1 /* Type based alias analysis.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
4 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass determines which types in the program contain only
23 instances that are completely encapsulated by the compilation unit.
24 Those types that are encapsulated must also pass the further
25 requirement that there be no bad operations on any instances of
28 A great deal of freedom in compilation is allowed for the instances
29 of those types that pass these conditions.
32 /* The code in this module is called by the ipa pass manager. It
33 should be one of the later passes since its information is used by
34 the rest of the compilation. */
38 #include "coretypes.h"
41 #include "tree-flow.h"
42 #include "tree-inline.h"
43 #include "tree-pass.h"
44 #include "langhooks.h"
45 #include "pointer-set.h"
46 #include "splay-tree.h"
48 #include "ipa-utils.h"
49 #include "ipa-type-escape.h"
55 #include "diagnostic.h"
56 #include "langhooks.h"
58 /* Some of the aliasing is called very early, before this phase is
59 called. To assure that this is not a problem, we keep track of if
60 this phase has been run. */
61 static bool initialized
= false;
63 /* Scratch bitmap for avoiding work. */
64 static bitmap been_there_done_that
;
65 static bitmap bitmap_tmp
;
67 /* There are two levels of escape that types can undergo.
69 EXPOSED_PARAMETER - some instance of the variable is
70 passed by value into an externally visible function or some
71 instance of the variable is passed out of an externally visible
72 function as a return value. In this case any of the fields of the
73 variable that are pointer types end up having their types marked as
76 FULL_ESCAPE - when bad things happen to good types. One of the
77 following things happens to the type: (a) either an instance of the
78 variable has its address passed to an externally visible function,
79 (b) the address is taken and some bad cast happens to the address
80 or (c) explicit arithmetic is done to the address.
89 /* The following two bit vectors global_types_* correspond to
90 previous cases above. During the analysis phase, a bit is set in
91 one of these vectors if an operation of the offending class is
92 discovered to happen on the associated type. */
94 static bitmap global_types_exposed_parameter
;
95 static bitmap global_types_full_escape
;
97 /* All of the types seen in this compilation unit. */
98 static bitmap global_types_seen
;
99 /* Reverse map to take a canon uid and map it to a canon type. Uid's
100 are never manipulated unless they are associated with a canon
102 static splay_tree uid_to_canon_type
;
104 /* Internal structure of type mapping code. This maps a canon type
105 name to its canon type. */
106 static splay_tree all_canon_types
;
108 /* Map from type clones to the single canon type. */
109 static splay_tree type_to_canon_type
;
111 /* A splay tree of bitmaps. An element X in the splay tree has a bit
112 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (Y)) if there was
113 an operation in the program of the form "&X.Y". */
114 static splay_tree uid_to_addressof_down_map
;
116 /* A splay tree of bitmaps. An element Y in the splay tree has a bit
117 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (X)) if there was
118 an operation in the program of the form "&X.Y". */
119 static splay_tree uid_to_addressof_up_map
;
121 /* Tree to hold the subtype maps used to mark subtypes of escaped
123 static splay_tree uid_to_subtype_map
;
125 /* Records tree nodes seen in cgraph_create_edges. Simply using
126 walk_tree_without_duplicates doesn't guarantee each node is visited
127 once because it gets a new htab upon each recursive call from
129 static struct pointer_set_t
*visited_nodes
;
131 /* Visited stmts by walk_use_def_chains function because it's called
133 static struct pointer_set_t
*visited_stmts
;
135 static bitmap_obstack ipa_obstack
;
137 /* Static functions from this file that are used
138 before being defined. */
139 static unsigned int look_for_casts (tree
);
140 static bool is_cast_from_non_pointer (tree
, gimple
, void *);
142 /* Get the name of TYPE or return the string "<UNNAMED>". */
144 get_name_of_type (tree type
)
146 tree name
= TYPE_NAME (type
);
149 /* Unnamed type, do what you like here. */
152 /* It will be a TYPE_DECL in the case of a typedef, otherwise, an
154 if (TREE_CODE (name
) == TYPE_DECL
)
156 /* Each DECL has a DECL_NAME field which contains an
157 IDENTIFIER_NODE. (Some decls, most often labels, may have
158 zero as the DECL_NAME). */
159 if (DECL_NAME (name
))
160 return IDENTIFIER_POINTER (DECL_NAME (name
));
162 /* Unnamed type, do what you like here. */
165 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
166 return IDENTIFIER_POINTER (name
);
177 /* Splay tree comparison function on type_brand_s structures. */
180 compare_type_brand (splay_tree_key sk1
, splay_tree_key sk2
)
182 struct type_brand_s
* k1
= (struct type_brand_s
*) sk1
;
183 struct type_brand_s
* k2
= (struct type_brand_s
*) sk2
;
185 int value
= strcmp(k1
->name
, k2
->name
);
187 return k2
->seq
- k1
->seq
;
192 /* All of the "unique_type" code is a hack to get around the sleazy
193 implementation used to compile more than file. Currently gcc does
194 not get rid of multiple instances of the same type that have been
195 collected from different compilation units. */
196 /* This is a trivial algorithm for removing duplicate types. This
197 would not work for any language that used structural equivalence as
198 the basis of its type system. */
199 /* Return TYPE if no type compatible with TYPE has been seen so far,
200 otherwise return a type compatible with TYPE that has already been
204 discover_unique_type (tree type
)
206 struct type_brand_s
* brand
= XNEW (struct type_brand_s
);
208 splay_tree_node result
;
210 brand
->name
= get_name_of_type (type
);
215 result
= splay_tree_lookup (all_canon_types
, (splay_tree_key
) brand
);
219 /* Create an alias since this is just the same as
221 tree other_type
= (tree
) result
->value
;
222 if (types_compatible_p (type
, other_type
))
225 /* Insert this new type as an alias for other_type. */
226 splay_tree_insert (type_to_canon_type
,
227 (splay_tree_key
) type
,
228 (splay_tree_value
) other_type
);
231 /* Not compatible, look for next instance with same name. */
235 /* No more instances, create new one since this is the first
236 time we saw this type. */
238 /* Insert the new brand. */
239 splay_tree_insert (all_canon_types
,
240 (splay_tree_key
) brand
,
241 (splay_tree_value
) type
);
243 /* Insert this new type as an alias for itself. */
244 splay_tree_insert (type_to_canon_type
,
245 (splay_tree_key
) type
,
246 (splay_tree_value
) type
);
248 /* Insert the uid for reverse lookup; */
249 splay_tree_insert (uid_to_canon_type
,
250 (splay_tree_key
) TYPE_UID (type
),
251 (splay_tree_value
) type
);
253 bitmap_set_bit (global_types_seen
, TYPE_UID (type
));
259 /* Return true if TYPE is one of the type classes that we are willing
260 to analyze. This skips the goofy types like arrays of pointers to
263 type_to_consider (tree type
)
265 /* Strip the *'s off. */
266 type
= TYPE_MAIN_VARIANT (type
);
267 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
268 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
270 switch (TREE_CODE (type
))
276 case QUAL_UNION_TYPE
:
278 case FIXED_POINT_TYPE
:
290 /* Get the canon type of TYPE. If SEE_THRU_PTRS is true, remove all
291 the POINTER_TOs and if SEE_THRU_ARRAYS is true, remove all of the
292 ARRAY_OFs and POINTER_TOs. */
295 get_canon_type (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
297 splay_tree_node result
;
298 /* Strip the *'s off. */
299 if (!type
|| !type_to_consider (type
))
302 type
= TYPE_MAIN_VARIANT (type
);
304 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
305 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
307 else if (see_thru_ptrs
)
308 while (POINTER_TYPE_P (type
))
309 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
311 result
= splay_tree_lookup (type_to_canon_type
, (splay_tree_key
) type
);
314 return discover_unique_type (type
);
315 else return (tree
) result
->value
;
318 /* Same as GET_CANON_TYPE, except return the TYPE_ID rather than the
322 get_canon_type_uid (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
324 type
= get_canon_type (type
, see_thru_ptrs
, see_thru_arrays
);
326 return TYPE_UID(type
);
330 /* Return 0 if TYPE is a record or union type. Return a positive
331 number if TYPE is a pointer to a record or union. The number is
332 the number of pointer types stripped to get to the record or union
333 type. Return -1 if TYPE is none of the above. */
336 ipa_type_escape_star_count_of_interesting_type (tree type
)
339 /* Strip the *'s off. */
342 type
= TYPE_MAIN_VARIANT (type
);
343 while (POINTER_TYPE_P (type
))
345 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
349 /* We are interested in records, and unions only. */
350 if (TREE_CODE (type
) == RECORD_TYPE
351 || TREE_CODE (type
) == QUAL_UNION_TYPE
352 || TREE_CODE (type
) == UNION_TYPE
)
359 /* Return 0 if TYPE is a record or union type. Return a positive
360 number if TYPE is a pointer to a record or union. The number is
361 the number of pointer types stripped to get to the record or union
362 type. Return -1 if TYPE is none of the above. */
365 ipa_type_escape_star_count_of_interesting_or_array_type (tree type
)
368 /* Strip the *'s off. */
371 type
= TYPE_MAIN_VARIANT (type
);
372 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
374 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
378 /* We are interested in records, and unions only. */
379 if (TREE_CODE (type
) == RECORD_TYPE
380 || TREE_CODE (type
) == QUAL_UNION_TYPE
381 || TREE_CODE (type
) == UNION_TYPE
)
388 /* Return true if the record, or union TYPE passed in escapes this
389 compilation unit. Note that all of the pointer-to's are removed
390 before testing since these may not be correct. */
393 ipa_type_escape_type_contained_p (tree type
)
397 return !bitmap_bit_p (global_types_full_escape
,
398 get_canon_type_uid (type
, true, false));
401 /* Return true if a modification to a field of type FIELD_TYPE cannot
402 clobber a record of RECORD_TYPE. */
405 ipa_type_escape_field_does_not_clobber_p (tree record_type
, tree field_type
)
407 splay_tree_node result
;
413 /* Strip off all of the pointer tos on the record type. Strip the
414 same number of pointer tos from the field type. If the field
415 type has fewer, it could not have been aliased. */
416 record_type
= TYPE_MAIN_VARIANT (record_type
);
417 field_type
= TYPE_MAIN_VARIANT (field_type
);
418 while (POINTER_TYPE_P (record_type
))
420 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
421 if (POINTER_TYPE_P (field_type
))
422 field_type
= TYPE_MAIN_VARIANT (TREE_TYPE (field_type
));
424 /* However, if field_type is a union, this quick test is not
425 correct since one of the variants of the union may be a
426 pointer to type and we cannot see across that here. So we
427 just strip the remaining pointer tos off the record type
428 and fall thru to the more precise code. */
429 if (TREE_CODE (field_type
) == QUAL_UNION_TYPE
430 || TREE_CODE (field_type
) == UNION_TYPE
)
432 while (POINTER_TYPE_P (record_type
))
433 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
440 record_type
= get_canon_type (record_type
, true, true);
441 /* The record type must be contained. The field type may
443 if (!ipa_type_escape_type_contained_p (record_type
))
446 uid
= TYPE_UID (record_type
);
447 result
= splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
451 bitmap field_type_map
= (bitmap
) result
->value
;
452 uid
= get_canon_type_uid (field_type
, true, true);
453 /* If the bit is there, the address was taken. If not, it
455 return !bitmap_bit_p (field_type_map
, uid
);
458 /* No bitmap means no addresses were taken. */
463 /* Add TYPE to the suspect type set. Return true if the bit needed to
467 mark_type (tree type
, enum escape_t escape_status
)
472 type
= get_canon_type (type
, true, true);
476 switch (escape_status
)
478 case EXPOSED_PARAMETER
:
479 map
= global_types_exposed_parameter
;
482 map
= global_types_full_escape
;
486 uid
= TYPE_UID (type
);
487 if (bitmap_bit_p (map
, uid
))
491 bitmap_set_bit (map
, uid
);
492 if (escape_status
== FULL_ESCAPE
)
494 /* Efficiency hack. When things are bad, do not mess around
495 with this type anymore. */
496 bitmap_set_bit (global_types_exposed_parameter
, uid
);
502 /* Add interesting TYPE to the suspect type set. If the set is
503 EXPOSED_PARAMETER and the TYPE is a pointer type, the set is
504 changed to FULL_ESCAPE. */
507 mark_interesting_type (tree type
, enum escape_t escape_status
)
510 if (ipa_type_escape_star_count_of_interesting_type (type
) >= 0)
512 if ((escape_status
== EXPOSED_PARAMETER
)
513 && POINTER_TYPE_P (type
))
514 /* EXPOSED_PARAMETERs are only structs or unions are passed by
515 value. Anything passed by reference to an external
516 function fully exposes the type. */
517 mark_type (type
, FULL_ESCAPE
);
519 mark_type (type
, escape_status
);
523 /* Return true if PARENT is supertype of CHILD. Both types must be
524 known to be structures or unions. */
527 parent_type_p (tree parent
, tree child
)
530 tree binfo
, base_binfo
;
531 if (TYPE_BINFO (parent
))
532 for (binfo
= TYPE_BINFO (parent
), i
= 0;
533 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
535 tree binfotype
= BINFO_TYPE (base_binfo
);
536 if (binfotype
== child
)
538 else if (parent_type_p (binfotype
, child
))
541 if (TREE_CODE (parent
) == UNION_TYPE
542 || TREE_CODE (parent
) == QUAL_UNION_TYPE
)
545 /* Search all of the variants in the union to see if one of them
547 for (field
= TYPE_FIELDS (parent
);
549 field
= TREE_CHAIN (field
))
552 if (TREE_CODE (field
) != FIELD_DECL
)
555 field_type
= TREE_TYPE (field
);
556 if (field_type
== child
)
560 /* If we did not find it, recursively ask the variants if one of
561 their children is the child type. */
562 for (field
= TYPE_FIELDS (parent
);
564 field
= TREE_CHAIN (field
))
567 if (TREE_CODE (field
) != FIELD_DECL
)
570 field_type
= TREE_TYPE (field
);
571 if (TREE_CODE (field_type
) == RECORD_TYPE
572 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
573 || TREE_CODE (field_type
) == UNION_TYPE
)
574 if (parent_type_p (field_type
, child
))
579 if (TREE_CODE (parent
) == RECORD_TYPE
)
582 for (field
= TYPE_FIELDS (parent
);
584 field
= TREE_CHAIN (field
))
587 if (TREE_CODE (field
) != FIELD_DECL
)
590 field_type
= TREE_TYPE (field
);
591 if (field_type
== child
)
593 /* You can only cast to the first field so if it does not
595 if (TREE_CODE (field_type
) == RECORD_TYPE
596 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
597 || TREE_CODE (field_type
) == UNION_TYPE
)
599 if (parent_type_p (field_type
, child
))
609 /* Return the number of pointer tos for TYPE and return TYPE with all
610 of these stripped off. */
613 count_stars (tree
* type_ptr
)
615 tree type
= *type_ptr
;
617 type
= TYPE_MAIN_VARIANT (type
);
618 while (POINTER_TYPE_P (type
))
620 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
633 CT_FROM_P_BAD
= 0x10,
634 CT_FROM_NON_P
= 0x20,
635 CT_TO_NON_INTER
= 0x40,
636 CT_FROM_MALLOC
= 0x80,
640 /* Check the cast FROM_TYPE to TO_TYPE. This function requires that
641 the two types have already passed the
642 ipa_type_escape_star_count_of_interesting_type test. */
644 static enum cast_type
645 check_cast_type (tree to_type
, tree from_type
)
647 int to_stars
= count_stars (&to_type
);
648 int from_stars
= count_stars (&from_type
);
649 if (to_stars
!= from_stars
)
652 if (to_type
== from_type
)
655 if (parent_type_p (to_type
, from_type
)) return CT_UP
;
656 if (parent_type_p (from_type
, to_type
)) return CT_DOWN
;
660 /* This function returns nonzero if VAR is result of call
661 to malloc function. */
664 is_malloc_result (tree var
)
671 if (SSA_NAME_IS_DEFAULT_DEF (var
))
674 def_stmt
= SSA_NAME_DEF_STMT (var
);
676 if (!is_gimple_call (def_stmt
))
679 if (var
!= gimple_call_lhs (def_stmt
))
682 return ((gimple_call_flags (def_stmt
) & ECF_MALLOC
) != 0);
686 /* Check a cast FROM this variable, TO_TYPE. Mark the escaping types
687 if appropriate. Returns cast_type as detected. */
689 static enum cast_type
690 check_cast (tree to_type
, tree from
)
692 tree from_type
= get_canon_type (TREE_TYPE (from
), false, false);
693 bool to_interesting_type
, from_interesting_type
;
694 enum cast_type cast
= CT_NO_CAST
;
696 to_type
= get_canon_type (to_type
, false, false);
697 if (!from_type
|| !to_type
|| from_type
== to_type
)
700 to_interesting_type
=
701 ipa_type_escape_star_count_of_interesting_type (to_type
) >= 0;
702 from_interesting_type
=
703 ipa_type_escape_star_count_of_interesting_type (from_type
) >= 0;
705 if (to_interesting_type
)
706 if (from_interesting_type
)
708 /* Both types are interesting. This can be one of four types
709 of cast: useless, up, down, or sideways. We do not care
710 about up or useless. Sideways casts are always bad and
711 both sides get marked as escaping. Downcasts are not
712 interesting here because if type is marked as escaping, all
713 of its subtypes escape. */
714 cast
= check_cast_type (to_type
, from_type
);
723 mark_type (to_type
, FULL_ESCAPE
);
724 mark_type (from_type
, FULL_ESCAPE
);
733 /* This code excludes two cases from marking as escaped:
735 1. if this is a cast of index of array of structures/unions
736 that happens before accessing array element, we should not
738 2. if this is a cast from the local that is a result from a
739 call to malloc, do not mark the cast as bad.
743 if (POINTER_TYPE_P (to_type
) && !POINTER_TYPE_P (from_type
))
744 cast
= CT_FROM_NON_P
;
745 else if (TREE_CODE (from
) == SSA_NAME
746 && is_malloc_result (from
))
747 cast
= CT_FROM_MALLOC
;
750 cast
= CT_FROM_P_BAD
;
751 mark_type (to_type
, FULL_ESCAPE
);
754 else if (from_interesting_type
)
756 mark_type (from_type
, FULL_ESCAPE
);
757 cast
= CT_TO_NON_INTER
;
764 /* Scan assignment statement S to see if there are any casts within it. */
767 look_for_casts_stmt (gimple s
)
769 unsigned int cast
= 0;
771 gcc_assert (is_gimple_assign (s
));
773 if (gimple_assign_cast_p (s
))
775 tree castfromvar
= gimple_assign_rhs1 (s
);
776 cast
|= check_cast (TREE_TYPE (gimple_assign_lhs (s
)), castfromvar
);
781 for (i
= 0; i
< gimple_num_ops (s
); i
++)
782 cast
|= look_for_casts (gimple_op (s
, i
));
798 /* This function is a callback for walk_use_def_chains function called
799 from is_array_access_through_pointer_and_index. */
802 is_cast_from_non_pointer (tree var
, gimple def_stmt
, void *data
)
804 if (!def_stmt
|| !var
)
807 if (gimple_code (def_stmt
) == GIMPLE_PHI
)
810 if (SSA_NAME_IS_DEFAULT_DEF (var
))
813 if (is_gimple_assign (def_stmt
))
817 unsigned int cast
= look_for_casts_stmt (def_stmt
);
819 /* Check that only one cast happened, and it's of non-pointer
821 if ((cast
& CT_FROM_NON_P
) == (CT_FROM_NON_P
)
822 && (cast
& ~(CT_FROM_NON_P
)) == 0)
824 ((cast_t
*)data
)->stmt
= def_stmt
;
825 ((cast_t
*)data
)->type
++;
827 FOR_EACH_SSA_USE_OPERAND (use_p
, def_stmt
, iter
, SSA_OP_ALL_USES
)
829 walk_use_def_chains (USE_FROM_PTR (use_p
),
830 is_cast_from_non_pointer
, data
, false);
831 if (((cast_t
*)data
)->type
== -1)
835 /* Check that there is no cast, or cast is not harmful. */
836 else if ((cast
& CT_NO_CAST
) == (CT_NO_CAST
)
837 || (cast
& CT_DOWN
) == (CT_DOWN
)
838 || (cast
& CT_UP
) == (CT_UP
)
839 || (cast
& CT_USELESS
) == (CT_USELESS
)
840 || (cast
& CT_FROM_MALLOC
) == (CT_FROM_MALLOC
))
842 FOR_EACH_SSA_USE_OPERAND (use_p
, def_stmt
, iter
, SSA_OP_ALL_USES
)
844 walk_use_def_chains (USE_FROM_PTR (use_p
),
845 is_cast_from_non_pointer
, data
, false);
846 if (((cast_t
*)data
)->type
== -1)
850 /* The cast is harmful. */
852 ((cast_t
*)data
)->type
= -1;
855 if (((cast_t
*)data
)->type
== -1)
861 /* When array element a_p[i] is accessed through the pointer a_p
862 and index i, it's translated into the following sequence
865 i.1_5 = (unsigned int) i_1;
866 D.1605_6 = i.1_5 * 16;
867 D.1606_7 = (struct str_t *) D.1605_6;
869 D.1608_9 = D.1606_7 + a_p.2_8;
871 OP0 and OP1 are of the same pointer types and stand for
872 D.1606_7 and a_p.2_8 or vise versa.
874 This function checks that:
876 1. one of OP0 and OP1 (D.1606_7) has passed only one cast from
877 non-pointer type (D.1606_7 = (struct str_t *) D.1605_6;).
879 2. one of OP0 and OP1 which has passed the cast from
880 non-pointer type (D.1606_7), is actually generated by multiplication of
881 index by size of type to which both OP0 and OP1 point to
882 (in this case D.1605_6 = i.1_5 * 16; ).
884 3. an address of def of the var to which was made cast (D.1605_6)
885 was not taken.(How can it happen?)
887 The following items are checked implicitly by the end of algorithm:
889 4. one of OP0 and OP1 (a_p.2_8) have never been cast
890 (because if it was cast to pointer type, its type, that is also
891 the type of OP0 and OP1, will be marked as escaped during
892 analysis of casting stmt (when check_cast() is called
893 from scan_for_refs for this stmt)).
895 5. defs of OP0 and OP1 are not passed into externally visible function
896 (because if they are passed then their type, that is also the type of OP0
897 and OP1, will be marked and escaped during check_call function called from
898 scan_for_refs with call stmt).
900 In total, 1-5 guaranty that it's an access to array by pointer and index.
905 is_array_access_through_pointer_and_index (enum tree_code code
, tree op0
,
906 tree op1
, tree
*base
, tree
*offset
,
907 gimple
*offset_cast_stmt
)
910 gimple before_cast_def_stmt
;
911 cast_t op0_cast
, op1_cast
;
915 *offset_cast_stmt
= NULL
;
918 if (code
== POINTER_PLUS_EXPR
)
920 tree op0type
= TYPE_MAIN_VARIANT (TREE_TYPE (op0
));
921 tree op1type
= TYPE_MAIN_VARIANT (TREE_TYPE (op1
));
923 /* One of op0 and op1 is of pointer type and the other is numerical. */
924 if (POINTER_TYPE_P (op0type
) && NUMERICAL_TYPE_CHECK (op1type
))
929 else if (POINTER_TYPE_P (op1type
) && NUMERICAL_TYPE_CHECK (op0type
))
939 /* Init data for walk_use_def_chains function. */
940 op0_cast
.type
= op1_cast
.type
= 0;
941 op0_cast
.stmt
= op1_cast
.stmt
= NULL
;
943 visited_stmts
= pointer_set_create ();
944 walk_use_def_chains (op0
, is_cast_from_non_pointer
,(void *)(&op0_cast
),
946 pointer_set_destroy (visited_stmts
);
948 visited_stmts
= pointer_set_create ();
949 walk_use_def_chains (op1
, is_cast_from_non_pointer
,(void *)(&op1_cast
),
951 pointer_set_destroy (visited_stmts
);
953 if (op0_cast
.type
== 1 && op1_cast
.type
== 0)
957 *offset_cast_stmt
= op0_cast
.stmt
;
959 else if (op0_cast
.type
== 0 && op1_cast
.type
== 1)
963 *offset_cast_stmt
= op1_cast
.stmt
;
970 offset_cast_stmt is of the form:
971 D.1606_7 = (struct str_t *) D.1605_6; */
973 if (*offset_cast_stmt
)
975 before_cast
= SINGLE_SSA_TREE_OPERAND (*offset_cast_stmt
, SSA_OP_USE
);
979 if (SSA_NAME_IS_DEFAULT_DEF (before_cast
))
982 before_cast_def_stmt
= SSA_NAME_DEF_STMT (before_cast
);
983 if (!before_cast_def_stmt
)
987 before_cast_def_stmt
= SSA_NAME_DEF_STMT (*offset
);
989 /* before_cast_def_stmt should be of the form:
990 D.1605_6 = i.1_5 * 16; */
992 if (is_gimple_assign (before_cast_def_stmt
))
994 /* We expect temporary here. */
995 if (!is_gimple_reg (gimple_assign_lhs (before_cast_def_stmt
)))
998 if (gimple_assign_rhs_code (before_cast_def_stmt
) == MULT_EXPR
)
1000 tree arg0
= gimple_assign_rhs1 (before_cast_def_stmt
);
1001 tree arg1
= gimple_assign_rhs2 (before_cast_def_stmt
);
1003 TYPE_SIZE_UNIT (TREE_TYPE (TYPE_MAIN_VARIANT (TREE_TYPE (op0
))));
1005 if (!(CONSTANT_CLASS_P (arg0
)
1006 && simple_cst_equal (arg0
, unit_size
))
1007 && !(CONSTANT_CLASS_P (arg1
)
1008 && simple_cst_equal (arg1
, unit_size
)))
1018 check that address of D.1605_6 was not taken.
1019 FIXME: if D.1605_6 is gimple reg than it cannot be addressable. */
1024 /* Register the parameter and return types of function FN. The type
1025 ESCAPES if the function is visible outside of the compilation
1028 check_function_parameter_and_return_types (tree fn
, bool escapes
)
1032 if (TYPE_ARG_TYPES (TREE_TYPE (fn
)))
1034 for (arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1035 arg
&& TREE_VALUE (arg
) != void_type_node
;
1036 arg
= TREE_CHAIN (arg
))
1038 tree type
= get_canon_type (TREE_VALUE (arg
), false, false);
1040 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1045 /* FIXME - According to Geoff Keating, we should never have to
1046 do this; the front ends should always process the arg list
1047 from the TYPE_ARG_LIST. However, Geoff is wrong, this code
1048 does seem to be live. */
1050 for (arg
= DECL_ARGUMENTS (fn
); arg
; arg
= TREE_CHAIN (arg
))
1052 tree type
= get_canon_type (TREE_TYPE (arg
), false, false);
1054 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1059 tree type
= get_canon_type (TREE_TYPE (TREE_TYPE (fn
)), false, false);
1060 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1064 /* Return true if the variable T is the right kind of static variable to
1065 perform compilation unit scope escape analysis. */
1068 has_proper_scope_for_analysis (tree t
)
1070 /* If the variable has the "used" attribute, treat it as if it had a
1071 been touched by the devil. */
1072 tree type
= get_canon_type (TREE_TYPE (t
), false, false);
1075 if (lookup_attribute ("used", DECL_ATTRIBUTES (t
)))
1077 mark_interesting_type (type
, FULL_ESCAPE
);
1081 /* Do not want to do anything with volatile except mark any
1082 function that uses one to be not const or pure. */
1083 if (TREE_THIS_VOLATILE (t
))
1086 /* Do not care about a local automatic that is not static. */
1087 if (!TREE_STATIC (t
) && !DECL_EXTERNAL (t
))
1090 if (DECL_EXTERNAL (t
) || TREE_PUBLIC (t
))
1092 /* If the front end set the variable to be READONLY and
1093 constant, we can allow this variable in pure or const
1094 functions but the scope is too large for our analysis to set
1095 these bits ourselves. */
1097 if (TREE_READONLY (t
)
1099 && is_gimple_min_invariant (DECL_INITIAL (t
)))
1100 ; /* Read of a constant, do not change the function state. */
1103 /* The type escapes for all public and externs. */
1104 mark_interesting_type (type
, FULL_ESCAPE
);
1109 /* If T is a VAR_DECL for a static that we are interested in, add the
1110 uid to the bitmap. */
1113 check_operand (tree t
)
1117 /* This is an assignment from a function, register the types as
1119 if (TREE_CODE (t
) == FUNCTION_DECL
)
1120 check_function_parameter_and_return_types (t
, true);
1122 else if (TREE_CODE (t
) == VAR_DECL
)
1123 has_proper_scope_for_analysis (t
);
1126 /* Examine tree T for references. */
1131 if ((TREE_CODE (t
) == EXC_PTR_EXPR
) || (TREE_CODE (t
) == FILTER_EXPR
))
1134 /* We want to catch here also REALPART_EXPR and IMAGEPART_EXPR,
1135 but they already included in handled_component_p. */
1136 while (handled_component_p (t
))
1138 if (TREE_CODE (t
) == ARRAY_REF
)
1139 check_operand (TREE_OPERAND (t
, 1));
1140 t
= TREE_OPERAND (t
, 0);
1143 if (INDIRECT_REF_P (t
))
1144 /* || TREE_CODE (t) == MEM_REF) */
1145 check_tree (TREE_OPERAND (t
, 0));
1147 if (SSA_VAR_P (t
) || (TREE_CODE (t
) == FUNCTION_DECL
))
1150 if (DECL_P (t
) && DECL_INITIAL (t
))
1151 check_tree (DECL_INITIAL (t
));
1155 /* Create an address_of edge FROM_TYPE.TO_TYPE. */
1157 mark_interesting_addressof (tree to_type
, tree from_type
)
1162 splay_tree_node result
;
1164 from_type
= get_canon_type (from_type
, false, false);
1165 to_type
= get_canon_type (to_type
, false, false);
1167 if (!from_type
|| !to_type
)
1170 from_uid
= TYPE_UID (from_type
);
1171 to_uid
= TYPE_UID (to_type
);
1173 gcc_assert (ipa_type_escape_star_count_of_interesting_type (from_type
) == 0);
1175 /* Process the Y into X map pointer. */
1176 result
= splay_tree_lookup (uid_to_addressof_down_map
,
1177 (splay_tree_key
) from_uid
);
1180 type_map
= (bitmap
) result
->value
;
1183 type_map
= BITMAP_ALLOC (&ipa_obstack
);
1184 splay_tree_insert (uid_to_addressof_down_map
,
1186 (splay_tree_value
)type_map
);
1188 bitmap_set_bit (type_map
, TYPE_UID (to_type
));
1190 /* Process the X into Y reverse map pointer. */
1192 splay_tree_lookup (uid_to_addressof_up_map
, (splay_tree_key
) to_uid
);
1195 type_map
= (bitmap
) result
->value
;
1198 type_map
= BITMAP_ALLOC (&ipa_obstack
);
1199 splay_tree_insert (uid_to_addressof_up_map
,
1201 (splay_tree_value
)type_map
);
1203 bitmap_set_bit (type_map
, TYPE_UID (from_type
));
1206 /* Scan tree T to see if there are any addresses taken in within T. */
1209 look_for_address_of (tree t
)
1211 if (TREE_CODE (t
) == ADDR_EXPR
)
1213 tree x
= get_base_var (t
);
1214 tree cref
= TREE_OPERAND (t
, 0);
1216 /* If we have an expression of the form "&a.b.c.d", mark a.b,
1217 b.c and c.d. as having its address taken. */
1218 tree fielddecl
= NULL_TREE
;
1221 if (TREE_CODE (cref
) == COMPONENT_REF
)
1223 fielddecl
= TREE_OPERAND (cref
, 1);
1224 mark_interesting_addressof (TREE_TYPE (fielddecl
),
1225 DECL_FIELD_CONTEXT (fielddecl
));
1227 else if (TREE_CODE (cref
) == ARRAY_REF
)
1228 get_canon_type (TREE_TYPE (cref
), false, false);
1230 cref
= TREE_OPERAND (cref
, 0);
1233 if (TREE_CODE (x
) == VAR_DECL
)
1234 has_proper_scope_for_analysis (x
);
1239 /* Scan tree T to see if there are any casts within it. */
1242 look_for_casts (tree t
)
1244 unsigned int cast
= 0;
1246 if (is_gimple_cast (t
) || TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
1248 tree castfromvar
= TREE_OPERAND (t
, 0);
1249 cast
= cast
| check_cast (TREE_TYPE (t
), castfromvar
);
1252 while (handled_component_p (t
))
1254 t
= TREE_OPERAND (t
, 0);
1255 if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
1257 /* This may be some part of a component ref.
1258 IE it may be a.b.VIEW_CONVERT_EXPR<weird_type>(c).d, AFAIK.
1259 castfromref will give you a.b.c, not a. */
1260 tree castfromref
= TREE_OPERAND (t
, 0);
1261 cast
= cast
| check_cast (TREE_TYPE (t
), castfromref
);
1263 else if (TREE_CODE (t
) == COMPONENT_REF
)
1264 get_canon_type (TREE_TYPE (TREE_OPERAND (t
, 1)), false, false);
1272 /* Check to see if T is a read or address of operation on a static var
1273 we are interested in analyzing. */
1276 check_rhs_var (tree t
)
1278 look_for_address_of (t
);
1282 /* Check to see if T is an assignment to a static var we are
1283 interested in analyzing. */
1286 check_lhs_var (tree t
)
1291 /* This is a scaled down version of get_asm_expr_operands from
1292 tree_ssa_operands.c. The version there runs much later and assumes
1293 that aliasing information is already available. Here we are just
1294 trying to find if the set of inputs and outputs contain references
1295 or address of operations to local. FN is the function being
1296 analyzed and STMT is the actual asm statement. */
1299 check_asm (gimple stmt
)
1303 for (i
= 0; i
< gimple_asm_noutputs (stmt
); i
++)
1304 check_lhs_var (gimple_asm_output_op (stmt
, i
));
1306 for (i
= 0; i
< gimple_asm_ninputs (stmt
); i
++)
1307 check_rhs_var (gimple_asm_input_op (stmt
, i
));
1309 /* There is no code here to check for asm memory clobbers. The
1310 casual maintainer might think that such code would be necessary,
1311 but that appears to be wrong. In other parts of the compiler,
1312 the asm memory clobbers are assumed to only clobber variables
1313 that are addressable. All types with addressable instances are
1314 assumed to already escape. So, we are protected here. */
1318 /* Check the parameters of function call to CALL to mark the
1319 types that pass across the function boundary. Also check to see if
1320 this is either an indirect call, a call outside the compilation
1324 check_call (gimple call
)
1326 tree callee_t
= gimple_call_fndecl (call
);
1327 struct cgraph_node
* callee
;
1328 enum availability avail
= AVAIL_NOT_AVAILABLE
;
1331 for (i
= 0; i
< gimple_call_num_args (call
); i
++)
1332 check_rhs_var (gimple_call_arg (call
, i
));
1337 tree last_arg_type
= NULL
;
1338 callee
= cgraph_node(callee_t
);
1339 avail
= cgraph_function_body_availability (callee
);
1341 /* Check that there are no implicit casts in the passing of
1343 if (TYPE_ARG_TYPES (TREE_TYPE (callee_t
)))
1345 for (arg_type
= TYPE_ARG_TYPES (TREE_TYPE (callee_t
)), i
= 0;
1346 arg_type
&& TREE_VALUE (arg_type
) != void_type_node
;
1347 arg_type
= TREE_CHAIN (arg_type
), i
++)
1349 tree operand
= gimple_call_arg (call
, i
);
1352 last_arg_type
= TREE_VALUE(arg_type
);
1353 check_cast (last_arg_type
, operand
);
1356 /* The code reaches here for some unfortunate
1357 builtin functions that do not have a list of
1364 /* FIXME - According to Geoff Keating, we should never
1365 have to do this; the front ends should always process
1366 the arg list from the TYPE_ARG_LIST. */
1367 for (arg_type
= DECL_ARGUMENTS (callee_t
), i
= 0;
1369 arg_type
= TREE_CHAIN (arg_type
), i
++)
1371 tree operand
= gimple_call_arg (call
, i
);
1374 last_arg_type
= TREE_TYPE (arg_type
);
1375 check_cast (last_arg_type
, operand
);
1378 /* The code reaches here for some unfortunate
1379 builtin functions that do not have a list of
1385 /* In the case where we have a var_args function, we need to
1386 check the remaining parameters against the last argument. */
1387 arg_type
= last_arg_type
;
1388 for ( ; i
< gimple_call_num_args (call
); i
++)
1390 tree operand
= gimple_call_arg (call
, i
);
1392 check_cast (arg_type
, operand
);
1395 /* The code reaches here for some unfortunate
1396 builtin functions that do not have a list of
1397 argument types. Most of these functions have
1398 been marked as having their parameters not
1399 escape, but for the rest, the type is doomed. */
1400 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1401 mark_interesting_type (type
, FULL_ESCAPE
);
1406 /* The callee is either unknown (indirect call) or there is just no
1407 scannable code for it (external call) . We look to see if there
1408 are any bits available for the callee (such as by declaration or
1409 because it is builtin) and process solely on the basis of those
1411 if (avail
== AVAIL_NOT_AVAILABLE
|| avail
== AVAIL_OVERWRITABLE
)
1413 /* If this is a direct call to an external function, mark all of
1414 the parameter and return types. */
1415 for (i
= 0; i
< gimple_call_num_args (call
); i
++)
1417 tree operand
= gimple_call_arg (call
, i
);
1418 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1419 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1425 get_canon_type (TREE_TYPE (TREE_TYPE (callee_t
)), false, false);
1426 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1431 /* CODE is the operation on OP0 and OP1. OP0 is the operand that we
1432 *know* is a pointer type. OP1 may be a pointer type. */
1434 okay_pointer_operation (enum tree_code code
, tree op0
, tree op1
)
1436 tree op0type
= TYPE_MAIN_VARIANT (TREE_TYPE (op0
));
1441 /* Multiplication does not change alignment. */
1446 case POINTER_PLUS_EXPR
:
1449 gimple offset_cast_stmt
;
1451 if (POINTER_TYPE_P (op0type
)
1452 && TREE_CODE (op0
) == SSA_NAME
1453 && TREE_CODE (op1
) == SSA_NAME
1454 && is_array_access_through_pointer_and_index (code
, op0
, op1
,
1461 tree size_of_op0_points_to
= TYPE_SIZE_UNIT (TREE_TYPE (op0type
));
1463 if (CONSTANT_CLASS_P (op1
)
1464 && size_of_op0_points_to
1465 && multiple_of_p (TREE_TYPE (size_of_op0_points_to
),
1466 op1
, size_of_op0_points_to
))
1469 if (CONSTANT_CLASS_P (op0
)
1470 && size_of_op0_points_to
1471 && multiple_of_p (TREE_TYPE (size_of_op0_points_to
),
1472 op0
, size_of_op0_points_to
))
1485 /* Helper for scan_for_refs. Check the operands of an assignment to
1486 mark types that may escape. */
1489 check_assign (gimple t
)
1491 /* First look on the lhs and see what variable is stored to */
1492 check_lhs_var (gimple_assign_lhs (t
));
1494 /* For the purposes of figuring out what the cast affects */
1496 /* Next check the operands on the rhs to see if they are ok. */
1497 switch (TREE_CODE_CLASS (gimple_assign_rhs_code (t
)))
1501 tree op0
= gimple_assign_rhs1 (t
);
1502 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1503 tree op1
= gimple_assign_rhs2 (t
);
1504 tree type1
= get_canon_type (TREE_TYPE (op1
), false, false);
1506 /* If this is pointer arithmetic of any bad sort, then
1507 we need to mark the types as bad. For binary
1508 operations, no binary operator we currently support
1509 is always "safe" in regard to what it would do to
1510 pointers for purposes of determining which types
1511 escape, except operations of the size of the type.
1512 It is possible that min and max under the right set
1513 of circumstances and if the moon is in the correct
1514 place could be safe, but it is hard to see how this
1515 is worth the effort. */
1516 if (type0
&& POINTER_TYPE_P (type0
)
1517 && !okay_pointer_operation (gimple_assign_rhs_code (t
), op0
, op1
))
1518 mark_interesting_type (type0
, FULL_ESCAPE
);
1520 if (type1
&& POINTER_TYPE_P (type1
)
1521 && !okay_pointer_operation (gimple_assign_rhs_code (t
), op1
, op0
))
1522 mark_interesting_type (type1
, FULL_ESCAPE
);
1524 look_for_casts (op0
);
1525 look_for_casts (op1
);
1526 check_rhs_var (op0
);
1527 check_rhs_var (op1
);
1533 tree op0
= gimple_assign_rhs1 (t
);
1534 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1536 /* For unary operations, if the operation is NEGATE or ABS on
1537 a pointer, this is also considered pointer arithmetic and
1538 thus, bad for business. */
1540 && POINTER_TYPE_P (type0
)
1541 && (TREE_CODE (op0
) == NEGATE_EXPR
1542 || TREE_CODE (op0
) == ABS_EXPR
))
1543 mark_interesting_type (type0
, FULL_ESCAPE
);
1545 check_rhs_var (op0
);
1546 look_for_casts (op0
);
1551 look_for_casts (gimple_assign_rhs1 (t
));
1552 check_rhs_var (gimple_assign_rhs1 (t
));
1555 case tcc_declaration
:
1556 check_rhs_var (gimple_assign_rhs1 (t
));
1559 case tcc_expression
:
1560 if (gimple_assign_rhs_code (t
) == ADDR_EXPR
)
1562 tree rhs
= gimple_assign_rhs1 (t
);
1563 look_for_casts (TREE_OPERAND (rhs
, 0));
1564 check_rhs_var (rhs
);
1574 /* Scan statement T for references to types and mark anything
1578 scan_for_refs (gimple t
)
1580 switch (gimple_code (t
))
1587 /* If this is a call to malloc, squirrel away the result so we
1588 do mark the resulting cast as being bad. */
1604 /* The init routine for analyzing global static variable usage. See
1605 comments at top for description. */
1609 bitmap_obstack_initialize (&ipa_obstack
);
1610 global_types_exposed_parameter
= BITMAP_ALLOC (&ipa_obstack
);
1611 global_types_full_escape
= BITMAP_ALLOC (&ipa_obstack
);
1612 global_types_seen
= BITMAP_ALLOC (&ipa_obstack
);
1614 uid_to_canon_type
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1615 all_canon_types
= splay_tree_new (compare_type_brand
, 0, 0);
1616 type_to_canon_type
= splay_tree_new (splay_tree_compare_pointers
, 0, 0);
1617 uid_to_subtype_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1618 uid_to_addressof_down_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1619 uid_to_addressof_up_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1621 /* There are some shared nodes, in particular the initializers on
1622 static declarations. We do not need to scan them more than once
1623 since all we would be interested in are the addressof
1625 visited_nodes
= pointer_set_create ();
1629 /* Check out the rhs of a static or global initialization VNODE to see
1630 if any of them contain addressof operations. Note that some of
1631 these variables may not even be referenced in the code in this
1632 compilation unit but their right hand sides may contain references
1633 to variables defined within this unit. */
1636 analyze_variable (struct varpool_node
*vnode
)
1638 tree global
= vnode
->decl
;
1639 tree type
= get_canon_type (TREE_TYPE (global
), false, false);
1641 /* If this variable has exposure beyond the compilation unit, add
1642 its type to the global types. */
1644 if (vnode
->externally_visible
)
1645 mark_interesting_type (type
, FULL_ESCAPE
);
1647 gcc_assert (TREE_CODE (global
) == VAR_DECL
);
1649 if (DECL_INITIAL (global
))
1650 check_tree (DECL_INITIAL (global
));
1653 /* This is the main routine for finding the reference patterns for
1654 global variables within a function FN. */
1657 analyze_function (struct cgraph_node
*fn
)
1659 tree decl
= fn
->decl
;
1660 check_function_parameter_and_return_types (decl
,
1661 fn
->local
.externally_visible
);
1663 fprintf (dump_file
, "\n local analysis of %s", cgraph_node_name (fn
));
1666 struct function
*this_cfun
= DECL_STRUCT_FUNCTION (decl
);
1667 basic_block this_block
;
1669 FOR_EACH_BB_FN (this_block
, this_cfun
)
1671 gimple_stmt_iterator gsi
;
1672 for (gsi
= gsi_start_bb (this_block
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1673 scan_for_refs (gsi_stmt (gsi
));
1677 /* There may be const decls with interesting right hand sides. */
1678 if (DECL_STRUCT_FUNCTION (decl
))
1681 for (step
= DECL_STRUCT_FUNCTION (decl
)->local_decls
;
1683 step
= TREE_CHAIN (step
))
1685 tree var
= TREE_VALUE (step
);
1686 if (TREE_CODE (var
) == VAR_DECL
1687 && DECL_INITIAL (var
)
1688 && !TREE_STATIC (var
))
1689 check_tree (DECL_INITIAL (var
));
1690 get_canon_type (TREE_TYPE (var
), false, false);
1697 /* Convert a type_UID into a type. */
1699 type_for_uid (int uid
)
1701 splay_tree_node result
=
1702 splay_tree_lookup (uid_to_canon_type
, (splay_tree_key
) uid
);
1705 return (tree
) result
->value
;
1709 /* Return a bitmap with the subtypes of the type for UID. If it
1710 does not exist, return either NULL or a new bitmap depending on the
1714 subtype_map_for_uid (int uid
, bool create
)
1716 splay_tree_node result
= splay_tree_lookup (uid_to_subtype_map
,
1717 (splay_tree_key
) uid
);
1720 return (bitmap
) result
->value
;
1723 bitmap subtype_map
= BITMAP_ALLOC (&ipa_obstack
);
1724 splay_tree_insert (uid_to_subtype_map
,
1726 (splay_tree_value
)subtype_map
);
1732 /* Mark all of the supertypes and field types of TYPE as being seen.
1733 Also accumulate the subtypes for each type so that
1734 close_types_full_escape can mark a subtype as escaping if the
1735 supertype escapes. */
1738 close_type_seen (tree type
)
1742 tree binfo
, base_binfo
;
1744 /* See thru all pointer tos and array ofs. */
1745 type
= get_canon_type (type
, true, true);
1749 uid
= TYPE_UID (type
);
1751 if (bitmap_bit_p (been_there_done_that
, uid
))
1753 bitmap_set_bit (been_there_done_that
, uid
);
1755 /* If we are doing a language with a type hierarchy, mark all of
1756 the superclasses. */
1757 if (TYPE_BINFO (type
))
1758 for (binfo
= TYPE_BINFO (type
), i
= 0;
1759 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1761 tree binfo_type
= BINFO_TYPE (base_binfo
);
1762 bitmap subtype_map
= subtype_map_for_uid
1763 (TYPE_UID (TYPE_MAIN_VARIANT (binfo_type
)), true);
1764 bitmap_set_bit (subtype_map
, uid
);
1765 close_type_seen (get_canon_type (binfo_type
, true, true));
1768 /* If the field is a struct or union type, mark all of the
1770 for (field
= TYPE_FIELDS (type
);
1772 field
= TREE_CHAIN (field
))
1775 if (TREE_CODE (field
) != FIELD_DECL
)
1778 field_type
= TREE_TYPE (field
);
1779 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1780 close_type_seen (get_canon_type (field_type
, true, true));
1784 /* Take a TYPE that has been passed by value to an external function
1785 and mark all of the fields that have pointer types as escaping. For
1786 any of the non pointer types that are structures or unions,
1787 recurse. TYPE is never a pointer type. */
1790 close_type_exposed_parameter (tree type
)
1795 type
= get_canon_type (type
, false, false);
1798 uid
= TYPE_UID (type
);
1799 gcc_assert (!POINTER_TYPE_P (type
));
1801 if (bitmap_bit_p (been_there_done_that
, uid
))
1803 bitmap_set_bit (been_there_done_that
, uid
);
1805 /* If the field is a struct or union type, mark all of the
1807 for (field
= TYPE_FIELDS (type
);
1809 field
= TREE_CHAIN (field
))
1813 if (TREE_CODE (field
) != FIELD_DECL
)
1816 field_type
= get_canon_type (TREE_TYPE (field
), false, false);
1817 mark_interesting_type (field_type
, EXPOSED_PARAMETER
);
1819 /* Only recurse for non pointer types of structures and unions. */
1820 if (ipa_type_escape_star_count_of_interesting_type (field_type
) == 0)
1821 close_type_exposed_parameter (field_type
);
1825 /* The next function handles the case where a type fully escapes.
1826 This means that not only does the type itself escape,
1828 a) the type of every field recursively escapes
1829 b) the type of every subtype escapes as well as the super as well
1830 as all of the pointer to types for each field.
1832 Note that pointer to types are not marked as escaping. If the
1833 pointed to type escapes, the pointer to type also escapes.
1835 Take a TYPE that has had the address taken for an instance of it
1836 and mark all of the types for its fields as having their addresses
1840 close_type_full_escape (tree type
)
1845 tree binfo
, base_binfo
;
1848 splay_tree_node address_result
;
1850 /* Strip off any pointer or array types. */
1851 type
= get_canon_type (type
, true, true);
1854 uid
= TYPE_UID (type
);
1856 if (bitmap_bit_p (been_there_done_that
, uid
))
1858 bitmap_set_bit (been_there_done_that
, uid
);
1860 subtype_map
= subtype_map_for_uid (uid
, false);
1862 /* If we are doing a language with a type hierarchy, mark all of
1863 the superclasses. */
1864 if (TYPE_BINFO (type
))
1865 for (binfo
= TYPE_BINFO (type
), i
= 0;
1866 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1868 tree binfotype
= BINFO_TYPE (base_binfo
);
1869 binfotype
= mark_type (binfotype
, FULL_ESCAPE
);
1870 close_type_full_escape (binfotype
);
1873 /* Mark as escaped any types that have been down casted to
1876 EXECUTE_IF_SET_IN_BITMAP (subtype_map
, 0, i
, bi
)
1878 tree subtype
= type_for_uid (i
);
1879 subtype
= mark_type (subtype
, FULL_ESCAPE
);
1880 close_type_full_escape (subtype
);
1883 /* If the field is a struct or union type, mark all of the
1885 for (field
= TYPE_FIELDS (type
);
1887 field
= TREE_CHAIN (field
))
1890 if (TREE_CODE (field
) != FIELD_DECL
)
1893 field_type
= TREE_TYPE (field
);
1894 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1896 field_type
= mark_type (field_type
, FULL_ESCAPE
);
1897 close_type_full_escape (field_type
);
1901 /* For all of the types A that contain this type B and were part of
1902 an expression like "&...A.B...", mark the A's as escaping. */
1903 address_result
= splay_tree_lookup (uid_to_addressof_up_map
,
1904 (splay_tree_key
) uid
);
1907 bitmap containing_classes
= (bitmap
) address_result
->value
;
1908 EXECUTE_IF_SET_IN_BITMAP (containing_classes
, 0, i
, bi
)
1910 close_type_full_escape (type_for_uid (i
));
1915 /* Transitively close the addressof bitmap for the type with UID.
1916 This means that if we had a.b and b.c, a would have both b and c in
1920 close_addressof_down (int uid
)
1923 splay_tree_node result
=
1924 splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1930 map
= (bitmap
) result
->value
;
1934 if (bitmap_bit_p (been_there_done_that
, uid
))
1936 bitmap_set_bit (been_there_done_that
, uid
);
1938 /* If the type escapes, get rid of the addressof map, it will not be
1940 if (bitmap_bit_p (global_types_full_escape
, uid
))
1943 splay_tree_remove (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1947 /* The new_map will have all of the bits for the enclosed fields and
1948 will have the unique id version of the old map. */
1949 new_map
= BITMAP_ALLOC (&ipa_obstack
);
1951 EXECUTE_IF_SET_IN_BITMAP (map
, 0, i
, bi
)
1953 bitmap submap
= close_addressof_down (i
);
1954 bitmap_set_bit (new_map
, i
);
1956 bitmap_ior_into (new_map
, submap
);
1958 result
->value
= (splay_tree_value
) new_map
;
1965 /* The main entry point for type escape analysis. */
1968 type_escape_execute (void)
1970 struct cgraph_node
*node
;
1971 struct varpool_node
*vnode
;
1974 splay_tree_node result
;
1978 /* Process all of the variables first. */
1979 FOR_EACH_STATIC_VARIABLE (vnode
)
1980 analyze_variable (vnode
);
1982 /* Process all of the functions next.
1984 We do not want to process any of the clones so we check that this
1985 is a master clone. However, we do need to process any
1986 AVAIL_OVERWRITABLE functions (these are never clones) because
1987 they may cause a type variable to escape.
1989 for (node
= cgraph_nodes
; node
; node
= node
->next
)
1991 analyze_function (node
);
1994 pointer_set_destroy (visited_nodes
);
1995 visited_nodes
= NULL
;
1997 /* Do all of the closures to discover which types escape the
1998 compilation unit. */
2000 been_there_done_that
= BITMAP_ALLOC (&ipa_obstack
);
2001 bitmap_tmp
= BITMAP_ALLOC (&ipa_obstack
);
2003 /* Examine the types that we have directly seen in scanning the code
2004 and add to that any contained types or superclasses. */
2006 bitmap_copy (bitmap_tmp
, global_types_seen
);
2007 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2009 tree type
= type_for_uid (i
);
2010 /* Only look at records and unions and pointer tos. */
2011 if (ipa_type_escape_star_count_of_interesting_or_array_type (type
) >= 0)
2012 close_type_seen (type
);
2014 bitmap_clear (been_there_done_that
);
2016 /* Examine all of the types passed by value and mark any enclosed
2017 pointer types as escaping. */
2018 bitmap_copy (bitmap_tmp
, global_types_exposed_parameter
);
2019 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2021 close_type_exposed_parameter (type_for_uid (i
));
2023 bitmap_clear (been_there_done_that
);
2025 /* Close the types for escape. If something escapes, then any
2026 enclosed types escape as well as any subtypes. */
2027 bitmap_copy (bitmap_tmp
, global_types_full_escape
);
2028 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2030 close_type_full_escape (type_for_uid (i
));
2032 bitmap_clear (been_there_done_that
);
2034 /* Before this pass, the uid_to_addressof_down_map for type X
2035 contained an entry for Y if there had been an operation of the
2036 form &X.Y. This step adds all of the fields contained within Y
2037 (recursively) to X's map. */
2039 result
= splay_tree_min (uid_to_addressof_down_map
);
2042 int uid
= result
->key
;
2043 /* Close the addressof map, i.e. copy all of the transitive
2044 substructures up to this level. */
2045 close_addressof_down (uid
);
2046 result
= splay_tree_successor (uid_to_addressof_down_map
, uid
);
2049 /* Do not need the array types and pointer types in the persistent
2051 result
= splay_tree_min (all_canon_types
);
2054 tree type
= (tree
) result
->value
;
2055 tree key
= (tree
) result
->key
;
2056 if (POINTER_TYPE_P (type
)
2057 || TREE_CODE (type
) == ARRAY_TYPE
)
2059 splay_tree_remove (all_canon_types
, (splay_tree_key
) result
->key
);
2060 splay_tree_remove (type_to_canon_type
, (splay_tree_key
) type
);
2061 splay_tree_remove (uid_to_canon_type
, (splay_tree_key
) TYPE_UID (type
));
2062 bitmap_clear_bit (global_types_seen
, TYPE_UID (type
));
2064 result
= splay_tree_successor (all_canon_types
, (splay_tree_key
) key
);
2069 EXECUTE_IF_SET_IN_BITMAP (global_types_seen
, 0, i
, bi
)
2071 /* The pointer types are in the global_types_full_escape
2072 bitmap but not in the backwards map. They also contain
2073 no useful information since they are not marked. */
2074 tree type
= type_for_uid (i
);
2075 fprintf(dump_file
, "type %d ", i
);
2076 print_generic_expr (dump_file
, type
, 0);
2077 if (bitmap_bit_p (global_types_full_escape
, i
))
2078 fprintf(dump_file
, " escaped\n");
2080 fprintf(dump_file
, " contained\n");
2084 /* Get rid of uid_to_addressof_up_map and its bitmaps. */
2085 result
= splay_tree_min (uid_to_addressof_up_map
);
2088 int uid
= (int)result
->key
;
2089 bitmap bm
= (bitmap
)result
->value
;
2092 splay_tree_remove (uid_to_addressof_up_map
, (splay_tree_key
) uid
);
2093 result
= splay_tree_successor (uid_to_addressof_up_map
, uid
);
2096 /* Get rid of the subtype map. */
2097 result
= splay_tree_min (uid_to_subtype_map
);
2100 bitmap b
= (bitmap
)result
->value
;
2102 splay_tree_remove (uid_to_subtype_map
, result
->key
);
2103 result
= splay_tree_min (uid_to_subtype_map
);
2105 splay_tree_delete (uid_to_subtype_map
);
2106 uid_to_subtype_map
= NULL
;
2108 BITMAP_FREE (global_types_exposed_parameter
);
2109 BITMAP_FREE (been_there_done_that
);
2110 BITMAP_FREE (bitmap_tmp
);
2115 gate_type_escape_vars (void)
2117 return (flag_ipa_type_escape
2118 /* Don't bother doing anything if the program has errors. */
2119 && !(errorcount
|| sorrycount
));
2122 struct simple_ipa_opt_pass pass_ipa_type_escape
=
2126 "type-escape-var", /* name */
2127 gate_type_escape_vars
, /* gate */
2128 type_escape_execute
, /* execute */
2131 0, /* static_pass_number */
2132 TV_IPA_TYPE_ESCAPE
, /* tv_id */
2133 0, /* properties_required */
2134 0, /* properties_provided */
2135 0, /* properties_destroyed */
2136 0, /* todo_flags_start */
2137 0 /* todo_flags_finish */