* final.c (final): Remove prescan parameter. Change all callers.
[official-gcc.git] / gcc / final.c
blob7f5c664fd20f6808d85c181b1e979ca5675d2a5c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
76 #ifdef XCOFF_DEBUGGING_INFO
77 #include "xcoffout.h" /* Needed for external data
78 declarations for e.g. AIX 4.x. */
79 #endif
81 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
82 #include "dwarf2out.h"
83 #endif
85 #ifdef DBX_DEBUGGING_INFO
86 #include "dbxout.h"
87 #endif
89 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
90 null default for it to save conditionalization later. */
91 #ifndef CC_STATUS_INIT
92 #define CC_STATUS_INIT
93 #endif
95 /* How to start an assembler comment. */
96 #ifndef ASM_COMMENT_START
97 #define ASM_COMMENT_START ";#"
98 #endif
100 /* Is the given character a logical line separator for the assembler? */
101 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
102 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
103 #endif
105 #ifndef JUMP_TABLES_IN_TEXT_SECTION
106 #define JUMP_TABLES_IN_TEXT_SECTION 0
107 #endif
109 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
110 #define HAVE_READONLY_DATA_SECTION 1
111 #else
112 #define HAVE_READONLY_DATA_SECTION 0
113 #endif
115 /* Bitflags used by final_scan_insn. */
116 #define SEEN_BB 1
117 #define SEEN_NOTE 2
118 #define SEEN_EMITTED 4
120 /* Last insn processed by final_scan_insn. */
121 static rtx debug_insn;
122 rtx current_output_insn;
124 /* Line number of last NOTE. */
125 static int last_linenum;
127 /* Highest line number in current block. */
128 static int high_block_linenum;
130 /* Likewise for function. */
131 static int high_function_linenum;
133 /* Filename of last NOTE. */
134 static const char *last_filename;
136 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
138 /* Nonzero while outputting an `asm' with operands.
139 This means that inconsistencies are the user's fault, so don't abort.
140 The precise value is the insn being output, to pass to error_for_asm. */
141 rtx this_is_asm_operands;
143 /* Number of operands of this insn, for an `asm' with operands. */
144 static unsigned int insn_noperands;
146 /* Compare optimization flag. */
148 static rtx last_ignored_compare = 0;
150 /* Assign a unique number to each insn that is output.
151 This can be used to generate unique local labels. */
153 static int insn_counter = 0;
155 #ifdef HAVE_cc0
156 /* This variable contains machine-dependent flags (defined in tm.h)
157 set and examined by output routines
158 that describe how to interpret the condition codes properly. */
160 CC_STATUS cc_status;
162 /* During output of an insn, this contains a copy of cc_status
163 from before the insn. */
165 CC_STATUS cc_prev_status;
166 #endif
168 /* Indexed by hardware reg number, is 1 if that register is ever
169 used in the current function.
171 In life_analysis, or in stupid_life_analysis, this is set
172 up to record the hard regs used explicitly. Reload adds
173 in the hard regs used for holding pseudo regs. Final uses
174 it to generate the code in the function prologue and epilogue
175 to save and restore registers as needed. */
177 char regs_ever_live[FIRST_PSEUDO_REGISTER];
179 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
180 Unlike regs_ever_live, elements of this array corresponding to
181 eliminable regs like the frame pointer are set if an asm sets them. */
183 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
185 /* Nonzero means current function must be given a frame pointer.
186 Initialized in function.c to 0. Set only in reload1.c as per
187 the needs of the function. */
189 int frame_pointer_needed;
191 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
193 static int block_depth;
195 /* Nonzero if have enabled APP processing of our assembler output. */
197 static int app_on;
199 /* If we are outputting an insn sequence, this contains the sequence rtx.
200 Zero otherwise. */
202 rtx final_sequence;
204 #ifdef ASSEMBLER_DIALECT
206 /* Number of the assembler dialect to use, starting at 0. */
207 static int dialect_number;
208 #endif
210 #ifdef HAVE_conditional_execution
211 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
212 rtx current_insn_predicate;
213 #endif
215 #ifdef HAVE_ATTR_length
216 static int asm_insn_count (rtx);
217 #endif
218 static void profile_function (FILE *);
219 static void profile_after_prologue (FILE *);
220 static bool notice_source_line (rtx);
221 static rtx walk_alter_subreg (rtx *);
222 static void output_asm_name (void);
223 static void output_alternate_entry_point (FILE *, rtx);
224 static tree get_mem_expr_from_op (rtx, int *);
225 static void output_asm_operand_names (rtx *, int *, int);
226 static void output_operand (rtx, int);
227 #ifdef LEAF_REGISTERS
228 static void leaf_renumber_regs (rtx);
229 #endif
230 #ifdef HAVE_cc0
231 static int alter_cond (rtx);
232 #endif
233 #ifndef ADDR_VEC_ALIGN
234 static int final_addr_vec_align (rtx);
235 #endif
236 #ifdef HAVE_ATTR_length
237 static int align_fuzz (rtx, rtx, int, unsigned);
238 #endif
240 /* Initialize data in final at the beginning of a compilation. */
242 void
243 init_final (const char *filename ATTRIBUTE_UNUSED)
245 app_on = 0;
246 final_sequence = 0;
248 #ifdef ASSEMBLER_DIALECT
249 dialect_number = ASSEMBLER_DIALECT;
250 #endif
253 /* Default target function prologue and epilogue assembler output.
255 If not overridden for epilogue code, then the function body itself
256 contains return instructions wherever needed. */
257 void
258 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
259 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
263 /* Default target hook that outputs nothing to a stream. */
264 void
265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
269 /* Enable APP processing of subsequent output.
270 Used before the output from an `asm' statement. */
272 void
273 app_enable (void)
275 if (! app_on)
277 fputs (ASM_APP_ON, asm_out_file);
278 app_on = 1;
282 /* Disable APP processing of subsequent output.
283 Called from varasm.c before most kinds of output. */
285 void
286 app_disable (void)
288 if (app_on)
290 fputs (ASM_APP_OFF, asm_out_file);
291 app_on = 0;
295 /* Return the number of slots filled in the current
296 delayed branch sequence (we don't count the insn needing the
297 delay slot). Zero if not in a delayed branch sequence. */
299 #ifdef DELAY_SLOTS
301 dbr_sequence_length (void)
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
308 #endif
310 /* The next two pages contain routines used to compute the length of an insn
311 and to shorten branches. */
313 /* Arrays for insn lengths, and addresses. The latter is referenced by
314 `insn_current_length'. */
316 static int *insn_lengths;
318 varray_type insn_addresses_;
320 /* Max uid for which the above arrays are valid. */
321 static int insn_lengths_max_uid;
323 /* Address of insn being processed. Used by `insn_current_length'. */
324 int insn_current_address;
326 /* Address of insn being processed in previous iteration. */
327 int insn_last_address;
329 /* known invariant alignment of insn being processed. */
330 int insn_current_align;
332 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
333 gives the next following alignment insn that increases the known
334 alignment, or NULL_RTX if there is no such insn.
335 For any alignment obtained this way, we can again index uid_align with
336 its uid to obtain the next following align that in turn increases the
337 alignment, till we reach NULL_RTX; the sequence obtained this way
338 for each insn we'll call the alignment chain of this insn in the following
339 comments. */
341 struct label_alignment
343 short alignment;
344 short max_skip;
347 static rtx *uid_align;
348 static int *uid_shuid;
349 static struct label_alignment *label_align;
351 /* Indicate that branch shortening hasn't yet been done. */
353 void
354 init_insn_lengths (void)
356 if (uid_shuid)
358 free (uid_shuid);
359 uid_shuid = 0;
361 if (insn_lengths)
363 free (insn_lengths);
364 insn_lengths = 0;
365 insn_lengths_max_uid = 0;
367 #ifdef HAVE_ATTR_length
368 INSN_ADDRESSES_FREE ();
369 #endif
370 if (uid_align)
372 free (uid_align);
373 uid_align = 0;
377 /* Obtain the current length of an insn. If branch shortening has been done,
378 get its actual length. Otherwise, get its maximum length. */
381 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
383 #ifdef HAVE_ATTR_length
384 rtx body;
385 int i;
386 int length = 0;
388 if (insn_lengths_max_uid > INSN_UID (insn))
389 return insn_lengths[INSN_UID (insn)];
390 else
391 switch (GET_CODE (insn))
393 case NOTE:
394 case BARRIER:
395 case CODE_LABEL:
396 return 0;
398 case CALL_INSN:
399 length = insn_default_length (insn);
400 break;
402 case JUMP_INSN:
403 body = PATTERN (insn);
404 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
406 /* Alignment is machine-dependent and should be handled by
407 ADDR_VEC_ALIGN. */
409 else
410 length = insn_default_length (insn);
411 break;
413 case INSN:
414 body = PATTERN (insn);
415 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
416 return 0;
418 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
419 length = asm_insn_count (body) * insn_default_length (insn);
420 else if (GET_CODE (body) == SEQUENCE)
421 for (i = 0; i < XVECLEN (body, 0); i++)
422 length += get_attr_length (XVECEXP (body, 0, i));
423 else
424 length = insn_default_length (insn);
425 break;
427 default:
428 break;
431 #ifdef ADJUST_INSN_LENGTH
432 ADJUST_INSN_LENGTH (insn, length);
433 #endif
434 return length;
435 #else /* not HAVE_ATTR_length */
436 return 0;
437 #endif /* not HAVE_ATTR_length */
440 /* Code to handle alignment inside shorten_branches. */
442 /* Here is an explanation how the algorithm in align_fuzz can give
443 proper results:
445 Call a sequence of instructions beginning with alignment point X
446 and continuing until the next alignment point `block X'. When `X'
447 is used in an expression, it means the alignment value of the
448 alignment point.
450 Call the distance between the start of the first insn of block X, and
451 the end of the last insn of block X `IX', for the `inner size of X'.
452 This is clearly the sum of the instruction lengths.
454 Likewise with the next alignment-delimited block following X, which we
455 shall call block Y.
457 Call the distance between the start of the first insn of block X, and
458 the start of the first insn of block Y `OX', for the `outer size of X'.
460 The estimated padding is then OX - IX.
462 OX can be safely estimated as
464 if (X >= Y)
465 OX = round_up(IX, Y)
466 else
467 OX = round_up(IX, X) + Y - X
469 Clearly est(IX) >= real(IX), because that only depends on the
470 instruction lengths, and those being overestimated is a given.
472 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
473 we needn't worry about that when thinking about OX.
475 When X >= Y, the alignment provided by Y adds no uncertainty factor
476 for branch ranges starting before X, so we can just round what we have.
477 But when X < Y, we don't know anything about the, so to speak,
478 `middle bits', so we have to assume the worst when aligning up from an
479 address mod X to one mod Y, which is Y - X. */
481 #ifndef LABEL_ALIGN
482 #define LABEL_ALIGN(LABEL) align_labels_log
483 #endif
485 #ifndef LABEL_ALIGN_MAX_SKIP
486 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
487 #endif
489 #ifndef LOOP_ALIGN
490 #define LOOP_ALIGN(LABEL) align_loops_log
491 #endif
493 #ifndef LOOP_ALIGN_MAX_SKIP
494 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
495 #endif
497 #ifndef LABEL_ALIGN_AFTER_BARRIER
498 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
499 #endif
501 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
502 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
503 #endif
505 #ifndef JUMP_ALIGN
506 #define JUMP_ALIGN(LABEL) align_jumps_log
507 #endif
509 #ifndef JUMP_ALIGN_MAX_SKIP
510 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
511 #endif
513 #ifndef ADDR_VEC_ALIGN
514 static int
515 final_addr_vec_align (rtx addr_vec)
517 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
519 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
520 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
521 return exact_log2 (align);
525 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
526 #endif
528 #ifndef INSN_LENGTH_ALIGNMENT
529 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
530 #endif
532 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
534 static int min_labelno, max_labelno;
536 #define LABEL_TO_ALIGNMENT(LABEL) \
537 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
539 #define LABEL_TO_MAX_SKIP(LABEL) \
540 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
542 /* For the benefit of port specific code do this also as a function. */
545 label_to_alignment (rtx label)
547 return LABEL_TO_ALIGNMENT (label);
550 #ifdef HAVE_ATTR_length
551 /* The differences in addresses
552 between a branch and its target might grow or shrink depending on
553 the alignment the start insn of the range (the branch for a forward
554 branch or the label for a backward branch) starts out on; if these
555 differences are used naively, they can even oscillate infinitely.
556 We therefore want to compute a 'worst case' address difference that
557 is independent of the alignment the start insn of the range end
558 up on, and that is at least as large as the actual difference.
559 The function align_fuzz calculates the amount we have to add to the
560 naively computed difference, by traversing the part of the alignment
561 chain of the start insn of the range that is in front of the end insn
562 of the range, and considering for each alignment the maximum amount
563 that it might contribute to a size increase.
565 For casesi tables, we also want to know worst case minimum amounts of
566 address difference, in case a machine description wants to introduce
567 some common offset that is added to all offsets in a table.
568 For this purpose, align_fuzz with a growth argument of 0 computes the
569 appropriate adjustment. */
571 /* Compute the maximum delta by which the difference of the addresses of
572 START and END might grow / shrink due to a different address for start
573 which changes the size of alignment insns between START and END.
574 KNOWN_ALIGN_LOG is the alignment known for START.
575 GROWTH should be ~0 if the objective is to compute potential code size
576 increase, and 0 if the objective is to compute potential shrink.
577 The return value is undefined for any other value of GROWTH. */
579 static int
580 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
582 int uid = INSN_UID (start);
583 rtx align_label;
584 int known_align = 1 << known_align_log;
585 int end_shuid = INSN_SHUID (end);
586 int fuzz = 0;
588 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
590 int align_addr, new_align;
592 uid = INSN_UID (align_label);
593 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
594 if (uid_shuid[uid] > end_shuid)
595 break;
596 known_align_log = LABEL_TO_ALIGNMENT (align_label);
597 new_align = 1 << known_align_log;
598 if (new_align < known_align)
599 continue;
600 fuzz += (-align_addr ^ growth) & (new_align - known_align);
601 known_align = new_align;
603 return fuzz;
606 /* Compute a worst-case reference address of a branch so that it
607 can be safely used in the presence of aligned labels. Since the
608 size of the branch itself is unknown, the size of the branch is
609 not included in the range. I.e. for a forward branch, the reference
610 address is the end address of the branch as known from the previous
611 branch shortening pass, minus a value to account for possible size
612 increase due to alignment. For a backward branch, it is the start
613 address of the branch as known from the current pass, plus a value
614 to account for possible size increase due to alignment.
615 NB.: Therefore, the maximum offset allowed for backward branches needs
616 to exclude the branch size. */
619 insn_current_reference_address (rtx branch)
621 rtx dest, seq;
622 int seq_uid;
624 if (! INSN_ADDRESSES_SET_P ())
625 return 0;
627 seq = NEXT_INSN (PREV_INSN (branch));
628 seq_uid = INSN_UID (seq);
629 if (!JUMP_P (branch))
630 /* This can happen for example on the PA; the objective is to know the
631 offset to address something in front of the start of the function.
632 Thus, we can treat it like a backward branch.
633 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
634 any alignment we'd encounter, so we skip the call to align_fuzz. */
635 return insn_current_address;
636 dest = JUMP_LABEL (branch);
638 /* BRANCH has no proper alignment chain set, so use SEQ.
639 BRANCH also has no INSN_SHUID. */
640 if (INSN_SHUID (seq) < INSN_SHUID (dest))
642 /* Forward branch. */
643 return (insn_last_address + insn_lengths[seq_uid]
644 - align_fuzz (seq, dest, length_unit_log, ~0));
646 else
648 /* Backward branch. */
649 return (insn_current_address
650 + align_fuzz (dest, seq, length_unit_log, ~0));
653 #endif /* HAVE_ATTR_length */
655 void
656 compute_alignments (void)
658 int log, max_skip, max_log;
659 basic_block bb;
661 if (label_align)
663 free (label_align);
664 label_align = 0;
667 max_labelno = max_label_num ();
668 min_labelno = get_first_label_num ();
669 label_align = xcalloc (max_labelno - min_labelno + 1,
670 sizeof (struct label_alignment));
672 /* If not optimizing or optimizing for size, don't assign any alignments. */
673 if (! optimize || optimize_size)
674 return;
676 FOR_EACH_BB (bb)
678 rtx label = BB_HEAD (bb);
679 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
680 edge e;
681 edge_iterator ei;
683 if (!LABEL_P (label)
684 || probably_never_executed_bb_p (bb))
685 continue;
686 max_log = LABEL_ALIGN (label);
687 max_skip = LABEL_ALIGN_MAX_SKIP;
689 FOR_EACH_EDGE (e, ei, bb->preds)
691 if (e->flags & EDGE_FALLTHRU)
692 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
693 else
694 branch_frequency += EDGE_FREQUENCY (e);
697 /* There are two purposes to align block with no fallthru incoming edge:
698 1) to avoid fetch stalls when branch destination is near cache boundary
699 2) to improve cache efficiency in case the previous block is not executed
700 (so it does not need to be in the cache).
702 We to catch first case, we align frequently executed blocks.
703 To catch the second, we align blocks that are executed more frequently
704 than the predecessor and the predecessor is likely to not be executed
705 when function is called. */
707 if (!has_fallthru
708 && (branch_frequency > BB_FREQ_MAX / 10
709 || (bb->frequency > bb->prev_bb->frequency * 10
710 && (bb->prev_bb->frequency
711 <= ENTRY_BLOCK_PTR->frequency / 2))))
713 log = JUMP_ALIGN (label);
714 if (max_log < log)
716 max_log = log;
717 max_skip = JUMP_ALIGN_MAX_SKIP;
720 /* In case block is frequent and reached mostly by non-fallthru edge,
721 align it. It is most likely a first block of loop. */
722 if (has_fallthru
723 && maybe_hot_bb_p (bb)
724 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
725 && branch_frequency > fallthru_frequency * 2)
727 log = LOOP_ALIGN (label);
728 if (max_log < log)
730 max_log = log;
731 max_skip = LOOP_ALIGN_MAX_SKIP;
734 LABEL_TO_ALIGNMENT (label) = max_log;
735 LABEL_TO_MAX_SKIP (label) = max_skip;
739 /* Make a pass over all insns and compute their actual lengths by shortening
740 any branches of variable length if possible. */
742 /* shorten_branches might be called multiple times: for example, the SH
743 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
744 In order to do this, it needs proper length information, which it obtains
745 by calling shorten_branches. This cannot be collapsed with
746 shorten_branches itself into a single pass unless we also want to integrate
747 reorg.c, since the branch splitting exposes new instructions with delay
748 slots. */
750 void
751 shorten_branches (rtx first ATTRIBUTE_UNUSED)
753 rtx insn;
754 int max_uid;
755 int i;
756 int max_log;
757 int max_skip;
758 #ifdef HAVE_ATTR_length
759 #define MAX_CODE_ALIGN 16
760 rtx seq;
761 int something_changed = 1;
762 char *varying_length;
763 rtx body;
764 int uid;
765 rtx align_tab[MAX_CODE_ALIGN];
767 #endif
769 /* Compute maximum UID and allocate label_align / uid_shuid. */
770 max_uid = get_max_uid ();
772 /* Free uid_shuid before reallocating it. */
773 free (uid_shuid);
775 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
777 if (max_labelno != max_label_num ())
779 int old = max_labelno;
780 int n_labels;
781 int n_old_labels;
783 max_labelno = max_label_num ();
785 n_labels = max_labelno - min_labelno + 1;
786 n_old_labels = old - min_labelno + 1;
788 label_align = xrealloc (label_align,
789 n_labels * sizeof (struct label_alignment));
791 /* Range of labels grows monotonically in the function. Abort here
792 means that the initialization of array got lost. */
793 gcc_assert (n_old_labels <= n_labels);
795 memset (label_align + n_old_labels, 0,
796 (n_labels - n_old_labels) * sizeof (struct label_alignment));
799 /* Initialize label_align and set up uid_shuid to be strictly
800 monotonically rising with insn order. */
801 /* We use max_log here to keep track of the maximum alignment we want to
802 impose on the next CODE_LABEL (or the current one if we are processing
803 the CODE_LABEL itself). */
805 max_log = 0;
806 max_skip = 0;
808 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
810 int log;
812 INSN_SHUID (insn) = i++;
813 if (INSN_P (insn))
815 /* reorg might make the first insn of a loop being run once only,
816 and delete the label in front of it. Then we want to apply
817 the loop alignment to the new label created by reorg, which
818 is separated by the former loop start insn from the
819 NOTE_INSN_LOOP_BEG. */
821 else if (LABEL_P (insn))
823 rtx next;
825 /* Merge in alignments computed by compute_alignments. */
826 log = LABEL_TO_ALIGNMENT (insn);
827 if (max_log < log)
829 max_log = log;
830 max_skip = LABEL_TO_MAX_SKIP (insn);
833 log = LABEL_ALIGN (insn);
834 if (max_log < log)
836 max_log = log;
837 max_skip = LABEL_ALIGN_MAX_SKIP;
839 next = next_nonnote_insn (insn);
840 /* ADDR_VECs only take room if read-only data goes into the text
841 section. */
842 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
843 if (next && JUMP_P (next))
845 rtx nextbody = PATTERN (next);
846 if (GET_CODE (nextbody) == ADDR_VEC
847 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
849 log = ADDR_VEC_ALIGN (next);
850 if (max_log < log)
852 max_log = log;
853 max_skip = LABEL_ALIGN_MAX_SKIP;
857 LABEL_TO_ALIGNMENT (insn) = max_log;
858 LABEL_TO_MAX_SKIP (insn) = max_skip;
859 max_log = 0;
860 max_skip = 0;
862 else if (BARRIER_P (insn))
864 rtx label;
866 for (label = insn; label && ! INSN_P (label);
867 label = NEXT_INSN (label))
868 if (LABEL_P (label))
870 log = LABEL_ALIGN_AFTER_BARRIER (insn);
871 if (max_log < log)
873 max_log = log;
874 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
876 break;
880 #ifdef HAVE_ATTR_length
882 /* Allocate the rest of the arrays. */
883 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
884 insn_lengths_max_uid = max_uid;
885 /* Syntax errors can lead to labels being outside of the main insn stream.
886 Initialize insn_addresses, so that we get reproducible results. */
887 INSN_ADDRESSES_ALLOC (max_uid);
889 varying_length = xcalloc (max_uid, sizeof (char));
891 /* Initialize uid_align. We scan instructions
892 from end to start, and keep in align_tab[n] the last seen insn
893 that does an alignment of at least n+1, i.e. the successor
894 in the alignment chain for an insn that does / has a known
895 alignment of n. */
896 uid_align = xcalloc (max_uid, sizeof *uid_align);
898 for (i = MAX_CODE_ALIGN; --i >= 0;)
899 align_tab[i] = NULL_RTX;
900 seq = get_last_insn ();
901 for (; seq; seq = PREV_INSN (seq))
903 int uid = INSN_UID (seq);
904 int log;
905 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
906 uid_align[uid] = align_tab[0];
907 if (log)
909 /* Found an alignment label. */
910 uid_align[uid] = align_tab[log];
911 for (i = log - 1; i >= 0; i--)
912 align_tab[i] = seq;
915 #ifdef CASE_VECTOR_SHORTEN_MODE
916 if (optimize)
918 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
919 label fields. */
921 int min_shuid = INSN_SHUID (get_insns ()) - 1;
922 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
923 int rel;
925 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
927 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
928 int len, i, min, max, insn_shuid;
929 int min_align;
930 addr_diff_vec_flags flags;
932 if (!JUMP_P (insn)
933 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
934 continue;
935 pat = PATTERN (insn);
936 len = XVECLEN (pat, 1);
937 gcc_assert (len > 0);
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
945 min = shuid;
946 min_lab = lab;
948 if (shuid > max)
950 max = shuid;
951 max_lab = lab;
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 memset (&flags, 0, sizeof (flags));
961 flags.min_align = min_align;
962 flags.base_after_vec = rel > insn_shuid;
963 flags.min_after_vec = min > insn_shuid;
964 flags.max_after_vec = max > insn_shuid;
965 flags.min_after_base = min > rel;
966 flags.max_after_base = max > rel;
967 ADDR_DIFF_VEC_FLAGS (pat) = flags;
970 #endif /* CASE_VECTOR_SHORTEN_MODE */
972 /* Compute initial lengths, addresses, and varying flags for each insn. */
973 for (insn_current_address = 0, insn = first;
974 insn != 0;
975 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
977 uid = INSN_UID (insn);
979 insn_lengths[uid] = 0;
981 if (LABEL_P (insn))
983 int log = LABEL_TO_ALIGNMENT (insn);
984 if (log)
986 int align = 1 << log;
987 int new_address = (insn_current_address + align - 1) & -align;
988 insn_lengths[uid] = new_address - insn_current_address;
992 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
994 if (NOTE_P (insn) || BARRIER_P (insn)
995 || LABEL_P (insn))
996 continue;
997 if (INSN_DELETED_P (insn))
998 continue;
1000 body = PATTERN (insn);
1001 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1003 /* This only takes room if read-only data goes into the text
1004 section. */
1005 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1006 insn_lengths[uid] = (XVECLEN (body,
1007 GET_CODE (body) == ADDR_DIFF_VEC)
1008 * GET_MODE_SIZE (GET_MODE (body)));
1009 /* Alignment is handled by ADDR_VEC_ALIGN. */
1011 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1012 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1013 else if (GET_CODE (body) == SEQUENCE)
1015 int i;
1016 int const_delay_slots;
1017 #ifdef DELAY_SLOTS
1018 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1019 #else
1020 const_delay_slots = 0;
1021 #endif
1022 /* Inside a delay slot sequence, we do not do any branch shortening
1023 if the shortening could change the number of delay slots
1024 of the branch. */
1025 for (i = 0; i < XVECLEN (body, 0); i++)
1027 rtx inner_insn = XVECEXP (body, 0, i);
1028 int inner_uid = INSN_UID (inner_insn);
1029 int inner_length;
1031 if (GET_CODE (body) == ASM_INPUT
1032 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1033 inner_length = (asm_insn_count (PATTERN (inner_insn))
1034 * insn_default_length (inner_insn));
1035 else
1036 inner_length = insn_default_length (inner_insn);
1038 insn_lengths[inner_uid] = inner_length;
1039 if (const_delay_slots)
1041 if ((varying_length[inner_uid]
1042 = insn_variable_length_p (inner_insn)) != 0)
1043 varying_length[uid] = 1;
1044 INSN_ADDRESSES (inner_uid) = (insn_current_address
1045 + insn_lengths[uid]);
1047 else
1048 varying_length[inner_uid] = 0;
1049 insn_lengths[uid] += inner_length;
1052 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1054 insn_lengths[uid] = insn_default_length (insn);
1055 varying_length[uid] = insn_variable_length_p (insn);
1058 /* If needed, do any adjustment. */
1059 #ifdef ADJUST_INSN_LENGTH
1060 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1061 if (insn_lengths[uid] < 0)
1062 fatal_insn ("negative insn length", insn);
1063 #endif
1066 /* Now loop over all the insns finding varying length insns. For each,
1067 get the current insn length. If it has changed, reflect the change.
1068 When nothing changes for a full pass, we are done. */
1070 while (something_changed)
1072 something_changed = 0;
1073 insn_current_align = MAX_CODE_ALIGN - 1;
1074 for (insn_current_address = 0, insn = first;
1075 insn != 0;
1076 insn = NEXT_INSN (insn))
1078 int new_length;
1079 #ifdef ADJUST_INSN_LENGTH
1080 int tmp_length;
1081 #endif
1082 int length_align;
1084 uid = INSN_UID (insn);
1086 if (LABEL_P (insn))
1088 int log = LABEL_TO_ALIGNMENT (insn);
1089 if (log > insn_current_align)
1091 int align = 1 << log;
1092 int new_address= (insn_current_address + align - 1) & -align;
1093 insn_lengths[uid] = new_address - insn_current_address;
1094 insn_current_align = log;
1095 insn_current_address = new_address;
1097 else
1098 insn_lengths[uid] = 0;
1099 INSN_ADDRESSES (uid) = insn_current_address;
1100 continue;
1103 length_align = INSN_LENGTH_ALIGNMENT (insn);
1104 if (length_align < insn_current_align)
1105 insn_current_align = length_align;
1107 insn_last_address = INSN_ADDRESSES (uid);
1108 INSN_ADDRESSES (uid) = insn_current_address;
1110 #ifdef CASE_VECTOR_SHORTEN_MODE
1111 if (optimize && JUMP_P (insn)
1112 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1114 rtx body = PATTERN (insn);
1115 int old_length = insn_lengths[uid];
1116 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1117 rtx min_lab = XEXP (XEXP (body, 2), 0);
1118 rtx max_lab = XEXP (XEXP (body, 3), 0);
1119 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1120 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1121 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1122 rtx prev;
1123 int rel_align = 0;
1124 addr_diff_vec_flags flags;
1126 /* Avoid automatic aggregate initialization. */
1127 flags = ADDR_DIFF_VEC_FLAGS (body);
1129 /* Try to find a known alignment for rel_lab. */
1130 for (prev = rel_lab;
1131 prev
1132 && ! insn_lengths[INSN_UID (prev)]
1133 && ! (varying_length[INSN_UID (prev)] & 1);
1134 prev = PREV_INSN (prev))
1135 if (varying_length[INSN_UID (prev)] & 2)
1137 rel_align = LABEL_TO_ALIGNMENT (prev);
1138 break;
1141 /* See the comment on addr_diff_vec_flags in rtl.h for the
1142 meaning of the flags values. base: REL_LAB vec: INSN */
1143 /* Anything after INSN has still addresses from the last
1144 pass; adjust these so that they reflect our current
1145 estimate for this pass. */
1146 if (flags.base_after_vec)
1147 rel_addr += insn_current_address - insn_last_address;
1148 if (flags.min_after_vec)
1149 min_addr += insn_current_address - insn_last_address;
1150 if (flags.max_after_vec)
1151 max_addr += insn_current_address - insn_last_address;
1152 /* We want to know the worst case, i.e. lowest possible value
1153 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1154 its offset is positive, and we have to be wary of code shrink;
1155 otherwise, it is negative, and we have to be vary of code
1156 size increase. */
1157 if (flags.min_after_base)
1159 /* If INSN is between REL_LAB and MIN_LAB, the size
1160 changes we are about to make can change the alignment
1161 within the observed offset, therefore we have to break
1162 it up into two parts that are independent. */
1163 if (! flags.base_after_vec && flags.min_after_vec)
1165 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1166 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1168 else
1169 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1171 else
1173 if (flags.base_after_vec && ! flags.min_after_vec)
1175 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1176 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1178 else
1179 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1181 /* Likewise, determine the highest lowest possible value
1182 for the offset of MAX_LAB. */
1183 if (flags.max_after_base)
1185 if (! flags.base_after_vec && flags.max_after_vec)
1187 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1188 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1190 else
1191 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1193 else
1195 if (flags.base_after_vec && ! flags.max_after_vec)
1197 max_addr += align_fuzz (max_lab, insn, 0, 0);
1198 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1200 else
1201 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1203 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1204 max_addr - rel_addr,
1205 body));
1206 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1208 insn_lengths[uid]
1209 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1210 insn_current_address += insn_lengths[uid];
1211 if (insn_lengths[uid] != old_length)
1212 something_changed = 1;
1215 continue;
1217 #endif /* CASE_VECTOR_SHORTEN_MODE */
1219 if (! (varying_length[uid]))
1221 if (NONJUMP_INSN_P (insn)
1222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1224 int i;
1226 body = PATTERN (insn);
1227 for (i = 0; i < XVECLEN (body, 0); i++)
1229 rtx inner_insn = XVECEXP (body, 0, i);
1230 int inner_uid = INSN_UID (inner_insn);
1232 INSN_ADDRESSES (inner_uid) = insn_current_address;
1234 insn_current_address += insn_lengths[inner_uid];
1237 else
1238 insn_current_address += insn_lengths[uid];
1240 continue;
1243 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1245 int i;
1247 body = PATTERN (insn);
1248 new_length = 0;
1249 for (i = 0; i < XVECLEN (body, 0); i++)
1251 rtx inner_insn = XVECEXP (body, 0, i);
1252 int inner_uid = INSN_UID (inner_insn);
1253 int inner_length;
1255 INSN_ADDRESSES (inner_uid) = insn_current_address;
1257 /* insn_current_length returns 0 for insns with a
1258 non-varying length. */
1259 if (! varying_length[inner_uid])
1260 inner_length = insn_lengths[inner_uid];
1261 else
1262 inner_length = insn_current_length (inner_insn);
1264 if (inner_length != insn_lengths[inner_uid])
1266 insn_lengths[inner_uid] = inner_length;
1267 something_changed = 1;
1269 insn_current_address += insn_lengths[inner_uid];
1270 new_length += inner_length;
1273 else
1275 new_length = insn_current_length (insn);
1276 insn_current_address += new_length;
1279 #ifdef ADJUST_INSN_LENGTH
1280 /* If needed, do any adjustment. */
1281 tmp_length = new_length;
1282 ADJUST_INSN_LENGTH (insn, new_length);
1283 insn_current_address += (new_length - tmp_length);
1284 #endif
1286 if (new_length != insn_lengths[uid])
1288 insn_lengths[uid] = new_length;
1289 something_changed = 1;
1292 /* For a non-optimizing compile, do only a single pass. */
1293 if (!optimize)
1294 break;
1297 free (varying_length);
1299 #endif /* HAVE_ATTR_length */
1302 #ifdef HAVE_ATTR_length
1303 /* Given the body of an INSN known to be generated by an ASM statement, return
1304 the number of machine instructions likely to be generated for this insn.
1305 This is used to compute its length. */
1307 static int
1308 asm_insn_count (rtx body)
1310 const char *template;
1311 int count = 1;
1313 if (GET_CODE (body) == ASM_INPUT)
1314 template = XSTR (body, 0);
1315 else
1316 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1318 for (; *template; template++)
1319 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1320 count++;
1322 return count;
1324 #endif
1326 /* Output assembler code for the start of a function,
1327 and initialize some of the variables in this file
1328 for the new function. The label for the function and associated
1329 assembler pseudo-ops have already been output in `assemble_start_function'.
1331 FIRST is the first insn of the rtl for the function being compiled.
1332 FILE is the file to write assembler code to.
1333 OPTIMIZE is nonzero if we should eliminate redundant
1334 test and compare insns. */
1336 void
1337 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1338 int optimize ATTRIBUTE_UNUSED)
1340 block_depth = 0;
1342 this_is_asm_operands = 0;
1344 last_filename = locator_file (prologue_locator);
1345 last_linenum = locator_line (prologue_locator);
1347 high_block_linenum = high_function_linenum = last_linenum;
1349 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1351 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1352 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1353 dwarf2out_begin_prologue (0, NULL);
1354 #endif
1356 #ifdef LEAF_REG_REMAP
1357 if (current_function_uses_only_leaf_regs)
1358 leaf_renumber_regs (first);
1359 #endif
1361 /* The Sun386i and perhaps other machines don't work right
1362 if the profiling code comes after the prologue. */
1363 #ifdef PROFILE_BEFORE_PROLOGUE
1364 if (current_function_profile)
1365 profile_function (file);
1366 #endif /* PROFILE_BEFORE_PROLOGUE */
1368 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1369 if (dwarf2out_do_frame ())
1370 dwarf2out_frame_debug (NULL_RTX, false);
1371 #endif
1373 /* If debugging, assign block numbers to all of the blocks in this
1374 function. */
1375 if (write_symbols)
1377 remove_unnecessary_notes ();
1378 reemit_insn_block_notes ();
1379 number_blocks (current_function_decl);
1380 /* We never actually put out begin/end notes for the top-level
1381 block in the function. But, conceptually, that block is
1382 always needed. */
1383 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1386 /* First output the function prologue: code to set up the stack frame. */
1387 targetm.asm_out.function_prologue (file, get_frame_size ());
1389 /* If the machine represents the prologue as RTL, the profiling code must
1390 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1391 #ifdef HAVE_prologue
1392 if (! HAVE_prologue)
1393 #endif
1394 profile_after_prologue (file);
1397 static void
1398 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1400 #ifndef PROFILE_BEFORE_PROLOGUE
1401 if (current_function_profile)
1402 profile_function (file);
1403 #endif /* not PROFILE_BEFORE_PROLOGUE */
1406 static void
1407 profile_function (FILE *file ATTRIBUTE_UNUSED)
1409 #ifndef NO_PROFILE_COUNTERS
1410 # define NO_PROFILE_COUNTERS 0
1411 #endif
1412 #if defined(ASM_OUTPUT_REG_PUSH)
1413 int sval = current_function_returns_struct;
1414 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1415 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1416 int cxt = cfun->static_chain_decl != NULL;
1417 #endif
1418 #endif /* ASM_OUTPUT_REG_PUSH */
1420 if (! NO_PROFILE_COUNTERS)
1422 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1423 data_section ();
1424 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1425 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1426 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1429 function_section (current_function_decl);
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1433 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1434 #endif
1436 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1437 if (cxt)
1438 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1439 #else
1440 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1441 if (cxt)
1443 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1445 #endif
1446 #endif
1448 FUNCTION_PROFILER (file, current_function_funcdef_no);
1450 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1451 if (cxt)
1452 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1453 #else
1454 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1455 if (cxt)
1457 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1459 #endif
1460 #endif
1462 #if defined(ASM_OUTPUT_REG_PUSH)
1463 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1464 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1465 #endif
1468 /* Output assembler code for the end of a function.
1469 For clarity, args are same as those of `final_start_function'
1470 even though not all of them are needed. */
1472 void
1473 final_end_function (void)
1475 app_disable ();
1477 (*debug_hooks->end_function) (high_function_linenum);
1479 /* Finally, output the function epilogue:
1480 code to restore the stack frame and return to the caller. */
1481 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1483 /* And debug output. */
1484 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1486 #if defined (DWARF2_UNWIND_INFO)
1487 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1488 && dwarf2out_do_frame ())
1489 dwarf2out_end_epilogue (last_linenum, last_filename);
1490 #endif
1493 /* Output assembler code for some insns: all or part of a function.
1494 For description of args, see `final_start_function', above. */
1496 void
1497 final (rtx first, FILE *file, int optimize)
1499 rtx insn;
1500 int max_uid = 0;
1501 int seen = 0;
1503 last_ignored_compare = 0;
1505 #ifdef SDB_DEBUGGING_INFO
1506 /* When producing SDB debugging info, delete troublesome line number
1507 notes from inlined functions in other files as well as duplicate
1508 line number notes. */
1509 if (write_symbols == SDB_DEBUG)
1511 rtx last = 0;
1512 for (insn = first; insn; insn = NEXT_INSN (insn))
1513 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1515 if (last != 0
1516 #ifdef USE_MAPPED_LOCATION
1517 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1518 #else
1519 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1520 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1521 #endif
1524 delete_insn (insn); /* Use delete_note. */
1525 continue;
1527 last = insn;
1530 #endif
1532 for (insn = first; insn; insn = NEXT_INSN (insn))
1534 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1535 max_uid = INSN_UID (insn);
1536 #ifdef HAVE_cc0
1537 /* If CC tracking across branches is enabled, record the insn which
1538 jumps to each branch only reached from one place. */
1539 if (optimize && JUMP_P (insn))
1541 rtx lab = JUMP_LABEL (insn);
1542 if (lab && LABEL_NUSES (lab) == 1)
1544 LABEL_REFS (lab) = insn;
1547 #endif
1550 init_recog ();
1552 CC_STATUS_INIT;
1554 /* Output the insns. */
1555 for (insn = NEXT_INSN (first); insn;)
1557 #ifdef HAVE_ATTR_length
1558 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1560 /* This can be triggered by bugs elsewhere in the compiler if
1561 new insns are created after init_insn_lengths is called. */
1562 gcc_assert (NOTE_P (insn));
1563 insn_current_address = -1;
1565 else
1566 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1567 #endif /* HAVE_ATTR_length */
1569 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1573 const char *
1574 get_insn_template (int code, rtx insn)
1576 switch (insn_data[code].output_format)
1578 case INSN_OUTPUT_FORMAT_SINGLE:
1579 return insn_data[code].output.single;
1580 case INSN_OUTPUT_FORMAT_MULTI:
1581 return insn_data[code].output.multi[which_alternative];
1582 case INSN_OUTPUT_FORMAT_FUNCTION:
1583 gcc_assert (insn);
1584 return (*insn_data[code].output.function) (recog_data.operand, insn);
1586 default:
1587 gcc_unreachable ();
1591 /* Emit the appropriate declaration for an alternate-entry-point
1592 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1593 LABEL_KIND != LABEL_NORMAL.
1595 The case fall-through in this function is intentional. */
1596 static void
1597 output_alternate_entry_point (FILE *file, rtx insn)
1599 const char *name = LABEL_NAME (insn);
1601 switch (LABEL_KIND (insn))
1603 case LABEL_WEAK_ENTRY:
1604 #ifdef ASM_WEAKEN_LABEL
1605 ASM_WEAKEN_LABEL (file, name);
1606 #endif
1607 case LABEL_GLOBAL_ENTRY:
1608 targetm.asm_out.globalize_label (file, name);
1609 case LABEL_STATIC_ENTRY:
1610 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1611 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1612 #endif
1613 ASM_OUTPUT_LABEL (file, name);
1614 break;
1616 case LABEL_NORMAL:
1617 default:
1618 gcc_unreachable ();
1622 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1623 note in the instruction chain (going forward) between the current
1624 instruction, and the next 'executable' instruction. */
1626 bool
1627 scan_ahead_for_unlikely_executed_note (rtx insn)
1629 rtx temp;
1630 int bb_note_count = 0;
1632 for (temp = insn; temp; temp = NEXT_INSN (temp))
1634 if (NOTE_P (temp)
1635 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1636 return true;
1637 if (NOTE_P (temp)
1638 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1640 bb_note_count++;
1641 if (bb_note_count > 1)
1642 return false;
1644 if (INSN_P (temp))
1645 return false;
1648 return false;
1651 /* The final scan for one insn, INSN.
1652 Args are same as in `final', except that INSN
1653 is the insn being scanned.
1654 Value returned is the next insn to be scanned.
1656 NOPEEPHOLES is the flag to disallow peephole processing (currently
1657 used for within delayed branch sequence output).
1659 SEEN is used to track the end of the prologue, for emitting
1660 debug information. We force the emission of a line note after
1661 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1662 at the beginning of the second basic block, whichever comes
1663 first. */
1666 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1667 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1669 #ifdef HAVE_cc0
1670 rtx set;
1671 #endif
1672 rtx next;
1674 insn_counter++;
1676 /* Ignore deleted insns. These can occur when we split insns (due to a
1677 template of "#") while not optimizing. */
1678 if (INSN_DELETED_P (insn))
1679 return NEXT_INSN (insn);
1681 switch (GET_CODE (insn))
1683 case NOTE:
1684 switch (NOTE_LINE_NUMBER (insn))
1686 case NOTE_INSN_DELETED:
1687 case NOTE_INSN_LOOP_BEG:
1688 case NOTE_INSN_LOOP_END:
1689 case NOTE_INSN_FUNCTION_END:
1690 case NOTE_INSN_REPEATED_LINE_NUMBER:
1691 case NOTE_INSN_EXPECTED_VALUE:
1692 break;
1694 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1696 /* The presence of this note indicates that this basic block
1697 belongs in the "cold" section of the .o file. If we are
1698 not already writing to the cold section we need to change
1699 to it. */
1701 unlikely_text_section ();
1702 break;
1704 case NOTE_INSN_BASIC_BLOCK:
1706 /* If we are performing the optimization that partitions
1707 basic blocks into hot & cold sections of the .o file,
1708 then at the start of each new basic block, before
1709 beginning to write code for the basic block, we need to
1710 check to see whether the basic block belongs in the hot
1711 or cold section of the .o file, and change the section we
1712 are writing to appropriately. */
1714 if (flag_reorder_blocks_and_partition
1715 && !scan_ahead_for_unlikely_executed_note (insn))
1716 function_section (current_function_decl);
1718 #ifdef TARGET_UNWIND_INFO
1719 targetm.asm_out.unwind_emit (asm_out_file, insn);
1720 #endif
1722 if (flag_debug_asm)
1723 fprintf (asm_out_file, "\t%s basic block %d\n",
1724 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1726 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1728 *seen |= SEEN_EMITTED;
1729 last_filename = NULL;
1731 else
1732 *seen |= SEEN_BB;
1734 break;
1736 case NOTE_INSN_EH_REGION_BEG:
1737 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1738 NOTE_EH_HANDLER (insn));
1739 break;
1741 case NOTE_INSN_EH_REGION_END:
1742 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1743 NOTE_EH_HANDLER (insn));
1744 break;
1746 case NOTE_INSN_PROLOGUE_END:
1747 targetm.asm_out.function_end_prologue (file);
1748 profile_after_prologue (file);
1750 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1752 *seen |= SEEN_EMITTED;
1753 last_filename = NULL;
1755 else
1756 *seen |= SEEN_NOTE;
1758 break;
1760 case NOTE_INSN_EPILOGUE_BEG:
1761 targetm.asm_out.function_begin_epilogue (file);
1762 break;
1764 case NOTE_INSN_FUNCTION_BEG:
1765 app_disable ();
1766 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1768 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1770 *seen |= SEEN_EMITTED;
1771 last_filename = NULL;
1773 else
1774 *seen |= SEEN_NOTE;
1776 break;
1778 case NOTE_INSN_BLOCK_BEG:
1779 if (debug_info_level == DINFO_LEVEL_NORMAL
1780 || debug_info_level == DINFO_LEVEL_VERBOSE
1781 || write_symbols == DWARF2_DEBUG
1782 || write_symbols == VMS_AND_DWARF2_DEBUG
1783 || write_symbols == VMS_DEBUG)
1785 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1787 app_disable ();
1788 ++block_depth;
1789 high_block_linenum = last_linenum;
1791 /* Output debugging info about the symbol-block beginning. */
1792 (*debug_hooks->begin_block) (last_linenum, n);
1794 /* Mark this block as output. */
1795 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1797 break;
1799 case NOTE_INSN_BLOCK_END:
1800 if (debug_info_level == DINFO_LEVEL_NORMAL
1801 || debug_info_level == DINFO_LEVEL_VERBOSE
1802 || write_symbols == DWARF2_DEBUG
1803 || write_symbols == VMS_AND_DWARF2_DEBUG
1804 || write_symbols == VMS_DEBUG)
1806 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1808 app_disable ();
1810 /* End of a symbol-block. */
1811 --block_depth;
1812 gcc_assert (block_depth >= 0);
1814 (*debug_hooks->end_block) (high_block_linenum, n);
1816 break;
1818 case NOTE_INSN_DELETED_LABEL:
1819 /* Emit the label. We may have deleted the CODE_LABEL because
1820 the label could be proved to be unreachable, though still
1821 referenced (in the form of having its address taken. */
1822 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1823 break;
1825 case NOTE_INSN_VAR_LOCATION:
1826 (*debug_hooks->var_location) (insn);
1827 break;
1829 case 0:
1830 break;
1832 default:
1833 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1834 break;
1836 break;
1838 case BARRIER:
1839 #if defined (DWARF2_UNWIND_INFO)
1840 if (dwarf2out_do_frame ())
1841 dwarf2out_frame_debug (insn, false);
1842 #endif
1843 break;
1845 case CODE_LABEL:
1846 /* The target port might emit labels in the output function for
1847 some insn, e.g. sh.c output_branchy_insn. */
1848 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1850 int align = LABEL_TO_ALIGNMENT (insn);
1851 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1852 int max_skip = LABEL_TO_MAX_SKIP (insn);
1853 #endif
1855 if (align && NEXT_INSN (insn))
1857 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1858 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1859 #else
1860 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1861 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1862 #else
1863 ASM_OUTPUT_ALIGN (file, align);
1864 #endif
1865 #endif
1868 #ifdef HAVE_cc0
1869 CC_STATUS_INIT;
1870 /* If this label is reached from only one place, set the condition
1871 codes from the instruction just before the branch. */
1873 /* Disabled because some insns set cc_status in the C output code
1874 and NOTICE_UPDATE_CC alone can set incorrect status. */
1875 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1877 rtx jump = LABEL_REFS (insn);
1878 rtx barrier = prev_nonnote_insn (insn);
1879 rtx prev;
1880 /* If the LABEL_REFS field of this label has been set to point
1881 at a branch, the predecessor of the branch is a regular
1882 insn, and that branch is the only way to reach this label,
1883 set the condition codes based on the branch and its
1884 predecessor. */
1885 if (barrier && BARRIER_P (barrier)
1886 && jump && JUMP_P (jump)
1887 && (prev = prev_nonnote_insn (jump))
1888 && NONJUMP_INSN_P (prev))
1890 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1891 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1894 #endif
1896 if (LABEL_NAME (insn))
1897 (*debug_hooks->label) (insn);
1899 /* If we are doing the optimization that partitions hot & cold
1900 basic blocks into separate sections of the .o file, we need
1901 to ensure the jump table ends up in the correct section... */
1903 if (flag_reorder_blocks_and_partition
1904 && targetm.have_named_sections)
1906 rtx tmp_table, tmp_label;
1907 if (LABEL_P (insn)
1908 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1910 /* Do nothing; Do NOT change the current section. */
1912 else if (scan_ahead_for_unlikely_executed_note (insn))
1913 unlikely_text_section ();
1914 else if (in_unlikely_text_section ())
1915 function_section (current_function_decl);
1918 if (app_on)
1920 fputs (ASM_APP_OFF, file);
1921 app_on = 0;
1924 next = next_nonnote_insn (insn);
1925 if (next != 0 && JUMP_P (next))
1927 rtx nextbody = PATTERN (next);
1929 /* If this label is followed by a jump-table,
1930 make sure we put the label in the read-only section. Also
1931 possibly write the label and jump table together. */
1933 if (GET_CODE (nextbody) == ADDR_VEC
1934 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1936 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1937 /* In this case, the case vector is being moved by the
1938 target, so don't output the label at all. Leave that
1939 to the back end macros. */
1940 #else
1941 if (! JUMP_TABLES_IN_TEXT_SECTION)
1943 int log_align;
1945 targetm.asm_out.function_rodata_section (current_function_decl);
1947 #ifdef ADDR_VEC_ALIGN
1948 log_align = ADDR_VEC_ALIGN (next);
1949 #else
1950 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1951 #endif
1952 ASM_OUTPUT_ALIGN (file, log_align);
1954 else
1955 function_section (current_function_decl);
1957 #ifdef ASM_OUTPUT_CASE_LABEL
1958 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1959 next);
1960 #else
1961 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1962 #endif
1963 #endif
1964 break;
1967 if (LABEL_ALT_ENTRY_P (insn))
1968 output_alternate_entry_point (file, insn);
1969 else
1970 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1971 break;
1973 default:
1975 rtx body = PATTERN (insn);
1976 int insn_code_number;
1977 const char *template;
1979 /* An INSN, JUMP_INSN or CALL_INSN.
1980 First check for special kinds that recog doesn't recognize. */
1982 if (GET_CODE (body) == USE /* These are just declarations. */
1983 || GET_CODE (body) == CLOBBER)
1984 break;
1986 #ifdef HAVE_cc0
1988 /* If there is a REG_CC_SETTER note on this insn, it means that
1989 the setting of the condition code was done in the delay slot
1990 of the insn that branched here. So recover the cc status
1991 from the insn that set it. */
1993 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1994 if (note)
1996 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1997 cc_prev_status = cc_status;
2000 #endif
2002 /* Detect insns that are really jump-tables
2003 and output them as such. */
2005 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2007 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2008 int vlen, idx;
2009 #endif
2011 if (! JUMP_TABLES_IN_TEXT_SECTION)
2012 targetm.asm_out.function_rodata_section (current_function_decl);
2013 else
2014 function_section (current_function_decl);
2016 if (app_on)
2018 fputs (ASM_APP_OFF, file);
2019 app_on = 0;
2022 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2023 if (GET_CODE (body) == ADDR_VEC)
2025 #ifdef ASM_OUTPUT_ADDR_VEC
2026 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2027 #else
2028 gcc_unreachable ();
2029 #endif
2031 else
2033 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2034 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2035 #else
2036 gcc_unreachable ();
2037 #endif
2039 #else
2040 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2041 for (idx = 0; idx < vlen; idx++)
2043 if (GET_CODE (body) == ADDR_VEC)
2045 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2046 ASM_OUTPUT_ADDR_VEC_ELT
2047 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2048 #else
2049 gcc_unreachable ();
2050 #endif
2052 else
2054 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2055 ASM_OUTPUT_ADDR_DIFF_ELT
2056 (file,
2057 body,
2058 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2059 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2060 #else
2061 gcc_unreachable ();
2062 #endif
2065 #ifdef ASM_OUTPUT_CASE_END
2066 ASM_OUTPUT_CASE_END (file,
2067 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2068 insn);
2069 #endif
2070 #endif
2072 function_section (current_function_decl);
2074 break;
2076 /* Output this line note if it is the first or the last line
2077 note in a row. */
2078 if (notice_source_line (insn))
2080 (*debug_hooks->source_line) (last_linenum, last_filename);
2083 if (GET_CODE (body) == ASM_INPUT)
2085 const char *string = XSTR (body, 0);
2087 /* There's no telling what that did to the condition codes. */
2088 CC_STATUS_INIT;
2090 if (string[0])
2092 if (! app_on)
2094 fputs (ASM_APP_ON, file);
2095 app_on = 1;
2097 fprintf (asm_out_file, "\t%s\n", string);
2099 break;
2102 /* Detect `asm' construct with operands. */
2103 if (asm_noperands (body) >= 0)
2105 unsigned int noperands = asm_noperands (body);
2106 rtx *ops = alloca (noperands * sizeof (rtx));
2107 const char *string;
2109 /* There's no telling what that did to the condition codes. */
2110 CC_STATUS_INIT;
2112 /* Get out the operand values. */
2113 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2114 /* Inhibit aborts on what would otherwise be compiler bugs. */
2115 insn_noperands = noperands;
2116 this_is_asm_operands = insn;
2118 #ifdef FINAL_PRESCAN_INSN
2119 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2120 #endif
2122 /* Output the insn using them. */
2123 if (string[0])
2125 if (! app_on)
2127 fputs (ASM_APP_ON, file);
2128 app_on = 1;
2130 output_asm_insn (string, ops);
2133 this_is_asm_operands = 0;
2134 break;
2137 if (app_on)
2139 fputs (ASM_APP_OFF, file);
2140 app_on = 0;
2143 if (GET_CODE (body) == SEQUENCE)
2145 /* A delayed-branch sequence */
2146 int i;
2148 final_sequence = body;
2150 /* Record the delay slots' frame information before the branch.
2151 This is needed for delayed calls: see execute_cfa_program(). */
2152 #if defined (DWARF2_UNWIND_INFO)
2153 if (dwarf2out_do_frame ())
2154 for (i = 1; i < XVECLEN (body, 0); i++)
2155 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2156 #endif
2158 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2159 force the restoration of a comparison that was previously
2160 thought unnecessary. If that happens, cancel this sequence
2161 and cause that insn to be restored. */
2163 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2164 if (next != XVECEXP (body, 0, 1))
2166 final_sequence = 0;
2167 return next;
2170 for (i = 1; i < XVECLEN (body, 0); i++)
2172 rtx insn = XVECEXP (body, 0, i);
2173 rtx next = NEXT_INSN (insn);
2174 /* We loop in case any instruction in a delay slot gets
2175 split. */
2177 insn = final_scan_insn (insn, file, 0, 1, seen);
2178 while (insn != next);
2180 #ifdef DBR_OUTPUT_SEQEND
2181 DBR_OUTPUT_SEQEND (file);
2182 #endif
2183 final_sequence = 0;
2185 /* If the insn requiring the delay slot was a CALL_INSN, the
2186 insns in the delay slot are actually executed before the
2187 called function. Hence we don't preserve any CC-setting
2188 actions in these insns and the CC must be marked as being
2189 clobbered by the function. */
2190 if (CALL_P (XVECEXP (body, 0, 0)))
2192 CC_STATUS_INIT;
2194 break;
2197 /* We have a real machine instruction as rtl. */
2199 body = PATTERN (insn);
2201 #ifdef HAVE_cc0
2202 set = single_set (insn);
2204 /* Check for redundant test and compare instructions
2205 (when the condition codes are already set up as desired).
2206 This is done only when optimizing; if not optimizing,
2207 it should be possible for the user to alter a variable
2208 with the debugger in between statements
2209 and the next statement should reexamine the variable
2210 to compute the condition codes. */
2212 if (optimize)
2214 if (set
2215 && GET_CODE (SET_DEST (set)) == CC0
2216 && insn != last_ignored_compare)
2218 if (GET_CODE (SET_SRC (set)) == SUBREG)
2219 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2220 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2222 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2223 XEXP (SET_SRC (set), 0)
2224 = alter_subreg (&XEXP (SET_SRC (set), 0));
2225 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2226 XEXP (SET_SRC (set), 1)
2227 = alter_subreg (&XEXP (SET_SRC (set), 1));
2229 if ((cc_status.value1 != 0
2230 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2231 || (cc_status.value2 != 0
2232 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2234 /* Don't delete insn if it has an addressing side-effect. */
2235 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2236 /* or if anything in it is volatile. */
2237 && ! volatile_refs_p (PATTERN (insn)))
2239 /* We don't really delete the insn; just ignore it. */
2240 last_ignored_compare = insn;
2241 break;
2246 #endif
2248 #ifdef HAVE_cc0
2249 /* If this is a conditional branch, maybe modify it
2250 if the cc's are in a nonstandard state
2251 so that it accomplishes the same thing that it would
2252 do straightforwardly if the cc's were set up normally. */
2254 if (cc_status.flags != 0
2255 && JUMP_P (insn)
2256 && GET_CODE (body) == SET
2257 && SET_DEST (body) == pc_rtx
2258 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2259 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2260 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2262 /* This function may alter the contents of its argument
2263 and clear some of the cc_status.flags bits.
2264 It may also return 1 meaning condition now always true
2265 or -1 meaning condition now always false
2266 or 2 meaning condition nontrivial but altered. */
2267 int result = alter_cond (XEXP (SET_SRC (body), 0));
2268 /* If condition now has fixed value, replace the IF_THEN_ELSE
2269 with its then-operand or its else-operand. */
2270 if (result == 1)
2271 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2272 if (result == -1)
2273 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2275 /* The jump is now either unconditional or a no-op.
2276 If it has become a no-op, don't try to output it.
2277 (It would not be recognized.) */
2278 if (SET_SRC (body) == pc_rtx)
2280 delete_insn (insn);
2281 break;
2283 else if (GET_CODE (SET_SRC (body)) == RETURN)
2284 /* Replace (set (pc) (return)) with (return). */
2285 PATTERN (insn) = body = SET_SRC (body);
2287 /* Rerecognize the instruction if it has changed. */
2288 if (result != 0)
2289 INSN_CODE (insn) = -1;
2292 /* Make same adjustments to instructions that examine the
2293 condition codes without jumping and instructions that
2294 handle conditional moves (if this machine has either one). */
2296 if (cc_status.flags != 0
2297 && set != 0)
2299 rtx cond_rtx, then_rtx, else_rtx;
2301 if (!JUMP_P (insn)
2302 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2304 cond_rtx = XEXP (SET_SRC (set), 0);
2305 then_rtx = XEXP (SET_SRC (set), 1);
2306 else_rtx = XEXP (SET_SRC (set), 2);
2308 else
2310 cond_rtx = SET_SRC (set);
2311 then_rtx = const_true_rtx;
2312 else_rtx = const0_rtx;
2315 switch (GET_CODE (cond_rtx))
2317 case GTU:
2318 case GT:
2319 case LTU:
2320 case LT:
2321 case GEU:
2322 case GE:
2323 case LEU:
2324 case LE:
2325 case EQ:
2326 case NE:
2328 int result;
2329 if (XEXP (cond_rtx, 0) != cc0_rtx)
2330 break;
2331 result = alter_cond (cond_rtx);
2332 if (result == 1)
2333 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2334 else if (result == -1)
2335 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2336 else if (result == 2)
2337 INSN_CODE (insn) = -1;
2338 if (SET_DEST (set) == SET_SRC (set))
2339 delete_insn (insn);
2341 break;
2343 default:
2344 break;
2348 #endif
2350 #ifdef HAVE_peephole
2351 /* Do machine-specific peephole optimizations if desired. */
2353 if (optimize && !flag_no_peephole && !nopeepholes)
2355 rtx next = peephole (insn);
2356 /* When peepholing, if there were notes within the peephole,
2357 emit them before the peephole. */
2358 if (next != 0 && next != NEXT_INSN (insn))
2360 rtx note;
2362 for (note = NEXT_INSN (insn); note != next;
2363 note = NEXT_INSN (note))
2364 final_scan_insn (note, file, optimize, nopeepholes, seen);
2367 /* PEEPHOLE might have changed this. */
2368 body = PATTERN (insn);
2370 #endif
2372 /* Try to recognize the instruction.
2373 If successful, verify that the operands satisfy the
2374 constraints for the instruction. Crash if they don't,
2375 since `reload' should have changed them so that they do. */
2377 insn_code_number = recog_memoized (insn);
2378 cleanup_subreg_operands (insn);
2380 /* Dump the insn in the assembly for debugging. */
2381 if (flag_dump_rtl_in_asm)
2383 print_rtx_head = ASM_COMMENT_START;
2384 print_rtl_single (asm_out_file, insn);
2385 print_rtx_head = "";
2388 if (! constrain_operands_cached (1))
2389 fatal_insn_not_found (insn);
2391 /* Some target machines need to prescan each insn before
2392 it is output. */
2394 #ifdef FINAL_PRESCAN_INSN
2395 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2396 #endif
2398 #ifdef HAVE_conditional_execution
2399 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2400 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2401 else
2402 current_insn_predicate = NULL_RTX;
2403 #endif
2405 #ifdef HAVE_cc0
2406 cc_prev_status = cc_status;
2408 /* Update `cc_status' for this instruction.
2409 The instruction's output routine may change it further.
2410 If the output routine for a jump insn needs to depend
2411 on the cc status, it should look at cc_prev_status. */
2413 NOTICE_UPDATE_CC (body, insn);
2414 #endif
2416 current_output_insn = debug_insn = insn;
2418 #if defined (DWARF2_UNWIND_INFO)
2419 if (CALL_P (insn) && dwarf2out_do_frame ())
2420 dwarf2out_frame_debug (insn, false);
2421 #endif
2423 /* Find the proper template for this insn. */
2424 template = get_insn_template (insn_code_number, insn);
2426 /* If the C code returns 0, it means that it is a jump insn
2427 which follows a deleted test insn, and that test insn
2428 needs to be reinserted. */
2429 if (template == 0)
2431 rtx prev;
2433 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2435 /* We have already processed the notes between the setter and
2436 the user. Make sure we don't process them again, this is
2437 particularly important if one of the notes is a block
2438 scope note or an EH note. */
2439 for (prev = insn;
2440 prev != last_ignored_compare;
2441 prev = PREV_INSN (prev))
2443 if (NOTE_P (prev))
2444 delete_insn (prev); /* Use delete_note. */
2447 return prev;
2450 /* If the template is the string "#", it means that this insn must
2451 be split. */
2452 if (template[0] == '#' && template[1] == '\0')
2454 rtx new = try_split (body, insn, 0);
2456 /* If we didn't split the insn, go away. */
2457 if (new == insn && PATTERN (new) == body)
2458 fatal_insn ("could not split insn", insn);
2460 #ifdef HAVE_ATTR_length
2461 /* This instruction should have been split in shorten_branches,
2462 to ensure that we would have valid length info for the
2463 splitees. */
2464 gcc_unreachable ();
2465 #endif
2467 return new;
2470 #ifdef TARGET_UNWIND_INFO
2471 /* ??? This will put the directives in the wrong place if
2472 get_insn_template outputs assembly directly. However calling it
2473 before get_insn_template breaks if the insns is split. */
2474 targetm.asm_out.unwind_emit (asm_out_file, insn);
2475 #endif
2477 /* Output assembler code from the template. */
2478 output_asm_insn (template, recog_data.operand);
2480 /* If necessary, report the effect that the instruction has on
2481 the unwind info. We've already done this for delay slots
2482 and call instructions. */
2483 #if defined (DWARF2_UNWIND_INFO)
2484 if (final_sequence == 0
2485 #if !defined (HAVE_prologue)
2486 && !ACCUMULATE_OUTGOING_ARGS
2487 #endif
2488 && dwarf2out_do_frame ())
2489 dwarf2out_frame_debug (insn, true);
2490 #endif
2492 current_output_insn = debug_insn = 0;
2495 return NEXT_INSN (insn);
2498 /* Output debugging info to the assembler file FILE
2499 based on the NOTE-insn INSN, assumed to be a line number. */
2501 static bool
2502 notice_source_line (rtx insn)
2504 const char *filename = insn_file (insn);
2505 int linenum = insn_line (insn);
2507 if (filename && (filename != last_filename || last_linenum != linenum))
2509 last_filename = filename;
2510 last_linenum = linenum;
2511 high_block_linenum = MAX (last_linenum, high_block_linenum);
2512 high_function_linenum = MAX (last_linenum, high_function_linenum);
2513 return true;
2515 return false;
2518 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2519 directly to the desired hard register. */
2521 void
2522 cleanup_subreg_operands (rtx insn)
2524 int i;
2525 extract_insn_cached (insn);
2526 for (i = 0; i < recog_data.n_operands; i++)
2528 /* The following test cannot use recog_data.operand when testing
2529 for a SUBREG: the underlying object might have been changed
2530 already if we are inside a match_operator expression that
2531 matches the else clause. Instead we test the underlying
2532 expression directly. */
2533 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2534 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2535 else if (GET_CODE (recog_data.operand[i]) == PLUS
2536 || GET_CODE (recog_data.operand[i]) == MULT
2537 || MEM_P (recog_data.operand[i]))
2538 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2541 for (i = 0; i < recog_data.n_dups; i++)
2543 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2544 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2545 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2546 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2547 || MEM_P (*recog_data.dup_loc[i]))
2548 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2552 /* If X is a SUBREG, replace it with a REG or a MEM,
2553 based on the thing it is a subreg of. */
2556 alter_subreg (rtx *xp)
2558 rtx x = *xp;
2559 rtx y = SUBREG_REG (x);
2561 /* simplify_subreg does not remove subreg from volatile references.
2562 We are required to. */
2563 if (MEM_P (y))
2565 int offset = SUBREG_BYTE (x);
2567 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2568 contains 0 instead of the proper offset. See simplify_subreg. */
2569 if (offset == 0
2570 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2572 int difference = GET_MODE_SIZE (GET_MODE (y))
2573 - GET_MODE_SIZE (GET_MODE (x));
2574 if (WORDS_BIG_ENDIAN)
2575 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2576 if (BYTES_BIG_ENDIAN)
2577 offset += difference % UNITS_PER_WORD;
2580 *xp = adjust_address (y, GET_MODE (x), offset);
2582 else
2584 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2585 SUBREG_BYTE (x));
2587 if (new != 0)
2588 *xp = new;
2589 else
2591 /* Simplify_subreg can't handle some REG cases, but we have to. */
2592 unsigned int regno = subreg_regno (x);
2593 gcc_assert (REG_P (y));
2594 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2598 return *xp;
2601 /* Do alter_subreg on all the SUBREGs contained in X. */
2603 static rtx
2604 walk_alter_subreg (rtx *xp)
2606 rtx x = *xp;
2607 switch (GET_CODE (x))
2609 case PLUS:
2610 case MULT:
2611 case AND:
2612 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2613 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2614 break;
2616 case MEM:
2617 case ZERO_EXTEND:
2618 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2619 break;
2621 case SUBREG:
2622 return alter_subreg (xp);
2624 default:
2625 break;
2628 return *xp;
2631 #ifdef HAVE_cc0
2633 /* Given BODY, the body of a jump instruction, alter the jump condition
2634 as required by the bits that are set in cc_status.flags.
2635 Not all of the bits there can be handled at this level in all cases.
2637 The value is normally 0.
2638 1 means that the condition has become always true.
2639 -1 means that the condition has become always false.
2640 2 means that COND has been altered. */
2642 static int
2643 alter_cond (rtx cond)
2645 int value = 0;
2647 if (cc_status.flags & CC_REVERSED)
2649 value = 2;
2650 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2653 if (cc_status.flags & CC_INVERTED)
2655 value = 2;
2656 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2659 if (cc_status.flags & CC_NOT_POSITIVE)
2660 switch (GET_CODE (cond))
2662 case LE:
2663 case LEU:
2664 case GEU:
2665 /* Jump becomes unconditional. */
2666 return 1;
2668 case GT:
2669 case GTU:
2670 case LTU:
2671 /* Jump becomes no-op. */
2672 return -1;
2674 case GE:
2675 PUT_CODE (cond, EQ);
2676 value = 2;
2677 break;
2679 case LT:
2680 PUT_CODE (cond, NE);
2681 value = 2;
2682 break;
2684 default:
2685 break;
2688 if (cc_status.flags & CC_NOT_NEGATIVE)
2689 switch (GET_CODE (cond))
2691 case GE:
2692 case GEU:
2693 /* Jump becomes unconditional. */
2694 return 1;
2696 case LT:
2697 case LTU:
2698 /* Jump becomes no-op. */
2699 return -1;
2701 case LE:
2702 case LEU:
2703 PUT_CODE (cond, EQ);
2704 value = 2;
2705 break;
2707 case GT:
2708 case GTU:
2709 PUT_CODE (cond, NE);
2710 value = 2;
2711 break;
2713 default:
2714 break;
2717 if (cc_status.flags & CC_NO_OVERFLOW)
2718 switch (GET_CODE (cond))
2720 case GEU:
2721 /* Jump becomes unconditional. */
2722 return 1;
2724 case LEU:
2725 PUT_CODE (cond, EQ);
2726 value = 2;
2727 break;
2729 case GTU:
2730 PUT_CODE (cond, NE);
2731 value = 2;
2732 break;
2734 case LTU:
2735 /* Jump becomes no-op. */
2736 return -1;
2738 default:
2739 break;
2742 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2743 switch (GET_CODE (cond))
2745 default:
2746 gcc_unreachable ();
2748 case NE:
2749 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2750 value = 2;
2751 break;
2753 case EQ:
2754 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2755 value = 2;
2756 break;
2759 if (cc_status.flags & CC_NOT_SIGNED)
2760 /* The flags are valid if signed condition operators are converted
2761 to unsigned. */
2762 switch (GET_CODE (cond))
2764 case LE:
2765 PUT_CODE (cond, LEU);
2766 value = 2;
2767 break;
2769 case LT:
2770 PUT_CODE (cond, LTU);
2771 value = 2;
2772 break;
2774 case GT:
2775 PUT_CODE (cond, GTU);
2776 value = 2;
2777 break;
2779 case GE:
2780 PUT_CODE (cond, GEU);
2781 value = 2;
2782 break;
2784 default:
2785 break;
2788 return value;
2790 #endif
2792 /* Report inconsistency between the assembler template and the operands.
2793 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2795 void
2796 output_operand_lossage (const char *msgid, ...)
2798 char *fmt_string;
2799 char *new_message;
2800 const char *pfx_str;
2801 va_list ap;
2803 va_start (ap, msgid);
2805 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2806 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2807 vasprintf (&new_message, fmt_string, ap);
2809 if (this_is_asm_operands)
2810 error_for_asm (this_is_asm_operands, "%s", new_message);
2811 else
2812 internal_error ("%s", new_message);
2814 free (fmt_string);
2815 free (new_message);
2816 va_end (ap);
2819 /* Output of assembler code from a template, and its subroutines. */
2821 /* Annotate the assembly with a comment describing the pattern and
2822 alternative used. */
2824 static void
2825 output_asm_name (void)
2827 if (debug_insn)
2829 int num = INSN_CODE (debug_insn);
2830 fprintf (asm_out_file, "\t%s %d\t%s",
2831 ASM_COMMENT_START, INSN_UID (debug_insn),
2832 insn_data[num].name);
2833 if (insn_data[num].n_alternatives > 1)
2834 fprintf (asm_out_file, "/%d", which_alternative + 1);
2835 #ifdef HAVE_ATTR_length
2836 fprintf (asm_out_file, "\t[length = %d]",
2837 get_attr_length (debug_insn));
2838 #endif
2839 /* Clear this so only the first assembler insn
2840 of any rtl insn will get the special comment for -dp. */
2841 debug_insn = 0;
2845 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2846 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2847 corresponds to the address of the object and 0 if to the object. */
2849 static tree
2850 get_mem_expr_from_op (rtx op, int *paddressp)
2852 tree expr;
2853 int inner_addressp;
2855 *paddressp = 0;
2857 if (REG_P (op))
2858 return REG_EXPR (op);
2859 else if (!MEM_P (op))
2860 return 0;
2862 if (MEM_EXPR (op) != 0)
2863 return MEM_EXPR (op);
2865 /* Otherwise we have an address, so indicate it and look at the address. */
2866 *paddressp = 1;
2867 op = XEXP (op, 0);
2869 /* First check if we have a decl for the address, then look at the right side
2870 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2871 But don't allow the address to itself be indirect. */
2872 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2873 return expr;
2874 else if (GET_CODE (op) == PLUS
2875 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2876 return expr;
2878 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2879 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2880 op = XEXP (op, 0);
2882 expr = get_mem_expr_from_op (op, &inner_addressp);
2883 return inner_addressp ? 0 : expr;
2886 /* Output operand names for assembler instructions. OPERANDS is the
2887 operand vector, OPORDER is the order to write the operands, and NOPS
2888 is the number of operands to write. */
2890 static void
2891 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2893 int wrote = 0;
2894 int i;
2896 for (i = 0; i < nops; i++)
2898 int addressp;
2899 rtx op = operands[oporder[i]];
2900 tree expr = get_mem_expr_from_op (op, &addressp);
2902 fprintf (asm_out_file, "%c%s",
2903 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2904 wrote = 1;
2905 if (expr)
2907 fprintf (asm_out_file, "%s",
2908 addressp ? "*" : "");
2909 print_mem_expr (asm_out_file, expr);
2910 wrote = 1;
2912 else if (REG_P (op) && ORIGINAL_REGNO (op)
2913 && ORIGINAL_REGNO (op) != REGNO (op))
2914 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2918 /* Output text from TEMPLATE to the assembler output file,
2919 obeying %-directions to substitute operands taken from
2920 the vector OPERANDS.
2922 %N (for N a digit) means print operand N in usual manner.
2923 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2924 and print the label name with no punctuation.
2925 %cN means require operand N to be a constant
2926 and print the constant expression with no punctuation.
2927 %aN means expect operand N to be a memory address
2928 (not a memory reference!) and print a reference
2929 to that address.
2930 %nN means expect operand N to be a constant
2931 and print a constant expression for minus the value
2932 of the operand, with no other punctuation. */
2934 void
2935 output_asm_insn (const char *template, rtx *operands)
2937 const char *p;
2938 int c;
2939 #ifdef ASSEMBLER_DIALECT
2940 int dialect = 0;
2941 #endif
2942 int oporder[MAX_RECOG_OPERANDS];
2943 char opoutput[MAX_RECOG_OPERANDS];
2944 int ops = 0;
2946 /* An insn may return a null string template
2947 in a case where no assembler code is needed. */
2948 if (*template == 0)
2949 return;
2951 memset (opoutput, 0, sizeof opoutput);
2952 p = template;
2953 putc ('\t', asm_out_file);
2955 #ifdef ASM_OUTPUT_OPCODE
2956 ASM_OUTPUT_OPCODE (asm_out_file, p);
2957 #endif
2959 while ((c = *p++))
2960 switch (c)
2962 case '\n':
2963 if (flag_verbose_asm)
2964 output_asm_operand_names (operands, oporder, ops);
2965 if (flag_print_asm_name)
2966 output_asm_name ();
2968 ops = 0;
2969 memset (opoutput, 0, sizeof opoutput);
2971 putc (c, asm_out_file);
2972 #ifdef ASM_OUTPUT_OPCODE
2973 while ((c = *p) == '\t')
2975 putc (c, asm_out_file);
2976 p++;
2978 ASM_OUTPUT_OPCODE (asm_out_file, p);
2979 #endif
2980 break;
2982 #ifdef ASSEMBLER_DIALECT
2983 case '{':
2985 int i;
2987 if (dialect)
2988 output_operand_lossage ("nested assembly dialect alternatives");
2989 else
2990 dialect = 1;
2992 /* If we want the first dialect, do nothing. Otherwise, skip
2993 DIALECT_NUMBER of strings ending with '|'. */
2994 for (i = 0; i < dialect_number; i++)
2996 while (*p && *p != '}' && *p++ != '|')
2998 if (*p == '}')
2999 break;
3000 if (*p == '|')
3001 p++;
3004 if (*p == '\0')
3005 output_operand_lossage ("unterminated assembly dialect alternative");
3007 break;
3009 case '|':
3010 if (dialect)
3012 /* Skip to close brace. */
3015 if (*p == '\0')
3017 output_operand_lossage ("unterminated assembly dialect alternative");
3018 break;
3021 while (*p++ != '}');
3022 dialect = 0;
3024 else
3025 putc (c, asm_out_file);
3026 break;
3028 case '}':
3029 if (! dialect)
3030 putc (c, asm_out_file);
3031 dialect = 0;
3032 break;
3033 #endif
3035 case '%':
3036 /* %% outputs a single %. */
3037 if (*p == '%')
3039 p++;
3040 putc (c, asm_out_file);
3042 /* %= outputs a number which is unique to each insn in the entire
3043 compilation. This is useful for making local labels that are
3044 referred to more than once in a given insn. */
3045 else if (*p == '=')
3047 p++;
3048 fprintf (asm_out_file, "%d", insn_counter);
3050 /* % followed by a letter and some digits
3051 outputs an operand in a special way depending on the letter.
3052 Letters `acln' are implemented directly.
3053 Other letters are passed to `output_operand' so that
3054 the PRINT_OPERAND macro can define them. */
3055 else if (ISALPHA (*p))
3057 int letter = *p++;
3058 unsigned long opnum;
3059 char *endptr;
3061 opnum = strtoul (p, &endptr, 10);
3063 if (endptr == p)
3064 output_operand_lossage ("operand number missing "
3065 "after %%-letter");
3066 else if (this_is_asm_operands && opnum >= insn_noperands)
3067 output_operand_lossage ("operand number out of range");
3068 else if (letter == 'l')
3069 output_asm_label (operands[opnum]);
3070 else if (letter == 'a')
3071 output_address (operands[opnum]);
3072 else if (letter == 'c')
3074 if (CONSTANT_ADDRESS_P (operands[opnum]))
3075 output_addr_const (asm_out_file, operands[opnum]);
3076 else
3077 output_operand (operands[opnum], 'c');
3079 else if (letter == 'n')
3081 if (GET_CODE (operands[opnum]) == CONST_INT)
3082 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3083 - INTVAL (operands[opnum]));
3084 else
3086 putc ('-', asm_out_file);
3087 output_addr_const (asm_out_file, operands[opnum]);
3090 else
3091 output_operand (operands[opnum], letter);
3093 if (!opoutput[opnum])
3094 oporder[ops++] = opnum;
3095 opoutput[opnum] = 1;
3097 p = endptr;
3098 c = *p;
3100 /* % followed by a digit outputs an operand the default way. */
3101 else if (ISDIGIT (*p))
3103 unsigned long opnum;
3104 char *endptr;
3106 opnum = strtoul (p, &endptr, 10);
3107 if (this_is_asm_operands && opnum >= insn_noperands)
3108 output_operand_lossage ("operand number out of range");
3109 else
3110 output_operand (operands[opnum], 0);
3112 if (!opoutput[opnum])
3113 oporder[ops++] = opnum;
3114 opoutput[opnum] = 1;
3116 p = endptr;
3117 c = *p;
3119 /* % followed by punctuation: output something for that
3120 punctuation character alone, with no operand.
3121 The PRINT_OPERAND macro decides what is actually done. */
3122 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3123 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3124 output_operand (NULL_RTX, *p++);
3125 #endif
3126 else
3127 output_operand_lossage ("invalid %%-code");
3128 break;
3130 default:
3131 putc (c, asm_out_file);
3134 /* Write out the variable names for operands, if we know them. */
3135 if (flag_verbose_asm)
3136 output_asm_operand_names (operands, oporder, ops);
3137 if (flag_print_asm_name)
3138 output_asm_name ();
3140 putc ('\n', asm_out_file);
3143 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3145 void
3146 output_asm_label (rtx x)
3148 char buf[256];
3150 if (GET_CODE (x) == LABEL_REF)
3151 x = XEXP (x, 0);
3152 if (LABEL_P (x)
3153 || (NOTE_P (x)
3154 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3155 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3156 else
3157 output_operand_lossage ("'%%l' operand isn't a label");
3159 assemble_name (asm_out_file, buf);
3162 /* Print operand X using machine-dependent assembler syntax.
3163 The macro PRINT_OPERAND is defined just to control this function.
3164 CODE is a non-digit that preceded the operand-number in the % spec,
3165 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3166 between the % and the digits.
3167 When CODE is a non-letter, X is 0.
3169 The meanings of the letters are machine-dependent and controlled
3170 by PRINT_OPERAND. */
3172 static void
3173 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3175 if (x && GET_CODE (x) == SUBREG)
3176 x = alter_subreg (&x);
3178 /* If X is a pseudo-register, abort now rather than writing trash to the
3179 assembler file. */
3180 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3182 PRINT_OPERAND (asm_out_file, x, code);
3185 /* Print a memory reference operand for address X
3186 using machine-dependent assembler syntax.
3187 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3189 void
3190 output_address (rtx x)
3192 walk_alter_subreg (&x);
3193 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3196 /* Print an integer constant expression in assembler syntax.
3197 Addition and subtraction are the only arithmetic
3198 that may appear in these expressions. */
3200 void
3201 output_addr_const (FILE *file, rtx x)
3203 char buf[256];
3205 restart:
3206 switch (GET_CODE (x))
3208 case PC:
3209 putc ('.', file);
3210 break;
3212 case SYMBOL_REF:
3213 if (SYMBOL_REF_DECL (x))
3214 mark_decl_referenced (SYMBOL_REF_DECL (x));
3215 #ifdef ASM_OUTPUT_SYMBOL_REF
3216 ASM_OUTPUT_SYMBOL_REF (file, x);
3217 #else
3218 assemble_name (file, XSTR (x, 0));
3219 #endif
3220 break;
3222 case LABEL_REF:
3223 x = XEXP (x, 0);
3224 /* Fall through. */
3225 case CODE_LABEL:
3226 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3227 #ifdef ASM_OUTPUT_LABEL_REF
3228 ASM_OUTPUT_LABEL_REF (file, buf);
3229 #else
3230 assemble_name (file, buf);
3231 #endif
3232 break;
3234 case CONST_INT:
3235 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3236 break;
3238 case CONST:
3239 /* This used to output parentheses around the expression,
3240 but that does not work on the 386 (either ATT or BSD assembler). */
3241 output_addr_const (file, XEXP (x, 0));
3242 break;
3244 case CONST_DOUBLE:
3245 if (GET_MODE (x) == VOIDmode)
3247 /* We can use %d if the number is one word and positive. */
3248 if (CONST_DOUBLE_HIGH (x))
3249 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3250 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3251 else if (CONST_DOUBLE_LOW (x) < 0)
3252 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3253 else
3254 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3256 else
3257 /* We can't handle floating point constants;
3258 PRINT_OPERAND must handle them. */
3259 output_operand_lossage ("floating constant misused");
3260 break;
3262 case PLUS:
3263 /* Some assemblers need integer constants to appear last (eg masm). */
3264 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3266 output_addr_const (file, XEXP (x, 1));
3267 if (INTVAL (XEXP (x, 0)) >= 0)
3268 fprintf (file, "+");
3269 output_addr_const (file, XEXP (x, 0));
3271 else
3273 output_addr_const (file, XEXP (x, 0));
3274 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3275 || INTVAL (XEXP (x, 1)) >= 0)
3276 fprintf (file, "+");
3277 output_addr_const (file, XEXP (x, 1));
3279 break;
3281 case MINUS:
3282 /* Avoid outputting things like x-x or x+5-x,
3283 since some assemblers can't handle that. */
3284 x = simplify_subtraction (x);
3285 if (GET_CODE (x) != MINUS)
3286 goto restart;
3288 output_addr_const (file, XEXP (x, 0));
3289 fprintf (file, "-");
3290 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3291 || GET_CODE (XEXP (x, 1)) == PC
3292 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3293 output_addr_const (file, XEXP (x, 1));
3294 else
3296 fputs (targetm.asm_out.open_paren, file);
3297 output_addr_const (file, XEXP (x, 1));
3298 fputs (targetm.asm_out.close_paren, file);
3300 break;
3302 case ZERO_EXTEND:
3303 case SIGN_EXTEND:
3304 case SUBREG:
3305 output_addr_const (file, XEXP (x, 0));
3306 break;
3308 default:
3309 #ifdef OUTPUT_ADDR_CONST_EXTRA
3310 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3311 break;
3313 fail:
3314 #endif
3315 output_operand_lossage ("invalid expression as operand");
3319 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3320 %R prints the value of REGISTER_PREFIX.
3321 %L prints the value of LOCAL_LABEL_PREFIX.
3322 %U prints the value of USER_LABEL_PREFIX.
3323 %I prints the value of IMMEDIATE_PREFIX.
3324 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3325 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3327 We handle alternate assembler dialects here, just like output_asm_insn. */
3329 void
3330 asm_fprintf (FILE *file, const char *p, ...)
3332 char buf[10];
3333 char *q, c;
3334 va_list argptr;
3336 va_start (argptr, p);
3338 buf[0] = '%';
3340 while ((c = *p++))
3341 switch (c)
3343 #ifdef ASSEMBLER_DIALECT
3344 case '{':
3346 int i;
3348 /* If we want the first dialect, do nothing. Otherwise, skip
3349 DIALECT_NUMBER of strings ending with '|'. */
3350 for (i = 0; i < dialect_number; i++)
3352 while (*p && *p++ != '|')
3355 if (*p == '|')
3356 p++;
3359 break;
3361 case '|':
3362 /* Skip to close brace. */
3363 while (*p && *p++ != '}')
3365 break;
3367 case '}':
3368 break;
3369 #endif
3371 case '%':
3372 c = *p++;
3373 q = &buf[1];
3374 while (strchr ("-+ #0", c))
3376 *q++ = c;
3377 c = *p++;
3379 while (ISDIGIT (c) || c == '.')
3381 *q++ = c;
3382 c = *p++;
3384 switch (c)
3386 case '%':
3387 putc ('%', file);
3388 break;
3390 case 'd': case 'i': case 'u':
3391 case 'x': case 'X': case 'o':
3392 case 'c':
3393 *q++ = c;
3394 *q = 0;
3395 fprintf (file, buf, va_arg (argptr, int));
3396 break;
3398 case 'w':
3399 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3400 'o' cases, but we do not check for those cases. It
3401 means that the value is a HOST_WIDE_INT, which may be
3402 either `long' or `long long'. */
3403 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3404 q += strlen (HOST_WIDE_INT_PRINT);
3405 *q++ = *p++;
3406 *q = 0;
3407 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3408 break;
3410 case 'l':
3411 *q++ = c;
3412 #ifdef HAVE_LONG_LONG
3413 if (*p == 'l')
3415 *q++ = *p++;
3416 *q++ = *p++;
3417 *q = 0;
3418 fprintf (file, buf, va_arg (argptr, long long));
3420 else
3421 #endif
3423 *q++ = *p++;
3424 *q = 0;
3425 fprintf (file, buf, va_arg (argptr, long));
3428 break;
3430 case 's':
3431 *q++ = c;
3432 *q = 0;
3433 fprintf (file, buf, va_arg (argptr, char *));
3434 break;
3436 case 'O':
3437 #ifdef ASM_OUTPUT_OPCODE
3438 ASM_OUTPUT_OPCODE (asm_out_file, p);
3439 #endif
3440 break;
3442 case 'R':
3443 #ifdef REGISTER_PREFIX
3444 fprintf (file, "%s", REGISTER_PREFIX);
3445 #endif
3446 break;
3448 case 'I':
3449 #ifdef IMMEDIATE_PREFIX
3450 fprintf (file, "%s", IMMEDIATE_PREFIX);
3451 #endif
3452 break;
3454 case 'L':
3455 #ifdef LOCAL_LABEL_PREFIX
3456 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3457 #endif
3458 break;
3460 case 'U':
3461 fputs (user_label_prefix, file);
3462 break;
3464 #ifdef ASM_FPRINTF_EXTENSIONS
3465 /* Uppercase letters are reserved for general use by asm_fprintf
3466 and so are not available to target specific code. In order to
3467 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3468 they are defined here. As they get turned into real extensions
3469 to asm_fprintf they should be removed from this list. */
3470 case 'A': case 'B': case 'C': case 'D': case 'E':
3471 case 'F': case 'G': case 'H': case 'J': case 'K':
3472 case 'M': case 'N': case 'P': case 'Q': case 'S':
3473 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3474 break;
3476 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3477 #endif
3478 default:
3479 gcc_unreachable ();
3481 break;
3483 default:
3484 putc (c, file);
3486 va_end (argptr);
3489 /* Split up a CONST_DOUBLE or integer constant rtx
3490 into two rtx's for single words,
3491 storing in *FIRST the word that comes first in memory in the target
3492 and in *SECOND the other. */
3494 void
3495 split_double (rtx value, rtx *first, rtx *second)
3497 if (GET_CODE (value) == CONST_INT)
3499 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3501 /* In this case the CONST_INT holds both target words.
3502 Extract the bits from it into two word-sized pieces.
3503 Sign extend each half to HOST_WIDE_INT. */
3504 unsigned HOST_WIDE_INT low, high;
3505 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3507 /* Set sign_bit to the most significant bit of a word. */
3508 sign_bit = 1;
3509 sign_bit <<= BITS_PER_WORD - 1;
3511 /* Set mask so that all bits of the word are set. We could
3512 have used 1 << BITS_PER_WORD instead of basing the
3513 calculation on sign_bit. However, on machines where
3514 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3515 compiler warning, even though the code would never be
3516 executed. */
3517 mask = sign_bit << 1;
3518 mask--;
3520 /* Set sign_extend as any remaining bits. */
3521 sign_extend = ~mask;
3523 /* Pick the lower word and sign-extend it. */
3524 low = INTVAL (value);
3525 low &= mask;
3526 if (low & sign_bit)
3527 low |= sign_extend;
3529 /* Pick the higher word, shifted to the least significant
3530 bits, and sign-extend it. */
3531 high = INTVAL (value);
3532 high >>= BITS_PER_WORD - 1;
3533 high >>= 1;
3534 high &= mask;
3535 if (high & sign_bit)
3536 high |= sign_extend;
3538 /* Store the words in the target machine order. */
3539 if (WORDS_BIG_ENDIAN)
3541 *first = GEN_INT (high);
3542 *second = GEN_INT (low);
3544 else
3546 *first = GEN_INT (low);
3547 *second = GEN_INT (high);
3550 else
3552 /* The rule for using CONST_INT for a wider mode
3553 is that we regard the value as signed.
3554 So sign-extend it. */
3555 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3556 if (WORDS_BIG_ENDIAN)
3558 *first = high;
3559 *second = value;
3561 else
3563 *first = value;
3564 *second = high;
3568 else if (GET_CODE (value) != CONST_DOUBLE)
3570 if (WORDS_BIG_ENDIAN)
3572 *first = const0_rtx;
3573 *second = value;
3575 else
3577 *first = value;
3578 *second = const0_rtx;
3581 else if (GET_MODE (value) == VOIDmode
3582 /* This is the old way we did CONST_DOUBLE integers. */
3583 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3585 /* In an integer, the words are defined as most and least significant.
3586 So order them by the target's convention. */
3587 if (WORDS_BIG_ENDIAN)
3589 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3590 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3592 else
3594 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3595 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3598 else
3600 REAL_VALUE_TYPE r;
3601 long l[2];
3602 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3604 /* Note, this converts the REAL_VALUE_TYPE to the target's
3605 format, splits up the floating point double and outputs
3606 exactly 32 bits of it into each of l[0] and l[1] --
3607 not necessarily BITS_PER_WORD bits. */
3608 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3610 /* If 32 bits is an entire word for the target, but not for the host,
3611 then sign-extend on the host so that the number will look the same
3612 way on the host that it would on the target. See for instance
3613 simplify_unary_operation. The #if is needed to avoid compiler
3614 warnings. */
3616 #if HOST_BITS_PER_LONG > 32
3617 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3619 if (l[0] & ((long) 1 << 31))
3620 l[0] |= ((long) (-1) << 32);
3621 if (l[1] & ((long) 1 << 31))
3622 l[1] |= ((long) (-1) << 32);
3624 #endif
3626 *first = GEN_INT (l[0]);
3627 *second = GEN_INT (l[1]);
3631 /* Return nonzero if this function has no function calls. */
3634 leaf_function_p (void)
3636 rtx insn;
3637 rtx link;
3639 if (current_function_profile || profile_arc_flag)
3640 return 0;
3642 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3644 if (CALL_P (insn)
3645 && ! SIBLING_CALL_P (insn))
3646 return 0;
3647 if (NONJUMP_INSN_P (insn)
3648 && GET_CODE (PATTERN (insn)) == SEQUENCE
3649 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3650 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3651 return 0;
3653 for (link = current_function_epilogue_delay_list;
3654 link;
3655 link = XEXP (link, 1))
3657 insn = XEXP (link, 0);
3659 if (CALL_P (insn)
3660 && ! SIBLING_CALL_P (insn))
3661 return 0;
3662 if (NONJUMP_INSN_P (insn)
3663 && GET_CODE (PATTERN (insn)) == SEQUENCE
3664 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3665 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3666 return 0;
3669 return 1;
3672 /* Return 1 if branch is a forward branch.
3673 Uses insn_shuid array, so it works only in the final pass. May be used by
3674 output templates to customary add branch prediction hints.
3677 final_forward_branch_p (rtx insn)
3679 int insn_id, label_id;
3681 gcc_assert (uid_shuid);
3682 insn_id = INSN_SHUID (insn);
3683 label_id = INSN_SHUID (JUMP_LABEL (insn));
3684 /* We've hit some insns that does not have id information available. */
3685 gcc_assert (insn_id && label_id);
3686 return insn_id < label_id;
3689 /* On some machines, a function with no call insns
3690 can run faster if it doesn't create its own register window.
3691 When output, the leaf function should use only the "output"
3692 registers. Ordinarily, the function would be compiled to use
3693 the "input" registers to find its arguments; it is a candidate
3694 for leaf treatment if it uses only the "input" registers.
3695 Leaf function treatment means renumbering so the function
3696 uses the "output" registers instead. */
3698 #ifdef LEAF_REGISTERS
3700 /* Return 1 if this function uses only the registers that can be
3701 safely renumbered. */
3704 only_leaf_regs_used (void)
3706 int i;
3707 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3709 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3710 if ((regs_ever_live[i] || global_regs[i])
3711 && ! permitted_reg_in_leaf_functions[i])
3712 return 0;
3714 if (current_function_uses_pic_offset_table
3715 && pic_offset_table_rtx != 0
3716 && REG_P (pic_offset_table_rtx)
3717 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3718 return 0;
3720 return 1;
3723 /* Scan all instructions and renumber all registers into those
3724 available in leaf functions. */
3726 static void
3727 leaf_renumber_regs (rtx first)
3729 rtx insn;
3731 /* Renumber only the actual patterns.
3732 The reg-notes can contain frame pointer refs,
3733 and renumbering them could crash, and should not be needed. */
3734 for (insn = first; insn; insn = NEXT_INSN (insn))
3735 if (INSN_P (insn))
3736 leaf_renumber_regs_insn (PATTERN (insn));
3737 for (insn = current_function_epilogue_delay_list;
3738 insn;
3739 insn = XEXP (insn, 1))
3740 if (INSN_P (XEXP (insn, 0)))
3741 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3744 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3745 available in leaf functions. */
3747 void
3748 leaf_renumber_regs_insn (rtx in_rtx)
3750 int i, j;
3751 const char *format_ptr;
3753 if (in_rtx == 0)
3754 return;
3756 /* Renumber all input-registers into output-registers.
3757 renumbered_regs would be 1 for an output-register;
3758 they */
3760 if (REG_P (in_rtx))
3762 int newreg;
3764 /* Don't renumber the same reg twice. */
3765 if (in_rtx->used)
3766 return;
3768 newreg = REGNO (in_rtx);
3769 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3770 to reach here as part of a REG_NOTE. */
3771 if (newreg >= FIRST_PSEUDO_REGISTER)
3773 in_rtx->used = 1;
3774 return;
3776 newreg = LEAF_REG_REMAP (newreg);
3777 gcc_assert (newreg >= 0);
3778 regs_ever_live[REGNO (in_rtx)] = 0;
3779 regs_ever_live[newreg] = 1;
3780 REGNO (in_rtx) = newreg;
3781 in_rtx->used = 1;
3784 if (INSN_P (in_rtx))
3786 /* Inside a SEQUENCE, we find insns.
3787 Renumber just the patterns of these insns,
3788 just as we do for the top-level insns. */
3789 leaf_renumber_regs_insn (PATTERN (in_rtx));
3790 return;
3793 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3795 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3796 switch (*format_ptr++)
3798 case 'e':
3799 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3800 break;
3802 case 'E':
3803 if (NULL != XVEC (in_rtx, i))
3805 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3806 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3808 break;
3810 case 'S':
3811 case 's':
3812 case '0':
3813 case 'i':
3814 case 'w':
3815 case 'n':
3816 case 'u':
3817 break;
3819 default:
3820 gcc_unreachable ();
3823 #endif
3826 /* When -gused is used, emit debug info for only used symbols. But in
3827 addition to the standard intercepted debug_hooks there are some direct
3828 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3829 Those routines may also be called from a higher level intercepted routine. So
3830 to prevent recording data for an inner call to one of these for an intercept,
3831 we maintain an intercept nesting counter (debug_nesting). We only save the
3832 intercepted arguments if the nesting is 1. */
3833 int debug_nesting = 0;
3835 static tree *symbol_queue;
3836 int symbol_queue_index = 0;
3837 static int symbol_queue_size = 0;
3839 /* Generate the symbols for any queued up type symbols we encountered
3840 while generating the type info for some originally used symbol.
3841 This might generate additional entries in the queue. Only when
3842 the nesting depth goes to 0 is this routine called. */
3844 void
3845 debug_flush_symbol_queue (void)
3847 int i;
3849 /* Make sure that additionally queued items are not flushed
3850 prematurely. */
3852 ++debug_nesting;
3854 for (i = 0; i < symbol_queue_index; ++i)
3856 /* If we pushed queued symbols then such symbols are must be
3857 output no matter what anyone else says. Specifically,
3858 we need to make sure dbxout_symbol() thinks the symbol was
3859 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3860 which may be set for outside reasons. */
3861 int saved_tree_used = TREE_USED (symbol_queue[i]);
3862 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3863 TREE_USED (symbol_queue[i]) = 1;
3864 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3866 #ifdef DBX_DEBUGGING_INFO
3867 dbxout_symbol (symbol_queue[i], 0);
3868 #endif
3870 TREE_USED (symbol_queue[i]) = saved_tree_used;
3871 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3874 symbol_queue_index = 0;
3875 --debug_nesting;
3878 /* Queue a type symbol needed as part of the definition of a decl
3879 symbol. These symbols are generated when debug_flush_symbol_queue()
3880 is called. */
3882 void
3883 debug_queue_symbol (tree decl)
3885 if (symbol_queue_index >= symbol_queue_size)
3887 symbol_queue_size += 10;
3888 symbol_queue = xrealloc (symbol_queue,
3889 symbol_queue_size * sizeof (tree));
3892 symbol_queue[symbol_queue_index++] = decl;
3895 /* Free symbol queue. */
3896 void
3897 debug_free_queue (void)
3899 if (symbol_queue)
3901 free (symbol_queue);
3902 symbol_queue = NULL;
3903 symbol_queue_size = 0;