Remove not needed __builtin_expect due to malloc predictor.
[official-gcc.git] / gcc / doc / md.texi
blob02f9e1e43208bf20f10348ad95d7978fcdd7c2cd
1 @c Copyright (C) 1988-2018 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
5 @ifset INTERNALS
6 @node Machine Desc
7 @chapter Machine Descriptions
8 @cindex machine descriptions
10 A machine description has two parts: a file of instruction patterns
11 (@file{.md} file) and a C header file of macro definitions.
13 The @file{.md} file for a target machine contains a pattern for each
14 instruction that the target machine supports (or at least each instruction
15 that is worth telling the compiler about).  It may also contain comments.
16 A semicolon causes the rest of the line to be a comment, unless the semicolon
17 is inside a quoted string.
19 See the next chapter for information on the C header file.
21 @menu
22 * Overview::            How the machine description is used.
23 * Patterns::            How to write instruction patterns.
24 * Example::             An explained example of a @code{define_insn} pattern.
25 * RTL Template::        The RTL template defines what insns match a pattern.
26 * Output Template::     The output template says how to make assembler code
27                         from such an insn.
28 * Output Statement::    For more generality, write C code to output
29                         the assembler code.
30 * Predicates::          Controlling what kinds of operands can be used
31                         for an insn.
32 * Constraints::         Fine-tuning operand selection.
33 * Standard Names::      Names mark patterns to use for code generation.
34 * Pattern Ordering::    When the order of patterns makes a difference.
35 * Dependent Patterns::  Having one pattern may make you need another.
36 * Jump Patterns::       Special considerations for patterns for jump insns.
37 * Looping Patterns::    How to define patterns for special looping insns.
38 * Insn Canonicalizations::Canonicalization of Instructions
39 * Expander Definitions::Generating a sequence of several RTL insns
40                         for a standard operation.
41 * Insn Splitting::      Splitting Instructions into Multiple Instructions.
42 * Including Patterns::  Including Patterns in Machine Descriptions.
43 * Peephole Definitions::Defining machine-specific peephole optimizations.
44 * Insn Attributes::     Specifying the value of attributes for generated insns.
45 * Conditional Execution::Generating @code{define_insn} patterns for
46                          predication.
47 * Define Subst::        Generating @code{define_insn} and @code{define_expand}
48                         patterns from other patterns.
49 * Constant Definitions::Defining symbolic constants that can be used in the
50                         md file.
51 * Iterators::           Using iterators to generate patterns from a template.
52 @end menu
54 @node Overview
55 @section Overview of How the Machine Description is Used
57 There are three main conversions that happen in the compiler:
59 @enumerate
61 @item
62 The front end reads the source code and builds a parse tree.
64 @item
65 The parse tree is used to generate an RTL insn list based on named
66 instruction patterns.
68 @item
69 The insn list is matched against the RTL templates to produce assembler
70 code.
72 @end enumerate
74 For the generate pass, only the names of the insns matter, from either a
75 named @code{define_insn} or a @code{define_expand}.  The compiler will
76 choose the pattern with the right name and apply the operands according
77 to the documentation later in this chapter, without regard for the RTL
78 template or operand constraints.  Note that the names the compiler looks
79 for are hard-coded in the compiler---it will ignore unnamed patterns and
80 patterns with names it doesn't know about, but if you don't provide a
81 named pattern it needs, it will abort.
83 If a @code{define_insn} is used, the template given is inserted into the
84 insn list.  If a @code{define_expand} is used, one of three things
85 happens, based on the condition logic.  The condition logic may manually
86 create new insns for the insn list, say via @code{emit_insn()}, and
87 invoke @code{DONE}.  For certain named patterns, it may invoke @code{FAIL} to tell the
88 compiler to use an alternate way of performing that task.  If it invokes
89 neither @code{DONE} nor @code{FAIL}, the template given in the pattern
90 is inserted, as if the @code{define_expand} were a @code{define_insn}.
92 Once the insn list is generated, various optimization passes convert,
93 replace, and rearrange the insns in the insn list.  This is where the
94 @code{define_split} and @code{define_peephole} patterns get used, for
95 example.
97 Finally, the insn list's RTL is matched up with the RTL templates in the
98 @code{define_insn} patterns, and those patterns are used to emit the
99 final assembly code.  For this purpose, each named @code{define_insn}
100 acts like it's unnamed, since the names are ignored.
102 @node Patterns
103 @section Everything about Instruction Patterns
104 @cindex patterns
105 @cindex instruction patterns
107 @findex define_insn
108 A @code{define_insn} expression is used to define instruction patterns
109 to which insns may be matched.  A @code{define_insn} expression contains
110 an incomplete RTL expression, with pieces to be filled in later, operand
111 constraints that restrict how the pieces can be filled in, and an output
112 template or C code to generate the assembler output.
114 A @code{define_insn} is an RTL expression containing four or five operands:
116 @enumerate
117 @item
118 An optional name @var{n}.  When a name is present, the compiler
119 automically generates a C++ function @samp{gen_@var{n}} that takes
120 the operands of the instruction as arguments and returns the instruction's
121 rtx pattern.  The compiler also assigns the instruction a unique code
122 @samp{CODE_FOR_@var{n}}, with all such codes belonging to an enum
123 called @code{insn_code}.
125 These names serve one of two purposes.  The first is to indicate that the
126 instruction performs a certain standard job for the RTL-generation
127 pass of the compiler, such as a move, an addition, or a conditional
128 jump.  The second is to help the target generate certain target-specific
129 operations, such as when implementing target-specific intrinsic functions.
131 It is better to prefix target-specific names with the name of the
132 target, to avoid any clash with current or future standard names.
134 The absence of a name is indicated by writing an empty string
135 where the name should go.  Nameless instruction patterns are never
136 used for generating RTL code, but they may permit several simpler insns
137 to be combined later on.
139 For the purpose of debugging the compiler, you may also specify a
140 name beginning with the @samp{*} character.  Such a name is used only
141 for identifying the instruction in RTL dumps; it is equivalent to having
142 a nameless pattern for all other purposes.  Names beginning with the
143 @samp{*} character are not required to be unique.
145 The name may also have the form @samp{@@@var{n}}.  This has the same
146 effect as a name @samp{@var{n}}, but in addition tells the compiler to
147 generate further helper functions; see @xref{Parameterized Names} for details.
149 @item
150 The @dfn{RTL template}: This is a vector of incomplete RTL expressions
151 which describe the semantics of the instruction (@pxref{RTL Template}).
152 It is incomplete because it may contain @code{match_operand},
153 @code{match_operator}, and @code{match_dup} expressions that stand for
154 operands of the instruction.
156 If the vector has multiple elements, the RTL template is treated as a
157 @code{parallel} expression.
159 @item
160 @cindex pattern conditions
161 @cindex conditions, in patterns
162 The condition: This is a string which contains a C expression.  When the
163 compiler attempts to match RTL against a pattern, the condition is
164 evaluated.  If the condition evaluates to @code{true}, the match is
165 permitted.  The condition may be an empty string, which is treated
166 as always @code{true}.
168 @cindex named patterns and conditions
169 For a named pattern, the condition may not depend on the data in the
170 insn being matched, but only the target-machine-type flags.  The compiler
171 needs to test these conditions during initialization in order to learn
172 exactly which named instructions are available in a particular run.
174 @findex operands
175 For nameless patterns, the condition is applied only when matching an
176 individual insn, and only after the insn has matched the pattern's
177 recognition template.  The insn's operands may be found in the vector
178 @code{operands}.
180 An instruction condition cannot become more restrictive as compilation
181 progresses.  If the condition accepts a particular RTL instruction at
182 one stage of compilation, it must continue to accept that instruction
183 until the final pass.  For example, @samp{!reload_completed} and
184 @samp{can_create_pseudo_p ()} are both invalid instruction conditions,
185 because they are true during the earlier RTL passes and false during
186 the later ones.  For the same reason, if a condition accepts an
187 instruction before register allocation, it cannot later try to control
188 register allocation by excluding certain register or value combinations.
190 Although a condition cannot become more restrictive as compilation
191 progresses, the condition for a nameless pattern @emph{can} become
192 more permissive.  For example, a nameless instruction can require
193 @samp{reload_completed} to be true, in which case it only matches
194 after register allocation.
196 @item
197 The @dfn{output template} or @dfn{output statement}: This is either
198 a string, or a fragment of C code which returns a string.
200 When simple substitution isn't general enough, you can specify a piece
201 of C code to compute the output.  @xref{Output Statement}.
203 @item
204 The @dfn{insn attributes}: This is an optional vector containing the values of
205 attributes for insns matching this pattern (@pxref{Insn Attributes}).
206 @end enumerate
208 @node Example
209 @section Example of @code{define_insn}
210 @cindex @code{define_insn} example
212 Here is an example of an instruction pattern, taken from the machine
213 description for the 68000/68020.
215 @smallexample
216 (define_insn "tstsi"
217   [(set (cc0)
218         (match_operand:SI 0 "general_operand" "rm"))]
219   ""
220   "*
222   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
223     return \"tstl %0\";
224   return \"cmpl #0,%0\";
225 @}")
226 @end smallexample
228 @noindent
229 This can also be written using braced strings:
231 @smallexample
232 (define_insn "tstsi"
233   [(set (cc0)
234         (match_operand:SI 0 "general_operand" "rm"))]
235   ""
237   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
238     return "tstl %0";
239   return "cmpl #0,%0";
241 @end smallexample
243 This describes an instruction which sets the condition codes based on the
244 value of a general operand.  It has no condition, so any insn with an RTL
245 description of the form shown may be matched to this pattern.  The name
246 @samp{tstsi} means ``test a @code{SImode} value'' and tells the RTL
247 generation pass that, when it is necessary to test such a value, an insn
248 to do so can be constructed using this pattern.
250 The output control string is a piece of C code which chooses which
251 output template to return based on the kind of operand and the specific
252 type of CPU for which code is being generated.
254 @samp{"rm"} is an operand constraint.  Its meaning is explained below.
256 @node RTL Template
257 @section RTL Template
258 @cindex RTL insn template
259 @cindex generating insns
260 @cindex insns, generating
261 @cindex recognizing insns
262 @cindex insns, recognizing
264 The RTL template is used to define which insns match the particular pattern
265 and how to find their operands.  For named patterns, the RTL template also
266 says how to construct an insn from specified operands.
268 Construction involves substituting specified operands into a copy of the
269 template.  Matching involves determining the values that serve as the
270 operands in the insn being matched.  Both of these activities are
271 controlled by special expression types that direct matching and
272 substitution of the operands.
274 @table @code
275 @findex match_operand
276 @item (match_operand:@var{m} @var{n} @var{predicate} @var{constraint})
277 This expression is a placeholder for operand number @var{n} of
278 the insn.  When constructing an insn, operand number @var{n}
279 will be substituted at this point.  When matching an insn, whatever
280 appears at this position in the insn will be taken as operand
281 number @var{n}; but it must satisfy @var{predicate} or this instruction
282 pattern will not match at all.
284 Operand numbers must be chosen consecutively counting from zero in
285 each instruction pattern.  There may be only one @code{match_operand}
286 expression in the pattern for each operand number.  Usually operands
287 are numbered in the order of appearance in @code{match_operand}
288 expressions.  In the case of a @code{define_expand}, any operand numbers
289 used only in @code{match_dup} expressions have higher values than all
290 other operand numbers.
292 @var{predicate} is a string that is the name of a function that
293 accepts two arguments, an expression and a machine mode.
294 @xref{Predicates}.  During matching, the function will be called with
295 the putative operand as the expression and @var{m} as the mode
296 argument (if @var{m} is not specified, @code{VOIDmode} will be used,
297 which normally causes @var{predicate} to accept any mode).  If it
298 returns zero, this instruction pattern fails to match.
299 @var{predicate} may be an empty string; then it means no test is to be
300 done on the operand, so anything which occurs in this position is
301 valid.
303 Most of the time, @var{predicate} will reject modes other than @var{m}---but
304 not always.  For example, the predicate @code{address_operand} uses
305 @var{m} as the mode of memory ref that the address should be valid for.
306 Many predicates accept @code{const_int} nodes even though their mode is
307 @code{VOIDmode}.
309 @var{constraint} controls reloading and the choice of the best register
310 class to use for a value, as explained later (@pxref{Constraints}).
311 If the constraint would be an empty string, it can be omitted.
313 People are often unclear on the difference between the constraint and the
314 predicate.  The predicate helps decide whether a given insn matches the
315 pattern.  The constraint plays no role in this decision; instead, it
316 controls various decisions in the case of an insn which does match.
318 @findex match_scratch
319 @item (match_scratch:@var{m} @var{n} @var{constraint})
320 This expression is also a placeholder for operand number @var{n}
321 and indicates that operand must be a @code{scratch} or @code{reg}
322 expression.
324 When matching patterns, this is equivalent to
326 @smallexample
327 (match_operand:@var{m} @var{n} "scratch_operand" @var{constraint})
328 @end smallexample
330 but, when generating RTL, it produces a (@code{scratch}:@var{m})
331 expression.
333 If the last few expressions in a @code{parallel} are @code{clobber}
334 expressions whose operands are either a hard register or
335 @code{match_scratch}, the combiner can add or delete them when
336 necessary.  @xref{Side Effects}.
338 @findex match_dup
339 @item (match_dup @var{n})
340 This expression is also a placeholder for operand number @var{n}.
341 It is used when the operand needs to appear more than once in the
342 insn.
344 In construction, @code{match_dup} acts just like @code{match_operand}:
345 the operand is substituted into the insn being constructed.  But in
346 matching, @code{match_dup} behaves differently.  It assumes that operand
347 number @var{n} has already been determined by a @code{match_operand}
348 appearing earlier in the recognition template, and it matches only an
349 identical-looking expression.
351 Note that @code{match_dup} should not be used to tell the compiler that
352 a particular register is being used for two operands (example:
353 @code{add} that adds one register to another; the second register is
354 both an input operand and the output operand).  Use a matching
355 constraint (@pxref{Simple Constraints}) for those.  @code{match_dup} is for the cases where one
356 operand is used in two places in the template, such as an instruction
357 that computes both a quotient and a remainder, where the opcode takes
358 two input operands but the RTL template has to refer to each of those
359 twice; once for the quotient pattern and once for the remainder pattern.
361 @findex match_operator
362 @item (match_operator:@var{m} @var{n} @var{predicate} [@var{operands}@dots{}])
363 This pattern is a kind of placeholder for a variable RTL expression
364 code.
366 When constructing an insn, it stands for an RTL expression whose
367 expression code is taken from that of operand @var{n}, and whose
368 operands are constructed from the patterns @var{operands}.
370 When matching an expression, it matches an expression if the function
371 @var{predicate} returns nonzero on that expression @emph{and} the
372 patterns @var{operands} match the operands of the expression.
374 Suppose that the function @code{commutative_operator} is defined as
375 follows, to match any expression whose operator is one of the
376 commutative arithmetic operators of RTL and whose mode is @var{mode}:
378 @smallexample
380 commutative_integer_operator (x, mode)
381      rtx x;
382      machine_mode mode;
384   enum rtx_code code = GET_CODE (x);
385   if (GET_MODE (x) != mode)
386     return 0;
387   return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
388           || code == EQ || code == NE);
390 @end smallexample
392 Then the following pattern will match any RTL expression consisting
393 of a commutative operator applied to two general operands:
395 @smallexample
396 (match_operator:SI 3 "commutative_operator"
397   [(match_operand:SI 1 "general_operand" "g")
398    (match_operand:SI 2 "general_operand" "g")])
399 @end smallexample
401 Here the vector @code{[@var{operands}@dots{}]} contains two patterns
402 because the expressions to be matched all contain two operands.
404 When this pattern does match, the two operands of the commutative
405 operator are recorded as operands 1 and 2 of the insn.  (This is done
406 by the two instances of @code{match_operand}.)  Operand 3 of the insn
407 will be the entire commutative expression: use @code{GET_CODE
408 (operands[3])} to see which commutative operator was used.
410 The machine mode @var{m} of @code{match_operator} works like that of
411 @code{match_operand}: it is passed as the second argument to the
412 predicate function, and that function is solely responsible for
413 deciding whether the expression to be matched ``has'' that mode.
415 When constructing an insn, argument 3 of the gen-function will specify
416 the operation (i.e.@: the expression code) for the expression to be
417 made.  It should be an RTL expression, whose expression code is copied
418 into a new expression whose operands are arguments 1 and 2 of the
419 gen-function.  The subexpressions of argument 3 are not used;
420 only its expression code matters.
422 When @code{match_operator} is used in a pattern for matching an insn,
423 it usually best if the operand number of the @code{match_operator}
424 is higher than that of the actual operands of the insn.  This improves
425 register allocation because the register allocator often looks at
426 operands 1 and 2 of insns to see if it can do register tying.
428 There is no way to specify constraints in @code{match_operator}.  The
429 operand of the insn which corresponds to the @code{match_operator}
430 never has any constraints because it is never reloaded as a whole.
431 However, if parts of its @var{operands} are matched by
432 @code{match_operand} patterns, those parts may have constraints of
433 their own.
435 @findex match_op_dup
436 @item (match_op_dup:@var{m} @var{n}[@var{operands}@dots{}])
437 Like @code{match_dup}, except that it applies to operators instead of
438 operands.  When constructing an insn, operand number @var{n} will be
439 substituted at this point.  But in matching, @code{match_op_dup} behaves
440 differently.  It assumes that operand number @var{n} has already been
441 determined by a @code{match_operator} appearing earlier in the
442 recognition template, and it matches only an identical-looking
443 expression.
445 @findex match_parallel
446 @item (match_parallel @var{n} @var{predicate} [@var{subpat}@dots{}])
447 This pattern is a placeholder for an insn that consists of a
448 @code{parallel} expression with a variable number of elements.  This
449 expression should only appear at the top level of an insn pattern.
451 When constructing an insn, operand number @var{n} will be substituted at
452 this point.  When matching an insn, it matches if the body of the insn
453 is a @code{parallel} expression with at least as many elements as the
454 vector of @var{subpat} expressions in the @code{match_parallel}, if each
455 @var{subpat} matches the corresponding element of the @code{parallel},
456 @emph{and} the function @var{predicate} returns nonzero on the
457 @code{parallel} that is the body of the insn.  It is the responsibility
458 of the predicate to validate elements of the @code{parallel} beyond
459 those listed in the @code{match_parallel}.
461 A typical use of @code{match_parallel} is to match load and store
462 multiple expressions, which can contain a variable number of elements
463 in a @code{parallel}.  For example,
465 @smallexample
466 (define_insn ""
467   [(match_parallel 0 "load_multiple_operation"
468      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
469            (match_operand:SI 2 "memory_operand" "m"))
470       (use (reg:SI 179))
471       (clobber (reg:SI 179))])]
472   ""
473   "loadm 0,0,%1,%2")
474 @end smallexample
476 This example comes from @file{a29k.md}.  The function
477 @code{load_multiple_operation} is defined in @file{a29k.c} and checks
478 that subsequent elements in the @code{parallel} are the same as the
479 @code{set} in the pattern, except that they are referencing subsequent
480 registers and memory locations.
482 An insn that matches this pattern might look like:
484 @smallexample
485 (parallel
486  [(set (reg:SI 20) (mem:SI (reg:SI 100)))
487   (use (reg:SI 179))
488   (clobber (reg:SI 179))
489   (set (reg:SI 21)
490        (mem:SI (plus:SI (reg:SI 100)
491                         (const_int 4))))
492   (set (reg:SI 22)
493        (mem:SI (plus:SI (reg:SI 100)
494                         (const_int 8))))])
495 @end smallexample
497 @findex match_par_dup
498 @item (match_par_dup @var{n} [@var{subpat}@dots{}])
499 Like @code{match_op_dup}, but for @code{match_parallel} instead of
500 @code{match_operator}.
502 @end table
504 @node Output Template
505 @section Output Templates and Operand Substitution
506 @cindex output templates
507 @cindex operand substitution
509 @cindex @samp{%} in template
510 @cindex percent sign
511 The @dfn{output template} is a string which specifies how to output the
512 assembler code for an instruction pattern.  Most of the template is a
513 fixed string which is output literally.  The character @samp{%} is used
514 to specify where to substitute an operand; it can also be used to
515 identify places where different variants of the assembler require
516 different syntax.
518 In the simplest case, a @samp{%} followed by a digit @var{n} says to output
519 operand @var{n} at that point in the string.
521 @samp{%} followed by a letter and a digit says to output an operand in an
522 alternate fashion.  Four letters have standard, built-in meanings described
523 below.  The machine description macro @code{PRINT_OPERAND} can define
524 additional letters with nonstandard meanings.
526 @samp{%c@var{digit}} can be used to substitute an operand that is a
527 constant value without the syntax that normally indicates an immediate
528 operand.
530 @samp{%n@var{digit}} is like @samp{%c@var{digit}} except that the value of
531 the constant is negated before printing.
533 @samp{%a@var{digit}} can be used to substitute an operand as if it were a
534 memory reference, with the actual operand treated as the address.  This may
535 be useful when outputting a ``load address'' instruction, because often the
536 assembler syntax for such an instruction requires you to write the operand
537 as if it were a memory reference.
539 @samp{%l@var{digit}} is used to substitute a @code{label_ref} into a jump
540 instruction.
542 @samp{%=} outputs a number which is unique to each instruction in the
543 entire compilation.  This is useful for making local labels to be
544 referred to more than once in a single template that generates multiple
545 assembler instructions.
547 @samp{%} followed by a punctuation character specifies a substitution that
548 does not use an operand.  Only one case is standard: @samp{%%} outputs a
549 @samp{%} into the assembler code.  Other nonstandard cases can be
550 defined in the @code{PRINT_OPERAND} macro.  You must also define
551 which punctuation characters are valid with the
552 @code{PRINT_OPERAND_PUNCT_VALID_P} macro.
554 @cindex \
555 @cindex backslash
556 The template may generate multiple assembler instructions.  Write the text
557 for the instructions, with @samp{\;} between them.
559 @cindex matching operands
560 When the RTL contains two operands which are required by constraint to match
561 each other, the output template must refer only to the lower-numbered operand.
562 Matching operands are not always identical, and the rest of the compiler
563 arranges to put the proper RTL expression for printing into the lower-numbered
564 operand.
566 One use of nonstandard letters or punctuation following @samp{%} is to
567 distinguish between different assembler languages for the same machine; for
568 example, Motorola syntax versus MIT syntax for the 68000.  Motorola syntax
569 requires periods in most opcode names, while MIT syntax does not.  For
570 example, the opcode @samp{movel} in MIT syntax is @samp{move.l} in Motorola
571 syntax.  The same file of patterns is used for both kinds of output syntax,
572 but the character sequence @samp{%.} is used in each place where Motorola
573 syntax wants a period.  The @code{PRINT_OPERAND} macro for Motorola syntax
574 defines the sequence to output a period; the macro for MIT syntax defines
575 it to do nothing.
577 @cindex @code{#} in template
578 As a special case, a template consisting of the single character @code{#}
579 instructs the compiler to first split the insn, and then output the
580 resulting instructions separately.  This helps eliminate redundancy in the
581 output templates.   If you have a @code{define_insn} that needs to emit
582 multiple assembler instructions, and there is a matching @code{define_split}
583 already defined, then you can simply use @code{#} as the output template
584 instead of writing an output template that emits the multiple assembler
585 instructions.
587 Note that @code{#} only has an effect while generating assembly code;
588 it does not affect whether a split occurs earlier.  An associated
589 @code{define_split} must exist and it must be suitable for use after
590 register allocation.
592 If the macro @code{ASSEMBLER_DIALECT} is defined, you can use construct
593 of the form @samp{@{option0|option1|option2@}} in the templates.  These
594 describe multiple variants of assembler language syntax.
595 @xref{Instruction Output}.
597 @node Output Statement
598 @section C Statements for Assembler Output
599 @cindex output statements
600 @cindex C statements for assembler output
601 @cindex generating assembler output
603 Often a single fixed template string cannot produce correct and efficient
604 assembler code for all the cases that are recognized by a single
605 instruction pattern.  For example, the opcodes may depend on the kinds of
606 operands; or some unfortunate combinations of operands may require extra
607 machine instructions.
609 If the output control string starts with a @samp{@@}, then it is actually
610 a series of templates, each on a separate line.  (Blank lines and
611 leading spaces and tabs are ignored.)  The templates correspond to the
612 pattern's constraint alternatives (@pxref{Multi-Alternative}).  For example,
613 if a target machine has a two-address add instruction @samp{addr} to add
614 into a register and another @samp{addm} to add a register to memory, you
615 might write this pattern:
617 @smallexample
618 (define_insn "addsi3"
619   [(set (match_operand:SI 0 "general_operand" "=r,m")
620         (plus:SI (match_operand:SI 1 "general_operand" "0,0")
621                  (match_operand:SI 2 "general_operand" "g,r")))]
622   ""
623   "@@
624    addr %2,%0
625    addm %2,%0")
626 @end smallexample
628 @cindex @code{*} in template
629 @cindex asterisk in template
630 If the output control string starts with a @samp{*}, then it is not an
631 output template but rather a piece of C program that should compute a
632 template.  It should execute a @code{return} statement to return the
633 template-string you want.  Most such templates use C string literals, which
634 require doublequote characters to delimit them.  To include these
635 doublequote characters in the string, prefix each one with @samp{\}.
637 If the output control string is written as a brace block instead of a
638 double-quoted string, it is automatically assumed to be C code.  In that
639 case, it is not necessary to put in a leading asterisk, or to escape the
640 doublequotes surrounding C string literals.
642 The operands may be found in the array @code{operands}, whose C data type
643 is @code{rtx []}.
645 It is very common to select different ways of generating assembler code
646 based on whether an immediate operand is within a certain range.  Be
647 careful when doing this, because the result of @code{INTVAL} is an
648 integer on the host machine.  If the host machine has more bits in an
649 @code{int} than the target machine has in the mode in which the constant
650 will be used, then some of the bits you get from @code{INTVAL} will be
651 superfluous.  For proper results, you must carefully disregard the
652 values of those bits.
654 @findex output_asm_insn
655 It is possible to output an assembler instruction and then go on to output
656 or compute more of them, using the subroutine @code{output_asm_insn}.  This
657 receives two arguments: a template-string and a vector of operands.  The
658 vector may be @code{operands}, or it may be another array of @code{rtx}
659 that you declare locally and initialize yourself.
661 @findex which_alternative
662 When an insn pattern has multiple alternatives in its constraints, often
663 the appearance of the assembler code is determined mostly by which alternative
664 was matched.  When this is so, the C code can test the variable
665 @code{which_alternative}, which is the ordinal number of the alternative
666 that was actually satisfied (0 for the first, 1 for the second alternative,
667 etc.).
669 For example, suppose there are two opcodes for storing zero, @samp{clrreg}
670 for registers and @samp{clrmem} for memory locations.  Here is how
671 a pattern could use @code{which_alternative} to choose between them:
673 @smallexample
674 (define_insn ""
675   [(set (match_operand:SI 0 "general_operand" "=r,m")
676         (const_int 0))]
677   ""
678   @{
679   return (which_alternative == 0
680           ? "clrreg %0" : "clrmem %0");
681   @})
682 @end smallexample
684 The example above, where the assembler code to generate was
685 @emph{solely} determined by the alternative, could also have been specified
686 as follows, having the output control string start with a @samp{@@}:
688 @smallexample
689 @group
690 (define_insn ""
691   [(set (match_operand:SI 0 "general_operand" "=r,m")
692         (const_int 0))]
693   ""
694   "@@
695    clrreg %0
696    clrmem %0")
697 @end group
698 @end smallexample
700 If you just need a little bit of C code in one (or a few) alternatives,
701 you can use @samp{*} inside of a @samp{@@} multi-alternative template:
703 @smallexample
704 @group
705 (define_insn ""
706   [(set (match_operand:SI 0 "general_operand" "=r,<,m")
707         (const_int 0))]
708   ""
709   "@@
710    clrreg %0
711    * return stack_mem_p (operands[0]) ? \"push 0\" : \"clrmem %0\";
712    clrmem %0")
713 @end group
714 @end smallexample
716 @node Predicates
717 @section Predicates
718 @cindex predicates
719 @cindex operand predicates
720 @cindex operator predicates
722 A predicate determines whether a @code{match_operand} or
723 @code{match_operator} expression matches, and therefore whether the
724 surrounding instruction pattern will be used for that combination of
725 operands.  GCC has a number of machine-independent predicates, and you
726 can define machine-specific predicates as needed.  By convention,
727 predicates used with @code{match_operand} have names that end in
728 @samp{_operand}, and those used with @code{match_operator} have names
729 that end in @samp{_operator}.
731 All predicates are boolean functions (in the mathematical sense) of
732 two arguments: the RTL expression that is being considered at that
733 position in the instruction pattern, and the machine mode that the
734 @code{match_operand} or @code{match_operator} specifies.  In this
735 section, the first argument is called @var{op} and the second argument
736 @var{mode}.  Predicates can be called from C as ordinary two-argument
737 functions; this can be useful in output templates or other
738 machine-specific code.
740 Operand predicates can allow operands that are not actually acceptable
741 to the hardware, as long as the constraints give reload the ability to
742 fix them up (@pxref{Constraints}).  However, GCC will usually generate
743 better code if the predicates specify the requirements of the machine
744 instructions as closely as possible.  Reload cannot fix up operands
745 that must be constants (``immediate operands''); you must use a
746 predicate that allows only constants, or else enforce the requirement
747 in the extra condition.
749 @cindex predicates and machine modes
750 @cindex normal predicates
751 @cindex special predicates
752 Most predicates handle their @var{mode} argument in a uniform manner.
753 If @var{mode} is @code{VOIDmode} (unspecified), then @var{op} can have
754 any mode.  If @var{mode} is anything else, then @var{op} must have the
755 same mode, unless @var{op} is a @code{CONST_INT} or integer
756 @code{CONST_DOUBLE}.  These RTL expressions always have
757 @code{VOIDmode}, so it would be counterproductive to check that their
758 mode matches.  Instead, predicates that accept @code{CONST_INT} and/or
759 integer @code{CONST_DOUBLE} check that the value stored in the
760 constant will fit in the requested mode.
762 Predicates with this behavior are called @dfn{normal}.
763 @command{genrecog} can optimize the instruction recognizer based on
764 knowledge of how normal predicates treat modes.  It can also diagnose
765 certain kinds of common errors in the use of normal predicates; for
766 instance, it is almost always an error to use a normal predicate
767 without specifying a mode.
769 Predicates that do something different with their @var{mode} argument
770 are called @dfn{special}.  The generic predicates
771 @code{address_operand} and @code{pmode_register_operand} are special
772 predicates.  @command{genrecog} does not do any optimizations or
773 diagnosis when special predicates are used.
775 @menu
776 * Machine-Independent Predicates::  Predicates available to all back ends.
777 * Defining Predicates::             How to write machine-specific predicate
778                                     functions.
779 @end menu
781 @node Machine-Independent Predicates
782 @subsection Machine-Independent Predicates
783 @cindex machine-independent predicates
784 @cindex generic predicates
786 These are the generic predicates available to all back ends.  They are
787 defined in @file{recog.c}.  The first category of predicates allow
788 only constant, or @dfn{immediate}, operands.
790 @defun immediate_operand
791 This predicate allows any sort of constant that fits in @var{mode}.
792 It is an appropriate choice for instructions that take operands that
793 must be constant.
794 @end defun
796 @defun const_int_operand
797 This predicate allows any @code{CONST_INT} expression that fits in
798 @var{mode}.  It is an appropriate choice for an immediate operand that
799 does not allow a symbol or label.
800 @end defun
802 @defun const_double_operand
803 This predicate accepts any @code{CONST_DOUBLE} expression that has
804 exactly @var{mode}.  If @var{mode} is @code{VOIDmode}, it will also
805 accept @code{CONST_INT}.  It is intended for immediate floating point
806 constants.
807 @end defun
809 @noindent
810 The second category of predicates allow only some kind of machine
811 register.
813 @defun register_operand
814 This predicate allows any @code{REG} or @code{SUBREG} expression that
815 is valid for @var{mode}.  It is often suitable for arithmetic
816 instruction operands on a RISC machine.
817 @end defun
819 @defun pmode_register_operand
820 This is a slight variant on @code{register_operand} which works around
821 a limitation in the machine-description reader.
823 @smallexample
824 (match_operand @var{n} "pmode_register_operand" @var{constraint})
825 @end smallexample
827 @noindent
828 means exactly what
830 @smallexample
831 (match_operand:P @var{n} "register_operand" @var{constraint})
832 @end smallexample
834 @noindent
835 would mean, if the machine-description reader accepted @samp{:P}
836 mode suffixes.  Unfortunately, it cannot, because @code{Pmode} is an
837 alias for some other mode, and might vary with machine-specific
838 options.  @xref{Misc}.
839 @end defun
841 @defun scratch_operand
842 This predicate allows hard registers and @code{SCRATCH} expressions,
843 but not pseudo-registers.  It is used internally by @code{match_scratch};
844 it should not be used directly.
845 @end defun
847 @noindent
848 The third category of predicates allow only some kind of memory reference.
850 @defun memory_operand
851 This predicate allows any valid reference to a quantity of mode
852 @var{mode} in memory, as determined by the weak form of
853 @code{GO_IF_LEGITIMATE_ADDRESS} (@pxref{Addressing Modes}).
854 @end defun
856 @defun address_operand
857 This predicate is a little unusual; it allows any operand that is a
858 valid expression for the @emph{address} of a quantity of mode
859 @var{mode}, again determined by the weak form of
860 @code{GO_IF_LEGITIMATE_ADDRESS}.  To first order, if
861 @samp{@w{(mem:@var{mode} (@var{exp}))}} is acceptable to
862 @code{memory_operand}, then @var{exp} is acceptable to
863 @code{address_operand}.  Note that @var{exp} does not necessarily have
864 the mode @var{mode}.
865 @end defun
867 @defun indirect_operand
868 This is a stricter form of @code{memory_operand} which allows only
869 memory references with a @code{general_operand} as the address
870 expression.  New uses of this predicate are discouraged, because
871 @code{general_operand} is very permissive, so it's hard to tell what
872 an @code{indirect_operand} does or does not allow.  If a target has
873 different requirements for memory operands for different instructions,
874 it is better to define target-specific predicates which enforce the
875 hardware's requirements explicitly.
876 @end defun
878 @defun push_operand
879 This predicate allows a memory reference suitable for pushing a value
880 onto the stack.  This will be a @code{MEM} which refers to
881 @code{stack_pointer_rtx}, with a side effect in its address expression
882 (@pxref{Incdec}); which one is determined by the
883 @code{STACK_PUSH_CODE} macro (@pxref{Frame Layout}).
884 @end defun
886 @defun pop_operand
887 This predicate allows a memory reference suitable for popping a value
888 off the stack.  Again, this will be a @code{MEM} referring to
889 @code{stack_pointer_rtx}, with a side effect in its address
890 expression.  However, this time @code{STACK_POP_CODE} is expected.
891 @end defun
893 @noindent
894 The fourth category of predicates allow some combination of the above
895 operands.
897 @defun nonmemory_operand
898 This predicate allows any immediate or register operand valid for @var{mode}.
899 @end defun
901 @defun nonimmediate_operand
902 This predicate allows any register or memory operand valid for @var{mode}.
903 @end defun
905 @defun general_operand
906 This predicate allows any immediate, register, or memory operand
907 valid for @var{mode}.
908 @end defun
910 @noindent
911 Finally, there are two generic operator predicates.
913 @defun comparison_operator
914 This predicate matches any expression which performs an arithmetic
915 comparison in @var{mode}; that is, @code{COMPARISON_P} is true for the
916 expression code.
917 @end defun
919 @defun ordered_comparison_operator
920 This predicate matches any expression which performs an arithmetic
921 comparison in @var{mode} and whose expression code is valid for integer
922 modes; that is, the expression code will be one of @code{eq}, @code{ne},
923 @code{lt}, @code{ltu}, @code{le}, @code{leu}, @code{gt}, @code{gtu},
924 @code{ge}, @code{geu}.
925 @end defun
927 @node Defining Predicates
928 @subsection Defining Machine-Specific Predicates
929 @cindex defining predicates
930 @findex define_predicate
931 @findex define_special_predicate
933 Many machines have requirements for their operands that cannot be
934 expressed precisely using the generic predicates.  You can define
935 additional predicates using @code{define_predicate} and
936 @code{define_special_predicate} expressions.  These expressions have
937 three operands:
939 @itemize @bullet
940 @item
941 The name of the predicate, as it will be referred to in
942 @code{match_operand} or @code{match_operator} expressions.
944 @item
945 An RTL expression which evaluates to true if the predicate allows the
946 operand @var{op}, false if it does not.  This expression can only use
947 the following RTL codes:
949 @table @code
950 @item MATCH_OPERAND
951 When written inside a predicate expression, a @code{MATCH_OPERAND}
952 expression evaluates to true if the predicate it names would allow
953 @var{op}.  The operand number and constraint are ignored.  Due to
954 limitations in @command{genrecog}, you can only refer to generic
955 predicates and predicates that have already been defined.
957 @item MATCH_CODE
958 This expression evaluates to true if @var{op} or a specified
959 subexpression of @var{op} has one of a given list of RTX codes.
961 The first operand of this expression is a string constant containing a
962 comma-separated list of RTX code names (in lower case).  These are the
963 codes for which the @code{MATCH_CODE} will be true.
965 The second operand is a string constant which indicates what
966 subexpression of @var{op} to examine.  If it is absent or the empty
967 string, @var{op} itself is examined.  Otherwise, the string constant
968 must be a sequence of digits and/or lowercase letters.  Each character
969 indicates a subexpression to extract from the current expression; for
970 the first character this is @var{op}, for the second and subsequent
971 characters it is the result of the previous character.  A digit
972 @var{n} extracts @samp{@w{XEXP (@var{e}, @var{n})}}; a letter @var{l}
973 extracts @samp{@w{XVECEXP (@var{e}, 0, @var{n})}} where @var{n} is the
974 alphabetic ordinal of @var{l} (0 for `a', 1 for 'b', and so on).  The
975 @code{MATCH_CODE} then examines the RTX code of the subexpression
976 extracted by the complete string.  It is not possible to extract
977 components of an @code{rtvec} that is not at position 0 within its RTX
978 object.
980 @item MATCH_TEST
981 This expression has one operand, a string constant containing a C
982 expression.  The predicate's arguments, @var{op} and @var{mode}, are
983 available with those names in the C expression.  The @code{MATCH_TEST}
984 evaluates to true if the C expression evaluates to a nonzero value.
985 @code{MATCH_TEST} expressions must not have side effects.
987 @item  AND
988 @itemx IOR
989 @itemx NOT
990 @itemx IF_THEN_ELSE
991 The basic @samp{MATCH_} expressions can be combined using these
992 logical operators, which have the semantics of the C operators
993 @samp{&&}, @samp{||}, @samp{!}, and @samp{@w{? :}} respectively.  As
994 in Common Lisp, you may give an @code{AND} or @code{IOR} expression an
995 arbitrary number of arguments; this has exactly the same effect as
996 writing a chain of two-argument @code{AND} or @code{IOR} expressions.
997 @end table
999 @item
1000 An optional block of C code, which should execute
1001 @samp{@w{return true}} if the predicate is found to match and
1002 @samp{@w{return false}} if it does not.  It must not have any side
1003 effects.  The predicate arguments, @var{op} and @var{mode}, are
1004 available with those names.
1006 If a code block is present in a predicate definition, then the RTL
1007 expression must evaluate to true @emph{and} the code block must
1008 execute @samp{@w{return true}} for the predicate to allow the operand.
1009 The RTL expression is evaluated first; do not re-check anything in the
1010 code block that was checked in the RTL expression.
1011 @end itemize
1013 The program @command{genrecog} scans @code{define_predicate} and
1014 @code{define_special_predicate} expressions to determine which RTX
1015 codes are possibly allowed.  You should always make this explicit in
1016 the RTL predicate expression, using @code{MATCH_OPERAND} and
1017 @code{MATCH_CODE}.
1019 Here is an example of a simple predicate definition, from the IA64
1020 machine description:
1022 @smallexample
1023 @group
1024 ;; @r{True if @var{op} is a @code{SYMBOL_REF} which refers to the sdata section.}
1025 (define_predicate "small_addr_symbolic_operand"
1026   (and (match_code "symbol_ref")
1027        (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
1028 @end group
1029 @end smallexample
1031 @noindent
1032 And here is another, showing the use of the C block.
1034 @smallexample
1035 @group
1036 ;; @r{True if @var{op} is a register operand that is (or could be) a GR reg.}
1037 (define_predicate "gr_register_operand"
1038   (match_operand 0 "register_operand")
1040   unsigned int regno;
1041   if (GET_CODE (op) == SUBREG)
1042     op = SUBREG_REG (op);
1044   regno = REGNO (op);
1045   return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
1047 @end group
1048 @end smallexample
1050 Predicates written with @code{define_predicate} automatically include
1051 a test that @var{mode} is @code{VOIDmode}, or @var{op} has the same
1052 mode as @var{mode}, or @var{op} is a @code{CONST_INT} or
1053 @code{CONST_DOUBLE}.  They do @emph{not} check specifically for
1054 integer @code{CONST_DOUBLE}, nor do they test that the value of either
1055 kind of constant fits in the requested mode.  This is because
1056 target-specific predicates that take constants usually have to do more
1057 stringent value checks anyway.  If you need the exact same treatment
1058 of @code{CONST_INT} or @code{CONST_DOUBLE} that the generic predicates
1059 provide, use a @code{MATCH_OPERAND} subexpression to call
1060 @code{const_int_operand}, @code{const_double_operand}, or
1061 @code{immediate_operand}.
1063 Predicates written with @code{define_special_predicate} do not get any
1064 automatic mode checks, and are treated as having special mode handling
1065 by @command{genrecog}.
1067 The program @command{genpreds} is responsible for generating code to
1068 test predicates.  It also writes a header file containing function
1069 declarations for all machine-specific predicates.  It is not necessary
1070 to declare these predicates in @file{@var{cpu}-protos.h}.
1071 @end ifset
1073 @c Most of this node appears by itself (in a different place) even
1074 @c when the INTERNALS flag is clear.  Passages that require the internals
1075 @c manual's context are conditionalized to appear only in the internals manual.
1076 @ifset INTERNALS
1077 @node Constraints
1078 @section Operand Constraints
1079 @cindex operand constraints
1080 @cindex constraints
1082 Each @code{match_operand} in an instruction pattern can specify
1083 constraints for the operands allowed.  The constraints allow you to
1084 fine-tune matching within the set of operands allowed by the
1085 predicate.
1087 @end ifset
1088 @ifclear INTERNALS
1089 @node Constraints
1090 @section Constraints for @code{asm} Operands
1091 @cindex operand constraints, @code{asm}
1092 @cindex constraints, @code{asm}
1093 @cindex @code{asm} constraints
1095 Here are specific details on what constraint letters you can use with
1096 @code{asm} operands.
1097 @end ifclear
1098 Constraints can say whether
1099 an operand may be in a register, and which kinds of register; whether the
1100 operand can be a memory reference, and which kinds of address; whether the
1101 operand may be an immediate constant, and which possible values it may
1102 have.  Constraints can also require two operands to match.
1103 Side-effects aren't allowed in operands of inline @code{asm}, unless
1104 @samp{<} or @samp{>} constraints are used, because there is no guarantee
1105 that the side effects will happen exactly once in an instruction that can update
1106 the addressing register.
1108 @ifset INTERNALS
1109 @menu
1110 * Simple Constraints::  Basic use of constraints.
1111 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1112 * Class Preferences::   Constraints guide which hard register to put things in.
1113 * Modifiers::           More precise control over effects of constraints.
1114 * Machine Constraints:: Existing constraints for some particular machines.
1115 * Disable Insn Alternatives:: Disable insn alternatives using attributes.
1116 * Define Constraints::  How to define machine-specific constraints.
1117 * C Constraint Interface:: How to test constraints from C code.
1118 @end menu
1119 @end ifset
1121 @ifclear INTERNALS
1122 @menu
1123 * Simple Constraints::  Basic use of constraints.
1124 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1125 * Modifiers::           More precise control over effects of constraints.
1126 * Machine Constraints:: Special constraints for some particular machines.
1127 @end menu
1128 @end ifclear
1130 @node Simple Constraints
1131 @subsection Simple Constraints
1132 @cindex simple constraints
1134 The simplest kind of constraint is a string full of letters, each of
1135 which describes one kind of operand that is permitted.  Here are
1136 the letters that are allowed:
1138 @table @asis
1139 @item whitespace
1140 Whitespace characters are ignored and can be inserted at any position
1141 except the first.  This enables each alternative for different operands to
1142 be visually aligned in the machine description even if they have different
1143 number of constraints and modifiers.
1145 @cindex @samp{m} in constraint
1146 @cindex memory references in constraints
1147 @item @samp{m}
1148 A memory operand is allowed, with any kind of address that the machine
1149 supports in general.
1150 Note that the letter used for the general memory constraint can be
1151 re-defined by a back end using the @code{TARGET_MEM_CONSTRAINT} macro.
1153 @cindex offsettable address
1154 @cindex @samp{o} in constraint
1155 @item @samp{o}
1156 A memory operand is allowed, but only if the address is
1157 @dfn{offsettable}.  This means that adding a small integer (actually,
1158 the width in bytes of the operand, as determined by its machine mode)
1159 may be added to the address and the result is also a valid memory
1160 address.
1162 @cindex autoincrement/decrement addressing
1163 For example, an address which is constant is offsettable; so is an
1164 address that is the sum of a register and a constant (as long as a
1165 slightly larger constant is also within the range of address-offsets
1166 supported by the machine); but an autoincrement or autodecrement
1167 address is not offsettable.  More complicated indirect/indexed
1168 addresses may or may not be offsettable depending on the other
1169 addressing modes that the machine supports.
1171 Note that in an output operand which can be matched by another
1172 operand, the constraint letter @samp{o} is valid only when accompanied
1173 by both @samp{<} (if the target machine has predecrement addressing)
1174 and @samp{>} (if the target machine has preincrement addressing).
1176 @cindex @samp{V} in constraint
1177 @item @samp{V}
1178 A memory operand that is not offsettable.  In other words, anything that
1179 would fit the @samp{m} constraint but not the @samp{o} constraint.
1181 @cindex @samp{<} in constraint
1182 @item @samp{<}
1183 A memory operand with autodecrement addressing (either predecrement or
1184 postdecrement) is allowed.  In inline @code{asm} this constraint is only
1185 allowed if the operand is used exactly once in an instruction that can
1186 handle the side effects.  Not using an operand with @samp{<} in constraint
1187 string in the inline @code{asm} pattern at all or using it in multiple
1188 instructions isn't valid, because the side effects wouldn't be performed
1189 or would be performed more than once.  Furthermore, on some targets
1190 the operand with @samp{<} in constraint string must be accompanied by
1191 special instruction suffixes like @code{%U0} instruction suffix on PowerPC
1192 or @code{%P0} on IA-64.
1194 @cindex @samp{>} in constraint
1195 @item @samp{>}
1196 A memory operand with autoincrement addressing (either preincrement or
1197 postincrement) is allowed.  In inline @code{asm} the same restrictions
1198 as for @samp{<} apply.
1200 @cindex @samp{r} in constraint
1201 @cindex registers in constraints
1202 @item @samp{r}
1203 A register operand is allowed provided that it is in a general
1204 register.
1206 @cindex constants in constraints
1207 @cindex @samp{i} in constraint
1208 @item @samp{i}
1209 An immediate integer operand (one with constant value) is allowed.
1210 This includes symbolic constants whose values will be known only at
1211 assembly time or later.
1213 @cindex @samp{n} in constraint
1214 @item @samp{n}
1215 An immediate integer operand with a known numeric value is allowed.
1216 Many systems cannot support assembly-time constants for operands less
1217 than a word wide.  Constraints for these operands should use @samp{n}
1218 rather than @samp{i}.
1220 @cindex @samp{I} in constraint
1221 @item @samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}
1222 Other letters in the range @samp{I} through @samp{P} may be defined in
1223 a machine-dependent fashion to permit immediate integer operands with
1224 explicit integer values in specified ranges.  For example, on the
1225 68000, @samp{I} is defined to stand for the range of values 1 to 8.
1226 This is the range permitted as a shift count in the shift
1227 instructions.
1229 @cindex @samp{E} in constraint
1230 @item @samp{E}
1231 An immediate floating operand (expression code @code{const_double}) is
1232 allowed, but only if the target floating point format is the same as
1233 that of the host machine (on which the compiler is running).
1235 @cindex @samp{F} in constraint
1236 @item @samp{F}
1237 An immediate floating operand (expression code @code{const_double} or
1238 @code{const_vector}) is allowed.
1240 @cindex @samp{G} in constraint
1241 @cindex @samp{H} in constraint
1242 @item @samp{G}, @samp{H}
1243 @samp{G} and @samp{H} may be defined in a machine-dependent fashion to
1244 permit immediate floating operands in particular ranges of values.
1246 @cindex @samp{s} in constraint
1247 @item @samp{s}
1248 An immediate integer operand whose value is not an explicit integer is
1249 allowed.
1251 This might appear strange; if an insn allows a constant operand with a
1252 value not known at compile time, it certainly must allow any known
1253 value.  So why use @samp{s} instead of @samp{i}?  Sometimes it allows
1254 better code to be generated.
1256 For example, on the 68000 in a fullword instruction it is possible to
1257 use an immediate operand; but if the immediate value is between @minus{}128
1258 and 127, better code results from loading the value into a register and
1259 using the register.  This is because the load into the register can be
1260 done with a @samp{moveq} instruction.  We arrange for this to happen
1261 by defining the letter @samp{K} to mean ``any integer outside the
1262 range @minus{}128 to 127'', and then specifying @samp{Ks} in the operand
1263 constraints.
1265 @cindex @samp{g} in constraint
1266 @item @samp{g}
1267 Any register, memory or immediate integer operand is allowed, except for
1268 registers that are not general registers.
1270 @cindex @samp{X} in constraint
1271 @item @samp{X}
1272 @ifset INTERNALS
1273 Any operand whatsoever is allowed, even if it does not satisfy
1274 @code{general_operand}.  This is normally used in the constraint of
1275 a @code{match_scratch} when certain alternatives will not actually
1276 require a scratch register.
1277 @end ifset
1278 @ifclear INTERNALS
1279 Any operand whatsoever is allowed.
1280 @end ifclear
1282 @cindex @samp{0} in constraint
1283 @cindex digits in constraint
1284 @item @samp{0}, @samp{1}, @samp{2}, @dots{} @samp{9}
1285 An operand that matches the specified operand number is allowed.  If a
1286 digit is used together with letters within the same alternative, the
1287 digit should come last.
1289 This number is allowed to be more than a single digit.  If multiple
1290 digits are encountered consecutively, they are interpreted as a single
1291 decimal integer.  There is scant chance for ambiguity, since to-date
1292 it has never been desirable that @samp{10} be interpreted as matching
1293 either operand 1 @emph{or} operand 0.  Should this be desired, one
1294 can use multiple alternatives instead.
1296 @cindex matching constraint
1297 @cindex constraint, matching
1298 This is called a @dfn{matching constraint} and what it really means is
1299 that the assembler has only a single operand that fills two roles
1300 @ifset INTERNALS
1301 considered separate in the RTL insn.  For example, an add insn has two
1302 input operands and one output operand in the RTL, but on most CISC
1303 @end ifset
1304 @ifclear INTERNALS
1305 which @code{asm} distinguishes.  For example, an add instruction uses
1306 two input operands and an output operand, but on most CISC
1307 @end ifclear
1308 machines an add instruction really has only two operands, one of them an
1309 input-output operand:
1311 @smallexample
1312 addl #35,r12
1313 @end smallexample
1315 Matching constraints are used in these circumstances.
1316 More precisely, the two operands that match must include one input-only
1317 operand and one output-only operand.  Moreover, the digit must be a
1318 smaller number than the number of the operand that uses it in the
1319 constraint.
1321 @ifset INTERNALS
1322 For operands to match in a particular case usually means that they
1323 are identical-looking RTL expressions.  But in a few special cases
1324 specific kinds of dissimilarity are allowed.  For example, @code{*x}
1325 as an input operand will match @code{*x++} as an output operand.
1326 For proper results in such cases, the output template should always
1327 use the output-operand's number when printing the operand.
1328 @end ifset
1330 @cindex load address instruction
1331 @cindex push address instruction
1332 @cindex address constraints
1333 @cindex @samp{p} in constraint
1334 @item @samp{p}
1335 An operand that is a valid memory address is allowed.  This is
1336 for ``load address'' and ``push address'' instructions.
1338 @findex address_operand
1339 @samp{p} in the constraint must be accompanied by @code{address_operand}
1340 as the predicate in the @code{match_operand}.  This predicate interprets
1341 the mode specified in the @code{match_operand} as the mode of the memory
1342 reference for which the address would be valid.
1344 @cindex other register constraints
1345 @cindex extensible constraints
1346 @item @var{other-letters}
1347 Other letters can be defined in machine-dependent fashion to stand for
1348 particular classes of registers or other arbitrary operand types.
1349 @samp{d}, @samp{a} and @samp{f} are defined on the 68000/68020 to stand
1350 for data, address and floating point registers.
1351 @end table
1353 @ifset INTERNALS
1354 In order to have valid assembler code, each operand must satisfy
1355 its constraint.  But a failure to do so does not prevent the pattern
1356 from applying to an insn.  Instead, it directs the compiler to modify
1357 the code so that the constraint will be satisfied.  Usually this is
1358 done by copying an operand into a register.
1360 Contrast, therefore, the two instruction patterns that follow:
1362 @smallexample
1363 (define_insn ""
1364   [(set (match_operand:SI 0 "general_operand" "=r")
1365         (plus:SI (match_dup 0)
1366                  (match_operand:SI 1 "general_operand" "r")))]
1367   ""
1368   "@dots{}")
1369 @end smallexample
1371 @noindent
1372 which has two operands, one of which must appear in two places, and
1374 @smallexample
1375 (define_insn ""
1376   [(set (match_operand:SI 0 "general_operand" "=r")
1377         (plus:SI (match_operand:SI 1 "general_operand" "0")
1378                  (match_operand:SI 2 "general_operand" "r")))]
1379   ""
1380   "@dots{}")
1381 @end smallexample
1383 @noindent
1384 which has three operands, two of which are required by a constraint to be
1385 identical.  If we are considering an insn of the form
1387 @smallexample
1388 (insn @var{n} @var{prev} @var{next}
1389   (set (reg:SI 3)
1390        (plus:SI (reg:SI 6) (reg:SI 109)))
1391   @dots{})
1392 @end smallexample
1394 @noindent
1395 the first pattern would not apply at all, because this insn does not
1396 contain two identical subexpressions in the right place.  The pattern would
1397 say, ``That does not look like an add instruction; try other patterns''.
1398 The second pattern would say, ``Yes, that's an add instruction, but there
1399 is something wrong with it''.  It would direct the reload pass of the
1400 compiler to generate additional insns to make the constraint true.  The
1401 results might look like this:
1403 @smallexample
1404 (insn @var{n2} @var{prev} @var{n}
1405   (set (reg:SI 3) (reg:SI 6))
1406   @dots{})
1408 (insn @var{n} @var{n2} @var{next}
1409   (set (reg:SI 3)
1410        (plus:SI (reg:SI 3) (reg:SI 109)))
1411   @dots{})
1412 @end smallexample
1414 It is up to you to make sure that each operand, in each pattern, has
1415 constraints that can handle any RTL expression that could be present for
1416 that operand.  (When multiple alternatives are in use, each pattern must,
1417 for each possible combination of operand expressions, have at least one
1418 alternative which can handle that combination of operands.)  The
1419 constraints don't need to @emph{allow} any possible operand---when this is
1420 the case, they do not constrain---but they must at least point the way to
1421 reloading any possible operand so that it will fit.
1423 @itemize @bullet
1424 @item
1425 If the constraint accepts whatever operands the predicate permits,
1426 there is no problem: reloading is never necessary for this operand.
1428 For example, an operand whose constraints permit everything except
1429 registers is safe provided its predicate rejects registers.
1431 An operand whose predicate accepts only constant values is safe
1432 provided its constraints include the letter @samp{i}.  If any possible
1433 constant value is accepted, then nothing less than @samp{i} will do;
1434 if the predicate is more selective, then the constraints may also be
1435 more selective.
1437 @item
1438 Any operand expression can be reloaded by copying it into a register.
1439 So if an operand's constraints allow some kind of register, it is
1440 certain to be safe.  It need not permit all classes of registers; the
1441 compiler knows how to copy a register into another register of the
1442 proper class in order to make an instruction valid.
1444 @cindex nonoffsettable memory reference
1445 @cindex memory reference, nonoffsettable
1446 @item
1447 A nonoffsettable memory reference can be reloaded by copying the
1448 address into a register.  So if the constraint uses the letter
1449 @samp{o}, all memory references are taken care of.
1451 @item
1452 A constant operand can be reloaded by allocating space in memory to
1453 hold it as preinitialized data.  Then the memory reference can be used
1454 in place of the constant.  So if the constraint uses the letters
1455 @samp{o} or @samp{m}, constant operands are not a problem.
1457 @item
1458 If the constraint permits a constant and a pseudo register used in an insn
1459 was not allocated to a hard register and is equivalent to a constant,
1460 the register will be replaced with the constant.  If the predicate does
1461 not permit a constant and the insn is re-recognized for some reason, the
1462 compiler will crash.  Thus the predicate must always recognize any
1463 objects allowed by the constraint.
1464 @end itemize
1466 If the operand's predicate can recognize registers, but the constraint does
1467 not permit them, it can make the compiler crash.  When this operand happens
1468 to be a register, the reload pass will be stymied, because it does not know
1469 how to copy a register temporarily into memory.
1471 If the predicate accepts a unary operator, the constraint applies to the
1472 operand.  For example, the MIPS processor at ISA level 3 supports an
1473 instruction which adds two registers in @code{SImode} to produce a
1474 @code{DImode} result, but only if the registers are correctly sign
1475 extended.  This predicate for the input operands accepts a
1476 @code{sign_extend} of an @code{SImode} register.  Write the constraint
1477 to indicate the type of register that is required for the operand of the
1478 @code{sign_extend}.
1479 @end ifset
1481 @node Multi-Alternative
1482 @subsection Multiple Alternative Constraints
1483 @cindex multiple alternative constraints
1485 Sometimes a single instruction has multiple alternative sets of possible
1486 operands.  For example, on the 68000, a logical-or instruction can combine
1487 register or an immediate value into memory, or it can combine any kind of
1488 operand into a register; but it cannot combine one memory location into
1489 another.
1491 These constraints are represented as multiple alternatives.  An alternative
1492 can be described by a series of letters for each operand.  The overall
1493 constraint for an operand is made from the letters for this operand
1494 from the first alternative, a comma, the letters for this operand from
1495 the second alternative, a comma, and so on until the last alternative.
1496 All operands for a single instruction must have the same number of 
1497 alternatives.
1498 @ifset INTERNALS
1499 Here is how it is done for fullword logical-or on the 68000:
1501 @smallexample
1502 (define_insn "iorsi3"
1503   [(set (match_operand:SI 0 "general_operand" "=m,d")
1504         (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
1505                 (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
1506   @dots{})
1507 @end smallexample
1509 The first alternative has @samp{m} (memory) for operand 0, @samp{0} for
1510 operand 1 (meaning it must match operand 0), and @samp{dKs} for operand
1511 2.  The second alternative has @samp{d} (data register) for operand 0,
1512 @samp{0} for operand 1, and @samp{dmKs} for operand 2.  The @samp{=} and
1513 @samp{%} in the constraints apply to all the alternatives; their
1514 meaning is explained in the next section (@pxref{Class Preferences}).
1516 If all the operands fit any one alternative, the instruction is valid.
1517 Otherwise, for each alternative, the compiler counts how many instructions
1518 must be added to copy the operands so that that alternative applies.
1519 The alternative requiring the least copying is chosen.  If two alternatives
1520 need the same amount of copying, the one that comes first is chosen.
1521 These choices can be altered with the @samp{?} and @samp{!} characters:
1523 @table @code
1524 @cindex @samp{?} in constraint
1525 @cindex question mark
1526 @item ?
1527 Disparage slightly the alternative that the @samp{?} appears in,
1528 as a choice when no alternative applies exactly.  The compiler regards
1529 this alternative as one unit more costly for each @samp{?} that appears
1530 in it.
1532 @cindex @samp{!} in constraint
1533 @cindex exclamation point
1534 @item !
1535 Disparage severely the alternative that the @samp{!} appears in.
1536 This alternative can still be used if it fits without reloading,
1537 but if reloading is needed, some other alternative will be used.
1539 @cindex @samp{^} in constraint
1540 @cindex caret
1541 @item ^
1542 This constraint is analogous to @samp{?} but it disparages slightly
1543 the alternative only if the operand with the @samp{^} needs a reload.
1545 @cindex @samp{$} in constraint
1546 @cindex dollar sign
1547 @item $
1548 This constraint is analogous to @samp{!} but it disparages severely
1549 the alternative only if the operand with the @samp{$} needs a reload.
1550 @end table
1552 When an insn pattern has multiple alternatives in its constraints, often
1553 the appearance of the assembler code is determined mostly by which
1554 alternative was matched.  When this is so, the C code for writing the
1555 assembler code can use the variable @code{which_alternative}, which is
1556 the ordinal number of the alternative that was actually satisfied (0 for
1557 the first, 1 for the second alternative, etc.).  @xref{Output Statement}.
1558 @end ifset
1559 @ifclear INTERNALS
1561 So the first alternative for the 68000's logical-or could be written as 
1562 @code{"+m" (output) : "ir" (input)}.  The second could be @code{"+r" 
1563 (output): "irm" (input)}.  However, the fact that two memory locations 
1564 cannot be used in a single instruction prevents simply using @code{"+rm" 
1565 (output) : "irm" (input)}.  Using multi-alternatives, this might be 
1566 written as @code{"+m,r" (output) : "ir,irm" (input)}.  This describes
1567 all the available alternatives to the compiler, allowing it to choose 
1568 the most efficient one for the current conditions.
1570 There is no way within the template to determine which alternative was 
1571 chosen.  However you may be able to wrap your @code{asm} statements with 
1572 builtins such as @code{__builtin_constant_p} to achieve the desired results.
1573 @end ifclear
1575 @ifset INTERNALS
1576 @node Class Preferences
1577 @subsection Register Class Preferences
1578 @cindex class preference constraints
1579 @cindex register class preference constraints
1581 @cindex voting between constraint alternatives
1582 The operand constraints have another function: they enable the compiler
1583 to decide which kind of hardware register a pseudo register is best
1584 allocated to.  The compiler examines the constraints that apply to the
1585 insns that use the pseudo register, looking for the machine-dependent
1586 letters such as @samp{d} and @samp{a} that specify classes of registers.
1587 The pseudo register is put in whichever class gets the most ``votes''.
1588 The constraint letters @samp{g} and @samp{r} also vote: they vote in
1589 favor of a general register.  The machine description says which registers
1590 are considered general.
1592 Of course, on some machines all registers are equivalent, and no register
1593 classes are defined.  Then none of this complexity is relevant.
1594 @end ifset
1596 @node Modifiers
1597 @subsection Constraint Modifier Characters
1598 @cindex modifiers in constraints
1599 @cindex constraint modifier characters
1601 @c prevent bad page break with this line
1602 Here are constraint modifier characters.
1604 @table @samp
1605 @cindex @samp{=} in constraint
1606 @item =
1607 Means that this operand is written to by this instruction:
1608 the previous value is discarded and replaced by new data.
1610 @cindex @samp{+} in constraint
1611 @item +
1612 Means that this operand is both read and written by the instruction.
1614 When the compiler fixes up the operands to satisfy the constraints,
1615 it needs to know which operands are read by the instruction and
1616 which are written by it.  @samp{=} identifies an operand which is only
1617 written; @samp{+} identifies an operand that is both read and written; all
1618 other operands are assumed to only be read.
1620 If you specify @samp{=} or @samp{+} in a constraint, you put it in the
1621 first character of the constraint string.
1623 @cindex @samp{&} in constraint
1624 @cindex earlyclobber operand
1625 @item &
1626 Means (in a particular alternative) that this operand is an
1627 @dfn{earlyclobber} operand, which is written before the instruction is
1628 finished using the input operands.  Therefore, this operand may not lie
1629 in a register that is read by the instruction or as part of any memory
1630 address.
1632 @samp{&} applies only to the alternative in which it is written.  In
1633 constraints with multiple alternatives, sometimes one alternative
1634 requires @samp{&} while others do not.  See, for example, the
1635 @samp{movdf} insn of the 68000.
1637 A operand which is read by the instruction can be tied to an earlyclobber
1638 operand if its only use as an input occurs before the early result is
1639 written.  Adding alternatives of this form often allows GCC to produce
1640 better code when only some of the read operands can be affected by the
1641 earlyclobber. See, for example, the @samp{mulsi3} insn of the ARM@.
1643 Furthermore, if the @dfn{earlyclobber} operand is also a read/write
1644 operand, then that operand is written only after it's used.
1646 @samp{&} does not obviate the need to write @samp{=} or @samp{+}.  As
1647 @dfn{earlyclobber} operands are always written, a read-only
1648 @dfn{earlyclobber} operand is ill-formed and will be rejected by the
1649 compiler.
1651 @cindex @samp{%} in constraint
1652 @item %
1653 Declares the instruction to be commutative for this operand and the
1654 following operand.  This means that the compiler may interchange the
1655 two operands if that is the cheapest way to make all operands fit the
1656 constraints.  @samp{%} applies to all alternatives and must appear as
1657 the first character in the constraint.  Only read-only operands can use
1658 @samp{%}.
1660 @ifset INTERNALS
1661 This is often used in patterns for addition instructions
1662 that really have only two operands: the result must go in one of the
1663 arguments.  Here for example, is how the 68000 halfword-add
1664 instruction is defined:
1666 @smallexample
1667 (define_insn "addhi3"
1668   [(set (match_operand:HI 0 "general_operand" "=m,r")
1669      (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
1670               (match_operand:HI 2 "general_operand" "di,g")))]
1671   @dots{})
1672 @end smallexample
1673 @end ifset
1674 GCC can only handle one commutative pair in an asm; if you use more,
1675 the compiler may fail.  Note that you need not use the modifier if
1676 the two alternatives are strictly identical; this would only waste
1677 time in the reload pass.
1678 @ifset INTERNALS
1679 The modifier is not operational after
1680 register allocation, so the result of @code{define_peephole2}
1681 and @code{define_split}s performed after reload cannot rely on
1682 @samp{%} to make the intended insn match.
1684 @cindex @samp{#} in constraint
1685 @item #
1686 Says that all following characters, up to the next comma, are to be
1687 ignored as a constraint.  They are significant only for choosing
1688 register preferences.
1690 @cindex @samp{*} in constraint
1691 @item *
1692 Says that the following character should be ignored when choosing
1693 register preferences.  @samp{*} has no effect on the meaning of the
1694 constraint as a constraint, and no effect on reloading.  For LRA
1695 @samp{*} additionally disparages slightly the alternative if the
1696 following character matches the operand.
1698 Here is an example: the 68000 has an instruction to sign-extend a
1699 halfword in a data register, and can also sign-extend a value by
1700 copying it into an address register.  While either kind of register is
1701 acceptable, the constraints on an address-register destination are
1702 less strict, so it is best if register allocation makes an address
1703 register its goal.  Therefore, @samp{*} is used so that the @samp{d}
1704 constraint letter (for data register) is ignored when computing
1705 register preferences.
1707 @smallexample
1708 (define_insn "extendhisi2"
1709   [(set (match_operand:SI 0 "general_operand" "=*d,a")
1710         (sign_extend:SI
1711          (match_operand:HI 1 "general_operand" "0,g")))]
1712   @dots{})
1713 @end smallexample
1714 @end ifset
1715 @end table
1717 @node Machine Constraints
1718 @subsection Constraints for Particular Machines
1719 @cindex machine specific constraints
1720 @cindex constraints, machine specific
1722 Whenever possible, you should use the general-purpose constraint letters
1723 in @code{asm} arguments, since they will convey meaning more readily to
1724 people reading your code.  Failing that, use the constraint letters
1725 that usually have very similar meanings across architectures.  The most
1726 commonly used constraints are @samp{m} and @samp{r} (for memory and
1727 general-purpose registers respectively; @pxref{Simple Constraints}), and
1728 @samp{I}, usually the letter indicating the most common
1729 immediate-constant format.
1731 Each architecture defines additional constraints.  These constraints
1732 are used by the compiler itself for instruction generation, as well as
1733 for @code{asm} statements; therefore, some of the constraints are not
1734 particularly useful for @code{asm}.  Here is a summary of some of the
1735 machine-dependent constraints available on some particular machines;
1736 it includes both constraints that are useful for @code{asm} and
1737 constraints that aren't.  The compiler source file mentioned in the
1738 table heading for each architecture is the definitive reference for
1739 the meanings of that architecture's constraints.
1741 @c Please keep this table alphabetized by target!
1742 @table @emph
1743 @item AArch64 family---@file{config/aarch64/constraints.md}
1744 @table @code
1745 @item k
1746 The stack pointer register (@code{SP})
1748 @item w
1749 Floating point register, Advanced SIMD vector register or SVE vector register
1751 @item Upl
1752 One of the low eight SVE predicate registers (@code{P0} to @code{P7})
1754 @item Upa
1755 Any of the SVE predicate registers (@code{P0} to @code{P15})
1757 @item I
1758 Integer constant that is valid as an immediate operand in an @code{ADD}
1759 instruction
1761 @item J
1762 Integer constant that is valid as an immediate operand in a @code{SUB}
1763 instruction (once negated)
1765 @item K
1766 Integer constant that can be used with a 32-bit logical instruction
1768 @item L
1769 Integer constant that can be used with a 64-bit logical instruction
1771 @item M
1772 Integer constant that is valid as an immediate operand in a 32-bit @code{MOV}
1773 pseudo instruction. The @code{MOV} may be assembled to one of several different
1774 machine instructions depending on the value
1776 @item N
1777 Integer constant that is valid as an immediate operand in a 64-bit @code{MOV}
1778 pseudo instruction
1780 @item S
1781 An absolute symbolic address or a label reference
1783 @item Y
1784 Floating point constant zero
1786 @item Z
1787 Integer constant zero
1789 @item Ush
1790 The high part (bits 12 and upwards) of the pc-relative address of a symbol
1791 within 4GB of the instruction
1793 @item Q
1794 A memory address which uses a single base register with no offset
1796 @item Ump
1797 A memory address suitable for a load/store pair instruction in SI, DI, SF and
1798 DF modes
1800 @end table
1803 @item ARC ---@file{config/arc/constraints.md}
1804 @table @code
1805 @item q
1806 Registers usable in ARCompact 16-bit instructions: @code{r0}-@code{r3},
1807 @code{r12}-@code{r15}.  This constraint can only match when the @option{-mq}
1808 option is in effect.
1810 @item e
1811 Registers usable as base-regs of memory addresses in ARCompact 16-bit memory
1812 instructions: @code{r0}-@code{r3}, @code{r12}-@code{r15}, @code{sp}.
1813 This constraint can only match when the @option{-mq}
1814 option is in effect.
1815 @item D
1816 ARC FPX (dpfp) 64-bit registers. @code{D0}, @code{D1}.
1818 @item I
1819 A signed 12-bit integer constant.
1821 @item Cal
1822 constant for arithmetic/logical operations.  This might be any constant
1823 that can be put into a long immediate by the assmbler or linker without
1824 involving a PIC relocation.
1826 @item K
1827 A 3-bit unsigned integer constant.
1829 @item L
1830 A 6-bit unsigned integer constant.
1832 @item CnL
1833 One's complement of a 6-bit unsigned integer constant.
1835 @item CmL
1836 Two's complement of a 6-bit unsigned integer constant.
1838 @item M
1839 A 5-bit unsigned integer constant.
1841 @item O
1842 A 7-bit unsigned integer constant.
1844 @item P
1845 A 8-bit unsigned integer constant.
1847 @item H
1848 Any const_double value.
1849 @end table
1851 @item ARM family---@file{config/arm/constraints.md}
1852 @table @code
1854 @item h
1855 In Thumb state, the core registers @code{r8}-@code{r15}.
1857 @item k
1858 The stack pointer register.
1860 @item l
1861 In Thumb State the core registers @code{r0}-@code{r7}.  In ARM state this
1862 is an alias for the @code{r} constraint.
1864 @item t
1865 VFP floating-point registers @code{s0}-@code{s31}.  Used for 32 bit values.
1867 @item w
1868 VFP floating-point registers @code{d0}-@code{d31} and the appropriate
1869 subset @code{d0}-@code{d15} based on command line options.
1870 Used for 64 bit values only.  Not valid for Thumb1.
1872 @item y
1873 The iWMMX co-processor registers.
1875 @item z
1876 The iWMMX GR registers.
1878 @item G
1879 The floating-point constant 0.0
1881 @item I
1882 Integer that is valid as an immediate operand in a data processing
1883 instruction.  That is, an integer in the range 0 to 255 rotated by a
1884 multiple of 2
1886 @item J
1887 Integer in the range @minus{}4095 to 4095
1889 @item K
1890 Integer that satisfies constraint @samp{I} when inverted (ones complement)
1892 @item L
1893 Integer that satisfies constraint @samp{I} when negated (twos complement)
1895 @item M
1896 Integer in the range 0 to 32
1898 @item Q
1899 A memory reference where the exact address is in a single register
1900 (`@samp{m}' is preferable for @code{asm} statements)
1902 @item R
1903 An item in the constant pool
1905 @item S
1906 A symbol in the text segment of the current file
1908 @item Uv
1909 A memory reference suitable for VFP load/store insns (reg+constant offset)
1911 @item Uy
1912 A memory reference suitable for iWMMXt load/store instructions.
1914 @item Uq
1915 A memory reference suitable for the ARMv4 ldrsb instruction.
1916 @end table
1918 @item AVR family---@file{config/avr/constraints.md}
1919 @table @code
1920 @item l
1921 Registers from r0 to r15
1923 @item a
1924 Registers from r16 to r23
1926 @item d
1927 Registers from r16 to r31
1929 @item w
1930 Registers from r24 to r31.  These registers can be used in @samp{adiw} command
1932 @item e
1933 Pointer register (r26--r31)
1935 @item b
1936 Base pointer register (r28--r31)
1938 @item q
1939 Stack pointer register (SPH:SPL)
1941 @item t
1942 Temporary register r0
1944 @item x
1945 Register pair X (r27:r26)
1947 @item y
1948 Register pair Y (r29:r28)
1950 @item z
1951 Register pair Z (r31:r30)
1953 @item I
1954 Constant greater than @minus{}1, less than 64
1956 @item J
1957 Constant greater than @minus{}64, less than 1
1959 @item K
1960 Constant integer 2
1962 @item L
1963 Constant integer 0
1965 @item M
1966 Constant that fits in 8 bits
1968 @item N
1969 Constant integer @minus{}1
1971 @item O
1972 Constant integer 8, 16, or 24
1974 @item P
1975 Constant integer 1
1977 @item G
1978 A floating point constant 0.0
1980 @item Q
1981 A memory address based on Y or Z pointer with displacement.
1982 @end table
1984 @item Blackfin family---@file{config/bfin/constraints.md}
1985 @table @code
1986 @item a
1987 P register
1989 @item d
1990 D register
1992 @item z
1993 A call clobbered P register.
1995 @item q@var{n}
1996 A single register.  If @var{n} is in the range 0 to 7, the corresponding D
1997 register.  If it is @code{A}, then the register P0.
1999 @item D
2000 Even-numbered D register
2002 @item W
2003 Odd-numbered D register
2005 @item e
2006 Accumulator register.
2008 @item A
2009 Even-numbered accumulator register.
2011 @item B
2012 Odd-numbered accumulator register.
2014 @item b
2015 I register
2017 @item v
2018 B register
2020 @item f
2021 M register
2023 @item c
2024 Registers used for circular buffering, i.e. I, B, or L registers.
2026 @item C
2027 The CC register.
2029 @item t
2030 LT0 or LT1.
2032 @item k
2033 LC0 or LC1.
2035 @item u
2036 LB0 or LB1.
2038 @item x
2039 Any D, P, B, M, I or L register.
2041 @item y
2042 Additional registers typically used only in prologues and epilogues: RETS,
2043 RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
2045 @item w
2046 Any register except accumulators or CC.
2048 @item Ksh
2049 Signed 16 bit integer (in the range @minus{}32768 to 32767)
2051 @item Kuh
2052 Unsigned 16 bit integer (in the range 0 to 65535)
2054 @item Ks7
2055 Signed 7 bit integer (in the range @minus{}64 to 63)
2057 @item Ku7
2058 Unsigned 7 bit integer (in the range 0 to 127)
2060 @item Ku5
2061 Unsigned 5 bit integer (in the range 0 to 31)
2063 @item Ks4
2064 Signed 4 bit integer (in the range @minus{}8 to 7)
2066 @item Ks3
2067 Signed 3 bit integer (in the range @minus{}3 to 4)
2069 @item Ku3
2070 Unsigned 3 bit integer (in the range 0 to 7)
2072 @item P@var{n}
2073 Constant @var{n}, where @var{n} is a single-digit constant in the range 0 to 4.
2075 @item PA
2076 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2077 use with either accumulator.
2079 @item PB
2080 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2081 use only with accumulator A1.
2083 @item M1
2084 Constant 255.
2086 @item M2
2087 Constant 65535.
2089 @item J
2090 An integer constant with exactly a single bit set.
2092 @item L
2093 An integer constant with all bits set except exactly one.
2095 @item H
2097 @item Q
2098 Any SYMBOL_REF.
2099 @end table
2101 @item CR16 Architecture---@file{config/cr16/cr16.h}
2102 @table @code
2104 @item b
2105 Registers from r0 to r14 (registers without stack pointer)
2107 @item t
2108 Register from r0 to r11 (all 16-bit registers)
2110 @item p
2111 Register from r12 to r15 (all 32-bit registers)
2113 @item I
2114 Signed constant that fits in 4 bits
2116 @item J
2117 Signed constant that fits in 5 bits
2119 @item K
2120 Signed constant that fits in 6 bits
2122 @item L
2123 Unsigned constant that fits in 4 bits
2125 @item M
2126 Signed constant that fits in 32 bits
2128 @item N
2129 Check for 64 bits wide constants for add/sub instructions
2131 @item G
2132 Floating point constant that is legal for store immediate
2133 @end table
2135 @item Epiphany---@file{config/epiphany/constraints.md}
2136 @table @code
2137 @item U16
2138 An unsigned 16-bit constant.
2140 @item K
2141 An unsigned 5-bit constant.
2143 @item L
2144 A signed 11-bit constant.
2146 @item Cm1
2147 A signed 11-bit constant added to @minus{}1.
2148 Can only match when the @option{-m1reg-@var{reg}} option is active.
2150 @item Cl1
2151 Left-shift of @minus{}1, i.e., a bit mask with a block of leading ones, the rest
2152 being a block of trailing zeroes.
2153 Can only match when the @option{-m1reg-@var{reg}} option is active.
2155 @item Cr1
2156 Right-shift of @minus{}1, i.e., a bit mask with a trailing block of ones, the
2157 rest being zeroes.  Or to put it another way, one less than a power of two.
2158 Can only match when the @option{-m1reg-@var{reg}} option is active.
2160 @item Cal
2161 Constant for arithmetic/logical operations.
2162 This is like @code{i}, except that for position independent code,
2163 no symbols / expressions needing relocations are allowed.
2165 @item Csy
2166 Symbolic constant for call/jump instruction.
2168 @item Rcs
2169 The register class usable in short insns.  This is a register class
2170 constraint, and can thus drive register allocation.
2171 This constraint won't match unless @option{-mprefer-short-insn-regs} is
2172 in effect.
2174 @item Rsc
2175 The the register class of registers that can be used to hold a
2176 sibcall call address.  I.e., a caller-saved register.
2178 @item Rct
2179 Core control register class.
2181 @item Rgs
2182 The register group usable in short insns.
2183 This constraint does not use a register class, so that it only
2184 passively matches suitable registers, and doesn't drive register allocation.
2186 @ifset INTERNALS
2187 @item Car
2188 Constant suitable for the addsi3_r pattern.  This is a valid offset
2189 For byte, halfword, or word addressing.
2190 @end ifset
2192 @item Rra
2193 Matches the return address if it can be replaced with the link register.
2195 @item Rcc
2196 Matches the integer condition code register.
2198 @item Sra
2199 Matches the return address if it is in a stack slot.
2201 @item Cfm
2202 Matches control register values to switch fp mode, which are encapsulated in
2203 @code{UNSPEC_FP_MODE}.
2204 @end table
2206 @item FRV---@file{config/frv/frv.h}
2207 @table @code
2208 @item a
2209 Register in the class @code{ACC_REGS} (@code{acc0} to @code{acc7}).
2211 @item b
2212 Register in the class @code{EVEN_ACC_REGS} (@code{acc0} to @code{acc7}).
2214 @item c
2215 Register in the class @code{CC_REGS} (@code{fcc0} to @code{fcc3} and
2216 @code{icc0} to @code{icc3}).
2218 @item d
2219 Register in the class @code{GPR_REGS} (@code{gr0} to @code{gr63}).
2221 @item e
2222 Register in the class @code{EVEN_REGS} (@code{gr0} to @code{gr63}).
2223 Odd registers are excluded not in the class but through the use of a machine
2224 mode larger than 4 bytes.
2226 @item f
2227 Register in the class @code{FPR_REGS} (@code{fr0} to @code{fr63}).
2229 @item h
2230 Register in the class @code{FEVEN_REGS} (@code{fr0} to @code{fr63}).
2231 Odd registers are excluded not in the class but through the use of a machine
2232 mode larger than 4 bytes.
2234 @item l
2235 Register in the class @code{LR_REG} (the @code{lr} register).
2237 @item q
2238 Register in the class @code{QUAD_REGS} (@code{gr2} to @code{gr63}).
2239 Register numbers not divisible by 4 are excluded not in the class but through
2240 the use of a machine mode larger than 8 bytes.
2242 @item t
2243 Register in the class @code{ICC_REGS} (@code{icc0} to @code{icc3}).
2245 @item u
2246 Register in the class @code{FCC_REGS} (@code{fcc0} to @code{fcc3}).
2248 @item v
2249 Register in the class @code{ICR_REGS} (@code{cc4} to @code{cc7}).
2251 @item w
2252 Register in the class @code{FCR_REGS} (@code{cc0} to @code{cc3}).
2254 @item x
2255 Register in the class @code{QUAD_FPR_REGS} (@code{fr0} to @code{fr63}).
2256 Register numbers not divisible by 4 are excluded not in the class but through
2257 the use of a machine mode larger than 8 bytes.
2259 @item z
2260 Register in the class @code{SPR_REGS} (@code{lcr} and @code{lr}).
2262 @item A
2263 Register in the class @code{QUAD_ACC_REGS} (@code{acc0} to @code{acc7}).
2265 @item B
2266 Register in the class @code{ACCG_REGS} (@code{accg0} to @code{accg7}).
2268 @item C
2269 Register in the class @code{CR_REGS} (@code{cc0} to @code{cc7}).
2271 @item G
2272 Floating point constant zero
2274 @item I
2275 6-bit signed integer constant
2277 @item J
2278 10-bit signed integer constant
2280 @item L
2281 16-bit signed integer constant
2283 @item M
2284 16-bit unsigned integer constant
2286 @item N
2287 12-bit signed integer constant that is negative---i.e.@: in the
2288 range of @minus{}2048 to @minus{}1
2290 @item O
2291 Constant zero
2293 @item P
2294 12-bit signed integer constant that is greater than zero---i.e.@: in the
2295 range of 1 to 2047.
2297 @end table
2299 @item FT32---@file{config/ft32/constraints.md}
2300 @table @code
2301 @item A
2302 An absolute address
2304 @item B
2305 An offset address
2307 @item W
2308 A register indirect memory operand
2310 @item e
2311 An offset address.
2313 @item f
2314 An offset address.
2316 @item O
2317 The constant zero or one
2319 @item I
2320 A 16-bit signed constant (@minus{}32768 @dots{} 32767)
2322 @item w
2323 A bitfield mask suitable for bext or bins
2325 @item x
2326 An inverted bitfield mask suitable for bext or bins
2328 @item L
2329 A 16-bit unsigned constant, multiple of 4 (0 @dots{} 65532)
2331 @item S
2332 A 20-bit signed constant (@minus{}524288 @dots{} 524287)
2334 @item b
2335 A constant for a bitfield width (1 @dots{} 16)
2337 @item KA
2338 A 10-bit signed constant (@minus{}512 @dots{} 511)
2340 @end table
2342 @item Hewlett-Packard PA-RISC---@file{config/pa/pa.h}
2343 @table @code
2344 @item a
2345 General register 1
2347 @item f
2348 Floating point register
2350 @item q
2351 Shift amount register
2353 @item x
2354 Floating point register (deprecated)
2356 @item y
2357 Upper floating point register (32-bit), floating point register (64-bit)
2359 @item Z
2360 Any register
2362 @item I
2363 Signed 11-bit integer constant
2365 @item J
2366 Signed 14-bit integer constant
2368 @item K
2369 Integer constant that can be deposited with a @code{zdepi} instruction
2371 @item L
2372 Signed 5-bit integer constant
2374 @item M
2375 Integer constant 0
2377 @item N
2378 Integer constant that can be loaded with a @code{ldil} instruction
2380 @item O
2381 Integer constant whose value plus one is a power of 2
2383 @item P
2384 Integer constant that can be used for @code{and} operations in @code{depi}
2385 and @code{extru} instructions
2387 @item S
2388 Integer constant 31
2390 @item U
2391 Integer constant 63
2393 @item G
2394 Floating-point constant 0.0
2396 @item A
2397 A @code{lo_sum} data-linkage-table memory operand
2399 @item Q
2400 A memory operand that can be used as the destination operand of an
2401 integer store instruction
2403 @item R
2404 A scaled or unscaled indexed memory operand
2406 @item T
2407 A memory operand for floating-point loads and stores
2409 @item W
2410 A register indirect memory operand
2411 @end table
2413 @item Intel IA-64---@file{config/ia64/ia64.h}
2414 @table @code
2415 @item a
2416 General register @code{r0} to @code{r3} for @code{addl} instruction
2418 @item b
2419 Branch register
2421 @item c
2422 Predicate register (@samp{c} as in ``conditional'')
2424 @item d
2425 Application register residing in M-unit
2427 @item e
2428 Application register residing in I-unit
2430 @item f
2431 Floating-point register
2433 @item m
2434 Memory operand.  If used together with @samp{<} or @samp{>},
2435 the operand can have postincrement and postdecrement which
2436 require printing with @samp{%Pn} on IA-64.
2438 @item G
2439 Floating-point constant 0.0 or 1.0
2441 @item I
2442 14-bit signed integer constant
2444 @item J
2445 22-bit signed integer constant
2447 @item K
2448 8-bit signed integer constant for logical instructions
2450 @item L
2451 8-bit adjusted signed integer constant for compare pseudo-ops
2453 @item M
2454 6-bit unsigned integer constant for shift counts
2456 @item N
2457 9-bit signed integer constant for load and store postincrements
2459 @item O
2460 The constant zero
2462 @item P
2463 0 or @minus{}1 for @code{dep} instruction
2465 @item Q
2466 Non-volatile memory for floating-point loads and stores
2468 @item R
2469 Integer constant in the range 1 to 4 for @code{shladd} instruction
2471 @item S
2472 Memory operand except postincrement and postdecrement.  This is
2473 now roughly the same as @samp{m} when not used together with @samp{<}
2474 or @samp{>}.
2475 @end table
2477 @item M32C---@file{config/m32c/m32c.c}
2478 @table @code
2479 @item Rsp
2480 @itemx Rfb
2481 @itemx Rsb
2482 @samp{$sp}, @samp{$fb}, @samp{$sb}.
2484 @item Rcr
2485 Any control register, when they're 16 bits wide (nothing if control
2486 registers are 24 bits wide)
2488 @item Rcl
2489 Any control register, when they're 24 bits wide.
2491 @item R0w
2492 @itemx R1w
2493 @itemx R2w
2494 @itemx R3w
2495 $r0, $r1, $r2, $r3.
2497 @item R02
2498 $r0 or $r2, or $r2r0 for 32 bit values.
2500 @item R13
2501 $r1 or $r3, or $r3r1 for 32 bit values.
2503 @item Rdi
2504 A register that can hold a 64 bit value.
2506 @item Rhl
2507 $r0 or $r1 (registers with addressable high/low bytes)
2509 @item R23
2510 $r2 or $r3
2512 @item Raa
2513 Address registers
2515 @item Raw
2516 Address registers when they're 16 bits wide.
2518 @item Ral
2519 Address registers when they're 24 bits wide.
2521 @item Rqi
2522 Registers that can hold QI values.
2524 @item Rad
2525 Registers that can be used with displacements ($a0, $a1, $sb).
2527 @item Rsi
2528 Registers that can hold 32 bit values.
2530 @item Rhi
2531 Registers that can hold 16 bit values.
2533 @item Rhc
2534 Registers chat can hold 16 bit values, including all control
2535 registers.
2537 @item Rra
2538 $r0 through R1, plus $a0 and $a1.
2540 @item Rfl
2541 The flags register.
2543 @item Rmm
2544 The memory-based pseudo-registers $mem0 through $mem15.
2546 @item Rpi
2547 Registers that can hold pointers (16 bit registers for r8c, m16c; 24
2548 bit registers for m32cm, m32c).
2550 @item Rpa
2551 Matches multiple registers in a PARALLEL to form a larger register.
2552 Used to match function return values.
2554 @item Is3
2555 @minus{}8 @dots{} 7
2557 @item IS1
2558 @minus{}128 @dots{} 127
2560 @item IS2
2561 @minus{}32768 @dots{} 32767
2563 @item IU2
2564 0 @dots{} 65535
2566 @item In4
2567 @minus{}8 @dots{} @minus{}1 or 1 @dots{} 8
2569 @item In5
2570 @minus{}16 @dots{} @minus{}1 or 1 @dots{} 16
2572 @item In6
2573 @minus{}32 @dots{} @minus{}1 or 1 @dots{} 32
2575 @item IM2
2576 @minus{}65536 @dots{} @minus{}1
2578 @item Ilb
2579 An 8 bit value with exactly one bit set.
2581 @item Ilw
2582 A 16 bit value with exactly one bit set.
2584 @item Sd
2585 The common src/dest memory addressing modes.
2587 @item Sa
2588 Memory addressed using $a0 or $a1.
2590 @item Si
2591 Memory addressed with immediate addresses.
2593 @item Ss
2594 Memory addressed using the stack pointer ($sp).
2596 @item Sf
2597 Memory addressed using the frame base register ($fb).
2599 @item Ss
2600 Memory addressed using the small base register ($sb).
2602 @item S1
2603 $r1h
2604 @end table
2606 @item MicroBlaze---@file{config/microblaze/constraints.md}
2607 @table @code
2608 @item d
2609 A general register (@code{r0} to @code{r31}).
2611 @item z
2612 A status register (@code{rmsr}, @code{$fcc1} to @code{$fcc7}).
2614 @end table
2616 @item MIPS---@file{config/mips/constraints.md}
2617 @table @code
2618 @item d
2619 A general-purpose register.  This is equivalent to @code{r} unless
2620 generating MIPS16 code, in which case the MIPS16 register set is used.
2622 @item f
2623 A floating-point register (if available).
2625 @item h
2626 Formerly the @code{hi} register.  This constraint is no longer supported.
2628 @item l
2629 The @code{lo} register.  Use this register to store values that are
2630 no bigger than a word.
2632 @item x
2633 The concatenated @code{hi} and @code{lo} registers.  Use this register
2634 to store doubleword values.
2636 @item c
2637 A register suitable for use in an indirect jump.  This will always be
2638 @code{$25} for @option{-mabicalls}.
2640 @item v
2641 Register @code{$3}.  Do not use this constraint in new code;
2642 it is retained only for compatibility with glibc.
2644 @item y
2645 Equivalent to @code{r}; retained for backwards compatibility.
2647 @item z
2648 A floating-point condition code register.
2650 @item I
2651 A signed 16-bit constant (for arithmetic instructions).
2653 @item J
2654 Integer zero.
2656 @item K
2657 An unsigned 16-bit constant (for logic instructions).
2659 @item L
2660 A signed 32-bit constant in which the lower 16 bits are zero.
2661 Such constants can be loaded using @code{lui}.
2663 @item M
2664 A constant that cannot be loaded using @code{lui}, @code{addiu}
2665 or @code{ori}.
2667 @item N
2668 A constant in the range @minus{}65535 to @minus{}1 (inclusive).
2670 @item O
2671 A signed 15-bit constant.
2673 @item P
2674 A constant in the range 1 to 65535 (inclusive).
2676 @item G
2677 Floating-point zero.
2679 @item R
2680 An address that can be used in a non-macro load or store.
2682 @item ZC
2683 A memory operand whose address is formed by a base register and offset
2684 that is suitable for use in instructions with the same addressing mode
2685 as @code{ll} and @code{sc}.
2687 @item ZD
2688 An address suitable for a @code{prefetch} instruction, or for any other
2689 instruction with the same addressing mode as @code{prefetch}.
2690 @end table
2692 @item Motorola 680x0---@file{config/m68k/constraints.md}
2693 @table @code
2694 @item a
2695 Address register
2697 @item d
2698 Data register
2700 @item f
2701 68881 floating-point register, if available
2703 @item I
2704 Integer in the range 1 to 8
2706 @item J
2707 16-bit signed number
2709 @item K
2710 Signed number whose magnitude is greater than 0x80
2712 @item L
2713 Integer in the range @minus{}8 to @minus{}1
2715 @item M
2716 Signed number whose magnitude is greater than 0x100
2718 @item N
2719 Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
2721 @item O
2722 16 (for rotate using swap)
2724 @item P
2725 Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
2727 @item R
2728 Numbers that mov3q can handle
2730 @item G
2731 Floating point constant that is not a 68881 constant
2733 @item S
2734 Operands that satisfy 'm' when -mpcrel is in effect
2736 @item T
2737 Operands that satisfy 's' when -mpcrel is not in effect
2739 @item Q
2740 Address register indirect addressing mode
2742 @item U
2743 Register offset addressing
2745 @item W
2746 const_call_operand
2748 @item Cs
2749 symbol_ref or const
2751 @item Ci
2752 const_int
2754 @item C0
2755 const_int 0
2757 @item Cj
2758 Range of signed numbers that don't fit in 16 bits
2760 @item Cmvq
2761 Integers valid for mvq
2763 @item Capsw
2764 Integers valid for a moveq followed by a swap
2766 @item Cmvz
2767 Integers valid for mvz
2769 @item Cmvs
2770 Integers valid for mvs
2772 @item Ap
2773 push_operand
2775 @item Ac
2776 Non-register operands allowed in clr
2778 @end table
2780 @item Moxie---@file{config/moxie/constraints.md}
2781 @table @code
2782 @item A
2783 An absolute address
2785 @item B
2786 An offset address
2788 @item W
2789 A register indirect memory operand
2791 @item I
2792 A constant in the range of 0 to 255.
2794 @item N
2795 A constant in the range of 0 to @minus{}255.
2797 @end table
2799 @item MSP430--@file{config/msp430/constraints.md}
2800 @table @code
2802 @item R12
2803 Register R12.
2805 @item R13
2806 Register R13.
2808 @item K
2809 Integer constant 1.
2811 @item L
2812 Integer constant -1^20..1^19.
2814 @item M
2815 Integer constant 1-4.
2817 @item Ya
2818 Memory references which do not require an extended MOVX instruction.
2820 @item Yl
2821 Memory reference, labels only.
2823 @item Ys
2824 Memory reference, stack only.
2826 @end table
2828 @item NDS32---@file{config/nds32/constraints.md}
2829 @table @code
2830 @item w
2831 LOW register class $r0 to $r7 constraint for V3/V3M ISA.
2832 @item l
2833 LOW register class $r0 to $r7.
2834 @item d
2835 MIDDLE register class $r0 to $r11, $r16 to $r19.
2836 @item h
2837 HIGH register class $r12 to $r14, $r20 to $r31.
2838 @item t
2839 Temporary assist register $ta (i.e.@: $r15).
2840 @item k
2841 Stack register $sp.
2842 @item Iu03
2843 Unsigned immediate 3-bit value.
2844 @item In03
2845 Negative immediate 3-bit value in the range of @minus{}7--0.
2846 @item Iu04
2847 Unsigned immediate 4-bit value.
2848 @item Is05
2849 Signed immediate 5-bit value.
2850 @item Iu05
2851 Unsigned immediate 5-bit value.
2852 @item In05
2853 Negative immediate 5-bit value in the range of @minus{}31--0.
2854 @item Ip05
2855 Unsigned immediate 5-bit value for movpi45 instruction with range 16--47.
2856 @item Iu06
2857 Unsigned immediate 6-bit value constraint for addri36.sp instruction.
2858 @item Iu08
2859 Unsigned immediate 8-bit value.
2860 @item Iu09
2861 Unsigned immediate 9-bit value.
2862 @item Is10
2863 Signed immediate 10-bit value.
2864 @item Is11
2865 Signed immediate 11-bit value.
2866 @item Is15
2867 Signed immediate 15-bit value.
2868 @item Iu15
2869 Unsigned immediate 15-bit value.
2870 @item Ic15
2871 A constant which is not in the range of imm15u but ok for bclr instruction.
2872 @item Ie15
2873 A constant which is not in the range of imm15u but ok for bset instruction.
2874 @item It15
2875 A constant which is not in the range of imm15u but ok for btgl instruction.
2876 @item Ii15
2877 A constant whose compliment value is in the range of imm15u
2878 and ok for bitci instruction.
2879 @item Is16
2880 Signed immediate 16-bit value.
2881 @item Is17
2882 Signed immediate 17-bit value.
2883 @item Is19
2884 Signed immediate 19-bit value.
2885 @item Is20
2886 Signed immediate 20-bit value.
2887 @item Ihig
2888 The immediate value that can be simply set high 20-bit.
2889 @item Izeb
2890 The immediate value 0xff.
2891 @item Izeh
2892 The immediate value 0xffff.
2893 @item Ixls
2894 The immediate value 0x01.
2895 @item Ix11
2896 The immediate value 0x7ff.
2897 @item Ibms
2898 The immediate value with power of 2.
2899 @item Ifex
2900 The immediate value with power of 2 minus 1.
2901 @item U33
2902 Memory constraint for 333 format.
2903 @item U45
2904 Memory constraint for 45 format.
2905 @item U37
2906 Memory constraint for 37 format.
2907 @end table
2909 @item Nios II family---@file{config/nios2/constraints.md}
2910 @table @code
2912 @item I
2913 Integer that is valid as an immediate operand in an
2914 instruction taking a signed 16-bit number. Range
2915 @minus{}32768 to 32767.
2917 @item J
2918 Integer that is valid as an immediate operand in an
2919 instruction taking an unsigned 16-bit number. Range
2920 0 to 65535.
2922 @item K
2923 Integer that is valid as an immediate operand in an
2924 instruction taking only the upper 16-bits of a
2925 32-bit number. Range 32-bit numbers with the lower
2926 16-bits being 0.
2928 @item L
2929 Integer that is valid as an immediate operand for a 
2930 shift instruction. Range 0 to 31.
2932 @item M
2933 Integer that is valid as an immediate operand for
2934 only the value 0. Can be used in conjunction with
2935 the format modifier @code{z} to use @code{r0}
2936 instead of @code{0} in the assembly output.
2938 @item N
2939 Integer that is valid as an immediate operand for
2940 a custom instruction opcode. Range 0 to 255.
2942 @item P
2943 An immediate operand for R2 andchi/andci instructions. 
2945 @item S
2946 Matches immediates which are addresses in the small
2947 data section and therefore can be added to @code{gp}
2948 as a 16-bit immediate to re-create their 32-bit value.
2950 @item U
2951 Matches constants suitable as an operand for the rdprs and
2952 cache instructions.
2954 @item v
2955 A memory operand suitable for Nios II R2 load/store
2956 exclusive instructions.
2958 @item w
2959 A memory operand suitable for load/store IO and cache
2960 instructions.
2962 @ifset INTERNALS
2963 @item T
2964 A @code{const} wrapped @code{UNSPEC} expression,
2965 representing a supported PIC or TLS relocation.
2966 @end ifset
2968 @end table
2970 @item PDP-11---@file{config/pdp11/constraints.md}
2971 @table @code
2972 @item a
2973 Floating point registers AC0 through AC3.  These can be loaded from/to
2974 memory with a single instruction.
2976 @item d
2977 Odd numbered general registers (R1, R3, R5).  These are used for
2978 16-bit multiply operations.
2980 @item D
2981 A memory reference that is encoded within the opcode, but not
2982 auto-increment or auto-decrement.
2984 @item f
2985 Any of the floating point registers (AC0 through AC5).
2987 @item G
2988 Floating point constant 0.
2990 @item h
2991 Floating point registers AC4 and AC5.  These cannot be loaded from/to
2992 memory with a single instruction.
2994 @item I
2995 An integer constant that fits in 16 bits.
2997 @item J
2998 An integer constant whose low order 16 bits are zero.
3000 @item K
3001 An integer constant that does not meet the constraints for codes
3002 @samp{I} or @samp{J}.
3004 @item L
3005 The integer constant 1.
3007 @item M
3008 The integer constant @minus{}1.
3010 @item N
3011 The integer constant 0.
3013 @item O
3014 Integer constants 0 through 3; shifts by these
3015 amounts are handled as multiple single-bit shifts rather than a single
3016 variable-length shift.
3018 @item Q
3019 A memory reference which requires an additional word (address or
3020 offset) after the opcode.
3022 @item R
3023 A memory reference that is encoded within the opcode.
3025 @end table
3027 @item PowerPC and IBM RS6000---@file{config/rs6000/constraints.md}
3028 @table @code
3029 @item b
3030 Address base register
3032 @item d
3033 Floating point register (containing 64-bit value)
3035 @item f
3036 Floating point register (containing 32-bit value)
3038 @item v
3039 Altivec vector register
3041 @item wa
3042 Any VSX register if the @option{-mvsx} option was used or NO_REGS.
3044 When using any of the register constraints (@code{wa}, @code{wd},
3045 @code{wf}, @code{wg}, @code{wh}, @code{wi}, @code{wj}, @code{wk},
3046 @code{wl}, @code{wm}, @code{wo}, @code{wp}, @code{wq}, @code{ws},
3047 @code{wt}, @code{wu}, @code{wv}, @code{ww}, or @code{wy})
3048 that take VSX registers, you must use @code{%x<n>} in the template so
3049 that the correct register is used.  Otherwise the register number
3050 output in the assembly file will be incorrect if an Altivec register
3051 is an operand of a VSX instruction that expects VSX register
3052 numbering.
3054 @smallexample
3055 asm ("xvadddp %x0,%x1,%x2"
3056      : "=wa" (v1)
3057      : "wa" (v2), "wa" (v3));
3058 @end smallexample
3060 @noindent
3061 is correct, but:
3063 @smallexample
3064 asm ("xvadddp %0,%1,%2" 
3065      : "=wa" (v1) 
3066      : "wa" (v2), "wa" (v3));
3067 @end smallexample
3069 @noindent
3070 is not correct.
3072 If an instruction only takes Altivec registers, you do not want to use
3073 @code{%x<n>}.
3075 @smallexample
3076 asm ("xsaddqp %0,%1,%2"
3077      : "=v" (v1)
3078      : "v" (v2), "v" (v3));
3079 @end smallexample
3081 @noindent
3082 is correct because the @code{xsaddqp} instruction only takes Altivec
3083 registers, while:
3085 @smallexample
3086 asm ("xsaddqp %x0,%x1,%x2" 
3087      : "=v" (v1) 
3088      : "v" (v2), "v" (v3));
3089 @end smallexample
3091 @noindent
3092 is incorrect.
3094 @item wb
3095 Altivec register if @option{-mcpu=power9} is used or NO_REGS.
3097 @item wd
3098 VSX vector register to hold vector double data or NO_REGS.
3100 @item we
3101 VSX register if the @option{-mcpu=power9} and @option{-m64} options
3102 were used or NO_REGS.
3104 @item wf
3105 VSX vector register to hold vector float data or NO_REGS.
3107 @item wg
3108 If @option{-mmfpgpr} was used, a floating point register or NO_REGS.
3110 @item wh
3111 Floating point register if direct moves are available, or NO_REGS.
3113 @item wi
3114 FP or VSX register to hold 64-bit integers for VSX insns or NO_REGS.
3116 @item wj
3117 FP or VSX register to hold 64-bit integers for direct moves or NO_REGS.
3119 @item wk
3120 FP or VSX register to hold 64-bit doubles for direct moves or NO_REGS.
3122 @item wl
3123 Floating point register if the LFIWAX instruction is enabled or NO_REGS.
3125 @item wm
3126 VSX register if direct move instructions are enabled, or NO_REGS.
3128 @item wn
3129 No register (NO_REGS).
3131 @item wo
3132 VSX register to use for ISA 3.0 vector instructions, or NO_REGS.
3134 @item wp
3135 VSX register to use for IEEE 128-bit floating point TFmode, or NO_REGS.
3137 @item wq
3138 VSX register to use for IEEE 128-bit floating point, or NO_REGS.
3140 @item wr
3141 General purpose register if 64-bit instructions are enabled or NO_REGS.
3143 @item ws
3144 VSX vector register to hold scalar double values or NO_REGS.
3146 @item wt
3147 VSX vector register to hold 128 bit integer or NO_REGS.
3149 @item wu
3150 Altivec register to use for float/32-bit int loads/stores  or NO_REGS.
3152 @item wv
3153 Altivec register to use for double loads/stores  or NO_REGS.
3155 @item ww
3156 FP or VSX register to perform float operations under @option{-mvsx} or NO_REGS.
3158 @item wx
3159 Floating point register if the STFIWX instruction is enabled or NO_REGS.
3161 @item wy
3162 FP or VSX register to perform ISA 2.07 float ops or NO_REGS.
3164 @item wz
3165 Floating point register if the LFIWZX instruction is enabled or NO_REGS.
3167 @item wA
3168 Address base register if 64-bit instructions are enabled or NO_REGS.
3170 @item wB
3171 Signed 5-bit constant integer that can be loaded into an altivec register.
3173 @item wD
3174 Int constant that is the element number of the 64-bit scalar in a vector.
3176 @item wE
3177 Vector constant that can be loaded with the XXSPLTIB instruction.
3179 @item wF
3180 Memory operand suitable for power9 fusion load/stores.
3182 @item wG
3183 Memory operand suitable for TOC fusion memory references.
3185 @item wH
3186 Altivec register if @option{-mvsx-small-integer}.
3188 @item wI
3189 Floating point register if @option{-mvsx-small-integer}.
3191 @item wJ
3192 FP register if @option{-mvsx-small-integer} and @option{-mpower9-vector}.
3194 @item wK
3195 Altivec register if @option{-mvsx-small-integer} and @option{-mpower9-vector}.
3197 @item wL
3198 Int constant that is the element number that the MFVSRLD instruction.
3199 targets.
3201 @item wM
3202 Match vector constant with all 1's if the XXLORC instruction is available.
3204 @item wO
3205 A memory operand suitable for the ISA 3.0 vector d-form instructions.
3207 @item wQ
3208 A memory address that will work with the @code{lq} and @code{stq}
3209 instructions.
3211 @item wS
3212 Vector constant that can be loaded with XXSPLTIB & sign extension.
3214 @item h
3215 @samp{MQ}, @samp{CTR}, or @samp{LINK} register
3217 @item c
3218 @samp{CTR} register
3220 @item l
3221 @samp{LINK} register
3223 @item x
3224 @samp{CR} register (condition register) number 0
3226 @item y
3227 @samp{CR} register (condition register)
3229 @item z
3230 @samp{XER[CA]} carry bit (part of the XER register)
3232 @item I
3233 Signed 16-bit constant
3235 @item J
3236 Unsigned 16-bit constant shifted left 16 bits (use @samp{L} instead for
3237 @code{SImode} constants)
3239 @item K
3240 Unsigned 16-bit constant
3242 @item L
3243 Signed 16-bit constant shifted left 16 bits
3245 @item M
3246 Constant larger than 31
3248 @item N
3249 Exact power of 2
3251 @item O
3252 Zero
3254 @item P
3255 Constant whose negation is a signed 16-bit constant
3257 @item G
3258 Floating point constant that can be loaded into a register with one
3259 instruction per word
3261 @item H
3262 Integer/Floating point constant that can be loaded into a register using
3263 three instructions
3265 @item m
3266 Memory operand.
3267 Normally, @code{m} does not allow addresses that update the base register.
3268 If @samp{<} or @samp{>} constraint is also used, they are allowed and
3269 therefore on PowerPC targets in that case it is only safe
3270 to use @samp{m<>} in an @code{asm} statement if that @code{asm} statement
3271 accesses the operand exactly once.  The @code{asm} statement must also
3272 use @samp{%U@var{<opno>}} as a placeholder for the ``update'' flag in the
3273 corresponding load or store instruction.  For example:
3275 @smallexample
3276 asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
3277 @end smallexample
3279 is correct but:
3281 @smallexample
3282 asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
3283 @end smallexample
3285 is not.
3287 @item es
3288 A ``stable'' memory operand; that is, one which does not include any
3289 automodification of the base register.  This used to be useful when
3290 @samp{m} allowed automodification of the base register, but as those are now only
3291 allowed when @samp{<} or @samp{>} is used, @samp{es} is basically the same
3292 as @samp{m} without @samp{<} and @samp{>}.
3294 @item Q
3295 Memory operand that is an offset from a register (it is usually better
3296 to use @samp{m} or @samp{es} in @code{asm} statements)
3298 @item Z
3299 Memory operand that is an indexed or indirect from a register (it is
3300 usually better to use @samp{m} or @samp{es} in @code{asm} statements)
3302 @item R
3303 AIX TOC entry
3305 @item a
3306 Address operand that is an indexed or indirect from a register (@samp{p} is
3307 preferable for @code{asm} statements)
3309 @item U
3310 System V Release 4 small data area reference
3312 @item W
3313 Vector constant that does not require memory
3315 @item j
3316 Vector constant that is all zeros.
3318 @end table
3320 @item RL78---@file{config/rl78/constraints.md}
3321 @table @code
3323 @item Int3
3324 An integer constant in the range 1 @dots{} 7.
3325 @item Int8
3326 An integer constant in the range 0 @dots{} 255.
3327 @item J
3328 An integer constant in the range @minus{}255 @dots{} 0
3329 @item K
3330 The integer constant 1.
3331 @item L
3332 The integer constant -1.
3333 @item M
3334 The integer constant 0.
3335 @item N
3336 The integer constant 2.
3337 @item O
3338 The integer constant -2.
3339 @item P
3340 An integer constant in the range 1 @dots{} 15.
3341 @item Qbi
3342 The built-in compare types--eq, ne, gtu, ltu, geu, and leu.
3343 @item Qsc
3344 The synthetic compare types--gt, lt, ge, and le.
3345 @item Wab
3346 A memory reference with an absolute address.
3347 @item Wbc
3348 A memory reference using @code{BC} as a base register, with an optional offset.
3349 @item Wca
3350 A memory reference using @code{AX}, @code{BC}, @code{DE}, or @code{HL} for the address, for calls.
3351 @item Wcv
3352 A memory reference using any 16-bit register pair for the address, for calls.
3353 @item Wd2
3354 A memory reference using @code{DE} as a base register, with an optional offset.
3355 @item Wde
3356 A memory reference using @code{DE} as a base register, without any offset.
3357 @item Wfr
3358 Any memory reference to an address in the far address space.
3359 @item Wh1
3360 A memory reference using @code{HL} as a base register, with an optional one-byte offset.
3361 @item Whb
3362 A memory reference using @code{HL} as a base register, with @code{B} or @code{C} as the index register.
3363 @item Whl
3364 A memory reference using @code{HL} as a base register, without any offset.
3365 @item Ws1
3366 A memory reference using @code{SP} as a base register, with an optional one-byte offset.
3367 @item Y
3368 Any memory reference to an address in the near address space.
3369 @item A
3370 The @code{AX} register.
3371 @item B
3372 The @code{BC} register.
3373 @item D
3374 The @code{DE} register.
3375 @item R
3376 @code{A} through @code{L} registers.
3377 @item S
3378 The @code{SP} register.
3379 @item T
3380 The @code{HL} register.
3381 @item Z08W
3382 The 16-bit @code{R8} register.
3383 @item Z10W
3384 The 16-bit @code{R10} register.
3385 @item Zint
3386 The registers reserved for interrupts (@code{R24} to @code{R31}).
3387 @item a
3388 The @code{A} register.
3389 @item b
3390 The @code{B} register.
3391 @item c
3392 The @code{C} register.
3393 @item d
3394 The @code{D} register.
3395 @item e
3396 The @code{E} register.
3397 @item h
3398 The @code{H} register.
3399 @item l
3400 The @code{L} register.
3401 @item v
3402 The virtual registers.
3403 @item w
3404 The @code{PSW} register.
3405 @item x
3406 The @code{X} register.
3408 @end table
3410 @item RISC-V---@file{config/riscv/constraints.md}
3411 @table @code
3413 @item f
3414 A floating-point register (if availiable).
3416 @item I
3417 An I-type 12-bit signed immediate.
3419 @item J
3420 Integer zero.
3422 @item K
3423 A 5-bit unsigned immediate for CSR access instructions.
3425 @item A
3426 An address that is held in a general-purpose register.
3428 @end table
3430 @item RX---@file{config/rx/constraints.md}
3431 @table @code
3432 @item Q
3433 An address which does not involve register indirect addressing or
3434 pre/post increment/decrement addressing.
3436 @item Symbol
3437 A symbol reference.
3439 @item Int08
3440 A constant in the range @minus{}256 to 255, inclusive.
3442 @item Sint08
3443 A constant in the range @minus{}128 to 127, inclusive.
3445 @item Sint16
3446 A constant in the range @minus{}32768 to 32767, inclusive.
3448 @item Sint24
3449 A constant in the range @minus{}8388608 to 8388607, inclusive.
3451 @item Uint04
3452 A constant in the range 0 to 15, inclusive.
3454 @end table
3456 @item S/390 and zSeries---@file{config/s390/s390.h}
3457 @table @code
3458 @item a
3459 Address register (general purpose register except r0)
3461 @item c
3462 Condition code register
3464 @item d
3465 Data register (arbitrary general purpose register)
3467 @item f
3468 Floating-point register
3470 @item I
3471 Unsigned 8-bit constant (0--255)
3473 @item J
3474 Unsigned 12-bit constant (0--4095)
3476 @item K
3477 Signed 16-bit constant (@minus{}32768--32767)
3479 @item L
3480 Value appropriate as displacement.
3481 @table @code
3482 @item (0..4095)
3483 for short displacement
3484 @item (@minus{}524288..524287)
3485 for long displacement
3486 @end table
3488 @item M
3489 Constant integer with a value of 0x7fffffff.
3491 @item N
3492 Multiple letter constraint followed by 4 parameter letters.
3493 @table @code
3494 @item 0..9:
3495 number of the part counting from most to least significant
3496 @item H,Q:
3497 mode of the part
3498 @item D,S,H:
3499 mode of the containing operand
3500 @item 0,F:
3501 value of the other parts (F---all bits set)
3502 @end table
3503 The constraint matches if the specified part of a constant
3504 has a value different from its other parts.
3506 @item Q
3507 Memory reference without index register and with short displacement.
3509 @item R
3510 Memory reference with index register and short displacement.
3512 @item S
3513 Memory reference without index register but with long displacement.
3515 @item T
3516 Memory reference with index register and long displacement.
3518 @item U
3519 Pointer with short displacement.
3521 @item W
3522 Pointer with long displacement.
3524 @item Y
3525 Shift count operand.
3527 @end table
3529 @need 1000
3530 @item SPARC---@file{config/sparc/sparc.h}
3531 @table @code
3532 @item f
3533 Floating-point register on the SPARC-V8 architecture and
3534 lower floating-point register on the SPARC-V9 architecture.
3536 @item e
3537 Floating-point register.  It is equivalent to @samp{f} on the
3538 SPARC-V8 architecture and contains both lower and upper
3539 floating-point registers on the SPARC-V9 architecture.
3541 @item c
3542 Floating-point condition code register.
3544 @item d
3545 Lower floating-point register.  It is only valid on the SPARC-V9
3546 architecture when the Visual Instruction Set is available.
3548 @item b
3549 Floating-point register.  It is only valid on the SPARC-V9 architecture
3550 when the Visual Instruction Set is available.
3552 @item h
3553 64-bit global or out register for the SPARC-V8+ architecture.
3555 @item C
3556 The constant all-ones, for floating-point.
3558 @item A
3559 Signed 5-bit constant
3561 @item D
3562 A vector constant
3564 @item I
3565 Signed 13-bit constant
3567 @item J
3568 Zero
3570 @item K
3571 32-bit constant with the low 12 bits clear (a constant that can be
3572 loaded with the @code{sethi} instruction)
3574 @item L
3575 A constant in the range supported by @code{movcc} instructions (11-bit
3576 signed immediate)
3578 @item M
3579 A constant in the range supported by @code{movrcc} instructions (10-bit
3580 signed immediate)
3582 @item N
3583 Same as @samp{K}, except that it verifies that bits that are not in the
3584 lower 32-bit range are all zero.  Must be used instead of @samp{K} for
3585 modes wider than @code{SImode}
3587 @item O
3588 The constant 4096
3590 @item G
3591 Floating-point zero
3593 @item H
3594 Signed 13-bit constant, sign-extended to 32 or 64 bits
3596 @item P
3597 The constant -1
3599 @item Q
3600 Floating-point constant whose integral representation can
3601 be moved into an integer register using a single sethi
3602 instruction
3604 @item R
3605 Floating-point constant whose integral representation can
3606 be moved into an integer register using a single mov
3607 instruction
3609 @item S
3610 Floating-point constant whose integral representation can
3611 be moved into an integer register using a high/lo_sum
3612 instruction sequence
3614 @item T
3615 Memory address aligned to an 8-byte boundary
3617 @item U
3618 Even register
3620 @item W
3621 Memory address for @samp{e} constraint registers
3623 @item w
3624 Memory address with only a base register
3626 @item Y
3627 Vector zero
3629 @end table
3631 @item SPU---@file{config/spu/spu.h}
3632 @table @code
3633 @item a
3634 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 64 bit value.
3636 @item c
3637 An immediate for and/xor/or instructions.  const_int is treated as a 64 bit value.
3639 @item d
3640 An immediate for the @code{iohl} instruction.  const_int is treated as a 64 bit value.
3642 @item f
3643 An immediate which can be loaded with @code{fsmbi}.
3645 @item A
3646 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 32 bit value.
3648 @item B
3649 An immediate for most arithmetic instructions.  const_int is treated as a 32 bit value.
3651 @item C
3652 An immediate for and/xor/or instructions.  const_int is treated as a 32 bit value.
3654 @item D
3655 An immediate for the @code{iohl} instruction.  const_int is treated as a 32 bit value.
3657 @item I
3658 A constant in the range [@minus{}64, 63] for shift/rotate instructions.
3660 @item J
3661 An unsigned 7-bit constant for conversion/nop/channel instructions.
3663 @item K
3664 A signed 10-bit constant for most arithmetic instructions.
3666 @item M
3667 A signed 16 bit immediate for @code{stop}.
3669 @item N
3670 An unsigned 16-bit constant for @code{iohl} and @code{fsmbi}.
3672 @item O
3673 An unsigned 7-bit constant whose 3 least significant bits are 0.
3675 @item P
3676 An unsigned 3-bit constant for 16-byte rotates and shifts
3678 @item R
3679 Call operand, reg, for indirect calls
3681 @item S
3682 Call operand, symbol, for relative calls.
3684 @item T
3685 Call operand, const_int, for absolute calls.
3687 @item U
3688 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is sign extended to 128 bit.
3690 @item W
3691 An immediate for shift and rotate instructions.  const_int is treated as a 32 bit value.
3693 @item Y
3694 An immediate for and/xor/or instructions.  const_int is sign extended as a 128 bit.
3696 @item Z
3697 An immediate for the @code{iohl} instruction.  const_int is sign extended to 128 bit.
3699 @end table
3701 @item TI C6X family---@file{config/c6x/constraints.md}
3702 @table @code
3703 @item a
3704 Register file A (A0--A31).
3706 @item b
3707 Register file B (B0--B31).
3709 @item A
3710 Predicate registers in register file A (A0--A2 on C64X and
3711 higher, A1 and A2 otherwise).
3713 @item B
3714 Predicate registers in register file B (B0--B2).
3716 @item C
3717 A call-used register in register file B (B0--B9, B16--B31).
3719 @item Da
3720 Register file A, excluding predicate registers (A3--A31,
3721 plus A0 if not C64X or higher).
3723 @item Db
3724 Register file B, excluding predicate registers (B3--B31).
3726 @item Iu4
3727 Integer constant in the range 0 @dots{} 15.
3729 @item Iu5
3730 Integer constant in the range 0 @dots{} 31.
3732 @item In5
3733 Integer constant in the range @minus{}31 @dots{} 0.
3735 @item Is5
3736 Integer constant in the range @minus{}16 @dots{} 15.
3738 @item I5x
3739 Integer constant that can be the operand of an ADDA or a SUBA insn.
3741 @item IuB
3742 Integer constant in the range 0 @dots{} 65535.
3744 @item IsB
3745 Integer constant in the range @minus{}32768 @dots{} 32767.
3747 @item IsC
3748 Integer constant in the range @math{-2^{20}} @dots{} @math{2^{20} - 1}.
3750 @item Jc
3751 Integer constant that is a valid mask for the clr instruction.
3753 @item Js
3754 Integer constant that is a valid mask for the set instruction.
3756 @item Q
3757 Memory location with A base register.
3759 @item R
3760 Memory location with B base register.
3762 @ifset INTERNALS
3763 @item S0
3764 On C64x+ targets, a GP-relative small data reference.
3766 @item S1
3767 Any kind of @code{SYMBOL_REF}, for use in a call address.
3769 @item Si
3770 Any kind of immediate operand, unless it matches the S0 constraint.
3772 @item T
3773 Memory location with B base register, but not using a long offset.
3775 @item W
3776 A memory operand with an address that cannot be used in an unaligned access.
3778 @end ifset
3779 @item Z
3780 Register B14 (aka DP).
3782 @end table
3784 @item TILE-Gx---@file{config/tilegx/constraints.md}
3785 @table @code
3786 @item R00
3787 @itemx R01
3788 @itemx R02
3789 @itemx R03
3790 @itemx R04
3791 @itemx R05
3792 @itemx R06
3793 @itemx R07
3794 @itemx R08
3795 @itemx R09
3796 @itemx R10
3797 Each of these represents a register constraint for an individual
3798 register, from r0 to r10.
3800 @item I
3801 Signed 8-bit integer constant.
3803 @item J
3804 Signed 16-bit integer constant.
3806 @item K
3807 Unsigned 16-bit integer constant.
3809 @item L
3810 Integer constant that fits in one signed byte when incremented by one
3811 (@minus{}129 @dots{} 126).
3813 @item m
3814 Memory operand.  If used together with @samp{<} or @samp{>}, the
3815 operand can have postincrement which requires printing with @samp{%In}
3816 and @samp{%in} on TILE-Gx.  For example:
3818 @smallexample
3819 asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));
3820 @end smallexample
3822 @item M
3823 A bit mask suitable for the BFINS instruction.
3825 @item N
3826 Integer constant that is a byte tiled out eight times.
3828 @item O
3829 The integer zero constant.
3831 @item P
3832 Integer constant that is a sign-extended byte tiled out as four shorts.
3834 @item Q
3835 Integer constant that fits in one signed byte when incremented
3836 (@minus{}129 @dots{} 126), but excluding -1.
3838 @item S
3839 Integer constant that has all 1 bits consecutive and starting at bit 0.
3841 @item T
3842 A 16-bit fragment of a got, tls, or pc-relative reference.
3844 @item U
3845 Memory operand except postincrement.  This is roughly the same as
3846 @samp{m} when not used together with @samp{<} or @samp{>}.
3848 @item W
3849 An 8-element vector constant with identical elements.
3851 @item Y
3852 A 4-element vector constant with identical elements.
3854 @item Z0
3855 The integer constant 0xffffffff.
3857 @item Z1
3858 The integer constant 0xffffffff00000000.
3860 @end table
3862 @item TILEPro---@file{config/tilepro/constraints.md}
3863 @table @code
3864 @item R00
3865 @itemx R01
3866 @itemx R02
3867 @itemx R03
3868 @itemx R04
3869 @itemx R05
3870 @itemx R06
3871 @itemx R07
3872 @itemx R08
3873 @itemx R09
3874 @itemx R10
3875 Each of these represents a register constraint for an individual
3876 register, from r0 to r10.
3878 @item I
3879 Signed 8-bit integer constant.
3881 @item J
3882 Signed 16-bit integer constant.
3884 @item K
3885 Nonzero integer constant with low 16 bits zero.
3887 @item L
3888 Integer constant that fits in one signed byte when incremented by one
3889 (@minus{}129 @dots{} 126).
3891 @item m
3892 Memory operand.  If used together with @samp{<} or @samp{>}, the
3893 operand can have postincrement which requires printing with @samp{%In}
3894 and @samp{%in} on TILEPro.  For example:
3896 @smallexample
3897 asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));
3898 @end smallexample
3900 @item M
3901 A bit mask suitable for the MM instruction.
3903 @item N
3904 Integer constant that is a byte tiled out four times.
3906 @item O
3907 The integer zero constant.
3909 @item P
3910 Integer constant that is a sign-extended byte tiled out as two shorts.
3912 @item Q
3913 Integer constant that fits in one signed byte when incremented
3914 (@minus{}129 @dots{} 126), but excluding -1.
3916 @item T
3917 A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative
3918 reference.
3920 @item U
3921 Memory operand except postincrement.  This is roughly the same as
3922 @samp{m} when not used together with @samp{<} or @samp{>}.
3924 @item W
3925 A 4-element vector constant with identical elements.
3927 @item Y
3928 A 2-element vector constant with identical elements.
3930 @end table
3932 @item Visium---@file{config/visium/constraints.md}
3933 @table @code
3934 @item b
3935 EAM register @code{mdb}
3937 @item c
3938 EAM register @code{mdc}
3940 @item f
3941 Floating point register
3943 @ifset INTERNALS
3944 @item k
3945 Register for sibcall optimization
3946 @end ifset
3948 @item l
3949 General register, but not @code{r29}, @code{r30} and @code{r31}
3951 @item t
3952 Register @code{r1}
3954 @item u
3955 Register @code{r2}
3957 @item v
3958 Register @code{r3}
3960 @item G
3961 Floating-point constant 0.0
3963 @item J
3964 Integer constant in the range 0 .. 65535 (16-bit immediate)
3966 @item K
3967 Integer constant in the range 1 .. 31 (5-bit immediate)
3969 @item L
3970 Integer constant in the range @minus{}65535 .. @minus{}1 (16-bit negative immediate)
3972 @item M
3973 Integer constant @minus{}1
3975 @item O
3976 Integer constant 0
3978 @item P
3979 Integer constant 32
3980 @end table
3982 @item x86 family---@file{config/i386/constraints.md}
3983 @table @code
3984 @item R
3985 Legacy register---the eight integer registers available on all
3986 i386 processors (@code{a}, @code{b}, @code{c}, @code{d},
3987 @code{si}, @code{di}, @code{bp}, @code{sp}).
3989 @item q
3990 Any register accessible as @code{@var{r}l}.  In 32-bit mode, @code{a},
3991 @code{b}, @code{c}, and @code{d}; in 64-bit mode, any integer register.
3993 @item Q
3994 Any register accessible as @code{@var{r}h}: @code{a}, @code{b},
3995 @code{c}, and @code{d}.
3997 @ifset INTERNALS
3998 @item l
3999 Any register that can be used as the index in a base+index memory
4000 access: that is, any general register except the stack pointer.
4001 @end ifset
4003 @item a
4004 The @code{a} register.
4006 @item b
4007 The @code{b} register.
4009 @item c
4010 The @code{c} register.
4012 @item d
4013 The @code{d} register.
4015 @item S
4016 The @code{si} register.
4018 @item D
4019 The @code{di} register.
4021 @item A
4022 The @code{a} and @code{d} registers.  This class is used for instructions
4023 that return double word results in the @code{ax:dx} register pair.  Single
4024 word values will be allocated either in @code{ax} or @code{dx}.
4025 For example on i386 the following implements @code{rdtsc}:
4027 @smallexample
4028 unsigned long long rdtsc (void)
4030   unsigned long long tick;
4031   __asm__ __volatile__("rdtsc":"=A"(tick));
4032   return tick;
4034 @end smallexample
4036 This is not correct on x86-64 as it would allocate tick in either @code{ax}
4037 or @code{dx}.  You have to use the following variant instead:
4039 @smallexample
4040 unsigned long long rdtsc (void)
4042   unsigned int tickl, tickh;
4043   __asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
4044   return ((unsigned long long)tickh << 32)|tickl;
4046 @end smallexample
4048 @item U
4049 The call-clobbered integer registers.
4051 @item f
4052 Any 80387 floating-point (stack) register.
4054 @item t
4055 Top of 80387 floating-point stack (@code{%st(0)}).
4057 @item u
4058 Second from top of 80387 floating-point stack (@code{%st(1)}).
4060 @ifset INTERNALS
4061 @item Yk
4062 Any mask register that can be used as a predicate, i.e. @code{k1-k7}.
4064 @item k
4065 Any mask register.
4066 @end ifset
4068 @item y
4069 Any MMX register.
4071 @item x
4072 Any SSE register.
4074 @item v
4075 Any EVEX encodable SSE register (@code{%xmm0-%xmm31}).
4077 @ifset INTERNALS
4078 @item w
4079 Any bound register.
4080 @end ifset
4082 @item Yz
4083 First SSE register (@code{%xmm0}).
4085 @ifset INTERNALS
4086 @item Yi
4087 Any SSE register, when SSE2 and inter-unit moves are enabled.
4089 @item Yj
4090 Any SSE register, when SSE2 and inter-unit moves from vector registers are enabled.
4092 @item Ym
4093 Any MMX register, when inter-unit moves are enabled.
4095 @item Yn
4096 Any MMX register, when inter-unit moves from vector registers are enabled.
4098 @item Yp
4099 Any integer register when @code{TARGET_PARTIAL_REG_STALL} is disabled.
4101 @item Ya
4102 Any integer register when zero extensions with @code{AND} are disabled.
4104 @item Yb
4105 Any register that can be used as the GOT base when calling@*
4106 @code{___tls_get_addr}: that is, any general register except @code{a}
4107 and @code{sp} registers, for @option{-fno-plt} if linker supports it.
4108 Otherwise, @code{b} register.
4110 @item Yf
4111 Any x87 register when 80387 floating-point arithmetic is enabled.
4113 @item Yr
4114 Lower SSE register when avoiding REX prefix and all SSE registers otherwise.
4116 @item Yv
4117 For AVX512VL, any EVEX-encodable SSE register (@code{%xmm0-%xmm31}),
4118 otherwise any SSE register.
4120 @item Yh
4121 Any EVEX-encodable SSE register, that has number factor of four.
4123 @item Bf
4124 Flags register operand.
4126 @item Bg
4127 GOT memory operand.
4129 @item Bm
4130 Vector memory operand.
4132 @item Bc
4133 Constant memory operand.
4135 @item Bn
4136 Memory operand without REX prefix.
4138 @item Bs
4139 Sibcall memory operand.
4141 @item Bw
4142 Call memory operand.
4144 @item Bz
4145 Constant call address operand.
4147 @item BC
4148 SSE constant -1 operand.
4149 @end ifset
4151 @item I
4152 Integer constant in the range 0 @dots{} 31, for 32-bit shifts.
4154 @item J
4155 Integer constant in the range 0 @dots{} 63, for 64-bit shifts.
4157 @item K
4158 Signed 8-bit integer constant.
4160 @item L
4161 @code{0xFF} or @code{0xFFFF}, for andsi as a zero-extending move.
4163 @item M
4164 0, 1, 2, or 3 (shifts for the @code{lea} instruction).
4166 @item N
4167 Unsigned 8-bit integer constant (for @code{in} and @code{out}
4168 instructions).
4170 @ifset INTERNALS
4171 @item O
4172 Integer constant in the range 0 @dots{} 127, for 128-bit shifts.
4173 @end ifset
4175 @item G
4176 Standard 80387 floating point constant.
4178 @item C
4179 SSE constant zero operand.
4181 @item e
4182 32-bit signed integer constant, or a symbolic reference known
4183 to fit that range (for immediate operands in sign-extending x86-64
4184 instructions).
4186 @item We
4187 32-bit signed integer constant, or a symbolic reference known
4188 to fit that range (for sign-extending conversion operations that
4189 require non-@code{VOIDmode} immediate operands).
4191 @item Wz
4192 32-bit unsigned integer constant, or a symbolic reference known
4193 to fit that range (for zero-extending conversion operations that
4194 require non-@code{VOIDmode} immediate operands).
4196 @item Wd
4197 128-bit integer constant where both the high and low 64-bit word
4198 satisfy the @code{e} constraint.
4200 @item Z
4201 32-bit unsigned integer constant, or a symbolic reference known
4202 to fit that range (for immediate operands in zero-extending x86-64
4203 instructions).
4205 @item Tv
4206 VSIB address operand.
4208 @item Ts
4209 Address operand without segment register.
4211 @end table
4213 @item Xstormy16---@file{config/stormy16/stormy16.h}
4214 @table @code
4215 @item a
4216 Register r0.
4218 @item b
4219 Register r1.
4221 @item c
4222 Register r2.
4224 @item d
4225 Register r8.
4227 @item e
4228 Registers r0 through r7.
4230 @item t
4231 Registers r0 and r1.
4233 @item y
4234 The carry register.
4236 @item z
4237 Registers r8 and r9.
4239 @item I
4240 A constant between 0 and 3 inclusive.
4242 @item J
4243 A constant that has exactly one bit set.
4245 @item K
4246 A constant that has exactly one bit clear.
4248 @item L
4249 A constant between 0 and 255 inclusive.
4251 @item M
4252 A constant between @minus{}255 and 0 inclusive.
4254 @item N
4255 A constant between @minus{}3 and 0 inclusive.
4257 @item O
4258 A constant between 1 and 4 inclusive.
4260 @item P
4261 A constant between @minus{}4 and @minus{}1 inclusive.
4263 @item Q
4264 A memory reference that is a stack push.
4266 @item R
4267 A memory reference that is a stack pop.
4269 @item S
4270 A memory reference that refers to a constant address of known value.
4272 @item T
4273 The register indicated by Rx (not implemented yet).
4275 @item U
4276 A constant that is not between 2 and 15 inclusive.
4278 @item Z
4279 The constant 0.
4281 @end table
4283 @item Xtensa---@file{config/xtensa/constraints.md}
4284 @table @code
4285 @item a
4286 General-purpose 32-bit register
4288 @item b
4289 One-bit boolean register
4291 @item A
4292 MAC16 40-bit accumulator register
4294 @item I
4295 Signed 12-bit integer constant, for use in MOVI instructions
4297 @item J
4298 Signed 8-bit integer constant, for use in ADDI instructions
4300 @item K
4301 Integer constant valid for BccI instructions
4303 @item L
4304 Unsigned constant valid for BccUI instructions
4306 @end table
4308 @end table
4310 @ifset INTERNALS
4311 @node Disable Insn Alternatives
4312 @subsection Disable insn alternatives using the @code{enabled} attribute
4313 @cindex enabled
4315 There are three insn attributes that may be used to selectively disable
4316 instruction alternatives:
4318 @table @code
4319 @item enabled
4320 Says whether an alternative is available on the current subtarget.
4322 @item preferred_for_size
4323 Says whether an enabled alternative should be used in code that is
4324 optimized for size.
4326 @item preferred_for_speed
4327 Says whether an enabled alternative should be used in code that is
4328 optimized for speed.
4329 @end table
4331 All these attributes should use @code{(const_int 1)} to allow an alternative
4332 or @code{(const_int 0)} to disallow it.  The attributes must be a static
4333 property of the subtarget; they cannot for example depend on the
4334 current operands, on the current optimization level, on the location
4335 of the insn within the body of a loop, on whether register allocation
4336 has finished, or on the current compiler pass.
4338 The @code{enabled} attribute is a correctness property.  It tells GCC to act
4339 as though the disabled alternatives were never defined in the first place.
4340 This is useful when adding new instructions to an existing pattern in
4341 cases where the new instructions are only available for certain cpu
4342 architecture levels (typically mapped to the @code{-march=} command-line
4343 option).
4345 In contrast, the @code{preferred_for_size} and @code{preferred_for_speed}
4346 attributes are strong optimization hints rather than correctness properties.
4347 @code{preferred_for_size} tells GCC which alternatives to consider when
4348 adding or modifying an instruction that GCC wants to optimize for size.
4349 @code{preferred_for_speed} does the same thing for speed.  Note that things
4350 like code motion can lead to cases where code optimized for size uses
4351 alternatives that are not preferred for size, and similarly for speed.
4353 Although @code{define_insn}s can in principle specify the @code{enabled}
4354 attribute directly, it is often clearer to have subsiduary attributes
4355 for each architectural feature of interest.  The @code{define_insn}s
4356 can then use these subsiduary attributes to say which alternatives
4357 require which features.  The example below does this for @code{cpu_facility}.
4359 E.g. the following two patterns could easily be merged using the @code{enabled}
4360 attribute:
4362 @smallexample
4364 (define_insn "*movdi_old"
4365   [(set (match_operand:DI 0 "register_operand" "=d")
4366         (match_operand:DI 1 "register_operand" " d"))]
4367   "!TARGET_NEW"
4368   "lgr %0,%1")
4370 (define_insn "*movdi_new"
4371   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
4372         (match_operand:DI 1 "register_operand" " d,d,f"))]
4373   "TARGET_NEW"
4374   "@@
4375    lgr  %0,%1
4376    ldgr %0,%1
4377    lgdr %0,%1")
4379 @end smallexample
4383 @smallexample
4385 (define_insn "*movdi_combined"
4386   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
4387         (match_operand:DI 1 "register_operand" " d,d,f"))]
4388   ""
4389   "@@
4390    lgr  %0,%1
4391    ldgr %0,%1
4392    lgdr %0,%1"
4393   [(set_attr "cpu_facility" "*,new,new")])
4395 @end smallexample
4397 with the @code{enabled} attribute defined like this:
4399 @smallexample
4401 (define_attr "cpu_facility" "standard,new" (const_string "standard"))
4403 (define_attr "enabled" ""
4404   (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
4405          (and (eq_attr "cpu_facility" "new")
4406               (ne (symbol_ref "TARGET_NEW") (const_int 0)))
4407          (const_int 1)]
4408         (const_int 0)))
4410 @end smallexample
4412 @end ifset
4414 @ifset INTERNALS
4415 @node Define Constraints
4416 @subsection Defining Machine-Specific Constraints
4417 @cindex defining constraints
4418 @cindex constraints, defining
4420 Machine-specific constraints fall into two categories: register and
4421 non-register constraints.  Within the latter category, constraints
4422 which allow subsets of all possible memory or address operands should
4423 be specially marked, to give @code{reload} more information.
4425 Machine-specific constraints can be given names of arbitrary length,
4426 but they must be entirely composed of letters, digits, underscores
4427 (@samp{_}), and angle brackets (@samp{< >}).  Like C identifiers, they
4428 must begin with a letter or underscore.
4430 In order to avoid ambiguity in operand constraint strings, no
4431 constraint can have a name that begins with any other constraint's
4432 name.  For example, if @code{x} is defined as a constraint name,
4433 @code{xy} may not be, and vice versa.  As a consequence of this rule,
4434 no constraint may begin with one of the generic constraint letters:
4435 @samp{E F V X g i m n o p r s}.
4437 Register constraints correspond directly to register classes.
4438 @xref{Register Classes}.  There is thus not much flexibility in their
4439 definitions.
4441 @deffn {MD Expression} define_register_constraint name regclass docstring
4442 All three arguments are string constants.
4443 @var{name} is the name of the constraint, as it will appear in
4444 @code{match_operand} expressions.  If @var{name} is a multi-letter
4445 constraint its length shall be the same for all constraints starting
4446 with the same letter.  @var{regclass} can be either the
4447 name of the corresponding register class (@pxref{Register Classes}),
4448 or a C expression which evaluates to the appropriate register class.
4449 If it is an expression, it must have no side effects, and it cannot
4450 look at the operand.  The usual use of expressions is to map some
4451 register constraints to @code{NO_REGS} when the register class
4452 is not available on a given subarchitecture.
4454 @var{docstring} is a sentence documenting the meaning of the
4455 constraint.  Docstrings are explained further below.
4456 @end deffn
4458 Non-register constraints are more like predicates: the constraint
4459 definition gives a boolean expression which indicates whether the
4460 constraint matches.
4462 @deffn {MD Expression} define_constraint name docstring exp
4463 The @var{name} and @var{docstring} arguments are the same as for
4464 @code{define_register_constraint}, but note that the docstring comes
4465 immediately after the name for these expressions.  @var{exp} is an RTL
4466 expression, obeying the same rules as the RTL expressions in predicate
4467 definitions.  @xref{Defining Predicates}, for details.  If it
4468 evaluates true, the constraint matches; if it evaluates false, it
4469 doesn't. Constraint expressions should indicate which RTL codes they
4470 might match, just like predicate expressions.
4472 @code{match_test} C expressions have access to the
4473 following variables:
4475 @table @var
4476 @item op
4477 The RTL object defining the operand.
4478 @item mode
4479 The machine mode of @var{op}.
4480 @item ival
4481 @samp{INTVAL (@var{op})}, if @var{op} is a @code{const_int}.
4482 @item hval
4483 @samp{CONST_DOUBLE_HIGH (@var{op})}, if @var{op} is an integer
4484 @code{const_double}.
4485 @item lval
4486 @samp{CONST_DOUBLE_LOW (@var{op})}, if @var{op} is an integer
4487 @code{const_double}.
4488 @item rval
4489 @samp{CONST_DOUBLE_REAL_VALUE (@var{op})}, if @var{op} is a floating-point
4490 @code{const_double}.
4491 @end table
4493 The @var{*val} variables should only be used once another piece of the
4494 expression has verified that @var{op} is the appropriate kind of RTL
4495 object.
4496 @end deffn
4498 Most non-register constraints should be defined with
4499 @code{define_constraint}.  The remaining two definition expressions
4500 are only appropriate for constraints that should be handled specially
4501 by @code{reload} if they fail to match.
4503 @deffn {MD Expression} define_memory_constraint name docstring exp
4504 Use this expression for constraints that match a subset of all memory
4505 operands: that is, @code{reload} can make them match by converting the
4506 operand to the form @samp{@w{(mem (reg @var{X}))}}, where @var{X} is a
4507 base register (from the register class specified by
4508 @code{BASE_REG_CLASS}, @pxref{Register Classes}).
4510 For example, on the S/390, some instructions do not accept arbitrary
4511 memory references, but only those that do not make use of an index
4512 register.  The constraint letter @samp{Q} is defined to represent a
4513 memory address of this type.  If @samp{Q} is defined with
4514 @code{define_memory_constraint}, a @samp{Q} constraint can handle any
4515 memory operand, because @code{reload} knows it can simply copy the
4516 memory address into a base register if required.  This is analogous to
4517 the way an @samp{o} constraint can handle any memory operand.
4519 The syntax and semantics are otherwise identical to
4520 @code{define_constraint}.
4521 @end deffn
4523 @deffn {MD Expression} define_special_memory_constraint name docstring exp
4524 Use this expression for constraints that match a subset of all memory
4525 operands: that is, @code{reload} can not make them match by reloading
4526 the address as it is described for @code{define_memory_constraint} or
4527 such address reload is undesirable with the performance point of view.
4529 For example, @code{define_special_memory_constraint} can be useful if
4530 specifically aligned memory is necessary or desirable for some insn
4531 operand.
4533 The syntax and semantics are otherwise identical to
4534 @code{define_constraint}.
4535 @end deffn
4537 @deffn {MD Expression} define_address_constraint name docstring exp
4538 Use this expression for constraints that match a subset of all address
4539 operands: that is, @code{reload} can make the constraint match by
4540 converting the operand to the form @samp{@w{(reg @var{X})}}, again
4541 with @var{X} a base register.
4543 Constraints defined with @code{define_address_constraint} can only be
4544 used with the @code{address_operand} predicate, or machine-specific
4545 predicates that work the same way.  They are treated analogously to
4546 the generic @samp{p} constraint.
4548 The syntax and semantics are otherwise identical to
4549 @code{define_constraint}.
4550 @end deffn
4552 For historical reasons, names beginning with the letters @samp{G H}
4553 are reserved for constraints that match only @code{const_double}s, and
4554 names beginning with the letters @samp{I J K L M N O P} are reserved
4555 for constraints that match only @code{const_int}s.  This may change in
4556 the future.  For the time being, constraints with these names must be
4557 written in a stylized form, so that @code{genpreds} can tell you did
4558 it correctly:
4560 @smallexample
4561 @group
4562 (define_constraint "[@var{GHIJKLMNOP}]@dots{}"
4563   "@var{doc}@dots{}"
4564   (and (match_code "const_int")  ; @r{@code{const_double} for G/H}
4565        @var{condition}@dots{}))            ; @r{usually a @code{match_test}}
4566 @end group
4567 @end smallexample
4568 @c the semicolons line up in the formatted manual
4570 It is fine to use names beginning with other letters for constraints
4571 that match @code{const_double}s or @code{const_int}s.
4573 Each docstring in a constraint definition should be one or more complete
4574 sentences, marked up in Texinfo format.  @emph{They are currently unused.}
4575 In the future they will be copied into the GCC manual, in @ref{Machine
4576 Constraints}, replacing the hand-maintained tables currently found in
4577 that section.  Also, in the future the compiler may use this to give
4578 more helpful diagnostics when poor choice of @code{asm} constraints
4579 causes a reload failure.
4581 If you put the pseudo-Texinfo directive @samp{@@internal} at the
4582 beginning of a docstring, then (in the future) it will appear only in
4583 the internals manual's version of the machine-specific constraint tables.
4584 Use this for constraints that should not appear in @code{asm} statements.
4586 @node C Constraint Interface
4587 @subsection Testing constraints from C
4588 @cindex testing constraints
4589 @cindex constraints, testing
4591 It is occasionally useful to test a constraint from C code rather than
4592 implicitly via the constraint string in a @code{match_operand}.  The
4593 generated file @file{tm_p.h} declares a few interfaces for working
4594 with constraints.  At present these are defined for all constraints
4595 except @code{g} (which is equivalent to @code{general_operand}).
4597 Some valid constraint names are not valid C identifiers, so there is a
4598 mangling scheme for referring to them from C@.  Constraint names that
4599 do not contain angle brackets or underscores are left unchanged.
4600 Underscores are doubled, each @samp{<} is replaced with @samp{_l}, and
4601 each @samp{>} with @samp{_g}.  Here are some examples:
4603 @c the @c's prevent double blank lines in the printed manual.
4604 @example
4605 @multitable {Original} {Mangled}
4606 @item @strong{Original} @tab @strong{Mangled}  @c
4607 @item @code{x}     @tab @code{x}       @c
4608 @item @code{P42x}  @tab @code{P42x}    @c
4609 @item @code{P4_x}  @tab @code{P4__x}   @c
4610 @item @code{P4>x}  @tab @code{P4_gx}   @c
4611 @item @code{P4>>}  @tab @code{P4_g_g}  @c
4612 @item @code{P4_g>} @tab @code{P4__g_g} @c
4613 @end multitable
4614 @end example
4616 Throughout this section, the variable @var{c} is either a constraint
4617 in the abstract sense, or a constant from @code{enum constraint_num};
4618 the variable @var{m} is a mangled constraint name (usually as part of
4619 a larger identifier).
4621 @deftp Enum constraint_num
4622 For each constraint except @code{g}, there is a corresponding
4623 enumeration constant: @samp{CONSTRAINT_} plus the mangled name of the
4624 constraint.  Functions that take an @code{enum constraint_num} as an
4625 argument expect one of these constants.
4626 @end deftp
4628 @deftypefun {inline bool} satisfies_constraint_@var{m} (rtx @var{exp})
4629 For each non-register constraint @var{m} except @code{g}, there is
4630 one of these functions; it returns @code{true} if @var{exp} satisfies the
4631 constraint.  These functions are only visible if @file{rtl.h} was included
4632 before @file{tm_p.h}.
4633 @end deftypefun
4635 @deftypefun bool constraint_satisfied_p (rtx @var{exp}, enum constraint_num @var{c})
4636 Like the @code{satisfies_constraint_@var{m}} functions, but the
4637 constraint to test is given as an argument, @var{c}.  If @var{c}
4638 specifies a register constraint, this function will always return
4639 @code{false}.
4640 @end deftypefun
4642 @deftypefun {enum reg_class} reg_class_for_constraint (enum constraint_num @var{c})
4643 Returns the register class associated with @var{c}.  If @var{c} is not
4644 a register constraint, or those registers are not available for the
4645 currently selected subtarget, returns @code{NO_REGS}.
4646 @end deftypefun
4648 Here is an example use of @code{satisfies_constraint_@var{m}}.  In
4649 peephole optimizations (@pxref{Peephole Definitions}), operand
4650 constraint strings are ignored, so if there are relevant constraints,
4651 they must be tested in the C condition.  In the example, the
4652 optimization is applied if operand 2 does @emph{not} satisfy the
4653 @samp{K} constraint.  (This is a simplified version of a peephole
4654 definition from the i386 machine description.)
4656 @smallexample
4657 (define_peephole2
4658   [(match_scratch:SI 3 "r")
4659    (set (match_operand:SI 0 "register_operand" "")
4660         (mult:SI (match_operand:SI 1 "memory_operand" "")
4661                  (match_operand:SI 2 "immediate_operand" "")))]
4663   "!satisfies_constraint_K (operands[2])"
4665   [(set (match_dup 3) (match_dup 1))
4666    (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
4668   "")
4669 @end smallexample
4671 @node Standard Names
4672 @section Standard Pattern Names For Generation
4673 @cindex standard pattern names
4674 @cindex pattern names
4675 @cindex names, pattern
4677 Here is a table of the instruction names that are meaningful in the RTL
4678 generation pass of the compiler.  Giving one of these names to an
4679 instruction pattern tells the RTL generation pass that it can use the
4680 pattern to accomplish a certain task.
4682 @table @asis
4683 @cindex @code{mov@var{m}} instruction pattern
4684 @item @samp{mov@var{m}}
4685 Here @var{m} stands for a two-letter machine mode name, in lowercase.
4686 This instruction pattern moves data with that machine mode from operand
4687 1 to operand 0.  For example, @samp{movsi} moves full-word data.
4689 If operand 0 is a @code{subreg} with mode @var{m} of a register whose
4690 own mode is wider than @var{m}, the effect of this instruction is
4691 to store the specified value in the part of the register that corresponds
4692 to mode @var{m}.  Bits outside of @var{m}, but which are within the
4693 same target word as the @code{subreg} are undefined.  Bits which are
4694 outside the target word are left unchanged.
4696 This class of patterns is special in several ways.  First of all, each
4697 of these names up to and including full word size @emph{must} be defined,
4698 because there is no other way to copy a datum from one place to another.
4699 If there are patterns accepting operands in larger modes,
4700 @samp{mov@var{m}} must be defined for integer modes of those sizes.
4702 Second, these patterns are not used solely in the RTL generation pass.
4703 Even the reload pass can generate move insns to copy values from stack
4704 slots into temporary registers.  When it does so, one of the operands is
4705 a hard register and the other is an operand that can need to be reloaded
4706 into a register.
4708 @findex force_reg
4709 Therefore, when given such a pair of operands, the pattern must generate
4710 RTL which needs no reloading and needs no temporary registers---no
4711 registers other than the operands.  For example, if you support the
4712 pattern with a @code{define_expand}, then in such a case the
4713 @code{define_expand} mustn't call @code{force_reg} or any other such
4714 function which might generate new pseudo registers.
4716 This requirement exists even for subword modes on a RISC machine where
4717 fetching those modes from memory normally requires several insns and
4718 some temporary registers.
4720 @findex change_address
4721 During reload a memory reference with an invalid address may be passed
4722 as an operand.  Such an address will be replaced with a valid address
4723 later in the reload pass.  In this case, nothing may be done with the
4724 address except to use it as it stands.  If it is copied, it will not be
4725 replaced with a valid address.  No attempt should be made to make such
4726 an address into a valid address and no routine (such as
4727 @code{change_address}) that will do so may be called.  Note that
4728 @code{general_operand} will fail when applied to such an address.
4730 @findex reload_in_progress
4731 The global variable @code{reload_in_progress} (which must be explicitly
4732 declared if required) can be used to determine whether such special
4733 handling is required.
4735 The variety of operands that have reloads depends on the rest of the
4736 machine description, but typically on a RISC machine these can only be
4737 pseudo registers that did not get hard registers, while on other
4738 machines explicit memory references will get optional reloads.
4740 If a scratch register is required to move an object to or from memory,
4741 it can be allocated using @code{gen_reg_rtx} prior to life analysis.
4743 If there are cases which need scratch registers during or after reload,
4744 you must provide an appropriate secondary_reload target hook.
4746 @findex can_create_pseudo_p
4747 The macro @code{can_create_pseudo_p} can be used to determine if it
4748 is unsafe to create new pseudo registers.  If this variable is nonzero, then
4749 it is unsafe to call @code{gen_reg_rtx} to allocate a new pseudo.
4751 The constraints on a @samp{mov@var{m}} must permit moving any hard
4752 register to any other hard register provided that
4753 @code{TARGET_HARD_REGNO_MODE_OK} permits mode @var{m} in both registers and
4754 @code{TARGET_REGISTER_MOVE_COST} applied to their classes returns a value
4755 of 2.
4757 It is obligatory to support floating point @samp{mov@var{m}}
4758 instructions into and out of any registers that can hold fixed point
4759 values, because unions and structures (which have modes @code{SImode} or
4760 @code{DImode}) can be in those registers and they may have floating
4761 point members.
4763 There may also be a need to support fixed point @samp{mov@var{m}}
4764 instructions in and out of floating point registers.  Unfortunately, I
4765 have forgotten why this was so, and I don't know whether it is still
4766 true.  If @code{TARGET_HARD_REGNO_MODE_OK} rejects fixed point values in
4767 floating point registers, then the constraints of the fixed point
4768 @samp{mov@var{m}} instructions must be designed to avoid ever trying to
4769 reload into a floating point register.
4771 @cindex @code{reload_in} instruction pattern
4772 @cindex @code{reload_out} instruction pattern
4773 @item @samp{reload_in@var{m}}
4774 @itemx @samp{reload_out@var{m}}
4775 These named patterns have been obsoleted by the target hook
4776 @code{secondary_reload}.
4778 Like @samp{mov@var{m}}, but used when a scratch register is required to
4779 move between operand 0 and operand 1.  Operand 2 describes the scratch
4780 register.  See the discussion of the @code{SECONDARY_RELOAD_CLASS}
4781 macro in @pxref{Register Classes}.
4783 There are special restrictions on the form of the @code{match_operand}s
4784 used in these patterns.  First, only the predicate for the reload
4785 operand is examined, i.e., @code{reload_in} examines operand 1, but not
4786 the predicates for operand 0 or 2.  Second, there may be only one
4787 alternative in the constraints.  Third, only a single register class
4788 letter may be used for the constraint; subsequent constraint letters
4789 are ignored.  As a special exception, an empty constraint string
4790 matches the @code{ALL_REGS} register class.  This may relieve ports
4791 of the burden of defining an @code{ALL_REGS} constraint letter just
4792 for these patterns.
4794 @cindex @code{movstrict@var{m}} instruction pattern
4795 @item @samp{movstrict@var{m}}
4796 Like @samp{mov@var{m}} except that if operand 0 is a @code{subreg}
4797 with mode @var{m} of a register whose natural mode is wider,
4798 the @samp{movstrict@var{m}} instruction is guaranteed not to alter
4799 any of the register except the part which belongs to mode @var{m}.
4801 @cindex @code{movmisalign@var{m}} instruction pattern
4802 @item @samp{movmisalign@var{m}}
4803 This variant of a move pattern is designed to load or store a value
4804 from a memory address that is not naturally aligned for its mode.
4805 For a store, the memory will be in operand 0; for a load, the memory
4806 will be in operand 1.  The other operand is guaranteed not to be a
4807 memory, so that it's easy to tell whether this is a load or store.
4809 This pattern is used by the autovectorizer, and when expanding a
4810 @code{MISALIGNED_INDIRECT_REF} expression.
4812 @cindex @code{load_multiple} instruction pattern
4813 @item @samp{load_multiple}
4814 Load several consecutive memory locations into consecutive registers.
4815 Operand 0 is the first of the consecutive registers, operand 1
4816 is the first memory location, and operand 2 is a constant: the
4817 number of consecutive registers.
4819 Define this only if the target machine really has such an instruction;
4820 do not define this if the most efficient way of loading consecutive
4821 registers from memory is to do them one at a time.
4823 On some machines, there are restrictions as to which consecutive
4824 registers can be stored into memory, such as particular starting or
4825 ending register numbers or only a range of valid counts.  For those
4826 machines, use a @code{define_expand} (@pxref{Expander Definitions})
4827 and make the pattern fail if the restrictions are not met.
4829 Write the generated insn as a @code{parallel} with elements being a
4830 @code{set} of one register from the appropriate memory location (you may
4831 also need @code{use} or @code{clobber} elements).  Use a
4832 @code{match_parallel} (@pxref{RTL Template}) to recognize the insn.  See
4833 @file{rs6000.md} for examples of the use of this insn pattern.
4835 @cindex @samp{store_multiple} instruction pattern
4836 @item @samp{store_multiple}
4837 Similar to @samp{load_multiple}, but store several consecutive registers
4838 into consecutive memory locations.  Operand 0 is the first of the
4839 consecutive memory locations, operand 1 is the first register, and
4840 operand 2 is a constant: the number of consecutive registers.
4842 @cindex @code{vec_load_lanes@var{m}@var{n}} instruction pattern
4843 @item @samp{vec_load_lanes@var{m}@var{n}}
4844 Perform an interleaved load of several vectors from memory operand 1
4845 into register operand 0.  Both operands have mode @var{m}.  The register
4846 operand is viewed as holding consecutive vectors of mode @var{n},
4847 while the memory operand is a flat array that contains the same number
4848 of elements.  The operation is equivalent to:
4850 @smallexample
4851 int c = GET_MODE_SIZE (@var{m}) / GET_MODE_SIZE (@var{n});
4852 for (j = 0; j < GET_MODE_NUNITS (@var{n}); j++)
4853   for (i = 0; i < c; i++)
4854     operand0[i][j] = operand1[j * c + i];
4855 @end smallexample
4857 For example, @samp{vec_load_lanestiv4hi} loads 8 16-bit values
4858 from memory into a register of mode @samp{TI}@.  The register
4859 contains two consecutive vectors of mode @samp{V4HI}@.
4861 This pattern can only be used if:
4862 @smallexample
4863 TARGET_ARRAY_MODE_SUPPORTED_P (@var{n}, @var{c})
4864 @end smallexample
4865 is true.  GCC assumes that, if a target supports this kind of
4866 instruction for some mode @var{n}, it also supports unaligned
4867 loads for vectors of mode @var{n}.
4869 This pattern is not allowed to @code{FAIL}.
4871 @cindex @code{vec_mask_load_lanes@var{m}@var{n}} instruction pattern
4872 @item @samp{vec_mask_load_lanes@var{m}@var{n}}
4873 Like @samp{vec_load_lanes@var{m}@var{n}}, but takes an additional
4874 mask operand (operand 2) that specifies which elements of the destination
4875 vectors should be loaded.  Other elements of the destination
4876 vectors are set to zero.  The operation is equivalent to:
4878 @smallexample
4879 int c = GET_MODE_SIZE (@var{m}) / GET_MODE_SIZE (@var{n});
4880 for (j = 0; j < GET_MODE_NUNITS (@var{n}); j++)
4881   if (operand2[j])
4882     for (i = 0; i < c; i++)
4883       operand0[i][j] = operand1[j * c + i];
4884   else
4885     for (i = 0; i < c; i++)
4886       operand0[i][j] = 0;
4887 @end smallexample
4889 This pattern is not allowed to @code{FAIL}.
4891 @cindex @code{vec_store_lanes@var{m}@var{n}} instruction pattern
4892 @item @samp{vec_store_lanes@var{m}@var{n}}
4893 Equivalent to @samp{vec_load_lanes@var{m}@var{n}}, with the memory
4894 and register operands reversed.  That is, the instruction is
4895 equivalent to:
4897 @smallexample
4898 int c = GET_MODE_SIZE (@var{m}) / GET_MODE_SIZE (@var{n});
4899 for (j = 0; j < GET_MODE_NUNITS (@var{n}); j++)
4900   for (i = 0; i < c; i++)
4901     operand0[j * c + i] = operand1[i][j];
4902 @end smallexample
4904 for a memory operand 0 and register operand 1.
4906 This pattern is not allowed to @code{FAIL}.
4908 @cindex @code{vec_mask_store_lanes@var{m}@var{n}} instruction pattern
4909 @item @samp{vec_mask_store_lanes@var{m}@var{n}}
4910 Like @samp{vec_store_lanes@var{m}@var{n}}, but takes an additional
4911 mask operand (operand 2) that specifies which elements of the source
4912 vectors should be stored.  The operation is equivalent to:
4914 @smallexample
4915 int c = GET_MODE_SIZE (@var{m}) / GET_MODE_SIZE (@var{n});
4916 for (j = 0; j < GET_MODE_NUNITS (@var{n}); j++)
4917   if (operand2[j])
4918     for (i = 0; i < c; i++)
4919       operand0[j * c + i] = operand1[i][j];
4920 @end smallexample
4922 This pattern is not allowed to @code{FAIL}.
4924 @cindex @code{gather_load@var{m}} instruction pattern
4925 @item @samp{gather_load@var{m}}
4926 Load several separate memory locations into a vector of mode @var{m}.
4927 Operand 1 is a scalar base address and operand 2 is a vector of
4928 offsets from that base.  Operand 0 is a destination vector with the
4929 same number of elements as the offset.  For each element index @var{i}:
4931 @itemize @bullet
4932 @item
4933 extend the offset element @var{i} to address width, using zero
4934 extension if operand 3 is 1 and sign extension if operand 3 is zero;
4935 @item
4936 multiply the extended offset by operand 4;
4937 @item
4938 add the result to the base; and
4939 @item
4940 load the value at that address into element @var{i} of operand 0.
4941 @end itemize
4943 The value of operand 3 does not matter if the offsets are already
4944 address width.
4946 @cindex @code{mask_gather_load@var{m}} instruction pattern
4947 @item @samp{mask_gather_load@var{m}}
4948 Like @samp{gather_load@var{m}}, but takes an extra mask operand as
4949 operand 5.  Bit @var{i} of the mask is set if element @var{i}
4950 of the result should be loaded from memory and clear if element @var{i}
4951 of the result should be set to zero.
4953 @cindex @code{scatter_store@var{m}} instruction pattern
4954 @item @samp{scatter_store@var{m}}
4955 Store a vector of mode @var{m} into several distinct memory locations.
4956 Operand 0 is a scalar base address and operand 1 is a vector of offsets
4957 from that base.  Operand 4 is the vector of values that should be stored,
4958 which has the same number of elements as the offset.  For each element
4959 index @var{i}:
4961 @itemize @bullet
4962 @item
4963 extend the offset element @var{i} to address width, using zero
4964 extension if operand 2 is 1 and sign extension if operand 2 is zero;
4965 @item
4966 multiply the extended offset by operand 3;
4967 @item
4968 add the result to the base; and
4969 @item
4970 store element @var{i} of operand 4 to that address.
4971 @end itemize
4973 The value of operand 2 does not matter if the offsets are already
4974 address width.
4976 @cindex @code{mask_scatter_store@var{m}} instruction pattern
4977 @item @samp{mask_scatter_store@var{m}}
4978 Like @samp{scatter_store@var{m}}, but takes an extra mask operand as
4979 operand 5.  Bit @var{i} of the mask is set if element @var{i}
4980 of the result should be stored to memory.
4982 @cindex @code{vec_set@var{m}} instruction pattern
4983 @item @samp{vec_set@var{m}}
4984 Set given field in the vector value.  Operand 0 is the vector to modify,
4985 operand 1 is new value of field and operand 2 specify the field index.
4987 @cindex @code{vec_extract@var{m}@var{n}} instruction pattern
4988 @item @samp{vec_extract@var{m}@var{n}}
4989 Extract given field from the vector value.  Operand 1 is the vector, operand 2
4990 specify field index and operand 0 place to store value into.  The
4991 @var{n} mode is the mode of the field or vector of fields that should be
4992 extracted, should be either element mode of the vector mode @var{m}, or
4993 a vector mode with the same element mode and smaller number of elements.
4994 If @var{n} is a vector mode, the index is counted in units of that mode.
4996 @cindex @code{vec_init@var{m}@var{n}} instruction pattern
4997 @item @samp{vec_init@var{m}@var{n}}
4998 Initialize the vector to given values.  Operand 0 is the vector to initialize
4999 and operand 1 is parallel containing values for individual fields.  The
5000 @var{n} mode is the mode of the elements, should be either element mode of
5001 the vector mode @var{m}, or a vector mode with the same element mode and
5002 smaller number of elements.
5004 @cindex @code{vec_duplicate@var{m}} instruction pattern
5005 @item @samp{vec_duplicate@var{m}}
5006 Initialize vector output operand 0 so that each element has the value given
5007 by scalar input operand 1.  The vector has mode @var{m} and the scalar has
5008 the mode appropriate for one element of @var{m}.
5010 This pattern only handles duplicates of non-constant inputs.  Constant
5011 vectors go through the @code{mov@var{m}} pattern instead.
5013 This pattern is not allowed to @code{FAIL}.
5015 @cindex @code{vec_series@var{m}} instruction pattern
5016 @item @samp{vec_series@var{m}}
5017 Initialize vector output operand 0 so that element @var{i} is equal to
5018 operand 1 plus @var{i} times operand 2.  In other words, create a linear
5019 series whose base value is operand 1 and whose step is operand 2.
5021 The vector output has mode @var{m} and the scalar inputs have the mode
5022 appropriate for one element of @var{m}.  This pattern is not used for
5023 floating-point vectors, in order to avoid having to specify the
5024 rounding behavior for @var{i} > 1.
5026 This pattern is not allowed to @code{FAIL}.
5028 @cindex @code{while_ult@var{m}@var{n}} instruction pattern
5029 @item @code{while_ult@var{m}@var{n}}
5030 Set operand 0 to a mask that is true while incrementing operand 1
5031 gives a value that is less than operand 2.  Operand 0 has mode @var{n}
5032 and operands 1 and 2 are scalar integers of mode @var{m}.
5033 The operation is equivalent to:
5035 @smallexample
5036 operand0[0] = operand1 < operand2;
5037 for (i = 1; i < GET_MODE_NUNITS (@var{n}); i++)
5038   operand0[i] = operand0[i - 1] && (operand1 + i < operand2);
5039 @end smallexample
5041 @cindex @code{vec_cmp@var{m}@var{n}} instruction pattern
5042 @item @samp{vec_cmp@var{m}@var{n}}
5043 Output a vector comparison.  Operand 0 of mode @var{n} is the destination for
5044 predicate in operand 1 which is a signed vector comparison with operands of
5045 mode @var{m} in operands 2 and 3.  Predicate is computed by element-wise
5046 evaluation of the vector comparison with a truth value of all-ones and a false
5047 value of all-zeros.
5049 @cindex @code{vec_cmpu@var{m}@var{n}} instruction pattern
5050 @item @samp{vec_cmpu@var{m}@var{n}}
5051 Similar to @code{vec_cmp@var{m}@var{n}} but perform unsigned vector comparison.
5053 @cindex @code{vec_cmpeq@var{m}@var{n}} instruction pattern
5054 @item @samp{vec_cmpeq@var{m}@var{n}}
5055 Similar to @code{vec_cmp@var{m}@var{n}} but perform equality or non-equality
5056 vector comparison only.  If @code{vec_cmp@var{m}@var{n}}
5057 or @code{vec_cmpu@var{m}@var{n}} instruction pattern is supported,
5058 it will be preferred over @code{vec_cmpeq@var{m}@var{n}}, so there is
5059 no need to define this instruction pattern if the others are supported.
5061 @cindex @code{vcond@var{m}@var{n}} instruction pattern
5062 @item @samp{vcond@var{m}@var{n}}
5063 Output a conditional vector move.  Operand 0 is the destination to
5064 receive a combination of operand 1 and operand 2, which are of mode @var{m},
5065 dependent on the outcome of the predicate in operand 3 which is a signed
5066 vector comparison with operands of mode @var{n} in operands 4 and 5.  The
5067 modes @var{m} and @var{n} should have the same size.  Operand 0
5068 will be set to the value @var{op1} & @var{msk} | @var{op2} & ~@var{msk}
5069 where @var{msk} is computed by element-wise evaluation of the vector
5070 comparison with a truth value of all-ones and a false value of all-zeros.
5072 @cindex @code{vcondu@var{m}@var{n}} instruction pattern
5073 @item @samp{vcondu@var{m}@var{n}}
5074 Similar to @code{vcond@var{m}@var{n}} but performs unsigned vector
5075 comparison.
5077 @cindex @code{vcondeq@var{m}@var{n}} instruction pattern
5078 @item @samp{vcondeq@var{m}@var{n}}
5079 Similar to @code{vcond@var{m}@var{n}} but performs equality or
5080 non-equality vector comparison only.  If @code{vcond@var{m}@var{n}}
5081 or @code{vcondu@var{m}@var{n}} instruction pattern is supported,
5082 it will be preferred over @code{vcondeq@var{m}@var{n}}, so there is
5083 no need to define this instruction pattern if the others are supported.
5085 @cindex @code{vcond_mask_@var{m}@var{n}} instruction pattern
5086 @item @samp{vcond_mask_@var{m}@var{n}}
5087 Similar to @code{vcond@var{m}@var{n}} but operand 3 holds a pre-computed
5088 result of vector comparison.
5090 @cindex @code{maskload@var{m}@var{n}} instruction pattern
5091 @item @samp{maskload@var{m}@var{n}}
5092 Perform a masked load of vector from memory operand 1 of mode @var{m}
5093 into register operand 0.  Mask is provided in register operand 2 of
5094 mode @var{n}.
5096 This pattern is not allowed to @code{FAIL}.
5098 @cindex @code{maskstore@var{m}@var{n}} instruction pattern
5099 @item @samp{maskstore@var{m}@var{n}}
5100 Perform a masked store of vector from register operand 1 of mode @var{m}
5101 into memory operand 0.  Mask is provided in register operand 2 of
5102 mode @var{n}.
5104 This pattern is not allowed to @code{FAIL}.
5106 @cindex @code{vec_perm@var{m}} instruction pattern
5107 @item @samp{vec_perm@var{m}}
5108 Output a (variable) vector permutation.  Operand 0 is the destination
5109 to receive elements from operand 1 and operand 2, which are of mode
5110 @var{m}.  Operand 3 is the @dfn{selector}.  It is an integral mode
5111 vector of the same width and number of elements as mode @var{m}.
5113 The input elements are numbered from 0 in operand 1 through
5114 @math{2*@var{N}-1} in operand 2.  The elements of the selector must
5115 be computed modulo @math{2*@var{N}}.  Note that if
5116 @code{rtx_equal_p(operand1, operand2)}, this can be implemented
5117 with just operand 1 and selector elements modulo @var{N}.
5119 In order to make things easy for a number of targets, if there is no
5120 @samp{vec_perm} pattern for mode @var{m}, but there is for mode @var{q}
5121 where @var{q} is a vector of @code{QImode} of the same width as @var{m},
5122 the middle-end will lower the mode @var{m} @code{VEC_PERM_EXPR} to
5123 mode @var{q}.
5125 See also @code{TARGET_VECTORIZER_VEC_PERM_CONST}, which performs
5126 the analogous operation for constant selectors.
5128 @cindex @code{push@var{m}1} instruction pattern
5129 @item @samp{push@var{m}1}
5130 Output a push instruction.  Operand 0 is value to push.  Used only when
5131 @code{PUSH_ROUNDING} is defined.  For historical reason, this pattern may be
5132 missing and in such case an @code{mov} expander is used instead, with a
5133 @code{MEM} expression forming the push operation.  The @code{mov} expander
5134 method is deprecated.
5136 @cindex @code{add@var{m}3} instruction pattern
5137 @item @samp{add@var{m}3}
5138 Add operand 2 and operand 1, storing the result in operand 0.  All operands
5139 must have mode @var{m}.  This can be used even on two-address machines, by
5140 means of constraints requiring operands 1 and 0 to be the same location.
5142 @cindex @code{ssadd@var{m}3} instruction pattern
5143 @cindex @code{usadd@var{m}3} instruction pattern
5144 @cindex @code{sub@var{m}3} instruction pattern
5145 @cindex @code{sssub@var{m}3} instruction pattern
5146 @cindex @code{ussub@var{m}3} instruction pattern
5147 @cindex @code{mul@var{m}3} instruction pattern
5148 @cindex @code{ssmul@var{m}3} instruction pattern
5149 @cindex @code{usmul@var{m}3} instruction pattern
5150 @cindex @code{div@var{m}3} instruction pattern
5151 @cindex @code{ssdiv@var{m}3} instruction pattern
5152 @cindex @code{udiv@var{m}3} instruction pattern
5153 @cindex @code{usdiv@var{m}3} instruction pattern
5154 @cindex @code{mod@var{m}3} instruction pattern
5155 @cindex @code{umod@var{m}3} instruction pattern
5156 @cindex @code{umin@var{m}3} instruction pattern
5157 @cindex @code{umax@var{m}3} instruction pattern
5158 @cindex @code{and@var{m}3} instruction pattern
5159 @cindex @code{ior@var{m}3} instruction pattern
5160 @cindex @code{xor@var{m}3} instruction pattern
5161 @item @samp{ssadd@var{m}3}, @samp{usadd@var{m}3}
5162 @itemx @samp{sub@var{m}3}, @samp{sssub@var{m}3}, @samp{ussub@var{m}3}
5163 @itemx @samp{mul@var{m}3}, @samp{ssmul@var{m}3}, @samp{usmul@var{m}3}
5164 @itemx @samp{div@var{m}3}, @samp{ssdiv@var{m}3}
5165 @itemx @samp{udiv@var{m}3}, @samp{usdiv@var{m}3}
5166 @itemx @samp{mod@var{m}3}, @samp{umod@var{m}3}
5167 @itemx @samp{umin@var{m}3}, @samp{umax@var{m}3}
5168 @itemx @samp{and@var{m}3}, @samp{ior@var{m}3}, @samp{xor@var{m}3}
5169 Similar, for other arithmetic operations.
5171 @cindex @code{addv@var{m}4} instruction pattern
5172 @item @samp{addv@var{m}4}
5173 Like @code{add@var{m}3} but takes a @code{code_label} as operand 3 and
5174 emits code to jump to it if signed overflow occurs during the addition.
5175 This pattern is used to implement the built-in functions performing
5176 signed integer addition with overflow checking.
5178 @cindex @code{subv@var{m}4} instruction pattern
5179 @cindex @code{mulv@var{m}4} instruction pattern
5180 @item @samp{subv@var{m}4}, @samp{mulv@var{m}4}
5181 Similar, for other signed arithmetic operations.
5183 @cindex @code{uaddv@var{m}4} instruction pattern
5184 @item @samp{uaddv@var{m}4}
5185 Like @code{addv@var{m}4} but for unsigned addition.  That is to
5186 say, the operation is the same as signed addition but the jump
5187 is taken only on unsigned overflow.
5189 @cindex @code{usubv@var{m}4} instruction pattern
5190 @cindex @code{umulv@var{m}4} instruction pattern
5191 @item @samp{usubv@var{m}4}, @samp{umulv@var{m}4}
5192 Similar, for other unsigned arithmetic operations.
5194 @cindex @code{addptr@var{m}3} instruction pattern
5195 @item @samp{addptr@var{m}3}
5196 Like @code{add@var{m}3} but is guaranteed to only be used for address
5197 calculations.  The expanded code is not allowed to clobber the
5198 condition code.  It only needs to be defined if @code{add@var{m}3}
5199 sets the condition code.  If adds used for address calculations and
5200 normal adds are not compatible it is required to expand a distinct
5201 pattern (e.g. using an unspec).  The pattern is used by LRA to emit
5202 address calculations.  @code{add@var{m}3} is used if
5203 @code{addptr@var{m}3} is not defined.
5205 @cindex @code{fma@var{m}4} instruction pattern
5206 @item @samp{fma@var{m}4}
5207 Multiply operand 2 and operand 1, then add operand 3, storing the
5208 result in operand 0 without doing an intermediate rounding step.  All
5209 operands must have mode @var{m}.  This pattern is used to implement
5210 the @code{fma}, @code{fmaf}, and @code{fmal} builtin functions from
5211 the ISO C99 standard.
5213 @cindex @code{fms@var{m}4} instruction pattern
5214 @item @samp{fms@var{m}4}
5215 Like @code{fma@var{m}4}, except operand 3 subtracted from the
5216 product instead of added to the product.  This is represented
5217 in the rtl as
5219 @smallexample
5220 (fma:@var{m} @var{op1} @var{op2} (neg:@var{m} @var{op3}))
5221 @end smallexample
5223 @cindex @code{fnma@var{m}4} instruction pattern
5224 @item @samp{fnma@var{m}4}
5225 Like @code{fma@var{m}4} except that the intermediate product
5226 is negated before being added to operand 3.  This is represented
5227 in the rtl as
5229 @smallexample
5230 (fma:@var{m} (neg:@var{m} @var{op1}) @var{op2} @var{op3})
5231 @end smallexample
5233 @cindex @code{fnms@var{m}4} instruction pattern
5234 @item @samp{fnms@var{m}4}
5235 Like @code{fms@var{m}4} except that the intermediate product
5236 is negated before subtracting operand 3.  This is represented
5237 in the rtl as
5239 @smallexample
5240 (fma:@var{m} (neg:@var{m} @var{op1}) @var{op2} (neg:@var{m} @var{op3}))
5241 @end smallexample
5243 @cindex @code{min@var{m}3} instruction pattern
5244 @cindex @code{max@var{m}3} instruction pattern
5245 @item @samp{smin@var{m}3}, @samp{smax@var{m}3}
5246 Signed minimum and maximum operations.  When used with floating point,
5247 if both operands are zeros, or if either operand is @code{NaN}, then
5248 it is unspecified which of the two operands is returned as the result.
5250 @cindex @code{fmin@var{m}3} instruction pattern
5251 @cindex @code{fmax@var{m}3} instruction pattern
5252 @item @samp{fmin@var{m}3}, @samp{fmax@var{m}3}
5253 IEEE-conformant minimum and maximum operations.  If one operand is a quiet
5254 @code{NaN}, then the other operand is returned.  If both operands are quiet
5255 @code{NaN}, then a quiet @code{NaN} is returned.  In the case when gcc supports
5256 signaling @code{NaN} (-fsignaling-nans) an invalid floating point exception is
5257 raised and a quiet @code{NaN} is returned.
5259 All operands have mode @var{m}, which is a scalar or vector
5260 floating-point mode.  These patterns are not allowed to @code{FAIL}.
5262 @cindex @code{reduc_smin_scal_@var{m}} instruction pattern
5263 @cindex @code{reduc_smax_scal_@var{m}} instruction pattern
5264 @item @samp{reduc_smin_scal_@var{m}}, @samp{reduc_smax_scal_@var{m}}
5265 Find the signed minimum/maximum of the elements of a vector. The vector is
5266 operand 1, and operand 0 is the scalar result, with mode equal to the mode of
5267 the elements of the input vector.
5269 @cindex @code{reduc_umin_scal_@var{m}} instruction pattern
5270 @cindex @code{reduc_umax_scal_@var{m}} instruction pattern
5271 @item @samp{reduc_umin_scal_@var{m}}, @samp{reduc_umax_scal_@var{m}}
5272 Find the unsigned minimum/maximum of the elements of a vector. The vector is
5273 operand 1, and operand 0 is the scalar result, with mode equal to the mode of
5274 the elements of the input vector.
5276 @cindex @code{reduc_plus_scal_@var{m}} instruction pattern
5277 @item @samp{reduc_plus_scal_@var{m}}
5278 Compute the sum of the elements of a vector. The vector is operand 1, and
5279 operand 0 is the scalar result, with mode equal to the mode of the elements of
5280 the input vector.
5282 @cindex @code{reduc_and_scal_@var{m}} instruction pattern
5283 @item @samp{reduc_and_scal_@var{m}}
5284 @cindex @code{reduc_ior_scal_@var{m}} instruction pattern
5285 @itemx @samp{reduc_ior_scal_@var{m}}
5286 @cindex @code{reduc_xor_scal_@var{m}} instruction pattern
5287 @itemx @samp{reduc_xor_scal_@var{m}}
5288 Compute the bitwise @code{AND}/@code{IOR}/@code{XOR} reduction of the elements
5289 of a vector of mode @var{m}.  Operand 1 is the vector input and operand 0
5290 is the scalar result.  The mode of the scalar result is the same as one
5291 element of @var{m}.
5293 @cindex @code{extract_last_@var{m}} instruction pattern
5294 @item @code{extract_last_@var{m}}
5295 Find the last set bit in mask operand 1 and extract the associated element
5296 of vector operand 2.  Store the result in scalar operand 0.  Operand 2
5297 has vector mode @var{m} while operand 0 has the mode appropriate for one
5298 element of @var{m}.  Operand 1 has the usual mask mode for vectors of mode
5299 @var{m}; see @code{TARGET_VECTORIZE_GET_MASK_MODE}.
5301 @cindex @code{fold_extract_last_@var{m}} instruction pattern
5302 @item @code{fold_extract_last_@var{m}}
5303 If any bits of mask operand 2 are set, find the last set bit, extract
5304 the associated element from vector operand 3, and store the result
5305 in operand 0.  Store operand 1 in operand 0 otherwise.  Operand 3
5306 has mode @var{m} and operands 0 and 1 have the mode appropriate for
5307 one element of @var{m}.  Operand 2 has the usual mask mode for vectors
5308 of mode @var{m}; see @code{TARGET_VECTORIZE_GET_MASK_MODE}.
5310 @cindex @code{fold_left_plus_@var{m}} instruction pattern
5311 @item @code{fold_left_plus_@var{m}}
5312 Take scalar operand 1 and successively add each element from vector
5313 operand 2.  Store the result in scalar operand 0.  The vector has
5314 mode @var{m} and the scalars have the mode appropriate for one
5315 element of @var{m}.  The operation is strictly in-order: there is
5316 no reassociation.
5318 @cindex @code{sdot_prod@var{m}} instruction pattern
5319 @item @samp{sdot_prod@var{m}}
5320 @cindex @code{udot_prod@var{m}} instruction pattern
5321 @itemx @samp{udot_prod@var{m}}
5322 Compute the sum of the products of two signed/unsigned elements.
5323 Operand 1 and operand 2 are of the same mode. Their product, which is of a
5324 wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or
5325 wider than the mode of the product. The result is placed in operand 0, which
5326 is of the same mode as operand 3.
5328 @cindex @code{ssad@var{m}} instruction pattern
5329 @item @samp{ssad@var{m}}
5330 @cindex @code{usad@var{m}} instruction pattern
5331 @item @samp{usad@var{m}}
5332 Compute the sum of absolute differences of two signed/unsigned elements.
5333 Operand 1 and operand 2 are of the same mode. Their absolute difference, which
5334 is of a wider mode, is computed and added to operand 3. Operand 3 is of a mode
5335 equal or wider than the mode of the absolute difference. The result is placed
5336 in operand 0, which is of the same mode as operand 3.
5338 @cindex @code{widen_ssum@var{m3}} instruction pattern
5339 @item @samp{widen_ssum@var{m3}}
5340 @cindex @code{widen_usum@var{m3}} instruction pattern
5341 @itemx @samp{widen_usum@var{m3}}
5342 Operands 0 and 2 are of the same mode, which is wider than the mode of
5343 operand 1. Add operand 1 to operand 2 and place the widened result in
5344 operand 0. (This is used express accumulation of elements into an accumulator
5345 of a wider mode.)
5347 @cindex @code{vec_shl_insert_@var{m}} instruction pattern
5348 @item @samp{vec_shl_insert_@var{m}}
5349 Shift the elements in vector input operand 1 left one element (i.e.
5350 away from element 0) and fill the vacated element 0 with the scalar
5351 in operand 2.  Store the result in vector output operand 0.  Operands
5352 0 and 1 have mode @var{m} and operand 2 has the mode appropriate for
5353 one element of @var{m}.
5355 @cindex @code{vec_shr_@var{m}} instruction pattern
5356 @item @samp{vec_shr_@var{m}}
5357 Whole vector right shift in bits, i.e. towards element 0.
5358 Operand 1 is a vector to be shifted.
5359 Operand 2 is an integer shift amount in bits.
5360 Operand 0 is where the resulting shifted vector is stored.
5361 The output and input vectors should have the same modes.
5363 @cindex @code{vec_pack_trunc_@var{m}} instruction pattern
5364 @item @samp{vec_pack_trunc_@var{m}}
5365 Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
5366 are vectors of the same mode having N integral or floating point elements
5367 of size S@.  Operand 0 is the resulting vector in which 2*N elements of
5368 size N/2 are concatenated after narrowing them down using truncation.
5370 @cindex @code{vec_pack_ssat_@var{m}} instruction pattern
5371 @cindex @code{vec_pack_usat_@var{m}} instruction pattern
5372 @item @samp{vec_pack_ssat_@var{m}}, @samp{vec_pack_usat_@var{m}}
5373 Narrow (demote) and merge the elements of two vectors.  Operands 1 and 2
5374 are vectors of the same mode having N integral elements of size S.
5375 Operand 0 is the resulting vector in which the elements of the two input
5376 vectors are concatenated after narrowing them down using signed/unsigned
5377 saturating arithmetic.
5379 @cindex @code{vec_pack_sfix_trunc_@var{m}} instruction pattern
5380 @cindex @code{vec_pack_ufix_trunc_@var{m}} instruction pattern
5381 @item @samp{vec_pack_sfix_trunc_@var{m}}, @samp{vec_pack_ufix_trunc_@var{m}}
5382 Narrow, convert to signed/unsigned integral type and merge the elements
5383 of two vectors.  Operands 1 and 2 are vectors of the same mode having N
5384 floating point elements of size S@.  Operand 0 is the resulting vector
5385 in which 2*N elements of size N/2 are concatenated.
5387 @cindex @code{vec_packs_float_@var{m}} instruction pattern
5388 @cindex @code{vec_packu_float_@var{m}} instruction pattern
5389 @item @samp{vec_packs_float_@var{m}}, @samp{vec_packu_float_@var{m}}
5390 Narrow, convert to floating point type and merge the elements
5391 of two vectors.  Operands 1 and 2 are vectors of the same mode having N
5392 signed/unsigned integral elements of size S@.  Operand 0 is the resulting vector
5393 in which 2*N elements of size N/2 are concatenated.
5395 @cindex @code{vec_unpacks_hi_@var{m}} instruction pattern
5396 @cindex @code{vec_unpacks_lo_@var{m}} instruction pattern
5397 @item @samp{vec_unpacks_hi_@var{m}}, @samp{vec_unpacks_lo_@var{m}}
5398 Extract and widen (promote) the high/low part of a vector of signed
5399 integral or floating point elements.  The input vector (operand 1) has N
5400 elements of size S@.  Widen (promote) the high/low elements of the vector
5401 using signed or floating point extension and place the resulting N/2
5402 values of size 2*S in the output vector (operand 0).
5404 @cindex @code{vec_unpacku_hi_@var{m}} instruction pattern
5405 @cindex @code{vec_unpacku_lo_@var{m}} instruction pattern
5406 @item @samp{vec_unpacku_hi_@var{m}}, @samp{vec_unpacku_lo_@var{m}}
5407 Extract and widen (promote) the high/low part of a vector of unsigned
5408 integral elements.  The input vector (operand 1) has N elements of size S.
5409 Widen (promote) the high/low elements of the vector using zero extension and
5410 place the resulting N/2 values of size 2*S in the output vector (operand 0).
5412 @cindex @code{vec_unpacks_float_hi_@var{m}} instruction pattern
5413 @cindex @code{vec_unpacks_float_lo_@var{m}} instruction pattern
5414 @cindex @code{vec_unpacku_float_hi_@var{m}} instruction pattern
5415 @cindex @code{vec_unpacku_float_lo_@var{m}} instruction pattern
5416 @item @samp{vec_unpacks_float_hi_@var{m}}, @samp{vec_unpacks_float_lo_@var{m}}
5417 @itemx @samp{vec_unpacku_float_hi_@var{m}}, @samp{vec_unpacku_float_lo_@var{m}}
5418 Extract, convert to floating point type and widen the high/low part of a
5419 vector of signed/unsigned integral elements.  The input vector (operand 1)
5420 has N elements of size S@.  Convert the high/low elements of the vector using
5421 floating point conversion and place the resulting N/2 values of size 2*S in
5422 the output vector (operand 0).
5424 @cindex @code{vec_unpack_sfix_trunc_hi_@var{m}} instruction pattern
5425 @cindex @code{vec_unpack_sfix_trunc_lo_@var{m}} instruction pattern
5426 @cindex @code{vec_unpack_ufix_trunc_hi_@var{m}} instruction pattern
5427 @cindex @code{vec_unpack_ufix_trunc_lo_@var{m}} instruction pattern
5428 @item @samp{vec_unpack_sfix_trunc_hi_@var{m}},
5429 @itemx @samp{vec_unpack_sfix_trunc_lo_@var{m}}
5430 @itemx @samp{vec_unpack_ufix_trunc_hi_@var{m}}
5431 @itemx @samp{vec_unpack_ufix_trunc_lo_@var{m}}
5432 Extract, convert to signed/unsigned integer type and widen the high/low part of a
5433 vector of floating point elements.  The input vector (operand 1)
5434 has N elements of size S@.  Convert the high/low elements of the vector
5435 to integers and place the resulting N/2 values of size 2*S in
5436 the output vector (operand 0).
5438 @cindex @code{vec_widen_umult_hi_@var{m}} instruction pattern
5439 @cindex @code{vec_widen_umult_lo_@var{m}} instruction pattern
5440 @cindex @code{vec_widen_smult_hi_@var{m}} instruction pattern
5441 @cindex @code{vec_widen_smult_lo_@var{m}} instruction pattern
5442 @cindex @code{vec_widen_umult_even_@var{m}} instruction pattern
5443 @cindex @code{vec_widen_umult_odd_@var{m}} instruction pattern
5444 @cindex @code{vec_widen_smult_even_@var{m}} instruction pattern
5445 @cindex @code{vec_widen_smult_odd_@var{m}} instruction pattern
5446 @item @samp{vec_widen_umult_hi_@var{m}}, @samp{vec_widen_umult_lo_@var{m}}
5447 @itemx @samp{vec_widen_smult_hi_@var{m}}, @samp{vec_widen_smult_lo_@var{m}}
5448 @itemx @samp{vec_widen_umult_even_@var{m}}, @samp{vec_widen_umult_odd_@var{m}}
5449 @itemx @samp{vec_widen_smult_even_@var{m}}, @samp{vec_widen_smult_odd_@var{m}}
5450 Signed/Unsigned widening multiplication.  The two inputs (operands 1 and 2)
5451 are vectors with N signed/unsigned elements of size S@.  Multiply the high/low
5452 or even/odd elements of the two vectors, and put the N/2 products of size 2*S
5453 in the output vector (operand 0). A target shouldn't implement even/odd pattern
5454 pair if it is less efficient than lo/hi one.
5456 @cindex @code{vec_widen_ushiftl_hi_@var{m}} instruction pattern
5457 @cindex @code{vec_widen_ushiftl_lo_@var{m}} instruction pattern
5458 @cindex @code{vec_widen_sshiftl_hi_@var{m}} instruction pattern
5459 @cindex @code{vec_widen_sshiftl_lo_@var{m}} instruction pattern
5460 @item @samp{vec_widen_ushiftl_hi_@var{m}}, @samp{vec_widen_ushiftl_lo_@var{m}}
5461 @itemx @samp{vec_widen_sshiftl_hi_@var{m}}, @samp{vec_widen_sshiftl_lo_@var{m}}
5462 Signed/Unsigned widening shift left.  The first input (operand 1) is a vector
5463 with N signed/unsigned elements of size S@.  Operand 2 is a constant.  Shift
5464 the high/low elements of operand 1, and put the N/2 results of size 2*S in the
5465 output vector (operand 0).
5467 @cindex @code{mulhisi3} instruction pattern
5468 @item @samp{mulhisi3}
5469 Multiply operands 1 and 2, which have mode @code{HImode}, and store
5470 a @code{SImode} product in operand 0.
5472 @cindex @code{mulqihi3} instruction pattern
5473 @cindex @code{mulsidi3} instruction pattern
5474 @item @samp{mulqihi3}, @samp{mulsidi3}
5475 Similar widening-multiplication instructions of other widths.
5477 @cindex @code{umulqihi3} instruction pattern
5478 @cindex @code{umulhisi3} instruction pattern
5479 @cindex @code{umulsidi3} instruction pattern
5480 @item @samp{umulqihi3}, @samp{umulhisi3}, @samp{umulsidi3}
5481 Similar widening-multiplication instructions that do unsigned
5482 multiplication.
5484 @cindex @code{usmulqihi3} instruction pattern
5485 @cindex @code{usmulhisi3} instruction pattern
5486 @cindex @code{usmulsidi3} instruction pattern
5487 @item @samp{usmulqihi3}, @samp{usmulhisi3}, @samp{usmulsidi3}
5488 Similar widening-multiplication instructions that interpret the first
5489 operand as unsigned and the second operand as signed, then do a signed
5490 multiplication.
5492 @cindex @code{smul@var{m}3_highpart} instruction pattern
5493 @item @samp{smul@var{m}3_highpart}
5494 Perform a signed multiplication of operands 1 and 2, which have mode
5495 @var{m}, and store the most significant half of the product in operand 0.
5496 The least significant half of the product is discarded.
5498 @cindex @code{umul@var{m}3_highpart} instruction pattern
5499 @item @samp{umul@var{m}3_highpart}
5500 Similar, but the multiplication is unsigned.
5502 @cindex @code{madd@var{m}@var{n}4} instruction pattern
5503 @item @samp{madd@var{m}@var{n}4}
5504 Multiply operands 1 and 2, sign-extend them to mode @var{n}, add
5505 operand 3, and store the result in operand 0.  Operands 1 and 2
5506 have mode @var{m} and operands 0 and 3 have mode @var{n}.
5507 Both modes must be integer or fixed-point modes and @var{n} must be twice
5508 the size of @var{m}.
5510 In other words, @code{madd@var{m}@var{n}4} is like
5511 @code{mul@var{m}@var{n}3} except that it also adds operand 3.
5513 These instructions are not allowed to @code{FAIL}.
5515 @cindex @code{umadd@var{m}@var{n}4} instruction pattern
5516 @item @samp{umadd@var{m}@var{n}4}
5517 Like @code{madd@var{m}@var{n}4}, but zero-extend the multiplication
5518 operands instead of sign-extending them.
5520 @cindex @code{ssmadd@var{m}@var{n}4} instruction pattern
5521 @item @samp{ssmadd@var{m}@var{n}4}
5522 Like @code{madd@var{m}@var{n}4}, but all involved operations must be
5523 signed-saturating.
5525 @cindex @code{usmadd@var{m}@var{n}4} instruction pattern
5526 @item @samp{usmadd@var{m}@var{n}4}
5527 Like @code{umadd@var{m}@var{n}4}, but all involved operations must be
5528 unsigned-saturating.
5530 @cindex @code{msub@var{m}@var{n}4} instruction pattern
5531 @item @samp{msub@var{m}@var{n}4}
5532 Multiply operands 1 and 2, sign-extend them to mode @var{n}, subtract the
5533 result from operand 3, and store the result in operand 0.  Operands 1 and 2
5534 have mode @var{m} and operands 0 and 3 have mode @var{n}.
5535 Both modes must be integer or fixed-point modes and @var{n} must be twice
5536 the size of @var{m}.
5538 In other words, @code{msub@var{m}@var{n}4} is like
5539 @code{mul@var{m}@var{n}3} except that it also subtracts the result
5540 from operand 3.
5542 These instructions are not allowed to @code{FAIL}.
5544 @cindex @code{umsub@var{m}@var{n}4} instruction pattern
5545 @item @samp{umsub@var{m}@var{n}4}
5546 Like @code{msub@var{m}@var{n}4}, but zero-extend the multiplication
5547 operands instead of sign-extending them.
5549 @cindex @code{ssmsub@var{m}@var{n}4} instruction pattern
5550 @item @samp{ssmsub@var{m}@var{n}4}
5551 Like @code{msub@var{m}@var{n}4}, but all involved operations must be
5552 signed-saturating.
5554 @cindex @code{usmsub@var{m}@var{n}4} instruction pattern
5555 @item @samp{usmsub@var{m}@var{n}4}
5556 Like @code{umsub@var{m}@var{n}4}, but all involved operations must be
5557 unsigned-saturating.
5559 @cindex @code{divmod@var{m}4} instruction pattern
5560 @item @samp{divmod@var{m}4}
5561 Signed division that produces both a quotient and a remainder.
5562 Operand 1 is divided by operand 2 to produce a quotient stored
5563 in operand 0 and a remainder stored in operand 3.
5565 For machines with an instruction that produces both a quotient and a
5566 remainder, provide a pattern for @samp{divmod@var{m}4} but do not
5567 provide patterns for @samp{div@var{m}3} and @samp{mod@var{m}3}.  This
5568 allows optimization in the relatively common case when both the quotient
5569 and remainder are computed.
5571 If an instruction that just produces a quotient or just a remainder
5572 exists and is more efficient than the instruction that produces both,
5573 write the output routine of @samp{divmod@var{m}4} to call
5574 @code{find_reg_note} and look for a @code{REG_UNUSED} note on the
5575 quotient or remainder and generate the appropriate instruction.
5577 @cindex @code{udivmod@var{m}4} instruction pattern
5578 @item @samp{udivmod@var{m}4}
5579 Similar, but does unsigned division.
5581 @anchor{shift patterns}
5582 @cindex @code{ashl@var{m}3} instruction pattern
5583 @cindex @code{ssashl@var{m}3} instruction pattern
5584 @cindex @code{usashl@var{m}3} instruction pattern
5585 @item @samp{ashl@var{m}3}, @samp{ssashl@var{m}3}, @samp{usashl@var{m}3}
5586 Arithmetic-shift operand 1 left by a number of bits specified by operand
5587 2, and store the result in operand 0.  Here @var{m} is the mode of
5588 operand 0 and operand 1; operand 2's mode is specified by the
5589 instruction pattern, and the compiler will convert the operand to that
5590 mode before generating the instruction.  The shift or rotate expander
5591 or instruction pattern should explicitly specify the mode of the operand 2,
5592 it should never be @code{VOIDmode}.  The meaning of out-of-range shift
5593 counts can optionally be specified by @code{TARGET_SHIFT_TRUNCATION_MASK}.
5594 @xref{TARGET_SHIFT_TRUNCATION_MASK}.  Operand 2 is always a scalar type.
5596 @cindex @code{ashr@var{m}3} instruction pattern
5597 @cindex @code{lshr@var{m}3} instruction pattern
5598 @cindex @code{rotl@var{m}3} instruction pattern
5599 @cindex @code{rotr@var{m}3} instruction pattern
5600 @item @samp{ashr@var{m}3}, @samp{lshr@var{m}3}, @samp{rotl@var{m}3}, @samp{rotr@var{m}3}
5601 Other shift and rotate instructions, analogous to the
5602 @code{ashl@var{m}3} instructions.  Operand 2 is always a scalar type.
5604 @cindex @code{vashl@var{m}3} instruction pattern
5605 @cindex @code{vashr@var{m}3} instruction pattern
5606 @cindex @code{vlshr@var{m}3} instruction pattern
5607 @cindex @code{vrotl@var{m}3} instruction pattern
5608 @cindex @code{vrotr@var{m}3} instruction pattern
5609 @item @samp{vashl@var{m}3}, @samp{vashr@var{m}3}, @samp{vlshr@var{m}3}, @samp{vrotl@var{m}3}, @samp{vrotr@var{m}3}
5610 Vector shift and rotate instructions that take vectors as operand 2
5611 instead of a scalar type.
5613 @cindex @code{avg@var{m}3_floor} instruction pattern
5614 @cindex @code{uavg@var{m}3_floor} instruction pattern
5615 @item @samp{avg@var{m}3_floor}
5616 @itemx @samp{uavg@var{m}3_floor}
5617 Signed and unsigned average instructions.  These instructions add
5618 operands 1 and 2 without truncation, divide the result by 2,
5619 round towards -Inf, and store the result in operand 0.  This is
5620 equivalent to the C code:
5621 @smallexample
5622 narrow op0, op1, op2;
5623 @dots{}
5624 op0 = (narrow) (((wide) op1 + (wide) op2) >> 1);
5625 @end smallexample
5626 where the sign of @samp{narrow} determines whether this is a signed
5627 or unsigned operation.
5629 @cindex @code{avg@var{m}3_ceil} instruction pattern
5630 @cindex @code{uavg@var{m}3_ceil} instruction pattern
5631 @item @samp{avg@var{m}3_ceil}
5632 @itemx @samp{uavg@var{m}3_ceil}
5633 Like @samp{avg@var{m}3_floor} and @samp{uavg@var{m}3_floor}, but round
5634 towards +Inf.  This is equivalent to the C code:
5635 @smallexample
5636 narrow op0, op1, op2;
5637 @dots{}
5638 op0 = (narrow) (((wide) op1 + (wide) op2 + 1) >> 1);
5639 @end smallexample
5641 @cindex @code{bswap@var{m}2} instruction pattern
5642 @item @samp{bswap@var{m}2}
5643 Reverse the order of bytes of operand 1 and store the result in operand 0.
5645 @cindex @code{neg@var{m}2} instruction pattern
5646 @cindex @code{ssneg@var{m}2} instruction pattern
5647 @cindex @code{usneg@var{m}2} instruction pattern
5648 @item @samp{neg@var{m}2}, @samp{ssneg@var{m}2}, @samp{usneg@var{m}2}
5649 Negate operand 1 and store the result in operand 0.
5651 @cindex @code{negv@var{m}3} instruction pattern
5652 @item @samp{negv@var{m}3}
5653 Like @code{neg@var{m}2} but takes a @code{code_label} as operand 2 and
5654 emits code to jump to it if signed overflow occurs during the negation.
5656 @cindex @code{abs@var{m}2} instruction pattern
5657 @item @samp{abs@var{m}2}
5658 Store the absolute value of operand 1 into operand 0.
5660 @cindex @code{sqrt@var{m}2} instruction pattern
5661 @item @samp{sqrt@var{m}2}
5662 Store the square root of operand 1 into operand 0.  Both operands have
5663 mode @var{m}, which is a scalar or vector floating-point mode.
5665 This pattern is not allowed to @code{FAIL}.
5667 @cindex @code{rsqrt@var{m}2} instruction pattern
5668 @item @samp{rsqrt@var{m}2}
5669 Store the reciprocal of the square root of operand 1 into operand 0.
5670 Both operands have mode @var{m}, which is a scalar or vector
5671 floating-point mode.
5673 On most architectures this pattern is only approximate, so either
5674 its C condition or the @code{TARGET_OPTAB_SUPPORTED_P} hook should
5675 check for the appropriate math flags.  (Using the C condition is
5676 more direct, but using @code{TARGET_OPTAB_SUPPORTED_P} can be useful
5677 if a target-specific built-in also uses the @samp{rsqrt@var{m}2}
5678 pattern.)
5680 This pattern is not allowed to @code{FAIL}.
5682 @cindex @code{fmod@var{m}3} instruction pattern
5683 @item @samp{fmod@var{m}3}
5684 Store the remainder of dividing operand 1 by operand 2 into
5685 operand 0, rounded towards zero to an integer.  All operands have
5686 mode @var{m}, which is a scalar or vector floating-point mode.
5688 This pattern is not allowed to @code{FAIL}.
5690 @cindex @code{remainder@var{m}3} instruction pattern
5691 @item @samp{remainder@var{m}3}
5692 Store the remainder of dividing operand 1 by operand 2 into
5693 operand 0, rounded to the nearest integer.  All operands have
5694 mode @var{m}, which is a scalar or vector floating-point mode.
5696 This pattern is not allowed to @code{FAIL}.
5698 @cindex @code{scalb@var{m}3} instruction pattern
5699 @item @samp{scalb@var{m}3}
5700 Raise @code{FLT_RADIX} to the power of operand 2, multiply it by
5701 operand 1, and store the result in operand 0.  All operands have
5702 mode @var{m}, which is a scalar or vector floating-point mode.
5704 This pattern is not allowed to @code{FAIL}.
5706 @cindex @code{ldexp@var{m}3} instruction pattern
5707 @item @samp{ldexp@var{m}3}
5708 Raise 2 to the power of operand 2, multiply it by operand 1, and store
5709 the result in operand 0.  Operands 0 and 1 have mode @var{m}, which is
5710 a scalar or vector floating-point mode.  Operand 2's mode has
5711 the same number of elements as @var{m} and each element is wide
5712 enough to store an @code{int}.  The integers are signed.
5714 This pattern is not allowed to @code{FAIL}.
5716 @cindex @code{cos@var{m}2} instruction pattern
5717 @item @samp{cos@var{m}2}
5718 Store the cosine of operand 1 into operand 0.  Both operands have
5719 mode @var{m}, which is a scalar or vector floating-point mode.
5721 This pattern is not allowed to @code{FAIL}.
5723 @cindex @code{sin@var{m}2} instruction pattern
5724 @item @samp{sin@var{m}2}
5725 Store the sine of operand 1 into operand 0.  Both operands have
5726 mode @var{m}, which is a scalar or vector floating-point mode.
5728 This pattern is not allowed to @code{FAIL}.
5730 @cindex @code{sincos@var{m}3} instruction pattern
5731 @item @samp{sincos@var{m}3}
5732 Store the cosine of operand 2 into operand 0 and the sine of
5733 operand 2 into operand 1.  All operands have mode @var{m},
5734 which is a scalar or vector floating-point mode.
5736 Targets that can calculate the sine and cosine simultaneously can
5737 implement this pattern as opposed to implementing individual
5738 @code{sin@var{m}2} and @code{cos@var{m}2} patterns.  The @code{sin}
5739 and @code{cos} built-in functions will then be expanded to the
5740 @code{sincos@var{m}3} pattern, with one of the output values
5741 left unused.
5743 @cindex @code{tan@var{m}2} instruction pattern
5744 @item @samp{tan@var{m}2}
5745 Store the tangent of operand 1 into operand 0.  Both operands have
5746 mode @var{m}, which is a scalar or vector floating-point mode.
5748 This pattern is not allowed to @code{FAIL}.
5750 @cindex @code{asin@var{m}2} instruction pattern
5751 @item @samp{asin@var{m}2}
5752 Store the arc sine of operand 1 into operand 0.  Both operands have
5753 mode @var{m}, which is a scalar or vector floating-point mode.
5755 This pattern is not allowed to @code{FAIL}.
5757 @cindex @code{acos@var{m}2} instruction pattern
5758 @item @samp{acos@var{m}2}
5759 Store the arc cosine of operand 1 into operand 0.  Both operands have
5760 mode @var{m}, which is a scalar or vector floating-point mode.
5762 This pattern is not allowed to @code{FAIL}.
5764 @cindex @code{atan@var{m}2} instruction pattern
5765 @item @samp{atan@var{m}2}
5766 Store the arc tangent of operand 1 into operand 0.  Both operands have
5767 mode @var{m}, which is a scalar or vector floating-point mode.
5769 This pattern is not allowed to @code{FAIL}.
5771 @cindex @code{exp@var{m}2} instruction pattern
5772 @item @samp{exp@var{m}2}
5773 Raise e (the base of natural logarithms) to the power of operand 1
5774 and store the result in operand 0.  Both operands have mode @var{m},
5775 which is a scalar or vector floating-point mode.
5777 This pattern is not allowed to @code{FAIL}.
5779 @cindex @code{expm1@var{m}2} instruction pattern
5780 @item @samp{expm1@var{m}2}
5781 Raise e (the base of natural logarithms) to the power of operand 1,
5782 subtract 1, and store the result in operand 0.  Both operands have
5783 mode @var{m}, which is a scalar or vector floating-point mode.
5785 For inputs close to zero, the pattern is expected to be more
5786 accurate than a separate @code{exp@var{m}2} and @code{sub@var{m}3}
5787 would be.
5789 This pattern is not allowed to @code{FAIL}.
5791 @cindex @code{exp10@var{m}2} instruction pattern
5792 @item @samp{exp10@var{m}2}
5793 Raise 10 to the power of operand 1 and store the result in operand 0.
5794 Both operands have mode @var{m}, which is a scalar or vector
5795 floating-point mode.
5797 This pattern is not allowed to @code{FAIL}.
5799 @cindex @code{exp2@var{m}2} instruction pattern
5800 @item @samp{exp2@var{m}2}
5801 Raise 2 to the power of operand 1 and store the result in operand 0.
5802 Both operands have mode @var{m}, which is a scalar or vector
5803 floating-point mode.
5805 This pattern is not allowed to @code{FAIL}.
5807 @cindex @code{log@var{m}2} instruction pattern
5808 @item @samp{log@var{m}2}
5809 Store the natural logarithm of operand 1 into operand 0.  Both operands
5810 have mode @var{m}, which is a scalar or vector floating-point mode.
5812 This pattern is not allowed to @code{FAIL}.
5814 @cindex @code{log1p@var{m}2} instruction pattern
5815 @item @samp{log1p@var{m}2}
5816 Add 1 to operand 1, compute the natural logarithm, and store
5817 the result in operand 0.  Both operands have mode @var{m}, which is
5818 a scalar or vector floating-point mode.
5820 For inputs close to zero, the pattern is expected to be more
5821 accurate than a separate @code{add@var{m}3} and @code{log@var{m}2}
5822 would be.
5824 This pattern is not allowed to @code{FAIL}.
5826 @cindex @code{log10@var{m}2} instruction pattern
5827 @item @samp{log10@var{m}2}
5828 Store the base-10 logarithm of operand 1 into operand 0.  Both operands
5829 have mode @var{m}, which is a scalar or vector floating-point mode.
5831 This pattern is not allowed to @code{FAIL}.
5833 @cindex @code{log2@var{m}2} instruction pattern
5834 @item @samp{log2@var{m}2}
5835 Store the base-2 logarithm of operand 1 into operand 0.  Both operands
5836 have mode @var{m}, which is a scalar or vector floating-point mode.
5838 This pattern is not allowed to @code{FAIL}.
5840 @cindex @code{logb@var{m}2} instruction pattern
5841 @item @samp{logb@var{m}2}
5842 Store the base-@code{FLT_RADIX} logarithm of operand 1 into operand 0.
5843 Both operands have mode @var{m}, which is a scalar or vector
5844 floating-point mode.
5846 This pattern is not allowed to @code{FAIL}.
5848 @cindex @code{significand@var{m}2} instruction pattern
5849 @item @samp{significand@var{m}2}
5850 Store the significand of floating-point operand 1 in operand 0.
5851 Both operands have mode @var{m}, which is a scalar or vector
5852 floating-point mode.
5854 This pattern is not allowed to @code{FAIL}.
5856 @cindex @code{pow@var{m}3} instruction pattern
5857 @item @samp{pow@var{m}3}
5858 Store the value of operand 1 raised to the exponent operand 2
5859 into operand 0.  All operands have mode @var{m}, which is a scalar
5860 or vector floating-point mode.
5862 This pattern is not allowed to @code{FAIL}.
5864 @cindex @code{atan2@var{m}3} instruction pattern
5865 @item @samp{atan2@var{m}3}
5866 Store the arc tangent (inverse tangent) of operand 1 divided by
5867 operand 2 into operand 0, using the signs of both arguments to
5868 determine the quadrant of the result.  All operands have mode
5869 @var{m}, which is a scalar or vector floating-point mode.
5871 This pattern is not allowed to @code{FAIL}.
5873 @cindex @code{floor@var{m}2} instruction pattern
5874 @item @samp{floor@var{m}2}
5875 Store the largest integral value not greater than operand 1 in operand 0.
5876 Both operands have mode @var{m}, which is a scalar or vector
5877 floating-point mode.  If @option{-ffp-int-builtin-inexact} is in
5878 effect, the ``inexact'' exception may be raised for noninteger
5879 operands; otherwise, it may not.
5881 This pattern is not allowed to @code{FAIL}.
5883 @cindex @code{btrunc@var{m}2} instruction pattern
5884 @item @samp{btrunc@var{m}2}
5885 Round operand 1 to an integer, towards zero, and store the result in
5886 operand 0.  Both operands have mode @var{m}, which is a scalar or
5887 vector floating-point mode.  If @option{-ffp-int-builtin-inexact} is
5888 in effect, the ``inexact'' exception may be raised for noninteger
5889 operands; otherwise, it may not.
5891 This pattern is not allowed to @code{FAIL}.
5893 @cindex @code{round@var{m}2} instruction pattern
5894 @item @samp{round@var{m}2}
5895 Round operand 1 to the nearest integer, rounding away from zero in the
5896 event of a tie, and store the result in operand 0.  Both operands have
5897 mode @var{m}, which is a scalar or vector floating-point mode.  If
5898 @option{-ffp-int-builtin-inexact} is in effect, the ``inexact''
5899 exception may be raised for noninteger operands; otherwise, it may
5900 not.
5902 This pattern is not allowed to @code{FAIL}.
5904 @cindex @code{ceil@var{m}2} instruction pattern
5905 @item @samp{ceil@var{m}2}
5906 Store the smallest integral value not less than operand 1 in operand 0.
5907 Both operands have mode @var{m}, which is a scalar or vector
5908 floating-point mode.  If @option{-ffp-int-builtin-inexact} is in
5909 effect, the ``inexact'' exception may be raised for noninteger
5910 operands; otherwise, it may not.
5912 This pattern is not allowed to @code{FAIL}.
5914 @cindex @code{nearbyint@var{m}2} instruction pattern
5915 @item @samp{nearbyint@var{m}2}
5916 Round operand 1 to an integer, using the current rounding mode, and
5917 store the result in operand 0.  Do not raise an inexact condition when
5918 the result is different from the argument.  Both operands have mode
5919 @var{m}, which is a scalar or vector floating-point mode.
5921 This pattern is not allowed to @code{FAIL}.
5923 @cindex @code{rint@var{m}2} instruction pattern
5924 @item @samp{rint@var{m}2}
5925 Round operand 1 to an integer, using the current rounding mode, and
5926 store the result in operand 0.  Raise an inexact condition when
5927 the result is different from the argument.  Both operands have mode
5928 @var{m}, which is a scalar or vector floating-point mode.
5930 This pattern is not allowed to @code{FAIL}.
5932 @cindex @code{lrint@var{m}@var{n}2}
5933 @item @samp{lrint@var{m}@var{n}2}
5934 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5935 point mode @var{n} as a signed number according to the current
5936 rounding mode and store in operand 0 (which has mode @var{n}).
5938 @cindex @code{lround@var{m}@var{n}2}
5939 @item @samp{lround@var{m}@var{n}2}
5940 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5941 point mode @var{n} as a signed number rounding to nearest and away
5942 from zero and store in operand 0 (which has mode @var{n}).
5944 @cindex @code{lfloor@var{m}@var{n}2}
5945 @item @samp{lfloor@var{m}@var{n}2}
5946 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5947 point mode @var{n} as a signed number rounding down and store in
5948 operand 0 (which has mode @var{n}).
5950 @cindex @code{lceil@var{m}@var{n}2}
5951 @item @samp{lceil@var{m}@var{n}2}
5952 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5953 point mode @var{n} as a signed number rounding up and store in
5954 operand 0 (which has mode @var{n}).
5956 @cindex @code{copysign@var{m}3} instruction pattern
5957 @item @samp{copysign@var{m}3}
5958 Store a value with the magnitude of operand 1 and the sign of operand
5959 2 into operand 0.  All operands have mode @var{m}, which is a scalar or
5960 vector floating-point mode.
5962 This pattern is not allowed to @code{FAIL}.
5964 @cindex @code{ffs@var{m}2} instruction pattern
5965 @item @samp{ffs@var{m}2}
5966 Store into operand 0 one plus the index of the least significant 1-bit
5967 of operand 1.  If operand 1 is zero, store zero.
5969 @var{m} is either a scalar or vector integer mode.  When it is a scalar,
5970 operand 1 has mode @var{m} but operand 0 can have whatever scalar
5971 integer mode is suitable for the target.  The compiler will insert
5972 conversion instructions as necessary (typically to convert the result
5973 to the same width as @code{int}).  When @var{m} is a vector, both
5974 operands must have mode @var{m}.
5976 This pattern is not allowed to @code{FAIL}.
5978 @cindex @code{clrsb@var{m}2} instruction pattern
5979 @item @samp{clrsb@var{m}2}
5980 Count leading redundant sign bits.
5981 Store into operand 0 the number of redundant sign bits in operand 1, starting
5982 at the most significant bit position.
5983 A redundant sign bit is defined as any sign bit after the first. As such,
5984 this count will be one less than the count of leading sign bits.
5986 @var{m} is either a scalar or vector integer mode.  When it is a scalar,
5987 operand 1 has mode @var{m} but operand 0 can have whatever scalar
5988 integer mode is suitable for the target.  The compiler will insert
5989 conversion instructions as necessary (typically to convert the result
5990 to the same width as @code{int}).  When @var{m} is a vector, both
5991 operands must have mode @var{m}.
5993 This pattern is not allowed to @code{FAIL}.
5995 @cindex @code{clz@var{m}2} instruction pattern
5996 @item @samp{clz@var{m}2}
5997 Store into operand 0 the number of leading 0-bits in operand 1, starting
5998 at the most significant bit position.  If operand 1 is 0, the
5999 @code{CLZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
6000 the result is undefined or has a useful value.
6002 @var{m} is either a scalar or vector integer mode.  When it is a scalar,
6003 operand 1 has mode @var{m} but operand 0 can have whatever scalar
6004 integer mode is suitable for the target.  The compiler will insert
6005 conversion instructions as necessary (typically to convert the result
6006 to the same width as @code{int}).  When @var{m} is a vector, both
6007 operands must have mode @var{m}.
6009 This pattern is not allowed to @code{FAIL}.
6011 @cindex @code{ctz@var{m}2} instruction pattern
6012 @item @samp{ctz@var{m}2}
6013 Store into operand 0 the number of trailing 0-bits in operand 1, starting
6014 at the least significant bit position.  If operand 1 is 0, the
6015 @code{CTZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
6016 the result is undefined or has a useful value.
6018 @var{m} is either a scalar or vector integer mode.  When it is a scalar,
6019 operand 1 has mode @var{m} but operand 0 can have whatever scalar
6020 integer mode is suitable for the target.  The compiler will insert
6021 conversion instructions as necessary (typically to convert the result
6022 to the same width as @code{int}).  When @var{m} is a vector, both
6023 operands must have mode @var{m}.
6025 This pattern is not allowed to @code{FAIL}.
6027 @cindex @code{popcount@var{m}2} instruction pattern
6028 @item @samp{popcount@var{m}2}
6029 Store into operand 0 the number of 1-bits in operand 1.
6031 @var{m} is either a scalar or vector integer mode.  When it is a scalar,
6032 operand 1 has mode @var{m} but operand 0 can have whatever scalar
6033 integer mode is suitable for the target.  The compiler will insert
6034 conversion instructions as necessary (typically to convert the result
6035 to the same width as @code{int}).  When @var{m} is a vector, both
6036 operands must have mode @var{m}.
6038 This pattern is not allowed to @code{FAIL}.
6040 @cindex @code{parity@var{m}2} instruction pattern
6041 @item @samp{parity@var{m}2}
6042 Store into operand 0 the parity of operand 1, i.e.@: the number of 1-bits
6043 in operand 1 modulo 2.
6045 @var{m} is either a scalar or vector integer mode.  When it is a scalar,
6046 operand 1 has mode @var{m} but operand 0 can have whatever scalar
6047 integer mode is suitable for the target.  The compiler will insert
6048 conversion instructions as necessary (typically to convert the result
6049 to the same width as @code{int}).  When @var{m} is a vector, both
6050 operands must have mode @var{m}.
6052 This pattern is not allowed to @code{FAIL}.
6054 @cindex @code{one_cmpl@var{m}2} instruction pattern
6055 @item @samp{one_cmpl@var{m}2}
6056 Store the bitwise-complement of operand 1 into operand 0.
6058 @cindex @code{movmem@var{m}} instruction pattern
6059 @item @samp{movmem@var{m}}
6060 Block move instruction.  The destination and source blocks of memory
6061 are the first two operands, and both are @code{mem:BLK}s with an
6062 address in mode @code{Pmode}.
6064 The number of bytes to move is the third operand, in mode @var{m}.
6065 Usually, you specify @code{Pmode} for @var{m}.  However, if you can
6066 generate better code knowing the range of valid lengths is smaller than
6067 those representable in a full Pmode pointer, you should provide
6068 a pattern with a
6069 mode corresponding to the range of values you can handle efficiently
6070 (e.g., @code{QImode} for values in the range 0--127; note we avoid numbers
6071 that appear negative) and also a pattern with @code{Pmode}.
6073 The fourth operand is the known shared alignment of the source and
6074 destination, in the form of a @code{const_int} rtx.  Thus, if the
6075 compiler knows that both source and destination are word-aligned,
6076 it may provide the value 4 for this operand.
6078 Optional operands 5 and 6 specify expected alignment and size of block
6079 respectively.  The expected alignment differs from alignment in operand 4
6080 in a way that the blocks are not required to be aligned according to it in
6081 all cases. This expected alignment is also in bytes, just like operand 4.
6082 Expected size, when unknown, is set to @code{(const_int -1)}.
6084 Descriptions of multiple @code{movmem@var{m}} patterns can only be
6085 beneficial if the patterns for smaller modes have fewer restrictions
6086 on their first, second and fourth operands.  Note that the mode @var{m}
6087 in @code{movmem@var{m}} does not impose any restriction on the mode of
6088 individually moved data units in the block.
6090 These patterns need not give special consideration to the possibility
6091 that the source and destination strings might overlap.
6093 @cindex @code{movstr} instruction pattern
6094 @item @samp{movstr}
6095 String copy instruction, with @code{stpcpy} semantics.  Operand 0 is
6096 an output operand in mode @code{Pmode}.  The addresses of the
6097 destination and source strings are operands 1 and 2, and both are
6098 @code{mem:BLK}s with addresses in mode @code{Pmode}.  The execution of
6099 the expansion of this pattern should store in operand 0 the address in
6100 which the @code{NUL} terminator was stored in the destination string.
6102 This patern has also several optional operands that are same as in
6103 @code{setmem}.
6105 @cindex @code{setmem@var{m}} instruction pattern
6106 @item @samp{setmem@var{m}}
6107 Block set instruction.  The destination string is the first operand,
6108 given as a @code{mem:BLK} whose address is in mode @code{Pmode}.  The
6109 number of bytes to set is the second operand, in mode @var{m}.  The value to
6110 initialize the memory with is the third operand. Targets that only support the
6111 clearing of memory should reject any value that is not the constant 0.  See
6112 @samp{movmem@var{m}} for a discussion of the choice of mode.
6114 The fourth operand is the known alignment of the destination, in the form
6115 of a @code{const_int} rtx.  Thus, if the compiler knows that the
6116 destination is word-aligned, it may provide the value 4 for this
6117 operand.
6119 Optional operands 5 and 6 specify expected alignment and size of block
6120 respectively.  The expected alignment differs from alignment in operand 4
6121 in a way that the blocks are not required to be aligned according to it in
6122 all cases. This expected alignment is also in bytes, just like operand 4.
6123 Expected size, when unknown, is set to @code{(const_int -1)}.
6124 Operand 7 is the minimal size of the block and operand 8 is the
6125 maximal size of the block (NULL if it can not be represented as CONST_INT).
6126 Operand 9 is the probable maximal size (i.e. we can not rely on it for correctness,
6127 but it can be used for choosing proper code sequence for a given size).
6129 The use for multiple @code{setmem@var{m}} is as for @code{movmem@var{m}}.
6131 @cindex @code{cmpstrn@var{m}} instruction pattern
6132 @item @samp{cmpstrn@var{m}}
6133 String compare instruction, with five operands.  Operand 0 is the output;
6134 it has mode @var{m}.  The remaining four operands are like the operands
6135 of @samp{movmem@var{m}}.  The two memory blocks specified are compared
6136 byte by byte in lexicographic order starting at the beginning of each
6137 string.  The instruction is not allowed to prefetch more than one byte
6138 at a time since either string may end in the first byte and reading past
6139 that may access an invalid page or segment and cause a fault.  The
6140 comparison terminates early if the fetched bytes are different or if
6141 they are equal to zero.  The effect of the instruction is to store a
6142 value in operand 0 whose sign indicates the result of the comparison.
6144 @cindex @code{cmpstr@var{m}} instruction pattern
6145 @item @samp{cmpstr@var{m}}
6146 String compare instruction, without known maximum length.  Operand 0 is the
6147 output; it has mode @var{m}.  The second and third operand are the blocks of
6148 memory to be compared; both are @code{mem:BLK} with an address in mode
6149 @code{Pmode}.
6151 The fourth operand is the known shared alignment of the source and
6152 destination, in the form of a @code{const_int} rtx.  Thus, if the
6153 compiler knows that both source and destination are word-aligned,
6154 it may provide the value 4 for this operand.
6156 The two memory blocks specified are compared byte by byte in lexicographic
6157 order starting at the beginning of each string.  The instruction is not allowed
6158 to prefetch more than one byte at a time since either string may end in the
6159 first byte and reading past that may access an invalid page or segment and
6160 cause a fault.  The comparison will terminate when the fetched bytes
6161 are different or if they are equal to zero.  The effect of the
6162 instruction is to store a value in operand 0 whose sign indicates the
6163 result of the comparison.
6165 @cindex @code{cmpmem@var{m}} instruction pattern
6166 @item @samp{cmpmem@var{m}}
6167 Block compare instruction, with five operands like the operands
6168 of @samp{cmpstr@var{m}}.  The two memory blocks specified are compared
6169 byte by byte in lexicographic order starting at the beginning of each
6170 block.  Unlike @samp{cmpstr@var{m}} the instruction can prefetch
6171 any bytes in the two memory blocks.  Also unlike @samp{cmpstr@var{m}}
6172 the comparison will not stop if both bytes are zero.  The effect of
6173 the instruction is to store a value in operand 0 whose sign indicates
6174 the result of the comparison.
6176 @cindex @code{strlen@var{m}} instruction pattern
6177 @item @samp{strlen@var{m}}
6178 Compute the length of a string, with three operands.
6179 Operand 0 is the result (of mode @var{m}), operand 1 is
6180 a @code{mem} referring to the first character of the string,
6181 operand 2 is the character to search for (normally zero),
6182 and operand 3 is a constant describing the known alignment
6183 of the beginning of the string.
6185 @cindex @code{float@var{m}@var{n}2} instruction pattern
6186 @item @samp{float@var{m}@var{n}2}
6187 Convert signed integer operand 1 (valid for fixed point mode @var{m}) to
6188 floating point mode @var{n} and store in operand 0 (which has mode
6189 @var{n}).
6191 @cindex @code{floatuns@var{m}@var{n}2} instruction pattern
6192 @item @samp{floatuns@var{m}@var{n}2}
6193 Convert unsigned integer operand 1 (valid for fixed point mode @var{m})
6194 to floating point mode @var{n} and store in operand 0 (which has mode
6195 @var{n}).
6197 @cindex @code{fix@var{m}@var{n}2} instruction pattern
6198 @item @samp{fix@var{m}@var{n}2}
6199 Convert operand 1 (valid for floating point mode @var{m}) to fixed
6200 point mode @var{n} as a signed number and store in operand 0 (which
6201 has mode @var{n}).  This instruction's result is defined only when
6202 the value of operand 1 is an integer.
6204 If the machine description defines this pattern, it also needs to
6205 define the @code{ftrunc} pattern.
6207 @cindex @code{fixuns@var{m}@var{n}2} instruction pattern
6208 @item @samp{fixuns@var{m}@var{n}2}
6209 Convert operand 1 (valid for floating point mode @var{m}) to fixed
6210 point mode @var{n} as an unsigned number and store in operand 0 (which
6211 has mode @var{n}).  This instruction's result is defined only when the
6212 value of operand 1 is an integer.
6214 @cindex @code{ftrunc@var{m}2} instruction pattern
6215 @item @samp{ftrunc@var{m}2}
6216 Convert operand 1 (valid for floating point mode @var{m}) to an
6217 integer value, still represented in floating point mode @var{m}, and
6218 store it in operand 0 (valid for floating point mode @var{m}).
6220 @cindex @code{fix_trunc@var{m}@var{n}2} instruction pattern
6221 @item @samp{fix_trunc@var{m}@var{n}2}
6222 Like @samp{fix@var{m}@var{n}2} but works for any floating point value
6223 of mode @var{m} by converting the value to an integer.
6225 @cindex @code{fixuns_trunc@var{m}@var{n}2} instruction pattern
6226 @item @samp{fixuns_trunc@var{m}@var{n}2}
6227 Like @samp{fixuns@var{m}@var{n}2} but works for any floating point
6228 value of mode @var{m} by converting the value to an integer.
6230 @cindex @code{trunc@var{m}@var{n}2} instruction pattern
6231 @item @samp{trunc@var{m}@var{n}2}
6232 Truncate operand 1 (valid for mode @var{m}) to mode @var{n} and
6233 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
6234 point or both floating point.
6236 @cindex @code{extend@var{m}@var{n}2} instruction pattern
6237 @item @samp{extend@var{m}@var{n}2}
6238 Sign-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
6239 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
6240 point or both floating point.
6242 @cindex @code{zero_extend@var{m}@var{n}2} instruction pattern
6243 @item @samp{zero_extend@var{m}@var{n}2}
6244 Zero-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
6245 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
6246 point.
6248 @cindex @code{fract@var{m}@var{n}2} instruction pattern
6249 @item @samp{fract@var{m}@var{n}2}
6250 Convert operand 1 of mode @var{m} to mode @var{n} and store in
6251 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
6252 could be fixed-point to fixed-point, signed integer to fixed-point,
6253 fixed-point to signed integer, floating-point to fixed-point,
6254 or fixed-point to floating-point.
6255 When overflows or underflows happen, the results are undefined.
6257 @cindex @code{satfract@var{m}@var{n}2} instruction pattern
6258 @item @samp{satfract@var{m}@var{n}2}
6259 Convert operand 1 of mode @var{m} to mode @var{n} and store in
6260 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
6261 could be fixed-point to fixed-point, signed integer to fixed-point,
6262 or floating-point to fixed-point.
6263 When overflows or underflows happen, the instruction saturates the
6264 results to the maximum or the minimum.
6266 @cindex @code{fractuns@var{m}@var{n}2} instruction pattern
6267 @item @samp{fractuns@var{m}@var{n}2}
6268 Convert operand 1 of mode @var{m} to mode @var{n} and store in
6269 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
6270 could be unsigned integer to fixed-point, or
6271 fixed-point to unsigned integer.
6272 When overflows or underflows happen, the results are undefined.
6274 @cindex @code{satfractuns@var{m}@var{n}2} instruction pattern
6275 @item @samp{satfractuns@var{m}@var{n}2}
6276 Convert unsigned integer operand 1 of mode @var{m} to fixed-point mode
6277 @var{n} and store in operand 0 (which has mode @var{n}).
6278 When overflows or underflows happen, the instruction saturates the
6279 results to the maximum or the minimum.
6281 @cindex @code{extv@var{m}} instruction pattern
6282 @item @samp{extv@var{m}}
6283 Extract a bit-field from register operand 1, sign-extend it, and store
6284 it in operand 0.  Operand 2 specifies the width of the field in bits
6285 and operand 3 the starting bit, which counts from the most significant
6286 bit if @samp{BITS_BIG_ENDIAN} is true and from the least significant bit
6287 otherwise.
6289 Operands 0 and 1 both have mode @var{m}.  Operands 2 and 3 have a
6290 target-specific mode.
6292 @cindex @code{extvmisalign@var{m}} instruction pattern
6293 @item @samp{extvmisalign@var{m}}
6294 Extract a bit-field from memory operand 1, sign extend it, and store
6295 it in operand 0.  Operand 2 specifies the width in bits and operand 3
6296 the starting bit.  The starting bit is always somewhere in the first byte of
6297 operand 1; it counts from the most significant bit if @samp{BITS_BIG_ENDIAN}
6298 is true and from the least significant bit otherwise.
6300 Operand 0 has mode @var{m} while operand 1 has @code{BLK} mode.
6301 Operands 2 and 3 have a target-specific mode.
6303 The instruction must not read beyond the last byte of the bit-field.
6305 @cindex @code{extzv@var{m}} instruction pattern
6306 @item @samp{extzv@var{m}}
6307 Like @samp{extv@var{m}} except that the bit-field value is zero-extended.
6309 @cindex @code{extzvmisalign@var{m}} instruction pattern
6310 @item @samp{extzvmisalign@var{m}}
6311 Like @samp{extvmisalign@var{m}} except that the bit-field value is
6312 zero-extended.
6314 @cindex @code{insv@var{m}} instruction pattern
6315 @item @samp{insv@var{m}}
6316 Insert operand 3 into a bit-field of register operand 0.  Operand 1
6317 specifies the width of the field in bits and operand 2 the starting bit,
6318 which counts from the most significant bit if @samp{BITS_BIG_ENDIAN}
6319 is true and from the least significant bit otherwise.
6321 Operands 0 and 3 both have mode @var{m}.  Operands 1 and 2 have a
6322 target-specific mode.
6324 @cindex @code{insvmisalign@var{m}} instruction pattern
6325 @item @samp{insvmisalign@var{m}}
6326 Insert operand 3 into a bit-field of memory operand 0.  Operand 1
6327 specifies the width of the field in bits and operand 2 the starting bit.
6328 The starting bit is always somewhere in the first byte of operand 0;
6329 it counts from the most significant bit if @samp{BITS_BIG_ENDIAN}
6330 is true and from the least significant bit otherwise.
6332 Operand 3 has mode @var{m} while operand 0 has @code{BLK} mode.
6333 Operands 1 and 2 have a target-specific mode.
6335 The instruction must not read or write beyond the last byte of the bit-field.
6337 @cindex @code{extv} instruction pattern
6338 @item @samp{extv}
6339 Extract a bit-field from operand 1 (a register or memory operand), where
6340 operand 2 specifies the width in bits and operand 3 the starting bit,
6341 and store it in operand 0.  Operand 0 must have mode @code{word_mode}.
6342 Operand 1 may have mode @code{byte_mode} or @code{word_mode}; often
6343 @code{word_mode} is allowed only for registers.  Operands 2 and 3 must
6344 be valid for @code{word_mode}.
6346 The RTL generation pass generates this instruction only with constants
6347 for operands 2 and 3 and the constant is never zero for operand 2.
6349 The bit-field value is sign-extended to a full word integer
6350 before it is stored in operand 0.
6352 This pattern is deprecated; please use @samp{extv@var{m}} and
6353 @code{extvmisalign@var{m}} instead.
6355 @cindex @code{extzv} instruction pattern
6356 @item @samp{extzv}
6357 Like @samp{extv} except that the bit-field value is zero-extended.
6359 This pattern is deprecated; please use @samp{extzv@var{m}} and
6360 @code{extzvmisalign@var{m}} instead.
6362 @cindex @code{insv} instruction pattern
6363 @item @samp{insv}
6364 Store operand 3 (which must be valid for @code{word_mode}) into a
6365 bit-field in operand 0, where operand 1 specifies the width in bits and
6366 operand 2 the starting bit.  Operand 0 may have mode @code{byte_mode} or
6367 @code{word_mode}; often @code{word_mode} is allowed only for registers.
6368 Operands 1 and 2 must be valid for @code{word_mode}.
6370 The RTL generation pass generates this instruction only with constants
6371 for operands 1 and 2 and the constant is never zero for operand 1.
6373 This pattern is deprecated; please use @samp{insv@var{m}} and
6374 @code{insvmisalign@var{m}} instead.
6376 @cindex @code{mov@var{mode}cc} instruction pattern
6377 @item @samp{mov@var{mode}cc}
6378 Conditionally move operand 2 or operand 3 into operand 0 according to the
6379 comparison in operand 1.  If the comparison is true, operand 2 is moved
6380 into operand 0, otherwise operand 3 is moved.
6382 The mode of the operands being compared need not be the same as the operands
6383 being moved.  Some machines, sparc64 for example, have instructions that
6384 conditionally move an integer value based on the floating point condition
6385 codes and vice versa.
6387 If the machine does not have conditional move instructions, do not
6388 define these patterns.
6390 @cindex @code{add@var{mode}cc} instruction pattern
6391 @item @samp{add@var{mode}cc}
6392 Similar to @samp{mov@var{mode}cc} but for conditional addition.  Conditionally
6393 move operand 2 or (operands 2 + operand 3) into operand 0 according to the
6394 comparison in operand 1.  If the comparison is false, operand 2 is moved into
6395 operand 0, otherwise (operand 2 + operand 3) is moved.
6397 @cindex @code{cond_add@var{mode}} instruction pattern
6398 @cindex @code{cond_sub@var{mode}} instruction pattern
6399 @cindex @code{cond_mul@var{mode}} instruction pattern
6400 @cindex @code{cond_div@var{mode}} instruction pattern
6401 @cindex @code{cond_udiv@var{mode}} instruction pattern
6402 @cindex @code{cond_mod@var{mode}} instruction pattern
6403 @cindex @code{cond_umod@var{mode}} instruction pattern
6404 @cindex @code{cond_and@var{mode}} instruction pattern
6405 @cindex @code{cond_ior@var{mode}} instruction pattern
6406 @cindex @code{cond_xor@var{mode}} instruction pattern
6407 @cindex @code{cond_smin@var{mode}} instruction pattern
6408 @cindex @code{cond_smax@var{mode}} instruction pattern
6409 @cindex @code{cond_umin@var{mode}} instruction pattern
6410 @cindex @code{cond_umax@var{mode}} instruction pattern
6411 @item @samp{cond_add@var{mode}}
6412 @itemx @samp{cond_sub@var{mode}}
6413 @itemx @samp{cond_mul@var{mode}}
6414 @itemx @samp{cond_div@var{mode}}
6415 @itemx @samp{cond_udiv@var{mode}}
6416 @itemx @samp{cond_mod@var{mode}}
6417 @itemx @samp{cond_umod@var{mode}}
6418 @itemx @samp{cond_and@var{mode}}
6419 @itemx @samp{cond_ior@var{mode}}
6420 @itemx @samp{cond_xor@var{mode}}
6421 @itemx @samp{cond_smin@var{mode}}
6422 @itemx @samp{cond_smax@var{mode}}
6423 @itemx @samp{cond_umin@var{mode}}
6424 @itemx @samp{cond_umax@var{mode}}
6425 When operand 1 is true, perform an operation on operands 2 and 3 and
6426 store the result in operand 0, otherwise store operand 4 in operand 0.
6427 The operation works elementwise if the operands are vectors.
6429 The scalar case is equivalent to:
6431 @smallexample
6432 op0 = op1 ? op2 @var{op} op3 : op4;
6433 @end smallexample
6435 while the vector case is equivalent to:
6437 @smallexample
6438 for (i = 0; i < GET_MODE_NUNITS (@var{m}); i++)
6439   op0[i] = op1[i] ? op2[i] @var{op} op3[i] : op4[i];
6440 @end smallexample
6442 where, for example, @var{op} is @code{+} for @samp{cond_add@var{mode}}.
6444 When defined for floating-point modes, the contents of @samp{op3[i]}
6445 are not interpreted if @var{op1[i]} is false, just like they would not
6446 be in a normal C @samp{?:} condition.
6448 Operands 0, 2, 3 and 4 all have mode @var{m}.  Operand 1 is a scalar
6449 integer if @var{m} is scalar, otherwise it has the mode returned by
6450 @code{TARGET_VECTORIZE_GET_MASK_MODE}.
6452 @cindex @code{cond_fma@var{mode}} instruction pattern
6453 @cindex @code{cond_fms@var{mode}} instruction pattern
6454 @cindex @code{cond_fnma@var{mode}} instruction pattern
6455 @cindex @code{cond_fnms@var{mode}} instruction pattern
6456 @item @samp{cond_fma@var{mode}}
6457 @itemx @samp{cond_fms@var{mode}}
6458 @itemx @samp{cond_fnma@var{mode}}
6459 @itemx @samp{cond_fnms@var{mode}}
6460 Like @samp{cond_add@var{m}}, except that the conditional operation
6461 takes 3 operands rather than two.  For example, the vector form of
6462 @samp{cond_fma@var{mode}} is equivalent to:
6464 @smallexample
6465 for (i = 0; i < GET_MODE_NUNITS (@var{m}); i++)
6466   op0[i] = op1[i] ? fma (op2[i], op3[i], op4[i]) : op5[i];
6467 @end smallexample
6469 @cindex @code{neg@var{mode}cc} instruction pattern
6470 @item @samp{neg@var{mode}cc}
6471 Similar to @samp{mov@var{mode}cc} but for conditional negation.  Conditionally
6472 move the negation of operand 2 or the unchanged operand 3 into operand 0
6473 according to the comparison in operand 1.  If the comparison is true, the negation
6474 of operand 2 is moved into operand 0, otherwise operand 3 is moved.
6476 @cindex @code{not@var{mode}cc} instruction pattern
6477 @item @samp{not@var{mode}cc}
6478 Similar to @samp{neg@var{mode}cc} but for conditional complement.
6479 Conditionally move the bitwise complement of operand 2 or the unchanged
6480 operand 3 into operand 0 according to the comparison in operand 1.
6481 If the comparison is true, the complement of operand 2 is moved into
6482 operand 0, otherwise operand 3 is moved.
6484 @cindex @code{cstore@var{mode}4} instruction pattern
6485 @item @samp{cstore@var{mode}4}
6486 Store zero or nonzero in operand 0 according to whether a comparison
6487 is true.  Operand 1 is a comparison operator.  Operand 2 and operand 3
6488 are the first and second operand of the comparison, respectively.
6489 You specify the mode that operand 0 must have when you write the
6490 @code{match_operand} expression.  The compiler automatically sees which
6491 mode you have used and supplies an operand of that mode.
6493 The value stored for a true condition must have 1 as its low bit, or
6494 else must be negative.  Otherwise the instruction is not suitable and
6495 you should omit it from the machine description.  You describe to the
6496 compiler exactly which value is stored by defining the macro
6497 @code{STORE_FLAG_VALUE} (@pxref{Misc}).  If a description cannot be
6498 found that can be used for all the possible comparison operators, you
6499 should pick one and use a @code{define_expand} to map all results
6500 onto the one you chose.
6502 These operations may @code{FAIL}, but should do so only in relatively
6503 uncommon cases; if they would @code{FAIL} for common cases involving
6504 integer comparisons, it is best to restrict the predicates to not
6505 allow these operands.  Likewise if a given comparison operator will
6506 always fail, independent of the operands (for floating-point modes, the
6507 @code{ordered_comparison_operator} predicate is often useful in this case).
6509 If this pattern is omitted, the compiler will generate a conditional
6510 branch---for example, it may copy a constant one to the target and branching
6511 around an assignment of zero to the target---or a libcall.  If the predicate
6512 for operand 1 only rejects some operators, it will also try reordering the
6513 operands and/or inverting the result value (e.g.@: by an exclusive OR).
6514 These possibilities could be cheaper or equivalent to the instructions
6515 used for the @samp{cstore@var{mode}4} pattern followed by those required
6516 to convert a positive result from @code{STORE_FLAG_VALUE} to 1; in this
6517 case, you can and should make operand 1's predicate reject some operators
6518 in the @samp{cstore@var{mode}4} pattern, or remove the pattern altogether
6519 from the machine description.
6521 @cindex @code{cbranch@var{mode}4} instruction pattern
6522 @item @samp{cbranch@var{mode}4}
6523 Conditional branch instruction combined with a compare instruction.
6524 Operand 0 is a comparison operator.  Operand 1 and operand 2 are the
6525 first and second operands of the comparison, respectively.  Operand 3
6526 is the @code{code_label} to jump to.
6528 @cindex @code{jump} instruction pattern
6529 @item @samp{jump}
6530 A jump inside a function; an unconditional branch.  Operand 0 is the
6531 @code{code_label} to jump to.  This pattern name is mandatory on all
6532 machines.
6534 @cindex @code{call} instruction pattern
6535 @item @samp{call}
6536 Subroutine call instruction returning no value.  Operand 0 is the
6537 function to call; operand 1 is the number of bytes of arguments pushed
6538 as a @code{const_int}; operand 2 is the number of registers used as
6539 operands.
6541 On most machines, operand 2 is not actually stored into the RTL
6542 pattern.  It is supplied for the sake of some RISC machines which need
6543 to put this information into the assembler code; they can put it in
6544 the RTL instead of operand 1.
6546 Operand 0 should be a @code{mem} RTX whose address is the address of the
6547 function.  Note, however, that this address can be a @code{symbol_ref}
6548 expression even if it would not be a legitimate memory address on the
6549 target machine.  If it is also not a valid argument for a call
6550 instruction, the pattern for this operation should be a
6551 @code{define_expand} (@pxref{Expander Definitions}) that places the
6552 address into a register and uses that register in the call instruction.
6554 @cindex @code{call_value} instruction pattern
6555 @item @samp{call_value}
6556 Subroutine call instruction returning a value.  Operand 0 is the hard
6557 register in which the value is returned.  There are three more
6558 operands, the same as the three operands of the @samp{call}
6559 instruction (but with numbers increased by one).
6561 Subroutines that return @code{BLKmode} objects use the @samp{call}
6562 insn.
6564 @cindex @code{call_pop} instruction pattern
6565 @cindex @code{call_value_pop} instruction pattern
6566 @item @samp{call_pop}, @samp{call_value_pop}
6567 Similar to @samp{call} and @samp{call_value}, except used if defined and
6568 if @code{RETURN_POPS_ARGS} is nonzero.  They should emit a @code{parallel}
6569 that contains both the function call and a @code{set} to indicate the
6570 adjustment made to the frame pointer.
6572 For machines where @code{RETURN_POPS_ARGS} can be nonzero, the use of these
6573 patterns increases the number of functions for which the frame pointer
6574 can be eliminated, if desired.
6576 @cindex @code{untyped_call} instruction pattern
6577 @item @samp{untyped_call}
6578 Subroutine call instruction returning a value of any type.  Operand 0 is
6579 the function to call; operand 1 is a memory location where the result of
6580 calling the function is to be stored; operand 2 is a @code{parallel}
6581 expression where each element is a @code{set} expression that indicates
6582 the saving of a function return value into the result block.
6584 This instruction pattern should be defined to support
6585 @code{__builtin_apply} on machines where special instructions are needed
6586 to call a subroutine with arbitrary arguments or to save the value
6587 returned.  This instruction pattern is required on machines that have
6588 multiple registers that can hold a return value
6589 (i.e.@: @code{FUNCTION_VALUE_REGNO_P} is true for more than one register).
6591 @cindex @code{return} instruction pattern
6592 @item @samp{return}
6593 Subroutine return instruction.  This instruction pattern name should be
6594 defined only if a single instruction can do all the work of returning
6595 from a function.
6597 Like the @samp{mov@var{m}} patterns, this pattern is also used after the
6598 RTL generation phase.  In this case it is to support machines where
6599 multiple instructions are usually needed to return from a function, but
6600 some class of functions only requires one instruction to implement a
6601 return.  Normally, the applicable functions are those which do not need
6602 to save any registers or allocate stack space.
6604 It is valid for this pattern to expand to an instruction using
6605 @code{simple_return} if no epilogue is required.
6607 @cindex @code{simple_return} instruction pattern
6608 @item @samp{simple_return}
6609 Subroutine return instruction.  This instruction pattern name should be
6610 defined only if a single instruction can do all the work of returning
6611 from a function on a path where no epilogue is required.  This pattern
6612 is very similar to the @code{return} instruction pattern, but it is emitted
6613 only by the shrink-wrapping optimization on paths where the function
6614 prologue has not been executed, and a function return should occur without
6615 any of the effects of the epilogue.  Additional uses may be introduced on
6616 paths where both the prologue and the epilogue have executed.
6618 @findex reload_completed
6619 @findex leaf_function_p
6620 For such machines, the condition specified in this pattern should only
6621 be true when @code{reload_completed} is nonzero and the function's
6622 epilogue would only be a single instruction.  For machines with register
6623 windows, the routine @code{leaf_function_p} may be used to determine if
6624 a register window push is required.
6626 Machines that have conditional return instructions should define patterns
6627 such as
6629 @smallexample
6630 (define_insn ""
6631   [(set (pc)
6632         (if_then_else (match_operator
6633                          0 "comparison_operator"
6634                          [(cc0) (const_int 0)])
6635                       (return)
6636                       (pc)))]
6637   "@var{condition}"
6638   "@dots{}")
6639 @end smallexample
6641 where @var{condition} would normally be the same condition specified on the
6642 named @samp{return} pattern.
6644 @cindex @code{untyped_return} instruction pattern
6645 @item @samp{untyped_return}
6646 Untyped subroutine return instruction.  This instruction pattern should
6647 be defined to support @code{__builtin_return} on machines where special
6648 instructions are needed to return a value of any type.
6650 Operand 0 is a memory location where the result of calling a function
6651 with @code{__builtin_apply} is stored; operand 1 is a @code{parallel}
6652 expression where each element is a @code{set} expression that indicates
6653 the restoring of a function return value from the result block.
6655 @cindex @code{nop} instruction pattern
6656 @item @samp{nop}
6657 No-op instruction.  This instruction pattern name should always be defined
6658 to output a no-op in assembler code.  @code{(const_int 0)} will do as an
6659 RTL pattern.
6661 @cindex @code{indirect_jump} instruction pattern
6662 @item @samp{indirect_jump}
6663 An instruction to jump to an address which is operand zero.
6664 This pattern name is mandatory on all machines.
6666 @cindex @code{casesi} instruction pattern
6667 @item @samp{casesi}
6668 Instruction to jump through a dispatch table, including bounds checking.
6669 This instruction takes five operands:
6671 @enumerate
6672 @item
6673 The index to dispatch on, which has mode @code{SImode}.
6675 @item
6676 The lower bound for indices in the table, an integer constant.
6678 @item
6679 The total range of indices in the table---the largest index
6680 minus the smallest one (both inclusive).
6682 @item
6683 A label that precedes the table itself.
6685 @item
6686 A label to jump to if the index has a value outside the bounds.
6687 @end enumerate
6689 The table is an @code{addr_vec} or @code{addr_diff_vec} inside of a
6690 @code{jump_table_data}.  The number of elements in the table is one plus the
6691 difference between the upper bound and the lower bound.
6693 @cindex @code{tablejump} instruction pattern
6694 @item @samp{tablejump}
6695 Instruction to jump to a variable address.  This is a low-level
6696 capability which can be used to implement a dispatch table when there
6697 is no @samp{casesi} pattern.
6699 This pattern requires two operands: the address or offset, and a label
6700 which should immediately precede the jump table.  If the macro
6701 @code{CASE_VECTOR_PC_RELATIVE} evaluates to a nonzero value then the first
6702 operand is an offset which counts from the address of the table; otherwise,
6703 it is an absolute address to jump to.  In either case, the first operand has
6704 mode @code{Pmode}.
6706 The @samp{tablejump} insn is always the last insn before the jump
6707 table it uses.  Its assembler code normally has no need to use the
6708 second operand, but you should incorporate it in the RTL pattern so
6709 that the jump optimizer will not delete the table as unreachable code.
6712 @cindex @code{doloop_end} instruction pattern
6713 @item @samp{doloop_end}
6714 Conditional branch instruction that decrements a register and
6715 jumps if the register is nonzero.  Operand 0 is the register to
6716 decrement and test; operand 1 is the label to jump to if the
6717 register is nonzero.
6718 @xref{Looping Patterns}.
6720 This optional instruction pattern should be defined for machines with
6721 low-overhead looping instructions as the loop optimizer will try to
6722 modify suitable loops to utilize it.  The target hook
6723 @code{TARGET_CAN_USE_DOLOOP_P} controls the conditions under which
6724 low-overhead loops can be used.
6726 @cindex @code{doloop_begin} instruction pattern
6727 @item @samp{doloop_begin}
6728 Companion instruction to @code{doloop_end} required for machines that
6729 need to perform some initialization, such as loading a special counter
6730 register.  Operand 1 is the associated @code{doloop_end} pattern and
6731 operand 0 is the register that it decrements.
6733 If initialization insns do not always need to be emitted, use a
6734 @code{define_expand} (@pxref{Expander Definitions}) and make it fail.
6736 @cindex @code{canonicalize_funcptr_for_compare} instruction pattern
6737 @item @samp{canonicalize_funcptr_for_compare}
6738 Canonicalize the function pointer in operand 1 and store the result
6739 into operand 0.
6741 Operand 0 is always a @code{reg} and has mode @code{Pmode}; operand 1
6742 may be a @code{reg}, @code{mem}, @code{symbol_ref}, @code{const_int}, etc
6743 and also has mode @code{Pmode}.
6745 Canonicalization of a function pointer usually involves computing
6746 the address of the function which would be called if the function
6747 pointer were used in an indirect call.
6749 Only define this pattern if function pointers on the target machine
6750 can have different values but still call the same function when
6751 used in an indirect call.
6753 @cindex @code{save_stack_block} instruction pattern
6754 @cindex @code{save_stack_function} instruction pattern
6755 @cindex @code{save_stack_nonlocal} instruction pattern
6756 @cindex @code{restore_stack_block} instruction pattern
6757 @cindex @code{restore_stack_function} instruction pattern
6758 @cindex @code{restore_stack_nonlocal} instruction pattern
6759 @item @samp{save_stack_block}
6760 @itemx @samp{save_stack_function}
6761 @itemx @samp{save_stack_nonlocal}
6762 @itemx @samp{restore_stack_block}
6763 @itemx @samp{restore_stack_function}
6764 @itemx @samp{restore_stack_nonlocal}
6765 Most machines save and restore the stack pointer by copying it to or
6766 from an object of mode @code{Pmode}.  Do not define these patterns on
6767 such machines.
6769 Some machines require special handling for stack pointer saves and
6770 restores.  On those machines, define the patterns corresponding to the
6771 non-standard cases by using a @code{define_expand} (@pxref{Expander
6772 Definitions}) that produces the required insns.  The three types of
6773 saves and restores are:
6775 @enumerate
6776 @item
6777 @samp{save_stack_block} saves the stack pointer at the start of a block
6778 that allocates a variable-sized object, and @samp{restore_stack_block}
6779 restores the stack pointer when the block is exited.
6781 @item
6782 @samp{save_stack_function} and @samp{restore_stack_function} do a
6783 similar job for the outermost block of a function and are used when the
6784 function allocates variable-sized objects or calls @code{alloca}.  Only
6785 the epilogue uses the restored stack pointer, allowing a simpler save or
6786 restore sequence on some machines.
6788 @item
6789 @samp{save_stack_nonlocal} is used in functions that contain labels
6790 branched to by nested functions.  It saves the stack pointer in such a
6791 way that the inner function can use @samp{restore_stack_nonlocal} to
6792 restore the stack pointer.  The compiler generates code to restore the
6793 frame and argument pointer registers, but some machines require saving
6794 and restoring additional data such as register window information or
6795 stack backchains.  Place insns in these patterns to save and restore any
6796 such required data.
6797 @end enumerate
6799 When saving the stack pointer, operand 0 is the save area and operand 1
6800 is the stack pointer.  The mode used to allocate the save area defaults
6801 to @code{Pmode} but you can override that choice by defining the
6802 @code{STACK_SAVEAREA_MODE} macro (@pxref{Storage Layout}).  You must
6803 specify an integral mode, or @code{VOIDmode} if no save area is needed
6804 for a particular type of save (either because no save is needed or
6805 because a machine-specific save area can be used).  Operand 0 is the
6806 stack pointer and operand 1 is the save area for restore operations.  If
6807 @samp{save_stack_block} is defined, operand 0 must not be
6808 @code{VOIDmode} since these saves can be arbitrarily nested.
6810 A save area is a @code{mem} that is at a constant offset from
6811 @code{virtual_stack_vars_rtx} when the stack pointer is saved for use by
6812 nonlocal gotos and a @code{reg} in the other two cases.
6814 @cindex @code{allocate_stack} instruction pattern
6815 @item @samp{allocate_stack}
6816 Subtract (or add if @code{STACK_GROWS_DOWNWARD} is undefined) operand 1 from
6817 the stack pointer to create space for dynamically allocated data.
6819 Store the resultant pointer to this space into operand 0.  If you
6820 are allocating space from the main stack, do this by emitting a
6821 move insn to copy @code{virtual_stack_dynamic_rtx} to operand 0.
6822 If you are allocating the space elsewhere, generate code to copy the
6823 location of the space to operand 0.  In the latter case, you must
6824 ensure this space gets freed when the corresponding space on the main
6825 stack is free.
6827 Do not define this pattern if all that must be done is the subtraction.
6828 Some machines require other operations such as stack probes or
6829 maintaining the back chain.  Define this pattern to emit those
6830 operations in addition to updating the stack pointer.
6832 @cindex @code{check_stack} instruction pattern
6833 @item @samp{check_stack}
6834 If stack checking (@pxref{Stack Checking}) cannot be done on your system by
6835 probing the stack, define this pattern to perform the needed check and signal
6836 an error if the stack has overflowed.  The single operand is the address in
6837 the stack farthest from the current stack pointer that you need to validate.
6838 Normally, on platforms where this pattern is needed, you would obtain the
6839 stack limit from a global or thread-specific variable or register.
6841 @cindex @code{probe_stack_address} instruction pattern
6842 @item @samp{probe_stack_address}
6843 If stack checking (@pxref{Stack Checking}) can be done on your system by
6844 probing the stack but without the need to actually access it, define this
6845 pattern and signal an error if the stack has overflowed.  The single operand
6846 is the memory address in the stack that needs to be probed.
6848 @cindex @code{probe_stack} instruction pattern
6849 @item @samp{probe_stack}
6850 If stack checking (@pxref{Stack Checking}) can be done on your system by
6851 probing the stack but doing it with a ``store zero'' instruction is not valid
6852 or optimal, define this pattern to do the probing differently and signal an
6853 error if the stack has overflowed.  The single operand is the memory reference
6854 in the stack that needs to be probed.
6856 @cindex @code{nonlocal_goto} instruction pattern
6857 @item @samp{nonlocal_goto}
6858 Emit code to generate a non-local goto, e.g., a jump from one function
6859 to a label in an outer function.  This pattern has four arguments,
6860 each representing a value to be used in the jump.  The first
6861 argument is to be loaded into the frame pointer, the second is
6862 the address to branch to (code to dispatch to the actual label),
6863 the third is the address of a location where the stack is saved,
6864 and the last is the address of the label, to be placed in the
6865 location for the incoming static chain.
6867 On most machines you need not define this pattern, since GCC will
6868 already generate the correct code, which is to load the frame pointer
6869 and static chain, restore the stack (using the
6870 @samp{restore_stack_nonlocal} pattern, if defined), and jump indirectly
6871 to the dispatcher.  You need only define this pattern if this code will
6872 not work on your machine.
6874 @cindex @code{nonlocal_goto_receiver} instruction pattern
6875 @item @samp{nonlocal_goto_receiver}
6876 This pattern, if defined, contains code needed at the target of a
6877 nonlocal goto after the code already generated by GCC@.  You will not
6878 normally need to define this pattern.  A typical reason why you might
6879 need this pattern is if some value, such as a pointer to a global table,
6880 must be restored when the frame pointer is restored.  Note that a nonlocal
6881 goto only occurs within a unit-of-translation, so a global table pointer
6882 that is shared by all functions of a given module need not be restored.
6883 There are no arguments.
6885 @cindex @code{exception_receiver} instruction pattern
6886 @item @samp{exception_receiver}
6887 This pattern, if defined, contains code needed at the site of an
6888 exception handler that isn't needed at the site of a nonlocal goto.  You
6889 will not normally need to define this pattern.  A typical reason why you
6890 might need this pattern is if some value, such as a pointer to a global
6891 table, must be restored after control flow is branched to the handler of
6892 an exception.  There are no arguments.
6894 @cindex @code{builtin_setjmp_setup} instruction pattern
6895 @item @samp{builtin_setjmp_setup}
6896 This pattern, if defined, contains additional code needed to initialize
6897 the @code{jmp_buf}.  You will not normally need to define this pattern.
6898 A typical reason why you might need this pattern is if some value, such
6899 as a pointer to a global table, must be restored.  Though it is
6900 preferred that the pointer value be recalculated if possible (given the
6901 address of a label for instance).  The single argument is a pointer to
6902 the @code{jmp_buf}.  Note that the buffer is five words long and that
6903 the first three are normally used by the generic mechanism.
6905 @cindex @code{builtin_setjmp_receiver} instruction pattern
6906 @item @samp{builtin_setjmp_receiver}
6907 This pattern, if defined, contains code needed at the site of a
6908 built-in setjmp that isn't needed at the site of a nonlocal goto.  You
6909 will not normally need to define this pattern.  A typical reason why you
6910 might need this pattern is if some value, such as a pointer to a global
6911 table, must be restored.  It takes one argument, which is the label
6912 to which builtin_longjmp transferred control; this pattern may be emitted
6913 at a small offset from that label.
6915 @cindex @code{builtin_longjmp} instruction pattern
6916 @item @samp{builtin_longjmp}
6917 This pattern, if defined, performs the entire action of the longjmp.
6918 You will not normally need to define this pattern unless you also define
6919 @code{builtin_setjmp_setup}.  The single argument is a pointer to the
6920 @code{jmp_buf}.
6922 @cindex @code{eh_return} instruction pattern
6923 @item @samp{eh_return}
6924 This pattern, if defined, affects the way @code{__builtin_eh_return},
6925 and thence the call frame exception handling library routines, are
6926 built.  It is intended to handle non-trivial actions needed along
6927 the abnormal return path.
6929 The address of the exception handler to which the function should return
6930 is passed as operand to this pattern.  It will normally need to copied by
6931 the pattern to some special register or memory location.
6932 If the pattern needs to determine the location of the target call
6933 frame in order to do so, it may use @code{EH_RETURN_STACKADJ_RTX},
6934 if defined; it will have already been assigned.
6936 If this pattern is not defined, the default action will be to simply
6937 copy the return address to @code{EH_RETURN_HANDLER_RTX}.  Either
6938 that macro or this pattern needs to be defined if call frame exception
6939 handling is to be used.
6941 @cindex @code{prologue} instruction pattern
6942 @anchor{prologue instruction pattern}
6943 @item @samp{prologue}
6944 This pattern, if defined, emits RTL for entry to a function.  The function
6945 entry is responsible for setting up the stack frame, initializing the frame
6946 pointer register, saving callee saved registers, etc.
6948 Using a prologue pattern is generally preferred over defining
6949 @code{TARGET_ASM_FUNCTION_PROLOGUE} to emit assembly code for the prologue.
6951 The @code{prologue} pattern is particularly useful for targets which perform
6952 instruction scheduling.
6954 @cindex @code{window_save} instruction pattern
6955 @anchor{window_save instruction pattern}
6956 @item @samp{window_save}
6957 This pattern, if defined, emits RTL for a register window save.  It should
6958 be defined if the target machine has register windows but the window events
6959 are decoupled from calls to subroutines.  The canonical example is the SPARC
6960 architecture.
6962 @cindex @code{epilogue} instruction pattern
6963 @anchor{epilogue instruction pattern}
6964 @item @samp{epilogue}
6965 This pattern emits RTL for exit from a function.  The function
6966 exit is responsible for deallocating the stack frame, restoring callee saved
6967 registers and emitting the return instruction.
6969 Using an epilogue pattern is generally preferred over defining
6970 @code{TARGET_ASM_FUNCTION_EPILOGUE} to emit assembly code for the epilogue.
6972 The @code{epilogue} pattern is particularly useful for targets which perform
6973 instruction scheduling or which have delay slots for their return instruction.
6975 @cindex @code{sibcall_epilogue} instruction pattern
6976 @item @samp{sibcall_epilogue}
6977 This pattern, if defined, emits RTL for exit from a function without the final
6978 branch back to the calling function.  This pattern will be emitted before any
6979 sibling call (aka tail call) sites.
6981 The @code{sibcall_epilogue} pattern must not clobber any arguments used for
6982 parameter passing or any stack slots for arguments passed to the current
6983 function.
6985 @cindex @code{trap} instruction pattern
6986 @item @samp{trap}
6987 This pattern, if defined, signals an error, typically by causing some
6988 kind of signal to be raised.
6990 @cindex @code{ctrap@var{MM}4} instruction pattern
6991 @item @samp{ctrap@var{MM}4}
6992 Conditional trap instruction.  Operand 0 is a piece of RTL which
6993 performs a comparison, and operands 1 and 2 are the arms of the
6994 comparison.  Operand 3 is the trap code, an integer.
6996 A typical @code{ctrap} pattern looks like
6998 @smallexample
6999 (define_insn "ctrapsi4"
7000   [(trap_if (match_operator 0 "trap_operator"
7001              [(match_operand 1 "register_operand")
7002               (match_operand 2 "immediate_operand")])
7003             (match_operand 3 "const_int_operand" "i"))]
7004   ""
7005   "@dots{}")
7006 @end smallexample
7008 @cindex @code{prefetch} instruction pattern
7009 @item @samp{prefetch}
7010 This pattern, if defined, emits code for a non-faulting data prefetch
7011 instruction.  Operand 0 is the address of the memory to prefetch.  Operand 1
7012 is a constant 1 if the prefetch is preparing for a write to the memory
7013 address, or a constant 0 otherwise.  Operand 2 is the expected degree of
7014 temporal locality of the data and is a value between 0 and 3, inclusive; 0
7015 means that the data has no temporal locality, so it need not be left in the
7016 cache after the access; 3 means that the data has a high degree of temporal
7017 locality and should be left in all levels of cache possible;  1 and 2 mean,
7018 respectively, a low or moderate degree of temporal locality.
7020 Targets that do not support write prefetches or locality hints can ignore
7021 the values of operands 1 and 2.
7023 @cindex @code{blockage} instruction pattern
7024 @item @samp{blockage}
7025 This pattern defines a pseudo insn that prevents the instruction
7026 scheduler and other passes from moving instructions and using register
7027 equivalences across the boundary defined by the blockage insn.
7028 This needs to be an UNSPEC_VOLATILE pattern or a volatile ASM.
7030 @cindex @code{memory_blockage} instruction pattern
7031 @item @samp{memory_blockage}
7032 This pattern, if defined, represents a compiler memory barrier, and will be
7033 placed at points across which RTL passes may not propagate memory accesses.
7034 This instruction needs to read and write volatile BLKmode memory.  It does
7035 not need to generate any machine instruction.  If this pattern is not defined,
7036 the compiler falls back to emitting an instruction corresponding
7037 to @code{asm volatile ("" ::: "memory")}.
7039 @cindex @code{memory_barrier} instruction pattern
7040 @item @samp{memory_barrier}
7041 If the target memory model is not fully synchronous, then this pattern
7042 should be defined to an instruction that orders both loads and stores
7043 before the instruction with respect to loads and stores after the instruction.
7044 This pattern has no operands.
7046 @cindex @code{speculation_barrier} instruction pattern
7047 @item @samp{speculation_barrier}
7048 If the target can support speculative execution, then this pattern should
7049 be defined to an instruction that will block subsequent execution until
7050 any prior speculation conditions has been resolved.  The pattern must also
7051 ensure that the compiler cannot move memory operations past the barrier,
7052 so it needs to be an UNSPEC_VOLATILE pattern.  The pattern has no
7053 operands.
7055 If this pattern is not defined then the default expansion of
7056 @code{__builtin_speculation_safe_value} will emit a warning.  You can
7057 suppress this warning by defining this pattern with a final condition
7058 of @code{0} (zero), which tells the compiler that a speculation
7059 barrier is not needed for this target.
7061 @cindex @code{sync_compare_and_swap@var{mode}} instruction pattern
7062 @item @samp{sync_compare_and_swap@var{mode}}
7063 This pattern, if defined, emits code for an atomic compare-and-swap
7064 operation.  Operand 1 is the memory on which the atomic operation is
7065 performed.  Operand 2 is the ``old'' value to be compared against the
7066 current contents of the memory location.  Operand 3 is the ``new'' value
7067 to store in the memory if the compare succeeds.  Operand 0 is the result
7068 of the operation; it should contain the contents of the memory
7069 before the operation.  If the compare succeeds, this should obviously be
7070 a copy of operand 2.
7072 This pattern must show that both operand 0 and operand 1 are modified.
7074 This pattern must issue any memory barrier instructions such that all
7075 memory operations before the atomic operation occur before the atomic
7076 operation and all memory operations after the atomic operation occur
7077 after the atomic operation.
7079 For targets where the success or failure of the compare-and-swap
7080 operation is available via the status flags, it is possible to
7081 avoid a separate compare operation and issue the subsequent
7082 branch or store-flag operation immediately after the compare-and-swap.
7083 To this end, GCC will look for a @code{MODE_CC} set in the
7084 output of @code{sync_compare_and_swap@var{mode}}; if the machine
7085 description includes such a set, the target should also define special
7086 @code{cbranchcc4} and/or @code{cstorecc4} instructions.  GCC will then
7087 be able to take the destination of the @code{MODE_CC} set and pass it
7088 to the @code{cbranchcc4} or @code{cstorecc4} pattern as the first
7089 operand of the comparison (the second will be @code{(const_int 0)}).
7091 For targets where the operating system may provide support for this
7092 operation via library calls, the @code{sync_compare_and_swap_optab}
7093 may be initialized to a function with the same interface as the
7094 @code{__sync_val_compare_and_swap_@var{n}} built-in.  If the entire
7095 set of @var{__sync} builtins are supported via library calls, the
7096 target can initialize all of the optabs at once with
7097 @code{init_sync_libfuncs}.
7098 For the purposes of C++11 @code{std::atomic::is_lock_free}, it is
7099 assumed that these library calls do @emph{not} use any kind of
7100 interruptable locking.
7102 @cindex @code{sync_add@var{mode}} instruction pattern
7103 @cindex @code{sync_sub@var{mode}} instruction pattern
7104 @cindex @code{sync_ior@var{mode}} instruction pattern
7105 @cindex @code{sync_and@var{mode}} instruction pattern
7106 @cindex @code{sync_xor@var{mode}} instruction pattern
7107 @cindex @code{sync_nand@var{mode}} instruction pattern
7108 @item @samp{sync_add@var{mode}}, @samp{sync_sub@var{mode}}
7109 @itemx @samp{sync_ior@var{mode}}, @samp{sync_and@var{mode}}
7110 @itemx @samp{sync_xor@var{mode}}, @samp{sync_nand@var{mode}}
7111 These patterns emit code for an atomic operation on memory.
7112 Operand 0 is the memory on which the atomic operation is performed.
7113 Operand 1 is the second operand to the binary operator.
7115 This pattern must issue any memory barrier instructions such that all
7116 memory operations before the atomic operation occur before the atomic
7117 operation and all memory operations after the atomic operation occur
7118 after the atomic operation.
7120 If these patterns are not defined, the operation will be constructed
7121 from a compare-and-swap operation, if defined.
7123 @cindex @code{sync_old_add@var{mode}} instruction pattern
7124 @cindex @code{sync_old_sub@var{mode}} instruction pattern
7125 @cindex @code{sync_old_ior@var{mode}} instruction pattern
7126 @cindex @code{sync_old_and@var{mode}} instruction pattern
7127 @cindex @code{sync_old_xor@var{mode}} instruction pattern
7128 @cindex @code{sync_old_nand@var{mode}} instruction pattern
7129 @item @samp{sync_old_add@var{mode}}, @samp{sync_old_sub@var{mode}}
7130 @itemx @samp{sync_old_ior@var{mode}}, @samp{sync_old_and@var{mode}}
7131 @itemx @samp{sync_old_xor@var{mode}}, @samp{sync_old_nand@var{mode}}
7132 These patterns emit code for an atomic operation on memory,
7133 and return the value that the memory contained before the operation.
7134 Operand 0 is the result value, operand 1 is the memory on which the
7135 atomic operation is performed, and operand 2 is the second operand
7136 to the binary operator.
7138 This pattern must issue any memory barrier instructions such that all
7139 memory operations before the atomic operation occur before the atomic
7140 operation and all memory operations after the atomic operation occur
7141 after the atomic operation.
7143 If these patterns are not defined, the operation will be constructed
7144 from a compare-and-swap operation, if defined.
7146 @cindex @code{sync_new_add@var{mode}} instruction pattern
7147 @cindex @code{sync_new_sub@var{mode}} instruction pattern
7148 @cindex @code{sync_new_ior@var{mode}} instruction pattern
7149 @cindex @code{sync_new_and@var{mode}} instruction pattern
7150 @cindex @code{sync_new_xor@var{mode}} instruction pattern
7151 @cindex @code{sync_new_nand@var{mode}} instruction pattern
7152 @item @samp{sync_new_add@var{mode}}, @samp{sync_new_sub@var{mode}}
7153 @itemx @samp{sync_new_ior@var{mode}}, @samp{sync_new_and@var{mode}}
7154 @itemx @samp{sync_new_xor@var{mode}}, @samp{sync_new_nand@var{mode}}
7155 These patterns are like their @code{sync_old_@var{op}} counterparts,
7156 except that they return the value that exists in the memory location
7157 after the operation, rather than before the operation.
7159 @cindex @code{sync_lock_test_and_set@var{mode}} instruction pattern
7160 @item @samp{sync_lock_test_and_set@var{mode}}
7161 This pattern takes two forms, based on the capabilities of the target.
7162 In either case, operand 0 is the result of the operand, operand 1 is
7163 the memory on which the atomic operation is performed, and operand 2
7164 is the value to set in the lock.
7166 In the ideal case, this operation is an atomic exchange operation, in
7167 which the previous value in memory operand is copied into the result
7168 operand, and the value operand is stored in the memory operand.
7170 For less capable targets, any value operand that is not the constant 1
7171 should be rejected with @code{FAIL}.  In this case the target may use
7172 an atomic test-and-set bit operation.  The result operand should contain
7173 1 if the bit was previously set and 0 if the bit was previously clear.
7174 The true contents of the memory operand are implementation defined.
7176 This pattern must issue any memory barrier instructions such that the
7177 pattern as a whole acts as an acquire barrier, that is all memory
7178 operations after the pattern do not occur until the lock is acquired.
7180 If this pattern is not defined, the operation will be constructed from
7181 a compare-and-swap operation, if defined.
7183 @cindex @code{sync_lock_release@var{mode}} instruction pattern
7184 @item @samp{sync_lock_release@var{mode}}
7185 This pattern, if defined, releases a lock set by
7186 @code{sync_lock_test_and_set@var{mode}}.  Operand 0 is the memory
7187 that contains the lock; operand 1 is the value to store in the lock.
7189 If the target doesn't implement full semantics for
7190 @code{sync_lock_test_and_set@var{mode}}, any value operand which is not
7191 the constant 0 should be rejected with @code{FAIL}, and the true contents
7192 of the memory operand are implementation defined.
7194 This pattern must issue any memory barrier instructions such that the
7195 pattern as a whole acts as a release barrier, that is the lock is
7196 released only after all previous memory operations have completed.
7198 If this pattern is not defined, then a @code{memory_barrier} pattern
7199 will be emitted, followed by a store of the value to the memory operand.
7201 @cindex @code{atomic_compare_and_swap@var{mode}} instruction pattern
7202 @item @samp{atomic_compare_and_swap@var{mode}} 
7203 This pattern, if defined, emits code for an atomic compare-and-swap
7204 operation with memory model semantics.  Operand 2 is the memory on which
7205 the atomic operation is performed.  Operand 0 is an output operand which
7206 is set to true or false based on whether the operation succeeded.  Operand
7207 1 is an output operand which is set to the contents of the memory before
7208 the operation was attempted.  Operand 3 is the value that is expected to
7209 be in memory.  Operand 4 is the value to put in memory if the expected
7210 value is found there.  Operand 5 is set to 1 if this compare and swap is to
7211 be treated as a weak operation.  Operand 6 is the memory model to be used
7212 if the operation is a success.  Operand 7 is the memory model to be used
7213 if the operation fails.
7215 If memory referred to in operand 2 contains the value in operand 3, then
7216 operand 4 is stored in memory pointed to by operand 2 and fencing based on
7217 the memory model in operand 6 is issued.  
7219 If memory referred to in operand 2 does not contain the value in operand 3,
7220 then fencing based on the memory model in operand 7 is issued.
7222 If a target does not support weak compare-and-swap operations, or the port
7223 elects not to implement weak operations, the argument in operand 5 can be
7224 ignored.  Note a strong implementation must be provided.
7226 If this pattern is not provided, the @code{__atomic_compare_exchange}
7227 built-in functions will utilize the legacy @code{sync_compare_and_swap}
7228 pattern with an @code{__ATOMIC_SEQ_CST} memory model.
7230 @cindex @code{atomic_load@var{mode}} instruction pattern
7231 @item @samp{atomic_load@var{mode}}
7232 This pattern implements an atomic load operation with memory model
7233 semantics.  Operand 1 is the memory address being loaded from.  Operand 0
7234 is the result of the load.  Operand 2 is the memory model to be used for
7235 the load operation.
7237 If not present, the @code{__atomic_load} built-in function will either
7238 resort to a normal load with memory barriers, or a compare-and-swap
7239 operation if a normal load would not be atomic.
7241 @cindex @code{atomic_store@var{mode}} instruction pattern
7242 @item @samp{atomic_store@var{mode}}
7243 This pattern implements an atomic store operation with memory model
7244 semantics.  Operand 0 is the memory address being stored to.  Operand 1
7245 is the value to be written.  Operand 2 is the memory model to be used for
7246 the operation.
7248 If not present, the @code{__atomic_store} built-in function will attempt to
7249 perform a normal store and surround it with any required memory fences.  If
7250 the store would not be atomic, then an @code{__atomic_exchange} is
7251 attempted with the result being ignored.
7253 @cindex @code{atomic_exchange@var{mode}} instruction pattern
7254 @item @samp{atomic_exchange@var{mode}}
7255 This pattern implements an atomic exchange operation with memory model
7256 semantics.  Operand 1 is the memory location the operation is performed on.
7257 Operand 0 is an output operand which is set to the original value contained
7258 in the memory pointed to by operand 1.  Operand 2 is the value to be
7259 stored.  Operand 3 is the memory model to be used.
7261 If this pattern is not present, the built-in function
7262 @code{__atomic_exchange} will attempt to preform the operation with a
7263 compare and swap loop.
7265 @cindex @code{atomic_add@var{mode}} instruction pattern
7266 @cindex @code{atomic_sub@var{mode}} instruction pattern
7267 @cindex @code{atomic_or@var{mode}} instruction pattern
7268 @cindex @code{atomic_and@var{mode}} instruction pattern
7269 @cindex @code{atomic_xor@var{mode}} instruction pattern
7270 @cindex @code{atomic_nand@var{mode}} instruction pattern
7271 @item @samp{atomic_add@var{mode}}, @samp{atomic_sub@var{mode}}
7272 @itemx @samp{atomic_or@var{mode}}, @samp{atomic_and@var{mode}}
7273 @itemx @samp{atomic_xor@var{mode}}, @samp{atomic_nand@var{mode}}
7274 These patterns emit code for an atomic operation on memory with memory
7275 model semantics. Operand 0 is the memory on which the atomic operation is
7276 performed.  Operand 1 is the second operand to the binary operator.
7277 Operand 2 is the memory model to be used by the operation.
7279 If these patterns are not defined, attempts will be made to use legacy
7280 @code{sync} patterns, or equivalent patterns which return a result.  If
7281 none of these are available a compare-and-swap loop will be used.
7283 @cindex @code{atomic_fetch_add@var{mode}} instruction pattern
7284 @cindex @code{atomic_fetch_sub@var{mode}} instruction pattern
7285 @cindex @code{atomic_fetch_or@var{mode}} instruction pattern
7286 @cindex @code{atomic_fetch_and@var{mode}} instruction pattern
7287 @cindex @code{atomic_fetch_xor@var{mode}} instruction pattern
7288 @cindex @code{atomic_fetch_nand@var{mode}} instruction pattern
7289 @item @samp{atomic_fetch_add@var{mode}}, @samp{atomic_fetch_sub@var{mode}}
7290 @itemx @samp{atomic_fetch_or@var{mode}}, @samp{atomic_fetch_and@var{mode}}
7291 @itemx @samp{atomic_fetch_xor@var{mode}}, @samp{atomic_fetch_nand@var{mode}}
7292 These patterns emit code for an atomic operation on memory with memory
7293 model semantics, and return the original value. Operand 0 is an output 
7294 operand which contains the value of the memory location before the 
7295 operation was performed.  Operand 1 is the memory on which the atomic 
7296 operation is performed.  Operand 2 is the second operand to the binary
7297 operator.  Operand 3 is the memory model to be used by the operation.
7299 If these patterns are not defined, attempts will be made to use legacy
7300 @code{sync} patterns.  If none of these are available a compare-and-swap
7301 loop will be used.
7303 @cindex @code{atomic_add_fetch@var{mode}} instruction pattern
7304 @cindex @code{atomic_sub_fetch@var{mode}} instruction pattern
7305 @cindex @code{atomic_or_fetch@var{mode}} instruction pattern
7306 @cindex @code{atomic_and_fetch@var{mode}} instruction pattern
7307 @cindex @code{atomic_xor_fetch@var{mode}} instruction pattern
7308 @cindex @code{atomic_nand_fetch@var{mode}} instruction pattern
7309 @item @samp{atomic_add_fetch@var{mode}}, @samp{atomic_sub_fetch@var{mode}}
7310 @itemx @samp{atomic_or_fetch@var{mode}}, @samp{atomic_and_fetch@var{mode}}
7311 @itemx @samp{atomic_xor_fetch@var{mode}}, @samp{atomic_nand_fetch@var{mode}}
7312 These patterns emit code for an atomic operation on memory with memory
7313 model semantics and return the result after the operation is performed.
7314 Operand 0 is an output operand which contains the value after the
7315 operation.  Operand 1 is the memory on which the atomic operation is
7316 performed.  Operand 2 is the second operand to the binary operator.
7317 Operand 3 is the memory model to be used by the operation.
7319 If these patterns are not defined, attempts will be made to use legacy
7320 @code{sync} patterns, or equivalent patterns which return the result before
7321 the operation followed by the arithmetic operation required to produce the
7322 result.  If none of these are available a compare-and-swap loop will be
7323 used.
7325 @cindex @code{atomic_test_and_set} instruction pattern
7326 @item @samp{atomic_test_and_set}
7327 This pattern emits code for @code{__builtin_atomic_test_and_set}.
7328 Operand 0 is an output operand which is set to true if the previous
7329 previous contents of the byte was "set", and false otherwise.  Operand 1
7330 is the @code{QImode} memory to be modified.  Operand 2 is the memory
7331 model to be used.
7333 The specific value that defines "set" is implementation defined, and
7334 is normally based on what is performed by the native atomic test and set
7335 instruction.
7337 @cindex @code{atomic_bit_test_and_set@var{mode}} instruction pattern
7338 @cindex @code{atomic_bit_test_and_complement@var{mode}} instruction pattern
7339 @cindex @code{atomic_bit_test_and_reset@var{mode}} instruction pattern
7340 @item @samp{atomic_bit_test_and_set@var{mode}}
7341 @itemx @samp{atomic_bit_test_and_complement@var{mode}}
7342 @itemx @samp{atomic_bit_test_and_reset@var{mode}}
7343 These patterns emit code for an atomic bitwise operation on memory with memory
7344 model semantics, and return the original value of the specified bit.
7345 Operand 0 is an output operand which contains the value of the specified bit
7346 from the memory location before the operation was performed.  Operand 1 is the
7347 memory on which the atomic operation is performed.  Operand 2 is the bit within
7348 the operand, starting with least significant bit.  Operand 3 is the memory model
7349 to be used by the operation.  Operand 4 is a flag - it is @code{const1_rtx}
7350 if operand 0 should contain the original value of the specified bit in the
7351 least significant bit of the operand, and @code{const0_rtx} if the bit should
7352 be in its original position in the operand.
7353 @code{atomic_bit_test_and_set@var{mode}} atomically sets the specified bit after
7354 remembering its original value, @code{atomic_bit_test_and_complement@var{mode}}
7355 inverts the specified bit and @code{atomic_bit_test_and_reset@var{mode}} clears
7356 the specified bit.
7358 If these patterns are not defined, attempts will be made to use
7359 @code{atomic_fetch_or@var{mode}}, @code{atomic_fetch_xor@var{mode}} or
7360 @code{atomic_fetch_and@var{mode}} instruction patterns, or their @code{sync}
7361 counterparts.  If none of these are available a compare-and-swap
7362 loop will be used.
7364 @cindex @code{mem_thread_fence} instruction pattern
7365 @item @samp{mem_thread_fence}
7366 This pattern emits code required to implement a thread fence with
7367 memory model semantics.  Operand 0 is the memory model to be used.
7369 For the @code{__ATOMIC_RELAXED} model no instructions need to be issued
7370 and this expansion is not invoked.
7372 The compiler always emits a compiler memory barrier regardless of what
7373 expanding this pattern produced.
7375 If this pattern is not defined, the compiler falls back to expanding the
7376 @code{memory_barrier} pattern, then to emitting @code{__sync_synchronize}
7377 library call, and finally to just placing a compiler memory barrier.
7379 @cindex @code{get_thread_pointer@var{mode}} instruction pattern
7380 @cindex @code{set_thread_pointer@var{mode}} instruction pattern
7381 @item @samp{get_thread_pointer@var{mode}}
7382 @itemx @samp{set_thread_pointer@var{mode}}
7383 These patterns emit code that reads/sets the TLS thread pointer. Currently,
7384 these are only needed if the target needs to support the
7385 @code{__builtin_thread_pointer} and @code{__builtin_set_thread_pointer}
7386 builtins.
7388 The get/set patterns have a single output/input operand respectively,
7389 with @var{mode} intended to be @code{Pmode}.
7391 @cindex @code{stack_protect_set} instruction pattern
7392 @item @samp{stack_protect_set}
7393 This pattern, if defined, moves a @code{ptr_mode} value from the memory
7394 in operand 1 to the memory in operand 0 without leaving the value in
7395 a register afterward.  This is to avoid leaking the value some place
7396 that an attacker might use to rewrite the stack guard slot after
7397 having clobbered it.
7399 If this pattern is not defined, then a plain move pattern is generated.
7401 @cindex @code{stack_protect_test} instruction pattern
7402 @item @samp{stack_protect_test}
7403 This pattern, if defined, compares a @code{ptr_mode} value from the
7404 memory in operand 1 with the memory in operand 0 without leaving the
7405 value in a register afterward and branches to operand 2 if the values
7406 were equal.
7408 If this pattern is not defined, then a plain compare pattern and
7409 conditional branch pattern is used.
7411 @cindex @code{clear_cache} instruction pattern
7412 @item @samp{clear_cache}
7413 This pattern, if defined, flushes the instruction cache for a region of
7414 memory.  The region is bounded to by the Pmode pointers in operand 0
7415 inclusive and operand 1 exclusive.
7417 If this pattern is not defined, a call to the library function
7418 @code{__clear_cache} is used.
7420 @end table
7422 @end ifset
7423 @c Each of the following nodes are wrapped in separate
7424 @c "@ifset INTERNALS" to work around memory limits for the default
7425 @c configuration in older tetex distributions.  Known to not work:
7426 @c tetex-1.0.7, known to work: tetex-2.0.2.
7427 @ifset INTERNALS
7428 @node Pattern Ordering
7429 @section When the Order of Patterns Matters
7430 @cindex Pattern Ordering
7431 @cindex Ordering of Patterns
7433 Sometimes an insn can match more than one instruction pattern.  Then the
7434 pattern that appears first in the machine description is the one used.
7435 Therefore, more specific patterns (patterns that will match fewer things)
7436 and faster instructions (those that will produce better code when they
7437 do match) should usually go first in the description.
7439 In some cases the effect of ordering the patterns can be used to hide
7440 a pattern when it is not valid.  For example, the 68000 has an
7441 instruction for converting a fullword to floating point and another
7442 for converting a byte to floating point.  An instruction converting
7443 an integer to floating point could match either one.  We put the
7444 pattern to convert the fullword first to make sure that one will
7445 be used rather than the other.  (Otherwise a large integer might
7446 be generated as a single-byte immediate quantity, which would not work.)
7447 Instead of using this pattern ordering it would be possible to make the
7448 pattern for convert-a-byte smart enough to deal properly with any
7449 constant value.
7451 @end ifset
7452 @ifset INTERNALS
7453 @node Dependent Patterns
7454 @section Interdependence of Patterns
7455 @cindex Dependent Patterns
7456 @cindex Interdependence of Patterns
7458 In some cases machines support instructions identical except for the
7459 machine mode of one or more operands.  For example, there may be
7460 ``sign-extend halfword'' and ``sign-extend byte'' instructions whose
7461 patterns are
7463 @smallexample
7464 (set (match_operand:SI 0 @dots{})
7465      (extend:SI (match_operand:HI 1 @dots{})))
7467 (set (match_operand:SI 0 @dots{})
7468      (extend:SI (match_operand:QI 1 @dots{})))
7469 @end smallexample
7471 @noindent
7472 Constant integers do not specify a machine mode, so an instruction to
7473 extend a constant value could match either pattern.  The pattern it
7474 actually will match is the one that appears first in the file.  For correct
7475 results, this must be the one for the widest possible mode (@code{HImode},
7476 here).  If the pattern matches the @code{QImode} instruction, the results
7477 will be incorrect if the constant value does not actually fit that mode.
7479 Such instructions to extend constants are rarely generated because they are
7480 optimized away, but they do occasionally happen in nonoptimized
7481 compilations.
7483 If a constraint in a pattern allows a constant, the reload pass may
7484 replace a register with a constant permitted by the constraint in some
7485 cases.  Similarly for memory references.  Because of this substitution,
7486 you should not provide separate patterns for increment and decrement
7487 instructions.  Instead, they should be generated from the same pattern
7488 that supports register-register add insns by examining the operands and
7489 generating the appropriate machine instruction.
7491 @end ifset
7492 @ifset INTERNALS
7493 @node Jump Patterns
7494 @section Defining Jump Instruction Patterns
7495 @cindex jump instruction patterns
7496 @cindex defining jump instruction patterns
7498 GCC does not assume anything about how the machine realizes jumps.
7499 The machine description should define a single pattern, usually
7500 a @code{define_expand}, which expands to all the required insns.
7502 Usually, this would be a comparison insn to set the condition code
7503 and a separate branch insn testing the condition code and branching
7504 or not according to its value.  For many machines, however,
7505 separating compares and branches is limiting, which is why the
7506 more flexible approach with one @code{define_expand} is used in GCC.
7507 The machine description becomes clearer for architectures that
7508 have compare-and-branch instructions but no condition code.  It also
7509 works better when different sets of comparison operators are supported
7510 by different kinds of conditional branches (e.g. integer vs. floating-point),
7511 or by conditional branches with respect to conditional stores.
7513 Two separate insns are always used if the machine description represents
7514 a condition code register using the legacy RTL expression @code{(cc0)},
7515 and on most machines that use a separate condition code register
7516 (@pxref{Condition Code}).  For machines that use @code{(cc0)}, in
7517 fact, the set and use of the condition code must be separate and
7518 adjacent@footnote{@code{note} insns can separate them, though.}, thus
7519 allowing flags in @code{cc_status} to be used (@pxref{Condition Code}) and
7520 so that the comparison and branch insns could be located from each other
7521 by using the functions @code{prev_cc0_setter} and @code{next_cc0_user}.
7523 Even in this case having a single entry point for conditional branches
7524 is advantageous, because it handles equally well the case where a single
7525 comparison instruction records the results of both signed and unsigned
7526 comparison of the given operands (with the branch insns coming in distinct
7527 signed and unsigned flavors) as in the x86 or SPARC, and the case where
7528 there are distinct signed and unsigned compare instructions and only
7529 one set of conditional branch instructions as in the PowerPC.
7531 @end ifset
7532 @ifset INTERNALS
7533 @node Looping Patterns
7534 @section Defining Looping Instruction Patterns
7535 @cindex looping instruction patterns
7536 @cindex defining looping instruction patterns
7538 Some machines have special jump instructions that can be utilized to
7539 make loops more efficient.  A common example is the 68000 @samp{dbra}
7540 instruction which performs a decrement of a register and a branch if the
7541 result was greater than zero.  Other machines, in particular digital
7542 signal processors (DSPs), have special block repeat instructions to
7543 provide low-overhead loop support.  For example, the TI TMS320C3x/C4x
7544 DSPs have a block repeat instruction that loads special registers to
7545 mark the top and end of a loop and to count the number of loop
7546 iterations.  This avoids the need for fetching and executing a
7547 @samp{dbra}-like instruction and avoids pipeline stalls associated with
7548 the jump.
7550 GCC has two special named patterns to support low overhead looping.
7551 They are @samp{doloop_begin} and @samp{doloop_end}.  These are emitted
7552 by the loop optimizer for certain well-behaved loops with a finite
7553 number of loop iterations using information collected during strength
7554 reduction.
7556 The @samp{doloop_end} pattern describes the actual looping instruction
7557 (or the implicit looping operation) and the @samp{doloop_begin} pattern
7558 is an optional companion pattern that can be used for initialization
7559 needed for some low-overhead looping instructions.
7561 Note that some machines require the actual looping instruction to be
7562 emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs).  Emitting
7563 the true RTL for a looping instruction at the top of the loop can cause
7564 problems with flow analysis.  So instead, a dummy @code{doloop} insn is
7565 emitted at the end of the loop.  The machine dependent reorg pass checks
7566 for the presence of this @code{doloop} insn and then searches back to
7567 the top of the loop, where it inserts the true looping insn (provided
7568 there are no instructions in the loop which would cause problems).  Any
7569 additional labels can be emitted at this point.  In addition, if the
7570 desired special iteration counter register was not allocated, this
7571 machine dependent reorg pass could emit a traditional compare and jump
7572 instruction pair.
7574 For the @samp{doloop_end} pattern, the loop optimizer allocates an
7575 additional pseudo register as an iteration counter.  This pseudo
7576 register cannot be used within the loop (i.e., general induction
7577 variables cannot be derived from it), however, in many cases the loop
7578 induction variable may become redundant and removed by the flow pass.
7580 The @samp{doloop_end} pattern must have a specific structure to be
7581 handled correctly by GCC.  The example below is taken (slightly
7582 simplified) from the PDP-11 target:
7584 @smallexample
7585 @group
7586 (define_insn "doloop_end"
7587   [(set (pc)
7588         (if_then_else
7589          (ne (match_operand:HI 0 "nonimmediate_operand" "+r,!m")
7590              (const_int 1))
7591          (label_ref (match_operand 1 "" ""))
7592          (pc)))
7593    (set (match_dup 0)
7594         (plus:HI (match_dup 0)
7595               (const_int -1)))]
7596   ""
7597   
7598   @{
7599     if (which_alternative == 0)
7600       return "sob %0,%l1";
7602     /* emulate sob */
7603     output_asm_insn ("dec %0", operands);
7604     return "bne %l1";
7605   @})
7606 @end group
7607 @end smallexample
7609 The first part of the pattern describes the branch condition.  GCC
7610 supports three cases for the way the target machine handles the loop
7611 counter:
7612 @itemize @bullet
7613 @item Loop terminates when the loop register decrements to zero.  This
7614 is represented by a @code{ne} comparison of the register (its old value)
7615 with constant 1 (as in the example above).
7616 @item Loop terminates when the loop register decrements to @minus{}1.
7617 This is represented by a @code{ne} comparison of the register with
7618 constant zero.
7619 @item Loop terminates when the loop register decrements to a negative
7620 value.  This is represented by a @code{ge} comparison of the register
7621 with constant zero.  For this case, GCC will attach a @code{REG_NONNEG}
7622 note to the @code{doloop_end} insn if it can determine that the register
7623 will be non-negative.
7624 @end itemize
7626 Since the @code{doloop_end} insn is a jump insn that also has an output,
7627 the reload pass does not handle the output operand.  Therefore, the
7628 constraint must allow for that operand to be in memory rather than a
7629 register.  In the example shown above, that is handled by using a loop
7630 instruction sequence that can handle memory operands when the memory
7631 alternative appears.
7633 @end ifset
7634 @ifset INTERNALS
7635 @node Insn Canonicalizations
7636 @section Canonicalization of Instructions
7637 @cindex canonicalization of instructions
7638 @cindex insn canonicalization
7640 There are often cases where multiple RTL expressions could represent an
7641 operation performed by a single machine instruction.  This situation is
7642 most commonly encountered with logical, branch, and multiply-accumulate
7643 instructions.  In such cases, the compiler attempts to convert these
7644 multiple RTL expressions into a single canonical form to reduce the
7645 number of insn patterns required.
7647 In addition to algebraic simplifications, following canonicalizations
7648 are performed:
7650 @itemize @bullet
7651 @item
7652 For commutative and comparison operators, a constant is always made the
7653 second operand.  If a machine only supports a constant as the second
7654 operand, only patterns that match a constant in the second operand need
7655 be supplied.
7657 @item
7658 For associative operators, a sequence of operators will always chain
7659 to the left; for instance, only the left operand of an integer @code{plus}
7660 can itself be a @code{plus}.  @code{and}, @code{ior}, @code{xor},
7661 @code{plus}, @code{mult}, @code{smin}, @code{smax}, @code{umin}, and
7662 @code{umax} are associative when applied to integers, and sometimes to
7663 floating-point.
7665 @item
7666 @cindex @code{neg}, canonicalization of
7667 @cindex @code{not}, canonicalization of
7668 @cindex @code{mult}, canonicalization of
7669 @cindex @code{plus}, canonicalization of
7670 @cindex @code{minus}, canonicalization of
7671 For these operators, if only one operand is a @code{neg}, @code{not},
7672 @code{mult}, @code{plus}, or @code{minus} expression, it will be the
7673 first operand.
7675 @item
7676 In combinations of @code{neg}, @code{mult}, @code{plus}, and
7677 @code{minus}, the @code{neg} operations (if any) will be moved inside
7678 the operations as far as possible.  For instance,
7679 @code{(neg (mult A B))} is canonicalized as @code{(mult (neg A) B)}, but
7680 @code{(plus (mult (neg B) C) A)} is canonicalized as
7681 @code{(minus A (mult B C))}.
7683 @cindex @code{compare}, canonicalization of
7684 @item
7685 For the @code{compare} operator, a constant is always the second operand
7686 if the first argument is a condition code register or @code{(cc0)}.
7688 @item
7689 For instructions that inherently set a condition code register, the
7690 @code{compare} operator is always written as the first RTL expression of
7691 the @code{parallel} instruction pattern.  For example,
7693 @smallexample
7694 (define_insn ""
7695   [(set (reg:CCZ FLAGS_REG)
7696         (compare:CCZ
7697           (plus:SI
7698             (match_operand:SI 1 "register_operand" "%r")
7699             (match_operand:SI 2 "register_operand" "r"))
7700           (const_int 0)))
7701    (set (match_operand:SI 0 "register_operand" "=r")
7702         (plus:SI (match_dup 1) (match_dup 2)))]
7703   ""
7704   "addl %0, %1, %2")
7705 @end smallexample
7707 @item
7708 An operand of @code{neg}, @code{not}, @code{mult}, @code{plus}, or
7709 @code{minus} is made the first operand under the same conditions as
7710 above.
7712 @item
7713 @code{(ltu (plus @var{a} @var{b}) @var{b})} is converted to
7714 @code{(ltu (plus @var{a} @var{b}) @var{a})}. Likewise with @code{geu} instead
7715 of @code{ltu}.
7717 @item
7718 @code{(minus @var{x} (const_int @var{n}))} is converted to
7719 @code{(plus @var{x} (const_int @var{-n}))}.
7721 @item
7722 Within address computations (i.e., inside @code{mem}), a left shift is
7723 converted into the appropriate multiplication by a power of two.
7725 @cindex @code{ior}, canonicalization of
7726 @cindex @code{and}, canonicalization of
7727 @cindex De Morgan's law
7728 @item
7729 De Morgan's Law is used to move bitwise negation inside a bitwise
7730 logical-and or logical-or operation.  If this results in only one
7731 operand being a @code{not} expression, it will be the first one.
7733 A machine that has an instruction that performs a bitwise logical-and of one
7734 operand with the bitwise negation of the other should specify the pattern
7735 for that instruction as
7737 @smallexample
7738 (define_insn ""
7739   [(set (match_operand:@var{m} 0 @dots{})
7740         (and:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
7741                      (match_operand:@var{m} 2 @dots{})))]
7742   "@dots{}"
7743   "@dots{}")
7744 @end smallexample
7746 @noindent
7747 Similarly, a pattern for a ``NAND'' instruction should be written
7749 @smallexample
7750 (define_insn ""
7751   [(set (match_operand:@var{m} 0 @dots{})
7752         (ior:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
7753                      (not:@var{m} (match_operand:@var{m} 2 @dots{}))))]
7754   "@dots{}"
7755   "@dots{}")
7756 @end smallexample
7758 In both cases, it is not necessary to include patterns for the many
7759 logically equivalent RTL expressions.
7761 @cindex @code{xor}, canonicalization of
7762 @item
7763 The only possible RTL expressions involving both bitwise exclusive-or
7764 and bitwise negation are @code{(xor:@var{m} @var{x} @var{y})}
7765 and @code{(not:@var{m} (xor:@var{m} @var{x} @var{y}))}.
7767 @item
7768 The sum of three items, one of which is a constant, will only appear in
7769 the form
7771 @smallexample
7772 (plus:@var{m} (plus:@var{m} @var{x} @var{y}) @var{constant})
7773 @end smallexample
7775 @cindex @code{zero_extract}, canonicalization of
7776 @cindex @code{sign_extract}, canonicalization of
7777 @item
7778 Equality comparisons of a group of bits (usually a single bit) with zero
7779 will be written using @code{zero_extract} rather than the equivalent
7780 @code{and} or @code{sign_extract} operations.
7782 @cindex @code{mult}, canonicalization of
7783 @item
7784 @code{(sign_extend:@var{m1} (mult:@var{m2} (sign_extend:@var{m2} @var{x})
7785 (sign_extend:@var{m2} @var{y})))} is converted to @code{(mult:@var{m1}
7786 (sign_extend:@var{m1} @var{x}) (sign_extend:@var{m1} @var{y}))}, and likewise
7787 for @code{zero_extend}.
7789 @item
7790 @code{(sign_extend:@var{m1} (mult:@var{m2} (ashiftrt:@var{m2}
7791 @var{x} @var{s}) (sign_extend:@var{m2} @var{y})))} is converted
7792 to @code{(mult:@var{m1} (sign_extend:@var{m1} (ashiftrt:@var{m2}
7793 @var{x} @var{s})) (sign_extend:@var{m1} @var{y}))}, and likewise for
7794 patterns using @code{zero_extend} and @code{lshiftrt}.  If the second
7795 operand of @code{mult} is also a shift, then that is extended also.
7796 This transformation is only applied when it can be proven that the
7797 original operation had sufficient precision to prevent overflow.
7799 @end itemize
7801 Further canonicalization rules are defined in the function
7802 @code{commutative_operand_precedence} in @file{gcc/rtlanal.c}.
7804 @end ifset
7805 @ifset INTERNALS
7806 @node Expander Definitions
7807 @section Defining RTL Sequences for Code Generation
7808 @cindex expander definitions
7809 @cindex code generation RTL sequences
7810 @cindex defining RTL sequences for code generation
7812 On some target machines, some standard pattern names for RTL generation
7813 cannot be handled with single insn, but a sequence of RTL insns can
7814 represent them.  For these target machines, you can write a
7815 @code{define_expand} to specify how to generate the sequence of RTL@.
7817 @findex define_expand
7818 A @code{define_expand} is an RTL expression that looks almost like a
7819 @code{define_insn}; but, unlike the latter, a @code{define_expand} is used
7820 only for RTL generation and it can produce more than one RTL insn.
7822 A @code{define_expand} RTX has four operands:
7824 @itemize @bullet
7825 @item
7826 The name.  Each @code{define_expand} must have a name, since the only
7827 use for it is to refer to it by name.
7829 @item
7830 The RTL template.  This is a vector of RTL expressions representing
7831 a sequence of separate instructions.  Unlike @code{define_insn}, there
7832 is no implicit surrounding @code{PARALLEL}.
7834 @item
7835 The condition, a string containing a C expression.  This expression is
7836 used to express how the availability of this pattern depends on
7837 subclasses of target machine, selected by command-line options when GCC
7838 is run.  This is just like the condition of a @code{define_insn} that
7839 has a standard name.  Therefore, the condition (if present) may not
7840 depend on the data in the insn being matched, but only the
7841 target-machine-type flags.  The compiler needs to test these conditions
7842 during initialization in order to learn exactly which named instructions
7843 are available in a particular run.
7845 @item
7846 The preparation statements, a string containing zero or more C
7847 statements which are to be executed before RTL code is generated from
7848 the RTL template.
7850 Usually these statements prepare temporary registers for use as
7851 internal operands in the RTL template, but they can also generate RTL
7852 insns directly by calling routines such as @code{emit_insn}, etc.
7853 Any such insns precede the ones that come from the RTL template.
7855 @item
7856 Optionally, a vector containing the values of attributes. @xref{Insn
7857 Attributes}.
7858 @end itemize
7860 Every RTL insn emitted by a @code{define_expand} must match some
7861 @code{define_insn} in the machine description.  Otherwise, the compiler
7862 will crash when trying to generate code for the insn or trying to optimize
7865 The RTL template, in addition to controlling generation of RTL insns,
7866 also describes the operands that need to be specified when this pattern
7867 is used.  In particular, it gives a predicate for each operand.
7869 A true operand, which needs to be specified in order to generate RTL from
7870 the pattern, should be described with a @code{match_operand} in its first
7871 occurrence in the RTL template.  This enters information on the operand's
7872 predicate into the tables that record such things.  GCC uses the
7873 information to preload the operand into a register if that is required for
7874 valid RTL code.  If the operand is referred to more than once, subsequent
7875 references should use @code{match_dup}.
7877 The RTL template may also refer to internal ``operands'' which are
7878 temporary registers or labels used only within the sequence made by the
7879 @code{define_expand}.  Internal operands are substituted into the RTL
7880 template with @code{match_dup}, never with @code{match_operand}.  The
7881 values of the internal operands are not passed in as arguments by the
7882 compiler when it requests use of this pattern.  Instead, they are computed
7883 within the pattern, in the preparation statements.  These statements
7884 compute the values and store them into the appropriate elements of
7885 @code{operands} so that @code{match_dup} can find them.
7887 There are two special macros defined for use in the preparation statements:
7888 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
7889 as a statement.
7891 @table @code
7893 @findex DONE
7894 @item DONE
7895 Use the @code{DONE} macro to end RTL generation for the pattern.  The
7896 only RTL insns resulting from the pattern on this occasion will be
7897 those already emitted by explicit calls to @code{emit_insn} within the
7898 preparation statements; the RTL template will not be generated.
7900 @findex FAIL
7901 @item FAIL
7902 Make the pattern fail on this occasion.  When a pattern fails, it means
7903 that the pattern was not truly available.  The calling routines in the
7904 compiler will try other strategies for code generation using other patterns.
7906 Failure is currently supported only for binary (addition, multiplication,
7907 shifting, etc.) and bit-field (@code{extv}, @code{extzv}, and @code{insv})
7908 operations.
7909 @end table
7911 If the preparation falls through (invokes neither @code{DONE} nor
7912 @code{FAIL}), then the @code{define_expand} acts like a
7913 @code{define_insn} in that the RTL template is used to generate the
7914 insn.
7916 The RTL template is not used for matching, only for generating the
7917 initial insn list.  If the preparation statement always invokes
7918 @code{DONE} or @code{FAIL}, the RTL template may be reduced to a simple
7919 list of operands, such as this example:
7921 @smallexample
7922 @group
7923 (define_expand "addsi3"
7924   [(match_operand:SI 0 "register_operand" "")
7925    (match_operand:SI 1 "register_operand" "")
7926    (match_operand:SI 2 "register_operand" "")]
7927 @end group
7928 @group
7929   ""
7930   "
7932   handle_add (operands[0], operands[1], operands[2]);
7933   DONE;
7934 @}")
7935 @end group
7936 @end smallexample
7938 Here is an example, the definition of left-shift for the SPUR chip:
7940 @smallexample
7941 @group
7942 (define_expand "ashlsi3"
7943   [(set (match_operand:SI 0 "register_operand" "")
7944         (ashift:SI
7945 @end group
7946 @group
7947           (match_operand:SI 1 "register_operand" "")
7948           (match_operand:SI 2 "nonmemory_operand" "")))]
7949   ""
7950   "
7951 @end group
7952 @end smallexample
7954 @smallexample
7955 @group
7957   if (GET_CODE (operands[2]) != CONST_INT
7958       || (unsigned) INTVAL (operands[2]) > 3)
7959     FAIL;
7960 @}")
7961 @end group
7962 @end smallexample
7964 @noindent
7965 This example uses @code{define_expand} so that it can generate an RTL insn
7966 for shifting when the shift-count is in the supported range of 0 to 3 but
7967 fail in other cases where machine insns aren't available.  When it fails,
7968 the compiler tries another strategy using different patterns (such as, a
7969 library call).
7971 If the compiler were able to handle nontrivial condition-strings in
7972 patterns with names, then it would be possible to use a
7973 @code{define_insn} in that case.  Here is another case (zero-extension
7974 on the 68000) which makes more use of the power of @code{define_expand}:
7976 @smallexample
7977 (define_expand "zero_extendhisi2"
7978   [(set (match_operand:SI 0 "general_operand" "")
7979         (const_int 0))
7980    (set (strict_low_part
7981           (subreg:HI
7982             (match_dup 0)
7983             0))
7984         (match_operand:HI 1 "general_operand" ""))]
7985   ""
7986   "operands[1] = make_safe_from (operands[1], operands[0]);")
7987 @end smallexample
7989 @noindent
7990 @findex make_safe_from
7991 Here two RTL insns are generated, one to clear the entire output operand
7992 and the other to copy the input operand into its low half.  This sequence
7993 is incorrect if the input operand refers to [the old value of] the output
7994 operand, so the preparation statement makes sure this isn't so.  The
7995 function @code{make_safe_from} copies the @code{operands[1]} into a
7996 temporary register if it refers to @code{operands[0]}.  It does this
7997 by emitting another RTL insn.
7999 Finally, a third example shows the use of an internal operand.
8000 Zero-extension on the SPUR chip is done by @code{and}-ing the result
8001 against a halfword mask.  But this mask cannot be represented by a
8002 @code{const_int} because the constant value is too large to be legitimate
8003 on this machine.  So it must be copied into a register with
8004 @code{force_reg} and then the register used in the @code{and}.
8006 @smallexample
8007 (define_expand "zero_extendhisi2"
8008   [(set (match_operand:SI 0 "register_operand" "")
8009         (and:SI (subreg:SI
8010                   (match_operand:HI 1 "register_operand" "")
8011                   0)
8012                 (match_dup 2)))]
8013   ""
8014   "operands[2]
8015      = force_reg (SImode, GEN_INT (65535)); ")
8016 @end smallexample
8018 @emph{Note:} If the @code{define_expand} is used to serve a
8019 standard binary or unary arithmetic operation or a bit-field operation,
8020 then the last insn it generates must not be a @code{code_label},
8021 @code{barrier} or @code{note}.  It must be an @code{insn},
8022 @code{jump_insn} or @code{call_insn}.  If you don't need a real insn
8023 at the end, emit an insn to copy the result of the operation into
8024 itself.  Such an insn will generate no code, but it can avoid problems
8025 in the compiler.
8027 @end ifset
8028 @ifset INTERNALS
8029 @node Insn Splitting
8030 @section Defining How to Split Instructions
8031 @cindex insn splitting
8032 @cindex instruction splitting
8033 @cindex splitting instructions
8035 There are two cases where you should specify how to split a pattern
8036 into multiple insns.  On machines that have instructions requiring
8037 delay slots (@pxref{Delay Slots}) or that have instructions whose
8038 output is not available for multiple cycles (@pxref{Processor pipeline
8039 description}), the compiler phases that optimize these cases need to
8040 be able to move insns into one-instruction delay slots.  However, some
8041 insns may generate more than one machine instruction.  These insns
8042 cannot be placed into a delay slot.
8044 Often you can rewrite the single insn as a list of individual insns,
8045 each corresponding to one machine instruction.  The disadvantage of
8046 doing so is that it will cause the compilation to be slower and require
8047 more space.  If the resulting insns are too complex, it may also
8048 suppress some optimizations.  The compiler splits the insn if there is a
8049 reason to believe that it might improve instruction or delay slot
8050 scheduling.
8052 The insn combiner phase also splits putative insns.  If three insns are
8053 merged into one insn with a complex expression that cannot be matched by
8054 some @code{define_insn} pattern, the combiner phase attempts to split
8055 the complex pattern into two insns that are recognized.  Usually it can
8056 break the complex pattern into two patterns by splitting out some
8057 subexpression.  However, in some other cases, such as performing an
8058 addition of a large constant in two insns on a RISC machine, the way to
8059 split the addition into two insns is machine-dependent.
8061 @findex define_split
8062 The @code{define_split} definition tells the compiler how to split a
8063 complex insn into several simpler insns.  It looks like this:
8065 @smallexample
8066 (define_split
8067   [@var{insn-pattern}]
8068   "@var{condition}"
8069   [@var{new-insn-pattern-1}
8070    @var{new-insn-pattern-2}
8071    @dots{}]
8072   "@var{preparation-statements}")
8073 @end smallexample
8075 @var{insn-pattern} is a pattern that needs to be split and
8076 @var{condition} is the final condition to be tested, as in a
8077 @code{define_insn}.  When an insn matching @var{insn-pattern} and
8078 satisfying @var{condition} is found, it is replaced in the insn list
8079 with the insns given by @var{new-insn-pattern-1},
8080 @var{new-insn-pattern-2}, etc.
8082 The @var{preparation-statements} are similar to those statements that
8083 are specified for @code{define_expand} (@pxref{Expander Definitions})
8084 and are executed before the new RTL is generated to prepare for the
8085 generated code or emit some insns whose pattern is not fixed.  Unlike
8086 those in @code{define_expand}, however, these statements must not
8087 generate any new pseudo-registers.  Once reload has completed, they also
8088 must not allocate any space in the stack frame.
8090 There are two special macros defined for use in the preparation statements:
8091 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
8092 as a statement.
8094 @table @code
8096 @findex DONE
8097 @item DONE
8098 Use the @code{DONE} macro to end RTL generation for the splitter.  The
8099 only RTL insns generated as replacement for the matched input insn will
8100 be those already emitted by explicit calls to @code{emit_insn} within
8101 the preparation statements; the replacement pattern is not used.
8103 @findex FAIL
8104 @item FAIL
8105 Make the @code{define_split} fail on this occasion.  When a @code{define_split}
8106 fails, it means that the splitter was not truly available for the inputs
8107 it was given, and the input insn will not be split.
8108 @end table
8110 If the preparation falls through (invokes neither @code{DONE} nor
8111 @code{FAIL}), then the @code{define_split} uses the replacement
8112 template.
8114 Patterns are matched against @var{insn-pattern} in two different
8115 circumstances.  If an insn needs to be split for delay slot scheduling
8116 or insn scheduling, the insn is already known to be valid, which means
8117 that it must have been matched by some @code{define_insn} and, if
8118 @code{reload_completed} is nonzero, is known to satisfy the constraints
8119 of that @code{define_insn}.  In that case, the new insn patterns must
8120 also be insns that are matched by some @code{define_insn} and, if
8121 @code{reload_completed} is nonzero, must also satisfy the constraints
8122 of those definitions.
8124 As an example of this usage of @code{define_split}, consider the following
8125 example from @file{a29k.md}, which splits a @code{sign_extend} from
8126 @code{HImode} to @code{SImode} into a pair of shift insns:
8128 @smallexample
8129 (define_split
8130   [(set (match_operand:SI 0 "gen_reg_operand" "")
8131         (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
8132   ""
8133   [(set (match_dup 0)
8134         (ashift:SI (match_dup 1)
8135                    (const_int 16)))
8136    (set (match_dup 0)
8137         (ashiftrt:SI (match_dup 0)
8138                      (const_int 16)))]
8139   "
8140 @{ operands[1] = gen_lowpart (SImode, operands[1]); @}")
8141 @end smallexample
8143 When the combiner phase tries to split an insn pattern, it is always the
8144 case that the pattern is @emph{not} matched by any @code{define_insn}.
8145 The combiner pass first tries to split a single @code{set} expression
8146 and then the same @code{set} expression inside a @code{parallel}, but
8147 followed by a @code{clobber} of a pseudo-reg to use as a scratch
8148 register.  In these cases, the combiner expects exactly two new insn
8149 patterns to be generated.  It will verify that these patterns match some
8150 @code{define_insn} definitions, so you need not do this test in the
8151 @code{define_split} (of course, there is no point in writing a
8152 @code{define_split} that will never produce insns that match).
8154 Here is an example of this use of @code{define_split}, taken from
8155 @file{rs6000.md}:
8157 @smallexample
8158 (define_split
8159   [(set (match_operand:SI 0 "gen_reg_operand" "")
8160         (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
8161                  (match_operand:SI 2 "non_add_cint_operand" "")))]
8162   ""
8163   [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
8164    (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
8167   int low = INTVAL (operands[2]) & 0xffff;
8168   int high = (unsigned) INTVAL (operands[2]) >> 16;
8170   if (low & 0x8000)
8171     high++, low |= 0xffff0000;
8173   operands[3] = GEN_INT (high << 16);
8174   operands[4] = GEN_INT (low);
8175 @}")
8176 @end smallexample
8178 Here the predicate @code{non_add_cint_operand} matches any
8179 @code{const_int} that is @emph{not} a valid operand of a single add
8180 insn.  The add with the smaller displacement is written so that it
8181 can be substituted into the address of a subsequent operation.
8183 An example that uses a scratch register, from the same file, generates
8184 an equality comparison of a register and a large constant:
8186 @smallexample
8187 (define_split
8188   [(set (match_operand:CC 0 "cc_reg_operand" "")
8189         (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
8190                     (match_operand:SI 2 "non_short_cint_operand" "")))
8191    (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
8192   "find_single_use (operands[0], insn, 0)
8193    && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
8194        || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
8195   [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
8196    (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
8197   "
8199   /* @r{Get the constant we are comparing against, C, and see what it
8200      looks like sign-extended to 16 bits.  Then see what constant
8201      could be XOR'ed with C to get the sign-extended value.}  */
8203   int c = INTVAL (operands[2]);
8204   int sextc = (c << 16) >> 16;
8205   int xorv = c ^ sextc;
8207   operands[4] = GEN_INT (xorv);
8208   operands[5] = GEN_INT (sextc);
8209 @}")
8210 @end smallexample
8212 To avoid confusion, don't write a single @code{define_split} that
8213 accepts some insns that match some @code{define_insn} as well as some
8214 insns that don't.  Instead, write two separate @code{define_split}
8215 definitions, one for the insns that are valid and one for the insns that
8216 are not valid.
8218 The splitter is allowed to split jump instructions into sequence of
8219 jumps or create new jumps in while splitting non-jump instructions.  As
8220 the control flow graph and branch prediction information needs to be updated,
8221 several restriction apply.
8223 Splitting of jump instruction into sequence that over by another jump
8224 instruction is always valid, as compiler expect identical behavior of new
8225 jump.  When new sequence contains multiple jump instructions or new labels,
8226 more assistance is needed.  Splitter is required to create only unconditional
8227 jumps, or simple conditional jump instructions.  Additionally it must attach a
8228 @code{REG_BR_PROB} note to each conditional jump.  A global variable
8229 @code{split_branch_probability} holds the probability of the original branch in case
8230 it was a simple conditional jump, @minus{}1 otherwise.  To simplify
8231 recomputing of edge frequencies, the new sequence is required to have only
8232 forward jumps to the newly created labels.
8234 @findex define_insn_and_split
8235 For the common case where the pattern of a define_split exactly matches the
8236 pattern of a define_insn, use @code{define_insn_and_split}.  It looks like
8237 this:
8239 @smallexample
8240 (define_insn_and_split
8241   [@var{insn-pattern}]
8242   "@var{condition}"
8243   "@var{output-template}"
8244   "@var{split-condition}"
8245   [@var{new-insn-pattern-1}
8246    @var{new-insn-pattern-2}
8247    @dots{}]
8248   "@var{preparation-statements}"
8249   [@var{insn-attributes}])
8251 @end smallexample
8253 @var{insn-pattern}, @var{condition}, @var{output-template}, and
8254 @var{insn-attributes} are used as in @code{define_insn}.  The
8255 @var{new-insn-pattern} vector and the @var{preparation-statements} are used as
8256 in a @code{define_split}.  The @var{split-condition} is also used as in
8257 @code{define_split}, with the additional behavior that if the condition starts
8258 with @samp{&&}, the condition used for the split will be the constructed as a
8259 logical ``and'' of the split condition with the insn condition.  For example,
8260 from i386.md:
8262 @smallexample
8263 (define_insn_and_split "zero_extendhisi2_and"
8264   [(set (match_operand:SI 0 "register_operand" "=r")
8265      (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
8266    (clobber (reg:CC 17))]
8267   "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
8268   "#"
8269   "&& reload_completed"
8270   [(parallel [(set (match_dup 0)
8271                    (and:SI (match_dup 0) (const_int 65535)))
8272               (clobber (reg:CC 17))])]
8273   ""
8274   [(set_attr "type" "alu1")])
8276 @end smallexample
8278 In this case, the actual split condition will be
8279 @samp{TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed}.
8281 The @code{define_insn_and_split} construction provides exactly the same
8282 functionality as two separate @code{define_insn} and @code{define_split}
8283 patterns.  It exists for compactness, and as a maintenance tool to prevent
8284 having to ensure the two patterns' templates match.
8286 @end ifset
8287 @ifset INTERNALS
8288 @node Including Patterns
8289 @section Including Patterns in Machine Descriptions.
8290 @cindex insn includes
8292 @findex include
8293 The @code{include} pattern tells the compiler tools where to
8294 look for patterns that are in files other than in the file
8295 @file{.md}.  This is used only at build time and there is no preprocessing allowed.
8297 It looks like:
8299 @smallexample
8301 (include
8302   @var{pathname})
8303 @end smallexample
8305 For example:
8307 @smallexample
8309 (include "filestuff")
8311 @end smallexample
8313 Where @var{pathname} is a string that specifies the location of the file,
8314 specifies the include file to be in @file{gcc/config/target/filestuff}.  The
8315 directory @file{gcc/config/target} is regarded as the default directory.
8318 Machine descriptions may be split up into smaller more manageable subsections
8319 and placed into subdirectories.
8321 By specifying:
8323 @smallexample
8325 (include "BOGUS/filestuff")
8327 @end smallexample
8329 the include file is specified to be in @file{gcc/config/@var{target}/BOGUS/filestuff}.
8331 Specifying an absolute path for the include file such as;
8332 @smallexample
8334 (include "/u2/BOGUS/filestuff")
8336 @end smallexample
8337 is permitted but is not encouraged.
8339 @subsection RTL Generation Tool Options for Directory Search
8340 @cindex directory options .md
8341 @cindex options, directory search
8342 @cindex search options
8344 The @option{-I@var{dir}} option specifies directories to search for machine descriptions.
8345 For example:
8347 @smallexample
8349 genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
8351 @end smallexample
8354 Add the directory @var{dir} to the head of the list of directories to be
8355 searched for header files.  This can be used to override a system machine definition
8356 file, substituting your own version, since these directories are
8357 searched before the default machine description file directories.  If you use more than
8358 one @option{-I} option, the directories are scanned in left-to-right
8359 order; the standard default directory come after.
8362 @end ifset
8363 @ifset INTERNALS
8364 @node Peephole Definitions
8365 @section Machine-Specific Peephole Optimizers
8366 @cindex peephole optimizer definitions
8367 @cindex defining peephole optimizers
8369 In addition to instruction patterns the @file{md} file may contain
8370 definitions of machine-specific peephole optimizations.
8372 The combiner does not notice certain peephole optimizations when the data
8373 flow in the program does not suggest that it should try them.  For example,
8374 sometimes two consecutive insns related in purpose can be combined even
8375 though the second one does not appear to use a register computed in the
8376 first one.  A machine-specific peephole optimizer can detect such
8377 opportunities.
8379 There are two forms of peephole definitions that may be used.  The
8380 original @code{define_peephole} is run at assembly output time to
8381 match insns and substitute assembly text.  Use of @code{define_peephole}
8382 is deprecated.
8384 A newer @code{define_peephole2} matches insns and substitutes new
8385 insns.  The @code{peephole2} pass is run after register allocation
8386 but before scheduling, which may result in much better code for
8387 targets that do scheduling.
8389 @menu
8390 * define_peephole::     RTL to Text Peephole Optimizers
8391 * define_peephole2::    RTL to RTL Peephole Optimizers
8392 @end menu
8394 @end ifset
8395 @ifset INTERNALS
8396 @node define_peephole
8397 @subsection RTL to Text Peephole Optimizers
8398 @findex define_peephole
8400 @need 1000
8401 A definition looks like this:
8403 @smallexample
8404 (define_peephole
8405   [@var{insn-pattern-1}
8406    @var{insn-pattern-2}
8407    @dots{}]
8408   "@var{condition}"
8409   "@var{template}"
8410   "@var{optional-insn-attributes}")
8411 @end smallexample
8413 @noindent
8414 The last string operand may be omitted if you are not using any
8415 machine-specific information in this machine description.  If present,
8416 it must obey the same rules as in a @code{define_insn}.
8418 In this skeleton, @var{insn-pattern-1} and so on are patterns to match
8419 consecutive insns.  The optimization applies to a sequence of insns when
8420 @var{insn-pattern-1} matches the first one, @var{insn-pattern-2} matches
8421 the next, and so on.
8423 Each of the insns matched by a peephole must also match a
8424 @code{define_insn}.  Peepholes are checked only at the last stage just
8425 before code generation, and only optionally.  Therefore, any insn which
8426 would match a peephole but no @code{define_insn} will cause a crash in code
8427 generation in an unoptimized compilation, or at various optimization
8428 stages.
8430 The operands of the insns are matched with @code{match_operands},
8431 @code{match_operator}, and @code{match_dup}, as usual.  What is not
8432 usual is that the operand numbers apply to all the insn patterns in the
8433 definition.  So, you can check for identical operands in two insns by
8434 using @code{match_operand} in one insn and @code{match_dup} in the
8435 other.
8437 The operand constraints used in @code{match_operand} patterns do not have
8438 any direct effect on the applicability of the peephole, but they will
8439 be validated afterward, so make sure your constraints are general enough
8440 to apply whenever the peephole matches.  If the peephole matches
8441 but the constraints are not satisfied, the compiler will crash.
8443 It is safe to omit constraints in all the operands of the peephole; or
8444 you can write constraints which serve as a double-check on the criteria
8445 previously tested.
8447 Once a sequence of insns matches the patterns, the @var{condition} is
8448 checked.  This is a C expression which makes the final decision whether to
8449 perform the optimization (we do so if the expression is nonzero).  If
8450 @var{condition} is omitted (in other words, the string is empty) then the
8451 optimization is applied to every sequence of insns that matches the
8452 patterns.
8454 The defined peephole optimizations are applied after register allocation
8455 is complete.  Therefore, the peephole definition can check which
8456 operands have ended up in which kinds of registers, just by looking at
8457 the operands.
8459 @findex prev_active_insn
8460 The way to refer to the operands in @var{condition} is to write
8461 @code{operands[@var{i}]} for operand number @var{i} (as matched by
8462 @code{(match_operand @var{i} @dots{})}).  Use the variable @code{insn}
8463 to refer to the last of the insns being matched; use
8464 @code{prev_active_insn} to find the preceding insns.
8466 @findex dead_or_set_p
8467 When optimizing computations with intermediate results, you can use
8468 @var{condition} to match only when the intermediate results are not used
8469 elsewhere.  Use the C expression @code{dead_or_set_p (@var{insn},
8470 @var{op})}, where @var{insn} is the insn in which you expect the value
8471 to be used for the last time (from the value of @code{insn}, together
8472 with use of @code{prev_nonnote_insn}), and @var{op} is the intermediate
8473 value (from @code{operands[@var{i}]}).
8475 Applying the optimization means replacing the sequence of insns with one
8476 new insn.  The @var{template} controls ultimate output of assembler code
8477 for this combined insn.  It works exactly like the template of a
8478 @code{define_insn}.  Operand numbers in this template are the same ones
8479 used in matching the original sequence of insns.
8481 The result of a defined peephole optimizer does not need to match any of
8482 the insn patterns in the machine description; it does not even have an
8483 opportunity to match them.  The peephole optimizer definition itself serves
8484 as the insn pattern to control how the insn is output.
8486 Defined peephole optimizers are run as assembler code is being output,
8487 so the insns they produce are never combined or rearranged in any way.
8489 Here is an example, taken from the 68000 machine description:
8491 @smallexample
8492 (define_peephole
8493   [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
8494    (set (match_operand:DF 0 "register_operand" "=f")
8495         (match_operand:DF 1 "register_operand" "ad"))]
8496   "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
8498   rtx xoperands[2];
8499   xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
8500 #ifdef MOTOROLA
8501   output_asm_insn ("move.l %1,(sp)", xoperands);
8502   output_asm_insn ("move.l %1,-(sp)", operands);
8503   return "fmove.d (sp)+,%0";
8504 #else
8505   output_asm_insn ("movel %1,sp@@", xoperands);
8506   output_asm_insn ("movel %1,sp@@-", operands);
8507   return "fmoved sp@@+,%0";
8508 #endif
8510 @end smallexample
8512 @need 1000
8513 The effect of this optimization is to change
8515 @smallexample
8516 @group
8517 jbsr _foobar
8518 addql #4,sp
8519 movel d1,sp@@-
8520 movel d0,sp@@-
8521 fmoved sp@@+,fp0
8522 @end group
8523 @end smallexample
8525 @noindent
8526 into
8528 @smallexample
8529 @group
8530 jbsr _foobar
8531 movel d1,sp@@
8532 movel d0,sp@@-
8533 fmoved sp@@+,fp0
8534 @end group
8535 @end smallexample
8537 @ignore
8538 @findex CC_REVERSED
8539 If a peephole matches a sequence including one or more jump insns, you must
8540 take account of the flags such as @code{CC_REVERSED} which specify that the
8541 condition codes are represented in an unusual manner.  The compiler
8542 automatically alters any ordinary conditional jumps which occur in such
8543 situations, but the compiler cannot alter jumps which have been replaced by
8544 peephole optimizations.  So it is up to you to alter the assembler code
8545 that the peephole produces.  Supply C code to write the assembler output,
8546 and in this C code check the condition code status flags and change the
8547 assembler code as appropriate.
8548 @end ignore
8550 @var{insn-pattern-1} and so on look @emph{almost} like the second
8551 operand of @code{define_insn}.  There is one important difference: the
8552 second operand of @code{define_insn} consists of one or more RTX's
8553 enclosed in square brackets.  Usually, there is only one: then the same
8554 action can be written as an element of a @code{define_peephole}.  But
8555 when there are multiple actions in a @code{define_insn}, they are
8556 implicitly enclosed in a @code{parallel}.  Then you must explicitly
8557 write the @code{parallel}, and the square brackets within it, in the
8558 @code{define_peephole}.  Thus, if an insn pattern looks like this,
8560 @smallexample
8561 (define_insn "divmodsi4"
8562   [(set (match_operand:SI 0 "general_operand" "=d")
8563         (div:SI (match_operand:SI 1 "general_operand" "0")
8564                 (match_operand:SI 2 "general_operand" "dmsK")))
8565    (set (match_operand:SI 3 "general_operand" "=d")
8566         (mod:SI (match_dup 1) (match_dup 2)))]
8567   "TARGET_68020"
8568   "divsl%.l %2,%3:%0")
8569 @end smallexample
8571 @noindent
8572 then the way to mention this insn in a peephole is as follows:
8574 @smallexample
8575 (define_peephole
8576   [@dots{}
8577    (parallel
8578     [(set (match_operand:SI 0 "general_operand" "=d")
8579           (div:SI (match_operand:SI 1 "general_operand" "0")
8580                   (match_operand:SI 2 "general_operand" "dmsK")))
8581      (set (match_operand:SI 3 "general_operand" "=d")
8582           (mod:SI (match_dup 1) (match_dup 2)))])
8583    @dots{}]
8584   @dots{})
8585 @end smallexample
8587 @end ifset
8588 @ifset INTERNALS
8589 @node define_peephole2
8590 @subsection RTL to RTL Peephole Optimizers
8591 @findex define_peephole2
8593 The @code{define_peephole2} definition tells the compiler how to
8594 substitute one sequence of instructions for another sequence,
8595 what additional scratch registers may be needed and what their
8596 lifetimes must be.
8598 @smallexample
8599 (define_peephole2
8600   [@var{insn-pattern-1}
8601    @var{insn-pattern-2}
8602    @dots{}]
8603   "@var{condition}"
8604   [@var{new-insn-pattern-1}
8605    @var{new-insn-pattern-2}
8606    @dots{}]
8607   "@var{preparation-statements}")
8608 @end smallexample
8610 The definition is almost identical to @code{define_split}
8611 (@pxref{Insn Splitting}) except that the pattern to match is not a
8612 single instruction, but a sequence of instructions.
8614 It is possible to request additional scratch registers for use in the
8615 output template.  If appropriate registers are not free, the pattern
8616 will simply not match.
8618 @findex match_scratch
8619 @findex match_dup
8620 Scratch registers are requested with a @code{match_scratch} pattern at
8621 the top level of the input pattern.  The allocated register (initially) will
8622 be dead at the point requested within the original sequence.  If the scratch
8623 is used at more than a single point, a @code{match_dup} pattern at the
8624 top level of the input pattern marks the last position in the input sequence
8625 at which the register must be available.
8627 Here is an example from the IA-32 machine description:
8629 @smallexample
8630 (define_peephole2
8631   [(match_scratch:SI 2 "r")
8632    (parallel [(set (match_operand:SI 0 "register_operand" "")
8633                    (match_operator:SI 3 "arith_or_logical_operator"
8634                      [(match_dup 0)
8635                       (match_operand:SI 1 "memory_operand" "")]))
8636               (clobber (reg:CC 17))])]
8637   "! optimize_size && ! TARGET_READ_MODIFY"
8638   [(set (match_dup 2) (match_dup 1))
8639    (parallel [(set (match_dup 0)
8640                    (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
8641               (clobber (reg:CC 17))])]
8642   "")
8643 @end smallexample
8645 @noindent
8646 This pattern tries to split a load from its use in the hopes that we'll be
8647 able to schedule around the memory load latency.  It allocates a single
8648 @code{SImode} register of class @code{GENERAL_REGS} (@code{"r"}) that needs
8649 to be live only at the point just before the arithmetic.
8651 A real example requiring extended scratch lifetimes is harder to come by,
8652 so here's a silly made-up example:
8654 @smallexample
8655 (define_peephole2
8656   [(match_scratch:SI 4 "r")
8657    (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
8658    (set (match_operand:SI 2 "" "") (match_dup 1))
8659    (match_dup 4)
8660    (set (match_operand:SI 3 "" "") (match_dup 1))]
8661   "/* @r{determine 1 does not overlap 0 and 2} */"
8662   [(set (match_dup 4) (match_dup 1))
8663    (set (match_dup 0) (match_dup 4))
8664    (set (match_dup 2) (match_dup 4))
8665    (set (match_dup 3) (match_dup 4))]
8666   "")
8667 @end smallexample
8669 There are two special macros defined for use in the preparation statements:
8670 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
8671 as a statement.
8673 @table @code
8675 @findex DONE
8676 @item DONE
8677 Use the @code{DONE} macro to end RTL generation for the peephole.  The
8678 only RTL insns generated as replacement for the matched input insn will
8679 be those already emitted by explicit calls to @code{emit_insn} within
8680 the preparation statements; the replacement pattern is not used.
8682 @findex FAIL
8683 @item FAIL
8684 Make the @code{define_peephole2} fail on this occasion.  When a @code{define_peephole2}
8685 fails, it means that the replacement was not truly available for the
8686 particular inputs it was given.  In that case, GCC may still apply a
8687 later @code{define_peephole2} that also matches the given insn pattern.
8688 (Note that this is different from @code{define_split}, where @code{FAIL}
8689 prevents the input insn from being split at all.)
8690 @end table
8692 If the preparation falls through (invokes neither @code{DONE} nor
8693 @code{FAIL}), then the @code{define_peephole2} uses the replacement
8694 template.
8696 @noindent
8697 If we had not added the @code{(match_dup 4)} in the middle of the input
8698 sequence, it might have been the case that the register we chose at the
8699 beginning of the sequence is killed by the first or second @code{set}.
8701 @end ifset
8702 @ifset INTERNALS
8703 @node Insn Attributes
8704 @section Instruction Attributes
8705 @cindex insn attributes
8706 @cindex instruction attributes
8708 In addition to describing the instruction supported by the target machine,
8709 the @file{md} file also defines a group of @dfn{attributes} and a set of
8710 values for each.  Every generated insn is assigned a value for each attribute.
8711 One possible attribute would be the effect that the insn has on the machine's
8712 condition code.  This attribute can then be used by @code{NOTICE_UPDATE_CC}
8713 to track the condition codes.
8715 @menu
8716 * Defining Attributes:: Specifying attributes and their values.
8717 * Expressions::         Valid expressions for attribute values.
8718 * Tagging Insns::       Assigning attribute values to insns.
8719 * Attr Example::        An example of assigning attributes.
8720 * Insn Lengths::        Computing the length of insns.
8721 * Constant Attributes:: Defining attributes that are constant.
8722 * Mnemonic Attribute::  Obtain the instruction mnemonic as attribute value.
8723 * Delay Slots::         Defining delay slots required for a machine.
8724 * Processor pipeline description:: Specifying information for insn scheduling.
8725 @end menu
8727 @end ifset
8728 @ifset INTERNALS
8729 @node Defining Attributes
8730 @subsection Defining Attributes and their Values
8731 @cindex defining attributes and their values
8732 @cindex attributes, defining
8734 @findex define_attr
8735 The @code{define_attr} expression is used to define each attribute required
8736 by the target machine.  It looks like:
8738 @smallexample
8739 (define_attr @var{name} @var{list-of-values} @var{default})
8740 @end smallexample
8742 @var{name} is a string specifying the name of the attribute being
8743 defined.  Some attributes are used in a special way by the rest of the
8744 compiler. The @code{enabled} attribute can be used to conditionally
8745 enable or disable insn alternatives (@pxref{Disable Insn
8746 Alternatives}). The @code{predicable} attribute, together with a
8747 suitable @code{define_cond_exec} (@pxref{Conditional Execution}), can
8748 be used to automatically generate conditional variants of instruction
8749 patterns. The @code{mnemonic} attribute can be used to check for the
8750 instruction mnemonic (@pxref{Mnemonic Attribute}).  The compiler
8751 internally uses the names @code{ce_enabled} and @code{nonce_enabled},
8752 so they should not be used elsewhere as alternative names.
8754 @var{list-of-values} is either a string that specifies a comma-separated
8755 list of values that can be assigned to the attribute, or a null string to
8756 indicate that the attribute takes numeric values.
8758 @var{default} is an attribute expression that gives the value of this
8759 attribute for insns that match patterns whose definition does not include
8760 an explicit value for this attribute.  @xref{Attr Example}, for more
8761 information on the handling of defaults.  @xref{Constant Attributes},
8762 for information on attributes that do not depend on any particular insn.
8764 @findex insn-attr.h
8765 For each defined attribute, a number of definitions are written to the
8766 @file{insn-attr.h} file.  For cases where an explicit set of values is
8767 specified for an attribute, the following are defined:
8769 @itemize @bullet
8770 @item
8771 A @samp{#define} is written for the symbol @samp{HAVE_ATTR_@var{name}}.
8773 @item
8774 An enumerated class is defined for @samp{attr_@var{name}} with
8775 elements of the form @samp{@var{upper-name}_@var{upper-value}} where
8776 the attribute name and value are first converted to uppercase.
8778 @item
8779 A function @samp{get_attr_@var{name}} is defined that is passed an insn and
8780 returns the attribute value for that insn.
8781 @end itemize
8783 For example, if the following is present in the @file{md} file:
8785 @smallexample
8786 (define_attr "type" "branch,fp,load,store,arith" @dots{})
8787 @end smallexample
8789 @noindent
8790 the following lines will be written to the file @file{insn-attr.h}.
8792 @smallexample
8793 #define HAVE_ATTR_type 1
8794 enum attr_type @{TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
8795                  TYPE_STORE, TYPE_ARITH@};
8796 extern enum attr_type get_attr_type ();
8797 @end smallexample
8799 If the attribute takes numeric values, no @code{enum} type will be
8800 defined and the function to obtain the attribute's value will return
8801 @code{int}.
8803 There are attributes which are tied to a specific meaning.  These
8804 attributes are not free to use for other purposes:
8806 @table @code
8807 @item length
8808 The @code{length} attribute is used to calculate the length of emitted
8809 code chunks.  This is especially important when verifying branch
8810 distances. @xref{Insn Lengths}.
8812 @item enabled
8813 The @code{enabled} attribute can be defined to prevent certain
8814 alternatives of an insn definition from being used during code
8815 generation. @xref{Disable Insn Alternatives}.
8817 @item mnemonic
8818 The @code{mnemonic} attribute can be defined to implement instruction
8819 specific checks in e.g. the pipeline description.
8820 @xref{Mnemonic Attribute}.
8821 @end table
8823 For each of these special attributes, the corresponding
8824 @samp{HAVE_ATTR_@var{name}} @samp{#define} is also written when the
8825 attribute is not defined; in that case, it is defined as @samp{0}.
8827 @findex define_enum_attr
8828 @anchor{define_enum_attr}
8829 Another way of defining an attribute is to use:
8831 @smallexample
8832 (define_enum_attr "@var{attr}" "@var{enum}" @var{default})
8833 @end smallexample
8835 This works in just the same way as @code{define_attr}, except that
8836 the list of values is taken from a separate enumeration called
8837 @var{enum} (@pxref{define_enum}).  This form allows you to use
8838 the same list of values for several attributes without having to
8839 repeat the list each time.  For example:
8841 @smallexample
8842 (define_enum "processor" [
8843   model_a
8844   model_b
8845   @dots{}
8847 (define_enum_attr "arch" "processor"
8848   (const (symbol_ref "target_arch")))
8849 (define_enum_attr "tune" "processor"
8850   (const (symbol_ref "target_tune")))
8851 @end smallexample
8853 defines the same attributes as:
8855 @smallexample
8856 (define_attr "arch" "model_a,model_b,@dots{}"
8857   (const (symbol_ref "target_arch")))
8858 (define_attr "tune" "model_a,model_b,@dots{}"
8859   (const (symbol_ref "target_tune")))
8860 @end smallexample
8862 but without duplicating the processor list.  The second example defines two
8863 separate C enums (@code{attr_arch} and @code{attr_tune}) whereas the first
8864 defines a single C enum (@code{processor}).
8865 @end ifset
8866 @ifset INTERNALS
8867 @node Expressions
8868 @subsection Attribute Expressions
8869 @cindex attribute expressions
8871 RTL expressions used to define attributes use the codes described above
8872 plus a few specific to attribute definitions, to be discussed below.
8873 Attribute value expressions must have one of the following forms:
8875 @table @code
8876 @cindex @code{const_int} and attributes
8877 @item (const_int @var{i})
8878 The integer @var{i} specifies the value of a numeric attribute.  @var{i}
8879 must be non-negative.
8881 The value of a numeric attribute can be specified either with a
8882 @code{const_int}, or as an integer represented as a string in
8883 @code{const_string}, @code{eq_attr} (see below), @code{attr},
8884 @code{symbol_ref}, simple arithmetic expressions, and @code{set_attr}
8885 overrides on specific instructions (@pxref{Tagging Insns}).
8887 @cindex @code{const_string} and attributes
8888 @item (const_string @var{value})
8889 The string @var{value} specifies a constant attribute value.
8890 If @var{value} is specified as @samp{"*"}, it means that the default value of
8891 the attribute is to be used for the insn containing this expression.
8892 @samp{"*"} obviously cannot be used in the @var{default} expression
8893 of a @code{define_attr}.
8895 If the attribute whose value is being specified is numeric, @var{value}
8896 must be a string containing a non-negative integer (normally
8897 @code{const_int} would be used in this case).  Otherwise, it must
8898 contain one of the valid values for the attribute.
8900 @cindex @code{if_then_else} and attributes
8901 @item (if_then_else @var{test} @var{true-value} @var{false-value})
8902 @var{test} specifies an attribute test, whose format is defined below.
8903 The value of this expression is @var{true-value} if @var{test} is true,
8904 otherwise it is @var{false-value}.
8906 @cindex @code{cond} and attributes
8907 @item (cond [@var{test1} @var{value1} @dots{}] @var{default})
8908 The first operand of this expression is a vector containing an even
8909 number of expressions and consisting of pairs of @var{test} and @var{value}
8910 expressions.  The value of the @code{cond} expression is that of the
8911 @var{value} corresponding to the first true @var{test} expression.  If
8912 none of the @var{test} expressions are true, the value of the @code{cond}
8913 expression is that of the @var{default} expression.
8914 @end table
8916 @var{test} expressions can have one of the following forms:
8918 @table @code
8919 @cindex @code{const_int} and attribute tests
8920 @item (const_int @var{i})
8921 This test is true if @var{i} is nonzero and false otherwise.
8923 @cindex @code{not} and attributes
8924 @cindex @code{ior} and attributes
8925 @cindex @code{and} and attributes
8926 @item (not @var{test})
8927 @itemx (ior @var{test1} @var{test2})
8928 @itemx (and @var{test1} @var{test2})
8929 These tests are true if the indicated logical function is true.
8931 @cindex @code{match_operand} and attributes
8932 @item (match_operand:@var{m} @var{n} @var{pred} @var{constraints})
8933 This test is true if operand @var{n} of the insn whose attribute value
8934 is being determined has mode @var{m} (this part of the test is ignored
8935 if @var{m} is @code{VOIDmode}) and the function specified by the string
8936 @var{pred} returns a nonzero value when passed operand @var{n} and mode
8937 @var{m} (this part of the test is ignored if @var{pred} is the null
8938 string).
8940 The @var{constraints} operand is ignored and should be the null string.
8942 @cindex @code{match_test} and attributes
8943 @item (match_test @var{c-expr})
8944 The test is true if C expression @var{c-expr} is true.  In non-constant
8945 attributes, @var{c-expr} has access to the following variables:
8947 @table @var
8948 @item insn
8949 The rtl instruction under test.
8950 @item which_alternative
8951 The @code{define_insn} alternative that @var{insn} matches.
8952 @xref{Output Statement}.
8953 @item operands
8954 An array of @var{insn}'s rtl operands.
8955 @end table
8957 @var{c-expr} behaves like the condition in a C @code{if} statement,
8958 so there is no need to explicitly convert the expression into a boolean
8959 0 or 1 value.  For example, the following two tests are equivalent:
8961 @smallexample
8962 (match_test "x & 2")
8963 (match_test "(x & 2) != 0")
8964 @end smallexample
8966 @cindex @code{le} and attributes
8967 @cindex @code{leu} and attributes
8968 @cindex @code{lt} and attributes
8969 @cindex @code{gt} and attributes
8970 @cindex @code{gtu} and attributes
8971 @cindex @code{ge} and attributes
8972 @cindex @code{geu} and attributes
8973 @cindex @code{ne} and attributes
8974 @cindex @code{eq} and attributes
8975 @cindex @code{plus} and attributes
8976 @cindex @code{minus} and attributes
8977 @cindex @code{mult} and attributes
8978 @cindex @code{div} and attributes
8979 @cindex @code{mod} and attributes
8980 @cindex @code{abs} and attributes
8981 @cindex @code{neg} and attributes
8982 @cindex @code{ashift} and attributes
8983 @cindex @code{lshiftrt} and attributes
8984 @cindex @code{ashiftrt} and attributes
8985 @item (le @var{arith1} @var{arith2})
8986 @itemx (leu @var{arith1} @var{arith2})
8987 @itemx (lt @var{arith1} @var{arith2})
8988 @itemx (ltu @var{arith1} @var{arith2})
8989 @itemx (gt @var{arith1} @var{arith2})
8990 @itemx (gtu @var{arith1} @var{arith2})
8991 @itemx (ge @var{arith1} @var{arith2})
8992 @itemx (geu @var{arith1} @var{arith2})
8993 @itemx (ne @var{arith1} @var{arith2})
8994 @itemx (eq @var{arith1} @var{arith2})
8995 These tests are true if the indicated comparison of the two arithmetic
8996 expressions is true.  Arithmetic expressions are formed with
8997 @code{plus}, @code{minus}, @code{mult}, @code{div}, @code{mod},
8998 @code{abs}, @code{neg}, @code{and}, @code{ior}, @code{xor}, @code{not},
8999 @code{ashift}, @code{lshiftrt}, and @code{ashiftrt} expressions.
9001 @findex get_attr
9002 @code{const_int} and @code{symbol_ref} are always valid terms (@pxref{Insn
9003 Lengths},for additional forms).  @code{symbol_ref} is a string
9004 denoting a C expression that yields an @code{int} when evaluated by the
9005 @samp{get_attr_@dots{}} routine.  It should normally be a global
9006 variable.
9008 @findex eq_attr
9009 @item (eq_attr @var{name} @var{value})
9010 @var{name} is a string specifying the name of an attribute.
9012 @var{value} is a string that is either a valid value for attribute
9013 @var{name}, a comma-separated list of values, or @samp{!} followed by a
9014 value or list.  If @var{value} does not begin with a @samp{!}, this
9015 test is true if the value of the @var{name} attribute of the current
9016 insn is in the list specified by @var{value}.  If @var{value} begins
9017 with a @samp{!}, this test is true if the attribute's value is
9018 @emph{not} in the specified list.
9020 For example,
9022 @smallexample
9023 (eq_attr "type" "load,store")
9024 @end smallexample
9026 @noindent
9027 is equivalent to
9029 @smallexample
9030 (ior (eq_attr "type" "load") (eq_attr "type" "store"))
9031 @end smallexample
9033 If @var{name} specifies an attribute of @samp{alternative}, it refers to the
9034 value of the compiler variable @code{which_alternative}
9035 (@pxref{Output Statement}) and the values must be small integers.  For
9036 example,
9038 @smallexample
9039 (eq_attr "alternative" "2,3")
9040 @end smallexample
9042 @noindent
9043 is equivalent to
9045 @smallexample
9046 (ior (eq (symbol_ref "which_alternative") (const_int 2))
9047      (eq (symbol_ref "which_alternative") (const_int 3)))
9048 @end smallexample
9050 Note that, for most attributes, an @code{eq_attr} test is simplified in cases
9051 where the value of the attribute being tested is known for all insns matching
9052 a particular pattern.  This is by far the most common case.
9054 @findex attr_flag
9055 @item (attr_flag @var{name})
9056 The value of an @code{attr_flag} expression is true if the flag
9057 specified by @var{name} is true for the @code{insn} currently being
9058 scheduled.
9060 @var{name} is a string specifying one of a fixed set of flags to test.
9061 Test the flags @code{forward} and @code{backward} to determine the
9062 direction of a conditional branch.
9064 This example describes a conditional branch delay slot which
9065 can be nullified for forward branches that are taken (annul-true) or
9066 for backward branches which are not taken (annul-false).
9068 @smallexample
9069 (define_delay (eq_attr "type" "cbranch")
9070   [(eq_attr "in_branch_delay" "true")
9071    (and (eq_attr "in_branch_delay" "true")
9072         (attr_flag "forward"))
9073    (and (eq_attr "in_branch_delay" "true")
9074         (attr_flag "backward"))])
9075 @end smallexample
9077 The @code{forward} and @code{backward} flags are false if the current
9078 @code{insn} being scheduled is not a conditional branch.
9080 @code{attr_flag} is only used during delay slot scheduling and has no
9081 meaning to other passes of the compiler.
9083 @findex attr
9084 @item (attr @var{name})
9085 The value of another attribute is returned.  This is most useful
9086 for numeric attributes, as @code{eq_attr} and @code{attr_flag}
9087 produce more efficient code for non-numeric attributes.
9088 @end table
9090 @end ifset
9091 @ifset INTERNALS
9092 @node Tagging Insns
9093 @subsection Assigning Attribute Values to Insns
9094 @cindex tagging insns
9095 @cindex assigning attribute values to insns
9097 The value assigned to an attribute of an insn is primarily determined by
9098 which pattern is matched by that insn (or which @code{define_peephole}
9099 generated it).  Every @code{define_insn} and @code{define_peephole} can
9100 have an optional last argument to specify the values of attributes for
9101 matching insns.  The value of any attribute not specified in a particular
9102 insn is set to the default value for that attribute, as specified in its
9103 @code{define_attr}.  Extensive use of default values for attributes
9104 permits the specification of the values for only one or two attributes
9105 in the definition of most insn patterns, as seen in the example in the
9106 next section.
9108 The optional last argument of @code{define_insn} and
9109 @code{define_peephole} is a vector of expressions, each of which defines
9110 the value for a single attribute.  The most general way of assigning an
9111 attribute's value is to use a @code{set} expression whose first operand is an
9112 @code{attr} expression giving the name of the attribute being set.  The
9113 second operand of the @code{set} is an attribute expression
9114 (@pxref{Expressions}) giving the value of the attribute.
9116 When the attribute value depends on the @samp{alternative} attribute
9117 (i.e., which is the applicable alternative in the constraint of the
9118 insn), the @code{set_attr_alternative} expression can be used.  It
9119 allows the specification of a vector of attribute expressions, one for
9120 each alternative.
9122 @findex set_attr
9123 When the generality of arbitrary attribute expressions is not required,
9124 the simpler @code{set_attr} expression can be used, which allows
9125 specifying a string giving either a single attribute value or a list
9126 of attribute values, one for each alternative.
9128 The form of each of the above specifications is shown below.  In each case,
9129 @var{name} is a string specifying the attribute to be set.
9131 @table @code
9132 @item (set_attr @var{name} @var{value-string})
9133 @var{value-string} is either a string giving the desired attribute value,
9134 or a string containing a comma-separated list giving the values for
9135 succeeding alternatives.  The number of elements must match the number
9136 of alternatives in the constraint of the insn pattern.
9138 Note that it may be useful to specify @samp{*} for some alternative, in
9139 which case the attribute will assume its default value for insns matching
9140 that alternative.
9142 @findex set_attr_alternative
9143 @item (set_attr_alternative @var{name} [@var{value1} @var{value2} @dots{}])
9144 Depending on the alternative of the insn, the value will be one of the
9145 specified values.  This is a shorthand for using a @code{cond} with
9146 tests on the @samp{alternative} attribute.
9148 @findex attr
9149 @item (set (attr @var{name}) @var{value})
9150 The first operand of this @code{set} must be the special RTL expression
9151 @code{attr}, whose sole operand is a string giving the name of the
9152 attribute being set.  @var{value} is the value of the attribute.
9153 @end table
9155 The following shows three different ways of representing the same
9156 attribute value specification:
9158 @smallexample
9159 (set_attr "type" "load,store,arith")
9161 (set_attr_alternative "type"
9162                       [(const_string "load") (const_string "store")
9163                        (const_string "arith")])
9165 (set (attr "type")
9166      (cond [(eq_attr "alternative" "1") (const_string "load")
9167             (eq_attr "alternative" "2") (const_string "store")]
9168            (const_string "arith")))
9169 @end smallexample
9171 @need 1000
9172 @findex define_asm_attributes
9173 The @code{define_asm_attributes} expression provides a mechanism to
9174 specify the attributes assigned to insns produced from an @code{asm}
9175 statement.  It has the form:
9177 @smallexample
9178 (define_asm_attributes [@var{attr-sets}])
9179 @end smallexample
9181 @noindent
9182 where @var{attr-sets} is specified the same as for both the
9183 @code{define_insn} and the @code{define_peephole} expressions.
9185 These values will typically be the ``worst case'' attribute values.  For
9186 example, they might indicate that the condition code will be clobbered.
9188 A specification for a @code{length} attribute is handled specially.  The
9189 way to compute the length of an @code{asm} insn is to multiply the
9190 length specified in the expression @code{define_asm_attributes} by the
9191 number of machine instructions specified in the @code{asm} statement,
9192 determined by counting the number of semicolons and newlines in the
9193 string.  Therefore, the value of the @code{length} attribute specified
9194 in a @code{define_asm_attributes} should be the maximum possible length
9195 of a single machine instruction.
9197 @end ifset
9198 @ifset INTERNALS
9199 @node Attr Example
9200 @subsection Example of Attribute Specifications
9201 @cindex attribute specifications example
9202 @cindex attribute specifications
9204 The judicious use of defaulting is important in the efficient use of
9205 insn attributes.  Typically, insns are divided into @dfn{types} and an
9206 attribute, customarily called @code{type}, is used to represent this
9207 value.  This attribute is normally used only to define the default value
9208 for other attributes.  An example will clarify this usage.
9210 Assume we have a RISC machine with a condition code and in which only
9211 full-word operations are performed in registers.  Let us assume that we
9212 can divide all insns into loads, stores, (integer) arithmetic
9213 operations, floating point operations, and branches.
9215 Here we will concern ourselves with determining the effect of an insn on
9216 the condition code and will limit ourselves to the following possible
9217 effects:  The condition code can be set unpredictably (clobbered), not
9218 be changed, be set to agree with the results of the operation, or only
9219 changed if the item previously set into the condition code has been
9220 modified.
9222 Here is part of a sample @file{md} file for such a machine:
9224 @smallexample
9225 (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
9227 (define_attr "cc" "clobber,unchanged,set,change0"
9228              (cond [(eq_attr "type" "load")
9229                         (const_string "change0")
9230                     (eq_attr "type" "store,branch")
9231                         (const_string "unchanged")
9232                     (eq_attr "type" "arith")
9233                         (if_then_else (match_operand:SI 0 "" "")
9234                                       (const_string "set")
9235                                       (const_string "clobber"))]
9236                    (const_string "clobber")))
9238 (define_insn ""
9239   [(set (match_operand:SI 0 "general_operand" "=r,r,m")
9240         (match_operand:SI 1 "general_operand" "r,m,r"))]
9241   ""
9242   "@@
9243    move %0,%1
9244    load %0,%1
9245    store %0,%1"
9246   [(set_attr "type" "arith,load,store")])
9247 @end smallexample
9249 Note that we assume in the above example that arithmetic operations
9250 performed on quantities smaller than a machine word clobber the condition
9251 code since they will set the condition code to a value corresponding to the
9252 full-word result.
9254 @end ifset
9255 @ifset INTERNALS
9256 @node Insn Lengths
9257 @subsection Computing the Length of an Insn
9258 @cindex insn lengths, computing
9259 @cindex computing the length of an insn
9261 For many machines, multiple types of branch instructions are provided, each
9262 for different length branch displacements.  In most cases, the assembler
9263 will choose the correct instruction to use.  However, when the assembler
9264 cannot do so, GCC can when a special attribute, the @code{length}
9265 attribute, is defined.  This attribute must be defined to have numeric
9266 values by specifying a null string in its @code{define_attr}.
9268 In the case of the @code{length} attribute, two additional forms of
9269 arithmetic terms are allowed in test expressions:
9271 @table @code
9272 @cindex @code{match_dup} and attributes
9273 @item (match_dup @var{n})
9274 This refers to the address of operand @var{n} of the current insn, which
9275 must be a @code{label_ref}.
9277 @cindex @code{pc} and attributes
9278 @item (pc)
9279 For non-branch instructions and backward branch instructions, this refers
9280 to the address of the current insn.  But for forward branch instructions,
9281 this refers to the address of the next insn, because the length of the
9282 current insn is to be computed.
9283 @end table
9285 @cindex @code{addr_vec}, length of
9286 @cindex @code{addr_diff_vec}, length of
9287 For normal insns, the length will be determined by value of the
9288 @code{length} attribute.  In the case of @code{addr_vec} and
9289 @code{addr_diff_vec} insn patterns, the length is computed as
9290 the number of vectors multiplied by the size of each vector.
9292 Lengths are measured in addressable storage units (bytes).
9294 Note that it is possible to call functions via the @code{symbol_ref}
9295 mechanism to compute the length of an insn.  However, if you use this
9296 mechanism you must provide dummy clauses to express the maximum length
9297 without using the function call.  You can an example of this in the
9298 @code{pa} machine description for the @code{call_symref} pattern.
9300 The following macros can be used to refine the length computation:
9302 @table @code
9303 @findex ADJUST_INSN_LENGTH
9304 @item ADJUST_INSN_LENGTH (@var{insn}, @var{length})
9305 If defined, modifies the length assigned to instruction @var{insn} as a
9306 function of the context in which it is used.  @var{length} is an lvalue
9307 that contains the initially computed length of the insn and should be
9308 updated with the correct length of the insn.
9310 This macro will normally not be required.  A case in which it is
9311 required is the ROMP@.  On this machine, the size of an @code{addr_vec}
9312 insn must be increased by two to compensate for the fact that alignment
9313 may be required.
9314 @end table
9316 @findex get_attr_length
9317 The routine that returns @code{get_attr_length} (the value of the
9318 @code{length} attribute) can be used by the output routine to
9319 determine the form of the branch instruction to be written, as the
9320 example below illustrates.
9322 As an example of the specification of variable-length branches, consider
9323 the IBM 360.  If we adopt the convention that a register will be set to
9324 the starting address of a function, we can jump to labels within 4k of
9325 the start using a four-byte instruction.  Otherwise, we need a six-byte
9326 sequence to load the address from memory and then branch to it.
9328 On such a machine, a pattern for a branch instruction might be specified
9329 as follows:
9331 @smallexample
9332 (define_insn "jump"
9333   [(set (pc)
9334         (label_ref (match_operand 0 "" "")))]
9335   ""
9337    return (get_attr_length (insn) == 4
9338            ? "b %l0" : "l r15,=a(%l0); br r15");
9340   [(set (attr "length")
9341         (if_then_else (lt (match_dup 0) (const_int 4096))
9342                       (const_int 4)
9343                       (const_int 6)))])
9344 @end smallexample
9346 @end ifset
9347 @ifset INTERNALS
9348 @node Constant Attributes
9349 @subsection Constant Attributes
9350 @cindex constant attributes
9352 A special form of @code{define_attr}, where the expression for the
9353 default value is a @code{const} expression, indicates an attribute that
9354 is constant for a given run of the compiler.  Constant attributes may be
9355 used to specify which variety of processor is used.  For example,
9357 @smallexample
9358 (define_attr "cpu" "m88100,m88110,m88000"
9359  (const
9360   (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
9361          (symbol_ref "TARGET_88110") (const_string "m88110")]
9362         (const_string "m88000"))))
9364 (define_attr "memory" "fast,slow"
9365  (const
9366   (if_then_else (symbol_ref "TARGET_FAST_MEM")
9367                 (const_string "fast")
9368                 (const_string "slow"))))
9369 @end smallexample
9371 The routine generated for constant attributes has no parameters as it
9372 does not depend on any particular insn.  RTL expressions used to define
9373 the value of a constant attribute may use the @code{symbol_ref} form,
9374 but may not use either the @code{match_operand} form or @code{eq_attr}
9375 forms involving insn attributes.
9377 @end ifset
9378 @ifset INTERNALS
9379 @node Mnemonic Attribute
9380 @subsection Mnemonic Attribute
9381 @cindex mnemonic attribute
9383 The @code{mnemonic} attribute is a string type attribute holding the
9384 instruction mnemonic for an insn alternative.  The attribute values
9385 will automatically be generated by the machine description parser if
9386 there is an attribute definition in the md file:
9388 @smallexample
9389 (define_attr "mnemonic" "unknown" (const_string "unknown"))
9390 @end smallexample
9392 The default value can be freely chosen as long as it does not collide
9393 with any of the instruction mnemonics.  This value will be used
9394 whenever the machine description parser is not able to determine the
9395 mnemonic string.  This might be the case for output templates
9396 containing more than a single instruction as in
9397 @code{"mvcle\t%0,%1,0\;jo\t.-4"}.
9399 The @code{mnemonic} attribute set is not generated automatically if the
9400 instruction string is generated via C code.
9402 An existing @code{mnemonic} attribute set in an insn definition will not
9403 be overriden by the md file parser.  That way it is possible to
9404 manually set the instruction mnemonics for the cases where the md file
9405 parser fails to determine it automatically.
9407 The @code{mnemonic} attribute is useful for dealing with instruction
9408 specific properties in the pipeline description without defining
9409 additional insn attributes.
9411 @smallexample
9412 (define_attr "ooo_expanded" ""
9413   (cond [(eq_attr "mnemonic" "dlr,dsgr,d,dsgf,stam,dsgfr,dlgr")
9414          (const_int 1)]
9415         (const_int 0)))
9416 @end smallexample
9418 @end ifset
9419 @ifset INTERNALS
9420 @node Delay Slots
9421 @subsection Delay Slot Scheduling
9422 @cindex delay slots, defining
9424 The insn attribute mechanism can be used to specify the requirements for
9425 delay slots, if any, on a target machine.  An instruction is said to
9426 require a @dfn{delay slot} if some instructions that are physically
9427 after the instruction are executed as if they were located before it.
9428 Classic examples are branch and call instructions, which often execute
9429 the following instruction before the branch or call is performed.
9431 On some machines, conditional branch instructions can optionally
9432 @dfn{annul} instructions in the delay slot.  This means that the
9433 instruction will not be executed for certain branch outcomes.  Both
9434 instructions that annul if the branch is true and instructions that
9435 annul if the branch is false are supported.
9437 Delay slot scheduling differs from instruction scheduling in that
9438 determining whether an instruction needs a delay slot is dependent only
9439 on the type of instruction being generated, not on data flow between the
9440 instructions.  See the next section for a discussion of data-dependent
9441 instruction scheduling.
9443 @findex define_delay
9444 The requirement of an insn needing one or more delay slots is indicated
9445 via the @code{define_delay} expression.  It has the following form:
9447 @smallexample
9448 (define_delay @var{test}
9449               [@var{delay-1} @var{annul-true-1} @var{annul-false-1}
9450                @var{delay-2} @var{annul-true-2} @var{annul-false-2}
9451                @dots{}])
9452 @end smallexample
9454 @var{test} is an attribute test that indicates whether this
9455 @code{define_delay} applies to a particular insn.  If so, the number of
9456 required delay slots is determined by the length of the vector specified
9457 as the second argument.  An insn placed in delay slot @var{n} must
9458 satisfy attribute test @var{delay-n}.  @var{annul-true-n} is an
9459 attribute test that specifies which insns may be annulled if the branch
9460 is true.  Similarly, @var{annul-false-n} specifies which insns in the
9461 delay slot may be annulled if the branch is false.  If annulling is not
9462 supported for that delay slot, @code{(nil)} should be coded.
9464 For example, in the common case where branch and call insns require
9465 a single delay slot, which may contain any insn other than a branch or
9466 call, the following would be placed in the @file{md} file:
9468 @smallexample
9469 (define_delay (eq_attr "type" "branch,call")
9470               [(eq_attr "type" "!branch,call") (nil) (nil)])
9471 @end smallexample
9473 Multiple @code{define_delay} expressions may be specified.  In this
9474 case, each such expression specifies different delay slot requirements
9475 and there must be no insn for which tests in two @code{define_delay}
9476 expressions are both true.
9478 For example, if we have a machine that requires one delay slot for branches
9479 but two for calls,  no delay slot can contain a branch or call insn,
9480 and any valid insn in the delay slot for the branch can be annulled if the
9481 branch is true, we might represent this as follows:
9483 @smallexample
9484 (define_delay (eq_attr "type" "branch")
9485    [(eq_attr "type" "!branch,call")
9486     (eq_attr "type" "!branch,call")
9487     (nil)])
9489 (define_delay (eq_attr "type" "call")
9490               [(eq_attr "type" "!branch,call") (nil) (nil)
9491                (eq_attr "type" "!branch,call") (nil) (nil)])
9492 @end smallexample
9493 @c the above is *still* too long.  --mew 4feb93
9495 @end ifset
9496 @ifset INTERNALS
9497 @node Processor pipeline description
9498 @subsection Specifying processor pipeline description
9499 @cindex processor pipeline description
9500 @cindex processor functional units
9501 @cindex instruction latency time
9502 @cindex interlock delays
9503 @cindex data dependence delays
9504 @cindex reservation delays
9505 @cindex pipeline hazard recognizer
9506 @cindex automaton based pipeline description
9507 @cindex regular expressions
9508 @cindex deterministic finite state automaton
9509 @cindex automaton based scheduler
9510 @cindex RISC
9511 @cindex VLIW
9513 To achieve better performance, most modern processors
9514 (super-pipelined, superscalar @acronym{RISC}, and @acronym{VLIW}
9515 processors) have many @dfn{functional units} on which several
9516 instructions can be executed simultaneously.  An instruction starts
9517 execution if its issue conditions are satisfied.  If not, the
9518 instruction is stalled until its conditions are satisfied.  Such
9519 @dfn{interlock (pipeline) delay} causes interruption of the fetching
9520 of successor instructions (or demands nop instructions, e.g.@: for some
9521 MIPS processors).
9523 There are two major kinds of interlock delays in modern processors.
9524 The first one is a data dependence delay determining @dfn{instruction
9525 latency time}.  The instruction execution is not started until all
9526 source data have been evaluated by prior instructions (there are more
9527 complex cases when the instruction execution starts even when the data
9528 are not available but will be ready in given time after the
9529 instruction execution start).  Taking the data dependence delays into
9530 account is simple.  The data dependence (true, output, and
9531 anti-dependence) delay between two instructions is given by a
9532 constant.  In most cases this approach is adequate.  The second kind
9533 of interlock delays is a reservation delay.  The reservation delay
9534 means that two instructions under execution will be in need of shared
9535 processors resources, i.e.@: buses, internal registers, and/or
9536 functional units, which are reserved for some time.  Taking this kind
9537 of delay into account is complex especially for modern @acronym{RISC}
9538 processors.
9540 The task of exploiting more processor parallelism is solved by an
9541 instruction scheduler.  For a better solution to this problem, the
9542 instruction scheduler has to have an adequate description of the
9543 processor parallelism (or @dfn{pipeline description}).  GCC
9544 machine descriptions describe processor parallelism and functional
9545 unit reservations for groups of instructions with the aid of
9546 @dfn{regular expressions}.
9548 The GCC instruction scheduler uses a @dfn{pipeline hazard recognizer} to
9549 figure out the possibility of the instruction issue by the processor
9550 on a given simulated processor cycle.  The pipeline hazard recognizer is
9551 automatically generated from the processor pipeline description.  The
9552 pipeline hazard recognizer generated from the machine description
9553 is based on a deterministic finite state automaton (@acronym{DFA}):
9554 the instruction issue is possible if there is a transition from one
9555 automaton state to another one.  This algorithm is very fast, and
9556 furthermore, its speed is not dependent on processor
9557 complexity@footnote{However, the size of the automaton depends on
9558 processor complexity.  To limit this effect, machine descriptions
9559 can split orthogonal parts of the machine description among several
9560 automata: but then, since each of these must be stepped independently,
9561 this does cause a small decrease in the algorithm's performance.}.
9563 @cindex automaton based pipeline description
9564 The rest of this section describes the directives that constitute
9565 an automaton-based processor pipeline description.  The order of
9566 these constructions within the machine description file is not
9567 important.
9569 @findex define_automaton
9570 @cindex pipeline hazard recognizer
9571 The following optional construction describes names of automata
9572 generated and used for the pipeline hazards recognition.  Sometimes
9573 the generated finite state automaton used by the pipeline hazard
9574 recognizer is large.  If we use more than one automaton and bind functional
9575 units to the automata, the total size of the automata is usually
9576 less than the size of the single automaton.  If there is no one such
9577 construction, only one finite state automaton is generated.
9579 @smallexample
9580 (define_automaton @var{automata-names})
9581 @end smallexample
9583 @var{automata-names} is a string giving names of the automata.  The
9584 names are separated by commas.  All the automata should have unique names.
9585 The automaton name is used in the constructions @code{define_cpu_unit} and
9586 @code{define_query_cpu_unit}.
9588 @findex define_cpu_unit
9589 @cindex processor functional units
9590 Each processor functional unit used in the description of instruction
9591 reservations should be described by the following construction.
9593 @smallexample
9594 (define_cpu_unit @var{unit-names} [@var{automaton-name}])
9595 @end smallexample
9597 @var{unit-names} is a string giving the names of the functional units
9598 separated by commas.  Don't use name @samp{nothing}, it is reserved
9599 for other goals.
9601 @var{automaton-name} is a string giving the name of the automaton with
9602 which the unit is bound.  The automaton should be described in
9603 construction @code{define_automaton}.  You should give
9604 @dfn{automaton-name}, if there is a defined automaton.
9606 The assignment of units to automata are constrained by the uses of the
9607 units in insn reservations.  The most important constraint is: if a
9608 unit reservation is present on a particular cycle of an alternative
9609 for an insn reservation, then some unit from the same automaton must
9610 be present on the same cycle for the other alternatives of the insn
9611 reservation.  The rest of the constraints are mentioned in the
9612 description of the subsequent constructions.
9614 @findex define_query_cpu_unit
9615 @cindex querying function unit reservations
9616 The following construction describes CPU functional units analogously
9617 to @code{define_cpu_unit}.  The reservation of such units can be
9618 queried for an automaton state.  The instruction scheduler never
9619 queries reservation of functional units for given automaton state.  So
9620 as a rule, you don't need this construction.  This construction could
9621 be used for future code generation goals (e.g.@: to generate
9622 @acronym{VLIW} insn templates).
9624 @smallexample
9625 (define_query_cpu_unit @var{unit-names} [@var{automaton-name}])
9626 @end smallexample
9628 @var{unit-names} is a string giving names of the functional units
9629 separated by commas.
9631 @var{automaton-name} is a string giving the name of the automaton with
9632 which the unit is bound.
9634 @findex define_insn_reservation
9635 @cindex instruction latency time
9636 @cindex regular expressions
9637 @cindex data bypass
9638 The following construction is the major one to describe pipeline
9639 characteristics of an instruction.
9641 @smallexample
9642 (define_insn_reservation @var{insn-name} @var{default_latency}
9643                          @var{condition} @var{regexp})
9644 @end smallexample
9646 @var{default_latency} is a number giving latency time of the
9647 instruction.  There is an important difference between the old
9648 description and the automaton based pipeline description.  The latency
9649 time is used for all dependencies when we use the old description.  In
9650 the automaton based pipeline description, the given latency time is only
9651 used for true dependencies.  The cost of anti-dependencies is always
9652 zero and the cost of output dependencies is the difference between
9653 latency times of the producing and consuming insns (if the difference
9654 is negative, the cost is considered to be zero).  You can always
9655 change the default costs for any description by using the target hook
9656 @code{TARGET_SCHED_ADJUST_COST} (@pxref{Scheduling}).
9658 @var{insn-name} is a string giving the internal name of the insn.  The
9659 internal names are used in constructions @code{define_bypass} and in
9660 the automaton description file generated for debugging.  The internal
9661 name has nothing in common with the names in @code{define_insn}.  It is a
9662 good practice to use insn classes described in the processor manual.
9664 @var{condition} defines what RTL insns are described by this
9665 construction.  You should remember that you will be in trouble if
9666 @var{condition} for two or more different
9667 @code{define_insn_reservation} constructions is TRUE for an insn.  In
9668 this case what reservation will be used for the insn is not defined.
9669 Such cases are not checked during generation of the pipeline hazards
9670 recognizer because in general recognizing that two conditions may have
9671 the same value is quite difficult (especially if the conditions
9672 contain @code{symbol_ref}).  It is also not checked during the
9673 pipeline hazard recognizer work because it would slow down the
9674 recognizer considerably.
9676 @var{regexp} is a string describing the reservation of the cpu's functional
9677 units by the instruction.  The reservations are described by a regular
9678 expression according to the following syntax:
9680 @smallexample
9681        regexp = regexp "," oneof
9682               | oneof
9684        oneof = oneof "|" allof
9685              | allof
9687        allof = allof "+" repeat
9688              | repeat
9690        repeat = element "*" number
9691               | element
9693        element = cpu_function_unit_name
9694                | reservation_name
9695                | result_name
9696                | "nothing"
9697                | "(" regexp ")"
9698 @end smallexample
9700 @itemize @bullet
9701 @item
9702 @samp{,} is used for describing the start of the next cycle in
9703 the reservation.
9705 @item
9706 @samp{|} is used for describing a reservation described by the first
9707 regular expression @strong{or} a reservation described by the second
9708 regular expression @strong{or} etc.
9710 @item
9711 @samp{+} is used for describing a reservation described by the first
9712 regular expression @strong{and} a reservation described by the
9713 second regular expression @strong{and} etc.
9715 @item
9716 @samp{*} is used for convenience and simply means a sequence in which
9717 the regular expression are repeated @var{number} times with cycle
9718 advancing (see @samp{,}).
9720 @item
9721 @samp{cpu_function_unit_name} denotes reservation of the named
9722 functional unit.
9724 @item
9725 @samp{reservation_name} --- see description of construction
9726 @samp{define_reservation}.
9728 @item
9729 @samp{nothing} denotes no unit reservations.
9730 @end itemize
9732 @findex define_reservation
9733 Sometimes unit reservations for different insns contain common parts.
9734 In such case, you can simplify the pipeline description by describing
9735 the common part by the following construction
9737 @smallexample
9738 (define_reservation @var{reservation-name} @var{regexp})
9739 @end smallexample
9741 @var{reservation-name} is a string giving name of @var{regexp}.
9742 Functional unit names and reservation names are in the same name
9743 space.  So the reservation names should be different from the
9744 functional unit names and can not be the reserved name @samp{nothing}.
9746 @findex define_bypass
9747 @cindex instruction latency time
9748 @cindex data bypass
9749 The following construction is used to describe exceptions in the
9750 latency time for given instruction pair.  This is so called bypasses.
9752 @smallexample
9753 (define_bypass @var{number} @var{out_insn_names} @var{in_insn_names}
9754                [@var{guard}])
9755 @end smallexample
9757 @var{number} defines when the result generated by the instructions
9758 given in string @var{out_insn_names} will be ready for the
9759 instructions given in string @var{in_insn_names}.  Each of these
9760 strings is a comma-separated list of filename-style globs and
9761 they refer to the names of @code{define_insn_reservation}s.
9762 For example:
9763 @smallexample
9764 (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*")
9765 @end smallexample
9766 defines a bypass between instructions that start with
9767 @samp{cpu1_load_} or @samp{cpu1_store_} and those that start with
9768 @samp{cpu1_load_}.
9770 @var{guard} is an optional string giving the name of a C function which
9771 defines an additional guard for the bypass.  The function will get the
9772 two insns as parameters.  If the function returns zero the bypass will
9773 be ignored for this case.  The additional guard is necessary to
9774 recognize complicated bypasses, e.g.@: when the consumer is only an address
9775 of insn @samp{store} (not a stored value).
9777 If there are more one bypass with the same output and input insns, the
9778 chosen bypass is the first bypass with a guard in description whose
9779 guard function returns nonzero.  If there is no such bypass, then
9780 bypass without the guard function is chosen.
9782 @findex exclusion_set
9783 @findex presence_set
9784 @findex final_presence_set
9785 @findex absence_set
9786 @findex final_absence_set
9787 @cindex VLIW
9788 @cindex RISC
9789 The following five constructions are usually used to describe
9790 @acronym{VLIW} processors, or more precisely, to describe a placement
9791 of small instructions into @acronym{VLIW} instruction slots.  They
9792 can be used for @acronym{RISC} processors, too.
9794 @smallexample
9795 (exclusion_set @var{unit-names} @var{unit-names})
9796 (presence_set @var{unit-names} @var{patterns})
9797 (final_presence_set @var{unit-names} @var{patterns})
9798 (absence_set @var{unit-names} @var{patterns})
9799 (final_absence_set @var{unit-names} @var{patterns})
9800 @end smallexample
9802 @var{unit-names} is a string giving names of functional units
9803 separated by commas.
9805 @var{patterns} is a string giving patterns of functional units
9806 separated by comma.  Currently pattern is one unit or units
9807 separated by white-spaces.
9809 The first construction (@samp{exclusion_set}) means that each
9810 functional unit in the first string can not be reserved simultaneously
9811 with a unit whose name is in the second string and vice versa.  For
9812 example, the construction is useful for describing processors
9813 (e.g.@: some SPARC processors) with a fully pipelined floating point
9814 functional unit which can execute simultaneously only single floating
9815 point insns or only double floating point insns.
9817 The second construction (@samp{presence_set}) means that each
9818 functional unit in the first string can not be reserved unless at
9819 least one of pattern of units whose names are in the second string is
9820 reserved.  This is an asymmetric relation.  For example, it is useful
9821 for description that @acronym{VLIW} @samp{slot1} is reserved after
9822 @samp{slot0} reservation.  We could describe it by the following
9823 construction
9825 @smallexample
9826 (presence_set "slot1" "slot0")
9827 @end smallexample
9829 Or @samp{slot1} is reserved only after @samp{slot0} and unit @samp{b0}
9830 reservation.  In this case we could write
9832 @smallexample
9833 (presence_set "slot1" "slot0 b0")
9834 @end smallexample
9836 The third construction (@samp{final_presence_set}) is analogous to
9837 @samp{presence_set}.  The difference between them is when checking is
9838 done.  When an instruction is issued in given automaton state
9839 reflecting all current and planned unit reservations, the automaton
9840 state is changed.  The first state is a source state, the second one
9841 is a result state.  Checking for @samp{presence_set} is done on the
9842 source state reservation, checking for @samp{final_presence_set} is
9843 done on the result reservation.  This construction is useful to
9844 describe a reservation which is actually two subsequent reservations.
9845 For example, if we use
9847 @smallexample
9848 (presence_set "slot1" "slot0")
9849 @end smallexample
9851 the following insn will be never issued (because @samp{slot1} requires
9852 @samp{slot0} which is absent in the source state).
9854 @smallexample
9855 (define_reservation "insn_and_nop" "slot0 + slot1")
9856 @end smallexample
9858 but it can be issued if we use analogous @samp{final_presence_set}.
9860 The forth construction (@samp{absence_set}) means that each functional
9861 unit in the first string can be reserved only if each pattern of units
9862 whose names are in the second string is not reserved.  This is an
9863 asymmetric relation (actually @samp{exclusion_set} is analogous to
9864 this one but it is symmetric).  For example it might be useful in a
9865 @acronym{VLIW} description to say that @samp{slot0} cannot be reserved
9866 after either @samp{slot1} or @samp{slot2} have been reserved.  This
9867 can be described as:
9869 @smallexample
9870 (absence_set "slot0" "slot1, slot2")
9871 @end smallexample
9873 Or @samp{slot2} can not be reserved if @samp{slot0} and unit @samp{b0}
9874 are reserved or @samp{slot1} and unit @samp{b1} are reserved.  In
9875 this case we could write
9877 @smallexample
9878 (absence_set "slot2" "slot0 b0, slot1 b1")
9879 @end smallexample
9881 All functional units mentioned in a set should belong to the same
9882 automaton.
9884 The last construction (@samp{final_absence_set}) is analogous to
9885 @samp{absence_set} but checking is done on the result (state)
9886 reservation.  See comments for @samp{final_presence_set}.
9888 @findex automata_option
9889 @cindex deterministic finite state automaton
9890 @cindex nondeterministic finite state automaton
9891 @cindex finite state automaton minimization
9892 You can control the generator of the pipeline hazard recognizer with
9893 the following construction.
9895 @smallexample
9896 (automata_option @var{options})
9897 @end smallexample
9899 @var{options} is a string giving options which affect the generated
9900 code.  Currently there are the following options:
9902 @itemize @bullet
9903 @item
9904 @dfn{no-minimization} makes no minimization of the automaton.  This is
9905 only worth to do when we are debugging the description and need to
9906 look more accurately at reservations of states.
9908 @item
9909 @dfn{time} means printing time statistics about the generation of
9910 automata.
9912 @item
9913 @dfn{stats} means printing statistics about the generated automata
9914 such as the number of DFA states, NDFA states and arcs.
9916 @item
9917 @dfn{v} means a generation of the file describing the result automata.
9918 The file has suffix @samp{.dfa} and can be used for the description
9919 verification and debugging.
9921 @item
9922 @dfn{w} means a generation of warning instead of error for
9923 non-critical errors.
9925 @item
9926 @dfn{no-comb-vect} prevents the automaton generator from generating
9927 two data structures and comparing them for space efficiency.  Using
9928 a comb vector to represent transitions may be better, but it can be
9929 very expensive to construct.  This option is useful if the build
9930 process spends an unacceptably long time in genautomata.
9932 @item
9933 @dfn{ndfa} makes nondeterministic finite state automata.  This affects
9934 the treatment of operator @samp{|} in the regular expressions.  The
9935 usual treatment of the operator is to try the first alternative and,
9936 if the reservation is not possible, the second alternative.  The
9937 nondeterministic treatment means trying all alternatives, some of them
9938 may be rejected by reservations in the subsequent insns.
9940 @item
9941 @dfn{collapse-ndfa} modifies the behavior of the generator when
9942 producing an automaton.  An additional state transition to collapse a
9943 nondeterministic @acronym{NDFA} state to a deterministic @acronym{DFA}
9944 state is generated.  It can be triggered by passing @code{const0_rtx} to
9945 state_transition.  In such an automaton, cycle advance transitions are
9946 available only for these collapsed states.  This option is useful for
9947 ports that want to use the @code{ndfa} option, but also want to use
9948 @code{define_query_cpu_unit} to assign units to insns issued in a cycle.
9950 @item
9951 @dfn{progress} means output of a progress bar showing how many states
9952 were generated so far for automaton being processed.  This is useful
9953 during debugging a @acronym{DFA} description.  If you see too many
9954 generated states, you could interrupt the generator of the pipeline
9955 hazard recognizer and try to figure out a reason for generation of the
9956 huge automaton.
9957 @end itemize
9959 As an example, consider a superscalar @acronym{RISC} machine which can
9960 issue three insns (two integer insns and one floating point insn) on
9961 the cycle but can finish only two insns.  To describe this, we define
9962 the following functional units.
9964 @smallexample
9965 (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
9966 (define_cpu_unit "port0, port1")
9967 @end smallexample
9969 All simple integer insns can be executed in any integer pipeline and
9970 their result is ready in two cycles.  The simple integer insns are
9971 issued into the first pipeline unless it is reserved, otherwise they
9972 are issued into the second pipeline.  Integer division and
9973 multiplication insns can be executed only in the second integer
9974 pipeline and their results are ready correspondingly in 9 and 4
9975 cycles.  The integer division is not pipelined, i.e.@: the subsequent
9976 integer division insn can not be issued until the current division
9977 insn finished.  Floating point insns are fully pipelined and their
9978 results are ready in 3 cycles.  Where the result of a floating point
9979 insn is used by an integer insn, an additional delay of one cycle is
9980 incurred.  To describe all of this we could specify
9982 @smallexample
9983 (define_cpu_unit "div")
9985 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
9986                          "(i0_pipeline | i1_pipeline), (port0 | port1)")
9988 (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
9989                          "i1_pipeline, nothing*2, (port0 | port1)")
9991 (define_insn_reservation "div" 9 (eq_attr "type" "div")
9992                          "i1_pipeline, div*7, div + (port0 | port1)")
9994 (define_insn_reservation "float" 3 (eq_attr "type" "float")
9995                          "f_pipeline, nothing, (port0 | port1))
9997 (define_bypass 4 "float" "simple,mult,div")
9998 @end smallexample
10000 To simplify the description we could describe the following reservation
10002 @smallexample
10003 (define_reservation "finish" "port0|port1")
10004 @end smallexample
10006 and use it in all @code{define_insn_reservation} as in the following
10007 construction
10009 @smallexample
10010 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
10011                          "(i0_pipeline | i1_pipeline), finish")
10012 @end smallexample
10015 @end ifset
10016 @ifset INTERNALS
10017 @node Conditional Execution
10018 @section Conditional Execution
10019 @cindex conditional execution
10020 @cindex predication
10022 A number of architectures provide for some form of conditional
10023 execution, or predication.  The hallmark of this feature is the
10024 ability to nullify most of the instructions in the instruction set.
10025 When the instruction set is large and not entirely symmetric, it
10026 can be quite tedious to describe these forms directly in the
10027 @file{.md} file.  An alternative is the @code{define_cond_exec} template.
10029 @findex define_cond_exec
10030 @smallexample
10031 (define_cond_exec
10032   [@var{predicate-pattern}]
10033   "@var{condition}"
10034   "@var{output-template}"
10035   "@var{optional-insn-attribues}")
10036 @end smallexample
10038 @var{predicate-pattern} is the condition that must be true for the
10039 insn to be executed at runtime and should match a relational operator.
10040 One can use @code{match_operator} to match several relational operators
10041 at once.  Any @code{match_operand} operands must have no more than one
10042 alternative.
10044 @var{condition} is a C expression that must be true for the generated
10045 pattern to match.
10047 @findex current_insn_predicate
10048 @var{output-template} is a string similar to the @code{define_insn}
10049 output template (@pxref{Output Template}), except that the @samp{*}
10050 and @samp{@@} special cases do not apply.  This is only useful if the
10051 assembly text for the predicate is a simple prefix to the main insn.
10052 In order to handle the general case, there is a global variable
10053 @code{current_insn_predicate} that will contain the entire predicate
10054 if the current insn is predicated, and will otherwise be @code{NULL}.
10056 @var{optional-insn-attributes} is an optional vector of attributes that gets
10057 appended to the insn attributes of the produced cond_exec rtx. It can
10058 be used to add some distinguishing attribute to cond_exec rtxs produced
10059 that way. An example usage would be to use this attribute in conjunction
10060 with attributes on the main pattern to disable particular alternatives under
10061 certain conditions.
10063 When @code{define_cond_exec} is used, an implicit reference to
10064 the @code{predicable} instruction attribute is made.
10065 @xref{Insn Attributes}.  This attribute must be a boolean (i.e.@: have
10066 exactly two elements in its @var{list-of-values}), with the possible
10067 values being @code{no} and @code{yes}.  The default and all uses in
10068 the insns must be a simple constant, not a complex expressions.  It
10069 may, however, depend on the alternative, by using a comma-separated
10070 list of values.  If that is the case, the port should also define an
10071 @code{enabled} attribute (@pxref{Disable Insn Alternatives}), which
10072 should also allow only @code{no} and @code{yes} as its values.
10074 For each @code{define_insn} for which the @code{predicable}
10075 attribute is true, a new @code{define_insn} pattern will be
10076 generated that matches a predicated version of the instruction.
10077 For example,
10079 @smallexample
10080 (define_insn "addsi"
10081   [(set (match_operand:SI 0 "register_operand" "r")
10082         (plus:SI (match_operand:SI 1 "register_operand" "r")
10083                  (match_operand:SI 2 "register_operand" "r")))]
10084   "@var{test1}"
10085   "add %2,%1,%0")
10087 (define_cond_exec
10088   [(ne (match_operand:CC 0 "register_operand" "c")
10089        (const_int 0))]
10090   "@var{test2}"
10091   "(%0)")
10092 @end smallexample
10094 @noindent
10095 generates a new pattern
10097 @smallexample
10098 (define_insn ""
10099   [(cond_exec
10100      (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
10101      (set (match_operand:SI 0 "register_operand" "r")
10102           (plus:SI (match_operand:SI 1 "register_operand" "r")
10103                    (match_operand:SI 2 "register_operand" "r"))))]
10104   "(@var{test2}) && (@var{test1})"
10105   "(%3) add %2,%1,%0")
10106 @end smallexample
10108 @end ifset
10109 @ifset INTERNALS
10110 @node Define Subst
10111 @section RTL Templates Transformations
10112 @cindex define_subst
10114 For some hardware architectures there are common cases when the RTL
10115 templates for the instructions can be derived from the other RTL
10116 templates using simple transformations.  E.g., @file{i386.md} contains
10117 an RTL template for the ordinary @code{sub} instruction---
10118 @code{*subsi_1}, and for the @code{sub} instruction with subsequent
10119 zero-extension---@code{*subsi_1_zext}.  Such cases can be easily
10120 implemented by a single meta-template capable of generating a modified
10121 case based on the initial one:
10123 @findex define_subst
10124 @smallexample
10125 (define_subst "@var{name}"
10126   [@var{input-template}]
10127   "@var{condition}"
10128   [@var{output-template}])
10129 @end smallexample
10130 @var{input-template} is a pattern describing the source RTL template,
10131 which will be transformed.
10133 @var{condition} is a C expression that is conjunct with the condition
10134 from the input-template to generate a condition to be used in the
10135 output-template.
10137 @var{output-template} is a pattern that will be used in the resulting
10138 template.
10140 @code{define_subst} mechanism is tightly coupled with the notion of the
10141 subst attribute (@pxref{Subst Iterators}).  The use of
10142 @code{define_subst} is triggered by a reference to a subst attribute in
10143 the transforming RTL template.  This reference initiates duplication of
10144 the source RTL template and substitution of the attributes with their
10145 values.  The source RTL template is left unchanged, while the copy is
10146 transformed by @code{define_subst}.  This transformation can fail in the
10147 case when the source RTL template is not matched against the
10148 input-template of the @code{define_subst}.  In such case the copy is
10149 deleted.
10151 @code{define_subst} can be used only in @code{define_insn} and
10152 @code{define_expand}, it cannot be used in other expressions (e.g. in
10153 @code{define_insn_and_split}).
10155 @menu
10156 * Define Subst Example::            Example of @code{define_subst} work.
10157 * Define Subst Pattern Matching::   Process of template comparison.
10158 * Define Subst Output Template::    Generation of output template.
10159 @end menu
10161 @node Define Subst Example
10162 @subsection @code{define_subst} Example
10163 @cindex define_subst
10165 To illustrate how @code{define_subst} works, let us examine a simple
10166 template transformation.
10168 Suppose there are two kinds of instructions: one that touches flags and
10169 the other that does not.  The instructions of the second type could be
10170 generated with the following @code{define_subst}:
10172 @smallexample
10173 (define_subst "add_clobber_subst"
10174   [(set (match_operand:SI 0 "" "")
10175         (match_operand:SI 1 "" ""))]
10176   ""
10177   [(set (match_dup 0)
10178         (match_dup 1))
10179    (clobber (reg:CC FLAGS_REG))]
10180 @end smallexample
10182 This @code{define_subst} can be applied to any RTL pattern containing
10183 @code{set} of mode SI and generates a copy with clobber when it is
10184 applied.
10186 Assume there is an RTL template for a @code{max} instruction to be used
10187 in @code{define_subst} mentioned above:
10189 @smallexample
10190 (define_insn "maxsi"
10191   [(set (match_operand:SI 0 "register_operand" "=r")
10192         (max:SI
10193           (match_operand:SI 1 "register_operand" "r")
10194           (match_operand:SI 2 "register_operand" "r")))]
10195   ""
10196   "max\t@{%2, %1, %0|%0, %1, %2@}"
10197  [@dots{}])
10198 @end smallexample
10200 To mark the RTL template for @code{define_subst} application,
10201 subst-attributes are used.  They should be declared in advance:
10203 @smallexample
10204 (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber")
10205 @end smallexample
10207 Here @samp{add_clobber_name} is the attribute name,
10208 @samp{add_clobber_subst} is the name of the corresponding
10209 @code{define_subst}, the third argument (@samp{_noclobber}) is the
10210 attribute value that would be substituted into the unchanged version of
10211 the source RTL template, and the last argument (@samp{_clobber}) is the
10212 value that would be substituted into the second, transformed,
10213 version of the RTL template.
10215 Once the subst-attribute has been defined, it should be used in RTL
10216 templates which need to be processed by the @code{define_subst}.  So,
10217 the original RTL template should be changed:
10219 @smallexample
10220 (define_insn "maxsi<add_clobber_name>"
10221   [(set (match_operand:SI 0 "register_operand" "=r")
10222         (max:SI
10223           (match_operand:SI 1 "register_operand" "r")
10224           (match_operand:SI 2 "register_operand" "r")))]
10225   ""
10226   "max\t@{%2, %1, %0|%0, %1, %2@}"
10227  [@dots{}])
10228 @end smallexample
10230 The result of the @code{define_subst} usage would look like the following:
10232 @smallexample
10233 (define_insn "maxsi_noclobber"
10234   [(set (match_operand:SI 0 "register_operand" "=r")
10235         (max:SI
10236           (match_operand:SI 1 "register_operand" "r")
10237           (match_operand:SI 2 "register_operand" "r")))]
10238   ""
10239   "max\t@{%2, %1, %0|%0, %1, %2@}"
10240  [@dots{}])
10241 (define_insn "maxsi_clobber"
10242   [(set (match_operand:SI 0 "register_operand" "=r")
10243         (max:SI
10244           (match_operand:SI 1 "register_operand" "r")
10245           (match_operand:SI 2 "register_operand" "r")))
10246    (clobber (reg:CC FLAGS_REG))]
10247   ""
10248   "max\t@{%2, %1, %0|%0, %1, %2@}"
10249  [@dots{}])
10250 @end smallexample
10252 @node Define Subst Pattern Matching
10253 @subsection Pattern Matching in @code{define_subst}
10254 @cindex define_subst
10256 All expressions, allowed in @code{define_insn} or @code{define_expand},
10257 are allowed in the input-template of @code{define_subst}, except
10258 @code{match_par_dup}, @code{match_scratch}, @code{match_parallel}. The
10259 meanings of expressions in the input-template were changed:
10261 @code{match_operand} matches any expression (possibly, a subtree in
10262 RTL-template), if modes of the @code{match_operand} and this expression
10263 are the same, or mode of the @code{match_operand} is @code{VOIDmode}, or
10264 this expression is @code{match_dup}, @code{match_op_dup}.  If the
10265 expression is @code{match_operand} too, and predicate of
10266 @code{match_operand} from the input pattern is not empty, then the
10267 predicates are compared.  That can be used for more accurate filtering
10268 of accepted RTL-templates.
10270 @code{match_operator} matches common operators (like @code{plus},
10271 @code{minus}), @code{unspec}, @code{unspec_volatile} operators and
10272 @code{match_operator}s from the original pattern if the modes match and
10273 @code{match_operator} from the input pattern has the same number of
10274 operands as the operator from the original pattern.
10276 @node Define Subst Output Template
10277 @subsection Generation of output template in @code{define_subst}
10278 @cindex define_subst
10280 If all necessary checks for @code{define_subst} application pass, a new
10281 RTL-pattern, based on the output-template, is created to replace the old
10282 template.  Like in input-patterns, meanings of some RTL expressions are
10283 changed when they are used in output-patterns of a @code{define_subst}.
10284 Thus, @code{match_dup} is used for copying the whole expression from the
10285 original pattern, which matched corresponding @code{match_operand} from
10286 the input pattern.
10288 @code{match_dup N} is used in the output template to be replaced with
10289 the expression from the original pattern, which matched
10290 @code{match_operand N} from the input pattern.  As a consequence,
10291 @code{match_dup} cannot be used to point to @code{match_operand}s from
10292 the output pattern, it should always refer to a @code{match_operand}
10293 from the input pattern.  If a @code{match_dup N} occurs more than once
10294 in the output template, its first occurrence is replaced with the
10295 expression from the original pattern, and the subsequent expressions
10296 are replaced with @code{match_dup N}, i.e., a reference to the first
10297 expression.
10299 In the output template one can refer to the expressions from the
10300 original pattern and create new ones.  For instance, some operands could
10301 be added by means of standard @code{match_operand}.
10303 After replacing @code{match_dup} with some RTL-subtree from the original
10304 pattern, it could happen that several @code{match_operand}s in the
10305 output pattern have the same indexes.  It is unknown, how many and what
10306 indexes would be used in the expression which would replace
10307 @code{match_dup}, so such conflicts in indexes are inevitable.  To
10308 overcome this issue, @code{match_operands} and @code{match_operators},
10309 which were introduced into the output pattern, are renumerated when all
10310 @code{match_dup}s are replaced.
10312 Number of alternatives in @code{match_operand}s introduced into the
10313 output template @code{M} could differ from the number of alternatives in
10314 the original pattern @code{N}, so in the resultant pattern there would
10315 be @code{N*M} alternatives.  Thus, constraints from the original pattern
10316 would be duplicated @code{N} times, constraints from the output pattern
10317 would be duplicated @code{M} times, producing all possible combinations.
10318 @end ifset
10320 @ifset INTERNALS
10321 @node Constant Definitions
10322 @section Constant Definitions
10323 @cindex constant definitions
10324 @findex define_constants
10326 Using literal constants inside instruction patterns reduces legibility and
10327 can be a maintenance problem.
10329 To overcome this problem, you may use the @code{define_constants}
10330 expression.  It contains a vector of name-value pairs.  From that
10331 point on, wherever any of the names appears in the MD file, it is as
10332 if the corresponding value had been written instead.  You may use
10333 @code{define_constants} multiple times; each appearance adds more
10334 constants to the table.  It is an error to redefine a constant with
10335 a different value.
10337 To come back to the a29k load multiple example, instead of
10339 @smallexample
10340 (define_insn ""
10341   [(match_parallel 0 "load_multiple_operation"
10342      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
10343            (match_operand:SI 2 "memory_operand" "m"))
10344       (use (reg:SI 179))
10345       (clobber (reg:SI 179))])]
10346   ""
10347   "loadm 0,0,%1,%2")
10348 @end smallexample
10350 You could write:
10352 @smallexample
10353 (define_constants [
10354     (R_BP 177)
10355     (R_FC 178)
10356     (R_CR 179)
10357     (R_Q  180)
10360 (define_insn ""
10361   [(match_parallel 0 "load_multiple_operation"
10362      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
10363            (match_operand:SI 2 "memory_operand" "m"))
10364       (use (reg:SI R_CR))
10365       (clobber (reg:SI R_CR))])]
10366   ""
10367   "loadm 0,0,%1,%2")
10368 @end smallexample
10370 The constants that are defined with a define_constant are also output
10371 in the insn-codes.h header file as #defines.
10373 @cindex enumerations
10374 @findex define_c_enum
10375 You can also use the machine description file to define enumerations.
10376 Like the constants defined by @code{define_constant}, these enumerations
10377 are visible to both the machine description file and the main C code.
10379 The syntax is as follows:
10381 @smallexample
10382 (define_c_enum "@var{name}" [
10383   @var{value0}
10384   @var{value1}
10385   @dots{}
10386   @var{valuen}
10388 @end smallexample
10390 This definition causes the equivalent of the following C code to appear
10391 in @file{insn-constants.h}:
10393 @smallexample
10394 enum @var{name} @{
10395   @var{value0} = 0,
10396   @var{value1} = 1,
10397   @dots{}
10398   @var{valuen} = @var{n}
10400 #define NUM_@var{cname}_VALUES (@var{n} + 1)
10401 @end smallexample
10403 where @var{cname} is the capitalized form of @var{name}.
10404 It also makes each @var{valuei} available in the machine description
10405 file, just as if it had been declared with:
10407 @smallexample
10408 (define_constants [(@var{valuei} @var{i})])
10409 @end smallexample
10411 Each @var{valuei} is usually an upper-case identifier and usually
10412 begins with @var{cname}.
10414 You can split the enumeration definition into as many statements as
10415 you like.  The above example is directly equivalent to:
10417 @smallexample
10418 (define_c_enum "@var{name}" [@var{value0}])
10419 (define_c_enum "@var{name}" [@var{value1}])
10420 @dots{}
10421 (define_c_enum "@var{name}" [@var{valuen}])
10422 @end smallexample
10424 Splitting the enumeration helps to improve the modularity of each
10425 individual @code{.md} file.  For example, if a port defines its
10426 synchronization instructions in a separate @file{sync.md} file,
10427 it is convenient to define all synchronization-specific enumeration
10428 values in @file{sync.md} rather than in the main @file{.md} file.
10430 Some enumeration names have special significance to GCC:
10432 @table @code
10433 @item unspecv
10434 @findex unspec_volatile
10435 If an enumeration called @code{unspecv} is defined, GCC will use it
10436 when printing out @code{unspec_volatile} expressions.  For example:
10438 @smallexample
10439 (define_c_enum "unspecv" [
10440   UNSPECV_BLOCKAGE
10442 @end smallexample
10444 causes GCC to print @samp{(unspec_volatile @dots{} 0)} as:
10446 @smallexample
10447 (unspec_volatile ... UNSPECV_BLOCKAGE)
10448 @end smallexample
10450 @item unspec
10451 @findex unspec
10452 If an enumeration called @code{unspec} is defined, GCC will use
10453 it when printing out @code{unspec} expressions.  GCC will also use
10454 it when printing out @code{unspec_volatile} expressions unless an
10455 @code{unspecv} enumeration is also defined.  You can therefore
10456 decide whether to keep separate enumerations for volatile and
10457 non-volatile expressions or whether to use the same enumeration
10458 for both.
10459 @end table
10461 @findex define_enum
10462 @anchor{define_enum}
10463 Another way of defining an enumeration is to use @code{define_enum}:
10465 @smallexample
10466 (define_enum "@var{name}" [
10467   @var{value0}
10468   @var{value1}
10469   @dots{}
10470   @var{valuen}
10472 @end smallexample
10474 This directive implies:
10476 @smallexample
10477 (define_c_enum "@var{name}" [
10478   @var{cname}_@var{cvalue0}
10479   @var{cname}_@var{cvalue1}
10480   @dots{}
10481   @var{cname}_@var{cvaluen}
10483 @end smallexample
10485 @findex define_enum_attr
10486 where @var{cvaluei} is the capitalized form of @var{valuei}.
10487 However, unlike @code{define_c_enum}, the enumerations defined
10488 by @code{define_enum} can be used in attribute specifications
10489 (@pxref{define_enum_attr}).
10490 @end ifset
10491 @ifset INTERNALS
10492 @node Iterators
10493 @section Iterators
10494 @cindex iterators in @file{.md} files
10496 Ports often need to define similar patterns for more than one machine
10497 mode or for more than one rtx code.  GCC provides some simple iterator
10498 facilities to make this process easier.
10500 @menu
10501 * Mode Iterators::         Generating variations of patterns for different modes.
10502 * Code Iterators::         Doing the same for codes.
10503 * Int Iterators::          Doing the same for integers.
10504 * Subst Iterators::        Generating variations of patterns for define_subst.
10505 * Parameterized Names::    Specifying iterator values in C++ code.
10506 @end menu
10508 @node Mode Iterators
10509 @subsection Mode Iterators
10510 @cindex mode iterators in @file{.md} files
10512 Ports often need to define similar patterns for two or more different modes.
10513 For example:
10515 @itemize @bullet
10516 @item
10517 If a processor has hardware support for both single and double
10518 floating-point arithmetic, the @code{SFmode} patterns tend to be
10519 very similar to the @code{DFmode} ones.
10521 @item
10522 If a port uses @code{SImode} pointers in one configuration and
10523 @code{DImode} pointers in another, it will usually have very similar
10524 @code{SImode} and @code{DImode} patterns for manipulating pointers.
10525 @end itemize
10527 Mode iterators allow several patterns to be instantiated from one
10528 @file{.md} file template.  They can be used with any type of
10529 rtx-based construct, such as a @code{define_insn},
10530 @code{define_split}, or @code{define_peephole2}.
10532 @menu
10533 * Defining Mode Iterators:: Defining a new mode iterator.
10534 * Substitutions::           Combining mode iterators with substitutions
10535 * Examples::                Examples
10536 @end menu
10538 @node Defining Mode Iterators
10539 @subsubsection Defining Mode Iterators
10540 @findex define_mode_iterator
10542 The syntax for defining a mode iterator is:
10544 @smallexample
10545 (define_mode_iterator @var{name} [(@var{mode1} "@var{cond1}") @dots{} (@var{moden} "@var{condn}")])
10546 @end smallexample
10548 This allows subsequent @file{.md} file constructs to use the mode suffix
10549 @code{:@var{name}}.  Every construct that does so will be expanded
10550 @var{n} times, once with every use of @code{:@var{name}} replaced by
10551 @code{:@var{mode1}}, once with every use replaced by @code{:@var{mode2}},
10552 and so on.  In the expansion for a particular @var{modei}, every
10553 C condition will also require that @var{condi} be true.
10555 For example:
10557 @smallexample
10558 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
10559 @end smallexample
10561 defines a new mode suffix @code{:P}.  Every construct that uses
10562 @code{:P} will be expanded twice, once with every @code{:P} replaced
10563 by @code{:SI} and once with every @code{:P} replaced by @code{:DI}.
10564 The @code{:SI} version will only apply if @code{Pmode == SImode} and
10565 the @code{:DI} version will only apply if @code{Pmode == DImode}.
10567 As with other @file{.md} conditions, an empty string is treated
10568 as ``always true''.  @code{(@var{mode} "")} can also be abbreviated
10569 to @code{@var{mode}}.  For example:
10571 @smallexample
10572 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
10573 @end smallexample
10575 means that the @code{:DI} expansion only applies if @code{TARGET_64BIT}
10576 but that the @code{:SI} expansion has no such constraint.
10578 Iterators are applied in the order they are defined.  This can be
10579 significant if two iterators are used in a construct that requires
10580 substitutions.  @xref{Substitutions}.
10582 @node Substitutions
10583 @subsubsection Substitution in Mode Iterators
10584 @findex define_mode_attr
10586 If an @file{.md} file construct uses mode iterators, each version of the
10587 construct will often need slightly different strings or modes.  For
10588 example:
10590 @itemize @bullet
10591 @item
10592 When a @code{define_expand} defines several @code{add@var{m}3} patterns
10593 (@pxref{Standard Names}), each expander will need to use the
10594 appropriate mode name for @var{m}.
10596 @item
10597 When a @code{define_insn} defines several instruction patterns,
10598 each instruction will often use a different assembler mnemonic.
10600 @item
10601 When a @code{define_insn} requires operands with different modes,
10602 using an iterator for one of the operand modes usually requires a specific
10603 mode for the other operand(s).
10604 @end itemize
10606 GCC supports such variations through a system of ``mode attributes''.
10607 There are two standard attributes: @code{mode}, which is the name of
10608 the mode in lower case, and @code{MODE}, which is the same thing in
10609 upper case.  You can define other attributes using:
10611 @smallexample
10612 (define_mode_attr @var{name} [(@var{mode1} "@var{value1}") @dots{} (@var{moden} "@var{valuen}")])
10613 @end smallexample
10615 where @var{name} is the name of the attribute and @var{valuei}
10616 is the value associated with @var{modei}.
10618 When GCC replaces some @var{:iterator} with @var{:mode}, it will scan
10619 each string and mode in the pattern for sequences of the form
10620 @code{<@var{iterator}:@var{attr}>}, where @var{attr} is the name of a
10621 mode attribute.  If the attribute is defined for @var{mode}, the whole
10622 @code{<@dots{}>} sequence will be replaced by the appropriate attribute
10623 value.
10625 For example, suppose an @file{.md} file has:
10627 @smallexample
10628 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
10629 (define_mode_attr load [(SI "lw") (DI "ld")])
10630 @end smallexample
10632 If one of the patterns that uses @code{:P} contains the string
10633 @code{"<P:load>\t%0,%1"}, the @code{SI} version of that pattern
10634 will use @code{"lw\t%0,%1"} and the @code{DI} version will use
10635 @code{"ld\t%0,%1"}.
10637 Here is an example of using an attribute for a mode:
10639 @smallexample
10640 (define_mode_iterator LONG [SI DI])
10641 (define_mode_attr SHORT [(SI "HI") (DI "SI")])
10642 (define_insn @dots{}
10643   (sign_extend:LONG (match_operand:<LONG:SHORT> @dots{})) @dots{})
10644 @end smallexample
10646 The @code{@var{iterator}:} prefix may be omitted, in which case the
10647 substitution will be attempted for every iterator expansion.
10649 @node Examples
10650 @subsubsection Mode Iterator Examples
10652 Here is an example from the MIPS port.  It defines the following
10653 modes and attributes (among others):
10655 @smallexample
10656 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
10657 (define_mode_attr d [(SI "") (DI "d")])
10658 @end smallexample
10660 and uses the following template to define both @code{subsi3}
10661 and @code{subdi3}:
10663 @smallexample
10664 (define_insn "sub<mode>3"
10665   [(set (match_operand:GPR 0 "register_operand" "=d")
10666         (minus:GPR (match_operand:GPR 1 "register_operand" "d")
10667                    (match_operand:GPR 2 "register_operand" "d")))]
10668   ""
10669   "<d>subu\t%0,%1,%2"
10670   [(set_attr "type" "arith")
10671    (set_attr "mode" "<MODE>")])
10672 @end smallexample
10674 This is exactly equivalent to:
10676 @smallexample
10677 (define_insn "subsi3"
10678   [(set (match_operand:SI 0 "register_operand" "=d")
10679         (minus:SI (match_operand:SI 1 "register_operand" "d")
10680                   (match_operand:SI 2 "register_operand" "d")))]
10681   ""
10682   "subu\t%0,%1,%2"
10683   [(set_attr "type" "arith")
10684    (set_attr "mode" "SI")])
10686 (define_insn "subdi3"
10687   [(set (match_operand:DI 0 "register_operand" "=d")
10688         (minus:DI (match_operand:DI 1 "register_operand" "d")
10689                   (match_operand:DI 2 "register_operand" "d")))]
10690   ""
10691   "dsubu\t%0,%1,%2"
10692   [(set_attr "type" "arith")
10693    (set_attr "mode" "DI")])
10694 @end smallexample
10696 @node Code Iterators
10697 @subsection Code Iterators
10698 @cindex code iterators in @file{.md} files
10699 @findex define_code_iterator
10700 @findex define_code_attr
10702 Code iterators operate in a similar way to mode iterators.  @xref{Mode Iterators}.
10704 The construct:
10706 @smallexample
10707 (define_code_iterator @var{name} [(@var{code1} "@var{cond1}") @dots{} (@var{coden} "@var{condn}")])
10708 @end smallexample
10710 defines a pseudo rtx code @var{name} that can be instantiated as
10711 @var{codei} if condition @var{condi} is true.  Each @var{codei}
10712 must have the same rtx format.  @xref{RTL Classes}.
10714 As with mode iterators, each pattern that uses @var{name} will be
10715 expanded @var{n} times, once with all uses of @var{name} replaced by
10716 @var{code1}, once with all uses replaced by @var{code2}, and so on.
10717 @xref{Defining Mode Iterators}.
10719 It is possible to define attributes for codes as well as for modes.
10720 There are two standard code attributes: @code{code}, the name of the
10721 code in lower case, and @code{CODE}, the name of the code in upper case.
10722 Other attributes are defined using:
10724 @smallexample
10725 (define_code_attr @var{name} [(@var{code1} "@var{value1}") @dots{} (@var{coden} "@var{valuen}")])
10726 @end smallexample
10728 Here's an example of code iterators in action, taken from the MIPS port:
10730 @smallexample
10731 (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
10732                                 eq ne gt ge lt le gtu geu ltu leu])
10734 (define_expand "b<code>"
10735   [(set (pc)
10736         (if_then_else (any_cond:CC (cc0)
10737                                    (const_int 0))
10738                       (label_ref (match_operand 0 ""))
10739                       (pc)))]
10740   ""
10742   gen_conditional_branch (operands, <CODE>);
10743   DONE;
10745 @end smallexample
10747 This is equivalent to:
10749 @smallexample
10750 (define_expand "bunordered"
10751   [(set (pc)
10752         (if_then_else (unordered:CC (cc0)
10753                                     (const_int 0))
10754                       (label_ref (match_operand 0 ""))
10755                       (pc)))]
10756   ""
10758   gen_conditional_branch (operands, UNORDERED);
10759   DONE;
10762 (define_expand "bordered"
10763   [(set (pc)
10764         (if_then_else (ordered:CC (cc0)
10765                                   (const_int 0))
10766                       (label_ref (match_operand 0 ""))
10767                       (pc)))]
10768   ""
10770   gen_conditional_branch (operands, ORDERED);
10771   DONE;
10774 @dots{}
10775 @end smallexample
10777 @node Int Iterators
10778 @subsection Int Iterators
10779 @cindex int iterators in @file{.md} files
10780 @findex define_int_iterator
10781 @findex define_int_attr
10783 Int iterators operate in a similar way to code iterators.  @xref{Code Iterators}.
10785 The construct:
10787 @smallexample
10788 (define_int_iterator @var{name} [(@var{int1} "@var{cond1}") @dots{} (@var{intn} "@var{condn}")])
10789 @end smallexample
10791 defines a pseudo integer constant @var{name} that can be instantiated as
10792 @var{inti} if condition @var{condi} is true.  Each @var{int}
10793 must have the same rtx format.  @xref{RTL Classes}. Int iterators can appear
10794 in only those rtx fields that have 'i' as the specifier. This means that
10795 each @var{int} has to be a constant defined using define_constant or
10796 define_c_enum.
10798 As with mode and code iterators, each pattern that uses @var{name} will be
10799 expanded @var{n} times, once with all uses of @var{name} replaced by
10800 @var{int1}, once with all uses replaced by @var{int2}, and so on.
10801 @xref{Defining Mode Iterators}.
10803 It is possible to define attributes for ints as well as for codes and modes.
10804 Attributes are defined using:
10806 @smallexample
10807 (define_int_attr @var{name} [(@var{int1} "@var{value1}") @dots{} (@var{intn} "@var{valuen}")])
10808 @end smallexample
10810 Here's an example of int iterators in action, taken from the ARM port:
10812 @smallexample
10813 (define_int_iterator QABSNEG [UNSPEC_VQABS UNSPEC_VQNEG])
10815 (define_int_attr absneg [(UNSPEC_VQABS "abs") (UNSPEC_VQNEG "neg")])
10817 (define_insn "neon_vq<absneg><mode>"
10818   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
10819         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
10820                        (match_operand:SI 2 "immediate_operand" "i")]
10821                       QABSNEG))]
10822   "TARGET_NEON"
10823   "vq<absneg>.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
10824   [(set_attr "type" "neon_vqneg_vqabs")]
10827 @end smallexample
10829 This is equivalent to:
10831 @smallexample
10832 (define_insn "neon_vqabs<mode>"
10833   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
10834         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
10835                        (match_operand:SI 2 "immediate_operand" "i")]
10836                       UNSPEC_VQABS))]
10837   "TARGET_NEON"
10838   "vqabs.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
10839   [(set_attr "type" "neon_vqneg_vqabs")]
10842 (define_insn "neon_vqneg<mode>"
10843   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
10844         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
10845                        (match_operand:SI 2 "immediate_operand" "i")]
10846                       UNSPEC_VQNEG))]
10847   "TARGET_NEON"
10848   "vqneg.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
10849   [(set_attr "type" "neon_vqneg_vqabs")]
10852 @end smallexample
10854 @node Subst Iterators
10855 @subsection Subst Iterators
10856 @cindex subst iterators in @file{.md} files
10857 @findex define_subst
10858 @findex define_subst_attr
10860 Subst iterators are special type of iterators with the following
10861 restrictions: they could not be declared explicitly, they always have
10862 only two values, and they do not have explicit dedicated name.
10863 Subst-iterators are triggered only when corresponding subst-attribute is
10864 used in RTL-pattern.
10866 Subst iterators transform templates in the following way: the templates
10867 are duplicated, the subst-attributes in these templates are replaced
10868 with the corresponding values, and a new attribute is implicitly added
10869 to the given @code{define_insn}/@code{define_expand}.  The name of the
10870 added attribute matches the name of @code{define_subst}.  Such
10871 attributes are declared implicitly, and it is not allowed to have a
10872 @code{define_attr} named as a @code{define_subst}.
10874 Each subst iterator is linked to a @code{define_subst}.  It is declared
10875 implicitly by the first appearance of the corresponding
10876 @code{define_subst_attr}, and it is not allowed to define it explicitly.
10878 Declarations of subst-attributes have the following syntax:
10880 @findex define_subst_attr
10881 @smallexample
10882 (define_subst_attr "@var{name}"
10883   "@var{subst-name}"
10884   "@var{no-subst-value}"
10885   "@var{subst-applied-value}")
10886 @end smallexample
10888 @var{name} is a string with which the given subst-attribute could be
10889 referred to.
10891 @var{subst-name} shows which @code{define_subst} should be applied to an
10892 RTL-template if the given subst-attribute is present in the
10893 RTL-template.
10895 @var{no-subst-value} is a value with which subst-attribute would be
10896 replaced in the first copy of the original RTL-template.
10898 @var{subst-applied-value} is a value with which subst-attribute would be
10899 replaced in the second copy of the original RTL-template.
10901 @node Parameterized Names
10902 @subsection Parameterized Names
10903 @cindex @samp{@@} in instruction pattern names
10904 Ports sometimes need to apply iterators using C++ code, in order to
10905 get the code or RTL pattern for a specific instruction.  For example,
10906 suppose we have the @samp{neon_vq<absneg><mode>} pattern given above:
10908 @smallexample
10909 (define_int_iterator QABSNEG [UNSPEC_VQABS UNSPEC_VQNEG])
10911 (define_int_attr absneg [(UNSPEC_VQABS "abs") (UNSPEC_VQNEG "neg")])
10913 (define_insn "neon_vq<absneg><mode>"
10914   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
10915         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
10916                        (match_operand:SI 2 "immediate_operand" "i")]
10917                       QABSNEG))]
10918   @dots{}
10920 @end smallexample
10922 A port might need to generate this pattern for a variable
10923 @samp{QABSNEG} value and a variable @samp{VDQIW} mode.  There are two
10924 ways of doing this.  The first is to build the rtx for the pattern
10925 directly from C++ code; this is a valid technique and avoids any risk
10926 of combinatorial explosion.  The second is to prefix the instruction
10927 name with the special character @samp{@@}, which tells GCC to generate
10928 the four additional functions below.  In each case, @var{name} is the
10929 name of the instruction without the leading @samp{@@} character,
10930 without the @samp{<@dots{}>} placeholders, and with any underscore
10931 before a @samp{<@dots{}>} placeholder removed if keeping it would
10932 lead to a double or trailing underscore.
10934 @table @samp
10935 @item insn_code maybe_code_for_@var{name} (@var{i1}, @var{i2}, @dots{})
10936 See whether replacing the first @samp{<@dots{}>} placeholder with
10937 iterator value @var{i1}, the second with iterator value @var{i2}, and
10938 so on, gives a valid instruction.  Return its code if so, otherwise
10939 return @code{CODE_FOR_nothing}.
10941 @item insn_code code_for_@var{name} (@var{i1}, @var{i2}, @dots{})
10942 Same, but abort the compiler if the requested instruction does not exist.
10944 @item rtx maybe_gen_@var{name} (@var{i1}, @var{i2}, @dots{}, @var{op0}, @var{op1}, @dots{})
10945 Check for a valid instruction in the same way as
10946 @code{maybe_code_for_@var{name}}.  If the instruction exists,
10947 generate an instance of it using the operand values given by @var{op0},
10948 @var{op1}, and so on, otherwise return null.
10950 @item rtx gen_@var{name} (@var{i1}, @var{i2}, @dots{}, @var{op0}, @var{op1}, @dots{})
10951 Same, but abort the compiler if the requested instruction does not exist,
10952 or if the instruction generator invoked the @code{FAIL} macro.
10953 @end table
10955 For example, changing the pattern above to:
10957 @smallexample
10958 (define_insn "@@neon_vq<absneg><mode>"
10959   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
10960         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
10961                        (match_operand:SI 2 "immediate_operand" "i")]
10962                       QABSNEG))]
10963   @dots{}
10965 @end smallexample
10967 would define the same patterns as before, but in addition would generate
10968 the four functions below:
10970 @smallexample
10971 insn_code maybe_code_for_neon_vq (int, machine_mode);
10972 insn_code code_for_neon_vq (int, machine_mode);
10973 rtx maybe_gen_neon_vq (int, machine_mode, rtx, rtx, rtx);
10974 rtx gen_neon_vq (int, machine_mode, rtx, rtx, rtx);
10975 @end smallexample
10977 Calling @samp{code_for_neon_vq (UNSPEC_VQABS, V8QImode)}
10978 would then give @code{CODE_FOR_neon_vqabsv8qi}.
10980 It is possible to have multiple @samp{@@} patterns with the same
10981 name and same types of iterator.  For example:
10983 @smallexample
10984 (define_insn "@@some_arithmetic_op<mode>"
10985   [(set (match_operand:INTEGER_MODES 0 "register_operand") @dots{})]
10986   @dots{}
10989 (define_insn "@@some_arithmetic_op<mode>"
10990   [(set (match_operand:FLOAT_MODES 0 "register_operand") @dots{})]
10991   @dots{}
10993 @end smallexample
10995 would produce a single set of functions that handles both
10996 @code{INTEGER_MODES} and @code{FLOAT_MODES}.
10998 @end ifset