1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
95 #include "stor-layout.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts
;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges
;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras
;
120 /* Number of instructions combined in this function. */
122 static int combine_successes
;
124 /* Totals over entire compilation. */
126 static int total_attempts
, total_merges
, total_extras
, total_successes
;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn
*i2mod
;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs
;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs
;
145 struct reg_stat_type
{
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn
*last_death
;
149 /* Record last point of modification of (hard or pseudo) register n. */
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick
;
204 /* Record the value of label_tick when the value for register n is placed in
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
215 char last_set_sign_bit_copies
;
216 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid
;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies
;
238 unsigned HOST_WIDE_INT nonzero_bits
;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label
;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
251 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
255 static vec
<reg_stat_type
> reg_stat
;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max
;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set
;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid
;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn
*subst_insn
;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid
;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs
;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
303 static rtx_insn
*added_links_insn
;
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block
;
307 static bool optimize_this_for_speed_p
;
310 /* Length of the currently allocated uid_insn_cost array. */
312 static int max_uid_known
;
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
317 static int *uid_insn_cost
;
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
325 struct insn_link
*next
;
328 static struct insn_link
**uid_log_links
;
331 insn_uid_check (const_rtx insn
)
333 int uid
= INSN_UID (insn
);
334 gcc_checking_assert (uid
<= max_uid_known
);
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
344 /* Links for LOG_LINKS are allocated from this obstack. */
346 static struct obstack insn_link_obstack
;
348 /* Allocate a link. */
350 static inline struct insn_link
*
351 alloc_insn_link (rtx_insn
*insn
, unsigned int regno
, struct insn_link
*next
)
354 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
355 sizeof (struct insn_link
));
362 /* Incremented for each basic block. */
364 static int label_tick
;
366 /* Reset to label_tick for each extended basic block in scanning order. */
368 static int label_tick_ebb_start
;
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
373 static machine_mode nonzero_bits_mode
;
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
381 static int nonzero_sign_valid
;
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
387 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
393 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
394 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
407 rtx_insn
*other_insn
;
410 static struct undobuf undobuf
;
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
415 static int n_occurrences
;
417 static rtx
reg_nonzero_bits_for_combine (const_rtx
, machine_mode
, const_rtx
,
419 unsigned HOST_WIDE_INT
,
420 unsigned HOST_WIDE_INT
*);
421 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, machine_mode
, const_rtx
,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx
*, rtx
);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn
*);
428 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
429 static int cant_combine_insn_p (rtx_insn
*);
430 static int can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
431 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
432 static int combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
433 static int contains_muldiv (rtx
);
434 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
439 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
440 static rtx
combine_simplify_rtx (rtx
, machine_mode
, int, int);
441 static rtx
simplify_if_then_else (rtx
);
442 static rtx
simplify_set (rtx
);
443 static rtx
simplify_logical (rtx
);
444 static rtx
expand_compound_operation (rtx
);
445 static const_rtx
expand_field_assignment (const_rtx
);
446 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
,
447 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
448 static rtx
extract_left_shift (rtx
, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
450 unsigned HOST_WIDE_INT
*);
451 static rtx
canon_reg_for_combine (rtx
, rtx
);
452 static rtx
force_to_mode (rtx
, machine_mode
,
453 unsigned HOST_WIDE_INT
, int);
454 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
455 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
456 static int rtx_equal_for_field_assignment_p (rtx
, rtx
, bool = false);
457 static rtx
make_field_assignment (rtx
);
458 static rtx
apply_distributive_law (rtx
);
459 static rtx
distribute_and_simplify_rtx (rtx
, int);
460 static rtx
simplify_and_const_int_1 (machine_mode
, rtx
,
461 unsigned HOST_WIDE_INT
);
462 static rtx
simplify_and_const_int (rtx
, machine_mode
, rtx
,
463 unsigned HOST_WIDE_INT
);
464 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
465 HOST_WIDE_INT
, machine_mode
, int *);
466 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
467 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
469 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
470 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
471 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
473 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
474 static void update_table_tick (rtx
);
475 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
476 static void check_promoted_subreg (rtx_insn
*, rtx
);
477 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
478 static void record_dead_and_set_regs (rtx_insn
*);
479 static int get_last_value_validate (rtx
*, rtx_insn
*, int, int);
480 static rtx
get_last_value (const_rtx
);
481 static int use_crosses_set_p (const_rtx
, int);
482 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
483 static int reg_dead_at_p (rtx
, rtx_insn
*);
484 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
485 static int reg_bitfield_target_p (rtx
, rtx
);
486 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx
, rtx
, rtx
);
487 static void distribute_links (struct insn_link
*);
488 static void mark_used_regs_combine (rtx
);
489 static void record_promoted_value (rtx_insn
*, rtx
);
490 static bool unmentioned_reg_p (rtx
, rtx
);
491 static void record_truncated_values (rtx
*, void *);
492 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
493 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
514 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
520 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
521 bool op0_preserve_value
)
523 int code_int
= (int)*code
;
524 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
525 *code
= (enum rtx_code
)code_int
;
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
535 combine_split_insns (rtx pattern
, rtx_insn
*insn
)
540 ret
= split_insns (pattern
, insn
);
541 nregs
= max_reg_num ();
542 if (nregs
> reg_stat
.length ())
543 reg_stat
.safe_grow_cleared (nregs
);
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
554 find_single_use_1 (rtx dest
, rtx
*loc
)
557 enum rtx_code code
= GET_CODE (x
);
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x
)) != CC0
578 && GET_CODE (SET_DEST (x
)) != PC
579 && !REG_P (SET_DEST (x
))
580 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x
)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
583 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
585 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
588 return find_single_use_1 (dest
, &SET_SRC (x
));
592 return find_single_use_1 (dest
, &XEXP (x
, 0));
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt
= GET_RTX_FORMAT (code
);
602 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
606 if (dest
== XEXP (x
, i
)
607 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
608 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
611 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
614 result
= this_result
;
615 else if (this_result
)
616 /* Duplicate usage. */
619 else if (fmt
[i
] == 'E')
623 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
625 if (XVECEXP (x
, i
, j
) == dest
627 && REG_P (XVECEXP (x
, i
, j
))
628 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
631 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
634 result
= this_result
;
635 else if (this_result
)
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
660 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
665 struct insn_link
*link
;
669 next
= NEXT_INSN (insn
);
671 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
674 result
= find_single_use_1 (dest
, &PATTERN (next
));
683 bb
= BLOCK_FOR_INSN (insn
);
684 for (next
= NEXT_INSN (insn
);
685 next
&& BLOCK_FOR_INSN (next
) == bb
;
686 next
= NEXT_INSN (next
))
687 if (NONDEBUG_INSN_P (next
) && dead_or_set_p (next
, dest
))
689 FOR_EACH_LOG_LINK (link
, next
)
690 if (link
->insn
== insn
&& link
->regno
== REGNO (dest
))
695 result
= find_single_use_1 (dest
, &PATTERN (next
));
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
712 do_SUBST (rtx
*into
, rtx newval
)
717 if (oldval
== newval
)
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
726 && CONST_INT_P (newval
))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval
)
731 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval
) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval
))));
741 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval
, 0))));
746 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
748 buf
= XNEW (struct undo
);
750 buf
->kind
= UNDO_RTX
;
752 buf
->old_contents
.r
= oldval
;
755 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
765 do_SUBST_INT (int *into
, int newval
)
770 if (oldval
== newval
)
774 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
776 buf
= XNEW (struct undo
);
778 buf
->kind
= UNDO_INT
;
780 buf
->old_contents
.i
= oldval
;
783 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
794 do_SUBST_MODE (rtx
*into
, machine_mode newval
)
797 machine_mode oldval
= GET_MODE (*into
);
799 if (oldval
== newval
)
803 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
805 buf
= XNEW (struct undo
);
807 buf
->kind
= UNDO_MODE
;
809 buf
->old_contents
.m
= oldval
;
810 adjust_reg_mode (*into
, newval
);
812 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
823 struct insn_link
* oldval
= *into
;
825 if (oldval
== newval
)
829 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
831 buf
= XNEW (struct undo
);
833 buf
->kind
= UNDO_LINKS
;
835 buf
->old_contents
.l
= oldval
;
838 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
852 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
853 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
855 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
856 int new_i2_cost
, new_i3_cost
;
857 int old_cost
, new_cost
;
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost
= INSN_COST (i2
);
861 i3_cost
= INSN_COST (i3
);
865 i1_cost
= INSN_COST (i1
);
868 i0_cost
= INSN_COST (i0
);
869 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
870 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
874 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
875 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
881 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
882 i1_cost
= i0_cost
= 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 if (old_cost
&& i1
&& INSN_UID (i1
) == INSN_UID (i2
))
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost
= insn_rtx_cost (newpat
, optimize_this_for_speed_p
);
895 new_i2_cost
= insn_rtx_cost (newi2pat
, optimize_this_for_speed_p
);
896 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
897 ? new_i2_cost
+ new_i3_cost
: 0;
901 new_cost
= new_i3_cost
;
905 if (undobuf
.other_insn
)
907 int old_other_cost
, new_other_cost
;
909 old_other_cost
= INSN_COST (undobuf
.other_insn
);
910 new_other_cost
= insn_rtx_cost (newotherpat
, optimize_this_for_speed_p
);
911 if (old_other_cost
> 0 && new_other_cost
> 0)
913 old_cost
+= old_other_cost
;
914 new_cost
+= new_other_cost
;
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject
= old_cost
> 0 && new_cost
> old_cost
;
926 fprintf (dump_file
, "%s combination of insns ",
927 reject
? "rejecting" : "allowing");
929 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
930 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
931 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
932 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
934 fprintf (dump_file
, "original costs ");
936 fprintf (dump_file
, "%d + ", i0_cost
);
937 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
938 fprintf (dump_file
, "%d + ", i1_cost
);
939 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
942 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
943 new_i2_cost
, new_i3_cost
, new_cost
);
945 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2
) = new_i2_cost
;
953 INSN_COST (i3
) = new_i3_cost
;
965 /* Delete any insns that copy a register to itself. */
968 delete_noop_moves (void)
970 rtx_insn
*insn
, *next
;
973 FOR_EACH_BB_FN (bb
, cfun
)
975 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
977 next
= NEXT_INSN (insn
);
978 if (INSN_P (insn
) && noop_move_p (insn
))
981 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
983 delete_insn_and_edges (insn
);
990 /* Return false if we do not want to (or cannot) combine DEF. */
992 can_combine_def_p (df_ref def
)
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
998 unsigned int regno
= DF_REF_REGNO (def
);
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno
== FRAME_POINTER_REGNUM
1002 && (!reload_completed
|| frame_pointer_needed
))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno
== HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed
|| frame_pointer_needed
))
1006 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1007 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
]))
1013 /* Return false if we do not want to (or cannot) combine USE. */
1015 can_combine_use_p (df_ref use
)
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1024 /* Fill in log links field for all insns. */
1027 create_log_links (void)
1030 rtx_insn
**next_use
;
1034 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1045 FOR_EACH_BB_FN (bb
, cfun
)
1047 FOR_BB_INSNS_REVERSE (bb
, insn
)
1049 if (!NONDEBUG_INSN_P (insn
))
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn
));
1055 FOR_EACH_INSN_DEF (def
, insn
)
1057 unsigned int regno
= DF_REF_REGNO (def
);
1060 if (!next_use
[regno
])
1063 if (!can_combine_def_p (def
))
1066 use_insn
= next_use
[regno
];
1067 next_use
[regno
] = NULL
;
1069 if (BLOCK_FOR_INSN (use_insn
) != bb
)
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno
< FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn
)) >= 0)
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link
*links
;
1085 FOR_EACH_LOG_LINK (links
, use_insn
)
1086 if (insn
== links
->insn
&& regno
== links
->regno
)
1090 LOG_LINKS (use_insn
)
1091 = alloc_insn_link (insn
, regno
, LOG_LINKS (use_insn
));
1094 FOR_EACH_INSN_USE (use
, insn
)
1095 if (can_combine_use_p (use
))
1096 next_use
[DF_REF_REGNO (use
)] = insn
;
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1111 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1113 struct insn_link
*links
;
1114 FOR_EACH_LOG_LINK (links
, b
)
1115 if (links
->insn
== a
)
1117 if (HAVE_cc0
&& sets_cc0_p (a
))
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1128 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1130 rtx_insn
*insn
, *next
;
1132 struct insn_link
*links
, *nextlinks
;
1134 basic_block last_bb
;
1136 int new_direct_jump_p
= 0;
1138 for (first
= f
; first
&& !NONDEBUG_INSN_P (first
); )
1139 first
= NEXT_INSN (first
);
1143 combine_attempts
= 0;
1146 combine_successes
= 0;
1148 rtl_hooks
= combine_rtl_hooks
;
1150 reg_stat
.safe_grow_cleared (nregs
);
1152 init_recog_no_volatile ();
1154 /* Allocate array for insn info. */
1155 max_uid_known
= get_max_uid ();
1156 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1157 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1158 gcc_obstack_init (&insn_link_obstack
);
1160 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1165 nonzero_sign_valid
= 0;
1166 label_tick
= label_tick_ebb_start
= 1;
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1175 setup_incoming_promotions (first
);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1183 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1188 if (!single_pred_p (this_basic_block
)
1189 || single_pred (this_basic_block
) != last_bb
)
1190 label_tick_ebb_start
= label_tick
;
1191 last_bb
= this_basic_block
;
1193 FOR_BB_INSNS (this_basic_block
, insn
)
1194 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1198 subst_low_luid
= DF_INSN_LUID (insn
);
1201 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1203 record_dead_and_set_regs (insn
);
1206 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1207 if (REG_NOTE_KIND (links
) == REG_INC
)
1208 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn
))
1213 INSN_COST (insn
) = insn_rtx_cost (PATTERN (insn
),
1214 optimize_this_for_speed_p
);
1216 fprintf (dump_file
, "insn_cost %d: %d\n",
1217 INSN_UID (insn
), INSN_COST (insn
));
1221 nonzero_sign_valid
= 1;
1223 /* Now scan all the insns in forward order. */
1224 label_tick
= label_tick_ebb_start
= 1;
1226 setup_incoming_promotions (first
);
1227 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1228 int max_combine
= PARAM_VALUE (PARAM_MAX_COMBINE_INSNS
);
1230 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1232 rtx_insn
*last_combined_insn
= NULL
;
1233 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1238 if (!single_pred_p (this_basic_block
)
1239 || single_pred (this_basic_block
) != last_bb
)
1240 label_tick_ebb_start
= label_tick
;
1241 last_bb
= this_basic_block
;
1243 rtl_profile_for_bb (this_basic_block
);
1244 for (insn
= BB_HEAD (this_basic_block
);
1245 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1246 insn
= next
? next
: NEXT_INSN (insn
))
1249 if (!NONDEBUG_INSN_P (insn
))
1252 while (last_combined_insn
1253 && last_combined_insn
->deleted ())
1254 last_combined_insn
= PREV_INSN (last_combined_insn
);
1255 if (last_combined_insn
== NULL_RTX
1256 || BARRIER_P (last_combined_insn
)
1257 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1259 last_combined_insn
= insn
;
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn
, PATTERN (insn
));
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1268 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1270 /* Try this insn with each insn it links back to. */
1272 FOR_EACH_LOG_LINK (links
, insn
)
1273 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1274 NULL
, &new_direct_jump_p
,
1275 last_combined_insn
)) != 0)
1277 statistics_counter_event (cfun
, "two-insn combine", 1);
1281 /* Try each sequence of three linked insns ending with this one. */
1283 if (max_combine
>= 3)
1284 FOR_EACH_LOG_LINK (links
, insn
)
1286 rtx_insn
*link
= links
->insn
;
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1293 FOR_EACH_LOG_LINK (nextlinks
, link
)
1294 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1295 NULL
, &new_direct_jump_p
,
1296 last_combined_insn
)) != 0)
1298 statistics_counter_event (cfun
, "three-insn combine", 1);
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1312 && (prev
= prev_nonnote_insn (insn
)) != 0
1313 && NONJUMP_INSN_P (prev
)
1314 && sets_cc0_p (PATTERN (prev
)))
1316 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1318 last_combined_insn
)) != 0)
1321 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1322 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1323 NULL
, &new_direct_jump_p
,
1324 last_combined_insn
)) != 0)
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0
&& NONJUMP_INSN_P (insn
)
1330 && (prev
= prev_nonnote_insn (insn
)) != 0
1331 && NONJUMP_INSN_P (prev
)
1332 && sets_cc0_p (PATTERN (prev
))
1333 && GET_CODE (PATTERN (insn
)) == SET
1334 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1336 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1338 last_combined_insn
)) != 0)
1341 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1342 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1343 NULL
, &new_direct_jump_p
,
1344 last_combined_insn
)) != 0)
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1353 FOR_EACH_LOG_LINK (links
, insn
)
1354 if (NONJUMP_INSN_P (links
->insn
)
1355 && GET_CODE (PATTERN (links
->insn
)) == SET
1356 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1357 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1358 && NONJUMP_INSN_P (prev
)
1359 && sets_cc0_p (PATTERN (prev
))
1360 && (next
= try_combine (insn
, links
->insn
,
1361 prev
, NULL
, &new_direct_jump_p
,
1362 last_combined_insn
)) != 0)
1366 /* Try combining an insn with two different insns whose results it
1368 if (max_combine
>= 3)
1369 FOR_EACH_LOG_LINK (links
, insn
)
1370 for (nextlinks
= links
->next
; nextlinks
;
1371 nextlinks
= nextlinks
->next
)
1372 if ((next
= try_combine (insn
, links
->insn
,
1373 nextlinks
->insn
, NULL
,
1375 last_combined_insn
)) != 0)
1378 statistics_counter_event (cfun
, "three-insn combine", 1);
1382 /* Try four-instruction combinations. */
1383 if (max_combine
>= 4)
1384 FOR_EACH_LOG_LINK (links
, insn
)
1386 struct insn_link
*next1
;
1387 rtx_insn
*link
= links
->insn
;
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1394 FOR_EACH_LOG_LINK (next1
, link
)
1396 rtx_insn
*link1
= next1
->insn
;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1401 if ((next
= try_combine (insn
, link
, link1
,
1404 last_combined_insn
)) != 0)
1406 statistics_counter_event (cfun
, "four-insn combine", 1);
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks
= next1
->next
; nextlinks
;
1411 nextlinks
= nextlinks
->next
)
1412 if ((next
= try_combine (insn
, link
, link1
,
1415 last_combined_insn
)) != 0)
1417 statistics_counter_event (cfun
, "four-insn combine", 1);
1422 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1424 rtx_insn
*link1
= next1
->insn
;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks
, link
)
1429 if ((next
= try_combine (insn
, link
, link1
,
1432 last_combined_insn
)) != 0)
1434 statistics_counter_event (cfun
, "four-insn combine", 1);
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1439 if ((next
= try_combine (insn
, link
, link1
,
1442 last_combined_insn
)) != 0)
1444 statistics_counter_event (cfun
, "four-insn combine", 1);
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links
, insn
)
1454 rtx_insn
*temp
= links
->insn
;
1455 if ((set
= single_set (temp
)) != 0
1456 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1457 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1461 && (GET_MODE (note
) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1463 : (GET_MODE (SET_DEST (set
)) == GET_MODE (note
)
1464 && (GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set
), 0))
1466 == GET_MODE (note
))))))
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src
= SET_SRC (set
);
1472 rtx orig_dest
= SET_DEST (set
);
1473 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
)
1474 SET_DEST (set
) = XEXP (SET_DEST (set
), 0);
1475 SET_SRC (set
) = note
;
1477 i2mod_old_rhs
= copy_rtx (orig_src
);
1478 i2mod_new_rhs
= copy_rtx (note
);
1479 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1481 last_combined_insn
);
1485 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1488 SET_SRC (set
) = orig_src
;
1489 SET_DEST (set
) = orig_dest
;
1494 record_dead_and_set_regs (insn
);
1501 default_rtl_profile ();
1503 new_direct_jump_p
|= purge_all_dead_edges ();
1504 delete_noop_moves ();
1507 obstack_free (&insn_link_obstack
, NULL
);
1508 free (uid_log_links
);
1509 free (uid_insn_cost
);
1510 reg_stat
.release ();
1513 struct undo
*undo
, *next
;
1514 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1522 total_attempts
+= combine_attempts
;
1523 total_merges
+= combine_merges
;
1524 total_extras
+= combine_extras
;
1525 total_successes
+= combine_successes
;
1527 nonzero_sign_valid
= 0;
1528 rtl_hooks
= general_rtl_hooks
;
1530 /* Make recognizer allow volatile MEMs again. */
1533 return new_direct_jump_p
;
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1539 init_reg_last (void)
1544 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1545 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1548 /* Set up any promoted values for incoming argument registers. */
1551 setup_incoming_promotions (rtx_insn
*first
)
1554 bool strictly_local
= false;
1556 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1557 arg
= DECL_CHAIN (arg
))
1559 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1561 machine_mode mode1
, mode2
, mode3
, mode4
;
1563 /* Only continue if the incoming argument is in a register. */
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local
= cgraph_node::local_info (current_function_decl
)->local
;
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1576 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1581 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3
= promote_function_mode (TREE_TYPE (arg
), mode1
, &uns3
,
1586 TREE_TYPE (cfun
->decl
), 0);
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4
= GET_MODE (reg
);
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1599 /* (c) There's no language level extension; */
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local
)
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1621 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1622 record_value_for_reg (reg
, first
, x
);
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1635 sign_extend_short_imm (rtx src
, machine_mode mode
, unsigned int prec
)
1637 if (GET_MODE_PRECISION (mode
) < prec
1638 && CONST_INT_P (src
)
1640 && val_signbit_known_set_p (mode
, INTVAL (src
)))
1641 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (mode
));
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1650 update_rsp_from_reg_equal (reg_stat_type
*rsp
, rtx_insn
*insn
, const_rtx set
,
1653 rtx reg_equal_note
= insn
? find_reg_equal_equiv_note (insn
) : NULL_RTX
;
1654 unsigned HOST_WIDE_INT bits
= 0;
1655 rtx reg_equal
= NULL
, src
= SET_SRC (set
);
1656 unsigned int num
= 0;
1659 reg_equal
= XEXP (reg_equal_note
, 0);
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
1663 src
= sign_extend_short_imm (src
, GET_MODE (x
), BITS_PER_WORD
);
1665 reg_equal
= sign_extend_short_imm (reg_equal
, GET_MODE (x
), BITS_PER_WORD
);
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp
->nonzero_bits
!= HOST_WIDE_INT_M1U
)
1671 bits
= nonzero_bits (src
, nonzero_bits_mode
);
1672 if (reg_equal
&& bits
)
1673 bits
&= nonzero_bits (reg_equal
, nonzero_bits_mode
);
1674 rsp
->nonzero_bits
|= bits
;
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp
->sign_bit_copies
!= 1)
1680 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1681 if (reg_equal
&& num
!= GET_MODE_PRECISION (GET_MODE (x
)))
1683 unsigned int numeq
= num_sign_bit_copies (reg_equal
, GET_MODE (x
));
1684 if (num
== 0 || numeq
> num
)
1687 if (rsp
->sign_bit_copies
== 0 || num
< rsp
->sign_bit_copies
)
1688 rsp
->sign_bit_copies
= num
;
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1704 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1706 rtx_insn
*insn
= (rtx_insn
*) data
;
1709 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
1716 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1718 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1720 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1721 rsp
->sign_bit_copies
= 1;
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1739 && reg_referenced_p (x
, PATTERN (insn
))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1743 struct insn_link
*link
;
1745 FOR_EACH_LOG_LINK (link
, insn
)
1746 if (dead_or_set_p (link
->insn
, x
))
1750 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1751 rsp
->sign_bit_copies
= 1;
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set
= expand_field_assignment (set
);
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1763 if (SET_DEST (set
) == x
1764 || (paradoxical_subreg_p (SET_DEST (set
))
1765 && SUBREG_REG (SET_DEST (set
)) == x
))
1766 update_rsp_from_reg_equal (rsp
, insn
, set
, x
);
1769 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1770 rsp
->sign_bit_copies
= 1;
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1780 Return 0 if the combination is not allowed for any reason.
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1787 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1788 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1789 rtx
*pdest
, rtx
*psrc
)
1796 bool all_adjacent
= true;
1797 int (*is_volatile_p
) (const_rtx
);
1803 if (next_active_insn (succ2
) != i3
)
1804 all_adjacent
= false;
1805 if (next_active_insn (succ
) != succ2
)
1806 all_adjacent
= false;
1808 else if (next_active_insn (succ
) != i3
)
1809 all_adjacent
= false;
1810 if (next_active_insn (insn
) != succ
)
1811 all_adjacent
= false;
1813 else if (next_active_insn (insn
) != i3
)
1814 all_adjacent
= false;
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1828 Get the source and destination of INSN. If more than one, can't
1831 if (GET_CODE (PATTERN (insn
)) == SET
)
1832 set
= PATTERN (insn
);
1833 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1836 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1838 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1840 switch (GET_CODE (elt
))
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt
, 0))
1859 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1861 rtx i3pat
= PATTERN (i3
);
1862 int i
= XVECLEN (i3pat
, 0) - 1;
1863 unsigned int regno
= REGNO (XEXP (elt
, 0));
1867 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1869 if (GET_CODE (i3elt
) == USE
1870 && REG_P (XEXP (i3elt
, 0))
1871 && (REGNO (XEXP (i3elt
, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt
, 0),
1873 PREV_INSN (insn
), i3
)
1874 : regno
>= FIRST_PSEUDO_REGISTER
))
1881 /* We can ignore CLOBBERs. */
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1889 && insn_nothrow_p (insn
)
1890 && !side_effects_p (elt
))
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1902 /* Anything else means we can't combine. */
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid
= DF_INSN_LUID (insn
);
1923 set
= expand_field_assignment (set
);
1924 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest
) && REG_USERVAR_P (dest
) && HARD_REGISTER_P (dest
)
1932 && extract_asm_operands (PATTERN (i3
)))
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest
== stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src
) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src
) == CALL
1944 /* Don't eliminate a function call argument. */
1946 && (find_reg_fusage (i3
, USE
, dest
)
1948 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1949 && global_regs
[REGNO (dest
)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3
, dest
)
1952 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1953 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1956 /* Make sure that DEST is not used after SUCC but before I3. */
1959 && (reg_used_between_p (dest
, succ2
, i3
)
1960 || reg_used_between_p (dest
, succ
, succ2
)))
1961 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))))
1962 /* Make sure that the value that is to be substituted for the register
1963 does not use any registers whose values alter in between. However,
1964 If the insns are adjacent, a use can't cross a set even though we
1965 think it might (this can happen for a sequence of insns each setting
1966 the same destination; last_set of that register might point to
1967 a NOTE). If INSN has a REG_EQUIV note, the register is always
1968 equivalent to the memory so the substitution is valid even if there
1969 are intervening stores. Also, don't move a volatile asm or
1970 UNSPEC_VOLATILE across any other insns. */
1973 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1974 && use_crosses_set_p (src
, DF_INSN_LUID (insn
)))
1975 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1976 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1977 /* Don't combine across a CALL_INSN, because that would possibly
1978 change whether the life span of some REGs crosses calls or not,
1979 and it is a pain to update that information.
1980 Exception: if source is a constant, moving it later can't hurt.
1981 Accept that as a special case. */
1982 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1985 /* DEST must either be a REG or CC0. */
1988 /* If register alignment is being enforced for multi-word items in all
1989 cases except for parameters, it is possible to have a register copy
1990 insn referencing a hard register that is not allowed to contain the
1991 mode being copied and which would not be valid as an operand of most
1992 insns. Eliminate this problem by not combining with such an insn.
1994 Also, on some machines we don't want to extend the life of a hard
1998 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
2000 /* Don't extend the life of a hard register unless it is
2001 user variable (if we have few registers) or it can't
2002 fit into the desired register (meaning something special
2004 Also avoid substituting a return register into I3, because
2005 reload can't handle a conflict with constraints of other
2007 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
2011 else if (GET_CODE (dest
) != CC0
)
2015 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
2016 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
2017 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
2019 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
2021 /* If the clobber represents an earlyclobber operand, we must not
2022 substitute an expression containing the clobbered register.
2023 As we do not analyze the constraint strings here, we have to
2024 make the conservative assumption. However, if the register is
2025 a fixed hard reg, the clobber cannot represent any operand;
2026 we leave it up to the machine description to either accept or
2027 reject use-and-clobber patterns. */
2029 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
2030 || !fixed_regs
[REGNO (reg
)])
2031 if (reg_overlap_mentioned_p (reg
, src
))
2035 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2036 or not), reject, unless nothing volatile comes between it and I3 */
2038 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
2040 /* Make sure neither succ nor succ2 contains a volatile reference. */
2041 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
2043 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
2045 /* We'll check insns between INSN and I3 below. */
2048 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2049 to be an explicit register variable, and was chosen for a reason. */
2051 if (GET_CODE (src
) == ASM_OPERANDS
2052 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
2055 /* If INSN contains volatile references (specifically volatile MEMs),
2056 we cannot combine across any other volatile references.
2057 Even if INSN doesn't contain volatile references, any intervening
2058 volatile insn might affect machine state. */
2060 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2064 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2065 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2068 /* If INSN contains an autoincrement or autodecrement, make sure that
2069 register is not used between there and I3, and not already used in
2070 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2071 Also insist that I3 not be a jump; if it were one
2072 and the incremented register were spilled, we would lose. */
2075 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2076 if (REG_NOTE_KIND (link
) == REG_INC
2078 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2079 || (pred
!= NULL_RTX
2080 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2081 || (pred2
!= NULL_RTX
2082 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2083 || (succ
!= NULL_RTX
2084 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2085 || (succ2
!= NULL_RTX
2086 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2087 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2090 /* Don't combine an insn that follows a CC0-setting insn.
2091 An insn that uses CC0 must not be separated from the one that sets it.
2092 We do, however, allow I2 to follow a CC0-setting insn if that insn
2093 is passed as I1; in that case it will be deleted also.
2094 We also allow combining in this case if all the insns are adjacent
2095 because that would leave the two CC0 insns adjacent as well.
2096 It would be more logical to test whether CC0 occurs inside I1 or I2,
2097 but that would be much slower, and this ought to be equivalent. */
2101 p
= prev_nonnote_insn (insn
);
2102 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2107 /* If we get here, we have passed all the tests and the combination is
2116 /* LOC is the location within I3 that contains its pattern or the component
2117 of a PARALLEL of the pattern. We validate that it is valid for combining.
2119 One problem is if I3 modifies its output, as opposed to replacing it
2120 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2121 doing so would produce an insn that is not equivalent to the original insns.
2125 (set (reg:DI 101) (reg:DI 100))
2126 (set (subreg:SI (reg:DI 101) 0) <foo>)
2128 This is NOT equivalent to:
2130 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2131 (set (reg:DI 101) (reg:DI 100))])
2133 Not only does this modify 100 (in which case it might still be valid
2134 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2136 We can also run into a problem if I2 sets a register that I1
2137 uses and I1 gets directly substituted into I3 (not via I2). In that
2138 case, we would be getting the wrong value of I2DEST into I3, so we
2139 must reject the combination. This case occurs when I2 and I1 both
2140 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2141 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2142 of a SET must prevent combination from occurring. The same situation
2143 can occur for I0, in which case I0_NOT_IN_SRC is set.
2145 Before doing the above check, we first try to expand a field assignment
2146 into a set of logical operations.
2148 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2149 we place a register that is both set and used within I3. If more than one
2150 such register is detected, we fail.
2152 Return 1 if the combination is valid, zero otherwise. */
2155 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2156 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2160 if (GET_CODE (x
) == SET
)
2163 rtx dest
= SET_DEST (set
);
2164 rtx src
= SET_SRC (set
);
2165 rtx inner_dest
= dest
;
2168 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2169 || GET_CODE (inner_dest
) == SUBREG
2170 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2171 inner_dest
= XEXP (inner_dest
, 0);
2173 /* Check for the case where I3 modifies its output, as discussed
2174 above. We don't want to prevent pseudos from being combined
2175 into the address of a MEM, so only prevent the combination if
2176 i1 or i2 set the same MEM. */
2177 if ((inner_dest
!= dest
&&
2178 (!MEM_P (inner_dest
)
2179 || rtx_equal_p (i2dest
, inner_dest
)
2180 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2181 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2182 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2183 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2184 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2186 /* This is the same test done in can_combine_p except we can't test
2187 all_adjacent; we don't have to, since this instruction will stay
2188 in place, thus we are not considering increasing the lifetime of
2191 Also, if this insn sets a function argument, combining it with
2192 something that might need a spill could clobber a previous
2193 function argument; the all_adjacent test in can_combine_p also
2194 checks this; here, we do a more specific test for this case. */
2196 || (REG_P (inner_dest
)
2197 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2198 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
2199 GET_MODE (inner_dest
))))
2200 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2201 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2204 /* If DEST is used in I3, it is being killed in this insn, so
2205 record that for later. We have to consider paradoxical
2206 subregs here, since they kill the whole register, but we
2207 ignore partial subregs, STRICT_LOW_PART, etc.
2208 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2209 STACK_POINTER_REGNUM, since these are always considered to be
2210 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2212 if (GET_CODE (subdest
) == SUBREG
2213 && (GET_MODE_SIZE (GET_MODE (subdest
))
2214 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
2215 subdest
= SUBREG_REG (subdest
);
2218 && reg_referenced_p (subdest
, PATTERN (i3
))
2219 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2220 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2221 || REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
)
2222 && (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
2223 || (REGNO (subdest
) != ARG_POINTER_REGNUM
2224 || ! fixed_regs
[REGNO (subdest
)]))
2225 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2227 if (*pi3dest_killed
)
2230 *pi3dest_killed
= subdest
;
2234 else if (GET_CODE (x
) == PARALLEL
)
2238 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2239 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2240 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2247 /* Return 1 if X is an arithmetic expression that contains a multiplication
2248 and division. We don't count multiplications by powers of two here. */
2251 contains_muldiv (rtx x
)
2253 switch (GET_CODE (x
))
2255 case MOD
: case DIV
: case UMOD
: case UDIV
:
2259 return ! (CONST_INT_P (XEXP (x
, 1))
2260 && pow2p_hwi (UINTVAL (XEXP (x
, 1))));
2263 return contains_muldiv (XEXP (x
, 0))
2264 || contains_muldiv (XEXP (x
, 1));
2267 return contains_muldiv (XEXP (x
, 0));
2273 /* Determine whether INSN can be used in a combination. Return nonzero if
2274 not. This is used in try_combine to detect early some cases where we
2275 can't perform combinations. */
2278 cant_combine_insn_p (rtx_insn
*insn
)
2283 /* If this isn't really an insn, we can't do anything.
2284 This can occur when flow deletes an insn that it has merged into an
2285 auto-increment address. */
2286 if (!NONDEBUG_INSN_P (insn
))
2289 /* Never combine loads and stores involving hard regs that are likely
2290 to be spilled. The register allocator can usually handle such
2291 reg-reg moves by tying. If we allow the combiner to make
2292 substitutions of likely-spilled regs, reload might die.
2293 As an exception, we allow combinations involving fixed regs; these are
2294 not available to the register allocator so there's no risk involved. */
2296 set
= single_set (insn
);
2299 src
= SET_SRC (set
);
2300 dest
= SET_DEST (set
);
2301 if (GET_CODE (src
) == SUBREG
)
2302 src
= SUBREG_REG (src
);
2303 if (GET_CODE (dest
) == SUBREG
)
2304 dest
= SUBREG_REG (dest
);
2305 if (REG_P (src
) && REG_P (dest
)
2306 && ((HARD_REGISTER_P (src
)
2307 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2308 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2309 || (HARD_REGISTER_P (dest
)
2310 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2311 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2317 struct likely_spilled_retval_info
2319 unsigned regno
, nregs
;
2323 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2324 hard registers that are known to be written to / clobbered in full. */
2326 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2328 struct likely_spilled_retval_info
*const info
=
2329 (struct likely_spilled_retval_info
*) data
;
2330 unsigned regno
, nregs
;
2333 if (!REG_P (XEXP (set
, 0)))
2336 if (regno
>= info
->regno
+ info
->nregs
)
2338 nregs
= REG_NREGS (x
);
2339 if (regno
+ nregs
<= info
->regno
)
2341 new_mask
= (2U << (nregs
- 1)) - 1;
2342 if (regno
< info
->regno
)
2343 new_mask
>>= info
->regno
- regno
;
2345 new_mask
<<= regno
- info
->regno
;
2346 info
->mask
&= ~new_mask
;
2349 /* Return nonzero iff part of the return value is live during INSN, and
2350 it is likely spilled. This can happen when more than one insn is needed
2351 to copy the return value, e.g. when we consider to combine into the
2352 second copy insn for a complex value. */
2355 likely_spilled_retval_p (rtx_insn
*insn
)
2357 rtx_insn
*use
= BB_END (this_basic_block
);
2360 unsigned regno
, nregs
;
2361 /* We assume here that no machine mode needs more than
2362 32 hard registers when the value overlaps with a register
2363 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2365 struct likely_spilled_retval_info info
;
2367 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2369 reg
= XEXP (PATTERN (use
), 0);
2370 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2372 regno
= REGNO (reg
);
2373 nregs
= REG_NREGS (reg
);
2376 mask
= (2U << (nregs
- 1)) - 1;
2378 /* Disregard parts of the return value that are set later. */
2382 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2384 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2387 /* Check if any of the (probably) live return value registers is
2392 if ((mask
& 1 << nregs
)
2393 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2399 /* Adjust INSN after we made a change to its destination.
2401 Changing the destination can invalidate notes that say something about
2402 the results of the insn and a LOG_LINK pointing to the insn. */
2405 adjust_for_new_dest (rtx_insn
*insn
)
2407 /* For notes, be conservative and simply remove them. */
2408 remove_reg_equal_equiv_notes (insn
);
2410 /* The new insn will have a destination that was previously the destination
2411 of an insn just above it. Call distribute_links to make a LOG_LINK from
2412 the next use of that destination. */
2414 rtx set
= single_set (insn
);
2417 rtx reg
= SET_DEST (set
);
2419 while (GET_CODE (reg
) == ZERO_EXTRACT
2420 || GET_CODE (reg
) == STRICT_LOW_PART
2421 || GET_CODE (reg
) == SUBREG
)
2422 reg
= XEXP (reg
, 0);
2423 gcc_assert (REG_P (reg
));
2425 distribute_links (alloc_insn_link (insn
, REGNO (reg
), NULL
));
2427 df_insn_rescan (insn
);
2430 /* Return TRUE if combine can reuse reg X in mode MODE.
2431 ADDED_SETS is nonzero if the original set is still required. */
2433 can_change_dest_mode (rtx x
, int added_sets
, machine_mode mode
)
2441 /* Allow hard registers if the new mode is legal, and occupies no more
2442 registers than the old mode. */
2443 if (regno
< FIRST_PSEUDO_REGISTER
)
2444 return (HARD_REGNO_MODE_OK (regno
, mode
)
2445 && REG_NREGS (x
) >= hard_regno_nregs
[regno
][mode
]);
2447 /* Or a pseudo that is only used once. */
2448 return (regno
< reg_n_sets_max
2449 && REG_N_SETS (regno
) == 1
2451 && !REG_USERVAR_P (x
));
2455 /* Check whether X, the destination of a set, refers to part of
2456 the register specified by REG. */
2459 reg_subword_p (rtx x
, rtx reg
)
2461 /* Check that reg is an integer mode register. */
2462 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2465 if (GET_CODE (x
) == STRICT_LOW_PART
2466 || GET_CODE (x
) == ZERO_EXTRACT
)
2469 return GET_CODE (x
) == SUBREG
2470 && SUBREG_REG (x
) == reg
2471 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2474 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2475 Note that the INSN should be deleted *after* removing dead edges, so
2476 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2477 but not for a (set (pc) (label_ref FOO)). */
2480 update_cfg_for_uncondjump (rtx_insn
*insn
)
2482 basic_block bb
= BLOCK_FOR_INSN (insn
);
2483 gcc_assert (BB_END (bb
) == insn
);
2485 purge_dead_edges (bb
);
2488 if (EDGE_COUNT (bb
->succs
) == 1)
2492 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2494 /* Remove barriers from the footer if there are any. */
2495 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2496 if (BARRIER_P (insn
))
2498 if (PREV_INSN (insn
))
2499 SET_NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2501 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2502 if (NEXT_INSN (insn
))
2503 SET_PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2505 else if (LABEL_P (insn
))
2510 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2511 by an arbitrary number of CLOBBERs. */
2513 is_parallel_of_n_reg_sets (rtx pat
, int n
)
2515 if (GET_CODE (pat
) != PARALLEL
)
2518 int len
= XVECLEN (pat
, 0);
2523 for (i
= 0; i
< n
; i
++)
2524 if (GET_CODE (XVECEXP (pat
, 0, i
)) != SET
2525 || !REG_P (SET_DEST (XVECEXP (pat
, 0, i
))))
2527 for ( ; i
< len
; i
++)
2528 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
2529 || XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
2535 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2536 CLOBBERs), can be split into individual SETs in that order, without
2537 changing semantics. */
2539 can_split_parallel_of_n_reg_sets (rtx_insn
*insn
, int n
)
2541 if (!insn_nothrow_p (insn
))
2544 rtx pat
= PATTERN (insn
);
2547 for (i
= 0; i
< n
; i
++)
2549 if (side_effects_p (SET_SRC (XVECEXP (pat
, 0, i
))))
2552 rtx reg
= SET_DEST (XVECEXP (pat
, 0, i
));
2554 for (j
= i
+ 1; j
< n
; j
++)
2555 if (reg_referenced_p (reg
, XVECEXP (pat
, 0, j
)))
2562 /* Try to combine the insns I0, I1 and I2 into I3.
2563 Here I0, I1 and I2 appear earlier than I3.
2564 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2567 If we are combining more than two insns and the resulting insn is not
2568 recognized, try splitting it into two insns. If that happens, I2 and I3
2569 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2570 Otherwise, I0, I1 and I2 are pseudo-deleted.
2572 Return 0 if the combination does not work. Then nothing is changed.
2573 If we did the combination, return the insn at which combine should
2576 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2577 new direct jump instruction.
2579 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2580 been I3 passed to an earlier try_combine within the same basic
2584 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2585 int *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2587 /* New patterns for I3 and I2, respectively. */
2588 rtx newpat
, newi2pat
= 0;
2589 rtvec newpat_vec_with_clobbers
= 0;
2590 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2591 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2593 int added_sets_0
, added_sets_1
, added_sets_2
;
2594 /* Total number of SETs to put into I3. */
2596 /* Nonzero if I2's or I1's body now appears in I3. */
2597 int i2_is_used
= 0, i1_is_used
= 0;
2598 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2599 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2600 /* Contains I3 if the destination of I3 is used in its source, which means
2601 that the old life of I3 is being killed. If that usage is placed into
2602 I2 and not in I3, a REG_DEAD note must be made. */
2603 rtx i3dest_killed
= 0;
2604 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2605 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2606 /* Copy of SET_SRC of I1 and I0, if needed. */
2607 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2608 /* Set if I2DEST was reused as a scratch register. */
2609 bool i2scratch
= false;
2610 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2611 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2612 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2613 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2614 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2615 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2616 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2617 /* Notes that must be added to REG_NOTES in I3 and I2. */
2618 rtx new_i3_notes
, new_i2_notes
;
2619 /* Notes that we substituted I3 into I2 instead of the normal case. */
2620 int i3_subst_into_i2
= 0;
2621 /* Notes that I1, I2 or I3 is a MULT operation. */
2624 int changed_i3_dest
= 0;
2627 rtx_insn
*temp_insn
;
2629 struct insn_link
*link
;
2631 rtx new_other_notes
;
2634 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2636 if (i1
== i2
|| i0
== i2
|| (i0
&& i0
== i1
))
2639 /* Only try four-insn combinations when there's high likelihood of
2640 success. Look for simple insns, such as loads of constants or
2641 binary operations involving a constant. */
2649 if (!flag_expensive_optimizations
)
2652 for (i
= 0; i
< 4; i
++)
2654 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2655 rtx set
= single_set (insn
);
2659 src
= SET_SRC (set
);
2660 if (CONSTANT_P (src
))
2665 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2667 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2668 || GET_CODE (src
) == LSHIFTRT
)
2672 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2673 are likely manipulating its value. Ideally we'll be able to combine
2674 all four insns into a bitfield insertion of some kind.
2676 Note the source in I0 might be inside a sign/zero extension and the
2677 memory modes in I0 and I3 might be different. So extract the address
2678 from the destination of I3 and search for it in the source of I0.
2680 In the event that there's a match but the source/dest do not actually
2681 refer to the same memory, the worst that happens is we try some
2682 combinations that we wouldn't have otherwise. */
2683 if ((set0
= single_set (i0
))
2684 /* Ensure the source of SET0 is a MEM, possibly buried inside
2686 && (GET_CODE (SET_SRC (set0
)) == MEM
2687 || ((GET_CODE (SET_SRC (set0
)) == ZERO_EXTEND
2688 || GET_CODE (SET_SRC (set0
)) == SIGN_EXTEND
)
2689 && GET_CODE (XEXP (SET_SRC (set0
), 0)) == MEM
))
2690 && (set3
= single_set (i3
))
2691 /* Ensure the destination of SET3 is a MEM. */
2692 && GET_CODE (SET_DEST (set3
)) == MEM
2693 /* Would it be better to extract the base address for the MEM
2694 in SET3 and look for that? I don't have cases where it matters
2695 but I could envision such cases. */
2696 && rtx_referenced_p (XEXP (SET_DEST (set3
), 0), SET_SRC (set0
)))
2699 if (ngood
< 2 && nshift
< 2)
2703 /* Exit early if one of the insns involved can't be used for
2706 || (i1
&& CALL_P (i1
))
2707 || (i0
&& CALL_P (i0
))
2708 || cant_combine_insn_p (i3
)
2709 || cant_combine_insn_p (i2
)
2710 || (i1
&& cant_combine_insn_p (i1
))
2711 || (i0
&& cant_combine_insn_p (i0
))
2712 || likely_spilled_retval_p (i3
))
2716 undobuf
.other_insn
= 0;
2718 /* Reset the hard register usage information. */
2719 CLEAR_HARD_REG_SET (newpat_used_regs
);
2721 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2724 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2725 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2727 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2728 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2730 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2731 INSN_UID (i2
), INSN_UID (i3
));
2734 /* If multiple insns feed into one of I2 or I3, they can be in any
2735 order. To simplify the code below, reorder them in sequence. */
2736 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2738 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2740 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2743 added_links_insn
= 0;
2745 /* First check for one important special case that the code below will
2746 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2747 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2748 we may be able to replace that destination with the destination of I3.
2749 This occurs in the common code where we compute both a quotient and
2750 remainder into a structure, in which case we want to do the computation
2751 directly into the structure to avoid register-register copies.
2753 Note that this case handles both multiple sets in I2 and also cases
2754 where I2 has a number of CLOBBERs inside the PARALLEL.
2756 We make very conservative checks below and only try to handle the
2757 most common cases of this. For example, we only handle the case
2758 where I2 and I3 are adjacent to avoid making difficult register
2761 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2762 && REG_P (SET_SRC (PATTERN (i3
)))
2763 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2764 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2765 && GET_CODE (PATTERN (i2
)) == PARALLEL
2766 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2767 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2768 below would need to check what is inside (and reg_overlap_mentioned_p
2769 doesn't support those codes anyway). Don't allow those destinations;
2770 the resulting insn isn't likely to be recognized anyway. */
2771 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2772 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2773 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2774 SET_DEST (PATTERN (i3
)))
2775 && next_active_insn (i2
) == i3
)
2777 rtx p2
= PATTERN (i2
);
2779 /* Make sure that the destination of I3,
2780 which we are going to substitute into one output of I2,
2781 is not used within another output of I2. We must avoid making this:
2782 (parallel [(set (mem (reg 69)) ...)
2783 (set (reg 69) ...)])
2784 which is not well-defined as to order of actions.
2785 (Besides, reload can't handle output reloads for this.)
2787 The problem can also happen if the dest of I3 is a memory ref,
2788 if another dest in I2 is an indirect memory ref.
2790 Neither can this PARALLEL be an asm. We do not allow combining
2791 that usually (see can_combine_p), so do not here either. */
2793 for (i
= 0; ok
&& i
< XVECLEN (p2
, 0); i
++)
2795 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2796 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2797 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2798 SET_DEST (XVECEXP (p2
, 0, i
))))
2800 else if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2801 && GET_CODE (SET_SRC (XVECEXP (p2
, 0, i
))) == ASM_OPERANDS
)
2806 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2807 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2808 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2813 subst_low_luid
= DF_INSN_LUID (i2
);
2815 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2816 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2817 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2818 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2820 /* Replace the dest in I2 with our dest and make the resulting
2821 insn the new pattern for I3. Then skip to where we validate
2822 the pattern. Everything was set up above. */
2823 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2825 i3_subst_into_i2
= 1;
2826 goto validate_replacement
;
2830 /* If I2 is setting a pseudo to a constant and I3 is setting some
2831 sub-part of it to another constant, merge them by making a new
2834 && (temp_expr
= single_set (i2
)) != 0
2835 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2836 && GET_CODE (PATTERN (i3
)) == SET
2837 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2838 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2840 rtx dest
= SET_DEST (PATTERN (i3
));
2844 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2846 if (CONST_INT_P (XEXP (dest
, 1))
2847 && CONST_INT_P (XEXP (dest
, 2)))
2849 width
= INTVAL (XEXP (dest
, 1));
2850 offset
= INTVAL (XEXP (dest
, 2));
2851 dest
= XEXP (dest
, 0);
2852 if (BITS_BIG_ENDIAN
)
2853 offset
= GET_MODE_PRECISION (GET_MODE (dest
)) - width
- offset
;
2858 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2859 dest
= XEXP (dest
, 0);
2860 width
= GET_MODE_PRECISION (GET_MODE (dest
));
2866 /* If this is the low part, we're done. */
2867 if (subreg_lowpart_p (dest
))
2869 /* Handle the case where inner is twice the size of outer. */
2870 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr
)))
2871 == 2 * GET_MODE_PRECISION (GET_MODE (dest
)))
2872 offset
+= GET_MODE_PRECISION (GET_MODE (dest
));
2873 /* Otherwise give up for now. */
2880 rtx inner
= SET_SRC (PATTERN (i3
));
2881 rtx outer
= SET_SRC (temp_expr
);
2884 = wi::insert (rtx_mode_t (outer
, GET_MODE (SET_DEST (temp_expr
))),
2885 rtx_mode_t (inner
, GET_MODE (dest
)),
2890 subst_low_luid
= DF_INSN_LUID (i2
);
2891 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2892 i2dest
= SET_DEST (temp_expr
);
2893 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2895 /* Replace the source in I2 with the new constant and make the
2896 resulting insn the new pattern for I3. Then skip to where we
2897 validate the pattern. Everything was set up above. */
2898 SUBST (SET_SRC (temp_expr
),
2899 immed_wide_int_const (o
, GET_MODE (SET_DEST (temp_expr
))));
2901 newpat
= PATTERN (i2
);
2903 /* The dest of I3 has been replaced with the dest of I2. */
2904 changed_i3_dest
= 1;
2905 goto validate_replacement
;
2909 /* If we have no I1 and I2 looks like:
2910 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2912 make up a dummy I1 that is
2915 (set (reg:CC X) (compare:CC Y (const_int 0)))
2917 (We can ignore any trailing CLOBBERs.)
2919 This undoes a previous combination and allows us to match a branch-and-
2922 if (!HAVE_cc0
&& i1
== 0
2923 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2924 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2926 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2927 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2928 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2929 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1)))
2930 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2931 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2933 /* We make I1 with the same INSN_UID as I2. This gives it
2934 the same DF_INSN_LUID for value tracking. Our fake I1 will
2935 never appear in the insn stream so giving it the same INSN_UID
2936 as I2 will not cause a problem. */
2938 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2939 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2941 INSN_UID (i1
) = INSN_UID (i2
);
2943 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2944 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2945 SET_DEST (PATTERN (i1
)));
2946 unsigned int regno
= REGNO (SET_DEST (PATTERN (i1
)));
2947 SUBST_LINK (LOG_LINKS (i2
),
2948 alloc_insn_link (i1
, regno
, LOG_LINKS (i2
)));
2951 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2952 make those two SETs separate I1 and I2 insns, and make an I0 that is
2954 if (!HAVE_cc0
&& i0
== 0
2955 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2956 && can_split_parallel_of_n_reg_sets (i2
, 2)
2957 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2958 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2960 /* If there is no I1, there is no I0 either. */
2963 /* We make I1 with the same INSN_UID as I2. This gives it
2964 the same DF_INSN_LUID for value tracking. Our fake I1 will
2965 never appear in the insn stream so giving it the same INSN_UID
2966 as I2 will not cause a problem. */
2968 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2969 XVECEXP (PATTERN (i2
), 0, 0), INSN_LOCATION (i2
),
2971 INSN_UID (i1
) = INSN_UID (i2
);
2973 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 1));
2976 /* Verify that I2 and I1 are valid for combining. */
2977 if (! can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
)
2978 || (i1
&& ! can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
,
2980 || (i0
&& ! can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
,
2987 /* Record whether I2DEST is used in I2SRC and similarly for the other
2988 cases. Knowing this will help in register status updating below. */
2989 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2990 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2991 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2992 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2993 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2994 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2995 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2996 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2997 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2999 /* For the earlier insns, determine which of the subsequent ones they
3001 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
3002 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
3003 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
3004 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
3005 && reg_overlap_mentioned_p (i0dest
, i2src
))));
3007 /* Ensure that I3's pattern can be the destination of combines. */
3008 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
3009 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
3010 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
3011 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
3018 /* See if any of the insns is a MULT operation. Unless one is, we will
3019 reject a combination that is, since it must be slower. Be conservative
3021 if (GET_CODE (i2src
) == MULT
3022 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
3023 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
3024 || (GET_CODE (PATTERN (i3
)) == SET
3025 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
3028 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3029 We used to do this EXCEPT in one case: I3 has a post-inc in an
3030 output operand. However, that exception can give rise to insns like
3032 which is a famous insn on the PDP-11 where the value of r3 used as the
3033 source was model-dependent. Avoid this sort of thing. */
3036 if (!(GET_CODE (PATTERN (i3
)) == SET
3037 && REG_P (SET_SRC (PATTERN (i3
)))
3038 && MEM_P (SET_DEST (PATTERN (i3
)))
3039 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
3040 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
3041 /* It's not the exception. */
3046 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
3047 if (REG_NOTE_KIND (link
) == REG_INC
3048 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
3050 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
3057 /* See if the SETs in I1 or I2 need to be kept around in the merged
3058 instruction: whenever the value set there is still needed past I3.
3059 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3061 For the SET in I1, we have two cases: if I1 and I2 independently feed
3062 into I3, the set in I1 needs to be kept around unless I1DEST dies
3063 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3064 in I1 needs to be kept around unless I1DEST dies or is set in either
3065 I2 or I3. The same considerations apply to I0. */
3067 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
3070 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
3071 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
3076 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
3077 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
3078 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3079 && dead_or_set_p (i2
, i0dest
)));
3083 /* We are about to copy insns for the case where they need to be kept
3084 around. Check that they can be copied in the merged instruction. */
3086 if (targetm
.cannot_copy_insn_p
3087 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
3088 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
3089 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
3095 /* If the set in I2 needs to be kept around, we must make a copy of
3096 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3097 PATTERN (I2), we are only substituting for the original I1DEST, not into
3098 an already-substituted copy. This also prevents making self-referential
3099 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3104 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3105 i2pat
= gen_rtx_SET (i2dest
, copy_rtx (i2src
));
3107 i2pat
= copy_rtx (PATTERN (i2
));
3112 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3113 i1pat
= gen_rtx_SET (i1dest
, copy_rtx (i1src
));
3115 i1pat
= copy_rtx (PATTERN (i1
));
3120 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3121 i0pat
= gen_rtx_SET (i0dest
, copy_rtx (i0src
));
3123 i0pat
= copy_rtx (PATTERN (i0
));
3128 /* Substitute in the latest insn for the regs set by the earlier ones. */
3130 maxreg
= max_reg_num ();
3134 /* Many machines that don't use CC0 have insns that can both perform an
3135 arithmetic operation and set the condition code. These operations will
3136 be represented as a PARALLEL with the first element of the vector
3137 being a COMPARE of an arithmetic operation with the constant zero.
3138 The second element of the vector will set some pseudo to the result
3139 of the same arithmetic operation. If we simplify the COMPARE, we won't
3140 match such a pattern and so will generate an extra insn. Here we test
3141 for this case, where both the comparison and the operation result are
3142 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3143 I2SRC. Later we will make the PARALLEL that contains I2. */
3145 if (!HAVE_cc0
&& i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3146 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3147 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3148 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3151 rtx
*cc_use_loc
= NULL
;
3152 rtx_insn
*cc_use_insn
= NULL
;
3153 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3154 machine_mode compare_mode
, orig_compare_mode
;
3155 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3157 newpat
= PATTERN (i3
);
3158 newpat_dest
= SET_DEST (newpat
);
3159 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3161 if (undobuf
.other_insn
== 0
3162 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3165 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3166 compare_code
= simplify_compare_const (compare_code
,
3167 GET_MODE (i2dest
), op0
, &op1
);
3168 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
3171 /* Do the rest only if op1 is const0_rtx, which may be the
3172 result of simplification. */
3173 if (op1
== const0_rtx
)
3175 /* If a single use of the CC is found, prepare to modify it
3176 when SELECT_CC_MODE returns a new CC-class mode, or when
3177 the above simplify_compare_const() returned a new comparison
3178 operator. undobuf.other_insn is assigned the CC use insn
3179 when modifying it. */
3182 #ifdef SELECT_CC_MODE
3183 machine_mode new_mode
3184 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3185 if (new_mode
!= orig_compare_mode
3186 && can_change_dest_mode (SET_DEST (newpat
),
3187 added_sets_2
, new_mode
))
3189 unsigned int regno
= REGNO (newpat_dest
);
3190 compare_mode
= new_mode
;
3191 if (regno
< FIRST_PSEUDO_REGISTER
)
3192 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3195 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3196 newpat_dest
= regno_reg_rtx
[regno
];
3200 /* Cases for modifying the CC-using comparison. */
3201 if (compare_code
!= orig_compare_code
3202 /* ??? Do we need to verify the zero rtx? */
3203 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3205 /* Replace cc_use_loc with entire new RTX. */
3207 gen_rtx_fmt_ee (compare_code
, compare_mode
,
3208 newpat_dest
, const0_rtx
));
3209 undobuf
.other_insn
= cc_use_insn
;
3211 else if (compare_mode
!= orig_compare_mode
)
3213 /* Just replace the CC reg with a new mode. */
3214 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3215 undobuf
.other_insn
= cc_use_insn
;
3219 /* Now we modify the current newpat:
3220 First, SET_DEST(newpat) is updated if the CC mode has been
3221 altered. For targets without SELECT_CC_MODE, this should be
3223 if (compare_mode
!= orig_compare_mode
)
3224 SUBST (SET_DEST (newpat
), newpat_dest
);
3225 /* This is always done to propagate i2src into newpat. */
3226 SUBST (SET_SRC (newpat
),
3227 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3228 /* Create new version of i2pat if needed; the below PARALLEL
3229 creation needs this to work correctly. */
3230 if (! rtx_equal_p (i2src
, op0
))
3231 i2pat
= gen_rtx_SET (i2dest
, op0
);
3236 if (i2_is_used
== 0)
3238 /* It is possible that the source of I2 or I1 may be performing
3239 an unneeded operation, such as a ZERO_EXTEND of something
3240 that is known to have the high part zero. Handle that case
3241 by letting subst look at the inner insns.
3243 Another way to do this would be to have a function that tries
3244 to simplify a single insn instead of merging two or more
3245 insns. We don't do this because of the potential of infinite
3246 loops and because of the potential extra memory required.
3247 However, doing it the way we are is a bit of a kludge and
3248 doesn't catch all cases.
3250 But only do this if -fexpensive-optimizations since it slows
3251 things down and doesn't usually win.
3253 This is not done in the COMPARE case above because the
3254 unmodified I2PAT is used in the PARALLEL and so a pattern
3255 with a modified I2SRC would not match. */
3257 if (flag_expensive_optimizations
)
3259 /* Pass pc_rtx so no substitutions are done, just
3263 subst_low_luid
= DF_INSN_LUID (i1
);
3264 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3267 subst_low_luid
= DF_INSN_LUID (i2
);
3268 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3271 n_occurrences
= 0; /* `subst' counts here */
3272 subst_low_luid
= DF_INSN_LUID (i2
);
3274 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3275 copy of I2SRC each time we substitute it, in order to avoid creating
3276 self-referential RTL when we will be substituting I1SRC for I1DEST
3277 later. Likewise if I0 feeds into I2, either directly or indirectly
3278 through I1, and I0DEST is in I0SRC. */
3279 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3280 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3281 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3282 && i0dest_in_i0src
));
3285 /* Record whether I2's body now appears within I3's body. */
3286 i2_is_used
= n_occurrences
;
3289 /* If we already got a failure, don't try to do more. Otherwise, try to
3290 substitute I1 if we have it. */
3292 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3294 /* Check that an autoincrement side-effect on I1 has not been lost.
3295 This happens if I1DEST is mentioned in I2 and dies there, and
3296 has disappeared from the new pattern. */
3297 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3299 && dead_or_set_p (i2
, i1dest
)
3300 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3301 /* Before we can do this substitution, we must redo the test done
3302 above (see detailed comments there) that ensures I1DEST isn't
3303 mentioned in any SETs in NEWPAT that are field assignments. */
3304 || !combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3312 subst_low_luid
= DF_INSN_LUID (i1
);
3314 /* If the following substitution will modify I1SRC, make a copy of it
3315 for the case where it is substituted for I1DEST in I2PAT later. */
3316 if (added_sets_2
&& i1_feeds_i2_n
)
3317 i1src_copy
= copy_rtx (i1src
);
3319 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3320 copy of I1SRC each time we substitute it, in order to avoid creating
3321 self-referential RTL when we will be substituting I0SRC for I0DEST
3323 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3324 i0_feeds_i1_n
&& i0dest_in_i0src
);
3327 /* Record whether I1's body now appears within I3's body. */
3328 i1_is_used
= n_occurrences
;
3331 /* Likewise for I0 if we have it. */
3333 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3335 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3336 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3337 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3338 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3339 || !combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3346 /* If the following substitution will modify I0SRC, make a copy of it
3347 for the case where it is substituted for I0DEST in I1PAT later. */
3348 if (added_sets_1
&& i0_feeds_i1_n
)
3349 i0src_copy
= copy_rtx (i0src
);
3350 /* And a copy for I0DEST in I2PAT substitution. */
3351 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3352 || (i0_feeds_i2_n
)))
3353 i0src_copy2
= copy_rtx (i0src
);
3356 subst_low_luid
= DF_INSN_LUID (i0
);
3357 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3362 to count all the ways that I2SRC and I1SRC can be used. */
3363 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3364 && i2_is_used
+ added_sets_2
> 1)
3365 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3366 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3368 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3369 && (n_occurrences
+ added_sets_0
3370 + (added_sets_1
&& i0_feeds_i1_n
)
3371 + (added_sets_2
&& i0_feeds_i2_n
)
3373 /* Fail if we tried to make a new register. */
3374 || max_reg_num () != maxreg
3375 /* Fail if we couldn't do something and have a CLOBBER. */
3376 || GET_CODE (newpat
) == CLOBBER
3377 /* Fail if this new pattern is a MULT and we didn't have one before
3378 at the outer level. */
3379 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3386 /* If the actions of the earlier insns must be kept
3387 in addition to substituting them into the latest one,
3388 we must make a new PARALLEL for the latest insn
3389 to hold additional the SETs. */
3391 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3393 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3396 if (GET_CODE (newpat
) == PARALLEL
)
3398 rtvec old
= XVEC (newpat
, 0);
3399 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3400 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3401 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3402 sizeof (old
->elem
[0]) * old
->num_elem
);
3407 total_sets
= 1 + extra_sets
;
3408 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3409 XVECEXP (newpat
, 0, 0) = old
;
3413 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3419 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3421 XVECEXP (newpat
, 0, --total_sets
) = t
;
3427 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3428 i0_feeds_i1_n
&& i0dest_in_i0src
);
3429 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3430 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3432 XVECEXP (newpat
, 0, --total_sets
) = t
;
3436 validate_replacement
:
3438 /* Note which hard regs this insn has as inputs. */
3439 mark_used_regs_combine (newpat
);
3441 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3442 consider splitting this pattern, we might need these clobbers. */
3443 if (i1
&& GET_CODE (newpat
) == PARALLEL
3444 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3446 int len
= XVECLEN (newpat
, 0);
3448 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3449 for (i
= 0; i
< len
; i
++)
3450 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3453 /* We have recognized nothing yet. */
3454 insn_code_number
= -1;
3456 /* See if this is a PARALLEL of two SETs where one SET's destination is
3457 a register that is unused and this isn't marked as an instruction that
3458 might trap in an EH region. In that case, we just need the other SET.
3459 We prefer this over the PARALLEL.
3461 This can occur when simplifying a divmod insn. We *must* test for this
3462 case here because the code below that splits two independent SETs doesn't
3463 handle this case correctly when it updates the register status.
3465 It's pointless doing this if we originally had two sets, one from
3466 i3, and one from i2. Combining then splitting the parallel results
3467 in the original i2 again plus an invalid insn (which we delete).
3468 The net effect is only to move instructions around, which makes
3469 debug info less accurate. */
3471 if (!(added_sets_2
&& i1
== 0)
3472 && is_parallel_of_n_reg_sets (newpat
, 2)
3473 && asm_noperands (newpat
) < 0)
3475 rtx set0
= XVECEXP (newpat
, 0, 0);
3476 rtx set1
= XVECEXP (newpat
, 0, 1);
3477 rtx oldpat
= newpat
;
3479 if (((REG_P (SET_DEST (set1
))
3480 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3481 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3482 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3483 && insn_nothrow_p (i3
)
3484 && !side_effects_p (SET_SRC (set1
)))
3487 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3490 else if (((REG_P (SET_DEST (set0
))
3491 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3492 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3493 && find_reg_note (i3
, REG_UNUSED
,
3494 SUBREG_REG (SET_DEST (set0
)))))
3495 && insn_nothrow_p (i3
)
3496 && !side_effects_p (SET_SRC (set0
)))
3499 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3501 if (insn_code_number
>= 0)
3502 changed_i3_dest
= 1;
3505 if (insn_code_number
< 0)
3509 /* Is the result of combination a valid instruction? */
3510 if (insn_code_number
< 0)
3511 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3513 /* If we were combining three insns and the result is a simple SET
3514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3515 insns. There are two ways to do this. It can be split using a
3516 machine-specific method (like when you have an addition of a large
3517 constant) or by combine in the function find_split_point. */
3519 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3520 && asm_noperands (newpat
) < 0)
3522 rtx parallel
, *split
;
3523 rtx_insn
*m_split_insn
;
3525 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3526 use I2DEST as a scratch register will help. In the latter case,
3527 convert I2DEST to the mode of the source of NEWPAT if we can. */
3529 m_split_insn
= combine_split_insns (newpat
, i3
);
3531 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3532 inputs of NEWPAT. */
3534 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3535 possible to try that as a scratch reg. This would require adding
3536 more code to make it work though. */
3538 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3540 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3542 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3543 (temporarily, until we are committed to this instruction
3544 combination) does not work: for example, any call to nonzero_bits
3545 on the register (from a splitter in the MD file, for example)
3546 will get the old information, which is invalid.
3548 Since nowadays we can create registers during combine just fine,
3549 we should just create a new one here, not reuse i2dest. */
3551 /* First try to split using the original register as a
3552 scratch register. */
3553 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3554 gen_rtvec (2, newpat
,
3555 gen_rtx_CLOBBER (VOIDmode
,
3557 m_split_insn
= combine_split_insns (parallel
, i3
);
3559 /* If that didn't work, try changing the mode of I2DEST if
3561 if (m_split_insn
== 0
3562 && new_mode
!= GET_MODE (i2dest
)
3563 && new_mode
!= VOIDmode
3564 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3566 machine_mode old_mode
= GET_MODE (i2dest
);
3569 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3570 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3573 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3574 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3577 parallel
= (gen_rtx_PARALLEL
3579 gen_rtvec (2, newpat
,
3580 gen_rtx_CLOBBER (VOIDmode
,
3582 m_split_insn
= combine_split_insns (parallel
, i3
);
3584 if (m_split_insn
== 0
3585 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3589 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3590 buf
= undobuf
.undos
;
3591 undobuf
.undos
= buf
->next
;
3592 buf
->next
= undobuf
.frees
;
3593 undobuf
.frees
= buf
;
3597 i2scratch
= m_split_insn
!= 0;
3600 /* If recog_for_combine has discarded clobbers, try to use them
3601 again for the split. */
3602 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3604 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3605 m_split_insn
= combine_split_insns (parallel
, i3
);
3608 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3610 rtx m_split_pat
= PATTERN (m_split_insn
);
3611 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3612 if (insn_code_number
>= 0)
3613 newpat
= m_split_pat
;
3615 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3616 && (next_nonnote_nondebug_insn (i2
) == i3
3617 || ! use_crosses_set_p (PATTERN (m_split_insn
), DF_INSN_LUID (i2
))))
3620 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3621 newi2pat
= PATTERN (m_split_insn
);
3623 i3set
= single_set (NEXT_INSN (m_split_insn
));
3624 i2set
= single_set (m_split_insn
);
3626 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3628 /* If I2 or I3 has multiple SETs, we won't know how to track
3629 register status, so don't use these insns. If I2's destination
3630 is used between I2 and I3, we also can't use these insns. */
3632 if (i2_code_number
>= 0 && i2set
&& i3set
3633 && (next_nonnote_nondebug_insn (i2
) == i3
3634 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3635 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3637 if (insn_code_number
>= 0)
3640 /* It is possible that both insns now set the destination of I3.
3641 If so, we must show an extra use of it. */
3643 if (insn_code_number
>= 0)
3645 rtx new_i3_dest
= SET_DEST (i3set
);
3646 rtx new_i2_dest
= SET_DEST (i2set
);
3648 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3649 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3650 || GET_CODE (new_i3_dest
) == SUBREG
)
3651 new_i3_dest
= XEXP (new_i3_dest
, 0);
3653 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3654 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3655 || GET_CODE (new_i2_dest
) == SUBREG
)
3656 new_i2_dest
= XEXP (new_i2_dest
, 0);
3658 if (REG_P (new_i3_dest
)
3659 && REG_P (new_i2_dest
)
3660 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
)
3661 && REGNO (new_i2_dest
) < reg_n_sets_max
)
3662 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3666 /* If we can split it and use I2DEST, go ahead and see if that
3667 helps things be recognized. Verify that none of the registers
3668 are set between I2 and I3. */
3669 if (insn_code_number
< 0
3670 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3671 && (!HAVE_cc0
|| REG_P (i2dest
))
3672 /* We need I2DEST in the proper mode. If it is a hard register
3673 or the only use of a pseudo, we can change its mode.
3674 Make sure we don't change a hard register to have a mode that
3675 isn't valid for it, or change the number of registers. */
3676 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3677 || GET_MODE (*split
) == VOIDmode
3678 || can_change_dest_mode (i2dest
, added_sets_2
,
3680 && (next_nonnote_nondebug_insn (i2
) == i3
3681 || ! use_crosses_set_p (*split
, DF_INSN_LUID (i2
)))
3682 /* We can't overwrite I2DEST if its value is still used by
3684 && ! reg_referenced_p (i2dest
, newpat
))
3686 rtx newdest
= i2dest
;
3687 enum rtx_code split_code
= GET_CODE (*split
);
3688 machine_mode split_mode
= GET_MODE (*split
);
3689 bool subst_done
= false;
3690 newi2pat
= NULL_RTX
;
3694 /* *SPLIT may be part of I2SRC, so make sure we have the
3695 original expression around for later debug processing.
3696 We should not need I2SRC any more in other cases. */
3697 if (MAY_HAVE_DEBUG_INSNS
)
3698 i2src
= copy_rtx (i2src
);
3702 /* Get NEWDEST as a register in the proper mode. We have already
3703 validated that we can do this. */
3704 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3706 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3707 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3710 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3711 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3715 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3716 an ASHIFT. This can occur if it was inside a PLUS and hence
3717 appeared to be a memory address. This is a kludge. */
3718 if (split_code
== MULT
3719 && CONST_INT_P (XEXP (*split
, 1))
3720 && INTVAL (XEXP (*split
, 1)) > 0
3721 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3723 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3724 XEXP (*split
, 0), GEN_INT (i
)));
3725 /* Update split_code because we may not have a multiply
3727 split_code
= GET_CODE (*split
);
3730 /* Similarly for (plus (mult FOO (const_int pow2))). */
3731 if (split_code
== PLUS
3732 && GET_CODE (XEXP (*split
, 0)) == MULT
3733 && CONST_INT_P (XEXP (XEXP (*split
, 0), 1))
3734 && INTVAL (XEXP (XEXP (*split
, 0), 1)) > 0
3735 && (i
= exact_log2 (UINTVAL (XEXP (XEXP (*split
, 0), 1)))) >= 0)
3737 rtx nsplit
= XEXP (*split
, 0);
3738 SUBST (XEXP (*split
, 0), gen_rtx_ASHIFT (GET_MODE (nsplit
),
3739 XEXP (nsplit
, 0), GEN_INT (i
)));
3740 /* Update split_code because we may not have a multiply
3742 split_code
= GET_CODE (*split
);
3745 #ifdef INSN_SCHEDULING
3746 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3747 be written as a ZERO_EXTEND. */
3748 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3750 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3751 what it really is. */
3752 if (load_extend_op (GET_MODE (SUBREG_REG (*split
)))
3754 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3755 SUBREG_REG (*split
)));
3757 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3758 SUBREG_REG (*split
)));
3762 /* Attempt to split binary operators using arithmetic identities. */
3763 if (BINARY_P (SET_SRC (newpat
))
3764 && split_mode
== GET_MODE (SET_SRC (newpat
))
3765 && ! side_effects_p (SET_SRC (newpat
)))
3767 rtx setsrc
= SET_SRC (newpat
);
3768 machine_mode mode
= GET_MODE (setsrc
);
3769 enum rtx_code code
= GET_CODE (setsrc
);
3770 rtx src_op0
= XEXP (setsrc
, 0);
3771 rtx src_op1
= XEXP (setsrc
, 1);
3773 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3774 if (rtx_equal_p (src_op0
, src_op1
))
3776 newi2pat
= gen_rtx_SET (newdest
, src_op0
);
3777 SUBST (XEXP (setsrc
, 0), newdest
);
3778 SUBST (XEXP (setsrc
, 1), newdest
);
3781 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3782 else if ((code
== PLUS
|| code
== MULT
)
3783 && GET_CODE (src_op0
) == code
3784 && GET_CODE (XEXP (src_op0
, 0)) == code
3785 && (INTEGRAL_MODE_P (mode
)
3786 || (FLOAT_MODE_P (mode
)
3787 && flag_unsafe_math_optimizations
)))
3789 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3790 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3791 rtx r
= XEXP (src_op0
, 1);
3794 /* Split both "((X op Y) op X) op Y" and
3795 "((X op Y) op Y) op X" as "T op T" where T is
3797 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3798 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3800 newi2pat
= gen_rtx_SET (newdest
, XEXP (src_op0
, 0));
3801 SUBST (XEXP (setsrc
, 0), newdest
);
3802 SUBST (XEXP (setsrc
, 1), newdest
);
3805 /* Split "((X op X) op Y) op Y)" as "T op T" where
3807 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3809 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3810 newi2pat
= gen_rtx_SET (newdest
, tmp
);
3811 SUBST (XEXP (setsrc
, 0), newdest
);
3812 SUBST (XEXP (setsrc
, 1), newdest
);
3820 newi2pat
= gen_rtx_SET (newdest
, *split
);
3821 SUBST (*split
, newdest
);
3824 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3826 /* recog_for_combine might have added CLOBBERs to newi2pat.
3827 Make sure NEWPAT does not depend on the clobbered regs. */
3828 if (GET_CODE (newi2pat
) == PARALLEL
)
3829 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3830 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3832 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3833 if (reg_overlap_mentioned_p (reg
, newpat
))
3840 /* If the split point was a MULT and we didn't have one before,
3841 don't use one now. */
3842 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3843 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3847 /* Check for a case where we loaded from memory in a narrow mode and
3848 then sign extended it, but we need both registers. In that case,
3849 we have a PARALLEL with both loads from the same memory location.
3850 We can split this into a load from memory followed by a register-register
3851 copy. This saves at least one insn, more if register allocation can
3854 We cannot do this if the destination of the first assignment is a
3855 condition code register or cc0. We eliminate this case by making sure
3856 the SET_DEST and SET_SRC have the same mode.
3858 We cannot do this if the destination of the second assignment is
3859 a register that we have already assumed is zero-extended. Similarly
3860 for a SUBREG of such a register. */
3862 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3863 && GET_CODE (newpat
) == PARALLEL
3864 && XVECLEN (newpat
, 0) == 2
3865 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3866 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3867 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3868 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3869 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3870 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3871 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3872 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3874 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3875 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3876 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3878 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3879 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < BITS_PER_WORD
3880 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < HOST_BITS_PER_INT
3881 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3882 != GET_MODE_MASK (word_mode
))))
3883 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3884 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3886 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3887 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < BITS_PER_WORD
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < HOST_BITS_PER_INT
3889 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3890 != GET_MODE_MASK (word_mode
)))))
3891 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3892 SET_SRC (XVECEXP (newpat
, 0, 1)))
3893 && ! find_reg_note (i3
, REG_UNUSED
,
3894 SET_DEST (XVECEXP (newpat
, 0, 0))))
3898 newi2pat
= XVECEXP (newpat
, 0, 0);
3899 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3900 newpat
= XVECEXP (newpat
, 0, 1);
3901 SUBST (SET_SRC (newpat
),
3902 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3903 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3905 if (i2_code_number
>= 0)
3906 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3908 if (insn_code_number
>= 0)
3912 /* Similarly, check for a case where we have a PARALLEL of two independent
3913 SETs but we started with three insns. In this case, we can do the sets
3914 as two separate insns. This case occurs when some SET allows two
3915 other insns to combine, but the destination of that SET is still live.
3917 Also do this if we started with two insns and (at least) one of the
3918 resulting sets is a noop; this noop will be deleted later. */
3920 else if (insn_code_number
< 0 && asm_noperands (newpat
) < 0
3921 && GET_CODE (newpat
) == PARALLEL
3922 && XVECLEN (newpat
, 0) == 2
3923 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3924 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3925 && (i1
|| set_noop_p (XVECEXP (newpat
, 0, 0))
3926 || set_noop_p (XVECEXP (newpat
, 0, 1)))
3927 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3928 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3929 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3930 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3931 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3932 XVECEXP (newpat
, 0, 0))
3933 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3934 XVECEXP (newpat
, 0, 1))
3935 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3936 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3938 rtx set0
= XVECEXP (newpat
, 0, 0);
3939 rtx set1
= XVECEXP (newpat
, 0, 1);
3941 /* Normally, it doesn't matter which of the two is done first,
3942 but the one that references cc0 can't be the second, and
3943 one which uses any regs/memory set in between i2 and i3 can't
3944 be first. The PARALLEL might also have been pre-existing in i3,
3945 so we need to make sure that we won't wrongly hoist a SET to i2
3946 that would conflict with a death note present in there. */
3947 if (!use_crosses_set_p (SET_SRC (set1
), DF_INSN_LUID (i2
))
3948 && !(REG_P (SET_DEST (set1
))
3949 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3950 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3951 && find_reg_note (i2
, REG_DEAD
,
3952 SUBREG_REG (SET_DEST (set1
))))
3953 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set0
))
3954 /* If I3 is a jump, ensure that set0 is a jump so that
3955 we do not create invalid RTL. */
3956 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
3962 else if (!use_crosses_set_p (SET_SRC (set0
), DF_INSN_LUID (i2
))
3963 && !(REG_P (SET_DEST (set0
))
3964 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
3965 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
3966 && find_reg_note (i2
, REG_DEAD
,
3967 SUBREG_REG (SET_DEST (set0
))))
3968 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set1
))
3969 /* If I3 is a jump, ensure that set1 is a jump so that
3970 we do not create invalid RTL. */
3971 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
3983 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3985 if (i2_code_number
>= 0)
3987 /* recog_for_combine might have added CLOBBERs to newi2pat.
3988 Make sure NEWPAT does not depend on the clobbered regs. */
3989 if (GET_CODE (newi2pat
) == PARALLEL
)
3991 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3992 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3994 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3995 if (reg_overlap_mentioned_p (reg
, newpat
))
4003 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4007 /* If it still isn't recognized, fail and change things back the way they
4009 if ((insn_code_number
< 0
4010 /* Is the result a reasonable ASM_OPERANDS? */
4011 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
4017 /* If we had to change another insn, make sure it is valid also. */
4018 if (undobuf
.other_insn
)
4020 CLEAR_HARD_REG_SET (newpat_used_regs
);
4022 other_pat
= PATTERN (undobuf
.other_insn
);
4023 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
4026 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
4033 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4034 they are adjacent to each other or not. */
4037 rtx_insn
*p
= prev_nonnote_insn (i3
);
4038 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
4039 && sets_cc0_p (newi2pat
))
4046 /* Only allow this combination if insn_rtx_costs reports that the
4047 replacement instructions are cheaper than the originals. */
4048 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
4054 if (MAY_HAVE_DEBUG_INSNS
)
4058 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
4059 if (undo
->kind
== UNDO_MODE
)
4061 rtx reg
= *undo
->where
.r
;
4062 machine_mode new_mode
= GET_MODE (reg
);
4063 machine_mode old_mode
= undo
->old_contents
.m
;
4065 /* Temporarily revert mode back. */
4066 adjust_reg_mode (reg
, old_mode
);
4068 if (reg
== i2dest
&& i2scratch
)
4070 /* If we used i2dest as a scratch register with a
4071 different mode, substitute it for the original
4072 i2src while its original mode is temporarily
4073 restored, and then clear i2scratch so that we don't
4074 do it again later. */
4075 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
4078 /* Put back the new mode. */
4079 adjust_reg_mode (reg
, new_mode
);
4083 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
4084 rtx_insn
*first
, *last
;
4089 last
= last_combined_insn
;
4094 last
= undobuf
.other_insn
;
4096 if (DF_INSN_LUID (last
)
4097 < DF_INSN_LUID (last_combined_insn
))
4098 last
= last_combined_insn
;
4101 /* We're dealing with a reg that changed mode but not
4102 meaning, so we want to turn it into a subreg for
4103 the new mode. However, because of REG sharing and
4104 because its mode had already changed, we have to do
4105 it in two steps. First, replace any debug uses of
4106 reg, with its original mode temporarily restored,
4107 with this copy we have created; then, replace the
4108 copy with the SUBREG of the original shared reg,
4109 once again changed to the new mode. */
4110 propagate_for_debug (first
, last
, reg
, tempreg
,
4112 adjust_reg_mode (reg
, new_mode
);
4113 propagate_for_debug (first
, last
, tempreg
,
4114 lowpart_subreg (old_mode
, reg
, new_mode
),
4120 /* If we will be able to accept this, we have made a
4121 change to the destination of I3. This requires us to
4122 do a few adjustments. */
4124 if (changed_i3_dest
)
4126 PATTERN (i3
) = newpat
;
4127 adjust_for_new_dest (i3
);
4130 /* We now know that we can do this combination. Merge the insns and
4131 update the status of registers and LOG_LINKS. */
4133 if (undobuf
.other_insn
)
4137 PATTERN (undobuf
.other_insn
) = other_pat
;
4139 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4140 ensure that they are still valid. Then add any non-duplicate
4141 notes added by recog_for_combine. */
4142 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
4144 next
= XEXP (note
, 1);
4146 if ((REG_NOTE_KIND (note
) == REG_DEAD
4147 && !reg_referenced_p (XEXP (note
, 0),
4148 PATTERN (undobuf
.other_insn
)))
4149 ||(REG_NOTE_KIND (note
) == REG_UNUSED
4150 && !reg_set_p (XEXP (note
, 0),
4151 PATTERN (undobuf
.other_insn
)))
4152 /* Simply drop equal note since it may be no longer valid
4153 for other_insn. It may be possible to record that CC
4154 register is changed and only discard those notes, but
4155 in practice it's unnecessary complication and doesn't
4156 give any meaningful improvement.
4159 || REG_NOTE_KIND (note
) == REG_EQUAL
4160 || REG_NOTE_KIND (note
) == REG_EQUIV
)
4161 remove_note (undobuf
.other_insn
, note
);
4164 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4165 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
4172 struct insn_link
*link
;
4175 /* I3 now uses what used to be its destination and which is now
4176 I2's destination. This requires us to do a few adjustments. */
4177 PATTERN (i3
) = newpat
;
4178 adjust_for_new_dest (i3
);
4180 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4183 However, some later insn might be using I2's dest and have
4184 a LOG_LINK pointing at I3. We must remove this link.
4185 The simplest way to remove the link is to point it at I1,
4186 which we know will be a NOTE. */
4188 /* newi2pat is usually a SET here; however, recog_for_combine might
4189 have added some clobbers. */
4190 if (GET_CODE (newi2pat
) == PARALLEL
)
4191 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
4193 ni2dest
= SET_DEST (newi2pat
);
4195 for (insn
= NEXT_INSN (i3
);
4196 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4197 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
4198 insn
= NEXT_INSN (insn
))
4200 if (NONDEBUG_INSN_P (insn
)
4201 && reg_referenced_p (ni2dest
, PATTERN (insn
)))
4203 FOR_EACH_LOG_LINK (link
, insn
)
4204 if (link
->insn
== i3
)
4213 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4214 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4217 /* Compute which registers we expect to eliminate. newi2pat may be setting
4218 either i3dest or i2dest, so we must check it. */
4219 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4220 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4223 /* For i1, we need to compute both local elimination and global
4224 elimination information with respect to newi2pat because i1dest
4225 may be the same as i3dest, in which case newi2pat may be setting
4226 i1dest. Global information is used when distributing REG_DEAD
4227 note for i2 and i3, in which case it does matter if newi2pat sets
4230 Local information is used when distributing REG_DEAD note for i1,
4231 in which case it doesn't matter if newi2pat sets i1dest or not.
4232 See PR62151, if we have four insns combination:
4234 i1: r1 <- i1src (using r0)
4236 i2: r0 <- i2src (using r1)
4237 i3: r3 <- i3src (using r0)
4239 From i1's point of view, r0 is eliminated, no matter if it is set
4240 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4241 should be discarded.
4243 Note local information only affects cases in forms like "I1->I2->I3",
4244 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4245 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4247 rtx local_elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4250 rtx elim_i1
= (local_elim_i1
== 0
4251 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4253 /* Same case as i1. */
4254 rtx local_elim_i0
= (i0
== 0 || i0dest_in_i0src
|| !i0dest_killed
4256 rtx elim_i0
= (local_elim_i0
== 0
4257 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4260 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4262 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4263 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4265 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4267 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4269 /* Ensure that we do not have something that should not be shared but
4270 occurs multiple times in the new insns. Check this by first
4271 resetting all the `used' flags and then copying anything is shared. */
4273 reset_used_flags (i3notes
);
4274 reset_used_flags (i2notes
);
4275 reset_used_flags (i1notes
);
4276 reset_used_flags (i0notes
);
4277 reset_used_flags (newpat
);
4278 reset_used_flags (newi2pat
);
4279 if (undobuf
.other_insn
)
4280 reset_used_flags (PATTERN (undobuf
.other_insn
));
4282 i3notes
= copy_rtx_if_shared (i3notes
);
4283 i2notes
= copy_rtx_if_shared (i2notes
);
4284 i1notes
= copy_rtx_if_shared (i1notes
);
4285 i0notes
= copy_rtx_if_shared (i0notes
);
4286 newpat
= copy_rtx_if_shared (newpat
);
4287 newi2pat
= copy_rtx_if_shared (newi2pat
);
4288 if (undobuf
.other_insn
)
4289 reset_used_flags (PATTERN (undobuf
.other_insn
));
4291 INSN_CODE (i3
) = insn_code_number
;
4292 PATTERN (i3
) = newpat
;
4294 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4296 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
4298 reset_used_flags (call_usage
);
4299 call_usage
= copy_rtx (call_usage
);
4303 /* I2SRC must still be meaningful at this point. Some splitting
4304 operations can invalidate I2SRC, but those operations do not
4307 replace_rtx (call_usage
, i2dest
, i2src
);
4311 replace_rtx (call_usage
, i1dest
, i1src
);
4313 replace_rtx (call_usage
, i0dest
, i0src
);
4315 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
4318 if (undobuf
.other_insn
)
4319 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4321 /* We had one special case above where I2 had more than one set and
4322 we replaced a destination of one of those sets with the destination
4323 of I3. In that case, we have to update LOG_LINKS of insns later
4324 in this basic block. Note that this (expensive) case is rare.
4326 Also, in this case, we must pretend that all REG_NOTEs for I2
4327 actually came from I3, so that REG_UNUSED notes from I2 will be
4328 properly handled. */
4330 if (i3_subst_into_i2
)
4332 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4333 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4334 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4335 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4336 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4337 && ! find_reg_note (i2
, REG_UNUSED
,
4338 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4339 for (temp_insn
= NEXT_INSN (i2
);
4341 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4342 || BB_HEAD (this_basic_block
) != temp_insn
);
4343 temp_insn
= NEXT_INSN (temp_insn
))
4344 if (temp_insn
!= i3
&& NONDEBUG_INSN_P (temp_insn
))
4345 FOR_EACH_LOG_LINK (link
, temp_insn
)
4346 if (link
->insn
== i2
)
4352 while (XEXP (link
, 1))
4353 link
= XEXP (link
, 1);
4354 XEXP (link
, 1) = i2notes
;
4361 LOG_LINKS (i3
) = NULL
;
4363 LOG_LINKS (i2
) = NULL
;
4368 if (MAY_HAVE_DEBUG_INSNS
&& i2scratch
)
4369 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4371 INSN_CODE (i2
) = i2_code_number
;
4372 PATTERN (i2
) = newi2pat
;
4376 if (MAY_HAVE_DEBUG_INSNS
&& i2src
)
4377 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4379 SET_INSN_DELETED (i2
);
4384 LOG_LINKS (i1
) = NULL
;
4386 if (MAY_HAVE_DEBUG_INSNS
)
4387 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4389 SET_INSN_DELETED (i1
);
4394 LOG_LINKS (i0
) = NULL
;
4396 if (MAY_HAVE_DEBUG_INSNS
)
4397 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4399 SET_INSN_DELETED (i0
);
4402 /* Get death notes for everything that is now used in either I3 or
4403 I2 and used to die in a previous insn. If we built two new
4404 patterns, move from I1 to I2 then I2 to I3 so that we get the
4405 proper movement on registers that I2 modifies. */
4408 from_luid
= DF_INSN_LUID (i0
);
4410 from_luid
= DF_INSN_LUID (i1
);
4412 from_luid
= DF_INSN_LUID (i2
);
4414 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4415 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4417 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4419 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4420 elim_i2
, elim_i1
, elim_i0
);
4422 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4423 elim_i2
, elim_i1
, elim_i0
);
4425 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4426 elim_i2
, local_elim_i1
, local_elim_i0
);
4428 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4429 elim_i2
, elim_i1
, local_elim_i0
);
4431 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4432 elim_i2
, elim_i1
, elim_i0
);
4434 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4435 know these are REG_UNUSED and want them to go to the desired insn,
4436 so we always pass it as i3. */
4438 if (newi2pat
&& new_i2_notes
)
4439 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4443 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4446 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4447 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4448 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4449 in that case, it might delete I2. Similarly for I2 and I1.
4450 Show an additional death due to the REG_DEAD note we make here. If
4451 we discard it in distribute_notes, we will decrement it again. */
4455 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4456 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4457 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4460 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4461 elim_i2
, elim_i1
, elim_i0
);
4464 if (i2dest_in_i2src
)
4466 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4467 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4468 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4469 NULL_RTX
, NULL_RTX
);
4471 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4472 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4475 if (i1dest_in_i1src
)
4477 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4478 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4479 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4480 NULL_RTX
, NULL_RTX
);
4482 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4483 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4486 if (i0dest_in_i0src
)
4488 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4489 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4490 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4491 NULL_RTX
, NULL_RTX
);
4493 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4494 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4497 distribute_links (i3links
);
4498 distribute_links (i2links
);
4499 distribute_links (i1links
);
4500 distribute_links (i0links
);
4504 struct insn_link
*link
;
4505 rtx_insn
*i2_insn
= 0;
4506 rtx i2_val
= 0, set
;
4508 /* The insn that used to set this register doesn't exist, and
4509 this life of the register may not exist either. See if one of
4510 I3's links points to an insn that sets I2DEST. If it does,
4511 that is now the last known value for I2DEST. If we don't update
4512 this and I2 set the register to a value that depended on its old
4513 contents, we will get confused. If this insn is used, thing
4514 will be set correctly in combine_instructions. */
4515 FOR_EACH_LOG_LINK (link
, i3
)
4516 if ((set
= single_set (link
->insn
)) != 0
4517 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4518 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4520 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4522 /* If the reg formerly set in I2 died only once and that was in I3,
4523 zero its use count so it won't make `reload' do any work. */
4525 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4526 && ! i2dest_in_i2src
4527 && REGNO (i2dest
) < reg_n_sets_max
)
4528 INC_REG_N_SETS (REGNO (i2dest
), -1);
4531 if (i1
&& REG_P (i1dest
))
4533 struct insn_link
*link
;
4534 rtx_insn
*i1_insn
= 0;
4535 rtx i1_val
= 0, set
;
4537 FOR_EACH_LOG_LINK (link
, i3
)
4538 if ((set
= single_set (link
->insn
)) != 0
4539 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4540 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4542 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4545 && ! i1dest_in_i1src
4546 && REGNO (i1dest
) < reg_n_sets_max
)
4547 INC_REG_N_SETS (REGNO (i1dest
), -1);
4550 if (i0
&& REG_P (i0dest
))
4552 struct insn_link
*link
;
4553 rtx_insn
*i0_insn
= 0;
4554 rtx i0_val
= 0, set
;
4556 FOR_EACH_LOG_LINK (link
, i3
)
4557 if ((set
= single_set (link
->insn
)) != 0
4558 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4559 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4561 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4564 && ! i0dest_in_i0src
4565 && REGNO (i0dest
) < reg_n_sets_max
)
4566 INC_REG_N_SETS (REGNO (i0dest
), -1);
4569 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4570 been made to this insn. The order is important, because newi2pat
4571 can affect nonzero_bits of newpat. */
4573 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4574 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4577 if (undobuf
.other_insn
!= NULL_RTX
)
4581 fprintf (dump_file
, "modifying other_insn ");
4582 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4584 df_insn_rescan (undobuf
.other_insn
);
4587 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4591 fprintf (dump_file
, "modifying insn i0 ");
4592 dump_insn_slim (dump_file
, i0
);
4594 df_insn_rescan (i0
);
4597 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4601 fprintf (dump_file
, "modifying insn i1 ");
4602 dump_insn_slim (dump_file
, i1
);
4604 df_insn_rescan (i1
);
4607 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4611 fprintf (dump_file
, "modifying insn i2 ");
4612 dump_insn_slim (dump_file
, i2
);
4614 df_insn_rescan (i2
);
4617 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4621 fprintf (dump_file
, "modifying insn i3 ");
4622 dump_insn_slim (dump_file
, i3
);
4624 df_insn_rescan (i3
);
4627 /* Set new_direct_jump_p if a new return or simple jump instruction
4628 has been created. Adjust the CFG accordingly. */
4629 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4631 *new_direct_jump_p
= 1;
4632 mark_jump_label (PATTERN (i3
), i3
, 0);
4633 update_cfg_for_uncondjump (i3
);
4636 if (undobuf
.other_insn
!= NULL_RTX
4637 && (returnjump_p (undobuf
.other_insn
)
4638 || any_uncondjump_p (undobuf
.other_insn
)))
4640 *new_direct_jump_p
= 1;
4641 update_cfg_for_uncondjump (undobuf
.other_insn
);
4644 if (GET_CODE (PATTERN (i3
)) == TRAP_IF
4645 && XEXP (PATTERN (i3
), 0) == const1_rtx
)
4647 basic_block bb
= BLOCK_FOR_INSN (i3
);
4649 remove_edge (split_block (bb
, i3
));
4650 emit_barrier_after_bb (bb
);
4651 *new_direct_jump_p
= 1;
4654 if (undobuf
.other_insn
4655 && GET_CODE (PATTERN (undobuf
.other_insn
)) == TRAP_IF
4656 && XEXP (PATTERN (undobuf
.other_insn
), 0) == const1_rtx
)
4658 basic_block bb
= BLOCK_FOR_INSN (undobuf
.other_insn
);
4660 remove_edge (split_block (bb
, undobuf
.other_insn
));
4661 emit_barrier_after_bb (bb
);
4662 *new_direct_jump_p
= 1;
4665 /* A noop might also need cleaning up of CFG, if it comes from the
4666 simplification of a jump. */
4668 && GET_CODE (newpat
) == SET
4669 && SET_SRC (newpat
) == pc_rtx
4670 && SET_DEST (newpat
) == pc_rtx
)
4672 *new_direct_jump_p
= 1;
4673 update_cfg_for_uncondjump (i3
);
4676 if (undobuf
.other_insn
!= NULL_RTX
4677 && JUMP_P (undobuf
.other_insn
)
4678 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4679 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4680 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4682 *new_direct_jump_p
= 1;
4683 update_cfg_for_uncondjump (undobuf
.other_insn
);
4686 combine_successes
++;
4689 if (added_links_insn
4690 && (newi2pat
== 0 || DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i2
))
4691 && DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i3
))
4692 return added_links_insn
;
4694 return newi2pat
? i2
: i3
;
4697 /* Get a marker for undoing to the current state. */
4700 get_undo_marker (void)
4702 return undobuf
.undos
;
4705 /* Undo the modifications up to the marker. */
4708 undo_to_marker (void *marker
)
4710 struct undo
*undo
, *next
;
4712 for (undo
= undobuf
.undos
; undo
!= marker
; undo
= next
)
4720 *undo
->where
.r
= undo
->old_contents
.r
;
4723 *undo
->where
.i
= undo
->old_contents
.i
;
4726 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4729 *undo
->where
.l
= undo
->old_contents
.l
;
4735 undo
->next
= undobuf
.frees
;
4736 undobuf
.frees
= undo
;
4739 undobuf
.undos
= (struct undo
*) marker
;
4742 /* Undo all the modifications recorded in undobuf. */
4750 /* We've committed to accepting the changes we made. Move all
4751 of the undos to the free list. */
4756 struct undo
*undo
, *next
;
4758 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4761 undo
->next
= undobuf
.frees
;
4762 undobuf
.frees
= undo
;
4767 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4768 where we have an arithmetic expression and return that point. LOC will
4771 try_combine will call this function to see if an insn can be split into
4775 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4778 enum rtx_code code
= GET_CODE (x
);
4780 unsigned HOST_WIDE_INT len
= 0;
4781 HOST_WIDE_INT pos
= 0;
4783 rtx inner
= NULL_RTX
;
4785 /* First special-case some codes. */
4789 #ifdef INSN_SCHEDULING
4790 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4792 if (MEM_P (SUBREG_REG (x
)))
4795 return find_split_point (&SUBREG_REG (x
), insn
, false);
4798 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4799 using LO_SUM and HIGH. */
4800 if (HAVE_lo_sum
&& (GET_CODE (XEXP (x
, 0)) == CONST
4801 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
))
4803 machine_mode address_mode
= get_address_mode (x
);
4806 gen_rtx_LO_SUM (address_mode
,
4807 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4809 return &XEXP (XEXP (x
, 0), 0);
4812 /* If we have a PLUS whose second operand is a constant and the
4813 address is not valid, perhaps will can split it up using
4814 the machine-specific way to split large constants. We use
4815 the first pseudo-reg (one of the virtual regs) as a placeholder;
4816 it will not remain in the result. */
4817 if (GET_CODE (XEXP (x
, 0)) == PLUS
4818 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4819 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4820 MEM_ADDR_SPACE (x
)))
4822 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4823 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (reg
, XEXP (x
, 0)),
4826 /* This should have produced two insns, each of which sets our
4827 placeholder. If the source of the second is a valid address,
4828 we can make put both sources together and make a split point
4832 && NEXT_INSN (seq
) != NULL_RTX
4833 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4834 && NONJUMP_INSN_P (seq
)
4835 && GET_CODE (PATTERN (seq
)) == SET
4836 && SET_DEST (PATTERN (seq
)) == reg
4837 && ! reg_mentioned_p (reg
,
4838 SET_SRC (PATTERN (seq
)))
4839 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4840 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4841 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4842 && memory_address_addr_space_p
4843 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4844 MEM_ADDR_SPACE (x
)))
4846 rtx src1
= SET_SRC (PATTERN (seq
));
4847 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4849 /* Replace the placeholder in SRC2 with SRC1. If we can
4850 find where in SRC2 it was placed, that can become our
4851 split point and we can replace this address with SRC2.
4852 Just try two obvious places. */
4854 src2
= replace_rtx (src2
, reg
, src1
);
4856 if (XEXP (src2
, 0) == src1
)
4857 split
= &XEXP (src2
, 0);
4858 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4859 && XEXP (XEXP (src2
, 0), 0) == src1
)
4860 split
= &XEXP (XEXP (src2
, 0), 0);
4864 SUBST (XEXP (x
, 0), src2
);
4869 /* If that didn't work, perhaps the first operand is complex and
4870 needs to be computed separately, so make a split point there.
4871 This will occur on machines that just support REG + CONST
4872 and have a constant moved through some previous computation. */
4874 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4875 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4876 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4877 return &XEXP (XEXP (x
, 0), 0);
4880 /* If we have a PLUS whose first operand is complex, try computing it
4881 separately by making a split there. */
4882 if (GET_CODE (XEXP (x
, 0)) == PLUS
4883 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4885 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4886 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4887 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4888 return &XEXP (XEXP (x
, 0), 0);
4892 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4893 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4894 we need to put the operand into a register. So split at that
4897 if (SET_DEST (x
) == cc0_rtx
4898 && GET_CODE (SET_SRC (x
)) != COMPARE
4899 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4900 && !OBJECT_P (SET_SRC (x
))
4901 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
4902 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
4903 return &SET_SRC (x
);
4905 /* See if we can split SET_SRC as it stands. */
4906 split
= find_split_point (&SET_SRC (x
), insn
, true);
4907 if (split
&& split
!= &SET_SRC (x
))
4910 /* See if we can split SET_DEST as it stands. */
4911 split
= find_split_point (&SET_DEST (x
), insn
, false);
4912 if (split
&& split
!= &SET_DEST (x
))
4915 /* See if this is a bitfield assignment with everything constant. If
4916 so, this is an IOR of an AND, so split it into that. */
4917 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4918 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x
), 0)))
4919 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4920 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4921 && CONST_INT_P (SET_SRC (x
))
4922 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4923 + INTVAL (XEXP (SET_DEST (x
), 2)))
4924 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0))))
4925 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4927 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4928 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4929 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
4930 rtx dest
= XEXP (SET_DEST (x
), 0);
4931 machine_mode mode
= GET_MODE (dest
);
4932 unsigned HOST_WIDE_INT mask
4933 = (HOST_WIDE_INT_1U
<< len
) - 1;
4936 if (BITS_BIG_ENDIAN
)
4937 pos
= GET_MODE_PRECISION (mode
) - len
- pos
;
4939 or_mask
= gen_int_mode (src
<< pos
, mode
);
4942 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
4945 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
4947 simplify_gen_binary (IOR
, mode
,
4948 simplify_gen_binary (AND
, mode
,
4953 SUBST (SET_DEST (x
), dest
);
4955 split
= find_split_point (&SET_SRC (x
), insn
, true);
4956 if (split
&& split
!= &SET_SRC (x
))
4960 /* Otherwise, see if this is an operation that we can split into two.
4961 If so, try to split that. */
4962 code
= GET_CODE (SET_SRC (x
));
4967 /* If we are AND'ing with a large constant that is only a single
4968 bit and the result is only being used in a context where we
4969 need to know if it is zero or nonzero, replace it with a bit
4970 extraction. This will avoid the large constant, which might
4971 have taken more than one insn to make. If the constant were
4972 not a valid argument to the AND but took only one insn to make,
4973 this is no worse, but if it took more than one insn, it will
4976 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4977 && REG_P (XEXP (SET_SRC (x
), 0))
4978 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
4979 && REG_P (SET_DEST (x
))
4980 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
4981 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
4982 && XEXP (*split
, 0) == SET_DEST (x
)
4983 && XEXP (*split
, 1) == const0_rtx
)
4985 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
4986 XEXP (SET_SRC (x
), 0),
4987 pos
, NULL_RTX
, 1, 1, 0, 0);
4988 if (extraction
!= 0)
4990 SUBST (SET_SRC (x
), extraction
);
4991 return find_split_point (loc
, insn
, false);
4997 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4998 is known to be on, this can be converted into a NEG of a shift. */
4999 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
5000 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
5001 && 1 <= (pos
= exact_log2
5002 (nonzero_bits (XEXP (SET_SRC (x
), 0),
5003 GET_MODE (XEXP (SET_SRC (x
), 0))))))
5005 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
5009 gen_rtx_LSHIFTRT (mode
,
5010 XEXP (SET_SRC (x
), 0),
5013 split
= find_split_point (&SET_SRC (x
), insn
, true);
5014 if (split
&& split
!= &SET_SRC (x
))
5020 inner
= XEXP (SET_SRC (x
), 0);
5022 /* We can't optimize if either mode is a partial integer
5023 mode as we don't know how many bits are significant
5025 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
5026 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
5030 len
= GET_MODE_PRECISION (GET_MODE (inner
));
5036 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
5037 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
5039 inner
= XEXP (SET_SRC (x
), 0);
5040 len
= INTVAL (XEXP (SET_SRC (x
), 1));
5041 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
5043 if (BITS_BIG_ENDIAN
)
5044 pos
= GET_MODE_PRECISION (GET_MODE (inner
)) - len
- pos
;
5045 unsignedp
= (code
== ZERO_EXTRACT
);
5054 && pos
+ len
<= GET_MODE_PRECISION (GET_MODE (inner
)))
5056 machine_mode mode
= GET_MODE (SET_SRC (x
));
5058 /* For unsigned, we have a choice of a shift followed by an
5059 AND or two shifts. Use two shifts for field sizes where the
5060 constant might be too large. We assume here that we can
5061 always at least get 8-bit constants in an AND insn, which is
5062 true for every current RISC. */
5064 if (unsignedp
&& len
<= 8)
5066 unsigned HOST_WIDE_INT mask
5067 = (HOST_WIDE_INT_1U
<< len
) - 1;
5071 (mode
, gen_lowpart (mode
, inner
),
5073 gen_int_mode (mask
, mode
)));
5075 split
= find_split_point (&SET_SRC (x
), insn
, true);
5076 if (split
&& split
!= &SET_SRC (x
))
5083 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
5084 gen_rtx_ASHIFT (mode
,
5085 gen_lowpart (mode
, inner
),
5086 GEN_INT (GET_MODE_PRECISION (mode
)
5088 GEN_INT (GET_MODE_PRECISION (mode
) - len
)));
5090 split
= find_split_point (&SET_SRC (x
), insn
, true);
5091 if (split
&& split
!= &SET_SRC (x
))
5096 /* See if this is a simple operation with a constant as the second
5097 operand. It might be that this constant is out of range and hence
5098 could be used as a split point. */
5099 if (BINARY_P (SET_SRC (x
))
5100 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
5101 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
5102 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
5103 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
5104 return &XEXP (SET_SRC (x
), 1);
5106 /* Finally, see if this is a simple operation with its first operand
5107 not in a register. The operation might require this operand in a
5108 register, so return it as a split point. We can always do this
5109 because if the first operand were another operation, we would have
5110 already found it as a split point. */
5111 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
5112 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
5113 return &XEXP (SET_SRC (x
), 0);
5119 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5120 it is better to write this as (not (ior A B)) so we can split it.
5121 Similarly for IOR. */
5122 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
5125 gen_rtx_NOT (GET_MODE (x
),
5126 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
5128 XEXP (XEXP (x
, 0), 0),
5129 XEXP (XEXP (x
, 1), 0))));
5130 return find_split_point (loc
, insn
, set_src
);
5133 /* Many RISC machines have a large set of logical insns. If the
5134 second operand is a NOT, put it first so we will try to split the
5135 other operand first. */
5136 if (GET_CODE (XEXP (x
, 1)) == NOT
)
5138 rtx tem
= XEXP (x
, 0);
5139 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5140 SUBST (XEXP (x
, 1), tem
);
5146 /* Canonicalization can produce (minus A (mult B C)), where C is a
5147 constant. It may be better to try splitting (plus (mult B -C) A)
5148 instead if this isn't a multiply by a power of two. */
5149 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
5150 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
5151 && !pow2p_hwi (INTVAL (XEXP (XEXP (x
, 1), 1))))
5153 machine_mode mode
= GET_MODE (x
);
5154 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
5155 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
5156 SUBST (*loc
, gen_rtx_PLUS (mode
,
5158 XEXP (XEXP (x
, 1), 0),
5159 gen_int_mode (other_int
,
5162 return find_split_point (loc
, insn
, set_src
);
5165 /* Split at a multiply-accumulate instruction. However if this is
5166 the SET_SRC, we likely do not have such an instruction and it's
5167 worthless to try this split. */
5169 && (GET_CODE (XEXP (x
, 0)) == MULT
5170 || (GET_CODE (XEXP (x
, 0)) == ASHIFT
5171 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
5178 /* Otherwise, select our actions depending on our rtx class. */
5179 switch (GET_RTX_CLASS (code
))
5181 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5183 split
= find_split_point (&XEXP (x
, 2), insn
, false);
5188 case RTX_COMM_ARITH
:
5190 case RTX_COMM_COMPARE
:
5191 split
= find_split_point (&XEXP (x
, 1), insn
, false);
5196 /* Some machines have (and (shift ...) ...) insns. If X is not
5197 an AND, but XEXP (X, 0) is, use it as our split point. */
5198 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
5199 return &XEXP (x
, 0);
5201 split
= find_split_point (&XEXP (x
, 0), insn
, false);
5207 /* Otherwise, we don't have a split point. */
5212 /* Throughout X, replace FROM with TO, and return the result.
5213 The result is TO if X is FROM;
5214 otherwise the result is X, but its contents may have been modified.
5215 If they were modified, a record was made in undobuf so that
5216 undo_all will (among other things) return X to its original state.
5218 If the number of changes necessary is too much to record to undo,
5219 the excess changes are not made, so the result is invalid.
5220 The changes already made can still be undone.
5221 undobuf.num_undo is incremented for such changes, so by testing that
5222 the caller can tell whether the result is valid.
5224 `n_occurrences' is incremented each time FROM is replaced.
5226 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5228 IN_COND is nonzero if we are at the top level of a condition.
5230 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5231 by copying if `n_occurrences' is nonzero. */
5234 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
5236 enum rtx_code code
= GET_CODE (x
);
5237 machine_mode op0_mode
= VOIDmode
;
5242 /* Two expressions are equal if they are identical copies of a shared
5243 RTX or if they are both registers with the same register number
5246 #define COMBINE_RTX_EQUAL_P(X,Y) \
5248 || (REG_P (X) && REG_P (Y) \
5249 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5251 /* Do not substitute into clobbers of regs -- this will never result in
5253 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
5256 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5259 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5262 /* If X and FROM are the same register but different modes, they
5263 will not have been seen as equal above. However, the log links code
5264 will make a LOG_LINKS entry for that case. If we do nothing, we
5265 will try to rerecognize our original insn and, when it succeeds,
5266 we will delete the feeding insn, which is incorrect.
5268 So force this insn not to match in this (rare) case. */
5269 if (! in_dest
&& code
== REG
&& REG_P (from
)
5270 && reg_overlap_mentioned_p (x
, from
))
5271 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5273 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5274 of which may contain things that can be combined. */
5275 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5278 /* It is possible to have a subexpression appear twice in the insn.
5279 Suppose that FROM is a register that appears within TO.
5280 Then, after that subexpression has been scanned once by `subst',
5281 the second time it is scanned, TO may be found. If we were
5282 to scan TO here, we would find FROM within it and create a
5283 self-referent rtl structure which is completely wrong. */
5284 if (COMBINE_RTX_EQUAL_P (x
, to
))
5287 /* Parallel asm_operands need special attention because all of the
5288 inputs are shared across the arms. Furthermore, unsharing the
5289 rtl results in recognition failures. Failure to handle this case
5290 specially can result in circular rtl.
5292 Solve this by doing a normal pass across the first entry of the
5293 parallel, and only processing the SET_DESTs of the subsequent
5296 if (code
== PARALLEL
5297 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5298 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5300 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5302 /* If this substitution failed, this whole thing fails. */
5303 if (GET_CODE (new_rtx
) == CLOBBER
5304 && XEXP (new_rtx
, 0) == const0_rtx
)
5307 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5309 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5311 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5314 && GET_CODE (dest
) != CC0
5315 && GET_CODE (dest
) != PC
)
5317 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5319 /* If this substitution failed, this whole thing fails. */
5320 if (GET_CODE (new_rtx
) == CLOBBER
5321 && XEXP (new_rtx
, 0) == const0_rtx
)
5324 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5330 len
= GET_RTX_LENGTH (code
);
5331 fmt
= GET_RTX_FORMAT (code
);
5333 /* We don't need to process a SET_DEST that is a register, CC0,
5334 or PC, so set up to skip this common case. All other cases
5335 where we want to suppress replacing something inside a
5336 SET_SRC are handled via the IN_DEST operand. */
5338 && (REG_P (SET_DEST (x
))
5339 || GET_CODE (SET_DEST (x
)) == CC0
5340 || GET_CODE (SET_DEST (x
)) == PC
))
5343 /* Trying to simplify the operands of a widening MULT is not likely
5344 to create RTL matching a machine insn. */
5346 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
5347 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
5348 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
5349 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
5350 && REG_P (XEXP (XEXP (x
, 0), 0))
5351 && REG_P (XEXP (XEXP (x
, 1), 0))
5356 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5359 op0_mode
= GET_MODE (XEXP (x
, 0));
5361 for (i
= 0; i
< len
; i
++)
5366 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5368 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5370 new_rtx
= (unique_copy
&& n_occurrences
5371 ? copy_rtx (to
) : to
);
5376 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5379 /* If this substitution failed, this whole thing
5381 if (GET_CODE (new_rtx
) == CLOBBER
5382 && XEXP (new_rtx
, 0) == const0_rtx
)
5386 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5389 else if (fmt
[i
] == 'e')
5391 /* If this is a register being set, ignore it. */
5392 new_rtx
= XEXP (x
, i
);
5395 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5397 || code
== STRICT_LOW_PART
))
5400 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5402 /* In general, don't install a subreg involving two
5403 modes not tieable. It can worsen register
5404 allocation, and can even make invalid reload
5405 insns, since the reg inside may need to be copied
5406 from in the outside mode, and that may be invalid
5407 if it is an fp reg copied in integer mode.
5409 We allow two exceptions to this: It is valid if
5410 it is inside another SUBREG and the mode of that
5411 SUBREG and the mode of the inside of TO is
5412 tieable and it is valid if X is a SET that copies
5415 if (GET_CODE (to
) == SUBREG
5416 && ! MODES_TIEABLE_P (GET_MODE (to
),
5417 GET_MODE (SUBREG_REG (to
)))
5418 && ! (code
== SUBREG
5419 && MODES_TIEABLE_P (GET_MODE (x
),
5420 GET_MODE (SUBREG_REG (to
))))
5424 && XEXP (x
, 0) == cc0_rtx
))))
5425 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5429 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5430 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5433 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5435 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5439 /* If we are in a SET_DEST, suppress most cases unless we
5440 have gone inside a MEM, in which case we want to
5441 simplify the address. We assume here that things that
5442 are actually part of the destination have their inner
5443 parts in the first expression. This is true for SUBREG,
5444 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5445 things aside from REG and MEM that should appear in a
5447 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5449 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5450 || code
== ZERO_EXTRACT
))
5453 code
== IF_THEN_ELSE
&& i
== 0,
5456 /* If we found that we will have to reject this combination,
5457 indicate that by returning the CLOBBER ourselves, rather than
5458 an expression containing it. This will speed things up as
5459 well as prevent accidents where two CLOBBERs are considered
5460 to be equal, thus producing an incorrect simplification. */
5462 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5465 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5467 machine_mode mode
= GET_MODE (x
);
5469 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5470 GET_MODE (SUBREG_REG (x
)),
5473 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5475 else if (CONST_SCALAR_INT_P (new_rtx
)
5476 && GET_CODE (x
) == ZERO_EXTEND
)
5478 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
5479 new_rtx
, GET_MODE (XEXP (x
, 0)));
5483 SUBST (XEXP (x
, i
), new_rtx
);
5488 /* Check if we are loading something from the constant pool via float
5489 extension; in this case we would undo compress_float_constant
5490 optimization and degenerate constant load to an immediate value. */
5491 if (GET_CODE (x
) == FLOAT_EXTEND
5492 && MEM_P (XEXP (x
, 0))
5493 && MEM_READONLY_P (XEXP (x
, 0)))
5495 rtx tmp
= avoid_constant_pool_reference (x
);
5500 /* Try to simplify X. If the simplification changed the code, it is likely
5501 that further simplification will help, so loop, but limit the number
5502 of repetitions that will be performed. */
5504 for (i
= 0; i
< 4; i
++)
5506 /* If X is sufficiently simple, don't bother trying to do anything
5508 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5509 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5511 if (GET_CODE (x
) == code
)
5514 code
= GET_CODE (x
);
5516 /* We no longer know the original mode of operand 0 since we
5517 have changed the form of X) */
5518 op0_mode
= VOIDmode
;
5524 /* If X is a commutative operation whose operands are not in the canonical
5525 order, use substitutions to swap them. */
5528 maybe_swap_commutative_operands (rtx x
)
5530 if (COMMUTATIVE_ARITH_P (x
)
5531 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5533 rtx temp
= XEXP (x
, 0);
5534 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5535 SUBST (XEXP (x
, 1), temp
);
5539 /* Simplify X, a piece of RTL. We just operate on the expression at the
5540 outer level; call `subst' to simplify recursively. Return the new
5543 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5544 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5548 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, int in_dest
,
5551 enum rtx_code code
= GET_CODE (x
);
5552 machine_mode mode
= GET_MODE (x
);
5556 /* If this is a commutative operation, put a constant last and a complex
5557 expression first. We don't need to do this for comparisons here. */
5558 maybe_swap_commutative_operands (x
);
5560 /* Try to fold this expression in case we have constants that weren't
5563 switch (GET_RTX_CLASS (code
))
5566 if (op0_mode
== VOIDmode
)
5567 op0_mode
= GET_MODE (XEXP (x
, 0));
5568 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5571 case RTX_COMM_COMPARE
:
5573 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5574 if (cmp_mode
== VOIDmode
)
5576 cmp_mode
= GET_MODE (XEXP (x
, 1));
5577 if (cmp_mode
== VOIDmode
)
5578 cmp_mode
= op0_mode
;
5580 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5581 XEXP (x
, 0), XEXP (x
, 1));
5584 case RTX_COMM_ARITH
:
5586 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5588 case RTX_BITFIELD_OPS
:
5590 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5591 XEXP (x
, 1), XEXP (x
, 2));
5600 code
= GET_CODE (temp
);
5601 op0_mode
= VOIDmode
;
5602 mode
= GET_MODE (temp
);
5605 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5606 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5607 things. Check for cases where both arms are testing the same
5610 Don't do anything if all operands are very simple. */
5613 && ((!OBJECT_P (XEXP (x
, 0))
5614 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5615 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5616 || (!OBJECT_P (XEXP (x
, 1))
5617 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5618 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5620 && (!OBJECT_P (XEXP (x
, 0))
5621 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5622 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5624 rtx cond
, true_rtx
, false_rtx
;
5626 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5628 /* If everything is a comparison, what we have is highly unlikely
5629 to be simpler, so don't use it. */
5630 && ! (COMPARISON_P (x
)
5631 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
5633 rtx cop1
= const0_rtx
;
5634 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5636 if (cond_code
== NE
&& COMPARISON_P (cond
))
5639 /* Simplify the alternative arms; this may collapse the true and
5640 false arms to store-flag values. Be careful to use copy_rtx
5641 here since true_rtx or false_rtx might share RTL with x as a
5642 result of the if_then_else_cond call above. */
5643 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5644 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5646 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5647 is unlikely to be simpler. */
5648 if (general_operand (true_rtx
, VOIDmode
)
5649 && general_operand (false_rtx
, VOIDmode
))
5651 enum rtx_code reversed
;
5653 /* Restarting if we generate a store-flag expression will cause
5654 us to loop. Just drop through in this case. */
5656 /* If the result values are STORE_FLAG_VALUE and zero, we can
5657 just make the comparison operation. */
5658 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5659 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5661 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5662 && ((reversed
= reversed_comparison_code_parts
5663 (cond_code
, cond
, cop1
, NULL
))
5665 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5668 /* Likewise, we can make the negate of a comparison operation
5669 if the result values are - STORE_FLAG_VALUE and zero. */
5670 else if (CONST_INT_P (true_rtx
)
5671 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5672 && false_rtx
== const0_rtx
)
5673 x
= simplify_gen_unary (NEG
, mode
,
5674 simplify_gen_relational (cond_code
,
5678 else if (CONST_INT_P (false_rtx
)
5679 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5680 && true_rtx
== const0_rtx
5681 && ((reversed
= reversed_comparison_code_parts
5682 (cond_code
, cond
, cop1
, NULL
))
5684 x
= simplify_gen_unary (NEG
, mode
,
5685 simplify_gen_relational (reversed
,
5690 return gen_rtx_IF_THEN_ELSE (mode
,
5691 simplify_gen_relational (cond_code
,
5696 true_rtx
, false_rtx
);
5698 code
= GET_CODE (x
);
5699 op0_mode
= VOIDmode
;
5704 /* First see if we can apply the inverse distributive law. */
5705 if (code
== PLUS
|| code
== MINUS
5706 || code
== AND
|| code
== IOR
|| code
== XOR
)
5708 x
= apply_distributive_law (x
);
5709 code
= GET_CODE (x
);
5710 op0_mode
= VOIDmode
;
5713 /* If CODE is an associative operation not otherwise handled, see if we
5714 can associate some operands. This can win if they are constants or
5715 if they are logically related (i.e. (a & b) & a). */
5716 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5717 || code
== AND
|| code
== IOR
|| code
== XOR
5718 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5719 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5720 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5722 if (GET_CODE (XEXP (x
, 0)) == code
)
5724 rtx other
= XEXP (XEXP (x
, 0), 0);
5725 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5726 rtx inner_op1
= XEXP (x
, 1);
5729 /* Make sure we pass the constant operand if any as the second
5730 one if this is a commutative operation. */
5731 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5732 std::swap (inner_op0
, inner_op1
);
5733 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5734 : code
== DIV
? MULT
5736 mode
, inner_op0
, inner_op1
);
5738 /* For commutative operations, try the other pair if that one
5740 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5742 other
= XEXP (XEXP (x
, 0), 1);
5743 inner
= simplify_binary_operation (code
, mode
,
5744 XEXP (XEXP (x
, 0), 0),
5749 return simplify_gen_binary (code
, mode
, other
, inner
);
5753 /* A little bit of algebraic simplification here. */
5757 /* Ensure that our address has any ASHIFTs converted to MULT in case
5758 address-recognizing predicates are called later. */
5759 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5760 SUBST (XEXP (x
, 0), temp
);
5764 if (op0_mode
== VOIDmode
)
5765 op0_mode
= GET_MODE (SUBREG_REG (x
));
5767 /* See if this can be moved to simplify_subreg. */
5768 if (CONSTANT_P (SUBREG_REG (x
))
5769 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5770 /* Don't call gen_lowpart if the inner mode
5771 is VOIDmode and we cannot simplify it, as SUBREG without
5772 inner mode is invalid. */
5773 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5774 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5775 return gen_lowpart (mode
, SUBREG_REG (x
));
5777 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5781 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5786 /* If op is known to have all lower bits zero, the result is zero. */
5788 && SCALAR_INT_MODE_P (mode
)
5789 && SCALAR_INT_MODE_P (op0_mode
)
5790 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (op0_mode
)
5791 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5792 && HWI_COMPUTABLE_MODE_P (op0_mode
)
5793 && (nonzero_bits (SUBREG_REG (x
), op0_mode
)
5794 & GET_MODE_MASK (mode
)) == 0)
5795 return CONST0_RTX (mode
);
5798 /* Don't change the mode of the MEM if that would change the meaning
5800 if (MEM_P (SUBREG_REG (x
))
5801 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5802 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5803 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5804 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5806 /* Note that we cannot do any narrowing for non-constants since
5807 we might have been counting on using the fact that some bits were
5808 zero. We now do this in the SET. */
5813 temp
= expand_compound_operation (XEXP (x
, 0));
5815 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5816 replaced by (lshiftrt X C). This will convert
5817 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5819 if (GET_CODE (temp
) == ASHIFTRT
5820 && CONST_INT_P (XEXP (temp
, 1))
5821 && INTVAL (XEXP (temp
, 1)) == GET_MODE_PRECISION (mode
) - 1)
5822 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5823 INTVAL (XEXP (temp
, 1)));
5825 /* If X has only a single bit that might be nonzero, say, bit I, convert
5826 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5827 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5828 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5829 or a SUBREG of one since we'd be making the expression more
5830 complex if it was just a register. */
5833 && ! (GET_CODE (temp
) == SUBREG
5834 && REG_P (SUBREG_REG (temp
)))
5835 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
5837 rtx temp1
= simplify_shift_const
5838 (NULL_RTX
, ASHIFTRT
, mode
,
5839 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
5840 GET_MODE_PRECISION (mode
) - 1 - i
),
5841 GET_MODE_PRECISION (mode
) - 1 - i
);
5843 /* If all we did was surround TEMP with the two shifts, we
5844 haven't improved anything, so don't use it. Otherwise,
5845 we are better off with TEMP1. */
5846 if (GET_CODE (temp1
) != ASHIFTRT
5847 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5848 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5854 /* We can't handle truncation to a partial integer mode here
5855 because we don't know the real bitsize of the partial
5857 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5860 if (HWI_COMPUTABLE_MODE_P (mode
))
5862 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5863 GET_MODE_MASK (mode
), 0));
5865 /* We can truncate a constant value and return it. */
5866 if (CONST_INT_P (XEXP (x
, 0)))
5867 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5869 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5870 whose value is a comparison can be replaced with a subreg if
5871 STORE_FLAG_VALUE permits. */
5872 if (HWI_COMPUTABLE_MODE_P (mode
)
5873 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5874 && (temp
= get_last_value (XEXP (x
, 0)))
5875 && COMPARISON_P (temp
))
5876 return gen_lowpart (mode
, XEXP (x
, 0));
5880 /* (const (const X)) can become (const X). Do it this way rather than
5881 returning the inner CONST since CONST can be shared with a
5883 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5884 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5888 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5889 can add in an offset. find_split_point will split this address up
5890 again if it doesn't match. */
5891 if (HAVE_lo_sum
&& GET_CODE (XEXP (x
, 0)) == HIGH
5892 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5897 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5898 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5899 bit-field and can be replaced by either a sign_extend or a
5900 sign_extract. The `and' may be a zero_extend and the two
5901 <c>, -<c> constants may be reversed. */
5902 if (GET_CODE (XEXP (x
, 0)) == XOR
5903 && CONST_INT_P (XEXP (x
, 1))
5904 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5905 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5906 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5907 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5908 && HWI_COMPUTABLE_MODE_P (mode
)
5909 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5910 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5911 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5912 == (HOST_WIDE_INT_1U
<< (i
+ 1)) - 1))
5913 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5914 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
5915 == (unsigned int) i
+ 1))))
5916 return simplify_shift_const
5917 (NULL_RTX
, ASHIFTRT
, mode
,
5918 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5919 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5920 GET_MODE_PRECISION (mode
) - (i
+ 1)),
5921 GET_MODE_PRECISION (mode
) - (i
+ 1));
5923 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5924 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5925 the bitsize of the mode - 1. This allows simplification of
5926 "a = (b & 8) == 0;" */
5927 if (XEXP (x
, 1) == constm1_rtx
5928 && !REG_P (XEXP (x
, 0))
5929 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5930 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5931 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
5932 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
5933 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5934 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
5935 GET_MODE_PRECISION (mode
) - 1),
5936 GET_MODE_PRECISION (mode
) - 1);
5938 /* If we are adding two things that have no bits in common, convert
5939 the addition into an IOR. This will often be further simplified,
5940 for example in cases like ((a & 1) + (a & 2)), which can
5943 if (HWI_COMPUTABLE_MODE_P (mode
)
5944 && (nonzero_bits (XEXP (x
, 0), mode
)
5945 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5947 /* Try to simplify the expression further. */
5948 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5949 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5951 /* If we could, great. If not, do not go ahead with the IOR
5952 replacement, since PLUS appears in many special purpose
5953 address arithmetic instructions. */
5954 if (GET_CODE (temp
) != CLOBBER
5955 && (GET_CODE (temp
) != IOR
5956 || ((XEXP (temp
, 0) != XEXP (x
, 0)
5957 || XEXP (temp
, 1) != XEXP (x
, 1))
5958 && (XEXP (temp
, 0) != XEXP (x
, 1)
5959 || XEXP (temp
, 1) != XEXP (x
, 0)))))
5963 /* Canonicalize x + x into x << 1. */
5964 if (GET_MODE_CLASS (mode
) == MODE_INT
5965 && rtx_equal_p (XEXP (x
, 0), XEXP (x
, 1))
5966 && !side_effects_p (XEXP (x
, 0)))
5967 return simplify_gen_binary (ASHIFT
, mode
, XEXP (x
, 0), const1_rtx
);
5972 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5973 (and <foo> (const_int pow2-1)) */
5974 if (GET_CODE (XEXP (x
, 1)) == AND
5975 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
5976 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x
, 1), 1)))
5977 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
5978 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
5979 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
5983 /* If we have (mult (plus A B) C), apply the distributive law and then
5984 the inverse distributive law to see if things simplify. This
5985 occurs mostly in addresses, often when unrolling loops. */
5987 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
5989 rtx result
= distribute_and_simplify_rtx (x
, 0);
5994 /* Try simplify a*(b/c) as (a*b)/c. */
5995 if (FLOAT_MODE_P (mode
) && flag_associative_math
5996 && GET_CODE (XEXP (x
, 0)) == DIV
)
5998 rtx tem
= simplify_binary_operation (MULT
, mode
,
5999 XEXP (XEXP (x
, 0), 0),
6002 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
6007 /* If this is a divide by a power of two, treat it as a shift if
6008 its first operand is a shift. */
6009 if (CONST_INT_P (XEXP (x
, 1))
6010 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
6011 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
6012 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6013 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
6014 || GET_CODE (XEXP (x
, 0)) == ROTATE
6015 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
6016 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
6020 case GT
: case GTU
: case GE
: case GEU
:
6021 case LT
: case LTU
: case LE
: case LEU
:
6022 case UNEQ
: case LTGT
:
6023 case UNGT
: case UNGE
:
6024 case UNLT
: case UNLE
:
6025 case UNORDERED
: case ORDERED
:
6026 /* If the first operand is a condition code, we can't do anything
6028 if (GET_CODE (XEXP (x
, 0)) == COMPARE
6029 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
6030 && ! CC0_P (XEXP (x
, 0))))
6032 rtx op0
= XEXP (x
, 0);
6033 rtx op1
= XEXP (x
, 1);
6034 enum rtx_code new_code
;
6036 if (GET_CODE (op0
) == COMPARE
)
6037 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
6039 /* Simplify our comparison, if possible. */
6040 new_code
= simplify_comparison (code
, &op0
, &op1
);
6042 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6043 if only the low-order bit is possibly nonzero in X (such as when
6044 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6045 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6046 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6049 Remove any ZERO_EXTRACT we made when thinking this was a
6050 comparison. It may now be simpler to use, e.g., an AND. If a
6051 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6052 the call to make_compound_operation in the SET case.
6054 Don't apply these optimizations if the caller would
6055 prefer a comparison rather than a value.
6056 E.g., for the condition in an IF_THEN_ELSE most targets need
6057 an explicit comparison. */
6062 else if (STORE_FLAG_VALUE
== 1
6063 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
6064 && op1
== const0_rtx
6065 && mode
== GET_MODE (op0
)
6066 && nonzero_bits (op0
, mode
) == 1)
6067 return gen_lowpart (mode
,
6068 expand_compound_operation (op0
));
6070 else if (STORE_FLAG_VALUE
== 1
6071 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
6072 && op1
== const0_rtx
6073 && mode
== GET_MODE (op0
)
6074 && (num_sign_bit_copies (op0
, mode
)
6075 == GET_MODE_PRECISION (mode
)))
6077 op0
= expand_compound_operation (op0
);
6078 return simplify_gen_unary (NEG
, mode
,
6079 gen_lowpart (mode
, op0
),
6083 else if (STORE_FLAG_VALUE
== 1
6084 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
6085 && op1
== const0_rtx
6086 && mode
== GET_MODE (op0
)
6087 && nonzero_bits (op0
, mode
) == 1)
6089 op0
= expand_compound_operation (op0
);
6090 return simplify_gen_binary (XOR
, mode
,
6091 gen_lowpart (mode
, op0
),
6095 else if (STORE_FLAG_VALUE
== 1
6096 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
6097 && op1
== const0_rtx
6098 && mode
== GET_MODE (op0
)
6099 && (num_sign_bit_copies (op0
, mode
)
6100 == GET_MODE_PRECISION (mode
)))
6102 op0
= expand_compound_operation (op0
);
6103 return plus_constant (mode
, gen_lowpart (mode
, op0
), 1);
6106 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6111 else if (STORE_FLAG_VALUE
== -1
6112 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
6113 && op1
== const0_rtx
6114 && mode
== GET_MODE (op0
)
6115 && (num_sign_bit_copies (op0
, mode
)
6116 == GET_MODE_PRECISION (mode
)))
6117 return gen_lowpart (mode
,
6118 expand_compound_operation (op0
));
6120 else if (STORE_FLAG_VALUE
== -1
6121 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
6122 && op1
== const0_rtx
6123 && mode
== GET_MODE (op0
)
6124 && nonzero_bits (op0
, mode
) == 1)
6126 op0
= expand_compound_operation (op0
);
6127 return simplify_gen_unary (NEG
, mode
,
6128 gen_lowpart (mode
, op0
),
6132 else if (STORE_FLAG_VALUE
== -1
6133 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
6134 && op1
== const0_rtx
6135 && mode
== GET_MODE (op0
)
6136 && (num_sign_bit_copies (op0
, mode
)
6137 == GET_MODE_PRECISION (mode
)))
6139 op0
= expand_compound_operation (op0
);
6140 return simplify_gen_unary (NOT
, mode
,
6141 gen_lowpart (mode
, op0
),
6145 /* If X is 0/1, (eq X 0) is X-1. */
6146 else if (STORE_FLAG_VALUE
== -1
6147 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
6148 && op1
== const0_rtx
6149 && mode
== GET_MODE (op0
)
6150 && nonzero_bits (op0
, mode
) == 1)
6152 op0
= expand_compound_operation (op0
);
6153 return plus_constant (mode
, gen_lowpart (mode
, op0
), -1);
6156 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6157 one bit that might be nonzero, we can convert (ne x 0) to
6158 (ashift x c) where C puts the bit in the sign bit. Remove any
6159 AND with STORE_FLAG_VALUE when we are done, since we are only
6160 going to test the sign bit. */
6161 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
6162 && HWI_COMPUTABLE_MODE_P (mode
)
6163 && val_signbit_p (mode
, STORE_FLAG_VALUE
)
6164 && op1
== const0_rtx
6165 && mode
== GET_MODE (op0
)
6166 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
6168 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6169 expand_compound_operation (op0
),
6170 GET_MODE_PRECISION (mode
) - 1 - i
);
6171 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
6177 /* If the code changed, return a whole new comparison.
6178 We also need to avoid using SUBST in cases where
6179 simplify_comparison has widened a comparison with a CONST_INT,
6180 since in that case the wider CONST_INT may fail the sanity
6181 checks in do_SUBST. */
6182 if (new_code
!= code
6183 || (CONST_INT_P (op1
)
6184 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
6185 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
6186 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
6188 /* Otherwise, keep this operation, but maybe change its operands.
6189 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6190 SUBST (XEXP (x
, 0), op0
);
6191 SUBST (XEXP (x
, 1), op1
);
6196 return simplify_if_then_else (x
);
6202 /* If we are processing SET_DEST, we are done. */
6206 return expand_compound_operation (x
);
6209 return simplify_set (x
);
6213 return simplify_logical (x
);
6220 /* If this is a shift by a constant amount, simplify it. */
6221 if (CONST_INT_P (XEXP (x
, 1)))
6222 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
6223 INTVAL (XEXP (x
, 1)));
6225 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
6227 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
6229 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
6241 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6244 simplify_if_then_else (rtx x
)
6246 machine_mode mode
= GET_MODE (x
);
6247 rtx cond
= XEXP (x
, 0);
6248 rtx true_rtx
= XEXP (x
, 1);
6249 rtx false_rtx
= XEXP (x
, 2);
6250 enum rtx_code true_code
= GET_CODE (cond
);
6251 int comparison_p
= COMPARISON_P (cond
);
6254 enum rtx_code false_code
;
6257 /* Simplify storing of the truth value. */
6258 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
6259 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
6260 XEXP (cond
, 0), XEXP (cond
, 1));
6262 /* Also when the truth value has to be reversed. */
6264 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
6265 && (reversed
= reversed_comparison (cond
, mode
)))
6268 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6269 in it is being compared against certain values. Get the true and false
6270 comparisons and see if that says anything about the value of each arm. */
6273 && ((false_code
= reversed_comparison_code (cond
, NULL
))
6275 && REG_P (XEXP (cond
, 0)))
6278 rtx from
= XEXP (cond
, 0);
6279 rtx true_val
= XEXP (cond
, 1);
6280 rtx false_val
= true_val
;
6283 /* If FALSE_CODE is EQ, swap the codes and arms. */
6285 if (false_code
== EQ
)
6287 swapped
= 1, true_code
= EQ
, false_code
= NE
;
6288 std::swap (true_rtx
, false_rtx
);
6291 /* If we are comparing against zero and the expression being tested has
6292 only a single bit that might be nonzero, that is its value when it is
6293 not equal to zero. Similarly if it is known to be -1 or 0. */
6295 if (true_code
== EQ
&& true_val
== const0_rtx
6296 && pow2p_hwi (nzb
= nonzero_bits (from
, GET_MODE (from
))))
6299 false_val
= gen_int_mode (nzb
, GET_MODE (from
));
6301 else if (true_code
== EQ
&& true_val
== const0_rtx
6302 && (num_sign_bit_copies (from
, GET_MODE (from
))
6303 == GET_MODE_PRECISION (GET_MODE (from
))))
6306 false_val
= constm1_rtx
;
6309 /* Now simplify an arm if we know the value of the register in the
6310 branch and it is used in the arm. Be careful due to the potential
6311 of locally-shared RTL. */
6313 if (reg_mentioned_p (from
, true_rtx
))
6314 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6316 pc_rtx
, pc_rtx
, 0, 0, 0);
6317 if (reg_mentioned_p (from
, false_rtx
))
6318 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6320 pc_rtx
, pc_rtx
, 0, 0, 0);
6322 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6323 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6325 true_rtx
= XEXP (x
, 1);
6326 false_rtx
= XEXP (x
, 2);
6327 true_code
= GET_CODE (cond
);
6330 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6331 reversed, do so to avoid needing two sets of patterns for
6332 subtract-and-branch insns. Similarly if we have a constant in the true
6333 arm, the false arm is the same as the first operand of the comparison, or
6334 the false arm is more complicated than the true arm. */
6337 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6338 && (true_rtx
== pc_rtx
6339 || (CONSTANT_P (true_rtx
)
6340 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6341 || true_rtx
== const0_rtx
6342 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6343 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6344 && !OBJECT_P (false_rtx
))
6345 || reg_mentioned_p (true_rtx
, false_rtx
)
6346 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6348 true_code
= reversed_comparison_code (cond
, NULL
);
6349 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6350 SUBST (XEXP (x
, 1), false_rtx
);
6351 SUBST (XEXP (x
, 2), true_rtx
);
6353 std::swap (true_rtx
, false_rtx
);
6356 /* It is possible that the conditional has been simplified out. */
6357 true_code
= GET_CODE (cond
);
6358 comparison_p
= COMPARISON_P (cond
);
6361 /* If the two arms are identical, we don't need the comparison. */
6363 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6366 /* Convert a == b ? b : a to "a". */
6367 if (true_code
== EQ
&& ! side_effects_p (cond
)
6368 && !HONOR_NANS (mode
)
6369 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6370 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6372 else if (true_code
== NE
&& ! side_effects_p (cond
)
6373 && !HONOR_NANS (mode
)
6374 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6375 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6378 /* Look for cases where we have (abs x) or (neg (abs X)). */
6380 if (GET_MODE_CLASS (mode
) == MODE_INT
6382 && XEXP (cond
, 1) == const0_rtx
6383 && GET_CODE (false_rtx
) == NEG
6384 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6385 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6386 && ! side_effects_p (true_rtx
))
6391 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6395 simplify_gen_unary (NEG
, mode
,
6396 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6402 /* Look for MIN or MAX. */
6404 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6406 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6407 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6408 && ! side_effects_p (cond
))
6413 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6416 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6419 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6422 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6427 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6428 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6429 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6430 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6431 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6432 neither 1 or -1, but it isn't worth checking for. */
6434 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6436 && GET_MODE_CLASS (mode
) == MODE_INT
6437 && ! side_effects_p (x
))
6439 rtx t
= make_compound_operation (true_rtx
, SET
);
6440 rtx f
= make_compound_operation (false_rtx
, SET
);
6441 rtx cond_op0
= XEXP (cond
, 0);
6442 rtx cond_op1
= XEXP (cond
, 1);
6443 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6444 machine_mode m
= mode
;
6445 rtx z
= 0, c1
= NULL_RTX
;
6447 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6448 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6449 || GET_CODE (t
) == ASHIFT
6450 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6451 && rtx_equal_p (XEXP (t
, 0), f
))
6452 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6454 /* If an identity-zero op is commutative, check whether there
6455 would be a match if we swapped the operands. */
6456 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6457 || GET_CODE (t
) == XOR
)
6458 && rtx_equal_p (XEXP (t
, 1), f
))
6459 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6460 else if (GET_CODE (t
) == SIGN_EXTEND
6461 && (GET_CODE (XEXP (t
, 0)) == PLUS
6462 || GET_CODE (XEXP (t
, 0)) == MINUS
6463 || GET_CODE (XEXP (t
, 0)) == IOR
6464 || GET_CODE (XEXP (t
, 0)) == XOR
6465 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6466 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6467 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6468 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6469 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6470 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6471 && (num_sign_bit_copies (f
, GET_MODE (f
))
6473 (GET_MODE_PRECISION (mode
)
6474 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
6476 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6477 extend_op
= SIGN_EXTEND
;
6478 m
= GET_MODE (XEXP (t
, 0));
6480 else if (GET_CODE (t
) == SIGN_EXTEND
6481 && (GET_CODE (XEXP (t
, 0)) == PLUS
6482 || GET_CODE (XEXP (t
, 0)) == IOR
6483 || GET_CODE (XEXP (t
, 0)) == XOR
)
6484 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6485 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6486 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6487 && (num_sign_bit_copies (f
, GET_MODE (f
))
6489 (GET_MODE_PRECISION (mode
)
6490 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
6492 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6493 extend_op
= SIGN_EXTEND
;
6494 m
= GET_MODE (XEXP (t
, 0));
6496 else if (GET_CODE (t
) == ZERO_EXTEND
6497 && (GET_CODE (XEXP (t
, 0)) == PLUS
6498 || GET_CODE (XEXP (t
, 0)) == MINUS
6499 || GET_CODE (XEXP (t
, 0)) == IOR
6500 || GET_CODE (XEXP (t
, 0)) == XOR
6501 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6502 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6503 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6504 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6505 && HWI_COMPUTABLE_MODE_P (mode
)
6506 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6507 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6508 && ((nonzero_bits (f
, GET_MODE (f
))
6509 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
6512 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6513 extend_op
= ZERO_EXTEND
;
6514 m
= GET_MODE (XEXP (t
, 0));
6516 else if (GET_CODE (t
) == ZERO_EXTEND
6517 && (GET_CODE (XEXP (t
, 0)) == PLUS
6518 || GET_CODE (XEXP (t
, 0)) == IOR
6519 || GET_CODE (XEXP (t
, 0)) == XOR
)
6520 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6521 && HWI_COMPUTABLE_MODE_P (mode
)
6522 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6523 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6524 && ((nonzero_bits (f
, GET_MODE (f
))
6525 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
6528 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6529 extend_op
= ZERO_EXTEND
;
6530 m
= GET_MODE (XEXP (t
, 0));
6535 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
6536 cond_op0
, cond_op1
),
6537 pc_rtx
, pc_rtx
, 0, 0, 0);
6538 temp
= simplify_gen_binary (MULT
, m
, temp
,
6539 simplify_gen_binary (MULT
, m
, c1
,
6541 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6542 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6544 if (extend_op
!= UNKNOWN
)
6545 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
6551 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6552 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6553 negation of a single bit, we can convert this operation to a shift. We
6554 can actually do this more generally, but it doesn't seem worth it. */
6556 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6557 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6558 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
6559 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6560 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
6561 == GET_MODE_PRECISION (mode
))
6562 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6564 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6565 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
6567 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6568 non-zero bit in A is C1. */
6569 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6570 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6571 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond
, 0)))
6572 && (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))
6573 == nonzero_bits (XEXP (cond
, 0), GET_MODE (XEXP (cond
, 0)))
6574 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
6576 rtx val
= XEXP (cond
, 0);
6577 enum machine_mode val_mode
= GET_MODE (val
);
6578 if (val_mode
== mode
)
6580 else if (GET_MODE_PRECISION (val_mode
) < GET_MODE_PRECISION (mode
))
6581 return simplify_gen_unary (ZERO_EXTEND
, mode
, val
, val_mode
);
6587 /* Simplify X, a SET expression. Return the new expression. */
6590 simplify_set (rtx x
)
6592 rtx src
= SET_SRC (x
);
6593 rtx dest
= SET_DEST (x
);
6595 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6596 rtx_insn
*other_insn
;
6599 /* (set (pc) (return)) gets written as (return). */
6600 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6603 /* Now that we know for sure which bits of SRC we are using, see if we can
6604 simplify the expression for the object knowing that we only need the
6607 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6609 src
= force_to_mode (src
, mode
, HOST_WIDE_INT_M1U
, 0);
6610 SUBST (SET_SRC (x
), src
);
6613 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6614 the comparison result and try to simplify it unless we already have used
6615 undobuf.other_insn. */
6616 if ((GET_MODE_CLASS (mode
) == MODE_CC
6617 || GET_CODE (src
) == COMPARE
6619 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6620 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6621 && COMPARISON_P (*cc_use
)
6622 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6624 enum rtx_code old_code
= GET_CODE (*cc_use
);
6625 enum rtx_code new_code
;
6627 int other_changed
= 0;
6628 rtx inner_compare
= NULL_RTX
;
6629 machine_mode compare_mode
= GET_MODE (dest
);
6631 if (GET_CODE (src
) == COMPARE
)
6633 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6634 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6636 inner_compare
= op0
;
6637 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6641 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6643 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6646 new_code
= old_code
;
6647 else if (!CONSTANT_P (tmp
))
6649 new_code
= GET_CODE (tmp
);
6650 op0
= XEXP (tmp
, 0);
6651 op1
= XEXP (tmp
, 1);
6655 rtx pat
= PATTERN (other_insn
);
6656 undobuf
.other_insn
= other_insn
;
6657 SUBST (*cc_use
, tmp
);
6659 /* Attempt to simplify CC user. */
6660 if (GET_CODE (pat
) == SET
)
6662 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6663 if (new_rtx
!= NULL_RTX
)
6664 SUBST (SET_SRC (pat
), new_rtx
);
6667 /* Convert X into a no-op move. */
6668 SUBST (SET_DEST (x
), pc_rtx
);
6669 SUBST (SET_SRC (x
), pc_rtx
);
6673 /* Simplify our comparison, if possible. */
6674 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6676 #ifdef SELECT_CC_MODE
6677 /* If this machine has CC modes other than CCmode, check to see if we
6678 need to use a different CC mode here. */
6679 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6680 compare_mode
= GET_MODE (op0
);
6681 else if (inner_compare
6682 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6683 && new_code
== old_code
6684 && op0
== XEXP (inner_compare
, 0)
6685 && op1
== XEXP (inner_compare
, 1))
6686 compare_mode
= GET_MODE (inner_compare
);
6688 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6690 /* If the mode changed, we have to change SET_DEST, the mode in the
6691 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6692 a hard register, just build new versions with the proper mode. If it
6693 is a pseudo, we lose unless it is only time we set the pseudo, in
6694 which case we can safely change its mode. */
6695 if (!HAVE_cc0
&& compare_mode
!= GET_MODE (dest
))
6697 if (can_change_dest_mode (dest
, 0, compare_mode
))
6699 unsigned int regno
= REGNO (dest
);
6702 if (regno
< FIRST_PSEUDO_REGISTER
)
6703 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6706 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6707 new_dest
= regno_reg_rtx
[regno
];
6710 SUBST (SET_DEST (x
), new_dest
);
6711 SUBST (XEXP (*cc_use
, 0), new_dest
);
6717 #endif /* SELECT_CC_MODE */
6719 /* If the code changed, we have to build a new comparison in
6720 undobuf.other_insn. */
6721 if (new_code
!= old_code
)
6723 int other_changed_previously
= other_changed
;
6724 unsigned HOST_WIDE_INT mask
;
6725 rtx old_cc_use
= *cc_use
;
6727 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6731 /* If the only change we made was to change an EQ into an NE or
6732 vice versa, OP0 has only one bit that might be nonzero, and OP1
6733 is zero, check if changing the user of the condition code will
6734 produce a valid insn. If it won't, we can keep the original code
6735 in that insn by surrounding our operation with an XOR. */
6737 if (((old_code
== NE
&& new_code
== EQ
)
6738 || (old_code
== EQ
&& new_code
== NE
))
6739 && ! other_changed_previously
&& op1
== const0_rtx
6740 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6741 && pow2p_hwi (mask
= nonzero_bits (op0
, GET_MODE (op0
))))
6743 rtx pat
= PATTERN (other_insn
), note
= 0;
6745 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6746 && ! check_asm_operands (pat
)))
6748 *cc_use
= old_cc_use
;
6751 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6759 undobuf
.other_insn
= other_insn
;
6761 /* Don't generate a compare of a CC with 0, just use that CC. */
6762 if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6764 SUBST (SET_SRC (x
), op0
);
6767 /* Otherwise, if we didn't previously have the same COMPARE we
6768 want, create it from scratch. */
6769 else if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
6770 || XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6772 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6778 /* Get SET_SRC in a form where we have placed back any
6779 compound expressions. Then do the checks below. */
6780 src
= make_compound_operation (src
, SET
);
6781 SUBST (SET_SRC (x
), src
);
6784 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6785 and X being a REG or (subreg (reg)), we may be able to convert this to
6786 (set (subreg:m2 x) (op)).
6788 We can always do this if M1 is narrower than M2 because that means that
6789 we only care about the low bits of the result.
6791 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6792 perform a narrower operation than requested since the high-order bits will
6793 be undefined. On machine where it is defined, this transformation is safe
6794 as long as M1 and M2 have the same number of words. */
6796 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6797 && !OBJECT_P (SUBREG_REG (src
))
6798 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
6800 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
6801 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
6802 && (WORD_REGISTER_OPERATIONS
6803 || (GET_MODE_SIZE (GET_MODE (src
))
6804 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
6805 #ifdef CANNOT_CHANGE_MODE_CLASS
6806 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6807 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
6808 GET_MODE (SUBREG_REG (src
)),
6812 || (GET_CODE (dest
) == SUBREG
6813 && REG_P (SUBREG_REG (dest
)))))
6815 SUBST (SET_DEST (x
),
6816 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6818 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6820 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6823 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6826 && GET_CODE (src
) == SUBREG
6827 && subreg_lowpart_p (src
)
6828 && (GET_MODE_PRECISION (GET_MODE (src
))
6829 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src
)))))
6831 rtx inner
= SUBREG_REG (src
);
6832 machine_mode inner_mode
= GET_MODE (inner
);
6834 /* Here we make sure that we don't have a sign bit on. */
6835 if (val_signbit_known_clear_p (GET_MODE (src
),
6836 nonzero_bits (inner
, inner_mode
)))
6838 SUBST (SET_SRC (x
), inner
);
6843 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6844 would require a paradoxical subreg. Replace the subreg with a
6845 zero_extend to avoid the reload that would otherwise be required. */
6847 enum rtx_code extend_op
;
6848 if (paradoxical_subreg_p (src
)
6849 && MEM_P (SUBREG_REG (src
))
6850 && (extend_op
= load_extend_op (GET_MODE (SUBREG_REG (src
)))) != UNKNOWN
)
6853 gen_rtx_fmt_e (extend_op
, GET_MODE (src
), SUBREG_REG (src
)));
6858 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6859 are comparing an item known to be 0 or -1 against 0, use a logical
6860 operation instead. Check for one of the arms being an IOR of the other
6861 arm with some value. We compute three terms to be IOR'ed together. In
6862 practice, at most two will be nonzero. Then we do the IOR's. */
6864 if (GET_CODE (dest
) != PC
6865 && GET_CODE (src
) == IF_THEN_ELSE
6866 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
6867 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6868 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6869 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
6870 && (!HAVE_conditional_move
6871 || ! can_conditionally_move_p (GET_MODE (src
)))
6872 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
6873 GET_MODE (XEXP (XEXP (src
, 0), 0)))
6874 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src
, 0), 0))))
6875 && ! side_effects_p (src
))
6877 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6878 ? XEXP (src
, 1) : XEXP (src
, 2));
6879 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6880 ? XEXP (src
, 2) : XEXP (src
, 1));
6881 rtx term1
= const0_rtx
, term2
, term3
;
6883 if (GET_CODE (true_rtx
) == IOR
6884 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6885 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6886 else if (GET_CODE (true_rtx
) == IOR
6887 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6888 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6889 else if (GET_CODE (false_rtx
) == IOR
6890 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6891 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6892 else if (GET_CODE (false_rtx
) == IOR
6893 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6894 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6896 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
6897 XEXP (XEXP (src
, 0), 0), true_rtx
);
6898 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
6899 simplify_gen_unary (NOT
, GET_MODE (src
),
6900 XEXP (XEXP (src
, 0), 0),
6905 simplify_gen_binary (IOR
, GET_MODE (src
),
6906 simplify_gen_binary (IOR
, GET_MODE (src
),
6913 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6914 whole thing fail. */
6915 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6917 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6920 /* Convert this into a field assignment operation, if possible. */
6921 return make_field_assignment (x
);
6924 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6928 simplify_logical (rtx x
)
6930 machine_mode mode
= GET_MODE (x
);
6931 rtx op0
= XEXP (x
, 0);
6932 rtx op1
= XEXP (x
, 1);
6934 switch (GET_CODE (x
))
6937 /* We can call simplify_and_const_int only if we don't lose
6938 any (sign) bits when converting INTVAL (op1) to
6939 "unsigned HOST_WIDE_INT". */
6940 if (CONST_INT_P (op1
)
6941 && (HWI_COMPUTABLE_MODE_P (mode
)
6942 || INTVAL (op1
) > 0))
6944 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
6945 if (GET_CODE (x
) != AND
)
6952 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6953 apply the distributive law and then the inverse distributive
6954 law to see if things simplify. */
6955 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
6957 rtx result
= distribute_and_simplify_rtx (x
, 0);
6961 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
6963 rtx result
= distribute_and_simplify_rtx (x
, 1);
6970 /* If we have (ior (and A B) C), apply the distributive law and then
6971 the inverse distributive law to see if things simplify. */
6973 if (GET_CODE (op0
) == AND
)
6975 rtx result
= distribute_and_simplify_rtx (x
, 0);
6980 if (GET_CODE (op1
) == AND
)
6982 rtx result
= distribute_and_simplify_rtx (x
, 1);
6995 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6996 operations" because they can be replaced with two more basic operations.
6997 ZERO_EXTEND is also considered "compound" because it can be replaced with
6998 an AND operation, which is simpler, though only one operation.
7000 The function expand_compound_operation is called with an rtx expression
7001 and will convert it to the appropriate shifts and AND operations,
7002 simplifying at each stage.
7004 The function make_compound_operation is called to convert an expression
7005 consisting of shifts and ANDs into the equivalent compound expression.
7006 It is the inverse of this function, loosely speaking. */
7009 expand_compound_operation (rtx x
)
7011 unsigned HOST_WIDE_INT pos
= 0, len
;
7013 unsigned int modewidth
;
7016 switch (GET_CODE (x
))
7022 /* We can't necessarily use a const_int for a multiword mode;
7023 it depends on implicitly extending the value.
7024 Since we don't know the right way to extend it,
7025 we can't tell whether the implicit way is right.
7027 Even for a mode that is no wider than a const_int,
7028 we can't win, because we need to sign extend one of its bits through
7029 the rest of it, and we don't know which bit. */
7030 if (CONST_INT_P (XEXP (x
, 0)))
7033 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7034 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7035 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7036 reloaded. If not for that, MEM's would very rarely be safe.
7038 Reject MODEs bigger than a word, because we might not be able
7039 to reference a two-register group starting with an arbitrary register
7040 (and currently gen_lowpart might crash for a SUBREG). */
7042 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
7045 /* Reject MODEs that aren't scalar integers because turning vector
7046 or complex modes into shifts causes problems. */
7048 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
7051 len
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
7052 /* If the inner object has VOIDmode (the only way this can happen
7053 is if it is an ASM_OPERANDS), we can't do anything since we don't
7054 know how much masking to do. */
7066 /* If the operand is a CLOBBER, just return it. */
7067 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7070 if (!CONST_INT_P (XEXP (x
, 1))
7071 || !CONST_INT_P (XEXP (x
, 2))
7072 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
7075 /* Reject MODEs that aren't scalar integers because turning vector
7076 or complex modes into shifts causes problems. */
7078 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
7081 len
= INTVAL (XEXP (x
, 1));
7082 pos
= INTVAL (XEXP (x
, 2));
7084 /* This should stay within the object being extracted, fail otherwise. */
7085 if (len
+ pos
> GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))))
7088 if (BITS_BIG_ENDIAN
)
7089 pos
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))) - len
- pos
;
7096 /* Convert sign extension to zero extension, if we know that the high
7097 bit is not set, as this is easier to optimize. It will be converted
7098 back to cheaper alternative in make_extraction. */
7099 if (GET_CODE (x
) == SIGN_EXTEND
7100 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
7101 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
7102 & ~(((unsigned HOST_WIDE_INT
)
7103 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
7107 machine_mode mode
= GET_MODE (x
);
7108 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, XEXP (x
, 0));
7109 rtx temp2
= expand_compound_operation (temp
);
7111 /* Make sure this is a profitable operation. */
7112 if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7113 > set_src_cost (temp2
, mode
, optimize_this_for_speed_p
))
7115 else if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7116 > set_src_cost (temp
, mode
, optimize_this_for_speed_p
))
7122 /* We can optimize some special cases of ZERO_EXTEND. */
7123 if (GET_CODE (x
) == ZERO_EXTEND
)
7125 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7126 know that the last value didn't have any inappropriate bits
7128 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7129 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
7130 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
7131 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
7132 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
7133 return XEXP (XEXP (x
, 0), 0);
7135 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7136 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7137 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
7138 && subreg_lowpart_p (XEXP (x
, 0))
7139 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
7140 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
7141 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
7142 return SUBREG_REG (XEXP (x
, 0));
7144 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7145 is a comparison and STORE_FLAG_VALUE permits. This is like
7146 the first case, but it works even when GET_MODE (x) is larger
7147 than HOST_WIDE_INT. */
7148 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7149 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
7150 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
7151 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
7152 <= HOST_BITS_PER_WIDE_INT
)
7153 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
7154 return XEXP (XEXP (x
, 0), 0);
7156 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7157 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7158 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
7159 && subreg_lowpart_p (XEXP (x
, 0))
7160 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
7161 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
7162 <= HOST_BITS_PER_WIDE_INT
)
7163 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
7164 return SUBREG_REG (XEXP (x
, 0));
7168 /* If we reach here, we want to return a pair of shifts. The inner
7169 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7170 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7171 logical depending on the value of UNSIGNEDP.
7173 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7174 converted into an AND of a shift.
7176 We must check for the case where the left shift would have a negative
7177 count. This can happen in a case like (x >> 31) & 255 on machines
7178 that can't shift by a constant. On those machines, we would first
7179 combine the shift with the AND to produce a variable-position
7180 extraction. Then the constant of 31 would be substituted in
7181 to produce such a position. */
7183 modewidth
= GET_MODE_PRECISION (GET_MODE (x
));
7184 if (modewidth
>= pos
+ len
)
7186 machine_mode mode
= GET_MODE (x
);
7187 tem
= gen_lowpart (mode
, XEXP (x
, 0));
7188 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7190 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
7191 tem
, modewidth
- pos
- len
);
7192 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
7193 mode
, tem
, modewidth
- len
);
7195 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
7196 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
7197 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7200 (HOST_WIDE_INT_1U
<< len
) - 1);
7202 /* Any other cases we can't handle. */
7205 /* If we couldn't do this for some reason, return the original
7207 if (GET_CODE (tem
) == CLOBBER
)
7213 /* X is a SET which contains an assignment of one object into
7214 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7215 or certain SUBREGS). If possible, convert it into a series of
7218 We half-heartedly support variable positions, but do not at all
7219 support variable lengths. */
7222 expand_field_assignment (const_rtx x
)
7225 rtx pos
; /* Always counts from low bit. */
7227 rtx mask
, cleared
, masked
;
7228 machine_mode compute_mode
;
7230 /* Loop until we find something we can't simplify. */
7233 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
7234 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
7236 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
7237 len
= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0)));
7238 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
7240 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
7241 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
7243 inner
= XEXP (SET_DEST (x
), 0);
7244 len
= INTVAL (XEXP (SET_DEST (x
), 1));
7245 pos
= XEXP (SET_DEST (x
), 2);
7247 /* A constant position should stay within the width of INNER. */
7248 if (CONST_INT_P (pos
)
7249 && INTVAL (pos
) + len
> GET_MODE_PRECISION (GET_MODE (inner
)))
7252 if (BITS_BIG_ENDIAN
)
7254 if (CONST_INT_P (pos
))
7255 pos
= GEN_INT (GET_MODE_PRECISION (GET_MODE (inner
)) - len
7257 else if (GET_CODE (pos
) == MINUS
7258 && CONST_INT_P (XEXP (pos
, 1))
7259 && (INTVAL (XEXP (pos
, 1))
7260 == GET_MODE_PRECISION (GET_MODE (inner
)) - len
))
7261 /* If position is ADJUST - X, new position is X. */
7262 pos
= XEXP (pos
, 0);
7265 HOST_WIDE_INT prec
= GET_MODE_PRECISION (GET_MODE (inner
));
7266 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
7267 gen_int_mode (prec
- len
,
7274 /* A SUBREG between two modes that occupy the same numbers of words
7275 can be done by moving the SUBREG to the source. */
7276 else if (GET_CODE (SET_DEST (x
)) == SUBREG
7277 /* We need SUBREGs to compute nonzero_bits properly. */
7278 && nonzero_sign_valid
7279 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
7280 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
7281 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
7282 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
7284 x
= gen_rtx_SET (SUBREG_REG (SET_DEST (x
)),
7286 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7293 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7294 inner
= SUBREG_REG (inner
);
7296 compute_mode
= GET_MODE (inner
);
7298 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7299 if (! SCALAR_INT_MODE_P (compute_mode
))
7303 /* Don't do anything for vector or complex integral types. */
7304 if (! FLOAT_MODE_P (compute_mode
))
7307 /* Try to find an integral mode to pun with. */
7308 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
7309 if (imode
== BLKmode
)
7312 compute_mode
= imode
;
7313 inner
= gen_lowpart (imode
, inner
);
7316 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7317 if (len
>= HOST_BITS_PER_WIDE_INT
)
7320 /* Don't try to compute in too wide unsupported modes. */
7321 if (!targetm
.scalar_mode_supported_p (compute_mode
))
7324 /* Now compute the equivalent expression. Make a copy of INNER
7325 for the SET_DEST in case it is a MEM into which we will substitute;
7326 we don't want shared RTL in that case. */
7327 mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< len
) - 1,
7329 cleared
= simplify_gen_binary (AND
, compute_mode
,
7330 simplify_gen_unary (NOT
, compute_mode
,
7331 simplify_gen_binary (ASHIFT
,
7336 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7337 simplify_gen_binary (
7339 gen_lowpart (compute_mode
, SET_SRC (x
)),
7343 x
= gen_rtx_SET (copy_rtx (inner
),
7344 simplify_gen_binary (IOR
, compute_mode
,
7351 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7352 it is an RTX that represents the (variable) starting position; otherwise,
7353 POS is the (constant) starting bit position. Both are counted from the LSB.
7355 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7357 IN_DEST is nonzero if this is a reference in the destination of a SET.
7358 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7359 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7362 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7363 ZERO_EXTRACT should be built even for bits starting at bit 0.
7365 MODE is the desired mode of the result (if IN_DEST == 0).
7367 The result is an RTX for the extraction or NULL_RTX if the target
7371 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7372 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7373 int in_dest
, int in_compare
)
7375 /* This mode describes the size of the storage area
7376 to fetch the overall value from. Within that, we
7377 ignore the POS lowest bits, etc. */
7378 machine_mode is_mode
= GET_MODE (inner
);
7379 machine_mode inner_mode
;
7380 machine_mode wanted_inner_mode
;
7381 machine_mode wanted_inner_reg_mode
= word_mode
;
7382 machine_mode pos_mode
= word_mode
;
7383 machine_mode extraction_mode
= word_mode
;
7384 machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
7386 rtx orig_pos_rtx
= pos_rtx
;
7387 HOST_WIDE_INT orig_pos
;
7389 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7390 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7392 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7394 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7395 consider just the QI as the memory to extract from.
7396 The subreg adds or removes high bits; its mode is
7397 irrelevant to the meaning of this extraction,
7398 since POS and LEN count from the lsb. */
7399 if (MEM_P (SUBREG_REG (inner
)))
7400 is_mode
= GET_MODE (SUBREG_REG (inner
));
7401 inner
= SUBREG_REG (inner
);
7403 else if (GET_CODE (inner
) == ASHIFT
7404 && CONST_INT_P (XEXP (inner
, 1))
7405 && pos_rtx
== 0 && pos
== 0
7406 && len
> UINTVAL (XEXP (inner
, 1)))
7408 /* We're extracting the least significant bits of an rtx
7409 (ashift X (const_int C)), where LEN > C. Extract the
7410 least significant (LEN - C) bits of X, giving an rtx
7411 whose mode is MODE, then shift it left C times. */
7412 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7413 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7414 unsignedp
, in_dest
, in_compare
);
7416 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7418 else if (GET_CODE (inner
) == TRUNCATE
)
7419 inner
= XEXP (inner
, 0);
7421 inner_mode
= GET_MODE (inner
);
7423 /* See if this can be done without an extraction. We never can if the
7424 width of the field is not the same as that of some integer mode. For
7425 registers, we can only avoid the extraction if the position is at the
7426 low-order bit and this is either not in the destination or we have the
7427 appropriate STRICT_LOW_PART operation available.
7429 For MEM, we can avoid an extract if the field starts on an appropriate
7430 boundary and we can change the mode of the memory reference. */
7432 if (tmode
!= BLKmode
7433 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7435 && (pos
== 0 || REG_P (inner
))
7436 && (inner_mode
== tmode
7438 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7439 || reg_truncated_to_mode (tmode
, inner
))
7442 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7443 || (MEM_P (inner
) && pos_rtx
== 0
7445 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7446 : BITS_PER_UNIT
)) == 0
7447 /* We can't do this if we are widening INNER_MODE (it
7448 may not be aligned, for one thing). */
7449 && GET_MODE_PRECISION (inner_mode
) >= GET_MODE_PRECISION (tmode
)
7450 && (inner_mode
== tmode
7451 || (! mode_dependent_address_p (XEXP (inner
, 0),
7452 MEM_ADDR_SPACE (inner
))
7453 && ! MEM_VOLATILE_P (inner
))))))
7455 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7456 field. If the original and current mode are the same, we need not
7457 adjust the offset. Otherwise, we do if bytes big endian.
7459 If INNER is not a MEM, get a piece consisting of just the field
7460 of interest (in this case POS % BITS_PER_WORD must be 0). */
7464 HOST_WIDE_INT offset
;
7466 /* POS counts from lsb, but make OFFSET count in memory order. */
7467 if (BYTES_BIG_ENDIAN
)
7468 offset
= (GET_MODE_PRECISION (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
7470 offset
= pos
/ BITS_PER_UNIT
;
7472 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7474 else if (REG_P (inner
))
7476 if (tmode
!= inner_mode
)
7478 /* We can't call gen_lowpart in a DEST since we
7479 always want a SUBREG (see below) and it would sometimes
7480 return a new hard register. */
7483 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
7485 if (WORDS_BIG_ENDIAN
7486 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7487 final_word
= ((GET_MODE_SIZE (inner_mode
)
7488 - GET_MODE_SIZE (tmode
))
7489 / UNITS_PER_WORD
) - final_word
;
7491 final_word
*= UNITS_PER_WORD
;
7492 if (BYTES_BIG_ENDIAN
&&
7493 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
7494 final_word
+= (GET_MODE_SIZE (inner_mode
)
7495 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
7497 /* Avoid creating invalid subregs, for example when
7498 simplifying (x>>32)&255. */
7499 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
7502 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, final_word
);
7505 new_rtx
= gen_lowpart (tmode
, inner
);
7511 new_rtx
= force_to_mode (inner
, tmode
,
7512 len
>= HOST_BITS_PER_WIDE_INT
7514 : (HOST_WIDE_INT_1U
<< len
) - 1, 0);
7516 /* If this extraction is going into the destination of a SET,
7517 make a STRICT_LOW_PART unless we made a MEM. */
7520 return (MEM_P (new_rtx
) ? new_rtx
7521 : (GET_CODE (new_rtx
) != SUBREG
7522 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7523 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7528 if (CONST_SCALAR_INT_P (new_rtx
))
7529 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7530 mode
, new_rtx
, tmode
);
7532 /* If we know that no extraneous bits are set, and that the high
7533 bit is not set, convert the extraction to the cheaper of
7534 sign and zero extension, that are equivalent in these cases. */
7535 if (flag_expensive_optimizations
7536 && (HWI_COMPUTABLE_MODE_P (tmode
)
7537 && ((nonzero_bits (new_rtx
, tmode
)
7538 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7541 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7542 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7544 /* Prefer ZERO_EXTENSION, since it gives more information to
7546 if (set_src_cost (temp
, mode
, optimize_this_for_speed_p
)
7547 <= set_src_cost (temp1
, mode
, optimize_this_for_speed_p
))
7552 /* Otherwise, sign- or zero-extend unless we already are in the
7555 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7559 /* Unless this is a COMPARE or we have a funny memory reference,
7560 don't do anything with zero-extending field extracts starting at
7561 the low-order bit since they are simple AND operations. */
7562 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7563 && ! in_compare
&& unsignedp
)
7566 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7567 if the position is not a constant and the length is not 1. In all
7568 other cases, we would only be going outside our object in cases when
7569 an original shift would have been undefined. */
7571 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_PRECISION (is_mode
))
7572 || (pos_rtx
!= 0 && len
!= 1)))
7575 enum extraction_pattern pattern
= (in_dest
? EP_insv
7576 : unsignedp
? EP_extzv
: EP_extv
);
7578 /* If INNER is not from memory, we want it to have the mode of a register
7579 extraction pattern's structure operand, or word_mode if there is no
7580 such pattern. The same applies to extraction_mode and pos_mode
7581 and their respective operands.
7583 For memory, assume that the desired extraction_mode and pos_mode
7584 are the same as for a register operation, since at present we don't
7585 have named patterns for aligned memory structures. */
7586 struct extraction_insn insn
;
7587 if (get_best_reg_extraction_insn (&insn
, pattern
,
7588 GET_MODE_BITSIZE (inner_mode
), mode
))
7590 wanted_inner_reg_mode
= insn
.struct_mode
;
7591 pos_mode
= insn
.pos_mode
;
7592 extraction_mode
= insn
.field_mode
;
7595 /* Never narrow an object, since that might not be safe. */
7597 if (mode
!= VOIDmode
7598 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
7599 extraction_mode
= mode
;
7602 wanted_inner_mode
= wanted_inner_reg_mode
;
7605 /* Be careful not to go beyond the extracted object and maintain the
7606 natural alignment of the memory. */
7607 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
7608 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7609 > GET_MODE_BITSIZE (wanted_inner_mode
))
7611 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
7612 gcc_assert (wanted_inner_mode
!= VOIDmode
);
7618 if (BITS_BIG_ENDIAN
)
7620 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7621 BITS_BIG_ENDIAN style. If position is constant, compute new
7622 position. Otherwise, build subtraction.
7623 Note that POS is relative to the mode of the original argument.
7624 If it's a MEM we need to recompute POS relative to that.
7625 However, if we're extracting from (or inserting into) a register,
7626 we want to recompute POS relative to wanted_inner_mode. */
7627 int width
= (MEM_P (inner
)
7628 ? GET_MODE_BITSIZE (is_mode
)
7629 : GET_MODE_BITSIZE (wanted_inner_mode
));
7632 pos
= width
- len
- pos
;
7635 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7636 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7638 /* POS may be less than 0 now, but we check for that below.
7639 Note that it can only be less than 0 if !MEM_P (inner). */
7642 /* If INNER has a wider mode, and this is a constant extraction, try to
7643 make it smaller and adjust the byte to point to the byte containing
7645 if (wanted_inner_mode
!= VOIDmode
7646 && inner_mode
!= wanted_inner_mode
7648 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
7650 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7651 && ! MEM_VOLATILE_P (inner
))
7655 /* The computations below will be correct if the machine is big
7656 endian in both bits and bytes or little endian in bits and bytes.
7657 If it is mixed, we must adjust. */
7659 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7660 adjust OFFSET to compensate. */
7661 if (BYTES_BIG_ENDIAN
7662 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
7663 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7665 /* We can now move to the desired byte. */
7666 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7667 * GET_MODE_SIZE (wanted_inner_mode
);
7668 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7670 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7671 && is_mode
!= wanted_inner_mode
)
7672 offset
= (GET_MODE_SIZE (is_mode
)
7673 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7675 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7678 /* If INNER is not memory, get it into the proper mode. If we are changing
7679 its mode, POS must be a constant and smaller than the size of the new
7681 else if (!MEM_P (inner
))
7683 /* On the LHS, don't create paradoxical subregs implicitely truncating
7684 the register unless TRULY_NOOP_TRUNCATION. */
7686 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7690 if (GET_MODE (inner
) != wanted_inner_mode
7692 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7698 inner
= force_to_mode (inner
, wanted_inner_mode
,
7700 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7702 : (((HOST_WIDE_INT_1U
<< len
) - 1)
7707 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7708 have to zero extend. Otherwise, we can just use a SUBREG. */
7710 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7712 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7713 GET_MODE (pos_rtx
));
7715 /* If we know that no extraneous bits are set, and that the high
7716 bit is not set, convert extraction to cheaper one - either
7717 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7719 if (flag_expensive_optimizations
7720 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7721 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7722 & ~(((unsigned HOST_WIDE_INT
)
7723 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7727 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7728 GET_MODE (pos_rtx
));
7730 /* Prefer ZERO_EXTENSION, since it gives more information to
7732 if (set_src_cost (temp1
, pos_mode
, optimize_this_for_speed_p
)
7733 < set_src_cost (temp
, pos_mode
, optimize_this_for_speed_p
))
7739 /* Make POS_RTX unless we already have it and it is correct. If we don't
7740 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7742 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7743 pos_rtx
= orig_pos_rtx
;
7745 else if (pos_rtx
== 0)
7746 pos_rtx
= GEN_INT (pos
);
7748 /* Make the required operation. See if we can use existing rtx. */
7749 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7750 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7752 new_rtx
= gen_lowpart (mode
, new_rtx
);
7757 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7758 with any other operations in X. Return X without that shift if so. */
7761 extract_left_shift (rtx x
, int count
)
7763 enum rtx_code code
= GET_CODE (x
);
7764 machine_mode mode
= GET_MODE (x
);
7770 /* This is the shift itself. If it is wide enough, we will return
7771 either the value being shifted if the shift count is equal to
7772 COUNT or a shift for the difference. */
7773 if (CONST_INT_P (XEXP (x
, 1))
7774 && INTVAL (XEXP (x
, 1)) >= count
)
7775 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7776 INTVAL (XEXP (x
, 1)) - count
);
7780 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7781 return simplify_gen_unary (code
, mode
, tem
, mode
);
7785 case PLUS
: case IOR
: case XOR
: case AND
:
7786 /* If we can safely shift this constant and we find the inner shift,
7787 make a new operation. */
7788 if (CONST_INT_P (XEXP (x
, 1))
7789 && (UINTVAL (XEXP (x
, 1))
7790 & (((HOST_WIDE_INT_1U
<< count
)) - 1)) == 0
7791 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7793 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7794 return simplify_gen_binary (code
, mode
, tem
,
7795 gen_int_mode (val
, mode
));
7806 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7807 level of the expression and MODE is its mode. IN_CODE is as for
7808 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7809 that should be used when recursing on operands of *X_PTR.
7811 There are two possible actions:
7813 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7814 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7816 - Return a new rtx, which the caller returns directly. */
7819 make_compound_operation_int (machine_mode mode
, rtx
*x_ptr
,
7820 enum rtx_code in_code
,
7821 enum rtx_code
*next_code_ptr
)
7824 enum rtx_code next_code
= *next_code_ptr
;
7825 enum rtx_code code
= GET_CODE (x
);
7826 int mode_width
= GET_MODE_PRECISION (mode
);
7831 bool equality_comparison
= false;
7835 equality_comparison
= true;
7839 /* Process depending on the code of this operation. If NEW is set
7840 nonzero, it will be returned. */
7845 /* Convert shifts by constants into multiplications if inside
7847 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7848 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7849 && INTVAL (XEXP (x
, 1)) >= 0)
7851 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7852 HOST_WIDE_INT multval
= HOST_WIDE_INT_1
<< count
;
7854 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7855 if (GET_CODE (new_rtx
) == NEG
)
7857 new_rtx
= XEXP (new_rtx
, 0);
7860 multval
= trunc_int_for_mode (multval
, mode
);
7861 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
7868 lhs
= make_compound_operation (lhs
, next_code
);
7869 rhs
= make_compound_operation (rhs
, next_code
);
7870 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
)
7872 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7874 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7876 else if (GET_CODE (lhs
) == MULT
7877 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7879 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7880 simplify_gen_unary (NEG
, mode
,
7883 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7887 SUBST (XEXP (x
, 0), lhs
);
7888 SUBST (XEXP (x
, 1), rhs
);
7890 maybe_swap_commutative_operands (x
);
7896 lhs
= make_compound_operation (lhs
, next_code
);
7897 rhs
= make_compound_operation (rhs
, next_code
);
7898 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
)
7900 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7902 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7904 else if (GET_CODE (rhs
) == MULT
7905 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7907 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7908 simplify_gen_unary (NEG
, mode
,
7911 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7915 SUBST (XEXP (x
, 0), lhs
);
7916 SUBST (XEXP (x
, 1), rhs
);
7921 /* If the second operand is not a constant, we can't do anything
7923 if (!CONST_INT_P (XEXP (x
, 1)))
7926 /* If the constant is a power of two minus one and the first operand
7927 is a logical right shift, make an extraction. */
7928 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7929 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7931 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7932 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
7933 0, in_code
== COMPARE
);
7936 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7937 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
7938 && subreg_lowpart_p (XEXP (x
, 0))
7939 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
7940 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7942 rtx inner_x0
= SUBREG_REG (XEXP (x
, 0));
7943 machine_mode inner_mode
= GET_MODE (inner_x0
);
7944 new_rtx
= make_compound_operation (XEXP (inner_x0
, 0), next_code
);
7945 new_rtx
= make_extraction (inner_mode
, new_rtx
, 0,
7947 i
, 1, 0, in_code
== COMPARE
);
7951 /* If we narrowed the mode when dropping the subreg, then
7952 we must zero-extend to keep the semantics of the AND. */
7953 if (GET_MODE_SIZE (inner_mode
) >= GET_MODE_SIZE (mode
))
7955 else if (SCALAR_INT_MODE_P (inner_mode
))
7956 new_rtx
= simplify_gen_unary (ZERO_EXTEND
, mode
,
7957 new_rtx
, inner_mode
);
7962 /* If that didn't give anything, see if the AND simplifies on
7964 if (!new_rtx
&& i
>= 0)
7966 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7967 new_rtx
= make_extraction (mode
, new_rtx
, 0, NULL_RTX
, i
, 1,
7968 0, in_code
== COMPARE
);
7971 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7972 else if ((GET_CODE (XEXP (x
, 0)) == XOR
7973 || GET_CODE (XEXP (x
, 0)) == IOR
)
7974 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
7975 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
7976 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7978 /* Apply the distributive law, and then try to make extractions. */
7979 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
7980 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
7982 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
7984 new_rtx
= make_compound_operation (new_rtx
, in_code
);
7987 /* If we are have (and (rotate X C) M) and C is larger than the number
7988 of bits in M, this is an extraction. */
7990 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
7991 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7992 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
7993 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
7995 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7996 new_rtx
= make_extraction (mode
, new_rtx
,
7997 (GET_MODE_PRECISION (mode
)
7998 - INTVAL (XEXP (XEXP (x
, 0), 1))),
7999 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8002 /* On machines without logical shifts, if the operand of the AND is
8003 a logical shift and our mask turns off all the propagated sign
8004 bits, we can replace the logical shift with an arithmetic shift. */
8005 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8006 && !have_insn_for (LSHIFTRT
, mode
)
8007 && have_insn_for (ASHIFTRT
, mode
)
8008 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8009 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8010 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8011 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8013 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
8015 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
8016 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
8018 gen_rtx_ASHIFTRT (mode
,
8019 make_compound_operation
8020 (XEXP (XEXP (x
, 0), 0), next_code
),
8021 XEXP (XEXP (x
, 0), 1)));
8024 /* If the constant is one less than a power of two, this might be
8025 representable by an extraction even if no shift is present.
8026 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8027 we are in a COMPARE. */
8028 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8029 new_rtx
= make_extraction (mode
,
8030 make_compound_operation (XEXP (x
, 0),
8032 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8034 /* If we are in a comparison and this is an AND with a power of two,
8035 convert this into the appropriate bit extract. */
8036 else if (in_code
== COMPARE
8037 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
8038 && (equality_comparison
|| i
< GET_MODE_PRECISION (mode
) - 1))
8039 new_rtx
= make_extraction (mode
,
8040 make_compound_operation (XEXP (x
, 0),
8042 i
, NULL_RTX
, 1, 1, 0, 1);
8044 /* If the one operand is a paradoxical subreg of a register or memory and
8045 the constant (limited to the smaller mode) has only zero bits where
8046 the sub expression has known zero bits, this can be expressed as
8048 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
)
8052 sub
= XEXP (XEXP (x
, 0), 0);
8053 machine_mode sub_mode
= GET_MODE (sub
);
8054 if ((REG_P (sub
) || MEM_P (sub
))
8055 && GET_MODE_PRECISION (sub_mode
) < mode_width
)
8057 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (sub_mode
);
8058 unsigned HOST_WIDE_INT mask
;
8060 /* original AND constant with all the known zero bits set */
8061 mask
= UINTVAL (XEXP (x
, 1)) | (~nonzero_bits (sub
, sub_mode
));
8062 if ((mask
& mode_mask
) == mode_mask
)
8064 new_rtx
= make_compound_operation (sub
, next_code
);
8065 new_rtx
= make_extraction (mode
, new_rtx
, 0, 0,
8066 GET_MODE_PRECISION (sub_mode
),
8067 1, 0, in_code
== COMPARE
);
8075 /* If the sign bit is known to be zero, replace this with an
8076 arithmetic shift. */
8077 if (have_insn_for (ASHIFTRT
, mode
)
8078 && ! have_insn_for (LSHIFTRT
, mode
)
8079 && mode_width
<= HOST_BITS_PER_WIDE_INT
8080 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
8082 new_rtx
= gen_rtx_ASHIFTRT (mode
,
8083 make_compound_operation (XEXP (x
, 0),
8095 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8096 this is a SIGN_EXTRACT. */
8097 if (CONST_INT_P (rhs
)
8098 && GET_CODE (lhs
) == ASHIFT
8099 && CONST_INT_P (XEXP (lhs
, 1))
8100 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
8101 && INTVAL (XEXP (lhs
, 1)) >= 0
8102 && INTVAL (rhs
) < mode_width
)
8104 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
8105 new_rtx
= make_extraction (mode
, new_rtx
,
8106 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
8107 NULL_RTX
, mode_width
- INTVAL (rhs
),
8108 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8112 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8113 If so, try to merge the shifts into a SIGN_EXTEND. We could
8114 also do this for some cases of SIGN_EXTRACT, but it doesn't
8115 seem worth the effort; the case checked for occurs on Alpha. */
8118 && ! (GET_CODE (lhs
) == SUBREG
8119 && (OBJECT_P (SUBREG_REG (lhs
))))
8120 && CONST_INT_P (rhs
)
8121 && INTVAL (rhs
) >= 0
8122 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
8123 && INTVAL (rhs
) < mode_width
8124 && (new_rtx
= extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
8125 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
, next_code
),
8126 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
8127 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8132 /* Call ourselves recursively on the inner expression. If we are
8133 narrowing the object and it has a different RTL code from
8134 what it originally did, do this SUBREG as a force_to_mode. */
8136 rtx inner
= SUBREG_REG (x
), simplified
;
8137 enum rtx_code subreg_code
= in_code
;
8139 /* If the SUBREG is masking of a logical right shift,
8140 make an extraction. */
8141 if (GET_CODE (inner
) == LSHIFTRT
8142 && CONST_INT_P (XEXP (inner
, 1))
8143 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
8144 && (UINTVAL (XEXP (inner
, 1))
8145 < GET_MODE_PRECISION (GET_MODE (inner
)))
8146 && subreg_lowpart_p (x
))
8148 new_rtx
= make_compound_operation (XEXP (inner
, 0), next_code
);
8149 int width
= GET_MODE_PRECISION (GET_MODE (inner
))
8150 - INTVAL (XEXP (inner
, 1));
8151 if (width
> mode_width
)
8153 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (inner
, 1),
8154 width
, 1, 0, in_code
== COMPARE
);
8158 /* If in_code is COMPARE, it isn't always safe to pass it through
8159 to the recursive make_compound_operation call. */
8160 if (subreg_code
== COMPARE
8161 && (!subreg_lowpart_p (x
)
8162 || GET_CODE (inner
) == SUBREG
8163 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8164 is (const_int 0), rather than
8165 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8166 || (GET_CODE (inner
) == AND
8167 && CONST_INT_P (XEXP (inner
, 1))
8168 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
8169 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
8170 >= GET_MODE_BITSIZE (mode
))))
8173 tem
= make_compound_operation (inner
, subreg_code
);
8176 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
8180 if (GET_CODE (tem
) != GET_CODE (inner
)
8181 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
8182 && subreg_lowpart_p (x
))
8185 = force_to_mode (tem
, mode
, HOST_WIDE_INT_M1U
, 0);
8187 /* If we have something other than a SUBREG, we might have
8188 done an expansion, so rerun ourselves. */
8189 if (GET_CODE (newer
) != SUBREG
)
8190 newer
= make_compound_operation (newer
, in_code
);
8192 /* force_to_mode can expand compounds. If it just re-expanded the
8193 compound, use gen_lowpart to convert to the desired mode. */
8194 if (rtx_equal_p (newer
, x
)
8195 /* Likewise if it re-expanded the compound only partially.
8196 This happens for SUBREG of ZERO_EXTRACT if they extract
8197 the same number of bits. */
8198 || (GET_CODE (newer
) == SUBREG
8199 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
8200 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
8201 && GET_CODE (inner
) == AND
8202 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
8203 return gen_lowpart (GET_MODE (x
), tem
);
8218 *x_ptr
= gen_lowpart (mode
, new_rtx
);
8219 *next_code_ptr
= next_code
;
8223 /* Look at the expression rooted at X. Look for expressions
8224 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8225 Form these expressions.
8227 Return the new rtx, usually just X.
8229 Also, for machines like the VAX that don't have logical shift insns,
8230 try to convert logical to arithmetic shift operations in cases where
8231 they are equivalent. This undoes the canonicalizations to logical
8232 shifts done elsewhere.
8234 We try, as much as possible, to re-use rtl expressions to save memory.
8236 IN_CODE says what kind of expression we are processing. Normally, it is
8237 SET. In a memory address it is MEM. When processing the arguments of
8238 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8239 precisely it is an equality comparison against zero. */
8242 make_compound_operation (rtx x
, enum rtx_code in_code
)
8244 enum rtx_code code
= GET_CODE (x
);
8247 enum rtx_code next_code
;
8250 /* Select the code to be used in recursive calls. Once we are inside an
8251 address, we stay there. If we have a comparison, set to COMPARE,
8252 but once inside, go back to our default of SET. */
8254 next_code
= (code
== MEM
? MEM
8255 : ((code
== COMPARE
|| COMPARISON_P (x
))
8256 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
8257 : in_code
== COMPARE
|| in_code
== EQ
? SET
: in_code
);
8259 if (SCALAR_INT_MODE_P (GET_MODE (x
)))
8261 rtx new_rtx
= make_compound_operation_int (GET_MODE (x
), &x
,
8262 in_code
, &next_code
);
8265 code
= GET_CODE (x
);
8268 /* Now recursively process each operand of this operation. We need to
8269 handle ZERO_EXTEND specially so that we don't lose track of the
8271 if (code
== ZERO_EXTEND
)
8273 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8274 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8275 new_rtx
, GET_MODE (XEXP (x
, 0)));
8278 SUBST (XEXP (x
, 0), new_rtx
);
8282 fmt
= GET_RTX_FORMAT (code
);
8283 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
8286 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
8287 SUBST (XEXP (x
, i
), new_rtx
);
8289 else if (fmt
[i
] == 'E')
8290 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8292 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
8293 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
8296 maybe_swap_commutative_operands (x
);
8300 /* Given M see if it is a value that would select a field of bits
8301 within an item, but not the entire word. Return -1 if not.
8302 Otherwise, return the starting position of the field, where 0 is the
8305 *PLEN is set to the length of the field. */
8308 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
8310 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8311 int pos
= m
? ctz_hwi (m
) : -1;
8315 /* Now shift off the low-order zero bits and see if we have a
8316 power of two minus 1. */
8317 len
= exact_log2 ((m
>> pos
) + 1);
8326 /* If X refers to a register that equals REG in value, replace these
8327 references with REG. */
8329 canon_reg_for_combine (rtx x
, rtx reg
)
8336 enum rtx_code code
= GET_CODE (x
);
8337 switch (GET_RTX_CLASS (code
))
8340 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8341 if (op0
!= XEXP (x
, 0))
8342 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
8347 case RTX_COMM_ARITH
:
8348 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8349 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8350 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8351 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
8355 case RTX_COMM_COMPARE
:
8356 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8357 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8358 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8359 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
8360 GET_MODE (op0
), op0
, op1
);
8364 case RTX_BITFIELD_OPS
:
8365 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8366 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8367 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
8368 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
8369 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
8370 GET_MODE (op0
), op0
, op1
, op2
);
8376 if (rtx_equal_p (get_last_value (reg
), x
)
8377 || rtx_equal_p (reg
, get_last_value (x
)))
8386 fmt
= GET_RTX_FORMAT (code
);
8388 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8391 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8392 if (op
!= XEXP (x
, i
))
8402 else if (fmt
[i
] == 'E')
8405 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8407 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8408 if (op
!= XVECEXP (x
, i
, j
))
8415 XVECEXP (x
, i
, j
) = op
;
8426 /* Return X converted to MODE. If the value is already truncated to
8427 MODE we can just return a subreg even though in the general case we
8428 would need an explicit truncation. */
8431 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8433 if (!CONST_INT_P (x
)
8434 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
))
8435 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8436 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8438 /* Bit-cast X into an integer mode. */
8439 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8440 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)), x
);
8441 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
),
8445 return gen_lowpart (mode
, x
);
8448 /* See if X can be simplified knowing that we will only refer to it in
8449 MODE and will only refer to those bits that are nonzero in MASK.
8450 If other bits are being computed or if masking operations are done
8451 that select a superset of the bits in MASK, they can sometimes be
8454 Return a possibly simplified expression, but always convert X to
8455 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8457 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8458 are all off in X. This is used when X will be complemented, by either
8459 NOT, NEG, or XOR. */
8462 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8465 enum rtx_code code
= GET_CODE (x
);
8466 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8467 machine_mode op_mode
;
8468 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
8471 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8472 code below will do the wrong thing since the mode of such an
8473 expression is VOIDmode.
8475 Also do nothing if X is a CLOBBER; this can happen if X was
8476 the return value from a call to gen_lowpart. */
8477 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8480 /* We want to perform the operation in its present mode unless we know
8481 that the operation is valid in MODE, in which case we do the operation
8483 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8484 && have_insn_for (code
, mode
))
8485 ? mode
: GET_MODE (x
));
8487 /* It is not valid to do a right-shift in a narrower mode
8488 than the one it came in with. */
8489 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8490 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (x
)))
8491 op_mode
= GET_MODE (x
);
8493 /* Truncate MASK to fit OP_MODE. */
8495 mask
&= GET_MODE_MASK (op_mode
);
8497 /* When we have an arithmetic operation, or a shift whose count we
8498 do not know, we need to assume that all bits up to the highest-order
8499 bit in MASK will be needed. This is how we form such a mask. */
8500 if (mask
& (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
8501 fuller_mask
= HOST_WIDE_INT_M1U
;
8503 fuller_mask
= ((HOST_WIDE_INT_1U
<< (floor_log2 (mask
) + 1))
8506 /* Determine what bits of X are guaranteed to be (non)zero. */
8507 nonzero
= nonzero_bits (x
, mode
);
8509 /* If none of the bits in X are needed, return a zero. */
8510 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8513 /* If X is a CONST_INT, return a new one. Do this here since the
8514 test below will fail. */
8515 if (CONST_INT_P (x
))
8517 if (SCALAR_INT_MODE_P (mode
))
8518 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8521 x
= GEN_INT (INTVAL (x
) & mask
);
8522 return gen_lowpart_common (mode
, x
);
8526 /* If X is narrower than MODE and we want all the bits in X's mode, just
8527 get X in the proper mode. */
8528 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
8529 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8530 return gen_lowpart (mode
, x
);
8532 /* We can ignore the effect of a SUBREG if it narrows the mode or
8533 if the constant masks to zero all the bits the mode doesn't have. */
8534 if (GET_CODE (x
) == SUBREG
8535 && subreg_lowpart_p (x
)
8536 && ((GET_MODE_SIZE (GET_MODE (x
))
8537 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8539 & GET_MODE_MASK (GET_MODE (x
))
8540 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
8541 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8543 /* The arithmetic simplifications here only work for scalar integer modes. */
8544 if (!SCALAR_INT_MODE_P (mode
) || !SCALAR_INT_MODE_P (GET_MODE (x
)))
8545 return gen_lowpart_or_truncate (mode
, x
);
8550 /* If X is a (clobber (const_int)), return it since we know we are
8551 generating something that won't match. */
8558 x
= expand_compound_operation (x
);
8559 if (GET_CODE (x
) != code
)
8560 return force_to_mode (x
, mode
, mask
, next_select
);
8564 /* Similarly for a truncate. */
8565 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8568 /* If this is an AND with a constant, convert it into an AND
8569 whose constant is the AND of that constant with MASK. If it
8570 remains an AND of MASK, delete it since it is redundant. */
8572 if (CONST_INT_P (XEXP (x
, 1)))
8574 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8575 mask
& INTVAL (XEXP (x
, 1)));
8577 /* If X is still an AND, see if it is an AND with a mask that
8578 is just some low-order bits. If so, and it is MASK, we don't
8581 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8582 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
8586 /* If it remains an AND, try making another AND with the bits
8587 in the mode mask that aren't in MASK turned on. If the
8588 constant in the AND is wide enough, this might make a
8589 cheaper constant. */
8591 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8592 && GET_MODE_MASK (GET_MODE (x
)) != mask
8593 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
8595 unsigned HOST_WIDE_INT cval
8596 = UINTVAL (XEXP (x
, 1))
8597 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
);
8600 y
= simplify_gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0),
8601 gen_int_mode (cval
, GET_MODE (x
)));
8602 if (set_src_cost (y
, GET_MODE (x
), optimize_this_for_speed_p
)
8603 < set_src_cost (x
, GET_MODE (x
), optimize_this_for_speed_p
))
8613 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8614 low-order bits (as in an alignment operation) and FOO is already
8615 aligned to that boundary, mask C1 to that boundary as well.
8616 This may eliminate that PLUS and, later, the AND. */
8619 unsigned int width
= GET_MODE_PRECISION (mode
);
8620 unsigned HOST_WIDE_INT smask
= mask
;
8622 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8623 number, sign extend it. */
8625 if (width
< HOST_BITS_PER_WIDE_INT
8626 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8627 smask
|= HOST_WIDE_INT_M1U
<< width
;
8629 if (CONST_INT_P (XEXP (x
, 1))
8630 && pow2p_hwi (- smask
)
8631 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8632 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8633 return force_to_mode (plus_constant (GET_MODE (x
), XEXP (x
, 0),
8634 (INTVAL (XEXP (x
, 1)) & smask
)),
8635 mode
, smask
, next_select
);
8641 /* Substituting into the operands of a widening MULT is not likely to
8642 create RTL matching a machine insn. */
8644 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
8645 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
8646 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
8647 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
8648 && REG_P (XEXP (XEXP (x
, 0), 0))
8649 && REG_P (XEXP (XEXP (x
, 1), 0)))
8650 return gen_lowpart_or_truncate (mode
, x
);
8652 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8653 most significant bit in MASK since carries from those bits will
8654 affect the bits we are interested in. */
8659 /* If X is (minus C Y) where C's least set bit is larger than any bit
8660 in the mask, then we may replace with (neg Y). */
8661 if (CONST_INT_P (XEXP (x
, 0))
8662 && least_bit_hwi (UINTVAL (XEXP (x
, 0))) > mask
)
8664 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
8666 return force_to_mode (x
, mode
, mask
, next_select
);
8669 /* Similarly, if C contains every bit in the fuller_mask, then we may
8670 replace with (not Y). */
8671 if (CONST_INT_P (XEXP (x
, 0))
8672 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8674 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
8675 XEXP (x
, 1), GET_MODE (x
));
8676 return force_to_mode (x
, mode
, mask
, next_select
);
8684 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8685 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8686 operation which may be a bitfield extraction. Ensure that the
8687 constant we form is not wider than the mode of X. */
8689 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8690 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8691 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8692 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8693 && CONST_INT_P (XEXP (x
, 1))
8694 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8695 + floor_log2 (INTVAL (XEXP (x
, 1))))
8696 < GET_MODE_PRECISION (GET_MODE (x
)))
8697 && (UINTVAL (XEXP (x
, 1))
8698 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
8700 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8701 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8703 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
8704 XEXP (XEXP (x
, 0), 0), temp
);
8705 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
8706 XEXP (XEXP (x
, 0), 1));
8707 return force_to_mode (x
, mode
, mask
, next_select
);
8711 /* For most binary operations, just propagate into the operation and
8712 change the mode if we have an operation of that mode. */
8714 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8715 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8717 /* If we ended up truncating both operands, truncate the result of the
8718 operation instead. */
8719 if (GET_CODE (op0
) == TRUNCATE
8720 && GET_CODE (op1
) == TRUNCATE
)
8722 op0
= XEXP (op0
, 0);
8723 op1
= XEXP (op1
, 0);
8726 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8727 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8729 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8730 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8734 /* For left shifts, do the same, but just for the first operand.
8735 However, we cannot do anything with shifts where we cannot
8736 guarantee that the counts are smaller than the size of the mode
8737 because such a count will have a different meaning in a
8740 if (! (CONST_INT_P (XEXP (x
, 1))
8741 && INTVAL (XEXP (x
, 1)) >= 0
8742 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8743 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8744 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8745 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8748 /* If the shift count is a constant and we can do arithmetic in
8749 the mode of the shift, refine which bits we need. Otherwise, use the
8750 conservative form of the mask. */
8751 if (CONST_INT_P (XEXP (x
, 1))
8752 && INTVAL (XEXP (x
, 1)) >= 0
8753 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8754 && HWI_COMPUTABLE_MODE_P (op_mode
))
8755 mask
>>= INTVAL (XEXP (x
, 1));
8759 op0
= gen_lowpart_or_truncate (op_mode
,
8760 force_to_mode (XEXP (x
, 0), op_mode
,
8761 mask
, next_select
));
8763 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8764 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8768 /* Here we can only do something if the shift count is a constant,
8769 this shift constant is valid for the host, and we can do arithmetic
8772 if (CONST_INT_P (XEXP (x
, 1))
8773 && INTVAL (XEXP (x
, 1)) >= 0
8774 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8775 && HWI_COMPUTABLE_MODE_P (op_mode
))
8777 rtx inner
= XEXP (x
, 0);
8778 unsigned HOST_WIDE_INT inner_mask
;
8780 /* Select the mask of the bits we need for the shift operand. */
8781 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8783 /* We can only change the mode of the shift if we can do arithmetic
8784 in the mode of the shift and INNER_MASK is no wider than the
8785 width of X's mode. */
8786 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
8787 op_mode
= GET_MODE (x
);
8789 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8791 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
8792 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8795 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8796 shift and AND produces only copies of the sign bit (C2 is one less
8797 than a power of two), we can do this with just a shift. */
8799 if (GET_CODE (x
) == LSHIFTRT
8800 && CONST_INT_P (XEXP (x
, 1))
8801 /* The shift puts one of the sign bit copies in the least significant
8803 && ((INTVAL (XEXP (x
, 1))
8804 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8805 >= GET_MODE_PRECISION (GET_MODE (x
)))
8806 && pow2p_hwi (mask
+ 1)
8807 /* Number of bits left after the shift must be more than the mask
8809 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8810 <= GET_MODE_PRECISION (GET_MODE (x
)))
8811 /* Must be more sign bit copies than the mask needs. */
8812 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8813 >= exact_log2 (mask
+ 1)))
8814 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8815 GEN_INT (GET_MODE_PRECISION (GET_MODE (x
))
8816 - exact_log2 (mask
+ 1)));
8821 /* If we are just looking for the sign bit, we don't need this shift at
8822 all, even if it has a variable count. */
8823 if (val_signbit_p (GET_MODE (x
), mask
))
8824 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8826 /* If this is a shift by a constant, get a mask that contains those bits
8827 that are not copies of the sign bit. We then have two cases: If
8828 MASK only includes those bits, this can be a logical shift, which may
8829 allow simplifications. If MASK is a single-bit field not within
8830 those bits, we are requesting a copy of the sign bit and hence can
8831 shift the sign bit to the appropriate location. */
8833 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8834 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8838 /* If the considered data is wider than HOST_WIDE_INT, we can't
8839 represent a mask for all its bits in a single scalar.
8840 But we only care about the lower bits, so calculate these. */
8842 if (GET_MODE_PRECISION (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
8844 nonzero
= HOST_WIDE_INT_M1U
;
8846 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8847 is the number of bits a full-width mask would have set.
8848 We need only shift if these are fewer than nonzero can
8849 hold. If not, we must keep all bits set in nonzero. */
8851 if (GET_MODE_PRECISION (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
8852 < HOST_BITS_PER_WIDE_INT
)
8853 nonzero
>>= INTVAL (XEXP (x
, 1))
8854 + HOST_BITS_PER_WIDE_INT
8855 - GET_MODE_PRECISION (GET_MODE (x
)) ;
8859 nonzero
= GET_MODE_MASK (GET_MODE (x
));
8860 nonzero
>>= INTVAL (XEXP (x
, 1));
8863 if ((mask
& ~nonzero
) == 0)
8865 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
8866 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8867 if (GET_CODE (x
) != ASHIFTRT
)
8868 return force_to_mode (x
, mode
, mask
, next_select
);
8871 else if ((i
= exact_log2 (mask
)) >= 0)
8873 x
= simplify_shift_const
8874 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8875 GET_MODE_PRECISION (GET_MODE (x
)) - 1 - i
);
8877 if (GET_CODE (x
) != ASHIFTRT
)
8878 return force_to_mode (x
, mode
, mask
, next_select
);
8882 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8883 even if the shift count isn't a constant. */
8885 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8886 XEXP (x
, 0), XEXP (x
, 1));
8890 /* If this is a zero- or sign-extension operation that just affects bits
8891 we don't care about, remove it. Be sure the call above returned
8892 something that is still a shift. */
8894 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
8895 && CONST_INT_P (XEXP (x
, 1))
8896 && INTVAL (XEXP (x
, 1)) >= 0
8897 && (INTVAL (XEXP (x
, 1))
8898 <= GET_MODE_PRECISION (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
8899 && GET_CODE (XEXP (x
, 0)) == ASHIFT
8900 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
8901 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
8908 /* If the shift count is constant and we can do computations
8909 in the mode of X, compute where the bits we care about are.
8910 Otherwise, we can't do anything. Don't change the mode of
8911 the shift or propagate MODE into the shift, though. */
8912 if (CONST_INT_P (XEXP (x
, 1))
8913 && INTVAL (XEXP (x
, 1)) >= 0)
8915 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
8917 gen_int_mode (mask
, GET_MODE (x
)),
8919 if (temp
&& CONST_INT_P (temp
))
8920 x
= simplify_gen_binary (code
, GET_MODE (x
),
8921 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
8922 INTVAL (temp
), next_select
),
8928 /* If we just want the low-order bit, the NEG isn't needed since it
8929 won't change the low-order bit. */
8931 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
8933 /* We need any bits less significant than the most significant bit in
8934 MASK since carries from those bits will affect the bits we are
8940 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8941 same as the XOR case above. Ensure that the constant we form is not
8942 wider than the mode of X. */
8944 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8945 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8946 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8947 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
8948 < GET_MODE_PRECISION (GET_MODE (x
)))
8949 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
8951 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
8953 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
8954 XEXP (XEXP (x
, 0), 0), temp
);
8955 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8956 temp
, XEXP (XEXP (x
, 0), 1));
8958 return force_to_mode (x
, mode
, mask
, next_select
);
8961 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8962 use the full mask inside the NOT. */
8966 op0
= gen_lowpart_or_truncate (op_mode
,
8967 force_to_mode (XEXP (x
, 0), mode
, mask
,
8969 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8970 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
8974 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8975 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8976 which is equal to STORE_FLAG_VALUE. */
8977 if ((mask
& ~STORE_FLAG_VALUE
) == 0
8978 && XEXP (x
, 1) == const0_rtx
8979 && GET_MODE (XEXP (x
, 0)) == mode
8980 && pow2p_hwi (nonzero_bits (XEXP (x
, 0), mode
))
8981 && (nonzero_bits (XEXP (x
, 0), mode
)
8982 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
8983 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8988 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8989 written in a narrower mode. We play it safe and do not do so. */
8991 op0
= gen_lowpart_or_truncate (GET_MODE (x
),
8992 force_to_mode (XEXP (x
, 1), mode
,
8993 mask
, next_select
));
8994 op1
= gen_lowpart_or_truncate (GET_MODE (x
),
8995 force_to_mode (XEXP (x
, 2), mode
,
8996 mask
, next_select
));
8997 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
8998 x
= simplify_gen_ternary (IF_THEN_ELSE
, GET_MODE (x
),
8999 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
9007 /* Ensure we return a value of the proper mode. */
9008 return gen_lowpart_or_truncate (mode
, x
);
9011 /* Return nonzero if X is an expression that has one of two values depending on
9012 whether some other value is zero or nonzero. In that case, we return the
9013 value that is being tested, *PTRUE is set to the value if the rtx being
9014 returned has a nonzero value, and *PFALSE is set to the other alternative.
9016 If we return zero, we set *PTRUE and *PFALSE to X. */
9019 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
9021 machine_mode mode
= GET_MODE (x
);
9022 enum rtx_code code
= GET_CODE (x
);
9023 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
9024 unsigned HOST_WIDE_INT nz
;
9026 /* If we are comparing a value against zero, we are done. */
9027 if ((code
== NE
|| code
== EQ
)
9028 && XEXP (x
, 1) == const0_rtx
)
9030 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
9031 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
9035 /* If this is a unary operation whose operand has one of two values, apply
9036 our opcode to compute those values. */
9037 else if (UNARY_P (x
)
9038 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
9040 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
9041 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
9042 GET_MODE (XEXP (x
, 0)));
9046 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9047 make can't possibly match and would suppress other optimizations. */
9048 else if (code
== COMPARE
)
9051 /* If this is a binary operation, see if either side has only one of two
9052 values. If either one does or if both do and they are conditional on
9053 the same value, compute the new true and false values. */
9054 else if (BINARY_P (x
))
9056 rtx op0
= XEXP (x
, 0);
9057 rtx op1
= XEXP (x
, 1);
9058 cond0
= if_then_else_cond (op0
, &true0
, &false0
);
9059 cond1
= if_then_else_cond (op1
, &true1
, &false1
);
9061 if ((cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
))
9062 && (REG_P (op0
) || REG_P (op1
)))
9064 /* Try to enable a simplification by undoing work done by
9065 if_then_else_cond if it converted a REG into something more
9070 true0
= false0
= op0
;
9075 true1
= false1
= op1
;
9079 if ((cond0
!= 0 || cond1
!= 0)
9080 && ! (cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
)))
9082 /* If if_then_else_cond returned zero, then true/false are the
9083 same rtl. We must copy one of them to prevent invalid rtl
9086 true0
= copy_rtx (true0
);
9087 else if (cond1
== 0)
9088 true1
= copy_rtx (true1
);
9090 if (COMPARISON_P (x
))
9092 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
9094 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
9099 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
9100 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
9103 return cond0
? cond0
: cond1
;
9106 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9107 operands is zero when the other is nonzero, and vice-versa,
9108 and STORE_FLAG_VALUE is 1 or -1. */
9110 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9111 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
9113 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9115 rtx op0
= XEXP (XEXP (x
, 0), 1);
9116 rtx op1
= XEXP (XEXP (x
, 1), 1);
9118 cond0
= XEXP (XEXP (x
, 0), 0);
9119 cond1
= XEXP (XEXP (x
, 1), 0);
9121 if (COMPARISON_P (cond0
)
9122 && COMPARISON_P (cond1
)
9123 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9124 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9125 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9126 || ((swap_condition (GET_CODE (cond0
))
9127 == reversed_comparison_code (cond1
, NULL
))
9128 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9129 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9130 && ! side_effects_p (x
))
9132 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
9133 *pfalse
= simplify_gen_binary (MULT
, mode
,
9135 ? simplify_gen_unary (NEG
, mode
,
9143 /* Similarly for MULT, AND and UMIN, except that for these the result
9145 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9146 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
9147 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9149 cond0
= XEXP (XEXP (x
, 0), 0);
9150 cond1
= XEXP (XEXP (x
, 1), 0);
9152 if (COMPARISON_P (cond0
)
9153 && COMPARISON_P (cond1
)
9154 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9155 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9156 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9157 || ((swap_condition (GET_CODE (cond0
))
9158 == reversed_comparison_code (cond1
, NULL
))
9159 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9160 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9161 && ! side_effects_p (x
))
9163 *ptrue
= *pfalse
= const0_rtx
;
9169 else if (code
== IF_THEN_ELSE
)
9171 /* If we have IF_THEN_ELSE already, extract the condition and
9172 canonicalize it if it is NE or EQ. */
9173 cond0
= XEXP (x
, 0);
9174 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
9175 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
9176 return XEXP (cond0
, 0);
9177 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
9179 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
9180 return XEXP (cond0
, 0);
9186 /* If X is a SUBREG, we can narrow both the true and false values
9187 if the inner expression, if there is a condition. */
9188 else if (code
== SUBREG
9189 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
9192 true0
= simplify_gen_subreg (mode
, true0
,
9193 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9194 false0
= simplify_gen_subreg (mode
, false0
,
9195 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9196 if (true0
&& false0
)
9204 /* If X is a constant, this isn't special and will cause confusions
9205 if we treat it as such. Likewise if it is equivalent to a constant. */
9206 else if (CONSTANT_P (x
)
9207 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
9210 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9211 will be least confusing to the rest of the compiler. */
9212 else if (mode
== BImode
)
9214 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
9218 /* If X is known to be either 0 or -1, those are the true and
9219 false values when testing X. */
9220 else if (x
== constm1_rtx
|| x
== const0_rtx
9221 || (mode
!= VOIDmode
&& mode
!= BLKmode
9222 && num_sign_bit_copies (x
, mode
) == GET_MODE_PRECISION (mode
)))
9224 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
9228 /* Likewise for 0 or a single bit. */
9229 else if (HWI_COMPUTABLE_MODE_P (mode
)
9230 && pow2p_hwi (nz
= nonzero_bits (x
, mode
)))
9232 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
9236 /* Otherwise fail; show no condition with true and false values the same. */
9237 *ptrue
= *pfalse
= x
;
9241 /* Return the value of expression X given the fact that condition COND
9242 is known to be true when applied to REG as its first operand and VAL
9243 as its second. X is known to not be shared and so can be modified in
9246 We only handle the simplest cases, and specifically those cases that
9247 arise with IF_THEN_ELSE expressions. */
9250 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
9252 enum rtx_code code
= GET_CODE (x
);
9256 if (side_effects_p (x
))
9259 /* If either operand of the condition is a floating point value,
9260 then we have to avoid collapsing an EQ comparison. */
9262 && rtx_equal_p (x
, reg
)
9263 && ! FLOAT_MODE_P (GET_MODE (x
))
9264 && ! FLOAT_MODE_P (GET_MODE (val
)))
9267 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
9270 /* If X is (abs REG) and we know something about REG's relationship
9271 with zero, we may be able to simplify this. */
9273 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
9276 case GE
: case GT
: case EQ
:
9279 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
9281 GET_MODE (XEXP (x
, 0)));
9286 /* The only other cases we handle are MIN, MAX, and comparisons if the
9287 operands are the same as REG and VAL. */
9289 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
9291 if (rtx_equal_p (XEXP (x
, 0), val
))
9293 std::swap (val
, reg
);
9294 cond
= swap_condition (cond
);
9297 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
9299 if (COMPARISON_P (x
))
9301 if (comparison_dominates_p (cond
, code
))
9302 return const_true_rtx
;
9304 code
= reversed_comparison_code (x
, NULL
);
9306 && comparison_dominates_p (cond
, code
))
9311 else if (code
== SMAX
|| code
== SMIN
9312 || code
== UMIN
|| code
== UMAX
)
9314 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
9316 /* Do not reverse the condition when it is NE or EQ.
9317 This is because we cannot conclude anything about
9318 the value of 'SMAX (x, y)' when x is not equal to y,
9319 but we can when x equals y. */
9320 if ((code
== SMAX
|| code
== UMAX
)
9321 && ! (cond
== EQ
|| cond
== NE
))
9322 cond
= reverse_condition (cond
);
9327 return unsignedp
? x
: XEXP (x
, 1);
9329 return unsignedp
? x
: XEXP (x
, 0);
9331 return unsignedp
? XEXP (x
, 1) : x
;
9333 return unsignedp
? XEXP (x
, 0) : x
;
9340 else if (code
== SUBREG
)
9342 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
9343 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
9345 if (SUBREG_REG (x
) != r
)
9347 /* We must simplify subreg here, before we lose track of the
9348 original inner_mode. */
9349 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
9350 inner_mode
, SUBREG_BYTE (x
));
9354 SUBST (SUBREG_REG (x
), r
);
9359 /* We don't have to handle SIGN_EXTEND here, because even in the
9360 case of replacing something with a modeless CONST_INT, a
9361 CONST_INT is already (supposed to be) a valid sign extension for
9362 its narrower mode, which implies it's already properly
9363 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9364 story is different. */
9365 else if (code
== ZERO_EXTEND
)
9367 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
9368 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
9370 if (XEXP (x
, 0) != r
)
9372 /* We must simplify the zero_extend here, before we lose
9373 track of the original inner_mode. */
9374 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
9379 SUBST (XEXP (x
, 0), r
);
9385 fmt
= GET_RTX_FORMAT (code
);
9386 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9389 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
9390 else if (fmt
[i
] == 'E')
9391 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9392 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
9399 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9400 assignment as a field assignment. */
9403 rtx_equal_for_field_assignment_p (rtx x
, rtx y
, bool widen_x
)
9405 if (widen_x
&& GET_MODE (x
) != GET_MODE (y
))
9407 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (GET_MODE (y
)))
9409 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
9411 /* For big endian, adjust the memory offset. */
9412 if (BYTES_BIG_ENDIAN
)
9413 x
= adjust_address_nv (x
, GET_MODE (y
),
9414 -subreg_lowpart_offset (GET_MODE (x
),
9417 x
= adjust_address_nv (x
, GET_MODE (y
), 0);
9420 if (x
== y
|| rtx_equal_p (x
, y
))
9423 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
9426 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9427 Note that all SUBREGs of MEM are paradoxical; otherwise they
9428 would have been rewritten. */
9429 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9430 && MEM_P (SUBREG_REG (y
))
9431 && rtx_equal_p (SUBREG_REG (y
),
9432 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9435 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9436 && MEM_P (SUBREG_REG (x
))
9437 && rtx_equal_p (SUBREG_REG (x
),
9438 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9441 /* We used to see if get_last_value of X and Y were the same but that's
9442 not correct. In one direction, we'll cause the assignment to have
9443 the wrong destination and in the case, we'll import a register into this
9444 insn that might have already have been dead. So fail if none of the
9445 above cases are true. */
9449 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9450 Return that assignment if so.
9452 We only handle the most common cases. */
9455 make_field_assignment (rtx x
)
9457 rtx dest
= SET_DEST (x
);
9458 rtx src
= SET_SRC (x
);
9463 unsigned HOST_WIDE_INT len
;
9467 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9468 a clear of a one-bit field. We will have changed it to
9469 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9472 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9473 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9474 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9475 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9477 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9480 return gen_rtx_SET (assign
, const0_rtx
);
9484 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9485 && subreg_lowpart_p (XEXP (src
, 0))
9486 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
9487 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
9488 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9489 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9490 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9491 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9493 assign
= make_extraction (VOIDmode
, dest
, 0,
9494 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9497 return gen_rtx_SET (assign
, const0_rtx
);
9501 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9503 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9504 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9505 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9507 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9510 return gen_rtx_SET (assign
, const1_rtx
);
9514 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9515 SRC is an AND with all bits of that field set, then we can discard
9517 if (GET_CODE (dest
) == ZERO_EXTRACT
9518 && CONST_INT_P (XEXP (dest
, 1))
9519 && GET_CODE (src
) == AND
9520 && CONST_INT_P (XEXP (src
, 1)))
9522 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9523 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9524 unsigned HOST_WIDE_INT ze_mask
;
9526 if (width
>= HOST_BITS_PER_WIDE_INT
)
9529 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9531 /* Complete overlap. We can remove the source AND. */
9532 if ((and_mask
& ze_mask
) == ze_mask
)
9533 return gen_rtx_SET (dest
, XEXP (src
, 0));
9535 /* Partial overlap. We can reduce the source AND. */
9536 if ((and_mask
& ze_mask
) != and_mask
)
9538 mode
= GET_MODE (src
);
9539 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9540 gen_int_mode (and_mask
& ze_mask
, mode
));
9541 return gen_rtx_SET (dest
, src
);
9545 /* The other case we handle is assignments into a constant-position
9546 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9547 a mask that has all one bits except for a group of zero bits and
9548 OTHER is known to have zeros where C1 has ones, this is such an
9549 assignment. Compute the position and length from C1. Shift OTHER
9550 to the appropriate position, force it to the required mode, and
9551 make the extraction. Check for the AND in both operands. */
9553 /* One or more SUBREGs might obscure the constant-position field
9554 assignment. The first one we are likely to encounter is an outer
9555 narrowing SUBREG, which we can just strip for the purposes of
9556 identifying the constant-field assignment. */
9557 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
))
9558 src
= SUBREG_REG (src
);
9560 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9563 rhs
= expand_compound_operation (XEXP (src
, 0));
9564 lhs
= expand_compound_operation (XEXP (src
, 1));
9566 if (GET_CODE (rhs
) == AND
9567 && CONST_INT_P (XEXP (rhs
, 1))
9568 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9569 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9570 /* The second SUBREG that might get in the way is a paradoxical
9571 SUBREG around the first operand of the AND. We want to
9572 pretend the operand is as wide as the destination here. We
9573 do this by adjusting the MEM to wider mode for the sole
9574 purpose of the call to rtx_equal_for_field_assignment_p. Also
9575 note this trick only works for MEMs. */
9576 else if (GET_CODE (rhs
) == AND
9577 && paradoxical_subreg_p (XEXP (rhs
, 0))
9578 && MEM_P (SUBREG_REG (XEXP (rhs
, 0)))
9579 && CONST_INT_P (XEXP (rhs
, 1))
9580 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs
, 0)),
9582 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9583 else if (GET_CODE (lhs
) == AND
9584 && CONST_INT_P (XEXP (lhs
, 1))
9585 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9586 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9587 /* The second SUBREG that might get in the way is a paradoxical
9588 SUBREG around the first operand of the AND. We want to
9589 pretend the operand is as wide as the destination here. We
9590 do this by adjusting the MEM to wider mode for the sole
9591 purpose of the call to rtx_equal_for_field_assignment_p. Also
9592 note this trick only works for MEMs. */
9593 else if (GET_CODE (lhs
) == AND
9594 && paradoxical_subreg_p (XEXP (lhs
, 0))
9595 && MEM_P (SUBREG_REG (XEXP (lhs
, 0)))
9596 && CONST_INT_P (XEXP (lhs
, 1))
9597 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs
, 0)),
9599 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9603 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
9604 if (pos
< 0 || pos
+ len
> GET_MODE_PRECISION (GET_MODE (dest
))
9605 || GET_MODE_PRECISION (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
9606 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
9609 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9613 /* The mode to use for the source is the mode of the assignment, or of
9614 what is inside a possible STRICT_LOW_PART. */
9615 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9616 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9618 /* Shift OTHER right POS places and make it the source, restricting it
9619 to the proper length and mode. */
9621 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9625 src
= force_to_mode (src
, mode
,
9626 GET_MODE_PRECISION (mode
) >= HOST_BITS_PER_WIDE_INT
9628 : (HOST_WIDE_INT_1U
<< len
) - 1,
9631 /* If SRC is masked by an AND that does not make a difference in
9632 the value being stored, strip it. */
9633 if (GET_CODE (assign
) == ZERO_EXTRACT
9634 && CONST_INT_P (XEXP (assign
, 1))
9635 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9636 && GET_CODE (src
) == AND
9637 && CONST_INT_P (XEXP (src
, 1))
9638 && UINTVAL (XEXP (src
, 1))
9639 == (HOST_WIDE_INT_1U
<< INTVAL (XEXP (assign
, 1))) - 1)
9640 src
= XEXP (src
, 0);
9642 return gen_rtx_SET (assign
, src
);
9645 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9649 apply_distributive_law (rtx x
)
9651 enum rtx_code code
= GET_CODE (x
);
9652 enum rtx_code inner_code
;
9653 rtx lhs
, rhs
, other
;
9656 /* Distributivity is not true for floating point as it can change the
9657 value. So we don't do it unless -funsafe-math-optimizations. */
9658 if (FLOAT_MODE_P (GET_MODE (x
))
9659 && ! flag_unsafe_math_optimizations
)
9662 /* The outer operation can only be one of the following: */
9663 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9664 && code
!= PLUS
&& code
!= MINUS
)
9670 /* If either operand is a primitive we can't do anything, so get out
9672 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9675 lhs
= expand_compound_operation (lhs
);
9676 rhs
= expand_compound_operation (rhs
);
9677 inner_code
= GET_CODE (lhs
);
9678 if (inner_code
!= GET_CODE (rhs
))
9681 /* See if the inner and outer operations distribute. */
9688 /* These all distribute except over PLUS. */
9689 if (code
== PLUS
|| code
== MINUS
)
9694 if (code
!= PLUS
&& code
!= MINUS
)
9699 /* This is also a multiply, so it distributes over everything. */
9702 /* This used to handle SUBREG, but this turned out to be counter-
9703 productive, since (subreg (op ...)) usually is not handled by
9704 insn patterns, and this "optimization" therefore transformed
9705 recognizable patterns into unrecognizable ones. Therefore the
9706 SUBREG case was removed from here.
9708 It is possible that distributing SUBREG over arithmetic operations
9709 leads to an intermediate result than can then be optimized further,
9710 e.g. by moving the outer SUBREG to the other side of a SET as done
9711 in simplify_set. This seems to have been the original intent of
9712 handling SUBREGs here.
9714 However, with current GCC this does not appear to actually happen,
9715 at least on major platforms. If some case is found where removing
9716 the SUBREG case here prevents follow-on optimizations, distributing
9717 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9723 /* Set LHS and RHS to the inner operands (A and B in the example
9724 above) and set OTHER to the common operand (C in the example).
9725 There is only one way to do this unless the inner operation is
9727 if (COMMUTATIVE_ARITH_P (lhs
)
9728 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9729 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9730 else if (COMMUTATIVE_ARITH_P (lhs
)
9731 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9732 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9733 else if (COMMUTATIVE_ARITH_P (lhs
)
9734 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9735 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9736 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9737 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9741 /* Form the new inner operation, seeing if it simplifies first. */
9742 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9744 /* There is one exception to the general way of distributing:
9745 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9746 if (code
== XOR
&& inner_code
== IOR
)
9749 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9752 /* We may be able to continuing distributing the result, so call
9753 ourselves recursively on the inner operation before forming the
9754 outer operation, which we return. */
9755 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9756 apply_distributive_law (tem
), other
);
9759 /* See if X is of the form (* (+ A B) C), and if so convert to
9760 (+ (* A C) (* B C)) and try to simplify.
9762 Most of the time, this results in no change. However, if some of
9763 the operands are the same or inverses of each other, simplifications
9766 For example, (and (ior A B) (not B)) can occur as the result of
9767 expanding a bit field assignment. When we apply the distributive
9768 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9769 which then simplifies to (and (A (not B))).
9771 Note that no checks happen on the validity of applying the inverse
9772 distributive law. This is pointless since we can do it in the
9773 few places where this routine is called.
9775 N is the index of the term that is decomposed (the arithmetic operation,
9776 i.e. (+ A B) in the first example above). !N is the index of the term that
9777 is distributed, i.e. of C in the first example above. */
9779 distribute_and_simplify_rtx (rtx x
, int n
)
9782 enum rtx_code outer_code
, inner_code
;
9783 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9785 /* Distributivity is not true for floating point as it can change the
9786 value. So we don't do it unless -funsafe-math-optimizations. */
9787 if (FLOAT_MODE_P (GET_MODE (x
))
9788 && ! flag_unsafe_math_optimizations
)
9791 decomposed
= XEXP (x
, n
);
9792 if (!ARITHMETIC_P (decomposed
))
9795 mode
= GET_MODE (x
);
9796 outer_code
= GET_CODE (x
);
9797 distributed
= XEXP (x
, !n
);
9799 inner_code
= GET_CODE (decomposed
);
9800 inner_op0
= XEXP (decomposed
, 0);
9801 inner_op1
= XEXP (decomposed
, 1);
9803 /* Special case (and (xor B C) (not A)), which is equivalent to
9804 (xor (ior A B) (ior A C)) */
9805 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9807 distributed
= XEXP (distributed
, 0);
9813 /* Distribute the second term. */
9814 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9815 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9819 /* Distribute the first term. */
9820 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9821 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9824 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9826 if (GET_CODE (tmp
) != outer_code
9827 && (set_src_cost (tmp
, mode
, optimize_this_for_speed_p
)
9828 < set_src_cost (x
, mode
, optimize_this_for_speed_p
)))
9834 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9835 in MODE. Return an equivalent form, if different from (and VAROP
9836 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9839 simplify_and_const_int_1 (machine_mode mode
, rtx varop
,
9840 unsigned HOST_WIDE_INT constop
)
9842 unsigned HOST_WIDE_INT nonzero
;
9843 unsigned HOST_WIDE_INT orig_constop
;
9848 orig_constop
= constop
;
9849 if (GET_CODE (varop
) == CLOBBER
)
9852 /* Simplify VAROP knowing that we will be only looking at some of the
9855 Note by passing in CONSTOP, we guarantee that the bits not set in
9856 CONSTOP are not significant and will never be examined. We must
9857 ensure that is the case by explicitly masking out those bits
9858 before returning. */
9859 varop
= force_to_mode (varop
, mode
, constop
, 0);
9861 /* If VAROP is a CLOBBER, we will fail so return it. */
9862 if (GET_CODE (varop
) == CLOBBER
)
9865 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9866 to VAROP and return the new constant. */
9867 if (CONST_INT_P (varop
))
9868 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9870 /* See what bits may be nonzero in VAROP. Unlike the general case of
9871 a call to nonzero_bits, here we don't care about bits outside
9874 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
9876 /* Turn off all bits in the constant that are known to already be zero.
9877 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9878 which is tested below. */
9882 /* If we don't have any bits left, return zero. */
9886 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9887 a power of two, we can replace this with an ASHIFT. */
9888 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
9889 && (i
= exact_log2 (constop
)) >= 0)
9890 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
9892 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9893 or XOR, then try to apply the distributive law. This may eliminate
9894 operations if either branch can be simplified because of the AND.
9895 It may also make some cases more complex, but those cases probably
9896 won't match a pattern either with or without this. */
9898 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
9902 apply_distributive_law
9903 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
9904 simplify_and_const_int (NULL_RTX
,
9908 simplify_and_const_int (NULL_RTX
,
9913 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9914 the AND and see if one of the operands simplifies to zero. If so, we
9915 may eliminate it. */
9917 if (GET_CODE (varop
) == PLUS
9918 && pow2p_hwi (constop
+ 1))
9922 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
9923 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
9924 if (o0
== const0_rtx
)
9926 if (o1
== const0_rtx
)
9930 /* Make a SUBREG if necessary. If we can't make it, fail. */
9931 varop
= gen_lowpart (mode
, varop
);
9932 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9935 /* If we are only masking insignificant bits, return VAROP. */
9936 if (constop
== nonzero
)
9939 if (varop
== orig_varop
&& constop
== orig_constop
)
9942 /* Otherwise, return an AND. */
9943 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
9947 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9950 Return an equivalent form, if different from X. Otherwise, return X. If
9951 X is zero, we are to always construct the equivalent form. */
9954 simplify_and_const_int (rtx x
, machine_mode mode
, rtx varop
,
9955 unsigned HOST_WIDE_INT constop
)
9957 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
9962 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
9963 gen_int_mode (constop
, mode
));
9964 if (GET_MODE (x
) != mode
)
9965 x
= gen_lowpart (mode
, x
);
9969 /* Given a REG, X, compute which bits in X can be nonzero.
9970 We don't care about bits outside of those defined in MODE.
9972 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9973 a shift, AND, or zero_extract, we can do better. */
9976 reg_nonzero_bits_for_combine (const_rtx x
, machine_mode mode
,
9977 const_rtx known_x ATTRIBUTE_UNUSED
,
9978 machine_mode known_mode ATTRIBUTE_UNUSED
,
9979 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
9980 unsigned HOST_WIDE_INT
*nonzero
)
9985 /* If X is a register whose nonzero bits value is current, use it.
9986 Otherwise, if X is a register whose value we can find, use that
9987 value. Otherwise, use the previously-computed global nonzero bits
9988 for this register. */
9990 rsp
= ®_stat
[REGNO (x
)];
9991 if (rsp
->last_set_value
!= 0
9992 && (rsp
->last_set_mode
== mode
9993 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
9994 && GET_MODE_CLASS (mode
) == MODE_INT
))
9995 && ((rsp
->last_set_label
>= label_tick_ebb_start
9996 && rsp
->last_set_label
< label_tick
)
9997 || (rsp
->last_set_label
== label_tick
9998 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9999 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10000 && REGNO (x
) < reg_n_sets_max
10001 && REG_N_SETS (REGNO (x
)) == 1
10002 && !REGNO_REG_SET_P
10003 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10006 /* Note that, even if the precision of last_set_mode is lower than that
10007 of mode, record_value_for_reg invoked nonzero_bits on the register
10008 with nonzero_bits_mode (because last_set_mode is necessarily integral
10009 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10010 are all valid, hence in mode too since nonzero_bits_mode is defined
10011 to the largest HWI_COMPUTABLE_MODE_P mode. */
10012 *nonzero
&= rsp
->last_set_nonzero_bits
;
10016 tem
= get_last_value (x
);
10019 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
10020 tem
= sign_extend_short_imm (tem
, GET_MODE (x
),
10021 GET_MODE_PRECISION (mode
));
10026 if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
10028 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
10030 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
))
10031 /* We don't know anything about the upper bits. */
10032 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
10040 /* Return the number of bits at the high-order end of X that are known to
10041 be equal to the sign bit. X will be used in mode MODE; if MODE is
10042 VOIDmode, X will be used in its own mode. The returned value will always
10043 be between 1 and the number of bits in MODE. */
10046 reg_num_sign_bit_copies_for_combine (const_rtx x
, machine_mode mode
,
10047 const_rtx known_x ATTRIBUTE_UNUSED
,
10048 machine_mode known_mode
10050 unsigned int known_ret ATTRIBUTE_UNUSED
,
10051 unsigned int *result
)
10054 reg_stat_type
*rsp
;
10056 rsp
= ®_stat
[REGNO (x
)];
10057 if (rsp
->last_set_value
!= 0
10058 && rsp
->last_set_mode
== mode
10059 && ((rsp
->last_set_label
>= label_tick_ebb_start
10060 && rsp
->last_set_label
< label_tick
)
10061 || (rsp
->last_set_label
== label_tick
10062 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10063 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10064 && REGNO (x
) < reg_n_sets_max
10065 && REG_N_SETS (REGNO (x
)) == 1
10066 && !REGNO_REG_SET_P
10067 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10070 *result
= rsp
->last_set_sign_bit_copies
;
10074 tem
= get_last_value (x
);
10078 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
10079 && GET_MODE_PRECISION (GET_MODE (x
)) == GET_MODE_PRECISION (mode
))
10080 *result
= rsp
->sign_bit_copies
;
10085 /* Return the number of "extended" bits there are in X, when interpreted
10086 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10087 unsigned quantities, this is the number of high-order zero bits.
10088 For signed quantities, this is the number of copies of the sign bit
10089 minus 1. In both case, this function returns the number of "spare"
10090 bits. For example, if two quantities for which this function returns
10091 at least 1 are added, the addition is known not to overflow.
10093 This function will always return 0 unless called during combine, which
10094 implies that it must be called from a define_split. */
10097 extended_count (const_rtx x
, machine_mode mode
, int unsignedp
)
10099 if (nonzero_sign_valid
== 0)
10103 ? (HWI_COMPUTABLE_MODE_P (mode
)
10104 ? (unsigned int) (GET_MODE_PRECISION (mode
) - 1
10105 - floor_log2 (nonzero_bits (x
, mode
)))
10107 : num_sign_bit_copies (x
, mode
) - 1);
10110 /* This function is called from `simplify_shift_const' to merge two
10111 outer operations. Specifically, we have already found that we need
10112 to perform operation *POP0 with constant *PCONST0 at the outermost
10113 position. We would now like to also perform OP1 with constant CONST1
10114 (with *POP0 being done last).
10116 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10117 the resulting operation. *PCOMP_P is set to 1 if we would need to
10118 complement the innermost operand, otherwise it is unchanged.
10120 MODE is the mode in which the operation will be done. No bits outside
10121 the width of this mode matter. It is assumed that the width of this mode
10122 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10124 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10125 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10126 result is simply *PCONST0.
10128 If the resulting operation cannot be expressed as one operation, we
10129 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10132 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, machine_mode mode
, int *pcomp_p
)
10134 enum rtx_code op0
= *pop0
;
10135 HOST_WIDE_INT const0
= *pconst0
;
10137 const0
&= GET_MODE_MASK (mode
);
10138 const1
&= GET_MODE_MASK (mode
);
10140 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10144 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10147 if (op1
== UNKNOWN
|| op0
== SET
)
10150 else if (op0
== UNKNOWN
)
10151 op0
= op1
, const0
= const1
;
10153 else if (op0
== op1
)
10177 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10178 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
10181 /* If the two constants aren't the same, we can't do anything. The
10182 remaining six cases can all be done. */
10183 else if (const0
!= const1
)
10191 /* (a & b) | b == b */
10193 else /* op1 == XOR */
10194 /* (a ^ b) | b == a | b */
10200 /* (a & b) ^ b == (~a) & b */
10201 op0
= AND
, *pcomp_p
= 1;
10202 else /* op1 == IOR */
10203 /* (a | b) ^ b == a & ~b */
10204 op0
= AND
, const0
= ~const0
;
10209 /* (a | b) & b == b */
10211 else /* op1 == XOR */
10212 /* (a ^ b) & b) == (~a) & b */
10219 /* Check for NO-OP cases. */
10220 const0
&= GET_MODE_MASK (mode
);
10222 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
10224 else if (const0
== 0 && op0
== AND
)
10226 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
10232 /* ??? Slightly redundant with the above mask, but not entirely.
10233 Moving this above means we'd have to sign-extend the mode mask
10234 for the final test. */
10235 if (op0
!= UNKNOWN
&& op0
!= NEG
)
10236 *pconst0
= trunc_int_for_mode (const0
, mode
);
10241 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10242 the shift in. The original shift operation CODE is performed on OP in
10243 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10244 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10245 result of the shift is subject to operation OUTER_CODE with operand
10248 static machine_mode
10249 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
10250 machine_mode orig_mode
, machine_mode mode
,
10251 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
10253 if (orig_mode
== mode
)
10255 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
10257 /* In general we can't perform in wider mode for right shift and rotate. */
10261 /* We can still widen if the bits brought in from the left are identical
10262 to the sign bit of ORIG_MODE. */
10263 if (num_sign_bit_copies (op
, mode
)
10264 > (unsigned) (GET_MODE_PRECISION (mode
)
10265 - GET_MODE_PRECISION (orig_mode
)))
10270 /* Similarly here but with zero bits. */
10271 if (HWI_COMPUTABLE_MODE_P (mode
)
10272 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
10275 /* We can also widen if the bits brought in will be masked off. This
10276 operation is performed in ORIG_MODE. */
10277 if (outer_code
== AND
)
10279 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
10282 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
10291 gcc_unreachable ();
10298 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10299 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10300 if we cannot simplify it. Otherwise, return a simplified value.
10302 The shift is normally computed in the widest mode we find in VAROP, as
10303 long as it isn't a different number of words than RESULT_MODE. Exceptions
10304 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10307 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
10308 rtx varop
, int orig_count
)
10310 enum rtx_code orig_code
= code
;
10311 rtx orig_varop
= varop
;
10313 machine_mode mode
= result_mode
;
10314 machine_mode shift_mode
, tmode
;
10315 unsigned int mode_words
10316 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
10317 /* We form (outer_op (code varop count) (outer_const)). */
10318 enum rtx_code outer_op
= UNKNOWN
;
10319 HOST_WIDE_INT outer_const
= 0;
10320 int complement_p
= 0;
10323 /* Make sure and truncate the "natural" shift on the way in. We don't
10324 want to do this inside the loop as it makes it more difficult to
10326 if (SHIFT_COUNT_TRUNCATED
)
10327 orig_count
&= GET_MODE_UNIT_BITSIZE (mode
) - 1;
10329 /* If we were given an invalid count, don't do anything except exactly
10330 what was requested. */
10332 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_UNIT_PRECISION (mode
))
10335 count
= orig_count
;
10337 /* Unless one of the branches of the `if' in this loop does a `continue',
10338 we will `break' the loop after the `if'. */
10342 /* If we have an operand of (clobber (const_int 0)), fail. */
10343 if (GET_CODE (varop
) == CLOBBER
)
10346 /* Convert ROTATERT to ROTATE. */
10347 if (code
== ROTATERT
)
10349 unsigned int bitsize
= GET_MODE_UNIT_PRECISION (result_mode
);
10351 count
= bitsize
- count
;
10354 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
,
10355 mode
, outer_op
, outer_const
);
10356 machine_mode shift_unit_mode
= GET_MODE_INNER (shift_mode
);
10358 /* Handle cases where the count is greater than the size of the mode
10359 minus 1. For ASHIFT, use the size minus one as the count (this can
10360 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10361 take the count modulo the size. For other shifts, the result is
10364 Since these shifts are being produced by the compiler by combining
10365 multiple operations, each of which are defined, we know what the
10366 result is supposed to be. */
10368 if (count
> (GET_MODE_PRECISION (shift_unit_mode
) - 1))
10370 if (code
== ASHIFTRT
)
10371 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10372 else if (code
== ROTATE
|| code
== ROTATERT
)
10373 count
%= GET_MODE_PRECISION (shift_unit_mode
);
10376 /* We can't simply return zero because there may be an
10378 varop
= const0_rtx
;
10384 /* If we discovered we had to complement VAROP, leave. Making a NOT
10385 here would cause an infinite loop. */
10389 if (shift_mode
== shift_unit_mode
)
10391 /* An arithmetic right shift of a quantity known to be -1 or 0
10393 if (code
== ASHIFTRT
10394 && (num_sign_bit_copies (varop
, shift_unit_mode
)
10395 == GET_MODE_PRECISION (shift_unit_mode
)))
10401 /* If we are doing an arithmetic right shift and discarding all but
10402 the sign bit copies, this is equivalent to doing a shift by the
10403 bitsize minus one. Convert it into that shift because it will
10404 often allow other simplifications. */
10406 if (code
== ASHIFTRT
10407 && (count
+ num_sign_bit_copies (varop
, shift_unit_mode
)
10408 >= GET_MODE_PRECISION (shift_unit_mode
)))
10409 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10411 /* We simplify the tests below and elsewhere by converting
10412 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10413 `make_compound_operation' will convert it to an ASHIFTRT for
10414 those machines (such as VAX) that don't have an LSHIFTRT. */
10415 if (code
== ASHIFTRT
10416 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10417 && val_signbit_known_clear_p (shift_unit_mode
,
10418 nonzero_bits (varop
,
10422 if (((code
== LSHIFTRT
10423 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10424 && !(nonzero_bits (varop
, shift_unit_mode
) >> count
))
10426 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10427 && !((nonzero_bits (varop
, shift_unit_mode
) << count
)
10428 & GET_MODE_MASK (shift_unit_mode
))))
10429 && !side_effects_p (varop
))
10430 varop
= const0_rtx
;
10433 switch (GET_CODE (varop
))
10439 new_rtx
= expand_compound_operation (varop
);
10440 if (new_rtx
!= varop
)
10448 /* The following rules apply only to scalars. */
10449 if (shift_mode
!= shift_unit_mode
)
10452 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10453 minus the width of a smaller mode, we can do this with a
10454 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10455 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10456 && ! mode_dependent_address_p (XEXP (varop
, 0),
10457 MEM_ADDR_SPACE (varop
))
10458 && ! MEM_VOLATILE_P (varop
)
10459 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
10460 MODE_INT
, 1)) != BLKmode
)
10462 new_rtx
= adjust_address_nv (varop
, tmode
,
10463 BYTES_BIG_ENDIAN
? 0
10464 : count
/ BITS_PER_UNIT
);
10466 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10467 : ZERO_EXTEND
, mode
, new_rtx
);
10474 /* The following rules apply only to scalars. */
10475 if (shift_mode
!= shift_unit_mode
)
10478 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10479 the same number of words as what we've seen so far. Then store
10480 the widest mode in MODE. */
10481 if (subreg_lowpart_p (varop
)
10482 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
10483 > GET_MODE_SIZE (GET_MODE (varop
)))
10484 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
10485 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
10487 && GET_MODE_CLASS (GET_MODE (varop
)) == MODE_INT
10488 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop
))) == MODE_INT
)
10490 varop
= SUBREG_REG (varop
);
10491 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
10492 mode
= GET_MODE (varop
);
10498 /* Some machines use MULT instead of ASHIFT because MULT
10499 is cheaper. But it is still better on those machines to
10500 merge two shifts into one. */
10501 if (CONST_INT_P (XEXP (varop
, 1))
10502 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10505 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10507 GEN_INT (exact_log2 (
10508 UINTVAL (XEXP (varop
, 1)))));
10514 /* Similar, for when divides are cheaper. */
10515 if (CONST_INT_P (XEXP (varop
, 1))
10516 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10519 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10521 GEN_INT (exact_log2 (
10522 UINTVAL (XEXP (varop
, 1)))));
10528 /* If we are extracting just the sign bit of an arithmetic
10529 right shift, that shift is not needed. However, the sign
10530 bit of a wider mode may be different from what would be
10531 interpreted as the sign bit in a narrower mode, so, if
10532 the result is narrower, don't discard the shift. */
10533 if (code
== LSHIFTRT
10534 && count
== (GET_MODE_UNIT_BITSIZE (result_mode
) - 1)
10535 && (GET_MODE_UNIT_BITSIZE (result_mode
)
10536 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop
))))
10538 varop
= XEXP (varop
, 0);
10547 /* The following rules apply only to scalars. */
10548 if (shift_mode
!= shift_unit_mode
)
10551 /* Here we have two nested shifts. The result is usually the
10552 AND of a new shift with a mask. We compute the result below. */
10553 if (CONST_INT_P (XEXP (varop
, 1))
10554 && INTVAL (XEXP (varop
, 1)) >= 0
10555 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (GET_MODE (varop
))
10556 && HWI_COMPUTABLE_MODE_P (result_mode
)
10557 && HWI_COMPUTABLE_MODE_P (mode
))
10559 enum rtx_code first_code
= GET_CODE (varop
);
10560 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10561 unsigned HOST_WIDE_INT mask
;
10564 /* We have one common special case. We can't do any merging if
10565 the inner code is an ASHIFTRT of a smaller mode. However, if
10566 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10567 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10568 we can convert it to
10569 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10570 This simplifies certain SIGN_EXTEND operations. */
10571 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10572 && count
== (GET_MODE_PRECISION (result_mode
)
10573 - GET_MODE_PRECISION (GET_MODE (varop
))))
10575 /* C3 has the low-order C1 bits zero. */
10577 mask
= GET_MODE_MASK (mode
)
10578 & ~((HOST_WIDE_INT_1U
<< first_count
) - 1);
10580 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
10581 XEXP (varop
, 0), mask
);
10582 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
10584 count
= first_count
;
10589 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10590 than C1 high-order bits equal to the sign bit, we can convert
10591 this to either an ASHIFT or an ASHIFTRT depending on the
10594 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10596 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10597 && GET_MODE (varop
) == shift_mode
10598 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
10601 varop
= XEXP (varop
, 0);
10602 count
-= first_count
;
10612 /* There are some cases we can't do. If CODE is ASHIFTRT,
10613 we can only do this if FIRST_CODE is also ASHIFTRT.
10615 We can't do the case when CODE is ROTATE and FIRST_CODE is
10618 If the mode of this shift is not the mode of the outer shift,
10619 we can't do this if either shift is a right shift or ROTATE.
10621 Finally, we can't do any of these if the mode is too wide
10622 unless the codes are the same.
10624 Handle the case where the shift codes are the same
10627 if (code
== first_code
)
10629 if (GET_MODE (varop
) != result_mode
10630 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10631 || code
== ROTATE
))
10634 count
+= first_count
;
10635 varop
= XEXP (varop
, 0);
10639 if (code
== ASHIFTRT
10640 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10641 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
10642 || (GET_MODE (varop
) != result_mode
10643 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10644 || first_code
== ROTATE
10645 || code
== ROTATE
)))
10648 /* To compute the mask to apply after the shift, shift the
10649 nonzero bits of the inner shift the same way the
10650 outer shift will. */
10652 mask_rtx
= gen_int_mode (nonzero_bits (varop
, GET_MODE (varop
)),
10656 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
10659 /* Give up if we can't compute an outer operation to use. */
10661 || !CONST_INT_P (mask_rtx
)
10662 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10664 result_mode
, &complement_p
))
10667 /* If the shifts are in the same direction, we add the
10668 counts. Otherwise, we subtract them. */
10669 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10670 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10671 count
+= first_count
;
10673 count
-= first_count
;
10675 /* If COUNT is positive, the new shift is usually CODE,
10676 except for the two exceptions below, in which case it is
10677 FIRST_CODE. If the count is negative, FIRST_CODE should
10680 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10681 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10683 else if (count
< 0)
10684 code
= first_code
, count
= -count
;
10686 varop
= XEXP (varop
, 0);
10690 /* If we have (A << B << C) for any shift, we can convert this to
10691 (A << C << B). This wins if A is a constant. Only try this if
10692 B is not a constant. */
10694 else if (GET_CODE (varop
) == code
10695 && CONST_INT_P (XEXP (varop
, 0))
10696 && !CONST_INT_P (XEXP (varop
, 1)))
10698 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10699 sure the result will be masked. See PR70222. */
10700 if (code
== LSHIFTRT
10701 && mode
!= result_mode
10702 && !merge_outer_ops (&outer_op
, &outer_const
, AND
,
10703 GET_MODE_MASK (result_mode
)
10704 >> orig_count
, result_mode
,
10707 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10708 up outer sign extension (often left and right shift) is
10709 hardly more efficient than the original. See PR70429. */
10710 if (code
== ASHIFTRT
&& mode
!= result_mode
)
10713 rtx new_rtx
= simplify_const_binary_operation (code
, mode
,
10716 varop
= gen_rtx_fmt_ee (code
, mode
, new_rtx
, XEXP (varop
, 1));
10723 /* The following rules apply only to scalars. */
10724 if (shift_mode
!= shift_unit_mode
)
10727 /* Make this fit the case below. */
10728 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10734 /* The following rules apply only to scalars. */
10735 if (shift_mode
!= shift_unit_mode
)
10738 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10739 with C the size of VAROP - 1 and the shift is logical if
10740 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10741 we have an (le X 0) operation. If we have an arithmetic shift
10742 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10743 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10745 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10746 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10747 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10748 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10749 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10750 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10753 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
10756 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10757 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10762 /* If we have (shift (logical)), move the logical to the outside
10763 to allow it to possibly combine with another logical and the
10764 shift to combine with another shift. This also canonicalizes to
10765 what a ZERO_EXTRACT looks like. Also, some machines have
10766 (and (shift)) insns. */
10768 if (CONST_INT_P (XEXP (varop
, 1))
10769 /* We can't do this if we have (ashiftrt (xor)) and the
10770 constant has its sign bit set in shift_mode with shift_mode
10771 wider than result_mode. */
10772 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10773 && result_mode
!= shift_mode
10774 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10776 && (new_rtx
= simplify_const_binary_operation
10777 (code
, result_mode
,
10778 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10779 GEN_INT (count
))) != 0
10780 && CONST_INT_P (new_rtx
)
10781 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10782 INTVAL (new_rtx
), result_mode
, &complement_p
))
10784 varop
= XEXP (varop
, 0);
10788 /* If we can't do that, try to simplify the shift in each arm of the
10789 logical expression, make a new logical expression, and apply
10790 the inverse distributive law. This also can't be done for
10791 (ashiftrt (xor)) where we've widened the shift and the constant
10792 changes the sign bit. */
10793 if (CONST_INT_P (XEXP (varop
, 1))
10794 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10795 && result_mode
!= shift_mode
10796 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10799 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10800 XEXP (varop
, 0), count
);
10801 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10802 XEXP (varop
, 1), count
);
10804 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
10806 varop
= apply_distributive_law (varop
);
10814 /* The following rules apply only to scalars. */
10815 if (shift_mode
!= shift_unit_mode
)
10818 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10819 says that the sign bit can be tested, FOO has mode MODE, C is
10820 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10821 that may be nonzero. */
10822 if (code
== LSHIFTRT
10823 && XEXP (varop
, 1) == const0_rtx
10824 && GET_MODE (XEXP (varop
, 0)) == result_mode
10825 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10826 && HWI_COMPUTABLE_MODE_P (result_mode
)
10827 && STORE_FLAG_VALUE
== -1
10828 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10829 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10832 varop
= XEXP (varop
, 0);
10839 /* The following rules apply only to scalars. */
10840 if (shift_mode
!= shift_unit_mode
)
10843 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10844 than the number of bits in the mode is equivalent to A. */
10845 if (code
== LSHIFTRT
10846 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10847 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
10849 varop
= XEXP (varop
, 0);
10854 /* NEG commutes with ASHIFT since it is multiplication. Move the
10855 NEG outside to allow shifts to combine. */
10857 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0, result_mode
,
10860 varop
= XEXP (varop
, 0);
10866 /* The following rules apply only to scalars. */
10867 if (shift_mode
!= shift_unit_mode
)
10870 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10871 is one less than the number of bits in the mode is
10872 equivalent to (xor A 1). */
10873 if (code
== LSHIFTRT
10874 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10875 && XEXP (varop
, 1) == constm1_rtx
10876 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10877 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10881 varop
= XEXP (varop
, 0);
10885 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10886 that might be nonzero in BAR are those being shifted out and those
10887 bits are known zero in FOO, we can replace the PLUS with FOO.
10888 Similarly in the other operand order. This code occurs when
10889 we are computing the size of a variable-size array. */
10891 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10892 && count
< HOST_BITS_PER_WIDE_INT
10893 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
10894 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
10895 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
10897 varop
= XEXP (varop
, 0);
10900 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10901 && count
< HOST_BITS_PER_WIDE_INT
10902 && HWI_COMPUTABLE_MODE_P (result_mode
)
10903 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10905 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10906 & nonzero_bits (XEXP (varop
, 1),
10909 varop
= XEXP (varop
, 1);
10913 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10915 && CONST_INT_P (XEXP (varop
, 1))
10916 && (new_rtx
= simplify_const_binary_operation
10917 (ASHIFT
, result_mode
,
10918 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10919 GEN_INT (count
))) != 0
10920 && CONST_INT_P (new_rtx
)
10921 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
10922 INTVAL (new_rtx
), result_mode
, &complement_p
))
10924 varop
= XEXP (varop
, 0);
10928 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10929 signbit', and attempt to change the PLUS to an XOR and move it to
10930 the outer operation as is done above in the AND/IOR/XOR case
10931 leg for shift(logical). See details in logical handling above
10932 for reasoning in doing so. */
10933 if (code
== LSHIFTRT
10934 && CONST_INT_P (XEXP (varop
, 1))
10935 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
10936 && (new_rtx
= simplify_const_binary_operation
10937 (code
, result_mode
,
10938 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10939 GEN_INT (count
))) != 0
10940 && CONST_INT_P (new_rtx
)
10941 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
10942 INTVAL (new_rtx
), result_mode
, &complement_p
))
10944 varop
= XEXP (varop
, 0);
10951 /* The following rules apply only to scalars. */
10952 if (shift_mode
!= shift_unit_mode
)
10955 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10956 with C the size of VAROP - 1 and the shift is logical if
10957 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10958 we have a (gt X 0) operation. If the shift is arithmetic with
10959 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10960 we have a (neg (gt X 0)) operation. */
10962 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10963 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
10964 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10965 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10966 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10967 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
10968 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10971 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
10974 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10975 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10982 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10983 if the truncate does not affect the value. */
10984 if (code
== LSHIFTRT
10985 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
10986 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10987 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
10988 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop
, 0)))
10989 - GET_MODE_UNIT_PRECISION (GET_MODE (varop
)))))
10991 rtx varop_inner
= XEXP (varop
, 0);
10994 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
10995 XEXP (varop_inner
, 0),
10997 (count
+ INTVAL (XEXP (varop_inner
, 1))));
10998 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
11011 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
, mode
,
11012 outer_op
, outer_const
);
11014 /* We have now finished analyzing the shift. The result should be
11015 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11016 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11017 to the result of the shift. OUTER_CONST is the relevant constant,
11018 but we must turn off all bits turned off in the shift. */
11020 if (outer_op
== UNKNOWN
11021 && orig_code
== code
&& orig_count
== count
11022 && varop
== orig_varop
11023 && shift_mode
== GET_MODE (varop
))
11026 /* Make a SUBREG if necessary. If we can't make it, fail. */
11027 varop
= gen_lowpart (shift_mode
, varop
);
11028 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
11031 /* If we have an outer operation and we just made a shift, it is
11032 possible that we could have simplified the shift were it not
11033 for the outer operation. So try to do the simplification
11036 if (outer_op
!= UNKNOWN
)
11037 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
11042 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
11044 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11045 turn off all the bits that the shift would have turned off. */
11046 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
11047 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
11048 GET_MODE_MASK (result_mode
) >> orig_count
);
11050 /* Do the remainder of the processing in RESULT_MODE. */
11051 x
= gen_lowpart_or_truncate (result_mode
, x
);
11053 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11056 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
11058 if (outer_op
!= UNKNOWN
)
11060 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
11061 && GET_MODE_PRECISION (result_mode
) < HOST_BITS_PER_WIDE_INT
)
11062 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
11064 if (outer_op
== AND
)
11065 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
11066 else if (outer_op
== SET
)
11068 /* This means that we have determined that the result is
11069 equivalent to a constant. This should be rare. */
11070 if (!side_effects_p (x
))
11071 x
= GEN_INT (outer_const
);
11073 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
11074 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
11076 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
11077 GEN_INT (outer_const
));
11083 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11084 The result of the shift is RESULT_MODE. If we cannot simplify it,
11085 return X or, if it is NULL, synthesize the expression with
11086 simplify_gen_binary. Otherwise, return a simplified value.
11088 The shift is normally computed in the widest mode we find in VAROP, as
11089 long as it isn't a different number of words than RESULT_MODE. Exceptions
11090 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11093 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
11094 rtx varop
, int count
)
11096 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
11101 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
11102 if (GET_MODE (x
) != result_mode
)
11103 x
= gen_lowpart (result_mode
, x
);
11108 /* A subroutine of recog_for_combine. See there for arguments and
11112 recog_for_combine_1 (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11114 rtx pat
= *pnewpat
;
11115 rtx pat_without_clobbers
;
11116 int insn_code_number
;
11117 int num_clobbers_to_add
= 0;
11119 rtx notes
= NULL_RTX
;
11120 rtx old_notes
, old_pat
;
11123 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11124 we use to indicate that something didn't match. If we find such a
11125 thing, force rejection. */
11126 if (GET_CODE (pat
) == PARALLEL
)
11127 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
11128 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
11129 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
11132 old_pat
= PATTERN (insn
);
11133 old_notes
= REG_NOTES (insn
);
11134 PATTERN (insn
) = pat
;
11135 REG_NOTES (insn
) = NULL_RTX
;
11137 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11138 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11140 if (insn_code_number
< 0)
11141 fputs ("Failed to match this instruction:\n", dump_file
);
11143 fputs ("Successfully matched this instruction:\n", dump_file
);
11144 print_rtl_single (dump_file
, pat
);
11147 /* If it isn't, there is the possibility that we previously had an insn
11148 that clobbered some register as a side effect, but the combined
11149 insn doesn't need to do that. So try once more without the clobbers
11150 unless this represents an ASM insn. */
11152 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
11153 && GET_CODE (pat
) == PARALLEL
)
11157 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
11158 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
11161 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
11165 SUBST_INT (XVECLEN (pat
, 0), pos
);
11168 pat
= XVECEXP (pat
, 0, 0);
11170 PATTERN (insn
) = pat
;
11171 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11172 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11174 if (insn_code_number
< 0)
11175 fputs ("Failed to match this instruction:\n", dump_file
);
11177 fputs ("Successfully matched this instruction:\n", dump_file
);
11178 print_rtl_single (dump_file
, pat
);
11182 pat_without_clobbers
= pat
;
11184 PATTERN (insn
) = old_pat
;
11185 REG_NOTES (insn
) = old_notes
;
11187 /* Recognize all noop sets, these will be killed by followup pass. */
11188 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
11189 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
11191 /* If we had any clobbers to add, make a new pattern than contains
11192 them. Then check to make sure that all of them are dead. */
11193 if (num_clobbers_to_add
)
11195 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
11196 rtvec_alloc (GET_CODE (pat
) == PARALLEL
11197 ? (XVECLEN (pat
, 0)
11198 + num_clobbers_to_add
)
11199 : num_clobbers_to_add
+ 1));
11201 if (GET_CODE (pat
) == PARALLEL
)
11202 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11203 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
11205 XVECEXP (newpat
, 0, 0) = pat
;
11207 add_clobbers (newpat
, insn_code_number
);
11209 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
11210 i
< XVECLEN (newpat
, 0); i
++)
11212 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
11213 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
11215 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
11217 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
11218 notes
= alloc_reg_note (REG_UNUSED
,
11219 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
11225 if (insn_code_number
>= 0
11226 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
11228 old_pat
= PATTERN (insn
);
11229 old_notes
= REG_NOTES (insn
);
11230 old_icode
= INSN_CODE (insn
);
11231 PATTERN (insn
) = pat
;
11232 REG_NOTES (insn
) = notes
;
11233 INSN_CODE (insn
) = insn_code_number
;
11235 /* Allow targets to reject combined insn. */
11236 if (!targetm
.legitimate_combined_insn (insn
))
11238 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11239 fputs ("Instruction not appropriate for target.",
11242 /* Callers expect recog_for_combine to strip
11243 clobbers from the pattern on failure. */
11244 pat
= pat_without_clobbers
;
11247 insn_code_number
= -1;
11250 PATTERN (insn
) = old_pat
;
11251 REG_NOTES (insn
) = old_notes
;
11252 INSN_CODE (insn
) = old_icode
;
11258 return insn_code_number
;
11261 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11262 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11263 Return whether anything was so changed. */
11266 change_zero_ext (rtx pat
)
11268 bool changed
= false;
11269 rtx
*src
= &SET_SRC (pat
);
11271 subrtx_ptr_iterator::array_type array
;
11272 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11275 machine_mode mode
= GET_MODE (x
);
11278 if (GET_CODE (x
) == ZERO_EXTRACT
11279 && CONST_INT_P (XEXP (x
, 1))
11280 && CONST_INT_P (XEXP (x
, 2))
11281 && GET_MODE (XEXP (x
, 0)) != VOIDmode
11282 && GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
11283 <= GET_MODE_PRECISION (mode
))
11285 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
11287 size
= INTVAL (XEXP (x
, 1));
11289 int start
= INTVAL (XEXP (x
, 2));
11290 if (BITS_BIG_ENDIAN
)
11291 start
= GET_MODE_PRECISION (inner_mode
) - size
- start
;
11294 x
= gen_rtx_LSHIFTRT (inner_mode
, XEXP (x
, 0), GEN_INT (start
));
11297 if (mode
!= inner_mode
)
11298 x
= gen_lowpart_SUBREG (mode
, x
);
11300 else if (GET_CODE (x
) == ZERO_EXTEND
11301 && SCALAR_INT_MODE_P (mode
)
11302 && GET_CODE (XEXP (x
, 0)) == SUBREG
11303 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x
, 0))))
11304 && !paradoxical_subreg_p (XEXP (x
, 0))
11305 && subreg_lowpart_p (XEXP (x
, 0)))
11307 size
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
11308 x
= SUBREG_REG (XEXP (x
, 0));
11309 if (GET_MODE (x
) != mode
)
11310 x
= gen_lowpart_SUBREG (mode
, x
);
11312 else if (GET_CODE (x
) == ZERO_EXTEND
11313 && SCALAR_INT_MODE_P (mode
)
11314 && REG_P (XEXP (x
, 0))
11315 && HARD_REGISTER_P (XEXP (x
, 0))
11316 && can_change_dest_mode (XEXP (x
, 0), 0, mode
))
11318 size
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
11319 x
= gen_rtx_REG (mode
, REGNO (XEXP (x
, 0)));
11324 if (!(GET_CODE (x
) == LSHIFTRT
11325 && CONST_INT_P (XEXP (x
, 1))
11326 && size
+ INTVAL (XEXP (x
, 1)) == GET_MODE_PRECISION (mode
)))
11328 wide_int mask
= wi::mask (size
, false, GET_MODE_PRECISION (mode
));
11329 x
= gen_rtx_AND (mode
, x
, immed_wide_int_const (mask
, mode
));
11337 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11338 maybe_swap_commutative_operands (**iter
);
11340 rtx
*dst
= &SET_DEST (pat
);
11341 if (GET_CODE (*dst
) == ZERO_EXTRACT
11342 && REG_P (XEXP (*dst
, 0))
11343 && CONST_INT_P (XEXP (*dst
, 1))
11344 && CONST_INT_P (XEXP (*dst
, 2)))
11346 rtx reg
= XEXP (*dst
, 0);
11347 int width
= INTVAL (XEXP (*dst
, 1));
11348 int offset
= INTVAL (XEXP (*dst
, 2));
11349 machine_mode mode
= GET_MODE (reg
);
11350 int reg_width
= GET_MODE_PRECISION (mode
);
11351 if (BITS_BIG_ENDIAN
)
11352 offset
= reg_width
- width
- offset
;
11355 wide_int mask
= wi::shifted_mask (offset
, width
, true, reg_width
);
11356 wide_int mask2
= wi::shifted_mask (offset
, width
, false, reg_width
);
11357 x
= gen_rtx_AND (mode
, reg
, immed_wide_int_const (mask
, mode
));
11359 y
= gen_rtx_ASHIFT (mode
, SET_SRC (pat
), GEN_INT (offset
));
11362 z
= gen_rtx_AND (mode
, y
, immed_wide_int_const (mask2
, mode
));
11363 w
= gen_rtx_IOR (mode
, x
, z
);
11364 SUBST (SET_DEST (pat
), reg
);
11365 SUBST (SET_SRC (pat
), w
);
11373 /* Like recog, but we receive the address of a pointer to a new pattern.
11374 We try to match the rtx that the pointer points to.
11375 If that fails, we may try to modify or replace the pattern,
11376 storing the replacement into the same pointer object.
11378 Modifications include deletion or addition of CLOBBERs. If the
11379 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11380 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11381 (and undo if that fails).
11383 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11384 the CLOBBERs are placed.
11386 The value is the final insn code from the pattern ultimately matched,
11390 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11392 rtx pat
= *pnewpat
;
11393 int insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11394 if (insn_code_number
>= 0 || check_asm_operands (pat
))
11395 return insn_code_number
;
11397 void *marker
= get_undo_marker ();
11398 bool changed
= false;
11400 if (GET_CODE (pat
) == SET
)
11401 changed
= change_zero_ext (pat
);
11402 else if (GET_CODE (pat
) == PARALLEL
)
11405 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11407 rtx set
= XVECEXP (pat
, 0, i
);
11408 if (GET_CODE (set
) == SET
)
11409 changed
|= change_zero_ext (set
);
11415 insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11417 if (insn_code_number
< 0)
11418 undo_to_marker (marker
);
11421 return insn_code_number
;
11424 /* Like gen_lowpart_general but for use by combine. In combine it
11425 is not possible to create any new pseudoregs. However, it is
11426 safe to create invalid memory addresses, because combine will
11427 try to recognize them and all they will do is make the combine
11430 If for some reason this cannot do its job, an rtx
11431 (clobber (const_int 0)) is returned.
11432 An insn containing that will not be recognized. */
11435 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
11437 machine_mode imode
= GET_MODE (x
);
11438 unsigned int osize
= GET_MODE_SIZE (omode
);
11439 unsigned int isize
= GET_MODE_SIZE (imode
);
11442 if (omode
== imode
)
11445 /* We can only support MODE being wider than a word if X is a
11446 constant integer or has a mode the same size. */
11447 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
11448 && ! (CONST_SCALAR_INT_P (x
) || isize
== osize
))
11451 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11452 won't know what to do. So we will strip off the SUBREG here and
11453 process normally. */
11454 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
11456 x
= SUBREG_REG (x
);
11458 /* For use in case we fall down into the address adjustments
11459 further below, we need to adjust the known mode and size of
11460 x; imode and isize, since we just adjusted x. */
11461 imode
= GET_MODE (x
);
11463 if (imode
== omode
)
11466 isize
= GET_MODE_SIZE (imode
);
11469 result
= gen_lowpart_common (omode
, x
);
11478 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11480 if (MEM_VOLATILE_P (x
)
11481 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
11484 /* If we want to refer to something bigger than the original memref,
11485 generate a paradoxical subreg instead. That will force a reload
11486 of the original memref X. */
11488 return gen_rtx_SUBREG (omode
, x
, 0);
11490 if (WORDS_BIG_ENDIAN
)
11491 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
11493 /* Adjust the address so that the address-after-the-data is
11495 if (BYTES_BIG_ENDIAN
)
11496 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
11498 return adjust_address_nv (x
, omode
, offset
);
11501 /* If X is a comparison operator, rewrite it in a new mode. This
11502 probably won't match, but may allow further simplifications. */
11503 else if (COMPARISON_P (x
))
11504 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
11506 /* If we couldn't simplify X any other way, just enclose it in a
11507 SUBREG. Normally, this SUBREG won't match, but some patterns may
11508 include an explicit SUBREG or we may simplify it further in combine. */
11513 if (imode
== VOIDmode
)
11515 imode
= int_mode_for_mode (omode
);
11516 x
= gen_lowpart_common (imode
, x
);
11520 res
= lowpart_subreg (omode
, x
, imode
);
11526 return gen_rtx_CLOBBER (omode
, const0_rtx
);
11529 /* Try to simplify a comparison between OP0 and a constant OP1,
11530 where CODE is the comparison code that will be tested, into a
11531 (CODE OP0 const0_rtx) form.
11533 The result is a possibly different comparison code to use.
11534 *POP1 may be updated. */
11536 static enum rtx_code
11537 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
11538 rtx op0
, rtx
*pop1
)
11540 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11541 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
11543 /* Get the constant we are comparing against and turn off all bits
11544 not on in our mode. */
11545 if (mode
!= VOIDmode
)
11546 const_op
= trunc_int_for_mode (const_op
, mode
);
11548 /* If we are comparing against a constant power of two and the value
11549 being compared can only have that single bit nonzero (e.g., it was
11550 `and'ed with that bit), we can replace this with a comparison
11553 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
11554 || code
== LT
|| code
== LTU
)
11555 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11556 && pow2p_hwi (const_op
& GET_MODE_MASK (mode
))
11557 && (nonzero_bits (op0
, mode
)
11558 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (mode
))))
11560 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
11564 /* Similarly, if we are comparing a value known to be either -1 or
11565 0 with -1, change it to the opposite comparison against zero. */
11567 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
11568 || code
== GEU
|| code
== LTU
)
11569 && num_sign_bit_copies (op0
, mode
) == mode_width
)
11571 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
11575 /* Do some canonicalizations based on the comparison code. We prefer
11576 comparisons against zero and then prefer equality comparisons.
11577 If we can reduce the size of a constant, we will do that too. */
11581 /* < C is equivalent to <= (C - 1) */
11586 /* ... fall through to LE case below. */
11587 gcc_fallthrough ();
11593 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11600 /* If we are doing a <= 0 comparison on a value known to have
11601 a zero sign bit, we can replace this with == 0. */
11602 else if (const_op
== 0
11603 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11604 && (nonzero_bits (op0
, mode
)
11605 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
11611 /* >= C is equivalent to > (C - 1). */
11616 /* ... fall through to GT below. */
11617 gcc_fallthrough ();
11623 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11630 /* If we are doing a > 0 comparison on a value known to have
11631 a zero sign bit, we can replace this with != 0. */
11632 else if (const_op
== 0
11633 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11634 && (nonzero_bits (op0
, mode
)
11635 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
11641 /* < C is equivalent to <= (C - 1). */
11646 /* ... fall through ... */
11648 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11649 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11650 && (unsigned HOST_WIDE_INT
) const_op
11651 == HOST_WIDE_INT_1U
<< (mode_width
- 1))
11661 /* unsigned <= 0 is equivalent to == 0 */
11664 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11665 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11666 && (unsigned HOST_WIDE_INT
) const_op
11667 == (HOST_WIDE_INT_1U
<< (mode_width
- 1)) - 1)
11675 /* >= C is equivalent to > (C - 1). */
11680 /* ... fall through ... */
11683 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11684 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11685 && (unsigned HOST_WIDE_INT
) const_op
11686 == HOST_WIDE_INT_1U
<< (mode_width
- 1))
11696 /* unsigned > 0 is equivalent to != 0 */
11699 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11700 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11701 && (unsigned HOST_WIDE_INT
) const_op
11702 == (HOST_WIDE_INT_1U
<< (mode_width
- 1)) - 1)
11713 *pop1
= GEN_INT (const_op
);
11717 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11718 comparison code that will be tested.
11720 The result is a possibly different comparison code to use. *POP0 and
11721 *POP1 may be updated.
11723 It is possible that we might detect that a comparison is either always
11724 true or always false. However, we do not perform general constant
11725 folding in combine, so this knowledge isn't useful. Such tautologies
11726 should have been detected earlier. Hence we ignore all such cases. */
11728 static enum rtx_code
11729 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11735 machine_mode mode
, tmode
;
11737 /* Try a few ways of applying the same transformation to both operands. */
11740 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11741 so check specially. */
11742 if (!WORD_REGISTER_OPERATIONS
11743 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11744 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11745 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11746 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11747 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11748 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11749 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
11750 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
11751 && CONST_INT_P (XEXP (op0
, 1))
11752 && XEXP (op0
, 1) == XEXP (op1
, 1)
11753 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11754 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11755 && (INTVAL (XEXP (op0
, 1))
11756 == (GET_MODE_PRECISION (GET_MODE (op0
))
11757 - (GET_MODE_PRECISION
11758 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
11760 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11761 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11764 /* If both operands are the same constant shift, see if we can ignore the
11765 shift. We can if the shift is a rotate or if the bits shifted out of
11766 this shift are known to be zero for both inputs and if the type of
11767 comparison is compatible with the shift. */
11768 if (GET_CODE (op0
) == GET_CODE (op1
)
11769 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11770 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11771 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11772 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11773 || (GET_CODE (op0
) == ASHIFTRT
11774 && (code
!= GTU
&& code
!= LTU
11775 && code
!= GEU
&& code
!= LEU
)))
11776 && CONST_INT_P (XEXP (op0
, 1))
11777 && INTVAL (XEXP (op0
, 1)) >= 0
11778 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11779 && XEXP (op0
, 1) == XEXP (op1
, 1))
11781 machine_mode mode
= GET_MODE (op0
);
11782 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11783 int shift_count
= INTVAL (XEXP (op0
, 1));
11785 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11786 mask
&= (mask
>> shift_count
) << shift_count
;
11787 else if (GET_CODE (op0
) == ASHIFT
)
11788 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11790 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11791 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11792 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11797 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11798 SUBREGs are of the same mode, and, in both cases, the AND would
11799 be redundant if the comparison was done in the narrower mode,
11800 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11801 and the operand's possibly nonzero bits are 0xffffff01; in that case
11802 if we only care about QImode, we don't need the AND). This case
11803 occurs if the output mode of an scc insn is not SImode and
11804 STORE_FLAG_VALUE == 1 (e.g., the 386).
11806 Similarly, check for a case where the AND's are ZERO_EXTEND
11807 operations from some narrower mode even though a SUBREG is not
11810 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
11811 && CONST_INT_P (XEXP (op0
, 1))
11812 && CONST_INT_P (XEXP (op1
, 1)))
11814 rtx inner_op0
= XEXP (op0
, 0);
11815 rtx inner_op1
= XEXP (op1
, 0);
11816 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
11817 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
11820 if (paradoxical_subreg_p (inner_op0
)
11821 && GET_CODE (inner_op1
) == SUBREG
11822 && (GET_MODE (SUBREG_REG (inner_op0
))
11823 == GET_MODE (SUBREG_REG (inner_op1
)))
11824 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0
)))
11825 <= HOST_BITS_PER_WIDE_INT
)
11826 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
11827 GET_MODE (SUBREG_REG (inner_op0
)))))
11828 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
11829 GET_MODE (SUBREG_REG (inner_op1
))))))
11831 op0
= SUBREG_REG (inner_op0
);
11832 op1
= SUBREG_REG (inner_op1
);
11834 /* The resulting comparison is always unsigned since we masked
11835 off the original sign bit. */
11836 code
= unsigned_condition (code
);
11842 for (tmode
= GET_CLASS_NARROWEST_MODE
11843 (GET_MODE_CLASS (GET_MODE (op0
)));
11844 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
11845 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
11847 op0
= gen_lowpart_or_truncate (tmode
, inner_op0
);
11848 op1
= gen_lowpart_or_truncate (tmode
, inner_op1
);
11849 code
= unsigned_condition (code
);
11858 /* If both operands are NOT, we can strip off the outer operation
11859 and adjust the comparison code for swapped operands; similarly for
11860 NEG, except that this must be an equality comparison. */
11861 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
11862 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
11863 && (code
== EQ
|| code
== NE
)))
11864 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
11870 /* If the first operand is a constant, swap the operands and adjust the
11871 comparison code appropriately, but don't do this if the second operand
11872 is already a constant integer. */
11873 if (swap_commutative_operands_p (op0
, op1
))
11875 std::swap (op0
, op1
);
11876 code
= swap_condition (code
);
11879 /* We now enter a loop during which we will try to simplify the comparison.
11880 For the most part, we only are concerned with comparisons with zero,
11881 but some things may really be comparisons with zero but not start
11882 out looking that way. */
11884 while (CONST_INT_P (op1
))
11886 machine_mode mode
= GET_MODE (op0
);
11887 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11888 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11889 int equality_comparison_p
;
11890 int sign_bit_comparison_p
;
11891 int unsigned_comparison_p
;
11892 HOST_WIDE_INT const_op
;
11894 /* We only want to handle integral modes. This catches VOIDmode,
11895 CCmode, and the floating-point modes. An exception is that we
11896 can handle VOIDmode if OP0 is a COMPARE or a comparison
11899 if (GET_MODE_CLASS (mode
) != MODE_INT
11900 && ! (mode
== VOIDmode
11901 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
11904 /* Try to simplify the compare to constant, possibly changing the
11905 comparison op, and/or changing op1 to zero. */
11906 code
= simplify_compare_const (code
, mode
, op0
, &op1
);
11907 const_op
= INTVAL (op1
);
11909 /* Compute some predicates to simplify code below. */
11911 equality_comparison_p
= (code
== EQ
|| code
== NE
);
11912 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
11913 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
11916 /* If this is a sign bit comparison and we can do arithmetic in
11917 MODE, say that we will only be needing the sign bit of OP0. */
11918 if (sign_bit_comparison_p
&& HWI_COMPUTABLE_MODE_P (mode
))
11919 op0
= force_to_mode (op0
, mode
,
11921 << (GET_MODE_PRECISION (mode
) - 1),
11924 /* Now try cases based on the opcode of OP0. If none of the cases
11925 does a "continue", we exit this loop immediately after the
11928 switch (GET_CODE (op0
))
11931 /* If we are extracting a single bit from a variable position in
11932 a constant that has only a single bit set and are comparing it
11933 with zero, we can convert this into an equality comparison
11934 between the position and the location of the single bit. */
11935 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11936 have already reduced the shift count modulo the word size. */
11937 if (!SHIFT_COUNT_TRUNCATED
11938 && CONST_INT_P (XEXP (op0
, 0))
11939 && XEXP (op0
, 1) == const1_rtx
11940 && equality_comparison_p
&& const_op
== 0
11941 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
11943 if (BITS_BIG_ENDIAN
)
11944 i
= BITS_PER_WORD
- 1 - i
;
11946 op0
= XEXP (op0
, 2);
11950 /* Result is nonzero iff shift count is equal to I. */
11951 code
= reverse_condition (code
);
11958 tem
= expand_compound_operation (op0
);
11967 /* If testing for equality, we can take the NOT of the constant. */
11968 if (equality_comparison_p
11969 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
11971 op0
= XEXP (op0
, 0);
11976 /* If just looking at the sign bit, reverse the sense of the
11978 if (sign_bit_comparison_p
)
11980 op0
= XEXP (op0
, 0);
11981 code
= (code
== GE
? LT
: GE
);
11987 /* If testing for equality, we can take the NEG of the constant. */
11988 if (equality_comparison_p
11989 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
11991 op0
= XEXP (op0
, 0);
11996 /* The remaining cases only apply to comparisons with zero. */
12000 /* When X is ABS or is known positive,
12001 (neg X) is < 0 if and only if X != 0. */
12003 if (sign_bit_comparison_p
12004 && (GET_CODE (XEXP (op0
, 0)) == ABS
12005 || (mode_width
<= HOST_BITS_PER_WIDE_INT
12006 && (nonzero_bits (XEXP (op0
, 0), mode
)
12007 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12010 op0
= XEXP (op0
, 0);
12011 code
= (code
== LT
? NE
: EQ
);
12015 /* If we have NEG of something whose two high-order bits are the
12016 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12017 if (num_sign_bit_copies (op0
, mode
) >= 2)
12019 op0
= XEXP (op0
, 0);
12020 code
= swap_condition (code
);
12026 /* If we are testing equality and our count is a constant, we
12027 can perform the inverse operation on our RHS. */
12028 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12029 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
12030 op1
, XEXP (op0
, 1))) != 0)
12032 op0
= XEXP (op0
, 0);
12037 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12038 a particular bit. Convert it to an AND of a constant of that
12039 bit. This will be converted into a ZERO_EXTRACT. */
12040 if (const_op
== 0 && sign_bit_comparison_p
12041 && CONST_INT_P (XEXP (op0
, 1))
12042 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12044 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12047 - INTVAL (XEXP (op0
, 1)))));
12048 code
= (code
== LT
? NE
: EQ
);
12052 /* Fall through. */
12055 /* ABS is ignorable inside an equality comparison with zero. */
12056 if (const_op
== 0 && equality_comparison_p
)
12058 op0
= XEXP (op0
, 0);
12064 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12065 (compare FOO CONST) if CONST fits in FOO's mode and we
12066 are either testing inequality or have an unsigned
12067 comparison with ZERO_EXTEND or a signed comparison with
12068 SIGN_EXTEND. But don't do it if we don't have a compare
12069 insn of the given mode, since we'd have to revert it
12070 later on, and then we wouldn't know whether to sign- or
12072 mode
= GET_MODE (XEXP (op0
, 0));
12073 if (GET_MODE_CLASS (mode
) == MODE_INT
12074 && ! unsigned_comparison_p
12075 && HWI_COMPUTABLE_MODE_P (mode
)
12076 && trunc_int_for_mode (const_op
, mode
) == const_op
12077 && have_insn_for (COMPARE
, mode
))
12079 op0
= XEXP (op0
, 0);
12085 /* Check for the case where we are comparing A - C1 with C2, that is
12087 (subreg:MODE (plus (A) (-C1))) op (C2)
12089 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12090 comparison in the wider mode. One of the following two conditions
12091 must be true in order for this to be valid:
12093 1. The mode extension results in the same bit pattern being added
12094 on both sides and the comparison is equality or unsigned. As
12095 C2 has been truncated to fit in MODE, the pattern can only be
12098 2. The mode extension results in the sign bit being copied on
12101 The difficulty here is that we have predicates for A but not for
12102 (A - C1) so we need to check that C1 is within proper bounds so
12103 as to perturbate A as little as possible. */
12105 if (mode_width
<= HOST_BITS_PER_WIDE_INT
12106 && subreg_lowpart_p (op0
)
12107 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) > mode_width
12108 && GET_CODE (SUBREG_REG (op0
)) == PLUS
12109 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
12111 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
12112 rtx a
= XEXP (SUBREG_REG (op0
), 0);
12113 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
12116 && (unsigned HOST_WIDE_INT
) c1
12117 < HOST_WIDE_INT_1U
<< (mode_width
- 1)
12118 && (equality_comparison_p
|| unsigned_comparison_p
)
12119 /* (A - C1) zero-extends if it is positive and sign-extends
12120 if it is negative, C2 both zero- and sign-extends. */
12121 && ((0 == (nonzero_bits (a
, inner_mode
)
12122 & ~GET_MODE_MASK (mode
))
12124 /* (A - C1) sign-extends if it is positive and 1-extends
12125 if it is negative, C2 both sign- and 1-extends. */
12126 || (num_sign_bit_copies (a
, inner_mode
)
12127 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12130 || ((unsigned HOST_WIDE_INT
) c1
12131 < HOST_WIDE_INT_1U
<< (mode_width
- 2)
12132 /* (A - C1) always sign-extends, like C2. */
12133 && num_sign_bit_copies (a
, inner_mode
)
12134 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12135 - (mode_width
- 1))))
12137 op0
= SUBREG_REG (op0
);
12142 /* If the inner mode is narrower and we are extracting the low part,
12143 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12144 if (subreg_lowpart_p (op0
)
12145 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
12147 else if (subreg_lowpart_p (op0
)
12148 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
12149 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
12150 && (code
== NE
|| code
== EQ
)
12151 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
)))
12152 <= HOST_BITS_PER_WIDE_INT
)
12153 && !paradoxical_subreg_p (op0
)
12154 && (nonzero_bits (SUBREG_REG (op0
),
12155 GET_MODE (SUBREG_REG (op0
)))
12156 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12158 /* Remove outer subregs that don't do anything. */
12159 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
12161 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
12162 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12164 op0
= SUBREG_REG (op0
);
12176 mode
= GET_MODE (XEXP (op0
, 0));
12177 if (GET_MODE_CLASS (mode
) == MODE_INT
12178 && (unsigned_comparison_p
|| equality_comparison_p
)
12179 && HWI_COMPUTABLE_MODE_P (mode
)
12180 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
12182 && have_insn_for (COMPARE
, mode
))
12184 op0
= XEXP (op0
, 0);
12190 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12191 this for equality comparisons due to pathological cases involving
12193 if (equality_comparison_p
12194 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
12195 op1
, XEXP (op0
, 1))))
12197 op0
= XEXP (op0
, 0);
12202 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12203 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
12204 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
12206 op0
= XEXP (XEXP (op0
, 0), 0);
12207 code
= (code
== LT
? EQ
: NE
);
12213 /* We used to optimize signed comparisons against zero, but that
12214 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12215 arrive here as equality comparisons, or (GEU, LTU) are
12216 optimized away. No need to special-case them. */
12218 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12219 (eq B (minus A C)), whichever simplifies. We can only do
12220 this for equality comparisons due to pathological cases involving
12222 if (equality_comparison_p
12223 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
12224 XEXP (op0
, 1), op1
)))
12226 op0
= XEXP (op0
, 0);
12231 if (equality_comparison_p
12232 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
12233 XEXP (op0
, 0), op1
)))
12235 op0
= XEXP (op0
, 1);
12240 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12241 of bits in X minus 1, is one iff X > 0. */
12242 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
12243 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12244 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
12245 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12247 op0
= XEXP (op0
, 1);
12248 code
= (code
== GE
? LE
: GT
);
12254 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12255 if C is zero or B is a constant. */
12256 if (equality_comparison_p
12257 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
12258 XEXP (op0
, 1), op1
)))
12260 op0
= XEXP (op0
, 0);
12267 case UNEQ
: case LTGT
:
12268 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
12269 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
12270 case UNORDERED
: case ORDERED
:
12271 /* We can't do anything if OP0 is a condition code value, rather
12272 than an actual data value. */
12274 || CC0_P (XEXP (op0
, 0))
12275 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
12278 /* Get the two operands being compared. */
12279 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
12280 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
12282 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
12284 /* Check for the cases where we simply want the result of the
12285 earlier test or the opposite of that result. */
12286 if (code
== NE
|| code
== EQ
12287 || (val_signbit_known_set_p (GET_MODE (op0
), STORE_FLAG_VALUE
)
12288 && (code
== LT
|| code
== GE
)))
12290 enum rtx_code new_code
;
12291 if (code
== LT
|| code
== NE
)
12292 new_code
= GET_CODE (op0
);
12294 new_code
= reversed_comparison_code (op0
, NULL
);
12296 if (new_code
!= UNKNOWN
)
12307 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12309 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
12310 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
12311 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12313 op0
= XEXP (op0
, 1);
12314 code
= (code
== GE
? GT
: LE
);
12320 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12321 will be converted to a ZERO_EXTRACT later. */
12322 if (const_op
== 0 && equality_comparison_p
12323 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12324 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
12326 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
12327 XEXP (XEXP (op0
, 0), 1));
12328 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12332 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12333 zero and X is a comparison and C1 and C2 describe only bits set
12334 in STORE_FLAG_VALUE, we can compare with X. */
12335 if (const_op
== 0 && equality_comparison_p
12336 && mode_width
<= HOST_BITS_PER_WIDE_INT
12337 && CONST_INT_P (XEXP (op0
, 1))
12338 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
12339 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12340 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
12341 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
12343 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12344 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
12345 if ((~STORE_FLAG_VALUE
& mask
) == 0
12346 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
12347 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
12348 && COMPARISON_P (tem
))))
12350 op0
= XEXP (XEXP (op0
, 0), 0);
12355 /* If we are doing an equality comparison of an AND of a bit equal
12356 to the sign bit, replace this with a LT or GE comparison of
12357 the underlying value. */
12358 if (equality_comparison_p
12360 && CONST_INT_P (XEXP (op0
, 1))
12361 && mode_width
<= HOST_BITS_PER_WIDE_INT
12362 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12363 == HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12365 op0
= XEXP (op0
, 0);
12366 code
= (code
== EQ
? GE
: LT
);
12370 /* If this AND operation is really a ZERO_EXTEND from a narrower
12371 mode, the constant fits within that mode, and this is either an
12372 equality or unsigned comparison, try to do this comparison in
12377 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12378 -> (ne:DI (reg:SI 4) (const_int 0))
12380 unless TRULY_NOOP_TRUNCATION allows it or the register is
12381 known to hold a value of the required mode the
12382 transformation is invalid. */
12383 if ((equality_comparison_p
|| unsigned_comparison_p
)
12384 && CONST_INT_P (XEXP (op0
, 1))
12385 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
12386 & GET_MODE_MASK (mode
))
12388 && const_op
>> i
== 0
12389 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
)
12391 op0
= gen_lowpart_or_truncate (tmode
, XEXP (op0
, 0));
12395 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12396 fits in both M1 and M2 and the SUBREG is either paradoxical
12397 or represents the low part, permute the SUBREG and the AND
12399 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
12400 && CONST_INT_P (XEXP (op0
, 1)))
12402 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
12403 unsigned HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
12404 /* Require an integral mode, to avoid creating something like
12406 if (SCALAR_INT_MODE_P (tmode
)
12407 /* It is unsafe to commute the AND into the SUBREG if the
12408 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12409 not defined. As originally written the upper bits
12410 have a defined value due to the AND operation.
12411 However, if we commute the AND inside the SUBREG then
12412 they no longer have defined values and the meaning of
12413 the code has been changed.
12414 Also C1 should not change value in the smaller mode,
12415 see PR67028 (a positive C1 can become negative in the
12416 smaller mode, so that the AND does no longer mask the
12418 && ((WORD_REGISTER_OPERATIONS
12419 && mode_width
> GET_MODE_PRECISION (tmode
)
12420 && mode_width
<= BITS_PER_WORD
12421 && trunc_int_for_mode (c1
, tmode
) == (HOST_WIDE_INT
) c1
)
12422 || (mode_width
<= GET_MODE_PRECISION (tmode
)
12423 && subreg_lowpart_p (XEXP (op0
, 0))))
12424 && mode_width
<= HOST_BITS_PER_WIDE_INT
12425 && HWI_COMPUTABLE_MODE_P (tmode
)
12426 && (c1
& ~mask
) == 0
12427 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
12429 && c1
!= GET_MODE_MASK (tmode
))
12431 op0
= simplify_gen_binary (AND
, tmode
,
12432 SUBREG_REG (XEXP (op0
, 0)),
12433 gen_int_mode (c1
, tmode
));
12434 op0
= gen_lowpart (mode
, op0
);
12439 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12440 if (const_op
== 0 && equality_comparison_p
12441 && XEXP (op0
, 1) == const1_rtx
12442 && GET_CODE (XEXP (op0
, 0)) == NOT
)
12444 op0
= simplify_and_const_int (NULL_RTX
, mode
,
12445 XEXP (XEXP (op0
, 0), 0), 1);
12446 code
= (code
== NE
? EQ
: NE
);
12450 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12451 (eq (and (lshiftrt X) 1) 0).
12452 Also handle the case where (not X) is expressed using xor. */
12453 if (const_op
== 0 && equality_comparison_p
12454 && XEXP (op0
, 1) == const1_rtx
12455 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
12457 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
12458 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
12460 if (GET_CODE (shift_op
) == NOT
12461 || (GET_CODE (shift_op
) == XOR
12462 && CONST_INT_P (XEXP (shift_op
, 1))
12463 && CONST_INT_P (shift_count
)
12464 && HWI_COMPUTABLE_MODE_P (mode
)
12465 && (UINTVAL (XEXP (shift_op
, 1))
12466 == HOST_WIDE_INT_1U
12467 << INTVAL (shift_count
))))
12470 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
12471 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12472 code
= (code
== NE
? EQ
: NE
);
12479 /* If we have (compare (ashift FOO N) (const_int C)) and
12480 the high order N bits of FOO (N+1 if an inequality comparison)
12481 are known to be zero, we can do this by comparing FOO with C
12482 shifted right N bits so long as the low-order N bits of C are
12484 if (CONST_INT_P (XEXP (op0
, 1))
12485 && INTVAL (XEXP (op0
, 1)) >= 0
12486 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
12487 < HOST_BITS_PER_WIDE_INT
)
12488 && (((unsigned HOST_WIDE_INT
) const_op
12489 & ((HOST_WIDE_INT_1U
<< INTVAL (XEXP (op0
, 1)))
12491 && mode_width
<= HOST_BITS_PER_WIDE_INT
12492 && (nonzero_bits (XEXP (op0
, 0), mode
)
12493 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
12494 + ! equality_comparison_p
))) == 0)
12496 /* We must perform a logical shift, not an arithmetic one,
12497 as we want the top N bits of C to be zero. */
12498 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
12500 temp
>>= INTVAL (XEXP (op0
, 1));
12501 op1
= gen_int_mode (temp
, mode
);
12502 op0
= XEXP (op0
, 0);
12506 /* If we are doing a sign bit comparison, it means we are testing
12507 a particular bit. Convert it to the appropriate AND. */
12508 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12509 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12511 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12514 - INTVAL (XEXP (op0
, 1)))));
12515 code
= (code
== LT
? NE
: EQ
);
12519 /* If this an equality comparison with zero and we are shifting
12520 the low bit to the sign bit, we can convert this to an AND of the
12522 if (const_op
== 0 && equality_comparison_p
12523 && CONST_INT_P (XEXP (op0
, 1))
12524 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12526 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
12532 /* If this is an equality comparison with zero, we can do this
12533 as a logical shift, which might be much simpler. */
12534 if (equality_comparison_p
&& const_op
== 0
12535 && CONST_INT_P (XEXP (op0
, 1)))
12537 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
12539 INTVAL (XEXP (op0
, 1)));
12543 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12544 do the comparison in a narrower mode. */
12545 if (! unsigned_comparison_p
12546 && CONST_INT_P (XEXP (op0
, 1))
12547 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12548 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12549 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
12550 MODE_INT
, 1)) != BLKmode
12551 && (((unsigned HOST_WIDE_INT
) const_op
12552 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12553 <= GET_MODE_MASK (tmode
)))
12555 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
12559 /* Likewise if OP0 is a PLUS of a sign extension with a
12560 constant, which is usually represented with the PLUS
12561 between the shifts. */
12562 if (! unsigned_comparison_p
12563 && CONST_INT_P (XEXP (op0
, 1))
12564 && GET_CODE (XEXP (op0
, 0)) == PLUS
12565 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12566 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
12567 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
12568 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
12569 MODE_INT
, 1)) != BLKmode
12570 && (((unsigned HOST_WIDE_INT
) const_op
12571 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12572 <= GET_MODE_MASK (tmode
)))
12574 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
12575 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
12576 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
12577 add_const
, XEXP (op0
, 1));
12579 op0
= simplify_gen_binary (PLUS
, tmode
,
12580 gen_lowpart (tmode
, inner
),
12587 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12588 the low order N bits of FOO are known to be zero, we can do this
12589 by comparing FOO with C shifted left N bits so long as no
12590 overflow occurs. Even if the low order N bits of FOO aren't known
12591 to be zero, if the comparison is >= or < we can use the same
12592 optimization and for > or <= by setting all the low
12593 order N bits in the comparison constant. */
12594 if (CONST_INT_P (XEXP (op0
, 1))
12595 && INTVAL (XEXP (op0
, 1)) > 0
12596 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12597 && mode_width
<= HOST_BITS_PER_WIDE_INT
12598 && (((unsigned HOST_WIDE_INT
) const_op
12599 + (GET_CODE (op0
) != LSHIFTRT
12600 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
12603 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
12605 unsigned HOST_WIDE_INT low_bits
12606 = (nonzero_bits (XEXP (op0
, 0), mode
)
12607 & ((HOST_WIDE_INT_1U
12608 << INTVAL (XEXP (op0
, 1))) - 1));
12609 if (low_bits
== 0 || !equality_comparison_p
)
12611 /* If the shift was logical, then we must make the condition
12613 if (GET_CODE (op0
) == LSHIFTRT
)
12614 code
= unsigned_condition (code
);
12616 const_op
= (unsigned HOST_WIDE_INT
) const_op
12617 << INTVAL (XEXP (op0
, 1));
12619 && (code
== GT
|| code
== GTU
12620 || code
== LE
|| code
== LEU
))
12622 |= ((HOST_WIDE_INT_1
<< INTVAL (XEXP (op0
, 1))) - 1);
12623 op1
= GEN_INT (const_op
);
12624 op0
= XEXP (op0
, 0);
12629 /* If we are using this shift to extract just the sign bit, we
12630 can replace this with an LT or GE comparison. */
12632 && (equality_comparison_p
|| sign_bit_comparison_p
)
12633 && CONST_INT_P (XEXP (op0
, 1))
12634 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12636 op0
= XEXP (op0
, 0);
12637 code
= (code
== NE
|| code
== GT
? LT
: GE
);
12649 /* Now make any compound operations involved in this comparison. Then,
12650 check for an outmost SUBREG on OP0 that is not doing anything or is
12651 paradoxical. The latter transformation must only be performed when
12652 it is known that the "extra" bits will be the same in op0 and op1 or
12653 that they don't matter. There are three cases to consider:
12655 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12656 care bits and we can assume they have any convenient value. So
12657 making the transformation is safe.
12659 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12660 In this case the upper bits of op0 are undefined. We should not make
12661 the simplification in that case as we do not know the contents of
12664 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12665 In that case we know those bits are zeros or ones. We must also be
12666 sure that they are the same as the upper bits of op1.
12668 We can never remove a SUBREG for a non-equality comparison because
12669 the sign bit is in a different place in the underlying object. */
12671 rtx_code op0_mco_code
= SET
;
12672 if (op1
== const0_rtx
)
12673 op0_mco_code
= code
== NE
|| code
== EQ
? EQ
: COMPARE
;
12675 op0
= make_compound_operation (op0
, op0_mco_code
);
12676 op1
= make_compound_operation (op1
, SET
);
12678 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
12679 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
12680 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
12681 && (code
== NE
|| code
== EQ
))
12683 if (paradoxical_subreg_p (op0
))
12685 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12687 if (REG_P (SUBREG_REG (op0
)))
12689 op0
= SUBREG_REG (op0
);
12690 op1
= gen_lowpart (GET_MODE (op0
), op1
);
12693 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
)))
12694 <= HOST_BITS_PER_WIDE_INT
)
12695 && (nonzero_bits (SUBREG_REG (op0
),
12696 GET_MODE (SUBREG_REG (op0
)))
12697 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12699 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
12701 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
12702 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12703 op0
= SUBREG_REG (op0
), op1
= tem
;
12707 /* We now do the opposite procedure: Some machines don't have compare
12708 insns in all modes. If OP0's mode is an integer mode smaller than a
12709 word and we can't do a compare in that mode, see if there is a larger
12710 mode for which we can do the compare. There are a number of cases in
12711 which we can use the wider mode. */
12713 mode
= GET_MODE (op0
);
12714 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
12715 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
12716 && ! have_insn_for (COMPARE
, mode
))
12717 for (tmode
= GET_MODE_WIDER_MODE (mode
);
12718 (tmode
!= VOIDmode
&& HWI_COMPUTABLE_MODE_P (tmode
));
12719 tmode
= GET_MODE_WIDER_MODE (tmode
))
12720 if (have_insn_for (COMPARE
, tmode
))
12724 /* If this is a test for negative, we can make an explicit
12725 test of the sign bit. Test this first so we can use
12726 a paradoxical subreg to extend OP0. */
12728 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12729 && HWI_COMPUTABLE_MODE_P (mode
))
12731 unsigned HOST_WIDE_INT sign
12732 = HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (mode
) - 1);
12733 op0
= simplify_gen_binary (AND
, tmode
,
12734 gen_lowpart (tmode
, op0
),
12735 gen_int_mode (sign
, tmode
));
12736 code
= (code
== LT
) ? NE
: EQ
;
12740 /* If the only nonzero bits in OP0 and OP1 are those in the
12741 narrower mode and this is an equality or unsigned comparison,
12742 we can use the wider mode. Similarly for sign-extended
12743 values, in which case it is true for all comparisons. */
12744 zero_extended
= ((code
== EQ
|| code
== NE
12745 || code
== GEU
|| code
== GTU
12746 || code
== LEU
|| code
== LTU
)
12747 && (nonzero_bits (op0
, tmode
)
12748 & ~GET_MODE_MASK (mode
)) == 0
12749 && ((CONST_INT_P (op1
)
12750 || (nonzero_bits (op1
, tmode
)
12751 & ~GET_MODE_MASK (mode
)) == 0)));
12754 || ((num_sign_bit_copies (op0
, tmode
)
12755 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12756 - GET_MODE_PRECISION (mode
)))
12757 && (num_sign_bit_copies (op1
, tmode
)
12758 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12759 - GET_MODE_PRECISION (mode
)))))
12761 /* If OP0 is an AND and we don't have an AND in MODE either,
12762 make a new AND in the proper mode. */
12763 if (GET_CODE (op0
) == AND
12764 && !have_insn_for (AND
, mode
))
12765 op0
= simplify_gen_binary (AND
, tmode
,
12766 gen_lowpart (tmode
,
12768 gen_lowpart (tmode
,
12774 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op0
, mode
);
12775 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op1
, mode
);
12779 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op0
, mode
);
12780 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op1
, mode
);
12787 /* We may have changed the comparison operands. Re-canonicalize. */
12788 if (swap_commutative_operands_p (op0
, op1
))
12790 std::swap (op0
, op1
);
12791 code
= swap_condition (code
);
12794 /* If this machine only supports a subset of valid comparisons, see if we
12795 can convert an unsupported one into a supported one. */
12796 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
12804 /* Utility function for record_value_for_reg. Count number of
12809 enum rtx_code code
= GET_CODE (x
);
12813 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
12814 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
12816 rtx x0
= XEXP (x
, 0);
12817 rtx x1
= XEXP (x
, 1);
12820 return 1 + 2 * count_rtxs (x0
);
12822 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
12823 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
12824 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12825 return 2 + 2 * count_rtxs (x0
)
12826 + count_rtxs (x
== XEXP (x1
, 0)
12827 ? XEXP (x1
, 1) : XEXP (x1
, 0));
12829 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
12830 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
12831 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12832 return 2 + 2 * count_rtxs (x1
)
12833 + count_rtxs (x
== XEXP (x0
, 0)
12834 ? XEXP (x0
, 1) : XEXP (x0
, 0));
12837 fmt
= GET_RTX_FORMAT (code
);
12838 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12840 ret
+= count_rtxs (XEXP (x
, i
));
12841 else if (fmt
[i
] == 'E')
12842 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12843 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
12848 /* Utility function for following routine. Called when X is part of a value
12849 being stored into last_set_value. Sets last_set_table_tick
12850 for each register mentioned. Similar to mention_regs in cse.c */
12853 update_table_tick (rtx x
)
12855 enum rtx_code code
= GET_CODE (x
);
12856 const char *fmt
= GET_RTX_FORMAT (code
);
12861 unsigned int regno
= REGNO (x
);
12862 unsigned int endregno
= END_REGNO (x
);
12865 for (r
= regno
; r
< endregno
; r
++)
12867 reg_stat_type
*rsp
= ®_stat
[r
];
12868 rsp
->last_set_table_tick
= label_tick
;
12874 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12877 /* Check for identical subexpressions. If x contains
12878 identical subexpression we only have to traverse one of
12880 if (i
== 0 && ARITHMETIC_P (x
))
12882 /* Note that at this point x1 has already been
12884 rtx x0
= XEXP (x
, 0);
12885 rtx x1
= XEXP (x
, 1);
12887 /* If x0 and x1 are identical then there is no need to
12892 /* If x0 is identical to a subexpression of x1 then while
12893 processing x1, x0 has already been processed. Thus we
12894 are done with x. */
12895 if (ARITHMETIC_P (x1
)
12896 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12899 /* If x1 is identical to a subexpression of x0 then we
12900 still have to process the rest of x0. */
12901 if (ARITHMETIC_P (x0
)
12902 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12904 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
12909 update_table_tick (XEXP (x
, i
));
12911 else if (fmt
[i
] == 'E')
12912 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12913 update_table_tick (XVECEXP (x
, i
, j
));
12916 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12917 are saying that the register is clobbered and we no longer know its
12918 value. If INSN is zero, don't update reg_stat[].last_set; this is
12919 only permitted with VALUE also zero and is used to invalidate the
12923 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
12925 unsigned int regno
= REGNO (reg
);
12926 unsigned int endregno
= END_REGNO (reg
);
12928 reg_stat_type
*rsp
;
12930 /* If VALUE contains REG and we have a previous value for REG, substitute
12931 the previous value. */
12932 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
12936 /* Set things up so get_last_value is allowed to see anything set up to
12938 subst_low_luid
= DF_INSN_LUID (insn
);
12939 tem
= get_last_value (reg
);
12941 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12942 it isn't going to be useful and will take a lot of time to process,
12943 so just use the CLOBBER. */
12947 if (ARITHMETIC_P (tem
)
12948 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
12949 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
12950 tem
= XEXP (tem
, 0);
12951 else if (count_occurrences (value
, reg
, 1) >= 2)
12953 /* If there are two or more occurrences of REG in VALUE,
12954 prevent the value from growing too much. */
12955 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
12956 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
12959 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
12963 /* For each register modified, show we don't know its value, that
12964 we don't know about its bitwise content, that its value has been
12965 updated, and that we don't know the location of the death of the
12967 for (i
= regno
; i
< endregno
; i
++)
12969 rsp
= ®_stat
[i
];
12972 rsp
->last_set
= insn
;
12974 rsp
->last_set_value
= 0;
12975 rsp
->last_set_mode
= VOIDmode
;
12976 rsp
->last_set_nonzero_bits
= 0;
12977 rsp
->last_set_sign_bit_copies
= 0;
12978 rsp
->last_death
= 0;
12979 rsp
->truncated_to_mode
= VOIDmode
;
12982 /* Mark registers that are being referenced in this value. */
12984 update_table_tick (value
);
12986 /* Now update the status of each register being set.
12987 If someone is using this register in this block, set this register
12988 to invalid since we will get confused between the two lives in this
12989 basic block. This makes using this register always invalid. In cse, we
12990 scan the table to invalidate all entries using this register, but this
12991 is too much work for us. */
12993 for (i
= regno
; i
< endregno
; i
++)
12995 rsp
= ®_stat
[i
];
12996 rsp
->last_set_label
= label_tick
;
12998 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
12999 rsp
->last_set_invalid
= 1;
13001 rsp
->last_set_invalid
= 0;
13004 /* The value being assigned might refer to X (like in "x++;"). In that
13005 case, we must replace it with (clobber (const_int 0)) to prevent
13007 rsp
= ®_stat
[regno
];
13008 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
13010 value
= copy_rtx (value
);
13011 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
13015 /* For the main register being modified, update the value, the mode, the
13016 nonzero bits, and the number of sign bit copies. */
13018 rsp
->last_set_value
= value
;
13022 machine_mode mode
= GET_MODE (reg
);
13023 subst_low_luid
= DF_INSN_LUID (insn
);
13024 rsp
->last_set_mode
= mode
;
13025 if (GET_MODE_CLASS (mode
) == MODE_INT
13026 && HWI_COMPUTABLE_MODE_P (mode
))
13027 mode
= nonzero_bits_mode
;
13028 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
13029 rsp
->last_set_sign_bit_copies
13030 = num_sign_bit_copies (value
, GET_MODE (reg
));
13034 /* Called via note_stores from record_dead_and_set_regs to handle one
13035 SET or CLOBBER in an insn. DATA is the instruction in which the
13036 set is occurring. */
13039 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
13041 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
13043 if (GET_CODE (dest
) == SUBREG
)
13044 dest
= SUBREG_REG (dest
);
13046 if (!record_dead_insn
)
13049 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13055 /* If we are setting the whole register, we know its value. Otherwise
13056 show that we don't know the value. We can handle SUBREG in
13058 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
13059 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13060 else if (GET_CODE (setter
) == SET
13061 && GET_CODE (SET_DEST (setter
)) == SUBREG
13062 && SUBREG_REG (SET_DEST (setter
)) == dest
13063 && GET_MODE_PRECISION (GET_MODE (dest
)) <= BITS_PER_WORD
13064 && subreg_lowpart_p (SET_DEST (setter
)))
13065 record_value_for_reg (dest
, record_dead_insn
,
13066 gen_lowpart (GET_MODE (dest
),
13067 SET_SRC (setter
)));
13069 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
13071 else if (MEM_P (dest
)
13072 /* Ignore pushes, they clobber nothing. */
13073 && ! push_operand (dest
, GET_MODE (dest
)))
13074 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
13077 /* Update the records of when each REG was most recently set or killed
13078 for the things done by INSN. This is the last thing done in processing
13079 INSN in the combiner loop.
13081 We update reg_stat[], in particular fields last_set, last_set_value,
13082 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13083 last_death, and also the similar information mem_last_set (which insn
13084 most recently modified memory) and last_call_luid (which insn was the
13085 most recent subroutine call). */
13088 record_dead_and_set_regs (rtx_insn
*insn
)
13093 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
13095 if (REG_NOTE_KIND (link
) == REG_DEAD
13096 && REG_P (XEXP (link
, 0)))
13098 unsigned int regno
= REGNO (XEXP (link
, 0));
13099 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
13101 for (i
= regno
; i
< endregno
; i
++)
13103 reg_stat_type
*rsp
;
13105 rsp
= ®_stat
[i
];
13106 rsp
->last_death
= insn
;
13109 else if (REG_NOTE_KIND (link
) == REG_INC
)
13110 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
13115 hard_reg_set_iterator hrsi
;
13116 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
13118 reg_stat_type
*rsp
;
13120 rsp
= ®_stat
[i
];
13121 rsp
->last_set_invalid
= 1;
13122 rsp
->last_set
= insn
;
13123 rsp
->last_set_value
= 0;
13124 rsp
->last_set_mode
= VOIDmode
;
13125 rsp
->last_set_nonzero_bits
= 0;
13126 rsp
->last_set_sign_bit_copies
= 0;
13127 rsp
->last_death
= 0;
13128 rsp
->truncated_to_mode
= VOIDmode
;
13131 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
13133 /* We can't combine into a call pattern. Remember, though, that
13134 the return value register is set at this LUID. We could
13135 still replace a register with the return value from the
13136 wrong subroutine call! */
13137 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
13140 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
13143 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13144 register present in the SUBREG, so for each such SUBREG go back and
13145 adjust nonzero and sign bit information of the registers that are
13146 known to have some zero/sign bits set.
13148 This is needed because when combine blows the SUBREGs away, the
13149 information on zero/sign bits is lost and further combines can be
13150 missed because of that. */
13153 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
13155 struct insn_link
*links
;
13157 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
13158 machine_mode mode
= GET_MODE (subreg
);
13160 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
13163 for (links
= LOG_LINKS (insn
); links
;)
13165 reg_stat_type
*rsp
;
13167 insn
= links
->insn
;
13168 set
= single_set (insn
);
13170 if (! set
|| !REG_P (SET_DEST (set
))
13171 || REGNO (SET_DEST (set
)) != regno
13172 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
13174 links
= links
->next
;
13178 rsp
= ®_stat
[regno
];
13179 if (rsp
->last_set
== insn
)
13181 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
13182 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
13185 if (REG_P (SET_SRC (set
)))
13187 regno
= REGNO (SET_SRC (set
));
13188 links
= LOG_LINKS (insn
);
13195 /* Check if X, a register, is known to contain a value already
13196 truncated to MODE. In this case we can use a subreg to refer to
13197 the truncated value even though in the generic case we would need
13198 an explicit truncation. */
13201 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
13203 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
13204 machine_mode truncated
= rsp
->truncated_to_mode
;
13207 || rsp
->truncation_label
< label_tick_ebb_start
)
13209 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
13211 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
13216 /* If X is a hard reg or a subreg record the mode that the register is
13217 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13218 to turn a truncate into a subreg using this information. Return true
13219 if traversing X is complete. */
13222 record_truncated_value (rtx x
)
13224 machine_mode truncated_mode
;
13225 reg_stat_type
*rsp
;
13227 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
13229 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
13230 truncated_mode
= GET_MODE (x
);
13232 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
13235 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
13238 x
= SUBREG_REG (x
);
13240 /* ??? For hard-regs we now record everything. We might be able to
13241 optimize this using last_set_mode. */
13242 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
13243 truncated_mode
= GET_MODE (x
);
13247 rsp
= ®_stat
[REGNO (x
)];
13248 if (rsp
->truncated_to_mode
== 0
13249 || rsp
->truncation_label
< label_tick_ebb_start
13250 || (GET_MODE_SIZE (truncated_mode
)
13251 < GET_MODE_SIZE (rsp
->truncated_to_mode
)))
13253 rsp
->truncated_to_mode
= truncated_mode
;
13254 rsp
->truncation_label
= label_tick
;
13260 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13261 the modes they are used in. This can help truning TRUNCATEs into
13265 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
13267 subrtx_var_iterator::array_type array
;
13268 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
13269 if (record_truncated_value (*iter
))
13270 iter
.skip_subrtxes ();
13273 /* Scan X for promoted SUBREGs. For each one found,
13274 note what it implies to the registers used in it. */
13277 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
13279 if (GET_CODE (x
) == SUBREG
13280 && SUBREG_PROMOTED_VAR_P (x
)
13281 && REG_P (SUBREG_REG (x
)))
13282 record_promoted_value (insn
, x
);
13285 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
13288 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
13292 check_promoted_subreg (insn
, XEXP (x
, i
));
13296 if (XVEC (x
, i
) != 0)
13297 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13298 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
13304 /* Verify that all the registers and memory references mentioned in *LOC are
13305 still valid. *LOC was part of a value set in INSN when label_tick was
13306 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13307 the invalid references with (clobber (const_int 0)) and return 1. This
13308 replacement is useful because we often can get useful information about
13309 the form of a value (e.g., if it was produced by a shift that always
13310 produces -1 or 0) even though we don't know exactly what registers it
13311 was produced from. */
13314 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, int replace
)
13317 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
13318 int len
= GET_RTX_LENGTH (GET_CODE (x
));
13323 unsigned int regno
= REGNO (x
);
13324 unsigned int endregno
= END_REGNO (x
);
13327 for (j
= regno
; j
< endregno
; j
++)
13329 reg_stat_type
*rsp
= ®_stat
[j
];
13330 if (rsp
->last_set_invalid
13331 /* If this is a pseudo-register that was only set once and not
13332 live at the beginning of the function, it is always valid. */
13333 || (! (regno
>= FIRST_PSEUDO_REGISTER
13334 && regno
< reg_n_sets_max
13335 && REG_N_SETS (regno
) == 1
13336 && (!REGNO_REG_SET_P
13337 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
13339 && rsp
->last_set_label
> tick
))
13342 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13349 /* If this is a memory reference, make sure that there were no stores after
13350 it that might have clobbered the value. We don't have alias info, so we
13351 assume any store invalidates it. Moreover, we only have local UIDs, so
13352 we also assume that there were stores in the intervening basic blocks. */
13353 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
13354 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
13357 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13361 for (i
= 0; i
< len
; i
++)
13365 /* Check for identical subexpressions. If x contains
13366 identical subexpression we only have to traverse one of
13368 if (i
== 1 && ARITHMETIC_P (x
))
13370 /* Note that at this point x0 has already been checked
13371 and found valid. */
13372 rtx x0
= XEXP (x
, 0);
13373 rtx x1
= XEXP (x
, 1);
13375 /* If x0 and x1 are identical then x is also valid. */
13379 /* If x1 is identical to a subexpression of x0 then
13380 while checking x0, x1 has already been checked. Thus
13381 it is valid and so as x. */
13382 if (ARITHMETIC_P (x0
)
13383 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13386 /* If x0 is identical to a subexpression of x1 then x is
13387 valid iff the rest of x1 is valid. */
13388 if (ARITHMETIC_P (x1
)
13389 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13391 get_last_value_validate (&XEXP (x1
,
13392 x0
== XEXP (x1
, 0) ? 1 : 0),
13393 insn
, tick
, replace
);
13396 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
13400 else if (fmt
[i
] == 'E')
13401 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13402 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
13403 insn
, tick
, replace
) == 0)
13407 /* If we haven't found a reason for it to be invalid, it is valid. */
13411 /* Get the last value assigned to X, if known. Some registers
13412 in the value may be replaced with (clobber (const_int 0)) if their value
13413 is known longer known reliably. */
13416 get_last_value (const_rtx x
)
13418 unsigned int regno
;
13420 reg_stat_type
*rsp
;
13422 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13423 then convert it to the desired mode. If this is a paradoxical SUBREG,
13424 we cannot predict what values the "extra" bits might have. */
13425 if (GET_CODE (x
) == SUBREG
13426 && subreg_lowpart_p (x
)
13427 && !paradoxical_subreg_p (x
)
13428 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
13429 return gen_lowpart (GET_MODE (x
), value
);
13435 rsp
= ®_stat
[regno
];
13436 value
= rsp
->last_set_value
;
13438 /* If we don't have a value, or if it isn't for this basic block and
13439 it's either a hard register, set more than once, or it's a live
13440 at the beginning of the function, return 0.
13442 Because if it's not live at the beginning of the function then the reg
13443 is always set before being used (is never used without being set).
13444 And, if it's set only once, and it's always set before use, then all
13445 uses must have the same last value, even if it's not from this basic
13449 || (rsp
->last_set_label
< label_tick_ebb_start
13450 && (regno
< FIRST_PSEUDO_REGISTER
13451 || regno
>= reg_n_sets_max
13452 || REG_N_SETS (regno
) != 1
13454 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
13457 /* If the value was set in a later insn than the ones we are processing,
13458 we can't use it even if the register was only set once. */
13459 if (rsp
->last_set_label
== label_tick
13460 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
13463 /* If fewer bits were set than what we are asked for now, we cannot use
13465 if (GET_MODE_PRECISION (rsp
->last_set_mode
)
13466 < GET_MODE_PRECISION (GET_MODE (x
)))
13469 /* If the value has all its registers valid, return it. */
13470 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
13473 /* Otherwise, make a copy and replace any invalid register with
13474 (clobber (const_int 0)). If that fails for some reason, return 0. */
13476 value
= copy_rtx (value
);
13477 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
13483 /* Return nonzero if expression X refers to a REG or to memory
13484 that is set in an instruction more recent than FROM_LUID. */
13487 use_crosses_set_p (const_rtx x
, int from_luid
)
13491 enum rtx_code code
= GET_CODE (x
);
13495 unsigned int regno
= REGNO (x
);
13496 unsigned endreg
= END_REGNO (x
);
13498 #ifdef PUSH_ROUNDING
13499 /* Don't allow uses of the stack pointer to be moved,
13500 because we don't know whether the move crosses a push insn. */
13501 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
13504 for (; regno
< endreg
; regno
++)
13506 reg_stat_type
*rsp
= ®_stat
[regno
];
13508 && rsp
->last_set_label
== label_tick
13509 && DF_INSN_LUID (rsp
->last_set
) > from_luid
)
13515 if (code
== MEM
&& mem_last_set
> from_luid
)
13518 fmt
= GET_RTX_FORMAT (code
);
13520 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13525 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13526 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_luid
))
13529 else if (fmt
[i
] == 'e'
13530 && use_crosses_set_p (XEXP (x
, i
), from_luid
))
13536 /* Define three variables used for communication between the following
13539 static unsigned int reg_dead_regno
, reg_dead_endregno
;
13540 static int reg_dead_flag
;
13542 /* Function called via note_stores from reg_dead_at_p.
13544 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13545 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13548 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
13550 unsigned int regno
, endregno
;
13555 regno
= REGNO (dest
);
13556 endregno
= END_REGNO (dest
);
13557 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
13558 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
13561 /* Return nonzero if REG is known to be dead at INSN.
13563 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13564 referencing REG, it is dead. If we hit a SET referencing REG, it is
13565 live. Otherwise, see if it is live or dead at the start of the basic
13566 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13567 must be assumed to be always live. */
13570 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
13575 /* Set variables for reg_dead_at_p_1. */
13576 reg_dead_regno
= REGNO (reg
);
13577 reg_dead_endregno
= END_REGNO (reg
);
13581 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13582 we allow the machine description to decide whether use-and-clobber
13583 patterns are OK. */
13584 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
13586 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13587 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
13591 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13592 beginning of basic block. */
13593 block
= BLOCK_FOR_INSN (insn
);
13598 if (find_regno_note (insn
, REG_UNUSED
, reg_dead_regno
))
13601 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
13603 return reg_dead_flag
== 1 ? 1 : 0;
13605 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
13609 if (insn
== BB_HEAD (block
))
13612 insn
= PREV_INSN (insn
);
13615 /* Look at live-in sets for the basic block that we were in. */
13616 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13617 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
13623 /* Note hard registers in X that are used. */
13626 mark_used_regs_combine (rtx x
)
13628 RTX_CODE code
= GET_CODE (x
);
13629 unsigned int regno
;
13640 case ADDR_DIFF_VEC
:
13642 /* CC0 must die in the insn after it is set, so we don't need to take
13643 special note of it here. */
13648 /* If we are clobbering a MEM, mark any hard registers inside the
13649 address as used. */
13650 if (MEM_P (XEXP (x
, 0)))
13651 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
13656 /* A hard reg in a wide mode may really be multiple registers.
13657 If so, mark all of them just like the first. */
13658 if (regno
< FIRST_PSEUDO_REGISTER
)
13660 /* None of this applies to the stack, frame or arg pointers. */
13661 if (regno
== STACK_POINTER_REGNUM
13662 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13663 && regno
== HARD_FRAME_POINTER_REGNUM
)
13664 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
13665 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
13666 || regno
== FRAME_POINTER_REGNUM
)
13669 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
13675 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13677 rtx testreg
= SET_DEST (x
);
13679 while (GET_CODE (testreg
) == SUBREG
13680 || GET_CODE (testreg
) == ZERO_EXTRACT
13681 || GET_CODE (testreg
) == STRICT_LOW_PART
)
13682 testreg
= XEXP (testreg
, 0);
13684 if (MEM_P (testreg
))
13685 mark_used_regs_combine (XEXP (testreg
, 0));
13687 mark_used_regs_combine (SET_SRC (x
));
13695 /* Recursively scan the operands of this expression. */
13698 const char *fmt
= GET_RTX_FORMAT (code
);
13700 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13703 mark_used_regs_combine (XEXP (x
, i
));
13704 else if (fmt
[i
] == 'E')
13708 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13709 mark_used_regs_combine (XVECEXP (x
, i
, j
));
13715 /* Remove register number REGNO from the dead registers list of INSN.
13717 Return the note used to record the death, if there was one. */
13720 remove_death (unsigned int regno
, rtx_insn
*insn
)
13722 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
13725 remove_note (insn
, note
);
13730 /* For each register (hardware or pseudo) used within expression X, if its
13731 death is in an instruction with luid between FROM_LUID (inclusive) and
13732 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13733 list headed by PNOTES.
13735 That said, don't move registers killed by maybe_kill_insn.
13737 This is done when X is being merged by combination into TO_INSN. These
13738 notes will then be distributed as needed. */
13741 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
13746 enum rtx_code code
= GET_CODE (x
);
13750 unsigned int regno
= REGNO (x
);
13751 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
13753 /* Don't move the register if it gets killed in between from and to. */
13754 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13755 && ! reg_referenced_p (x
, maybe_kill_insn
))
13759 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13760 && DF_INSN_LUID (where_dead
) >= from_luid
13761 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13763 rtx note
= remove_death (regno
, where_dead
);
13765 /* It is possible for the call above to return 0. This can occur
13766 when last_death points to I2 or I1 that we combined with.
13767 In that case make a new note.
13769 We must also check for the case where X is a hard register
13770 and NOTE is a death note for a range of hard registers
13771 including X. In that case, we must put REG_DEAD notes for
13772 the remaining registers in place of NOTE. */
13774 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13775 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13776 > GET_MODE_SIZE (GET_MODE (x
))))
13778 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13779 unsigned int deadend
= END_REGNO (XEXP (note
, 0));
13780 unsigned int ourend
= END_REGNO (x
);
13783 for (i
= deadregno
; i
< deadend
; i
++)
13784 if (i
< regno
|| i
>= ourend
)
13785 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13788 /* If we didn't find any note, or if we found a REG_DEAD note that
13789 covers only part of the given reg, and we have a multi-reg hard
13790 register, then to be safe we must check for REG_DEAD notes
13791 for each register other than the first. They could have
13792 their own REG_DEAD notes lying around. */
13793 else if ((note
== 0
13795 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13796 < GET_MODE_SIZE (GET_MODE (x
)))))
13797 && regno
< FIRST_PSEUDO_REGISTER
13798 && REG_NREGS (x
) > 1)
13800 unsigned int ourend
= END_REGNO (x
);
13801 unsigned int i
, offset
;
13805 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
13809 for (i
= regno
+ offset
; i
< ourend
; i
++)
13810 move_deaths (regno_reg_rtx
[i
],
13811 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13814 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13816 XEXP (note
, 1) = *pnotes
;
13820 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
13826 else if (GET_CODE (x
) == SET
)
13828 rtx dest
= SET_DEST (x
);
13830 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13832 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13833 that accesses one word of a multi-word item, some
13834 piece of everything register in the expression is used by
13835 this insn, so remove any old death. */
13836 /* ??? So why do we test for equality of the sizes? */
13838 if (GET_CODE (dest
) == ZERO_EXTRACT
13839 || GET_CODE (dest
) == STRICT_LOW_PART
13840 || (GET_CODE (dest
) == SUBREG
13841 && (((GET_MODE_SIZE (GET_MODE (dest
))
13842 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
13843 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
13844 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
13846 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13850 /* If this is some other SUBREG, we know it replaces the entire
13851 value, so use that as the destination. */
13852 if (GET_CODE (dest
) == SUBREG
)
13853 dest
= SUBREG_REG (dest
);
13855 /* If this is a MEM, adjust deaths of anything used in the address.
13856 For a REG (the only other possibility), the entire value is
13857 being replaced so the old value is not used in this insn. */
13860 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
13865 else if (GET_CODE (x
) == CLOBBER
)
13868 len
= GET_RTX_LENGTH (code
);
13869 fmt
= GET_RTX_FORMAT (code
);
13871 for (i
= 0; i
< len
; i
++)
13876 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13877 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
13880 else if (fmt
[i
] == 'e')
13881 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13885 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13886 pattern of an insn. X must be a REG. */
13889 reg_bitfield_target_p (rtx x
, rtx body
)
13893 if (GET_CODE (body
) == SET
)
13895 rtx dest
= SET_DEST (body
);
13897 unsigned int regno
, tregno
, endregno
, endtregno
;
13899 if (GET_CODE (dest
) == ZERO_EXTRACT
)
13900 target
= XEXP (dest
, 0);
13901 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
13902 target
= SUBREG_REG (XEXP (dest
, 0));
13906 if (GET_CODE (target
) == SUBREG
)
13907 target
= SUBREG_REG (target
);
13909 if (!REG_P (target
))
13912 tregno
= REGNO (target
), regno
= REGNO (x
);
13913 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
13914 return target
== x
;
13916 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
13917 endregno
= end_hard_regno (GET_MODE (x
), regno
);
13919 return endregno
> tregno
&& regno
< endtregno
;
13922 else if (GET_CODE (body
) == PARALLEL
)
13923 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
13924 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
13930 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13931 as appropriate. I3 and I2 are the insns resulting from the combination
13932 insns including FROM (I2 may be zero).
13934 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13935 not need REG_DEAD notes because they are being substituted for. This
13936 saves searching in the most common cases.
13938 Each note in the list is either ignored or placed on some insns, depending
13939 on the type of note. */
13942 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
13943 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
13945 rtx note
, next_note
;
13947 rtx_insn
*tem_insn
;
13949 for (note
= notes
; note
; note
= next_note
)
13951 rtx_insn
*place
= 0, *place2
= 0;
13953 next_note
= XEXP (note
, 1);
13954 switch (REG_NOTE_KIND (note
))
13958 /* Doesn't matter much where we put this, as long as it's somewhere.
13959 It is preferable to keep these notes on branches, which is most
13960 likely to be i3. */
13964 case REG_NON_LOCAL_GOTO
:
13969 gcc_assert (i2
&& JUMP_P (i2
));
13974 case REG_EH_REGION
:
13975 /* These notes must remain with the call or trapping instruction. */
13978 else if (i2
&& CALL_P (i2
))
13982 gcc_assert (cfun
->can_throw_non_call_exceptions
);
13983 if (may_trap_p (i3
))
13985 else if (i2
&& may_trap_p (i2
))
13987 /* ??? Otherwise assume we've combined things such that we
13988 can now prove that the instructions can't trap. Drop the
13989 note in this case. */
13993 case REG_ARGS_SIZE
:
13994 /* ??? How to distribute between i3-i1. Assume i3 contains the
13995 entire adjustment. Assert i3 contains at least some adjust. */
13996 if (!noop_move_p (i3
))
13998 int old_size
, args_size
= INTVAL (XEXP (note
, 0));
13999 /* fixup_args_size_notes looks at REG_NORETURN note,
14000 so ensure the note is placed there first. */
14004 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
14005 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
14009 XEXP (n
, 1) = REG_NOTES (i3
);
14010 REG_NOTES (i3
) = n
;
14014 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
14015 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14016 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14017 gcc_assert (old_size
!= args_size
14019 && !ACCUMULATE_OUTGOING_ARGS
14020 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
14027 case REG_CALL_DECL
:
14028 /* These notes must remain with the call. It should not be
14029 possible for both I2 and I3 to be a call. */
14034 gcc_assert (i2
&& CALL_P (i2
));
14040 /* Any clobbers for i3 may still exist, and so we must process
14041 REG_UNUSED notes from that insn.
14043 Any clobbers from i2 or i1 can only exist if they were added by
14044 recog_for_combine. In that case, recog_for_combine created the
14045 necessary REG_UNUSED notes. Trying to keep any original
14046 REG_UNUSED notes from these insns can cause incorrect output
14047 if it is for the same register as the original i3 dest.
14048 In that case, we will notice that the register is set in i3,
14049 and then add a REG_UNUSED note for the destination of i3, which
14050 is wrong. However, it is possible to have REG_UNUSED notes from
14051 i2 or i1 for register which were both used and clobbered, so
14052 we keep notes from i2 or i1 if they will turn into REG_DEAD
14055 /* If this register is set or clobbered in I3, put the note there
14056 unless there is one already. */
14057 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
14059 if (from_insn
!= i3
)
14062 if (! (REG_P (XEXP (note
, 0))
14063 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
14064 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
14067 /* Otherwise, if this register is used by I3, then this register
14068 now dies here, so we must put a REG_DEAD note here unless there
14070 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
14071 && ! (REG_P (XEXP (note
, 0))
14072 ? find_regno_note (i3
, REG_DEAD
,
14073 REGNO (XEXP (note
, 0)))
14074 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
14076 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14084 /* These notes say something about results of an insn. We can
14085 only support them if they used to be on I3 in which case they
14086 remain on I3. Otherwise they are ignored.
14088 If the note refers to an expression that is not a constant, we
14089 must also ignore the note since we cannot tell whether the
14090 equivalence is still true. It might be possible to do
14091 slightly better than this (we only have a problem if I2DEST
14092 or I1DEST is present in the expression), but it doesn't
14093 seem worth the trouble. */
14095 if (from_insn
== i3
14096 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
14101 /* These notes say something about how a register is used. They must
14102 be present on any use of the register in I2 or I3. */
14103 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
14106 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
14115 case REG_LABEL_TARGET
:
14116 case REG_LABEL_OPERAND
:
14117 /* This can show up in several ways -- either directly in the
14118 pattern, or hidden off in the constant pool with (or without?)
14119 a REG_EQUAL note. */
14120 /* ??? Ignore the without-reg_equal-note problem for now. */
14121 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
14122 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
14123 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14124 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
14128 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
14129 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
14130 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14131 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
14139 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14140 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14142 if (place
&& JUMP_P (place
)
14143 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14144 && (JUMP_LABEL (place
) == NULL
14145 || JUMP_LABEL (place
) == XEXP (note
, 0)))
14147 rtx label
= JUMP_LABEL (place
);
14150 JUMP_LABEL (place
) = XEXP (note
, 0);
14151 else if (LABEL_P (label
))
14152 LABEL_NUSES (label
)--;
14155 if (place2
&& JUMP_P (place2
)
14156 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14157 && (JUMP_LABEL (place2
) == NULL
14158 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
14160 rtx label
= JUMP_LABEL (place2
);
14163 JUMP_LABEL (place2
) = XEXP (note
, 0);
14164 else if (LABEL_P (label
))
14165 LABEL_NUSES (label
)--;
14171 /* This note says something about the value of a register prior
14172 to the execution of an insn. It is too much trouble to see
14173 if the note is still correct in all situations. It is better
14174 to simply delete it. */
14178 /* If we replaced the right hand side of FROM_INSN with a
14179 REG_EQUAL note, the original use of the dying register
14180 will not have been combined into I3 and I2. In such cases,
14181 FROM_INSN is guaranteed to be the first of the combined
14182 instructions, so we simply need to search back before
14183 FROM_INSN for the previous use or set of this register,
14184 then alter the notes there appropriately.
14186 If the register is used as an input in I3, it dies there.
14187 Similarly for I2, if it is nonzero and adjacent to I3.
14189 If the register is not used as an input in either I3 or I2
14190 and it is not one of the registers we were supposed to eliminate,
14191 there are two possibilities. We might have a non-adjacent I2
14192 or we might have somehow eliminated an additional register
14193 from a computation. For example, we might have had A & B where
14194 we discover that B will always be zero. In this case we will
14195 eliminate the reference to A.
14197 In both cases, we must search to see if we can find a previous
14198 use of A and put the death note there. */
14201 && from_insn
== i2mod
14202 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
14203 tem_insn
= from_insn
;
14207 && CALL_P (from_insn
)
14208 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
14210 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
14212 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
14213 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14215 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
14217 && reg_overlap_mentioned_p (XEXP (note
, 0),
14219 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
14220 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
14223 /* If the new I2 sets the same register that is marked dead
14224 in the note, we do not know where to put the note.
14226 if (i2
!= 0 && reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14232 basic_block bb
= this_basic_block
;
14234 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
14236 if (!NONDEBUG_INSN_P (tem_insn
))
14238 if (tem_insn
== BB_HEAD (bb
))
14243 /* If the register is being set at TEM_INSN, see if that is all
14244 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14245 into a REG_UNUSED note instead. Don't delete sets to
14246 global register vars. */
14247 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
14248 || !global_regs
[REGNO (XEXP (note
, 0))])
14249 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
14251 rtx set
= single_set (tem_insn
);
14252 rtx inner_dest
= 0;
14253 rtx_insn
*cc0_setter
= NULL
;
14256 for (inner_dest
= SET_DEST (set
);
14257 (GET_CODE (inner_dest
) == STRICT_LOW_PART
14258 || GET_CODE (inner_dest
) == SUBREG
14259 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
14260 inner_dest
= XEXP (inner_dest
, 0))
14263 /* Verify that it was the set, and not a clobber that
14264 modified the register.
14266 CC0 targets must be careful to maintain setter/user
14267 pairs. If we cannot delete the setter due to side
14268 effects, mark the user with an UNUSED note instead
14271 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
14272 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
14274 || (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
14275 || ((cc0_setter
= prev_cc0_setter (tem_insn
)) != NULL
14276 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))))
14278 /* Move the notes and links of TEM_INSN elsewhere.
14279 This might delete other dead insns recursively.
14280 First set the pattern to something that won't use
14282 rtx old_notes
= REG_NOTES (tem_insn
);
14284 PATTERN (tem_insn
) = pc_rtx
;
14285 REG_NOTES (tem_insn
) = NULL
;
14287 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
14288 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14289 distribute_links (LOG_LINKS (tem_insn
));
14291 SET_INSN_DELETED (tem_insn
);
14292 if (tem_insn
== i2
)
14295 /* Delete the setter too. */
14298 PATTERN (cc0_setter
) = pc_rtx
;
14299 old_notes
= REG_NOTES (cc0_setter
);
14300 REG_NOTES (cc0_setter
) = NULL
;
14302 distribute_notes (old_notes
, cc0_setter
,
14304 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14305 distribute_links (LOG_LINKS (cc0_setter
));
14307 SET_INSN_DELETED (cc0_setter
);
14308 if (cc0_setter
== i2
)
14314 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
14316 /* If there isn't already a REG_UNUSED note, put one
14317 here. Do not place a REG_DEAD note, even if
14318 the register is also used here; that would not
14319 match the algorithm used in lifetime analysis
14320 and can cause the consistency check in the
14321 scheduler to fail. */
14322 if (! find_regno_note (tem_insn
, REG_UNUSED
,
14323 REGNO (XEXP (note
, 0))))
14328 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
14329 || (CALL_P (tem_insn
)
14330 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
14334 /* If we are doing a 3->2 combination, and we have a
14335 register which formerly died in i3 and was not used
14336 by i2, which now no longer dies in i3 and is used in
14337 i2 but does not die in i2, and place is between i2
14338 and i3, then we may need to move a link from place to
14340 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
14342 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
14343 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14345 struct insn_link
*links
= LOG_LINKS (place
);
14346 LOG_LINKS (place
) = NULL
;
14347 distribute_links (links
);
14352 if (tem_insn
== BB_HEAD (bb
))
14358 /* If the register is set or already dead at PLACE, we needn't do
14359 anything with this note if it is still a REG_DEAD note.
14360 We check here if it is set at all, not if is it totally replaced,
14361 which is what `dead_or_set_p' checks, so also check for it being
14364 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
14366 unsigned int regno
= REGNO (XEXP (note
, 0));
14367 reg_stat_type
*rsp
= ®_stat
[regno
];
14369 if (dead_or_set_p (place
, XEXP (note
, 0))
14370 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
14372 /* Unless the register previously died in PLACE, clear
14373 last_death. [I no longer understand why this is
14375 if (rsp
->last_death
!= place
)
14376 rsp
->last_death
= 0;
14380 rsp
->last_death
= place
;
14382 /* If this is a death note for a hard reg that is occupying
14383 multiple registers, ensure that we are still using all
14384 parts of the object. If we find a piece of the object
14385 that is unused, we must arrange for an appropriate REG_DEAD
14386 note to be added for it. However, we can't just emit a USE
14387 and tag the note to it, since the register might actually
14388 be dead; so we recourse, and the recursive call then finds
14389 the previous insn that used this register. */
14391 if (place
&& REG_NREGS (XEXP (note
, 0)) > 1)
14393 unsigned int endregno
= END_REGNO (XEXP (note
, 0));
14394 bool all_used
= true;
14397 for (i
= regno
; i
< endregno
; i
++)
14398 if ((! refers_to_regno_p (i
, PATTERN (place
))
14399 && ! find_regno_fusage (place
, USE
, i
))
14400 || dead_or_set_regno_p (place
, i
))
14408 /* Put only REG_DEAD notes for pieces that are
14409 not already dead or set. */
14411 for (i
= regno
; i
< endregno
;
14412 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
14414 rtx piece
= regno_reg_rtx
[i
];
14415 basic_block bb
= this_basic_block
;
14417 if (! dead_or_set_p (place
, piece
)
14418 && ! reg_bitfield_target_p (piece
,
14421 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
14424 distribute_notes (new_note
, place
, place
,
14425 NULL
, NULL_RTX
, NULL_RTX
,
14428 else if (! refers_to_regno_p (i
, PATTERN (place
))
14429 && ! find_regno_fusage (place
, USE
, i
))
14430 for (tem_insn
= PREV_INSN (place
); ;
14431 tem_insn
= PREV_INSN (tem_insn
))
14433 if (!NONDEBUG_INSN_P (tem_insn
))
14435 if (tem_insn
== BB_HEAD (bb
))
14439 if (dead_or_set_p (tem_insn
, piece
)
14440 || reg_bitfield_target_p (piece
,
14441 PATTERN (tem_insn
)))
14443 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
14456 /* Any other notes should not be present at this point in the
14458 gcc_unreachable ();
14463 XEXP (note
, 1) = REG_NOTES (place
);
14464 REG_NOTES (place
) = note
;
14468 add_shallow_copy_of_reg_note (place2
, note
);
14472 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14473 I3, I2, and I1 to new locations. This is also called to add a link
14474 pointing at I3 when I3's destination is changed. */
14477 distribute_links (struct insn_link
*links
)
14479 struct insn_link
*link
, *next_link
;
14481 for (link
= links
; link
; link
= next_link
)
14483 rtx_insn
*place
= 0;
14487 next_link
= link
->next
;
14489 /* If the insn that this link points to is a NOTE, ignore it. */
14490 if (NOTE_P (link
->insn
))
14494 rtx pat
= PATTERN (link
->insn
);
14495 if (GET_CODE (pat
) == SET
)
14497 else if (GET_CODE (pat
) == PARALLEL
)
14500 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
14502 set
= XVECEXP (pat
, 0, i
);
14503 if (GET_CODE (set
) != SET
)
14506 reg
= SET_DEST (set
);
14507 while (GET_CODE (reg
) == ZERO_EXTRACT
14508 || GET_CODE (reg
) == STRICT_LOW_PART
14509 || GET_CODE (reg
) == SUBREG
)
14510 reg
= XEXP (reg
, 0);
14515 if (REGNO (reg
) == link
->regno
)
14518 if (i
== XVECLEN (pat
, 0))
14524 reg
= SET_DEST (set
);
14526 while (GET_CODE (reg
) == ZERO_EXTRACT
14527 || GET_CODE (reg
) == STRICT_LOW_PART
14528 || GET_CODE (reg
) == SUBREG
)
14529 reg
= XEXP (reg
, 0);
14531 /* A LOG_LINK is defined as being placed on the first insn that uses
14532 a register and points to the insn that sets the register. Start
14533 searching at the next insn after the target of the link and stop
14534 when we reach a set of the register or the end of the basic block.
14536 Note that this correctly handles the link that used to point from
14537 I3 to I2. Also note that not much searching is typically done here
14538 since most links don't point very far away. */
14540 for (insn
= NEXT_INSN (link
->insn
);
14541 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
14542 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
14543 insn
= NEXT_INSN (insn
))
14544 if (DEBUG_INSN_P (insn
))
14546 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
14548 if (reg_referenced_p (reg
, PATTERN (insn
)))
14552 else if (CALL_P (insn
)
14553 && find_reg_fusage (insn
, USE
, reg
))
14558 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
14561 /* If we found a place to put the link, place it there unless there
14562 is already a link to the same insn as LINK at that point. */
14566 struct insn_link
*link2
;
14568 FOR_EACH_LOG_LINK (link2
, place
)
14569 if (link2
->insn
== link
->insn
&& link2
->regno
== link
->regno
)
14574 link
->next
= LOG_LINKS (place
);
14575 LOG_LINKS (place
) = link
;
14577 /* Set added_links_insn to the earliest insn we added a
14579 if (added_links_insn
== 0
14580 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
14581 added_links_insn
= place
;
14587 /* Check for any register or memory mentioned in EQUIV that is not
14588 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14589 of EXPR where some registers may have been replaced by constants. */
14592 unmentioned_reg_p (rtx equiv
, rtx expr
)
14594 subrtx_iterator::array_type array
;
14595 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
14597 const_rtx x
= *iter
;
14598 if ((REG_P (x
) || MEM_P (x
))
14599 && !reg_mentioned_p (x
, expr
))
14605 DEBUG_FUNCTION
void
14606 dump_combine_stats (FILE *file
)
14610 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14611 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
14615 dump_combine_total_stats (FILE *file
)
14619 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14620 total_attempts
, total_merges
, total_extras
, total_successes
);
14623 /* Try combining insns through substitution. */
14624 static unsigned int
14625 rest_of_handle_combine (void)
14627 int rebuild_jump_labels_after_combine
;
14629 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
14630 df_note_add_problem ();
14633 regstat_init_n_sets_and_refs ();
14634 reg_n_sets_max
= max_reg_num ();
14636 rebuild_jump_labels_after_combine
14637 = combine_instructions (get_insns (), max_reg_num ());
14639 /* Combining insns may have turned an indirect jump into a
14640 direct jump. Rebuild the JUMP_LABEL fields of jumping
14642 if (rebuild_jump_labels_after_combine
)
14644 if (dom_info_available_p (CDI_DOMINATORS
))
14645 free_dominance_info (CDI_DOMINATORS
);
14646 timevar_push (TV_JUMP
);
14647 rebuild_jump_labels (get_insns ());
14649 timevar_pop (TV_JUMP
);
14652 regstat_free_n_sets_and_refs ();
14658 const pass_data pass_data_combine
=
14660 RTL_PASS
, /* type */
14661 "combine", /* name */
14662 OPTGROUP_NONE
, /* optinfo_flags */
14663 TV_COMBINE
, /* tv_id */
14664 PROP_cfglayout
, /* properties_required */
14665 0, /* properties_provided */
14666 0, /* properties_destroyed */
14667 0, /* todo_flags_start */
14668 TODO_df_finish
, /* todo_flags_finish */
14671 class pass_combine
: public rtl_opt_pass
14674 pass_combine (gcc::context
*ctxt
)
14675 : rtl_opt_pass (pass_data_combine
, ctxt
)
14678 /* opt_pass methods: */
14679 virtual bool gate (function
*) { return (optimize
> 0); }
14680 virtual unsigned int execute (function
*)
14682 return rest_of_handle_combine ();
14685 }; // class pass_combine
14687 } // anon namespace
14690 make_pass_combine (gcc::context
*ctxt
)
14692 return new pass_combine (ctxt
);