PR ada/40608
[official-gcc.git] / gcc / cfgcleanup.c
blob757a0ffe4ca86bfda3c1d6c1fced86ef8cc6c43e
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
68 static bool try_crossjump_to_edge (int, edge, edge);
69 static bool try_crossjump_bb (int, basic_block);
70 static bool outgoing_edges_match (int, basic_block, basic_block);
71 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
72 static bool old_insns_match_p (int, rtx, rtx);
74 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
75 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block);
78 static bool try_forward_edges (int, basic_block);
79 static edge thread_jump (edge, basic_block);
80 static bool mark_effect (rtx, bitmap);
81 static void notice_new_block (basic_block);
82 static void update_forwarder_flag (basic_block);
83 static int mentions_nonequal_regs (rtx *, void *);
84 static void merge_memattrs (rtx, rtx);
86 /* Set flags for newly created block. */
88 static void
89 notice_new_block (basic_block bb)
91 if (!bb)
92 return;
94 if (forwarder_block_p (bb))
95 bb->flags |= BB_FORWARDER_BLOCK;
98 /* Recompute forwarder flag after block has been modified. */
100 static void
101 update_forwarder_flag (basic_block bb)
103 if (forwarder_block_p (bb))
104 bb->flags |= BB_FORWARDER_BLOCK;
105 else
106 bb->flags &= ~BB_FORWARDER_BLOCK;
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
112 static bool
113 try_simplify_condjump (basic_block cbranch_block)
115 basic_block jump_block, jump_dest_block, cbranch_dest_block;
116 edge cbranch_jump_edge, cbranch_fallthru_edge;
117 rtx cbranch_insn;
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block->succs) != 2)
121 return false;
123 /* Verify that we've got a normal conditional branch at the end
124 of the block. */
125 cbranch_insn = BB_END (cbranch_block);
126 if (!any_condjump_p (cbranch_insn))
127 return false;
129 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
130 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block = cbranch_fallthru_edge->dest;
136 if (!single_pred_p (jump_block)
137 || jump_block->next_bb == EXIT_BLOCK_PTR
138 || !FORWARDER_BLOCK_P (jump_block))
139 return false;
140 jump_dest_block = single_succ (jump_block);
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
144 and cold sections.
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
153 || (cbranch_jump_edge->flags & EDGE_CROSSING))
154 return false;
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
160 if (cbranch_dest_block == EXIT_BLOCK_PTR
161 || !can_fallthru (jump_block, cbranch_dest_block))
162 return false;
164 /* Invert the conditional branch. */
165 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
166 return false;
168 if (dump_file)
169 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
170 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
172 /* Success. Update the CFG to match. Note that after this point
173 the edge variable names appear backwards; the redirection is done
174 this way to preserve edge profile data. */
175 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
176 cbranch_dest_block);
177 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
178 jump_dest_block);
179 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
180 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
181 update_br_prob_note (cbranch_block);
183 /* Delete the block with the unconditional jump, and clean up the mess. */
184 delete_basic_block (jump_block);
185 tidy_fallthru_edge (cbranch_jump_edge);
186 update_forwarder_flag (cbranch_block);
188 return true;
191 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
192 on register. Used by jump threading. */
194 static bool
195 mark_effect (rtx exp, regset nonequal)
197 int regno;
198 rtx dest;
199 switch (GET_CODE (exp))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
208 CLEAR_REGNO_REG_SET (nonequal, regno);
209 if (regno < FIRST_PSEUDO_REGISTER)
211 int n = hard_regno_nregs[regno][GET_MODE (dest)];
212 while (--n > 0)
213 CLEAR_REGNO_REG_SET (nonequal, regno + n);
216 return false;
218 case SET:
219 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
220 return false;
221 dest = SET_DEST (exp);
222 if (dest == pc_rtx)
223 return false;
224 if (!REG_P (dest))
225 return true;
226 regno = REGNO (dest);
227 SET_REGNO_REG_SET (nonequal, regno);
228 if (regno < FIRST_PSEUDO_REGISTER)
230 int n = hard_regno_nregs[regno][GET_MODE (dest)];
231 while (--n > 0)
232 SET_REGNO_REG_SET (nonequal, regno + n);
234 return false;
236 default:
237 return false;
241 /* Return nonzero if X is a register set in regset DATA.
242 Called via for_each_rtx. */
243 static int
244 mentions_nonequal_regs (rtx *x, void *data)
246 regset nonequal = (regset) data;
247 if (REG_P (*x))
249 int regno;
251 regno = REGNO (*x);
252 if (REGNO_REG_SET_P (nonequal, regno))
253 return 1;
254 if (regno < FIRST_PSEUDO_REGISTER)
256 int n = hard_regno_nregs[regno][GET_MODE (*x)];
257 while (--n > 0)
258 if (REGNO_REG_SET_P (nonequal, regno + n))
259 return 1;
262 return 0;
264 /* Attempt to prove that the basic block B will have no side effects and
265 always continues in the same edge if reached via E. Return the edge
266 if exist, NULL otherwise. */
268 static edge
269 thread_jump (edge e, basic_block b)
271 rtx set1, set2, cond1, cond2, insn;
272 enum rtx_code code1, code2, reversed_code2;
273 bool reverse1 = false;
274 unsigned i;
275 regset nonequal;
276 bool failed = false;
277 reg_set_iterator rsi;
279 if (b->flags & BB_NONTHREADABLE_BLOCK)
280 return NULL;
282 /* At the moment, we do handle only conditional jumps, but later we may
283 want to extend this code to tablejumps and others. */
284 if (EDGE_COUNT (e->src->succs) != 2)
285 return NULL;
286 if (EDGE_COUNT (b->succs) != 2)
288 b->flags |= BB_NONTHREADABLE_BLOCK;
289 return NULL;
292 /* Second branch must end with onlyjump, as we will eliminate the jump. */
293 if (!any_condjump_p (BB_END (e->src)))
294 return NULL;
296 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
298 b->flags |= BB_NONTHREADABLE_BLOCK;
299 return NULL;
302 set1 = pc_set (BB_END (e->src));
303 set2 = pc_set (BB_END (b));
304 if (((e->flags & EDGE_FALLTHRU) != 0)
305 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
306 reverse1 = true;
308 cond1 = XEXP (SET_SRC (set1), 0);
309 cond2 = XEXP (SET_SRC (set2), 0);
310 if (reverse1)
311 code1 = reversed_comparison_code (cond1, BB_END (e->src));
312 else
313 code1 = GET_CODE (cond1);
315 code2 = GET_CODE (cond2);
316 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
318 if (!comparison_dominates_p (code1, code2)
319 && !comparison_dominates_p (code1, reversed_code2))
320 return NULL;
322 /* Ensure that the comparison operators are equivalent.
323 ??? This is far too pessimistic. We should allow swapped operands,
324 different CCmodes, or for example comparisons for interval, that
325 dominate even when operands are not equivalent. */
326 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
327 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
328 return NULL;
330 /* Short circuit cases where block B contains some side effects, as we can't
331 safely bypass it. */
332 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
333 insn = NEXT_INSN (insn))
334 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
336 b->flags |= BB_NONTHREADABLE_BLOCK;
337 return NULL;
340 cselib_init (false);
342 /* First process all values computed in the source basic block. */
343 for (insn = NEXT_INSN (BB_HEAD (e->src));
344 insn != NEXT_INSN (BB_END (e->src));
345 insn = NEXT_INSN (insn))
346 if (INSN_P (insn))
347 cselib_process_insn (insn);
349 nonequal = BITMAP_ALLOC (NULL);
350 CLEAR_REG_SET (nonequal);
352 /* Now assume that we've continued by the edge E to B and continue
353 processing as if it were same basic block.
354 Our goal is to prove that whole block is an NOOP. */
356 for (insn = NEXT_INSN (BB_HEAD (b));
357 insn != NEXT_INSN (BB_END (b)) && !failed;
358 insn = NEXT_INSN (insn))
360 if (INSN_P (insn))
362 rtx pat = PATTERN (insn);
364 if (GET_CODE (pat) == PARALLEL)
366 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
367 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
369 else
370 failed |= mark_effect (pat, nonequal);
373 cselib_process_insn (insn);
376 /* Later we should clear nonequal of dead registers. So far we don't
377 have life information in cfg_cleanup. */
378 if (failed)
380 b->flags |= BB_NONTHREADABLE_BLOCK;
381 goto failed_exit;
384 /* cond2 must not mention any register that is not equal to the
385 former block. */
386 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
387 goto failed_exit;
389 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
390 goto failed_exit;
392 BITMAP_FREE (nonequal);
393 cselib_finish ();
394 if ((comparison_dominates_p (code1, code2) != 0)
395 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
396 return BRANCH_EDGE (b);
397 else
398 return FALLTHRU_EDGE (b);
400 failed_exit:
401 BITMAP_FREE (nonequal);
402 cselib_finish ();
403 return NULL;
406 /* Attempt to forward edges leaving basic block B.
407 Return true if successful. */
409 static bool
410 try_forward_edges (int mode, basic_block b)
412 bool changed = false;
413 edge_iterator ei;
414 edge e, *threaded_edges = NULL;
416 /* If we are partitioning hot/cold basic blocks, we don't want to
417 mess up unconditional or indirect jumps that cross between hot
418 and cold sections.
420 Basic block partitioning may result in some jumps that appear to
421 be optimizable (or blocks that appear to be mergeable), but which really
422 must be left untouched (they are required to make it safely across
423 partition boundaries). See the comments at the top of
424 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
426 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
427 return false;
429 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
431 basic_block target, first;
432 int counter, goto_locus;
433 bool threaded = false;
434 int nthreaded_edges = 0;
435 bool may_thread = first_pass | df_get_bb_dirty (b);
437 /* Skip complex edges because we don't know how to update them.
439 Still handle fallthru edges, as we can succeed to forward fallthru
440 edge to the same place as the branch edge of conditional branch
441 and turn conditional branch to an unconditional branch. */
442 if (e->flags & EDGE_COMPLEX)
444 ei_next (&ei);
445 continue;
448 target = first = e->dest;
449 counter = NUM_FIXED_BLOCKS;
450 goto_locus = e->goto_locus;
452 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
453 up jumps that cross between hot/cold sections.
455 Basic block partitioning may result in some jumps that appear
456 to be optimizable (or blocks that appear to be mergeable), but which
457 really must be left untouched (they are required to make it safely
458 across partition boundaries). See the comments at the top of
459 bb-reorder.c:partition_hot_cold_basic_blocks for complete
460 details. */
462 if (first != EXIT_BLOCK_PTR
463 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
464 return false;
466 while (counter < n_basic_blocks)
468 basic_block new_target = NULL;
469 bool new_target_threaded = false;
470 may_thread |= df_get_bb_dirty (target);
472 if (FORWARDER_BLOCK_P (target)
473 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
474 && single_succ (target) != EXIT_BLOCK_PTR)
476 /* Bypass trivial infinite loops. */
477 new_target = single_succ (target);
478 if (target == new_target)
479 counter = n_basic_blocks;
480 else if (!optimize)
482 /* When not optimizing, ensure that edges or forwarder
483 blocks with different locus are not optimized out. */
484 int locus = single_succ_edge (target)->goto_locus;
486 if (locus && goto_locus && !locator_eq (locus, goto_locus))
487 counter = n_basic_blocks;
488 else if (locus)
489 goto_locus = locus;
491 if (INSN_P (BB_END (target)))
493 locus = INSN_LOCATOR (BB_END (target));
495 if (locus && goto_locus
496 && !locator_eq (locus, goto_locus))
497 counter = n_basic_blocks;
498 else if (locus)
499 goto_locus = locus;
504 /* Allow to thread only over one edge at time to simplify updating
505 of probabilities. */
506 else if ((mode & CLEANUP_THREADING) && may_thread)
508 edge t = thread_jump (e, target);
509 if (t)
511 if (!threaded_edges)
512 threaded_edges = XNEWVEC (edge, n_basic_blocks);
513 else
515 int i;
517 /* Detect an infinite loop across blocks not
518 including the start block. */
519 for (i = 0; i < nthreaded_edges; ++i)
520 if (threaded_edges[i] == t)
521 break;
522 if (i < nthreaded_edges)
524 counter = n_basic_blocks;
525 break;
529 /* Detect an infinite loop across the start block. */
530 if (t->dest == b)
531 break;
533 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
534 threaded_edges[nthreaded_edges++] = t;
536 new_target = t->dest;
537 new_target_threaded = true;
541 if (!new_target)
542 break;
544 counter++;
545 target = new_target;
546 threaded |= new_target_threaded;
549 if (counter >= n_basic_blocks)
551 if (dump_file)
552 fprintf (dump_file, "Infinite loop in BB %i.\n",
553 target->index);
555 else if (target == first)
556 ; /* We didn't do anything. */
557 else
559 /* Save the values now, as the edge may get removed. */
560 gcov_type edge_count = e->count;
561 int edge_probability = e->probability;
562 int edge_frequency;
563 int n = 0;
565 e->goto_locus = goto_locus;
567 /* Don't force if target is exit block. */
568 if (threaded && target != EXIT_BLOCK_PTR)
570 notice_new_block (redirect_edge_and_branch_force (e, target));
571 if (dump_file)
572 fprintf (dump_file, "Conditionals threaded.\n");
574 else if (!redirect_edge_and_branch (e, target))
576 if (dump_file)
577 fprintf (dump_file,
578 "Forwarding edge %i->%i to %i failed.\n",
579 b->index, e->dest->index, target->index);
580 ei_next (&ei);
581 continue;
584 /* We successfully forwarded the edge. Now update profile
585 data: for each edge we traversed in the chain, remove
586 the original edge's execution count. */
587 edge_frequency = ((edge_probability * b->frequency
588 + REG_BR_PROB_BASE / 2)
589 / REG_BR_PROB_BASE);
591 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
592 b->flags |= BB_FORWARDER_BLOCK;
596 edge t;
598 if (!single_succ_p (first))
600 gcc_assert (n < nthreaded_edges);
601 t = threaded_edges [n++];
602 gcc_assert (t->src == first);
603 update_bb_profile_for_threading (first, edge_frequency,
604 edge_count, t);
605 update_br_prob_note (first);
607 else
609 first->count -= edge_count;
610 if (first->count < 0)
611 first->count = 0;
612 first->frequency -= edge_frequency;
613 if (first->frequency < 0)
614 first->frequency = 0;
615 /* It is possible that as the result of
616 threading we've removed edge as it is
617 threaded to the fallthru edge. Avoid
618 getting out of sync. */
619 if (n < nthreaded_edges
620 && first == threaded_edges [n]->src)
621 n++;
622 t = single_succ_edge (first);
625 t->count -= edge_count;
626 if (t->count < 0)
627 t->count = 0;
628 first = t->dest;
630 while (first != target);
632 changed = true;
633 continue;
635 ei_next (&ei);
638 if (threaded_edges)
639 free (threaded_edges);
640 return changed;
644 /* Blocks A and B are to be merged into a single block. A has no incoming
645 fallthru edge, so it can be moved before B without adding or modifying
646 any jumps (aside from the jump from A to B). */
648 static void
649 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
651 rtx barrier;
653 /* If we are partitioning hot/cold basic blocks, we don't want to
654 mess up unconditional or indirect jumps that cross between hot
655 and cold sections.
657 Basic block partitioning may result in some jumps that appear to
658 be optimizable (or blocks that appear to be mergeable), but which really
659 must be left untouched (they are required to make it safely across
660 partition boundaries). See the comments at the top of
661 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
663 if (BB_PARTITION (a) != BB_PARTITION (b))
664 return;
666 barrier = next_nonnote_insn (BB_END (a));
667 gcc_assert (BARRIER_P (barrier));
668 delete_insn (barrier);
670 /* Scramble the insn chain. */
671 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
672 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
673 df_set_bb_dirty (a);
675 if (dump_file)
676 fprintf (dump_file, "Moved block %d before %d and merged.\n",
677 a->index, b->index);
679 /* Swap the records for the two blocks around. */
681 unlink_block (a);
682 link_block (a, b->prev_bb);
684 /* Now blocks A and B are contiguous. Merge them. */
685 merge_blocks (a, b);
688 /* Blocks A and B are to be merged into a single block. B has no outgoing
689 fallthru edge, so it can be moved after A without adding or modifying
690 any jumps (aside from the jump from A to B). */
692 static void
693 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
695 rtx barrier, real_b_end;
696 rtx label, table;
698 /* If we are partitioning hot/cold basic blocks, we don't want to
699 mess up unconditional or indirect jumps that cross between hot
700 and cold sections.
702 Basic block partitioning may result in some jumps that appear to
703 be optimizable (or blocks that appear to be mergeable), but which really
704 must be left untouched (they are required to make it safely across
705 partition boundaries). See the comments at the top of
706 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
708 if (BB_PARTITION (a) != BB_PARTITION (b))
709 return;
711 real_b_end = BB_END (b);
713 /* If there is a jump table following block B temporarily add the jump table
714 to block B so that it will also be moved to the correct location. */
715 if (tablejump_p (BB_END (b), &label, &table)
716 && prev_active_insn (label) == BB_END (b))
718 BB_END (b) = table;
721 /* There had better have been a barrier there. Delete it. */
722 barrier = NEXT_INSN (BB_END (b));
723 if (barrier && BARRIER_P (barrier))
724 delete_insn (barrier);
727 /* Scramble the insn chain. */
728 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
730 /* Restore the real end of b. */
731 BB_END (b) = real_b_end;
733 if (dump_file)
734 fprintf (dump_file, "Moved block %d after %d and merged.\n",
735 b->index, a->index);
737 /* Now blocks A and B are contiguous. Merge them. */
738 merge_blocks (a, b);
741 /* Attempt to merge basic blocks that are potentially non-adjacent.
742 Return NULL iff the attempt failed, otherwise return basic block
743 where cleanup_cfg should continue. Because the merging commonly
744 moves basic block away or introduces another optimization
745 possibility, return basic block just before B so cleanup_cfg don't
746 need to iterate.
748 It may be good idea to return basic block before C in the case
749 C has been moved after B and originally appeared earlier in the
750 insn sequence, but we have no information available about the
751 relative ordering of these two. Hopefully it is not too common. */
753 static basic_block
754 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
756 basic_block next;
758 /* If we are partitioning hot/cold basic blocks, we don't want to
759 mess up unconditional or indirect jumps that cross between hot
760 and cold sections.
762 Basic block partitioning may result in some jumps that appear to
763 be optimizable (or blocks that appear to be mergeable), but which really
764 must be left untouched (they are required to make it safely across
765 partition boundaries). See the comments at the top of
766 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
768 if (BB_PARTITION (b) != BB_PARTITION (c))
769 return NULL;
771 /* If B has a fallthru edge to C, no need to move anything. */
772 if (e->flags & EDGE_FALLTHRU)
774 int b_index = b->index, c_index = c->index;
775 merge_blocks (b, c);
776 update_forwarder_flag (b);
778 if (dump_file)
779 fprintf (dump_file, "Merged %d and %d without moving.\n",
780 b_index, c_index);
782 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
785 /* Otherwise we will need to move code around. Do that only if expensive
786 transformations are allowed. */
787 else if (mode & CLEANUP_EXPENSIVE)
789 edge tmp_edge, b_fallthru_edge;
790 bool c_has_outgoing_fallthru;
791 bool b_has_incoming_fallthru;
792 edge_iterator ei;
794 /* Avoid overactive code motion, as the forwarder blocks should be
795 eliminated by edge redirection instead. One exception might have
796 been if B is a forwarder block and C has no fallthru edge, but
797 that should be cleaned up by bb-reorder instead. */
798 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
799 return NULL;
801 /* We must make sure to not munge nesting of lexical blocks,
802 and loop notes. This is done by squeezing out all the notes
803 and leaving them there to lie. Not ideal, but functional. */
805 FOR_EACH_EDGE (tmp_edge, ei, c->succs)
806 if (tmp_edge->flags & EDGE_FALLTHRU)
807 break;
809 c_has_outgoing_fallthru = (tmp_edge != NULL);
811 FOR_EACH_EDGE (tmp_edge, ei, b->preds)
812 if (tmp_edge->flags & EDGE_FALLTHRU)
813 break;
815 b_has_incoming_fallthru = (tmp_edge != NULL);
816 b_fallthru_edge = tmp_edge;
817 next = b->prev_bb;
818 if (next == c)
819 next = next->prev_bb;
821 /* Otherwise, we're going to try to move C after B. If C does
822 not have an outgoing fallthru, then it can be moved
823 immediately after B without introducing or modifying jumps. */
824 if (! c_has_outgoing_fallthru)
826 merge_blocks_move_successor_nojumps (b, c);
827 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
830 /* If B does not have an incoming fallthru, then it can be moved
831 immediately before C without introducing or modifying jumps.
832 C cannot be the first block, so we do not have to worry about
833 accessing a non-existent block. */
835 if (b_has_incoming_fallthru)
837 basic_block bb;
839 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
840 return NULL;
841 bb = force_nonfallthru (b_fallthru_edge);
842 if (bb)
843 notice_new_block (bb);
846 merge_blocks_move_predecessor_nojumps (b, c);
847 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
850 return NULL;
854 /* Removes the memory attributes of MEM expression
855 if they are not equal. */
857 void
858 merge_memattrs (rtx x, rtx y)
860 int i;
861 int j;
862 enum rtx_code code;
863 const char *fmt;
865 if (x == y)
866 return;
867 if (x == 0 || y == 0)
868 return;
870 code = GET_CODE (x);
872 if (code != GET_CODE (y))
873 return;
875 if (GET_MODE (x) != GET_MODE (y))
876 return;
878 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
880 if (! MEM_ATTRS (x))
881 MEM_ATTRS (y) = 0;
882 else if (! MEM_ATTRS (y))
883 MEM_ATTRS (x) = 0;
884 else
886 rtx mem_size;
888 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
890 set_mem_alias_set (x, 0);
891 set_mem_alias_set (y, 0);
894 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
896 set_mem_expr (x, 0);
897 set_mem_expr (y, 0);
898 set_mem_offset (x, 0);
899 set_mem_offset (y, 0);
901 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
903 set_mem_offset (x, 0);
904 set_mem_offset (y, 0);
907 if (!MEM_SIZE (x))
908 mem_size = NULL_RTX;
909 else if (!MEM_SIZE (y))
910 mem_size = NULL_RTX;
911 else
912 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
913 INTVAL (MEM_SIZE (y))));
914 set_mem_size (x, mem_size);
915 set_mem_size (y, mem_size);
917 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
918 set_mem_align (y, MEM_ALIGN (x));
922 fmt = GET_RTX_FORMAT (code);
923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
925 switch (fmt[i])
927 case 'E':
928 /* Two vectors must have the same length. */
929 if (XVECLEN (x, i) != XVECLEN (y, i))
930 return;
932 for (j = 0; j < XVECLEN (x, i); j++)
933 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
935 break;
937 case 'e':
938 merge_memattrs (XEXP (x, i), XEXP (y, i));
941 return;
945 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
947 static bool
948 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
950 rtx p1, p2;
952 /* Verify that I1 and I2 are equivalent. */
953 if (GET_CODE (i1) != GET_CODE (i2))
954 return false;
956 p1 = PATTERN (i1);
957 p2 = PATTERN (i2);
959 if (GET_CODE (p1) != GET_CODE (p2))
960 return false;
962 /* If this is a CALL_INSN, compare register usage information.
963 If we don't check this on stack register machines, the two
964 CALL_INSNs might be merged leaving reg-stack.c with mismatching
965 numbers of stack registers in the same basic block.
966 If we don't check this on machines with delay slots, a delay slot may
967 be filled that clobbers a parameter expected by the subroutine.
969 ??? We take the simple route for now and assume that if they're
970 equal, they were constructed identically. */
972 if (CALL_P (i1)
973 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
974 CALL_INSN_FUNCTION_USAGE (i2))
975 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
976 return false;
978 #ifdef STACK_REGS
979 /* If cross_jump_death_matters is not 0, the insn's mode
980 indicates whether or not the insn contains any stack-like
981 regs. */
983 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
985 /* If register stack conversion has already been done, then
986 death notes must also be compared before it is certain that
987 the two instruction streams match. */
989 rtx note;
990 HARD_REG_SET i1_regset, i2_regset;
992 CLEAR_HARD_REG_SET (i1_regset);
993 CLEAR_HARD_REG_SET (i2_regset);
995 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
996 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
997 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
999 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1000 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1001 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1003 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1004 return false;
1006 #endif
1008 if (reload_completed
1009 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1010 return true;
1012 return false;
1015 /* Look through the insns at the end of BB1 and BB2 and find the longest
1016 sequence that are equivalent. Store the first insns for that sequence
1017 in *F1 and *F2 and return the sequence length.
1019 To simplify callers of this function, if the blocks match exactly,
1020 store the head of the blocks in *F1 and *F2. */
1022 static int
1023 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1024 basic_block bb2, rtx *f1, rtx *f2)
1026 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1027 int ninsns = 0;
1029 /* Skip simple jumps at the end of the blocks. Complex jumps still
1030 need to be compared for equivalence, which we'll do below. */
1032 i1 = BB_END (bb1);
1033 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1034 if (onlyjump_p (i1)
1035 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1037 last1 = i1;
1038 i1 = PREV_INSN (i1);
1041 i2 = BB_END (bb2);
1042 if (onlyjump_p (i2)
1043 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1045 last2 = i2;
1046 /* Count everything except for unconditional jump as insn. */
1047 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1048 ninsns++;
1049 i2 = PREV_INSN (i2);
1052 while (true)
1054 /* Ignore notes. */
1055 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1056 i1 = PREV_INSN (i1);
1058 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1059 i2 = PREV_INSN (i2);
1061 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1062 break;
1064 if (!old_insns_match_p (mode, i1, i2))
1065 break;
1067 merge_memattrs (i1, i2);
1069 /* Don't begin a cross-jump with a NOTE insn. */
1070 if (INSN_P (i1))
1072 /* If the merged insns have different REG_EQUAL notes, then
1073 remove them. */
1074 rtx equiv1 = find_reg_equal_equiv_note (i1);
1075 rtx equiv2 = find_reg_equal_equiv_note (i2);
1077 if (equiv1 && !equiv2)
1078 remove_note (i1, equiv1);
1079 else if (!equiv1 && equiv2)
1080 remove_note (i2, equiv2);
1081 else if (equiv1 && equiv2
1082 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1084 remove_note (i1, equiv1);
1085 remove_note (i2, equiv2);
1088 afterlast1 = last1, afterlast2 = last2;
1089 last1 = i1, last2 = i2;
1090 ninsns++;
1093 i1 = PREV_INSN (i1);
1094 i2 = PREV_INSN (i2);
1097 #ifdef HAVE_cc0
1098 /* Don't allow the insn after a compare to be shared by
1099 cross-jumping unless the compare is also shared. */
1100 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1101 last1 = afterlast1, last2 = afterlast2, ninsns--;
1102 #endif
1104 /* Include preceding notes and labels in the cross-jump. One,
1105 this may bring us to the head of the blocks as requested above.
1106 Two, it keeps line number notes as matched as may be. */
1107 if (ninsns)
1109 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1110 last1 = PREV_INSN (last1);
1112 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1113 last1 = PREV_INSN (last1);
1115 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1116 last2 = PREV_INSN (last2);
1118 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1119 last2 = PREV_INSN (last2);
1121 *f1 = last1;
1122 *f2 = last2;
1125 return ninsns;
1128 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1129 the branch instruction. This means that if we commonize the control
1130 flow before end of the basic block, the semantic remains unchanged.
1132 We may assume that there exists one edge with a common destination. */
1134 static bool
1135 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1137 int nehedges1 = 0, nehedges2 = 0;
1138 edge fallthru1 = 0, fallthru2 = 0;
1139 edge e1, e2;
1140 edge_iterator ei;
1142 /* If BB1 has only one successor, we may be looking at either an
1143 unconditional jump, or a fake edge to exit. */
1144 if (single_succ_p (bb1)
1145 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1146 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1147 return (single_succ_p (bb2)
1148 && (single_succ_edge (bb2)->flags
1149 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1150 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1152 /* Match conditional jumps - this may get tricky when fallthru and branch
1153 edges are crossed. */
1154 if (EDGE_COUNT (bb1->succs) == 2
1155 && any_condjump_p (BB_END (bb1))
1156 && onlyjump_p (BB_END (bb1)))
1158 edge b1, f1, b2, f2;
1159 bool reverse, match;
1160 rtx set1, set2, cond1, cond2;
1161 enum rtx_code code1, code2;
1163 if (EDGE_COUNT (bb2->succs) != 2
1164 || !any_condjump_p (BB_END (bb2))
1165 || !onlyjump_p (BB_END (bb2)))
1166 return false;
1168 b1 = BRANCH_EDGE (bb1);
1169 b2 = BRANCH_EDGE (bb2);
1170 f1 = FALLTHRU_EDGE (bb1);
1171 f2 = FALLTHRU_EDGE (bb2);
1173 /* Get around possible forwarders on fallthru edges. Other cases
1174 should be optimized out already. */
1175 if (FORWARDER_BLOCK_P (f1->dest))
1176 f1 = single_succ_edge (f1->dest);
1178 if (FORWARDER_BLOCK_P (f2->dest))
1179 f2 = single_succ_edge (f2->dest);
1181 /* To simplify use of this function, return false if there are
1182 unneeded forwarder blocks. These will get eliminated later
1183 during cleanup_cfg. */
1184 if (FORWARDER_BLOCK_P (f1->dest)
1185 || FORWARDER_BLOCK_P (f2->dest)
1186 || FORWARDER_BLOCK_P (b1->dest)
1187 || FORWARDER_BLOCK_P (b2->dest))
1188 return false;
1190 if (f1->dest == f2->dest && b1->dest == b2->dest)
1191 reverse = false;
1192 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1193 reverse = true;
1194 else
1195 return false;
1197 set1 = pc_set (BB_END (bb1));
1198 set2 = pc_set (BB_END (bb2));
1199 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1200 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1201 reverse = !reverse;
1203 cond1 = XEXP (SET_SRC (set1), 0);
1204 cond2 = XEXP (SET_SRC (set2), 0);
1205 code1 = GET_CODE (cond1);
1206 if (reverse)
1207 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1208 else
1209 code2 = GET_CODE (cond2);
1211 if (code2 == UNKNOWN)
1212 return false;
1214 /* Verify codes and operands match. */
1215 match = ((code1 == code2
1216 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1217 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1218 || (code1 == swap_condition (code2)
1219 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1220 XEXP (cond2, 0))
1221 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1222 XEXP (cond2, 1))));
1224 /* If we return true, we will join the blocks. Which means that
1225 we will only have one branch prediction bit to work with. Thus
1226 we require the existing branches to have probabilities that are
1227 roughly similar. */
1228 if (match
1229 && optimize_bb_for_speed_p (bb1)
1230 && optimize_bb_for_speed_p (bb2))
1232 int prob2;
1234 if (b1->dest == b2->dest)
1235 prob2 = b2->probability;
1236 else
1237 /* Do not use f2 probability as f2 may be forwarded. */
1238 prob2 = REG_BR_PROB_BASE - b2->probability;
1240 /* Fail if the difference in probabilities is greater than 50%.
1241 This rules out two well-predicted branches with opposite
1242 outcomes. */
1243 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1245 if (dump_file)
1246 fprintf (dump_file,
1247 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1248 bb1->index, bb2->index, b1->probability, prob2);
1250 return false;
1254 if (dump_file && match)
1255 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1256 bb1->index, bb2->index);
1258 return match;
1261 /* Generic case - we are seeing a computed jump, table jump or trapping
1262 instruction. */
1264 /* Check whether there are tablejumps in the end of BB1 and BB2.
1265 Return true if they are identical. */
1267 rtx label1, label2;
1268 rtx table1, table2;
1270 if (tablejump_p (BB_END (bb1), &label1, &table1)
1271 && tablejump_p (BB_END (bb2), &label2, &table2)
1272 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1274 /* The labels should never be the same rtx. If they really are same
1275 the jump tables are same too. So disable crossjumping of blocks BB1
1276 and BB2 because when deleting the common insns in the end of BB1
1277 by delete_basic_block () the jump table would be deleted too. */
1278 /* If LABEL2 is referenced in BB1->END do not do anything
1279 because we would loose information when replacing
1280 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1281 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1283 /* Set IDENTICAL to true when the tables are identical. */
1284 bool identical = false;
1285 rtx p1, p2;
1287 p1 = PATTERN (table1);
1288 p2 = PATTERN (table2);
1289 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1291 identical = true;
1293 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1294 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1295 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1296 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1298 int i;
1300 identical = true;
1301 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1302 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1303 identical = false;
1306 if (identical)
1308 replace_label_data rr;
1309 bool match;
1311 /* Temporarily replace references to LABEL1 with LABEL2
1312 in BB1->END so that we could compare the instructions. */
1313 rr.r1 = label1;
1314 rr.r2 = label2;
1315 rr.update_label_nuses = false;
1316 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1318 match = old_insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1319 if (dump_file && match)
1320 fprintf (dump_file,
1321 "Tablejumps in bb %i and %i match.\n",
1322 bb1->index, bb2->index);
1324 /* Set the original label in BB1->END because when deleting
1325 a block whose end is a tablejump, the tablejump referenced
1326 from the instruction is deleted too. */
1327 rr.r1 = label2;
1328 rr.r2 = label1;
1329 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1331 return match;
1334 return false;
1338 /* First ensure that the instructions match. There may be many outgoing
1339 edges so this test is generally cheaper. */
1340 if (!old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1341 return false;
1343 /* Search the outgoing edges, ensure that the counts do match, find possible
1344 fallthru and exception handling edges since these needs more
1345 validation. */
1346 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1347 return false;
1349 FOR_EACH_EDGE (e1, ei, bb1->succs)
1351 e2 = EDGE_SUCC (bb2, ei.index);
1353 if (e1->flags & EDGE_EH)
1354 nehedges1++;
1356 if (e2->flags & EDGE_EH)
1357 nehedges2++;
1359 if (e1->flags & EDGE_FALLTHRU)
1360 fallthru1 = e1;
1361 if (e2->flags & EDGE_FALLTHRU)
1362 fallthru2 = e2;
1365 /* If number of edges of various types does not match, fail. */
1366 if (nehedges1 != nehedges2
1367 || (fallthru1 != 0) != (fallthru2 != 0))
1368 return false;
1370 /* fallthru edges must be forwarded to the same destination. */
1371 if (fallthru1)
1373 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1374 ? single_succ (fallthru1->dest): fallthru1->dest);
1375 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1376 ? single_succ (fallthru2->dest): fallthru2->dest);
1378 if (d1 != d2)
1379 return false;
1382 /* Ensure the same EH region. */
1384 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1385 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1387 if (!n1 && n2)
1388 return false;
1390 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1391 return false;
1394 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1395 version of sequence abstraction. */
1396 FOR_EACH_EDGE (e1, ei, bb2->succs)
1398 edge e2;
1399 edge_iterator ei;
1400 basic_block d1 = e1->dest;
1402 if (FORWARDER_BLOCK_P (d1))
1403 d1 = EDGE_SUCC (d1, 0)->dest;
1405 FOR_EACH_EDGE (e2, ei, bb1->succs)
1407 basic_block d2 = e2->dest;
1408 if (FORWARDER_BLOCK_P (d2))
1409 d2 = EDGE_SUCC (d2, 0)->dest;
1410 if (d1 == d2)
1411 break;
1414 if (!e2)
1415 return false;
1418 return true;
1421 /* Returns true if BB basic block has a preserve label. */
1423 static bool
1424 block_has_preserve_label (basic_block bb)
1426 return (bb
1427 && block_label (bb)
1428 && LABEL_PRESERVE_P (block_label (bb)));
1431 /* E1 and E2 are edges with the same destination block. Search their
1432 predecessors for common code. If found, redirect control flow from
1433 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1435 static bool
1436 try_crossjump_to_edge (int mode, edge e1, edge e2)
1438 int nmatch;
1439 basic_block src1 = e1->src, src2 = e2->src;
1440 basic_block redirect_to, redirect_from, to_remove;
1441 rtx newpos1, newpos2;
1442 edge s;
1443 edge_iterator ei;
1445 newpos1 = newpos2 = NULL_RTX;
1447 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1448 to try this optimization.
1450 Basic block partitioning may result in some jumps that appear to
1451 be optimizable (or blocks that appear to be mergeable), but which really
1452 must be left untouched (they are required to make it safely across
1453 partition boundaries). See the comments at the top of
1454 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1456 if (flag_reorder_blocks_and_partition && reload_completed)
1457 return false;
1459 /* Search backward through forwarder blocks. We don't need to worry
1460 about multiple entry or chained forwarders, as they will be optimized
1461 away. We do this to look past the unconditional jump following a
1462 conditional jump that is required due to the current CFG shape. */
1463 if (single_pred_p (src1)
1464 && FORWARDER_BLOCK_P (src1))
1465 e1 = single_pred_edge (src1), src1 = e1->src;
1467 if (single_pred_p (src2)
1468 && FORWARDER_BLOCK_P (src2))
1469 e2 = single_pred_edge (src2), src2 = e2->src;
1471 /* Nothing to do if we reach ENTRY, or a common source block. */
1472 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1473 return false;
1474 if (src1 == src2)
1475 return false;
1477 /* Seeing more than 1 forwarder blocks would confuse us later... */
1478 if (FORWARDER_BLOCK_P (e1->dest)
1479 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1480 return false;
1482 if (FORWARDER_BLOCK_P (e2->dest)
1483 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1484 return false;
1486 /* Likewise with dead code (possibly newly created by the other optimizations
1487 of cfg_cleanup). */
1488 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1489 return false;
1491 /* Look for the common insn sequence, part the first ... */
1492 if (!outgoing_edges_match (mode, src1, src2))
1493 return false;
1495 /* ... and part the second. */
1496 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1498 /* Don't proceed with the crossjump unless we found a sufficient number
1499 of matching instructions or the 'from' block was totally matched
1500 (such that its predecessors will hopefully be redirected and the
1501 block removed). */
1502 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1503 && (newpos1 != BB_HEAD (src1)))
1504 return false;
1506 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1507 if (block_has_preserve_label (e1->dest)
1508 && (e1->flags & EDGE_ABNORMAL))
1509 return false;
1511 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1512 will be deleted.
1513 If we have tablejumps in the end of SRC1 and SRC2
1514 they have been already compared for equivalence in outgoing_edges_match ()
1515 so replace the references to TABLE1 by references to TABLE2. */
1517 rtx label1, label2;
1518 rtx table1, table2;
1520 if (tablejump_p (BB_END (src1), &label1, &table1)
1521 && tablejump_p (BB_END (src2), &label2, &table2)
1522 && label1 != label2)
1524 replace_label_data rr;
1525 rtx insn;
1527 /* Replace references to LABEL1 with LABEL2. */
1528 rr.r1 = label1;
1529 rr.r2 = label2;
1530 rr.update_label_nuses = true;
1531 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1533 /* Do not replace the label in SRC1->END because when deleting
1534 a block whose end is a tablejump, the tablejump referenced
1535 from the instruction is deleted too. */
1536 if (insn != BB_END (src1))
1537 for_each_rtx (&insn, replace_label, &rr);
1542 /* Avoid splitting if possible. We must always split when SRC2 has
1543 EH predecessor edges, or we may end up with basic blocks with both
1544 normal and EH predecessor edges. */
1545 if (newpos2 == BB_HEAD (src2)
1546 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1547 redirect_to = src2;
1548 else
1550 if (newpos2 == BB_HEAD (src2))
1552 /* Skip possible basic block header. */
1553 if (LABEL_P (newpos2))
1554 newpos2 = NEXT_INSN (newpos2);
1555 if (NOTE_P (newpos2))
1556 newpos2 = NEXT_INSN (newpos2);
1559 if (dump_file)
1560 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1561 src2->index, nmatch);
1562 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1565 if (dump_file)
1566 fprintf (dump_file,
1567 "Cross jumping from bb %i to bb %i; %i common insns\n",
1568 src1->index, src2->index, nmatch);
1570 /* We may have some registers visible through the block. */
1571 df_set_bb_dirty (redirect_to);
1573 /* Recompute the frequencies and counts of outgoing edges. */
1574 FOR_EACH_EDGE (s, ei, redirect_to->succs)
1576 edge s2;
1577 edge_iterator ei;
1578 basic_block d = s->dest;
1580 if (FORWARDER_BLOCK_P (d))
1581 d = single_succ (d);
1583 FOR_EACH_EDGE (s2, ei, src1->succs)
1585 basic_block d2 = s2->dest;
1586 if (FORWARDER_BLOCK_P (d2))
1587 d2 = single_succ (d2);
1588 if (d == d2)
1589 break;
1592 s->count += s2->count;
1594 /* Take care to update possible forwarder blocks. We verified
1595 that there is no more than one in the chain, so we can't run
1596 into infinite loop. */
1597 if (FORWARDER_BLOCK_P (s->dest))
1599 single_succ_edge (s->dest)->count += s2->count;
1600 s->dest->count += s2->count;
1601 s->dest->frequency += EDGE_FREQUENCY (s);
1604 if (FORWARDER_BLOCK_P (s2->dest))
1606 single_succ_edge (s2->dest)->count -= s2->count;
1607 if (single_succ_edge (s2->dest)->count < 0)
1608 single_succ_edge (s2->dest)->count = 0;
1609 s2->dest->count -= s2->count;
1610 s2->dest->frequency -= EDGE_FREQUENCY (s);
1611 if (s2->dest->frequency < 0)
1612 s2->dest->frequency = 0;
1613 if (s2->dest->count < 0)
1614 s2->dest->count = 0;
1617 if (!redirect_to->frequency && !src1->frequency)
1618 s->probability = (s->probability + s2->probability) / 2;
1619 else
1620 s->probability
1621 = ((s->probability * redirect_to->frequency +
1622 s2->probability * src1->frequency)
1623 / (redirect_to->frequency + src1->frequency));
1626 /* Adjust count and frequency for the block. An earlier jump
1627 threading pass may have left the profile in an inconsistent
1628 state (see update_bb_profile_for_threading) so we must be
1629 prepared for overflows. */
1630 redirect_to->count += src1->count;
1631 redirect_to->frequency += src1->frequency;
1632 if (redirect_to->frequency > BB_FREQ_MAX)
1633 redirect_to->frequency = BB_FREQ_MAX;
1634 update_br_prob_note (redirect_to);
1636 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1638 /* Skip possible basic block header. */
1639 if (LABEL_P (newpos1))
1640 newpos1 = NEXT_INSN (newpos1);
1641 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
1642 newpos1 = NEXT_INSN (newpos1);
1644 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1645 to_remove = single_succ (redirect_from);
1647 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
1648 delete_basic_block (to_remove);
1650 update_forwarder_flag (redirect_from);
1651 if (redirect_to != src2)
1652 update_forwarder_flag (src2);
1654 return true;
1657 /* Search the predecessors of BB for common insn sequences. When found,
1658 share code between them by redirecting control flow. Return true if
1659 any changes made. */
1661 static bool
1662 try_crossjump_bb (int mode, basic_block bb)
1664 edge e, e2, fallthru;
1665 bool changed;
1666 unsigned max, ix, ix2;
1667 basic_block ev, ev2;
1668 edge_iterator ei;
1670 /* Nothing to do if there is not at least two incoming edges. */
1671 if (EDGE_COUNT (bb->preds) < 2)
1672 return false;
1674 /* Don't crossjump if this block ends in a computed jump,
1675 unless we are optimizing for size. */
1676 if (optimize_bb_for_size_p (bb)
1677 && bb != EXIT_BLOCK_PTR
1678 && computed_jump_p (BB_END (bb)))
1679 return false;
1681 /* If we are partitioning hot/cold basic blocks, we don't want to
1682 mess up unconditional or indirect jumps that cross between hot
1683 and cold sections.
1685 Basic block partitioning may result in some jumps that appear to
1686 be optimizable (or blocks that appear to be mergeable), but which really
1687 must be left untouched (they are required to make it safely across
1688 partition boundaries). See the comments at the top of
1689 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1691 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
1692 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1693 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
1694 return false;
1696 /* It is always cheapest to redirect a block that ends in a branch to
1697 a block that falls through into BB, as that adds no branches to the
1698 program. We'll try that combination first. */
1699 fallthru = NULL;
1700 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1702 if (EDGE_COUNT (bb->preds) > max)
1703 return false;
1705 FOR_EACH_EDGE (e, ei, bb->preds)
1707 if (e->flags & EDGE_FALLTHRU)
1709 fallthru = e;
1710 break;
1714 changed = false;
1715 for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
1717 e = EDGE_PRED (ev, ix);
1718 ix++;
1720 /* As noted above, first try with the fallthru predecessor (or, a
1721 fallthru predecessor if we are in cfglayout mode). */
1722 if (fallthru)
1724 /* Don't combine the fallthru edge into anything else.
1725 If there is a match, we'll do it the other way around. */
1726 if (e == fallthru)
1727 continue;
1728 /* If nothing changed since the last attempt, there is nothing
1729 we can do. */
1730 if (!first_pass
1731 && (!(df_get_bb_dirty (e->src))
1732 && !(df_get_bb_dirty (fallthru->src))))
1733 continue;
1735 if (try_crossjump_to_edge (mode, e, fallthru))
1737 changed = true;
1738 ix = 0;
1739 ev = bb;
1740 continue;
1744 /* Non-obvious work limiting check: Recognize that we're going
1745 to call try_crossjump_bb on every basic block. So if we have
1746 two blocks with lots of outgoing edges (a switch) and they
1747 share lots of common destinations, then we would do the
1748 cross-jump check once for each common destination.
1750 Now, if the blocks actually are cross-jump candidates, then
1751 all of their destinations will be shared. Which means that
1752 we only need check them for cross-jump candidacy once. We
1753 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1754 choosing to do the check from the block for which the edge
1755 in question is the first successor of A. */
1756 if (EDGE_SUCC (e->src, 0) != e)
1757 continue;
1759 for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
1761 e2 = EDGE_PRED (ev2, ix2);
1762 ix2++;
1764 if (e2 == e)
1765 continue;
1767 /* We've already checked the fallthru edge above. */
1768 if (e2 == fallthru)
1769 continue;
1771 /* The "first successor" check above only prevents multiple
1772 checks of crossjump(A,B). In order to prevent redundant
1773 checks of crossjump(B,A), require that A be the block
1774 with the lowest index. */
1775 if (e->src->index > e2->src->index)
1776 continue;
1778 /* If nothing changed since the last attempt, there is nothing
1779 we can do. */
1780 if (!first_pass
1781 && (!(df_get_bb_dirty (e->src))
1782 && !(df_get_bb_dirty (e2->src))))
1783 continue;
1785 if (try_crossjump_to_edge (mode, e, e2))
1787 changed = true;
1788 ev2 = bb;
1789 ix = 0;
1790 break;
1795 if (changed)
1796 crossjumps_occured = true;
1798 return changed;
1801 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1802 instructions etc. Return nonzero if changes were made. */
1804 static bool
1805 try_optimize_cfg (int mode)
1807 bool changed_overall = false;
1808 bool changed;
1809 int iterations = 0;
1810 basic_block bb, b, next;
1812 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1813 clear_bb_flags ();
1815 crossjumps_occured = false;
1817 FOR_EACH_BB (bb)
1818 update_forwarder_flag (bb);
1820 if (! targetm.cannot_modify_jumps_p ())
1822 first_pass = true;
1823 /* Attempt to merge blocks as made possible by edge removal. If
1824 a block has only one successor, and the successor has only
1825 one predecessor, they may be combined. */
1828 changed = false;
1829 iterations++;
1831 if (dump_file)
1832 fprintf (dump_file,
1833 "\n\ntry_optimize_cfg iteration %i\n\n",
1834 iterations);
1836 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1838 basic_block c;
1839 edge s;
1840 bool changed_here = false;
1842 /* Delete trivially dead basic blocks. This is either
1843 blocks with no predecessors, or empty blocks with no
1844 successors. Empty blocks may result from expanding
1845 __builtin_unreachable (). */
1846 if (EDGE_COUNT (b->preds) == 0
1847 || (EDGE_COUNT (b->succs) == 0 && BB_HEAD (b) == BB_END (b)))
1849 c = b->prev_bb;
1850 if (dump_file)
1851 fprintf (dump_file, "Deleting block %i.\n",
1852 b->index);
1854 delete_basic_block (b);
1855 if (!(mode & CLEANUP_CFGLAYOUT))
1856 changed = true;
1857 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
1858 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
1859 continue;
1862 /* Remove code labels no longer used. */
1863 if (single_pred_p (b)
1864 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1865 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
1866 && LABEL_P (BB_HEAD (b))
1867 /* If the previous block ends with a branch to this
1868 block, we can't delete the label. Normally this
1869 is a condjump that is yet to be simplified, but
1870 if CASE_DROPS_THRU, this can be a tablejump with
1871 some element going to the same place as the
1872 default (fallthru). */
1873 && (single_pred (b) == ENTRY_BLOCK_PTR
1874 || !JUMP_P (BB_END (single_pred (b)))
1875 || ! label_is_jump_target_p (BB_HEAD (b),
1876 BB_END (single_pred (b)))))
1878 rtx label = BB_HEAD (b);
1880 delete_insn_chain (label, label, false);
1881 /* If the case label is undeletable, move it after the
1882 BASIC_BLOCK note. */
1883 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1885 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1887 reorder_insns_nobb (label, label, bb_note);
1888 BB_HEAD (b) = bb_note;
1889 if (BB_END (b) == bb_note)
1890 BB_END (b) = label;
1892 if (dump_file)
1893 fprintf (dump_file, "Deleted label in block %i.\n",
1894 b->index);
1897 /* If we fall through an empty block, we can remove it. */
1898 if (!(mode & CLEANUP_CFGLAYOUT)
1899 && single_pred_p (b)
1900 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1901 && !LABEL_P (BB_HEAD (b))
1902 && FORWARDER_BLOCK_P (b)
1903 /* Note that forwarder_block_p true ensures that
1904 there is a successor for this block. */
1905 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
1906 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
1908 if (dump_file)
1909 fprintf (dump_file,
1910 "Deleting fallthru block %i.\n",
1911 b->index);
1913 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1914 redirect_edge_succ_nodup (single_pred_edge (b),
1915 single_succ (b));
1916 delete_basic_block (b);
1917 changed = true;
1918 b = c;
1921 if (single_succ_p (b)
1922 && (s = single_succ_edge (b))
1923 && !(s->flags & EDGE_COMPLEX)
1924 && (c = s->dest) != EXIT_BLOCK_PTR
1925 && single_pred_p (c)
1926 && b != c)
1928 /* When not in cfg_layout mode use code aware of reordering
1929 INSN. This code possibly creates new basic blocks so it
1930 does not fit merge_blocks interface and is kept here in
1931 hope that it will become useless once more of compiler
1932 is transformed to use cfg_layout mode. */
1934 if ((mode & CLEANUP_CFGLAYOUT)
1935 && can_merge_blocks_p (b, c))
1937 merge_blocks (b, c);
1938 update_forwarder_flag (b);
1939 changed_here = true;
1941 else if (!(mode & CLEANUP_CFGLAYOUT)
1942 /* If the jump insn has side effects,
1943 we can't kill the edge. */
1944 && (!JUMP_P (BB_END (b))
1945 || (reload_completed
1946 ? simplejump_p (BB_END (b))
1947 : (onlyjump_p (BB_END (b))
1948 && !tablejump_p (BB_END (b),
1949 NULL, NULL))))
1950 && (next = merge_blocks_move (s, b, c, mode)))
1952 b = next;
1953 changed_here = true;
1957 /* Simplify branch over branch. */
1958 if ((mode & CLEANUP_EXPENSIVE)
1959 && !(mode & CLEANUP_CFGLAYOUT)
1960 && try_simplify_condjump (b))
1961 changed_here = true;
1963 /* If B has a single outgoing edge, but uses a
1964 non-trivial jump instruction without side-effects, we
1965 can either delete the jump entirely, or replace it
1966 with a simple unconditional jump. */
1967 if (single_succ_p (b)
1968 && single_succ (b) != EXIT_BLOCK_PTR
1969 && onlyjump_p (BB_END (b))
1970 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1971 && try_redirect_by_replacing_jump (single_succ_edge (b),
1972 single_succ (b),
1973 (mode & CLEANUP_CFGLAYOUT) != 0))
1975 update_forwarder_flag (b);
1976 changed_here = true;
1979 /* Simplify branch to branch. */
1980 if (try_forward_edges (mode, b))
1981 changed_here = true;
1983 /* Look for shared code between blocks. */
1984 if ((mode & CLEANUP_CROSSJUMP)
1985 && try_crossjump_bb (mode, b))
1986 changed_here = true;
1988 /* Don't get confused by the index shift caused by
1989 deleting blocks. */
1990 if (!changed_here)
1991 b = b->next_bb;
1992 else
1993 changed = true;
1996 if ((mode & CLEANUP_CROSSJUMP)
1997 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1998 changed = true;
2000 #ifdef ENABLE_CHECKING
2001 if (changed)
2002 verify_flow_info ();
2003 #endif
2005 changed_overall |= changed;
2006 first_pass = false;
2008 while (changed);
2011 FOR_ALL_BB (b)
2012 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2014 return changed_overall;
2017 /* Delete all unreachable basic blocks. */
2019 bool
2020 delete_unreachable_blocks (void)
2022 bool changed = false;
2023 basic_block b, next_bb;
2025 find_unreachable_blocks ();
2027 /* Delete all unreachable basic blocks. */
2029 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2031 next_bb = b->next_bb;
2033 if (!(b->flags & BB_REACHABLE))
2035 delete_basic_block (b);
2036 changed = true;
2040 if (changed)
2041 tidy_fallthru_edges ();
2042 return changed;
2045 /* Delete any jump tables never referenced. We can't delete them at the
2046 time of removing tablejump insn as they are referenced by the preceding
2047 insns computing the destination, so we delay deleting and garbagecollect
2048 them once life information is computed. */
2049 void
2050 delete_dead_jumptables (void)
2052 basic_block bb;
2054 /* A dead jump table does not belong to any basic block. Scan insns
2055 between two adjacent basic blocks. */
2056 FOR_EACH_BB (bb)
2058 rtx insn, next;
2060 for (insn = NEXT_INSN (BB_END (bb));
2061 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2062 insn = next)
2064 next = NEXT_INSN (insn);
2065 if (LABEL_P (insn)
2066 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2067 && JUMP_TABLE_DATA_P (next))
2069 rtx label = insn, jump = next;
2071 if (dump_file)
2072 fprintf (dump_file, "Dead jumptable %i removed\n",
2073 INSN_UID (insn));
2075 next = NEXT_INSN (next);
2076 delete_insn (jump);
2077 delete_insn (label);
2084 /* Tidy the CFG by deleting unreachable code and whatnot. */
2086 bool
2087 cleanup_cfg (int mode)
2089 bool changed = false;
2091 /* Set the cfglayout mode flag here. We could update all the callers
2092 but that is just inconvenient, especially given that we eventually
2093 want to have cfglayout mode as the default. */
2094 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2095 mode |= CLEANUP_CFGLAYOUT;
2097 timevar_push (TV_CLEANUP_CFG);
2098 if (delete_unreachable_blocks ())
2100 changed = true;
2101 /* We've possibly created trivially dead code. Cleanup it right
2102 now to introduce more opportunities for try_optimize_cfg. */
2103 if (!(mode & (CLEANUP_NO_INSN_DEL))
2104 && !reload_completed)
2105 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2108 compact_blocks ();
2110 /* To tail-merge blocks ending in the same noreturn function (e.g.
2111 a call to abort) we have to insert fake edges to exit. Do this
2112 here once. The fake edges do not interfere with any other CFG
2113 cleanups. */
2114 if (mode & CLEANUP_CROSSJUMP)
2115 add_noreturn_fake_exit_edges ();
2117 if (!dbg_cnt (cfg_cleanup))
2118 return changed;
2120 while (try_optimize_cfg (mode))
2122 delete_unreachable_blocks (), changed = true;
2123 if (!(mode & CLEANUP_NO_INSN_DEL))
2125 /* Try to remove some trivially dead insns when doing an expensive
2126 cleanup. But delete_trivially_dead_insns doesn't work after
2127 reload (it only handles pseudos) and run_fast_dce is too costly
2128 to run in every iteration.
2130 For effective cross jumping, we really want to run a fast DCE to
2131 clean up any dead conditions, or they get in the way of performing
2132 useful tail merges.
2134 Other transformations in cleanup_cfg are not so sensitive to dead
2135 code, so delete_trivially_dead_insns or even doing nothing at all
2136 is good enough. */
2137 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2138 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2139 break;
2140 else if ((mode & CLEANUP_CROSSJUMP)
2141 && crossjumps_occured)
2142 run_fast_dce ();
2144 else
2145 break;
2148 if (mode & CLEANUP_CROSSJUMP)
2149 remove_fake_exit_edges ();
2151 /* Don't call delete_dead_jumptables in cfglayout mode, because
2152 that function assumes that jump tables are in the insns stream.
2153 But we also don't _have_ to delete dead jumptables in cfglayout
2154 mode because we shouldn't even be looking at things that are
2155 not in a basic block. Dead jumptables are cleaned up when
2156 going out of cfglayout mode. */
2157 if (!(mode & CLEANUP_CFGLAYOUT))
2158 delete_dead_jumptables ();
2160 timevar_pop (TV_CLEANUP_CFG);
2162 return changed;
2165 static unsigned int
2166 rest_of_handle_jump (void)
2168 if (crtl->tail_call_emit)
2169 fixup_tail_calls ();
2170 return 0;
2173 struct rtl_opt_pass pass_jump =
2176 RTL_PASS,
2177 "sibling", /* name */
2178 NULL, /* gate */
2179 rest_of_handle_jump, /* execute */
2180 NULL, /* sub */
2181 NULL, /* next */
2182 0, /* static_pass_number */
2183 TV_JUMP, /* tv_id */
2184 0, /* properties_required */
2185 0, /* properties_provided */
2186 0, /* properties_destroyed */
2187 TODO_ggc_collect, /* todo_flags_start */
2188 TODO_verify_flow, /* todo_flags_finish */
2193 static unsigned int
2194 rest_of_handle_jump2 (void)
2196 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2197 if (dump_file)
2198 dump_flow_info (dump_file, dump_flags);
2199 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2200 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2201 return 0;
2205 struct rtl_opt_pass pass_jump2 =
2208 RTL_PASS,
2209 "jump", /* name */
2210 NULL, /* gate */
2211 rest_of_handle_jump2, /* execute */
2212 NULL, /* sub */
2213 NULL, /* next */
2214 0, /* static_pass_number */
2215 TV_JUMP, /* tv_id */
2216 0, /* properties_required */
2217 0, /* properties_provided */
2218 0, /* properties_destroyed */
2219 TODO_ggc_collect, /* todo_flags_start */
2220 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */