Remove not needed __builtin_expect due to malloc predictor.
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob2dd9d2f42872903b8bad65e651394311059a72f3
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
91 package body Sem_Ch6 is
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
209 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210 -- Preanalysis of default expressions of subprogram formals. N is the
211 -- expression to be analyzed and T is the expected type.
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223 Scop : constant Entity_Id := Current_Scope;
224 Subp_Id : constant Entity_Id :=
225 Analyze_Subprogram_Specification (Specification (N));
227 begin
228 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
230 Generate_Definition (Subp_Id);
232 -- Set the SPARK mode from the current context (may be overwritten later
233 -- with explicit pragma).
235 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
236 Set_SPARK_Pragma_Inherited (Subp_Id);
238 -- Preserve relevant elaboration-related attributes of the context which
239 -- are no longer available or very expensive to recompute once analysis,
240 -- resolution, and expansion are over.
242 Mark_Elaboration_Attributes
243 (N_Id => Subp_Id,
244 Checks => True,
245 Warnings => True);
247 Set_Is_Abstract_Subprogram (Subp_Id);
248 New_Overloaded_Entity (Subp_Id);
249 Check_Delayed_Subprogram (Subp_Id);
251 Set_Categorization_From_Scope (Subp_Id, Scop);
253 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
256 -- Issue a warning if the abstract subprogram is neither a dispatching
257 -- operation nor an operation that overrides an inherited subprogram or
258 -- predefined operator, since this most likely indicates a mistake.
260 elsif Warn_On_Redundant_Constructs
261 and then not Is_Dispatching_Operation (Subp_Id)
262 and then not Present (Overridden_Operation (Subp_Id))
263 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265 then
266 Error_Msg_N
267 ("abstract subprogram is not dispatching or overriding?r?", N);
268 end if;
270 Generate_Reference_To_Formals (Subp_Id);
271 Check_Eliminated (Subp_Id);
273 if Has_Aspects (N) then
274 Analyze_Aspect_Specifications (N, Subp_Id);
275 end if;
276 end Analyze_Abstract_Subprogram_Declaration;
278 ---------------------------------
279 -- Analyze_Expression_Function --
280 ---------------------------------
282 procedure Analyze_Expression_Function (N : Node_Id) is
283 Expr : constant Node_Id := Expression (N);
284 Loc : constant Source_Ptr := Sloc (N);
285 LocX : constant Source_Ptr := Sloc (Expr);
286 Spec : constant Node_Id := Specification (N);
288 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
289 -- N is an expression function that is a completion and Def_Id its
290 -- defining entity. Freeze before N all the types referenced by the
291 -- expression of the function.
293 -----------------------
294 -- Freeze_Expr_Types --
295 -----------------------
297 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
298 function Cloned_Expression return Node_Id;
299 -- Build a duplicate of the expression of the return statement that
300 -- has no defining entities shared with the original expression.
302 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
303 -- Freeze all types referenced in the subtree rooted at Node
305 -----------------------
306 -- Cloned_Expression --
307 -----------------------
309 function Cloned_Expression return Node_Id is
310 function Clone_Id (Node : Node_Id) return Traverse_Result;
311 -- Tree traversal routine that clones the defining identifier of
312 -- iterator and loop parameter specification nodes.
314 --------------
315 -- Clone_Id --
316 --------------
318 function Clone_Id (Node : Node_Id) return Traverse_Result is
319 begin
320 if Nkind_In (Node, N_Iterator_Specification,
321 N_Loop_Parameter_Specification)
322 then
323 Set_Defining_Identifier (Node,
324 New_Copy (Defining_Identifier (Node)));
325 end if;
327 return OK;
328 end Clone_Id;
330 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
332 -- Local variable
334 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
336 -- Start of processing for Cloned_Expression
338 begin
339 -- We must duplicate the expression with semantic information to
340 -- inherit the decoration of global entities in generic instances.
341 -- Set the parent of the new node to be the parent of the original
342 -- to get the proper context, which is needed for complete error
343 -- reporting and for semantic analysis.
345 Set_Parent (Dup_Expr, Parent (Expr));
347 -- Replace the defining identifier of iterators and loop param
348 -- specifications by a clone to ensure that the cloned expression
349 -- and the original expression don't have shared identifiers;
350 -- otherwise, as part of the preanalysis of the expression, these
351 -- shared identifiers may be left decorated with itypes which
352 -- will not be available in the tree passed to the backend.
354 Clone_Def_Ids (Dup_Expr);
356 return Dup_Expr;
357 end Cloned_Expression;
359 ----------------------
360 -- Freeze_Type_Refs --
361 ----------------------
363 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
364 procedure Check_And_Freeze_Type (Typ : Entity_Id);
365 -- Check that Typ is fully declared and freeze it if so
367 ---------------------------
368 -- Check_And_Freeze_Type --
369 ---------------------------
371 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
372 begin
373 -- Skip Itypes created by the preanalysis, and itypes whose
374 -- scope is another type (i.e. component subtypes that depend
375 -- on a discriminant),
377 if Is_Itype (Typ)
378 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
379 or else Is_Type (Scope (Typ)))
380 then
381 return;
382 end if;
384 -- This provides a better error message than generating
385 -- primitives whose compilation fails much later. Refine
386 -- the error message if possible.
388 Check_Fully_Declared (Typ, Node);
390 if Error_Posted (Node) then
391 if Has_Private_Component (Typ)
392 and then not Is_Private_Type (Typ)
393 then
394 Error_Msg_NE ("\type& has private component", Node, Typ);
395 end if;
397 else
398 Freeze_Before (N, Typ);
399 end if;
400 end Check_And_Freeze_Type;
402 -- Start of processing for Freeze_Type_Refs
404 begin
405 -- Check that a type referenced by an entity can be frozen
407 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
408 Check_And_Freeze_Type (Etype (Entity (Node)));
410 -- Check that the enclosing record type can be frozen
412 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
413 Check_And_Freeze_Type (Scope (Entity (Node)));
414 end if;
416 -- Freezing an access type does not freeze the designated type,
417 -- but freezing conversions between access to interfaces requires
418 -- that the interface types themselves be frozen, so that dispatch
419 -- table entities are properly created.
421 -- Unclear whether a more general rule is needed ???
423 elsif Nkind (Node) = N_Type_Conversion
424 and then Is_Access_Type (Etype (Node))
425 and then Is_Interface (Designated_Type (Etype (Node)))
426 then
427 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
428 end if;
430 -- An implicit dereference freezes the designated type. In the
431 -- case of a dispatching call whose controlling argument is an
432 -- access type, the dereference is not made explicit, so we must
433 -- check for such a call and freeze the designated type.
435 if Nkind (Node) in N_Has_Etype
436 and then Present (Etype (Node))
437 and then Is_Access_Type (Etype (Node))
438 and then Nkind (Parent (Node)) = N_Function_Call
439 and then Node = Controlling_Argument (Parent (Node))
440 then
441 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
442 end if;
444 -- No point in posting several errors on the same expression
446 if Serious_Errors_Detected > 0 then
447 return Abandon;
448 else
449 return OK;
450 end if;
451 end Freeze_Type_Refs;
453 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
455 -- Local variables
457 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
458 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
459 Dup_Expr : constant Node_Id := Cloned_Expression;
461 -- Start of processing for Freeze_Expr_Types
463 begin
464 -- Preanalyze a duplicate of the expression to have available the
465 -- minimum decoration needed to locate referenced unfrozen types
466 -- without adding any decoration to the function expression.
468 Push_Scope (Def_Id);
469 Install_Formals (Def_Id);
471 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
472 End_Scope;
474 -- Restore certain attributes of Def_Id since the preanalysis may
475 -- have introduced itypes to this scope, thus modifying attributes
476 -- First_Entity and Last_Entity.
478 Set_First_Entity (Def_Id, Saved_First_Entity);
479 Set_Last_Entity (Def_Id, Saved_Last_Entity);
481 if Present (Last_Entity (Def_Id)) then
482 Set_Next_Entity (Last_Entity (Def_Id), Empty);
483 end if;
485 -- Freeze all types referenced in the expression
487 Freeze_References (Dup_Expr);
488 end Freeze_Expr_Types;
490 -- Local variables
492 Asp : Node_Id;
493 New_Body : Node_Id;
494 New_Spec : Node_Id;
495 Orig_N : Node_Id;
496 Ret : Node_Id;
498 Def_Id : Entity_Id := Empty;
499 Prev : Entity_Id;
500 -- If the expression is a completion, Prev is the entity whose
501 -- declaration is completed. Def_Id is needed to analyze the spec.
503 -- Start of processing for Analyze_Expression_Function
505 begin
506 -- This is one of the occasions on which we transform the tree during
507 -- semantic analysis. If this is a completion, transform the expression
508 -- function into an equivalent subprogram body, and analyze it.
510 -- Expression functions are inlined unconditionally. The back-end will
511 -- determine whether this is possible.
513 Inline_Processing_Required := True;
515 -- Create a specification for the generated body. This must be done
516 -- prior to the analysis of the initial declaration.
518 New_Spec := Copy_Subprogram_Spec (Spec);
519 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
521 -- If there are previous overloadable entities with the same name,
522 -- check whether any of them is completed by the expression function.
523 -- In a generic context a formal subprogram has no completion.
525 if Present (Prev)
526 and then Is_Overloadable (Prev)
527 and then not Is_Formal_Subprogram (Prev)
528 then
529 Def_Id := Analyze_Subprogram_Specification (Spec);
530 Prev := Find_Corresponding_Spec (N);
532 -- The previous entity may be an expression function as well, in
533 -- which case the redeclaration is illegal.
535 if Present (Prev)
536 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
537 N_Expression_Function
538 then
539 Error_Msg_Sloc := Sloc (Prev);
540 Error_Msg_N ("& conflicts with declaration#", Def_Id);
541 return;
542 end if;
543 end if;
545 Ret := Make_Simple_Return_Statement (LocX, Expr);
547 New_Body :=
548 Make_Subprogram_Body (Loc,
549 Specification => New_Spec,
550 Declarations => Empty_List,
551 Handled_Statement_Sequence =>
552 Make_Handled_Sequence_Of_Statements (LocX,
553 Statements => New_List (Ret)));
554 Set_Was_Expression_Function (New_Body);
556 -- If the expression completes a generic subprogram, we must create a
557 -- separate node for the body, because at instantiation the original
558 -- node of the generic copy must be a generic subprogram body, and
559 -- cannot be a expression function. Otherwise we just rewrite the
560 -- expression with the non-generic body.
562 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
563 Insert_After (N, New_Body);
565 -- Propagate any aspects or pragmas that apply to the expression
566 -- function to the proper body when the expression function acts
567 -- as a completion.
569 if Has_Aspects (N) then
570 Move_Aspects (N, To => New_Body);
571 end if;
573 Relocate_Pragmas_To_Body (New_Body);
575 Rewrite (N, Make_Null_Statement (Loc));
576 Set_Has_Completion (Prev, False);
577 Analyze (N);
578 Analyze (New_Body);
579 Set_Is_Inlined (Prev);
581 -- If the expression function is a completion, the previous declaration
582 -- must come from source. We know already that it appears in the current
583 -- scope. The entity itself may be internally created if within a body
584 -- to be inlined.
586 elsif Present (Prev)
587 and then Is_Overloadable (Prev)
588 and then not Is_Formal_Subprogram (Prev)
589 and then Comes_From_Source (Parent (Prev))
590 then
591 Set_Has_Completion (Prev, False);
592 Set_Is_Inlined (Prev);
594 -- AI12-0103: Expression functions that are a completion freeze their
595 -- expression but don't freeze anything else (unlike regular bodies).
597 -- Note that we cannot defer this freezing to the analysis of the
598 -- expression itself, because a freeze node might appear in a nested
599 -- scope, leading to an elaboration order issue in gigi.
600 -- As elsewhere, we do not emit freeze nodes within a generic unit.
602 if not Inside_A_Generic then
603 Freeze_Expr_Types (Def_Id);
604 end if;
606 -- For navigation purposes, indicate that the function is a body
608 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
609 Rewrite (N, New_Body);
611 -- Remove any existing aspects from the original node because the act
612 -- of rewriting causes the list to be shared between the two nodes.
614 Orig_N := Original_Node (N);
615 Remove_Aspects (Orig_N);
617 -- Propagate any pragmas that apply to expression function to the
618 -- proper body when the expression function acts as a completion.
619 -- Aspects are automatically transfered because of node rewriting.
621 Relocate_Pragmas_To_Body (N);
622 Analyze (N);
624 -- Once the aspects of the generated body have been analyzed, create
625 -- a copy for ASIS purposes and associate it with the original node.
627 if Has_Aspects (N) then
628 Set_Aspect_Specifications (Orig_N,
629 New_Copy_List_Tree (Aspect_Specifications (N)));
630 end if;
632 -- Prev is the previous entity with the same name, but it is can
633 -- be an unrelated spec that is not completed by the expression
634 -- function. In that case the relevant entity is the one in the body.
635 -- Not clear that the backend can inline it in this case ???
637 if Has_Completion (Prev) then
639 -- The formals of the expression function are body formals,
640 -- and do not appear in the ali file, which will only contain
641 -- references to the formals of the original subprogram spec.
643 declare
644 F1 : Entity_Id;
645 F2 : Entity_Id;
647 begin
648 F1 := First_Formal (Def_Id);
649 F2 := First_Formal (Prev);
651 while Present (F1) loop
652 Set_Spec_Entity (F1, F2);
653 Next_Formal (F1);
654 Next_Formal (F2);
655 end loop;
656 end;
658 else
659 Set_Is_Inlined (Defining_Entity (New_Body));
660 end if;
662 -- If this is not a completion, create both a declaration and a body, so
663 -- that the expression can be inlined whenever possible.
665 else
666 -- An expression function that is not a completion is not a
667 -- subprogram declaration, and thus cannot appear in a protected
668 -- definition.
670 if Nkind (Parent (N)) = N_Protected_Definition then
671 Error_Msg_N
672 ("an expression function is not a legal protected operation", N);
673 end if;
675 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
677 -- Remove any existing aspects from the original node because the act
678 -- of rewriting causes the list to be shared between the two nodes.
680 Orig_N := Original_Node (N);
681 Remove_Aspects (Orig_N);
683 Analyze (N);
685 -- Once the aspects of the generated spec have been analyzed, create
686 -- a copy for ASIS purposes and associate it with the original node.
688 if Has_Aspects (N) then
689 Set_Aspect_Specifications (Orig_N,
690 New_Copy_List_Tree (Aspect_Specifications (N)));
691 end if;
693 -- If aspect SPARK_Mode was specified on the body, it needs to be
694 -- repeated both on the generated spec and the body.
696 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
698 if Present (Asp) then
699 Asp := New_Copy_Tree (Asp);
700 Set_Analyzed (Asp, False);
701 Set_Aspect_Specifications (New_Body, New_List (Asp));
702 end if;
704 Def_Id := Defining_Entity (N);
705 Set_Is_Inlined (Def_Id);
707 -- Establish the linkages between the spec and the body. These are
708 -- used when the expression function acts as the prefix of attribute
709 -- 'Access in order to freeze the original expression which has been
710 -- moved to the generated body.
712 Set_Corresponding_Body (N, Defining_Entity (New_Body));
713 Set_Corresponding_Spec (New_Body, Def_Id);
715 -- Within a generic preanalyze the original expression for name
716 -- capture. The body is also generated but plays no role in
717 -- this because it is not part of the original source.
719 if Inside_A_Generic then
720 Set_Has_Completion (Def_Id);
721 Push_Scope (Def_Id);
722 Install_Formals (Def_Id);
723 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
724 End_Scope;
725 end if;
727 -- To prevent premature freeze action, insert the new body at the end
728 -- of the current declarations, or at the end of the package spec.
729 -- However, resolve usage names now, to prevent spurious visibility
730 -- on later entities. Note that the function can now be called in
731 -- the current declarative part, which will appear to be prior to
732 -- the presence of the body in the code. There are nevertheless no
733 -- order of elaboration issues because all name resolution has taken
734 -- place at the point of declaration.
736 declare
737 Decls : List_Id := List_Containing (N);
738 Expr : constant Node_Id := Expression (Ret);
739 Par : constant Node_Id := Parent (Decls);
740 Typ : constant Entity_Id := Etype (Def_Id);
742 begin
743 -- If this is a wrapper created for in an instance for a formal
744 -- subprogram, insert body after declaration, to be analyzed when
745 -- the enclosing instance is analyzed.
747 if GNATprove_Mode
748 and then Is_Generic_Actual_Subprogram (Def_Id)
749 then
750 Insert_After (N, New_Body);
752 else
753 if Nkind (Par) = N_Package_Specification
754 and then Decls = Visible_Declarations (Par)
755 and then Present (Private_Declarations (Par))
756 and then not Is_Empty_List (Private_Declarations (Par))
757 then
758 Decls := Private_Declarations (Par);
759 end if;
761 Insert_After (Last (Decls), New_Body);
763 -- Preanalyze the expression if not already done above
765 if not Inside_A_Generic then
766 Push_Scope (Def_Id);
767 Install_Formals (Def_Id);
768 Preanalyze_Formal_Expression (Expr, Typ);
769 Check_Limited_Return (Original_Node (N), Expr, Typ);
770 End_Scope;
771 end if;
772 end if;
773 end;
774 end if;
776 -- Check incorrect use of dynamically tagged expression. This doesn't
777 -- fall out automatically when analyzing the generated function body,
778 -- because Check_Dynamically_Tagged_Expression deliberately ignores
779 -- nodes that don't come from source.
781 if Present (Def_Id)
782 and then Nkind (Def_Id) in N_Has_Etype
783 and then Is_Tagged_Type (Etype (Def_Id))
784 then
785 Check_Dynamically_Tagged_Expression
786 (Expr => Expr,
787 Typ => Etype (Def_Id),
788 Related_Nod => Original_Node (N));
789 end if;
791 -- We must enforce checks for unreferenced formals in our newly
792 -- generated function, so we propagate the referenced flag from the
793 -- original spec to the new spec as well as setting Comes_From_Source.
795 if Present (Parameter_Specifications (New_Spec)) then
796 declare
797 Form_New_Def : Entity_Id;
798 Form_New_Spec : Entity_Id;
799 Form_Old_Def : Entity_Id;
800 Form_Old_Spec : Entity_Id;
802 begin
803 Form_New_Spec := First (Parameter_Specifications (New_Spec));
804 Form_Old_Spec := First (Parameter_Specifications (Spec));
806 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
807 Form_New_Def := Defining_Identifier (Form_New_Spec);
808 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
810 Set_Comes_From_Source (Form_New_Def, True);
812 -- Because of the usefulness of unreferenced controlling
813 -- formals we exempt them from unreferenced warnings by marking
814 -- them as always referenced.
816 Set_Referenced (Form_Old_Def,
817 (Is_Formal (Form_Old_Def)
818 and then Is_Controlling_Formal (Form_Old_Def))
819 or else Referenced (Form_Old_Def));
821 Next (Form_New_Spec);
822 Next (Form_Old_Spec);
823 end loop;
824 end;
825 end if;
826 end Analyze_Expression_Function;
828 ----------------------------------------
829 -- Analyze_Extended_Return_Statement --
830 ----------------------------------------
832 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
833 begin
834 Check_Compiler_Unit ("extended return statement", N);
835 Analyze_Return_Statement (N);
836 end Analyze_Extended_Return_Statement;
838 ----------------------------
839 -- Analyze_Function_Call --
840 ----------------------------
842 procedure Analyze_Function_Call (N : Node_Id) is
843 Actuals : constant List_Id := Parameter_Associations (N);
844 Func_Nam : constant Node_Id := Name (N);
845 Actual : Node_Id;
847 begin
848 Analyze (Func_Nam);
850 -- A call of the form A.B (X) may be an Ada 2005 call, which is
851 -- rewritten as B (A, X). If the rewriting is successful, the call
852 -- has been analyzed and we just return.
854 if Nkind (Func_Nam) = N_Selected_Component
855 and then Name (N) /= Func_Nam
856 and then Is_Rewrite_Substitution (N)
857 and then Present (Etype (N))
858 then
859 return;
860 end if;
862 -- If error analyzing name, then set Any_Type as result type and return
864 if Etype (Func_Nam) = Any_Type then
865 Set_Etype (N, Any_Type);
866 return;
867 end if;
869 -- Otherwise analyze the parameters
871 if Present (Actuals) then
872 Actual := First (Actuals);
873 while Present (Actual) loop
874 Analyze (Actual);
875 Check_Parameterless_Call (Actual);
876 Next (Actual);
877 end loop;
878 end if;
880 Analyze_Call (N);
881 end Analyze_Function_Call;
883 -----------------------------
884 -- Analyze_Function_Return --
885 -----------------------------
887 procedure Analyze_Function_Return (N : Node_Id) is
888 Loc : constant Source_Ptr := Sloc (N);
889 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
890 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
892 R_Type : constant Entity_Id := Etype (Scope_Id);
893 -- Function result subtype
895 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
896 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
897 -- aggregate in a return statement.
899 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
900 -- Check that the return_subtype_indication properly matches the result
901 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
903 -----------------------------------
904 -- Check_Aggregate_Accessibility --
905 -----------------------------------
907 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
908 Typ : constant Entity_Id := Etype (Aggr);
909 Assoc : Node_Id;
910 Discr : Entity_Id;
911 Expr : Node_Id;
912 Obj : Node_Id;
914 begin
915 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
916 Discr := First_Discriminant (Typ);
917 Assoc := First (Component_Associations (Aggr));
918 while Present (Discr) loop
919 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
920 Expr := Expression (Assoc);
922 if Nkind (Expr) = N_Attribute_Reference
923 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
924 then
925 Obj := Prefix (Expr);
926 while Nkind_In (Obj, N_Indexed_Component,
927 N_Selected_Component)
928 loop
929 Obj := Prefix (Obj);
930 end loop;
932 -- Do not check aliased formals or function calls. A
933 -- run-time check may still be needed ???
935 if Is_Entity_Name (Obj)
936 and then Comes_From_Source (Obj)
937 then
938 if Is_Formal (Entity (Obj))
939 and then Is_Aliased (Entity (Obj))
940 then
941 null;
943 elsif Object_Access_Level (Obj) >
944 Scope_Depth (Scope (Scope_Id))
945 then
946 Error_Msg_N
947 ("access discriminant in return aggregate would "
948 & "be a dangling reference", Obj);
949 end if;
950 end if;
951 end if;
952 end if;
954 Next_Discriminant (Discr);
955 end loop;
956 end if;
957 end Check_Aggregate_Accessibility;
959 -------------------------------------
960 -- Check_Return_Subtype_Indication --
961 -------------------------------------
963 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
964 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
966 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
967 -- Subtype given in the extended return statement (must match R_Type)
969 Subtype_Ind : constant Node_Id :=
970 Object_Definition (Original_Node (Obj_Decl));
972 procedure Error_No_Match (N : Node_Id);
973 -- Output error messages for case where types do not statically
974 -- match. N is the location for the messages.
976 --------------------
977 -- Error_No_Match --
978 --------------------
980 procedure Error_No_Match (N : Node_Id) is
981 begin
982 Error_Msg_N
983 ("subtype must statically match function result subtype", N);
985 if not Predicates_Match (R_Stm_Type, R_Type) then
986 Error_Msg_Node_2 := R_Type;
987 Error_Msg_NE
988 ("\predicate of& does not match predicate of&",
989 N, R_Stm_Type);
990 end if;
991 end Error_No_Match;
993 -- Start of processing for Check_Return_Subtype_Indication
995 begin
996 -- First, avoid cascaded errors
998 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
999 return;
1000 end if;
1002 -- "return access T" case; check that the return statement also has
1003 -- "access T", and that the subtypes statically match:
1004 -- if this is an access to subprogram the signatures must match.
1006 if Is_Anonymous_Access_Type (R_Type) then
1007 if Is_Anonymous_Access_Type (R_Stm_Type) then
1008 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
1009 then
1010 if Base_Type (Designated_Type (R_Stm_Type)) /=
1011 Base_Type (Designated_Type (R_Type))
1012 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
1013 then
1014 Error_No_Match (Subtype_Mark (Subtype_Ind));
1015 end if;
1017 else
1018 -- For two anonymous access to subprogram types, the types
1019 -- themselves must be type conformant.
1021 if not Conforming_Types
1022 (R_Stm_Type, R_Type, Fully_Conformant)
1023 then
1024 Error_No_Match (Subtype_Ind);
1025 end if;
1026 end if;
1028 else
1029 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
1030 end if;
1032 -- If the return object is of an anonymous access type, then report
1033 -- an error if the function's result type is not also anonymous.
1035 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
1036 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
1037 Error_Msg_N
1038 ("anonymous access not allowed for function with named access "
1039 & "result", Subtype_Ind);
1041 -- Subtype indication case: check that the return object's type is
1042 -- covered by the result type, and that the subtypes statically match
1043 -- when the result subtype is constrained. Also handle record types
1044 -- with unknown discriminants for which we have built the underlying
1045 -- record view. Coverage is needed to allow specific-type return
1046 -- objects when the result type is class-wide (see AI05-32).
1048 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
1049 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
1050 and then
1051 Covers
1052 (Base_Type (R_Type),
1053 Underlying_Record_View (Base_Type (R_Stm_Type))))
1054 then
1055 -- A null exclusion may be present on the return type, on the
1056 -- function specification, on the object declaration or on the
1057 -- subtype itself.
1059 if Is_Access_Type (R_Type)
1060 and then
1061 (Can_Never_Be_Null (R_Type)
1062 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1063 Can_Never_Be_Null (R_Stm_Type)
1064 then
1065 Error_No_Match (Subtype_Ind);
1066 end if;
1068 -- AI05-103: for elementary types, subtypes must statically match
1070 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1071 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1072 Error_No_Match (Subtype_Ind);
1073 end if;
1074 end if;
1076 -- All remaining cases are illegal
1078 -- Note: previous versions of this subprogram allowed the return
1079 -- value to be the ancestor of the return type if the return type
1080 -- was a null extension. This was plainly incorrect.
1082 else
1083 Error_Msg_N
1084 ("wrong type for return_subtype_indication", Subtype_Ind);
1085 end if;
1086 end Check_Return_Subtype_Indication;
1088 ---------------------
1089 -- Local Variables --
1090 ---------------------
1092 Expr : Node_Id;
1093 Obj_Decl : Node_Id := Empty;
1095 -- Start of processing for Analyze_Function_Return
1097 begin
1098 Set_Return_Present (Scope_Id);
1100 if Nkind (N) = N_Simple_Return_Statement then
1101 Expr := Expression (N);
1103 -- Guard against a malformed expression. The parser may have tried to
1104 -- recover but the node is not analyzable.
1106 if Nkind (Expr) = N_Error then
1107 Set_Etype (Expr, Any_Type);
1108 Expander_Mode_Save_And_Set (False);
1109 return;
1111 else
1112 -- The resolution of a controlled [extension] aggregate associated
1113 -- with a return statement creates a temporary which needs to be
1114 -- finalized on function exit. Wrap the return statement inside a
1115 -- block so that the finalization machinery can detect this case.
1116 -- This early expansion is done only when the return statement is
1117 -- not part of a handled sequence of statements.
1119 if Nkind_In (Expr, N_Aggregate,
1120 N_Extension_Aggregate)
1121 and then Needs_Finalization (R_Type)
1122 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1123 then
1124 Rewrite (N,
1125 Make_Block_Statement (Loc,
1126 Handled_Statement_Sequence =>
1127 Make_Handled_Sequence_Of_Statements (Loc,
1128 Statements => New_List (Relocate_Node (N)))));
1130 Analyze (N);
1131 return;
1132 end if;
1134 Analyze (Expr);
1136 -- Ada 2005 (AI-251): If the type of the returned object is
1137 -- an access to an interface type then we add an implicit type
1138 -- conversion to force the displacement of the "this" pointer to
1139 -- reference the secondary dispatch table. We cannot delay the
1140 -- generation of this implicit conversion until the expansion
1141 -- because in this case the type resolution changes the decoration
1142 -- of the expression node to match R_Type; by contrast, if the
1143 -- returned object is a class-wide interface type then it is too
1144 -- early to generate here the implicit conversion since the return
1145 -- statement may be rewritten by the expander into an extended
1146 -- return statement whose expansion takes care of adding the
1147 -- implicit type conversion to displace the pointer to the object.
1149 if Expander_Active
1150 and then Serious_Errors_Detected = 0
1151 and then Is_Access_Type (R_Type)
1152 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1153 and then Is_Interface (Designated_Type (R_Type))
1154 and then Is_Progenitor (Designated_Type (R_Type),
1155 Designated_Type (Etype (Expr)))
1156 then
1157 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1158 Analyze (Expr);
1159 end if;
1161 Resolve (Expr, R_Type);
1162 Check_Limited_Return (N, Expr, R_Type);
1164 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1165 Check_Aggregate_Accessibility (Expr);
1166 end if;
1167 end if;
1169 -- RETURN only allowed in SPARK as the last statement in function
1171 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1172 and then
1173 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1174 or else Present (Next (N)))
1175 then
1176 Check_SPARK_05_Restriction
1177 ("RETURN should be the last statement in function", N);
1178 end if;
1180 else
1181 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1182 Obj_Decl := Last (Return_Object_Declarations (N));
1184 -- Analyze parts specific to extended_return_statement:
1186 declare
1187 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1188 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1190 begin
1191 Expr := Expression (Obj_Decl);
1193 -- Note: The check for OK_For_Limited_Init will happen in
1194 -- Analyze_Object_Declaration; we treat it as a normal
1195 -- object declaration.
1197 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1198 Analyze (Obj_Decl);
1200 Check_Return_Subtype_Indication (Obj_Decl);
1202 if Present (HSS) then
1203 Analyze (HSS);
1205 if Present (Exception_Handlers (HSS)) then
1207 -- ???Has_Nested_Block_With_Handler needs to be set.
1208 -- Probably by creating an actual N_Block_Statement.
1209 -- Probably in Expand.
1211 null;
1212 end if;
1213 end if;
1215 -- Mark the return object as referenced, since the return is an
1216 -- implicit reference of the object.
1218 Set_Referenced (Defining_Identifier (Obj_Decl));
1220 Check_References (Stm_Entity);
1222 -- Check RM 6.5 (5.9/3)
1224 if Has_Aliased then
1225 if Ada_Version < Ada_2012 then
1227 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1228 -- Can it really happen (extended return???)
1230 Error_Msg_N
1231 ("aliased only allowed for limited return objects "
1232 & "in Ada 2012??", N);
1234 elsif not Is_Limited_View (R_Type) then
1235 Error_Msg_N
1236 ("aliased only allowed for limited return objects", N);
1237 end if;
1238 end if;
1239 end;
1240 end if;
1242 -- Case of Expr present
1244 if Present (Expr) then
1246 -- Defend against previous errors
1248 if Nkind (Expr) = N_Empty
1249 or else No (Etype (Expr))
1250 then
1251 return;
1252 end if;
1254 -- Apply constraint check. Note that this is done before the implicit
1255 -- conversion of the expression done for anonymous access types to
1256 -- ensure correct generation of the null-excluding check associated
1257 -- with null-excluding expressions found in return statements.
1259 Apply_Constraint_Check (Expr, R_Type);
1261 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1262 -- type, apply an implicit conversion of the expression to that type
1263 -- to force appropriate static and run-time accessibility checks.
1265 if Ada_Version >= Ada_2005
1266 and then Ekind (R_Type) = E_Anonymous_Access_Type
1267 then
1268 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1269 Analyze_And_Resolve (Expr, R_Type);
1271 -- If this is a local anonymous access to subprogram, the
1272 -- accessibility check can be applied statically. The return is
1273 -- illegal if the access type of the return expression is declared
1274 -- inside of the subprogram (except if it is the subtype indication
1275 -- of an extended return statement).
1277 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1278 if not Comes_From_Source (Current_Scope)
1279 or else Ekind (Current_Scope) = E_Return_Statement
1280 then
1281 null;
1283 elsif
1284 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1285 then
1286 Error_Msg_N ("cannot return local access to subprogram", N);
1287 end if;
1289 -- The expression cannot be of a formal incomplete type
1291 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1292 and then Is_Generic_Type (Etype (Expr))
1293 then
1294 Error_Msg_N
1295 ("cannot return expression of a formal incomplete type", N);
1296 end if;
1298 -- If the result type is class-wide, then check that the return
1299 -- expression's type is not declared at a deeper level than the
1300 -- function (RM05-6.5(5.6/2)).
1302 if Ada_Version >= Ada_2005
1303 and then Is_Class_Wide_Type (R_Type)
1304 then
1305 if Type_Access_Level (Etype (Expr)) >
1306 Subprogram_Access_Level (Scope_Id)
1307 then
1308 Error_Msg_N
1309 ("level of return expression type is deeper than "
1310 & "class-wide function!", Expr);
1311 end if;
1312 end if;
1314 -- Check incorrect use of dynamically tagged expression
1316 if Is_Tagged_Type (R_Type) then
1317 Check_Dynamically_Tagged_Expression
1318 (Expr => Expr,
1319 Typ => R_Type,
1320 Related_Nod => N);
1321 end if;
1323 -- ??? A real run-time accessibility check is needed in cases
1324 -- involving dereferences of access parameters. For now we just
1325 -- check the static cases.
1327 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1328 and then Is_Limited_View (Etype (Scope_Id))
1329 and then Object_Access_Level (Expr) >
1330 Subprogram_Access_Level (Scope_Id)
1331 then
1332 -- Suppress the message in a generic, where the rewriting
1333 -- is irrelevant.
1335 if Inside_A_Generic then
1336 null;
1338 else
1339 Rewrite (N,
1340 Make_Raise_Program_Error (Loc,
1341 Reason => PE_Accessibility_Check_Failed));
1342 Analyze (N);
1344 Error_Msg_Warn := SPARK_Mode /= On;
1345 Error_Msg_N ("cannot return a local value by reference<<", N);
1346 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1347 end if;
1348 end if;
1350 if Known_Null (Expr)
1351 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1352 and then Null_Exclusion_Present (Parent (Scope_Id))
1353 then
1354 Apply_Compile_Time_Constraint_Error
1355 (N => Expr,
1356 Msg => "(Ada 2005) null not allowed for "
1357 & "null-excluding return??",
1358 Reason => CE_Null_Not_Allowed);
1359 end if;
1361 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1362 -- has no initializing expression.
1364 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1365 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1366 Subprogram_Access_Level (Scope_Id)
1367 then
1368 Error_Msg_N
1369 ("level of return expression type is deeper than "
1370 & "class-wide function!", Obj_Decl);
1371 end if;
1372 end if;
1373 end Analyze_Function_Return;
1375 -------------------------------------
1376 -- Analyze_Generic_Subprogram_Body --
1377 -------------------------------------
1379 procedure Analyze_Generic_Subprogram_Body
1380 (N : Node_Id;
1381 Gen_Id : Entity_Id)
1383 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1384 Kind : constant Entity_Kind := Ekind (Gen_Id);
1385 Body_Id : Entity_Id;
1386 New_N : Node_Id;
1387 Spec : Node_Id;
1389 begin
1390 -- Copy body and disable expansion while analyzing the generic For a
1391 -- stub, do not copy the stub (which would load the proper body), this
1392 -- will be done when the proper body is analyzed.
1394 if Nkind (N) /= N_Subprogram_Body_Stub then
1395 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1396 Rewrite (N, New_N);
1398 -- Once the contents of the generic copy and the template are
1399 -- swapped, do the same for their respective aspect specifications.
1401 Exchange_Aspects (N, New_N);
1403 -- Collect all contract-related source pragmas found within the
1404 -- template and attach them to the contract of the subprogram body.
1405 -- This contract is used in the capture of global references within
1406 -- annotations.
1408 Create_Generic_Contract (N);
1410 Start_Generic;
1411 end if;
1413 Spec := Specification (N);
1415 -- Within the body of the generic, the subprogram is callable, and
1416 -- behaves like the corresponding non-generic unit.
1418 Body_Id := Defining_Entity (Spec);
1420 if Kind = E_Generic_Procedure
1421 and then Nkind (Spec) /= N_Procedure_Specification
1422 then
1423 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1424 return;
1426 elsif Kind = E_Generic_Function
1427 and then Nkind (Spec) /= N_Function_Specification
1428 then
1429 Error_Msg_N ("invalid body for generic function ", Body_Id);
1430 return;
1431 end if;
1433 Set_Corresponding_Body (Gen_Decl, Body_Id);
1435 if Has_Completion (Gen_Id)
1436 and then Nkind (Parent (N)) /= N_Subunit
1437 then
1438 Error_Msg_N ("duplicate generic body", N);
1439 return;
1440 else
1441 Set_Has_Completion (Gen_Id);
1442 end if;
1444 if Nkind (N) = N_Subprogram_Body_Stub then
1445 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1446 else
1447 Set_Corresponding_Spec (N, Gen_Id);
1448 end if;
1450 if Nkind (Parent (N)) = N_Compilation_Unit then
1451 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1452 end if;
1454 -- Make generic parameters immediately visible in the body. They are
1455 -- needed to process the formals declarations. Then make the formals
1456 -- visible in a separate step.
1458 Push_Scope (Gen_Id);
1460 declare
1461 E : Entity_Id;
1462 First_Ent : Entity_Id;
1464 begin
1465 First_Ent := First_Entity (Gen_Id);
1467 E := First_Ent;
1468 while Present (E) and then not Is_Formal (E) loop
1469 Install_Entity (E);
1470 Next_Entity (E);
1471 end loop;
1473 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1475 -- Now generic formals are visible, and the specification can be
1476 -- analyzed, for subsequent conformance check.
1478 Body_Id := Analyze_Subprogram_Specification (Spec);
1480 -- Make formal parameters visible
1482 if Present (E) then
1484 -- E is the first formal parameter, we loop through the formals
1485 -- installing them so that they will be visible.
1487 Set_First_Entity (Gen_Id, E);
1488 while Present (E) loop
1489 Install_Entity (E);
1490 Next_Formal (E);
1491 end loop;
1492 end if;
1494 -- Visible generic entity is callable within its own body
1496 Set_Ekind (Gen_Id, Ekind (Body_Id));
1497 Set_Ekind (Body_Id, E_Subprogram_Body);
1498 Set_Convention (Body_Id, Convention (Gen_Id));
1499 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1500 Set_Scope (Body_Id, Scope (Gen_Id));
1502 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1504 if Nkind (N) = N_Subprogram_Body_Stub then
1506 -- No body to analyze, so restore state of generic unit
1508 Set_Ekind (Gen_Id, Kind);
1509 Set_Ekind (Body_Id, Kind);
1511 if Present (First_Ent) then
1512 Set_First_Entity (Gen_Id, First_Ent);
1513 end if;
1515 End_Scope;
1516 return;
1517 end if;
1519 -- If this is a compilation unit, it must be made visible explicitly,
1520 -- because the compilation of the declaration, unlike other library
1521 -- unit declarations, does not. If it is not a unit, the following
1522 -- is redundant but harmless.
1524 Set_Is_Immediately_Visible (Gen_Id);
1525 Reference_Body_Formals (Gen_Id, Body_Id);
1527 if Is_Child_Unit (Gen_Id) then
1528 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1529 end if;
1531 Set_Actual_Subtypes (N, Current_Scope);
1533 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1534 Set_SPARK_Pragma_Inherited (Body_Id);
1536 -- Analyze any aspect specifications that appear on the generic
1537 -- subprogram body.
1539 if Has_Aspects (N) then
1540 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1541 end if;
1543 Analyze_Declarations (Declarations (N));
1544 Check_Completion;
1546 -- Process the contract of the subprogram body after all declarations
1547 -- have been analyzed. This ensures that any contract-related pragmas
1548 -- are available through the N_Contract node of the body.
1550 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1552 Analyze (Handled_Statement_Sequence (N));
1553 Save_Global_References (Original_Node (N));
1555 -- Prior to exiting the scope, include generic formals again (if any
1556 -- are present) in the set of local entities.
1558 if Present (First_Ent) then
1559 Set_First_Entity (Gen_Id, First_Ent);
1560 end if;
1562 Check_References (Gen_Id);
1563 end;
1565 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1566 Update_Use_Clause_Chain;
1567 Validate_Categorization_Dependency (N, Gen_Id);
1568 End_Scope;
1569 Check_Subprogram_Order (N);
1571 -- Outside of its body, unit is generic again
1573 Set_Ekind (Gen_Id, Kind);
1574 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1576 if Style_Check then
1577 Style.Check_Identifier (Body_Id, Gen_Id);
1578 end if;
1580 End_Generic;
1581 end Analyze_Generic_Subprogram_Body;
1583 ----------------------------
1584 -- Analyze_Null_Procedure --
1585 ----------------------------
1587 procedure Analyze_Null_Procedure
1588 (N : Node_Id;
1589 Is_Completion : out Boolean)
1591 Loc : constant Source_Ptr := Sloc (N);
1592 Spec : constant Node_Id := Specification (N);
1593 Designator : Entity_Id;
1594 Form : Node_Id;
1595 Null_Body : Node_Id := Empty;
1596 Null_Stmt : Node_Id := Null_Statement (Spec);
1597 Prev : Entity_Id;
1599 begin
1600 -- Capture the profile of the null procedure before analysis, for
1601 -- expansion at the freeze point and at each point of call. The body is
1602 -- used if the procedure has preconditions, or if it is a completion. In
1603 -- the first case the body is analyzed at the freeze point, in the other
1604 -- it replaces the null procedure declaration.
1606 -- For a null procedure that comes from source, a NULL statement is
1607 -- provided by the parser, which carries the source location of the
1608 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1609 -- from expansion, create one now.
1611 if No (Null_Stmt) then
1612 Null_Stmt := Make_Null_Statement (Loc);
1613 end if;
1615 Null_Body :=
1616 Make_Subprogram_Body (Loc,
1617 Specification => New_Copy_Tree (Spec),
1618 Declarations => New_List,
1619 Handled_Statement_Sequence =>
1620 Make_Handled_Sequence_Of_Statements (Loc,
1621 Statements => New_List (Null_Stmt)));
1623 -- Create new entities for body and formals
1625 Set_Defining_Unit_Name (Specification (Null_Body),
1626 Make_Defining_Identifier
1627 (Sloc (Defining_Entity (N)),
1628 Chars (Defining_Entity (N))));
1630 Form := First (Parameter_Specifications (Specification (Null_Body)));
1631 while Present (Form) loop
1632 Set_Defining_Identifier (Form,
1633 Make_Defining_Identifier
1634 (Sloc (Defining_Identifier (Form)),
1635 Chars (Defining_Identifier (Form))));
1636 Next (Form);
1637 end loop;
1639 -- Determine whether the null procedure may be a completion of a generic
1640 -- suprogram, in which case we use the new null body as the completion
1641 -- and set minimal semantic information on the original declaration,
1642 -- which is rewritten as a null statement.
1644 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1646 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1647 Insert_Before (N, Null_Body);
1648 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1650 Rewrite (N, Make_Null_Statement (Loc));
1651 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1652 Is_Completion := True;
1653 return;
1655 else
1656 -- Resolve the types of the formals now, because the freeze point may
1657 -- appear in a different context, e.g. an instantiation.
1659 Form := First (Parameter_Specifications (Specification (Null_Body)));
1660 while Present (Form) loop
1661 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1662 Find_Type (Parameter_Type (Form));
1664 elsif No (Access_To_Subprogram_Definition
1665 (Parameter_Type (Form)))
1666 then
1667 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1669 -- The case of a null procedure with a formal that is an
1670 -- access-to-subprogram type, and that is used as an actual
1671 -- in an instantiation is left to the enthusiastic reader.
1673 else
1674 null;
1675 end if;
1677 Next (Form);
1678 end loop;
1679 end if;
1681 -- If there are previous overloadable entities with the same name, check
1682 -- whether any of them is completed by the null procedure.
1684 if Present (Prev) and then Is_Overloadable (Prev) then
1685 Designator := Analyze_Subprogram_Specification (Spec);
1686 Prev := Find_Corresponding_Spec (N);
1687 end if;
1689 if No (Prev) or else not Comes_From_Source (Prev) then
1690 Designator := Analyze_Subprogram_Specification (Spec);
1691 Set_Has_Completion (Designator);
1693 -- Signal to caller that this is a procedure declaration
1695 Is_Completion := False;
1697 -- Null procedures are always inlined, but generic formal subprograms
1698 -- which appear as such in the internal instance of formal packages,
1699 -- need no completion and are not marked Inline.
1701 if Expander_Active
1702 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1703 then
1704 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1705 Set_Body_To_Inline (N, Null_Body);
1706 Set_Is_Inlined (Designator);
1707 end if;
1709 else
1710 -- The null procedure is a completion. We unconditionally rewrite
1711 -- this as a null body (even if expansion is not active), because
1712 -- there are various error checks that are applied on this body
1713 -- when it is analyzed (e.g. correct aspect placement).
1715 if Has_Completion (Prev) then
1716 Error_Msg_Sloc := Sloc (Prev);
1717 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1718 end if;
1720 Check_Previous_Null_Procedure (N, Prev);
1722 Is_Completion := True;
1723 Rewrite (N, Null_Body);
1724 Analyze (N);
1725 end if;
1726 end Analyze_Null_Procedure;
1728 -----------------------------
1729 -- Analyze_Operator_Symbol --
1730 -----------------------------
1732 -- An operator symbol such as "+" or "and" may appear in context where the
1733 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1734 -- is just a string, as in (conjunction = "or"). In these cases the parser
1735 -- generates this node, and the semantics does the disambiguation. Other
1736 -- such case are actuals in an instantiation, the generic unit in an
1737 -- instantiation, and pragma arguments.
1739 procedure Analyze_Operator_Symbol (N : Node_Id) is
1740 Par : constant Node_Id := Parent (N);
1742 begin
1743 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1744 or else Nkind (Par) = N_Function_Instantiation
1745 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1746 or else (Nkind (Par) = N_Pragma_Argument_Association
1747 and then not Is_Pragma_String_Literal (Par))
1748 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1749 or else (Nkind (Par) = N_Attribute_Reference
1750 and then Attribute_Name (Par) /= Name_Value)
1751 then
1752 Find_Direct_Name (N);
1754 else
1755 Change_Operator_Symbol_To_String_Literal (N);
1756 Analyze (N);
1757 end if;
1758 end Analyze_Operator_Symbol;
1760 -----------------------------------
1761 -- Analyze_Parameter_Association --
1762 -----------------------------------
1764 procedure Analyze_Parameter_Association (N : Node_Id) is
1765 begin
1766 Analyze (Explicit_Actual_Parameter (N));
1767 end Analyze_Parameter_Association;
1769 ----------------------------
1770 -- Analyze_Procedure_Call --
1771 ----------------------------
1773 -- WARNING: This routine manages Ghost regions. Return statements must be
1774 -- replaced by gotos which jump to the end of the routine and restore the
1775 -- Ghost mode.
1777 procedure Analyze_Procedure_Call (N : Node_Id) is
1778 procedure Analyze_Call_And_Resolve;
1779 -- Do Analyze and Resolve calls for procedure call. At the end, check
1780 -- for illegal order dependence.
1781 -- ??? where is the check for illegal order dependencies?
1783 ------------------------------
1784 -- Analyze_Call_And_Resolve --
1785 ------------------------------
1787 procedure Analyze_Call_And_Resolve is
1788 begin
1789 if Nkind (N) = N_Procedure_Call_Statement then
1790 Analyze_Call (N);
1791 Resolve (N, Standard_Void_Type);
1792 else
1793 Analyze (N);
1794 end if;
1795 end Analyze_Call_And_Resolve;
1797 -- Local variables
1799 Actuals : constant List_Id := Parameter_Associations (N);
1800 Loc : constant Source_Ptr := Sloc (N);
1801 P : constant Node_Id := Name (N);
1803 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1804 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1805 -- Save the Ghost-related attributes to restore on exit
1807 Actual : Node_Id;
1808 New_N : Node_Id;
1810 -- Start of processing for Analyze_Procedure_Call
1812 begin
1813 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1814 -- a procedure call or an entry call. The prefix may denote an access
1815 -- to subprogram type, in which case an implicit dereference applies.
1816 -- If the prefix is an indexed component (without implicit dereference)
1817 -- then the construct denotes a call to a member of an entire family.
1818 -- If the prefix is a simple name, it may still denote a call to a
1819 -- parameterless member of an entry family. Resolution of these various
1820 -- interpretations is delicate.
1822 -- Do not analyze machine code statements to avoid rejecting them in
1823 -- CodePeer mode.
1825 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1826 Set_Etype (P, Standard_Void_Type);
1827 else
1828 Analyze (P);
1829 end if;
1831 -- If this is a call of the form Obj.Op, the call may have been analyzed
1832 -- and possibly rewritten into a block, in which case we are done.
1834 if Analyzed (N) then
1835 return;
1837 -- If there is an error analyzing the name (which may have been
1838 -- rewritten if the original call was in prefix notation) then error
1839 -- has been emitted already, mark node and return.
1841 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1842 Set_Etype (N, Any_Type);
1843 return;
1844 end if;
1846 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1847 -- Set the mode now to ensure that any nodes generated during analysis
1848 -- and expansion are properly marked as Ghost.
1850 Mark_And_Set_Ghost_Procedure_Call (N);
1852 -- Otherwise analyze the parameters
1854 if Present (Actuals) then
1855 Actual := First (Actuals);
1857 while Present (Actual) loop
1858 Analyze (Actual);
1859 Check_Parameterless_Call (Actual);
1860 Next (Actual);
1861 end loop;
1862 end if;
1864 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1866 if Nkind (P) = N_Attribute_Reference
1867 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1868 Name_Elab_Body,
1869 Name_Elab_Subp_Body)
1870 then
1871 if Present (Actuals) then
1872 Error_Msg_N
1873 ("no parameters allowed for this call", First (Actuals));
1874 goto Leave;
1875 end if;
1877 Set_Etype (N, Standard_Void_Type);
1878 Set_Analyzed (N);
1880 elsif Is_Entity_Name (P)
1881 and then Is_Record_Type (Etype (Entity (P)))
1882 and then Remote_AST_I_Dereference (P)
1883 then
1884 goto Leave;
1886 elsif Is_Entity_Name (P)
1887 and then Ekind (Entity (P)) /= E_Entry_Family
1888 then
1889 if Is_Access_Type (Etype (P))
1890 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1891 and then No (Actuals)
1892 and then Comes_From_Source (N)
1893 then
1894 Error_Msg_N ("missing explicit dereference in call", N);
1895 end if;
1897 Analyze_Call_And_Resolve;
1899 -- If the prefix is the simple name of an entry family, this is a
1900 -- parameterless call from within the task body itself.
1902 elsif Is_Entity_Name (P)
1903 and then Nkind (P) = N_Identifier
1904 and then Ekind (Entity (P)) = E_Entry_Family
1905 and then Present (Actuals)
1906 and then No (Next (First (Actuals)))
1907 then
1908 -- Can be call to parameterless entry family. What appears to be the
1909 -- sole argument is in fact the entry index. Rewrite prefix of node
1910 -- accordingly. Source representation is unchanged by this
1911 -- transformation.
1913 New_N :=
1914 Make_Indexed_Component (Loc,
1915 Prefix =>
1916 Make_Selected_Component (Loc,
1917 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1918 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1919 Expressions => Actuals);
1920 Set_Name (N, New_N);
1921 Set_Etype (New_N, Standard_Void_Type);
1922 Set_Parameter_Associations (N, No_List);
1923 Analyze_Call_And_Resolve;
1925 elsif Nkind (P) = N_Explicit_Dereference then
1926 if Ekind (Etype (P)) = E_Subprogram_Type then
1927 Analyze_Call_And_Resolve;
1928 else
1929 Error_Msg_N ("expect access to procedure in call", P);
1930 end if;
1932 -- The name can be a selected component or an indexed component that
1933 -- yields an access to subprogram. Such a prefix is legal if the call
1934 -- has parameter associations.
1936 elsif Is_Access_Type (Etype (P))
1937 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1938 then
1939 if Present (Actuals) then
1940 Analyze_Call_And_Resolve;
1941 else
1942 Error_Msg_N ("missing explicit dereference in call ", N);
1943 end if;
1945 -- If not an access to subprogram, then the prefix must resolve to the
1946 -- name of an entry, entry family, or protected operation.
1948 -- For the case of a simple entry call, P is a selected component where
1949 -- the prefix is the task and the selector name is the entry. A call to
1950 -- a protected procedure will have the same syntax. If the protected
1951 -- object contains overloaded operations, the entity may appear as a
1952 -- function, the context will select the operation whose type is Void.
1954 elsif Nkind (P) = N_Selected_Component
1955 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1956 E_Function,
1957 E_Procedure)
1958 then
1959 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1960 -- in prefix notation may still be missing its controlling argument,
1961 -- so perform the transformation now.
1963 if SPARK_Mode = On and then In_Inlined_Body then
1964 declare
1965 Subp : constant Entity_Id := Entity (Selector_Name (P));
1966 Typ : constant Entity_Id := Etype (Prefix (P));
1968 begin
1969 if Is_Tagged_Type (Typ)
1970 and then Present (First_Formal (Subp))
1971 and then (Etype (First_Formal (Subp)) = Typ
1972 or else
1973 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1974 and then Try_Object_Operation (P)
1975 then
1976 return;
1978 else
1979 Analyze_Call_And_Resolve;
1980 end if;
1981 end;
1983 else
1984 Analyze_Call_And_Resolve;
1985 end if;
1987 elsif Nkind (P) = N_Selected_Component
1988 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1989 and then Present (Actuals)
1990 and then No (Next (First (Actuals)))
1991 then
1992 -- Can be call to parameterless entry family. What appears to be the
1993 -- sole argument is in fact the entry index. Rewrite prefix of node
1994 -- accordingly. Source representation is unchanged by this
1995 -- transformation.
1997 New_N :=
1998 Make_Indexed_Component (Loc,
1999 Prefix => New_Copy (P),
2000 Expressions => Actuals);
2001 Set_Name (N, New_N);
2002 Set_Etype (New_N, Standard_Void_Type);
2003 Set_Parameter_Associations (N, No_List);
2004 Analyze_Call_And_Resolve;
2006 -- For the case of a reference to an element of an entry family, P is
2007 -- an indexed component whose prefix is a selected component (task and
2008 -- entry family), and whose index is the entry family index.
2010 elsif Nkind (P) = N_Indexed_Component
2011 and then Nkind (Prefix (P)) = N_Selected_Component
2012 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
2013 then
2014 Analyze_Call_And_Resolve;
2016 -- If the prefix is the name of an entry family, it is a call from
2017 -- within the task body itself.
2019 elsif Nkind (P) = N_Indexed_Component
2020 and then Nkind (Prefix (P)) = N_Identifier
2021 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
2022 then
2023 New_N :=
2024 Make_Selected_Component (Loc,
2025 Prefix =>
2026 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
2027 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
2028 Rewrite (Prefix (P), New_N);
2029 Analyze (P);
2030 Analyze_Call_And_Resolve;
2032 -- In Ada 2012. a qualified expression is a name, but it cannot be a
2033 -- procedure name, so the construct can only be a qualified expression.
2035 elsif Nkind (P) = N_Qualified_Expression
2036 and then Ada_Version >= Ada_2012
2037 then
2038 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2039 Analyze (N);
2041 -- Anything else is an error
2043 else
2044 Error_Msg_N ("invalid procedure or entry call", N);
2045 end if;
2047 <<Leave>>
2048 Restore_Ghost_Region (Saved_GM, Saved_IGR);
2049 end Analyze_Procedure_Call;
2051 ------------------------------
2052 -- Analyze_Return_Statement --
2053 ------------------------------
2055 procedure Analyze_Return_Statement (N : Node_Id) is
2056 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2057 N_Simple_Return_Statement));
2059 Returns_Object : constant Boolean :=
2060 Nkind (N) = N_Extended_Return_Statement
2061 or else
2062 (Nkind (N) = N_Simple_Return_Statement
2063 and then Present (Expression (N)));
2064 -- True if we're returning something; that is, "return <expression>;"
2065 -- or "return Result : T [:= ...]". False for "return;". Used for error
2066 -- checking: If Returns_Object is True, N should apply to a function
2067 -- body; otherwise N should apply to a procedure body, entry body,
2068 -- accept statement, or extended return statement.
2070 function Find_What_It_Applies_To return Entity_Id;
2071 -- Find the entity representing the innermost enclosing body, accept
2072 -- statement, or extended return statement. If the result is a callable
2073 -- construct or extended return statement, then this will be the value
2074 -- of the Return_Applies_To attribute. Otherwise, the program is
2075 -- illegal. See RM-6.5(4/2).
2077 -----------------------------
2078 -- Find_What_It_Applies_To --
2079 -----------------------------
2081 function Find_What_It_Applies_To return Entity_Id is
2082 Result : Entity_Id := Empty;
2084 begin
2085 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2086 -- and postconditions.
2088 for J in reverse 0 .. Scope_Stack.Last loop
2089 Result := Scope_Stack.Table (J).Entity;
2090 exit when not Ekind_In (Result, E_Block, E_Loop)
2091 and then Chars (Result) /= Name_uPostconditions;
2092 end loop;
2094 pragma Assert (Present (Result));
2095 return Result;
2096 end Find_What_It_Applies_To;
2098 -- Local declarations
2100 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2101 Kind : constant Entity_Kind := Ekind (Scope_Id);
2102 Loc : constant Source_Ptr := Sloc (N);
2103 Stm_Entity : constant Entity_Id :=
2104 New_Internal_Entity
2105 (E_Return_Statement, Current_Scope, Loc, 'R');
2107 -- Start of processing for Analyze_Return_Statement
2109 begin
2110 Set_Return_Statement_Entity (N, Stm_Entity);
2112 Set_Etype (Stm_Entity, Standard_Void_Type);
2113 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2115 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2116 -- (4/2): an inner return statement will apply to this extended return.
2118 if Nkind (N) = N_Extended_Return_Statement then
2119 Push_Scope (Stm_Entity);
2120 end if;
2122 -- Check that pragma No_Return is obeyed. Don't complain about the
2123 -- implicitly-generated return that is placed at the end.
2125 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2126 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2127 end if;
2129 -- Warn on any unassigned OUT parameters if in procedure
2131 if Ekind (Scope_Id) = E_Procedure then
2132 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2133 end if;
2135 -- Check that functions return objects, and other things do not
2137 if Kind = E_Function or else Kind = E_Generic_Function then
2138 if not Returns_Object then
2139 Error_Msg_N ("missing expression in return from function", N);
2140 end if;
2142 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2143 if Returns_Object then
2144 Error_Msg_N ("procedure cannot return value (use function)", N);
2145 end if;
2147 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2148 if Returns_Object then
2149 if Is_Protected_Type (Scope (Scope_Id)) then
2150 Error_Msg_N ("entry body cannot return value", N);
2151 else
2152 Error_Msg_N ("accept statement cannot return value", N);
2153 end if;
2154 end if;
2156 elsif Kind = E_Return_Statement then
2158 -- We are nested within another return statement, which must be an
2159 -- extended_return_statement.
2161 if Returns_Object then
2162 if Nkind (N) = N_Extended_Return_Statement then
2163 Error_Msg_N
2164 ("extended return statement cannot be nested (use `RETURN;`)",
2167 -- Case of a simple return statement with a value inside extended
2168 -- return statement.
2170 else
2171 Error_Msg_N
2172 ("return nested in extended return statement cannot return "
2173 & "value (use `RETURN;`)", N);
2174 end if;
2175 end if;
2177 else
2178 Error_Msg_N ("illegal context for return statement", N);
2179 end if;
2181 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2182 Analyze_Function_Return (N);
2184 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2185 Set_Return_Present (Scope_Id);
2186 end if;
2188 if Nkind (N) = N_Extended_Return_Statement then
2189 End_Scope;
2190 end if;
2192 Kill_Current_Values (Last_Assignment_Only => True);
2193 Check_Unreachable_Code (N);
2195 Analyze_Dimension (N);
2196 end Analyze_Return_Statement;
2198 -------------------------------------
2199 -- Analyze_Simple_Return_Statement --
2200 -------------------------------------
2202 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2203 begin
2204 if Present (Expression (N)) then
2205 Mark_Coextensions (N, Expression (N));
2206 end if;
2208 Analyze_Return_Statement (N);
2209 end Analyze_Simple_Return_Statement;
2211 -------------------------
2212 -- Analyze_Return_Type --
2213 -------------------------
2215 procedure Analyze_Return_Type (N : Node_Id) is
2216 Designator : constant Entity_Id := Defining_Entity (N);
2217 Typ : Entity_Id := Empty;
2219 begin
2220 -- Normal case where result definition does not indicate an error
2222 if Result_Definition (N) /= Error then
2223 if Nkind (Result_Definition (N)) = N_Access_Definition then
2224 Check_SPARK_05_Restriction
2225 ("access result is not allowed", Result_Definition (N));
2227 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2229 declare
2230 AD : constant Node_Id :=
2231 Access_To_Subprogram_Definition (Result_Definition (N));
2232 begin
2233 if Present (AD) and then Protected_Present (AD) then
2234 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2235 else
2236 Typ := Access_Definition (N, Result_Definition (N));
2237 end if;
2238 end;
2240 Set_Parent (Typ, Result_Definition (N));
2241 Set_Is_Local_Anonymous_Access (Typ);
2242 Set_Etype (Designator, Typ);
2244 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2246 Null_Exclusion_Static_Checks (N);
2248 -- Subtype_Mark case
2250 else
2251 Find_Type (Result_Definition (N));
2252 Typ := Entity (Result_Definition (N));
2253 Set_Etype (Designator, Typ);
2255 -- Unconstrained array as result is not allowed in SPARK
2257 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2258 Check_SPARK_05_Restriction
2259 ("returning an unconstrained array is not allowed",
2260 Result_Definition (N));
2261 end if;
2263 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2265 Null_Exclusion_Static_Checks (N);
2267 -- If a null exclusion is imposed on the result type, then create
2268 -- a null-excluding itype (an access subtype) and use it as the
2269 -- function's Etype. Note that the null exclusion checks are done
2270 -- right before this, because they don't get applied to types that
2271 -- do not come from source.
2273 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2274 Set_Etype (Designator,
2275 Create_Null_Excluding_Itype
2276 (T => Typ,
2277 Related_Nod => N,
2278 Scope_Id => Scope (Current_Scope)));
2280 -- The new subtype must be elaborated before use because
2281 -- it is visible outside of the function. However its base
2282 -- type may not be frozen yet, so the reference that will
2283 -- force elaboration must be attached to the freezing of
2284 -- the base type.
2286 -- If the return specification appears on a proper body,
2287 -- the subtype will have been created already on the spec.
2289 if Is_Frozen (Typ) then
2290 if Nkind (Parent (N)) = N_Subprogram_Body
2291 and then Nkind (Parent (Parent (N))) = N_Subunit
2292 then
2293 null;
2294 else
2295 Build_Itype_Reference (Etype (Designator), Parent (N));
2296 end if;
2298 else
2299 Ensure_Freeze_Node (Typ);
2301 declare
2302 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2303 begin
2304 Set_Itype (IR, Etype (Designator));
2305 Append_Freeze_Actions (Typ, New_List (IR));
2306 end;
2307 end if;
2309 else
2310 Set_Etype (Designator, Typ);
2311 end if;
2313 if Ekind (Typ) = E_Incomplete_Type
2314 or else (Is_Class_Wide_Type (Typ)
2315 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2316 then
2317 -- AI05-0151: Tagged incomplete types are allowed in all formal
2318 -- parts. Untagged incomplete types are not allowed in bodies.
2319 -- As a consequence, limited views cannot appear in a basic
2320 -- declaration that is itself within a body, because there is
2321 -- no point at which the non-limited view will become visible.
2323 if Ada_Version >= Ada_2012 then
2324 if From_Limited_With (Typ) and then In_Package_Body then
2325 Error_Msg_NE
2326 ("invalid use of incomplete type&",
2327 Result_Definition (N), Typ);
2329 -- The return type of a subprogram body cannot be of a
2330 -- formal incomplete type.
2332 elsif Is_Generic_Type (Typ)
2333 and then Nkind (Parent (N)) = N_Subprogram_Body
2334 then
2335 Error_Msg_N
2336 ("return type cannot be a formal incomplete type",
2337 Result_Definition (N));
2339 elsif Is_Class_Wide_Type (Typ)
2340 and then Is_Generic_Type (Root_Type (Typ))
2341 and then Nkind (Parent (N)) = N_Subprogram_Body
2342 then
2343 Error_Msg_N
2344 ("return type cannot be a formal incomplete type",
2345 Result_Definition (N));
2347 elsif Is_Tagged_Type (Typ) then
2348 null;
2350 -- Use is legal in a thunk generated for an operation
2351 -- inherited from a progenitor.
2353 elsif Is_Thunk (Designator)
2354 and then Present (Non_Limited_View (Typ))
2355 then
2356 null;
2358 elsif Nkind (Parent (N)) = N_Subprogram_Body
2359 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2360 N_Entry_Body)
2361 then
2362 Error_Msg_NE
2363 ("invalid use of untagged incomplete type&",
2364 Designator, Typ);
2365 end if;
2367 -- The type must be completed in the current package. This
2368 -- is checked at the end of the package declaration when
2369 -- Taft-amendment types are identified. If the return type
2370 -- is class-wide, there is no required check, the type can
2371 -- be a bona fide TAT.
2373 if Ekind (Scope (Current_Scope)) = E_Package
2374 and then In_Private_Part (Scope (Current_Scope))
2375 and then not Is_Class_Wide_Type (Typ)
2376 then
2377 Append_Elmt (Designator, Private_Dependents (Typ));
2378 end if;
2380 else
2381 Error_Msg_NE
2382 ("invalid use of incomplete type&", Designator, Typ);
2383 end if;
2384 end if;
2385 end if;
2387 -- Case where result definition does indicate an error
2389 else
2390 Set_Etype (Designator, Any_Type);
2391 end if;
2392 end Analyze_Return_Type;
2394 -----------------------------
2395 -- Analyze_Subprogram_Body --
2396 -----------------------------
2398 procedure Analyze_Subprogram_Body (N : Node_Id) is
2399 Loc : constant Source_Ptr := Sloc (N);
2400 Body_Spec : constant Node_Id := Specification (N);
2401 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2403 begin
2404 if Debug_Flag_C then
2405 Write_Str ("==> subprogram body ");
2406 Write_Name (Chars (Body_Id));
2407 Write_Str (" from ");
2408 Write_Location (Loc);
2409 Write_Eol;
2410 Indent;
2411 end if;
2413 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2415 -- The real work is split out into the helper, so it can do "return;"
2416 -- without skipping the debug output:
2418 Analyze_Subprogram_Body_Helper (N);
2420 if Debug_Flag_C then
2421 Outdent;
2422 Write_Str ("<== subprogram body ");
2423 Write_Name (Chars (Body_Id));
2424 Write_Str (" from ");
2425 Write_Location (Loc);
2426 Write_Eol;
2427 end if;
2428 end Analyze_Subprogram_Body;
2430 ------------------------------------
2431 -- Analyze_Subprogram_Body_Helper --
2432 ------------------------------------
2434 -- This procedure is called for regular subprogram bodies, generic bodies,
2435 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2436 -- specification matters, and is used to create a proper declaration for
2437 -- the subprogram, or to perform conformance checks.
2439 -- WARNING: This routine manages Ghost regions. Return statements must be
2440 -- replaced by gotos which jump to the end of the routine and restore the
2441 -- Ghost mode.
2443 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2444 Body_Spec : Node_Id := Specification (N);
2445 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2446 Loc : constant Source_Ptr := Sloc (N);
2447 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2449 Conformant : Boolean;
2450 Desig_View : Entity_Id := Empty;
2451 Exch_Views : Elist_Id := No_Elist;
2452 HSS : Node_Id;
2453 Mask_Types : Elist_Id := No_Elist;
2454 Prot_Typ : Entity_Id := Empty;
2455 Spec_Decl : Node_Id := Empty;
2456 Spec_Id : Entity_Id;
2458 Last_Real_Spec_Entity : Entity_Id := Empty;
2459 -- When we analyze a separate spec, the entity chain ends up containing
2460 -- the formals, as well as any itypes generated during analysis of the
2461 -- default expressions for parameters, or the arguments of associated
2462 -- precondition/postcondition pragmas (which are analyzed in the context
2463 -- of the spec since they have visibility on formals).
2465 -- These entities belong with the spec and not the body. However we do
2466 -- the analysis of the body in the context of the spec (again to obtain
2467 -- visibility to the formals), and all the entities generated during
2468 -- this analysis end up also chained to the entity chain of the spec.
2469 -- But they really belong to the body, and there is circuitry to move
2470 -- them from the spec to the body.
2472 -- However, when we do this move, we don't want to move the real spec
2473 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2474 -- variable points to the last real spec entity, so we only move those
2475 -- chained beyond that point. It is initialized to Empty to deal with
2476 -- the case where there is no separate spec.
2478 function Body_Has_Contract return Boolean;
2479 -- Check whether unanalyzed body has an aspect or pragma that may
2480 -- generate a SPARK contract.
2482 function Body_Has_SPARK_Mode_On return Boolean;
2483 -- Check whether SPARK_Mode On applies to the subprogram body, either
2484 -- because it is specified directly on the body, or because it is
2485 -- inherited from the enclosing subprogram or package.
2487 procedure Build_Subprogram_Declaration;
2488 -- Create a matching subprogram declaration for subprogram body N
2490 procedure Check_Anonymous_Return;
2491 -- Ada 2005: if a function returns an access type that denotes a task,
2492 -- or a type that contains tasks, we must create a master entity for
2493 -- the anonymous type, which typically will be used in an allocator
2494 -- in the body of the function.
2496 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2497 -- Look ahead to recognize a pragma that may appear after the body.
2498 -- If there is a previous spec, check that it appears in the same
2499 -- declarative part. If the pragma is Inline_Always, perform inlining
2500 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2501 -- If the body acts as a spec, and inlining is required, we create a
2502 -- subprogram declaration for it, in order to attach the body to inline.
2503 -- If pragma does not appear after the body, check whether there is
2504 -- an inline pragma before any local declarations.
2506 procedure Check_Missing_Return;
2507 -- Checks for a function with a no return statements, and also performs
2508 -- the warning checks implemented by Check_Returns. In formal mode, also
2509 -- verify that a function ends with a RETURN and that a procedure does
2510 -- not contain any RETURN.
2512 function Disambiguate_Spec return Entity_Id;
2513 -- When a primitive is declared between the private view and the full
2514 -- view of a concurrent type which implements an interface, a special
2515 -- mechanism is used to find the corresponding spec of the primitive
2516 -- body.
2518 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2519 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2520 -- incomplete types coming from a limited context and replace their
2521 -- limited views with the non-limited ones. Return the list of changes
2522 -- to be used to undo the transformation.
2524 function Is_Private_Concurrent_Primitive
2525 (Subp_Id : Entity_Id) return Boolean;
2526 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2527 -- type that implements an interface and has a private view.
2529 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2530 -- N is the body generated for an expression function that is not a
2531 -- completion and Spec_Id the defining entity of its spec. Mark all
2532 -- the not-yet-frozen types referenced by the simple return statement
2533 -- of the function as formally frozen.
2535 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2536 -- Undo the transformation done by Exchange_Limited_Views.
2538 procedure Set_Trivial_Subprogram (N : Node_Id);
2539 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2540 -- subprogram whose body is being analyzed. N is the statement node
2541 -- causing the flag to be set, if the following statement is a return
2542 -- of an entity, we mark the entity as set in source to suppress any
2543 -- warning on the stylized use of function stubs with a dummy return.
2545 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2546 -- Undo the transformation done by Mask_Unfrozen_Types
2548 procedure Verify_Overriding_Indicator;
2549 -- If there was a previous spec, the entity has been entered in the
2550 -- current scope previously. If the body itself carries an overriding
2551 -- indicator, check that it is consistent with the known status of the
2552 -- entity.
2554 -----------------------
2555 -- Body_Has_Contract --
2556 -----------------------
2558 function Body_Has_Contract return Boolean is
2559 Decls : constant List_Id := Declarations (N);
2560 Item : Node_Id;
2562 begin
2563 -- Check for aspects that may generate a contract
2565 if Present (Aspect_Specifications (N)) then
2566 Item := First (Aspect_Specifications (N));
2567 while Present (Item) loop
2568 if Is_Subprogram_Contract_Annotation (Item) then
2569 return True;
2570 end if;
2572 Next (Item);
2573 end loop;
2574 end if;
2576 -- Check for pragmas that may generate a contract
2578 if Present (Decls) then
2579 Item := First (Decls);
2580 while Present (Item) loop
2581 if Nkind (Item) = N_Pragma
2582 and then Is_Subprogram_Contract_Annotation (Item)
2583 then
2584 return True;
2585 end if;
2587 Next (Item);
2588 end loop;
2589 end if;
2591 return False;
2592 end Body_Has_Contract;
2594 ----------------------------
2595 -- Body_Has_SPARK_Mode_On --
2596 ----------------------------
2598 function Body_Has_SPARK_Mode_On return Boolean is
2599 Decls : constant List_Id := Declarations (N);
2600 Item : Node_Id;
2602 begin
2603 -- Check for SPARK_Mode aspect
2605 if Present (Aspect_Specifications (N)) then
2606 Item := First (Aspect_Specifications (N));
2607 while Present (Item) loop
2608 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2609 return Get_SPARK_Mode_From_Annotation (Item) = On;
2610 end if;
2612 Next (Item);
2613 end loop;
2614 end if;
2616 -- Check for SPARK_Mode pragma
2618 if Present (Decls) then
2619 Item := First (Decls);
2620 while Present (Item) loop
2622 -- Pragmas that apply to a subprogram body are usually grouped
2623 -- together. Look for a potential pragma SPARK_Mode among them.
2625 if Nkind (Item) = N_Pragma then
2626 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2627 return Get_SPARK_Mode_From_Annotation (Item) = On;
2628 end if;
2630 -- Otherwise the first non-pragma declarative item terminates
2631 -- the region where pragma SPARK_Mode may appear.
2633 else
2634 exit;
2635 end if;
2637 Next (Item);
2638 end loop;
2639 end if;
2641 -- Otherwise, the applicable SPARK_Mode is inherited from the
2642 -- enclosing subprogram or package.
2644 return SPARK_Mode = On;
2645 end Body_Has_SPARK_Mode_On;
2647 ----------------------------------
2648 -- Build_Subprogram_Declaration --
2649 ----------------------------------
2651 procedure Build_Subprogram_Declaration is
2652 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2653 -- Relocate certain categorization pragmas from the declarative list
2654 -- of subprogram body From and insert them after node To. The pragmas
2655 -- in question are:
2656 -- Ghost
2657 -- Volatile_Function
2658 -- Also copy pragma SPARK_Mode if present in the declarative list
2659 -- of subprogram body From and insert it after node To. This pragma
2660 -- should not be moved, as it applies to the body too.
2662 ------------------
2663 -- Move_Pragmas --
2664 ------------------
2666 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2667 Decl : Node_Id;
2668 Next_Decl : Node_Id;
2670 begin
2671 pragma Assert (Nkind (From) = N_Subprogram_Body);
2673 -- The destination node must be part of a list, as the pragmas are
2674 -- inserted after it.
2676 pragma Assert (Is_List_Member (To));
2678 -- Inspect the declarations of the subprogram body looking for
2679 -- specific pragmas.
2681 Decl := First (Declarations (N));
2682 while Present (Decl) loop
2683 Next_Decl := Next (Decl);
2685 if Nkind (Decl) = N_Pragma then
2686 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2687 Insert_After (To, New_Copy_Tree (Decl));
2689 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2690 Name_Ghost,
2691 Name_Volatile_Function)
2692 then
2693 Remove (Decl);
2694 Insert_After (To, Decl);
2695 end if;
2696 end if;
2698 Decl := Next_Decl;
2699 end loop;
2700 end Move_Pragmas;
2702 -- Local variables
2704 Decl : Node_Id;
2705 Subp_Decl : Node_Id;
2707 -- Start of processing for Build_Subprogram_Declaration
2709 begin
2710 -- Create a matching subprogram spec using the profile of the body.
2711 -- The structure of the tree is identical, but has new entities for
2712 -- the defining unit name and formal parameters.
2714 Subp_Decl :=
2715 Make_Subprogram_Declaration (Loc,
2716 Specification => Copy_Subprogram_Spec (Body_Spec));
2717 Set_Comes_From_Source (Subp_Decl, True);
2719 -- Also mark parameters as coming from source
2721 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2722 declare
2723 Form : Entity_Id;
2724 begin
2725 Form :=
2726 First (Parameter_Specifications (Specification (Subp_Decl)));
2728 while Present (Form) loop
2729 Set_Comes_From_Source (Defining_Identifier (Form), True);
2730 Next (Form);
2731 end loop;
2732 end;
2733 end if;
2735 -- Relocate the aspects and relevant pragmas from the subprogram body
2736 -- to the generated spec because it acts as the initial declaration.
2738 Insert_Before (N, Subp_Decl);
2739 Move_Aspects (N, To => Subp_Decl);
2740 Move_Pragmas (N, To => Subp_Decl);
2742 -- Ensure that the generated corresponding spec and original body
2743 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2744 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2745 -- correctly set for local subprograms.
2747 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2749 Analyze (Subp_Decl);
2751 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2752 -- the body since the expander may generate calls using that entity.
2753 -- Required to ensure that Expand_Call rewrites calls to this
2754 -- function by calls to the built procedure.
2756 if Modify_Tree_For_C
2757 and then Nkind (Body_Spec) = N_Function_Specification
2758 and then
2759 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2760 then
2761 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2762 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2763 Corresponding_Procedure
2764 (Defining_Entity (Specification (Subp_Decl))));
2765 end if;
2767 -- Analyze any relocated source pragmas or pragmas created for aspect
2768 -- specifications.
2770 Decl := Next (Subp_Decl);
2771 while Present (Decl) loop
2773 -- Stop the search for pragmas once the body has been reached as
2774 -- this terminates the region where pragmas may appear.
2776 if Decl = N then
2777 exit;
2779 elsif Nkind (Decl) = N_Pragma then
2780 Analyze (Decl);
2781 end if;
2783 Next (Decl);
2784 end loop;
2786 Spec_Id := Defining_Entity (Subp_Decl);
2787 Set_Corresponding_Spec (N, Spec_Id);
2789 -- Mark the generated spec as a source construct to ensure that all
2790 -- calls to it are properly registered in ALI files for GNATprove.
2792 Set_Comes_From_Source (Spec_Id, True);
2794 -- Ensure that the specs of the subprogram declaration and its body
2795 -- are identical, otherwise they will appear non-conformant due to
2796 -- rewritings in the default values of formal parameters.
2798 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2799 Set_Specification (N, Body_Spec);
2800 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2801 end Build_Subprogram_Declaration;
2803 ----------------------------
2804 -- Check_Anonymous_Return --
2805 ----------------------------
2807 procedure Check_Anonymous_Return is
2808 Decl : Node_Id;
2809 Par : Node_Id;
2810 Scop : Entity_Id;
2812 begin
2813 if Present (Spec_Id) then
2814 Scop := Spec_Id;
2815 else
2816 Scop := Body_Id;
2817 end if;
2819 if Ekind (Scop) = E_Function
2820 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2821 and then not Is_Thunk (Scop)
2823 -- Skip internally built functions which handle the case of
2824 -- a null access (see Expand_Interface_Conversion)
2826 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2827 and then not Comes_From_Source (Parent (Scop)))
2829 and then (Has_Task (Designated_Type (Etype (Scop)))
2830 or else
2831 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2832 and then
2833 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2834 and then Expander_Active
2836 -- Avoid cases with no tasking support
2838 and then RTE_Available (RE_Current_Master)
2839 and then not Restriction_Active (No_Task_Hierarchy)
2840 then
2841 Decl :=
2842 Make_Object_Declaration (Loc,
2843 Defining_Identifier =>
2844 Make_Defining_Identifier (Loc, Name_uMaster),
2845 Constant_Present => True,
2846 Object_Definition =>
2847 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2848 Expression =>
2849 Make_Explicit_Dereference (Loc,
2850 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2852 if Present (Declarations (N)) then
2853 Prepend (Decl, Declarations (N));
2854 else
2855 Set_Declarations (N, New_List (Decl));
2856 end if;
2858 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2859 Set_Has_Master_Entity (Scop);
2861 -- Now mark the containing scope as a task master
2863 Par := N;
2864 while Nkind (Par) /= N_Compilation_Unit loop
2865 Par := Parent (Par);
2866 pragma Assert (Present (Par));
2868 -- If we fall off the top, we are at the outer level, and
2869 -- the environment task is our effective master, so nothing
2870 -- to mark.
2872 if Nkind_In
2873 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2874 then
2875 Set_Is_Task_Master (Par, True);
2876 exit;
2877 end if;
2878 end loop;
2879 end if;
2880 end Check_Anonymous_Return;
2882 -------------------------
2883 -- Check_Inline_Pragma --
2884 -------------------------
2886 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2887 Prag : Node_Id;
2888 Plist : List_Id;
2890 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2891 -- True when N is a pragma Inline or Inline_Always that applies
2892 -- to this subprogram.
2894 -----------------------
2895 -- Is_Inline_Pragma --
2896 -----------------------
2898 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2899 begin
2900 if Nkind (N) = N_Pragma
2901 and then
2902 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2903 or else (Pragma_Name_Unmapped (N) = Name_Inline
2904 and then
2905 (Front_End_Inlining or else Optimization_Level > 0)))
2906 and then Present (Pragma_Argument_Associations (N))
2907 then
2908 declare
2909 Pragma_Arg : Node_Id :=
2910 Expression (First (Pragma_Argument_Associations (N)));
2911 begin
2912 if Nkind (Pragma_Arg) = N_Selected_Component then
2913 Pragma_Arg := Selector_Name (Pragma_Arg);
2914 end if;
2916 return Chars (Pragma_Arg) = Chars (Body_Id);
2917 end;
2919 else
2920 return False;
2921 end if;
2922 end Is_Inline_Pragma;
2924 -- Start of processing for Check_Inline_Pragma
2926 begin
2927 if not Expander_Active then
2928 return;
2929 end if;
2931 if Is_List_Member (N)
2932 and then Present (Next (N))
2933 and then Is_Inline_Pragma (Next (N))
2934 then
2935 Prag := Next (N);
2937 elsif Nkind (N) /= N_Subprogram_Body_Stub
2938 and then Present (Declarations (N))
2939 and then Is_Inline_Pragma (First (Declarations (N)))
2940 then
2941 Prag := First (Declarations (N));
2943 else
2944 Prag := Empty;
2945 end if;
2947 if Present (Prag) then
2948 if Present (Spec_Id) then
2949 if Is_List_Member (N)
2950 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2951 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2952 then
2953 Analyze (Prag);
2954 end if;
2956 else
2957 -- Create a subprogram declaration, to make treatment uniform.
2958 -- Make the sloc of the subprogram name that of the entity in
2959 -- the body, so that style checks find identical strings.
2961 declare
2962 Subp : constant Entity_Id :=
2963 Make_Defining_Identifier
2964 (Sloc (Body_Id), Chars (Body_Id));
2965 Decl : constant Node_Id :=
2966 Make_Subprogram_Declaration (Loc,
2967 Specification =>
2968 New_Copy_Tree (Specification (N)));
2970 begin
2971 -- Link the body and the generated spec
2973 Set_Corresponding_Body (Decl, Body_Id);
2974 Set_Corresponding_Spec (N, Subp);
2976 Set_Defining_Unit_Name (Specification (Decl), Subp);
2978 -- To ensure proper coverage when body is inlined, indicate
2979 -- whether the subprogram comes from source.
2981 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2983 if Present (First_Formal (Body_Id)) then
2984 Plist := Copy_Parameter_List (Body_Id);
2985 Set_Parameter_Specifications
2986 (Specification (Decl), Plist);
2987 end if;
2989 -- Move aspects to the new spec
2991 if Has_Aspects (N) then
2992 Move_Aspects (N, To => Decl);
2993 end if;
2995 Insert_Before (N, Decl);
2996 Analyze (Decl);
2997 Analyze (Prag);
2998 Set_Has_Pragma_Inline (Subp);
3000 if Pragma_Name (Prag) = Name_Inline_Always then
3001 Set_Is_Inlined (Subp);
3002 Set_Has_Pragma_Inline_Always (Subp);
3003 end if;
3005 -- Prior to copying the subprogram body to create a template
3006 -- for it for subsequent inlining, remove the pragma from
3007 -- the current body so that the copy that will produce the
3008 -- new body will start from a completely unanalyzed tree.
3010 if Nkind (Parent (Prag)) = N_Subprogram_Body then
3011 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
3012 end if;
3014 Spec := Subp;
3015 end;
3016 end if;
3017 end if;
3018 end Check_Inline_Pragma;
3020 --------------------------
3021 -- Check_Missing_Return --
3022 --------------------------
3024 procedure Check_Missing_Return is
3025 Id : Entity_Id;
3026 Missing_Ret : Boolean;
3028 begin
3029 if Nkind (Body_Spec) = N_Function_Specification then
3030 if Present (Spec_Id) then
3031 Id := Spec_Id;
3032 else
3033 Id := Body_Id;
3034 end if;
3036 if Return_Present (Id) then
3037 Check_Returns (HSS, 'F', Missing_Ret);
3039 if Missing_Ret then
3040 Set_Has_Missing_Return (Id);
3041 end if;
3043 -- Within a premature instantiation of a package with no body, we
3044 -- build completions of the functions therein, with a Raise
3045 -- statement. No point in complaining about a missing return in
3046 -- this case.
3048 elsif Ekind (Id) = E_Function
3049 and then In_Instance
3050 and then Present (Statements (HSS))
3051 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
3052 then
3053 null;
3055 elsif Is_Generic_Subprogram (Id)
3056 or else not Is_Machine_Code_Subprogram (Id)
3057 then
3058 Error_Msg_N ("missing RETURN statement in function body", N);
3059 end if;
3061 -- If procedure with No_Return, check returns
3063 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3064 if Present (Spec_Id) then
3065 Id := Spec_Id;
3066 else
3067 Id := Body_Id;
3068 end if;
3070 if No_Return (Id) then
3071 Check_Returns (HSS, 'P', Missing_Ret, Id);
3072 end if;
3073 end if;
3075 -- Special checks in SPARK mode
3077 if Nkind (Body_Spec) = N_Function_Specification then
3079 -- In SPARK mode, last statement of a function should be a return
3081 declare
3082 Stat : constant Node_Id := Last_Source_Statement (HSS);
3083 begin
3084 if Present (Stat)
3085 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3086 N_Extended_Return_Statement)
3087 then
3088 Check_SPARK_05_Restriction
3089 ("last statement in function should be RETURN", Stat);
3090 end if;
3091 end;
3093 -- In SPARK mode, verify that a procedure has no return
3095 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3096 if Present (Spec_Id) then
3097 Id := Spec_Id;
3098 else
3099 Id := Body_Id;
3100 end if;
3102 -- Would be nice to point to return statement here, can we
3103 -- borrow the Check_Returns procedure here ???
3105 if Return_Present (Id) then
3106 Check_SPARK_05_Restriction
3107 ("procedure should not have RETURN", N);
3108 end if;
3109 end if;
3110 end Check_Missing_Return;
3112 -----------------------
3113 -- Disambiguate_Spec --
3114 -----------------------
3116 function Disambiguate_Spec return Entity_Id is
3117 Priv_Spec : Entity_Id;
3118 Spec_N : Entity_Id;
3120 procedure Replace_Types (To_Corresponding : Boolean);
3121 -- Depending on the flag, replace the type of formal parameters of
3122 -- Body_Id if it is a concurrent type implementing interfaces with
3123 -- the corresponding record type or the other way around.
3125 procedure Replace_Types (To_Corresponding : Boolean) is
3126 Formal : Entity_Id;
3127 Formal_Typ : Entity_Id;
3129 begin
3130 Formal := First_Formal (Body_Id);
3131 while Present (Formal) loop
3132 Formal_Typ := Etype (Formal);
3134 if Is_Class_Wide_Type (Formal_Typ) then
3135 Formal_Typ := Root_Type (Formal_Typ);
3136 end if;
3138 -- From concurrent type to corresponding record
3140 if To_Corresponding then
3141 if Is_Concurrent_Type (Formal_Typ)
3142 and then Present (Corresponding_Record_Type (Formal_Typ))
3143 and then
3144 Present (Interfaces
3145 (Corresponding_Record_Type (Formal_Typ)))
3146 then
3147 Set_Etype (Formal,
3148 Corresponding_Record_Type (Formal_Typ));
3149 end if;
3151 -- From corresponding record to concurrent type
3153 else
3154 if Is_Concurrent_Record_Type (Formal_Typ)
3155 and then Present (Interfaces (Formal_Typ))
3156 then
3157 Set_Etype (Formal,
3158 Corresponding_Concurrent_Type (Formal_Typ));
3159 end if;
3160 end if;
3162 Next_Formal (Formal);
3163 end loop;
3164 end Replace_Types;
3166 -- Start of processing for Disambiguate_Spec
3168 begin
3169 -- Try to retrieve the specification of the body as is. All error
3170 -- messages are suppressed because the body may not have a spec in
3171 -- its current state.
3173 Spec_N := Find_Corresponding_Spec (N, False);
3175 -- It is possible that this is the body of a primitive declared
3176 -- between a private and a full view of a concurrent type. The
3177 -- controlling parameter of the spec carries the concurrent type,
3178 -- not the corresponding record type as transformed by Analyze_
3179 -- Subprogram_Specification. In such cases, we undo the change
3180 -- made by the analysis of the specification and try to find the
3181 -- spec again.
3183 -- Note that wrappers already have their corresponding specs and
3184 -- bodies set during their creation, so if the candidate spec is
3185 -- a wrapper, then we definitely need to swap all types to their
3186 -- original concurrent status.
3188 if No (Spec_N)
3189 or else Is_Primitive_Wrapper (Spec_N)
3190 then
3191 -- Restore all references of corresponding record types to the
3192 -- original concurrent types.
3194 Replace_Types (To_Corresponding => False);
3195 Priv_Spec := Find_Corresponding_Spec (N, False);
3197 -- The current body truly belongs to a primitive declared between
3198 -- a private and a full view. We leave the modified body as is,
3199 -- and return the true spec.
3201 if Present (Priv_Spec)
3202 and then Is_Private_Primitive (Priv_Spec)
3203 then
3204 return Priv_Spec;
3205 end if;
3207 -- In case that this is some sort of error, restore the original
3208 -- state of the body.
3210 Replace_Types (To_Corresponding => True);
3211 end if;
3213 return Spec_N;
3214 end Disambiguate_Spec;
3216 ----------------------------
3217 -- Exchange_Limited_Views --
3218 ----------------------------
3220 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3221 Result : Elist_Id := No_Elist;
3223 procedure Detect_And_Exchange (Id : Entity_Id);
3224 -- Determine whether Id's type denotes an incomplete type associated
3225 -- with a limited with clause and exchange the limited view with the
3226 -- non-limited one when available. Note that the non-limited view
3227 -- may exist because of a with_clause in another unit in the context,
3228 -- but cannot be used because the current view of the enclosing unit
3229 -- is still a limited view.
3231 -------------------------
3232 -- Detect_And_Exchange --
3233 -------------------------
3235 procedure Detect_And_Exchange (Id : Entity_Id) is
3236 Typ : constant Entity_Id := Etype (Id);
3237 begin
3238 if From_Limited_With (Typ)
3239 and then Has_Non_Limited_View (Typ)
3240 and then not From_Limited_With (Scope (Typ))
3241 then
3242 if No (Result) then
3243 Result := New_Elmt_List;
3244 end if;
3246 Prepend_Elmt (Typ, Result);
3247 Prepend_Elmt (Id, Result);
3248 Set_Etype (Id, Non_Limited_View (Typ));
3249 end if;
3250 end Detect_And_Exchange;
3252 -- Local variables
3254 Formal : Entity_Id;
3256 -- Start of processing for Exchange_Limited_Views
3258 begin
3259 -- Do not process subprogram bodies as they already use the non-
3260 -- limited view of types.
3262 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3263 return No_Elist;
3264 end if;
3266 -- Examine all formals and swap views when applicable
3268 Formal := First_Formal (Subp_Id);
3269 while Present (Formal) loop
3270 Detect_And_Exchange (Formal);
3272 Next_Formal (Formal);
3273 end loop;
3275 -- Process the return type of a function
3277 if Ekind (Subp_Id) = E_Function then
3278 Detect_And_Exchange (Subp_Id);
3279 end if;
3281 return Result;
3282 end Exchange_Limited_Views;
3284 -------------------------------------
3285 -- Is_Private_Concurrent_Primitive --
3286 -------------------------------------
3288 function Is_Private_Concurrent_Primitive
3289 (Subp_Id : Entity_Id) return Boolean
3291 Formal_Typ : Entity_Id;
3293 begin
3294 if Present (First_Formal (Subp_Id)) then
3295 Formal_Typ := Etype (First_Formal (Subp_Id));
3297 if Is_Concurrent_Record_Type (Formal_Typ) then
3298 if Is_Class_Wide_Type (Formal_Typ) then
3299 Formal_Typ := Root_Type (Formal_Typ);
3300 end if;
3302 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3303 end if;
3305 -- The type of the first formal is a concurrent tagged type with
3306 -- a private view.
3308 return
3309 Is_Concurrent_Type (Formal_Typ)
3310 and then Is_Tagged_Type (Formal_Typ)
3311 and then Has_Private_Declaration (Formal_Typ);
3312 end if;
3314 return False;
3315 end Is_Private_Concurrent_Primitive;
3317 -------------------------
3318 -- Mask_Unfrozen_Types --
3319 -------------------------
3321 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3322 Result : Elist_Id := No_Elist;
3324 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3325 -- Mask all types referenced in the subtree rooted at Node
3327 --------------------
3328 -- Mask_Type_Refs --
3329 --------------------
3331 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3332 procedure Mask_Type (Typ : Entity_Id);
3333 -- ??? what does this do?
3335 ---------------
3336 -- Mask_Type --
3337 ---------------
3339 procedure Mask_Type (Typ : Entity_Id) is
3340 begin
3341 -- Skip Itypes created by the preanalysis
3343 if Is_Itype (Typ)
3344 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3345 then
3346 return;
3347 end if;
3349 if not Is_Frozen (Typ) then
3350 Set_Is_Frozen (Typ);
3351 Append_New_Elmt (Typ, Result);
3352 end if;
3353 end Mask_Type;
3355 -- Start of processing for Mask_Type_Refs
3357 begin
3358 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3359 Mask_Type (Etype (Entity (Node)));
3361 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3362 Mask_Type (Scope (Entity (Node)));
3363 end if;
3365 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3366 and then Present (Etype (Node))
3367 then
3368 Mask_Type (Etype (Node));
3369 end if;
3371 return OK;
3372 end Mask_Type_Refs;
3374 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3376 -- Local variables
3378 Return_Stmt : constant Node_Id :=
3379 First (Statements (Handled_Statement_Sequence (N)));
3381 -- Start of processing for Mask_Unfrozen_Types
3383 begin
3384 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3386 Mask_References (Expression (Return_Stmt));
3388 return Result;
3389 end Mask_Unfrozen_Types;
3391 ---------------------------
3392 -- Restore_Limited_Views --
3393 ---------------------------
3395 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3396 Elmt : Elmt_Id := First_Elmt (Restore_List);
3397 Id : Entity_Id;
3399 begin
3400 while Present (Elmt) loop
3401 Id := Node (Elmt);
3402 Next_Elmt (Elmt);
3403 Set_Etype (Id, Node (Elmt));
3404 Next_Elmt (Elmt);
3405 end loop;
3406 end Restore_Limited_Views;
3408 ----------------------------
3409 -- Set_Trivial_Subprogram --
3410 ----------------------------
3412 procedure Set_Trivial_Subprogram (N : Node_Id) is
3413 Nxt : constant Node_Id := Next (N);
3415 begin
3416 Set_Is_Trivial_Subprogram (Body_Id);
3418 if Present (Spec_Id) then
3419 Set_Is_Trivial_Subprogram (Spec_Id);
3420 end if;
3422 if Present (Nxt)
3423 and then Nkind (Nxt) = N_Simple_Return_Statement
3424 and then No (Next (Nxt))
3425 and then Present (Expression (Nxt))
3426 and then Is_Entity_Name (Expression (Nxt))
3427 then
3428 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3429 end if;
3430 end Set_Trivial_Subprogram;
3432 ---------------------------
3433 -- Unmask_Unfrozen_Types --
3434 ---------------------------
3436 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3437 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3439 begin
3440 while Present (Elmt) loop
3441 Set_Is_Frozen (Node (Elmt), False);
3442 Next_Elmt (Elmt);
3443 end loop;
3444 end Unmask_Unfrozen_Types;
3446 ---------------------------------
3447 -- Verify_Overriding_Indicator --
3448 ---------------------------------
3450 procedure Verify_Overriding_Indicator is
3451 begin
3452 if Must_Override (Body_Spec) then
3453 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3454 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3455 then
3456 null;
3458 elsif not Present (Overridden_Operation (Spec_Id)) then
3459 Error_Msg_NE
3460 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3462 -- Overriding indicators aren't allowed for protected subprogram
3463 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3464 -- this to a warning if -gnatd.E is enabled.
3466 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3467 Error_Msg_Warn := Error_To_Warning;
3468 Error_Msg_N
3469 ("<<overriding indicator not allowed for protected "
3470 & "subprogram body", Body_Spec);
3471 end if;
3473 elsif Must_Not_Override (Body_Spec) then
3474 if Present (Overridden_Operation (Spec_Id)) then
3475 Error_Msg_NE
3476 ("subprogram& overrides inherited operation",
3477 Body_Spec, Spec_Id);
3479 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3480 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3481 then
3482 Error_Msg_NE
3483 ("subprogram& overrides predefined operator ",
3484 Body_Spec, Spec_Id);
3486 -- Overriding indicators aren't allowed for protected subprogram
3487 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3488 -- this to a warning if -gnatd.E is enabled.
3490 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3491 Error_Msg_Warn := Error_To_Warning;
3493 Error_Msg_N
3494 ("<<overriding indicator not allowed "
3495 & "for protected subprogram body", Body_Spec);
3497 -- If this is not a primitive operation, then the overriding
3498 -- indicator is altogether illegal.
3500 elsif not Is_Primitive (Spec_Id) then
3501 Error_Msg_N
3502 ("overriding indicator only allowed "
3503 & "if subprogram is primitive", Body_Spec);
3504 end if;
3506 -- If checking the style rule and the operation overrides, then
3507 -- issue a warning about a missing overriding_indicator. Protected
3508 -- subprogram bodies are excluded from this style checking, since
3509 -- they aren't primitives (even though their declarations can
3510 -- override) and aren't allowed to have an overriding_indicator.
3512 elsif Style_Check
3513 and then Present (Overridden_Operation (Spec_Id))
3514 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3515 then
3516 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3517 Style.Missing_Overriding (N, Body_Id);
3519 elsif Style_Check
3520 and then Can_Override_Operator (Spec_Id)
3521 and then not In_Predefined_Unit (Spec_Id)
3522 then
3523 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3524 Style.Missing_Overriding (N, Body_Id);
3525 end if;
3526 end Verify_Overriding_Indicator;
3528 -- Local variables
3530 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3531 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3532 Saved_ISMP : constant Boolean :=
3533 Ignore_SPARK_Mode_Pragmas_In_Instance;
3534 -- Save the Ghost and SPARK mode-related data to restore on exit
3536 -- Start of processing for Analyze_Subprogram_Body_Helper
3538 begin
3539 -- A [generic] subprogram body freezes the contract of the nearest
3540 -- enclosing package body and all other contracts encountered in the
3541 -- same declarative part up to and excluding the subprogram body:
3543 -- package body Nearest_Enclosing_Package
3544 -- with Refined_State => (State => Constit)
3545 -- is
3546 -- Constit : ...;
3548 -- procedure Freezes_Enclosing_Package_Body
3549 -- with Refined_Depends => (Input => Constit) ...
3551 -- This ensures that any annotations referenced by the contract of the
3552 -- [generic] subprogram body are available. This form of freezing is
3553 -- decoupled from the usual Freeze_xxx mechanism because it must also
3554 -- work in the context of generics where normal freezing is disabled.
3556 -- Only bodies coming from source should cause this type of freezing.
3557 -- Expression functions that act as bodies and complete an initial
3558 -- declaration must be included in this category, hence the use of
3559 -- Original_Node.
3561 if Comes_From_Source (Original_Node (N)) then
3562 Freeze_Previous_Contracts (N);
3563 end if;
3565 -- Generic subprograms are handled separately. They always have a
3566 -- generic specification. Determine whether current scope has a
3567 -- previous declaration.
3569 -- If the subprogram body is defined within an instance of the same
3570 -- name, the instance appears as a package renaming, and will be hidden
3571 -- within the subprogram.
3573 if Present (Prev_Id)
3574 and then not Is_Overloadable (Prev_Id)
3575 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3576 or else Comes_From_Source (Prev_Id))
3577 then
3578 if Is_Generic_Subprogram (Prev_Id) then
3579 Spec_Id := Prev_Id;
3581 -- A subprogram body is Ghost when it is stand alone and subject
3582 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3583 -- the mode now to ensure that any nodes generated during analysis
3584 -- and expansion are properly marked as Ghost.
3586 Mark_And_Set_Ghost_Body (N, Spec_Id);
3588 -- If the body completes the initial declaration of a compilation
3589 -- unit which is subject to pragma Elaboration_Checks, set the
3590 -- model specified by the pragma because it applies to all parts
3591 -- of the unit.
3593 Install_Elaboration_Model (Spec_Id);
3595 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3596 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3598 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3600 if Nkind (N) = N_Subprogram_Body then
3601 HSS := Handled_Statement_Sequence (N);
3602 Check_Missing_Return;
3603 end if;
3605 goto Leave;
3607 -- Otherwise a previous entity conflicts with the subprogram name.
3608 -- Attempting to enter name will post error.
3610 else
3611 Enter_Name (Body_Id);
3612 goto Leave;
3613 end if;
3615 -- Non-generic case, find the subprogram declaration, if one was seen,
3616 -- or enter new overloaded entity in the current scope. If the
3617 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3618 -- part of the context of one of its subunits. No need to redo the
3619 -- analysis.
3621 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3622 goto Leave;
3624 else
3625 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3627 if Nkind (N) = N_Subprogram_Body_Stub
3628 or else No (Corresponding_Spec (N))
3629 then
3630 if Is_Private_Concurrent_Primitive (Body_Id) then
3631 Spec_Id := Disambiguate_Spec;
3633 -- A subprogram body is Ghost when it is stand alone and
3634 -- subject to pragma Ghost or when the corresponding spec is
3635 -- Ghost. Set the mode now to ensure that any nodes generated
3636 -- during analysis and expansion are properly marked as Ghost.
3638 Mark_And_Set_Ghost_Body (N, Spec_Id);
3640 -- If the body completes a compilation unit which is subject
3641 -- to pragma Elaboration_Checks, set the model specified by
3642 -- the pragma because it applies to all parts of the unit.
3644 Install_Elaboration_Model (Spec_Id);
3646 else
3647 Spec_Id := Find_Corresponding_Spec (N);
3649 -- A subprogram body is Ghost when it is stand alone and
3650 -- subject to pragma Ghost or when the corresponding spec is
3651 -- Ghost. Set the mode now to ensure that any nodes generated
3652 -- during analysis and expansion are properly marked as Ghost.
3654 Mark_And_Set_Ghost_Body (N, Spec_Id);
3656 -- If the body completes a compilation unit which is subject
3657 -- to pragma Elaboration_Checks, set the model specified by
3658 -- the pragma because it applies to all parts of the unit.
3660 Install_Elaboration_Model (Spec_Id);
3662 -- In GNATprove mode, if the body has no previous spec, create
3663 -- one so that the inlining machinery can operate properly.
3664 -- Transfer aspects, if any, to the new spec, so that they
3665 -- are legal and can be processed ahead of the body.
3666 -- We make two copies of the given spec, one for the new
3667 -- declaration, and one for the body.
3669 if No (Spec_Id) and then GNATprove_Mode
3671 -- Inlining does not apply during preanalysis of code
3673 and then Full_Analysis
3675 -- Inlining only applies to full bodies, not stubs
3677 and then Nkind (N) /= N_Subprogram_Body_Stub
3679 -- Inlining only applies to bodies in the source code, not to
3680 -- those generated by the compiler. In particular, expression
3681 -- functions, whose body is generated by the compiler, are
3682 -- treated specially by GNATprove.
3684 and then Comes_From_Source (Body_Id)
3686 -- This cannot be done for a compilation unit, which is not
3687 -- in a context where we can insert a new spec.
3689 and then Is_List_Member (N)
3691 -- Inlining only applies to subprograms without contracts,
3692 -- as a contract is a sign that GNATprove should perform a
3693 -- modular analysis of the subprogram instead of a contextual
3694 -- analysis at each call site. The same test is performed in
3695 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3696 -- here in another form (because the contract has not been
3697 -- attached to the body) to avoid front-end errors in case
3698 -- pragmas are used instead of aspects, because the
3699 -- corresponding pragmas in the body would not be transferred
3700 -- to the spec, leading to legality errors.
3702 and then not Body_Has_Contract
3703 and then not Inside_A_Generic
3704 then
3705 Build_Subprogram_Declaration;
3707 -- If this is a function that returns a constrained array, and
3708 -- we are generating SPARK_For_C, create subprogram declaration
3709 -- to simplify subsequent C generation.
3711 elsif No (Spec_Id)
3712 and then Modify_Tree_For_C
3713 and then Nkind (Body_Spec) = N_Function_Specification
3714 and then Is_Array_Type (Etype (Body_Id))
3715 and then Is_Constrained (Etype (Body_Id))
3716 then
3717 Build_Subprogram_Declaration;
3718 end if;
3719 end if;
3721 -- If this is a duplicate body, no point in analyzing it
3723 if Error_Posted (N) then
3724 goto Leave;
3725 end if;
3727 -- A subprogram body should cause freezing of its own declaration,
3728 -- but if there was no previous explicit declaration, then the
3729 -- subprogram will get frozen too late (there may be code within
3730 -- the body that depends on the subprogram having been frozen,
3731 -- such as uses of extra formals), so we force it to be frozen
3732 -- here. Same holds if the body and spec are compilation units.
3733 -- Finally, if the return type is an anonymous access to protected
3734 -- subprogram, it must be frozen before the body because its
3735 -- expansion has generated an equivalent type that is used when
3736 -- elaborating the body.
3738 -- An exception in the case of Ada 2012, AI05-177: The bodies
3739 -- created for expression functions do not freeze.
3741 if No (Spec_Id)
3742 and then Nkind (Original_Node (N)) /= N_Expression_Function
3743 then
3744 Freeze_Before (N, Body_Id);
3746 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3747 Freeze_Before (N, Spec_Id);
3749 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3750 Freeze_Before (N, Etype (Body_Id));
3751 end if;
3753 else
3754 Spec_Id := Corresponding_Spec (N);
3756 -- A subprogram body is Ghost when it is stand alone and subject
3757 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3758 -- the mode now to ensure that any nodes generated during analysis
3759 -- and expansion are properly marked as Ghost.
3761 Mark_And_Set_Ghost_Body (N, Spec_Id);
3763 -- If the body completes the initial declaration of a compilation
3764 -- unit which is subject to pragma Elaboration_Checks, set the
3765 -- model specified by the pragma because it applies to all parts
3766 -- of the unit.
3768 Install_Elaboration_Model (Spec_Id);
3769 end if;
3770 end if;
3772 -- Previously we scanned the body to look for nested subprograms, and
3773 -- rejected an inline directive if nested subprograms were present,
3774 -- because the back-end would generate conflicting symbols for the
3775 -- nested bodies. This is now unnecessary.
3777 -- Look ahead to recognize a pragma Inline that appears after the body
3779 Check_Inline_Pragma (Spec_Id);
3781 -- Deal with special case of a fully private operation in the body of
3782 -- the protected type. We must create a declaration for the subprogram,
3783 -- in order to attach the protected subprogram that will be used in
3784 -- internal calls. We exclude compiler generated bodies from the
3785 -- expander since the issue does not arise for those cases.
3787 if No (Spec_Id)
3788 and then Comes_From_Source (N)
3789 and then Is_Protected_Type (Current_Scope)
3790 then
3791 Spec_Id := Build_Private_Protected_Declaration (N);
3792 end if;
3794 -- If we are generating C and this is a function returning a constrained
3795 -- array type for which we must create a procedure with an extra out
3796 -- parameter, build and analyze the body now. The procedure declaration
3797 -- has already been created. We reuse the source body of the function,
3798 -- because in an instance it may contain global references that cannot
3799 -- be reanalyzed. The source function itself is not used any further,
3800 -- so we mark it as having a completion. If the subprogram is a stub the
3801 -- transformation is done later, when the proper body is analyzed.
3803 if Expander_Active
3804 and then Modify_Tree_For_C
3805 and then Present (Spec_Id)
3806 and then Ekind (Spec_Id) = E_Function
3807 and then Nkind (N) /= N_Subprogram_Body_Stub
3808 and then Rewritten_For_C (Spec_Id)
3809 then
3810 Set_Has_Completion (Spec_Id);
3812 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3813 Analyze (N);
3815 -- The entity for the created procedure must remain invisible, so it
3816 -- does not participate in resolution of subsequent references to the
3817 -- function.
3819 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3820 goto Leave;
3821 end if;
3823 -- If a separate spec is present, then deal with freezing issues
3825 if Present (Spec_Id) then
3826 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3827 Verify_Overriding_Indicator;
3829 -- In general, the spec will be frozen when we start analyzing the
3830 -- body. However, for internally generated operations, such as
3831 -- wrapper functions for inherited operations with controlling
3832 -- results, the spec may not have been frozen by the time we expand
3833 -- the freeze actions that include the bodies. In particular, extra
3834 -- formals for accessibility or for return-in-place may need to be
3835 -- generated. Freeze nodes, if any, are inserted before the current
3836 -- body. These freeze actions are also needed in ASIS mode and in
3837 -- Compile_Only mode to enable the proper back-end type annotations.
3838 -- They are necessary in any case to insure order of elaboration
3839 -- in gigi.
3841 if not Is_Frozen (Spec_Id)
3842 and then (Expander_Active
3843 or else ASIS_Mode
3844 or else (Operating_Mode = Check_Semantics
3845 and then Serious_Errors_Detected = 0))
3846 then
3847 -- The body generated for an expression function that is not a
3848 -- completion is a freeze point neither for the profile nor for
3849 -- anything else. That's why, in order to prevent any freezing
3850 -- during analysis, we need to mask types declared outside the
3851 -- expression that are not yet frozen.
3853 if Nkind (N) = N_Subprogram_Body
3854 and then Was_Expression_Function (N)
3855 and then not Has_Completion (Spec_Id)
3856 then
3857 Set_Is_Frozen (Spec_Id);
3858 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3859 else
3860 Set_Has_Delayed_Freeze (Spec_Id);
3861 Freeze_Before (N, Spec_Id);
3862 end if;
3863 end if;
3864 end if;
3866 -- If the subprogram has a class-wide clone, build its body as a copy
3867 -- of the original body, and rewrite body of original subprogram as a
3868 -- wrapper that calls the clone. If N is a stub, this construction will
3869 -- take place when the proper body is analyzed. No action needed if this
3870 -- subprogram has been eliminated.
3872 if Present (Spec_Id)
3873 and then Present (Class_Wide_Clone (Spec_Id))
3874 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3875 and then Nkind (N) /= N_Subprogram_Body_Stub
3876 and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3877 then
3878 Build_Class_Wide_Clone_Body (Spec_Id, N);
3880 -- This is the new body for the existing primitive operation
3882 Rewrite (N, Build_Class_Wide_Clone_Call
3883 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3884 Set_Has_Completion (Spec_Id, False);
3885 Analyze (N);
3886 return;
3887 end if;
3889 -- Place subprogram on scope stack, and make formals visible. If there
3890 -- is a spec, the visible entity remains that of the spec.
3892 if Present (Spec_Id) then
3893 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3895 if Is_Child_Unit (Spec_Id) then
3896 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3897 end if;
3899 if Style_Check then
3900 Style.Check_Identifier (Body_Id, Spec_Id);
3901 end if;
3903 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3904 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3906 if Is_Abstract_Subprogram (Spec_Id) then
3907 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3908 goto Leave;
3910 else
3911 Set_Convention (Body_Id, Convention (Spec_Id));
3912 Set_Has_Completion (Spec_Id);
3914 if Is_Protected_Type (Scope (Spec_Id)) then
3915 Prot_Typ := Scope (Spec_Id);
3916 end if;
3918 -- If this is a body generated for a renaming, do not check for
3919 -- full conformance. The check is redundant, because the spec of
3920 -- the body is a copy of the spec in the renaming declaration,
3921 -- and the test can lead to spurious errors on nested defaults.
3923 if Present (Spec_Decl)
3924 and then not Comes_From_Source (N)
3925 and then
3926 (Nkind (Original_Node (Spec_Decl)) =
3927 N_Subprogram_Renaming_Declaration
3928 or else (Present (Corresponding_Body (Spec_Decl))
3929 and then
3930 Nkind (Unit_Declaration_Node
3931 (Corresponding_Body (Spec_Decl))) =
3932 N_Subprogram_Renaming_Declaration))
3933 then
3934 Conformant := True;
3936 -- Conversely, the spec may have been generated for specless body
3937 -- with an inline pragma. The entity comes from source, which is
3938 -- both semantically correct and necessary for proper inlining.
3939 -- The subprogram declaration itself is not in the source.
3941 elsif Comes_From_Source (N)
3942 and then Present (Spec_Decl)
3943 and then not Comes_From_Source (Spec_Decl)
3944 and then Has_Pragma_Inline (Spec_Id)
3945 then
3946 Conformant := True;
3948 else
3949 Check_Conformance
3950 (Body_Id, Spec_Id,
3951 Fully_Conformant, True, Conformant, Body_Id);
3952 end if;
3954 -- If the body is not fully conformant, we have to decide if we
3955 -- should analyze it or not. If it has a really messed up profile
3956 -- then we probably should not analyze it, since we will get too
3957 -- many bogus messages.
3959 -- Our decision is to go ahead in the non-fully conformant case
3960 -- only if it is at least mode conformant with the spec. Note
3961 -- that the call to Check_Fully_Conformant has issued the proper
3962 -- error messages to complain about the lack of conformance.
3964 if not Conformant
3965 and then not Mode_Conformant (Body_Id, Spec_Id)
3966 then
3967 goto Leave;
3968 end if;
3969 end if;
3971 -- In the case we are dealing with an expression function we check
3972 -- the formals attached to the spec instead of the body - so we don't
3973 -- reference body formals.
3975 if Spec_Id /= Body_Id
3976 and then not Is_Expression_Function (Spec_Id)
3977 then
3978 Reference_Body_Formals (Spec_Id, Body_Id);
3979 end if;
3981 Set_Ekind (Body_Id, E_Subprogram_Body);
3983 if Nkind (N) = N_Subprogram_Body_Stub then
3984 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3986 -- Regular body
3988 else
3989 Set_Corresponding_Spec (N, Spec_Id);
3991 -- Ada 2005 (AI-345): If the operation is a primitive operation
3992 -- of a concurrent type, the type of the first parameter has been
3993 -- replaced with the corresponding record, which is the proper
3994 -- run-time structure to use. However, within the body there may
3995 -- be uses of the formals that depend on primitive operations
3996 -- of the type (in particular calls in prefixed form) for which
3997 -- we need the original concurrent type. The operation may have
3998 -- several controlling formals, so the replacement must be done
3999 -- for all of them.
4001 if Comes_From_Source (Spec_Id)
4002 and then Present (First_Entity (Spec_Id))
4003 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
4004 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
4005 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
4006 and then Present (Corresponding_Concurrent_Type
4007 (Etype (First_Entity (Spec_Id))))
4008 then
4009 declare
4010 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
4011 Form : Entity_Id;
4013 begin
4014 Form := First_Formal (Spec_Id);
4015 while Present (Form) loop
4016 if Etype (Form) = Typ then
4017 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
4018 end if;
4020 Next_Formal (Form);
4021 end loop;
4022 end;
4023 end if;
4025 -- Make the formals visible, and place subprogram on scope stack.
4026 -- This is also the point at which we set Last_Real_Spec_Entity
4027 -- to mark the entities which will not be moved to the body.
4029 Install_Formals (Spec_Id);
4030 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4032 -- Within an instance, add local renaming declarations so that
4033 -- gdb can retrieve the values of actuals more easily. This is
4034 -- only relevant if generating code (and indeed we definitely
4035 -- do not want these definitions -gnatc mode, because that would
4036 -- confuse ASIS).
4038 if Is_Generic_Instance (Spec_Id)
4039 and then Is_Wrapper_Package (Current_Scope)
4040 and then Expander_Active
4041 then
4042 Build_Subprogram_Instance_Renamings (N, Current_Scope);
4043 end if;
4045 Push_Scope (Spec_Id);
4047 -- Make sure that the subprogram is immediately visible. For
4048 -- child units that have no separate spec this is indispensable.
4049 -- Otherwise it is safe albeit redundant.
4051 Set_Is_Immediately_Visible (Spec_Id);
4052 end if;
4054 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4055 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4056 Set_Scope (Body_Id, Scope (Spec_Id));
4058 -- Case of subprogram body with no previous spec
4060 else
4061 -- Check for style warning required
4063 if Style_Check
4065 -- Only apply check for source level subprograms for which checks
4066 -- have not been suppressed.
4068 and then Comes_From_Source (Body_Id)
4069 and then not Suppress_Style_Checks (Body_Id)
4071 -- No warnings within an instance
4073 and then not In_Instance
4075 -- No warnings for expression functions
4077 and then Nkind (Original_Node (N)) /= N_Expression_Function
4078 then
4079 Style.Body_With_No_Spec (N);
4080 end if;
4082 New_Overloaded_Entity (Body_Id);
4084 if Nkind (N) /= N_Subprogram_Body_Stub then
4085 Set_Acts_As_Spec (N);
4086 Generate_Definition (Body_Id);
4087 Generate_Reference
4088 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4090 -- If the body is an entry wrapper created for an entry with
4091 -- preconditions, it must be compiled in the context of the
4092 -- enclosing synchronized object, because it may mention other
4093 -- operations of the type.
4095 if Is_Entry_Wrapper (Body_Id) then
4096 declare
4097 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4098 begin
4099 Push_Scope (Prot);
4100 Install_Declarations (Prot);
4101 end;
4102 end if;
4104 Install_Formals (Body_Id);
4106 Push_Scope (Body_Id);
4107 end if;
4109 -- For stubs and bodies with no previous spec, generate references to
4110 -- formals.
4112 Generate_Reference_To_Formals (Body_Id);
4113 end if;
4115 -- Entry barrier functions are generated outside the protected type and
4116 -- should not carry the SPARK_Mode of the enclosing context.
4118 if Nkind (N) = N_Subprogram_Body
4119 and then Is_Entry_Barrier_Function (N)
4120 then
4121 null;
4123 -- The body is generated as part of expression function expansion. When
4124 -- the expression function appears in the visible declarations of a
4125 -- package, the body is added to the private declarations. Since both
4126 -- declarative lists may be subject to a different SPARK_Mode, inherit
4127 -- the mode of the spec.
4129 -- package P with SPARK_Mode is
4130 -- function Expr_Func ... is (...); -- original
4131 -- [function Expr_Func ...;] -- generated spec
4132 -- -- mode is ON
4133 -- private
4134 -- pragma SPARK_Mode (Off);
4135 -- [function Expr_Func ... is return ...;] -- generated body
4136 -- end P; -- mode is ON
4138 elsif not Comes_From_Source (N)
4139 and then Present (Spec_Id)
4140 and then Is_Expression_Function (Spec_Id)
4141 then
4142 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4143 Set_SPARK_Pragma_Inherited
4144 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4146 -- Set the SPARK_Mode from the current context (may be overwritten later
4147 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4148 -- initially on a stand-alone subprogram body, but is then relocated to
4149 -- a generated corresponding spec. In this scenario the mode is shared
4150 -- between the spec and body.
4152 elsif No (SPARK_Pragma (Body_Id)) then
4153 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4154 Set_SPARK_Pragma_Inherited (Body_Id);
4155 end if;
4157 -- A subprogram body may be instantiated or inlined at a later pass.
4158 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4159 -- applied to the initial declaration of the body.
4161 if Present (Spec_Id) then
4162 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4163 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4164 end if;
4166 else
4167 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4168 -- case the body is instantiated or inlined later and out of context.
4169 -- The body uses this attribute to restore the value of the global
4170 -- flag.
4172 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4173 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4175 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4176 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4177 end if;
4178 end if;
4180 -- Preserve relevant elaboration-related attributes of the context which
4181 -- are no longer available or very expensive to recompute once analysis,
4182 -- resolution, and expansion are over.
4184 if No (Spec_Id) then
4185 Mark_Elaboration_Attributes
4186 (N_Id => Body_Id,
4187 Checks => True,
4188 Warnings => True);
4189 end if;
4191 -- If this is the proper body of a stub, we must verify that the stub
4192 -- conforms to the body, and to the previous spec if one was present.
4193 -- We know already that the body conforms to that spec. This test is
4194 -- only required for subprograms that come from source.
4196 if Nkind (Parent (N)) = N_Subunit
4197 and then Comes_From_Source (N)
4198 and then not Error_Posted (Body_Id)
4199 and then Nkind (Corresponding_Stub (Parent (N))) =
4200 N_Subprogram_Body_Stub
4201 then
4202 declare
4203 Old_Id : constant Entity_Id :=
4204 Defining_Entity
4205 (Specification (Corresponding_Stub (Parent (N))));
4207 Conformant : Boolean := False;
4209 begin
4210 if No (Spec_Id) then
4211 Check_Fully_Conformant (Body_Id, Old_Id);
4213 else
4214 Check_Conformance
4215 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4217 if not Conformant then
4219 -- The stub was taken to be a new declaration. Indicate that
4220 -- it lacks a body.
4222 Set_Has_Completion (Old_Id, False);
4223 end if;
4224 end if;
4225 end;
4226 end if;
4228 Set_Has_Completion (Body_Id);
4229 Check_Eliminated (Body_Id);
4231 -- Analyze any aspect specifications that appear on the subprogram body
4232 -- stub. Stop the analysis now as the stub does not have a declarative
4233 -- or a statement part, and it cannot be inlined.
4235 if Nkind (N) = N_Subprogram_Body_Stub then
4236 if Has_Aspects (N) then
4237 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4238 end if;
4240 goto Leave;
4241 end if;
4243 -- Handle inlining
4245 -- Note: Normally we don't do any inlining if expansion is off, since
4246 -- we won't generate code in any case. An exception arises in GNATprove
4247 -- mode where we want to expand some calls in place, even with expansion
4248 -- disabled, since the inlining eases formal verification.
4250 if not GNATprove_Mode
4251 and then Expander_Active
4252 and then Serious_Errors_Detected = 0
4253 and then Present (Spec_Id)
4254 and then Has_Pragma_Inline (Spec_Id)
4255 then
4256 -- Legacy implementation (relying on front-end inlining)
4258 if not Back_End_Inlining then
4259 if (Has_Pragma_Inline_Always (Spec_Id)
4260 and then not Opt.Disable_FE_Inline_Always)
4261 or else (Front_End_Inlining
4262 and then not Opt.Disable_FE_Inline)
4263 then
4264 Build_Body_To_Inline (N, Spec_Id);
4265 end if;
4267 -- New implementation (relying on back-end inlining)
4269 else
4270 if Has_Pragma_Inline_Always (Spec_Id)
4271 or else Optimization_Level > 0
4272 then
4273 -- Handle function returning an unconstrained type
4275 if Comes_From_Source (Body_Id)
4276 and then Ekind (Spec_Id) = E_Function
4277 and then Returns_Unconstrained_Type (Spec_Id)
4279 -- If function builds in place, i.e. returns a limited type,
4280 -- inlining cannot be done.
4282 and then not Is_Limited_Type (Etype (Spec_Id))
4283 then
4284 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4286 else
4287 declare
4288 Subp_Body : constant Node_Id :=
4289 Unit_Declaration_Node (Body_Id);
4290 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4292 begin
4293 -- Do not pass inlining to the backend if the subprogram
4294 -- has declarations or statements which cannot be inlined
4295 -- by the backend. This check is done here to emit an
4296 -- error instead of the generic warning message reported
4297 -- by the GCC backend (ie. "function might not be
4298 -- inlinable").
4300 if Present (Subp_Decl)
4301 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4302 then
4303 null;
4305 elsif Has_Excluded_Statement
4306 (Spec_Id,
4307 Statements
4308 (Handled_Statement_Sequence (Subp_Body)))
4309 then
4310 null;
4312 -- If the backend inlining is available then at this
4313 -- stage we only have to mark the subprogram as inlined.
4314 -- The expander will take care of registering it in the
4315 -- table of subprograms inlined by the backend a part of
4316 -- processing calls to it (cf. Expand_Call)
4318 else
4319 Set_Is_Inlined (Spec_Id);
4320 end if;
4321 end;
4322 end if;
4323 end if;
4324 end if;
4326 -- In GNATprove mode, inline only when there is a separate subprogram
4327 -- declaration for now, as inlining of subprogram bodies acting as
4328 -- declarations, or subprogram stubs, are not supported by front-end
4329 -- inlining. This inlining should occur after analysis of the body, so
4330 -- that it is known whether the value of SPARK_Mode, which can be
4331 -- defined by a pragma inside the body, is applicable to the body.
4332 -- Inlining can be disabled with switch -gnatdm
4334 elsif GNATprove_Mode
4335 and then Full_Analysis
4336 and then not Inside_A_Generic
4337 and then Present (Spec_Id)
4338 and then
4339 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4340 and then Body_Has_SPARK_Mode_On
4341 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4342 and then not Body_Has_Contract
4343 and then not Debug_Flag_M
4344 then
4345 Build_Body_To_Inline (N, Spec_Id);
4346 end if;
4348 -- When generating code, inherited pre/postconditions are handled when
4349 -- expanding the corresponding contract.
4351 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4352 -- of the specification we have to install the private withed units.
4353 -- This holds for child units as well.
4355 if Is_Compilation_Unit (Body_Id)
4356 or else Nkind (Parent (N)) = N_Compilation_Unit
4357 then
4358 Install_Private_With_Clauses (Body_Id);
4359 end if;
4361 Check_Anonymous_Return;
4363 -- Set the Protected_Formal field of each extra formal of the protected
4364 -- subprogram to reference the corresponding extra formal of the
4365 -- subprogram that implements it. For regular formals this occurs when
4366 -- the protected subprogram's declaration is expanded, but the extra
4367 -- formals don't get created until the subprogram is frozen. We need to
4368 -- do this before analyzing the protected subprogram's body so that any
4369 -- references to the original subprogram's extra formals will be changed
4370 -- refer to the implementing subprogram's formals (see Expand_Formal).
4372 if Present (Spec_Id)
4373 and then Is_Protected_Type (Scope (Spec_Id))
4374 and then Present (Protected_Body_Subprogram (Spec_Id))
4375 then
4376 declare
4377 Impl_Subp : constant Entity_Id :=
4378 Protected_Body_Subprogram (Spec_Id);
4379 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4380 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4382 begin
4383 while Present (Prot_Ext_Formal) loop
4384 pragma Assert (Present (Impl_Ext_Formal));
4385 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4386 Next_Formal_With_Extras (Prot_Ext_Formal);
4387 Next_Formal_With_Extras (Impl_Ext_Formal);
4388 end loop;
4389 end;
4390 end if;
4392 -- Now we can go on to analyze the body
4394 HSS := Handled_Statement_Sequence (N);
4395 Set_Actual_Subtypes (N, Current_Scope);
4397 -- Add a declaration for the Protection object, renaming declarations
4398 -- for discriminals and privals and finally a declaration for the entry
4399 -- family index (if applicable). This form of early expansion is done
4400 -- when the Expander is active because Install_Private_Data_Declarations
4401 -- references entities which were created during regular expansion. The
4402 -- subprogram entity must come from source, and not be an internally
4403 -- generated subprogram.
4405 if Expander_Active
4406 and then Present (Prot_Typ)
4407 and then Present (Spec_Id)
4408 and then Comes_From_Source (Spec_Id)
4409 and then not Is_Eliminated (Spec_Id)
4410 then
4411 Install_Private_Data_Declarations
4412 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4413 end if;
4415 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4416 -- may now appear in parameter and result profiles. Since the analysis
4417 -- of a subprogram body may use the parameter and result profile of the
4418 -- spec, swap any limited views with their non-limited counterpart.
4420 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4421 Exch_Views := Exchange_Limited_Views (Spec_Id);
4422 end if;
4424 -- If the return type is an anonymous access type whose designated type
4425 -- is the limited view of a class-wide type and the non-limited view is
4426 -- available, update the return type accordingly.
4428 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4429 declare
4430 Etyp : Entity_Id;
4431 Rtyp : Entity_Id;
4433 begin
4434 Rtyp := Etype (Spec_Id);
4436 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4437 Etyp := Directly_Designated_Type (Rtyp);
4439 if Is_Class_Wide_Type (Etyp)
4440 and then From_Limited_With (Etyp)
4441 then
4442 Desig_View := Etyp;
4443 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4444 end if;
4445 end if;
4446 end;
4447 end if;
4449 -- Analyze any aspect specifications that appear on the subprogram body
4451 if Has_Aspects (N) then
4452 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4453 end if;
4455 Analyze_Declarations (Declarations (N));
4457 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4459 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4460 if Present (SPARK_Pragma (Spec_Id)) then
4461 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4462 and then
4463 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4464 then
4465 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4466 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4467 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4468 Error_Msg_NE
4469 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4470 end if;
4472 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4473 null;
4475 else
4476 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4477 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4478 Error_Msg_Sloc := Sloc (Spec_Id);
4479 Error_Msg_NE
4480 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4481 end if;
4482 end if;
4484 -- A subprogram body freezes its own contract. Analyze the contract
4485 -- after the declarations of the body have been processed as pragmas
4486 -- are now chained on the contract of the subprogram body.
4488 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4490 -- Check completion, and analyze the statements
4492 Check_Completion;
4493 Inspect_Deferred_Constant_Completion (Declarations (N));
4494 Analyze (HSS);
4496 -- Deal with end of scope processing for the body
4498 Process_End_Label (HSS, 't', Current_Scope);
4499 Update_Use_Clause_Chain;
4500 End_Scope;
4502 -- If we are compiling an entry wrapper, remove the enclosing
4503 -- synchronized object from the stack.
4505 if Is_Entry_Wrapper (Body_Id) then
4506 End_Scope;
4507 end if;
4509 Check_Subprogram_Order (N);
4510 Set_Analyzed (Body_Id);
4512 -- If we have a separate spec, then the analysis of the declarations
4513 -- caused the entities in the body to be chained to the spec id, but
4514 -- we want them chained to the body id. Only the formal parameters
4515 -- end up chained to the spec id in this case.
4517 if Present (Spec_Id) then
4519 -- We must conform to the categorization of our spec
4521 Validate_Categorization_Dependency (N, Spec_Id);
4523 -- And if this is a child unit, the parent units must conform
4525 if Is_Child_Unit (Spec_Id) then
4526 Validate_Categorization_Dependency
4527 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4528 end if;
4530 -- Here is where we move entities from the spec to the body
4532 -- Case where there are entities that stay with the spec
4534 if Present (Last_Real_Spec_Entity) then
4536 -- No body entities (happens when the only real spec entities come
4537 -- from precondition and postcondition pragmas).
4539 if No (Last_Entity (Body_Id)) then
4540 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4542 -- Body entities present (formals), so chain stuff past them
4544 else
4545 Link_Entities
4546 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4547 end if;
4549 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4550 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4551 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4553 -- Case where there are no spec entities, in this case there can be
4554 -- no body entities either, so just move everything.
4556 -- If the body is generated for an expression function, it may have
4557 -- been preanalyzed already, if 'access was applied to it.
4559 else
4560 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4561 N_Expression_Function
4562 then
4563 pragma Assert (No (Last_Entity (Body_Id)));
4564 null;
4565 end if;
4567 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4568 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4569 Set_First_Entity (Spec_Id, Empty);
4570 Set_Last_Entity (Spec_Id, Empty);
4571 end if;
4573 -- Otherwise the body does not complete a previous declaration. Check
4574 -- the categorization of the body against the units it withs.
4576 else
4577 Validate_Categorization_Dependency (N, Body_Id);
4578 end if;
4580 Check_Missing_Return;
4582 -- Now we are going to check for variables that are never modified in
4583 -- the body of the procedure. But first we deal with a special case
4584 -- where we want to modify this check. If the body of the subprogram
4585 -- starts with a raise statement or its equivalent, or if the body
4586 -- consists entirely of a null statement, then it is pretty obvious that
4587 -- it is OK to not reference the parameters. For example, this might be
4588 -- the following common idiom for a stubbed function: statement of the
4589 -- procedure raises an exception. In particular this deals with the
4590 -- common idiom of a stubbed function, which appears something like:
4592 -- function F (A : Integer) return Some_Type;
4593 -- X : Some_Type;
4594 -- begin
4595 -- raise Program_Error;
4596 -- return X;
4597 -- end F;
4599 -- Here the purpose of X is simply to satisfy the annoying requirement
4600 -- in Ada that there be at least one return, and we certainly do not
4601 -- want to go posting warnings on X that it is not initialized. On
4602 -- the other hand, if X is entirely unreferenced that should still
4603 -- get a warning.
4605 -- What we do is to detect these cases, and if we find them, flag the
4606 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4607 -- suppress unwanted warnings. For the case of the function stub above
4608 -- we have a special test to set X as apparently assigned to suppress
4609 -- the warning.
4611 declare
4612 Stm : Node_Id;
4614 begin
4615 -- Skip call markers installed by the ABE mechanism, labels, and
4616 -- Push_xxx_Error_Label to find the first real statement.
4618 Stm := First (Statements (HSS));
4619 while Nkind_In (Stm, N_Call_Marker, N_Label)
4620 or else Nkind (Stm) in N_Push_xxx_Label
4621 loop
4622 Next (Stm);
4623 end loop;
4625 -- Do the test on the original statement before expansion
4627 declare
4628 Ostm : constant Node_Id := Original_Node (Stm);
4630 begin
4631 -- If explicit raise statement, turn on flag
4633 if Nkind (Ostm) = N_Raise_Statement then
4634 Set_Trivial_Subprogram (Stm);
4636 -- If null statement, and no following statements, turn on flag
4638 elsif Nkind (Stm) = N_Null_Statement
4639 and then Comes_From_Source (Stm)
4640 and then No (Next (Stm))
4641 then
4642 Set_Trivial_Subprogram (Stm);
4644 -- Check for explicit call cases which likely raise an exception
4646 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4647 if Is_Entity_Name (Name (Ostm)) then
4648 declare
4649 Ent : constant Entity_Id := Entity (Name (Ostm));
4651 begin
4652 -- If the procedure is marked No_Return, then likely it
4653 -- raises an exception, but in any case it is not coming
4654 -- back here, so turn on the flag.
4656 if Present (Ent)
4657 and then Ekind (Ent) = E_Procedure
4658 and then No_Return (Ent)
4659 then
4660 Set_Trivial_Subprogram (Stm);
4661 end if;
4662 end;
4663 end if;
4664 end if;
4665 end;
4666 end;
4668 -- Check for variables that are never modified
4670 declare
4671 E1 : Entity_Id;
4672 E2 : Entity_Id;
4674 begin
4675 -- If there is a separate spec, then transfer Never_Set_In_Source
4676 -- flags from out parameters to the corresponding entities in the
4677 -- body. The reason we do that is we want to post error flags on
4678 -- the body entities, not the spec entities.
4680 if Present (Spec_Id) then
4681 E1 := First_Entity (Spec_Id);
4682 while Present (E1) loop
4683 if Ekind (E1) = E_Out_Parameter then
4684 E2 := First_Entity (Body_Id);
4685 while Present (E2) loop
4686 exit when Chars (E1) = Chars (E2);
4687 Next_Entity (E2);
4688 end loop;
4690 if Present (E2) then
4691 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4692 end if;
4693 end if;
4695 Next_Entity (E1);
4696 end loop;
4697 end if;
4699 -- Check references of the subprogram spec when we are dealing with
4700 -- an expression function due to it having a generated body.
4701 -- Otherwise, we simply check the formals of the subprogram body.
4703 if Present (Spec_Id)
4704 and then Is_Expression_Function (Spec_Id)
4705 then
4706 Check_References (Spec_Id);
4707 else
4708 Check_References (Body_Id);
4709 end if;
4710 end;
4712 -- Check for nested subprogram, and mark outer level subprogram if so
4714 declare
4715 Ent : Entity_Id;
4717 begin
4718 if Present (Spec_Id) then
4719 Ent := Spec_Id;
4720 else
4721 Ent := Body_Id;
4722 end if;
4724 loop
4725 Ent := Enclosing_Subprogram (Ent);
4726 exit when No (Ent) or else Is_Subprogram (Ent);
4727 end loop;
4729 if Present (Ent) then
4730 Set_Has_Nested_Subprogram (Ent);
4731 end if;
4732 end;
4734 -- Restore the limited views in the spec, if any, to let the back end
4735 -- process it without running into circularities.
4737 if Exch_Views /= No_Elist then
4738 Restore_Limited_Views (Exch_Views);
4739 end if;
4741 if Mask_Types /= No_Elist then
4742 Unmask_Unfrozen_Types (Mask_Types);
4743 end if;
4745 if Present (Desig_View) then
4746 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4747 end if;
4749 <<Leave>>
4750 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4751 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4752 end Analyze_Subprogram_Body_Helper;
4754 ------------------------------------
4755 -- Analyze_Subprogram_Declaration --
4756 ------------------------------------
4758 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4759 Scop : constant Entity_Id := Current_Scope;
4760 Designator : Entity_Id;
4762 Is_Completion : Boolean;
4763 -- Indicates whether a null procedure declaration is a completion
4765 begin
4766 -- Null procedures are not allowed in SPARK
4768 if Nkind (Specification (N)) = N_Procedure_Specification
4769 and then Null_Present (Specification (N))
4770 then
4771 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4773 -- Null procedures are allowed in protected types, following the
4774 -- recent AI12-0147.
4776 if Is_Protected_Type (Current_Scope)
4777 and then Ada_Version < Ada_2012
4778 then
4779 Error_Msg_N ("protected operation cannot be a null procedure", N);
4780 end if;
4782 Analyze_Null_Procedure (N, Is_Completion);
4784 -- The null procedure acts as a body, nothing further is needed
4786 if Is_Completion then
4787 return;
4788 end if;
4789 end if;
4791 Designator := Analyze_Subprogram_Specification (Specification (N));
4793 -- A reference may already have been generated for the unit name, in
4794 -- which case the following call is redundant. However it is needed for
4795 -- declarations that are the rewriting of an expression function.
4797 Generate_Definition (Designator);
4799 -- Set the SPARK mode from the current context (may be overwritten later
4800 -- with explicit pragma). This is not done for entry barrier functions
4801 -- because they are generated outside the protected type and should not
4802 -- carry the mode of the enclosing context.
4804 if Nkind (N) = N_Subprogram_Declaration
4805 and then Is_Entry_Barrier_Function (N)
4806 then
4807 null;
4809 else
4810 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4811 Set_SPARK_Pragma_Inherited (Designator);
4812 end if;
4814 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4815 -- the body of this subprogram is instantiated or inlined later and out
4816 -- of context. The body uses this attribute to restore the value of the
4817 -- global flag.
4819 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4820 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4821 end if;
4823 -- Preserve relevant elaboration-related attributes of the context which
4824 -- are no longer available or very expensive to recompute once analysis,
4825 -- resolution, and expansion are over.
4827 Mark_Elaboration_Attributes
4828 (N_Id => Designator,
4829 Checks => True,
4830 Warnings => True);
4832 if Debug_Flag_C then
4833 Write_Str ("==> subprogram spec ");
4834 Write_Name (Chars (Designator));
4835 Write_Str (" from ");
4836 Write_Location (Sloc (N));
4837 Write_Eol;
4838 Indent;
4839 end if;
4841 Validate_RCI_Subprogram_Declaration (N);
4842 New_Overloaded_Entity (Designator);
4843 Check_Delayed_Subprogram (Designator);
4845 -- If the type of the first formal of the current subprogram is a non-
4846 -- generic tagged private type, mark the subprogram as being a private
4847 -- primitive. Ditto if this is a function with controlling result, and
4848 -- the return type is currently private. In both cases, the type of the
4849 -- controlling argument or result must be in the current scope for the
4850 -- operation to be primitive.
4852 if Has_Controlling_Result (Designator)
4853 and then Is_Private_Type (Etype (Designator))
4854 and then Scope (Etype (Designator)) = Current_Scope
4855 and then not Is_Generic_Actual_Type (Etype (Designator))
4856 then
4857 Set_Is_Private_Primitive (Designator);
4859 elsif Present (First_Formal (Designator)) then
4860 declare
4861 Formal_Typ : constant Entity_Id :=
4862 Etype (First_Formal (Designator));
4863 begin
4864 Set_Is_Private_Primitive (Designator,
4865 Is_Tagged_Type (Formal_Typ)
4866 and then Scope (Formal_Typ) = Current_Scope
4867 and then Is_Private_Type (Formal_Typ)
4868 and then not Is_Generic_Actual_Type (Formal_Typ));
4869 end;
4870 end if;
4872 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4873 -- or null.
4875 if Ada_Version >= Ada_2005
4876 and then Comes_From_Source (N)
4877 and then Is_Dispatching_Operation (Designator)
4878 then
4879 declare
4880 E : Entity_Id;
4881 Etyp : Entity_Id;
4883 begin
4884 if Has_Controlling_Result (Designator) then
4885 Etyp := Etype (Designator);
4887 else
4888 E := First_Entity (Designator);
4889 while Present (E)
4890 and then Is_Formal (E)
4891 and then not Is_Controlling_Formal (E)
4892 loop
4893 Next_Entity (E);
4894 end loop;
4896 Etyp := Etype (E);
4897 end if;
4899 if Is_Access_Type (Etyp) then
4900 Etyp := Directly_Designated_Type (Etyp);
4901 end if;
4903 if Is_Interface (Etyp)
4904 and then not Is_Abstract_Subprogram (Designator)
4905 and then not (Ekind (Designator) = E_Procedure
4906 and then Null_Present (Specification (N)))
4907 then
4908 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4910 -- Specialize error message based on procedures vs. functions,
4911 -- since functions can't be null subprograms.
4913 if Ekind (Designator) = E_Procedure then
4914 Error_Msg_N
4915 ("interface procedure % must be abstract or null", N);
4916 else
4917 Error_Msg_N
4918 ("interface function % must be abstract", N);
4919 end if;
4920 end if;
4921 end;
4922 end if;
4924 -- What is the following code for, it used to be
4926 -- ??? Set_Suppress_Elaboration_Checks
4927 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4929 -- The following seems equivalent, but a bit dubious
4931 if Elaboration_Checks_Suppressed (Designator) then
4932 Set_Kill_Elaboration_Checks (Designator);
4933 end if;
4935 -- For a compilation unit, set body required. This flag will only be
4936 -- reset if a valid Import or Interface pragma is processed later on.
4938 if Nkind (Parent (N)) = N_Compilation_Unit then
4939 Set_Body_Required (Parent (N), True);
4941 if Ada_Version >= Ada_2005
4942 and then Nkind (Specification (N)) = N_Procedure_Specification
4943 and then Null_Present (Specification (N))
4944 then
4945 Error_Msg_N
4946 ("null procedure cannot be declared at library level", N);
4947 end if;
4948 end if;
4950 Generate_Reference_To_Formals (Designator);
4951 Check_Eliminated (Designator);
4953 if Debug_Flag_C then
4954 Outdent;
4955 Write_Str ("<== subprogram spec ");
4956 Write_Name (Chars (Designator));
4957 Write_Str (" from ");
4958 Write_Location (Sloc (N));
4959 Write_Eol;
4960 end if;
4962 -- Indicate that this is a protected operation, because it may be used
4963 -- in subsequent declarations within the protected type.
4965 if Is_Protected_Type (Current_Scope) then
4966 Set_Convention (Designator, Convention_Protected);
4967 end if;
4969 List_Inherited_Pre_Post_Aspects (Designator);
4971 -- Process the aspects before establishing the proper categorization in
4972 -- case the subprogram is a compilation unit and one of its aspects is
4973 -- converted into a categorization pragma.
4975 if Has_Aspects (N) then
4976 Analyze_Aspect_Specifications (N, Designator);
4977 end if;
4979 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4980 Set_Categorization_From_Scope (Designator, Scop);
4982 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
4983 -- proper categorization of the unit based on its pragmas.
4985 else
4986 Push_Scope (Designator);
4987 Set_Categorization_From_Pragmas (N);
4988 Validate_Categorization_Dependency (N, Designator);
4989 Pop_Scope;
4990 end if;
4991 end Analyze_Subprogram_Declaration;
4993 --------------------------------------
4994 -- Analyze_Subprogram_Specification --
4995 --------------------------------------
4997 -- Reminder: N here really is a subprogram specification (not a subprogram
4998 -- declaration). This procedure is called to analyze the specification in
4999 -- both subprogram bodies and subprogram declarations (specs).
5001 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
5002 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
5003 -- Determine whether entity E denotes the spec or body of an invariant
5004 -- procedure.
5006 ------------------------------------
5007 -- Is_Invariant_Procedure_Or_Body --
5008 ------------------------------------
5010 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5011 Decl : constant Node_Id := Unit_Declaration_Node (E);
5012 Spec : Entity_Id;
5014 begin
5015 if Nkind (Decl) = N_Subprogram_Body then
5016 Spec := Corresponding_Spec (Decl);
5017 else
5018 Spec := E;
5019 end if;
5021 return
5022 Present (Spec)
5023 and then Ekind (Spec) = E_Procedure
5024 and then (Is_Partial_Invariant_Procedure (Spec)
5025 or else Is_Invariant_Procedure (Spec));
5026 end Is_Invariant_Procedure_Or_Body;
5028 -- Local variables
5030 Designator : constant Entity_Id := Defining_Entity (N);
5031 Formals : constant List_Id := Parameter_Specifications (N);
5033 -- Start of processing for Analyze_Subprogram_Specification
5035 begin
5036 -- User-defined operator is not allowed in SPARK, except as a renaming
5038 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5039 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5040 then
5041 Check_SPARK_05_Restriction
5042 ("user-defined operator is not allowed", N);
5043 end if;
5045 -- Proceed with analysis. Do not emit a cross-reference entry if the
5046 -- specification comes from an expression function, because it may be
5047 -- the completion of a previous declaration. If it is not, the cross-
5048 -- reference entry will be emitted for the new subprogram declaration.
5050 if Nkind (Parent (N)) /= N_Expression_Function then
5051 Generate_Definition (Designator);
5052 end if;
5054 if Nkind (N) = N_Function_Specification then
5055 Set_Ekind (Designator, E_Function);
5056 Set_Mechanism (Designator, Default_Mechanism);
5057 else
5058 Set_Ekind (Designator, E_Procedure);
5059 Set_Etype (Designator, Standard_Void_Type);
5060 end if;
5062 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5063 -- those subprograms which could be inlined in GNATprove mode (because
5064 -- Body_To_Inline is non-Empty) but should not be inlined.
5066 if GNATprove_Mode then
5067 Set_Is_Inlined_Always (Designator);
5068 end if;
5070 -- Introduce new scope for analysis of the formals and the return type
5072 Set_Scope (Designator, Current_Scope);
5074 if Present (Formals) then
5075 Push_Scope (Designator);
5076 Process_Formals (Formals, N);
5078 -- Check dimensions in N for formals with default expression
5080 Analyze_Dimension_Formals (N, Formals);
5082 -- Ada 2005 (AI-345): If this is an overriding operation of an
5083 -- inherited interface operation, and the controlling type is
5084 -- a synchronized type, replace the type with its corresponding
5085 -- record, to match the proper signature of an overriding operation.
5086 -- Same processing for an access parameter whose designated type is
5087 -- derived from a synchronized interface.
5089 -- This modification is not done for invariant procedures because
5090 -- the corresponding record may not necessarely be visible when the
5091 -- concurrent type acts as the full view of a private type.
5093 -- package Pack is
5094 -- type Prot is private with Type_Invariant => ...;
5095 -- procedure ConcInvariant (Obj : Prot);
5096 -- private
5097 -- protected type Prot is ...;
5098 -- type Concurrent_Record_Prot is record ...;
5099 -- procedure ConcInvariant (Obj : Prot) is
5100 -- ...
5101 -- end ConcInvariant;
5102 -- end Pack;
5104 -- In the example above, both the spec and body of the invariant
5105 -- procedure must utilize the private type as the controlling type.
5107 if Ada_Version >= Ada_2005
5108 and then not Is_Invariant_Procedure_Or_Body (Designator)
5109 then
5110 declare
5111 Formal : Entity_Id;
5112 Formal_Typ : Entity_Id;
5113 Rec_Typ : Entity_Id;
5114 Desig_Typ : Entity_Id;
5116 begin
5117 Formal := First_Formal (Designator);
5118 while Present (Formal) loop
5119 Formal_Typ := Etype (Formal);
5121 if Is_Concurrent_Type (Formal_Typ)
5122 and then Present (Corresponding_Record_Type (Formal_Typ))
5123 then
5124 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5126 if Present (Interfaces (Rec_Typ)) then
5127 Set_Etype (Formal, Rec_Typ);
5128 end if;
5130 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5131 Desig_Typ := Designated_Type (Formal_Typ);
5133 if Is_Concurrent_Type (Desig_Typ)
5134 and then Present (Corresponding_Record_Type (Desig_Typ))
5135 then
5136 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5138 if Present (Interfaces (Rec_Typ)) then
5139 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5140 end if;
5141 end if;
5142 end if;
5144 Next_Formal (Formal);
5145 end loop;
5146 end;
5147 end if;
5149 End_Scope;
5151 -- The subprogram scope is pushed and popped around the processing of
5152 -- the return type for consistency with call above to Process_Formals
5153 -- (which itself can call Analyze_Return_Type), and to ensure that any
5154 -- itype created for the return type will be associated with the proper
5155 -- scope.
5157 elsif Nkind (N) = N_Function_Specification then
5158 Push_Scope (Designator);
5159 Analyze_Return_Type (N);
5160 End_Scope;
5161 end if;
5163 -- Function case
5165 if Nkind (N) = N_Function_Specification then
5167 -- Deal with operator symbol case
5169 if Nkind (Designator) = N_Defining_Operator_Symbol then
5170 Valid_Operator_Definition (Designator);
5171 end if;
5173 May_Need_Actuals (Designator);
5175 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5176 -- the subprogram is abstract also. This does not apply to renaming
5177 -- declarations, where abstractness is inherited, and to subprogram
5178 -- bodies generated for stream operations, which become renamings as
5179 -- bodies.
5181 -- In case of primitives associated with abstract interface types
5182 -- the check is applied later (see Analyze_Subprogram_Declaration).
5184 if not Nkind_In (Original_Node (Parent (N)),
5185 N_Abstract_Subprogram_Declaration,
5186 N_Formal_Abstract_Subprogram_Declaration,
5187 N_Subprogram_Renaming_Declaration)
5188 then
5189 if Is_Abstract_Type (Etype (Designator))
5190 and then not Is_Interface (Etype (Designator))
5191 then
5192 Error_Msg_N
5193 ("function that returns abstract type must be abstract", N);
5195 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5196 -- access result whose designated type is abstract.
5198 elsif Ada_Version >= Ada_2012
5199 and then Nkind (Result_Definition (N)) = N_Access_Definition
5200 and then
5201 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5202 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5203 then
5204 Error_Msg_N
5205 ("function whose access result designates abstract type "
5206 & "must be abstract", N);
5207 end if;
5208 end if;
5209 end if;
5211 return Designator;
5212 end Analyze_Subprogram_Specification;
5214 -----------------------
5215 -- Check_Conformance --
5216 -----------------------
5218 procedure Check_Conformance
5219 (New_Id : Entity_Id;
5220 Old_Id : Entity_Id;
5221 Ctype : Conformance_Type;
5222 Errmsg : Boolean;
5223 Conforms : out Boolean;
5224 Err_Loc : Node_Id := Empty;
5225 Get_Inst : Boolean := False;
5226 Skip_Controlling_Formals : Boolean := False)
5228 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5229 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5230 -- If Errmsg is True, then processing continues to post an error message
5231 -- for conformance error on given node. Two messages are output. The
5232 -- first message points to the previous declaration with a general "no
5233 -- conformance" message. The second is the detailed reason, supplied as
5234 -- Msg. The parameter N provide information for a possible & insertion
5235 -- in the message, and also provides the location for posting the
5236 -- message in the absence of a specified Err_Loc location.
5238 function Conventions_Match
5239 (Id1 : Entity_Id;
5240 Id2 : Entity_Id) return Boolean;
5241 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5242 -- match.
5244 -----------------------
5245 -- Conformance_Error --
5246 -----------------------
5248 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5249 Enode : Node_Id;
5251 begin
5252 Conforms := False;
5254 if Errmsg then
5255 if No (Err_Loc) then
5256 Enode := N;
5257 else
5258 Enode := Err_Loc;
5259 end if;
5261 Error_Msg_Sloc := Sloc (Old_Id);
5263 case Ctype is
5264 when Type_Conformant =>
5265 Error_Msg_N -- CODEFIX
5266 ("not type conformant with declaration#!", Enode);
5268 when Mode_Conformant =>
5269 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5270 Error_Msg_N
5271 ("not mode conformant with operation inherited#!",
5272 Enode);
5273 else
5274 Error_Msg_N
5275 ("not mode conformant with declaration#!", Enode);
5276 end if;
5278 when Subtype_Conformant =>
5279 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5280 Error_Msg_N
5281 ("not subtype conformant with operation inherited#!",
5282 Enode);
5283 else
5284 Error_Msg_N
5285 ("not subtype conformant with declaration#!", Enode);
5286 end if;
5288 when Fully_Conformant =>
5289 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5290 Error_Msg_N -- CODEFIX
5291 ("not fully conformant with operation inherited#!",
5292 Enode);
5293 else
5294 Error_Msg_N -- CODEFIX
5295 ("not fully conformant with declaration#!", Enode);
5296 end if;
5297 end case;
5299 Error_Msg_NE (Msg, Enode, N);
5300 end if;
5301 end Conformance_Error;
5303 -----------------------
5304 -- Conventions_Match --
5305 -----------------------
5307 function Conventions_Match
5308 (Id1 : Entity_Id;
5309 Id2 : Entity_Id) return Boolean
5311 begin
5312 -- Ignore the conventions of anonymous access-to-subprogram types
5313 -- and subprogram types because these are internally generated and
5314 -- the only way these may receive a convention is if they inherit
5315 -- the convention of a related subprogram.
5317 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5318 E_Subprogram_Type)
5319 or else
5320 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5321 E_Subprogram_Type)
5322 then
5323 return True;
5325 -- Otherwise compare the conventions directly
5327 else
5328 return Convention (Id1) = Convention (Id2);
5329 end if;
5330 end Conventions_Match;
5332 -- Local Variables
5334 Old_Type : constant Entity_Id := Etype (Old_Id);
5335 New_Type : constant Entity_Id := Etype (New_Id);
5336 Old_Formal : Entity_Id;
5337 New_Formal : Entity_Id;
5338 Access_Types_Match : Boolean;
5339 Old_Formal_Base : Entity_Id;
5340 New_Formal_Base : Entity_Id;
5342 -- Start of processing for Check_Conformance
5344 begin
5345 Conforms := True;
5347 -- We need a special case for operators, since they don't appear
5348 -- explicitly.
5350 if Ctype = Type_Conformant then
5351 if Ekind (New_Id) = E_Operator
5352 and then Operator_Matches_Spec (New_Id, Old_Id)
5353 then
5354 return;
5355 end if;
5356 end if;
5358 -- If both are functions/operators, check return types conform
5360 if Old_Type /= Standard_Void_Type
5361 and then
5362 New_Type /= Standard_Void_Type
5363 then
5364 -- If we are checking interface conformance we omit controlling
5365 -- arguments and result, because we are only checking the conformance
5366 -- of the remaining parameters.
5368 if Has_Controlling_Result (Old_Id)
5369 and then Has_Controlling_Result (New_Id)
5370 and then Skip_Controlling_Formals
5371 then
5372 null;
5374 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5375 if Ctype >= Subtype_Conformant
5376 and then not Predicates_Match (Old_Type, New_Type)
5377 then
5378 Conformance_Error
5379 ("\predicate of return type does not match!", New_Id);
5380 else
5381 Conformance_Error
5382 ("\return type does not match!", New_Id);
5383 end if;
5385 return;
5386 end if;
5388 -- Ada 2005 (AI-231): In case of anonymous access types check the
5389 -- null-exclusion and access-to-constant attributes match.
5391 if Ada_Version >= Ada_2005
5392 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5393 and then
5394 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5395 or else Is_Access_Constant (Etype (Old_Type)) /=
5396 Is_Access_Constant (Etype (New_Type)))
5397 then
5398 Conformance_Error ("\return type does not match!", New_Id);
5399 return;
5400 end if;
5402 -- If either is a function/operator and the other isn't, error
5404 elsif Old_Type /= Standard_Void_Type
5405 or else New_Type /= Standard_Void_Type
5406 then
5407 Conformance_Error ("\functions can only match functions!", New_Id);
5408 return;
5409 end if;
5411 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5412 -- If this is a renaming as body, refine error message to indicate that
5413 -- the conflict is with the original declaration. If the entity is not
5414 -- frozen, the conventions don't have to match, the one of the renamed
5415 -- entity is inherited.
5417 if Ctype >= Subtype_Conformant then
5418 if not Conventions_Match (Old_Id, New_Id) then
5419 if not Is_Frozen (New_Id) then
5420 null;
5422 elsif Present (Err_Loc)
5423 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5424 and then Present (Corresponding_Spec (Err_Loc))
5425 then
5426 Error_Msg_Name_1 := Chars (New_Id);
5427 Error_Msg_Name_2 :=
5428 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5429 Conformance_Error ("\prior declaration for% has convention %!");
5431 else
5432 Conformance_Error ("\calling conventions do not match!");
5433 end if;
5435 return;
5437 elsif Is_Formal_Subprogram (Old_Id)
5438 or else Is_Formal_Subprogram (New_Id)
5439 or else (Is_Subprogram (New_Id)
5440 and then Present (Alias (New_Id))
5441 and then Is_Formal_Subprogram (Alias (New_Id)))
5442 then
5443 Conformance_Error
5444 ("\formal subprograms are not subtype conformant "
5445 & "(RM 6.3.1 (17/3))");
5446 end if;
5447 end if;
5449 -- Deal with parameters
5451 -- Note: we use the entity information, rather than going directly
5452 -- to the specification in the tree. This is not only simpler, but
5453 -- absolutely necessary for some cases of conformance tests between
5454 -- operators, where the declaration tree simply does not exist.
5456 Old_Formal := First_Formal (Old_Id);
5457 New_Formal := First_Formal (New_Id);
5458 while Present (Old_Formal) and then Present (New_Formal) loop
5459 if Is_Controlling_Formal (Old_Formal)
5460 and then Is_Controlling_Formal (New_Formal)
5461 and then Skip_Controlling_Formals
5462 then
5463 -- The controlling formals will have different types when
5464 -- comparing an interface operation with its match, but both
5465 -- or neither must be access parameters.
5467 if Is_Access_Type (Etype (Old_Formal))
5469 Is_Access_Type (Etype (New_Formal))
5470 then
5471 goto Skip_Controlling_Formal;
5472 else
5473 Conformance_Error
5474 ("\access parameter does not match!", New_Formal);
5475 end if;
5476 end if;
5478 -- Ada 2012: Mode conformance also requires that formal parameters
5479 -- be both aliased, or neither.
5481 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5482 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5483 Conformance_Error
5484 ("\aliased parameter mismatch!", New_Formal);
5485 end if;
5486 end if;
5488 if Ctype = Fully_Conformant then
5490 -- Names must match. Error message is more accurate if we do
5491 -- this before checking that the types of the formals match.
5493 if Chars (Old_Formal) /= Chars (New_Formal) then
5494 Conformance_Error ("\name& does not match!", New_Formal);
5496 -- Set error posted flag on new formal as well to stop
5497 -- junk cascaded messages in some cases.
5499 Set_Error_Posted (New_Formal);
5500 return;
5501 end if;
5503 -- Null exclusion must match
5505 if Null_Exclusion_Present (Parent (Old_Formal))
5507 Null_Exclusion_Present (Parent (New_Formal))
5508 then
5509 -- Only give error if both come from source. This should be
5510 -- investigated some time, since it should not be needed ???
5512 if Comes_From_Source (Old_Formal)
5513 and then
5514 Comes_From_Source (New_Formal)
5515 then
5516 Conformance_Error
5517 ("\null exclusion for& does not match", New_Formal);
5519 -- Mark error posted on the new formal to avoid duplicated
5520 -- complaint about types not matching.
5522 Set_Error_Posted (New_Formal);
5523 end if;
5524 end if;
5525 end if;
5527 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5528 -- case occurs whenever a subprogram is being renamed and one of its
5529 -- parameters imposes a null exclusion. For example:
5531 -- type T is null record;
5532 -- type Acc_T is access T;
5533 -- subtype Acc_T_Sub is Acc_T;
5535 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5536 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5537 -- renames P;
5539 Old_Formal_Base := Etype (Old_Formal);
5540 New_Formal_Base := Etype (New_Formal);
5542 if Get_Inst then
5543 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5544 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5545 end if;
5547 Access_Types_Match := Ada_Version >= Ada_2005
5549 -- Ensure that this rule is only applied when New_Id is a
5550 -- renaming of Old_Id.
5552 and then Nkind (Parent (Parent (New_Id))) =
5553 N_Subprogram_Renaming_Declaration
5554 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5555 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5556 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5558 -- Now handle the allowed access-type case
5560 and then Is_Access_Type (Old_Formal_Base)
5561 and then Is_Access_Type (New_Formal_Base)
5563 -- The type kinds must match. The only exception occurs with
5564 -- multiple generics of the form:
5566 -- generic generic
5567 -- type F is private; type A is private;
5568 -- type F_Ptr is access F; type A_Ptr is access A;
5569 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5570 -- package F_Pack is ... package A_Pack is
5571 -- package F_Inst is
5572 -- new F_Pack (A, A_Ptr, A_P);
5574 -- When checking for conformance between the parameters of A_P
5575 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5576 -- because the compiler has transformed A_Ptr into a subtype of
5577 -- F_Ptr. We catch this case in the code below.
5579 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5580 or else
5581 (Is_Generic_Type (Old_Formal_Base)
5582 and then Is_Generic_Type (New_Formal_Base)
5583 and then Is_Internal (New_Formal_Base)
5584 and then Etype (Etype (New_Formal_Base)) =
5585 Old_Formal_Base))
5586 and then Directly_Designated_Type (Old_Formal_Base) =
5587 Directly_Designated_Type (New_Formal_Base)
5588 and then ((Is_Itype (Old_Formal_Base)
5589 and then Can_Never_Be_Null (Old_Formal_Base))
5590 or else
5591 (Is_Itype (New_Formal_Base)
5592 and then Can_Never_Be_Null (New_Formal_Base)));
5594 -- Types must always match. In the visible part of an instance,
5595 -- usual overloading rules for dispatching operations apply, and
5596 -- we check base types (not the actual subtypes).
5598 if In_Instance_Visible_Part
5599 and then Is_Dispatching_Operation (New_Id)
5600 then
5601 if not Conforming_Types
5602 (T1 => Base_Type (Etype (Old_Formal)),
5603 T2 => Base_Type (Etype (New_Formal)),
5604 Ctype => Ctype,
5605 Get_Inst => Get_Inst)
5606 and then not Access_Types_Match
5607 then
5608 Conformance_Error ("\type of & does not match!", New_Formal);
5609 return;
5610 end if;
5612 elsif not Conforming_Types
5613 (T1 => Old_Formal_Base,
5614 T2 => New_Formal_Base,
5615 Ctype => Ctype,
5616 Get_Inst => Get_Inst)
5617 and then not Access_Types_Match
5618 then
5619 -- Don't give error message if old type is Any_Type. This test
5620 -- avoids some cascaded errors, e.g. in case of a bad spec.
5622 if Errmsg and then Old_Formal_Base = Any_Type then
5623 Conforms := False;
5624 else
5625 if Ctype >= Subtype_Conformant
5626 and then
5627 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5628 then
5629 Conformance_Error
5630 ("\predicate of & does not match!", New_Formal);
5631 else
5632 Conformance_Error
5633 ("\type of & does not match!", New_Formal);
5635 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5636 then
5637 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5638 end if;
5639 end if;
5640 end if;
5642 return;
5643 end if;
5645 -- For mode conformance, mode must match
5647 if Ctype >= Mode_Conformant then
5648 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5649 if not Ekind_In (New_Id, E_Function, E_Procedure)
5650 or else not Is_Primitive_Wrapper (New_Id)
5651 then
5652 Conformance_Error ("\mode of & does not match!", New_Formal);
5654 else
5655 declare
5656 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5657 begin
5658 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5659 then
5660 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5661 else
5662 Conformance_Error
5663 ("\mode of & does not match!", New_Formal);
5664 end if;
5665 end;
5666 end if;
5668 return;
5670 -- Part of mode conformance for access types is having the same
5671 -- constant modifier.
5673 elsif Access_Types_Match
5674 and then Is_Access_Constant (Old_Formal_Base) /=
5675 Is_Access_Constant (New_Formal_Base)
5676 then
5677 Conformance_Error
5678 ("\constant modifier does not match!", New_Formal);
5679 return;
5680 end if;
5681 end if;
5683 if Ctype >= Subtype_Conformant then
5685 -- Ada 2005 (AI-231): In case of anonymous access types check
5686 -- the null-exclusion and access-to-constant attributes must
5687 -- match. For null exclusion, we test the types rather than the
5688 -- formals themselves, since the attribute is only set reliably
5689 -- on the formals in the Ada 95 case, and we exclude the case
5690 -- where Old_Formal is marked as controlling, to avoid errors
5691 -- when matching completing bodies with dispatching declarations
5692 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5694 if Ada_Version >= Ada_2005
5695 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5696 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5697 and then
5698 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5699 Can_Never_Be_Null (Etype (New_Formal))
5700 and then
5701 not Is_Controlling_Formal (Old_Formal))
5702 or else
5703 Is_Access_Constant (Etype (Old_Formal)) /=
5704 Is_Access_Constant (Etype (New_Formal)))
5706 -- Do not complain if error already posted on New_Formal. This
5707 -- avoids some redundant error messages.
5709 and then not Error_Posted (New_Formal)
5710 then
5711 -- It is allowed to omit the null-exclusion in case of stream
5712 -- attribute subprograms. We recognize stream subprograms
5713 -- through their TSS-generated suffix.
5715 declare
5716 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5718 begin
5719 if TSS_Name /= TSS_Stream_Read
5720 and then TSS_Name /= TSS_Stream_Write
5721 and then TSS_Name /= TSS_Stream_Input
5722 and then TSS_Name /= TSS_Stream_Output
5723 then
5724 -- Here we have a definite conformance error. It is worth
5725 -- special casing the error message for the case of a
5726 -- controlling formal (which excludes null).
5728 if Is_Controlling_Formal (New_Formal) then
5729 Error_Msg_Node_2 := Scope (New_Formal);
5730 Conformance_Error
5731 ("\controlling formal & of & excludes null, "
5732 & "declaration must exclude null as well",
5733 New_Formal);
5735 -- Normal case (couldn't we give more detail here???)
5737 else
5738 Conformance_Error
5739 ("\type of & does not match!", New_Formal);
5740 end if;
5742 return;
5743 end if;
5744 end;
5745 end if;
5746 end if;
5748 -- Full conformance checks
5750 if Ctype = Fully_Conformant then
5752 -- We have checked already that names match
5754 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5756 -- Check default expressions for in parameters
5758 declare
5759 NewD : constant Boolean :=
5760 Present (Default_Value (New_Formal));
5761 OldD : constant Boolean :=
5762 Present (Default_Value (Old_Formal));
5763 begin
5764 if NewD or OldD then
5766 -- The old default value has been analyzed because the
5767 -- current full declaration will have frozen everything
5768 -- before. The new default value has not been analyzed,
5769 -- so analyze it now before we check for conformance.
5771 if NewD then
5772 Push_Scope (New_Id);
5773 Preanalyze_Spec_Expression
5774 (Default_Value (New_Formal), Etype (New_Formal));
5775 End_Scope;
5776 end if;
5778 if not (NewD and OldD)
5779 or else not Fully_Conformant_Expressions
5780 (Default_Value (Old_Formal),
5781 Default_Value (New_Formal))
5782 then
5783 Conformance_Error
5784 ("\default expression for & does not match!",
5785 New_Formal);
5786 return;
5787 end if;
5788 end if;
5789 end;
5790 end if;
5791 end if;
5793 -- A couple of special checks for Ada 83 mode. These checks are
5794 -- skipped if either entity is an operator in package Standard,
5795 -- or if either old or new instance is not from the source program.
5797 if Ada_Version = Ada_83
5798 and then Sloc (Old_Id) > Standard_Location
5799 and then Sloc (New_Id) > Standard_Location
5800 and then Comes_From_Source (Old_Id)
5801 and then Comes_From_Source (New_Id)
5802 then
5803 declare
5804 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5805 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5807 begin
5808 -- Explicit IN must be present or absent in both cases. This
5809 -- test is required only in the full conformance case.
5811 if In_Present (Old_Param) /= In_Present (New_Param)
5812 and then Ctype = Fully_Conformant
5813 then
5814 Conformance_Error
5815 ("\(Ada 83) IN must appear in both declarations",
5816 New_Formal);
5817 return;
5818 end if;
5820 -- Grouping (use of comma in param lists) must be the same
5821 -- This is where we catch a misconformance like:
5823 -- A, B : Integer
5824 -- A : Integer; B : Integer
5826 -- which are represented identically in the tree except
5827 -- for the setting of the flags More_Ids and Prev_Ids.
5829 if More_Ids (Old_Param) /= More_Ids (New_Param)
5830 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5831 then
5832 Conformance_Error
5833 ("\grouping of & does not match!", New_Formal);
5834 return;
5835 end if;
5836 end;
5837 end if;
5839 -- This label is required when skipping controlling formals
5841 <<Skip_Controlling_Formal>>
5843 Next_Formal (Old_Formal);
5844 Next_Formal (New_Formal);
5845 end loop;
5847 if Present (Old_Formal) then
5848 Conformance_Error ("\too few parameters!");
5849 return;
5851 elsif Present (New_Formal) then
5852 Conformance_Error ("\too many parameters!", New_Formal);
5853 return;
5854 end if;
5855 end Check_Conformance;
5857 -----------------------
5858 -- Check_Conventions --
5859 -----------------------
5861 procedure Check_Conventions (Typ : Entity_Id) is
5862 Ifaces_List : Elist_Id;
5864 procedure Check_Convention (Op : Entity_Id);
5865 -- Verify that the convention of inherited dispatching operation Op is
5866 -- consistent among all subprograms it overrides. In order to minimize
5867 -- the search, Search_From is utilized to designate a specific point in
5868 -- the list rather than iterating over the whole list once more.
5870 ----------------------
5871 -- Check_Convention --
5872 ----------------------
5874 procedure Check_Convention (Op : Entity_Id) is
5875 Op_Conv : constant Convention_Id := Convention (Op);
5876 Iface_Conv : Convention_Id;
5877 Iface_Elmt : Elmt_Id;
5878 Iface_Prim_Elmt : Elmt_Id;
5879 Iface_Prim : Entity_Id;
5881 begin
5882 Iface_Elmt := First_Elmt (Ifaces_List);
5883 while Present (Iface_Elmt) loop
5884 Iface_Prim_Elmt :=
5885 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5886 while Present (Iface_Prim_Elmt) loop
5887 Iface_Prim := Node (Iface_Prim_Elmt);
5888 Iface_Conv := Convention (Iface_Prim);
5890 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5891 and then Iface_Conv /= Op_Conv
5892 then
5893 Error_Msg_N
5894 ("inconsistent conventions in primitive operations", Typ);
5896 Error_Msg_Name_1 := Chars (Op);
5897 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5898 Error_Msg_Sloc := Sloc (Op);
5900 if Comes_From_Source (Op) or else No (Alias (Op)) then
5901 if not Present (Overridden_Operation (Op)) then
5902 Error_Msg_N ("\\primitive % defined #", Typ);
5903 else
5904 Error_Msg_N
5905 ("\\overriding operation % with "
5906 & "convention % defined #", Typ);
5907 end if;
5909 else pragma Assert (Present (Alias (Op)));
5910 Error_Msg_Sloc := Sloc (Alias (Op));
5911 Error_Msg_N ("\\inherited operation % with "
5912 & "convention % defined #", Typ);
5913 end if;
5915 Error_Msg_Name_1 := Chars (Op);
5916 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5917 Error_Msg_Sloc := Sloc (Iface_Prim);
5918 Error_Msg_N ("\\overridden operation % with "
5919 & "convention % defined #", Typ);
5921 -- Avoid cascading errors
5923 return;
5924 end if;
5926 Next_Elmt (Iface_Prim_Elmt);
5927 end loop;
5929 Next_Elmt (Iface_Elmt);
5930 end loop;
5931 end Check_Convention;
5933 -- Local variables
5935 Prim_Op : Entity_Id;
5936 Prim_Op_Elmt : Elmt_Id;
5938 -- Start of processing for Check_Conventions
5940 begin
5941 if not Has_Interfaces (Typ) then
5942 return;
5943 end if;
5945 Collect_Interfaces (Typ, Ifaces_List);
5947 -- The algorithm checks every overriding dispatching operation against
5948 -- all the corresponding overridden dispatching operations, detecting
5949 -- differences in conventions.
5951 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5952 while Present (Prim_Op_Elmt) loop
5953 Prim_Op := Node (Prim_Op_Elmt);
5955 -- A small optimization: skip the predefined dispatching operations
5956 -- since they always have the same convention.
5958 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5959 Check_Convention (Prim_Op);
5960 end if;
5962 Next_Elmt (Prim_Op_Elmt);
5963 end loop;
5964 end Check_Conventions;
5966 ------------------------------
5967 -- Check_Delayed_Subprogram --
5968 ------------------------------
5970 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5971 procedure Possible_Freeze (T : Entity_Id);
5972 -- T is the type of either a formal parameter or of the return type. If
5973 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5974 -- itself must be delayed.
5976 ---------------------
5977 -- Possible_Freeze --
5978 ---------------------
5980 procedure Possible_Freeze (T : Entity_Id) is
5981 Scop : constant Entity_Id := Scope (Designator);
5983 begin
5984 -- If the subprogram appears within a package instance (which may be
5985 -- the wrapper package of a subprogram instance) the freeze node for
5986 -- that package will freeze the subprogram at the proper place, so
5987 -- do not emit a freeze node for the subprogram, given that it may
5988 -- appear in the wrong scope.
5990 if Ekind (Scop) = E_Package
5991 and then not Comes_From_Source (Scop)
5992 and then Is_Generic_Instance (Scop)
5993 then
5994 null;
5996 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5997 Set_Has_Delayed_Freeze (Designator);
5999 elsif Is_Access_Type (T)
6000 and then Has_Delayed_Freeze (Designated_Type (T))
6001 and then not Is_Frozen (Designated_Type (T))
6002 then
6003 Set_Has_Delayed_Freeze (Designator);
6004 end if;
6005 end Possible_Freeze;
6007 -- Local variables
6009 F : Entity_Id;
6011 -- Start of processing for Check_Delayed_Subprogram
6013 begin
6014 -- All subprograms, including abstract subprograms, may need a freeze
6015 -- node if some formal type or the return type needs one.
6017 Possible_Freeze (Etype (Designator));
6018 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6020 -- Need delayed freeze if any of the formal types themselves need a
6021 -- delayed freeze and are not yet frozen.
6023 F := First_Formal (Designator);
6024 while Present (F) loop
6025 Possible_Freeze (Etype (F));
6026 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6027 Next_Formal (F);
6028 end loop;
6030 -- Mark functions that return by reference. Note that it cannot be done
6031 -- for delayed_freeze subprograms because the underlying returned type
6032 -- may not be known yet (for private types).
6034 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6035 declare
6036 Typ : constant Entity_Id := Etype (Designator);
6037 Utyp : constant Entity_Id := Underlying_Type (Typ);
6039 begin
6040 if Is_Limited_View (Typ) then
6041 Set_Returns_By_Ref (Designator);
6043 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6044 Set_Returns_By_Ref (Designator);
6045 end if;
6046 end;
6047 end if;
6048 end Check_Delayed_Subprogram;
6050 ------------------------------------
6051 -- Check_Discriminant_Conformance --
6052 ------------------------------------
6054 procedure Check_Discriminant_Conformance
6055 (N : Node_Id;
6056 Prev : Entity_Id;
6057 Prev_Loc : Node_Id)
6059 Old_Discr : Entity_Id := First_Discriminant (Prev);
6060 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6061 New_Discr_Id : Entity_Id;
6062 New_Discr_Type : Entity_Id;
6064 procedure Conformance_Error (Msg : String; N : Node_Id);
6065 -- Post error message for conformance error on given node. Two messages
6066 -- are output. The first points to the previous declaration with a
6067 -- general "no conformance" message. The second is the detailed reason,
6068 -- supplied as Msg. The parameter N provide information for a possible
6069 -- & insertion in the message.
6071 -----------------------
6072 -- Conformance_Error --
6073 -----------------------
6075 procedure Conformance_Error (Msg : String; N : Node_Id) is
6076 begin
6077 Error_Msg_Sloc := Sloc (Prev_Loc);
6078 Error_Msg_N -- CODEFIX
6079 ("not fully conformant with declaration#!", N);
6080 Error_Msg_NE (Msg, N, N);
6081 end Conformance_Error;
6083 -- Start of processing for Check_Discriminant_Conformance
6085 begin
6086 while Present (Old_Discr) and then Present (New_Discr) loop
6087 New_Discr_Id := Defining_Identifier (New_Discr);
6089 -- The subtype mark of the discriminant on the full type has not
6090 -- been analyzed so we do it here. For an access discriminant a new
6091 -- type is created.
6093 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6094 New_Discr_Type :=
6095 Access_Definition (N, Discriminant_Type (New_Discr));
6097 else
6098 Analyze (Discriminant_Type (New_Discr));
6099 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6101 -- Ada 2005: if the discriminant definition carries a null
6102 -- exclusion, create an itype to check properly for consistency
6103 -- with partial declaration.
6105 if Is_Access_Type (New_Discr_Type)
6106 and then Null_Exclusion_Present (New_Discr)
6107 then
6108 New_Discr_Type :=
6109 Create_Null_Excluding_Itype
6110 (T => New_Discr_Type,
6111 Related_Nod => New_Discr,
6112 Scope_Id => Current_Scope);
6113 end if;
6114 end if;
6116 if not Conforming_Types
6117 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6118 then
6119 Conformance_Error ("type of & does not match!", New_Discr_Id);
6120 return;
6121 else
6122 -- Treat the new discriminant as an occurrence of the old one,
6123 -- for navigation purposes, and fill in some semantic
6124 -- information, for completeness.
6126 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6127 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6128 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6129 end if;
6131 -- Names must match
6133 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6134 Conformance_Error ("name & does not match!", New_Discr_Id);
6135 return;
6136 end if;
6138 -- Default expressions must match
6140 declare
6141 NewD : constant Boolean :=
6142 Present (Expression (New_Discr));
6143 OldD : constant Boolean :=
6144 Present (Expression (Parent (Old_Discr)));
6146 begin
6147 if NewD or OldD then
6149 -- The old default value has been analyzed and expanded,
6150 -- because the current full declaration will have frozen
6151 -- everything before. The new default values have not been
6152 -- expanded, so expand now to check conformance.
6154 if NewD then
6155 Preanalyze_Spec_Expression
6156 (Expression (New_Discr), New_Discr_Type);
6157 end if;
6159 if not (NewD and OldD)
6160 or else not Fully_Conformant_Expressions
6161 (Expression (Parent (Old_Discr)),
6162 Expression (New_Discr))
6164 then
6165 Conformance_Error
6166 ("default expression for & does not match!",
6167 New_Discr_Id);
6168 return;
6169 end if;
6170 end if;
6171 end;
6173 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6175 if Ada_Version = Ada_83 then
6176 declare
6177 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6179 begin
6180 -- Grouping (use of comma in param lists) must be the same
6181 -- This is where we catch a misconformance like:
6183 -- A, B : Integer
6184 -- A : Integer; B : Integer
6186 -- which are represented identically in the tree except
6187 -- for the setting of the flags More_Ids and Prev_Ids.
6189 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6190 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6191 then
6192 Conformance_Error
6193 ("grouping of & does not match!", New_Discr_Id);
6194 return;
6195 end if;
6196 end;
6197 end if;
6199 Next_Discriminant (Old_Discr);
6200 Next (New_Discr);
6201 end loop;
6203 if Present (Old_Discr) then
6204 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6205 return;
6207 elsif Present (New_Discr) then
6208 Conformance_Error
6209 ("too many discriminants!", Defining_Identifier (New_Discr));
6210 return;
6211 end if;
6212 end Check_Discriminant_Conformance;
6214 ----------------------------
6215 -- Check_Fully_Conformant --
6216 ----------------------------
6218 procedure Check_Fully_Conformant
6219 (New_Id : Entity_Id;
6220 Old_Id : Entity_Id;
6221 Err_Loc : Node_Id := Empty)
6223 Result : Boolean;
6224 pragma Warnings (Off, Result);
6225 begin
6226 Check_Conformance
6227 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6228 end Check_Fully_Conformant;
6230 --------------------------
6231 -- Check_Limited_Return --
6232 --------------------------
6234 procedure Check_Limited_Return
6235 (N : Node_Id;
6236 Expr : Node_Id;
6237 R_Type : Entity_Id)
6239 begin
6240 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6241 -- replaced by anonymous access results. This is an incompatibility with
6242 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6243 -- controllable with special switch. ???
6245 -- A limited interface that is not immutably limited is OK
6247 if Is_Limited_Interface (R_Type)
6248 and then
6249 not (Is_Task_Interface (R_Type)
6250 or else Is_Protected_Interface (R_Type)
6251 or else Is_Synchronized_Interface (R_Type))
6252 then
6253 null;
6255 elsif Is_Limited_Type (R_Type)
6256 and then not Is_Interface (R_Type)
6257 and then Comes_From_Source (N)
6258 and then not In_Instance_Body
6259 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6260 then
6261 -- Error in Ada 2005
6263 if Ada_Version >= Ada_2005
6264 and then not Debug_Flag_Dot_L
6265 and then not GNAT_Mode
6266 then
6267 Error_Msg_N
6268 ("(Ada 2005) cannot copy object of a limited type "
6269 & "(RM-2005 6.5(5.5/2))", Expr);
6271 if Is_Limited_View (R_Type) then
6272 Error_Msg_N
6273 ("\return by reference not permitted in Ada 2005", Expr);
6274 end if;
6276 -- Warn in Ada 95 mode, to give folks a heads up about this
6277 -- incompatibility.
6279 -- In GNAT mode, this is just a warning, to allow it to be evilly
6280 -- turned off. Otherwise it is a real error.
6282 -- In a generic context, simplify the warning because it makes no
6283 -- sense to discuss pass-by-reference or copy.
6285 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6286 if Inside_A_Generic then
6287 Error_Msg_N
6288 ("return of limited object not permitted in Ada 2005 "
6289 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6291 elsif Is_Limited_View (R_Type) then
6292 Error_Msg_N
6293 ("return by reference not permitted in Ada 2005 "
6294 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6295 else
6296 Error_Msg_N
6297 ("cannot copy object of a limited type in Ada 2005 "
6298 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6299 end if;
6301 -- Ada 95 mode, and compatibility warnings disabled
6303 else
6304 pragma Assert (Ada_Version <= Ada_95);
6305 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6306 return; -- skip continuation messages below
6307 end if;
6309 if not Inside_A_Generic then
6310 Error_Msg_N
6311 ("\consider switching to return of access type", Expr);
6312 Explain_Limited_Type (R_Type, Expr);
6313 end if;
6314 end if;
6315 end Check_Limited_Return;
6317 ---------------------------
6318 -- Check_Mode_Conformant --
6319 ---------------------------
6321 procedure Check_Mode_Conformant
6322 (New_Id : Entity_Id;
6323 Old_Id : Entity_Id;
6324 Err_Loc : Node_Id := Empty;
6325 Get_Inst : Boolean := False)
6327 Result : Boolean;
6328 pragma Warnings (Off, Result);
6329 begin
6330 Check_Conformance
6331 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6332 end Check_Mode_Conformant;
6334 --------------------------------
6335 -- Check_Overriding_Indicator --
6336 --------------------------------
6338 procedure Check_Overriding_Indicator
6339 (Subp : Entity_Id;
6340 Overridden_Subp : Entity_Id;
6341 Is_Primitive : Boolean)
6343 Decl : Node_Id;
6344 Spec : Node_Id;
6346 begin
6347 -- No overriding indicator for literals
6349 if Ekind (Subp) = E_Enumeration_Literal then
6350 return;
6352 elsif Ekind (Subp) = E_Entry then
6353 Decl := Parent (Subp);
6355 -- No point in analyzing a malformed operator
6357 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6358 and then Error_Posted (Subp)
6359 then
6360 return;
6362 else
6363 Decl := Unit_Declaration_Node (Subp);
6364 end if;
6366 if Nkind_In (Decl, N_Subprogram_Body,
6367 N_Subprogram_Body_Stub,
6368 N_Subprogram_Declaration,
6369 N_Abstract_Subprogram_Declaration,
6370 N_Subprogram_Renaming_Declaration)
6371 then
6372 Spec := Specification (Decl);
6374 elsif Nkind (Decl) = N_Entry_Declaration then
6375 Spec := Decl;
6377 else
6378 return;
6379 end if;
6381 -- The overriding operation is type conformant with the overridden one,
6382 -- but the names of the formals are not required to match. If the names
6383 -- appear permuted in the overriding operation, this is a possible
6384 -- source of confusion that is worth diagnosing. Controlling formals
6385 -- often carry names that reflect the type, and it is not worthwhile
6386 -- requiring that their names match.
6388 if Present (Overridden_Subp)
6389 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6390 then
6391 declare
6392 Form1 : Entity_Id;
6393 Form2 : Entity_Id;
6395 begin
6396 Form1 := First_Formal (Subp);
6397 Form2 := First_Formal (Overridden_Subp);
6399 -- If the overriding operation is a synchronized operation, skip
6400 -- the first parameter of the overridden operation, which is
6401 -- implicit in the new one. If the operation is declared in the
6402 -- body it is not primitive and all formals must match.
6404 if Is_Concurrent_Type (Scope (Subp))
6405 and then Is_Tagged_Type (Scope (Subp))
6406 and then not Has_Completion (Scope (Subp))
6407 then
6408 Form2 := Next_Formal (Form2);
6409 end if;
6411 if Present (Form1) then
6412 Form1 := Next_Formal (Form1);
6413 Form2 := Next_Formal (Form2);
6414 end if;
6416 while Present (Form1) loop
6417 if not Is_Controlling_Formal (Form1)
6418 and then Present (Next_Formal (Form2))
6419 and then Chars (Form1) = Chars (Next_Formal (Form2))
6420 then
6421 Error_Msg_Node_2 := Alias (Overridden_Subp);
6422 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6423 Error_Msg_NE
6424 ("& does not match corresponding formal of&#",
6425 Form1, Form1);
6426 exit;
6427 end if;
6429 Next_Formal (Form1);
6430 Next_Formal (Form2);
6431 end loop;
6432 end;
6433 end if;
6435 -- If there is an overridden subprogram, then check that there is no
6436 -- "not overriding" indicator, and mark the subprogram as overriding.
6437 -- This is not done if the overridden subprogram is marked as hidden,
6438 -- which can occur for the case of inherited controlled operations
6439 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6440 -- subprogram is not itself hidden. (Note: This condition could probably
6441 -- be simplified, leaving out the testing for the specific controlled
6442 -- cases, but it seems safer and clearer this way, and echoes similar
6443 -- special-case tests of this kind in other places.)
6445 if Present (Overridden_Subp)
6446 and then (not Is_Hidden (Overridden_Subp)
6447 or else
6448 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6449 Name_Adjust,
6450 Name_Finalize)
6451 and then Present (Alias (Overridden_Subp))
6452 and then not Is_Hidden (Alias (Overridden_Subp))))
6453 then
6454 if Must_Not_Override (Spec) then
6455 Error_Msg_Sloc := Sloc (Overridden_Subp);
6457 if Ekind (Subp) = E_Entry then
6458 Error_Msg_NE
6459 ("entry & overrides inherited operation #", Spec, Subp);
6460 else
6461 Error_Msg_NE
6462 ("subprogram & overrides inherited operation #", Spec, Subp);
6463 end if;
6465 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6466 -- as an extension of Root_Controlled, and thus has a useless Adjust
6467 -- operation. This operation should not be inherited by other limited
6468 -- controlled types. An explicit Adjust for them is not overriding.
6470 elsif Must_Override (Spec)
6471 and then Chars (Overridden_Subp) = Name_Adjust
6472 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6473 and then Present (Alias (Overridden_Subp))
6474 and then In_Predefined_Unit (Alias (Overridden_Subp))
6475 then
6476 Get_Name_String
6477 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6478 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6480 elsif Is_Subprogram (Subp) then
6481 if Is_Init_Proc (Subp) then
6482 null;
6484 elsif No (Overridden_Operation (Subp)) then
6486 -- For entities generated by Derive_Subprograms the overridden
6487 -- operation is the inherited primitive (which is available
6488 -- through the attribute alias)
6490 if (Is_Dispatching_Operation (Subp)
6491 or else Is_Dispatching_Operation (Overridden_Subp))
6492 and then not Comes_From_Source (Overridden_Subp)
6493 and then Find_Dispatching_Type (Overridden_Subp) =
6494 Find_Dispatching_Type (Subp)
6495 and then Present (Alias (Overridden_Subp))
6496 and then Comes_From_Source (Alias (Overridden_Subp))
6497 then
6498 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6499 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6501 else
6502 Set_Overridden_Operation (Subp, Overridden_Subp);
6503 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6504 end if;
6505 end if;
6506 end if;
6508 -- If primitive flag is set or this is a protected operation, then
6509 -- the operation is overriding at the point of its declaration, so
6510 -- warn if necessary. Otherwise it may have been declared before the
6511 -- operation it overrides and no check is required.
6513 if Style_Check
6514 and then not Must_Override (Spec)
6515 and then (Is_Primitive
6516 or else Ekind (Scope (Subp)) = E_Protected_Type)
6517 then
6518 Style.Missing_Overriding (Decl, Subp);
6519 end if;
6521 -- If Subp is an operator, it may override a predefined operation, if
6522 -- it is defined in the same scope as the type to which it applies.
6523 -- In that case Overridden_Subp is empty because of our implicit
6524 -- representation for predefined operators. We have to check whether the
6525 -- signature of Subp matches that of a predefined operator. Note that
6526 -- first argument provides the name of the operator, and the second
6527 -- argument the signature that may match that of a standard operation.
6528 -- If the indicator is overriding, then the operator must match a
6529 -- predefined signature, because we know already that there is no
6530 -- explicit overridden operation.
6532 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6533 if Must_Not_Override (Spec) then
6535 -- If this is not a primitive or a protected subprogram, then
6536 -- "not overriding" is illegal.
6538 if not Is_Primitive
6539 and then Ekind (Scope (Subp)) /= E_Protected_Type
6540 then
6541 Error_Msg_N ("overriding indicator only allowed "
6542 & "if subprogram is primitive", Subp);
6544 elsif Can_Override_Operator (Subp) then
6545 Error_Msg_NE
6546 ("subprogram& overrides predefined operator ", Spec, Subp);
6547 end if;
6549 elsif Must_Override (Spec) then
6550 if No (Overridden_Operation (Subp))
6551 and then not Can_Override_Operator (Subp)
6552 then
6553 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6554 end if;
6556 elsif not Error_Posted (Subp)
6557 and then Style_Check
6558 and then Can_Override_Operator (Subp)
6559 and then not In_Predefined_Unit (Subp)
6560 then
6561 -- If style checks are enabled, indicate that the indicator is
6562 -- missing. However, at the point of declaration, the type of
6563 -- which this is a primitive operation may be private, in which
6564 -- case the indicator would be premature.
6566 if Has_Private_Declaration (Etype (Subp))
6567 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6568 then
6569 null;
6570 else
6571 Style.Missing_Overriding (Decl, Subp);
6572 end if;
6573 end if;
6575 elsif Must_Override (Spec) then
6576 if Ekind (Subp) = E_Entry then
6577 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6578 else
6579 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6580 end if;
6582 -- If the operation is marked "not overriding" and it's not primitive
6583 -- then an error is issued, unless this is an operation of a task or
6584 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6585 -- has been specified have already been checked above.
6587 elsif Must_Not_Override (Spec)
6588 and then not Is_Primitive
6589 and then Ekind (Subp) /= E_Entry
6590 and then Ekind (Scope (Subp)) /= E_Protected_Type
6591 then
6592 Error_Msg_N
6593 ("overriding indicator only allowed if subprogram is primitive",
6594 Subp);
6595 return;
6596 end if;
6597 end Check_Overriding_Indicator;
6599 -------------------
6600 -- Check_Returns --
6601 -------------------
6603 -- Note: this procedure needs to know far too much about how the expander
6604 -- messes with exceptions. The use of the flag Exception_Junk and the
6605 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6606 -- works, but is not very clean. It would be better if the expansion
6607 -- routines would leave Original_Node working nicely, and we could use
6608 -- Original_Node here to ignore all the peculiar expander messing ???
6610 procedure Check_Returns
6611 (HSS : Node_Id;
6612 Mode : Character;
6613 Err : out Boolean;
6614 Proc : Entity_Id := Empty)
6616 Handler : Node_Id;
6618 procedure Check_Statement_Sequence (L : List_Id);
6619 -- Internal recursive procedure to check a list of statements for proper
6620 -- termination by a return statement (or a transfer of control or a
6621 -- compound statement that is itself internally properly terminated).
6623 ------------------------------
6624 -- Check_Statement_Sequence --
6625 ------------------------------
6627 procedure Check_Statement_Sequence (L : List_Id) is
6628 Last_Stm : Node_Id;
6629 Stm : Node_Id;
6630 Kind : Node_Kind;
6632 function Assert_False return Boolean;
6633 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6634 -- rewritten as a null statement when assertions are off. The assert
6635 -- is not active, but it is still enough to kill the warning.
6637 ------------------
6638 -- Assert_False --
6639 ------------------
6641 function Assert_False return Boolean is
6642 Orig : constant Node_Id := Original_Node (Last_Stm);
6644 begin
6645 if Nkind (Orig) = N_Pragma
6646 and then Pragma_Name (Orig) = Name_Assert
6647 and then not Error_Posted (Orig)
6648 then
6649 declare
6650 Arg : constant Node_Id :=
6651 First (Pragma_Argument_Associations (Orig));
6652 Exp : constant Node_Id := Expression (Arg);
6653 begin
6654 return Nkind (Exp) = N_Identifier
6655 and then Chars (Exp) = Name_False;
6656 end;
6658 else
6659 return False;
6660 end if;
6661 end Assert_False;
6663 -- Local variables
6665 Raise_Exception_Call : Boolean;
6666 -- Set True if statement sequence terminated by Raise_Exception call
6667 -- or a Reraise_Occurrence call.
6669 -- Start of processing for Check_Statement_Sequence
6671 begin
6672 Raise_Exception_Call := False;
6674 -- Get last real statement
6676 Last_Stm := Last (L);
6678 -- Deal with digging out exception handler statement sequences that
6679 -- have been transformed by the local raise to goto optimization.
6680 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6681 -- optimization has occurred, we are looking at something like:
6683 -- begin
6684 -- original stmts in block
6686 -- exception \
6687 -- when excep1 => |
6688 -- goto L1; | omitted if No_Exception_Propagation
6689 -- when excep2 => |
6690 -- goto L2; /
6691 -- end;
6693 -- goto L3; -- skip handler when exception not raised
6695 -- <<L1>> -- target label for local exception
6696 -- begin
6697 -- estmts1
6698 -- end;
6700 -- goto L3;
6702 -- <<L2>>
6703 -- begin
6704 -- estmts2
6705 -- end;
6707 -- <<L3>>
6709 -- and what we have to do is to dig out the estmts1 and estmts2
6710 -- sequences (which were the original sequences of statements in
6711 -- the exception handlers) and check them.
6713 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6714 Stm := Last_Stm;
6715 loop
6716 Prev (Stm);
6717 exit when No (Stm);
6718 exit when Nkind (Stm) /= N_Block_Statement;
6719 exit when not Exception_Junk (Stm);
6720 Prev (Stm);
6721 exit when No (Stm);
6722 exit when Nkind (Stm) /= N_Label;
6723 exit when not Exception_Junk (Stm);
6724 Check_Statement_Sequence
6725 (Statements (Handled_Statement_Sequence (Next (Stm))));
6727 Prev (Stm);
6728 Last_Stm := Stm;
6729 exit when No (Stm);
6730 exit when Nkind (Stm) /= N_Goto_Statement;
6731 exit when not Exception_Junk (Stm);
6732 end loop;
6733 end if;
6735 -- Don't count pragmas
6737 while Nkind (Last_Stm) = N_Pragma
6739 -- Don't count call to SS_Release (can happen after Raise_Exception)
6741 or else
6742 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6743 and then
6744 Nkind (Name (Last_Stm)) = N_Identifier
6745 and then
6746 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6748 -- Don't count exception junk
6750 or else
6751 (Nkind_In (Last_Stm, N_Goto_Statement,
6752 N_Label,
6753 N_Object_Declaration)
6754 and then Exception_Junk (Last_Stm))
6755 or else Nkind (Last_Stm) in N_Push_xxx_Label
6756 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6758 -- Inserted code, such as finalization calls, is irrelevant: we only
6759 -- need to check original source.
6761 or else Is_Rewrite_Insertion (Last_Stm)
6762 loop
6763 Prev (Last_Stm);
6764 end loop;
6766 -- Here we have the "real" last statement
6768 Kind := Nkind (Last_Stm);
6770 -- Transfer of control, OK. Note that in the No_Return procedure
6771 -- case, we already diagnosed any explicit return statements, so
6772 -- we can treat them as OK in this context.
6774 if Is_Transfer (Last_Stm) then
6775 return;
6777 -- Check cases of explicit non-indirect procedure calls
6779 elsif Kind = N_Procedure_Call_Statement
6780 and then Is_Entity_Name (Name (Last_Stm))
6781 then
6782 -- Check call to Raise_Exception procedure which is treated
6783 -- specially, as is a call to Reraise_Occurrence.
6785 -- We suppress the warning in these cases since it is likely that
6786 -- the programmer really does not expect to deal with the case
6787 -- of Null_Occurrence, and thus would find a warning about a
6788 -- missing return curious, and raising Program_Error does not
6789 -- seem such a bad behavior if this does occur.
6791 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6792 -- behavior will be to raise Constraint_Error (see AI-329).
6794 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6795 or else
6796 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6797 then
6798 Raise_Exception_Call := True;
6800 -- For Raise_Exception call, test first argument, if it is
6801 -- an attribute reference for a 'Identity call, then we know
6802 -- that the call cannot possibly return.
6804 declare
6805 Arg : constant Node_Id :=
6806 Original_Node (First_Actual (Last_Stm));
6807 begin
6808 if Nkind (Arg) = N_Attribute_Reference
6809 and then Attribute_Name (Arg) = Name_Identity
6810 then
6811 return;
6812 end if;
6813 end;
6814 end if;
6816 -- If statement, need to look inside if there is an else and check
6817 -- each constituent statement sequence for proper termination.
6819 elsif Kind = N_If_Statement
6820 and then Present (Else_Statements (Last_Stm))
6821 then
6822 Check_Statement_Sequence (Then_Statements (Last_Stm));
6823 Check_Statement_Sequence (Else_Statements (Last_Stm));
6825 if Present (Elsif_Parts (Last_Stm)) then
6826 declare
6827 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6829 begin
6830 while Present (Elsif_Part) loop
6831 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6832 Next (Elsif_Part);
6833 end loop;
6834 end;
6835 end if;
6837 return;
6839 -- Case statement, check each case for proper termination
6841 elsif Kind = N_Case_Statement then
6842 declare
6843 Case_Alt : Node_Id;
6844 begin
6845 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6846 while Present (Case_Alt) loop
6847 Check_Statement_Sequence (Statements (Case_Alt));
6848 Next_Non_Pragma (Case_Alt);
6849 end loop;
6850 end;
6852 return;
6854 -- Block statement, check its handled sequence of statements
6856 elsif Kind = N_Block_Statement then
6857 declare
6858 Err1 : Boolean;
6860 begin
6861 Check_Returns
6862 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6864 if Err1 then
6865 Err := True;
6866 end if;
6868 return;
6869 end;
6871 -- Loop statement. If there is an iteration scheme, we can definitely
6872 -- fall out of the loop. Similarly if there is an exit statement, we
6873 -- can fall out. In either case we need a following return.
6875 elsif Kind = N_Loop_Statement then
6876 if Present (Iteration_Scheme (Last_Stm))
6877 or else Has_Exit (Entity (Identifier (Last_Stm)))
6878 then
6879 null;
6881 -- A loop with no exit statement or iteration scheme is either
6882 -- an infinite loop, or it has some other exit (raise/return).
6883 -- In either case, no warning is required.
6885 else
6886 return;
6887 end if;
6889 -- Timed entry call, check entry call and delay alternatives
6891 -- Note: in expanded code, the timed entry call has been converted
6892 -- to a set of expanded statements on which the check will work
6893 -- correctly in any case.
6895 elsif Kind = N_Timed_Entry_Call then
6896 declare
6897 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6898 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6900 begin
6901 -- If statement sequence of entry call alternative is missing,
6902 -- then we can definitely fall through, and we post the error
6903 -- message on the entry call alternative itself.
6905 if No (Statements (ECA)) then
6906 Last_Stm := ECA;
6908 -- If statement sequence of delay alternative is missing, then
6909 -- we can definitely fall through, and we post the error
6910 -- message on the delay alternative itself.
6912 -- Note: if both ECA and DCA are missing the return, then we
6913 -- post only one message, should be enough to fix the bugs.
6914 -- If not we will get a message next time on the DCA when the
6915 -- ECA is fixed.
6917 elsif No (Statements (DCA)) then
6918 Last_Stm := DCA;
6920 -- Else check both statement sequences
6922 else
6923 Check_Statement_Sequence (Statements (ECA));
6924 Check_Statement_Sequence (Statements (DCA));
6925 return;
6926 end if;
6927 end;
6929 -- Conditional entry call, check entry call and else part
6931 -- Note: in expanded code, the conditional entry call has been
6932 -- converted to a set of expanded statements on which the check
6933 -- will work correctly in any case.
6935 elsif Kind = N_Conditional_Entry_Call then
6936 declare
6937 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6939 begin
6940 -- If statement sequence of entry call alternative is missing,
6941 -- then we can definitely fall through, and we post the error
6942 -- message on the entry call alternative itself.
6944 if No (Statements (ECA)) then
6945 Last_Stm := ECA;
6947 -- Else check statement sequence and else part
6949 else
6950 Check_Statement_Sequence (Statements (ECA));
6951 Check_Statement_Sequence (Else_Statements (Last_Stm));
6952 return;
6953 end if;
6954 end;
6955 end if;
6957 -- If we fall through, issue appropriate message
6959 if Mode = 'F' then
6961 -- Kill warning if last statement is a raise exception call,
6962 -- or a pragma Assert (False). Note that with assertions enabled,
6963 -- such a pragma has been converted into a raise exception call
6964 -- already, so the Assert_False is for the assertions off case.
6966 if not Raise_Exception_Call and then not Assert_False then
6968 -- In GNATprove mode, it is an error to have a missing return
6970 Error_Msg_Warn := SPARK_Mode /= On;
6972 -- Issue error message or warning
6974 Error_Msg_N
6975 ("RETURN statement missing following this statement<<!",
6976 Last_Stm);
6977 Error_Msg_N
6978 ("\Program_Error ]<<!", Last_Stm);
6979 end if;
6981 -- Note: we set Err even though we have not issued a warning
6982 -- because we still have a case of a missing return. This is
6983 -- an extremely marginal case, probably will never be noticed
6984 -- but we might as well get it right.
6986 Err := True;
6988 -- Otherwise we have the case of a procedure marked No_Return
6990 else
6991 if not Raise_Exception_Call then
6992 if GNATprove_Mode then
6993 Error_Msg_N
6994 ("implied return after this statement would have raised "
6995 & "Program_Error", Last_Stm);
6997 -- In normal compilation mode, do not warn on a generated call
6998 -- (e.g. in the body of a renaming as completion).
7000 elsif Comes_From_Source (Last_Stm) then
7001 Error_Msg_N
7002 ("implied return after this statement will raise "
7003 & "Program_Error??", Last_Stm);
7004 end if;
7006 Error_Msg_Warn := SPARK_Mode /= On;
7007 Error_Msg_NE
7008 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7009 end if;
7011 declare
7012 RE : constant Node_Id :=
7013 Make_Raise_Program_Error (Sloc (Last_Stm),
7014 Reason => PE_Implicit_Return);
7015 begin
7016 Insert_After (Last_Stm, RE);
7017 Analyze (RE);
7018 end;
7019 end if;
7020 end Check_Statement_Sequence;
7022 -- Start of processing for Check_Returns
7024 begin
7025 Err := False;
7026 Check_Statement_Sequence (Statements (HSS));
7028 if Present (Exception_Handlers (HSS)) then
7029 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7030 while Present (Handler) loop
7031 Check_Statement_Sequence (Statements (Handler));
7032 Next_Non_Pragma (Handler);
7033 end loop;
7034 end if;
7035 end Check_Returns;
7037 ----------------------------
7038 -- Check_Subprogram_Order --
7039 ----------------------------
7041 procedure Check_Subprogram_Order (N : Node_Id) is
7043 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7044 -- This is used to check if S1 > S2 in the sense required by this test,
7045 -- for example nameab < namec, but name2 < name10.
7047 -----------------------------
7048 -- Subprogram_Name_Greater --
7049 -----------------------------
7051 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7052 L1, L2 : Positive;
7053 N1, N2 : Natural;
7055 begin
7056 -- Deal with special case where names are identical except for a
7057 -- numerical suffix. These are handled specially, taking the numeric
7058 -- ordering from the suffix into account.
7060 L1 := S1'Last;
7061 while S1 (L1) in '0' .. '9' loop
7062 L1 := L1 - 1;
7063 end loop;
7065 L2 := S2'Last;
7066 while S2 (L2) in '0' .. '9' loop
7067 L2 := L2 - 1;
7068 end loop;
7070 -- If non-numeric parts non-equal, do straight compare
7072 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7073 return S1 > S2;
7075 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7076 -- that a missing suffix is treated as numeric zero in this test.
7078 else
7079 N1 := 0;
7080 while L1 < S1'Last loop
7081 L1 := L1 + 1;
7082 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7083 end loop;
7085 N2 := 0;
7086 while L2 < S2'Last loop
7087 L2 := L2 + 1;
7088 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7089 end loop;
7091 return N1 > N2;
7092 end if;
7093 end Subprogram_Name_Greater;
7095 -- Start of processing for Check_Subprogram_Order
7097 begin
7098 -- Check body in alpha order if this is option
7100 if Style_Check
7101 and then Style_Check_Order_Subprograms
7102 and then Nkind (N) = N_Subprogram_Body
7103 and then Comes_From_Source (N)
7104 and then In_Extended_Main_Source_Unit (N)
7105 then
7106 declare
7107 LSN : String_Ptr
7108 renames Scope_Stack.Table
7109 (Scope_Stack.Last).Last_Subprogram_Name;
7111 Body_Id : constant Entity_Id :=
7112 Defining_Entity (Specification (N));
7114 begin
7115 Get_Decoded_Name_String (Chars (Body_Id));
7117 if LSN /= null then
7118 if Subprogram_Name_Greater
7119 (LSN.all, Name_Buffer (1 .. Name_Len))
7120 then
7121 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7122 end if;
7124 Free (LSN);
7125 end if;
7127 LSN := new String'(Name_Buffer (1 .. Name_Len));
7128 end;
7129 end if;
7130 end Check_Subprogram_Order;
7132 ------------------------------
7133 -- Check_Subtype_Conformant --
7134 ------------------------------
7136 procedure Check_Subtype_Conformant
7137 (New_Id : Entity_Id;
7138 Old_Id : Entity_Id;
7139 Err_Loc : Node_Id := Empty;
7140 Skip_Controlling_Formals : Boolean := False;
7141 Get_Inst : Boolean := False)
7143 Result : Boolean;
7144 pragma Warnings (Off, Result);
7145 begin
7146 Check_Conformance
7147 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7148 Skip_Controlling_Formals => Skip_Controlling_Formals,
7149 Get_Inst => Get_Inst);
7150 end Check_Subtype_Conformant;
7152 -----------------------------------
7153 -- Check_Synchronized_Overriding --
7154 -----------------------------------
7156 procedure Check_Synchronized_Overriding
7157 (Def_Id : Entity_Id;
7158 Overridden_Subp : out Entity_Id)
7160 Ifaces_List : Elist_Id;
7161 In_Scope : Boolean;
7162 Typ : Entity_Id;
7164 function Matches_Prefixed_View_Profile
7165 (Prim_Params : List_Id;
7166 Iface_Params : List_Id) return Boolean;
7167 -- Determine whether a subprogram's parameter profile Prim_Params
7168 -- matches that of a potentially overridden interface subprogram
7169 -- Iface_Params. Also determine if the type of first parameter of
7170 -- Iface_Params is an implemented interface.
7172 -----------------------------------
7173 -- Matches_Prefixed_View_Profile --
7174 -----------------------------------
7176 function Matches_Prefixed_View_Profile
7177 (Prim_Params : List_Id;
7178 Iface_Params : List_Id) return Boolean
7180 function Is_Implemented
7181 (Ifaces_List : Elist_Id;
7182 Iface : Entity_Id) return Boolean;
7183 -- Determine if Iface is implemented by the current task or
7184 -- protected type.
7186 --------------------
7187 -- Is_Implemented --
7188 --------------------
7190 function Is_Implemented
7191 (Ifaces_List : Elist_Id;
7192 Iface : Entity_Id) return Boolean
7194 Iface_Elmt : Elmt_Id;
7196 begin
7197 Iface_Elmt := First_Elmt (Ifaces_List);
7198 while Present (Iface_Elmt) loop
7199 if Node (Iface_Elmt) = Iface then
7200 return True;
7201 end if;
7203 Next_Elmt (Iface_Elmt);
7204 end loop;
7206 return False;
7207 end Is_Implemented;
7209 -- Local variables
7211 Iface_Id : Entity_Id;
7212 Iface_Param : Node_Id;
7213 Iface_Typ : Entity_Id;
7214 Prim_Id : Entity_Id;
7215 Prim_Param : Node_Id;
7216 Prim_Typ : Entity_Id;
7218 -- Start of processing for Matches_Prefixed_View_Profile
7220 begin
7221 Iface_Param := First (Iface_Params);
7222 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7224 if Is_Access_Type (Iface_Typ) then
7225 Iface_Typ := Designated_Type (Iface_Typ);
7226 end if;
7228 Prim_Param := First (Prim_Params);
7230 -- The first parameter of the potentially overridden subprogram must
7231 -- be an interface implemented by Prim.
7233 if not Is_Interface (Iface_Typ)
7234 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7235 then
7236 return False;
7237 end if;
7239 -- The checks on the object parameters are done, so move on to the
7240 -- rest of the parameters.
7242 if not In_Scope then
7243 Prim_Param := Next (Prim_Param);
7244 end if;
7246 Iface_Param := Next (Iface_Param);
7247 while Present (Iface_Param) and then Present (Prim_Param) loop
7248 Iface_Id := Defining_Identifier (Iface_Param);
7249 Iface_Typ := Find_Parameter_Type (Iface_Param);
7251 Prim_Id := Defining_Identifier (Prim_Param);
7252 Prim_Typ := Find_Parameter_Type (Prim_Param);
7254 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7255 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7256 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7257 then
7258 Iface_Typ := Designated_Type (Iface_Typ);
7259 Prim_Typ := Designated_Type (Prim_Typ);
7260 end if;
7262 -- Case of multiple interface types inside a parameter profile
7264 -- (Obj_Param : in out Iface; ...; Param : Iface)
7266 -- If the interface type is implemented, then the matching type in
7267 -- the primitive should be the implementing record type.
7269 if Ekind (Iface_Typ) = E_Record_Type
7270 and then Is_Interface (Iface_Typ)
7271 and then Is_Implemented (Ifaces_List, Iface_Typ)
7272 then
7273 if Prim_Typ /= Typ then
7274 return False;
7275 end if;
7277 -- The two parameters must be both mode and subtype conformant
7279 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7280 or else not
7281 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7282 then
7283 return False;
7284 end if;
7286 Next (Iface_Param);
7287 Next (Prim_Param);
7288 end loop;
7290 -- One of the two lists contains more parameters than the other
7292 if Present (Iface_Param) or else Present (Prim_Param) then
7293 return False;
7294 end if;
7296 return True;
7297 end Matches_Prefixed_View_Profile;
7299 -- Start of processing for Check_Synchronized_Overriding
7301 begin
7302 Overridden_Subp := Empty;
7304 -- Def_Id must be an entry or a subprogram. We should skip predefined
7305 -- primitives internally generated by the front end; however at this
7306 -- stage predefined primitives are still not fully decorated. As a
7307 -- minor optimization we skip here internally generated subprograms.
7309 if (Ekind (Def_Id) /= E_Entry
7310 and then Ekind (Def_Id) /= E_Function
7311 and then Ekind (Def_Id) /= E_Procedure)
7312 or else not Comes_From_Source (Def_Id)
7313 then
7314 return;
7315 end if;
7317 -- Search for the concurrent declaration since it contains the list of
7318 -- all implemented interfaces. In this case, the subprogram is declared
7319 -- within the scope of a protected or a task type.
7321 if Present (Scope (Def_Id))
7322 and then Is_Concurrent_Type (Scope (Def_Id))
7323 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7324 then
7325 Typ := Scope (Def_Id);
7326 In_Scope := True;
7328 -- The enclosing scope is not a synchronized type and the subprogram
7329 -- has no formals.
7331 elsif No (First_Formal (Def_Id)) then
7332 return;
7334 -- The subprogram has formals and hence it may be a primitive of a
7335 -- concurrent type.
7337 else
7338 Typ := Etype (First_Formal (Def_Id));
7340 if Is_Access_Type (Typ) then
7341 Typ := Directly_Designated_Type (Typ);
7342 end if;
7344 if Is_Concurrent_Type (Typ)
7345 and then not Is_Generic_Actual_Type (Typ)
7346 then
7347 In_Scope := False;
7349 -- This case occurs when the concurrent type is declared within a
7350 -- generic unit. As a result the corresponding record has been built
7351 -- and used as the type of the first formal, we just have to retrieve
7352 -- the corresponding concurrent type.
7354 elsif Is_Concurrent_Record_Type (Typ)
7355 and then not Is_Class_Wide_Type (Typ)
7356 and then Present (Corresponding_Concurrent_Type (Typ))
7357 then
7358 Typ := Corresponding_Concurrent_Type (Typ);
7359 In_Scope := False;
7361 else
7362 return;
7363 end if;
7364 end if;
7366 -- There is no overriding to check if this is an inherited operation in
7367 -- a type derivation for a generic actual.
7369 Collect_Interfaces (Typ, Ifaces_List);
7371 if Is_Empty_Elmt_List (Ifaces_List) then
7372 return;
7373 end if;
7375 -- Determine whether entry or subprogram Def_Id overrides a primitive
7376 -- operation that belongs to one of the interfaces in Ifaces_List.
7378 declare
7379 Candidate : Entity_Id := Empty;
7380 Hom : Entity_Id := Empty;
7381 Subp : Entity_Id := Empty;
7383 begin
7384 -- Traverse the homonym chain, looking for a potentially overridden
7385 -- subprogram that belongs to an implemented interface.
7387 Hom := Current_Entity_In_Scope (Def_Id);
7388 while Present (Hom) loop
7389 Subp := Hom;
7391 if Subp = Def_Id
7392 or else not Is_Overloadable (Subp)
7393 or else not Is_Primitive (Subp)
7394 or else not Is_Dispatching_Operation (Subp)
7395 or else not Present (Find_Dispatching_Type (Subp))
7396 or else not Is_Interface (Find_Dispatching_Type (Subp))
7397 then
7398 null;
7400 -- Entries and procedures can override abstract or null interface
7401 -- procedures.
7403 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7404 and then Ekind (Subp) = E_Procedure
7405 and then Matches_Prefixed_View_Profile
7406 (Parameter_Specifications (Parent (Def_Id)),
7407 Parameter_Specifications (Parent (Subp)))
7408 then
7409 Candidate := Subp;
7411 -- For an overridden subprogram Subp, check whether the mode
7412 -- of its first parameter is correct depending on the kind of
7413 -- synchronized type.
7415 declare
7416 Formal : constant Node_Id := First_Formal (Candidate);
7418 begin
7419 -- In order for an entry or a protected procedure to
7420 -- override, the first parameter of the overridden routine
7421 -- must be of mode "out", "in out", or access-to-variable.
7423 if Ekind_In (Candidate, E_Entry, E_Procedure)
7424 and then Is_Protected_Type (Typ)
7425 and then Ekind (Formal) /= E_In_Out_Parameter
7426 and then Ekind (Formal) /= E_Out_Parameter
7427 and then Nkind (Parameter_Type (Parent (Formal))) /=
7428 N_Access_Definition
7429 then
7430 null;
7432 -- All other cases are OK since a task entry or routine does
7433 -- not have a restriction on the mode of the first parameter
7434 -- of the overridden interface routine.
7436 else
7437 Overridden_Subp := Candidate;
7438 return;
7439 end if;
7440 end;
7442 -- Functions can override abstract interface functions
7444 elsif Ekind (Def_Id) = E_Function
7445 and then Ekind (Subp) = E_Function
7446 and then Matches_Prefixed_View_Profile
7447 (Parameter_Specifications (Parent (Def_Id)),
7448 Parameter_Specifications (Parent (Subp)))
7449 and then Etype (Def_Id) = Etype (Subp)
7450 then
7451 Candidate := Subp;
7453 -- If an inherited subprogram is implemented by a protected
7454 -- function, then the first parameter of the inherited
7455 -- subprogram shall be of mode in, but not an access-to-
7456 -- variable parameter (RM 9.4(11/9)).
7458 if Present (First_Formal (Subp))
7459 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7460 and then
7461 (not Is_Access_Type (Etype (First_Formal (Subp)))
7462 or else
7463 Is_Access_Constant (Etype (First_Formal (Subp))))
7464 then
7465 Overridden_Subp := Subp;
7466 return;
7467 end if;
7468 end if;
7470 Hom := Homonym (Hom);
7471 end loop;
7473 -- After examining all candidates for overriding, we are left with
7474 -- the best match, which is a mode-incompatible interface routine.
7476 if In_Scope and then Present (Candidate) then
7477 Error_Msg_PT (Def_Id, Candidate);
7478 end if;
7480 Overridden_Subp := Candidate;
7481 return;
7482 end;
7483 end Check_Synchronized_Overriding;
7485 ---------------------------
7486 -- Check_Type_Conformant --
7487 ---------------------------
7489 procedure Check_Type_Conformant
7490 (New_Id : Entity_Id;
7491 Old_Id : Entity_Id;
7492 Err_Loc : Node_Id := Empty)
7494 Result : Boolean;
7495 pragma Warnings (Off, Result);
7496 begin
7497 Check_Conformance
7498 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7499 end Check_Type_Conformant;
7501 ---------------------------
7502 -- Can_Override_Operator --
7503 ---------------------------
7505 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7506 Typ : Entity_Id;
7508 begin
7509 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7510 return False;
7512 else
7513 Typ := Base_Type (Etype (First_Formal (Subp)));
7515 -- Check explicitly that the operation is a primitive of the type
7517 return Operator_Matches_Spec (Subp, Subp)
7518 and then not Is_Generic_Type (Typ)
7519 and then Scope (Subp) = Scope (Typ)
7520 and then not Is_Class_Wide_Type (Typ);
7521 end if;
7522 end Can_Override_Operator;
7524 ----------------------
7525 -- Conforming_Types --
7526 ----------------------
7528 function Conforming_Types
7529 (T1 : Entity_Id;
7530 T2 : Entity_Id;
7531 Ctype : Conformance_Type;
7532 Get_Inst : Boolean := False) return Boolean
7534 function Base_Types_Match
7535 (Typ_1 : Entity_Id;
7536 Typ_2 : Entity_Id) return Boolean;
7537 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7538 -- in different scopes (e.g. parent and child instances), then verify
7539 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7540 -- the same subtype chain. The whole purpose of this procedure is to
7541 -- prevent spurious ambiguities in an instantiation that may arise if
7542 -- two distinct generic types are instantiated with the same actual.
7544 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7545 -- An access parameter can designate an incomplete type. If the
7546 -- incomplete type is the limited view of a type from a limited_
7547 -- with_clause, check whether the non-limited view is available.
7548 -- If it is a (non-limited) incomplete type, get the full view.
7550 function Matches_Limited_With_View
7551 (Typ_1 : Entity_Id;
7552 Typ_2 : Entity_Id) return Boolean;
7553 -- Returns True if and only if either Typ_1 denotes a limited view of
7554 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7555 -- the limited with view of a type is used in a subprogram declaration
7556 -- and the subprogram body is in the scope of a regular with clause for
7557 -- the same unit. In such a case, the two type entities are considered
7558 -- identical for purposes of conformance checking.
7560 ----------------------
7561 -- Base_Types_Match --
7562 ----------------------
7564 function Base_Types_Match
7565 (Typ_1 : Entity_Id;
7566 Typ_2 : Entity_Id) return Boolean
7568 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7569 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7571 begin
7572 if Typ_1 = Typ_2 then
7573 return True;
7575 elsif Base_1 = Base_2 then
7577 -- The following is too permissive. A more precise test should
7578 -- check that the generic actual is an ancestor subtype of the
7579 -- other ???.
7581 -- See code in Find_Corresponding_Spec that applies an additional
7582 -- filter to handle accidental amiguities in instances.
7584 return
7585 not Is_Generic_Actual_Type (Typ_1)
7586 or else not Is_Generic_Actual_Type (Typ_2)
7587 or else Scope (Typ_1) /= Scope (Typ_2);
7589 -- If Typ_2 is a generic actual type it is declared as the subtype of
7590 -- the actual. If that actual is itself a subtype we need to use its
7591 -- own base type to check for compatibility.
7593 elsif Ekind (Base_2) = Ekind (Typ_2)
7594 and then Base_1 = Base_Type (Base_2)
7595 then
7596 return True;
7598 elsif Ekind (Base_1) = Ekind (Typ_1)
7599 and then Base_2 = Base_Type (Base_1)
7600 then
7601 return True;
7603 else
7604 return False;
7605 end if;
7606 end Base_Types_Match;
7608 --------------------------
7609 -- Find_Designated_Type --
7610 --------------------------
7612 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7613 Desig : Entity_Id;
7615 begin
7616 Desig := Directly_Designated_Type (Typ);
7618 if Ekind (Desig) = E_Incomplete_Type then
7620 -- If regular incomplete type, get full view if available
7622 if Present (Full_View (Desig)) then
7623 Desig := Full_View (Desig);
7625 -- If limited view of a type, get non-limited view if available,
7626 -- and check again for a regular incomplete type.
7628 elsif Present (Non_Limited_View (Desig)) then
7629 Desig := Get_Full_View (Non_Limited_View (Desig));
7630 end if;
7631 end if;
7633 return Desig;
7634 end Find_Designated_Type;
7636 -------------------------------
7637 -- Matches_Limited_With_View --
7638 -------------------------------
7640 function Matches_Limited_With_View
7641 (Typ_1 : Entity_Id;
7642 Typ_2 : Entity_Id) return Boolean
7644 function Is_Matching_Limited_View
7645 (Typ : Entity_Id;
7646 View : Entity_Id) return Boolean;
7647 -- Determine whether non-limited view View denotes type Typ in some
7648 -- conformant fashion.
7650 ------------------------------
7651 -- Is_Matching_Limited_View --
7652 ------------------------------
7654 function Is_Matching_Limited_View
7655 (Typ : Entity_Id;
7656 View : Entity_Id) return Boolean
7658 Root_Typ : Entity_Id;
7659 Root_View : Entity_Id;
7661 begin
7662 -- The non-limited view directly denotes the type
7664 if Typ = View then
7665 return True;
7667 -- The type is a subtype of the non-limited view
7669 elsif Is_Subtype_Of (Typ, View) then
7670 return True;
7672 -- Both the non-limited view and the type denote class-wide types
7674 elsif Is_Class_Wide_Type (Typ)
7675 and then Is_Class_Wide_Type (View)
7676 then
7677 Root_Typ := Root_Type (Typ);
7678 Root_View := Root_Type (View);
7680 if Root_Typ = Root_View then
7681 return True;
7683 -- An incomplete tagged type and its full view may receive two
7684 -- distinct class-wide types when the related package has not
7685 -- been analyzed yet.
7687 -- package Pack is
7688 -- type T is tagged; -- CW_1
7689 -- type T is tagged null record; -- CW_2
7690 -- end Pack;
7692 -- This is because the package lacks any semantic information
7693 -- that may eventually link both views of T. As a consequence,
7694 -- a client of the limited view of Pack will see CW_2 while a
7695 -- client of the non-limited view of Pack will see CW_1.
7697 elsif Is_Incomplete_Type (Root_Typ)
7698 and then Present (Full_View (Root_Typ))
7699 and then Full_View (Root_Typ) = Root_View
7700 then
7701 return True;
7703 elsif Is_Incomplete_Type (Root_View)
7704 and then Present (Full_View (Root_View))
7705 and then Full_View (Root_View) = Root_Typ
7706 then
7707 return True;
7708 end if;
7709 end if;
7711 return False;
7712 end Is_Matching_Limited_View;
7714 -- Start of processing for Matches_Limited_With_View
7716 begin
7717 -- In some cases a type imported through a limited_with clause, and
7718 -- its non-limited view are both visible, for example in an anonymous
7719 -- access-to-class-wide type in a formal, or when building the body
7720 -- for a subprogram renaming after the subprogram has been frozen.
7721 -- In these cases both entities designate the same type. In addition,
7722 -- if one of them is an actual in an instance, it may be a subtype of
7723 -- the non-limited view of the other.
7725 if From_Limited_With (Typ_1)
7726 and then From_Limited_With (Typ_2)
7727 and then Available_View (Typ_1) = Available_View (Typ_2)
7728 then
7729 return True;
7731 elsif From_Limited_With (Typ_1) then
7732 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7734 elsif From_Limited_With (Typ_2) then
7735 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7737 else
7738 return False;
7739 end if;
7740 end Matches_Limited_With_View;
7742 -- Local variables
7744 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7746 Type_1 : Entity_Id := T1;
7747 Type_2 : Entity_Id := T2;
7749 -- Start of processing for Conforming_Types
7751 begin
7752 -- The context is an instance association for a formal access-to-
7753 -- subprogram type; the formal parameter types require mapping because
7754 -- they may denote other formal parameters of the generic unit.
7756 if Get_Inst then
7757 Type_1 := Get_Instance_Of (T1);
7758 Type_2 := Get_Instance_Of (T2);
7759 end if;
7761 -- If one of the types is a view of the other introduced by a limited
7762 -- with clause, treat these as conforming for all purposes.
7764 if Matches_Limited_With_View (T1, T2) then
7765 return True;
7767 elsif Base_Types_Match (Type_1, Type_2) then
7768 if Ctype <= Mode_Conformant then
7769 return True;
7771 else
7772 return
7773 Subtypes_Statically_Match (Type_1, Type_2)
7774 and then Dimensions_Match (Type_1, Type_2);
7775 end if;
7777 elsif Is_Incomplete_Or_Private_Type (Type_1)
7778 and then Present (Full_View (Type_1))
7779 and then Base_Types_Match (Full_View (Type_1), Type_2)
7780 then
7781 return
7782 Ctype <= Mode_Conformant
7783 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7785 elsif Ekind (Type_2) = E_Incomplete_Type
7786 and then Present (Full_View (Type_2))
7787 and then Base_Types_Match (Type_1, Full_View (Type_2))
7788 then
7789 return
7790 Ctype <= Mode_Conformant
7791 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7793 elsif Is_Private_Type (Type_2)
7794 and then In_Instance
7795 and then Present (Full_View (Type_2))
7796 and then Base_Types_Match (Type_1, Full_View (Type_2))
7797 then
7798 return
7799 Ctype <= Mode_Conformant
7800 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7802 -- Another confusion between views in a nested instance with an
7803 -- actual private type whose full view is not in scope.
7805 elsif Ekind (Type_2) = E_Private_Subtype
7806 and then In_Instance
7807 and then Etype (Type_2) = Type_1
7808 then
7809 return True;
7811 -- In Ada 2012, incomplete types (including limited views) can appear
7812 -- as actuals in instantiations, where they are conformant to the
7813 -- corresponding incomplete formal.
7815 elsif Is_Incomplete_Type (Type_1)
7816 and then Is_Incomplete_Type (Type_2)
7817 and then In_Instance
7818 and then (Used_As_Generic_Actual (Type_1)
7819 or else Used_As_Generic_Actual (Type_2))
7820 then
7821 return True;
7822 end if;
7824 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7825 -- treated recursively because they carry a signature. As far as
7826 -- conformance is concerned, convention plays no role, and either
7827 -- or both could be access to protected subprograms.
7829 Are_Anonymous_Access_To_Subprogram_Types :=
7830 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7831 E_Anonymous_Access_Protected_Subprogram_Type)
7832 and then
7833 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7834 E_Anonymous_Access_Protected_Subprogram_Type);
7836 -- Test anonymous access type case. For this case, static subtype
7837 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7838 -- the base types because we may have built internal subtype entities
7839 -- to handle null-excluding types (see Process_Formals).
7841 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7842 and then
7843 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7845 -- Ada 2005 (AI-254)
7847 or else Are_Anonymous_Access_To_Subprogram_Types
7848 then
7849 declare
7850 Desig_1 : Entity_Id;
7851 Desig_2 : Entity_Id;
7853 begin
7854 -- In Ada 2005, access constant indicators must match for
7855 -- subtype conformance.
7857 if Ada_Version >= Ada_2005
7858 and then Ctype >= Subtype_Conformant
7859 and then
7860 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7861 then
7862 return False;
7863 end if;
7865 Desig_1 := Find_Designated_Type (Type_1);
7866 Desig_2 := Find_Designated_Type (Type_2);
7868 -- If the context is an instance association for a formal
7869 -- access-to-subprogram type; formal access parameter designated
7870 -- types require mapping because they may denote other formal
7871 -- parameters of the generic unit.
7873 if Get_Inst then
7874 Desig_1 := Get_Instance_Of (Desig_1);
7875 Desig_2 := Get_Instance_Of (Desig_2);
7876 end if;
7878 -- It is possible for a Class_Wide_Type to be introduced for an
7879 -- incomplete type, in which case there is a separate class_ wide
7880 -- type for the full view. The types conform if their Etypes
7881 -- conform, i.e. one may be the full view of the other. This can
7882 -- only happen in the context of an access parameter, other uses
7883 -- of an incomplete Class_Wide_Type are illegal.
7885 if Is_Class_Wide_Type (Desig_1)
7886 and then
7887 Is_Class_Wide_Type (Desig_2)
7888 then
7889 return
7890 Conforming_Types
7891 (Etype (Base_Type (Desig_1)),
7892 Etype (Base_Type (Desig_2)), Ctype);
7894 elsif Are_Anonymous_Access_To_Subprogram_Types then
7895 if Ada_Version < Ada_2005 then
7896 return
7897 Ctype = Type_Conformant
7898 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7900 -- We must check the conformance of the signatures themselves
7902 else
7903 declare
7904 Conformant : Boolean;
7905 begin
7906 Check_Conformance
7907 (Desig_1, Desig_2, Ctype, False, Conformant);
7908 return Conformant;
7909 end;
7910 end if;
7912 -- A limited view of an actual matches the corresponding
7913 -- incomplete formal.
7915 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7916 and then From_Limited_With (Desig_2)
7917 and then Used_As_Generic_Actual (Etype (Desig_2))
7918 then
7919 return True;
7921 else
7922 return Base_Type (Desig_1) = Base_Type (Desig_2)
7923 and then (Ctype = Type_Conformant
7924 or else
7925 Subtypes_Statically_Match (Desig_1, Desig_2));
7926 end if;
7927 end;
7929 -- Otherwise definitely no match
7931 else
7932 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7933 and then Is_Access_Type (Type_2))
7934 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7935 and then Is_Access_Type (Type_1)))
7936 and then
7937 Conforming_Types
7938 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7939 then
7940 May_Hide_Profile := True;
7941 end if;
7943 return False;
7944 end if;
7945 end Conforming_Types;
7947 --------------------------
7948 -- Create_Extra_Formals --
7949 --------------------------
7951 procedure Create_Extra_Formals (E : Entity_Id) is
7952 First_Extra : Entity_Id := Empty;
7953 Formal : Entity_Id;
7954 Last_Extra : Entity_Id := Empty;
7956 function Add_Extra_Formal
7957 (Assoc_Entity : Entity_Id;
7958 Typ : Entity_Id;
7959 Scope : Entity_Id;
7960 Suffix : String) return Entity_Id;
7961 -- Add an extra formal to the current list of formals and extra formals.
7962 -- The extra formal is added to the end of the list of extra formals,
7963 -- and also returned as the result. These formals are always of mode IN.
7964 -- The new formal has the type Typ, is declared in Scope, and its name
7965 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7966 -- The following suffixes are currently used. They should not be changed
7967 -- without coordinating with CodePeer, which makes use of these to
7968 -- provide better messages.
7970 -- O denotes the Constrained bit.
7971 -- L denotes the accessibility level.
7972 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7973 -- the full list in exp_ch6.BIP_Formal_Kind.
7975 ----------------------
7976 -- Add_Extra_Formal --
7977 ----------------------
7979 function Add_Extra_Formal
7980 (Assoc_Entity : Entity_Id;
7981 Typ : Entity_Id;
7982 Scope : Entity_Id;
7983 Suffix : String) return Entity_Id
7985 EF : constant Entity_Id :=
7986 Make_Defining_Identifier (Sloc (Assoc_Entity),
7987 Chars => New_External_Name (Chars (Assoc_Entity),
7988 Suffix => Suffix));
7990 begin
7991 -- A little optimization. Never generate an extra formal for the
7992 -- _init operand of an initialization procedure, since it could
7993 -- never be used.
7995 if Chars (Formal) = Name_uInit then
7996 return Empty;
7997 end if;
7999 Set_Ekind (EF, E_In_Parameter);
8000 Set_Actual_Subtype (EF, Typ);
8001 Set_Etype (EF, Typ);
8002 Set_Scope (EF, Scope);
8003 Set_Mechanism (EF, Default_Mechanism);
8004 Set_Formal_Validity (EF);
8006 if No (First_Extra) then
8007 First_Extra := EF;
8008 Set_Extra_Formals (Scope, EF);
8009 end if;
8011 if Present (Last_Extra) then
8012 Set_Extra_Formal (Last_Extra, EF);
8013 end if;
8015 Last_Extra := EF;
8017 return EF;
8018 end Add_Extra_Formal;
8020 -- Local variables
8022 Formal_Type : Entity_Id;
8023 P_Formal : Entity_Id := Empty;
8025 -- Start of processing for Create_Extra_Formals
8027 begin
8028 -- We never generate extra formals if expansion is not active because we
8029 -- don't need them unless we are generating code.
8031 if not Expander_Active then
8032 return;
8033 end if;
8035 -- No need to generate extra formals in interface thunks whose target
8036 -- primitive has no extra formals.
8038 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8039 return;
8040 end if;
8042 -- If this is a derived subprogram then the subtypes of the parent
8043 -- subprogram's formal parameters will be used to determine the need
8044 -- for extra formals.
8046 if Is_Overloadable (E) and then Present (Alias (E)) then
8047 P_Formal := First_Formal (Alias (E));
8048 end if;
8050 Formal := First_Formal (E);
8051 while Present (Formal) loop
8052 Last_Extra := Formal;
8053 Next_Formal (Formal);
8054 end loop;
8056 -- If Extra_Formals were already created, don't do it again. This
8057 -- situation may arise for subprogram types created as part of
8058 -- dispatching calls (see Expand_Dispatching_Call).
8060 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8061 return;
8062 end if;
8064 -- If the subprogram is a predefined dispatching subprogram then don't
8065 -- generate any extra constrained or accessibility level formals. In
8066 -- general we suppress these for internal subprograms (by not calling
8067 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8068 -- generated stream attributes do get passed through because extra
8069 -- build-in-place formals are needed in some cases (limited 'Input).
8071 if Is_Predefined_Internal_Operation (E) then
8072 goto Test_For_Func_Result_Extras;
8073 end if;
8075 Formal := First_Formal (E);
8076 while Present (Formal) loop
8078 -- Create extra formal for supporting the attribute 'Constrained.
8079 -- The case of a private type view without discriminants also
8080 -- requires the extra formal if the underlying type has defaulted
8081 -- discriminants.
8083 if Ekind (Formal) /= E_In_Parameter then
8084 if Present (P_Formal) then
8085 Formal_Type := Etype (P_Formal);
8086 else
8087 Formal_Type := Etype (Formal);
8088 end if;
8090 -- Do not produce extra formals for Unchecked_Union parameters.
8091 -- Jump directly to the end of the loop.
8093 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8094 goto Skip_Extra_Formal_Generation;
8095 end if;
8097 if not Has_Discriminants (Formal_Type)
8098 and then Ekind (Formal_Type) in Private_Kind
8099 and then Present (Underlying_Type (Formal_Type))
8100 then
8101 Formal_Type := Underlying_Type (Formal_Type);
8102 end if;
8104 -- Suppress the extra formal if formal's subtype is constrained or
8105 -- indefinite, or we're compiling for Ada 2012 and the underlying
8106 -- type is tagged and limited. In Ada 2012, a limited tagged type
8107 -- can have defaulted discriminants, but 'Constrained is required
8108 -- to return True, so the formal is never needed (see AI05-0214).
8109 -- Note that this ensures consistency of calling sequences for
8110 -- dispatching operations when some types in a class have defaults
8111 -- on discriminants and others do not (and requiring the extra
8112 -- formal would introduce distributed overhead).
8114 -- If the type does not have a completion yet, treat as prior to
8115 -- Ada 2012 for consistency.
8117 if Has_Discriminants (Formal_Type)
8118 and then not Is_Constrained (Formal_Type)
8119 and then Is_Definite_Subtype (Formal_Type)
8120 and then (Ada_Version < Ada_2012
8121 or else No (Underlying_Type (Formal_Type))
8122 or else not
8123 (Is_Limited_Type (Formal_Type)
8124 and then
8125 (Is_Tagged_Type
8126 (Underlying_Type (Formal_Type)))))
8127 then
8128 Set_Extra_Constrained
8129 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8130 end if;
8131 end if;
8133 -- Create extra formal for supporting accessibility checking. This
8134 -- is done for both anonymous access formals and formals of named
8135 -- access types that are marked as controlling formals. The latter
8136 -- case can occur when Expand_Dispatching_Call creates a subprogram
8137 -- type and substitutes the types of access-to-class-wide actuals
8138 -- for the anonymous access-to-specific-type of controlling formals.
8139 -- Base_Type is applied because in cases where there is a null
8140 -- exclusion the formal may have an access subtype.
8142 -- This is suppressed if we specifically suppress accessibility
8143 -- checks at the package level for either the subprogram, or the
8144 -- package in which it resides. However, we do not suppress it
8145 -- simply if the scope has accessibility checks suppressed, since
8146 -- this could cause trouble when clients are compiled with a
8147 -- different suppression setting. The explicit checks at the
8148 -- package level are safe from this point of view.
8150 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8151 or else (Is_Controlling_Formal (Formal)
8152 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8153 and then not
8154 (Explicit_Suppress (E, Accessibility_Check)
8155 or else
8156 Explicit_Suppress (Scope (E), Accessibility_Check))
8157 and then
8158 (No (P_Formal)
8159 or else Present (Extra_Accessibility (P_Formal)))
8160 then
8161 Set_Extra_Accessibility
8162 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8163 end if;
8165 -- This label is required when skipping extra formal generation for
8166 -- Unchecked_Union parameters.
8168 <<Skip_Extra_Formal_Generation>>
8170 if Present (P_Formal) then
8171 Next_Formal (P_Formal);
8172 end if;
8174 Next_Formal (Formal);
8175 end loop;
8177 <<Test_For_Func_Result_Extras>>
8179 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8180 -- function call is ... determined by the point of call ...".
8182 if Needs_Result_Accessibility_Level (E) then
8183 Set_Extra_Accessibility_Of_Result
8184 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8185 end if;
8187 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8188 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8190 if Is_Build_In_Place_Function (E) then
8191 declare
8192 Result_Subt : constant Entity_Id := Etype (E);
8193 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8194 Formal_Typ : Entity_Id;
8195 Subp_Decl : Node_Id;
8196 Discard : Entity_Id;
8198 begin
8199 -- In the case of functions with unconstrained result subtypes,
8200 -- add a 4-state formal indicating whether the return object is
8201 -- allocated by the caller (1), or should be allocated by the
8202 -- callee on the secondary stack (2), in the global heap (3), or
8203 -- in a user-defined storage pool (4). For the moment we just use
8204 -- Natural for the type of this formal. Note that this formal
8205 -- isn't usually needed in the case where the result subtype is
8206 -- constrained, but it is needed when the function has a tagged
8207 -- result, because generally such functions can be called in a
8208 -- dispatching context and such calls must be handled like calls
8209 -- to a class-wide function.
8211 if Needs_BIP_Alloc_Form (E) then
8212 Discard :=
8213 Add_Extra_Formal
8214 (E, Standard_Natural,
8215 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8217 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8218 -- use a user-defined pool. This formal is not added on
8219 -- ZFP as those targets do not support pools.
8221 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8222 Discard :=
8223 Add_Extra_Formal
8224 (E, RTE (RE_Root_Storage_Pool_Ptr),
8225 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8226 end if;
8227 end if;
8229 -- In the case of functions whose result type needs finalization,
8230 -- add an extra formal which represents the finalization master.
8232 if Needs_BIP_Finalization_Master (E) then
8233 Discard :=
8234 Add_Extra_Formal
8235 (E, RTE (RE_Finalization_Master_Ptr),
8236 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8237 end if;
8239 -- When the result type contains tasks, add two extra formals: the
8240 -- master of the tasks to be created, and the caller's activation
8241 -- chain.
8243 if Has_Task (Full_Subt) then
8244 Discard :=
8245 Add_Extra_Formal
8246 (E, RTE (RE_Master_Id),
8247 E, BIP_Formal_Suffix (BIP_Task_Master));
8248 Discard :=
8249 Add_Extra_Formal
8250 (E, RTE (RE_Activation_Chain_Access),
8251 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8252 end if;
8254 -- All build-in-place functions get an extra formal that will be
8255 -- passed the address of the return object within the caller.
8257 Formal_Typ :=
8258 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8260 -- Incomplete_View_From_Limited_With is needed here because
8261 -- gigi gets confused if the designated type is the full view
8262 -- coming from a limited-with'ed package. In the normal case,
8263 -- (no limited with) Incomplete_View_From_Limited_With
8264 -- returns Result_Subt.
8266 Set_Directly_Designated_Type
8267 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8268 Set_Etype (Formal_Typ, Formal_Typ);
8269 Set_Depends_On_Private
8270 (Formal_Typ, Has_Private_Component (Formal_Typ));
8271 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8272 Set_Is_Access_Constant (Formal_Typ, False);
8274 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8275 -- the designated type comes from the limited view (for back-end
8276 -- purposes).
8278 Set_From_Limited_With
8279 (Formal_Typ, From_Limited_With (Result_Subt));
8281 Layout_Type (Formal_Typ);
8283 -- Force the definition of the Itype in case of internal function
8284 -- calls within the same or nested scope.
8286 if Is_Subprogram_Or_Generic_Subprogram (E) then
8287 Subp_Decl := Parent (E);
8289 -- The insertion point for an Itype reference should be after
8290 -- the unit declaration node of the subprogram. An exception
8291 -- to this are inherited operations from a parent type in which
8292 -- case the derived type acts as their parent.
8294 if Nkind_In (Subp_Decl, N_Function_Specification,
8295 N_Procedure_Specification)
8296 then
8297 Subp_Decl := Parent (Subp_Decl);
8298 end if;
8300 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8301 end if;
8303 Discard :=
8304 Add_Extra_Formal
8305 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8306 end;
8307 end if;
8309 -- If this is an instance of a generic, we need to have extra formals
8310 -- for the Alias.
8312 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8313 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8314 end if;
8315 end Create_Extra_Formals;
8317 -----------------------------
8318 -- Enter_Overloaded_Entity --
8319 -----------------------------
8321 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8322 function Matches_Predefined_Op return Boolean;
8323 -- This returns an approximation of whether S matches a predefined
8324 -- operator, based on the operator symbol, and the parameter and result
8325 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8327 ---------------------------
8328 -- Matches_Predefined_Op --
8329 ---------------------------
8331 function Matches_Predefined_Op return Boolean is
8332 Formal_1 : constant Entity_Id := First_Formal (S);
8333 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8334 Op : constant Name_Id := Chars (S);
8335 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8336 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8338 begin
8339 -- Binary operator
8341 if Present (Formal_2) then
8342 declare
8343 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8345 begin
8346 -- All but "&" and "**" have same-types parameters
8348 case Op is
8349 when Name_Op_Concat
8350 | Name_Op_Expon
8352 null;
8354 when others =>
8355 if Type_1 /= Type_2 then
8356 return False;
8357 end if;
8358 end case;
8360 -- Check parameter and result types
8362 case Op is
8363 when Name_Op_And
8364 | Name_Op_Or
8365 | Name_Op_Xor
8367 return
8368 Is_Boolean_Type (Result_Type)
8369 and then Result_Type = Type_1;
8371 when Name_Op_Mod
8372 | Name_Op_Rem
8374 return
8375 Is_Integer_Type (Result_Type)
8376 and then Result_Type = Type_1;
8378 when Name_Op_Add
8379 | Name_Op_Divide
8380 | Name_Op_Multiply
8381 | Name_Op_Subtract
8383 return
8384 Is_Numeric_Type (Result_Type)
8385 and then Result_Type = Type_1;
8387 when Name_Op_Eq
8388 | Name_Op_Ne
8390 return
8391 Is_Boolean_Type (Result_Type)
8392 and then not Is_Limited_Type (Type_1);
8394 when Name_Op_Ge
8395 | Name_Op_Gt
8396 | Name_Op_Le
8397 | Name_Op_Lt
8399 return
8400 Is_Boolean_Type (Result_Type)
8401 and then (Is_Array_Type (Type_1)
8402 or else Is_Scalar_Type (Type_1));
8404 when Name_Op_Concat =>
8405 return Is_Array_Type (Result_Type);
8407 when Name_Op_Expon =>
8408 return
8409 (Is_Integer_Type (Result_Type)
8410 or else Is_Floating_Point_Type (Result_Type))
8411 and then Result_Type = Type_1
8412 and then Type_2 = Standard_Integer;
8414 when others =>
8415 raise Program_Error;
8416 end case;
8417 end;
8419 -- Unary operator
8421 else
8422 case Op is
8423 when Name_Op_Abs
8424 | Name_Op_Add
8425 | Name_Op_Subtract
8427 return
8428 Is_Numeric_Type (Result_Type)
8429 and then Result_Type = Type_1;
8431 when Name_Op_Not =>
8432 return
8433 Is_Boolean_Type (Result_Type)
8434 and then Result_Type = Type_1;
8436 when others =>
8437 raise Program_Error;
8438 end case;
8439 end if;
8440 end Matches_Predefined_Op;
8442 -- Local variables
8444 E : Entity_Id := Current_Entity_In_Scope (S);
8445 C_E : Entity_Id := Current_Entity (S);
8447 -- Start of processing for Enter_Overloaded_Entity
8449 begin
8450 if Present (E) then
8451 Set_Has_Homonym (E);
8452 Set_Has_Homonym (S);
8453 end if;
8455 Set_Is_Immediately_Visible (S);
8456 Set_Scope (S, Current_Scope);
8458 -- Chain new entity if front of homonym in current scope, so that
8459 -- homonyms are contiguous.
8461 if Present (E) and then E /= C_E then
8462 while Homonym (C_E) /= E loop
8463 C_E := Homonym (C_E);
8464 end loop;
8466 Set_Homonym (C_E, S);
8468 else
8469 E := C_E;
8470 Set_Current_Entity (S);
8471 end if;
8473 Set_Homonym (S, E);
8475 if Is_Inherited_Operation (S) then
8476 Append_Inherited_Subprogram (S);
8477 else
8478 Append_Entity (S, Current_Scope);
8479 end if;
8481 Set_Public_Status (S);
8483 if Debug_Flag_E then
8484 Write_Str ("New overloaded entity chain: ");
8485 Write_Name (Chars (S));
8487 E := S;
8488 while Present (E) loop
8489 Write_Str (" "); Write_Int (Int (E));
8490 E := Homonym (E);
8491 end loop;
8493 Write_Eol;
8494 end if;
8496 -- Generate warning for hiding
8498 if Warn_On_Hiding
8499 and then Comes_From_Source (S)
8500 and then In_Extended_Main_Source_Unit (S)
8501 then
8502 E := S;
8503 loop
8504 E := Homonym (E);
8505 exit when No (E);
8507 -- Warn unless genuine overloading. Do not emit warning on
8508 -- hiding predefined operators in Standard (these are either an
8509 -- (artifact of our implicit declarations, or simple noise) but
8510 -- keep warning on a operator defined on a local subtype, because
8511 -- of the real danger that different operators may be applied in
8512 -- various parts of the program.
8514 -- Note that if E and S have the same scope, there is never any
8515 -- hiding. Either the two conflict, and the program is illegal,
8516 -- or S is overriding an implicit inherited subprogram.
8518 if Scope (E) /= Scope (S)
8519 and then (not Is_Overloadable (E)
8520 or else Subtype_Conformant (E, S))
8521 and then (Is_Immediately_Visible (E)
8522 or else Is_Potentially_Use_Visible (S))
8523 then
8524 if Scope (E) = Standard_Standard then
8525 if Nkind (S) = N_Defining_Operator_Symbol
8526 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8527 Scope (S)
8528 and then Matches_Predefined_Op
8529 then
8530 Error_Msg_N
8531 ("declaration of & hides predefined operator?h?", S);
8532 end if;
8534 -- E not immediately within Standard
8536 else
8537 Error_Msg_Sloc := Sloc (E);
8538 Error_Msg_N ("declaration of & hides one #?h?", S);
8539 end if;
8540 end if;
8541 end loop;
8542 end if;
8543 end Enter_Overloaded_Entity;
8545 -----------------------------
8546 -- Check_Untagged_Equality --
8547 -----------------------------
8549 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8550 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8551 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8552 Obj_Decl : Node_Id;
8554 begin
8555 -- This check applies only if we have a subprogram declaration with an
8556 -- untagged record type.
8558 if Nkind (Decl) /= N_Subprogram_Declaration
8559 or else not Is_Record_Type (Typ)
8560 or else Is_Tagged_Type (Typ)
8561 then
8562 return;
8563 end if;
8565 -- In Ada 2012 case, we will output errors or warnings depending on
8566 -- the setting of debug flag -gnatd.E.
8568 if Ada_Version >= Ada_2012 then
8569 Error_Msg_Warn := Debug_Flag_Dot_EE;
8571 -- In earlier versions of Ada, nothing to do unless we are warning on
8572 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8574 else
8575 if not Warn_On_Ada_2012_Compatibility then
8576 return;
8577 end if;
8578 end if;
8580 -- Cases where the type has already been frozen
8582 if Is_Frozen (Typ) then
8584 -- The check applies to a primitive operation, so check that type
8585 -- and equality operation are in the same scope.
8587 if Scope (Typ) /= Current_Scope then
8588 return;
8590 -- If the type is a generic actual (sub)type, the operation is not
8591 -- primitive either because the base type is declared elsewhere.
8593 elsif Is_Generic_Actual_Type (Typ) then
8594 return;
8596 -- Here we have a definite error of declaration after freezing
8598 else
8599 if Ada_Version >= Ada_2012 then
8600 Error_Msg_NE
8601 ("equality operator must be declared before type & is "
8602 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8604 -- In Ada 2012 mode with error turned to warning, output one
8605 -- more warning to warn that the equality operation may not
8606 -- compose. This is the consequence of ignoring the error.
8608 if Error_Msg_Warn then
8609 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8610 end if;
8612 else
8613 Error_Msg_NE
8614 ("equality operator must be declared before type& is "
8615 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8616 end if;
8618 -- If we are in the package body, we could just move the
8619 -- declaration to the package spec, so add a message saying that.
8621 if In_Package_Body (Scope (Typ)) then
8622 if Ada_Version >= Ada_2012 then
8623 Error_Msg_N
8624 ("\move declaration to package spec<<", Eq_Op);
8625 else
8626 Error_Msg_N
8627 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8628 end if;
8630 -- Otherwise try to find the freezing point for better message.
8632 else
8633 Obj_Decl := Next (Parent (Typ));
8634 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8635 if Nkind (Obj_Decl) = N_Object_Declaration
8636 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8637 then
8638 -- Freezing point, output warnings
8640 if Ada_Version >= Ada_2012 then
8641 Error_Msg_NE
8642 ("type& is frozen by declaration??", Obj_Decl, Typ);
8643 Error_Msg_N
8644 ("\an equality operator cannot be declared after "
8645 & "this point??",
8646 Obj_Decl);
8647 else
8648 Error_Msg_NE
8649 ("type& is frozen by declaration (Ada 2012)?y?",
8650 Obj_Decl, Typ);
8651 Error_Msg_N
8652 ("\an equality operator cannot be declared after "
8653 & "this point (Ada 2012)?y?",
8654 Obj_Decl);
8655 end if;
8657 exit;
8659 -- If we reach generated code for subprogram declaration
8660 -- or body, it is the body that froze the type and the
8661 -- declaration is legal.
8663 elsif Sloc (Obj_Decl) = Sloc (Decl) then
8664 return;
8665 end if;
8667 Next (Obj_Decl);
8668 end loop;
8669 end if;
8670 end if;
8672 -- Here if type is not frozen yet. It is illegal to have a primitive
8673 -- equality declared in the private part if the type is visible.
8675 elsif not In_Same_List (Parent (Typ), Decl)
8676 and then not Is_Limited_Type (Typ)
8677 then
8678 -- Shouldn't we give an RM reference here???
8680 if Ada_Version >= Ada_2012 then
8681 Error_Msg_N
8682 ("equality operator appears too late<<", Eq_Op);
8683 else
8684 Error_Msg_N
8685 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8686 end if;
8688 -- No error detected
8690 else
8691 return;
8692 end if;
8693 end Check_Untagged_Equality;
8695 -----------------------------
8696 -- Find_Corresponding_Spec --
8697 -----------------------------
8699 function Find_Corresponding_Spec
8700 (N : Node_Id;
8701 Post_Error : Boolean := True) return Entity_Id
8703 Spec : constant Node_Id := Specification (N);
8704 Designator : constant Entity_Id := Defining_Entity (Spec);
8706 E : Entity_Id;
8708 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8709 -- Even if fully conformant, a body may depend on a generic actual when
8710 -- the spec does not, or vice versa, in which case they were distinct
8711 -- entities in the generic.
8713 -------------------------------
8714 -- Different_Generic_Profile --
8715 -------------------------------
8717 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8718 F1, F2 : Entity_Id;
8720 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8721 -- Check that the types of corresponding formals have the same
8722 -- generic actual if any. We have to account for subtypes of a
8723 -- generic formal, declared between a spec and a body, which may
8724 -- appear distinct in an instance but matched in the generic, and
8725 -- the subtype may be used either in the spec or the body of the
8726 -- subprogram being checked.
8728 -------------------------
8729 -- Same_Generic_Actual --
8730 -------------------------
8732 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8734 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8735 -- Predicate to check whether S1 is a subtype of S2 in the source
8736 -- of the instance.
8738 -------------------------
8739 -- Is_Declared_Subtype --
8740 -------------------------
8742 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8743 begin
8744 return Comes_From_Source (Parent (S1))
8745 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8746 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8747 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8748 end Is_Declared_Subtype;
8750 -- Start of processing for Same_Generic_Actual
8752 begin
8753 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8754 or else Is_Declared_Subtype (T1, T2)
8755 or else Is_Declared_Subtype (T2, T1);
8756 end Same_Generic_Actual;
8758 -- Start of processing for Different_Generic_Profile
8760 begin
8761 if not In_Instance then
8762 return False;
8764 elsif Ekind (E) = E_Function
8765 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8766 then
8767 return True;
8768 end if;
8770 F1 := First_Formal (Designator);
8771 F2 := First_Formal (E);
8772 while Present (F1) loop
8773 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8774 return True;
8775 end if;
8777 Next_Formal (F1);
8778 Next_Formal (F2);
8779 end loop;
8781 return False;
8782 end Different_Generic_Profile;
8784 -- Start of processing for Find_Corresponding_Spec
8786 begin
8787 E := Current_Entity (Designator);
8788 while Present (E) loop
8790 -- We are looking for a matching spec. It must have the same scope,
8791 -- and the same name, and either be type conformant, or be the case
8792 -- of a library procedure spec and its body (which belong to one
8793 -- another regardless of whether they are type conformant or not).
8795 if Scope (E) = Current_Scope then
8796 if Current_Scope = Standard_Standard
8797 or else (Ekind (E) = Ekind (Designator)
8798 and then Type_Conformant (E, Designator))
8799 then
8800 -- Within an instantiation, we know that spec and body are
8801 -- subtype conformant, because they were subtype conformant in
8802 -- the generic. We choose the subtype-conformant entity here as
8803 -- well, to resolve spurious ambiguities in the instance that
8804 -- were not present in the generic (i.e. when two different
8805 -- types are given the same actual). If we are looking for a
8806 -- spec to match a body, full conformance is expected.
8808 if In_Instance then
8810 -- Inherit the convention and "ghostness" of the matching
8811 -- spec to ensure proper full and subtype conformance.
8813 Set_Convention (Designator, Convention (E));
8815 -- Skip past subprogram bodies and subprogram renamings that
8816 -- may appear to have a matching spec, but that aren't fully
8817 -- conformant with it. That can occur in cases where an
8818 -- actual type causes unrelated homographs in the instance.
8820 if Nkind_In (N, N_Subprogram_Body,
8821 N_Subprogram_Renaming_Declaration)
8822 and then Present (Homonym (E))
8823 and then not Fully_Conformant (Designator, E)
8824 then
8825 goto Next_Entity;
8827 elsif not Subtype_Conformant (Designator, E) then
8828 goto Next_Entity;
8830 elsif Different_Generic_Profile (E) then
8831 goto Next_Entity;
8832 end if;
8833 end if;
8835 -- Ada 2012 (AI05-0165): For internally generated bodies of
8836 -- null procedures locate the internally generated spec. We
8837 -- enforce mode conformance since a tagged type may inherit
8838 -- from interfaces several null primitives which differ only
8839 -- in the mode of the formals.
8841 if not (Comes_From_Source (E))
8842 and then Is_Null_Procedure (E)
8843 and then not Mode_Conformant (Designator, E)
8844 then
8845 null;
8847 -- For null procedures coming from source that are completions,
8848 -- analysis of the generated body will establish the link.
8850 elsif Comes_From_Source (E)
8851 and then Nkind (Spec) = N_Procedure_Specification
8852 and then Null_Present (Spec)
8853 then
8854 return E;
8856 -- Expression functions can be completions, but cannot be
8857 -- completed by an explicit body.
8859 elsif Comes_From_Source (E)
8860 and then Comes_From_Source (N)
8861 and then Nkind (N) = N_Subprogram_Body
8862 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8863 N_Expression_Function
8864 then
8865 Error_Msg_Sloc := Sloc (E);
8866 Error_Msg_N ("body conflicts with expression function#", N);
8867 return Empty;
8869 elsif not Has_Completion (E) then
8870 if Nkind (N) /= N_Subprogram_Body_Stub then
8871 Set_Corresponding_Spec (N, E);
8872 end if;
8874 Set_Has_Completion (E);
8875 return E;
8877 elsif Nkind (Parent (N)) = N_Subunit then
8879 -- If this is the proper body of a subunit, the completion
8880 -- flag is set when analyzing the stub.
8882 return E;
8884 -- If E is an internal function with a controlling result that
8885 -- was created for an operation inherited by a null extension,
8886 -- it may be overridden by a body without a previous spec (one
8887 -- more reason why these should be shunned). In that case we
8888 -- remove the generated body if present, because the current
8889 -- one is the explicit overriding.
8891 elsif Ekind (E) = E_Function
8892 and then Ada_Version >= Ada_2005
8893 and then not Comes_From_Source (E)
8894 and then Has_Controlling_Result (E)
8895 and then Is_Null_Extension (Etype (E))
8896 and then Comes_From_Source (Spec)
8897 then
8898 Set_Has_Completion (E, False);
8900 if Expander_Active
8901 and then Nkind (Parent (E)) = N_Function_Specification
8902 then
8903 Remove
8904 (Unit_Declaration_Node
8905 (Corresponding_Body (Unit_Declaration_Node (E))));
8907 return E;
8909 -- If expansion is disabled, or if the wrapper function has
8910 -- not been generated yet, this a late body overriding an
8911 -- inherited operation, or it is an overriding by some other
8912 -- declaration before the controlling result is frozen. In
8913 -- either case this is a declaration of a new entity.
8915 else
8916 return Empty;
8917 end if;
8919 -- If the body already exists, then this is an error unless
8920 -- the previous declaration is the implicit declaration of a
8921 -- derived subprogram. It is also legal for an instance to
8922 -- contain type conformant overloadable declarations (but the
8923 -- generic declaration may not), per 8.3(26/2).
8925 elsif No (Alias (E))
8926 and then not Is_Intrinsic_Subprogram (E)
8927 and then not In_Instance
8928 and then Post_Error
8929 then
8930 Error_Msg_Sloc := Sloc (E);
8932 if Is_Imported (E) then
8933 Error_Msg_NE
8934 ("body not allowed for imported subprogram & declared#",
8935 N, E);
8936 else
8937 Error_Msg_NE ("duplicate body for & declared#", N, E);
8938 end if;
8939 end if;
8941 -- Child units cannot be overloaded, so a conformance mismatch
8942 -- between body and a previous spec is an error.
8944 elsif Is_Child_Unit (E)
8945 and then
8946 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8947 and then
8948 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8949 N_Compilation_Unit
8950 and then Post_Error
8951 then
8952 Error_Msg_N
8953 ("body of child unit does not match previous declaration", N);
8954 end if;
8955 end if;
8957 <<Next_Entity>>
8958 E := Homonym (E);
8959 end loop;
8961 -- On exit, we know that no previous declaration of subprogram exists
8963 return Empty;
8964 end Find_Corresponding_Spec;
8966 ----------------------
8967 -- Fully_Conformant --
8968 ----------------------
8970 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8971 Result : Boolean;
8972 begin
8973 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8974 return Result;
8975 end Fully_Conformant;
8977 ----------------------------------
8978 -- Fully_Conformant_Expressions --
8979 ----------------------------------
8981 function Fully_Conformant_Expressions
8982 (Given_E1 : Node_Id;
8983 Given_E2 : Node_Id) return Boolean
8985 E1 : constant Node_Id := Original_Node (Given_E1);
8986 E2 : constant Node_Id := Original_Node (Given_E2);
8987 -- We always test conformance on original nodes, since it is possible
8988 -- for analysis and/or expansion to make things look as though they
8989 -- conform when they do not, e.g. by converting 1+2 into 3.
8991 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8992 renames Fully_Conformant_Expressions;
8994 function FCL (L1, L2 : List_Id) return Boolean;
8995 -- Compare elements of two lists for conformance. Elements have to be
8996 -- conformant, and actuals inserted as default parameters do not match
8997 -- explicit actuals with the same value.
8999 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
9000 -- Compare an operator node with a function call
9002 ---------
9003 -- FCL --
9004 ---------
9006 function FCL (L1, L2 : List_Id) return Boolean is
9007 N1, N2 : Node_Id;
9009 begin
9010 if L1 = No_List then
9011 N1 := Empty;
9012 else
9013 N1 := First (L1);
9014 end if;
9016 if L2 = No_List then
9017 N2 := Empty;
9018 else
9019 N2 := First (L2);
9020 end if;
9022 -- Compare two lists, skipping rewrite insertions (we want to compare
9023 -- the original trees, not the expanded versions).
9025 loop
9026 if Is_Rewrite_Insertion (N1) then
9027 Next (N1);
9028 elsif Is_Rewrite_Insertion (N2) then
9029 Next (N2);
9030 elsif No (N1) then
9031 return No (N2);
9032 elsif No (N2) then
9033 return False;
9034 elsif not FCE (N1, N2) then
9035 return False;
9036 else
9037 Next (N1);
9038 Next (N2);
9039 end if;
9040 end loop;
9041 end FCL;
9043 ---------
9044 -- FCO --
9045 ---------
9047 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
9048 Actuals : constant List_Id := Parameter_Associations (Call_Node);
9049 Act : Node_Id;
9051 begin
9052 if No (Actuals)
9053 or else Entity (Op_Node) /= Entity (Name (Call_Node))
9054 then
9055 return False;
9057 else
9058 Act := First (Actuals);
9060 if Nkind (Op_Node) in N_Binary_Op then
9061 if not FCE (Left_Opnd (Op_Node), Act) then
9062 return False;
9063 end if;
9065 Next (Act);
9066 end if;
9068 return Present (Act)
9069 and then FCE (Right_Opnd (Op_Node), Act)
9070 and then No (Next (Act));
9071 end if;
9072 end FCO;
9074 -- Start of processing for Fully_Conformant_Expressions
9076 begin
9077 -- Nonconformant if paren count does not match. Note: if some idiot
9078 -- complains that we don't do this right for more than 3 levels of
9079 -- parentheses, they will be treated with the respect they deserve.
9081 if Paren_Count (E1) /= Paren_Count (E2) then
9082 return False;
9084 -- If same entities are referenced, then they are conformant even if
9085 -- they have different forms (RM 8.3.1(19-20)).
9087 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9088 if Present (Entity (E1)) then
9089 return Entity (E1) = Entity (E2)
9091 -- One may be a discriminant that has been replaced by the
9092 -- corresponding discriminal.
9094 or else
9095 (Chars (Entity (E1)) = Chars (Entity (E2))
9096 and then Ekind (Entity (E1)) = E_Discriminant
9097 and then Ekind (Entity (E2)) = E_In_Parameter)
9099 -- The discriminant of a protected type is transformed into
9100 -- a local constant and then into a parameter of a protected
9101 -- operation.
9103 or else
9104 (Ekind (Entity (E1)) = E_Constant
9105 and then Ekind (Entity (E2)) = E_In_Parameter
9106 and then Present (Discriminal_Link (Entity (E1)))
9107 and then Discriminal_Link (Entity (E1)) =
9108 Discriminal_Link (Entity (E2)))
9110 -- AI12-050: The loop variables of quantified expressions
9111 -- match if they have the same identifier, even though they
9112 -- are different entities.
9114 or else
9115 (Chars (Entity (E1)) = Chars (Entity (E2))
9116 and then Ekind (Entity (E1)) = E_Loop_Parameter
9117 and then Ekind (Entity (E2)) = E_Loop_Parameter);
9119 elsif Nkind (E1) = N_Expanded_Name
9120 and then Nkind (E2) = N_Expanded_Name
9121 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9122 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9123 then
9124 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9126 else
9127 -- Identifiers in component associations don't always have
9128 -- entities, but their names must conform.
9130 return Nkind (E1) = N_Identifier
9131 and then Nkind (E2) = N_Identifier
9132 and then Chars (E1) = Chars (E2);
9133 end if;
9135 elsif Nkind (E1) = N_Character_Literal
9136 and then Nkind (E2) = N_Expanded_Name
9137 then
9138 return Nkind (Selector_Name (E2)) = N_Character_Literal
9139 and then Chars (E1) = Chars (Selector_Name (E2));
9141 elsif Nkind (E2) = N_Character_Literal
9142 and then Nkind (E1) = N_Expanded_Name
9143 then
9144 return Nkind (Selector_Name (E1)) = N_Character_Literal
9145 and then Chars (E2) = Chars (Selector_Name (E1));
9147 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9148 return FCO (E1, E2);
9150 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9151 return FCO (E2, E1);
9153 -- Otherwise we must have the same syntactic entity
9155 elsif Nkind (E1) /= Nkind (E2) then
9156 return False;
9158 -- At this point, we specialize by node type
9160 else
9161 case Nkind (E1) is
9162 when N_Aggregate =>
9163 return
9164 FCL (Expressions (E1), Expressions (E2))
9165 and then
9166 FCL (Component_Associations (E1),
9167 Component_Associations (E2));
9169 when N_Allocator =>
9170 if Nkind (Expression (E1)) = N_Qualified_Expression
9171 or else
9172 Nkind (Expression (E2)) = N_Qualified_Expression
9173 then
9174 return FCE (Expression (E1), Expression (E2));
9176 -- Check that the subtype marks and any constraints
9177 -- are conformant
9179 else
9180 declare
9181 Indic1 : constant Node_Id := Expression (E1);
9182 Indic2 : constant Node_Id := Expression (E2);
9183 Elt1 : Node_Id;
9184 Elt2 : Node_Id;
9186 begin
9187 if Nkind (Indic1) /= N_Subtype_Indication then
9188 return
9189 Nkind (Indic2) /= N_Subtype_Indication
9190 and then Entity (Indic1) = Entity (Indic2);
9192 elsif Nkind (Indic2) /= N_Subtype_Indication then
9193 return
9194 Nkind (Indic1) /= N_Subtype_Indication
9195 and then Entity (Indic1) = Entity (Indic2);
9197 else
9198 if Entity (Subtype_Mark (Indic1)) /=
9199 Entity (Subtype_Mark (Indic2))
9200 then
9201 return False;
9202 end if;
9204 Elt1 := First (Constraints (Constraint (Indic1)));
9205 Elt2 := First (Constraints (Constraint (Indic2)));
9206 while Present (Elt1) and then Present (Elt2) loop
9207 if not FCE (Elt1, Elt2) then
9208 return False;
9209 end if;
9211 Next (Elt1);
9212 Next (Elt2);
9213 end loop;
9215 return True;
9216 end if;
9217 end;
9218 end if;
9220 when N_Attribute_Reference =>
9221 return
9222 Attribute_Name (E1) = Attribute_Name (E2)
9223 and then FCL (Expressions (E1), Expressions (E2));
9225 when N_Binary_Op =>
9226 return
9227 Entity (E1) = Entity (E2)
9228 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9229 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9231 when N_Membership_Test
9232 | N_Short_Circuit
9234 return
9235 FCE (Left_Opnd (E1), Left_Opnd (E2))
9236 and then
9237 FCE (Right_Opnd (E1), Right_Opnd (E2));
9239 when N_Case_Expression =>
9240 declare
9241 Alt1 : Node_Id;
9242 Alt2 : Node_Id;
9244 begin
9245 if not FCE (Expression (E1), Expression (E2)) then
9246 return False;
9248 else
9249 Alt1 := First (Alternatives (E1));
9250 Alt2 := First (Alternatives (E2));
9251 loop
9252 if Present (Alt1) /= Present (Alt2) then
9253 return False;
9254 elsif No (Alt1) then
9255 return True;
9256 end if;
9258 if not FCE (Expression (Alt1), Expression (Alt2))
9259 or else not FCL (Discrete_Choices (Alt1),
9260 Discrete_Choices (Alt2))
9261 then
9262 return False;
9263 end if;
9265 Next (Alt1);
9266 Next (Alt2);
9267 end loop;
9268 end if;
9269 end;
9271 when N_Character_Literal =>
9272 return
9273 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9275 when N_Component_Association =>
9276 return
9277 FCL (Choices (E1), Choices (E2))
9278 and then
9279 FCE (Expression (E1), Expression (E2));
9281 when N_Explicit_Dereference =>
9282 return
9283 FCE (Prefix (E1), Prefix (E2));
9285 when N_Extension_Aggregate =>
9286 return
9287 FCL (Expressions (E1), Expressions (E2))
9288 and then Null_Record_Present (E1) =
9289 Null_Record_Present (E2)
9290 and then FCL (Component_Associations (E1),
9291 Component_Associations (E2));
9293 when N_Function_Call =>
9294 return
9295 FCE (Name (E1), Name (E2))
9296 and then
9297 FCL (Parameter_Associations (E1),
9298 Parameter_Associations (E2));
9300 when N_If_Expression =>
9301 return
9302 FCL (Expressions (E1), Expressions (E2));
9304 when N_Indexed_Component =>
9305 return
9306 FCE (Prefix (E1), Prefix (E2))
9307 and then
9308 FCL (Expressions (E1), Expressions (E2));
9310 when N_Integer_Literal =>
9311 return (Intval (E1) = Intval (E2));
9313 when N_Null =>
9314 return True;
9316 when N_Operator_Symbol =>
9317 return
9318 Chars (E1) = Chars (E2);
9320 when N_Others_Choice =>
9321 return True;
9323 when N_Parameter_Association =>
9324 return
9325 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9326 and then FCE (Explicit_Actual_Parameter (E1),
9327 Explicit_Actual_Parameter (E2));
9329 when N_Qualified_Expression
9330 | N_Type_Conversion
9331 | N_Unchecked_Type_Conversion
9333 return
9334 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9335 and then
9336 FCE (Expression (E1), Expression (E2));
9338 when N_Quantified_Expression =>
9339 if not FCE (Condition (E1), Condition (E2)) then
9340 return False;
9341 end if;
9343 if Present (Loop_Parameter_Specification (E1))
9344 and then Present (Loop_Parameter_Specification (E2))
9345 then
9346 declare
9347 L1 : constant Node_Id :=
9348 Loop_Parameter_Specification (E1);
9349 L2 : constant Node_Id :=
9350 Loop_Parameter_Specification (E2);
9352 begin
9353 return
9354 Reverse_Present (L1) = Reverse_Present (L2)
9355 and then
9356 FCE (Defining_Identifier (L1),
9357 Defining_Identifier (L2))
9358 and then
9359 FCE (Discrete_Subtype_Definition (L1),
9360 Discrete_Subtype_Definition (L2));
9361 end;
9363 elsif Present (Iterator_Specification (E1))
9364 and then Present (Iterator_Specification (E2))
9365 then
9366 declare
9367 I1 : constant Node_Id := Iterator_Specification (E1);
9368 I2 : constant Node_Id := Iterator_Specification (E2);
9370 begin
9371 return
9372 FCE (Defining_Identifier (I1),
9373 Defining_Identifier (I2))
9374 and then
9375 Of_Present (I1) = Of_Present (I2)
9376 and then
9377 Reverse_Present (I1) = Reverse_Present (I2)
9378 and then FCE (Name (I1), Name (I2))
9379 and then FCE (Subtype_Indication (I1),
9380 Subtype_Indication (I2));
9381 end;
9383 -- The quantified expressions used different specifications to
9384 -- walk their respective ranges.
9386 else
9387 return False;
9388 end if;
9390 when N_Range =>
9391 return
9392 FCE (Low_Bound (E1), Low_Bound (E2))
9393 and then
9394 FCE (High_Bound (E1), High_Bound (E2));
9396 when N_Real_Literal =>
9397 return (Realval (E1) = Realval (E2));
9399 when N_Selected_Component =>
9400 return
9401 FCE (Prefix (E1), Prefix (E2))
9402 and then
9403 FCE (Selector_Name (E1), Selector_Name (E2));
9405 when N_Slice =>
9406 return
9407 FCE (Prefix (E1), Prefix (E2))
9408 and then
9409 FCE (Discrete_Range (E1), Discrete_Range (E2));
9411 when N_String_Literal =>
9412 declare
9413 S1 : constant String_Id := Strval (E1);
9414 S2 : constant String_Id := Strval (E2);
9415 L1 : constant Nat := String_Length (S1);
9416 L2 : constant Nat := String_Length (S2);
9418 begin
9419 if L1 /= L2 then
9420 return False;
9422 else
9423 for J in 1 .. L1 loop
9424 if Get_String_Char (S1, J) /=
9425 Get_String_Char (S2, J)
9426 then
9427 return False;
9428 end if;
9429 end loop;
9431 return True;
9432 end if;
9433 end;
9435 when N_Unary_Op =>
9436 return
9437 Entity (E1) = Entity (E2)
9438 and then
9439 FCE (Right_Opnd (E1), Right_Opnd (E2));
9441 -- All other node types cannot appear in this context. Strictly
9442 -- we should raise a fatal internal error. Instead we just ignore
9443 -- the nodes. This means that if anyone makes a mistake in the
9444 -- expander and mucks an expression tree irretrievably, the result
9445 -- will be a failure to detect a (probably very obscure) case
9446 -- of non-conformance, which is better than bombing on some
9447 -- case where two expressions do in fact conform.
9449 when others =>
9450 return True;
9451 end case;
9452 end if;
9453 end Fully_Conformant_Expressions;
9455 ----------------------------------------
9456 -- Fully_Conformant_Discrete_Subtypes --
9457 ----------------------------------------
9459 function Fully_Conformant_Discrete_Subtypes
9460 (Given_S1 : Node_Id;
9461 Given_S2 : Node_Id) return Boolean
9463 S1 : constant Node_Id := Original_Node (Given_S1);
9464 S2 : constant Node_Id := Original_Node (Given_S2);
9466 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9467 -- Special-case for a bound given by a discriminant, which in the body
9468 -- is replaced with the discriminal of the enclosing type.
9470 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9471 -- Check both bounds
9473 -----------------------
9474 -- Conforming_Bounds --
9475 -----------------------
9477 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9478 begin
9479 if Is_Entity_Name (B1)
9480 and then Is_Entity_Name (B2)
9481 and then Ekind (Entity (B1)) = E_Discriminant
9482 then
9483 return Chars (B1) = Chars (B2);
9485 else
9486 return Fully_Conformant_Expressions (B1, B2);
9487 end if;
9488 end Conforming_Bounds;
9490 -----------------------
9491 -- Conforming_Ranges --
9492 -----------------------
9494 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9495 begin
9496 return
9497 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9498 and then
9499 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9500 end Conforming_Ranges;
9502 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9504 begin
9505 if Nkind (S1) /= Nkind (S2) then
9506 return False;
9508 elsif Is_Entity_Name (S1) then
9509 return Entity (S1) = Entity (S2);
9511 elsif Nkind (S1) = N_Range then
9512 return Conforming_Ranges (S1, S2);
9514 elsif Nkind (S1) = N_Subtype_Indication then
9515 return
9516 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9517 and then
9518 Conforming_Ranges
9519 (Range_Expression (Constraint (S1)),
9520 Range_Expression (Constraint (S2)));
9521 else
9522 return True;
9523 end if;
9524 end Fully_Conformant_Discrete_Subtypes;
9526 --------------------
9527 -- Install_Entity --
9528 --------------------
9530 procedure Install_Entity (E : Entity_Id) is
9531 Prev : constant Entity_Id := Current_Entity (E);
9532 begin
9533 Set_Is_Immediately_Visible (E);
9534 Set_Current_Entity (E);
9535 Set_Homonym (E, Prev);
9536 end Install_Entity;
9538 ---------------------
9539 -- Install_Formals --
9540 ---------------------
9542 procedure Install_Formals (Id : Entity_Id) is
9543 F : Entity_Id;
9544 begin
9545 F := First_Formal (Id);
9546 while Present (F) loop
9547 Install_Entity (F);
9548 Next_Formal (F);
9549 end loop;
9550 end Install_Formals;
9552 -----------------------------
9553 -- Is_Interface_Conformant --
9554 -----------------------------
9556 function Is_Interface_Conformant
9557 (Tagged_Type : Entity_Id;
9558 Iface_Prim : Entity_Id;
9559 Prim : Entity_Id) return Boolean
9561 -- The operation may in fact be an inherited (implicit) operation
9562 -- rather than the original interface primitive, so retrieve the
9563 -- ultimate ancestor.
9565 Iface : constant Entity_Id :=
9566 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9567 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9569 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9570 -- Return the controlling formal of Prim
9572 ------------------------
9573 -- Controlling_Formal --
9574 ------------------------
9576 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9577 E : Entity_Id;
9579 begin
9580 E := First_Entity (Prim);
9581 while Present (E) loop
9582 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9583 return E;
9584 end if;
9586 Next_Entity (E);
9587 end loop;
9589 return Empty;
9590 end Controlling_Formal;
9592 -- Local variables
9594 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9595 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9597 -- Start of processing for Is_Interface_Conformant
9599 begin
9600 pragma Assert (Is_Subprogram (Iface_Prim)
9601 and then Is_Subprogram (Prim)
9602 and then Is_Dispatching_Operation (Iface_Prim)
9603 and then Is_Dispatching_Operation (Prim));
9605 pragma Assert (Is_Interface (Iface)
9606 or else (Present (Alias (Iface_Prim))
9607 and then
9608 Is_Interface
9609 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9611 if Prim = Iface_Prim
9612 or else not Is_Subprogram (Prim)
9613 or else Ekind (Prim) /= Ekind (Iface_Prim)
9614 or else not Is_Dispatching_Operation (Prim)
9615 or else Scope (Prim) /= Scope (Tagged_Type)
9616 or else No (Typ)
9617 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9618 or else not Primitive_Names_Match (Iface_Prim, Prim)
9619 then
9620 return False;
9622 -- The mode of the controlling formals must match
9624 elsif Present (Iface_Ctrl_F)
9625 and then Present (Prim_Ctrl_F)
9626 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9627 then
9628 return False;
9630 -- Case of a procedure, or a function whose result type matches the
9631 -- result type of the interface primitive, or a function that has no
9632 -- controlling result (I or access I).
9634 elsif Ekind (Iface_Prim) = E_Procedure
9635 or else Etype (Prim) = Etype (Iface_Prim)
9636 or else not Has_Controlling_Result (Prim)
9637 then
9638 return Type_Conformant
9639 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9641 -- Case of a function returning an interface, or an access to one. Check
9642 -- that the return types correspond.
9644 elsif Implements_Interface (Typ, Iface) then
9645 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9647 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9648 then
9649 return False;
9650 else
9651 return
9652 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9653 Skip_Controlling_Formals => True);
9654 end if;
9656 else
9657 return False;
9658 end if;
9659 end Is_Interface_Conformant;
9661 ---------------------------------
9662 -- Is_Non_Overriding_Operation --
9663 ---------------------------------
9665 function Is_Non_Overriding_Operation
9666 (Prev_E : Entity_Id;
9667 New_E : Entity_Id) return Boolean
9669 Formal : Entity_Id;
9670 F_Typ : Entity_Id;
9671 G_Typ : Entity_Id := Empty;
9673 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9674 -- If F_Type is a derived type associated with a generic actual subtype,
9675 -- then return its Generic_Parent_Type attribute, else return Empty.
9677 function Types_Correspond
9678 (P_Type : Entity_Id;
9679 N_Type : Entity_Id) return Boolean;
9680 -- Returns true if and only if the types (or designated types in the
9681 -- case of anonymous access types) are the same or N_Type is derived
9682 -- directly or indirectly from P_Type.
9684 -----------------------------
9685 -- Get_Generic_Parent_Type --
9686 -----------------------------
9688 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9689 G_Typ : Entity_Id;
9690 Defn : Node_Id;
9691 Indic : Node_Id;
9693 begin
9694 if Is_Derived_Type (F_Typ)
9695 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9696 then
9697 -- The tree must be traversed to determine the parent subtype in
9698 -- the generic unit, which unfortunately isn't always available
9699 -- via semantic attributes. ??? (Note: The use of Original_Node
9700 -- is needed for cases where a full derived type has been
9701 -- rewritten.)
9703 -- If the parent type is a scalar type, the derivation creates
9704 -- an anonymous base type for it, and the source type is its
9705 -- first subtype.
9707 if Is_Scalar_Type (F_Typ)
9708 and then not Comes_From_Source (F_Typ)
9709 then
9710 Defn :=
9711 Type_Definition
9712 (Original_Node (Parent (First_Subtype (F_Typ))));
9713 else
9714 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9715 end if;
9716 if Nkind (Defn) = N_Derived_Type_Definition then
9717 Indic := Subtype_Indication (Defn);
9719 if Nkind (Indic) = N_Subtype_Indication then
9720 G_Typ := Entity (Subtype_Mark (Indic));
9721 else
9722 G_Typ := Entity (Indic);
9723 end if;
9725 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9726 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9727 then
9728 return Generic_Parent_Type (Parent (G_Typ));
9729 end if;
9730 end if;
9731 end if;
9733 return Empty;
9734 end Get_Generic_Parent_Type;
9736 ----------------------
9737 -- Types_Correspond --
9738 ----------------------
9740 function Types_Correspond
9741 (P_Type : Entity_Id;
9742 N_Type : Entity_Id) return Boolean
9744 Prev_Type : Entity_Id := Base_Type (P_Type);
9745 New_Type : Entity_Id := Base_Type (N_Type);
9747 begin
9748 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9749 Prev_Type := Designated_Type (Prev_Type);
9750 end if;
9752 if Ekind (New_Type) = E_Anonymous_Access_Type then
9753 New_Type := Designated_Type (New_Type);
9754 end if;
9756 if Prev_Type = New_Type then
9757 return True;
9759 elsif not Is_Class_Wide_Type (New_Type) then
9760 while Etype (New_Type) /= New_Type loop
9761 New_Type := Etype (New_Type);
9763 if New_Type = Prev_Type then
9764 return True;
9765 end if;
9766 end loop;
9767 end if;
9768 return False;
9769 end Types_Correspond;
9771 -- Start of processing for Is_Non_Overriding_Operation
9773 begin
9774 -- In the case where both operations are implicit derived subprograms
9775 -- then neither overrides the other. This can only occur in certain
9776 -- obscure cases (e.g., derivation from homographs created in a generic
9777 -- instantiation).
9779 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9780 return True;
9782 elsif Ekind (Current_Scope) = E_Package
9783 and then Is_Generic_Instance (Current_Scope)
9784 and then In_Private_Part (Current_Scope)
9785 and then Comes_From_Source (New_E)
9786 then
9787 -- We examine the formals and result type of the inherited operation,
9788 -- to determine whether their type is derived from (the instance of)
9789 -- a generic type. The first such formal or result type is the one
9790 -- tested.
9792 Formal := First_Formal (Prev_E);
9793 F_Typ := Empty;
9794 while Present (Formal) loop
9795 F_Typ := Base_Type (Etype (Formal));
9797 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9798 F_Typ := Designated_Type (F_Typ);
9799 end if;
9801 G_Typ := Get_Generic_Parent_Type (F_Typ);
9802 exit when Present (G_Typ);
9804 Next_Formal (Formal);
9805 end loop;
9807 -- If the function dispatches on result check the result type
9809 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9810 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9811 end if;
9813 if No (G_Typ) then
9814 return False;
9815 end if;
9817 -- If the generic type is a private type, then the original operation
9818 -- was not overriding in the generic, because there was no primitive
9819 -- operation to override.
9821 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9822 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9823 N_Formal_Private_Type_Definition
9824 then
9825 return True;
9827 -- The generic parent type is the ancestor of a formal derived
9828 -- type declaration. We need to check whether it has a primitive
9829 -- operation that should be overridden by New_E in the generic.
9831 else
9832 declare
9833 P_Formal : Entity_Id;
9834 N_Formal : Entity_Id;
9835 P_Typ : Entity_Id;
9836 N_Typ : Entity_Id;
9837 P_Prim : Entity_Id;
9838 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9840 begin
9841 while Present (Prim_Elt) loop
9842 P_Prim := Node (Prim_Elt);
9844 if Chars (P_Prim) = Chars (New_E)
9845 and then Ekind (P_Prim) = Ekind (New_E)
9846 then
9847 P_Formal := First_Formal (P_Prim);
9848 N_Formal := First_Formal (New_E);
9849 while Present (P_Formal) and then Present (N_Formal) loop
9850 P_Typ := Etype (P_Formal);
9851 N_Typ := Etype (N_Formal);
9853 if not Types_Correspond (P_Typ, N_Typ) then
9854 exit;
9855 end if;
9857 Next_Entity (P_Formal);
9858 Next_Entity (N_Formal);
9859 end loop;
9861 -- Found a matching primitive operation belonging to the
9862 -- formal ancestor type, so the new subprogram is
9863 -- overriding.
9865 if No (P_Formal)
9866 and then No (N_Formal)
9867 and then (Ekind (New_E) /= E_Function
9868 or else
9869 Types_Correspond
9870 (Etype (P_Prim), Etype (New_E)))
9871 then
9872 return False;
9873 end if;
9874 end if;
9876 Next_Elmt (Prim_Elt);
9877 end loop;
9879 -- If no match found, then the new subprogram does not override
9880 -- in the generic (nor in the instance).
9882 -- If the type in question is not abstract, and the subprogram
9883 -- is, this will be an error if the new operation is in the
9884 -- private part of the instance. Emit a warning now, which will
9885 -- make the subsequent error message easier to understand.
9887 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9888 and then Is_Abstract_Subprogram (Prev_E)
9889 and then In_Private_Part (Current_Scope)
9890 then
9891 Error_Msg_Node_2 := F_Typ;
9892 Error_Msg_NE
9893 ("private operation& in generic unit does not override "
9894 & "any primitive operation of& (RM 12.3 (18))??",
9895 New_E, New_E);
9896 end if;
9898 return True;
9899 end;
9900 end if;
9901 else
9902 return False;
9903 end if;
9904 end Is_Non_Overriding_Operation;
9906 -------------------------------------
9907 -- List_Inherited_Pre_Post_Aspects --
9908 -------------------------------------
9910 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9911 begin
9912 if Opt.List_Inherited_Aspects
9913 and then Is_Subprogram_Or_Generic_Subprogram (E)
9914 then
9915 declare
9916 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9917 Items : Node_Id;
9918 Prag : Node_Id;
9920 begin
9921 for Index in Subps'Range loop
9922 Items := Contract (Subps (Index));
9924 if Present (Items) then
9925 Prag := Pre_Post_Conditions (Items);
9926 while Present (Prag) loop
9927 Error_Msg_Sloc := Sloc (Prag);
9929 if Class_Present (Prag)
9930 and then not Split_PPC (Prag)
9931 then
9932 if Pragma_Name (Prag) = Name_Precondition then
9933 Error_Msg_N
9934 ("info: & inherits `Pre''Class` aspect from "
9935 & "#?L?", E);
9936 else
9937 Error_Msg_N
9938 ("info: & inherits `Post''Class` aspect from "
9939 & "#?L?", E);
9940 end if;
9941 end if;
9943 Prag := Next_Pragma (Prag);
9944 end loop;
9945 end if;
9946 end loop;
9947 end;
9948 end if;
9949 end List_Inherited_Pre_Post_Aspects;
9951 ------------------------------
9952 -- Make_Inequality_Operator --
9953 ------------------------------
9955 -- S is the defining identifier of an equality operator. We build a
9956 -- subprogram declaration with the right signature. This operation is
9957 -- intrinsic, because it is always expanded as the negation of the
9958 -- call to the equality function.
9960 procedure Make_Inequality_Operator (S : Entity_Id) is
9961 Loc : constant Source_Ptr := Sloc (S);
9962 Decl : Node_Id;
9963 Formals : List_Id;
9964 Op_Name : Entity_Id;
9966 FF : constant Entity_Id := First_Formal (S);
9967 NF : constant Entity_Id := Next_Formal (FF);
9969 begin
9970 -- Check that equality was properly defined, ignore call if not
9972 if No (NF) then
9973 return;
9974 end if;
9976 declare
9977 A : constant Entity_Id :=
9978 Make_Defining_Identifier (Sloc (FF),
9979 Chars => Chars (FF));
9981 B : constant Entity_Id :=
9982 Make_Defining_Identifier (Sloc (NF),
9983 Chars => Chars (NF));
9985 begin
9986 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9988 Formals := New_List (
9989 Make_Parameter_Specification (Loc,
9990 Defining_Identifier => A,
9991 Parameter_Type =>
9992 New_Occurrence_Of (Etype (First_Formal (S)),
9993 Sloc (Etype (First_Formal (S))))),
9995 Make_Parameter_Specification (Loc,
9996 Defining_Identifier => B,
9997 Parameter_Type =>
9998 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9999 Sloc (Etype (Next_Formal (First_Formal (S)))))));
10001 Decl :=
10002 Make_Subprogram_Declaration (Loc,
10003 Specification =>
10004 Make_Function_Specification (Loc,
10005 Defining_Unit_Name => Op_Name,
10006 Parameter_Specifications => Formals,
10007 Result_Definition =>
10008 New_Occurrence_Of (Standard_Boolean, Loc)));
10010 -- Insert inequality right after equality if it is explicit or after
10011 -- the derived type when implicit. These entities are created only
10012 -- for visibility purposes, and eventually replaced in the course
10013 -- of expansion, so they do not need to be attached to the tree and
10014 -- seen by the back-end. Keeping them internal also avoids spurious
10015 -- freezing problems. The declaration is inserted in the tree for
10016 -- analysis, and removed afterwards. If the equality operator comes
10017 -- from an explicit declaration, attach the inequality immediately
10018 -- after. Else the equality is inherited from a derived type
10019 -- declaration, so insert inequality after that declaration.
10021 if No (Alias (S)) then
10022 Insert_After (Unit_Declaration_Node (S), Decl);
10023 elsif Is_List_Member (Parent (S)) then
10024 Insert_After (Parent (S), Decl);
10025 else
10026 Insert_After (Parent (Etype (First_Formal (S))), Decl);
10027 end if;
10029 Mark_Rewrite_Insertion (Decl);
10030 Set_Is_Intrinsic_Subprogram (Op_Name);
10031 Analyze (Decl);
10032 Remove (Decl);
10033 Set_Has_Completion (Op_Name);
10034 Set_Corresponding_Equality (Op_Name, S);
10035 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10036 end;
10037 end Make_Inequality_Operator;
10039 ----------------------
10040 -- May_Need_Actuals --
10041 ----------------------
10043 procedure May_Need_Actuals (Fun : Entity_Id) is
10044 F : Entity_Id;
10045 B : Boolean;
10047 begin
10048 F := First_Formal (Fun);
10049 B := True;
10050 while Present (F) loop
10051 if No (Default_Value (F)) then
10052 B := False;
10053 exit;
10054 end if;
10056 Next_Formal (F);
10057 end loop;
10059 Set_Needs_No_Actuals (Fun, B);
10060 end May_Need_Actuals;
10062 ---------------------
10063 -- Mode_Conformant --
10064 ---------------------
10066 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10067 Result : Boolean;
10068 begin
10069 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10070 return Result;
10071 end Mode_Conformant;
10073 ---------------------------
10074 -- New_Overloaded_Entity --
10075 ---------------------------
10077 procedure New_Overloaded_Entity
10078 (S : Entity_Id;
10079 Derived_Type : Entity_Id := Empty)
10081 Overridden_Subp : Entity_Id := Empty;
10082 -- Set if the current scope has an operation that is type-conformant
10083 -- with S, and becomes hidden by S.
10085 Is_Primitive_Subp : Boolean;
10086 -- Set to True if the new subprogram is primitive
10088 E : Entity_Id;
10089 -- Entity that S overrides
10091 procedure Check_For_Primitive_Subprogram
10092 (Is_Primitive : out Boolean;
10093 Is_Overriding : Boolean := False);
10094 -- If the subprogram being analyzed is a primitive operation of the type
10095 -- of a formal or result, set the Has_Primitive_Operations flag on the
10096 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10097 -- corresponding flag on the entity itself for later use.
10099 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10100 -- True if a) E is a subprogram whose first formal is a concurrent type
10101 -- defined in the scope of E that has some entry or subprogram whose
10102 -- profile matches E, or b) E is an internally built dispatching
10103 -- subprogram of a protected type and there is a matching subprogram
10104 -- defined in the enclosing scope of the protected type, or c) E is
10105 -- an entry of a synchronized type and a matching procedure has been
10106 -- previously defined in the enclosing scope of the synchronized type.
10108 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10109 -- Check that E is declared in the private part of the current package,
10110 -- or in the package body, where it may hide a previous declaration.
10111 -- We can't use In_Private_Part by itself because this flag is also
10112 -- set when freezing entities, so we must examine the place of the
10113 -- declaration in the tree, and recognize wrapper packages as well.
10115 function Is_Overriding_Alias
10116 (Old_E : Entity_Id;
10117 New_E : Entity_Id) return Boolean;
10118 -- Check whether new subprogram and old subprogram are both inherited
10119 -- from subprograms that have distinct dispatch table entries. This can
10120 -- occur with derivations from instances with accidental homonyms. The
10121 -- function is conservative given that the converse is only true within
10122 -- instances that contain accidental overloadings.
10124 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10125 -- Report conflict between entities S and E
10127 ------------------------------------
10128 -- Check_For_Primitive_Subprogram --
10129 ------------------------------------
10131 procedure Check_For_Primitive_Subprogram
10132 (Is_Primitive : out Boolean;
10133 Is_Overriding : Boolean := False)
10135 Formal : Entity_Id;
10136 F_Typ : Entity_Id;
10137 B_Typ : Entity_Id;
10139 function Visible_Part_Type (T : Entity_Id) return Boolean;
10140 -- Returns true if T is declared in the visible part of the current
10141 -- package scope; otherwise returns false. Assumes that T is declared
10142 -- in a package.
10144 procedure Check_Private_Overriding (T : Entity_Id);
10145 -- Checks that if a primitive abstract subprogram of a visible
10146 -- abstract type is declared in a private part, then it must override
10147 -- an abstract subprogram declared in the visible part. Also checks
10148 -- that if a primitive function with a controlling result is declared
10149 -- in a private part, then it must override a function declared in
10150 -- the visible part.
10152 ------------------------------
10153 -- Check_Private_Overriding --
10154 ------------------------------
10156 procedure Check_Private_Overriding (T : Entity_Id) is
10157 function Overrides_Private_Part_Op return Boolean;
10158 -- This detects the special case where the overriding subprogram
10159 -- is overriding a subprogram that was declared in the same
10160 -- private part. That case is illegal by 3.9.3(10).
10162 function Overrides_Visible_Function
10163 (Partial_View : Entity_Id) return Boolean;
10164 -- True if S overrides a function in the visible part. The
10165 -- overridden function could be explicitly or implicitly declared.
10167 -------------------------------
10168 -- Overrides_Private_Part_Op --
10169 -------------------------------
10171 function Overrides_Private_Part_Op return Boolean is
10172 Over_Decl : constant Node_Id :=
10173 Unit_Declaration_Node (Overridden_Operation (S));
10174 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10176 begin
10177 pragma Assert (Is_Overriding);
10178 pragma Assert
10179 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10180 pragma Assert
10181 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10183 return In_Same_List (Over_Decl, Subp_Decl);
10184 end Overrides_Private_Part_Op;
10186 --------------------------------
10187 -- Overrides_Visible_Function --
10188 --------------------------------
10190 function Overrides_Visible_Function
10191 (Partial_View : Entity_Id) return Boolean
10193 begin
10194 if not Is_Overriding or else not Has_Homonym (S) then
10195 return False;
10196 end if;
10198 if not Present (Partial_View) then
10199 return True;
10200 end if;
10202 -- Search through all the homonyms H of S in the current
10203 -- package spec, and return True if we find one that matches.
10204 -- Note that Parent (H) will be the declaration of the
10205 -- partial view of T for a match.
10207 declare
10208 H : Entity_Id := S;
10209 begin
10210 loop
10211 H := Homonym (H);
10212 exit when not Present (H) or else Scope (H) /= Scope (S);
10214 if Nkind_In
10215 (Parent (H),
10216 N_Private_Extension_Declaration,
10217 N_Private_Type_Declaration)
10218 and then Defining_Identifier (Parent (H)) = Partial_View
10219 then
10220 return True;
10221 end if;
10222 end loop;
10223 end;
10225 return False;
10226 end Overrides_Visible_Function;
10228 -- Start of processing for Check_Private_Overriding
10230 begin
10231 if Is_Package_Or_Generic_Package (Current_Scope)
10232 and then In_Private_Part (Current_Scope)
10233 and then Visible_Part_Type (T)
10234 and then not In_Instance
10235 then
10236 if Is_Abstract_Type (T)
10237 and then Is_Abstract_Subprogram (S)
10238 and then (not Is_Overriding
10239 or else not Is_Abstract_Subprogram (E)
10240 or else Overrides_Private_Part_Op)
10241 then
10242 Error_Msg_N
10243 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10246 elsif Ekind (S) = E_Function then
10247 declare
10248 Partial_View : constant Entity_Id :=
10249 Incomplete_Or_Partial_View (T);
10251 begin
10252 if not Overrides_Visible_Function (Partial_View) then
10254 -- Here, S is "function ... return T;" declared in
10255 -- the private part, not overriding some visible
10256 -- operation. That's illegal in the tagged case
10257 -- (but not if the private type is untagged).
10259 if ((Present (Partial_View)
10260 and then Is_Tagged_Type (Partial_View))
10261 or else (not Present (Partial_View)
10262 and then Is_Tagged_Type (T)))
10263 and then T = Base_Type (Etype (S))
10264 then
10265 Error_Msg_N
10266 ("private function with tagged result must"
10267 & " override visible-part function", S);
10268 Error_Msg_N
10269 ("\move subprogram to the visible part"
10270 & " (RM 3.9.3(10))", S);
10272 -- AI05-0073: extend this test to the case of a
10273 -- function with a controlling access result.
10275 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10276 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10277 and then
10278 not Is_Class_Wide_Type
10279 (Designated_Type (Etype (S)))
10280 and then Ada_Version >= Ada_2012
10281 then
10282 Error_Msg_N
10283 ("private function with controlling access "
10284 & "result must override visible-part function",
10286 Error_Msg_N
10287 ("\move subprogram to the visible part"
10288 & " (RM 3.9.3(10))", S);
10289 end if;
10290 end if;
10291 end;
10292 end if;
10293 end if;
10294 end Check_Private_Overriding;
10296 -----------------------
10297 -- Visible_Part_Type --
10298 -----------------------
10300 function Visible_Part_Type (T : Entity_Id) return Boolean is
10301 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10303 begin
10304 -- If the entity is a private type, then it must be declared in a
10305 -- visible part.
10307 if Ekind (T) in Private_Kind then
10308 return True;
10310 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10311 return True;
10313 elsif Is_List_Member (Declaration_Node (T))
10314 and then List_Containing (Declaration_Node (T)) =
10315 Visible_Declarations (Specification (P))
10316 then
10317 return True;
10319 else
10320 return False;
10321 end if;
10322 end Visible_Part_Type;
10324 -- Start of processing for Check_For_Primitive_Subprogram
10326 begin
10327 Is_Primitive := False;
10329 if not Comes_From_Source (S) then
10330 null;
10332 -- If subprogram is at library level, it is not primitive operation
10334 elsif Current_Scope = Standard_Standard then
10335 null;
10337 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10338 and then not In_Package_Body (Current_Scope))
10339 or else Is_Overriding
10340 then
10341 -- For function, check return type
10343 if Ekind (S) = E_Function then
10344 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10345 F_Typ := Designated_Type (Etype (S));
10346 else
10347 F_Typ := Etype (S);
10348 end if;
10350 B_Typ := Base_Type (F_Typ);
10352 if Scope (B_Typ) = Current_Scope
10353 and then not Is_Class_Wide_Type (B_Typ)
10354 and then not Is_Generic_Type (B_Typ)
10355 then
10356 Is_Primitive := True;
10357 Set_Has_Primitive_Operations (B_Typ);
10358 Set_Is_Primitive (S);
10359 Check_Private_Overriding (B_Typ);
10361 -- The Ghost policy in effect at the point of declaration
10362 -- or a tagged type and a primitive operation must match
10363 -- (SPARK RM 6.9(16)).
10365 Check_Ghost_Primitive (S, B_Typ);
10366 end if;
10367 end if;
10369 -- For all subprograms, check formals
10371 Formal := First_Formal (S);
10372 while Present (Formal) loop
10373 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10374 F_Typ := Designated_Type (Etype (Formal));
10375 else
10376 F_Typ := Etype (Formal);
10377 end if;
10379 B_Typ := Base_Type (F_Typ);
10381 if Ekind (B_Typ) = E_Access_Subtype then
10382 B_Typ := Base_Type (B_Typ);
10383 end if;
10385 if Scope (B_Typ) = Current_Scope
10386 and then not Is_Class_Wide_Type (B_Typ)
10387 and then not Is_Generic_Type (B_Typ)
10388 then
10389 Is_Primitive := True;
10390 Set_Is_Primitive (S);
10391 Set_Has_Primitive_Operations (B_Typ);
10392 Check_Private_Overriding (B_Typ);
10394 -- The Ghost policy in effect at the point of declaration
10395 -- of a tagged type and a primitive operation must match
10396 -- (SPARK RM 6.9(16)).
10398 Check_Ghost_Primitive (S, B_Typ);
10399 end if;
10401 Next_Formal (Formal);
10402 end loop;
10404 -- Special case: An equality function can be redefined for a type
10405 -- occurring in a declarative part, and won't otherwise be treated as
10406 -- a primitive because it doesn't occur in a package spec and doesn't
10407 -- override an inherited subprogram. It's important that we mark it
10408 -- primitive so it can be returned by Collect_Primitive_Operations
10409 -- and be used in composing the equality operation of later types
10410 -- that have a component of the type.
10412 elsif Chars (S) = Name_Op_Eq
10413 and then Etype (S) = Standard_Boolean
10414 then
10415 B_Typ := Base_Type (Etype (First_Formal (S)));
10417 if Scope (B_Typ) = Current_Scope
10418 and then
10419 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10420 and then not Is_Limited_Type (B_Typ)
10421 then
10422 Is_Primitive := True;
10423 Set_Is_Primitive (S);
10424 Set_Has_Primitive_Operations (B_Typ);
10425 Check_Private_Overriding (B_Typ);
10427 -- The Ghost policy in effect at the point of declaration of a
10428 -- tagged type and a primitive operation must match
10429 -- (SPARK RM 6.9(16)).
10431 Check_Ghost_Primitive (S, B_Typ);
10432 end if;
10433 end if;
10434 end Check_For_Primitive_Subprogram;
10436 --------------------------------------
10437 -- Has_Matching_Entry_Or_Subprogram --
10438 --------------------------------------
10440 function Has_Matching_Entry_Or_Subprogram
10441 (E : Entity_Id) return Boolean
10443 function Check_Conforming_Parameters
10444 (E1_Param : Node_Id;
10445 E2_Param : Node_Id) return Boolean;
10446 -- Starting from the given parameters, check that all the parameters
10447 -- of two entries or subprograms are subtype conformant. Used to skip
10448 -- the check on the controlling argument.
10450 function Matching_Entry_Or_Subprogram
10451 (Conc_Typ : Entity_Id;
10452 Subp : Entity_Id) return Entity_Id;
10453 -- Return the first entry or subprogram of the given concurrent type
10454 -- whose name matches the name of Subp and has a profile conformant
10455 -- with Subp; return Empty if not found.
10457 function Matching_Dispatching_Subprogram
10458 (Conc_Typ : Entity_Id;
10459 Ent : Entity_Id) return Entity_Id;
10460 -- Return the first dispatching primitive of Conc_Type defined in the
10461 -- enclosing scope of Conc_Type (i.e. before the full definition of
10462 -- this concurrent type) whose name matches the entry Ent and has a
10463 -- profile conformant with the profile of the corresponding (not yet
10464 -- built) dispatching primitive of Ent; return Empty if not found.
10466 function Matching_Original_Protected_Subprogram
10467 (Prot_Typ : Entity_Id;
10468 Subp : Entity_Id) return Entity_Id;
10469 -- Return the first subprogram defined in the enclosing scope of
10470 -- Prot_Typ (before the full definition of this protected type)
10471 -- whose name matches the original name of Subp and has a profile
10472 -- conformant with the profile of Subp; return Empty if not found.
10474 ---------------------------------
10475 -- Check_Conforming_Parameters --
10476 ---------------------------------
10478 function Check_Conforming_Parameters
10479 (E1_Param : Node_Id;
10480 E2_Param : Node_Id) return Boolean
10482 Param_E1 : Node_Id := E1_Param;
10483 Param_E2 : Node_Id := E2_Param;
10485 begin
10486 while Present (Param_E1) and then Present (Param_E2) loop
10487 if Ekind (Defining_Identifier (Param_E1)) /=
10488 Ekind (Defining_Identifier (Param_E2))
10489 or else not
10490 Conforming_Types
10491 (Find_Parameter_Type (Param_E1),
10492 Find_Parameter_Type (Param_E2),
10493 Subtype_Conformant)
10494 then
10495 return False;
10496 end if;
10498 Next (Param_E1);
10499 Next (Param_E2);
10500 end loop;
10502 -- The candidate is not valid if one of the two lists contains
10503 -- more parameters than the other
10505 return No (Param_E1) and then No (Param_E2);
10506 end Check_Conforming_Parameters;
10508 ----------------------------------
10509 -- Matching_Entry_Or_Subprogram --
10510 ----------------------------------
10512 function Matching_Entry_Or_Subprogram
10513 (Conc_Typ : Entity_Id;
10514 Subp : Entity_Id) return Entity_Id
10516 E : Entity_Id;
10518 begin
10519 E := First_Entity (Conc_Typ);
10520 while Present (E) loop
10521 if Chars (Subp) = Chars (E)
10522 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10523 and then
10524 Check_Conforming_Parameters
10525 (First (Parameter_Specifications (Parent (E))),
10526 Next (First (Parameter_Specifications (Parent (Subp)))))
10527 then
10528 return E;
10529 end if;
10531 Next_Entity (E);
10532 end loop;
10534 return Empty;
10535 end Matching_Entry_Or_Subprogram;
10537 -------------------------------------
10538 -- Matching_Dispatching_Subprogram --
10539 -------------------------------------
10541 function Matching_Dispatching_Subprogram
10542 (Conc_Typ : Entity_Id;
10543 Ent : Entity_Id) return Entity_Id
10545 E : Entity_Id;
10547 begin
10548 -- Search for entities in the enclosing scope of this synchonized
10549 -- type.
10551 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10552 Push_Scope (Scope (Conc_Typ));
10553 E := Current_Entity_In_Scope (Ent);
10554 Pop_Scope;
10556 while Present (E) loop
10557 if Scope (E) = Scope (Conc_Typ)
10558 and then Comes_From_Source (E)
10559 and then Ekind (E) = E_Procedure
10560 and then Present (First_Entity (E))
10561 and then Is_Controlling_Formal (First_Entity (E))
10562 and then Etype (First_Entity (E)) = Conc_Typ
10563 and then
10564 Check_Conforming_Parameters
10565 (First (Parameter_Specifications (Parent (Ent))),
10566 Next (First (Parameter_Specifications (Parent (E)))))
10567 then
10568 return E;
10569 end if;
10571 E := Homonym (E);
10572 end loop;
10574 return Empty;
10575 end Matching_Dispatching_Subprogram;
10577 --------------------------------------------
10578 -- Matching_Original_Protected_Subprogram --
10579 --------------------------------------------
10581 function Matching_Original_Protected_Subprogram
10582 (Prot_Typ : Entity_Id;
10583 Subp : Entity_Id) return Entity_Id
10585 ICF : constant Boolean :=
10586 Is_Controlling_Formal (First_Entity (Subp));
10587 E : Entity_Id;
10589 begin
10590 -- Temporarily decorate the first parameter of Subp as controlling
10591 -- formal, required to invoke Subtype_Conformant.
10593 Set_Is_Controlling_Formal (First_Entity (Subp));
10595 E :=
10596 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10598 while Present (E) loop
10599 if Scope (E) = Scope (Prot_Typ)
10600 and then Comes_From_Source (E)
10601 and then Ekind (Subp) = Ekind (E)
10602 and then Present (First_Entity (E))
10603 and then Is_Controlling_Formal (First_Entity (E))
10604 and then Etype (First_Entity (E)) = Prot_Typ
10605 and then Subtype_Conformant (Subp, E,
10606 Skip_Controlling_Formals => True)
10607 then
10608 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10609 return E;
10610 end if;
10612 E := Homonym (E);
10613 end loop;
10615 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10617 return Empty;
10618 end Matching_Original_Protected_Subprogram;
10620 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10622 begin
10623 -- Case 1: E is a subprogram whose first formal is a concurrent type
10624 -- defined in the scope of E that has an entry or subprogram whose
10625 -- profile matches E.
10627 if Comes_From_Source (E)
10628 and then Is_Subprogram (E)
10629 and then Present (First_Entity (E))
10630 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10631 then
10632 if Scope (E) =
10633 Scope (Corresponding_Concurrent_Type
10634 (Etype (First_Entity (E))))
10635 and then
10636 Present
10637 (Matching_Entry_Or_Subprogram
10638 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10639 Subp => E))
10640 then
10641 Report_Conflict (E,
10642 Matching_Entry_Or_Subprogram
10643 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10644 Subp => E));
10645 return True;
10646 end if;
10648 -- Case 2: E is an internally built dispatching subprogram of a
10649 -- protected type and there is a subprogram defined in the enclosing
10650 -- scope of the protected type that has the original name of E and
10651 -- its profile is conformant with the profile of E. We check the
10652 -- name of the original protected subprogram associated with E since
10653 -- the expander builds dispatching primitives of protected functions
10654 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10656 elsif not Comes_From_Source (E)
10657 and then Is_Subprogram (E)
10658 and then Present (First_Entity (E))
10659 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10660 and then Present (Original_Protected_Subprogram (E))
10661 and then
10662 Present
10663 (Matching_Original_Protected_Subprogram
10664 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10665 Subp => E))
10666 then
10667 Report_Conflict (E,
10668 Matching_Original_Protected_Subprogram
10669 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10670 Subp => E));
10671 return True;
10673 -- Case 3: E is an entry of a synchronized type and a matching
10674 -- procedure has been previously defined in the enclosing scope
10675 -- of the synchronized type.
10677 elsif Comes_From_Source (E)
10678 and then Ekind (E) = E_Entry
10679 and then
10680 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10681 then
10682 Report_Conflict (E,
10683 Matching_Dispatching_Subprogram (Current_Scope, E));
10684 return True;
10685 end if;
10687 return False;
10688 end Has_Matching_Entry_Or_Subprogram;
10690 ----------------------------
10691 -- Is_Private_Declaration --
10692 ----------------------------
10694 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10695 Decl : constant Node_Id := Unit_Declaration_Node (E);
10696 Priv_Decls : List_Id;
10698 begin
10699 if Is_Package_Or_Generic_Package (Current_Scope)
10700 and then In_Private_Part (Current_Scope)
10701 then
10702 Priv_Decls :=
10703 Private_Declarations (Package_Specification (Current_Scope));
10705 return In_Package_Body (Current_Scope)
10706 or else
10707 (Is_List_Member (Decl)
10708 and then List_Containing (Decl) = Priv_Decls)
10709 or else (Nkind (Parent (Decl)) = N_Package_Specification
10710 and then not
10711 Is_Compilation_Unit
10712 (Defining_Entity (Parent (Decl)))
10713 and then List_Containing (Parent (Parent (Decl))) =
10714 Priv_Decls);
10715 else
10716 return False;
10717 end if;
10718 end Is_Private_Declaration;
10720 --------------------------
10721 -- Is_Overriding_Alias --
10722 --------------------------
10724 function Is_Overriding_Alias
10725 (Old_E : Entity_Id;
10726 New_E : Entity_Id) return Boolean
10728 AO : constant Entity_Id := Alias (Old_E);
10729 AN : constant Entity_Id := Alias (New_E);
10731 begin
10732 return Scope (AO) /= Scope (AN)
10733 or else No (DTC_Entity (AO))
10734 or else No (DTC_Entity (AN))
10735 or else DT_Position (AO) = DT_Position (AN);
10736 end Is_Overriding_Alias;
10738 ---------------------
10739 -- Report_Conflict --
10740 ---------------------
10742 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10743 begin
10744 Error_Msg_Sloc := Sloc (E);
10746 -- Generate message, with useful additional warning if in generic
10748 if Is_Generic_Unit (E) then
10749 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10750 Error_Msg_N ("\& conflicts with declaration#", S);
10751 else
10752 Error_Msg_N ("& conflicts with declaration#", S);
10753 end if;
10754 end Report_Conflict;
10756 -- Start of processing for New_Overloaded_Entity
10758 begin
10759 -- We need to look for an entity that S may override. This must be a
10760 -- homonym in the current scope, so we look for the first homonym of
10761 -- S in the current scope as the starting point for the search.
10763 E := Current_Entity_In_Scope (S);
10765 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10766 -- They are directly added to the list of primitive operations of
10767 -- Derived_Type, unless this is a rederivation in the private part
10768 -- of an operation that was already derived in the visible part of
10769 -- the current package.
10771 if Ada_Version >= Ada_2005
10772 and then Present (Derived_Type)
10773 and then Present (Alias (S))
10774 and then Is_Dispatching_Operation (Alias (S))
10775 and then Present (Find_Dispatching_Type (Alias (S)))
10776 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10777 then
10778 -- For private types, when the full-view is processed we propagate to
10779 -- the full view the non-overridden entities whose attribute "alias"
10780 -- references an interface primitive. These entities were added by
10781 -- Derive_Subprograms to ensure that interface primitives are
10782 -- covered.
10784 -- Inside_Freeze_Actions is non zero when S corresponds with an
10785 -- internal entity that links an interface primitive with its
10786 -- covering primitive through attribute Interface_Alias (see
10787 -- Add_Internal_Interface_Entities).
10789 if Inside_Freezing_Actions = 0
10790 and then Is_Package_Or_Generic_Package (Current_Scope)
10791 and then In_Private_Part (Current_Scope)
10792 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10793 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10794 and then Full_View (Defining_Identifier (Parent (E)))
10795 = Defining_Identifier (Parent (S))
10796 and then Alias (E) = Alias (S)
10797 then
10798 Check_Operation_From_Private_View (S, E);
10799 Set_Is_Dispatching_Operation (S);
10801 -- Common case
10803 else
10804 Enter_Overloaded_Entity (S);
10805 Check_Dispatching_Operation (S, Empty);
10806 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10807 end if;
10809 return;
10810 end if;
10812 -- For synchronized types check conflicts of this entity with previously
10813 -- defined entities.
10815 if Ada_Version >= Ada_2005
10816 and then Has_Matching_Entry_Or_Subprogram (S)
10817 then
10818 return;
10819 end if;
10821 -- If there is no homonym then this is definitely not overriding
10823 if No (E) then
10824 Enter_Overloaded_Entity (S);
10825 Check_Dispatching_Operation (S, Empty);
10826 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10828 -- If subprogram has an explicit declaration, check whether it has an
10829 -- overriding indicator.
10831 if Comes_From_Source (S) then
10832 Check_Synchronized_Overriding (S, Overridden_Subp);
10834 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10835 -- it may have overridden some hidden inherited primitive. Update
10836 -- Overridden_Subp to avoid spurious errors when checking the
10837 -- overriding indicator.
10839 if Ada_Version >= Ada_2012
10840 and then No (Overridden_Subp)
10841 and then Is_Dispatching_Operation (S)
10842 and then Present (Overridden_Operation (S))
10843 then
10844 Overridden_Subp := Overridden_Operation (S);
10845 end if;
10847 Check_Overriding_Indicator
10848 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10850 -- The Ghost policy in effect at the point of declaration of a
10851 -- parent subprogram and an overriding subprogram must match
10852 -- (SPARK RM 6.9(17)).
10854 Check_Ghost_Overriding (S, Overridden_Subp);
10855 end if;
10857 -- If there is a homonym that is not overloadable, then we have an
10858 -- error, except for the special cases checked explicitly below.
10860 elsif not Is_Overloadable (E) then
10862 -- Check for spurious conflict produced by a subprogram that has the
10863 -- same name as that of the enclosing generic package. The conflict
10864 -- occurs within an instance, between the subprogram and the renaming
10865 -- declaration for the package. After the subprogram, the package
10866 -- renaming declaration becomes hidden.
10868 if Ekind (E) = E_Package
10869 and then Present (Renamed_Object (E))
10870 and then Renamed_Object (E) = Current_Scope
10871 and then Nkind (Parent (Renamed_Object (E))) =
10872 N_Package_Specification
10873 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10874 then
10875 Set_Is_Hidden (E);
10876 Set_Is_Immediately_Visible (E, False);
10877 Enter_Overloaded_Entity (S);
10878 Set_Homonym (S, Homonym (E));
10879 Check_Dispatching_Operation (S, Empty);
10880 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10882 -- If the subprogram is implicit it is hidden by the previous
10883 -- declaration. However if it is dispatching, it must appear in the
10884 -- dispatch table anyway, because it can be dispatched to even if it
10885 -- cannot be called directly.
10887 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10888 Set_Scope (S, Current_Scope);
10890 if Is_Dispatching_Operation (Alias (S)) then
10891 Check_Dispatching_Operation (S, Empty);
10892 end if;
10894 return;
10896 else
10897 Report_Conflict (S, E);
10898 return;
10899 end if;
10901 -- E exists and is overloadable
10903 else
10904 Check_Synchronized_Overriding (S, Overridden_Subp);
10906 -- Loop through E and its homonyms to determine if any of them is
10907 -- the candidate for overriding by S.
10909 while Present (E) loop
10911 -- Definitely not interesting if not in the current scope
10913 if Scope (E) /= Current_Scope then
10914 null;
10916 -- A function can overload the name of an abstract state. The
10917 -- state can be viewed as a function with a profile that cannot
10918 -- be matched by anything.
10920 elsif Ekind (S) = E_Function
10921 and then Ekind (E) = E_Abstract_State
10922 then
10923 Enter_Overloaded_Entity (S);
10924 return;
10926 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10927 -- procedures locate the internally generated spec. We enforce
10928 -- mode conformance since a tagged type may inherit from
10929 -- interfaces several null primitives which differ only in
10930 -- the mode of the formals.
10932 elsif not Comes_From_Source (S)
10933 and then Is_Null_Procedure (S)
10934 and then not Mode_Conformant (E, S)
10935 then
10936 null;
10938 -- Check if we have type conformance
10940 elsif Type_Conformant (E, S) then
10942 -- If the old and new entities have the same profile and one
10943 -- is not the body of the other, then this is an error, unless
10944 -- one of them is implicitly declared.
10946 -- There are some cases when both can be implicit, for example
10947 -- when both a literal and a function that overrides it are
10948 -- inherited in a derivation, or when an inherited operation
10949 -- of a tagged full type overrides the inherited operation of
10950 -- a private extension. Ada 83 had a special rule for the
10951 -- literal case. In Ada 95, the later implicit operation hides
10952 -- the former, and the literal is always the former. In the
10953 -- odd case where both are derived operations declared at the
10954 -- same point, both operations should be declared, and in that
10955 -- case we bypass the following test and proceed to the next
10956 -- part. This can only occur for certain obscure cases in
10957 -- instances, when an operation on a type derived from a formal
10958 -- private type does not override a homograph inherited from
10959 -- the actual. In subsequent derivations of such a type, the
10960 -- DT positions of these operations remain distinct, if they
10961 -- have been set.
10963 if Present (Alias (S))
10964 and then (No (Alias (E))
10965 or else Comes_From_Source (E)
10966 or else Is_Abstract_Subprogram (S)
10967 or else
10968 (Is_Dispatching_Operation (E)
10969 and then Is_Overriding_Alias (E, S)))
10970 and then Ekind (E) /= E_Enumeration_Literal
10971 then
10972 -- When an derived operation is overloaded it may be due to
10973 -- the fact that the full view of a private extension
10974 -- re-inherits. It has to be dealt with.
10976 if Is_Package_Or_Generic_Package (Current_Scope)
10977 and then In_Private_Part (Current_Scope)
10978 then
10979 Check_Operation_From_Private_View (S, E);
10980 end if;
10982 -- In any case the implicit operation remains hidden by the
10983 -- existing declaration, which is overriding. Indicate that
10984 -- E overrides the operation from which S is inherited.
10986 if Present (Alias (S)) then
10987 Set_Overridden_Operation (E, Alias (S));
10988 Inherit_Subprogram_Contract (E, Alias (S));
10990 else
10991 Set_Overridden_Operation (E, S);
10992 Inherit_Subprogram_Contract (E, S);
10993 end if;
10995 if Comes_From_Source (E) then
10996 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10998 -- The Ghost policy in effect at the point of declaration
10999 -- of a parent subprogram and an overriding subprogram
11000 -- must match (SPARK RM 6.9(17)).
11002 Check_Ghost_Overriding (E, S);
11003 end if;
11005 return;
11007 -- Within an instance, the renaming declarations for actual
11008 -- subprograms may become ambiguous, but they do not hide each
11009 -- other.
11011 elsif Ekind (E) /= E_Entry
11012 and then not Comes_From_Source (E)
11013 and then not Is_Generic_Instance (E)
11014 and then (Present (Alias (E))
11015 or else Is_Intrinsic_Subprogram (E))
11016 and then (not In_Instance
11017 or else No (Parent (E))
11018 or else Nkind (Unit_Declaration_Node (E)) /=
11019 N_Subprogram_Renaming_Declaration)
11020 then
11021 -- A subprogram child unit is not allowed to override an
11022 -- inherited subprogram (10.1.1(20)).
11024 if Is_Child_Unit (S) then
11025 Error_Msg_N
11026 ("child unit overrides inherited subprogram in parent",
11028 return;
11029 end if;
11031 if Is_Non_Overriding_Operation (E, S) then
11032 Enter_Overloaded_Entity (S);
11034 if No (Derived_Type)
11035 or else Is_Tagged_Type (Derived_Type)
11036 then
11037 Check_Dispatching_Operation (S, Empty);
11038 end if;
11040 return;
11041 end if;
11043 -- E is a derived operation or an internal operator which
11044 -- is being overridden. Remove E from further visibility.
11045 -- Furthermore, if E is a dispatching operation, it must be
11046 -- replaced in the list of primitive operations of its type
11047 -- (see Override_Dispatching_Operation).
11049 Overridden_Subp := E;
11051 -- It is possible for E to be in the current scope and
11052 -- yet not in the entity chain. This can only occur in a
11053 -- generic context where E is an implicit concatenation
11054 -- in the formal part, because in a generic body the
11055 -- entity chain starts with the formals.
11057 -- In GNATprove mode, a wrapper for an operation with
11058 -- axiomatization may be a homonym of another declaration
11059 -- for an actual subprogram (needs refinement ???).
11061 if No (Prev_Entity (E)) then
11062 if In_Instance
11063 and then GNATprove_Mode
11064 and then
11065 Nkind (Original_Node (Unit_Declaration_Node (S))) =
11066 N_Subprogram_Renaming_Declaration
11067 then
11068 return;
11069 else
11070 pragma Assert (Chars (E) = Name_Op_Concat);
11071 null;
11072 end if;
11073 end if;
11075 -- E must be removed both from the entity_list of the
11076 -- current scope, and from the visibility chain.
11078 if Debug_Flag_E then
11079 Write_Str ("Override implicit operation ");
11080 Write_Int (Int (E));
11081 Write_Eol;
11082 end if;
11084 -- If E is a predefined concatenation, it stands for four
11085 -- different operations. As a result, a single explicit
11086 -- declaration does not hide it. In a possible ambiguous
11087 -- situation, Disambiguate chooses the user-defined op,
11088 -- so it is correct to retain the previous internal one.
11090 if Chars (E) /= Name_Op_Concat
11091 or else Ekind (E) /= E_Operator
11092 then
11093 -- For nondispatching derived operations that are
11094 -- overridden by a subprogram declared in the private
11095 -- part of a package, we retain the derived subprogram
11096 -- but mark it as not immediately visible. If the
11097 -- derived operation was declared in the visible part
11098 -- then this ensures that it will still be visible
11099 -- outside the package with the proper signature
11100 -- (calls from outside must also be directed to this
11101 -- version rather than the overriding one, unlike the
11102 -- dispatching case). Calls from inside the package
11103 -- will still resolve to the overriding subprogram
11104 -- since the derived one is marked as not visible
11105 -- within the package.
11107 -- If the private operation is dispatching, we achieve
11108 -- the overriding by keeping the implicit operation
11109 -- but setting its alias to be the overriding one. In
11110 -- this fashion the proper body is executed in all
11111 -- cases, but the original signature is used outside
11112 -- of the package.
11114 -- If the overriding is not in the private part, we
11115 -- remove the implicit operation altogether.
11117 if Is_Private_Declaration (S) then
11118 if not Is_Dispatching_Operation (E) then
11119 Set_Is_Immediately_Visible (E, False);
11120 else
11121 -- Work done in Override_Dispatching_Operation, so
11122 -- nothing else needs to be done here.
11124 null;
11125 end if;
11127 else
11128 Remove_Entity_And_Homonym (E);
11129 end if;
11130 end if;
11132 Enter_Overloaded_Entity (S);
11134 -- For entities generated by Derive_Subprograms the
11135 -- overridden operation is the inherited primitive
11136 -- (which is available through the attribute alias).
11138 if not (Comes_From_Source (E))
11139 and then Is_Dispatching_Operation (E)
11140 and then Find_Dispatching_Type (E) =
11141 Find_Dispatching_Type (S)
11142 and then Present (Alias (E))
11143 and then Comes_From_Source (Alias (E))
11144 then
11145 Set_Overridden_Operation (S, Alias (E));
11146 Inherit_Subprogram_Contract (S, Alias (E));
11148 -- Normal case of setting entity as overridden
11150 -- Note: Static_Initialization and Overridden_Operation
11151 -- attributes use the same field in subprogram entities.
11152 -- Static_Initialization is only defined for internal
11153 -- initialization procedures, where Overridden_Operation
11154 -- is irrelevant. Therefore the setting of this attribute
11155 -- must check whether the target is an init_proc.
11157 elsif not Is_Init_Proc (S) then
11158 Set_Overridden_Operation (S, E);
11159 Inherit_Subprogram_Contract (S, E);
11160 end if;
11162 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11164 -- The Ghost policy in effect at the point of declaration
11165 -- of a parent subprogram and an overriding subprogram
11166 -- must match (SPARK RM 6.9(17)).
11168 Check_Ghost_Overriding (S, E);
11170 -- If S is a user-defined subprogram or a null procedure
11171 -- expanded to override an inherited null procedure, or a
11172 -- predefined dispatching primitive then indicate that E
11173 -- overrides the operation from which S is inherited.
11175 if Comes_From_Source (S)
11176 or else
11177 (Present (Parent (S))
11178 and then Nkind (Parent (S)) = N_Procedure_Specification
11179 and then Null_Present (Parent (S)))
11180 or else
11181 (Present (Alias (E))
11182 and then
11183 Is_Predefined_Dispatching_Operation (Alias (E)))
11184 then
11185 if Present (Alias (E)) then
11186 Set_Overridden_Operation (S, Alias (E));
11187 Inherit_Subprogram_Contract (S, Alias (E));
11188 end if;
11189 end if;
11191 if Is_Dispatching_Operation (E) then
11193 -- An overriding dispatching subprogram inherits the
11194 -- convention of the overridden subprogram (AI-117).
11196 Set_Convention (S, Convention (E));
11197 Check_Dispatching_Operation (S, E);
11199 else
11200 Check_Dispatching_Operation (S, Empty);
11201 end if;
11203 Check_For_Primitive_Subprogram
11204 (Is_Primitive_Subp, Is_Overriding => True);
11205 goto Check_Inequality;
11207 -- Apparent redeclarations in instances can occur when two
11208 -- formal types get the same actual type. The subprograms in
11209 -- in the instance are legal, even if not callable from the
11210 -- outside. Calls from within are disambiguated elsewhere.
11211 -- For dispatching operations in the visible part, the usual
11212 -- rules apply, and operations with the same profile are not
11213 -- legal (B830001).
11215 elsif (In_Instance_Visible_Part
11216 and then not Is_Dispatching_Operation (E))
11217 or else In_Instance_Not_Visible
11218 then
11219 null;
11221 -- Here we have a real error (identical profile)
11223 else
11224 Error_Msg_Sloc := Sloc (E);
11226 -- Avoid cascaded errors if the entity appears in
11227 -- subsequent calls.
11229 Set_Scope (S, Current_Scope);
11231 -- Generate error, with extra useful warning for the case
11232 -- of a generic instance with no completion.
11234 if Is_Generic_Instance (S)
11235 and then not Has_Completion (E)
11236 then
11237 Error_Msg_N
11238 ("instantiation cannot provide body for&", S);
11239 Error_Msg_N ("\& conflicts with declaration#", S);
11240 else
11241 Error_Msg_N ("& conflicts with declaration#", S);
11242 end if;
11244 return;
11245 end if;
11247 else
11248 -- If one subprogram has an access parameter and the other
11249 -- a parameter of an access type, calls to either might be
11250 -- ambiguous. Verify that parameters match except for the
11251 -- access parameter.
11253 if May_Hide_Profile then
11254 declare
11255 F1 : Entity_Id;
11256 F2 : Entity_Id;
11258 begin
11259 F1 := First_Formal (S);
11260 F2 := First_Formal (E);
11261 while Present (F1) and then Present (F2) loop
11262 if Is_Access_Type (Etype (F1)) then
11263 if not Is_Access_Type (Etype (F2))
11264 or else not Conforming_Types
11265 (Designated_Type (Etype (F1)),
11266 Designated_Type (Etype (F2)),
11267 Type_Conformant)
11268 then
11269 May_Hide_Profile := False;
11270 end if;
11272 elsif
11273 not Conforming_Types
11274 (Etype (F1), Etype (F2), Type_Conformant)
11275 then
11276 May_Hide_Profile := False;
11277 end if;
11279 Next_Formal (F1);
11280 Next_Formal (F2);
11281 end loop;
11283 if May_Hide_Profile
11284 and then No (F1)
11285 and then No (F2)
11286 then
11287 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11288 end if;
11289 end;
11290 end if;
11291 end if;
11293 E := Homonym (E);
11294 end loop;
11296 -- On exit, we know that S is a new entity
11298 Enter_Overloaded_Entity (S);
11299 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11300 Check_Overriding_Indicator
11301 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11303 -- The Ghost policy in effect at the point of declaration of a parent
11304 -- subprogram and an overriding subprogram must match
11305 -- (SPARK RM 6.9(17)).
11307 Check_Ghost_Overriding (S, Overridden_Subp);
11309 -- Overloading is not allowed in SPARK, except for operators
11311 if Nkind (S) /= N_Defining_Operator_Symbol then
11312 Error_Msg_Sloc := Sloc (Homonym (S));
11313 Check_SPARK_05_Restriction
11314 ("overloading not allowed with entity#", S);
11315 end if;
11317 -- If S is a derived operation for an untagged type then by
11318 -- definition it's not a dispatching operation (even if the parent
11319 -- operation was dispatching), so Check_Dispatching_Operation is not
11320 -- called in that case.
11322 if No (Derived_Type)
11323 or else Is_Tagged_Type (Derived_Type)
11324 then
11325 Check_Dispatching_Operation (S, Empty);
11326 end if;
11327 end if;
11329 -- If this is a user-defined equality operator that is not a derived
11330 -- subprogram, create the corresponding inequality. If the operation is
11331 -- dispatching, the expansion is done elsewhere, and we do not create
11332 -- an explicit inequality operation.
11334 <<Check_Inequality>>
11335 if Chars (S) = Name_Op_Eq
11336 and then Etype (S) = Standard_Boolean
11337 and then Present (Parent (S))
11338 and then not Is_Dispatching_Operation (S)
11339 then
11340 Make_Inequality_Operator (S);
11341 Check_Untagged_Equality (S);
11342 end if;
11343 end New_Overloaded_Entity;
11345 ----------------------------------
11346 -- Preanalyze_Formal_Expression --
11347 ----------------------------------
11349 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11350 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11351 begin
11352 In_Spec_Expression := True;
11353 Preanalyze_With_Freezing_And_Resolve (N, T);
11354 In_Spec_Expression := Save_In_Spec_Expression;
11355 end Preanalyze_Formal_Expression;
11357 ---------------------
11358 -- Process_Formals --
11359 ---------------------
11361 procedure Process_Formals
11362 (T : List_Id;
11363 Related_Nod : Node_Id)
11365 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11366 -- Determine whether an access type designates a type coming from a
11367 -- limited view.
11369 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11370 -- Check whether the default has a class-wide type. After analysis the
11371 -- default has the type of the formal, so we must also check explicitly
11372 -- for an access attribute.
11374 ----------------------------------
11375 -- Designates_From_Limited_With --
11376 ----------------------------------
11378 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11379 Desig : Entity_Id := Typ;
11381 begin
11382 if Is_Access_Type (Desig) then
11383 Desig := Directly_Designated_Type (Desig);
11384 end if;
11386 if Is_Class_Wide_Type (Desig) then
11387 Desig := Root_Type (Desig);
11388 end if;
11390 return
11391 Ekind (Desig) = E_Incomplete_Type
11392 and then From_Limited_With (Desig);
11393 end Designates_From_Limited_With;
11395 ---------------------------
11396 -- Is_Class_Wide_Default --
11397 ---------------------------
11399 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11400 begin
11401 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11402 or else (Nkind (D) = N_Attribute_Reference
11403 and then Attribute_Name (D) = Name_Access
11404 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11405 end Is_Class_Wide_Default;
11407 -- Local variables
11409 Context : constant Node_Id := Parent (Parent (T));
11410 Default : Node_Id;
11411 Formal : Entity_Id;
11412 Formal_Type : Entity_Id;
11413 Param_Spec : Node_Id;
11414 Ptype : Entity_Id;
11416 Num_Out_Params : Nat := 0;
11417 First_Out_Param : Entity_Id := Empty;
11418 -- Used for setting Is_Only_Out_Parameter
11420 -- Start of processing for Process_Formals
11422 begin
11423 -- In order to prevent premature use of the formals in the same formal
11424 -- part, the Ekind is left undefined until all default expressions are
11425 -- analyzed. The Ekind is established in a separate loop at the end.
11427 Param_Spec := First (T);
11428 while Present (Param_Spec) loop
11429 Formal := Defining_Identifier (Param_Spec);
11430 Set_Never_Set_In_Source (Formal, True);
11431 Enter_Name (Formal);
11433 -- Case of ordinary parameters
11435 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11436 Find_Type (Parameter_Type (Param_Spec));
11437 Ptype := Parameter_Type (Param_Spec);
11439 if Ptype = Error then
11440 goto Continue;
11441 end if;
11443 Formal_Type := Entity (Ptype);
11445 if Is_Incomplete_Type (Formal_Type)
11446 or else
11447 (Is_Class_Wide_Type (Formal_Type)
11448 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11449 then
11450 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11451 -- primitive operations, as long as their completion is
11452 -- in the same declarative part. If in the private part
11453 -- this means that the type cannot be a Taft-amendment type.
11454 -- Check is done on package exit. For access to subprograms,
11455 -- the use is legal for Taft-amendment types.
11457 -- Ada 2012: tagged incomplete types are allowed as generic
11458 -- formal types. They do not introduce dependencies and the
11459 -- corresponding generic subprogram does not have a delayed
11460 -- freeze, because it does not need a freeze node. However,
11461 -- it is still the case that untagged incomplete types cannot
11462 -- be Taft-amendment types and must be completed in private
11463 -- part, so the subprogram must appear in the list of private
11464 -- dependents of the type.
11466 if Is_Tagged_Type (Formal_Type)
11467 or else (Ada_Version >= Ada_2012
11468 and then not From_Limited_With (Formal_Type)
11469 and then not Is_Generic_Type (Formal_Type))
11470 then
11471 if Ekind (Scope (Current_Scope)) = E_Package
11472 and then not Is_Generic_Type (Formal_Type)
11473 and then not Is_Class_Wide_Type (Formal_Type)
11474 then
11475 if not Nkind_In
11476 (Parent (T), N_Access_Function_Definition,
11477 N_Access_Procedure_Definition)
11478 then
11479 Append_Elmt (Current_Scope,
11480 Private_Dependents (Base_Type (Formal_Type)));
11482 -- Freezing is delayed to ensure that Register_Prim
11483 -- will get called for this operation, which is needed
11484 -- in cases where static dispatch tables aren't built.
11485 -- (Note that the same is done for controlling access
11486 -- parameter cases in function Access_Definition.)
11488 if not Is_Thunk (Current_Scope) then
11489 Set_Has_Delayed_Freeze (Current_Scope);
11490 end if;
11491 end if;
11492 end if;
11494 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11495 N_Access_Procedure_Definition)
11496 then
11497 -- AI05-0151: Tagged incomplete types are allowed in all
11498 -- formal parts. Untagged incomplete types are not allowed
11499 -- in bodies. Limited views of either kind are not allowed
11500 -- if there is no place at which the non-limited view can
11501 -- become available.
11503 -- Incomplete formal untagged types are not allowed in
11504 -- subprogram bodies (but are legal in their declarations).
11505 -- This excludes bodies created for null procedures, which
11506 -- are basic declarations.
11508 if Is_Generic_Type (Formal_Type)
11509 and then not Is_Tagged_Type (Formal_Type)
11510 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11511 then
11512 Error_Msg_N
11513 ("invalid use of formal incomplete type", Param_Spec);
11515 elsif Ada_Version >= Ada_2012 then
11516 if Is_Tagged_Type (Formal_Type)
11517 and then (not From_Limited_With (Formal_Type)
11518 or else not In_Package_Body)
11519 then
11520 null;
11522 elsif Nkind_In (Context, N_Accept_Statement,
11523 N_Accept_Alternative,
11524 N_Entry_Body)
11525 or else (Nkind (Context) = N_Subprogram_Body
11526 and then Comes_From_Source (Context))
11527 then
11528 Error_Msg_NE
11529 ("invalid use of untagged incomplete type &",
11530 Ptype, Formal_Type);
11531 end if;
11533 else
11534 Error_Msg_NE
11535 ("invalid use of incomplete type&",
11536 Param_Spec, Formal_Type);
11538 -- Further checks on the legality of incomplete types
11539 -- in formal parts are delayed until the freeze point
11540 -- of the enclosing subprogram or access to subprogram.
11541 end if;
11542 end if;
11544 elsif Ekind (Formal_Type) = E_Void then
11545 Error_Msg_NE
11546 ("premature use of&",
11547 Parameter_Type (Param_Spec), Formal_Type);
11548 end if;
11550 -- Ada 2012 (AI-142): Handle aliased parameters
11552 if Ada_Version >= Ada_2012
11553 and then Aliased_Present (Param_Spec)
11554 then
11555 Set_Is_Aliased (Formal);
11556 end if;
11558 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11559 -- declaration corresponding to the null-excluding type of the
11560 -- formal in the enclosing scope. Finally, replace the parameter
11561 -- type of the formal with the internal subtype.
11563 if Ada_Version >= Ada_2005
11564 and then Null_Exclusion_Present (Param_Spec)
11565 then
11566 if not Is_Access_Type (Formal_Type) then
11567 Error_Msg_N
11568 ("`NOT NULL` allowed only for an access type", Param_Spec);
11570 else
11571 if Can_Never_Be_Null (Formal_Type)
11572 and then Comes_From_Source (Related_Nod)
11573 then
11574 Error_Msg_NE
11575 ("`NOT NULL` not allowed (& already excludes null)",
11576 Param_Spec, Formal_Type);
11577 end if;
11579 Formal_Type :=
11580 Create_Null_Excluding_Itype
11581 (T => Formal_Type,
11582 Related_Nod => Related_Nod,
11583 Scope_Id => Scope (Current_Scope));
11585 -- If the designated type of the itype is an itype that is
11586 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11587 -- on the access subtype, to prevent order-of-elaboration
11588 -- issues in the backend.
11590 -- Example:
11591 -- type T is access procedure;
11592 -- procedure Op (O : not null T);
11594 if Is_Itype (Directly_Designated_Type (Formal_Type))
11595 and then
11596 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11597 then
11598 Set_Has_Delayed_Freeze (Formal_Type);
11599 end if;
11600 end if;
11601 end if;
11603 -- An access formal type
11605 else
11606 Formal_Type :=
11607 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11609 -- No need to continue if we already notified errors
11611 if not Present (Formal_Type) then
11612 return;
11613 end if;
11615 -- Ada 2005 (AI-254)
11617 declare
11618 AD : constant Node_Id :=
11619 Access_To_Subprogram_Definition
11620 (Parameter_Type (Param_Spec));
11621 begin
11622 if Present (AD) and then Protected_Present (AD) then
11623 Formal_Type :=
11624 Replace_Anonymous_Access_To_Protected_Subprogram
11625 (Param_Spec);
11626 end if;
11627 end;
11628 end if;
11630 Set_Etype (Formal, Formal_Type);
11632 -- Deal with default expression if present
11634 Default := Expression (Param_Spec);
11636 if Present (Default) then
11637 Check_SPARK_05_Restriction
11638 ("default expression is not allowed", Default);
11640 if Out_Present (Param_Spec) then
11641 Error_Msg_N
11642 ("default initialization only allowed for IN parameters",
11643 Param_Spec);
11644 end if;
11646 -- Do the special preanalysis of the expression (see section on
11647 -- "Handling of Default Expressions" in the spec of package Sem).
11649 Preanalyze_Formal_Expression (Default, Formal_Type);
11651 -- An access to constant cannot be the default for
11652 -- an access parameter that is an access to variable.
11654 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11655 and then not Is_Access_Constant (Formal_Type)
11656 and then Is_Access_Type (Etype (Default))
11657 and then Is_Access_Constant (Etype (Default))
11658 then
11659 Error_Msg_N
11660 ("formal that is access to variable cannot be initialized "
11661 & "with an access-to-constant expression", Default);
11662 end if;
11664 -- Check that the designated type of an access parameter's default
11665 -- is not a class-wide type unless the parameter's designated type
11666 -- is also class-wide.
11668 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11669 and then not Designates_From_Limited_With (Formal_Type)
11670 and then Is_Class_Wide_Default (Default)
11671 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11672 then
11673 Error_Msg_N
11674 ("access to class-wide expression not allowed here", Default);
11675 end if;
11677 -- Check incorrect use of dynamically tagged expressions
11679 if Is_Tagged_Type (Formal_Type) then
11680 Check_Dynamically_Tagged_Expression
11681 (Expr => Default,
11682 Typ => Formal_Type,
11683 Related_Nod => Default);
11684 end if;
11685 end if;
11687 -- Ada 2005 (AI-231): Static checks
11689 if Ada_Version >= Ada_2005
11690 and then Is_Access_Type (Etype (Formal))
11691 and then Can_Never_Be_Null (Etype (Formal))
11692 then
11693 Null_Exclusion_Static_Checks (Param_Spec);
11694 end if;
11696 -- The following checks are relevant only when SPARK_Mode is on as
11697 -- these are not standard Ada legality rules.
11699 if SPARK_Mode = On then
11700 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11702 -- A function cannot have a parameter of mode IN OUT or OUT
11703 -- (SPARK RM 6.1).
11705 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11706 Error_Msg_N
11707 ("function cannot have parameter of mode `OUT` or "
11708 & "`IN OUT`", Formal);
11709 end if;
11711 -- A procedure cannot have an effectively volatile formal
11712 -- parameter of mode IN because it behaves as a constant
11713 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11715 elsif Ekind (Scope (Formal)) = E_Procedure
11716 and then Ekind (Formal) = E_In_Parameter
11717 and then Is_Effectively_Volatile (Formal)
11718 then
11719 Error_Msg_N
11720 ("formal parameter of mode `IN` cannot be volatile", Formal);
11721 end if;
11722 end if;
11724 <<Continue>>
11725 Next (Param_Spec);
11726 end loop;
11728 -- If this is the formal part of a function specification, analyze the
11729 -- subtype mark in the context where the formals are visible but not
11730 -- yet usable, and may hide outer homographs.
11732 if Nkind (Related_Nod) = N_Function_Specification then
11733 Analyze_Return_Type (Related_Nod);
11734 end if;
11736 -- Now set the kind (mode) of each formal
11738 Param_Spec := First (T);
11739 while Present (Param_Spec) loop
11740 Formal := Defining_Identifier (Param_Spec);
11741 Set_Formal_Mode (Formal);
11743 if Ekind (Formal) = E_In_Parameter then
11744 Set_Default_Value (Formal, Expression (Param_Spec));
11746 if Present (Expression (Param_Spec)) then
11747 Default := Expression (Param_Spec);
11749 if Is_Scalar_Type (Etype (Default)) then
11750 if Nkind (Parameter_Type (Param_Spec)) /=
11751 N_Access_Definition
11752 then
11753 Formal_Type := Entity (Parameter_Type (Param_Spec));
11754 else
11755 Formal_Type :=
11756 Access_Definition
11757 (Related_Nod, Parameter_Type (Param_Spec));
11758 end if;
11760 Apply_Scalar_Range_Check (Default, Formal_Type);
11761 end if;
11762 end if;
11764 elsif Ekind (Formal) = E_Out_Parameter then
11765 Num_Out_Params := Num_Out_Params + 1;
11767 if Num_Out_Params = 1 then
11768 First_Out_Param := Formal;
11769 end if;
11771 elsif Ekind (Formal) = E_In_Out_Parameter then
11772 Num_Out_Params := Num_Out_Params + 1;
11773 end if;
11775 -- Skip remaining processing if formal type was in error
11777 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11778 goto Next_Parameter;
11779 end if;
11781 -- Force call by reference if aliased
11783 declare
11784 Conv : constant Convention_Id := Convention (Etype (Formal));
11785 begin
11786 if Is_Aliased (Formal) then
11787 Set_Mechanism (Formal, By_Reference);
11789 -- Warn if user asked this to be passed by copy
11791 if Conv = Convention_Ada_Pass_By_Copy then
11792 Error_Msg_N
11793 ("cannot pass aliased parameter & by copy??", Formal);
11794 end if;
11796 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11798 elsif Conv = Convention_Ada_Pass_By_Copy then
11799 Set_Mechanism (Formal, By_Copy);
11801 elsif Conv = Convention_Ada_Pass_By_Reference then
11802 Set_Mechanism (Formal, By_Reference);
11803 end if;
11804 end;
11806 <<Next_Parameter>>
11807 Next (Param_Spec);
11808 end loop;
11810 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11811 Set_Is_Only_Out_Parameter (First_Out_Param);
11812 end if;
11813 end Process_Formals;
11815 ----------------------------
11816 -- Reference_Body_Formals --
11817 ----------------------------
11819 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11820 Fs : Entity_Id;
11821 Fb : Entity_Id;
11823 begin
11824 if Error_Posted (Spec) then
11825 return;
11826 end if;
11828 -- Iterate over both lists. They may be of different lengths if the two
11829 -- specs are not conformant.
11831 Fs := First_Formal (Spec);
11832 Fb := First_Formal (Bod);
11833 while Present (Fs) and then Present (Fb) loop
11834 Generate_Reference (Fs, Fb, 'b');
11836 if Style_Check then
11837 Style.Check_Identifier (Fb, Fs);
11838 end if;
11840 Set_Spec_Entity (Fb, Fs);
11841 Set_Referenced (Fs, False);
11842 Next_Formal (Fs);
11843 Next_Formal (Fb);
11844 end loop;
11845 end Reference_Body_Formals;
11847 -------------------------
11848 -- Set_Actual_Subtypes --
11849 -------------------------
11851 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11852 Decl : Node_Id;
11853 Formal : Entity_Id;
11854 T : Entity_Id;
11855 First_Stmt : Node_Id := Empty;
11856 AS_Needed : Boolean;
11858 begin
11859 -- If this is an empty initialization procedure, no need to create
11860 -- actual subtypes (small optimization).
11862 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11863 return;
11865 -- Within a predicate function we do not want to generate local
11866 -- subtypes that may generate nested predicate functions.
11868 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11869 return;
11870 end if;
11872 -- The subtype declarations may freeze the formals. The body generated
11873 -- for an expression function is not a freeze point, so do not emit
11874 -- these declarations (small loss of efficiency in rare cases).
11876 if Nkind (N) = N_Subprogram_Body
11877 and then Was_Expression_Function (N)
11878 then
11879 return;
11880 end if;
11882 Formal := First_Formal (Subp);
11883 while Present (Formal) loop
11884 T := Etype (Formal);
11886 -- We never need an actual subtype for a constrained formal
11888 if Is_Constrained (T) then
11889 AS_Needed := False;
11891 -- If we have unknown discriminants, then we do not need an actual
11892 -- subtype, or more accurately we cannot figure it out. Note that
11893 -- all class-wide types have unknown discriminants.
11895 elsif Has_Unknown_Discriminants (T) then
11896 AS_Needed := False;
11898 -- At this stage we have an unconstrained type that may need an
11899 -- actual subtype. For sure the actual subtype is needed if we have
11900 -- an unconstrained array type. However, in an instance, the type
11901 -- may appear as a subtype of the full view, while the actual is
11902 -- in fact private (in which case no actual subtype is needed) so
11903 -- check the kind of the base type.
11905 elsif Is_Array_Type (Base_Type (T)) then
11906 AS_Needed := True;
11908 -- The only other case needing an actual subtype is an unconstrained
11909 -- record type which is an IN parameter (we cannot generate actual
11910 -- subtypes for the OUT or IN OUT case, since an assignment can
11911 -- change the discriminant values. However we exclude the case of
11912 -- initialization procedures, since discriminants are handled very
11913 -- specially in this context, see the section entitled "Handling of
11914 -- Discriminants" in Einfo.
11916 -- We also exclude the case of Discrim_SO_Functions (functions used
11917 -- in front-end layout mode for size/offset values), since in such
11918 -- functions only discriminants are referenced, and not only are such
11919 -- subtypes not needed, but they cannot always be generated, because
11920 -- of order of elaboration issues.
11922 elsif Is_Record_Type (T)
11923 and then Ekind (Formal) = E_In_Parameter
11924 and then Chars (Formal) /= Name_uInit
11925 and then not Is_Unchecked_Union (T)
11926 and then not Is_Discrim_SO_Function (Subp)
11927 then
11928 AS_Needed := True;
11930 -- All other cases do not need an actual subtype
11932 else
11933 AS_Needed := False;
11934 end if;
11936 -- Generate actual subtypes for unconstrained arrays and
11937 -- unconstrained discriminated records.
11939 if AS_Needed then
11940 if Nkind (N) = N_Accept_Statement then
11942 -- If expansion is active, the formal is replaced by a local
11943 -- variable that renames the corresponding entry of the
11944 -- parameter block, and it is this local variable that may
11945 -- require an actual subtype.
11947 if Expander_Active then
11948 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11949 else
11950 Decl := Build_Actual_Subtype (T, Formal);
11951 end if;
11953 if Present (Handled_Statement_Sequence (N)) then
11954 First_Stmt :=
11955 First (Statements (Handled_Statement_Sequence (N)));
11956 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11957 Mark_Rewrite_Insertion (Decl);
11958 else
11959 -- If the accept statement has no body, there will be no
11960 -- reference to the actuals, so no need to compute actual
11961 -- subtypes.
11963 return;
11964 end if;
11966 else
11967 Decl := Build_Actual_Subtype (T, Formal);
11968 Prepend (Decl, Declarations (N));
11969 Mark_Rewrite_Insertion (Decl);
11970 end if;
11972 -- The declaration uses the bounds of an existing object, and
11973 -- therefore needs no constraint checks.
11975 Analyze (Decl, Suppress => All_Checks);
11976 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11978 -- We need to freeze manually the generated type when it is
11979 -- inserted anywhere else than in a declarative part.
11981 if Present (First_Stmt) then
11982 Insert_List_Before_And_Analyze (First_Stmt,
11983 Freeze_Entity (Defining_Identifier (Decl), N));
11985 -- Ditto if the type has a dynamic predicate, because the
11986 -- generated function will mention the actual subtype. The
11987 -- predicate may come from an explicit aspect of be inherited.
11989 elsif Has_Predicates (T) then
11990 Insert_List_Before_And_Analyze (Decl,
11991 Freeze_Entity (Defining_Identifier (Decl), N));
11992 end if;
11994 if Nkind (N) = N_Accept_Statement
11995 and then Expander_Active
11996 then
11997 Set_Actual_Subtype (Renamed_Object (Formal),
11998 Defining_Identifier (Decl));
11999 else
12000 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12001 end if;
12002 end if;
12004 Next_Formal (Formal);
12005 end loop;
12006 end Set_Actual_Subtypes;
12008 ---------------------
12009 -- Set_Formal_Mode --
12010 ---------------------
12012 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12013 Spec : constant Node_Id := Parent (Formal_Id);
12014 Id : constant Entity_Id := Scope (Formal_Id);
12016 begin
12017 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12018 -- since we ensure that corresponding actuals are always valid at the
12019 -- point of the call.
12021 if Out_Present (Spec) then
12022 if Ekind_In (Id, E_Entry, E_Entry_Family)
12023 or else Is_Subprogram_Or_Generic_Subprogram (Id)
12024 then
12025 Set_Has_Out_Or_In_Out_Parameter (Id, True);
12026 end if;
12028 if Ekind_In (Id, E_Function, E_Generic_Function) then
12030 -- [IN] OUT parameters allowed for functions in Ada 2012
12032 if Ada_Version >= Ada_2012 then
12034 -- Even in Ada 2012 operators can only have IN parameters
12036 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12037 Error_Msg_N ("operators can only have IN parameters", Spec);
12038 end if;
12040 if In_Present (Spec) then
12041 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12042 else
12043 Set_Ekind (Formal_Id, E_Out_Parameter);
12044 end if;
12046 -- But not in earlier versions of Ada
12048 else
12049 Error_Msg_N ("functions can only have IN parameters", Spec);
12050 Set_Ekind (Formal_Id, E_In_Parameter);
12051 end if;
12053 elsif In_Present (Spec) then
12054 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12056 else
12057 Set_Ekind (Formal_Id, E_Out_Parameter);
12058 Set_Never_Set_In_Source (Formal_Id, True);
12059 Set_Is_True_Constant (Formal_Id, False);
12060 Set_Current_Value (Formal_Id, Empty);
12061 end if;
12063 else
12064 Set_Ekind (Formal_Id, E_In_Parameter);
12065 end if;
12067 -- Set Is_Known_Non_Null for access parameters since the language
12068 -- guarantees that access parameters are always non-null. We also set
12069 -- Can_Never_Be_Null, since there is no way to change the value.
12071 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12073 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12074 -- null; In Ada 2005, only if then null_exclusion is explicit.
12076 if Ada_Version < Ada_2005
12077 or else Can_Never_Be_Null (Etype (Formal_Id))
12078 then
12079 Set_Is_Known_Non_Null (Formal_Id);
12080 Set_Can_Never_Be_Null (Formal_Id);
12081 end if;
12083 -- Ada 2005 (AI-231): Null-exclusion access subtype
12085 elsif Is_Access_Type (Etype (Formal_Id))
12086 and then Can_Never_Be_Null (Etype (Formal_Id))
12087 then
12088 Set_Is_Known_Non_Null (Formal_Id);
12090 -- We can also set Can_Never_Be_Null (thus preventing some junk
12091 -- access checks) for the case of an IN parameter, which cannot
12092 -- be changed, or for an IN OUT parameter, which can be changed but
12093 -- not to a null value. But for an OUT parameter, the initial value
12094 -- passed in can be null, so we can't set this flag in that case.
12096 if Ekind (Formal_Id) /= E_Out_Parameter then
12097 Set_Can_Never_Be_Null (Formal_Id);
12098 end if;
12099 end if;
12101 Set_Mechanism (Formal_Id, Default_Mechanism);
12102 Set_Formal_Validity (Formal_Id);
12103 end Set_Formal_Mode;
12105 -------------------------
12106 -- Set_Formal_Validity --
12107 -------------------------
12109 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12110 begin
12111 -- If no validity checking, then we cannot assume anything about the
12112 -- validity of parameters, since we do not know there is any checking
12113 -- of the validity on the call side.
12115 if not Validity_Checks_On then
12116 return;
12118 -- If validity checking for parameters is enabled, this means we are
12119 -- not supposed to make any assumptions about argument values.
12121 elsif Validity_Check_Parameters then
12122 return;
12124 -- If we are checking in parameters, we will assume that the caller is
12125 -- also checking parameters, so we can assume the parameter is valid.
12127 elsif Ekind (Formal_Id) = E_In_Parameter
12128 and then Validity_Check_In_Params
12129 then
12130 Set_Is_Known_Valid (Formal_Id, True);
12132 -- Similar treatment for IN OUT parameters
12134 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12135 and then Validity_Check_In_Out_Params
12136 then
12137 Set_Is_Known_Valid (Formal_Id, True);
12138 end if;
12139 end Set_Formal_Validity;
12141 ------------------------
12142 -- Subtype_Conformant --
12143 ------------------------
12145 function Subtype_Conformant
12146 (New_Id : Entity_Id;
12147 Old_Id : Entity_Id;
12148 Skip_Controlling_Formals : Boolean := False) return Boolean
12150 Result : Boolean;
12151 begin
12152 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12153 Skip_Controlling_Formals => Skip_Controlling_Formals);
12154 return Result;
12155 end Subtype_Conformant;
12157 ---------------------
12158 -- Type_Conformant --
12159 ---------------------
12161 function Type_Conformant
12162 (New_Id : Entity_Id;
12163 Old_Id : Entity_Id;
12164 Skip_Controlling_Formals : Boolean := False) return Boolean
12166 Result : Boolean;
12167 begin
12168 May_Hide_Profile := False;
12169 Check_Conformance
12170 (New_Id, Old_Id, Type_Conformant, False, Result,
12171 Skip_Controlling_Formals => Skip_Controlling_Formals);
12172 return Result;
12173 end Type_Conformant;
12175 -------------------------------
12176 -- Valid_Operator_Definition --
12177 -------------------------------
12179 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12180 N : Integer := 0;
12181 F : Entity_Id;
12182 Id : constant Name_Id := Chars (Designator);
12183 N_OK : Boolean;
12185 begin
12186 F := First_Formal (Designator);
12187 while Present (F) loop
12188 N := N + 1;
12190 if Present (Default_Value (F)) then
12191 Error_Msg_N
12192 ("default values not allowed for operator parameters",
12193 Parent (F));
12195 -- For function instantiations that are operators, we must check
12196 -- separately that the corresponding generic only has in-parameters.
12197 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12198 -- an error could not arise in earlier versions of the language.
12200 elsif Ekind (F) /= E_In_Parameter then
12201 Error_Msg_N ("operators can only have IN parameters", F);
12202 end if;
12204 Next_Formal (F);
12205 end loop;
12207 -- Verify that user-defined operators have proper number of arguments
12208 -- First case of operators which can only be unary
12210 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12211 N_OK := (N = 1);
12213 -- Case of operators which can be unary or binary
12215 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12216 N_OK := (N in 1 .. 2);
12218 -- All other operators can only be binary
12220 else
12221 N_OK := (N = 2);
12222 end if;
12224 if not N_OK then
12225 Error_Msg_N
12226 ("incorrect number of arguments for operator", Designator);
12227 end if;
12229 if Id = Name_Op_Ne
12230 and then Base_Type (Etype (Designator)) = Standard_Boolean
12231 and then not Is_Intrinsic_Subprogram (Designator)
12232 then
12233 Error_Msg_N
12234 ("explicit definition of inequality not allowed", Designator);
12235 end if;
12236 end Valid_Operator_Definition;
12238 end Sem_Ch6;