0 && ! in_dest
7563 && ! in_compare && unsignedp)
7564 return 0;
7566 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7567 if the position is not a constant and the length is not 1. In all
7568 other cases, we would only be going outside our object in cases when
7569 an original shift would have been undefined. */
7570 if (MEM_P (inner)
7571 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7572 || (pos_rtx != 0 && len != 1)))
7573 return 0;
7575 enum extraction_pattern pattern = (in_dest ? EP_insv
7576 : unsignedp ? EP_extzv : EP_extv);
7578 /* If INNER is not from memory, we want it to have the mode of a register
7579 extraction pattern's structure operand, or word_mode if there is no
7580 such pattern. The same applies to extraction_mode and pos_mode
7581 and their respective operands.
7583 For memory, assume that the desired extraction_mode and pos_mode
7584 are the same as for a register operation, since at present we don't
7585 have named patterns for aligned memory structures. */
7586 struct extraction_insn insn;
7587 if (get_best_reg_extraction_insn (&insn, pattern,
7588 GET_MODE_BITSIZE (inner_mode), mode))
7590 wanted_inner_reg_mode = insn.struct_mode;
7591 pos_mode = insn.pos_mode;
7592 extraction_mode = insn.field_mode;
7595 /* Never narrow an object, since that might not be safe. */
7597 if (mode != VOIDmode
7598 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7599 extraction_mode = mode;
7601 if (!MEM_P (inner))
7602 wanted_inner_mode = wanted_inner_reg_mode;
7603 else
7605 /* Be careful not to go beyond the extracted object and maintain the
7606 natural alignment of the memory. */
7607 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7608 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7609 > GET_MODE_BITSIZE (wanted_inner_mode))
7611 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7612 gcc_assert (wanted_inner_mode != VOIDmode);
7616 orig_pos = pos;
7618 if (BITS_BIG_ENDIAN)
7620 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7621 BITS_BIG_ENDIAN style. If position is constant, compute new
7622 position. Otherwise, build subtraction.
7623 Note that POS is relative to the mode of the original argument.
7624 If it's a MEM we need to recompute POS relative to that.
7625 However, if we're extracting from (or inserting into) a register,
7626 we want to recompute POS relative to wanted_inner_mode. */
7627 int width = (MEM_P (inner)
7628 ? GET_MODE_BITSIZE (is_mode)
7629 : GET_MODE_BITSIZE (wanted_inner_mode));
7631 if (pos_rtx == 0)
7632 pos = width - len - pos;
7633 else
7634 pos_rtx
7635 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7636 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7637 pos_rtx);
7638 /* POS may be less than 0 now, but we check for that below.
7639 Note that it can only be less than 0 if !MEM_P (inner). */
7642 /* If INNER has a wider mode, and this is a constant extraction, try to
7643 make it smaller and adjust the byte to point to the byte containing
7644 the value. */
7645 if (wanted_inner_mode != VOIDmode
7646 && inner_mode != wanted_inner_mode
7647 && ! pos_rtx
7648 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7649 && MEM_P (inner)
7650 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7651 && ! MEM_VOLATILE_P (inner))
7653 int offset = 0;
7655 /* The computations below will be correct if the machine is big
7656 endian in both bits and bytes or little endian in bits and bytes.
7657 If it is mixed, we must adjust. */
7659 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7660 adjust OFFSET to compensate. */
7661 if (BYTES_BIG_ENDIAN
7662 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7663 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7665 /* We can now move to the desired byte. */
7666 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7667 * GET_MODE_SIZE (wanted_inner_mode);
7668 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7670 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7671 && is_mode != wanted_inner_mode)
7672 offset = (GET_MODE_SIZE (is_mode)
7673 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7675 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7678 /* If INNER is not memory, get it into the proper mode. If we are changing
7679 its mode, POS must be a constant and smaller than the size of the new
7680 mode. */
7681 else if (!MEM_P (inner))
7683 /* On the LHS, don't create paradoxical subregs implicitely truncating
7684 the register unless TRULY_NOOP_TRUNCATION. */
7685 if (in_dest
7686 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7687 wanted_inner_mode))
7688 return NULL_RTX;
7690 if (GET_MODE (inner) != wanted_inner_mode
7691 && (pos_rtx != 0
7692 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7693 return NULL_RTX;
7695 if (orig_pos < 0)
7696 return NULL_RTX;
7698 inner = force_to_mode (inner, wanted_inner_mode,
7699 pos_rtx
7700 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7701 ? HOST_WIDE_INT_M1U
7702 : (((HOST_WIDE_INT_1U << len) - 1)
7703 << orig_pos),
7707 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7708 have to zero extend. Otherwise, we can just use a SUBREG. */
7709 if (pos_rtx != 0
7710 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7712 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7713 GET_MODE (pos_rtx));
7715 /* If we know that no extraneous bits are set, and that the high
7716 bit is not set, convert extraction to cheaper one - either
7717 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7718 cases. */
7719 if (flag_expensive_optimizations
7720 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7721 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7722 & ~(((unsigned HOST_WIDE_INT)
7723 GET_MODE_MASK (GET_MODE (pos_rtx)))
7724 >> 1))
7725 == 0)))
7727 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7728 GET_MODE (pos_rtx));
7730 /* Prefer ZERO_EXTENSION, since it gives more information to
7731 backends. */
7732 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7733 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7734 temp = temp1;
7736 pos_rtx = temp;
7739 /* Make POS_RTX unless we already have it and it is correct. If we don't
7740 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7741 be a CONST_INT. */
7742 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7743 pos_rtx = orig_pos_rtx;
7745 else if (pos_rtx == 0)
7746 pos_rtx = GEN_INT (pos);
7748 /* Make the required operation. See if we can use existing rtx. */
7749 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7750 extraction_mode, inner, GEN_INT (len), pos_rtx);
7751 if (! in_dest)
7752 new_rtx = gen_lowpart (mode, new_rtx);
7754 return new_rtx;
7757 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7758 with any other operations in X. Return X without that shift if so. */
7760 static rtx
7761 extract_left_shift (rtx x, int count)
7763 enum rtx_code code = GET_CODE (x);
7764 machine_mode mode = GET_MODE (x);
7765 rtx tem;
7767 switch (code)
7769 case ASHIFT:
7770 /* This is the shift itself. If it is wide enough, we will return
7771 either the value being shifted if the shift count is equal to
7772 COUNT or a shift for the difference. */
7773 if (CONST_INT_P (XEXP (x, 1))
7774 && INTVAL (XEXP (x, 1)) >= count)
7775 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7776 INTVAL (XEXP (x, 1)) - count);
7777 break;
7779 case NEG: case NOT:
7780 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7781 return simplify_gen_unary (code, mode, tem, mode);
7783 break;
7785 case PLUS: case IOR: case XOR: case AND:
7786 /* If we can safely shift this constant and we find the inner shift,
7787 make a new operation. */
7788 if (CONST_INT_P (XEXP (x, 1))
7789 && (UINTVAL (XEXP (x, 1))
7790 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7791 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7793 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7794 return simplify_gen_binary (code, mode, tem,
7795 gen_int_mode (val, mode));
7797 break;
7799 default:
7800 break;
7803 return 0;
7806 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7807 level of the expression and MODE is its mode. IN_CODE is as for
7808 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7809 that should be used when recursing on operands of *X_PTR.
7811 There are two possible actions:
7813 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7814 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7816 - Return a new rtx, which the caller returns directly. */
7818 static rtx
7819 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7820 enum rtx_code in_code,
7821 enum rtx_code *next_code_ptr)
7823 rtx x = *x_ptr;
7824 enum rtx_code next_code = *next_code_ptr;
7825 enum rtx_code code = GET_CODE (x);
7826 int mode_width = GET_MODE_PRECISION (mode);
7827 rtx rhs, lhs;
7828 rtx new_rtx = 0;
7829 int i;
7830 rtx tem;
7831 bool equality_comparison = false;
7833 if (in_code == EQ)
7835 equality_comparison = true;
7836 in_code = COMPARE;
7839 /* Process depending on the code of this operation. If NEW is set
7840 nonzero, it will be returned. */
7842 switch (code)
7844 case ASHIFT:
7845 /* Convert shifts by constants into multiplications if inside
7846 an address. */
7847 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7848 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7849 && INTVAL (XEXP (x, 1)) >= 0)
7851 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7852 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7854 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7855 if (GET_CODE (new_rtx) == NEG)
7857 new_rtx = XEXP (new_rtx, 0);
7858 multval = -multval;
7860 multval = trunc_int_for_mode (multval, mode);
7861 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7863 break;
7865 case PLUS:
7866 lhs = XEXP (x, 0);
7867 rhs = XEXP (x, 1);
7868 lhs = make_compound_operation (lhs, next_code);
7869 rhs = make_compound_operation (rhs, next_code);
7870 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7872 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7873 XEXP (lhs, 1));
7874 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7876 else if (GET_CODE (lhs) == MULT
7877 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7879 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7880 simplify_gen_unary (NEG, mode,
7881 XEXP (lhs, 1),
7882 mode));
7883 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7885 else
7887 SUBST (XEXP (x, 0), lhs);
7888 SUBST (XEXP (x, 1), rhs);
7890 maybe_swap_commutative_operands (x);
7891 return x;
7893 case MINUS:
7894 lhs = XEXP (x, 0);
7895 rhs = XEXP (x, 1);
7896 lhs = make_compound_operation (lhs, next_code);
7897 rhs = make_compound_operation (rhs, next_code);
7898 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7900 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7901 XEXP (rhs, 1));
7902 return simplify_gen_binary (PLUS, mode, tem, lhs);
7904 else if (GET_CODE (rhs) == MULT
7905 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7907 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7908 simplify_gen_unary (NEG, mode,
7909 XEXP (rhs, 1),
7910 mode));
7911 return simplify_gen_binary (PLUS, mode, tem, lhs);
7913 else
7915 SUBST (XEXP (x, 0), lhs);
7916 SUBST (XEXP (x, 1), rhs);
7917 return x;
7920 case AND:
7921 /* If the second operand is not a constant, we can't do anything
7922 with it. */
7923 if (!CONST_INT_P (XEXP (x, 1)))
7924 break;
7926 /* If the constant is a power of two minus one and the first operand
7927 is a logical right shift, make an extraction. */
7928 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7929 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7931 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7932 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7933 0, in_code == COMPARE);
7936 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7937 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7938 && subreg_lowpart_p (XEXP (x, 0))
7939 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7940 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7942 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7943 machine_mode inner_mode = GET_MODE (inner_x0);
7944 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7945 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7946 XEXP (inner_x0, 1),
7947 i, 1, 0, in_code == COMPARE);
7949 if (new_rtx)
7951 /* If we narrowed the mode when dropping the subreg, then
7952 we must zero-extend to keep the semantics of the AND. */
7953 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7955 else if (SCALAR_INT_MODE_P (inner_mode))
7956 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7957 new_rtx, inner_mode);
7958 else
7959 new_rtx = NULL;
7962 /* If that didn't give anything, see if the AND simplifies on
7963 its own. */
7964 if (!new_rtx && i >= 0)
7966 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7967 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7968 0, in_code == COMPARE);
7971 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7972 else if ((GET_CODE (XEXP (x, 0)) == XOR
7973 || GET_CODE (XEXP (x, 0)) == IOR)
7974 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7975 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7976 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7978 /* Apply the distributive law, and then try to make extractions. */
7979 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7980 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7981 XEXP (x, 1)),
7982 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7983 XEXP (x, 1)));
7984 new_rtx = make_compound_operation (new_rtx, in_code);
7987 /* If we are have (and (rotate X C) M) and C is larger than the number
7988 of bits in M, this is an extraction. */
7990 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7991 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7992 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7993 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7995 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7996 new_rtx = make_extraction (mode, new_rtx,
7997 (GET_MODE_PRECISION (mode)
7998 - INTVAL (XEXP (XEXP (x, 0), 1))),
7999 NULL_RTX, i, 1, 0, in_code == COMPARE);
8002 /* On machines without logical shifts, if the operand of the AND is
8003 a logical shift and our mask turns off all the propagated sign
8004 bits, we can replace the logical shift with an arithmetic shift. */
8005 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8006 && !have_insn_for (LSHIFTRT, mode)
8007 && have_insn_for (ASHIFTRT, mode)
8008 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8009 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8010 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8011 && mode_width <= HOST_BITS_PER_WIDE_INT)
8013 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8015 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8016 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8017 SUBST (XEXP (x, 0),
8018 gen_rtx_ASHIFTRT (mode,
8019 make_compound_operation
8020 (XEXP (XEXP (x, 0), 0), next_code),
8021 XEXP (XEXP (x, 0), 1)));
8024 /* If the constant is one less than a power of two, this might be
8025 representable by an extraction even if no shift is present.
8026 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8027 we are in a COMPARE. */
8028 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8029 new_rtx = make_extraction (mode,
8030 make_compound_operation (XEXP (x, 0),
8031 next_code),
8032 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8034 /* If we are in a comparison and this is an AND with a power of two,
8035 convert this into the appropriate bit extract. */
8036 else if (in_code == COMPARE
8037 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8038 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8039 new_rtx = make_extraction (mode,
8040 make_compound_operation (XEXP (x, 0),
8041 next_code),
8042 i, NULL_RTX, 1, 1, 0, 1);
8044 /* If the one operand is a paradoxical subreg of a register or memory and
8045 the constant (limited to the smaller mode) has only zero bits where
8046 the sub expression has known zero bits, this can be expressed as
8047 a zero_extend. */
8048 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8050 rtx sub;
8052 sub = XEXP (XEXP (x, 0), 0);
8053 machine_mode sub_mode = GET_MODE (sub);
8054 if ((REG_P (sub) || MEM_P (sub))
8055 && GET_MODE_PRECISION (sub_mode) < mode_width)
8057 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8058 unsigned HOST_WIDE_INT mask;
8060 /* original AND constant with all the known zero bits set */
8061 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8062 if ((mask & mode_mask) == mode_mask)
8064 new_rtx = make_compound_operation (sub, next_code);
8065 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8066 GET_MODE_PRECISION (sub_mode),
8067 1, 0, in_code == COMPARE);
8072 break;
8074 case LSHIFTRT:
8075 /* If the sign bit is known to be zero, replace this with an
8076 arithmetic shift. */
8077 if (have_insn_for (ASHIFTRT, mode)
8078 && ! have_insn_for (LSHIFTRT, mode)
8079 && mode_width <= HOST_BITS_PER_WIDE_INT
8080 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8082 new_rtx = gen_rtx_ASHIFTRT (mode,
8083 make_compound_operation (XEXP (x, 0),
8084 next_code),
8085 XEXP (x, 1));
8086 break;
8089 /* fall through */
8091 case ASHIFTRT:
8092 lhs = XEXP (x, 0);
8093 rhs = XEXP (x, 1);
8095 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8096 this is a SIGN_EXTRACT. */
8097 if (CONST_INT_P (rhs)
8098 && GET_CODE (lhs) == ASHIFT
8099 && CONST_INT_P (XEXP (lhs, 1))
8100 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8101 && INTVAL (XEXP (lhs, 1)) >= 0
8102 && INTVAL (rhs) < mode_width)
8104 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8105 new_rtx = make_extraction (mode, new_rtx,
8106 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8107 NULL_RTX, mode_width - INTVAL (rhs),
8108 code == LSHIFTRT, 0, in_code == COMPARE);
8109 break;
8112 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8113 If so, try to merge the shifts into a SIGN_EXTEND. We could
8114 also do this for some cases of SIGN_EXTRACT, but it doesn't
8115 seem worth the effort; the case checked for occurs on Alpha. */
8117 if (!OBJECT_P (lhs)
8118 && ! (GET_CODE (lhs) == SUBREG
8119 && (OBJECT_P (SUBREG_REG (lhs))))
8120 && CONST_INT_P (rhs)
8121 && INTVAL (rhs) >= 0
8122 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8123 && INTVAL (rhs) < mode_width
8124 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8125 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8126 0, NULL_RTX, mode_width - INTVAL (rhs),
8127 code == LSHIFTRT, 0, in_code == COMPARE);
8129 break;
8131 case SUBREG:
8132 /* Call ourselves recursively on the inner expression. If we are
8133 narrowing the object and it has a different RTL code from
8134 what it originally did, do this SUBREG as a force_to_mode. */
8136 rtx inner = SUBREG_REG (x), simplified;
8137 enum rtx_code subreg_code = in_code;
8139 /* If the SUBREG is masking of a logical right shift,
8140 make an extraction. */
8141 if (GET_CODE (inner) == LSHIFTRT
8142 && CONST_INT_P (XEXP (inner, 1))
8143 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8144 && (UINTVAL (XEXP (inner, 1))
8145 < GET_MODE_PRECISION (GET_MODE (inner)))
8146 && subreg_lowpart_p (x))
8148 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8149 int width = GET_MODE_PRECISION (GET_MODE (inner))
8150 - INTVAL (XEXP (inner, 1));
8151 if (width > mode_width)
8152 width = mode_width;
8153 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8154 width, 1, 0, in_code == COMPARE);
8155 break;
8158 /* If in_code is COMPARE, it isn't always safe to pass it through
8159 to the recursive make_compound_operation call. */
8160 if (subreg_code == COMPARE
8161 && (!subreg_lowpart_p (x)
8162 || GET_CODE (inner) == SUBREG
8163 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8164 is (const_int 0), rather than
8165 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8166 || (GET_CODE (inner) == AND
8167 && CONST_INT_P (XEXP (inner, 1))
8168 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8169 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8170 >= GET_MODE_BITSIZE (mode))))
8171 subreg_code = SET;
8173 tem = make_compound_operation (inner, subreg_code);
8175 simplified
8176 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8177 if (simplified)
8178 tem = simplified;
8180 if (GET_CODE (tem) != GET_CODE (inner)
8181 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8182 && subreg_lowpart_p (x))
8184 rtx newer
8185 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8187 /* If we have something other than a SUBREG, we might have
8188 done an expansion, so rerun ourselves. */
8189 if (GET_CODE (newer) != SUBREG)
8190 newer = make_compound_operation (newer, in_code);
8192 /* force_to_mode can expand compounds. If it just re-expanded the
8193 compound, use gen_lowpart to convert to the desired mode. */
8194 if (rtx_equal_p (newer, x)
8195 /* Likewise if it re-expanded the compound only partially.
8196 This happens for SUBREG of ZERO_EXTRACT if they extract
8197 the same number of bits. */
8198 || (GET_CODE (newer) == SUBREG
8199 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8200 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8201 && GET_CODE (inner) == AND
8202 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8203 return gen_lowpart (GET_MODE (x), tem);
8205 return newer;
8208 if (simplified)
8209 return tem;
8211 break;
8213 default:
8214 break;
8217 if (new_rtx)
8218 *x_ptr = gen_lowpart (mode, new_rtx);
8219 *next_code_ptr = next_code;
8220 return NULL_RTX;
8223 /* Look at the expression rooted at X. Look for expressions
8224 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8225 Form these expressions.
8227 Return the new rtx, usually just X.
8229 Also, for machines like the VAX that don't have logical shift insns,
8230 try to convert logical to arithmetic shift operations in cases where
8231 they are equivalent. This undoes the canonicalizations to logical
8232 shifts done elsewhere.
8234 We try, as much as possible, to re-use rtl expressions to save memory.
8236 IN_CODE says what kind of expression we are processing. Normally, it is
8237 SET. In a memory address it is MEM. When processing the arguments of
8238 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8239 precisely it is an equality comparison against zero. */
8242 make_compound_operation (rtx x, enum rtx_code in_code)
8244 enum rtx_code code = GET_CODE (x);
8245 const char *fmt;
8246 int i, j;
8247 enum rtx_code next_code;
8248 rtx new_rtx, tem;
8250 /* Select the code to be used in recursive calls. Once we are inside an
8251 address, we stay there. If we have a comparison, set to COMPARE,
8252 but once inside, go back to our default of SET. */
8254 next_code = (code == MEM ? MEM
8255 : ((code == COMPARE || COMPARISON_P (x))
8256 && XEXP (x, 1) == const0_rtx) ? COMPARE
8257 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8259 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8261 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8262 in_code, &next_code);
8263 if (new_rtx)
8264 return new_rtx;
8265 code = GET_CODE (x);
8268 /* Now recursively process each operand of this operation. We need to
8269 handle ZERO_EXTEND specially so that we don't lose track of the
8270 inner mode. */
8271 if (code == ZERO_EXTEND)
8273 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8274 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8275 new_rtx, GET_MODE (XEXP (x, 0)));
8276 if (tem)
8277 return tem;
8278 SUBST (XEXP (x, 0), new_rtx);
8279 return x;
8282 fmt = GET_RTX_FORMAT (code);
8283 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8284 if (fmt[i] == 'e')
8286 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8287 SUBST (XEXP (x, i), new_rtx);
8289 else if (fmt[i] == 'E')
8290 for (j = 0; j < XVECLEN (x, i); j++)
8292 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8293 SUBST (XVECEXP (x, i, j), new_rtx);
8296 maybe_swap_commutative_operands (x);
8297 return x;
8300 /* Given M see if it is a value that would select a field of bits
8301 within an item, but not the entire word. Return -1 if not.
8302 Otherwise, return the starting position of the field, where 0 is the
8303 low-order bit.
8305 *PLEN is set to the length of the field. */
8307 static int
8308 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8310 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8311 int pos = m ? ctz_hwi (m) : -1;
8312 int len = 0;
8314 if (pos >= 0)
8315 /* Now shift off the low-order zero bits and see if we have a
8316 power of two minus 1. */
8317 len = exact_log2 ((m >> pos) + 1);
8319 if (len <= 0)
8320 pos = -1;
8322 *plen = len;
8323 return pos;
8326 /* If X refers to a register that equals REG in value, replace these
8327 references with REG. */
8328 static rtx
8329 canon_reg_for_combine (rtx x, rtx reg)
8331 rtx op0, op1, op2;
8332 const char *fmt;
8333 int i;
8334 bool copied;
8336 enum rtx_code code = GET_CODE (x);
8337 switch (GET_RTX_CLASS (code))
8339 case RTX_UNARY:
8340 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8341 if (op0 != XEXP (x, 0))
8342 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8343 GET_MODE (reg));
8344 break;
8346 case RTX_BIN_ARITH:
8347 case RTX_COMM_ARITH:
8348 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8349 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8350 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8351 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8352 break;
8354 case RTX_COMPARE:
8355 case RTX_COMM_COMPARE:
8356 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8357 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8358 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8359 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8360 GET_MODE (op0), op0, op1);
8361 break;
8363 case RTX_TERNARY:
8364 case RTX_BITFIELD_OPS:
8365 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8366 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8367 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8368 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8369 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8370 GET_MODE (op0), op0, op1, op2);
8371 /* FALLTHRU */
8373 case RTX_OBJ:
8374 if (REG_P (x))
8376 if (rtx_equal_p (get_last_value (reg), x)
8377 || rtx_equal_p (reg, get_last_value (x)))
8378 return reg;
8379 else
8380 break;
8383 /* fall through */
8385 default:
8386 fmt = GET_RTX_FORMAT (code);
8387 copied = false;
8388 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8389 if (fmt[i] == 'e')
8391 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8392 if (op != XEXP (x, i))
8394 if (!copied)
8396 copied = true;
8397 x = copy_rtx (x);
8399 XEXP (x, i) = op;
8402 else if (fmt[i] == 'E')
8404 int j;
8405 for (j = 0; j < XVECLEN (x, i); j++)
8407 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8408 if (op != XVECEXP (x, i, j))
8410 if (!copied)
8412 copied = true;
8413 x = copy_rtx (x);
8415 XVECEXP (x, i, j) = op;
8420 break;
8423 return x;
8426 /* Return X converted to MODE. If the value is already truncated to
8427 MODE we can just return a subreg even though in the general case we
8428 would need an explicit truncation. */
8430 static rtx
8431 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8433 if (!CONST_INT_P (x)
8434 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8435 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8436 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8438 /* Bit-cast X into an integer mode. */
8439 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8440 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8441 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8442 x, GET_MODE (x));
8445 return gen_lowpart (mode, x);
8448 /* See if X can be simplified knowing that we will only refer to it in
8449 MODE and will only refer to those bits that are nonzero in MASK.
8450 If other bits are being computed or if masking operations are done
8451 that select a superset of the bits in MASK, they can sometimes be
8452 ignored.
8454 Return a possibly simplified expression, but always convert X to
8455 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8457 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8458 are all off in X. This is used when X will be complemented, by either
8459 NOT, NEG, or XOR. */
8461 static rtx
8462 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8463 int just_select)
8465 enum rtx_code code = GET_CODE (x);
8466 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8467 machine_mode op_mode;
8468 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8469 rtx op0, op1, temp;
8471 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8472 code below will do the wrong thing since the mode of such an
8473 expression is VOIDmode.
8475 Also do nothing if X is a CLOBBER; this can happen if X was
8476 the return value from a call to gen_lowpart. */
8477 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8478 return x;
8480 /* We want to perform the operation in its present mode unless we know
8481 that the operation is valid in MODE, in which case we do the operation
8482 in MODE. */
8483 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8484 && have_insn_for (code, mode))
8485 ? mode : GET_MODE (x));
8487 /* It is not valid to do a right-shift in a narrower mode
8488 than the one it came in with. */
8489 if ((code == LSHIFTRT || code == ASHIFTRT)
8490 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8491 op_mode = GET_MODE (x);
8493 /* Truncate MASK to fit OP_MODE. */
8494 if (op_mode)
8495 mask &= GET_MODE_MASK (op_mode);
8497 /* When we have an arithmetic operation, or a shift whose count we
8498 do not know, we need to assume that all bits up to the highest-order
8499 bit in MASK will be needed. This is how we form such a mask. */
8500 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8501 fuller_mask = HOST_WIDE_INT_M1U;
8502 else
8503 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8504 - 1);
8506 /* Determine what bits of X are guaranteed to be (non)zero. */
8507 nonzero = nonzero_bits (x, mode);
8509 /* If none of the bits in X are needed, return a zero. */
8510 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8511 x = const0_rtx;
8513 /* If X is a CONST_INT, return a new one. Do this here since the
8514 test below will fail. */
8515 if (CONST_INT_P (x))
8517 if (SCALAR_INT_MODE_P (mode))
8518 return gen_int_mode (INTVAL (x) & mask, mode);
8519 else
8521 x = GEN_INT (INTVAL (x) & mask);
8522 return gen_lowpart_common (mode, x);
8526 /* If X is narrower than MODE and we want all the bits in X's mode, just
8527 get X in the proper mode. */
8528 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8529 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8530 return gen_lowpart (mode, x);
8532 /* We can ignore the effect of a SUBREG if it narrows the mode or
8533 if the constant masks to zero all the bits the mode doesn't have. */
8534 if (GET_CODE (x) == SUBREG
8535 && subreg_lowpart_p (x)
8536 && ((GET_MODE_SIZE (GET_MODE (x))
8537 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8538 || (0 == (mask
8539 & GET_MODE_MASK (GET_MODE (x))
8540 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8541 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8543 /* The arithmetic simplifications here only work for scalar integer modes. */
8544 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8545 return gen_lowpart_or_truncate (mode, x);
8547 switch (code)
8549 case CLOBBER:
8550 /* If X is a (clobber (const_int)), return it since we know we are
8551 generating something that won't match. */
8552 return x;
8554 case SIGN_EXTEND:
8555 case ZERO_EXTEND:
8556 case ZERO_EXTRACT:
8557 case SIGN_EXTRACT:
8558 x = expand_compound_operation (x);
8559 if (GET_CODE (x) != code)
8560 return force_to_mode (x, mode, mask, next_select);
8561 break;
8563 case TRUNCATE:
8564 /* Similarly for a truncate. */
8565 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8567 case AND:
8568 /* If this is an AND with a constant, convert it into an AND
8569 whose constant is the AND of that constant with MASK. If it
8570 remains an AND of MASK, delete it since it is redundant. */
8572 if (CONST_INT_P (XEXP (x, 1)))
8574 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8575 mask & INTVAL (XEXP (x, 1)));
8577 /* If X is still an AND, see if it is an AND with a mask that
8578 is just some low-order bits. If so, and it is MASK, we don't
8579 need it. */
8581 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8582 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8583 == mask))
8584 x = XEXP (x, 0);
8586 /* If it remains an AND, try making another AND with the bits
8587 in the mode mask that aren't in MASK turned on. If the
8588 constant in the AND is wide enough, this might make a
8589 cheaper constant. */
8591 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8592 && GET_MODE_MASK (GET_MODE (x)) != mask
8593 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8595 unsigned HOST_WIDE_INT cval
8596 = UINTVAL (XEXP (x, 1))
8597 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8598 rtx y;
8600 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8601 gen_int_mode (cval, GET_MODE (x)));
8602 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8603 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8604 x = y;
8607 break;
8610 goto binop;
8612 case PLUS:
8613 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8614 low-order bits (as in an alignment operation) and FOO is already
8615 aligned to that boundary, mask C1 to that boundary as well.
8616 This may eliminate that PLUS and, later, the AND. */
8619 unsigned int width = GET_MODE_PRECISION (mode);
8620 unsigned HOST_WIDE_INT smask = mask;
8622 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8623 number, sign extend it. */
8625 if (width < HOST_BITS_PER_WIDE_INT
8626 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8627 smask |= HOST_WIDE_INT_M1U << width;
8629 if (CONST_INT_P (XEXP (x, 1))
8630 && pow2p_hwi (- smask)
8631 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8632 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8633 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8634 (INTVAL (XEXP (x, 1)) & smask)),
8635 mode, smask, next_select);
8638 /* fall through */
8640 case MULT:
8641 /* Substituting into the operands of a widening MULT is not likely to
8642 create RTL matching a machine insn. */
8643 if (code == MULT
8644 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8645 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8646 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8647 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8648 && REG_P (XEXP (XEXP (x, 0), 0))
8649 && REG_P (XEXP (XEXP (x, 1), 0)))
8650 return gen_lowpart_or_truncate (mode, x);
8652 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8653 most significant bit in MASK since carries from those bits will
8654 affect the bits we are interested in. */
8655 mask = fuller_mask;
8656 goto binop;
8658 case MINUS:
8659 /* If X is (minus C Y) where C's least set bit is larger than any bit
8660 in the mask, then we may replace with (neg Y). */
8661 if (CONST_INT_P (XEXP (x, 0))
8662 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8664 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8665 GET_MODE (x));
8666 return force_to_mode (x, mode, mask, next_select);
8669 /* Similarly, if C contains every bit in the fuller_mask, then we may
8670 replace with (not Y). */
8671 if (CONST_INT_P (XEXP (x, 0))
8672 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8674 x = simplify_gen_unary (NOT, GET_MODE (x),
8675 XEXP (x, 1), GET_MODE (x));
8676 return force_to_mode (x, mode, mask, next_select);
8679 mask = fuller_mask;
8680 goto binop;
8682 case IOR:
8683 case XOR:
8684 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8685 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8686 operation which may be a bitfield extraction. Ensure that the
8687 constant we form is not wider than the mode of X. */
8689 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8690 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8691 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8692 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8693 && CONST_INT_P (XEXP (x, 1))
8694 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8695 + floor_log2 (INTVAL (XEXP (x, 1))))
8696 < GET_MODE_PRECISION (GET_MODE (x)))
8697 && (UINTVAL (XEXP (x, 1))
8698 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8700 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8701 << INTVAL (XEXP (XEXP (x, 0), 1)),
8702 GET_MODE (x));
8703 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8704 XEXP (XEXP (x, 0), 0), temp);
8705 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8706 XEXP (XEXP (x, 0), 1));
8707 return force_to_mode (x, mode, mask, next_select);
8710 binop:
8711 /* For most binary operations, just propagate into the operation and
8712 change the mode if we have an operation of that mode. */
8714 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8715 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8717 /* If we ended up truncating both operands, truncate the result of the
8718 operation instead. */
8719 if (GET_CODE (op0) == TRUNCATE
8720 && GET_CODE (op1) == TRUNCATE)
8722 op0 = XEXP (op0, 0);
8723 op1 = XEXP (op1, 0);
8726 op0 = gen_lowpart_or_truncate (op_mode, op0);
8727 op1 = gen_lowpart_or_truncate (op_mode, op1);
8729 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8730 x = simplify_gen_binary (code, op_mode, op0, op1);
8731 break;
8733 case ASHIFT:
8734 /* For left shifts, do the same, but just for the first operand.
8735 However, we cannot do anything with shifts where we cannot
8736 guarantee that the counts are smaller than the size of the mode
8737 because such a count will have a different meaning in a
8738 wider mode. */
8740 if (! (CONST_INT_P (XEXP (x, 1))
8741 && INTVAL (XEXP (x, 1)) >= 0
8742 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8743 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8744 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8745 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8746 break;
8748 /* If the shift count is a constant and we can do arithmetic in
8749 the mode of the shift, refine which bits we need. Otherwise, use the
8750 conservative form of the mask. */
8751 if (CONST_INT_P (XEXP (x, 1))
8752 && INTVAL (XEXP (x, 1)) >= 0
8753 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8754 && HWI_COMPUTABLE_MODE_P (op_mode))
8755 mask >>= INTVAL (XEXP (x, 1));
8756 else
8757 mask = fuller_mask;
8759 op0 = gen_lowpart_or_truncate (op_mode,
8760 force_to_mode (XEXP (x, 0), op_mode,
8761 mask, next_select));
8763 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8764 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8765 break;
8767 case LSHIFTRT:
8768 /* Here we can only do something if the shift count is a constant,
8769 this shift constant is valid for the host, and we can do arithmetic
8770 in OP_MODE. */
8772 if (CONST_INT_P (XEXP (x, 1))
8773 && INTVAL (XEXP (x, 1)) >= 0
8774 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8775 && HWI_COMPUTABLE_MODE_P (op_mode))
8777 rtx inner = XEXP (x, 0);
8778 unsigned HOST_WIDE_INT inner_mask;
8780 /* Select the mask of the bits we need for the shift operand. */
8781 inner_mask = mask << INTVAL (XEXP (x, 1));
8783 /* We can only change the mode of the shift if we can do arithmetic
8784 in the mode of the shift and INNER_MASK is no wider than the
8785 width of X's mode. */
8786 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8787 op_mode = GET_MODE (x);
8789 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8791 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8792 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8795 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8796 shift and AND produces only copies of the sign bit (C2 is one less
8797 than a power of two), we can do this with just a shift. */
8799 if (GET_CODE (x) == LSHIFTRT
8800 && CONST_INT_P (XEXP (x, 1))
8801 /* The shift puts one of the sign bit copies in the least significant
8802 bit. */
8803 && ((INTVAL (XEXP (x, 1))
8804 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8805 >= GET_MODE_PRECISION (GET_MODE (x)))
8806 && pow2p_hwi (mask + 1)
8807 /* Number of bits left after the shift must be more than the mask
8808 needs. */
8809 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8810 <= GET_MODE_PRECISION (GET_MODE (x)))
8811 /* Must be more sign bit copies than the mask needs. */
8812 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8813 >= exact_log2 (mask + 1)))
8814 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8815 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8816 - exact_log2 (mask + 1)));
8818 goto shiftrt;
8820 case ASHIFTRT:
8821 /* If we are just looking for the sign bit, we don't need this shift at
8822 all, even if it has a variable count. */
8823 if (val_signbit_p (GET_MODE (x), mask))
8824 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8826 /* If this is a shift by a constant, get a mask that contains those bits
8827 that are not copies of the sign bit. We then have two cases: If
8828 MASK only includes those bits, this can be a logical shift, which may
8829 allow simplifications. If MASK is a single-bit field not within
8830 those bits, we are requesting a copy of the sign bit and hence can
8831 shift the sign bit to the appropriate location. */
8833 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8834 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8836 int i;
8838 /* If the considered data is wider than HOST_WIDE_INT, we can't
8839 represent a mask for all its bits in a single scalar.
8840 But we only care about the lower bits, so calculate these. */
8842 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8844 nonzero = HOST_WIDE_INT_M1U;
8846 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8847 is the number of bits a full-width mask would have set.
8848 We need only shift if these are fewer than nonzero can
8849 hold. If not, we must keep all bits set in nonzero. */
8851 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8852 < HOST_BITS_PER_WIDE_INT)
8853 nonzero >>= INTVAL (XEXP (x, 1))
8854 + HOST_BITS_PER_WIDE_INT
8855 - GET_MODE_PRECISION (GET_MODE (x)) ;
8857 else
8859 nonzero = GET_MODE_MASK (GET_MODE (x));
8860 nonzero >>= INTVAL (XEXP (x, 1));
8863 if ((mask & ~nonzero) == 0)
8865 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8866 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8867 if (GET_CODE (x) != ASHIFTRT)
8868 return force_to_mode (x, mode, mask, next_select);
8871 else if ((i = exact_log2 (mask)) >= 0)
8873 x = simplify_shift_const
8874 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8875 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8877 if (GET_CODE (x) != ASHIFTRT)
8878 return force_to_mode (x, mode, mask, next_select);
8882 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8883 even if the shift count isn't a constant. */
8884 if (mask == 1)
8885 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8886 XEXP (x, 0), XEXP (x, 1));
8888 shiftrt:
8890 /* If this is a zero- or sign-extension operation that just affects bits
8891 we don't care about, remove it. Be sure the call above returned
8892 something that is still a shift. */
8894 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8895 && CONST_INT_P (XEXP (x, 1))
8896 && INTVAL (XEXP (x, 1)) >= 0
8897 && (INTVAL (XEXP (x, 1))
8898 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8899 && GET_CODE (XEXP (x, 0)) == ASHIFT
8900 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8901 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8902 next_select);
8904 break;
8906 case ROTATE:
8907 case ROTATERT:
8908 /* If the shift count is constant and we can do computations
8909 in the mode of X, compute where the bits we care about are.
8910 Otherwise, we can't do anything. Don't change the mode of
8911 the shift or propagate MODE into the shift, though. */
8912 if (CONST_INT_P (XEXP (x, 1))
8913 && INTVAL (XEXP (x, 1)) >= 0)
8915 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8916 GET_MODE (x),
8917 gen_int_mode (mask, GET_MODE (x)),
8918 XEXP (x, 1));
8919 if (temp && CONST_INT_P (temp))
8920 x = simplify_gen_binary (code, GET_MODE (x),
8921 force_to_mode (XEXP (x, 0), GET_MODE (x),
8922 INTVAL (temp), next_select),
8923 XEXP (x, 1));
8925 break;
8927 case NEG:
8928 /* If we just want the low-order bit, the NEG isn't needed since it
8929 won't change the low-order bit. */
8930 if (mask == 1)
8931 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8933 /* We need any bits less significant than the most significant bit in
8934 MASK since carries from those bits will affect the bits we are
8935 interested in. */
8936 mask = fuller_mask;
8937 goto unop;
8939 case NOT:
8940 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8941 same as the XOR case above. Ensure that the constant we form is not
8942 wider than the mode of X. */
8944 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8945 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8946 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8947 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8948 < GET_MODE_PRECISION (GET_MODE (x)))
8949 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8951 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8952 GET_MODE (x));
8953 temp = simplify_gen_binary (XOR, GET_MODE (x),
8954 XEXP (XEXP (x, 0), 0), temp);
8955 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8956 temp, XEXP (XEXP (x, 0), 1));
8958 return force_to_mode (x, mode, mask, next_select);
8961 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8962 use the full mask inside the NOT. */
8963 mask = fuller_mask;
8965 unop:
8966 op0 = gen_lowpart_or_truncate (op_mode,
8967 force_to_mode (XEXP (x, 0), mode, mask,
8968 next_select));
8969 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8970 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8971 break;
8973 case NE:
8974 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8975 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8976 which is equal to STORE_FLAG_VALUE. */
8977 if ((mask & ~STORE_FLAG_VALUE) == 0
8978 && XEXP (x, 1) == const0_rtx
8979 && GET_MODE (XEXP (x, 0)) == mode
8980 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8981 && (nonzero_bits (XEXP (x, 0), mode)
8982 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8983 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8985 break;
8987 case IF_THEN_ELSE:
8988 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8989 written in a narrower mode. We play it safe and do not do so. */
8991 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8992 force_to_mode (XEXP (x, 1), mode,
8993 mask, next_select));
8994 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8995 force_to_mode (XEXP (x, 2), mode,
8996 mask, next_select));
8997 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8998 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8999 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9000 op0, op1);
9001 break;
9003 default:
9004 break;
9007 /* Ensure we return a value of the proper mode. */
9008 return gen_lowpart_or_truncate (mode, x);
9011 /* Return nonzero if X is an expression that has one of two values depending on
9012 whether some other value is zero or nonzero. In that case, we return the
9013 value that is being tested, *PTRUE is set to the value if the rtx being
9014 returned has a nonzero value, and *PFALSE is set to the other alternative.
9016 If we return zero, we set *PTRUE and *PFALSE to X. */
9018 static rtx
9019 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9021 machine_mode mode = GET_MODE (x);
9022 enum rtx_code code = GET_CODE (x);
9023 rtx cond0, cond1, true0, true1, false0, false1;
9024 unsigned HOST_WIDE_INT nz;
9026 /* If we are comparing a value against zero, we are done. */
9027 if ((code == NE || code == EQ)
9028 && XEXP (x, 1) == const0_rtx)
9030 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9031 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9032 return XEXP (x, 0);
9035 /* If this is a unary operation whose operand has one of two values, apply
9036 our opcode to compute those values. */
9037 else if (UNARY_P (x)
9038 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9040 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9041 *pfalse = simplify_gen_unary (code, mode, false0,
9042 GET_MODE (XEXP (x, 0)));
9043 return cond0;
9046 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9047 make can't possibly match and would suppress other optimizations. */
9048 else if (code == COMPARE)
9051 /* If this is a binary operation, see if either side has only one of two
9052 values. If either one does or if both do and they are conditional on
9053 the same value, compute the new true and false values. */
9054 else if (BINARY_P (x))
9056 rtx op0 = XEXP (x, 0);
9057 rtx op1 = XEXP (x, 1);
9058 cond0 = if_then_else_cond (op0, &true0, &false0);
9059 cond1 = if_then_else_cond (op1, &true1, &false1);
9061 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9062 && (REG_P (op0) || REG_P (op1)))
9064 /* Try to enable a simplification by undoing work done by
9065 if_then_else_cond if it converted a REG into something more
9066 complex. */
9067 if (REG_P (op0))
9069 cond0 = 0;
9070 true0 = false0 = op0;
9072 else
9074 cond1 = 0;
9075 true1 = false1 = op1;
9079 if ((cond0 != 0 || cond1 != 0)
9080 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9082 /* If if_then_else_cond returned zero, then true/false are the
9083 same rtl. We must copy one of them to prevent invalid rtl
9084 sharing. */
9085 if (cond0 == 0)
9086 true0 = copy_rtx (true0);
9087 else if (cond1 == 0)
9088 true1 = copy_rtx (true1);
9090 if (COMPARISON_P (x))
9092 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9093 true0, true1);
9094 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9095 false0, false1);
9097 else
9099 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9100 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9103 return cond0 ? cond0 : cond1;
9106 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9107 operands is zero when the other is nonzero, and vice-versa,
9108 and STORE_FLAG_VALUE is 1 or -1. */
9110 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9111 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9112 || code == UMAX)
9113 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9115 rtx op0 = XEXP (XEXP (x, 0), 1);
9116 rtx op1 = XEXP (XEXP (x, 1), 1);
9118 cond0 = XEXP (XEXP (x, 0), 0);
9119 cond1 = XEXP (XEXP (x, 1), 0);
9121 if (COMPARISON_P (cond0)
9122 && COMPARISON_P (cond1)
9123 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9124 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9125 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9126 || ((swap_condition (GET_CODE (cond0))
9127 == reversed_comparison_code (cond1, NULL))
9128 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9129 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9130 && ! side_effects_p (x))
9132 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9133 *pfalse = simplify_gen_binary (MULT, mode,
9134 (code == MINUS
9135 ? simplify_gen_unary (NEG, mode,
9136 op1, mode)
9137 : op1),
9138 const_true_rtx);
9139 return cond0;
9143 /* Similarly for MULT, AND and UMIN, except that for these the result
9144 is always zero. */
9145 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9146 && (code == MULT || code == AND || code == UMIN)
9147 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9149 cond0 = XEXP (XEXP (x, 0), 0);
9150 cond1 = XEXP (XEXP (x, 1), 0);
9152 if (COMPARISON_P (cond0)
9153 && COMPARISON_P (cond1)
9154 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9155 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9156 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9157 || ((swap_condition (GET_CODE (cond0))
9158 == reversed_comparison_code (cond1, NULL))
9159 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9160 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9161 && ! side_effects_p (x))
9163 *ptrue = *pfalse = const0_rtx;
9164 return cond0;
9169 else if (code == IF_THEN_ELSE)
9171 /* If we have IF_THEN_ELSE already, extract the condition and
9172 canonicalize it if it is NE or EQ. */
9173 cond0 = XEXP (x, 0);
9174 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9175 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9176 return XEXP (cond0, 0);
9177 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9179 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9180 return XEXP (cond0, 0);
9182 else
9183 return cond0;
9186 /* If X is a SUBREG, we can narrow both the true and false values
9187 if the inner expression, if there is a condition. */
9188 else if (code == SUBREG
9189 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9190 &true0, &false0)))
9192 true0 = simplify_gen_subreg (mode, true0,
9193 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9194 false0 = simplify_gen_subreg (mode, false0,
9195 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9196 if (true0 && false0)
9198 *ptrue = true0;
9199 *pfalse = false0;
9200 return cond0;
9204 /* If X is a constant, this isn't special and will cause confusions
9205 if we treat it as such. Likewise if it is equivalent to a constant. */
9206 else if (CONSTANT_P (x)
9207 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9210 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9211 will be least confusing to the rest of the compiler. */
9212 else if (mode == BImode)
9214 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9215 return x;
9218 /* If X is known to be either 0 or -1, those are the true and
9219 false values when testing X. */
9220 else if (x == constm1_rtx || x == const0_rtx
9221 || (mode != VOIDmode && mode != BLKmode
9222 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9224 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9225 return x;
9228 /* Likewise for 0 or a single bit. */
9229 else if (HWI_COMPUTABLE_MODE_P (mode)
9230 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9232 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9233 return x;
9236 /* Otherwise fail; show no condition with true and false values the same. */
9237 *ptrue = *pfalse = x;
9238 return 0;
9241 /* Return the value of expression X given the fact that condition COND
9242 is known to be true when applied to REG as its first operand and VAL
9243 as its second. X is known to not be shared and so can be modified in
9244 place.
9246 We only handle the simplest cases, and specifically those cases that
9247 arise with IF_THEN_ELSE expressions. */
9249 static rtx
9250 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9252 enum rtx_code code = GET_CODE (x);
9253 const char *fmt;
9254 int i, j;
9256 if (side_effects_p (x))
9257 return x;
9259 /* If either operand of the condition is a floating point value,
9260 then we have to avoid collapsing an EQ comparison. */
9261 if (cond == EQ
9262 && rtx_equal_p (x, reg)
9263 && ! FLOAT_MODE_P (GET_MODE (x))
9264 && ! FLOAT_MODE_P (GET_MODE (val)))
9265 return val;
9267 if (cond == UNEQ && rtx_equal_p (x, reg))
9268 return val;
9270 /* If X is (abs REG) and we know something about REG's relationship
9271 with zero, we may be able to simplify this. */
9273 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9274 switch (cond)
9276 case GE: case GT: case EQ:
9277 return XEXP (x, 0);
9278 case LT: case LE:
9279 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9280 XEXP (x, 0),
9281 GET_MODE (XEXP (x, 0)));
9282 default:
9283 break;
9286 /* The only other cases we handle are MIN, MAX, and comparisons if the
9287 operands are the same as REG and VAL. */
9289 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9291 if (rtx_equal_p (XEXP (x, 0), val))
9293 std::swap (val, reg);
9294 cond = swap_condition (cond);
9297 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9299 if (COMPARISON_P (x))
9301 if (comparison_dominates_p (cond, code))
9302 return const_true_rtx;
9304 code = reversed_comparison_code (x, NULL);
9305 if (code != UNKNOWN
9306 && comparison_dominates_p (cond, code))
9307 return const0_rtx;
9308 else
9309 return x;
9311 else if (code == SMAX || code == SMIN
9312 || code == UMIN || code == UMAX)
9314 int unsignedp = (code == UMIN || code == UMAX);
9316 /* Do not reverse the condition when it is NE or EQ.
9317 This is because we cannot conclude anything about
9318 the value of 'SMAX (x, y)' when x is not equal to y,
9319 but we can when x equals y. */
9320 if ((code == SMAX || code == UMAX)
9321 && ! (cond == EQ || cond == NE))
9322 cond = reverse_condition (cond);
9324 switch (cond)
9326 case GE: case GT:
9327 return unsignedp ? x : XEXP (x, 1);
9328 case LE: case LT:
9329 return unsignedp ? x : XEXP (x, 0);
9330 case GEU: case GTU:
9331 return unsignedp ? XEXP (x, 1) : x;
9332 case LEU: case LTU:
9333 return unsignedp ? XEXP (x, 0) : x;
9334 default:
9335 break;
9340 else if (code == SUBREG)
9342 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9343 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9345 if (SUBREG_REG (x) != r)
9347 /* We must simplify subreg here, before we lose track of the
9348 original inner_mode. */
9349 new_rtx = simplify_subreg (GET_MODE (x), r,
9350 inner_mode, SUBREG_BYTE (x));
9351 if (new_rtx)
9352 return new_rtx;
9353 else
9354 SUBST (SUBREG_REG (x), r);
9357 return x;
9359 /* We don't have to handle SIGN_EXTEND here, because even in the
9360 case of replacing something with a modeless CONST_INT, a
9361 CONST_INT is already (supposed to be) a valid sign extension for
9362 its narrower mode, which implies it's already properly
9363 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9364 story is different. */
9365 else if (code == ZERO_EXTEND)
9367 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9368 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9370 if (XEXP (x, 0) != r)
9372 /* We must simplify the zero_extend here, before we lose
9373 track of the original inner_mode. */
9374 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9375 r, inner_mode);
9376 if (new_rtx)
9377 return new_rtx;
9378 else
9379 SUBST (XEXP (x, 0), r);
9382 return x;
9385 fmt = GET_RTX_FORMAT (code);
9386 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9388 if (fmt[i] == 'e')
9389 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9390 else if (fmt[i] == 'E')
9391 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9392 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9393 cond, reg, val));
9396 return x;
9399 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9400 assignment as a field assignment. */
9402 static int
9403 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9405 if (widen_x && GET_MODE (x) != GET_MODE (y))
9407 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9408 return 0;
9409 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9410 return 0;
9411 /* For big endian, adjust the memory offset. */
9412 if (BYTES_BIG_ENDIAN)
9413 x = adjust_address_nv (x, GET_MODE (y),
9414 -subreg_lowpart_offset (GET_MODE (x),
9415 GET_MODE (y)));
9416 else
9417 x = adjust_address_nv (x, GET_MODE (y), 0);
9420 if (x == y || rtx_equal_p (x, y))
9421 return 1;
9423 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9424 return 0;
9426 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9427 Note that all SUBREGs of MEM are paradoxical; otherwise they
9428 would have been rewritten. */
9429 if (MEM_P (x) && GET_CODE (y) == SUBREG
9430 && MEM_P (SUBREG_REG (y))
9431 && rtx_equal_p (SUBREG_REG (y),
9432 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9433 return 1;
9435 if (MEM_P (y) && GET_CODE (x) == SUBREG
9436 && MEM_P (SUBREG_REG (x))
9437 && rtx_equal_p (SUBREG_REG (x),
9438 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9439 return 1;
9441 /* We used to see if get_last_value of X and Y were the same but that's
9442 not correct. In one direction, we'll cause the assignment to have
9443 the wrong destination and in the case, we'll import a register into this
9444 insn that might have already have been dead. So fail if none of the
9445 above cases are true. */
9446 return 0;
9449 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9450 Return that assignment if so.
9452 We only handle the most common cases. */
9454 static rtx
9455 make_field_assignment (rtx x)
9457 rtx dest = SET_DEST (x);
9458 rtx src = SET_SRC (x);
9459 rtx assign;
9460 rtx rhs, lhs;
9461 HOST_WIDE_INT c1;
9462 HOST_WIDE_INT pos;
9463 unsigned HOST_WIDE_INT len;
9464 rtx other;
9465 machine_mode mode;
9467 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9468 a clear of a one-bit field. We will have changed it to
9469 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9470 for a SUBREG. */
9472 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9473 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9474 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9475 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9477 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9478 1, 1, 1, 0);
9479 if (assign != 0)
9480 return gen_rtx_SET (assign, const0_rtx);
9481 return x;
9484 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9485 && subreg_lowpart_p (XEXP (src, 0))
9486 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9487 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9488 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9489 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9490 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9491 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9493 assign = make_extraction (VOIDmode, dest, 0,
9494 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9495 1, 1, 1, 0);
9496 if (assign != 0)
9497 return gen_rtx_SET (assign, const0_rtx);
9498 return x;
9501 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9502 one-bit field. */
9503 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9504 && XEXP (XEXP (src, 0), 0) == const1_rtx
9505 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9507 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9508 1, 1, 1, 0);
9509 if (assign != 0)
9510 return gen_rtx_SET (assign, const1_rtx);
9511 return x;
9514 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9515 SRC is an AND with all bits of that field set, then we can discard
9516 the AND. */
9517 if (GET_CODE (dest) == ZERO_EXTRACT
9518 && CONST_INT_P (XEXP (dest, 1))
9519 && GET_CODE (src) == AND
9520 && CONST_INT_P (XEXP (src, 1)))
9522 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9523 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9524 unsigned HOST_WIDE_INT ze_mask;
9526 if (width >= HOST_BITS_PER_WIDE_INT)
9527 ze_mask = -1;
9528 else
9529 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9531 /* Complete overlap. We can remove the source AND. */
9532 if ((and_mask & ze_mask) == ze_mask)
9533 return gen_rtx_SET (dest, XEXP (src, 0));
9535 /* Partial overlap. We can reduce the source AND. */
9536 if ((and_mask & ze_mask) != and_mask)
9538 mode = GET_MODE (src);
9539 src = gen_rtx_AND (mode, XEXP (src, 0),
9540 gen_int_mode (and_mask & ze_mask, mode));
9541 return gen_rtx_SET (dest, src);
9545 /* The other case we handle is assignments into a constant-position
9546 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9547 a mask that has all one bits except for a group of zero bits and
9548 OTHER is known to have zeros where C1 has ones, this is such an
9549 assignment. Compute the position and length from C1. Shift OTHER
9550 to the appropriate position, force it to the required mode, and
9551 make the extraction. Check for the AND in both operands. */
9553 /* One or more SUBREGs might obscure the constant-position field
9554 assignment. The first one we are likely to encounter is an outer
9555 narrowing SUBREG, which we can just strip for the purposes of
9556 identifying the constant-field assignment. */
9557 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9558 src = SUBREG_REG (src);
9560 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9561 return x;
9563 rhs = expand_compound_operation (XEXP (src, 0));
9564 lhs = expand_compound_operation (XEXP (src, 1));
9566 if (GET_CODE (rhs) == AND
9567 && CONST_INT_P (XEXP (rhs, 1))
9568 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9569 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9570 /* The second SUBREG that might get in the way is a paradoxical
9571 SUBREG around the first operand of the AND. We want to
9572 pretend the operand is as wide as the destination here. We
9573 do this by adjusting the MEM to wider mode for the sole
9574 purpose of the call to rtx_equal_for_field_assignment_p. Also
9575 note this trick only works for MEMs. */
9576 else if (GET_CODE (rhs) == AND
9577 && paradoxical_subreg_p (XEXP (rhs, 0))
9578 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9579 && CONST_INT_P (XEXP (rhs, 1))
9580 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9581 dest, true))
9582 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9583 else if (GET_CODE (lhs) == AND
9584 && CONST_INT_P (XEXP (lhs, 1))
9585 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9586 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9587 /* The second SUBREG that might get in the way is a paradoxical
9588 SUBREG around the first operand of the AND. We want to
9589 pretend the operand is as wide as the destination here. We
9590 do this by adjusting the MEM to wider mode for the sole
9591 purpose of the call to rtx_equal_for_field_assignment_p. Also
9592 note this trick only works for MEMs. */
9593 else if (GET_CODE (lhs) == AND
9594 && paradoxical_subreg_p (XEXP (lhs, 0))
9595 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9596 && CONST_INT_P (XEXP (lhs, 1))
9597 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9598 dest, true))
9599 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9600 else
9601 return x;
9603 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9604 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9605 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9606 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9607 return x;
9609 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9610 if (assign == 0)
9611 return x;
9613 /* The mode to use for the source is the mode of the assignment, or of
9614 what is inside a possible STRICT_LOW_PART. */
9615 mode = (GET_CODE (assign) == STRICT_LOW_PART
9616 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9618 /* Shift OTHER right POS places and make it the source, restricting it
9619 to the proper length and mode. */
9621 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9622 GET_MODE (src),
9623 other, pos),
9624 dest);
9625 src = force_to_mode (src, mode,
9626 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9627 ? HOST_WIDE_INT_M1U
9628 : (HOST_WIDE_INT_1U << len) - 1,
9631 /* If SRC is masked by an AND that does not make a difference in
9632 the value being stored, strip it. */
9633 if (GET_CODE (assign) == ZERO_EXTRACT
9634 && CONST_INT_P (XEXP (assign, 1))
9635 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9636 && GET_CODE (src) == AND
9637 && CONST_INT_P (XEXP (src, 1))
9638 && UINTVAL (XEXP (src, 1))
9639 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9640 src = XEXP (src, 0);
9642 return gen_rtx_SET (assign, src);
9645 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9646 if so. */
9648 static rtx
9649 apply_distributive_law (rtx x)
9651 enum rtx_code code = GET_CODE (x);
9652 enum rtx_code inner_code;
9653 rtx lhs, rhs, other;
9654 rtx tem;
9656 /* Distributivity is not true for floating point as it can change the
9657 value. So we don't do it unless -funsafe-math-optimizations. */
9658 if (FLOAT_MODE_P (GET_MODE (x))
9659 && ! flag_unsafe_math_optimizations)
9660 return x;
9662 /* The outer operation can only be one of the following: */
9663 if (code != IOR && code != AND && code != XOR
9664 && code != PLUS && code != MINUS)
9665 return x;
9667 lhs = XEXP (x, 0);
9668 rhs = XEXP (x, 1);
9670 /* If either operand is a primitive we can't do anything, so get out
9671 fast. */
9672 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9673 return x;
9675 lhs = expand_compound_operation (lhs);
9676 rhs = expand_compound_operation (rhs);
9677 inner_code = GET_CODE (lhs);
9678 if (inner_code != GET_CODE (rhs))
9679 return x;
9681 /* See if the inner and outer operations distribute. */
9682 switch (inner_code)
9684 case LSHIFTRT:
9685 case ASHIFTRT:
9686 case AND:
9687 case IOR:
9688 /* These all distribute except over PLUS. */
9689 if (code == PLUS || code == MINUS)
9690 return x;
9691 break;
9693 case MULT:
9694 if (code != PLUS && code != MINUS)
9695 return x;
9696 break;
9698 case ASHIFT:
9699 /* This is also a multiply, so it distributes over everything. */
9700 break;
9702 /* This used to handle SUBREG, but this turned out to be counter-
9703 productive, since (subreg (op ...)) usually is not handled by
9704 insn patterns, and this "optimization" therefore transformed
9705 recognizable patterns into unrecognizable ones. Therefore the
9706 SUBREG case was removed from here.
9708 It is possible that distributing SUBREG over arithmetic operations
9709 leads to an intermediate result than can then be optimized further,
9710 e.g. by moving the outer SUBREG to the other side of a SET as done
9711 in simplify_set. This seems to have been the original intent of
9712 handling SUBREGs here.
9714 However, with current GCC this does not appear to actually happen,
9715 at least on major platforms. If some case is found where removing
9716 the SUBREG case here prevents follow-on optimizations, distributing
9717 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9719 default:
9720 return x;
9723 /* Set LHS and RHS to the inner operands (A and B in the example
9724 above) and set OTHER to the common operand (C in the example).
9725 There is only one way to do this unless the inner operation is
9726 commutative. */
9727 if (COMMUTATIVE_ARITH_P (lhs)
9728 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9729 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9730 else if (COMMUTATIVE_ARITH_P (lhs)
9731 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9732 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9733 else if (COMMUTATIVE_ARITH_P (lhs)
9734 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9735 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9736 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9737 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9738 else
9739 return x;
9741 /* Form the new inner operation, seeing if it simplifies first. */
9742 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9744 /* There is one exception to the general way of distributing:
9745 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9746 if (code == XOR && inner_code == IOR)
9748 inner_code = AND;
9749 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9752 /* We may be able to continuing distributing the result, so call
9753 ourselves recursively on the inner operation before forming the
9754 outer operation, which we return. */
9755 return simplify_gen_binary (inner_code, GET_MODE (x),
9756 apply_distributive_law (tem), other);
9759 /* See if X is of the form (* (+ A B) C), and if so convert to
9760 (+ (* A C) (* B C)) and try to simplify.
9762 Most of the time, this results in no change. However, if some of
9763 the operands are the same or inverses of each other, simplifications
9764 will result.
9766 For example, (and (ior A B) (not B)) can occur as the result of
9767 expanding a bit field assignment. When we apply the distributive
9768 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9769 which then simplifies to (and (A (not B))).
9771 Note that no checks happen on the validity of applying the inverse
9772 distributive law. This is pointless since we can do it in the
9773 few places where this routine is called.
9775 N is the index of the term that is decomposed (the arithmetic operation,
9776 i.e. (+ A B) in the first example above). !N is the index of the term that
9777 is distributed, i.e. of C in the first example above. */
9778 static rtx
9779 distribute_and_simplify_rtx (rtx x, int n)
9781 machine_mode mode;
9782 enum rtx_code outer_code, inner_code;
9783 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9785 /* Distributivity is not true for floating point as it can change the
9786 value. So we don't do it unless -funsafe-math-optimizations. */
9787 if (FLOAT_MODE_P (GET_MODE (x))
9788 && ! flag_unsafe_math_optimizations)
9789 return NULL_RTX;
9791 decomposed = XEXP (x, n);
9792 if (!ARITHMETIC_P (decomposed))
9793 return NULL_RTX;
9795 mode = GET_MODE (x);
9796 outer_code = GET_CODE (x);
9797 distributed = XEXP (x, !n);
9799 inner_code = GET_CODE (decomposed);
9800 inner_op0 = XEXP (decomposed, 0);
9801 inner_op1 = XEXP (decomposed, 1);
9803 /* Special case (and (xor B C) (not A)), which is equivalent to
9804 (xor (ior A B) (ior A C)) */
9805 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9807 distributed = XEXP (distributed, 0);
9808 outer_code = IOR;
9811 if (n == 0)
9813 /* Distribute the second term. */
9814 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9815 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9817 else
9819 /* Distribute the first term. */
9820 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9821 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9824 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9825 new_op0, new_op1));
9826 if (GET_CODE (tmp) != outer_code
9827 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9828 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9829 return tmp;
9831 return NULL_RTX;
9834 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9835 in MODE. Return an equivalent form, if different from (and VAROP
9836 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9838 static rtx
9839 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9840 unsigned HOST_WIDE_INT constop)
9842 unsigned HOST_WIDE_INT nonzero;
9843 unsigned HOST_WIDE_INT orig_constop;
9844 rtx orig_varop;
9845 int i;
9847 orig_varop = varop;
9848 orig_constop = constop;
9849 if (GET_CODE (varop) == CLOBBER)
9850 return NULL_RTX;
9852 /* Simplify VAROP knowing that we will be only looking at some of the
9853 bits in it.
9855 Note by passing in CONSTOP, we guarantee that the bits not set in
9856 CONSTOP are not significant and will never be examined. We must
9857 ensure that is the case by explicitly masking out those bits
9858 before returning. */
9859 varop = force_to_mode (varop, mode, constop, 0);
9861 /* If VAROP is a CLOBBER, we will fail so return it. */
9862 if (GET_CODE (varop) == CLOBBER)
9863 return varop;
9865 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9866 to VAROP and return the new constant. */
9867 if (CONST_INT_P (varop))
9868 return gen_int_mode (INTVAL (varop) & constop, mode);
9870 /* See what bits may be nonzero in VAROP. Unlike the general case of
9871 a call to nonzero_bits, here we don't care about bits outside
9872 MODE. */
9874 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9876 /* Turn off all bits in the constant that are known to already be zero.
9877 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9878 which is tested below. */
9880 constop &= nonzero;
9882 /* If we don't have any bits left, return zero. */
9883 if (constop == 0)
9884 return const0_rtx;
9886 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9887 a power of two, we can replace this with an ASHIFT. */
9888 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9889 && (i = exact_log2 (constop)) >= 0)
9890 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9892 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9893 or XOR, then try to apply the distributive law. This may eliminate
9894 operations if either branch can be simplified because of the AND.
9895 It may also make some cases more complex, but those cases probably
9896 won't match a pattern either with or without this. */
9898 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9899 return
9900 gen_lowpart
9901 (mode,
9902 apply_distributive_law
9903 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9904 simplify_and_const_int (NULL_RTX,
9905 GET_MODE (varop),
9906 XEXP (varop, 0),
9907 constop),
9908 simplify_and_const_int (NULL_RTX,
9909 GET_MODE (varop),
9910 XEXP (varop, 1),
9911 constop))));
9913 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9914 the AND and see if one of the operands simplifies to zero. If so, we
9915 may eliminate it. */
9917 if (GET_CODE (varop) == PLUS
9918 && pow2p_hwi (constop + 1))
9920 rtx o0, o1;
9922 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9923 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9924 if (o0 == const0_rtx)
9925 return o1;
9926 if (o1 == const0_rtx)
9927 return o0;
9930 /* Make a SUBREG if necessary. If we can't make it, fail. */
9931 varop = gen_lowpart (mode, varop);
9932 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9933 return NULL_RTX;
9935 /* If we are only masking insignificant bits, return VAROP. */
9936 if (constop == nonzero)
9937 return varop;
9939 if (varop == orig_varop && constop == orig_constop)
9940 return NULL_RTX;
9942 /* Otherwise, return an AND. */
9943 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9947 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9948 in MODE.
9950 Return an equivalent form, if different from X. Otherwise, return X. If
9951 X is zero, we are to always construct the equivalent form. */
9953 static rtx
9954 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9955 unsigned HOST_WIDE_INT constop)
9957 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9958 if (tem)
9959 return tem;
9961 if (!x)
9962 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9963 gen_int_mode (constop, mode));
9964 if (GET_MODE (x) != mode)
9965 x = gen_lowpart (mode, x);
9966 return x;
9969 /* Given a REG, X, compute which bits in X can be nonzero.
9970 We don't care about bits outside of those defined in MODE.
9972 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9973 a shift, AND, or zero_extract, we can do better. */
9975 static rtx
9976 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9977 const_rtx known_x ATTRIBUTE_UNUSED,
9978 machine_mode known_mode ATTRIBUTE_UNUSED,
9979 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9980 unsigned HOST_WIDE_INT *nonzero)
9982 rtx tem;
9983 reg_stat_type *rsp;
9985 /* If X is a register whose nonzero bits value is current, use it.
9986 Otherwise, if X is a register whose value we can find, use that
9987 value. Otherwise, use the previously-computed global nonzero bits
9988 for this register. */
9990 rsp = &reg_stat[REGNO (x)];
9991 if (rsp->last_set_value != 0
9992 && (rsp->last_set_mode == mode
9993 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9994 && GET_MODE_CLASS (mode) == MODE_INT))
9995 && ((rsp->last_set_label >= label_tick_ebb_start
9996 && rsp->last_set_label < label_tick)
9997 || (rsp->last_set_label == label_tick
9998 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9999 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10000 && REGNO (x) < reg_n_sets_max
10001 && REG_N_SETS (REGNO (x)) == 1
10002 && !REGNO_REG_SET_P
10003 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10004 REGNO (x)))))
10006 /* Note that, even if the precision of last_set_mode is lower than that
10007 of mode, record_value_for_reg invoked nonzero_bits on the register
10008 with nonzero_bits_mode (because last_set_mode is necessarily integral
10009 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10010 are all valid, hence in mode too since nonzero_bits_mode is defined
10011 to the largest HWI_COMPUTABLE_MODE_P mode. */
10012 *nonzero &= rsp->last_set_nonzero_bits;
10013 return NULL;
10016 tem = get_last_value (x);
10017 if (tem)
10019 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10020 tem = sign_extend_short_imm (tem, GET_MODE (x),
10021 GET_MODE_PRECISION (mode));
10023 return tem;
10026 if (nonzero_sign_valid && rsp->nonzero_bits)
10028 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10030 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10031 /* We don't know anything about the upper bits. */
10032 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10034 *nonzero &= mask;
10037 return NULL;
10040 /* Return the number of bits at the high-order end of X that are known to
10041 be equal to the sign bit. X will be used in mode MODE; if MODE is
10042 VOIDmode, X will be used in its own mode. The returned value will always
10043 be between 1 and the number of bits in MODE. */
10045 static rtx
10046 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10047 const_rtx known_x ATTRIBUTE_UNUSED,
10048 machine_mode known_mode
10049 ATTRIBUTE_UNUSED,
10050 unsigned int known_ret ATTRIBUTE_UNUSED,
10051 unsigned int *result)
10053 rtx tem;
10054 reg_stat_type *rsp;
10056 rsp = &reg_stat[REGNO (x)];
10057 if (rsp->last_set_value != 0
10058 && rsp->last_set_mode == mode
10059 && ((rsp->last_set_label >= label_tick_ebb_start
10060 && rsp->last_set_label < label_tick)
10061 || (rsp->last_set_label == label_tick
10062 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10063 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10064 && REGNO (x) < reg_n_sets_max
10065 && REG_N_SETS (REGNO (x)) == 1
10066 && !REGNO_REG_SET_P
10067 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10068 REGNO (x)))))
10070 *result = rsp->last_set_sign_bit_copies;
10071 return NULL;
10074 tem = get_last_value (x);
10075 if (tem != 0)
10076 return tem;
10078 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10079 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10080 *result = rsp->sign_bit_copies;
10082 return NULL;
10085 /* Return the number of "extended" bits there are in X, when interpreted
10086 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10087 unsigned quantities, this is the number of high-order zero bits.
10088 For signed quantities, this is the number of copies of the sign bit
10089 minus 1. In both case, this function returns the number of "spare"
10090 bits. For example, if two quantities for which this function returns
10091 at least 1 are added, the addition is known not to overflow.
10093 This function will always return 0 unless called during combine, which
10094 implies that it must be called from a define_split. */
10096 unsigned int
10097 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10099 if (nonzero_sign_valid == 0)
10100 return 0;
10102 return (unsignedp
10103 ? (HWI_COMPUTABLE_MODE_P (mode)
10104 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10105 - floor_log2 (nonzero_bits (x, mode)))
10106 : 0)
10107 : num_sign_bit_copies (x, mode) - 1);
10110 /* This function is called from `simplify_shift_const' to merge two
10111 outer operations. Specifically, we have already found that we need
10112 to perform operation *POP0 with constant *PCONST0 at the outermost
10113 position. We would now like to also perform OP1 with constant CONST1
10114 (with *POP0 being done last).
10116 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10117 the resulting operation. *PCOMP_P is set to 1 if we would need to
10118 complement the innermost operand, otherwise it is unchanged.
10120 MODE is the mode in which the operation will be done. No bits outside
10121 the width of this mode matter. It is assumed that the width of this mode
10122 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10124 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10125 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10126 result is simply *PCONST0.
10128 If the resulting operation cannot be expressed as one operation, we
10129 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10131 static int
10132 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10134 enum rtx_code op0 = *pop0;
10135 HOST_WIDE_INT const0 = *pconst0;
10137 const0 &= GET_MODE_MASK (mode);
10138 const1 &= GET_MODE_MASK (mode);
10140 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10141 if (op0 == AND)
10142 const1 &= const0;
10144 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10145 if OP0 is SET. */
10147 if (op1 == UNKNOWN || op0 == SET)
10148 return 1;
10150 else if (op0 == UNKNOWN)
10151 op0 = op1, const0 = const1;
10153 else if (op0 == op1)
10155 switch (op0)
10157 case AND:
10158 const0 &= const1;
10159 break;
10160 case IOR:
10161 const0 |= const1;
10162 break;
10163 case XOR:
10164 const0 ^= const1;
10165 break;
10166 case PLUS:
10167 const0 += const1;
10168 break;
10169 case NEG:
10170 op0 = UNKNOWN;
10171 break;
10172 default:
10173 break;
10177 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10178 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10179 return 0;
10181 /* If the two constants aren't the same, we can't do anything. The
10182 remaining six cases can all be done. */
10183 else if (const0 != const1)
10184 return 0;
10186 else
10187 switch (op0)
10189 case IOR:
10190 if (op1 == AND)
10191 /* (a & b) | b == b */
10192 op0 = SET;
10193 else /* op1 == XOR */
10194 /* (a ^ b) | b == a | b */
10196 break;
10198 case XOR:
10199 if (op1 == AND)
10200 /* (a & b) ^ b == (~a) & b */
10201 op0 = AND, *pcomp_p = 1;
10202 else /* op1 == IOR */
10203 /* (a | b) ^ b == a & ~b */
10204 op0 = AND, const0 = ~const0;
10205 break;
10207 case AND:
10208 if (op1 == IOR)
10209 /* (a | b) & b == b */
10210 op0 = SET;
10211 else /* op1 == XOR */
10212 /* (a ^ b) & b) == (~a) & b */
10213 *pcomp_p = 1;
10214 break;
10215 default:
10216 break;
10219 /* Check for NO-OP cases. */
10220 const0 &= GET_MODE_MASK (mode);
10221 if (const0 == 0
10222 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10223 op0 = UNKNOWN;
10224 else if (const0 == 0 && op0 == AND)
10225 op0 = SET;
10226 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10227 && op0 == AND)
10228 op0 = UNKNOWN;
10230 *pop0 = op0;
10232 /* ??? Slightly redundant with the above mask, but not entirely.
10233 Moving this above means we'd have to sign-extend the mode mask
10234 for the final test. */
10235 if (op0 != UNKNOWN && op0 != NEG)
10236 *pconst0 = trunc_int_for_mode (const0, mode);
10238 return 1;
10241 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10242 the shift in. The original shift operation CODE is performed on OP in
10243 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10244 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10245 result of the shift is subject to operation OUTER_CODE with operand
10246 OUTER_CONST. */
10248 static machine_mode
10249 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10250 machine_mode orig_mode, machine_mode mode,
10251 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10253 if (orig_mode == mode)
10254 return mode;
10255 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10257 /* In general we can't perform in wider mode for right shift and rotate. */
10258 switch (code)
10260 case ASHIFTRT:
10261 /* We can still widen if the bits brought in from the left are identical
10262 to the sign bit of ORIG_MODE. */
10263 if (num_sign_bit_copies (op, mode)
10264 > (unsigned) (GET_MODE_PRECISION (mode)
10265 - GET_MODE_PRECISION (orig_mode)))
10266 return mode;
10267 return orig_mode;
10269 case LSHIFTRT:
10270 /* Similarly here but with zero bits. */
10271 if (HWI_COMPUTABLE_MODE_P (mode)
10272 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10273 return mode;
10275 /* We can also widen if the bits brought in will be masked off. This
10276 operation is performed in ORIG_MODE. */
10277 if (outer_code == AND)
10279 int care_bits = low_bitmask_len (orig_mode, outer_const);
10281 if (care_bits >= 0
10282 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10283 return mode;
10285 /* fall through */
10287 case ROTATE:
10288 return orig_mode;
10290 case ROTATERT:
10291 gcc_unreachable ();
10293 default:
10294 return mode;
10298 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10299 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10300 if we cannot simplify it. Otherwise, return a simplified value.
10302 The shift is normally computed in the widest mode we find in VAROP, as
10303 long as it isn't a different number of words than RESULT_MODE. Exceptions
10304 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10306 static rtx
10307 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10308 rtx varop, int orig_count)
10310 enum rtx_code orig_code = code;
10311 rtx orig_varop = varop;
10312 int count;
10313 machine_mode mode = result_mode;
10314 machine_mode shift_mode, tmode;
10315 unsigned int mode_words
10316 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10317 /* We form (outer_op (code varop count) (outer_const)). */
10318 enum rtx_code outer_op = UNKNOWN;
10319 HOST_WIDE_INT outer_const = 0;
10320 int complement_p = 0;
10321 rtx new_rtx, x;
10323 /* Make sure and truncate the "natural" shift on the way in. We don't
10324 want to do this inside the loop as it makes it more difficult to
10325 combine shifts. */
10326 if (SHIFT_COUNT_TRUNCATED)
10327 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10329 /* If we were given an invalid count, don't do anything except exactly
10330 what was requested. */
10332 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10333 return NULL_RTX;
10335 count = orig_count;
10337 /* Unless one of the branches of the `if' in this loop does a `continue',
10338 we will `break' the loop after the `if'. */
10340 while (count != 0)
10342 /* If we have an operand of (clobber (const_int 0)), fail. */
10343 if (GET_CODE (varop) == CLOBBER)
10344 return NULL_RTX;
10346 /* Convert ROTATERT to ROTATE. */
10347 if (code == ROTATERT)
10349 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10350 code = ROTATE;
10351 count = bitsize - count;
10354 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10355 mode, outer_op, outer_const);
10356 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10358 /* Handle cases where the count is greater than the size of the mode
10359 minus 1. For ASHIFT, use the size minus one as the count (this can
10360 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10361 take the count modulo the size. For other shifts, the result is
10362 zero.
10364 Since these shifts are being produced by the compiler by combining
10365 multiple operations, each of which are defined, we know what the
10366 result is supposed to be. */
10368 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10370 if (code == ASHIFTRT)
10371 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10372 else if (code == ROTATE || code == ROTATERT)
10373 count %= GET_MODE_PRECISION (shift_unit_mode);
10374 else
10376 /* We can't simply return zero because there may be an
10377 outer op. */
10378 varop = const0_rtx;
10379 count = 0;
10380 break;
10384 /* If we discovered we had to complement VAROP, leave. Making a NOT
10385 here would cause an infinite loop. */
10386 if (complement_p)
10387 break;
10389 if (shift_mode == shift_unit_mode)
10391 /* An arithmetic right shift of a quantity known to be -1 or 0
10392 is a no-op. */
10393 if (code == ASHIFTRT
10394 && (num_sign_bit_copies (varop, shift_unit_mode)
10395 == GET_MODE_PRECISION (shift_unit_mode)))
10397 count = 0;
10398 break;
10401 /* If we are doing an arithmetic right shift and discarding all but
10402 the sign bit copies, this is equivalent to doing a shift by the
10403 bitsize minus one. Convert it into that shift because it will
10404 often allow other simplifications. */
10406 if (code == ASHIFTRT
10407 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10408 >= GET_MODE_PRECISION (shift_unit_mode)))
10409 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10411 /* We simplify the tests below and elsewhere by converting
10412 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10413 `make_compound_operation' will convert it to an ASHIFTRT for
10414 those machines (such as VAX) that don't have an LSHIFTRT. */
10415 if (code == ASHIFTRT
10416 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10417 && val_signbit_known_clear_p (shift_unit_mode,
10418 nonzero_bits (varop,
10419 shift_unit_mode)))
10420 code = LSHIFTRT;
10422 if (((code == LSHIFTRT
10423 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10424 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10425 || (code == ASHIFT
10426 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10427 && !((nonzero_bits (varop, shift_unit_mode) << count)
10428 & GET_MODE_MASK (shift_unit_mode))))
10429 && !side_effects_p (varop))
10430 varop = const0_rtx;
10433 switch (GET_CODE (varop))
10435 case SIGN_EXTEND:
10436 case ZERO_EXTEND:
10437 case SIGN_EXTRACT:
10438 case ZERO_EXTRACT:
10439 new_rtx = expand_compound_operation (varop);
10440 if (new_rtx != varop)
10442 varop = new_rtx;
10443 continue;
10445 break;
10447 case MEM:
10448 /* The following rules apply only to scalars. */
10449 if (shift_mode != shift_unit_mode)
10450 break;
10452 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10453 minus the width of a smaller mode, we can do this with a
10454 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10455 if ((code == ASHIFTRT || code == LSHIFTRT)
10456 && ! mode_dependent_address_p (XEXP (varop, 0),
10457 MEM_ADDR_SPACE (varop))
10458 && ! MEM_VOLATILE_P (varop)
10459 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10460 MODE_INT, 1)) != BLKmode)
10462 new_rtx = adjust_address_nv (varop, tmode,
10463 BYTES_BIG_ENDIAN ? 0
10464 : count / BITS_PER_UNIT);
10466 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10467 : ZERO_EXTEND, mode, new_rtx);
10468 count = 0;
10469 continue;
10471 break;
10473 case SUBREG:
10474 /* The following rules apply only to scalars. */
10475 if (shift_mode != shift_unit_mode)
10476 break;
10478 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10479 the same number of words as what we've seen so far. Then store
10480 the widest mode in MODE. */
10481 if (subreg_lowpart_p (varop)
10482 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10483 > GET_MODE_SIZE (GET_MODE (varop)))
10484 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10485 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10486 == mode_words
10487 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10488 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10490 varop = SUBREG_REG (varop);
10491 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10492 mode = GET_MODE (varop);
10493 continue;
10495 break;
10497 case MULT:
10498 /* Some machines use MULT instead of ASHIFT because MULT
10499 is cheaper. But it is still better on those machines to
10500 merge two shifts into one. */
10501 if (CONST_INT_P (XEXP (varop, 1))
10502 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10504 varop
10505 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10506 XEXP (varop, 0),
10507 GEN_INT (exact_log2 (
10508 UINTVAL (XEXP (varop, 1)))));
10509 continue;
10511 break;
10513 case UDIV:
10514 /* Similar, for when divides are cheaper. */
10515 if (CONST_INT_P (XEXP (varop, 1))
10516 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10518 varop
10519 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10520 XEXP (varop, 0),
10521 GEN_INT (exact_log2 (
10522 UINTVAL (XEXP (varop, 1)))));
10523 continue;
10525 break;
10527 case ASHIFTRT:
10528 /* If we are extracting just the sign bit of an arithmetic
10529 right shift, that shift is not needed. However, the sign
10530 bit of a wider mode may be different from what would be
10531 interpreted as the sign bit in a narrower mode, so, if
10532 the result is narrower, don't discard the shift. */
10533 if (code == LSHIFTRT
10534 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10535 && (GET_MODE_UNIT_BITSIZE (result_mode)
10536 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10538 varop = XEXP (varop, 0);
10539 continue;
10542 /* fall through */
10544 case LSHIFTRT:
10545 case ASHIFT:
10546 case ROTATE:
10547 /* The following rules apply only to scalars. */
10548 if (shift_mode != shift_unit_mode)
10549 break;
10551 /* Here we have two nested shifts. The result is usually the
10552 AND of a new shift with a mask. We compute the result below. */
10553 if (CONST_INT_P (XEXP (varop, 1))
10554 && INTVAL (XEXP (varop, 1)) >= 0
10555 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10556 && HWI_COMPUTABLE_MODE_P (result_mode)
10557 && HWI_COMPUTABLE_MODE_P (mode))
10559 enum rtx_code first_code = GET_CODE (varop);
10560 unsigned int first_count = INTVAL (XEXP (varop, 1));
10561 unsigned HOST_WIDE_INT mask;
10562 rtx mask_rtx;
10564 /* We have one common special case. We can't do any merging if
10565 the inner code is an ASHIFTRT of a smaller mode. However, if
10566 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10567 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10568 we can convert it to
10569 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10570 This simplifies certain SIGN_EXTEND operations. */
10571 if (code == ASHIFT && first_code == ASHIFTRT
10572 && count == (GET_MODE_PRECISION (result_mode)
10573 - GET_MODE_PRECISION (GET_MODE (varop))))
10575 /* C3 has the low-order C1 bits zero. */
10577 mask = GET_MODE_MASK (mode)
10578 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10580 varop = simplify_and_const_int (NULL_RTX, result_mode,
10581 XEXP (varop, 0), mask);
10582 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10583 varop, count);
10584 count = first_count;
10585 code = ASHIFTRT;
10586 continue;
10589 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10590 than C1 high-order bits equal to the sign bit, we can convert
10591 this to either an ASHIFT or an ASHIFTRT depending on the
10592 two counts.
10594 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10596 if (code == ASHIFTRT && first_code == ASHIFT
10597 && GET_MODE (varop) == shift_mode
10598 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10599 > first_count))
10601 varop = XEXP (varop, 0);
10602 count -= first_count;
10603 if (count < 0)
10605 count = -count;
10606 code = ASHIFT;
10609 continue;
10612 /* There are some cases we can't do. If CODE is ASHIFTRT,
10613 we can only do this if FIRST_CODE is also ASHIFTRT.
10615 We can't do the case when CODE is ROTATE and FIRST_CODE is
10616 ASHIFTRT.
10618 If the mode of this shift is not the mode of the outer shift,
10619 we can't do this if either shift is a right shift or ROTATE.
10621 Finally, we can't do any of these if the mode is too wide
10622 unless the codes are the same.
10624 Handle the case where the shift codes are the same
10625 first. */
10627 if (code == first_code)
10629 if (GET_MODE (varop) != result_mode
10630 && (code == ASHIFTRT || code == LSHIFTRT
10631 || code == ROTATE))
10632 break;
10634 count += first_count;
10635 varop = XEXP (varop, 0);
10636 continue;
10639 if (code == ASHIFTRT
10640 || (code == ROTATE && first_code == ASHIFTRT)
10641 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10642 || (GET_MODE (varop) != result_mode
10643 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10644 || first_code == ROTATE
10645 || code == ROTATE)))
10646 break;
10648 /* To compute the mask to apply after the shift, shift the
10649 nonzero bits of the inner shift the same way the
10650 outer shift will. */
10652 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10653 result_mode);
10655 mask_rtx
10656 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10657 GEN_INT (count));
10659 /* Give up if we can't compute an outer operation to use. */
10660 if (mask_rtx == 0
10661 || !CONST_INT_P (mask_rtx)
10662 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10663 INTVAL (mask_rtx),
10664 result_mode, &complement_p))
10665 break;
10667 /* If the shifts are in the same direction, we add the
10668 counts. Otherwise, we subtract them. */
10669 if ((code == ASHIFTRT || code == LSHIFTRT)
10670 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10671 count += first_count;
10672 else
10673 count -= first_count;
10675 /* If COUNT is positive, the new shift is usually CODE,
10676 except for the two exceptions below, in which case it is
10677 FIRST_CODE. If the count is negative, FIRST_CODE should
10678 always be used */
10679 if (count > 0
10680 && ((first_code == ROTATE && code == ASHIFT)
10681 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10682 code = first_code;
10683 else if (count < 0)
10684 code = first_code, count = -count;
10686 varop = XEXP (varop, 0);
10687 continue;
10690 /* If we have (A << B << C) for any shift, we can convert this to
10691 (A << C << B). This wins if A is a constant. Only try this if
10692 B is not a constant. */
10694 else if (GET_CODE (varop) == code
10695 && CONST_INT_P (XEXP (varop, 0))
10696 && !CONST_INT_P (XEXP (varop, 1)))
10698 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10699 sure the result will be masked. See PR70222. */
10700 if (code == LSHIFTRT
10701 && mode != result_mode
10702 && !merge_outer_ops (&outer_op, &outer_const, AND,
10703 GET_MODE_MASK (result_mode)
10704 >> orig_count, result_mode,
10705 &complement_p))
10706 break;
10707 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10708 up outer sign extension (often left and right shift) is
10709 hardly more efficient than the original. See PR70429. */
10710 if (code == ASHIFTRT && mode != result_mode)
10711 break;
10713 rtx new_rtx = simplify_const_binary_operation (code, mode,
10714 XEXP (varop, 0),
10715 GEN_INT (count));
10716 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10717 count = 0;
10718 continue;
10720 break;
10722 case NOT:
10723 /* The following rules apply only to scalars. */
10724 if (shift_mode != shift_unit_mode)
10725 break;
10727 /* Make this fit the case below. */
10728 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10729 continue;
10731 case IOR:
10732 case AND:
10733 case XOR:
10734 /* The following rules apply only to scalars. */
10735 if (shift_mode != shift_unit_mode)
10736 break;
10738 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10739 with C the size of VAROP - 1 and the shift is logical if
10740 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10741 we have an (le X 0) operation. If we have an arithmetic shift
10742 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10743 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10745 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10746 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10747 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10748 && (code == LSHIFTRT || code == ASHIFTRT)
10749 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10750 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10752 count = 0;
10753 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10754 const0_rtx);
10756 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10757 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10759 continue;
10762 /* If we have (shift (logical)), move the logical to the outside
10763 to allow it to possibly combine with another logical and the
10764 shift to combine with another shift. This also canonicalizes to
10765 what a ZERO_EXTRACT looks like. Also, some machines have
10766 (and (shift)) insns. */
10768 if (CONST_INT_P (XEXP (varop, 1))
10769 /* We can't do this if we have (ashiftrt (xor)) and the
10770 constant has its sign bit set in shift_mode with shift_mode
10771 wider than result_mode. */
10772 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10773 && result_mode != shift_mode
10774 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10775 shift_mode))
10776 && (new_rtx = simplify_const_binary_operation
10777 (code, result_mode,
10778 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10779 GEN_INT (count))) != 0
10780 && CONST_INT_P (new_rtx)
10781 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10782 INTVAL (new_rtx), result_mode, &complement_p))
10784 varop = XEXP (varop, 0);
10785 continue;
10788 /* If we can't do that, try to simplify the shift in each arm of the
10789 logical expression, make a new logical expression, and apply
10790 the inverse distributive law. This also can't be done for
10791 (ashiftrt (xor)) where we've widened the shift and the constant
10792 changes the sign bit. */
10793 if (CONST_INT_P (XEXP (varop, 1))
10794 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10795 && result_mode != shift_mode
10796 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10797 shift_mode)))
10799 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10800 XEXP (varop, 0), count);
10801 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10802 XEXP (varop, 1), count);
10804 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10805 lhs, rhs);
10806 varop = apply_distributive_law (varop);
10808 count = 0;
10809 continue;
10811 break;
10813 case EQ:
10814 /* The following rules apply only to scalars. */
10815 if (shift_mode != shift_unit_mode)
10816 break;
10818 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10819 says that the sign bit can be tested, FOO has mode MODE, C is
10820 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10821 that may be nonzero. */
10822 if (code == LSHIFTRT
10823 && XEXP (varop, 1) == const0_rtx
10824 && GET_MODE (XEXP (varop, 0)) == result_mode
10825 && count == (GET_MODE_PRECISION (result_mode) - 1)
10826 && HWI_COMPUTABLE_MODE_P (result_mode)
10827 && STORE_FLAG_VALUE == -1
10828 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10829 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10830 &complement_p))
10832 varop = XEXP (varop, 0);
10833 count = 0;
10834 continue;
10836 break;
10838 case NEG:
10839 /* The following rules apply only to scalars. */
10840 if (shift_mode != shift_unit_mode)
10841 break;
10843 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10844 than the number of bits in the mode is equivalent to A. */
10845 if (code == LSHIFTRT
10846 && count == (GET_MODE_PRECISION (result_mode) - 1)
10847 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10849 varop = XEXP (varop, 0);
10850 count = 0;
10851 continue;
10854 /* NEG commutes with ASHIFT since it is multiplication. Move the
10855 NEG outside to allow shifts to combine. */
10856 if (code == ASHIFT
10857 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10858 &complement_p))
10860 varop = XEXP (varop, 0);
10861 continue;
10863 break;
10865 case PLUS:
10866 /* The following rules apply only to scalars. */
10867 if (shift_mode != shift_unit_mode)
10868 break;
10870 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10871 is one less than the number of bits in the mode is
10872 equivalent to (xor A 1). */
10873 if (code == LSHIFTRT
10874 && count == (GET_MODE_PRECISION (result_mode) - 1)
10875 && XEXP (varop, 1) == constm1_rtx
10876 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10877 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10878 &complement_p))
10880 count = 0;
10881 varop = XEXP (varop, 0);
10882 continue;
10885 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10886 that might be nonzero in BAR are those being shifted out and those
10887 bits are known zero in FOO, we can replace the PLUS with FOO.
10888 Similarly in the other operand order. This code occurs when
10889 we are computing the size of a variable-size array. */
10891 if ((code == ASHIFTRT || code == LSHIFTRT)
10892 && count < HOST_BITS_PER_WIDE_INT
10893 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10894 && (nonzero_bits (XEXP (varop, 1), result_mode)
10895 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10897 varop = XEXP (varop, 0);
10898 continue;
10900 else if ((code == ASHIFTRT || code == LSHIFTRT)
10901 && count < HOST_BITS_PER_WIDE_INT
10902 && HWI_COMPUTABLE_MODE_P (result_mode)
10903 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10904 >> count)
10905 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10906 & nonzero_bits (XEXP (varop, 1),
10907 result_mode)))
10909 varop = XEXP (varop, 1);
10910 continue;
10913 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10914 if (code == ASHIFT
10915 && CONST_INT_P (XEXP (varop, 1))
10916 && (new_rtx = simplify_const_binary_operation
10917 (ASHIFT, result_mode,
10918 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10919 GEN_INT (count))) != 0
10920 && CONST_INT_P (new_rtx)
10921 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10922 INTVAL (new_rtx), result_mode, &complement_p))
10924 varop = XEXP (varop, 0);
10925 continue;
10928 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10929 signbit', and attempt to change the PLUS to an XOR and move it to
10930 the outer operation as is done above in the AND/IOR/XOR case
10931 leg for shift(logical). See details in logical handling above
10932 for reasoning in doing so. */
10933 if (code == LSHIFTRT
10934 && CONST_INT_P (XEXP (varop, 1))
10935 && mode_signbit_p (result_mode, XEXP (varop, 1))
10936 && (new_rtx = simplify_const_binary_operation
10937 (code, result_mode,
10938 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10939 GEN_INT (count))) != 0
10940 && CONST_INT_P (new_rtx)
10941 && merge_outer_ops (&outer_op, &outer_const, XOR,
10942 INTVAL (new_rtx), result_mode, &complement_p))
10944 varop = XEXP (varop, 0);
10945 continue;
10948 break;
10950 case MINUS:
10951 /* The following rules apply only to scalars. */
10952 if (shift_mode != shift_unit_mode)
10953 break;
10955 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10956 with C the size of VAROP - 1 and the shift is logical if
10957 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10958 we have a (gt X 0) operation. If the shift is arithmetic with
10959 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10960 we have a (neg (gt X 0)) operation. */
10962 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10963 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10964 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10965 && (code == LSHIFTRT || code == ASHIFTRT)
10966 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10967 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10968 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10970 count = 0;
10971 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10972 const0_rtx);
10974 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10975 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10977 continue;
10979 break;
10981 case TRUNCATE:
10982 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10983 if the truncate does not affect the value. */
10984 if (code == LSHIFTRT
10985 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10986 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10987 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10988 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10989 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10991 rtx varop_inner = XEXP (varop, 0);
10993 varop_inner
10994 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10995 XEXP (varop_inner, 0),
10996 GEN_INT
10997 (count + INTVAL (XEXP (varop_inner, 1))));
10998 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10999 count = 0;
11000 continue;
11002 break;
11004 default:
11005 break;
11008 break;
11011 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11012 outer_op, outer_const);
11014 /* We have now finished analyzing the shift. The result should be
11015 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11016 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11017 to the result of the shift. OUTER_CONST is the relevant constant,
11018 but we must turn off all bits turned off in the shift. */
11020 if (outer_op == UNKNOWN
11021 && orig_code == code && orig_count == count
11022 && varop == orig_varop
11023 && shift_mode == GET_MODE (varop))
11024 return NULL_RTX;
11026 /* Make a SUBREG if necessary. If we can't make it, fail. */
11027 varop = gen_lowpart (shift_mode, varop);
11028 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11029 return NULL_RTX;
11031 /* If we have an outer operation and we just made a shift, it is
11032 possible that we could have simplified the shift were it not
11033 for the outer operation. So try to do the simplification
11034 recursively. */
11036 if (outer_op != UNKNOWN)
11037 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11038 else
11039 x = NULL_RTX;
11041 if (x == NULL_RTX)
11042 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11044 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11045 turn off all the bits that the shift would have turned off. */
11046 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11047 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11048 GET_MODE_MASK (result_mode) >> orig_count);
11050 /* Do the remainder of the processing in RESULT_MODE. */
11051 x = gen_lowpart_or_truncate (result_mode, x);
11053 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11054 operation. */
11055 if (complement_p)
11056 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11058 if (outer_op != UNKNOWN)
11060 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11061 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11062 outer_const = trunc_int_for_mode (outer_const, result_mode);
11064 if (outer_op == AND)
11065 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11066 else if (outer_op == SET)
11068 /* This means that we have determined that the result is
11069 equivalent to a constant. This should be rare. */
11070 if (!side_effects_p (x))
11071 x = GEN_INT (outer_const);
11073 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11074 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11075 else
11076 x = simplify_gen_binary (outer_op, result_mode, x,
11077 GEN_INT (outer_const));
11080 return x;
11083 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11084 The result of the shift is RESULT_MODE. If we cannot simplify it,
11085 return X or, if it is NULL, synthesize the expression with
11086 simplify_gen_binary. Otherwise, return a simplified value.
11088 The shift is normally computed in the widest mode we find in VAROP, as
11089 long as it isn't a different number of words than RESULT_MODE. Exceptions
11090 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11092 static rtx
11093 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11094 rtx varop, int count)
11096 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11097 if (tem)
11098 return tem;
11100 if (!x)
11101 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11102 if (GET_MODE (x) != result_mode)
11103 x = gen_lowpart (result_mode, x);
11104 return x;
11108 /* A subroutine of recog_for_combine. See there for arguments and
11109 return value. */
11111 static int
11112 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11114 rtx pat = *pnewpat;
11115 rtx pat_without_clobbers;
11116 int insn_code_number;
11117 int num_clobbers_to_add = 0;
11118 int i;
11119 rtx notes = NULL_RTX;
11120 rtx old_notes, old_pat;
11121 int old_icode;
11123 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11124 we use to indicate that something didn't match. If we find such a
11125 thing, force rejection. */
11126 if (GET_CODE (pat) == PARALLEL)
11127 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11128 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11129 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11130 return -1;
11132 old_pat = PATTERN (insn);
11133 old_notes = REG_NOTES (insn);
11134 PATTERN (insn) = pat;
11135 REG_NOTES (insn) = NULL_RTX;
11137 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11138 if (dump_file && (dump_flags & TDF_DETAILS))
11140 if (insn_code_number < 0)
11141 fputs ("Failed to match this instruction:\n", dump_file);
11142 else
11143 fputs ("Successfully matched this instruction:\n", dump_file);
11144 print_rtl_single (dump_file, pat);
11147 /* If it isn't, there is the possibility that we previously had an insn
11148 that clobbered some register as a side effect, but the combined
11149 insn doesn't need to do that. So try once more without the clobbers
11150 unless this represents an ASM insn. */
11152 if (insn_code_number < 0 && ! check_asm_operands (pat)
11153 && GET_CODE (pat) == PARALLEL)
11155 int pos;
11157 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11158 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11160 if (i != pos)
11161 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11162 pos++;
11165 SUBST_INT (XVECLEN (pat, 0), pos);
11167 if (pos == 1)
11168 pat = XVECEXP (pat, 0, 0);
11170 PATTERN (insn) = pat;
11171 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11172 if (dump_file && (dump_flags & TDF_DETAILS))
11174 if (insn_code_number < 0)
11175 fputs ("Failed to match this instruction:\n", dump_file);
11176 else
11177 fputs ("Successfully matched this instruction:\n", dump_file);
11178 print_rtl_single (dump_file, pat);
11182 pat_without_clobbers = pat;
11184 PATTERN (insn) = old_pat;
11185 REG_NOTES (insn) = old_notes;
11187 /* Recognize all noop sets, these will be killed by followup pass. */
11188 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11189 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11191 /* If we had any clobbers to add, make a new pattern than contains
11192 them. Then check to make sure that all of them are dead. */
11193 if (num_clobbers_to_add)
11195 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11196 rtvec_alloc (GET_CODE (pat) == PARALLEL
11197 ? (XVECLEN (pat, 0)
11198 + num_clobbers_to_add)
11199 : num_clobbers_to_add + 1));
11201 if (GET_CODE (pat) == PARALLEL)
11202 for (i = 0; i < XVECLEN (pat, 0); i++)
11203 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11204 else
11205 XVECEXP (newpat, 0, 0) = pat;
11207 add_clobbers (newpat, insn_code_number);
11209 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11210 i < XVECLEN (newpat, 0); i++)
11212 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11213 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11214 return -1;
11215 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11217 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11218 notes = alloc_reg_note (REG_UNUSED,
11219 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11222 pat = newpat;
11225 if (insn_code_number >= 0
11226 && insn_code_number != NOOP_MOVE_INSN_CODE)
11228 old_pat = PATTERN (insn);
11229 old_notes = REG_NOTES (insn);
11230 old_icode = INSN_CODE (insn);
11231 PATTERN (insn) = pat;
11232 REG_NOTES (insn) = notes;
11233 INSN_CODE (insn) = insn_code_number;
11235 /* Allow targets to reject combined insn. */
11236 if (!targetm.legitimate_combined_insn (insn))
11238 if (dump_file && (dump_flags & TDF_DETAILS))
11239 fputs ("Instruction not appropriate for target.",
11240 dump_file);
11242 /* Callers expect recog_for_combine to strip
11243 clobbers from the pattern on failure. */
11244 pat = pat_without_clobbers;
11245 notes = NULL_RTX;
11247 insn_code_number = -1;
11250 PATTERN (insn) = old_pat;
11251 REG_NOTES (insn) = old_notes;
11252 INSN_CODE (insn) = old_icode;
11255 *pnewpat = pat;
11256 *pnotes = notes;
11258 return insn_code_number;
11261 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11262 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11263 Return whether anything was so changed. */
11265 static bool
11266 change_zero_ext (rtx pat)
11268 bool changed = false;
11269 rtx *src = &SET_SRC (pat);
11271 subrtx_ptr_iterator::array_type array;
11272 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11274 rtx x = **iter;
11275 machine_mode mode = GET_MODE (x);
11276 int size;
11278 if (GET_CODE (x) == ZERO_EXTRACT
11279 && CONST_INT_P (XEXP (x, 1))
11280 && CONST_INT_P (XEXP (x, 2))
11281 && GET_MODE (XEXP (x, 0)) != VOIDmode
11282 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11283 <= GET_MODE_PRECISION (mode))
11285 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11287 size = INTVAL (XEXP (x, 1));
11289 int start = INTVAL (XEXP (x, 2));
11290 if (BITS_BIG_ENDIAN)
11291 start = GET_MODE_PRECISION (inner_mode) - size - start;
11293 if (start)
11294 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11295 else
11296 x = XEXP (x, 0);
11297 if (mode != inner_mode)
11298 x = gen_lowpart_SUBREG (mode, x);
11300 else if (GET_CODE (x) == ZERO_EXTEND
11301 && SCALAR_INT_MODE_P (mode)
11302 && GET_CODE (XEXP (x, 0)) == SUBREG
11303 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11304 && !paradoxical_subreg_p (XEXP (x, 0))
11305 && subreg_lowpart_p (XEXP (x, 0)))
11307 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11308 x = SUBREG_REG (XEXP (x, 0));
11309 if (GET_MODE (x) != mode)
11310 x = gen_lowpart_SUBREG (mode, x);
11312 else if (GET_CODE (x) == ZERO_EXTEND
11313 && SCALAR_INT_MODE_P (mode)
11314 && REG_P (XEXP (x, 0))
11315 && HARD_REGISTER_P (XEXP (x, 0))
11316 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11318 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11319 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11321 else
11322 continue;
11324 if (!(GET_CODE (x) == LSHIFTRT
11325 && CONST_INT_P (XEXP (x, 1))
11326 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11328 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11329 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11332 SUBST (**iter, x);
11333 changed = true;
11336 if (changed)
11337 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11338 maybe_swap_commutative_operands (**iter);
11340 rtx *dst = &SET_DEST (pat);
11341 if (GET_CODE (*dst) == ZERO_EXTRACT
11342 && REG_P (XEXP (*dst, 0))
11343 && CONST_INT_P (XEXP (*dst, 1))
11344 && CONST_INT_P (XEXP (*dst, 2)))
11346 rtx reg = XEXP (*dst, 0);
11347 int width = INTVAL (XEXP (*dst, 1));
11348 int offset = INTVAL (XEXP (*dst, 2));
11349 machine_mode mode = GET_MODE (reg);
11350 int reg_width = GET_MODE_PRECISION (mode);
11351 if (BITS_BIG_ENDIAN)
11352 offset = reg_width - width - offset;
11354 rtx x, y, z, w;
11355 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11356 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11357 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11358 if (offset)
11359 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11360 else
11361 y = SET_SRC (pat);
11362 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11363 w = gen_rtx_IOR (mode, x, z);
11364 SUBST (SET_DEST (pat), reg);
11365 SUBST (SET_SRC (pat), w);
11367 changed = true;
11370 return changed;
11373 /* Like recog, but we receive the address of a pointer to a new pattern.
11374 We try to match the rtx that the pointer points to.
11375 If that fails, we may try to modify or replace the pattern,
11376 storing the replacement into the same pointer object.
11378 Modifications include deletion or addition of CLOBBERs. If the
11379 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11380 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11381 (and undo if that fails).
11383 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11384 the CLOBBERs are placed.
11386 The value is the final insn code from the pattern ultimately matched,
11387 or -1. */
11389 static int
11390 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11392 rtx pat = *pnewpat;
11393 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11394 if (insn_code_number >= 0 || check_asm_operands (pat))
11395 return insn_code_number;
11397 void *marker = get_undo_marker ();
11398 bool changed = false;
11400 if (GET_CODE (pat) == SET)
11401 changed = change_zero_ext (pat);
11402 else if (GET_CODE (pat) == PARALLEL)
11404 int i;
11405 for (i = 0; i < XVECLEN (pat, 0); i++)
11407 rtx set = XVECEXP (pat, 0, i);
11408 if (GET_CODE (set) == SET)
11409 changed |= change_zero_ext (set);
11413 if (changed)
11415 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11417 if (insn_code_number < 0)
11418 undo_to_marker (marker);
11421 return insn_code_number;
11424 /* Like gen_lowpart_general but for use by combine. In combine it
11425 is not possible to create any new pseudoregs. However, it is
11426 safe to create invalid memory addresses, because combine will
11427 try to recognize them and all they will do is make the combine
11428 attempt fail.
11430 If for some reason this cannot do its job, an rtx
11431 (clobber (const_int 0)) is returned.
11432 An insn containing that will not be recognized. */
11434 static rtx
11435 gen_lowpart_for_combine (machine_mode omode, rtx x)
11437 machine_mode imode = GET_MODE (x);
11438 unsigned int osize = GET_MODE_SIZE (omode);
11439 unsigned int isize = GET_MODE_SIZE (imode);
11440 rtx result;
11442 if (omode == imode)
11443 return x;
11445 /* We can only support MODE being wider than a word if X is a
11446 constant integer or has a mode the same size. */
11447 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11448 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11449 goto fail;
11451 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11452 won't know what to do. So we will strip off the SUBREG here and
11453 process normally. */
11454 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11456 x = SUBREG_REG (x);
11458 /* For use in case we fall down into the address adjustments
11459 further below, we need to adjust the known mode and size of
11460 x; imode and isize, since we just adjusted x. */
11461 imode = GET_MODE (x);
11463 if (imode == omode)
11464 return x;
11466 isize = GET_MODE_SIZE (imode);
11469 result = gen_lowpart_common (omode, x);
11471 if (result)
11472 return result;
11474 if (MEM_P (x))
11476 int offset = 0;
11478 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11479 address. */
11480 if (MEM_VOLATILE_P (x)
11481 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11482 goto fail;
11484 /* If we want to refer to something bigger than the original memref,
11485 generate a paradoxical subreg instead. That will force a reload
11486 of the original memref X. */
11487 if (isize < osize)
11488 return gen_rtx_SUBREG (omode, x, 0);
11490 if (WORDS_BIG_ENDIAN)
11491 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11493 /* Adjust the address so that the address-after-the-data is
11494 unchanged. */
11495 if (BYTES_BIG_ENDIAN)
11496 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11498 return adjust_address_nv (x, omode, offset);
11501 /* If X is a comparison operator, rewrite it in a new mode. This
11502 probably won't match, but may allow further simplifications. */
11503 else if (COMPARISON_P (x))
11504 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11506 /* If we couldn't simplify X any other way, just enclose it in a
11507 SUBREG. Normally, this SUBREG won't match, but some patterns may
11508 include an explicit SUBREG or we may simplify it further in combine. */
11509 else
11511 rtx res;
11513 if (imode == VOIDmode)
11515 imode = int_mode_for_mode (omode);
11516 x = gen_lowpart_common (imode, x);
11517 if (x == NULL)
11518 goto fail;
11520 res = lowpart_subreg (omode, x, imode);
11521 if (res)
11522 return res;
11525 fail:
11526 return gen_rtx_CLOBBER (omode, const0_rtx);
11529 /* Try to simplify a comparison between OP0 and a constant OP1,
11530 where CODE is the comparison code that will be tested, into a
11531 (CODE OP0 const0_rtx) form.
11533 The result is a possibly different comparison code to use.
11534 *POP1 may be updated. */
11536 static enum rtx_code
11537 simplify_compare_const (enum rtx_code code, machine_mode mode,
11538 rtx op0, rtx *pop1)
11540 unsigned int mode_width = GET_MODE_PRECISION (mode);
11541 HOST_WIDE_INT const_op = INTVAL (*pop1);
11543 /* Get the constant we are comparing against and turn off all bits
11544 not on in our mode. */
11545 if (mode != VOIDmode)
11546 const_op = trunc_int_for_mode (const_op, mode);
11548 /* If we are comparing against a constant power of two and the value
11549 being compared can only have that single bit nonzero (e.g., it was
11550 `and'ed with that bit), we can replace this with a comparison
11551 with zero. */
11552 if (const_op
11553 && (code == EQ || code == NE || code == GE || code == GEU
11554 || code == LT || code == LTU)
11555 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11556 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11557 && (nonzero_bits (op0, mode)
11558 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11560 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11561 const_op = 0;
11564 /* Similarly, if we are comparing a value known to be either -1 or
11565 0 with -1, change it to the opposite comparison against zero. */
11566 if (const_op == -1
11567 && (code == EQ || code == NE || code == GT || code == LE
11568 || code == GEU || code == LTU)
11569 && num_sign_bit_copies (op0, mode) == mode_width)
11571 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11572 const_op = 0;
11575 /* Do some canonicalizations based on the comparison code. We prefer
11576 comparisons against zero and then prefer equality comparisons.
11577 If we can reduce the size of a constant, we will do that too. */
11578 switch (code)
11580 case LT:
11581 /* < C is equivalent to <= (C - 1) */
11582 if (const_op > 0)
11584 const_op -= 1;
11585 code = LE;
11586 /* ... fall through to LE case below. */
11587 gcc_fallthrough ();
11589 else
11590 break;
11592 case LE:
11593 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11594 if (const_op < 0)
11596 const_op += 1;
11597 code = LT;
11600 /* If we are doing a <= 0 comparison on a value known to have
11601 a zero sign bit, we can replace this with == 0. */
11602 else if (const_op == 0
11603 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11604 && (nonzero_bits (op0, mode)
11605 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11606 == 0)
11607 code = EQ;
11608 break;
11610 case GE:
11611 /* >= C is equivalent to > (C - 1). */
11612 if (const_op > 0)
11614 const_op -= 1;
11615 code = GT;
11616 /* ... fall through to GT below. */
11617 gcc_fallthrough ();
11619 else
11620 break;
11622 case GT:
11623 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11624 if (const_op < 0)
11626 const_op += 1;
11627 code = GE;
11630 /* If we are doing a > 0 comparison on a value known to have
11631 a zero sign bit, we can replace this with != 0. */
11632 else if (const_op == 0
11633 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11634 && (nonzero_bits (op0, mode)
11635 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11636 == 0)
11637 code = NE;
11638 break;
11640 case LTU:
11641 /* < C is equivalent to <= (C - 1). */
11642 if (const_op > 0)
11644 const_op -= 1;
11645 code = LEU;
11646 /* ... fall through ... */
11648 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11649 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11650 && (unsigned HOST_WIDE_INT) const_op
11651 == HOST_WIDE_INT_1U << (mode_width - 1))
11653 const_op = 0;
11654 code = GE;
11655 break;
11657 else
11658 break;
11660 case LEU:
11661 /* unsigned <= 0 is equivalent to == 0 */
11662 if (const_op == 0)
11663 code = EQ;
11664 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11665 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11666 && (unsigned HOST_WIDE_INT) const_op
11667 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11669 const_op = 0;
11670 code = GE;
11672 break;
11674 case GEU:
11675 /* >= C is equivalent to > (C - 1). */
11676 if (const_op > 1)
11678 const_op -= 1;
11679 code = GTU;
11680 /* ... fall through ... */
11683 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11684 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11685 && (unsigned HOST_WIDE_INT) const_op
11686 == HOST_WIDE_INT_1U << (mode_width - 1))
11688 const_op = 0;
11689 code = LT;
11690 break;
11692 else
11693 break;
11695 case GTU:
11696 /* unsigned > 0 is equivalent to != 0 */
11697 if (const_op == 0)
11698 code = NE;
11699 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11700 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11701 && (unsigned HOST_WIDE_INT) const_op
11702 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11704 const_op = 0;
11705 code = LT;
11707 break;
11709 default:
11710 break;
11713 *pop1 = GEN_INT (const_op);
11714 return code;
11717 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11718 comparison code that will be tested.
11720 The result is a possibly different comparison code to use. *POP0 and
11721 *POP1 may be updated.
11723 It is possible that we might detect that a comparison is either always
11724 true or always false. However, we do not perform general constant
11725 folding in combine, so this knowledge isn't useful. Such tautologies
11726 should have been detected earlier. Hence we ignore all such cases. */
11728 static enum rtx_code
11729 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11731 rtx op0 = *pop0;
11732 rtx op1 = *pop1;
11733 rtx tem, tem1;
11734 int i;
11735 machine_mode mode, tmode;
11737 /* Try a few ways of applying the same transformation to both operands. */
11738 while (1)
11740 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11741 so check specially. */
11742 if (!WORD_REGISTER_OPERATIONS
11743 && code != GTU && code != GEU && code != LTU && code != LEU
11744 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11745 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11746 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11747 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11748 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11749 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11750 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11751 && CONST_INT_P (XEXP (op0, 1))
11752 && XEXP (op0, 1) == XEXP (op1, 1)
11753 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11754 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11755 && (INTVAL (XEXP (op0, 1))
11756 == (GET_MODE_PRECISION (GET_MODE (op0))
11757 - (GET_MODE_PRECISION
11758 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11760 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11761 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11764 /* If both operands are the same constant shift, see if we can ignore the
11765 shift. We can if the shift is a rotate or if the bits shifted out of
11766 this shift are known to be zero for both inputs and if the type of
11767 comparison is compatible with the shift. */
11768 if (GET_CODE (op0) == GET_CODE (op1)
11769 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11770 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11771 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11772 && (code != GT && code != LT && code != GE && code != LE))
11773 || (GET_CODE (op0) == ASHIFTRT
11774 && (code != GTU && code != LTU
11775 && code != GEU && code != LEU)))
11776 && CONST_INT_P (XEXP (op0, 1))
11777 && INTVAL (XEXP (op0, 1)) >= 0
11778 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11779 && XEXP (op0, 1) == XEXP (op1, 1))
11781 machine_mode mode = GET_MODE (op0);
11782 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11783 int shift_count = INTVAL (XEXP (op0, 1));
11785 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11786 mask &= (mask >> shift_count) << shift_count;
11787 else if (GET_CODE (op0) == ASHIFT)
11788 mask = (mask & (mask << shift_count)) >> shift_count;
11790 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11791 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11792 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11793 else
11794 break;
11797 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11798 SUBREGs are of the same mode, and, in both cases, the AND would
11799 be redundant if the comparison was done in the narrower mode,
11800 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11801 and the operand's possibly nonzero bits are 0xffffff01; in that case
11802 if we only care about QImode, we don't need the AND). This case
11803 occurs if the output mode of an scc insn is not SImode and
11804 STORE_FLAG_VALUE == 1 (e.g., the 386).
11806 Similarly, check for a case where the AND's are ZERO_EXTEND
11807 operations from some narrower mode even though a SUBREG is not
11808 present. */
11810 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11811 && CONST_INT_P (XEXP (op0, 1))
11812 && CONST_INT_P (XEXP (op1, 1)))
11814 rtx inner_op0 = XEXP (op0, 0);
11815 rtx inner_op1 = XEXP (op1, 0);
11816 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11817 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11818 int changed = 0;
11820 if (paradoxical_subreg_p (inner_op0)
11821 && GET_CODE (inner_op1) == SUBREG
11822 && (GET_MODE (SUBREG_REG (inner_op0))
11823 == GET_MODE (SUBREG_REG (inner_op1)))
11824 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11825 <= HOST_BITS_PER_WIDE_INT)
11826 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11827 GET_MODE (SUBREG_REG (inner_op0)))))
11828 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11829 GET_MODE (SUBREG_REG (inner_op1))))))
11831 op0 = SUBREG_REG (inner_op0);
11832 op1 = SUBREG_REG (inner_op1);
11834 /* The resulting comparison is always unsigned since we masked
11835 off the original sign bit. */
11836 code = unsigned_condition (code);
11838 changed = 1;
11841 else if (c0 == c1)
11842 for (tmode = GET_CLASS_NARROWEST_MODE
11843 (GET_MODE_CLASS (GET_MODE (op0)));
11844 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11845 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11847 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11848 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11849 code = unsigned_condition (code);
11850 changed = 1;
11851 break;
11854 if (! changed)
11855 break;
11858 /* If both operands are NOT, we can strip off the outer operation
11859 and adjust the comparison code for swapped operands; similarly for
11860 NEG, except that this must be an equality comparison. */
11861 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11862 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11863 && (code == EQ || code == NE)))
11864 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11866 else
11867 break;
11870 /* If the first operand is a constant, swap the operands and adjust the
11871 comparison code appropriately, but don't do this if the second operand
11872 is already a constant integer. */
11873 if (swap_commutative_operands_p (op0, op1))
11875 std::swap (op0, op1);
11876 code = swap_condition (code);
11879 /* We now enter a loop during which we will try to simplify the comparison.
11880 For the most part, we only are concerned with comparisons with zero,
11881 but some things may really be comparisons with zero but not start
11882 out looking that way. */
11884 while (CONST_INT_P (op1))
11886 machine_mode mode = GET_MODE (op0);
11887 unsigned int mode_width = GET_MODE_PRECISION (mode);
11888 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11889 int equality_comparison_p;
11890 int sign_bit_comparison_p;
11891 int unsigned_comparison_p;
11892 HOST_WIDE_INT const_op;
11894 /* We only want to handle integral modes. This catches VOIDmode,
11895 CCmode, and the floating-point modes. An exception is that we
11896 can handle VOIDmode if OP0 is a COMPARE or a comparison
11897 operation. */
11899 if (GET_MODE_CLASS (mode) != MODE_INT
11900 && ! (mode == VOIDmode
11901 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11902 break;
11904 /* Try to simplify the compare to constant, possibly changing the
11905 comparison op, and/or changing op1 to zero. */
11906 code = simplify_compare_const (code, mode, op0, &op1);
11907 const_op = INTVAL (op1);
11909 /* Compute some predicates to simplify code below. */
11911 equality_comparison_p = (code == EQ || code == NE);
11912 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11913 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11914 || code == GEU);
11916 /* If this is a sign bit comparison and we can do arithmetic in
11917 MODE, say that we will only be needing the sign bit of OP0. */
11918 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11919 op0 = force_to_mode (op0, mode,
11920 HOST_WIDE_INT_1U
11921 << (GET_MODE_PRECISION (mode) - 1),
11924 /* Now try cases based on the opcode of OP0. If none of the cases
11925 does a "continue", we exit this loop immediately after the
11926 switch. */
11928 switch (GET_CODE (op0))
11930 case ZERO_EXTRACT:
11931 /* If we are extracting a single bit from a variable position in
11932 a constant that has only a single bit set and are comparing it
11933 with zero, we can convert this into an equality comparison
11934 between the position and the location of the single bit. */
11935 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11936 have already reduced the shift count modulo the word size. */
11937 if (!SHIFT_COUNT_TRUNCATED
11938 && CONST_INT_P (XEXP (op0, 0))
11939 && XEXP (op0, 1) == const1_rtx
11940 && equality_comparison_p && const_op == 0
11941 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11943 if (BITS_BIG_ENDIAN)
11944 i = BITS_PER_WORD - 1 - i;
11946 op0 = XEXP (op0, 2);
11947 op1 = GEN_INT (i);
11948 const_op = i;
11950 /* Result is nonzero iff shift count is equal to I. */
11951 code = reverse_condition (code);
11952 continue;
11955 /* fall through */
11957 case SIGN_EXTRACT:
11958 tem = expand_compound_operation (op0);
11959 if (tem != op0)
11961 op0 = tem;
11962 continue;
11964 break;
11966 case NOT:
11967 /* If testing for equality, we can take the NOT of the constant. */
11968 if (equality_comparison_p
11969 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11971 op0 = XEXP (op0, 0);
11972 op1 = tem;
11973 continue;
11976 /* If just looking at the sign bit, reverse the sense of the
11977 comparison. */
11978 if (sign_bit_comparison_p)
11980 op0 = XEXP (op0, 0);
11981 code = (code == GE ? LT : GE);
11982 continue;
11984 break;
11986 case NEG:
11987 /* If testing for equality, we can take the NEG of the constant. */
11988 if (equality_comparison_p
11989 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11991 op0 = XEXP (op0, 0);
11992 op1 = tem;
11993 continue;
11996 /* The remaining cases only apply to comparisons with zero. */
11997 if (const_op != 0)
11998 break;
12000 /* When X is ABS or is known positive,
12001 (neg X) is < 0 if and only if X != 0. */
12003 if (sign_bit_comparison_p
12004 && (GET_CODE (XEXP (op0, 0)) == ABS
12005 || (mode_width <= HOST_BITS_PER_WIDE_INT
12006 && (nonzero_bits (XEXP (op0, 0), mode)
12007 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12008 == 0)))
12010 op0 = XEXP (op0, 0);
12011 code = (code == LT ? NE : EQ);
12012 continue;
12015 /* If we have NEG of something whose two high-order bits are the
12016 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12017 if (num_sign_bit_copies (op0, mode) >= 2)
12019 op0 = XEXP (op0, 0);
12020 code = swap_condition (code);
12021 continue;
12023 break;
12025 case ROTATE:
12026 /* If we are testing equality and our count is a constant, we
12027 can perform the inverse operation on our RHS. */
12028 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12029 && (tem = simplify_binary_operation (ROTATERT, mode,
12030 op1, XEXP (op0, 1))) != 0)
12032 op0 = XEXP (op0, 0);
12033 op1 = tem;
12034 continue;
12037 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12038 a particular bit. Convert it to an AND of a constant of that
12039 bit. This will be converted into a ZERO_EXTRACT. */
12040 if (const_op == 0 && sign_bit_comparison_p
12041 && CONST_INT_P (XEXP (op0, 1))
12042 && mode_width <= HOST_BITS_PER_WIDE_INT)
12044 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12045 (HOST_WIDE_INT_1U
12046 << (mode_width - 1
12047 - INTVAL (XEXP (op0, 1)))));
12048 code = (code == LT ? NE : EQ);
12049 continue;
12052 /* Fall through. */
12054 case ABS:
12055 /* ABS is ignorable inside an equality comparison with zero. */
12056 if (const_op == 0 && equality_comparison_p)
12058 op0 = XEXP (op0, 0);
12059 continue;
12061 break;
12063 case SIGN_EXTEND:
12064 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12065 (compare FOO CONST) if CONST fits in FOO's mode and we
12066 are either testing inequality or have an unsigned
12067 comparison with ZERO_EXTEND or a signed comparison with
12068 SIGN_EXTEND. But don't do it if we don't have a compare
12069 insn of the given mode, since we'd have to revert it
12070 later on, and then we wouldn't know whether to sign- or
12071 zero-extend. */
12072 mode = GET_MODE (XEXP (op0, 0));
12073 if (GET_MODE_CLASS (mode) == MODE_INT
12074 && ! unsigned_comparison_p
12075 && HWI_COMPUTABLE_MODE_P (mode)
12076 && trunc_int_for_mode (const_op, mode) == const_op
12077 && have_insn_for (COMPARE, mode))
12079 op0 = XEXP (op0, 0);
12080 continue;
12082 break;
12084 case SUBREG:
12085 /* Check for the case where we are comparing A - C1 with C2, that is
12087 (subreg:MODE (plus (A) (-C1))) op (C2)
12089 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12090 comparison in the wider mode. One of the following two conditions
12091 must be true in order for this to be valid:
12093 1. The mode extension results in the same bit pattern being added
12094 on both sides and the comparison is equality or unsigned. As
12095 C2 has been truncated to fit in MODE, the pattern can only be
12096 all 0s or all 1s.
12098 2. The mode extension results in the sign bit being copied on
12099 each side.
12101 The difficulty here is that we have predicates for A but not for
12102 (A - C1) so we need to check that C1 is within proper bounds so
12103 as to perturbate A as little as possible. */
12105 if (mode_width <= HOST_BITS_PER_WIDE_INT
12106 && subreg_lowpart_p (op0)
12107 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12108 && GET_CODE (SUBREG_REG (op0)) == PLUS
12109 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12111 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12112 rtx a = XEXP (SUBREG_REG (op0), 0);
12113 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12115 if ((c1 > 0
12116 && (unsigned HOST_WIDE_INT) c1
12117 < HOST_WIDE_INT_1U << (mode_width - 1)
12118 && (equality_comparison_p || unsigned_comparison_p)
12119 /* (A - C1) zero-extends if it is positive and sign-extends
12120 if it is negative, C2 both zero- and sign-extends. */
12121 && ((0 == (nonzero_bits (a, inner_mode)
12122 & ~GET_MODE_MASK (mode))
12123 && const_op >= 0)
12124 /* (A - C1) sign-extends if it is positive and 1-extends
12125 if it is negative, C2 both sign- and 1-extends. */
12126 || (num_sign_bit_copies (a, inner_mode)
12127 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12128 - mode_width)
12129 && const_op < 0)))
12130 || ((unsigned HOST_WIDE_INT) c1
12131 < HOST_WIDE_INT_1U << (mode_width - 2)
12132 /* (A - C1) always sign-extends, like C2. */
12133 && num_sign_bit_copies (a, inner_mode)
12134 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12135 - (mode_width - 1))))
12137 op0 = SUBREG_REG (op0);
12138 continue;
12142 /* If the inner mode is narrower and we are extracting the low part,
12143 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12144 if (subreg_lowpart_p (op0)
12145 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12147 else if (subreg_lowpart_p (op0)
12148 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12149 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12150 && (code == NE || code == EQ)
12151 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12152 <= HOST_BITS_PER_WIDE_INT)
12153 && !paradoxical_subreg_p (op0)
12154 && (nonzero_bits (SUBREG_REG (op0),
12155 GET_MODE (SUBREG_REG (op0)))
12156 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12158 /* Remove outer subregs that don't do anything. */
12159 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12161 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12162 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12164 op0 = SUBREG_REG (op0);
12165 op1 = tem;
12166 continue;
12168 break;
12170 else
12171 break;
12173 /* FALLTHROUGH */
12175 case ZERO_EXTEND:
12176 mode = GET_MODE (XEXP (op0, 0));
12177 if (GET_MODE_CLASS (mode) == MODE_INT
12178 && (unsigned_comparison_p || equality_comparison_p)
12179 && HWI_COMPUTABLE_MODE_P (mode)
12180 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12181 && const_op >= 0
12182 && have_insn_for (COMPARE, mode))
12184 op0 = XEXP (op0, 0);
12185 continue;
12187 break;
12189 case PLUS:
12190 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12191 this for equality comparisons due to pathological cases involving
12192 overflows. */
12193 if (equality_comparison_p
12194 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12195 op1, XEXP (op0, 1))))
12197 op0 = XEXP (op0, 0);
12198 op1 = tem;
12199 continue;
12202 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12203 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12204 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12206 op0 = XEXP (XEXP (op0, 0), 0);
12207 code = (code == LT ? EQ : NE);
12208 continue;
12210 break;
12212 case MINUS:
12213 /* We used to optimize signed comparisons against zero, but that
12214 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12215 arrive here as equality comparisons, or (GEU, LTU) are
12216 optimized away. No need to special-case them. */
12218 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12219 (eq B (minus A C)), whichever simplifies. We can only do
12220 this for equality comparisons due to pathological cases involving
12221 overflows. */
12222 if (equality_comparison_p
12223 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12224 XEXP (op0, 1), op1)))
12226 op0 = XEXP (op0, 0);
12227 op1 = tem;
12228 continue;
12231 if (equality_comparison_p
12232 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12233 XEXP (op0, 0), op1)))
12235 op0 = XEXP (op0, 1);
12236 op1 = tem;
12237 continue;
12240 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12241 of bits in X minus 1, is one iff X > 0. */
12242 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12243 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12244 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12245 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12247 op0 = XEXP (op0, 1);
12248 code = (code == GE ? LE : GT);
12249 continue;
12251 break;
12253 case XOR:
12254 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12255 if C is zero or B is a constant. */
12256 if (equality_comparison_p
12257 && 0 != (tem = simplify_binary_operation (XOR, mode,
12258 XEXP (op0, 1), op1)))
12260 op0 = XEXP (op0, 0);
12261 op1 = tem;
12262 continue;
12264 break;
12266 case EQ: case NE:
12267 case UNEQ: case LTGT:
12268 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12269 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12270 case UNORDERED: case ORDERED:
12271 /* We can't do anything if OP0 is a condition code value, rather
12272 than an actual data value. */
12273 if (const_op != 0
12274 || CC0_P (XEXP (op0, 0))
12275 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12276 break;
12278 /* Get the two operands being compared. */
12279 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12280 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12281 else
12282 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12284 /* Check for the cases where we simply want the result of the
12285 earlier test or the opposite of that result. */
12286 if (code == NE || code == EQ
12287 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12288 && (code == LT || code == GE)))
12290 enum rtx_code new_code;
12291 if (code == LT || code == NE)
12292 new_code = GET_CODE (op0);
12293 else
12294 new_code = reversed_comparison_code (op0, NULL);
12296 if (new_code != UNKNOWN)
12298 code = new_code;
12299 op0 = tem;
12300 op1 = tem1;
12301 continue;
12304 break;
12306 case IOR:
12307 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12308 iff X <= 0. */
12309 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12310 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12311 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12313 op0 = XEXP (op0, 1);
12314 code = (code == GE ? GT : LE);
12315 continue;
12317 break;
12319 case AND:
12320 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12321 will be converted to a ZERO_EXTRACT later. */
12322 if (const_op == 0 && equality_comparison_p
12323 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12324 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12326 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12327 XEXP (XEXP (op0, 0), 1));
12328 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12329 continue;
12332 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12333 zero and X is a comparison and C1 and C2 describe only bits set
12334 in STORE_FLAG_VALUE, we can compare with X. */
12335 if (const_op == 0 && equality_comparison_p
12336 && mode_width <= HOST_BITS_PER_WIDE_INT
12337 && CONST_INT_P (XEXP (op0, 1))
12338 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12339 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12340 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12341 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12343 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12344 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12345 if ((~STORE_FLAG_VALUE & mask) == 0
12346 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12347 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12348 && COMPARISON_P (tem))))
12350 op0 = XEXP (XEXP (op0, 0), 0);
12351 continue;
12355 /* If we are doing an equality comparison of an AND of a bit equal
12356 to the sign bit, replace this with a LT or GE comparison of
12357 the underlying value. */
12358 if (equality_comparison_p
12359 && const_op == 0
12360 && CONST_INT_P (XEXP (op0, 1))
12361 && mode_width <= HOST_BITS_PER_WIDE_INT
12362 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12363 == HOST_WIDE_INT_1U << (mode_width - 1)))
12365 op0 = XEXP (op0, 0);
12366 code = (code == EQ ? GE : LT);
12367 continue;
12370 /* If this AND operation is really a ZERO_EXTEND from a narrower
12371 mode, the constant fits within that mode, and this is either an
12372 equality or unsigned comparison, try to do this comparison in
12373 the narrower mode.
12375 Note that in:
12377 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12378 -> (ne:DI (reg:SI 4) (const_int 0))
12380 unless TRULY_NOOP_TRUNCATION allows it or the register is
12381 known to hold a value of the required mode the
12382 transformation is invalid. */
12383 if ((equality_comparison_p || unsigned_comparison_p)
12384 && CONST_INT_P (XEXP (op0, 1))
12385 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12386 & GET_MODE_MASK (mode))
12387 + 1)) >= 0
12388 && const_op >> i == 0
12389 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12391 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12392 continue;
12395 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12396 fits in both M1 and M2 and the SUBREG is either paradoxical
12397 or represents the low part, permute the SUBREG and the AND
12398 and try again. */
12399 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12400 && CONST_INT_P (XEXP (op0, 1)))
12402 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12403 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12404 /* Require an integral mode, to avoid creating something like
12405 (AND:SF ...). */
12406 if (SCALAR_INT_MODE_P (tmode)
12407 /* It is unsafe to commute the AND into the SUBREG if the
12408 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12409 not defined. As originally written the upper bits
12410 have a defined value due to the AND operation.
12411 However, if we commute the AND inside the SUBREG then
12412 they no longer have defined values and the meaning of
12413 the code has been changed.
12414 Also C1 should not change value in the smaller mode,
12415 see PR67028 (a positive C1 can become negative in the
12416 smaller mode, so that the AND does no longer mask the
12417 upper bits). */
12418 && ((WORD_REGISTER_OPERATIONS
12419 && mode_width > GET_MODE_PRECISION (tmode)
12420 && mode_width <= BITS_PER_WORD
12421 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12422 || (mode_width <= GET_MODE_PRECISION (tmode)
12423 && subreg_lowpart_p (XEXP (op0, 0))))
12424 && mode_width <= HOST_BITS_PER_WIDE_INT
12425 && HWI_COMPUTABLE_MODE_P (tmode)
12426 && (c1 & ~mask) == 0
12427 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12428 && c1 != mask
12429 && c1 != GET_MODE_MASK (tmode))
12431 op0 = simplify_gen_binary (AND, tmode,
12432 SUBREG_REG (XEXP (op0, 0)),
12433 gen_int_mode (c1, tmode));
12434 op0 = gen_lowpart (mode, op0);
12435 continue;
12439 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12440 if (const_op == 0 && equality_comparison_p
12441 && XEXP (op0, 1) == const1_rtx
12442 && GET_CODE (XEXP (op0, 0)) == NOT)
12444 op0 = simplify_and_const_int (NULL_RTX, mode,
12445 XEXP (XEXP (op0, 0), 0), 1);
12446 code = (code == NE ? EQ : NE);
12447 continue;
12450 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12451 (eq (and (lshiftrt X) 1) 0).
12452 Also handle the case where (not X) is expressed using xor. */
12453 if (const_op == 0 && equality_comparison_p
12454 && XEXP (op0, 1) == const1_rtx
12455 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12457 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12458 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12460 if (GET_CODE (shift_op) == NOT
12461 || (GET_CODE (shift_op) == XOR
12462 && CONST_INT_P (XEXP (shift_op, 1))
12463 && CONST_INT_P (shift_count)
12464 && HWI_COMPUTABLE_MODE_P (mode)
12465 && (UINTVAL (XEXP (shift_op, 1))
12466 == HOST_WIDE_INT_1U
12467 << INTVAL (shift_count))))
12470 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12471 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12472 code = (code == NE ? EQ : NE);
12473 continue;
12476 break;
12478 case ASHIFT:
12479 /* If we have (compare (ashift FOO N) (const_int C)) and
12480 the high order N bits of FOO (N+1 if an inequality comparison)
12481 are known to be zero, we can do this by comparing FOO with C
12482 shifted right N bits so long as the low-order N bits of C are
12483 zero. */
12484 if (CONST_INT_P (XEXP (op0, 1))
12485 && INTVAL (XEXP (op0, 1)) >= 0
12486 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12487 < HOST_BITS_PER_WIDE_INT)
12488 && (((unsigned HOST_WIDE_INT) const_op
12489 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12490 - 1)) == 0)
12491 && mode_width <= HOST_BITS_PER_WIDE_INT
12492 && (nonzero_bits (XEXP (op0, 0), mode)
12493 & ~(mask >> (INTVAL (XEXP (op0, 1))
12494 + ! equality_comparison_p))) == 0)
12496 /* We must perform a logical shift, not an arithmetic one,
12497 as we want the top N bits of C to be zero. */
12498 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12500 temp >>= INTVAL (XEXP (op0, 1));
12501 op1 = gen_int_mode (temp, mode);
12502 op0 = XEXP (op0, 0);
12503 continue;
12506 /* If we are doing a sign bit comparison, it means we are testing
12507 a particular bit. Convert it to the appropriate AND. */
12508 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12509 && mode_width <= HOST_BITS_PER_WIDE_INT)
12511 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12512 (HOST_WIDE_INT_1U
12513 << (mode_width - 1
12514 - INTVAL (XEXP (op0, 1)))));
12515 code = (code == LT ? NE : EQ);
12516 continue;
12519 /* If this an equality comparison with zero and we are shifting
12520 the low bit to the sign bit, we can convert this to an AND of the
12521 low-order bit. */
12522 if (const_op == 0 && equality_comparison_p
12523 && CONST_INT_P (XEXP (op0, 1))
12524 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12526 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12527 continue;
12529 break;
12531 case ASHIFTRT:
12532 /* If this is an equality comparison with zero, we can do this
12533 as a logical shift, which might be much simpler. */
12534 if (equality_comparison_p && const_op == 0
12535 && CONST_INT_P (XEXP (op0, 1)))
12537 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12538 XEXP (op0, 0),
12539 INTVAL (XEXP (op0, 1)));
12540 continue;
12543 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12544 do the comparison in a narrower mode. */
12545 if (! unsigned_comparison_p
12546 && CONST_INT_P (XEXP (op0, 1))
12547 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12548 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12549 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12550 MODE_INT, 1)) != BLKmode
12551 && (((unsigned HOST_WIDE_INT) const_op
12552 + (GET_MODE_MASK (tmode) >> 1) + 1)
12553 <= GET_MODE_MASK (tmode)))
12555 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12556 continue;
12559 /* Likewise if OP0 is a PLUS of a sign extension with a
12560 constant, which is usually represented with the PLUS
12561 between the shifts. */
12562 if (! unsigned_comparison_p
12563 && CONST_INT_P (XEXP (op0, 1))
12564 && GET_CODE (XEXP (op0, 0)) == PLUS
12565 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12566 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12567 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12568 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12569 MODE_INT, 1)) != BLKmode
12570 && (((unsigned HOST_WIDE_INT) const_op
12571 + (GET_MODE_MASK (tmode) >> 1) + 1)
12572 <= GET_MODE_MASK (tmode)))
12574 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12575 rtx add_const = XEXP (XEXP (op0, 0), 1);
12576 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12577 add_const, XEXP (op0, 1));
12579 op0 = simplify_gen_binary (PLUS, tmode,
12580 gen_lowpart (tmode, inner),
12581 new_const);
12582 continue;
12585 /* FALLTHROUGH */
12586 case LSHIFTRT:
12587 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12588 the low order N bits of FOO are known to be zero, we can do this
12589 by comparing FOO with C shifted left N bits so long as no
12590 overflow occurs. Even if the low order N bits of FOO aren't known
12591 to be zero, if the comparison is >= or < we can use the same
12592 optimization and for > or <= by setting all the low
12593 order N bits in the comparison constant. */
12594 if (CONST_INT_P (XEXP (op0, 1))
12595 && INTVAL (XEXP (op0, 1)) > 0
12596 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12597 && mode_width <= HOST_BITS_PER_WIDE_INT
12598 && (((unsigned HOST_WIDE_INT) const_op
12599 + (GET_CODE (op0) != LSHIFTRT
12600 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12601 + 1)
12602 : 0))
12603 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12605 unsigned HOST_WIDE_INT low_bits
12606 = (nonzero_bits (XEXP (op0, 0), mode)
12607 & ((HOST_WIDE_INT_1U
12608 << INTVAL (XEXP (op0, 1))) - 1));
12609 if (low_bits == 0 || !equality_comparison_p)
12611 /* If the shift was logical, then we must make the condition
12612 unsigned. */
12613 if (GET_CODE (op0) == LSHIFTRT)
12614 code = unsigned_condition (code);
12616 const_op = (unsigned HOST_WIDE_INT) const_op
12617 << INTVAL (XEXP (op0, 1));
12618 if (low_bits != 0
12619 && (code == GT || code == GTU
12620 || code == LE || code == LEU))
12621 const_op
12622 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12623 op1 = GEN_INT (const_op);
12624 op0 = XEXP (op0, 0);
12625 continue;
12629 /* If we are using this shift to extract just the sign bit, we
12630 can replace this with an LT or GE comparison. */
12631 if (const_op == 0
12632 && (equality_comparison_p || sign_bit_comparison_p)
12633 && CONST_INT_P (XEXP (op0, 1))
12634 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12636 op0 = XEXP (op0, 0);
12637 code = (code == NE || code == GT ? LT : GE);
12638 continue;
12640 break;
12642 default:
12643 break;
12646 break;
12649 /* Now make any compound operations involved in this comparison. Then,
12650 check for an outmost SUBREG on OP0 that is not doing anything or is
12651 paradoxical. The latter transformation must only be performed when
12652 it is known that the "extra" bits will be the same in op0 and op1 or
12653 that they don't matter. There are three cases to consider:
12655 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12656 care bits and we can assume they have any convenient value. So
12657 making the transformation is safe.
12659 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12660 In this case the upper bits of op0 are undefined. We should not make
12661 the simplification in that case as we do not know the contents of
12662 those bits.
12664 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12665 In that case we know those bits are zeros or ones. We must also be
12666 sure that they are the same as the upper bits of op1.
12668 We can never remove a SUBREG for a non-equality comparison because
12669 the sign bit is in a different place in the underlying object. */
12671 rtx_code op0_mco_code = SET;
12672 if (op1 == const0_rtx)
12673 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12675 op0 = make_compound_operation (op0, op0_mco_code);
12676 op1 = make_compound_operation (op1, SET);
12678 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12679 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12680 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12681 && (code == NE || code == EQ))
12683 if (paradoxical_subreg_p (op0))
12685 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12686 implemented. */
12687 if (REG_P (SUBREG_REG (op0)))
12689 op0 = SUBREG_REG (op0);
12690 op1 = gen_lowpart (GET_MODE (op0), op1);
12693 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12694 <= HOST_BITS_PER_WIDE_INT)
12695 && (nonzero_bits (SUBREG_REG (op0),
12696 GET_MODE (SUBREG_REG (op0)))
12697 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12699 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12701 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12702 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12703 op0 = SUBREG_REG (op0), op1 = tem;
12707 /* We now do the opposite procedure: Some machines don't have compare
12708 insns in all modes. If OP0's mode is an integer mode smaller than a
12709 word and we can't do a compare in that mode, see if there is a larger
12710 mode for which we can do the compare. There are a number of cases in
12711 which we can use the wider mode. */
12713 mode = GET_MODE (op0);
12714 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12715 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12716 && ! have_insn_for (COMPARE, mode))
12717 for (tmode = GET_MODE_WIDER_MODE (mode);
12718 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12719 tmode = GET_MODE_WIDER_MODE (tmode))
12720 if (have_insn_for (COMPARE, tmode))
12722 int zero_extended;
12724 /* If this is a test for negative, we can make an explicit
12725 test of the sign bit. Test this first so we can use
12726 a paradoxical subreg to extend OP0. */
12728 if (op1 == const0_rtx && (code == LT || code == GE)
12729 && HWI_COMPUTABLE_MODE_P (mode))
12731 unsigned HOST_WIDE_INT sign
12732 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12733 op0 = simplify_gen_binary (AND, tmode,
12734 gen_lowpart (tmode, op0),
12735 gen_int_mode (sign, tmode));
12736 code = (code == LT) ? NE : EQ;
12737 break;
12740 /* If the only nonzero bits in OP0 and OP1 are those in the
12741 narrower mode and this is an equality or unsigned comparison,
12742 we can use the wider mode. Similarly for sign-extended
12743 values, in which case it is true for all comparisons. */
12744 zero_extended = ((code == EQ || code == NE
12745 || code == GEU || code == GTU
12746 || code == LEU || code == LTU)
12747 && (nonzero_bits (op0, tmode)
12748 & ~GET_MODE_MASK (mode)) == 0
12749 && ((CONST_INT_P (op1)
12750 || (nonzero_bits (op1, tmode)
12751 & ~GET_MODE_MASK (mode)) == 0)));
12753 if (zero_extended
12754 || ((num_sign_bit_copies (op0, tmode)
12755 > (unsigned int) (GET_MODE_PRECISION (tmode)
12756 - GET_MODE_PRECISION (mode)))
12757 && (num_sign_bit_copies (op1, tmode)
12758 > (unsigned int) (GET_MODE_PRECISION (tmode)
12759 - GET_MODE_PRECISION (mode)))))
12761 /* If OP0 is an AND and we don't have an AND in MODE either,
12762 make a new AND in the proper mode. */
12763 if (GET_CODE (op0) == AND
12764 && !have_insn_for (AND, mode))
12765 op0 = simplify_gen_binary (AND, tmode,
12766 gen_lowpart (tmode,
12767 XEXP (op0, 0)),
12768 gen_lowpart (tmode,
12769 XEXP (op0, 1)));
12770 else
12772 if (zero_extended)
12774 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12775 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12777 else
12779 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12780 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12782 break;
12787 /* We may have changed the comparison operands. Re-canonicalize. */
12788 if (swap_commutative_operands_p (op0, op1))
12790 std::swap (op0, op1);
12791 code = swap_condition (code);
12794 /* If this machine only supports a subset of valid comparisons, see if we
12795 can convert an unsupported one into a supported one. */
12796 target_canonicalize_comparison (&code, &op0, &op1, 0);
12798 *pop0 = op0;
12799 *pop1 = op1;
12801 return code;
12804 /* Utility function for record_value_for_reg. Count number of
12805 rtxs in X. */
12806 static int
12807 count_rtxs (rtx x)
12809 enum rtx_code code = GET_CODE (x);
12810 const char *fmt;
12811 int i, j, ret = 1;
12813 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12814 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12816 rtx x0 = XEXP (x, 0);
12817 rtx x1 = XEXP (x, 1);
12819 if (x0 == x1)
12820 return 1 + 2 * count_rtxs (x0);
12822 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12823 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12824 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12825 return 2 + 2 * count_rtxs (x0)
12826 + count_rtxs (x == XEXP (x1, 0)
12827 ? XEXP (x1, 1) : XEXP (x1, 0));
12829 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12830 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12831 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12832 return 2 + 2 * count_rtxs (x1)
12833 + count_rtxs (x == XEXP (x0, 0)
12834 ? XEXP (x0, 1) : XEXP (x0, 0));
12837 fmt = GET_RTX_FORMAT (code);
12838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12839 if (fmt[i] == 'e')
12840 ret += count_rtxs (XEXP (x, i));
12841 else if (fmt[i] == 'E')
12842 for (j = 0; j < XVECLEN (x, i); j++)
12843 ret += count_rtxs (XVECEXP (x, i, j));
12845 return ret;
12848 /* Utility function for following routine. Called when X is part of a value
12849 being stored into last_set_value. Sets last_set_table_tick
12850 for each register mentioned. Similar to mention_regs in cse.c */
12852 static void
12853 update_table_tick (rtx x)
12855 enum rtx_code code = GET_CODE (x);
12856 const char *fmt = GET_RTX_FORMAT (code);
12857 int i, j;
12859 if (code == REG)
12861 unsigned int regno = REGNO (x);
12862 unsigned int endregno = END_REGNO (x);
12863 unsigned int r;
12865 for (r = regno; r < endregno; r++)
12867 reg_stat_type *rsp = &reg_stat[r];
12868 rsp->last_set_table_tick = label_tick;
12871 return;
12874 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12875 if (fmt[i] == 'e')
12877 /* Check for identical subexpressions. If x contains
12878 identical subexpression we only have to traverse one of
12879 them. */
12880 if (i == 0 && ARITHMETIC_P (x))
12882 /* Note that at this point x1 has already been
12883 processed. */
12884 rtx x0 = XEXP (x, 0);
12885 rtx x1 = XEXP (x, 1);
12887 /* If x0 and x1 are identical then there is no need to
12888 process x0. */
12889 if (x0 == x1)
12890 break;
12892 /* If x0 is identical to a subexpression of x1 then while
12893 processing x1, x0 has already been processed. Thus we
12894 are done with x. */
12895 if (ARITHMETIC_P (x1)
12896 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12897 break;
12899 /* If x1 is identical to a subexpression of x0 then we
12900 still have to process the rest of x0. */
12901 if (ARITHMETIC_P (x0)
12902 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12904 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12905 break;
12909 update_table_tick (XEXP (x, i));
12911 else if (fmt[i] == 'E')
12912 for (j = 0; j < XVECLEN (x, i); j++)
12913 update_table_tick (XVECEXP (x, i, j));
12916 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12917 are saying that the register is clobbered and we no longer know its
12918 value. If INSN is zero, don't update reg_stat[].last_set; this is
12919 only permitted with VALUE also zero and is used to invalidate the
12920 register. */
12922 static void
12923 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12925 unsigned int regno = REGNO (reg);
12926 unsigned int endregno = END_REGNO (reg);
12927 unsigned int i;
12928 reg_stat_type *rsp;
12930 /* If VALUE contains REG and we have a previous value for REG, substitute
12931 the previous value. */
12932 if (value && insn && reg_overlap_mentioned_p (reg, value))
12934 rtx tem;
12936 /* Set things up so get_last_value is allowed to see anything set up to
12937 our insn. */
12938 subst_low_luid = DF_INSN_LUID (insn);
12939 tem = get_last_value (reg);
12941 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12942 it isn't going to be useful and will take a lot of time to process,
12943 so just use the CLOBBER. */
12945 if (tem)
12947 if (ARITHMETIC_P (tem)
12948 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12949 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12950 tem = XEXP (tem, 0);
12951 else if (count_occurrences (value, reg, 1) >= 2)
12953 /* If there are two or more occurrences of REG in VALUE,
12954 prevent the value from growing too much. */
12955 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12956 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12959 value = replace_rtx (copy_rtx (value), reg, tem);
12963 /* For each register modified, show we don't know its value, that
12964 we don't know about its bitwise content, that its value has been
12965 updated, and that we don't know the location of the death of the
12966 register. */
12967 for (i = regno; i < endregno; i++)
12969 rsp = &reg_stat[i];
12971 if (insn)
12972 rsp->last_set = insn;
12974 rsp->last_set_value = 0;
12975 rsp->last_set_mode = VOIDmode;
12976 rsp->last_set_nonzero_bits = 0;
12977 rsp->last_set_sign_bit_copies = 0;
12978 rsp->last_death = 0;
12979 rsp->truncated_to_mode = VOIDmode;
12982 /* Mark registers that are being referenced in this value. */
12983 if (value)
12984 update_table_tick (value);
12986 /* Now update the status of each register being set.
12987 If someone is using this register in this block, set this register
12988 to invalid since we will get confused between the two lives in this
12989 basic block. This makes using this register always invalid. In cse, we
12990 scan the table to invalidate all entries using this register, but this
12991 is too much work for us. */
12993 for (i = regno; i < endregno; i++)
12995 rsp = &reg_stat[i];
12996 rsp->last_set_label = label_tick;
12997 if (!insn
12998 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12999 rsp->last_set_invalid = 1;
13000 else
13001 rsp->last_set_invalid = 0;
13004 /* The value being assigned might refer to X (like in "x++;"). In that
13005 case, we must replace it with (clobber (const_int 0)) to prevent
13006 infinite loops. */
13007 rsp = &reg_stat[regno];
13008 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13010 value = copy_rtx (value);
13011 if (!get_last_value_validate (&value, insn, label_tick, 1))
13012 value = 0;
13015 /* For the main register being modified, update the value, the mode, the
13016 nonzero bits, and the number of sign bit copies. */
13018 rsp->last_set_value = value;
13020 if (value)
13022 machine_mode mode = GET_MODE (reg);
13023 subst_low_luid = DF_INSN_LUID (insn);
13024 rsp->last_set_mode = mode;
13025 if (GET_MODE_CLASS (mode) == MODE_INT
13026 && HWI_COMPUTABLE_MODE_P (mode))
13027 mode = nonzero_bits_mode;
13028 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13029 rsp->last_set_sign_bit_copies
13030 = num_sign_bit_copies (value, GET_MODE (reg));
13034 /* Called via note_stores from record_dead_and_set_regs to handle one
13035 SET or CLOBBER in an insn. DATA is the instruction in which the
13036 set is occurring. */
13038 static void
13039 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13041 rtx_insn *record_dead_insn = (rtx_insn *) data;
13043 if (GET_CODE (dest) == SUBREG)
13044 dest = SUBREG_REG (dest);
13046 if (!record_dead_insn)
13048 if (REG_P (dest))
13049 record_value_for_reg (dest, NULL, NULL_RTX);
13050 return;
13053 if (REG_P (dest))
13055 /* If we are setting the whole register, we know its value. Otherwise
13056 show that we don't know the value. We can handle SUBREG in
13057 some cases. */
13058 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13059 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13060 else if (GET_CODE (setter) == SET
13061 && GET_CODE (SET_DEST (setter)) == SUBREG
13062 && SUBREG_REG (SET_DEST (setter)) == dest
13063 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13064 && subreg_lowpart_p (SET_DEST (setter)))
13065 record_value_for_reg (dest, record_dead_insn,
13066 gen_lowpart (GET_MODE (dest),
13067 SET_SRC (setter)));
13068 else
13069 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13071 else if (MEM_P (dest)
13072 /* Ignore pushes, they clobber nothing. */
13073 && ! push_operand (dest, GET_MODE (dest)))
13074 mem_last_set = DF_INSN_LUID (record_dead_insn);
13077 /* Update the records of when each REG was most recently set or killed
13078 for the things done by INSN. This is the last thing done in processing
13079 INSN in the combiner loop.
13081 We update reg_stat[], in particular fields last_set, last_set_value,
13082 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13083 last_death, and also the similar information mem_last_set (which insn
13084 most recently modified memory) and last_call_luid (which insn was the
13085 most recent subroutine call). */
13087 static void
13088 record_dead_and_set_regs (rtx_insn *insn)
13090 rtx link;
13091 unsigned int i;
13093 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13095 if (REG_NOTE_KIND (link) == REG_DEAD
13096 && REG_P (XEXP (link, 0)))
13098 unsigned int regno = REGNO (XEXP (link, 0));
13099 unsigned int endregno = END_REGNO (XEXP (link, 0));
13101 for (i = regno; i < endregno; i++)
13103 reg_stat_type *rsp;
13105 rsp = &reg_stat[i];
13106 rsp->last_death = insn;
13109 else if (REG_NOTE_KIND (link) == REG_INC)
13110 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13113 if (CALL_P (insn))
13115 hard_reg_set_iterator hrsi;
13116 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13118 reg_stat_type *rsp;
13120 rsp = &reg_stat[i];
13121 rsp->last_set_invalid = 1;
13122 rsp->last_set = insn;
13123 rsp->last_set_value = 0;
13124 rsp->last_set_mode = VOIDmode;
13125 rsp->last_set_nonzero_bits = 0;
13126 rsp->last_set_sign_bit_copies = 0;
13127 rsp->last_death = 0;
13128 rsp->truncated_to_mode = VOIDmode;
13131 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13133 /* We can't combine into a call pattern. Remember, though, that
13134 the return value register is set at this LUID. We could
13135 still replace a register with the return value from the
13136 wrong subroutine call! */
13137 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13139 else
13140 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13143 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13144 register present in the SUBREG, so for each such SUBREG go back and
13145 adjust nonzero and sign bit information of the registers that are
13146 known to have some zero/sign bits set.
13148 This is needed because when combine blows the SUBREGs away, the
13149 information on zero/sign bits is lost and further combines can be
13150 missed because of that. */
13152 static void
13153 record_promoted_value (rtx_insn *insn, rtx subreg)
13155 struct insn_link *links;
13156 rtx set;
13157 unsigned int regno = REGNO (SUBREG_REG (subreg));
13158 machine_mode mode = GET_MODE (subreg);
13160 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13161 return;
13163 for (links = LOG_LINKS (insn); links;)
13165 reg_stat_type *rsp;
13167 insn = links->insn;
13168 set = single_set (insn);
13170 if (! set || !REG_P (SET_DEST (set))
13171 || REGNO (SET_DEST (set)) != regno
13172 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13174 links = links->next;
13175 continue;
13178 rsp = &reg_stat[regno];
13179 if (rsp->last_set == insn)
13181 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13182 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13185 if (REG_P (SET_SRC (set)))
13187 regno = REGNO (SET_SRC (set));
13188 links = LOG_LINKS (insn);
13190 else
13191 break;
13195 /* Check if X, a register, is known to contain a value already
13196 truncated to MODE. In this case we can use a subreg to refer to
13197 the truncated value even though in the generic case we would need
13198 an explicit truncation. */
13200 static bool
13201 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13203 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13204 machine_mode truncated = rsp->truncated_to_mode;
13206 if (truncated == 0
13207 || rsp->truncation_label < label_tick_ebb_start)
13208 return false;
13209 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13210 return true;
13211 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13212 return true;
13213 return false;
13216 /* If X is a hard reg or a subreg record the mode that the register is
13217 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13218 to turn a truncate into a subreg using this information. Return true
13219 if traversing X is complete. */
13221 static bool
13222 record_truncated_value (rtx x)
13224 machine_mode truncated_mode;
13225 reg_stat_type *rsp;
13227 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13229 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13230 truncated_mode = GET_MODE (x);
13232 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13233 return true;
13235 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13236 return true;
13238 x = SUBREG_REG (x);
13240 /* ??? For hard-regs we now record everything. We might be able to
13241 optimize this using last_set_mode. */
13242 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13243 truncated_mode = GET_MODE (x);
13244 else
13245 return false;
13247 rsp = &reg_stat[REGNO (x)];
13248 if (rsp->truncated_to_mode == 0
13249 || rsp->truncation_label < label_tick_ebb_start
13250 || (GET_MODE_SIZE (truncated_mode)
13251 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13253 rsp->truncated_to_mode = truncated_mode;
13254 rsp->truncation_label = label_tick;
13257 return true;
13260 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13261 the modes they are used in. This can help truning TRUNCATEs into
13262 SUBREGs. */
13264 static void
13265 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13267 subrtx_var_iterator::array_type array;
13268 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13269 if (record_truncated_value (*iter))
13270 iter.skip_subrtxes ();
13273 /* Scan X for promoted SUBREGs. For each one found,
13274 note what it implies to the registers used in it. */
13276 static void
13277 check_promoted_subreg (rtx_insn *insn, rtx x)
13279 if (GET_CODE (x) == SUBREG
13280 && SUBREG_PROMOTED_VAR_P (x)
13281 && REG_P (SUBREG_REG (x)))
13282 record_promoted_value (insn, x);
13283 else
13285 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13286 int i, j;
13288 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13289 switch (format[i])
13291 case 'e':
13292 check_promoted_subreg (insn, XEXP (x, i));
13293 break;
13294 case 'V':
13295 case 'E':
13296 if (XVEC (x, i) != 0)
13297 for (j = 0; j < XVECLEN (x, i); j++)
13298 check_promoted_subreg (insn, XVECEXP (x, i, j));
13299 break;
13304 /* Verify that all the registers and memory references mentioned in *LOC are
13305 still valid. *LOC was part of a value set in INSN when label_tick was
13306 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13307 the invalid references with (clobber (const_int 0)) and return 1. This
13308 replacement is useful because we often can get useful information about
13309 the form of a value (e.g., if it was produced by a shift that always
13310 produces -1 or 0) even though we don't know exactly what registers it
13311 was produced from. */
13313 static int
13314 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13316 rtx x = *loc;
13317 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13318 int len = GET_RTX_LENGTH (GET_CODE (x));
13319 int i, j;
13321 if (REG_P (x))
13323 unsigned int regno = REGNO (x);
13324 unsigned int endregno = END_REGNO (x);
13325 unsigned int j;
13327 for (j = regno; j < endregno; j++)
13329 reg_stat_type *rsp = &reg_stat[j];
13330 if (rsp->last_set_invalid
13331 /* If this is a pseudo-register that was only set once and not
13332 live at the beginning of the function, it is always valid. */
13333 || (! (regno >= FIRST_PSEUDO_REGISTER
13334 && regno < reg_n_sets_max
13335 && REG_N_SETS (regno) == 1
13336 && (!REGNO_REG_SET_P
13337 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13338 regno)))
13339 && rsp->last_set_label > tick))
13341 if (replace)
13342 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13343 return replace;
13347 return 1;
13349 /* If this is a memory reference, make sure that there were no stores after
13350 it that might have clobbered the value. We don't have alias info, so we
13351 assume any store invalidates it. Moreover, we only have local UIDs, so
13352 we also assume that there were stores in the intervening basic blocks. */
13353 else if (MEM_P (x) && !MEM_READONLY_P (x)
13354 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13356 if (replace)
13357 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13358 return replace;
13361 for (i = 0; i < len; i++)
13363 if (fmt[i] == 'e')
13365 /* Check for identical subexpressions. If x contains
13366 identical subexpression we only have to traverse one of
13367 them. */
13368 if (i == 1 && ARITHMETIC_P (x))
13370 /* Note that at this point x0 has already been checked
13371 and found valid. */
13372 rtx x0 = XEXP (x, 0);
13373 rtx x1 = XEXP (x, 1);
13375 /* If x0 and x1 are identical then x is also valid. */
13376 if (x0 == x1)
13377 return 1;
13379 /* If x1 is identical to a subexpression of x0 then
13380 while checking x0, x1 has already been checked. Thus
13381 it is valid and so as x. */
13382 if (ARITHMETIC_P (x0)
13383 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13384 return 1;
13386 /* If x0 is identical to a subexpression of x1 then x is
13387 valid iff the rest of x1 is valid. */
13388 if (ARITHMETIC_P (x1)
13389 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13390 return
13391 get_last_value_validate (&XEXP (x1,
13392 x0 == XEXP (x1, 0) ? 1 : 0),
13393 insn, tick, replace);
13396 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13397 replace) == 0)
13398 return 0;
13400 else if (fmt[i] == 'E')
13401 for (j = 0; j < XVECLEN (x, i); j++)
13402 if (get_last_value_validate (&XVECEXP (x, i, j),
13403 insn, tick, replace) == 0)
13404 return 0;
13407 /* If we haven't found a reason for it to be invalid, it is valid. */
13408 return 1;
13411 /* Get the last value assigned to X, if known. Some registers
13412 in the value may be replaced with (clobber (const_int 0)) if their value
13413 is known longer known reliably. */
13415 static rtx
13416 get_last_value (const_rtx x)
13418 unsigned int regno;
13419 rtx value;
13420 reg_stat_type *rsp;
13422 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13423 then convert it to the desired mode. If this is a paradoxical SUBREG,
13424 we cannot predict what values the "extra" bits might have. */
13425 if (GET_CODE (x) == SUBREG
13426 && subreg_lowpart_p (x)
13427 && !paradoxical_subreg_p (x)
13428 && (value = get_last_value (SUBREG_REG (x))) != 0)
13429 return gen_lowpart (GET_MODE (x), value);
13431 if (!REG_P (x))
13432 return 0;
13434 regno = REGNO (x);
13435 rsp = &reg_stat[regno];
13436 value = rsp->last_set_value;
13438 /* If we don't have a value, or if it isn't for this basic block and
13439 it's either a hard register, set more than once, or it's a live
13440 at the beginning of the function, return 0.
13442 Because if it's not live at the beginning of the function then the reg
13443 is always set before being used (is never used without being set).
13444 And, if it's set only once, and it's always set before use, then all
13445 uses must have the same last value, even if it's not from this basic
13446 block. */
13448 if (value == 0
13449 || (rsp->last_set_label < label_tick_ebb_start
13450 && (regno < FIRST_PSEUDO_REGISTER
13451 || regno >= reg_n_sets_max
13452 || REG_N_SETS (regno) != 1
13453 || REGNO_REG_SET_P
13454 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13455 return 0;
13457 /* If the value was set in a later insn than the ones we are processing,
13458 we can't use it even if the register was only set once. */
13459 if (rsp->last_set_label == label_tick
13460 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13461 return 0;
13463 /* If fewer bits were set than what we are asked for now, we cannot use
13464 the value. */
13465 if (GET_MODE_PRECISION (rsp->last_set_mode)
13466 < GET_MODE_PRECISION (GET_MODE (x)))
13467 return 0;
13469 /* If the value has all its registers valid, return it. */
13470 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13471 return value;
13473 /* Otherwise, make a copy and replace any invalid register with
13474 (clobber (const_int 0)). If that fails for some reason, return 0. */
13476 value = copy_rtx (value);
13477 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13478 return value;
13480 return 0;
13483 /* Return nonzero if expression X refers to a REG or to memory
13484 that is set in an instruction more recent than FROM_LUID. */
13486 static int
13487 use_crosses_set_p (const_rtx x, int from_luid)
13489 const char *fmt;
13490 int i;
13491 enum rtx_code code = GET_CODE (x);
13493 if (code == REG)
13495 unsigned int regno = REGNO (x);
13496 unsigned endreg = END_REGNO (x);
13498 #ifdef PUSH_ROUNDING
13499 /* Don't allow uses of the stack pointer to be moved,
13500 because we don't know whether the move crosses a push insn. */
13501 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13502 return 1;
13503 #endif
13504 for (; regno < endreg; regno++)
13506 reg_stat_type *rsp = &reg_stat[regno];
13507 if (rsp->last_set
13508 && rsp->last_set_label == label_tick
13509 && DF_INSN_LUID (rsp->last_set) > from_luid)
13510 return 1;
13512 return 0;
13515 if (code == MEM && mem_last_set > from_luid)
13516 return 1;
13518 fmt = GET_RTX_FORMAT (code);
13520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13522 if (fmt[i] == 'E')
13524 int j;
13525 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13526 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13527 return 1;
13529 else if (fmt[i] == 'e'
13530 && use_crosses_set_p (XEXP (x, i), from_luid))
13531 return 1;
13533 return 0;
13536 /* Define three variables used for communication between the following
13537 routines. */
13539 static unsigned int reg_dead_regno, reg_dead_endregno;
13540 static int reg_dead_flag;
13542 /* Function called via note_stores from reg_dead_at_p.
13544 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13545 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13547 static void
13548 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13550 unsigned int regno, endregno;
13552 if (!REG_P (dest))
13553 return;
13555 regno = REGNO (dest);
13556 endregno = END_REGNO (dest);
13557 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13558 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13561 /* Return nonzero if REG is known to be dead at INSN.
13563 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13564 referencing REG, it is dead. If we hit a SET referencing REG, it is
13565 live. Otherwise, see if it is live or dead at the start of the basic
13566 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13567 must be assumed to be always live. */
13569 static int
13570 reg_dead_at_p (rtx reg, rtx_insn *insn)
13572 basic_block block;
13573 unsigned int i;
13575 /* Set variables for reg_dead_at_p_1. */
13576 reg_dead_regno = REGNO (reg);
13577 reg_dead_endregno = END_REGNO (reg);
13579 reg_dead_flag = 0;
13581 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13582 we allow the machine description to decide whether use-and-clobber
13583 patterns are OK. */
13584 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13586 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13587 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13588 return 0;
13591 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13592 beginning of basic block. */
13593 block = BLOCK_FOR_INSN (insn);
13594 for (;;)
13596 if (INSN_P (insn))
13598 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13599 return 1;
13601 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13602 if (reg_dead_flag)
13603 return reg_dead_flag == 1 ? 1 : 0;
13605 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13606 return 1;
13609 if (insn == BB_HEAD (block))
13610 break;
13612 insn = PREV_INSN (insn);
13615 /* Look at live-in sets for the basic block that we were in. */
13616 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13617 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13618 return 0;
13620 return 1;
13623 /* Note hard registers in X that are used. */
13625 static void
13626 mark_used_regs_combine (rtx x)
13628 RTX_CODE code = GET_CODE (x);
13629 unsigned int regno;
13630 int i;
13632 switch (code)
13634 case LABEL_REF:
13635 case SYMBOL_REF:
13636 case CONST:
13637 CASE_CONST_ANY:
13638 case PC:
13639 case ADDR_VEC:
13640 case ADDR_DIFF_VEC:
13641 case ASM_INPUT:
13642 /* CC0 must die in the insn after it is set, so we don't need to take
13643 special note of it here. */
13644 case CC0:
13645 return;
13647 case CLOBBER:
13648 /* If we are clobbering a MEM, mark any hard registers inside the
13649 address as used. */
13650 if (MEM_P (XEXP (x, 0)))
13651 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13652 return;
13654 case REG:
13655 regno = REGNO (x);
13656 /* A hard reg in a wide mode may really be multiple registers.
13657 If so, mark all of them just like the first. */
13658 if (regno < FIRST_PSEUDO_REGISTER)
13660 /* None of this applies to the stack, frame or arg pointers. */
13661 if (regno == STACK_POINTER_REGNUM
13662 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13663 && regno == HARD_FRAME_POINTER_REGNUM)
13664 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13665 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13666 || regno == FRAME_POINTER_REGNUM)
13667 return;
13669 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13671 return;
13673 case SET:
13675 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13676 the address. */
13677 rtx testreg = SET_DEST (x);
13679 while (GET_CODE (testreg) == SUBREG
13680 || GET_CODE (testreg) == ZERO_EXTRACT
13681 || GET_CODE (testreg) == STRICT_LOW_PART)
13682 testreg = XEXP (testreg, 0);
13684 if (MEM_P (testreg))
13685 mark_used_regs_combine (XEXP (testreg, 0));
13687 mark_used_regs_combine (SET_SRC (x));
13689 return;
13691 default:
13692 break;
13695 /* Recursively scan the operands of this expression. */
13698 const char *fmt = GET_RTX_FORMAT (code);
13700 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13702 if (fmt[i] == 'e')
13703 mark_used_regs_combine (XEXP (x, i));
13704 else if (fmt[i] == 'E')
13706 int j;
13708 for (j = 0; j < XVECLEN (x, i); j++)
13709 mark_used_regs_combine (XVECEXP (x, i, j));
13715 /* Remove register number REGNO from the dead registers list of INSN.
13717 Return the note used to record the death, if there was one. */
13720 remove_death (unsigned int regno, rtx_insn *insn)
13722 rtx note = find_regno_note (insn, REG_DEAD, regno);
13724 if (note)
13725 remove_note (insn, note);
13727 return note;
13730 /* For each register (hardware or pseudo) used within expression X, if its
13731 death is in an instruction with luid between FROM_LUID (inclusive) and
13732 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13733 list headed by PNOTES.
13735 That said, don't move registers killed by maybe_kill_insn.
13737 This is done when X is being merged by combination into TO_INSN. These
13738 notes will then be distributed as needed. */
13740 static void
13741 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13742 rtx *pnotes)
13744 const char *fmt;
13745 int len, i;
13746 enum rtx_code code = GET_CODE (x);
13748 if (code == REG)
13750 unsigned int regno = REGNO (x);
13751 rtx_insn *where_dead = reg_stat[regno].last_death;
13753 /* Don't move the register if it gets killed in between from and to. */
13754 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13755 && ! reg_referenced_p (x, maybe_kill_insn))
13756 return;
13758 if (where_dead
13759 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13760 && DF_INSN_LUID (where_dead) >= from_luid
13761 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13763 rtx note = remove_death (regno, where_dead);
13765 /* It is possible for the call above to return 0. This can occur
13766 when last_death points to I2 or I1 that we combined with.
13767 In that case make a new note.
13769 We must also check for the case where X is a hard register
13770 and NOTE is a death note for a range of hard registers
13771 including X. In that case, we must put REG_DEAD notes for
13772 the remaining registers in place of NOTE. */
13774 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13775 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13776 > GET_MODE_SIZE (GET_MODE (x))))
13778 unsigned int deadregno = REGNO (XEXP (note, 0));
13779 unsigned int deadend = END_REGNO (XEXP (note, 0));
13780 unsigned int ourend = END_REGNO (x);
13781 unsigned int i;
13783 for (i = deadregno; i < deadend; i++)
13784 if (i < regno || i >= ourend)
13785 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13788 /* If we didn't find any note, or if we found a REG_DEAD note that
13789 covers only part of the given reg, and we have a multi-reg hard
13790 register, then to be safe we must check for REG_DEAD notes
13791 for each register other than the first. They could have
13792 their own REG_DEAD notes lying around. */
13793 else if ((note == 0
13794 || (note != 0
13795 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13796 < GET_MODE_SIZE (GET_MODE (x)))))
13797 && regno < FIRST_PSEUDO_REGISTER
13798 && REG_NREGS (x) > 1)
13800 unsigned int ourend = END_REGNO (x);
13801 unsigned int i, offset;
13802 rtx oldnotes = 0;
13804 if (note)
13805 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13806 else
13807 offset = 1;
13809 for (i = regno + offset; i < ourend; i++)
13810 move_deaths (regno_reg_rtx[i],
13811 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13814 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13816 XEXP (note, 1) = *pnotes;
13817 *pnotes = note;
13819 else
13820 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13823 return;
13826 else if (GET_CODE (x) == SET)
13828 rtx dest = SET_DEST (x);
13830 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13832 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13833 that accesses one word of a multi-word item, some
13834 piece of everything register in the expression is used by
13835 this insn, so remove any old death. */
13836 /* ??? So why do we test for equality of the sizes? */
13838 if (GET_CODE (dest) == ZERO_EXTRACT
13839 || GET_CODE (dest) == STRICT_LOW_PART
13840 || (GET_CODE (dest) == SUBREG
13841 && (((GET_MODE_SIZE (GET_MODE (dest))
13842 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13843 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13844 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13846 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13847 return;
13850 /* If this is some other SUBREG, we know it replaces the entire
13851 value, so use that as the destination. */
13852 if (GET_CODE (dest) == SUBREG)
13853 dest = SUBREG_REG (dest);
13855 /* If this is a MEM, adjust deaths of anything used in the address.
13856 For a REG (the only other possibility), the entire value is
13857 being replaced so the old value is not used in this insn. */
13859 if (MEM_P (dest))
13860 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13861 to_insn, pnotes);
13862 return;
13865 else if (GET_CODE (x) == CLOBBER)
13866 return;
13868 len = GET_RTX_LENGTH (code);
13869 fmt = GET_RTX_FORMAT (code);
13871 for (i = 0; i < len; i++)
13873 if (fmt[i] == 'E')
13875 int j;
13876 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13877 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13878 to_insn, pnotes);
13880 else if (fmt[i] == 'e')
13881 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13885 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13886 pattern of an insn. X must be a REG. */
13888 static int
13889 reg_bitfield_target_p (rtx x, rtx body)
13891 int i;
13893 if (GET_CODE (body) == SET)
13895 rtx dest = SET_DEST (body);
13896 rtx target;
13897 unsigned int regno, tregno, endregno, endtregno;
13899 if (GET_CODE (dest) == ZERO_EXTRACT)
13900 target = XEXP (dest, 0);
13901 else if (GET_CODE (dest) == STRICT_LOW_PART)
13902 target = SUBREG_REG (XEXP (dest, 0));
13903 else
13904 return 0;
13906 if (GET_CODE (target) == SUBREG)
13907 target = SUBREG_REG (target);
13909 if (!REG_P (target))
13910 return 0;
13912 tregno = REGNO (target), regno = REGNO (x);
13913 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13914 return target == x;
13916 endtregno = end_hard_regno (GET_MODE (target), tregno);
13917 endregno = end_hard_regno (GET_MODE (x), regno);
13919 return endregno > tregno && regno < endtregno;
13922 else if (GET_CODE (body) == PARALLEL)
13923 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13924 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13925 return 1;
13927 return 0;
13930 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13931 as appropriate. I3 and I2 are the insns resulting from the combination
13932 insns including FROM (I2 may be zero).
13934 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13935 not need REG_DEAD notes because they are being substituted for. This
13936 saves searching in the most common cases.
13938 Each note in the list is either ignored or placed on some insns, depending
13939 on the type of note. */
13941 static void
13942 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13943 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13945 rtx note, next_note;
13946 rtx tem_note;
13947 rtx_insn *tem_insn;
13949 for (note = notes; note; note = next_note)
13951 rtx_insn *place = 0, *place2 = 0;
13953 next_note = XEXP (note, 1);
13954 switch (REG_NOTE_KIND (note))
13956 case REG_BR_PROB:
13957 case REG_BR_PRED:
13958 /* Doesn't matter much where we put this, as long as it's somewhere.
13959 It is preferable to keep these notes on branches, which is most
13960 likely to be i3. */
13961 place = i3;
13962 break;
13964 case REG_NON_LOCAL_GOTO:
13965 if (JUMP_P (i3))
13966 place = i3;
13967 else
13969 gcc_assert (i2 && JUMP_P (i2));
13970 place = i2;
13972 break;
13974 case REG_EH_REGION:
13975 /* These notes must remain with the call or trapping instruction. */
13976 if (CALL_P (i3))
13977 place = i3;
13978 else if (i2 && CALL_P (i2))
13979 place = i2;
13980 else
13982 gcc_assert (cfun->can_throw_non_call_exceptions);
13983 if (may_trap_p (i3))
13984 place = i3;
13985 else if (i2 && may_trap_p (i2))
13986 place = i2;
13987 /* ??? Otherwise assume we've combined things such that we
13988 can now prove that the instructions can't trap. Drop the
13989 note in this case. */
13991 break;
13993 case REG_ARGS_SIZE:
13994 /* ??? How to distribute between i3-i1. Assume i3 contains the
13995 entire adjustment. Assert i3 contains at least some adjust. */
13996 if (!noop_move_p (i3))
13998 int old_size, args_size = INTVAL (XEXP (note, 0));
13999 /* fixup_args_size_notes looks at REG_NORETURN note,
14000 so ensure the note is placed there first. */
14001 if (CALL_P (i3))
14003 rtx *np;
14004 for (np = &next_note; *np; np = &XEXP (*np, 1))
14005 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14007 rtx n = *np;
14008 *np = XEXP (n, 1);
14009 XEXP (n, 1) = REG_NOTES (i3);
14010 REG_NOTES (i3) = n;
14011 break;
14014 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14015 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14016 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14017 gcc_assert (old_size != args_size
14018 || (CALL_P (i3)
14019 && !ACCUMULATE_OUTGOING_ARGS
14020 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14022 break;
14024 case REG_NORETURN:
14025 case REG_SETJMP:
14026 case REG_TM:
14027 case REG_CALL_DECL:
14028 /* These notes must remain with the call. It should not be
14029 possible for both I2 and I3 to be a call. */
14030 if (CALL_P (i3))
14031 place = i3;
14032 else
14034 gcc_assert (i2 && CALL_P (i2));
14035 place = i2;
14037 break;
14039 case REG_UNUSED:
14040 /* Any clobbers for i3 may still exist, and so we must process
14041 REG_UNUSED notes from that insn.
14043 Any clobbers from i2 or i1 can only exist if they were added by
14044 recog_for_combine. In that case, recog_for_combine created the
14045 necessary REG_UNUSED notes. Trying to keep any original
14046 REG_UNUSED notes from these insns can cause incorrect output
14047 if it is for the same register as the original i3 dest.
14048 In that case, we will notice that the register is set in i3,
14049 and then add a REG_UNUSED note for the destination of i3, which
14050 is wrong. However, it is possible to have REG_UNUSED notes from
14051 i2 or i1 for register which were both used and clobbered, so
14052 we keep notes from i2 or i1 if they will turn into REG_DEAD
14053 notes. */
14055 /* If this register is set or clobbered in I3, put the note there
14056 unless there is one already. */
14057 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14059 if (from_insn != i3)
14060 break;
14062 if (! (REG_P (XEXP (note, 0))
14063 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14064 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14065 place = i3;
14067 /* Otherwise, if this register is used by I3, then this register
14068 now dies here, so we must put a REG_DEAD note here unless there
14069 is one already. */
14070 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14071 && ! (REG_P (XEXP (note, 0))
14072 ? find_regno_note (i3, REG_DEAD,
14073 REGNO (XEXP (note, 0)))
14074 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14076 PUT_REG_NOTE_KIND (note, REG_DEAD);
14077 place = i3;
14079 break;
14081 case REG_EQUAL:
14082 case REG_EQUIV:
14083 case REG_NOALIAS:
14084 /* These notes say something about results of an insn. We can
14085 only support them if they used to be on I3 in which case they
14086 remain on I3. Otherwise they are ignored.
14088 If the note refers to an expression that is not a constant, we
14089 must also ignore the note since we cannot tell whether the
14090 equivalence is still true. It might be possible to do
14091 slightly better than this (we only have a problem if I2DEST
14092 or I1DEST is present in the expression), but it doesn't
14093 seem worth the trouble. */
14095 if (from_insn == i3
14096 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14097 place = i3;
14098 break;
14100 case REG_INC:
14101 /* These notes say something about how a register is used. They must
14102 be present on any use of the register in I2 or I3. */
14103 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14104 place = i3;
14106 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14108 if (place)
14109 place2 = i2;
14110 else
14111 place = i2;
14113 break;
14115 case REG_LABEL_TARGET:
14116 case REG_LABEL_OPERAND:
14117 /* This can show up in several ways -- either directly in the
14118 pattern, or hidden off in the constant pool with (or without?)
14119 a REG_EQUAL note. */
14120 /* ??? Ignore the without-reg_equal-note problem for now. */
14121 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14122 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14123 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14124 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14125 place = i3;
14127 if (i2
14128 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14129 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14130 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14131 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14133 if (place)
14134 place2 = i2;
14135 else
14136 place = i2;
14139 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14140 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14141 there. */
14142 if (place && JUMP_P (place)
14143 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14144 && (JUMP_LABEL (place) == NULL
14145 || JUMP_LABEL (place) == XEXP (note, 0)))
14147 rtx label = JUMP_LABEL (place);
14149 if (!label)
14150 JUMP_LABEL (place) = XEXP (note, 0);
14151 else if (LABEL_P (label))
14152 LABEL_NUSES (label)--;
14155 if (place2 && JUMP_P (place2)
14156 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14157 && (JUMP_LABEL (place2) == NULL
14158 || JUMP_LABEL (place2) == XEXP (note, 0)))
14160 rtx label = JUMP_LABEL (place2);
14162 if (!label)
14163 JUMP_LABEL (place2) = XEXP (note, 0);
14164 else if (LABEL_P (label))
14165 LABEL_NUSES (label)--;
14166 place2 = 0;
14168 break;
14170 case REG_NONNEG:
14171 /* This note says something about the value of a register prior
14172 to the execution of an insn. It is too much trouble to see
14173 if the note is still correct in all situations. It is better
14174 to simply delete it. */
14175 break;
14177 case REG_DEAD:
14178 /* If we replaced the right hand side of FROM_INSN with a
14179 REG_EQUAL note, the original use of the dying register
14180 will not have been combined into I3 and I2. In such cases,
14181 FROM_INSN is guaranteed to be the first of the combined
14182 instructions, so we simply need to search back before
14183 FROM_INSN for the previous use or set of this register,
14184 then alter the notes there appropriately.
14186 If the register is used as an input in I3, it dies there.
14187 Similarly for I2, if it is nonzero and adjacent to I3.
14189 If the register is not used as an input in either I3 or I2
14190 and it is not one of the registers we were supposed to eliminate,
14191 there are two possibilities. We might have a non-adjacent I2
14192 or we might have somehow eliminated an additional register
14193 from a computation. For example, we might have had A & B where
14194 we discover that B will always be zero. In this case we will
14195 eliminate the reference to A.
14197 In both cases, we must search to see if we can find a previous
14198 use of A and put the death note there. */
14200 if (from_insn
14201 && from_insn == i2mod
14202 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14203 tem_insn = from_insn;
14204 else
14206 if (from_insn
14207 && CALL_P (from_insn)
14208 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14209 place = from_insn;
14210 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14211 place = i3;
14212 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14213 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14214 place = i2;
14215 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14216 && !(i2mod
14217 && reg_overlap_mentioned_p (XEXP (note, 0),
14218 i2mod_old_rhs)))
14219 || rtx_equal_p (XEXP (note, 0), elim_i1)
14220 || rtx_equal_p (XEXP (note, 0), elim_i0))
14221 break;
14222 tem_insn = i3;
14223 /* If the new I2 sets the same register that is marked dead
14224 in the note, we do not know where to put the note.
14225 Give up. */
14226 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14227 break;
14230 if (place == 0)
14232 basic_block bb = this_basic_block;
14234 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14236 if (!NONDEBUG_INSN_P (tem_insn))
14238 if (tem_insn == BB_HEAD (bb))
14239 break;
14240 continue;
14243 /* If the register is being set at TEM_INSN, see if that is all
14244 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14245 into a REG_UNUSED note instead. Don't delete sets to
14246 global register vars. */
14247 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14248 || !global_regs[REGNO (XEXP (note, 0))])
14249 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14251 rtx set = single_set (tem_insn);
14252 rtx inner_dest = 0;
14253 rtx_insn *cc0_setter = NULL;
14255 if (set != 0)
14256 for (inner_dest = SET_DEST (set);
14257 (GET_CODE (inner_dest) == STRICT_LOW_PART
14258 || GET_CODE (inner_dest) == SUBREG
14259 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14260 inner_dest = XEXP (inner_dest, 0))
14263 /* Verify that it was the set, and not a clobber that
14264 modified the register.
14266 CC0 targets must be careful to maintain setter/user
14267 pairs. If we cannot delete the setter due to side
14268 effects, mark the user with an UNUSED note instead
14269 of deleting it. */
14271 if (set != 0 && ! side_effects_p (SET_SRC (set))
14272 && rtx_equal_p (XEXP (note, 0), inner_dest)
14273 && (!HAVE_cc0
14274 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14275 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14276 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14278 /* Move the notes and links of TEM_INSN elsewhere.
14279 This might delete other dead insns recursively.
14280 First set the pattern to something that won't use
14281 any register. */
14282 rtx old_notes = REG_NOTES (tem_insn);
14284 PATTERN (tem_insn) = pc_rtx;
14285 REG_NOTES (tem_insn) = NULL;
14287 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14288 NULL_RTX, NULL_RTX, NULL_RTX);
14289 distribute_links (LOG_LINKS (tem_insn));
14291 SET_INSN_DELETED (tem_insn);
14292 if (tem_insn == i2)
14293 i2 = NULL;
14295 /* Delete the setter too. */
14296 if (cc0_setter)
14298 PATTERN (cc0_setter) = pc_rtx;
14299 old_notes = REG_NOTES (cc0_setter);
14300 REG_NOTES (cc0_setter) = NULL;
14302 distribute_notes (old_notes, cc0_setter,
14303 cc0_setter, NULL,
14304 NULL_RTX, NULL_RTX, NULL_RTX);
14305 distribute_links (LOG_LINKS (cc0_setter));
14307 SET_INSN_DELETED (cc0_setter);
14308 if (cc0_setter == i2)
14309 i2 = NULL;
14312 else
14314 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14316 /* If there isn't already a REG_UNUSED note, put one
14317 here. Do not place a REG_DEAD note, even if
14318 the register is also used here; that would not
14319 match the algorithm used in lifetime analysis
14320 and can cause the consistency check in the
14321 scheduler to fail. */
14322 if (! find_regno_note (tem_insn, REG_UNUSED,
14323 REGNO (XEXP (note, 0))))
14324 place = tem_insn;
14325 break;
14328 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14329 || (CALL_P (tem_insn)
14330 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14332 place = tem_insn;
14334 /* If we are doing a 3->2 combination, and we have a
14335 register which formerly died in i3 and was not used
14336 by i2, which now no longer dies in i3 and is used in
14337 i2 but does not die in i2, and place is between i2
14338 and i3, then we may need to move a link from place to
14339 i2. */
14340 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14341 && from_insn
14342 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14343 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14345 struct insn_link *links = LOG_LINKS (place);
14346 LOG_LINKS (place) = NULL;
14347 distribute_links (links);
14349 break;
14352 if (tem_insn == BB_HEAD (bb))
14353 break;
14358 /* If the register is set or already dead at PLACE, we needn't do
14359 anything with this note if it is still a REG_DEAD note.
14360 We check here if it is set at all, not if is it totally replaced,
14361 which is what `dead_or_set_p' checks, so also check for it being
14362 set partially. */
14364 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14366 unsigned int regno = REGNO (XEXP (note, 0));
14367 reg_stat_type *rsp = &reg_stat[regno];
14369 if (dead_or_set_p (place, XEXP (note, 0))
14370 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14372 /* Unless the register previously died in PLACE, clear
14373 last_death. [I no longer understand why this is
14374 being done.] */
14375 if (rsp->last_death != place)
14376 rsp->last_death = 0;
14377 place = 0;
14379 else
14380 rsp->last_death = place;
14382 /* If this is a death note for a hard reg that is occupying
14383 multiple registers, ensure that we are still using all
14384 parts of the object. If we find a piece of the object
14385 that is unused, we must arrange for an appropriate REG_DEAD
14386 note to be added for it. However, we can't just emit a USE
14387 and tag the note to it, since the register might actually
14388 be dead; so we recourse, and the recursive call then finds
14389 the previous insn that used this register. */
14391 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14393 unsigned int endregno = END_REGNO (XEXP (note, 0));
14394 bool all_used = true;
14395 unsigned int i;
14397 for (i = regno; i < endregno; i++)
14398 if ((! refers_to_regno_p (i, PATTERN (place))
14399 && ! find_regno_fusage (place, USE, i))
14400 || dead_or_set_regno_p (place, i))
14402 all_used = false;
14403 break;
14406 if (! all_used)
14408 /* Put only REG_DEAD notes for pieces that are
14409 not already dead or set. */
14411 for (i = regno; i < endregno;
14412 i += hard_regno_nregs[i][reg_raw_mode[i]])
14414 rtx piece = regno_reg_rtx[i];
14415 basic_block bb = this_basic_block;
14417 if (! dead_or_set_p (place, piece)
14418 && ! reg_bitfield_target_p (piece,
14419 PATTERN (place)))
14421 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14422 NULL_RTX);
14424 distribute_notes (new_note, place, place,
14425 NULL, NULL_RTX, NULL_RTX,
14426 NULL_RTX);
14428 else if (! refers_to_regno_p (i, PATTERN (place))
14429 && ! find_regno_fusage (place, USE, i))
14430 for (tem_insn = PREV_INSN (place); ;
14431 tem_insn = PREV_INSN (tem_insn))
14433 if (!NONDEBUG_INSN_P (tem_insn))
14435 if (tem_insn == BB_HEAD (bb))
14436 break;
14437 continue;
14439 if (dead_or_set_p (tem_insn, piece)
14440 || reg_bitfield_target_p (piece,
14441 PATTERN (tem_insn)))
14443 add_reg_note (tem_insn, REG_UNUSED, piece);
14444 break;
14449 place = 0;
14453 break;
14455 default:
14456 /* Any other notes should not be present at this point in the
14457 compilation. */
14458 gcc_unreachable ();
14461 if (place)
14463 XEXP (note, 1) = REG_NOTES (place);
14464 REG_NOTES (place) = note;
14467 if (place2)
14468 add_shallow_copy_of_reg_note (place2, note);
14472 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14473 I3, I2, and I1 to new locations. This is also called to add a link
14474 pointing at I3 when I3's destination is changed. */
14476 static void
14477 distribute_links (struct insn_link *links)
14479 struct insn_link *link, *next_link;
14481 for (link = links; link; link = next_link)
14483 rtx_insn *place = 0;
14484 rtx_insn *insn;
14485 rtx set, reg;
14487 next_link = link->next;
14489 /* If the insn that this link points to is a NOTE, ignore it. */
14490 if (NOTE_P (link->insn))
14491 continue;
14493 set = 0;
14494 rtx pat = PATTERN (link->insn);
14495 if (GET_CODE (pat) == SET)
14496 set = pat;
14497 else if (GET_CODE (pat) == PARALLEL)
14499 int i;
14500 for (i = 0; i < XVECLEN (pat, 0); i++)
14502 set = XVECEXP (pat, 0, i);
14503 if (GET_CODE (set) != SET)
14504 continue;
14506 reg = SET_DEST (set);
14507 while (GET_CODE (reg) == ZERO_EXTRACT
14508 || GET_CODE (reg) == STRICT_LOW_PART
14509 || GET_CODE (reg) == SUBREG)
14510 reg = XEXP (reg, 0);
14512 if (!REG_P (reg))
14513 continue;
14515 if (REGNO (reg) == link->regno)
14516 break;
14518 if (i == XVECLEN (pat, 0))
14519 continue;
14521 else
14522 continue;
14524 reg = SET_DEST (set);
14526 while (GET_CODE (reg) == ZERO_EXTRACT
14527 || GET_CODE (reg) == STRICT_LOW_PART
14528 || GET_CODE (reg) == SUBREG)
14529 reg = XEXP (reg, 0);
14531 /* A LOG_LINK is defined as being placed on the first insn that uses
14532 a register and points to the insn that sets the register. Start
14533 searching at the next insn after the target of the link and stop
14534 when we reach a set of the register or the end of the basic block.
14536 Note that this correctly handles the link that used to point from
14537 I3 to I2. Also note that not much searching is typically done here
14538 since most links don't point very far away. */
14540 for (insn = NEXT_INSN (link->insn);
14541 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14542 || BB_HEAD (this_basic_block->next_bb) != insn));
14543 insn = NEXT_INSN (insn))
14544 if (DEBUG_INSN_P (insn))
14545 continue;
14546 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14548 if (reg_referenced_p (reg, PATTERN (insn)))
14549 place = insn;
14550 break;
14552 else if (CALL_P (insn)
14553 && find_reg_fusage (insn, USE, reg))
14555 place = insn;
14556 break;
14558 else if (INSN_P (insn) && reg_set_p (reg, insn))
14559 break;
14561 /* If we found a place to put the link, place it there unless there
14562 is already a link to the same insn as LINK at that point. */
14564 if (place)
14566 struct insn_link *link2;
14568 FOR_EACH_LOG_LINK (link2, place)
14569 if (link2->insn == link->insn && link2->regno == link->regno)
14570 break;
14572 if (link2 == NULL)
14574 link->next = LOG_LINKS (place);
14575 LOG_LINKS (place) = link;
14577 /* Set added_links_insn to the earliest insn we added a
14578 link to. */
14579 if (added_links_insn == 0
14580 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14581 added_links_insn = place;
14587 /* Check for any register or memory mentioned in EQUIV that is not
14588 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14589 of EXPR where some registers may have been replaced by constants. */
14591 static bool
14592 unmentioned_reg_p (rtx equiv, rtx expr)
14594 subrtx_iterator::array_type array;
14595 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14597 const_rtx x = *iter;
14598 if ((REG_P (x) || MEM_P (x))
14599 && !reg_mentioned_p (x, expr))
14600 return true;
14602 return false;
14605 DEBUG_FUNCTION void
14606 dump_combine_stats (FILE *file)
14608 fprintf
14609 (file,
14610 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14611 combine_attempts, combine_merges, combine_extras, combine_successes);
14614 void
14615 dump_combine_total_stats (FILE *file)
14617 fprintf
14618 (file,
14619 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14620 total_attempts, total_merges, total_extras, total_successes);
14623 /* Try combining insns through substitution. */
14624 static unsigned int
14625 rest_of_handle_combine (void)
14627 int rebuild_jump_labels_after_combine;
14629 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14630 df_note_add_problem ();
14631 df_analyze ();
14633 regstat_init_n_sets_and_refs ();
14634 reg_n_sets_max = max_reg_num ();
14636 rebuild_jump_labels_after_combine
14637 = combine_instructions (get_insns (), max_reg_num ());
14639 /* Combining insns may have turned an indirect jump into a
14640 direct jump. Rebuild the JUMP_LABEL fields of jumping
14641 instructions. */
14642 if (rebuild_jump_labels_after_combine)
14644 if (dom_info_available_p (CDI_DOMINATORS))
14645 free_dominance_info (CDI_DOMINATORS);
14646 timevar_push (TV_JUMP);
14647 rebuild_jump_labels (get_insns ());
14648 cleanup_cfg (0);
14649 timevar_pop (TV_JUMP);
14652 regstat_free_n_sets_and_refs ();
14653 return 0;
14656 namespace {
14658 const pass_data pass_data_combine =
14660 RTL_PASS, /* type */
14661 "combine", /* name */
14662 OPTGROUP_NONE, /* optinfo_flags */
14663 TV_COMBINE, /* tv_id */
14664 PROP_cfglayout, /* properties_required */
14665 0, /* properties_provided */
14666 0, /* properties_destroyed */
14667 0, /* todo_flags_start */
14668 TODO_df_finish, /* todo_flags_finish */
14671 class pass_combine : public rtl_opt_pass
14673 public:
14674 pass_combine (gcc::context *ctxt)
14675 : rtl_opt_pass (pass_data_combine, ctxt)
14678 /* opt_pass methods: */
14679 virtual bool gate (function *) { return (optimize > 0); }
14680 virtual unsigned int execute (function *)
14682 return rest_of_handle_combine ();
14685 }; // class pass_combine
14687 } // anon namespace
14689 rtl_opt_pass *
14690 make_pass_combine (gcc::context *ctxt)
14692 return new pass_combine (ctxt);