Make add_phi_arg require a gimple_phi
[official-gcc.git] / gcc / tree-vect-data-refs.c
blob598248738f7763b2fb6c0d855223017761265810
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "tm_p.h"
30 #include "target.h"
31 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "gimplify-me.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "stringpool.h"
46 #include "tree-ssanames.h"
47 #include "tree-ssa-loop-ivopts.h"
48 #include "tree-ssa-loop-manip.h"
49 #include "tree-ssa-loop.h"
50 #include "dumpfile.h"
51 #include "cfgloop.h"
52 #include "tree-chrec.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-vectorizer.h"
55 #include "diagnostic-core.h"
56 #include "cgraph.h"
57 /* Need to include rtl.h, expr.h, etc. for optabs. */
58 #include "expr.h"
59 #include "optabs.h"
60 #include "builtins.h"
61 #include "varasm.h"
63 /* Return true if load- or store-lanes optab OPTAB is implemented for
64 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
66 static bool
67 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
68 tree vectype, unsigned HOST_WIDE_INT count)
70 enum machine_mode mode, array_mode;
71 bool limit_p;
73 mode = TYPE_MODE (vectype);
74 limit_p = !targetm.array_mode_supported_p (mode, count);
75 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
76 MODE_INT, limit_p);
78 if (array_mode == BLKmode)
80 if (dump_enabled_p ())
81 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
82 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
83 GET_MODE_NAME (mode), count);
84 return false;
87 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
89 if (dump_enabled_p ())
90 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
91 "cannot use %s<%s><%s>\n", name,
92 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
93 return false;
96 if (dump_enabled_p ())
97 dump_printf_loc (MSG_NOTE, vect_location,
98 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
99 GET_MODE_NAME (mode));
101 return true;
105 /* Return the smallest scalar part of STMT.
106 This is used to determine the vectype of the stmt. We generally set the
107 vectype according to the type of the result (lhs). For stmts whose
108 result-type is different than the type of the arguments (e.g., demotion,
109 promotion), vectype will be reset appropriately (later). Note that we have
110 to visit the smallest datatype in this function, because that determines the
111 VF. If the smallest datatype in the loop is present only as the rhs of a
112 promotion operation - we'd miss it.
113 Such a case, where a variable of this datatype does not appear in the lhs
114 anywhere in the loop, can only occur if it's an invariant: e.g.:
115 'int_x = (int) short_inv', which we'd expect to have been optimized away by
116 invariant motion. However, we cannot rely on invariant motion to always
117 take invariants out of the loop, and so in the case of promotion we also
118 have to check the rhs.
119 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
120 types. */
122 tree
123 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
124 HOST_WIDE_INT *rhs_size_unit)
126 tree scalar_type = gimple_expr_type (stmt);
127 HOST_WIDE_INT lhs, rhs;
129 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
131 if (is_gimple_assign (stmt)
132 && (gimple_assign_cast_p (stmt)
133 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
134 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
135 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
137 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
139 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
140 if (rhs < lhs)
141 scalar_type = rhs_type;
144 *lhs_size_unit = lhs;
145 *rhs_size_unit = rhs;
146 return scalar_type;
150 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
151 tested at run-time. Return TRUE if DDR was successfully inserted.
152 Return false if versioning is not supported. */
154 static bool
155 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
157 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
159 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
160 return false;
162 if (dump_enabled_p ())
164 dump_printf_loc (MSG_NOTE, vect_location,
165 "mark for run-time aliasing test between ");
166 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
167 dump_printf (MSG_NOTE, " and ");
168 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
169 dump_printf (MSG_NOTE, "\n");
172 if (optimize_loop_nest_for_size_p (loop))
174 if (dump_enabled_p ())
175 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
176 "versioning not supported when optimizing"
177 " for size.\n");
178 return false;
181 /* FORNOW: We don't support versioning with outer-loop vectorization. */
182 if (loop->inner)
184 if (dump_enabled_p ())
185 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
186 "versioning not yet supported for outer-loops.\n");
187 return false;
190 /* FORNOW: We don't support creating runtime alias tests for non-constant
191 step. */
192 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
193 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
195 if (dump_enabled_p ())
196 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
197 "versioning not yet supported for non-constant "
198 "step\n");
199 return false;
202 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
203 return true;
207 /* Function vect_analyze_data_ref_dependence.
209 Return TRUE if there (might) exist a dependence between a memory-reference
210 DRA and a memory-reference DRB. When versioning for alias may check a
211 dependence at run-time, return FALSE. Adjust *MAX_VF according to
212 the data dependence. */
214 static bool
215 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
216 loop_vec_info loop_vinfo, int *max_vf)
218 unsigned int i;
219 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
220 struct data_reference *dra = DDR_A (ddr);
221 struct data_reference *drb = DDR_B (ddr);
222 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
223 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
224 lambda_vector dist_v;
225 unsigned int loop_depth;
227 /* In loop analysis all data references should be vectorizable. */
228 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
229 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
230 gcc_unreachable ();
232 /* Independent data accesses. */
233 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
234 return false;
236 if (dra == drb
237 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
238 return false;
240 /* Even if we have an anti-dependence then, as the vectorized loop covers at
241 least two scalar iterations, there is always also a true dependence.
242 As the vectorizer does not re-order loads and stores we can ignore
243 the anti-dependence if TBAA can disambiguate both DRs similar to the
244 case with known negative distance anti-dependences (positive
245 distance anti-dependences would violate TBAA constraints). */
246 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
247 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
248 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
249 get_alias_set (DR_REF (drb))))
250 return false;
252 /* Unknown data dependence. */
253 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
255 /* If user asserted safelen consecutive iterations can be
256 executed concurrently, assume independence. */
257 if (loop->safelen >= 2)
259 if (loop->safelen < *max_vf)
260 *max_vf = loop->safelen;
261 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
262 return false;
265 if (STMT_VINFO_GATHER_P (stmtinfo_a)
266 || STMT_VINFO_GATHER_P (stmtinfo_b))
268 if (dump_enabled_p ())
270 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
271 "versioning for alias not supported for: "
272 "can't determine dependence between ");
273 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
274 DR_REF (dra));
275 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
276 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
277 DR_REF (drb));
278 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
280 return true;
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
286 "versioning for alias required: "
287 "can't determine dependence between ");
288 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
289 DR_REF (dra));
290 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
291 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
292 DR_REF (drb));
293 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
296 /* Add to list of ddrs that need to be tested at run-time. */
297 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
300 /* Known data dependence. */
301 if (DDR_NUM_DIST_VECTS (ddr) == 0)
303 /* If user asserted safelen consecutive iterations can be
304 executed concurrently, assume independence. */
305 if (loop->safelen >= 2)
307 if (loop->safelen < *max_vf)
308 *max_vf = loop->safelen;
309 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
310 return false;
313 if (STMT_VINFO_GATHER_P (stmtinfo_a)
314 || STMT_VINFO_GATHER_P (stmtinfo_b))
316 if (dump_enabled_p ())
318 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
319 "versioning for alias not supported for: "
320 "bad dist vector for ");
321 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
322 DR_REF (dra));
323 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
324 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
325 DR_REF (drb));
326 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
328 return true;
331 if (dump_enabled_p ())
333 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
334 "versioning for alias required: "
335 "bad dist vector for ");
336 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
337 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
338 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
339 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
341 /* Add to list of ddrs that need to be tested at run-time. */
342 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
345 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
346 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
348 int dist = dist_v[loop_depth];
350 if (dump_enabled_p ())
351 dump_printf_loc (MSG_NOTE, vect_location,
352 "dependence distance = %d.\n", dist);
354 if (dist == 0)
356 if (dump_enabled_p ())
358 dump_printf_loc (MSG_NOTE, vect_location,
359 "dependence distance == 0 between ");
360 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
361 dump_printf (MSG_NOTE, " and ");
362 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
363 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
366 /* When we perform grouped accesses and perform implicit CSE
367 by detecting equal accesses and doing disambiguation with
368 runtime alias tests like for
369 .. = a[i];
370 .. = a[i+1];
371 a[i] = ..;
372 a[i+1] = ..;
373 *p = ..;
374 .. = a[i];
375 .. = a[i+1];
376 where we will end up loading { a[i], a[i+1] } once, make
377 sure that inserting group loads before the first load and
378 stores after the last store will do the right thing.
379 Similar for groups like
380 a[i] = ...;
381 ... = a[i];
382 a[i+1] = ...;
383 where loads from the group interleave with the store. */
384 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
385 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
387 gimple earlier_stmt;
388 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
389 if (DR_IS_WRITE
390 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
392 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "READ_WRITE dependence in interleaving."
395 "\n");
396 return true;
400 continue;
403 if (dist > 0 && DDR_REVERSED_P (ddr))
405 /* If DDR_REVERSED_P the order of the data-refs in DDR was
406 reversed (to make distance vector positive), and the actual
407 distance is negative. */
408 if (dump_enabled_p ())
409 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
410 "dependence distance negative.\n");
411 /* Record a negative dependence distance to later limit the
412 amount of stmt copying / unrolling we can perform.
413 Only need to handle read-after-write dependence. */
414 if (DR_IS_READ (drb)
415 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
416 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
417 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
418 continue;
421 if (abs (dist) >= 2
422 && abs (dist) < *max_vf)
424 /* The dependence distance requires reduction of the maximal
425 vectorization factor. */
426 *max_vf = abs (dist);
427 if (dump_enabled_p ())
428 dump_printf_loc (MSG_NOTE, vect_location,
429 "adjusting maximal vectorization factor to %i\n",
430 *max_vf);
433 if (abs (dist) >= *max_vf)
435 /* Dependence distance does not create dependence, as far as
436 vectorization is concerned, in this case. */
437 if (dump_enabled_p ())
438 dump_printf_loc (MSG_NOTE, vect_location,
439 "dependence distance >= VF.\n");
440 continue;
443 if (dump_enabled_p ())
445 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
446 "not vectorized, possible dependence "
447 "between data-refs ");
448 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
449 dump_printf (MSG_NOTE, " and ");
450 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
451 dump_printf (MSG_NOTE, "\n");
454 return true;
457 return false;
460 /* Function vect_analyze_data_ref_dependences.
462 Examine all the data references in the loop, and make sure there do not
463 exist any data dependences between them. Set *MAX_VF according to
464 the maximum vectorization factor the data dependences allow. */
466 bool
467 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
469 unsigned int i;
470 struct data_dependence_relation *ddr;
472 if (dump_enabled_p ())
473 dump_printf_loc (MSG_NOTE, vect_location,
474 "=== vect_analyze_data_ref_dependences ===\n");
476 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
477 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
478 &LOOP_VINFO_DDRS (loop_vinfo),
479 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
480 return false;
482 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
483 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
484 return false;
486 return true;
490 /* Function vect_slp_analyze_data_ref_dependence.
492 Return TRUE if there (might) exist a dependence between a memory-reference
493 DRA and a memory-reference DRB. When versioning for alias may check a
494 dependence at run-time, return FALSE. Adjust *MAX_VF according to
495 the data dependence. */
497 static bool
498 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
500 struct data_reference *dra = DDR_A (ddr);
501 struct data_reference *drb = DDR_B (ddr);
503 /* We need to check dependences of statements marked as unvectorizable
504 as well, they still can prohibit vectorization. */
506 /* Independent data accesses. */
507 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
508 return false;
510 if (dra == drb)
511 return false;
513 /* Read-read is OK. */
514 if (DR_IS_READ (dra) && DR_IS_READ (drb))
515 return false;
517 /* If dra and drb are part of the same interleaving chain consider
518 them independent. */
519 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
520 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
521 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
522 return false;
524 /* Unknown data dependence. */
525 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
527 if (dump_enabled_p ())
529 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
530 "can't determine dependence between ");
531 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
532 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
533 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
534 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
537 else if (dump_enabled_p ())
539 dump_printf_loc (MSG_NOTE, vect_location,
540 "determined dependence between ");
541 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
542 dump_printf (MSG_NOTE, " and ");
543 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
544 dump_printf (MSG_NOTE, "\n");
547 /* We do not vectorize basic blocks with write-write dependencies. */
548 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
549 return true;
551 /* If we have a read-write dependence check that the load is before the store.
552 When we vectorize basic blocks, vector load can be only before
553 corresponding scalar load, and vector store can be only after its
554 corresponding scalar store. So the order of the acceses is preserved in
555 case the load is before the store. */
556 gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
557 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
559 /* That only holds for load-store pairs taking part in vectorization. */
560 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
561 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
562 return false;
565 return true;
569 /* Function vect_analyze_data_ref_dependences.
571 Examine all the data references in the basic-block, and make sure there
572 do not exist any data dependences between them. Set *MAX_VF according to
573 the maximum vectorization factor the data dependences allow. */
575 bool
576 vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
578 struct data_dependence_relation *ddr;
579 unsigned int i;
581 if (dump_enabled_p ())
582 dump_printf_loc (MSG_NOTE, vect_location,
583 "=== vect_slp_analyze_data_ref_dependences ===\n");
585 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
586 &BB_VINFO_DDRS (bb_vinfo),
587 vNULL, true))
588 return false;
590 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
591 if (vect_slp_analyze_data_ref_dependence (ddr))
592 return false;
594 return true;
598 /* Function vect_compute_data_ref_alignment
600 Compute the misalignment of the data reference DR.
602 Output:
603 1. If during the misalignment computation it is found that the data reference
604 cannot be vectorized then false is returned.
605 2. DR_MISALIGNMENT (DR) is defined.
607 FOR NOW: No analysis is actually performed. Misalignment is calculated
608 only for trivial cases. TODO. */
610 static bool
611 vect_compute_data_ref_alignment (struct data_reference *dr)
613 gimple stmt = DR_STMT (dr);
614 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
615 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
616 struct loop *loop = NULL;
617 tree ref = DR_REF (dr);
618 tree vectype;
619 tree base, base_addr;
620 bool base_aligned;
621 tree misalign;
622 tree aligned_to, alignment;
624 if (dump_enabled_p ())
625 dump_printf_loc (MSG_NOTE, vect_location,
626 "vect_compute_data_ref_alignment:\n");
628 if (loop_vinfo)
629 loop = LOOP_VINFO_LOOP (loop_vinfo);
631 /* Initialize misalignment to unknown. */
632 SET_DR_MISALIGNMENT (dr, -1);
634 /* Strided loads perform only component accesses, misalignment information
635 is irrelevant for them. */
636 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
637 return true;
639 misalign = DR_INIT (dr);
640 aligned_to = DR_ALIGNED_TO (dr);
641 base_addr = DR_BASE_ADDRESS (dr);
642 vectype = STMT_VINFO_VECTYPE (stmt_info);
644 /* In case the dataref is in an inner-loop of the loop that is being
645 vectorized (LOOP), we use the base and misalignment information
646 relative to the outer-loop (LOOP). This is ok only if the misalignment
647 stays the same throughout the execution of the inner-loop, which is why
648 we have to check that the stride of the dataref in the inner-loop evenly
649 divides by the vector size. */
650 if (loop && nested_in_vect_loop_p (loop, stmt))
652 tree step = DR_STEP (dr);
653 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
655 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
657 if (dump_enabled_p ())
658 dump_printf_loc (MSG_NOTE, vect_location,
659 "inner step divides the vector-size.\n");
660 misalign = STMT_VINFO_DR_INIT (stmt_info);
661 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
662 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
664 else
666 if (dump_enabled_p ())
667 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
668 "inner step doesn't divide the vector-size.\n");
669 misalign = NULL_TREE;
673 /* Similarly, if we're doing basic-block vectorization, we can only use
674 base and misalignment information relative to an innermost loop if the
675 misalignment stays the same throughout the execution of the loop.
676 As above, this is the case if the stride of the dataref evenly divides
677 by the vector size. */
678 if (!loop)
680 tree step = DR_STEP (dr);
681 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
683 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
685 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "SLP: step doesn't divide the vector-size.\n");
688 misalign = NULL_TREE;
692 base = build_fold_indirect_ref (base_addr);
693 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
695 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
696 || !misalign)
698 if (dump_enabled_p ())
700 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
701 "Unknown alignment for access: ");
702 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
703 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
705 return true;
708 if ((DECL_P (base)
709 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
710 alignment) >= 0)
711 || (TREE_CODE (base_addr) == SSA_NAME
712 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
713 TREE_TYPE (base_addr)))),
714 alignment) >= 0)
715 || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
716 base_aligned = true;
717 else
718 base_aligned = false;
720 if (!base_aligned)
722 /* Do not change the alignment of global variables here if
723 flag_section_anchors is enabled as we already generated
724 RTL for other functions. Most global variables should
725 have been aligned during the IPA increase_alignment pass. */
726 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
727 || (TREE_STATIC (base) && flag_section_anchors))
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location,
732 "can't force alignment of ref: ");
733 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
734 dump_printf (MSG_NOTE, "\n");
736 return true;
739 /* Force the alignment of the decl.
740 NOTE: This is the only change to the code we make during
741 the analysis phase, before deciding to vectorize the loop. */
742 if (dump_enabled_p ())
744 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
745 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
746 dump_printf (MSG_NOTE, "\n");
749 ((dataref_aux *)dr->aux)->base_decl = base;
750 ((dataref_aux *)dr->aux)->base_misaligned = true;
753 /* If this is a backward running DR then first access in the larger
754 vectype actually is N-1 elements before the address in the DR.
755 Adjust misalign accordingly. */
756 if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
758 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
759 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
760 otherwise we wouldn't be here. */
761 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
762 /* PLUS because DR_STEP was negative. */
763 misalign = size_binop (PLUS_EXPR, misalign, offset);
766 /* Modulo alignment. */
767 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
769 if (!tree_fits_uhwi_p (misalign))
771 /* Negative or overflowed misalignment value. */
772 if (dump_enabled_p ())
773 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
774 "unexpected misalign value\n");
775 return false;
778 SET_DR_MISALIGNMENT (dr, tree_to_uhwi (misalign));
780 if (dump_enabled_p ())
782 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
783 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
784 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
785 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
788 return true;
792 /* Function vect_compute_data_refs_alignment
794 Compute the misalignment of data references in the loop.
795 Return FALSE if a data reference is found that cannot be vectorized. */
797 static bool
798 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
799 bb_vec_info bb_vinfo)
801 vec<data_reference_p> datarefs;
802 struct data_reference *dr;
803 unsigned int i;
805 if (loop_vinfo)
806 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
807 else
808 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
810 FOR_EACH_VEC_ELT (datarefs, i, dr)
811 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
812 && !vect_compute_data_ref_alignment (dr))
814 if (bb_vinfo)
816 /* Mark unsupported statement as unvectorizable. */
817 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
818 continue;
820 else
821 return false;
824 return true;
828 /* Function vect_update_misalignment_for_peel
830 DR - the data reference whose misalignment is to be adjusted.
831 DR_PEEL - the data reference whose misalignment is being made
832 zero in the vector loop by the peel.
833 NPEEL - the number of iterations in the peel loop if the misalignment
834 of DR_PEEL is known at compile time. */
836 static void
837 vect_update_misalignment_for_peel (struct data_reference *dr,
838 struct data_reference *dr_peel, int npeel)
840 unsigned int i;
841 vec<dr_p> same_align_drs;
842 struct data_reference *current_dr;
843 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
844 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
845 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
846 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
848 /* For interleaved data accesses the step in the loop must be multiplied by
849 the size of the interleaving group. */
850 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
851 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
852 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
853 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
855 /* It can be assumed that the data refs with the same alignment as dr_peel
856 are aligned in the vector loop. */
857 same_align_drs
858 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
859 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
861 if (current_dr != dr)
862 continue;
863 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
864 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
865 SET_DR_MISALIGNMENT (dr, 0);
866 return;
869 if (known_alignment_for_access_p (dr)
870 && known_alignment_for_access_p (dr_peel))
872 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
873 int misal = DR_MISALIGNMENT (dr);
874 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
875 misal += negative ? -npeel * dr_size : npeel * dr_size;
876 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
877 SET_DR_MISALIGNMENT (dr, misal);
878 return;
881 if (dump_enabled_p ())
882 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
883 SET_DR_MISALIGNMENT (dr, -1);
887 /* Function vect_verify_datarefs_alignment
889 Return TRUE if all data references in the loop can be
890 handled with respect to alignment. */
892 bool
893 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
895 vec<data_reference_p> datarefs;
896 struct data_reference *dr;
897 enum dr_alignment_support supportable_dr_alignment;
898 unsigned int i;
900 if (loop_vinfo)
901 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
902 else
903 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
905 FOR_EACH_VEC_ELT (datarefs, i, dr)
907 gimple stmt = DR_STMT (dr);
908 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
910 if (!STMT_VINFO_RELEVANT_P (stmt_info))
911 continue;
913 /* For interleaving, only the alignment of the first access matters.
914 Skip statements marked as not vectorizable. */
915 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
916 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
917 || !STMT_VINFO_VECTORIZABLE (stmt_info))
918 continue;
920 /* Strided loads perform only component accesses, alignment is
921 irrelevant for them. */
922 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
923 continue;
925 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
926 if (!supportable_dr_alignment)
928 if (dump_enabled_p ())
930 if (DR_IS_READ (dr))
931 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
932 "not vectorized: unsupported unaligned load.");
933 else
934 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
935 "not vectorized: unsupported unaligned "
936 "store.");
938 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
939 DR_REF (dr));
940 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
942 return false;
944 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
945 dump_printf_loc (MSG_NOTE, vect_location,
946 "Vectorizing an unaligned access.\n");
948 return true;
951 /* Given an memory reference EXP return whether its alignment is less
952 than its size. */
954 static bool
955 not_size_aligned (tree exp)
957 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
958 return true;
960 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
961 > get_object_alignment (exp));
964 /* Function vector_alignment_reachable_p
966 Return true if vector alignment for DR is reachable by peeling
967 a few loop iterations. Return false otherwise. */
969 static bool
970 vector_alignment_reachable_p (struct data_reference *dr)
972 gimple stmt = DR_STMT (dr);
973 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
974 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
976 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
978 /* For interleaved access we peel only if number of iterations in
979 the prolog loop ({VF - misalignment}), is a multiple of the
980 number of the interleaved accesses. */
981 int elem_size, mis_in_elements;
982 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
984 /* FORNOW: handle only known alignment. */
985 if (!known_alignment_for_access_p (dr))
986 return false;
988 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
989 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
991 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
992 return false;
995 /* If misalignment is known at the compile time then allow peeling
996 only if natural alignment is reachable through peeling. */
997 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
999 HOST_WIDE_INT elmsize =
1000 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1001 if (dump_enabled_p ())
1003 dump_printf_loc (MSG_NOTE, vect_location,
1004 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1005 dump_printf (MSG_NOTE,
1006 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1008 if (DR_MISALIGNMENT (dr) % elmsize)
1010 if (dump_enabled_p ())
1011 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1012 "data size does not divide the misalignment.\n");
1013 return false;
1017 if (!known_alignment_for_access_p (dr))
1019 tree type = TREE_TYPE (DR_REF (dr));
1020 bool is_packed = not_size_aligned (DR_REF (dr));
1021 if (dump_enabled_p ())
1022 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1023 "Unknown misalignment, is_packed = %d\n",is_packed);
1024 if ((TYPE_USER_ALIGN (type) && !is_packed)
1025 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
1026 return true;
1027 else
1028 return false;
1031 return true;
1035 /* Calculate the cost of the memory access represented by DR. */
1037 static void
1038 vect_get_data_access_cost (struct data_reference *dr,
1039 unsigned int *inside_cost,
1040 unsigned int *outside_cost,
1041 stmt_vector_for_cost *body_cost_vec)
1043 gimple stmt = DR_STMT (dr);
1044 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1045 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1046 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1047 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1048 int ncopies = vf / nunits;
1050 if (DR_IS_READ (dr))
1051 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1052 NULL, body_cost_vec, false);
1053 else
1054 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1056 if (dump_enabled_p ())
1057 dump_printf_loc (MSG_NOTE, vect_location,
1058 "vect_get_data_access_cost: inside_cost = %d, "
1059 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1063 /* Insert DR into peeling hash table with NPEEL as key. */
1065 static void
1066 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1067 int npeel)
1069 struct _vect_peel_info elem, *slot;
1070 _vect_peel_info **new_slot;
1071 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1073 elem.npeel = npeel;
1074 slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find (&elem);
1075 if (slot)
1076 slot->count++;
1077 else
1079 slot = XNEW (struct _vect_peel_info);
1080 slot->npeel = npeel;
1081 slot->dr = dr;
1082 slot->count = 1;
1083 new_slot
1084 = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find_slot (slot, INSERT);
1085 *new_slot = slot;
1088 if (!supportable_dr_alignment
1089 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1090 slot->count += VECT_MAX_COST;
1094 /* Traverse peeling hash table to find peeling option that aligns maximum
1095 number of data accesses. */
1098 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1099 _vect_peel_extended_info *max)
1101 vect_peel_info elem = *slot;
1103 if (elem->count > max->peel_info.count
1104 || (elem->count == max->peel_info.count
1105 && max->peel_info.npeel > elem->npeel))
1107 max->peel_info.npeel = elem->npeel;
1108 max->peel_info.count = elem->count;
1109 max->peel_info.dr = elem->dr;
1112 return 1;
1116 /* Traverse peeling hash table and calculate cost for each peeling option.
1117 Find the one with the lowest cost. */
1120 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1121 _vect_peel_extended_info *min)
1123 vect_peel_info elem = *slot;
1124 int save_misalignment, dummy;
1125 unsigned int inside_cost = 0, outside_cost = 0, i;
1126 gimple stmt = DR_STMT (elem->dr);
1127 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1128 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1129 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1130 struct data_reference *dr;
1131 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1132 int single_iter_cost;
1134 prologue_cost_vec.create (2);
1135 body_cost_vec.create (2);
1136 epilogue_cost_vec.create (2);
1138 FOR_EACH_VEC_ELT (datarefs, i, dr)
1140 stmt = DR_STMT (dr);
1141 stmt_info = vinfo_for_stmt (stmt);
1142 /* For interleaving, only the alignment of the first access
1143 matters. */
1144 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1145 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1146 continue;
1148 save_misalignment = DR_MISALIGNMENT (dr);
1149 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1150 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1151 &body_cost_vec);
1152 SET_DR_MISALIGNMENT (dr, save_misalignment);
1155 single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
1156 outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
1157 &dummy, single_iter_cost,
1158 &prologue_cost_vec,
1159 &epilogue_cost_vec);
1161 /* Prologue and epilogue costs are added to the target model later.
1162 These costs depend only on the scalar iteration cost, the
1163 number of peeling iterations finally chosen, and the number of
1164 misaligned statements. So discard the information found here. */
1165 prologue_cost_vec.release ();
1166 epilogue_cost_vec.release ();
1168 if (inside_cost < min->inside_cost
1169 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1171 min->inside_cost = inside_cost;
1172 min->outside_cost = outside_cost;
1173 min->body_cost_vec.release ();
1174 min->body_cost_vec = body_cost_vec;
1175 min->peel_info.dr = elem->dr;
1176 min->peel_info.npeel = elem->npeel;
1178 else
1179 body_cost_vec.release ();
1181 return 1;
1185 /* Choose best peeling option by traversing peeling hash table and either
1186 choosing an option with the lowest cost (if cost model is enabled) or the
1187 option that aligns as many accesses as possible. */
1189 static struct data_reference *
1190 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1191 unsigned int *npeel,
1192 stmt_vector_for_cost *body_cost_vec)
1194 struct _vect_peel_extended_info res;
1196 res.peel_info.dr = NULL;
1197 res.body_cost_vec = stmt_vector_for_cost ();
1199 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1201 res.inside_cost = INT_MAX;
1202 res.outside_cost = INT_MAX;
1203 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1204 ->traverse <_vect_peel_extended_info *,
1205 vect_peeling_hash_get_lowest_cost> (&res);
1207 else
1209 res.peel_info.count = 0;
1210 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1211 ->traverse <_vect_peel_extended_info *,
1212 vect_peeling_hash_get_most_frequent> (&res);
1215 *npeel = res.peel_info.npeel;
1216 *body_cost_vec = res.body_cost_vec;
1217 return res.peel_info.dr;
1221 /* Function vect_enhance_data_refs_alignment
1223 This pass will use loop versioning and loop peeling in order to enhance
1224 the alignment of data references in the loop.
1226 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1227 original loop is to be vectorized. Any other loops that are created by
1228 the transformations performed in this pass - are not supposed to be
1229 vectorized. This restriction will be relaxed.
1231 This pass will require a cost model to guide it whether to apply peeling
1232 or versioning or a combination of the two. For example, the scheme that
1233 intel uses when given a loop with several memory accesses, is as follows:
1234 choose one memory access ('p') which alignment you want to force by doing
1235 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1236 other accesses are not necessarily aligned, or (2) use loop versioning to
1237 generate one loop in which all accesses are aligned, and another loop in
1238 which only 'p' is necessarily aligned.
1240 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1241 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1242 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1244 Devising a cost model is the most critical aspect of this work. It will
1245 guide us on which access to peel for, whether to use loop versioning, how
1246 many versions to create, etc. The cost model will probably consist of
1247 generic considerations as well as target specific considerations (on
1248 powerpc for example, misaligned stores are more painful than misaligned
1249 loads).
1251 Here are the general steps involved in alignment enhancements:
1253 -- original loop, before alignment analysis:
1254 for (i=0; i<N; i++){
1255 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1256 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1259 -- After vect_compute_data_refs_alignment:
1260 for (i=0; i<N; i++){
1261 x = q[i]; # DR_MISALIGNMENT(q) = 3
1262 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1265 -- Possibility 1: we do loop versioning:
1266 if (p is aligned) {
1267 for (i=0; i<N; i++){ # loop 1A
1268 x = q[i]; # DR_MISALIGNMENT(q) = 3
1269 p[i] = y; # DR_MISALIGNMENT(p) = 0
1272 else {
1273 for (i=0; i<N; i++){ # loop 1B
1274 x = q[i]; # DR_MISALIGNMENT(q) = 3
1275 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1279 -- Possibility 2: we do loop peeling:
1280 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1281 x = q[i];
1282 p[i] = y;
1284 for (i = 3; i < N; i++){ # loop 2A
1285 x = q[i]; # DR_MISALIGNMENT(q) = 0
1286 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1289 -- Possibility 3: combination of loop peeling and versioning:
1290 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1291 x = q[i];
1292 p[i] = y;
1294 if (p is aligned) {
1295 for (i = 3; i<N; i++){ # loop 3A
1296 x = q[i]; # DR_MISALIGNMENT(q) = 0
1297 p[i] = y; # DR_MISALIGNMENT(p) = 0
1300 else {
1301 for (i = 3; i<N; i++){ # loop 3B
1302 x = q[i]; # DR_MISALIGNMENT(q) = 0
1303 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1307 These loops are later passed to loop_transform to be vectorized. The
1308 vectorizer will use the alignment information to guide the transformation
1309 (whether to generate regular loads/stores, or with special handling for
1310 misalignment). */
1312 bool
1313 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1315 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1316 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1317 enum dr_alignment_support supportable_dr_alignment;
1318 struct data_reference *dr0 = NULL, *first_store = NULL;
1319 struct data_reference *dr;
1320 unsigned int i, j;
1321 bool do_peeling = false;
1322 bool do_versioning = false;
1323 bool stat;
1324 gimple stmt;
1325 stmt_vec_info stmt_info;
1326 unsigned int npeel = 0;
1327 bool all_misalignments_unknown = true;
1328 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1329 unsigned possible_npeel_number = 1;
1330 tree vectype;
1331 unsigned int nelements, mis, same_align_drs_max = 0;
1332 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
1334 if (dump_enabled_p ())
1335 dump_printf_loc (MSG_NOTE, vect_location,
1336 "=== vect_enhance_data_refs_alignment ===\n");
1338 /* While cost model enhancements are expected in the future, the high level
1339 view of the code at this time is as follows:
1341 A) If there is a misaligned access then see if peeling to align
1342 this access can make all data references satisfy
1343 vect_supportable_dr_alignment. If so, update data structures
1344 as needed and return true.
1346 B) If peeling wasn't possible and there is a data reference with an
1347 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1348 then see if loop versioning checks can be used to make all data
1349 references satisfy vect_supportable_dr_alignment. If so, update
1350 data structures as needed and return true.
1352 C) If neither peeling nor versioning were successful then return false if
1353 any data reference does not satisfy vect_supportable_dr_alignment.
1355 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1357 Note, Possibility 3 above (which is peeling and versioning together) is not
1358 being done at this time. */
1360 /* (1) Peeling to force alignment. */
1362 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1363 Considerations:
1364 + How many accesses will become aligned due to the peeling
1365 - How many accesses will become unaligned due to the peeling,
1366 and the cost of misaligned accesses.
1367 - The cost of peeling (the extra runtime checks, the increase
1368 in code size). */
1370 FOR_EACH_VEC_ELT (datarefs, i, dr)
1372 stmt = DR_STMT (dr);
1373 stmt_info = vinfo_for_stmt (stmt);
1375 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1376 continue;
1378 /* For interleaving, only the alignment of the first access
1379 matters. */
1380 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1381 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1382 continue;
1384 /* For invariant accesses there is nothing to enhance. */
1385 if (integer_zerop (DR_STEP (dr)))
1386 continue;
1388 /* Strided loads perform only component accesses, alignment is
1389 irrelevant for them. */
1390 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1391 continue;
1393 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1394 do_peeling = vector_alignment_reachable_p (dr);
1395 if (do_peeling)
1397 if (known_alignment_for_access_p (dr))
1399 unsigned int npeel_tmp;
1400 bool negative = tree_int_cst_compare (DR_STEP (dr),
1401 size_zero_node) < 0;
1403 /* Save info about DR in the hash table. */
1404 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1405 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1406 = new hash_table<peel_info_hasher> (1);
1408 vectype = STMT_VINFO_VECTYPE (stmt_info);
1409 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1410 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1411 TREE_TYPE (DR_REF (dr))));
1412 npeel_tmp = (negative
1413 ? (mis - nelements) : (nelements - mis))
1414 & (nelements - 1);
1416 /* For multiple types, it is possible that the bigger type access
1417 will have more than one peeling option. E.g., a loop with two
1418 types: one of size (vector size / 4), and the other one of
1419 size (vector size / 8). Vectorization factor will 8. If both
1420 access are misaligned by 3, the first one needs one scalar
1421 iteration to be aligned, and the second one needs 5. But the
1422 the first one will be aligned also by peeling 5 scalar
1423 iterations, and in that case both accesses will be aligned.
1424 Hence, except for the immediate peeling amount, we also want
1425 to try to add full vector size, while we don't exceed
1426 vectorization factor.
1427 We do this automtically for cost model, since we calculate cost
1428 for every peeling option. */
1429 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1430 possible_npeel_number = vf /nelements;
1432 /* Handle the aligned case. We may decide to align some other
1433 access, making DR unaligned. */
1434 if (DR_MISALIGNMENT (dr) == 0)
1436 npeel_tmp = 0;
1437 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1438 possible_npeel_number++;
1441 for (j = 0; j < possible_npeel_number; j++)
1443 gcc_assert (npeel_tmp <= vf);
1444 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1445 npeel_tmp += nelements;
1448 all_misalignments_unknown = false;
1449 /* Data-ref that was chosen for the case that all the
1450 misalignments are unknown is not relevant anymore, since we
1451 have a data-ref with known alignment. */
1452 dr0 = NULL;
1454 else
1456 /* If we don't know any misalignment values, we prefer
1457 peeling for data-ref that has the maximum number of data-refs
1458 with the same alignment, unless the target prefers to align
1459 stores over load. */
1460 if (all_misalignments_unknown)
1462 unsigned same_align_drs
1463 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1464 if (!dr0
1465 || same_align_drs_max < same_align_drs)
1467 same_align_drs_max = same_align_drs;
1468 dr0 = dr;
1470 /* For data-refs with the same number of related
1471 accesses prefer the one where the misalign
1472 computation will be invariant in the outermost loop. */
1473 else if (same_align_drs_max == same_align_drs)
1475 struct loop *ivloop0, *ivloop;
1476 ivloop0 = outermost_invariant_loop_for_expr
1477 (loop, DR_BASE_ADDRESS (dr0));
1478 ivloop = outermost_invariant_loop_for_expr
1479 (loop, DR_BASE_ADDRESS (dr));
1480 if ((ivloop && !ivloop0)
1481 || (ivloop && ivloop0
1482 && flow_loop_nested_p (ivloop, ivloop0)))
1483 dr0 = dr;
1486 if (!first_store && DR_IS_WRITE (dr))
1487 first_store = dr;
1490 /* If there are both known and unknown misaligned accesses in the
1491 loop, we choose peeling amount according to the known
1492 accesses. */
1493 if (!supportable_dr_alignment)
1495 dr0 = dr;
1496 if (!first_store && DR_IS_WRITE (dr))
1497 first_store = dr;
1501 else
1503 if (!aligned_access_p (dr))
1505 if (dump_enabled_p ())
1506 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1507 "vector alignment may not be reachable\n");
1508 break;
1513 /* Check if we can possibly peel the loop. */
1514 if (!vect_can_advance_ivs_p (loop_vinfo)
1515 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1516 do_peeling = false;
1518 /* If we don't know how many times the peeling loop will run
1519 assume it will run VF-1 times and disable peeling if the remaining
1520 iters are less than the vectorization factor. */
1521 if (do_peeling
1522 && all_misalignments_unknown
1523 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1524 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1525 < 2 * (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1))
1526 do_peeling = false;
1528 if (do_peeling
1529 && all_misalignments_unknown
1530 && vect_supportable_dr_alignment (dr0, false))
1532 /* Check if the target requires to prefer stores over loads, i.e., if
1533 misaligned stores are more expensive than misaligned loads (taking
1534 drs with same alignment into account). */
1535 if (first_store && DR_IS_READ (dr0))
1537 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1538 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1539 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1540 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1541 stmt_vector_for_cost dummy;
1542 dummy.create (2);
1544 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1545 &dummy);
1546 vect_get_data_access_cost (first_store, &store_inside_cost,
1547 &store_outside_cost, &dummy);
1549 dummy.release ();
1551 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1552 aligning the load DR0). */
1553 load_inside_penalty = store_inside_cost;
1554 load_outside_penalty = store_outside_cost;
1555 for (i = 0;
1556 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1557 DR_STMT (first_store))).iterate (i, &dr);
1558 i++)
1559 if (DR_IS_READ (dr))
1561 load_inside_penalty += load_inside_cost;
1562 load_outside_penalty += load_outside_cost;
1564 else
1566 load_inside_penalty += store_inside_cost;
1567 load_outside_penalty += store_outside_cost;
1570 /* Calculate the penalty for leaving DR0 unaligned (by
1571 aligning the FIRST_STORE). */
1572 store_inside_penalty = load_inside_cost;
1573 store_outside_penalty = load_outside_cost;
1574 for (i = 0;
1575 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1576 DR_STMT (dr0))).iterate (i, &dr);
1577 i++)
1578 if (DR_IS_READ (dr))
1580 store_inside_penalty += load_inside_cost;
1581 store_outside_penalty += load_outside_cost;
1583 else
1585 store_inside_penalty += store_inside_cost;
1586 store_outside_penalty += store_outside_cost;
1589 if (load_inside_penalty > store_inside_penalty
1590 || (load_inside_penalty == store_inside_penalty
1591 && load_outside_penalty > store_outside_penalty))
1592 dr0 = first_store;
1595 /* In case there are only loads with different unknown misalignments, use
1596 peeling only if it may help to align other accesses in the loop. */
1597 if (!first_store
1598 && !STMT_VINFO_SAME_ALIGN_REFS (
1599 vinfo_for_stmt (DR_STMT (dr0))).length ()
1600 && vect_supportable_dr_alignment (dr0, false)
1601 != dr_unaligned_supported)
1602 do_peeling = false;
1605 if (do_peeling && !dr0)
1607 /* Peeling is possible, but there is no data access that is not supported
1608 unless aligned. So we try to choose the best possible peeling. */
1610 /* We should get here only if there are drs with known misalignment. */
1611 gcc_assert (!all_misalignments_unknown);
1613 /* Choose the best peeling from the hash table. */
1614 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1615 &body_cost_vec);
1616 if (!dr0 || !npeel)
1617 do_peeling = false;
1619 /* If peeling by npeel will result in a remaining loop not iterating
1620 enough to be vectorized then do not peel. */
1621 if (do_peeling
1622 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1623 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1624 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + npeel))
1625 do_peeling = false;
1628 if (do_peeling)
1630 stmt = DR_STMT (dr0);
1631 stmt_info = vinfo_for_stmt (stmt);
1632 vectype = STMT_VINFO_VECTYPE (stmt_info);
1633 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1635 if (known_alignment_for_access_p (dr0))
1637 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1638 size_zero_node) < 0;
1639 if (!npeel)
1641 /* Since it's known at compile time, compute the number of
1642 iterations in the peeled loop (the peeling factor) for use in
1643 updating DR_MISALIGNMENT values. The peeling factor is the
1644 vectorization factor minus the misalignment as an element
1645 count. */
1646 mis = DR_MISALIGNMENT (dr0);
1647 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1648 npeel = ((negative ? mis - nelements : nelements - mis)
1649 & (nelements - 1));
1652 /* For interleaved data access every iteration accesses all the
1653 members of the group, therefore we divide the number of iterations
1654 by the group size. */
1655 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1656 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1657 npeel /= GROUP_SIZE (stmt_info);
1659 if (dump_enabled_p ())
1660 dump_printf_loc (MSG_NOTE, vect_location,
1661 "Try peeling by %d\n", npeel);
1664 /* Ensure that all data refs can be vectorized after the peel. */
1665 FOR_EACH_VEC_ELT (datarefs, i, dr)
1667 int save_misalignment;
1669 if (dr == dr0)
1670 continue;
1672 stmt = DR_STMT (dr);
1673 stmt_info = vinfo_for_stmt (stmt);
1674 /* For interleaving, only the alignment of the first access
1675 matters. */
1676 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1677 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1678 continue;
1680 /* Strided loads perform only component accesses, alignment is
1681 irrelevant for them. */
1682 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1683 continue;
1685 save_misalignment = DR_MISALIGNMENT (dr);
1686 vect_update_misalignment_for_peel (dr, dr0, npeel);
1687 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1688 SET_DR_MISALIGNMENT (dr, save_misalignment);
1690 if (!supportable_dr_alignment)
1692 do_peeling = false;
1693 break;
1697 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1699 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1700 if (!stat)
1701 do_peeling = false;
1702 else
1704 body_cost_vec.release ();
1705 return stat;
1709 if (do_peeling)
1711 unsigned max_allowed_peel
1712 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1713 if (max_allowed_peel != (unsigned)-1)
1715 unsigned max_peel = npeel;
1716 if (max_peel == 0)
1718 gimple dr_stmt = DR_STMT (dr0);
1719 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1720 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1721 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1723 if (max_peel > max_allowed_peel)
1725 do_peeling = false;
1726 if (dump_enabled_p ())
1727 dump_printf_loc (MSG_NOTE, vect_location,
1728 "Disable peeling, max peels reached: %d\n", max_peel);
1733 if (do_peeling)
1735 stmt_info_for_cost *si;
1736 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
1738 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1739 If the misalignment of DR_i is identical to that of dr0 then set
1740 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1741 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1742 by the peeling factor times the element size of DR_i (MOD the
1743 vectorization factor times the size). Otherwise, the
1744 misalignment of DR_i must be set to unknown. */
1745 FOR_EACH_VEC_ELT (datarefs, i, dr)
1746 if (dr != dr0)
1747 vect_update_misalignment_for_peel (dr, dr0, npeel);
1749 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1750 if (npeel)
1751 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1752 else
1753 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1754 = DR_MISALIGNMENT (dr0);
1755 SET_DR_MISALIGNMENT (dr0, 0);
1756 if (dump_enabled_p ())
1758 dump_printf_loc (MSG_NOTE, vect_location,
1759 "Alignment of access forced using peeling.\n");
1760 dump_printf_loc (MSG_NOTE, vect_location,
1761 "Peeling for alignment will be applied.\n");
1763 /* We've delayed passing the inside-loop peeling costs to the
1764 target cost model until we were sure peeling would happen.
1765 Do so now. */
1766 if (body_cost_vec.exists ())
1768 FOR_EACH_VEC_ELT (body_cost_vec, i, si)
1770 struct _stmt_vec_info *stmt_info
1771 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1772 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1773 si->misalign, vect_body);
1775 body_cost_vec.release ();
1778 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1779 gcc_assert (stat);
1780 return stat;
1784 body_cost_vec.release ();
1786 /* (2) Versioning to force alignment. */
1788 /* Try versioning if:
1789 1) optimize loop for speed
1790 2) there is at least one unsupported misaligned data ref with an unknown
1791 misalignment, and
1792 3) all misaligned data refs with a known misalignment are supported, and
1793 4) the number of runtime alignment checks is within reason. */
1795 do_versioning =
1796 optimize_loop_nest_for_speed_p (loop)
1797 && (!loop->inner); /* FORNOW */
1799 if (do_versioning)
1801 FOR_EACH_VEC_ELT (datarefs, i, dr)
1803 stmt = DR_STMT (dr);
1804 stmt_info = vinfo_for_stmt (stmt);
1806 /* For interleaving, only the alignment of the first access
1807 matters. */
1808 if (aligned_access_p (dr)
1809 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1810 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1811 continue;
1813 /* Strided loads perform only component accesses, alignment is
1814 irrelevant for them. */
1815 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1816 continue;
1818 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1820 if (!supportable_dr_alignment)
1822 gimple stmt;
1823 int mask;
1824 tree vectype;
1826 if (known_alignment_for_access_p (dr)
1827 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
1828 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1830 do_versioning = false;
1831 break;
1834 stmt = DR_STMT (dr);
1835 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1836 gcc_assert (vectype);
1838 /* The rightmost bits of an aligned address must be zeros.
1839 Construct the mask needed for this test. For example,
1840 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1841 mask must be 15 = 0xf. */
1842 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1844 /* FORNOW: use the same mask to test all potentially unaligned
1845 references in the loop. The vectorizer currently supports
1846 a single vector size, see the reference to
1847 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1848 vectorization factor is computed. */
1849 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1850 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1851 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1852 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1853 DR_STMT (dr));
1857 /* Versioning requires at least one misaligned data reference. */
1858 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1859 do_versioning = false;
1860 else if (!do_versioning)
1861 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1864 if (do_versioning)
1866 vec<gimple> may_misalign_stmts
1867 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1868 gimple stmt;
1870 /* It can now be assumed that the data references in the statements
1871 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1872 of the loop being vectorized. */
1873 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
1875 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1876 dr = STMT_VINFO_DATA_REF (stmt_info);
1877 SET_DR_MISALIGNMENT (dr, 0);
1878 if (dump_enabled_p ())
1879 dump_printf_loc (MSG_NOTE, vect_location,
1880 "Alignment of access forced using versioning.\n");
1883 if (dump_enabled_p ())
1884 dump_printf_loc (MSG_NOTE, vect_location,
1885 "Versioning for alignment will be applied.\n");
1887 /* Peeling and versioning can't be done together at this time. */
1888 gcc_assert (! (do_peeling && do_versioning));
1890 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1891 gcc_assert (stat);
1892 return stat;
1895 /* This point is reached if neither peeling nor versioning is being done. */
1896 gcc_assert (! (do_peeling || do_versioning));
1898 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1899 return stat;
1903 /* Function vect_find_same_alignment_drs.
1905 Update group and alignment relations according to the chosen
1906 vectorization factor. */
1908 static void
1909 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1910 loop_vec_info loop_vinfo)
1912 unsigned int i;
1913 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1914 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1915 struct data_reference *dra = DDR_A (ddr);
1916 struct data_reference *drb = DDR_B (ddr);
1917 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1918 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1919 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1920 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1921 lambda_vector dist_v;
1922 unsigned int loop_depth;
1924 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1925 return;
1927 if (dra == drb)
1928 return;
1930 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1931 return;
1933 /* Loop-based vectorization and known data dependence. */
1934 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1935 return;
1937 /* Data-dependence analysis reports a distance vector of zero
1938 for data-references that overlap only in the first iteration
1939 but have different sign step (see PR45764).
1940 So as a sanity check require equal DR_STEP. */
1941 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
1942 return;
1944 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
1945 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1947 int dist = dist_v[loop_depth];
1949 if (dump_enabled_p ())
1950 dump_printf_loc (MSG_NOTE, vect_location,
1951 "dependence distance = %d.\n", dist);
1953 /* Same loop iteration. */
1954 if (dist == 0
1955 || (dist % vectorization_factor == 0 && dra_size == drb_size))
1957 /* Two references with distance zero have the same alignment. */
1958 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
1959 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
1960 if (dump_enabled_p ())
1962 dump_printf_loc (MSG_NOTE, vect_location,
1963 "accesses have the same alignment.\n");
1964 dump_printf (MSG_NOTE,
1965 "dependence distance modulo vf == 0 between ");
1966 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
1967 dump_printf (MSG_NOTE, " and ");
1968 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
1969 dump_printf (MSG_NOTE, "\n");
1976 /* Function vect_analyze_data_refs_alignment
1978 Analyze the alignment of the data-references in the loop.
1979 Return FALSE if a data reference is found that cannot be vectorized. */
1981 bool
1982 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
1983 bb_vec_info bb_vinfo)
1985 if (dump_enabled_p ())
1986 dump_printf_loc (MSG_NOTE, vect_location,
1987 "=== vect_analyze_data_refs_alignment ===\n");
1989 /* Mark groups of data references with same alignment using
1990 data dependence information. */
1991 if (loop_vinfo)
1993 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
1994 struct data_dependence_relation *ddr;
1995 unsigned int i;
1997 FOR_EACH_VEC_ELT (ddrs, i, ddr)
1998 vect_find_same_alignment_drs (ddr, loop_vinfo);
2001 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2003 if (dump_enabled_p ())
2004 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2005 "not vectorized: can't calculate alignment "
2006 "for data ref.\n");
2007 return false;
2010 return true;
2014 /* Analyze groups of accesses: check that DR belongs to a group of
2015 accesses of legal size, step, etc. Detect gaps, single element
2016 interleaving, and other special cases. Set grouped access info.
2017 Collect groups of strided stores for further use in SLP analysis. */
2019 static bool
2020 vect_analyze_group_access (struct data_reference *dr)
2022 tree step = DR_STEP (dr);
2023 tree scalar_type = TREE_TYPE (DR_REF (dr));
2024 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2025 gimple stmt = DR_STMT (dr);
2026 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2027 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2028 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2029 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2030 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2031 bool slp_impossible = false;
2032 struct loop *loop = NULL;
2034 if (loop_vinfo)
2035 loop = LOOP_VINFO_LOOP (loop_vinfo);
2037 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2038 size of the interleaving group (including gaps). */
2039 groupsize = absu_hwi (dr_step) / type_size;
2041 /* Not consecutive access is possible only if it is a part of interleaving. */
2042 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2044 /* Check if it this DR is a part of interleaving, and is a single
2045 element of the group that is accessed in the loop. */
2047 /* Gaps are supported only for loads. STEP must be a multiple of the type
2048 size. The size of the group must be a power of 2. */
2049 if (DR_IS_READ (dr)
2050 && (dr_step % type_size) == 0
2051 && groupsize > 0
2052 && exact_log2 (groupsize) != -1)
2054 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2055 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2056 if (dump_enabled_p ())
2058 dump_printf_loc (MSG_NOTE, vect_location,
2059 "Detected single element interleaving ");
2060 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2061 dump_printf (MSG_NOTE, " step ");
2062 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2063 dump_printf (MSG_NOTE, "\n");
2066 if (loop_vinfo)
2068 if (dump_enabled_p ())
2069 dump_printf_loc (MSG_NOTE, vect_location,
2070 "Data access with gaps requires scalar "
2071 "epilogue loop\n");
2072 if (loop->inner)
2074 if (dump_enabled_p ())
2075 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2076 "Peeling for outer loop is not"
2077 " supported\n");
2078 return false;
2081 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2084 return true;
2087 if (dump_enabled_p ())
2089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2090 "not consecutive access ");
2091 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2092 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2095 if (bb_vinfo)
2097 /* Mark the statement as unvectorizable. */
2098 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2099 return true;
2102 return false;
2105 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2107 /* First stmt in the interleaving chain. Check the chain. */
2108 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2109 struct data_reference *data_ref = dr;
2110 unsigned int count = 1;
2111 tree prev_init = DR_INIT (data_ref);
2112 gimple prev = stmt;
2113 HOST_WIDE_INT diff, gaps = 0;
2114 unsigned HOST_WIDE_INT count_in_bytes;
2116 while (next)
2118 /* Skip same data-refs. In case that two or more stmts share
2119 data-ref (supported only for loads), we vectorize only the first
2120 stmt, and the rest get their vectorized loads from the first
2121 one. */
2122 if (!tree_int_cst_compare (DR_INIT (data_ref),
2123 DR_INIT (STMT_VINFO_DATA_REF (
2124 vinfo_for_stmt (next)))))
2126 if (DR_IS_WRITE (data_ref))
2128 if (dump_enabled_p ())
2129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2130 "Two store stmts share the same dr.\n");
2131 return false;
2134 /* For load use the same data-ref load. */
2135 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2137 prev = next;
2138 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2139 continue;
2142 prev = next;
2143 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2145 /* All group members have the same STEP by construction. */
2146 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2148 /* Check that the distance between two accesses is equal to the type
2149 size. Otherwise, we have gaps. */
2150 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2151 - TREE_INT_CST_LOW (prev_init)) / type_size;
2152 if (diff != 1)
2154 /* FORNOW: SLP of accesses with gaps is not supported. */
2155 slp_impossible = true;
2156 if (DR_IS_WRITE (data_ref))
2158 if (dump_enabled_p ())
2159 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2160 "interleaved store with gaps\n");
2161 return false;
2164 gaps += diff - 1;
2167 last_accessed_element += diff;
2169 /* Store the gap from the previous member of the group. If there is no
2170 gap in the access, GROUP_GAP is always 1. */
2171 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2173 prev_init = DR_INIT (data_ref);
2174 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2175 /* Count the number of data-refs in the chain. */
2176 count++;
2179 /* COUNT is the number of accesses found, we multiply it by the size of
2180 the type to get COUNT_IN_BYTES. */
2181 count_in_bytes = type_size * count;
2183 /* Check that the size of the interleaving (including gaps) is not
2184 greater than STEP. */
2185 if (dr_step != 0
2186 && absu_hwi (dr_step) < count_in_bytes + gaps * type_size)
2188 if (dump_enabled_p ())
2190 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2191 "interleaving size is greater than step for ");
2192 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2193 DR_REF (dr));
2194 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2196 return false;
2199 /* Check that the size of the interleaving is equal to STEP for stores,
2200 i.e., that there are no gaps. */
2201 if (dr_step != 0
2202 && absu_hwi (dr_step) != count_in_bytes)
2204 if (DR_IS_READ (dr))
2206 slp_impossible = true;
2207 /* There is a gap after the last load in the group. This gap is a
2208 difference between the groupsize and the number of elements.
2209 When there is no gap, this difference should be 0. */
2210 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2212 else
2214 if (dump_enabled_p ())
2215 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2216 "interleaved store with gaps\n");
2217 return false;
2221 /* Check that STEP is a multiple of type size. */
2222 if (dr_step != 0
2223 && (dr_step % type_size) != 0)
2225 if (dump_enabled_p ())
2227 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2228 "step is not a multiple of type size: step ");
2229 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
2230 dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
2231 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2232 TYPE_SIZE_UNIT (scalar_type));
2233 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2235 return false;
2238 if (groupsize == 0)
2239 groupsize = count;
2241 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2242 if (dump_enabled_p ())
2243 dump_printf_loc (MSG_NOTE, vect_location,
2244 "Detected interleaving of size %d\n", (int)groupsize);
2246 /* SLP: create an SLP data structure for every interleaving group of
2247 stores for further analysis in vect_analyse_slp. */
2248 if (DR_IS_WRITE (dr) && !slp_impossible)
2250 if (loop_vinfo)
2251 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2252 if (bb_vinfo)
2253 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2256 /* There is a gap in the end of the group. */
2257 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2259 if (dump_enabled_p ())
2260 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2261 "Data access with gaps requires scalar "
2262 "epilogue loop\n");
2263 if (loop->inner)
2265 if (dump_enabled_p ())
2266 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2267 "Peeling for outer loop is not supported\n");
2268 return false;
2271 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2275 return true;
2279 /* Analyze the access pattern of the data-reference DR.
2280 In case of non-consecutive accesses call vect_analyze_group_access() to
2281 analyze groups of accesses. */
2283 static bool
2284 vect_analyze_data_ref_access (struct data_reference *dr)
2286 tree step = DR_STEP (dr);
2287 tree scalar_type = TREE_TYPE (DR_REF (dr));
2288 gimple stmt = DR_STMT (dr);
2289 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2290 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2291 struct loop *loop = NULL;
2293 if (loop_vinfo)
2294 loop = LOOP_VINFO_LOOP (loop_vinfo);
2296 if (loop_vinfo && !step)
2298 if (dump_enabled_p ())
2299 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2300 "bad data-ref access in loop\n");
2301 return false;
2304 /* Allow invariant loads in not nested loops. */
2305 if (loop_vinfo && integer_zerop (step))
2307 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2308 if (nested_in_vect_loop_p (loop, stmt))
2310 if (dump_enabled_p ())
2311 dump_printf_loc (MSG_NOTE, vect_location,
2312 "zero step in inner loop of nest\n");
2313 return false;
2315 return DR_IS_READ (dr);
2318 if (loop && nested_in_vect_loop_p (loop, stmt))
2320 /* Interleaved accesses are not yet supported within outer-loop
2321 vectorization for references in the inner-loop. */
2322 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2324 /* For the rest of the analysis we use the outer-loop step. */
2325 step = STMT_VINFO_DR_STEP (stmt_info);
2326 if (integer_zerop (step))
2328 if (dump_enabled_p ())
2329 dump_printf_loc (MSG_NOTE, vect_location,
2330 "zero step in outer loop.\n");
2331 if (DR_IS_READ (dr))
2332 return true;
2333 else
2334 return false;
2338 /* Consecutive? */
2339 if (TREE_CODE (step) == INTEGER_CST)
2341 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2342 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2343 || (dr_step < 0
2344 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2346 /* Mark that it is not interleaving. */
2347 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2348 return true;
2352 if (loop && nested_in_vect_loop_p (loop, stmt))
2354 if (dump_enabled_p ())
2355 dump_printf_loc (MSG_NOTE, vect_location,
2356 "grouped access in outer loop.\n");
2357 return false;
2360 /* Assume this is a DR handled by non-constant strided load case. */
2361 if (TREE_CODE (step) != INTEGER_CST)
2362 return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
2364 /* Not consecutive access - check if it's a part of interleaving group. */
2365 return vect_analyze_group_access (dr);
2370 /* A helper function used in the comparator function to sort data
2371 references. T1 and T2 are two data references to be compared.
2372 The function returns -1, 0, or 1. */
2374 static int
2375 compare_tree (tree t1, tree t2)
2377 int i, cmp;
2378 enum tree_code code;
2379 char tclass;
2381 if (t1 == t2)
2382 return 0;
2383 if (t1 == NULL)
2384 return -1;
2385 if (t2 == NULL)
2386 return 1;
2389 if (TREE_CODE (t1) != TREE_CODE (t2))
2390 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2392 code = TREE_CODE (t1);
2393 switch (code)
2395 /* For const values, we can just use hash values for comparisons. */
2396 case INTEGER_CST:
2397 case REAL_CST:
2398 case FIXED_CST:
2399 case STRING_CST:
2400 case COMPLEX_CST:
2401 case VECTOR_CST:
2403 hashval_t h1 = iterative_hash_expr (t1, 0);
2404 hashval_t h2 = iterative_hash_expr (t2, 0);
2405 if (h1 != h2)
2406 return h1 < h2 ? -1 : 1;
2407 break;
2410 case SSA_NAME:
2411 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2412 if (cmp != 0)
2413 return cmp;
2415 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2416 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2417 break;
2419 default:
2420 tclass = TREE_CODE_CLASS (code);
2422 /* For var-decl, we could compare their UIDs. */
2423 if (tclass == tcc_declaration)
2425 if (DECL_UID (t1) != DECL_UID (t2))
2426 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2427 break;
2430 /* For expressions with operands, compare their operands recursively. */
2431 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2433 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2434 if (cmp != 0)
2435 return cmp;
2439 return 0;
2443 /* Compare two data-references DRA and DRB to group them into chunks
2444 suitable for grouping. */
2446 static int
2447 dr_group_sort_cmp (const void *dra_, const void *drb_)
2449 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2450 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2451 int cmp;
2453 /* Stabilize sort. */
2454 if (dra == drb)
2455 return 0;
2457 /* Ordering of DRs according to base. */
2458 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2460 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2461 if (cmp != 0)
2462 return cmp;
2465 /* And according to DR_OFFSET. */
2466 if (!dr_equal_offsets_p (dra, drb))
2468 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2469 if (cmp != 0)
2470 return cmp;
2473 /* Put reads before writes. */
2474 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2475 return DR_IS_READ (dra) ? -1 : 1;
2477 /* Then sort after access size. */
2478 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2479 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2481 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2482 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2483 if (cmp != 0)
2484 return cmp;
2487 /* And after step. */
2488 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2490 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2491 if (cmp != 0)
2492 return cmp;
2495 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2496 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2497 if (cmp == 0)
2498 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2499 return cmp;
2502 /* Function vect_analyze_data_ref_accesses.
2504 Analyze the access pattern of all the data references in the loop.
2506 FORNOW: the only access pattern that is considered vectorizable is a
2507 simple step 1 (consecutive) access.
2509 FORNOW: handle only arrays and pointer accesses. */
2511 bool
2512 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2514 unsigned int i;
2515 vec<data_reference_p> datarefs;
2516 struct data_reference *dr;
2518 if (dump_enabled_p ())
2519 dump_printf_loc (MSG_NOTE, vect_location,
2520 "=== vect_analyze_data_ref_accesses ===\n");
2522 if (loop_vinfo)
2523 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2524 else
2525 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2527 if (datarefs.is_empty ())
2528 return true;
2530 /* Sort the array of datarefs to make building the interleaving chains
2531 linear. Don't modify the original vector's order, it is needed for
2532 determining what dependencies are reversed. */
2533 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2534 datarefs_copy.qsort (dr_group_sort_cmp);
2536 /* Build the interleaving chains. */
2537 for (i = 0; i < datarefs_copy.length () - 1;)
2539 data_reference_p dra = datarefs_copy[i];
2540 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2541 stmt_vec_info lastinfo = NULL;
2542 for (i = i + 1; i < datarefs_copy.length (); ++i)
2544 data_reference_p drb = datarefs_copy[i];
2545 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2547 /* ??? Imperfect sorting (non-compatible types, non-modulo
2548 accesses, same accesses) can lead to a group to be artificially
2549 split here as we don't just skip over those. If it really
2550 matters we can push those to a worklist and re-iterate
2551 over them. The we can just skip ahead to the next DR here. */
2553 /* Check that the data-refs have same first location (except init)
2554 and they are both either store or load (not load and store). */
2555 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2556 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2557 DR_BASE_ADDRESS (drb), 0)
2558 || !dr_equal_offsets_p (dra, drb))
2559 break;
2561 /* Check that the data-refs have the same constant size and step. */
2562 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2563 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2564 if (!tree_fits_uhwi_p (sza)
2565 || !tree_fits_uhwi_p (szb)
2566 || !tree_int_cst_equal (sza, szb)
2567 || !tree_fits_shwi_p (DR_STEP (dra))
2568 || !tree_fits_shwi_p (DR_STEP (drb))
2569 || !tree_int_cst_equal (DR_STEP (dra), DR_STEP (drb)))
2570 break;
2572 /* Do not place the same access in the interleaving chain twice. */
2573 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2574 break;
2576 /* Check the types are compatible.
2577 ??? We don't distinguish this during sorting. */
2578 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2579 TREE_TYPE (DR_REF (drb))))
2580 break;
2582 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2583 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2584 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2585 gcc_assert (init_a < init_b);
2587 /* If init_b == init_a + the size of the type * k, we have an
2588 interleaving, and DRA is accessed before DRB. */
2589 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2590 if ((init_b - init_a) % type_size_a != 0)
2591 break;
2593 /* The step (if not zero) is greater than the difference between
2594 data-refs' inits. This splits groups into suitable sizes. */
2595 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2596 if (step != 0 && step <= (init_b - init_a))
2597 break;
2599 if (dump_enabled_p ())
2601 dump_printf_loc (MSG_NOTE, vect_location,
2602 "Detected interleaving ");
2603 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2604 dump_printf (MSG_NOTE, " and ");
2605 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2606 dump_printf (MSG_NOTE, "\n");
2609 /* Link the found element into the group list. */
2610 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2612 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2613 lastinfo = stmtinfo_a;
2615 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2616 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2617 lastinfo = stmtinfo_b;
2621 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2622 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2623 && !vect_analyze_data_ref_access (dr))
2625 if (dump_enabled_p ())
2626 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2627 "not vectorized: complicated access pattern.\n");
2629 if (bb_vinfo)
2631 /* Mark the statement as not vectorizable. */
2632 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2633 continue;
2635 else
2637 datarefs_copy.release ();
2638 return false;
2642 datarefs_copy.release ();
2643 return true;
2647 /* Operator == between two dr_with_seg_len objects.
2649 This equality operator is used to make sure two data refs
2650 are the same one so that we will consider to combine the
2651 aliasing checks of those two pairs of data dependent data
2652 refs. */
2654 static bool
2655 operator == (const dr_with_seg_len& d1,
2656 const dr_with_seg_len& d2)
2658 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2659 DR_BASE_ADDRESS (d2.dr), 0)
2660 && compare_tree (d1.offset, d2.offset) == 0
2661 && compare_tree (d1.seg_len, d2.seg_len) == 0;
2664 /* Function comp_dr_with_seg_len_pair.
2666 Comparison function for sorting objects of dr_with_seg_len_pair_t
2667 so that we can combine aliasing checks in one scan. */
2669 static int
2670 comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
2672 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2673 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2675 const dr_with_seg_len &p11 = p1->first,
2676 &p12 = p1->second,
2677 &p21 = p2->first,
2678 &p22 = p2->second;
2680 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2681 if a and c have the same basic address snd step, and b and d have the same
2682 address and step. Therefore, if any a&c or b&d don't have the same address
2683 and step, we don't care the order of those two pairs after sorting. */
2684 int comp_res;
2686 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2687 DR_BASE_ADDRESS (p21.dr))) != 0)
2688 return comp_res;
2689 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2690 DR_BASE_ADDRESS (p22.dr))) != 0)
2691 return comp_res;
2692 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2693 return comp_res;
2694 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2695 return comp_res;
2696 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2697 return comp_res;
2698 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
2699 return comp_res;
2701 return 0;
2704 template <class T> static void
2705 swap (T& a, T& b)
2707 T c (a);
2708 a = b;
2709 b = c;
2712 /* Function vect_vfa_segment_size.
2714 Create an expression that computes the size of segment
2715 that will be accessed for a data reference. The functions takes into
2716 account that realignment loads may access one more vector.
2718 Input:
2719 DR: The data reference.
2720 LENGTH_FACTOR: segment length to consider.
2722 Return an expression whose value is the size of segment which will be
2723 accessed by DR. */
2725 static tree
2726 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2728 tree segment_length;
2730 if (integer_zerop (DR_STEP (dr)))
2731 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2732 else
2733 segment_length = size_binop (MULT_EXPR,
2734 fold_convert (sizetype, DR_STEP (dr)),
2735 fold_convert (sizetype, length_factor));
2737 if (vect_supportable_dr_alignment (dr, false)
2738 == dr_explicit_realign_optimized)
2740 tree vector_size = TYPE_SIZE_UNIT
2741 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2743 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2745 return segment_length;
2748 /* Function vect_prune_runtime_alias_test_list.
2750 Prune a list of ddrs to be tested at run-time by versioning for alias.
2751 Merge several alias checks into one if possible.
2752 Return FALSE if resulting list of ddrs is longer then allowed by
2753 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2755 bool
2756 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2758 vec<ddr_p> may_alias_ddrs =
2759 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2760 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
2761 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2762 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2763 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2765 ddr_p ddr;
2766 unsigned int i;
2767 tree length_factor;
2769 if (dump_enabled_p ())
2770 dump_printf_loc (MSG_NOTE, vect_location,
2771 "=== vect_prune_runtime_alias_test_list ===\n");
2773 if (may_alias_ddrs.is_empty ())
2774 return true;
2776 /* Basically, for each pair of dependent data refs store_ptr_0
2777 and load_ptr_0, we create an expression:
2779 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2780 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2782 for aliasing checks. However, in some cases we can decrease
2783 the number of checks by combining two checks into one. For
2784 example, suppose we have another pair of data refs store_ptr_0
2785 and load_ptr_1, and if the following condition is satisfied:
2787 load_ptr_0 < load_ptr_1 &&
2788 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2790 (this condition means, in each iteration of vectorized loop,
2791 the accessed memory of store_ptr_0 cannot be between the memory
2792 of load_ptr_0 and load_ptr_1.)
2794 we then can use only the following expression to finish the
2795 alising checks between store_ptr_0 & load_ptr_0 and
2796 store_ptr_0 & load_ptr_1:
2798 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2799 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2801 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2802 same basic address. */
2804 comp_alias_ddrs.create (may_alias_ddrs.length ());
2806 /* First, we collect all data ref pairs for aliasing checks. */
2807 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2809 struct data_reference *dr_a, *dr_b;
2810 gimple dr_group_first_a, dr_group_first_b;
2811 tree segment_length_a, segment_length_b;
2812 gimple stmt_a, stmt_b;
2814 dr_a = DDR_A (ddr);
2815 stmt_a = DR_STMT (DDR_A (ddr));
2816 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2817 if (dr_group_first_a)
2819 stmt_a = dr_group_first_a;
2820 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2823 dr_b = DDR_B (ddr);
2824 stmt_b = DR_STMT (DDR_B (ddr));
2825 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2826 if (dr_group_first_b)
2828 stmt_b = dr_group_first_b;
2829 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2832 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2833 length_factor = scalar_loop_iters;
2834 else
2835 length_factor = size_int (vect_factor);
2836 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2837 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2839 dr_with_seg_len_pair_t dr_with_seg_len_pair
2840 (dr_with_seg_len (dr_a, segment_length_a),
2841 dr_with_seg_len (dr_b, segment_length_b));
2843 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
2844 swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2846 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
2849 /* Second, we sort the collected data ref pairs so that we can scan
2850 them once to combine all possible aliasing checks. */
2851 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
2853 /* Third, we scan the sorted dr pairs and check if we can combine
2854 alias checks of two neighbouring dr pairs. */
2855 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
2857 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
2858 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
2859 *dr_b1 = &comp_alias_ddrs[i-1].second,
2860 *dr_a2 = &comp_alias_ddrs[i].first,
2861 *dr_b2 = &comp_alias_ddrs[i].second;
2863 /* Remove duplicate data ref pairs. */
2864 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
2866 if (dump_enabled_p ())
2868 dump_printf_loc (MSG_NOTE, vect_location,
2869 "found equal ranges ");
2870 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2871 DR_REF (dr_a1->dr));
2872 dump_printf (MSG_NOTE, ", ");
2873 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2874 DR_REF (dr_b1->dr));
2875 dump_printf (MSG_NOTE, " and ");
2876 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2877 DR_REF (dr_a2->dr));
2878 dump_printf (MSG_NOTE, ", ");
2879 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2880 DR_REF (dr_b2->dr));
2881 dump_printf (MSG_NOTE, "\n");
2884 comp_alias_ddrs.ordered_remove (i--);
2885 continue;
2888 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
2890 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2891 and DR_A1 and DR_A2 are two consecutive memrefs. */
2892 if (*dr_a1 == *dr_a2)
2894 swap (dr_a1, dr_b1);
2895 swap (dr_a2, dr_b2);
2898 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
2899 DR_BASE_ADDRESS (dr_a2->dr),
2901 || !tree_fits_shwi_p (dr_a1->offset)
2902 || !tree_fits_shwi_p (dr_a2->offset))
2903 continue;
2905 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
2906 - tree_to_shwi (dr_a1->offset));
2909 /* Now we check if the following condition is satisfied:
2911 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2913 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2914 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2915 have to make a best estimation. We can get the minimum value
2916 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2917 then either of the following two conditions can guarantee the
2918 one above:
2920 1: DIFF <= MIN_SEG_LEN_B
2921 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2925 HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
2926 ? tree_to_shwi (dr_b1->seg_len)
2927 : vect_factor);
2929 if (diff <= min_seg_len_b
2930 || (tree_fits_shwi_p (dr_a1->seg_len)
2931 && diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
2933 if (dump_enabled_p ())
2935 dump_printf_loc (MSG_NOTE, vect_location,
2936 "merging ranges for ");
2937 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2938 DR_REF (dr_a1->dr));
2939 dump_printf (MSG_NOTE, ", ");
2940 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2941 DR_REF (dr_b1->dr));
2942 dump_printf (MSG_NOTE, " and ");
2943 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2944 DR_REF (dr_a2->dr));
2945 dump_printf (MSG_NOTE, ", ");
2946 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2947 DR_REF (dr_b2->dr));
2948 dump_printf (MSG_NOTE, "\n");
2951 dr_a1->seg_len = size_binop (PLUS_EXPR,
2952 dr_a2->seg_len, size_int (diff));
2953 comp_alias_ddrs.ordered_remove (i--);
2958 dump_printf_loc (MSG_NOTE, vect_location,
2959 "improved number of alias checks from %d to %d\n",
2960 may_alias_ddrs.length (), comp_alias_ddrs.length ());
2961 if ((int) comp_alias_ddrs.length () >
2962 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2963 return false;
2965 return true;
2968 /* Check whether a non-affine read in stmt is suitable for gather load
2969 and if so, return a builtin decl for that operation. */
2971 tree
2972 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2973 tree *offp, int *scalep)
2975 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2976 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2977 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2978 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2979 tree offtype = NULL_TREE;
2980 tree decl, base, off;
2981 enum machine_mode pmode;
2982 int punsignedp, pvolatilep;
2984 base = DR_REF (dr);
2985 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
2986 see if we can use the def stmt of the address. */
2987 if (is_gimple_call (stmt)
2988 && gimple_call_internal_p (stmt)
2989 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2990 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
2991 && TREE_CODE (base) == MEM_REF
2992 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2993 && integer_zerop (TREE_OPERAND (base, 1))
2994 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
2996 gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
2997 if (is_gimple_assign (def_stmt)
2998 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
2999 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3002 /* The gather builtins need address of the form
3003 loop_invariant + vector * {1, 2, 4, 8}
3005 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3006 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3007 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3008 multiplications and additions in it. To get a vector, we need
3009 a single SSA_NAME that will be defined in the loop and will
3010 contain everything that is not loop invariant and that can be
3011 vectorized. The following code attempts to find such a preexistng
3012 SSA_NAME OFF and put the loop invariants into a tree BASE
3013 that can be gimplified before the loop. */
3014 base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
3015 &pmode, &punsignedp, &pvolatilep, false);
3016 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
3018 if (TREE_CODE (base) == MEM_REF)
3020 if (!integer_zerop (TREE_OPERAND (base, 1)))
3022 if (off == NULL_TREE)
3024 offset_int moff = mem_ref_offset (base);
3025 off = wide_int_to_tree (sizetype, moff);
3027 else
3028 off = size_binop (PLUS_EXPR, off,
3029 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3031 base = TREE_OPERAND (base, 0);
3033 else
3034 base = build_fold_addr_expr (base);
3036 if (off == NULL_TREE)
3037 off = size_zero_node;
3039 /* If base is not loop invariant, either off is 0, then we start with just
3040 the constant offset in the loop invariant BASE and continue with base
3041 as OFF, otherwise give up.
3042 We could handle that case by gimplifying the addition of base + off
3043 into some SSA_NAME and use that as off, but for now punt. */
3044 if (!expr_invariant_in_loop_p (loop, base))
3046 if (!integer_zerop (off))
3047 return NULL_TREE;
3048 off = base;
3049 base = size_int (pbitpos / BITS_PER_UNIT);
3051 /* Otherwise put base + constant offset into the loop invariant BASE
3052 and continue with OFF. */
3053 else
3055 base = fold_convert (sizetype, base);
3056 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3059 /* OFF at this point may be either a SSA_NAME or some tree expression
3060 from get_inner_reference. Try to peel off loop invariants from it
3061 into BASE as long as possible. */
3062 STRIP_NOPS (off);
3063 while (offtype == NULL_TREE)
3065 enum tree_code code;
3066 tree op0, op1, add = NULL_TREE;
3068 if (TREE_CODE (off) == SSA_NAME)
3070 gimple def_stmt = SSA_NAME_DEF_STMT (off);
3072 if (expr_invariant_in_loop_p (loop, off))
3073 return NULL_TREE;
3075 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3076 break;
3078 op0 = gimple_assign_rhs1 (def_stmt);
3079 code = gimple_assign_rhs_code (def_stmt);
3080 op1 = gimple_assign_rhs2 (def_stmt);
3082 else
3084 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3085 return NULL_TREE;
3086 code = TREE_CODE (off);
3087 extract_ops_from_tree (off, &code, &op0, &op1);
3089 switch (code)
3091 case POINTER_PLUS_EXPR:
3092 case PLUS_EXPR:
3093 if (expr_invariant_in_loop_p (loop, op0))
3095 add = op0;
3096 off = op1;
3097 do_add:
3098 add = fold_convert (sizetype, add);
3099 if (scale != 1)
3100 add = size_binop (MULT_EXPR, add, size_int (scale));
3101 base = size_binop (PLUS_EXPR, base, add);
3102 continue;
3104 if (expr_invariant_in_loop_p (loop, op1))
3106 add = op1;
3107 off = op0;
3108 goto do_add;
3110 break;
3111 case MINUS_EXPR:
3112 if (expr_invariant_in_loop_p (loop, op1))
3114 add = fold_convert (sizetype, op1);
3115 add = size_binop (MINUS_EXPR, size_zero_node, add);
3116 off = op0;
3117 goto do_add;
3119 break;
3120 case MULT_EXPR:
3121 if (scale == 1 && tree_fits_shwi_p (op1))
3123 scale = tree_to_shwi (op1);
3124 off = op0;
3125 continue;
3127 break;
3128 case SSA_NAME:
3129 off = op0;
3130 continue;
3131 CASE_CONVERT:
3132 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3133 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3134 break;
3135 if (TYPE_PRECISION (TREE_TYPE (op0))
3136 == TYPE_PRECISION (TREE_TYPE (off)))
3138 off = op0;
3139 continue;
3141 if (TYPE_PRECISION (TREE_TYPE (op0))
3142 < TYPE_PRECISION (TREE_TYPE (off)))
3144 off = op0;
3145 offtype = TREE_TYPE (off);
3146 STRIP_NOPS (off);
3147 continue;
3149 break;
3150 default:
3151 break;
3153 break;
3156 /* If at the end OFF still isn't a SSA_NAME or isn't
3157 defined in the loop, punt. */
3158 if (TREE_CODE (off) != SSA_NAME
3159 || expr_invariant_in_loop_p (loop, off))
3160 return NULL_TREE;
3162 if (offtype == NULL_TREE)
3163 offtype = TREE_TYPE (off);
3165 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3166 offtype, scale);
3167 if (decl == NULL_TREE)
3168 return NULL_TREE;
3170 if (basep)
3171 *basep = base;
3172 if (offp)
3173 *offp = off;
3174 if (scalep)
3175 *scalep = scale;
3176 return decl;
3179 /* Function vect_analyze_data_refs.
3181 Find all the data references in the loop or basic block.
3183 The general structure of the analysis of data refs in the vectorizer is as
3184 follows:
3185 1- vect_analyze_data_refs(loop/bb): call
3186 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3187 in the loop/bb and their dependences.
3188 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3189 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3190 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3194 bool
3195 vect_analyze_data_refs (loop_vec_info loop_vinfo,
3196 bb_vec_info bb_vinfo,
3197 int *min_vf, unsigned *n_stmts)
3199 struct loop *loop = NULL;
3200 basic_block bb = NULL;
3201 unsigned int i;
3202 vec<data_reference_p> datarefs;
3203 struct data_reference *dr;
3204 tree scalar_type;
3206 if (dump_enabled_p ())
3207 dump_printf_loc (MSG_NOTE, vect_location,
3208 "=== vect_analyze_data_refs ===\n");
3210 if (loop_vinfo)
3212 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
3214 loop = LOOP_VINFO_LOOP (loop_vinfo);
3215 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3216 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
3218 if (dump_enabled_p ())
3219 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3220 "not vectorized: loop contains function calls"
3221 " or data references that cannot be analyzed\n");
3222 return false;
3225 for (i = 0; i < loop->num_nodes; i++)
3227 gimple_stmt_iterator gsi;
3229 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3231 gimple stmt = gsi_stmt (gsi);
3232 if (is_gimple_debug (stmt))
3233 continue;
3234 ++*n_stmts;
3235 if (!find_data_references_in_stmt (loop, stmt, &datarefs))
3237 if (is_gimple_call (stmt) && loop->safelen)
3239 tree fndecl = gimple_call_fndecl (stmt), op;
3240 if (fndecl != NULL_TREE)
3242 struct cgraph_node *node = cgraph_node::get (fndecl);
3243 if (node != NULL && node->simd_clones != NULL)
3245 unsigned int j, n = gimple_call_num_args (stmt);
3246 for (j = 0; j < n; j++)
3248 op = gimple_call_arg (stmt, j);
3249 if (DECL_P (op)
3250 || (REFERENCE_CLASS_P (op)
3251 && get_base_address (op)))
3252 break;
3254 op = gimple_call_lhs (stmt);
3255 /* Ignore #pragma omp declare simd functions
3256 if they don't have data references in the
3257 call stmt itself. */
3258 if (j == n
3259 && !(op
3260 && (DECL_P (op)
3261 || (REFERENCE_CLASS_P (op)
3262 && get_base_address (op)))))
3263 continue;
3267 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3268 if (dump_enabled_p ())
3269 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3270 "not vectorized: loop contains function "
3271 "calls or data references that cannot "
3272 "be analyzed\n");
3273 return false;
3278 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3280 else
3282 gimple_stmt_iterator gsi;
3284 bb = BB_VINFO_BB (bb_vinfo);
3285 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3287 gimple stmt = gsi_stmt (gsi);
3288 if (is_gimple_debug (stmt))
3289 continue;
3290 ++*n_stmts;
3291 if (!find_data_references_in_stmt (NULL, stmt,
3292 &BB_VINFO_DATAREFS (bb_vinfo)))
3294 /* Mark the rest of the basic-block as unvectorizable. */
3295 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3297 stmt = gsi_stmt (gsi);
3298 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3300 break;
3304 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3307 /* Go through the data-refs, check that the analysis succeeded. Update
3308 pointer from stmt_vec_info struct to DR and vectype. */
3310 FOR_EACH_VEC_ELT (datarefs, i, dr)
3312 gimple stmt;
3313 stmt_vec_info stmt_info;
3314 tree base, offset, init;
3315 bool gather = false;
3316 bool simd_lane_access = false;
3317 int vf;
3319 again:
3320 if (!dr || !DR_REF (dr))
3322 if (dump_enabled_p ())
3323 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3324 "not vectorized: unhandled data-ref\n");
3325 return false;
3328 stmt = DR_STMT (dr);
3329 stmt_info = vinfo_for_stmt (stmt);
3331 /* Discard clobbers from the dataref vector. We will remove
3332 clobber stmts during vectorization. */
3333 if (gimple_clobber_p (stmt))
3335 free_data_ref (dr);
3336 if (i == datarefs.length () - 1)
3338 datarefs.pop ();
3339 break;
3341 datarefs.ordered_remove (i);
3342 dr = datarefs[i];
3343 goto again;
3346 /* Check that analysis of the data-ref succeeded. */
3347 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3348 || !DR_STEP (dr))
3350 bool maybe_gather
3351 = DR_IS_READ (dr)
3352 && !TREE_THIS_VOLATILE (DR_REF (dr))
3353 && targetm.vectorize.builtin_gather != NULL;
3354 bool maybe_simd_lane_access
3355 = loop_vinfo && loop->simduid;
3357 /* If target supports vector gather loads, or if this might be
3358 a SIMD lane access, see if they can't be used. */
3359 if (loop_vinfo
3360 && (maybe_gather || maybe_simd_lane_access)
3361 && !nested_in_vect_loop_p (loop, stmt))
3363 struct data_reference *newdr
3364 = create_data_ref (NULL, loop_containing_stmt (stmt),
3365 DR_REF (dr), stmt, true);
3366 gcc_assert (newdr != NULL && DR_REF (newdr));
3367 if (DR_BASE_ADDRESS (newdr)
3368 && DR_OFFSET (newdr)
3369 && DR_INIT (newdr)
3370 && DR_STEP (newdr)
3371 && integer_zerop (DR_STEP (newdr)))
3373 if (maybe_simd_lane_access)
3375 tree off = DR_OFFSET (newdr);
3376 STRIP_NOPS (off);
3377 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3378 && TREE_CODE (off) == MULT_EXPR
3379 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3381 tree step = TREE_OPERAND (off, 1);
3382 off = TREE_OPERAND (off, 0);
3383 STRIP_NOPS (off);
3384 if (CONVERT_EXPR_P (off)
3385 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3386 0)))
3387 < TYPE_PRECISION (TREE_TYPE (off)))
3388 off = TREE_OPERAND (off, 0);
3389 if (TREE_CODE (off) == SSA_NAME)
3391 gimple def = SSA_NAME_DEF_STMT (off);
3392 tree reft = TREE_TYPE (DR_REF (newdr));
3393 if (is_gimple_call (def)
3394 && gimple_call_internal_p (def)
3395 && (gimple_call_internal_fn (def)
3396 == IFN_GOMP_SIMD_LANE))
3398 tree arg = gimple_call_arg (def, 0);
3399 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3400 arg = SSA_NAME_VAR (arg);
3401 if (arg == loop->simduid
3402 /* For now. */
3403 && tree_int_cst_equal
3404 (TYPE_SIZE_UNIT (reft),
3405 step))
3407 DR_OFFSET (newdr) = ssize_int (0);
3408 DR_STEP (newdr) = step;
3409 DR_ALIGNED_TO (newdr)
3410 = size_int (BIGGEST_ALIGNMENT);
3411 dr = newdr;
3412 simd_lane_access = true;
3418 if (!simd_lane_access && maybe_gather)
3420 dr = newdr;
3421 gather = true;
3424 if (!gather && !simd_lane_access)
3425 free_data_ref (newdr);
3428 if (!gather && !simd_lane_access)
3430 if (dump_enabled_p ())
3432 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3433 "not vectorized: data ref analysis "
3434 "failed ");
3435 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3436 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3439 if (bb_vinfo)
3440 break;
3442 return false;
3446 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3448 if (dump_enabled_p ())
3449 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3450 "not vectorized: base addr of dr is a "
3451 "constant\n");
3453 if (bb_vinfo)
3454 break;
3456 if (gather || simd_lane_access)
3457 free_data_ref (dr);
3458 return false;
3461 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3463 if (dump_enabled_p ())
3465 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3466 "not vectorized: volatile type ");
3467 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3468 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3471 if (bb_vinfo)
3472 break;
3474 return false;
3477 if (stmt_can_throw_internal (stmt))
3479 if (dump_enabled_p ())
3481 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3482 "not vectorized: statement can throw an "
3483 "exception ");
3484 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3485 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3488 if (bb_vinfo)
3489 break;
3491 if (gather || simd_lane_access)
3492 free_data_ref (dr);
3493 return false;
3496 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3497 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3499 if (dump_enabled_p ())
3501 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3502 "not vectorized: statement is bitfield "
3503 "access ");
3504 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3505 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3508 if (bb_vinfo)
3509 break;
3511 if (gather || simd_lane_access)
3512 free_data_ref (dr);
3513 return false;
3516 base = unshare_expr (DR_BASE_ADDRESS (dr));
3517 offset = unshare_expr (DR_OFFSET (dr));
3518 init = unshare_expr (DR_INIT (dr));
3520 if (is_gimple_call (stmt)
3521 && (!gimple_call_internal_p (stmt)
3522 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3523 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3525 if (dump_enabled_p ())
3527 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3528 "not vectorized: dr in a call ");
3529 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3530 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3533 if (bb_vinfo)
3534 break;
3536 if (gather || simd_lane_access)
3537 free_data_ref (dr);
3538 return false;
3541 /* Update DR field in stmt_vec_info struct. */
3543 /* If the dataref is in an inner-loop of the loop that is considered for
3544 for vectorization, we also want to analyze the access relative to
3545 the outer-loop (DR contains information only relative to the
3546 inner-most enclosing loop). We do that by building a reference to the
3547 first location accessed by the inner-loop, and analyze it relative to
3548 the outer-loop. */
3549 if (loop && nested_in_vect_loop_p (loop, stmt))
3551 tree outer_step, outer_base, outer_init;
3552 HOST_WIDE_INT pbitsize, pbitpos;
3553 tree poffset;
3554 enum machine_mode pmode;
3555 int punsignedp, pvolatilep;
3556 affine_iv base_iv, offset_iv;
3557 tree dinit;
3559 /* Build a reference to the first location accessed by the
3560 inner-loop: *(BASE+INIT). (The first location is actually
3561 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3562 tree inner_base = build_fold_indirect_ref
3563 (fold_build_pointer_plus (base, init));
3565 if (dump_enabled_p ())
3567 dump_printf_loc (MSG_NOTE, vect_location,
3568 "analyze in outer-loop: ");
3569 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3570 dump_printf (MSG_NOTE, "\n");
3573 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3574 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3575 gcc_assert (outer_base != NULL_TREE);
3577 if (pbitpos % BITS_PER_UNIT != 0)
3579 if (dump_enabled_p ())
3580 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3581 "failed: bit offset alignment.\n");
3582 return false;
3585 outer_base = build_fold_addr_expr (outer_base);
3586 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3587 &base_iv, false))
3589 if (dump_enabled_p ())
3590 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3591 "failed: evolution of base is not affine.\n");
3592 return false;
3595 if (offset)
3597 if (poffset)
3598 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3599 poffset);
3600 else
3601 poffset = offset;
3604 if (!poffset)
3606 offset_iv.base = ssize_int (0);
3607 offset_iv.step = ssize_int (0);
3609 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3610 &offset_iv, false))
3612 if (dump_enabled_p ())
3613 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3614 "evolution of offset is not affine.\n");
3615 return false;
3618 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3619 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3620 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3621 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3622 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3624 outer_step = size_binop (PLUS_EXPR,
3625 fold_convert (ssizetype, base_iv.step),
3626 fold_convert (ssizetype, offset_iv.step));
3628 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3629 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3630 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3631 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3632 STMT_VINFO_DR_OFFSET (stmt_info) =
3633 fold_convert (ssizetype, offset_iv.base);
3634 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3635 size_int (highest_pow2_factor (offset_iv.base));
3637 if (dump_enabled_p ())
3639 dump_printf_loc (MSG_NOTE, vect_location,
3640 "\touter base_address: ");
3641 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3642 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3643 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3644 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3645 STMT_VINFO_DR_OFFSET (stmt_info));
3646 dump_printf (MSG_NOTE,
3647 "\n\touter constant offset from base address: ");
3648 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3649 STMT_VINFO_DR_INIT (stmt_info));
3650 dump_printf (MSG_NOTE, "\n\touter step: ");
3651 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3652 STMT_VINFO_DR_STEP (stmt_info));
3653 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3654 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3655 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3656 dump_printf (MSG_NOTE, "\n");
3660 if (STMT_VINFO_DATA_REF (stmt_info))
3662 if (dump_enabled_p ())
3664 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3665 "not vectorized: more than one data ref "
3666 "in stmt: ");
3667 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3668 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3671 if (bb_vinfo)
3672 break;
3674 if (gather || simd_lane_access)
3675 free_data_ref (dr);
3676 return false;
3679 STMT_VINFO_DATA_REF (stmt_info) = dr;
3680 if (simd_lane_access)
3682 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3683 free_data_ref (datarefs[i]);
3684 datarefs[i] = dr;
3687 /* Set vectype for STMT. */
3688 scalar_type = TREE_TYPE (DR_REF (dr));
3689 STMT_VINFO_VECTYPE (stmt_info)
3690 = get_vectype_for_scalar_type (scalar_type);
3691 if (!STMT_VINFO_VECTYPE (stmt_info))
3693 if (dump_enabled_p ())
3695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3696 "not vectorized: no vectype for stmt: ");
3697 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3698 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3699 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3700 scalar_type);
3701 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3704 if (bb_vinfo)
3705 break;
3707 if (gather || simd_lane_access)
3709 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3710 if (gather)
3711 free_data_ref (dr);
3713 return false;
3715 else
3717 if (dump_enabled_p ())
3719 dump_printf_loc (MSG_NOTE, vect_location,
3720 "got vectype for stmt: ");
3721 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3722 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3723 STMT_VINFO_VECTYPE (stmt_info));
3724 dump_printf (MSG_NOTE, "\n");
3728 /* Adjust the minimal vectorization factor according to the
3729 vector type. */
3730 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3731 if (vf > *min_vf)
3732 *min_vf = vf;
3734 if (gather)
3736 tree off;
3738 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3739 if (gather
3740 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3741 gather = false;
3742 if (!gather)
3744 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3745 free_data_ref (dr);
3746 if (dump_enabled_p ())
3748 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3749 "not vectorized: not suitable for gather "
3750 "load ");
3751 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3752 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3754 return false;
3757 datarefs[i] = dr;
3758 STMT_VINFO_GATHER_P (stmt_info) = true;
3760 else if (loop_vinfo
3761 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3763 if (nested_in_vect_loop_p (loop, stmt)
3764 || !DR_IS_READ (dr))
3766 if (dump_enabled_p ())
3768 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3769 "not vectorized: not suitable for strided "
3770 "load ");
3771 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3772 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3774 return false;
3776 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
3780 /* If we stopped analysis at the first dataref we could not analyze
3781 when trying to vectorize a basic-block mark the rest of the datarefs
3782 as not vectorizable and truncate the vector of datarefs. That
3783 avoids spending useless time in analyzing their dependence. */
3784 if (i != datarefs.length ())
3786 gcc_assert (bb_vinfo != NULL);
3787 for (unsigned j = i; j < datarefs.length (); ++j)
3789 data_reference_p dr = datarefs[j];
3790 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3791 free_data_ref (dr);
3793 datarefs.truncate (i);
3796 return true;
3800 /* Function vect_get_new_vect_var.
3802 Returns a name for a new variable. The current naming scheme appends the
3803 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3804 the name of vectorizer generated variables, and appends that to NAME if
3805 provided. */
3807 tree
3808 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3810 const char *prefix;
3811 tree new_vect_var;
3813 switch (var_kind)
3815 case vect_simple_var:
3816 prefix = "vect";
3817 break;
3818 case vect_scalar_var:
3819 prefix = "stmp";
3820 break;
3821 case vect_pointer_var:
3822 prefix = "vectp";
3823 break;
3824 default:
3825 gcc_unreachable ();
3828 if (name)
3830 char* tmp = concat (prefix, "_", name, NULL);
3831 new_vect_var = create_tmp_reg (type, tmp);
3832 free (tmp);
3834 else
3835 new_vect_var = create_tmp_reg (type, prefix);
3837 return new_vect_var;
3841 /* Function vect_create_addr_base_for_vector_ref.
3843 Create an expression that computes the address of the first memory location
3844 that will be accessed for a data reference.
3846 Input:
3847 STMT: The statement containing the data reference.
3848 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3849 OFFSET: Optional. If supplied, it is be added to the initial address.
3850 LOOP: Specify relative to which loop-nest should the address be computed.
3851 For example, when the dataref is in an inner-loop nested in an
3852 outer-loop that is now being vectorized, LOOP can be either the
3853 outer-loop, or the inner-loop. The first memory location accessed
3854 by the following dataref ('in' points to short):
3856 for (i=0; i<N; i++)
3857 for (j=0; j<M; j++)
3858 s += in[i+j]
3860 is as follows:
3861 if LOOP=i_loop: &in (relative to i_loop)
3862 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3863 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
3864 initial address. Unlike OFFSET, which is number of elements to
3865 be added, BYTE_OFFSET is measured in bytes.
3867 Output:
3868 1. Return an SSA_NAME whose value is the address of the memory location of
3869 the first vector of the data reference.
3870 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3871 these statement(s) which define the returned SSA_NAME.
3873 FORNOW: We are only handling array accesses with step 1. */
3875 tree
3876 vect_create_addr_base_for_vector_ref (gimple stmt,
3877 gimple_seq *new_stmt_list,
3878 tree offset,
3879 struct loop *loop,
3880 tree byte_offset)
3882 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3883 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3884 tree data_ref_base;
3885 const char *base_name;
3886 tree addr_base;
3887 tree dest;
3888 gimple_seq seq = NULL;
3889 tree base_offset;
3890 tree init;
3891 tree vect_ptr_type;
3892 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3893 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3895 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3897 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3899 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3901 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3902 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3903 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3905 else
3907 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3908 base_offset = unshare_expr (DR_OFFSET (dr));
3909 init = unshare_expr (DR_INIT (dr));
3912 if (loop_vinfo)
3913 base_name = get_name (data_ref_base);
3914 else
3916 base_offset = ssize_int (0);
3917 init = ssize_int (0);
3918 base_name = get_name (DR_REF (dr));
3921 /* Create base_offset */
3922 base_offset = size_binop (PLUS_EXPR,
3923 fold_convert (sizetype, base_offset),
3924 fold_convert (sizetype, init));
3926 if (offset)
3928 offset = fold_build2 (MULT_EXPR, sizetype,
3929 fold_convert (sizetype, offset), step);
3930 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3931 base_offset, offset);
3933 if (byte_offset)
3935 byte_offset = fold_convert (sizetype, byte_offset);
3936 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3937 base_offset, byte_offset);
3940 /* base + base_offset */
3941 if (loop_vinfo)
3942 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3943 else
3945 addr_base = build1 (ADDR_EXPR,
3946 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3947 unshare_expr (DR_REF (dr)));
3950 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3951 addr_base = fold_convert (vect_ptr_type, addr_base);
3952 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
3953 addr_base = force_gimple_operand (addr_base, &seq, false, dest);
3954 gimple_seq_add_seq (new_stmt_list, seq);
3956 if (DR_PTR_INFO (dr)
3957 && TREE_CODE (addr_base) == SSA_NAME)
3959 duplicate_ssa_name_ptr_info (addr_base, DR_PTR_INFO (dr));
3960 if (offset)
3961 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
3964 if (dump_enabled_p ())
3966 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3967 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
3968 dump_printf (MSG_NOTE, "\n");
3971 return addr_base;
3975 /* Function vect_create_data_ref_ptr.
3977 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3978 location accessed in the loop by STMT, along with the def-use update
3979 chain to appropriately advance the pointer through the loop iterations.
3980 Also set aliasing information for the pointer. This pointer is used by
3981 the callers to this function to create a memory reference expression for
3982 vector load/store access.
3984 Input:
3985 1. STMT: a stmt that references memory. Expected to be of the form
3986 GIMPLE_ASSIGN <name, data-ref> or
3987 GIMPLE_ASSIGN <data-ref, name>.
3988 2. AGGR_TYPE: the type of the reference, which should be either a vector
3989 or an array.
3990 3. AT_LOOP: the loop where the vector memref is to be created.
3991 4. OFFSET (optional): an offset to be added to the initial address accessed
3992 by the data-ref in STMT.
3993 5. BSI: location where the new stmts are to be placed if there is no loop
3994 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
3995 pointing to the initial address.
3996 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
3997 to the initial address accessed by the data-ref in STMT. This is
3998 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
3999 in bytes.
4001 Output:
4002 1. Declare a new ptr to vector_type, and have it point to the base of the
4003 data reference (initial addressed accessed by the data reference).
4004 For example, for vector of type V8HI, the following code is generated:
4006 v8hi *ap;
4007 ap = (v8hi *)initial_address;
4009 if OFFSET is not supplied:
4010 initial_address = &a[init];
4011 if OFFSET is supplied:
4012 initial_address = &a[init + OFFSET];
4013 if BYTE_OFFSET is supplied:
4014 initial_address = &a[init] + BYTE_OFFSET;
4016 Return the initial_address in INITIAL_ADDRESS.
4018 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4019 update the pointer in each iteration of the loop.
4021 Return the increment stmt that updates the pointer in PTR_INCR.
4023 3. Set INV_P to true if the access pattern of the data reference in the
4024 vectorized loop is invariant. Set it to false otherwise.
4026 4. Return the pointer. */
4028 tree
4029 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
4030 tree offset, tree *initial_address,
4031 gimple_stmt_iterator *gsi, gimple *ptr_incr,
4032 bool only_init, bool *inv_p, tree byte_offset)
4034 const char *base_name;
4035 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4036 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4037 struct loop *loop = NULL;
4038 bool nested_in_vect_loop = false;
4039 struct loop *containing_loop = NULL;
4040 tree aggr_ptr_type;
4041 tree aggr_ptr;
4042 tree new_temp;
4043 gimple vec_stmt;
4044 gimple_seq new_stmt_list = NULL;
4045 edge pe = NULL;
4046 basic_block new_bb;
4047 tree aggr_ptr_init;
4048 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4049 tree aptr;
4050 gimple_stmt_iterator incr_gsi;
4051 bool insert_after;
4052 tree indx_before_incr, indx_after_incr;
4053 gimple incr;
4054 tree step;
4055 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4057 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4058 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4060 if (loop_vinfo)
4062 loop = LOOP_VINFO_LOOP (loop_vinfo);
4063 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4064 containing_loop = (gimple_bb (stmt))->loop_father;
4065 pe = loop_preheader_edge (loop);
4067 else
4069 gcc_assert (bb_vinfo);
4070 only_init = true;
4071 *ptr_incr = NULL;
4074 /* Check the step (evolution) of the load in LOOP, and record
4075 whether it's invariant. */
4076 if (nested_in_vect_loop)
4077 step = STMT_VINFO_DR_STEP (stmt_info);
4078 else
4079 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
4081 if (integer_zerop (step))
4082 *inv_p = true;
4083 else
4084 *inv_p = false;
4086 /* Create an expression for the first address accessed by this load
4087 in LOOP. */
4088 base_name = get_name (DR_BASE_ADDRESS (dr));
4090 if (dump_enabled_p ())
4092 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4093 dump_printf_loc (MSG_NOTE, vect_location,
4094 "create %s-pointer variable to type: ",
4095 get_tree_code_name (TREE_CODE (aggr_type)));
4096 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4097 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4098 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4099 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4100 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4101 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4102 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4103 else
4104 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4105 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4106 dump_printf (MSG_NOTE, "\n");
4109 /* (1) Create the new aggregate-pointer variable.
4110 Vector and array types inherit the alias set of their component
4111 type by default so we need to use a ref-all pointer if the data
4112 reference does not conflict with the created aggregated data
4113 reference because it is not addressable. */
4114 bool need_ref_all = false;
4115 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4116 get_alias_set (DR_REF (dr))))
4117 need_ref_all = true;
4118 /* Likewise for any of the data references in the stmt group. */
4119 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4121 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4124 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4125 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4126 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4127 get_alias_set (DR_REF (sdr))))
4129 need_ref_all = true;
4130 break;
4132 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4134 while (orig_stmt);
4136 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4137 need_ref_all);
4138 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4141 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4142 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4143 def-use update cycles for the pointer: one relative to the outer-loop
4144 (LOOP), which is what steps (3) and (4) below do. The other is relative
4145 to the inner-loop (which is the inner-most loop containing the dataref),
4146 and this is done be step (5) below.
4148 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4149 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4150 redundant. Steps (3),(4) create the following:
4152 vp0 = &base_addr;
4153 LOOP: vp1 = phi(vp0,vp2)
4156 vp2 = vp1 + step
4157 goto LOOP
4159 If there is an inner-loop nested in loop, then step (5) will also be
4160 applied, and an additional update in the inner-loop will be created:
4162 vp0 = &base_addr;
4163 LOOP: vp1 = phi(vp0,vp2)
4165 inner: vp3 = phi(vp1,vp4)
4166 vp4 = vp3 + inner_step
4167 if () goto inner
4169 vp2 = vp1 + step
4170 if () goto LOOP */
4172 /* (2) Calculate the initial address of the aggregate-pointer, and set
4173 the aggregate-pointer to point to it before the loop. */
4175 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4177 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4178 offset, loop, byte_offset);
4179 if (new_stmt_list)
4181 if (pe)
4183 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4184 gcc_assert (!new_bb);
4186 else
4187 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4190 *initial_address = new_temp;
4192 /* Create: p = (aggr_type *) initial_base */
4193 if (TREE_CODE (new_temp) != SSA_NAME
4194 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
4196 vec_stmt = gimple_build_assign (aggr_ptr,
4197 fold_convert (aggr_ptr_type, new_temp));
4198 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
4199 /* Copy the points-to information if it exists. */
4200 if (DR_PTR_INFO (dr))
4201 duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
4202 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
4203 if (pe)
4205 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
4206 gcc_assert (!new_bb);
4208 else
4209 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
4211 else
4212 aggr_ptr_init = new_temp;
4214 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4215 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4216 inner-loop nested in LOOP (during outer-loop vectorization). */
4218 /* No update in loop is required. */
4219 if (only_init && (!loop_vinfo || at_loop == loop))
4220 aptr = aggr_ptr_init;
4221 else
4223 /* The step of the aggregate pointer is the type size. */
4224 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4225 /* One exception to the above is when the scalar step of the load in
4226 LOOP is zero. In this case the step here is also zero. */
4227 if (*inv_p)
4228 iv_step = size_zero_node;
4229 else if (tree_int_cst_sgn (step) == -1)
4230 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4232 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4234 create_iv (aggr_ptr_init,
4235 fold_convert (aggr_ptr_type, iv_step),
4236 aggr_ptr, loop, &incr_gsi, insert_after,
4237 &indx_before_incr, &indx_after_incr);
4238 incr = gsi_stmt (incr_gsi);
4239 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4241 /* Copy the points-to information if it exists. */
4242 if (DR_PTR_INFO (dr))
4244 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4245 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4247 if (ptr_incr)
4248 *ptr_incr = incr;
4250 aptr = indx_before_incr;
4253 if (!nested_in_vect_loop || only_init)
4254 return aptr;
4257 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4258 nested in LOOP, if exists. */
4260 gcc_assert (nested_in_vect_loop);
4261 if (!only_init)
4263 standard_iv_increment_position (containing_loop, &incr_gsi,
4264 &insert_after);
4265 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4266 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4267 &indx_after_incr);
4268 incr = gsi_stmt (incr_gsi);
4269 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4271 /* Copy the points-to information if it exists. */
4272 if (DR_PTR_INFO (dr))
4274 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4275 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4277 if (ptr_incr)
4278 *ptr_incr = incr;
4280 return indx_before_incr;
4282 else
4283 gcc_unreachable ();
4287 /* Function bump_vector_ptr
4289 Increment a pointer (to a vector type) by vector-size. If requested,
4290 i.e. if PTR-INCR is given, then also connect the new increment stmt
4291 to the existing def-use update-chain of the pointer, by modifying
4292 the PTR_INCR as illustrated below:
4294 The pointer def-use update-chain before this function:
4295 DATAREF_PTR = phi (p_0, p_2)
4296 ....
4297 PTR_INCR: p_2 = DATAREF_PTR + step
4299 The pointer def-use update-chain after this function:
4300 DATAREF_PTR = phi (p_0, p_2)
4301 ....
4302 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4303 ....
4304 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4306 Input:
4307 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4308 in the loop.
4309 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4310 the loop. The increment amount across iterations is expected
4311 to be vector_size.
4312 BSI - location where the new update stmt is to be placed.
4313 STMT - the original scalar memory-access stmt that is being vectorized.
4314 BUMP - optional. The offset by which to bump the pointer. If not given,
4315 the offset is assumed to be vector_size.
4317 Output: Return NEW_DATAREF_PTR as illustrated above.
4321 tree
4322 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4323 gimple stmt, tree bump)
4325 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4326 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4327 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4328 tree update = TYPE_SIZE_UNIT (vectype);
4329 gimple_assign incr_stmt;
4330 ssa_op_iter iter;
4331 use_operand_p use_p;
4332 tree new_dataref_ptr;
4334 if (bump)
4335 update = bump;
4337 new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
4338 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
4339 dataref_ptr, update);
4340 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4342 /* Copy the points-to information if it exists. */
4343 if (DR_PTR_INFO (dr))
4345 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4346 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4349 if (!ptr_incr)
4350 return new_dataref_ptr;
4352 /* Update the vector-pointer's cross-iteration increment. */
4353 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4355 tree use = USE_FROM_PTR (use_p);
4357 if (use == dataref_ptr)
4358 SET_USE (use_p, new_dataref_ptr);
4359 else
4360 gcc_assert (tree_int_cst_compare (use, update) == 0);
4363 return new_dataref_ptr;
4367 /* Function vect_create_destination_var.
4369 Create a new temporary of type VECTYPE. */
4371 tree
4372 vect_create_destination_var (tree scalar_dest, tree vectype)
4374 tree vec_dest;
4375 const char *name;
4376 char *new_name;
4377 tree type;
4378 enum vect_var_kind kind;
4380 kind = vectype ? vect_simple_var : vect_scalar_var;
4381 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4383 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4385 name = get_name (scalar_dest);
4386 if (name)
4387 asprintf (&new_name, "%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4388 else
4389 asprintf (&new_name, "_%u", SSA_NAME_VERSION (scalar_dest));
4390 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4391 free (new_name);
4393 return vec_dest;
4396 /* Function vect_grouped_store_supported.
4398 Returns TRUE if interleave high and interleave low permutations
4399 are supported, and FALSE otherwise. */
4401 bool
4402 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4404 enum machine_mode mode = TYPE_MODE (vectype);
4406 /* vect_permute_store_chain requires the group size to be equal to 3 or
4407 be a power of two. */
4408 if (count != 3 && exact_log2 (count) == -1)
4410 if (dump_enabled_p ())
4411 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4412 "the size of the group of accesses"
4413 " is not a power of 2 or not eqaul to 3\n");
4414 return false;
4417 /* Check that the permutation is supported. */
4418 if (VECTOR_MODE_P (mode))
4420 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4421 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4423 if (count == 3)
4425 unsigned int j0 = 0, j1 = 0, j2 = 0;
4426 unsigned int i, j;
4428 for (j = 0; j < 3; j++)
4430 int nelt0 = ((3 - j) * nelt) % 3;
4431 int nelt1 = ((3 - j) * nelt + 1) % 3;
4432 int nelt2 = ((3 - j) * nelt + 2) % 3;
4433 for (i = 0; i < nelt; i++)
4435 if (3 * i + nelt0 < nelt)
4436 sel[3 * i + nelt0] = j0++;
4437 if (3 * i + nelt1 < nelt)
4438 sel[3 * i + nelt1] = nelt + j1++;
4439 if (3 * i + nelt2 < nelt)
4440 sel[3 * i + nelt2] = 0;
4442 if (!can_vec_perm_p (mode, false, sel))
4444 if (dump_enabled_p ())
4445 dump_printf (MSG_MISSED_OPTIMIZATION,
4446 "permutaion op not supported by target.\n");
4447 return false;
4450 for (i = 0; i < nelt; i++)
4452 if (3 * i + nelt0 < nelt)
4453 sel[3 * i + nelt0] = 3 * i + nelt0;
4454 if (3 * i + nelt1 < nelt)
4455 sel[3 * i + nelt1] = 3 * i + nelt1;
4456 if (3 * i + nelt2 < nelt)
4457 sel[3 * i + nelt2] = nelt + j2++;
4459 if (!can_vec_perm_p (mode, false, sel))
4461 if (dump_enabled_p ())
4462 dump_printf (MSG_MISSED_OPTIMIZATION,
4463 "permutaion op not supported by target.\n");
4464 return false;
4467 return true;
4469 else
4471 /* If length is not equal to 3 then only power of 2 is supported. */
4472 gcc_assert (exact_log2 (count) != -1);
4474 for (i = 0; i < nelt / 2; i++)
4476 sel[i * 2] = i;
4477 sel[i * 2 + 1] = i + nelt;
4479 if (can_vec_perm_p (mode, false, sel))
4481 for (i = 0; i < nelt; i++)
4482 sel[i] += nelt / 2;
4483 if (can_vec_perm_p (mode, false, sel))
4484 return true;
4489 if (dump_enabled_p ())
4490 dump_printf (MSG_MISSED_OPTIMIZATION,
4491 "permutaion op not supported by target.\n");
4492 return false;
4496 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4497 type VECTYPE. */
4499 bool
4500 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4502 return vect_lanes_optab_supported_p ("vec_store_lanes",
4503 vec_store_lanes_optab,
4504 vectype, count);
4508 /* Function vect_permute_store_chain.
4510 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4511 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4512 the data correctly for the stores. Return the final references for stores
4513 in RESULT_CHAIN.
4515 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4516 The input is 4 vectors each containing 8 elements. We assign a number to
4517 each element, the input sequence is:
4519 1st vec: 0 1 2 3 4 5 6 7
4520 2nd vec: 8 9 10 11 12 13 14 15
4521 3rd vec: 16 17 18 19 20 21 22 23
4522 4th vec: 24 25 26 27 28 29 30 31
4524 The output sequence should be:
4526 1st vec: 0 8 16 24 1 9 17 25
4527 2nd vec: 2 10 18 26 3 11 19 27
4528 3rd vec: 4 12 20 28 5 13 21 30
4529 4th vec: 6 14 22 30 7 15 23 31
4531 i.e., we interleave the contents of the four vectors in their order.
4533 We use interleave_high/low instructions to create such output. The input of
4534 each interleave_high/low operation is two vectors:
4535 1st vec 2nd vec
4536 0 1 2 3 4 5 6 7
4537 the even elements of the result vector are obtained left-to-right from the
4538 high/low elements of the first vector. The odd elements of the result are
4539 obtained left-to-right from the high/low elements of the second vector.
4540 The output of interleave_high will be: 0 4 1 5
4541 and of interleave_low: 2 6 3 7
4544 The permutation is done in log LENGTH stages. In each stage interleave_high
4545 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4546 where the first argument is taken from the first half of DR_CHAIN and the
4547 second argument from it's second half.
4548 In our example,
4550 I1: interleave_high (1st vec, 3rd vec)
4551 I2: interleave_low (1st vec, 3rd vec)
4552 I3: interleave_high (2nd vec, 4th vec)
4553 I4: interleave_low (2nd vec, 4th vec)
4555 The output for the first stage is:
4557 I1: 0 16 1 17 2 18 3 19
4558 I2: 4 20 5 21 6 22 7 23
4559 I3: 8 24 9 25 10 26 11 27
4560 I4: 12 28 13 29 14 30 15 31
4562 The output of the second stage, i.e. the final result is:
4564 I1: 0 8 16 24 1 9 17 25
4565 I2: 2 10 18 26 3 11 19 27
4566 I3: 4 12 20 28 5 13 21 30
4567 I4: 6 14 22 30 7 15 23 31. */
4569 void
4570 vect_permute_store_chain (vec<tree> dr_chain,
4571 unsigned int length,
4572 gimple stmt,
4573 gimple_stmt_iterator *gsi,
4574 vec<tree> *result_chain)
4576 tree vect1, vect2, high, low;
4577 gimple perm_stmt;
4578 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4579 tree perm_mask_low, perm_mask_high;
4580 tree data_ref;
4581 tree perm3_mask_low, perm3_mask_high;
4582 unsigned int i, n, log_length = exact_log2 (length);
4583 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4584 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4586 result_chain->quick_grow (length);
4587 memcpy (result_chain->address (), dr_chain.address (),
4588 length * sizeof (tree));
4590 if (length == 3)
4592 unsigned int j0 = 0, j1 = 0, j2 = 0;
4594 for (j = 0; j < 3; j++)
4596 int nelt0 = ((3 - j) * nelt) % 3;
4597 int nelt1 = ((3 - j) * nelt + 1) % 3;
4598 int nelt2 = ((3 - j) * nelt + 2) % 3;
4600 for (i = 0; i < nelt; i++)
4602 if (3 * i + nelt0 < nelt)
4603 sel[3 * i + nelt0] = j0++;
4604 if (3 * i + nelt1 < nelt)
4605 sel[3 * i + nelt1] = nelt + j1++;
4606 if (3 * i + nelt2 < nelt)
4607 sel[3 * i + nelt2] = 0;
4609 perm3_mask_low = vect_gen_perm_mask (vectype, sel);
4610 gcc_assert (perm3_mask_low != NULL);
4612 for (i = 0; i < nelt; i++)
4614 if (3 * i + nelt0 < nelt)
4615 sel[3 * i + nelt0] = 3 * i + nelt0;
4616 if (3 * i + nelt1 < nelt)
4617 sel[3 * i + nelt1] = 3 * i + nelt1;
4618 if (3 * i + nelt2 < nelt)
4619 sel[3 * i + nelt2] = nelt + j2++;
4621 perm3_mask_high = vect_gen_perm_mask (vectype, sel);
4622 gcc_assert (perm3_mask_high != NULL);
4624 vect1 = dr_chain[0];
4625 vect2 = dr_chain[1];
4627 /* Create interleaving stmt:
4628 low = VEC_PERM_EXPR <vect1, vect2,
4629 {j, nelt, *, j + 1, nelt + j + 1, *,
4630 j + 2, nelt + j + 2, *, ...}> */
4631 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4632 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4633 vect1, vect2,
4634 perm3_mask_low);
4635 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4637 vect1 = data_ref;
4638 vect2 = dr_chain[2];
4639 /* Create interleaving stmt:
4640 low = VEC_PERM_EXPR <vect1, vect2,
4641 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4642 6, 7, nelt + j + 2, ...}> */
4643 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4644 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4645 vect1, vect2,
4646 perm3_mask_high);
4647 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4648 (*result_chain)[j] = data_ref;
4651 else
4653 /* If length is not equal to 3 then only power of 2 is supported. */
4654 gcc_assert (exact_log2 (length) != -1);
4656 for (i = 0, n = nelt / 2; i < n; i++)
4658 sel[i * 2] = i;
4659 sel[i * 2 + 1] = i + nelt;
4661 perm_mask_high = vect_gen_perm_mask (vectype, sel);
4662 gcc_assert (perm_mask_high != NULL);
4664 for (i = 0; i < nelt; i++)
4665 sel[i] += nelt / 2;
4666 perm_mask_low = vect_gen_perm_mask (vectype, sel);
4667 gcc_assert (perm_mask_low != NULL);
4669 for (i = 0, n = log_length; i < n; i++)
4671 for (j = 0; j < length/2; j++)
4673 vect1 = dr_chain[j];
4674 vect2 = dr_chain[j+length/2];
4676 /* Create interleaving stmt:
4677 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4678 ...}> */
4679 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4680 perm_stmt
4681 = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
4682 vect1, vect2, perm_mask_high);
4683 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4684 (*result_chain)[2*j] = high;
4686 /* Create interleaving stmt:
4687 low = VEC_PERM_EXPR <vect1, vect2,
4688 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4689 ...}> */
4690 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4691 perm_stmt
4692 = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
4693 vect1, vect2, perm_mask_low);
4694 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4695 (*result_chain)[2*j+1] = low;
4697 memcpy (dr_chain.address (), result_chain->address (),
4698 length * sizeof (tree));
4703 /* Function vect_setup_realignment
4705 This function is called when vectorizing an unaligned load using
4706 the dr_explicit_realign[_optimized] scheme.
4707 This function generates the following code at the loop prolog:
4709 p = initial_addr;
4710 x msq_init = *(floor(p)); # prolog load
4711 realignment_token = call target_builtin;
4712 loop:
4713 x msq = phi (msq_init, ---)
4715 The stmts marked with x are generated only for the case of
4716 dr_explicit_realign_optimized.
4718 The code above sets up a new (vector) pointer, pointing to the first
4719 location accessed by STMT, and a "floor-aligned" load using that pointer.
4720 It also generates code to compute the "realignment-token" (if the relevant
4721 target hook was defined), and creates a phi-node at the loop-header bb
4722 whose arguments are the result of the prolog-load (created by this
4723 function) and the result of a load that takes place in the loop (to be
4724 created by the caller to this function).
4726 For the case of dr_explicit_realign_optimized:
4727 The caller to this function uses the phi-result (msq) to create the
4728 realignment code inside the loop, and sets up the missing phi argument,
4729 as follows:
4730 loop:
4731 msq = phi (msq_init, lsq)
4732 lsq = *(floor(p')); # load in loop
4733 result = realign_load (msq, lsq, realignment_token);
4735 For the case of dr_explicit_realign:
4736 loop:
4737 msq = *(floor(p)); # load in loop
4738 p' = p + (VS-1);
4739 lsq = *(floor(p')); # load in loop
4740 result = realign_load (msq, lsq, realignment_token);
4742 Input:
4743 STMT - (scalar) load stmt to be vectorized. This load accesses
4744 a memory location that may be unaligned.
4745 BSI - place where new code is to be inserted.
4746 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4747 is used.
4749 Output:
4750 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4751 target hook, if defined.
4752 Return value - the result of the loop-header phi node. */
4754 tree
4755 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4756 tree *realignment_token,
4757 enum dr_alignment_support alignment_support_scheme,
4758 tree init_addr,
4759 struct loop **at_loop)
4761 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4762 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4763 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4764 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4765 struct loop *loop = NULL;
4766 edge pe = NULL;
4767 tree scalar_dest = gimple_assign_lhs (stmt);
4768 tree vec_dest;
4769 gimple inc;
4770 tree ptr;
4771 tree data_ref;
4772 basic_block new_bb;
4773 tree msq_init = NULL_TREE;
4774 tree new_temp;
4775 gimple_phi phi_stmt;
4776 tree msq = NULL_TREE;
4777 gimple_seq stmts = NULL;
4778 bool inv_p;
4779 bool compute_in_loop = false;
4780 bool nested_in_vect_loop = false;
4781 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4782 struct loop *loop_for_initial_load = NULL;
4784 if (loop_vinfo)
4786 loop = LOOP_VINFO_LOOP (loop_vinfo);
4787 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4790 gcc_assert (alignment_support_scheme == dr_explicit_realign
4791 || alignment_support_scheme == dr_explicit_realign_optimized);
4793 /* We need to generate three things:
4794 1. the misalignment computation
4795 2. the extra vector load (for the optimized realignment scheme).
4796 3. the phi node for the two vectors from which the realignment is
4797 done (for the optimized realignment scheme). */
4799 /* 1. Determine where to generate the misalignment computation.
4801 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4802 calculation will be generated by this function, outside the loop (in the
4803 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4804 caller, inside the loop.
4806 Background: If the misalignment remains fixed throughout the iterations of
4807 the loop, then both realignment schemes are applicable, and also the
4808 misalignment computation can be done outside LOOP. This is because we are
4809 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4810 are a multiple of VS (the Vector Size), and therefore the misalignment in
4811 different vectorized LOOP iterations is always the same.
4812 The problem arises only if the memory access is in an inner-loop nested
4813 inside LOOP, which is now being vectorized using outer-loop vectorization.
4814 This is the only case when the misalignment of the memory access may not
4815 remain fixed throughout the iterations of the inner-loop (as explained in
4816 detail in vect_supportable_dr_alignment). In this case, not only is the
4817 optimized realignment scheme not applicable, but also the misalignment
4818 computation (and generation of the realignment token that is passed to
4819 REALIGN_LOAD) have to be done inside the loop.
4821 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4822 or not, which in turn determines if the misalignment is computed inside
4823 the inner-loop, or outside LOOP. */
4825 if (init_addr != NULL_TREE || !loop_vinfo)
4827 compute_in_loop = true;
4828 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4832 /* 2. Determine where to generate the extra vector load.
4834 For the optimized realignment scheme, instead of generating two vector
4835 loads in each iteration, we generate a single extra vector load in the
4836 preheader of the loop, and in each iteration reuse the result of the
4837 vector load from the previous iteration. In case the memory access is in
4838 an inner-loop nested inside LOOP, which is now being vectorized using
4839 outer-loop vectorization, we need to determine whether this initial vector
4840 load should be generated at the preheader of the inner-loop, or can be
4841 generated at the preheader of LOOP. If the memory access has no evolution
4842 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4843 to be generated inside LOOP (in the preheader of the inner-loop). */
4845 if (nested_in_vect_loop)
4847 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4848 bool invariant_in_outerloop =
4849 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4850 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4852 else
4853 loop_for_initial_load = loop;
4854 if (at_loop)
4855 *at_loop = loop_for_initial_load;
4857 if (loop_for_initial_load)
4858 pe = loop_preheader_edge (loop_for_initial_load);
4860 /* 3. For the case of the optimized realignment, create the first vector
4861 load at the loop preheader. */
4863 if (alignment_support_scheme == dr_explicit_realign_optimized)
4865 /* Create msq_init = *(floor(p1)) in the loop preheader */
4866 gimple_assign new_stmt;
4868 gcc_assert (!compute_in_loop);
4869 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4870 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4871 NULL_TREE, &init_addr, NULL, &inc,
4872 true, &inv_p);
4873 new_temp = copy_ssa_name (ptr, NULL);
4874 new_stmt = gimple_build_assign_with_ops
4875 (BIT_AND_EXPR, new_temp, ptr,
4876 build_int_cst (TREE_TYPE (ptr),
4877 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4878 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4879 gcc_assert (!new_bb);
4880 data_ref
4881 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4882 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4883 new_stmt = gimple_build_assign (vec_dest, data_ref);
4884 new_temp = make_ssa_name (vec_dest, new_stmt);
4885 gimple_assign_set_lhs (new_stmt, new_temp);
4886 if (pe)
4888 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4889 gcc_assert (!new_bb);
4891 else
4892 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4894 msq_init = gimple_assign_lhs (new_stmt);
4897 /* 4. Create realignment token using a target builtin, if available.
4898 It is done either inside the containing loop, or before LOOP (as
4899 determined above). */
4901 if (targetm.vectorize.builtin_mask_for_load)
4903 gimple_call new_stmt;
4904 tree builtin_decl;
4906 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4907 if (!init_addr)
4909 /* Generate the INIT_ADDR computation outside LOOP. */
4910 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4911 NULL_TREE, loop);
4912 if (loop)
4914 pe = loop_preheader_edge (loop);
4915 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4916 gcc_assert (!new_bb);
4918 else
4919 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4922 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4923 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4924 vec_dest =
4925 vect_create_destination_var (scalar_dest,
4926 gimple_call_return_type (new_stmt));
4927 new_temp = make_ssa_name (vec_dest, new_stmt);
4928 gimple_call_set_lhs (new_stmt, new_temp);
4930 if (compute_in_loop)
4931 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4932 else
4934 /* Generate the misalignment computation outside LOOP. */
4935 pe = loop_preheader_edge (loop);
4936 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4937 gcc_assert (!new_bb);
4940 *realignment_token = gimple_call_lhs (new_stmt);
4942 /* The result of the CALL_EXPR to this builtin is determined from
4943 the value of the parameter and no global variables are touched
4944 which makes the builtin a "const" function. Requiring the
4945 builtin to have the "const" attribute makes it unnecessary
4946 to call mark_call_clobbered. */
4947 gcc_assert (TREE_READONLY (builtin_decl));
4950 if (alignment_support_scheme == dr_explicit_realign)
4951 return msq;
4953 gcc_assert (!compute_in_loop);
4954 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4957 /* 5. Create msq = phi <msq_init, lsq> in loop */
4959 pe = loop_preheader_edge (containing_loop);
4960 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4961 msq = make_ssa_name (vec_dest, NULL);
4962 phi_stmt = create_phi_node (msq, containing_loop->header);
4963 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4965 return msq;
4969 /* Function vect_grouped_load_supported.
4971 Returns TRUE if even and odd permutations are supported,
4972 and FALSE otherwise. */
4974 bool
4975 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4977 enum machine_mode mode = TYPE_MODE (vectype);
4979 /* vect_permute_load_chain requires the group size to be equal to 3 or
4980 be a power of two. */
4981 if (count != 3 && exact_log2 (count) == -1)
4983 if (dump_enabled_p ())
4984 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4985 "the size of the group of accesses"
4986 " is not a power of 2 or not equal to 3\n");
4987 return false;
4990 /* Check that the permutation is supported. */
4991 if (VECTOR_MODE_P (mode))
4993 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
4994 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4996 if (count == 3)
4998 unsigned int k;
4999 for (k = 0; k < 3; k++)
5001 for (i = 0; i < nelt; i++)
5002 if (3 * i + k < 2 * nelt)
5003 sel[i] = 3 * i + k;
5004 else
5005 sel[i] = 0;
5006 if (!can_vec_perm_p (mode, false, sel))
5008 if (dump_enabled_p ())
5009 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5010 "shuffle of 3 loads is not supported by"
5011 " target\n");
5012 return false;
5014 for (i = 0, j = 0; i < nelt; i++)
5015 if (3 * i + k < 2 * nelt)
5016 sel[i] = i;
5017 else
5018 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5019 if (!can_vec_perm_p (mode, false, sel))
5021 if (dump_enabled_p ())
5022 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5023 "shuffle of 3 loads is not supported by"
5024 " target\n");
5025 return false;
5028 return true;
5030 else
5032 /* If length is not equal to 3 then only power of 2 is supported. */
5033 gcc_assert (exact_log2 (count) != -1);
5034 for (i = 0; i < nelt; i++)
5035 sel[i] = i * 2;
5036 if (can_vec_perm_p (mode, false, sel))
5038 for (i = 0; i < nelt; i++)
5039 sel[i] = i * 2 + 1;
5040 if (can_vec_perm_p (mode, false, sel))
5041 return true;
5046 if (dump_enabled_p ())
5047 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5048 "extract even/odd not supported by target\n");
5049 return false;
5052 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5053 type VECTYPE. */
5055 bool
5056 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5058 return vect_lanes_optab_supported_p ("vec_load_lanes",
5059 vec_load_lanes_optab,
5060 vectype, count);
5063 /* Function vect_permute_load_chain.
5065 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5066 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5067 the input data correctly. Return the final references for loads in
5068 RESULT_CHAIN.
5070 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5071 The input is 4 vectors each containing 8 elements. We assign a number to each
5072 element, the input sequence is:
5074 1st vec: 0 1 2 3 4 5 6 7
5075 2nd vec: 8 9 10 11 12 13 14 15
5076 3rd vec: 16 17 18 19 20 21 22 23
5077 4th vec: 24 25 26 27 28 29 30 31
5079 The output sequence should be:
5081 1st vec: 0 4 8 12 16 20 24 28
5082 2nd vec: 1 5 9 13 17 21 25 29
5083 3rd vec: 2 6 10 14 18 22 26 30
5084 4th vec: 3 7 11 15 19 23 27 31
5086 i.e., the first output vector should contain the first elements of each
5087 interleaving group, etc.
5089 We use extract_even/odd instructions to create such output. The input of
5090 each extract_even/odd operation is two vectors
5091 1st vec 2nd vec
5092 0 1 2 3 4 5 6 7
5094 and the output is the vector of extracted even/odd elements. The output of
5095 extract_even will be: 0 2 4 6
5096 and of extract_odd: 1 3 5 7
5099 The permutation is done in log LENGTH stages. In each stage extract_even
5100 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5101 their order. In our example,
5103 E1: extract_even (1st vec, 2nd vec)
5104 E2: extract_odd (1st vec, 2nd vec)
5105 E3: extract_even (3rd vec, 4th vec)
5106 E4: extract_odd (3rd vec, 4th vec)
5108 The output for the first stage will be:
5110 E1: 0 2 4 6 8 10 12 14
5111 E2: 1 3 5 7 9 11 13 15
5112 E3: 16 18 20 22 24 26 28 30
5113 E4: 17 19 21 23 25 27 29 31
5115 In order to proceed and create the correct sequence for the next stage (or
5116 for the correct output, if the second stage is the last one, as in our
5117 example), we first put the output of extract_even operation and then the
5118 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5119 The input for the second stage is:
5121 1st vec (E1): 0 2 4 6 8 10 12 14
5122 2nd vec (E3): 16 18 20 22 24 26 28 30
5123 3rd vec (E2): 1 3 5 7 9 11 13 15
5124 4th vec (E4): 17 19 21 23 25 27 29 31
5126 The output of the second stage:
5128 E1: 0 4 8 12 16 20 24 28
5129 E2: 2 6 10 14 18 22 26 30
5130 E3: 1 5 9 13 17 21 25 29
5131 E4: 3 7 11 15 19 23 27 31
5133 And RESULT_CHAIN after reordering:
5135 1st vec (E1): 0 4 8 12 16 20 24 28
5136 2nd vec (E3): 1 5 9 13 17 21 25 29
5137 3rd vec (E2): 2 6 10 14 18 22 26 30
5138 4th vec (E4): 3 7 11 15 19 23 27 31. */
5140 static void
5141 vect_permute_load_chain (vec<tree> dr_chain,
5142 unsigned int length,
5143 gimple stmt,
5144 gimple_stmt_iterator *gsi,
5145 vec<tree> *result_chain)
5147 tree data_ref, first_vect, second_vect;
5148 tree perm_mask_even, perm_mask_odd;
5149 tree perm3_mask_low, perm3_mask_high;
5150 gimple perm_stmt;
5151 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5152 unsigned int i, j, log_length = exact_log2 (length);
5153 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5154 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5156 result_chain->quick_grow (length);
5157 memcpy (result_chain->address (), dr_chain.address (),
5158 length * sizeof (tree));
5160 if (length == 3)
5162 unsigned int k;
5164 for (k = 0; k < 3; k++)
5166 for (i = 0; i < nelt; i++)
5167 if (3 * i + k < 2 * nelt)
5168 sel[i] = 3 * i + k;
5169 else
5170 sel[i] = 0;
5171 perm3_mask_low = vect_gen_perm_mask (vectype, sel);
5172 gcc_assert (perm3_mask_low != NULL);
5174 for (i = 0, j = 0; i < nelt; i++)
5175 if (3 * i + k < 2 * nelt)
5176 sel[i] = i;
5177 else
5178 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5180 perm3_mask_high = vect_gen_perm_mask (vectype, sel);
5181 gcc_assert (perm3_mask_high != NULL);
5183 first_vect = dr_chain[0];
5184 second_vect = dr_chain[1];
5186 /* Create interleaving stmt (low part of):
5187 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5188 ...}> */
5189 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5190 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5191 first_vect, second_vect,
5192 perm3_mask_low);
5193 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5195 /* Create interleaving stmt (high part of):
5196 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5197 ...}> */
5198 first_vect = data_ref;
5199 second_vect = dr_chain[2];
5200 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5201 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5202 first_vect, second_vect,
5203 perm3_mask_high);
5204 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5205 (*result_chain)[k] = data_ref;
5208 else
5210 /* If length is not equal to 3 then only power of 2 is supported. */
5211 gcc_assert (exact_log2 (length) != -1);
5213 for (i = 0; i < nelt; ++i)
5214 sel[i] = i * 2;
5215 perm_mask_even = vect_gen_perm_mask (vectype, sel);
5216 gcc_assert (perm_mask_even != NULL);
5218 for (i = 0; i < nelt; ++i)
5219 sel[i] = i * 2 + 1;
5220 perm_mask_odd = vect_gen_perm_mask (vectype, sel);
5221 gcc_assert (perm_mask_odd != NULL);
5223 for (i = 0; i < log_length; i++)
5225 for (j = 0; j < length; j += 2)
5227 first_vect = dr_chain[j];
5228 second_vect = dr_chain[j+1];
5230 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5231 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5232 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5233 first_vect, second_vect,
5234 perm_mask_even);
5235 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5236 (*result_chain)[j/2] = data_ref;
5238 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5239 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5240 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5241 first_vect, second_vect,
5242 perm_mask_odd);
5243 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5244 (*result_chain)[j/2+length/2] = data_ref;
5246 memcpy (dr_chain.address (), result_chain->address (),
5247 length * sizeof (tree));
5252 /* Function vect_shift_permute_load_chain.
5254 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5255 sequence of stmts to reorder the input data accordingly.
5256 Return the final references for loads in RESULT_CHAIN.
5257 Return true if successed, false otherwise.
5259 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5260 The input is 3 vectors each containing 8 elements. We assign a
5261 number to each element, the input sequence is:
5263 1st vec: 0 1 2 3 4 5 6 7
5264 2nd vec: 8 9 10 11 12 13 14 15
5265 3rd vec: 16 17 18 19 20 21 22 23
5267 The output sequence should be:
5269 1st vec: 0 3 6 9 12 15 18 21
5270 2nd vec: 1 4 7 10 13 16 19 22
5271 3rd vec: 2 5 8 11 14 17 20 23
5273 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5275 First we shuffle all 3 vectors to get correct elements order:
5277 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5278 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5279 3rd vec: (16 19 22) (17 20 23) (18 21)
5281 Next we unite and shift vector 3 times:
5283 1st step:
5284 shift right by 6 the concatenation of:
5285 "1st vec" and "2nd vec"
5286 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5287 "2nd vec" and "3rd vec"
5288 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5289 "3rd vec" and "1st vec"
5290 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5291 | New vectors |
5293 So that now new vectors are:
5295 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5296 2nd vec: (10 13) (16 19 22) (17 20 23)
5297 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5299 2nd step:
5300 shift right by 5 the concatenation of:
5301 "1st vec" and "3rd vec"
5302 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5303 "2nd vec" and "1st vec"
5304 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5305 "3rd vec" and "2nd vec"
5306 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5307 | New vectors |
5309 So that now new vectors are:
5311 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5312 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5313 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5315 3rd step:
5316 shift right by 5 the concatenation of:
5317 "1st vec" and "1st vec"
5318 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5319 shift right by 3 the concatenation of:
5320 "2nd vec" and "2nd vec"
5321 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5322 | New vectors |
5324 So that now all vectors are READY:
5325 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5326 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5327 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5329 This algorithm is faster than one in vect_permute_load_chain if:
5330 1. "shift of a concatination" is faster than general permutation.
5331 This is usually so.
5332 2. The TARGET machine can't execute vector instructions in parallel.
5333 This is because each step of the algorithm depends on previous.
5334 The algorithm in vect_permute_load_chain is much more parallel.
5336 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5339 static bool
5340 vect_shift_permute_load_chain (vec<tree> dr_chain,
5341 unsigned int length,
5342 gimple stmt,
5343 gimple_stmt_iterator *gsi,
5344 vec<tree> *result_chain)
5346 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5347 tree perm2_mask1, perm2_mask2, perm3_mask;
5348 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5349 gimple perm_stmt;
5351 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5352 unsigned int i;
5353 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5354 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5355 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5356 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5358 result_chain->quick_grow (length);
5359 memcpy (result_chain->address (), dr_chain.address (),
5360 length * sizeof (tree));
5362 if (length == 2 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
5364 for (i = 0; i < nelt / 2; ++i)
5365 sel[i] = i * 2;
5366 for (i = 0; i < nelt / 2; ++i)
5367 sel[nelt / 2 + i] = i * 2 + 1;
5368 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5370 if (dump_enabled_p ())
5371 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5372 "shuffle of 2 fields structure is not \
5373 supported by target\n");
5374 return false;
5376 perm2_mask1 = vect_gen_perm_mask (vectype, sel);
5377 gcc_assert (perm2_mask1 != NULL);
5379 for (i = 0; i < nelt / 2; ++i)
5380 sel[i] = i * 2 + 1;
5381 for (i = 0; i < nelt / 2; ++i)
5382 sel[nelt / 2 + i] = i * 2;
5383 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5385 if (dump_enabled_p ())
5386 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5387 "shuffle of 2 fields structure is not \
5388 supported by target\n");
5389 return false;
5391 perm2_mask2 = vect_gen_perm_mask (vectype, sel);
5392 gcc_assert (perm2_mask2 != NULL);
5394 /* Generating permutation constant to shift all elements.
5395 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5396 for (i = 0; i < nelt; i++)
5397 sel[i] = nelt / 2 + i;
5398 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5400 if (dump_enabled_p ())
5401 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5402 "shift permutation is not supported by target\n");
5403 return false;
5405 shift1_mask = vect_gen_perm_mask (vectype, sel);
5406 gcc_assert (shift1_mask != NULL);
5408 /* Generating permutation constant to select vector from 2.
5409 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5410 for (i = 0; i < nelt / 2; i++)
5411 sel[i] = i;
5412 for (i = nelt / 2; i < nelt; i++)
5413 sel[i] = nelt + i;
5414 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5416 if (dump_enabled_p ())
5417 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5418 "select is not supported by target\n");
5419 return false;
5421 select_mask = vect_gen_perm_mask (vectype, sel);
5422 gcc_assert (select_mask != NULL);
5424 first_vect = dr_chain[0];
5425 second_vect = dr_chain[1];
5427 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5428 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5429 first_vect, first_vect,
5430 perm2_mask1);
5431 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5432 vect[0] = data_ref;
5434 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5435 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5436 second_vect, second_vect,
5437 perm2_mask2);
5438 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5439 vect[1] = data_ref;
5441 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5442 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5443 vect[0], vect[1],
5444 shift1_mask);
5445 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5446 (*result_chain)[1] = data_ref;
5448 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5449 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5450 vect[0], vect[1],
5451 select_mask);
5452 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5453 (*result_chain)[0] = data_ref;
5455 return true;
5457 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5459 unsigned int k = 0, l = 0;
5461 /* Generating permutation constant to get all elements in rigth order.
5462 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5463 for (i = 0; i < nelt; i++)
5465 if (3 * k + (l % 3) >= nelt)
5467 k = 0;
5468 l += (3 - (nelt % 3));
5470 sel[i] = 3 * k + (l % 3);
5471 k++;
5473 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5475 if (dump_enabled_p ())
5476 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5477 "shuffle of 3 fields structure is not \
5478 supported by target\n");
5479 return false;
5481 perm3_mask = vect_gen_perm_mask (vectype, sel);
5482 gcc_assert (perm3_mask != NULL);
5484 /* Generating permutation constant to shift all elements.
5485 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5486 for (i = 0; i < nelt; i++)
5487 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5488 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5490 if (dump_enabled_p ())
5491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5492 "shift permutation is not supported by target\n");
5493 return false;
5495 shift1_mask = vect_gen_perm_mask (vectype, sel);
5496 gcc_assert (shift1_mask != NULL);
5498 /* Generating permutation constant to shift all elements.
5499 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5500 for (i = 0; i < nelt; i++)
5501 sel[i] = 2 * (nelt / 3) + 1 + i;
5502 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5504 if (dump_enabled_p ())
5505 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5506 "shift permutation is not supported by target\n");
5507 return false;
5509 shift2_mask = vect_gen_perm_mask (vectype, sel);
5510 gcc_assert (shift2_mask != NULL);
5512 /* Generating permutation constant to shift all elements.
5513 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5514 for (i = 0; i < nelt; i++)
5515 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5516 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5518 if (dump_enabled_p ())
5519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5520 "shift permutation is not supported by target\n");
5521 return false;
5523 shift3_mask = vect_gen_perm_mask (vectype, sel);
5524 gcc_assert (shift3_mask != NULL);
5526 /* Generating permutation constant to shift all elements.
5527 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5528 for (i = 0; i < nelt; i++)
5529 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5530 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5532 if (dump_enabled_p ())
5533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5534 "shift permutation is not supported by target\n");
5535 return false;
5537 shift4_mask = vect_gen_perm_mask (vectype, sel);
5538 gcc_assert (shift4_mask != NULL);
5540 for (k = 0; k < 3; k++)
5542 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
5543 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5544 dr_chain[k], dr_chain[k],
5545 perm3_mask);
5546 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5547 vect[k] = data_ref;
5550 for (k = 0; k < 3; k++)
5552 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5553 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5554 vect[k % 3],
5555 vect[(k + 1) % 3],
5556 shift1_mask);
5557 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5558 vect_shift[k] = data_ref;
5561 for (k = 0; k < 3; k++)
5563 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5564 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5565 vect_shift[(4 - k) % 3],
5566 vect_shift[(3 - k) % 3],
5567 shift2_mask);
5568 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5569 vect[k] = data_ref;
5572 (*result_chain)[3 - (nelt % 3)] = vect[2];
5574 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5575 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5576 vect[0], vect[0],
5577 shift3_mask);
5578 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5579 (*result_chain)[nelt % 3] = data_ref;
5581 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5582 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5583 vect[1], vect[1],
5584 shift4_mask);
5585 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5586 (*result_chain)[0] = data_ref;
5587 return true;
5589 return false;
5592 /* Function vect_transform_grouped_load.
5594 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5595 to perform their permutation and ascribe the result vectorized statements to
5596 the scalar statements.
5599 void
5600 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
5601 gimple_stmt_iterator *gsi)
5603 enum machine_mode mode;
5604 vec<tree> result_chain = vNULL;
5606 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5607 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5608 vectors, that are ready for vector computation. */
5609 result_chain.create (size);
5611 /* If reassociation width for vector type is 2 or greater target machine can
5612 execute 2 or more vector instructions in parallel. Otherwise try to
5613 get chain for loads group using vect_shift_permute_load_chain. */
5614 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5615 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5616 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5617 gsi, &result_chain))
5618 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5619 vect_record_grouped_load_vectors (stmt, result_chain);
5620 result_chain.release ();
5623 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5624 generated as part of the vectorization of STMT. Assign the statement
5625 for each vector to the associated scalar statement. */
5627 void
5628 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
5630 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5631 gimple next_stmt, new_stmt;
5632 unsigned int i, gap_count;
5633 tree tmp_data_ref;
5635 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5636 Since we scan the chain starting from it's first node, their order
5637 corresponds the order of data-refs in RESULT_CHAIN. */
5638 next_stmt = first_stmt;
5639 gap_count = 1;
5640 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5642 if (!next_stmt)
5643 break;
5645 /* Skip the gaps. Loads created for the gaps will be removed by dead
5646 code elimination pass later. No need to check for the first stmt in
5647 the group, since it always exists.
5648 GROUP_GAP is the number of steps in elements from the previous
5649 access (if there is no gap GROUP_GAP is 1). We skip loads that
5650 correspond to the gaps. */
5651 if (next_stmt != first_stmt
5652 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5654 gap_count++;
5655 continue;
5658 while (next_stmt)
5660 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5661 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5662 copies, and we put the new vector statement in the first available
5663 RELATED_STMT. */
5664 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5665 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5666 else
5668 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5670 gimple prev_stmt =
5671 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5672 gimple rel_stmt =
5673 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5674 while (rel_stmt)
5676 prev_stmt = rel_stmt;
5677 rel_stmt =
5678 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5681 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5682 new_stmt;
5686 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5687 gap_count = 1;
5688 /* If NEXT_STMT accesses the same DR as the previous statement,
5689 put the same TMP_DATA_REF as its vectorized statement; otherwise
5690 get the next data-ref from RESULT_CHAIN. */
5691 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5692 break;
5697 /* Function vect_force_dr_alignment_p.
5699 Returns whether the alignment of a DECL can be forced to be aligned
5700 on ALIGNMENT bit boundary. */
5702 bool
5703 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5705 if (TREE_CODE (decl) != VAR_DECL)
5706 return false;
5708 /* With -fno-toplevel-reorder we may have already output the constant. */
5709 if (TREE_ASM_WRITTEN (decl))
5710 return false;
5712 /* Constant pool entries may be shared and not properly merged by LTO. */
5713 if (DECL_IN_CONSTANT_POOL (decl))
5714 return false;
5716 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5718 symtab_node *snode;
5720 /* We cannot change alignment of symbols that may bind to symbols
5721 in other translation unit that may contain a definition with lower
5722 alignment. */
5723 if (!decl_binds_to_current_def_p (decl))
5724 return false;
5726 /* When compiling partition, be sure the symbol is not output by other
5727 partition. */
5728 snode = symtab_node::get (decl);
5729 if (flag_ltrans
5730 && (snode->in_other_partition
5731 || snode->get_partitioning_class () == SYMBOL_DUPLICATE))
5732 return false;
5735 /* Do not override the alignment as specified by the ABI when the used
5736 attribute is set. */
5737 if (DECL_PRESERVE_P (decl))
5738 return false;
5740 /* Do not override explicit alignment set by the user when an explicit
5741 section name is also used. This is a common idiom used by many
5742 software projects. */
5743 if (TREE_STATIC (decl)
5744 && DECL_SECTION_NAME (decl) != NULL
5745 && !symtab_node::get (decl)->implicit_section)
5746 return false;
5748 /* If symbol is an alias, we need to check that target is OK. */
5749 if (TREE_STATIC (decl))
5751 tree target = symtab_node::get (decl)->ultimate_alias_target ()->decl;
5752 if (target != decl)
5754 if (DECL_PRESERVE_P (target))
5755 return false;
5756 decl = target;
5760 if (TREE_STATIC (decl))
5761 return (alignment <= MAX_OFILE_ALIGNMENT);
5762 else
5763 return (alignment <= MAX_STACK_ALIGNMENT);
5767 /* Return whether the data reference DR is supported with respect to its
5768 alignment.
5769 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5770 it is aligned, i.e., check if it is possible to vectorize it with different
5771 alignment. */
5773 enum dr_alignment_support
5774 vect_supportable_dr_alignment (struct data_reference *dr,
5775 bool check_aligned_accesses)
5777 gimple stmt = DR_STMT (dr);
5778 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5779 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5780 enum machine_mode mode = TYPE_MODE (vectype);
5781 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5782 struct loop *vect_loop = NULL;
5783 bool nested_in_vect_loop = false;
5785 if (aligned_access_p (dr) && !check_aligned_accesses)
5786 return dr_aligned;
5788 /* For now assume all conditional loads/stores support unaligned
5789 access without any special code. */
5790 if (is_gimple_call (stmt)
5791 && gimple_call_internal_p (stmt)
5792 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5793 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5794 return dr_unaligned_supported;
5796 if (loop_vinfo)
5798 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5799 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5802 /* Possibly unaligned access. */
5804 /* We can choose between using the implicit realignment scheme (generating
5805 a misaligned_move stmt) and the explicit realignment scheme (generating
5806 aligned loads with a REALIGN_LOAD). There are two variants to the
5807 explicit realignment scheme: optimized, and unoptimized.
5808 We can optimize the realignment only if the step between consecutive
5809 vector loads is equal to the vector size. Since the vector memory
5810 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5811 is guaranteed that the misalignment amount remains the same throughout the
5812 execution of the vectorized loop. Therefore, we can create the
5813 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5814 at the loop preheader.
5816 However, in the case of outer-loop vectorization, when vectorizing a
5817 memory access in the inner-loop nested within the LOOP that is now being
5818 vectorized, while it is guaranteed that the misalignment of the
5819 vectorized memory access will remain the same in different outer-loop
5820 iterations, it is *not* guaranteed that is will remain the same throughout
5821 the execution of the inner-loop. This is because the inner-loop advances
5822 with the original scalar step (and not in steps of VS). If the inner-loop
5823 step happens to be a multiple of VS, then the misalignment remains fixed
5824 and we can use the optimized realignment scheme. For example:
5826 for (i=0; i<N; i++)
5827 for (j=0; j<M; j++)
5828 s += a[i+j];
5830 When vectorizing the i-loop in the above example, the step between
5831 consecutive vector loads is 1, and so the misalignment does not remain
5832 fixed across the execution of the inner-loop, and the realignment cannot
5833 be optimized (as illustrated in the following pseudo vectorized loop):
5835 for (i=0; i<N; i+=4)
5836 for (j=0; j<M; j++){
5837 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5838 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5839 // (assuming that we start from an aligned address).
5842 We therefore have to use the unoptimized realignment scheme:
5844 for (i=0; i<N; i+=4)
5845 for (j=k; j<M; j+=4)
5846 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5847 // that the misalignment of the initial address is
5848 // 0).
5850 The loop can then be vectorized as follows:
5852 for (k=0; k<4; k++){
5853 rt = get_realignment_token (&vp[k]);
5854 for (i=0; i<N; i+=4){
5855 v1 = vp[i+k];
5856 for (j=k; j<M; j+=4){
5857 v2 = vp[i+j+VS-1];
5858 va = REALIGN_LOAD <v1,v2,rt>;
5859 vs += va;
5860 v1 = v2;
5863 } */
5865 if (DR_IS_READ (dr))
5867 bool is_packed = false;
5868 tree type = (TREE_TYPE (DR_REF (dr)));
5870 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5871 && (!targetm.vectorize.builtin_mask_for_load
5872 || targetm.vectorize.builtin_mask_for_load ()))
5874 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5875 if ((nested_in_vect_loop
5876 && (TREE_INT_CST_LOW (DR_STEP (dr))
5877 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5878 || !loop_vinfo)
5879 return dr_explicit_realign;
5880 else
5881 return dr_explicit_realign_optimized;
5883 if (!known_alignment_for_access_p (dr))
5884 is_packed = not_size_aligned (DR_REF (dr));
5886 if ((TYPE_USER_ALIGN (type) && !is_packed)
5887 || targetm.vectorize.
5888 support_vector_misalignment (mode, type,
5889 DR_MISALIGNMENT (dr), is_packed))
5890 /* Can't software pipeline the loads, but can at least do them. */
5891 return dr_unaligned_supported;
5893 else
5895 bool is_packed = false;
5896 tree type = (TREE_TYPE (DR_REF (dr)));
5898 if (!known_alignment_for_access_p (dr))
5899 is_packed = not_size_aligned (DR_REF (dr));
5901 if ((TYPE_USER_ALIGN (type) && !is_packed)
5902 || targetm.vectorize.
5903 support_vector_misalignment (mode, type,
5904 DR_MISALIGNMENT (dr), is_packed))
5905 return dr_unaligned_supported;
5908 /* Unsupported. */
5909 return dr_unaligned_unsupported;