mangle.c (java_mangle_decl): Remove dead check.
[official-gcc.git] / gcc / ggc-page.c
blobea637b1b63c2869f4eed2362cebe3d4d639e9249
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "tree-flow.h"
35 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
36 file open. Prefer either to valloc. */
37 #ifdef HAVE_MMAP_ANON
38 # undef HAVE_MMAP_DEV_ZERO
40 # include <sys/mman.h>
41 # ifndef MAP_FAILED
42 # define MAP_FAILED -1
43 # endif
44 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
45 # define MAP_ANONYMOUS MAP_ANON
46 # endif
47 # define USING_MMAP
49 #endif
51 #ifdef HAVE_MMAP_DEV_ZERO
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # define USING_MMAP
59 #endif
61 #ifndef USING_MMAP
62 #define USING_MALLOC_PAGE_GROUPS
63 #endif
65 /* Strategy:
67 This garbage-collecting allocator allocates objects on one of a set
68 of pages. Each page can allocate objects of a single size only;
69 available sizes are powers of two starting at four bytes. The size
70 of an allocation request is rounded up to the next power of two
71 (`order'), and satisfied from the appropriate page.
73 Each page is recorded in a page-entry, which also maintains an
74 in-use bitmap of object positions on the page. This allows the
75 allocation state of a particular object to be flipped without
76 touching the page itself.
78 Each page-entry also has a context depth, which is used to track
79 pushing and popping of allocation contexts. Only objects allocated
80 in the current (highest-numbered) context may be collected.
82 Page entries are arranged in an array of singly-linked lists. The
83 array is indexed by the allocation size, in bits, of the pages on
84 it; i.e. all pages on a list allocate objects of the same size.
85 Pages are ordered on the list such that all non-full pages precede
86 all full pages, with non-full pages arranged in order of decreasing
87 context depth.
89 Empty pages (of all orders) are kept on a single page cache list,
90 and are considered first when new pages are required; they are
91 deallocated at the start of the next collection if they haven't
92 been recycled by then. */
94 /* Define GGC_DEBUG_LEVEL to print debugging information.
95 0: No debugging output.
96 1: GC statistics only.
97 2: Page-entry allocations/deallocations as well.
98 3: Object allocations as well.
99 4: Object marks as well. */
100 #define GGC_DEBUG_LEVEL (0)
102 #ifndef HOST_BITS_PER_PTR
103 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
104 #endif
107 /* A two-level tree is used to look up the page-entry for a given
108 pointer. Two chunks of the pointer's bits are extracted to index
109 the first and second levels of the tree, as follows:
111 HOST_PAGE_SIZE_BITS
112 32 | |
113 msb +----------------+----+------+------+ lsb
114 | | |
115 PAGE_L1_BITS |
117 PAGE_L2_BITS
119 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
120 pages are aligned on system page boundaries. The next most
121 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
122 index values in the lookup table, respectively.
124 For 32-bit architectures and the settings below, there are no
125 leftover bits. For architectures with wider pointers, the lookup
126 tree points to a list of pages, which must be scanned to find the
127 correct one. */
129 #define PAGE_L1_BITS (8)
130 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
131 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
132 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
134 #define LOOKUP_L1(p) \
135 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
137 #define LOOKUP_L2(p) \
138 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
140 /* The number of objects per allocation page, for objects on a page of
141 the indicated ORDER. */
142 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
144 /* The number of objects in P. */
145 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
147 /* The size of an object on a page of the indicated ORDER. */
148 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
150 /* For speed, we avoid doing a general integer divide to locate the
151 offset in the allocation bitmap, by precalculating numbers M, S
152 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
153 within the page which is evenly divisible by the object size Z. */
154 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
155 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
156 #define OFFSET_TO_BIT(OFFSET, ORDER) \
157 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
159 /* The number of extra orders, not corresponding to power-of-two sized
160 objects. */
162 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
164 #define RTL_SIZE(NSLOTS) \
165 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
167 #define TREE_EXP_SIZE(OPS) \
168 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
170 /* The Ith entry is the maximum size of an object to be stored in the
171 Ith extra order. Adding a new entry to this array is the *only*
172 thing you need to do to add a new special allocation size. */
174 static const size_t extra_order_size_table[] = {
175 sizeof (struct stmt_ann_d),
176 sizeof (struct var_ann_d),
177 sizeof (struct tree_decl_non_common),
178 sizeof (struct tree_field_decl),
179 sizeof (struct tree_parm_decl),
180 sizeof (struct tree_var_decl),
181 sizeof (struct tree_list),
182 sizeof (struct tree_ssa_name),
183 sizeof (struct function),
184 sizeof (struct basic_block_def),
185 sizeof (bitmap_element),
186 sizeof (bitmap_head),
187 /* PHI nodes with one to three arguments are already covered by the
188 above sizes. */
189 sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
190 TREE_EXP_SIZE (2),
191 RTL_SIZE (2), /* MEM, PLUS, etc. */
192 RTL_SIZE (9), /* INSN */
195 /* The total number of orders. */
197 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
199 /* We use this structure to determine the alignment required for
200 allocations. For power-of-two sized allocations, that's not a
201 problem, but it does matter for odd-sized allocations. */
203 struct max_alignment {
204 char c;
205 union {
206 HOST_WIDEST_INT i;
207 long double d;
208 } u;
211 /* The biggest alignment required. */
213 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
215 /* Compute the smallest nonnegative number which when added to X gives
216 a multiple of F. */
218 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
220 /* Compute the smallest multiple of F that is >= X. */
222 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
224 /* The Ith entry is the number of objects on a page or order I. */
226 static unsigned objects_per_page_table[NUM_ORDERS];
228 /* The Ith entry is the size of an object on a page of order I. */
230 static size_t object_size_table[NUM_ORDERS];
232 /* The Ith entry is a pair of numbers (mult, shift) such that
233 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
234 for all k evenly divisible by OBJECT_SIZE(I). */
236 static struct
238 size_t mult;
239 unsigned int shift;
241 inverse_table[NUM_ORDERS];
243 /* A page_entry records the status of an allocation page. This
244 structure is dynamically sized to fit the bitmap in_use_p. */
245 typedef struct page_entry
247 /* The next page-entry with objects of the same size, or NULL if
248 this is the last page-entry. */
249 struct page_entry *next;
251 /* The previous page-entry with objects of the same size, or NULL if
252 this is the first page-entry. The PREV pointer exists solely to
253 keep the cost of ggc_free manageable. */
254 struct page_entry *prev;
256 /* The number of bytes allocated. (This will always be a multiple
257 of the host system page size.) */
258 size_t bytes;
260 /* The address at which the memory is allocated. */
261 char *page;
263 #ifdef USING_MALLOC_PAGE_GROUPS
264 /* Back pointer to the page group this page came from. */
265 struct page_group *group;
266 #endif
268 /* This is the index in the by_depth varray where this page table
269 can be found. */
270 unsigned long index_by_depth;
272 /* Context depth of this page. */
273 unsigned short context_depth;
275 /* The number of free objects remaining on this page. */
276 unsigned short num_free_objects;
278 /* A likely candidate for the bit position of a free object for the
279 next allocation from this page. */
280 unsigned short next_bit_hint;
282 /* The lg of size of objects allocated from this page. */
283 unsigned char order;
285 /* A bit vector indicating whether or not objects are in use. The
286 Nth bit is one if the Nth object on this page is allocated. This
287 array is dynamically sized. */
288 unsigned long in_use_p[1];
289 } page_entry;
291 #ifdef USING_MALLOC_PAGE_GROUPS
292 /* A page_group describes a large allocation from malloc, from which
293 we parcel out aligned pages. */
294 typedef struct page_group
296 /* A linked list of all extant page groups. */
297 struct page_group *next;
299 /* The address we received from malloc. */
300 char *allocation;
302 /* The size of the block. */
303 size_t alloc_size;
305 /* A bitmask of pages in use. */
306 unsigned int in_use;
307 } page_group;
308 #endif
310 #if HOST_BITS_PER_PTR <= 32
312 /* On 32-bit hosts, we use a two level page table, as pictured above. */
313 typedef page_entry **page_table[PAGE_L1_SIZE];
315 #else
317 /* On 64-bit hosts, we use the same two level page tables plus a linked
318 list that disambiguates the top 32-bits. There will almost always be
319 exactly one entry in the list. */
320 typedef struct page_table_chain
322 struct page_table_chain *next;
323 size_t high_bits;
324 page_entry **table[PAGE_L1_SIZE];
325 } *page_table;
327 #endif
329 /* The rest of the global variables. */
330 static struct globals
332 /* The Nth element in this array is a page with objects of size 2^N.
333 If there are any pages with free objects, they will be at the
334 head of the list. NULL if there are no page-entries for this
335 object size. */
336 page_entry *pages[NUM_ORDERS];
338 /* The Nth element in this array is the last page with objects of
339 size 2^N. NULL if there are no page-entries for this object
340 size. */
341 page_entry *page_tails[NUM_ORDERS];
343 /* Lookup table for associating allocation pages with object addresses. */
344 page_table lookup;
346 /* The system's page size. */
347 size_t pagesize;
348 size_t lg_pagesize;
350 /* Bytes currently allocated. */
351 size_t allocated;
353 /* Bytes currently allocated at the end of the last collection. */
354 size_t allocated_last_gc;
356 /* Total amount of memory mapped. */
357 size_t bytes_mapped;
359 /* Bit N set if any allocations have been done at context depth N. */
360 unsigned long context_depth_allocations;
362 /* Bit N set if any collections have been done at context depth N. */
363 unsigned long context_depth_collections;
365 /* The current depth in the context stack. */
366 unsigned short context_depth;
368 /* A file descriptor open to /dev/zero for reading. */
369 #if defined (HAVE_MMAP_DEV_ZERO)
370 int dev_zero_fd;
371 #endif
373 /* A cache of free system pages. */
374 page_entry *free_pages;
376 #ifdef USING_MALLOC_PAGE_GROUPS
377 page_group *page_groups;
378 #endif
380 /* The file descriptor for debugging output. */
381 FILE *debug_file;
383 /* Current number of elements in use in depth below. */
384 unsigned int depth_in_use;
386 /* Maximum number of elements that can be used before resizing. */
387 unsigned int depth_max;
389 /* Each element of this arry is an index in by_depth where the given
390 depth starts. This structure is indexed by that given depth we
391 are interested in. */
392 unsigned int *depth;
394 /* Current number of elements in use in by_depth below. */
395 unsigned int by_depth_in_use;
397 /* Maximum number of elements that can be used before resizing. */
398 unsigned int by_depth_max;
400 /* Each element of this array is a pointer to a page_entry, all
401 page_entries can be found in here by increasing depth.
402 index_by_depth in the page_entry is the index into this data
403 structure where that page_entry can be found. This is used to
404 speed up finding all page_entries at a particular depth. */
405 page_entry **by_depth;
407 /* Each element is a pointer to the saved in_use_p bits, if any,
408 zero otherwise. We allocate them all together, to enable a
409 better runtime data access pattern. */
410 unsigned long **save_in_use;
412 #ifdef ENABLE_GC_ALWAYS_COLLECT
413 /* List of free objects to be verified as actually free on the
414 next collection. */
415 struct free_object
417 void *object;
418 struct free_object *next;
419 } *free_object_list;
420 #endif
422 #ifdef GATHER_STATISTICS
423 struct
425 /* Total memory allocated with ggc_alloc. */
426 unsigned long long total_allocated;
427 /* Total overhead for memory to be allocated with ggc_alloc. */
428 unsigned long long total_overhead;
430 /* Total allocations and overhead for sizes less than 32, 64 and 128.
431 These sizes are interesting because they are typical cache line
432 sizes. */
434 unsigned long long total_allocated_under32;
435 unsigned long long total_overhead_under32;
437 unsigned long long total_allocated_under64;
438 unsigned long long total_overhead_under64;
440 unsigned long long total_allocated_under128;
441 unsigned long long total_overhead_under128;
443 /* The allocations for each of the allocation orders. */
444 unsigned long long total_allocated_per_order[NUM_ORDERS];
446 /* The overhead for each of the allocation orders. */
447 unsigned long long total_overhead_per_order[NUM_ORDERS];
448 } stats;
449 #endif
450 } G;
452 /* The size in bytes required to maintain a bitmap for the objects
453 on a page-entry. */
454 #define BITMAP_SIZE(Num_objects) \
455 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
457 /* Allocate pages in chunks of this size, to throttle calls to memory
458 allocation routines. The first page is used, the rest go onto the
459 free list. This cannot be larger than HOST_BITS_PER_INT for the
460 in_use bitmask for page_group. Hosts that need a different value
461 can override this by defining GGC_QUIRE_SIZE explicitly. */
462 #ifndef GGC_QUIRE_SIZE
463 # ifdef USING_MMAP
464 # define GGC_QUIRE_SIZE 256
465 # else
466 # define GGC_QUIRE_SIZE 16
467 # endif
468 #endif
470 /* Initial guess as to how many page table entries we might need. */
471 #define INITIAL_PTE_COUNT 128
473 static int ggc_allocated_p (const void *);
474 static page_entry *lookup_page_table_entry (const void *);
475 static void set_page_table_entry (void *, page_entry *);
476 #ifdef USING_MMAP
477 static char *alloc_anon (char *, size_t);
478 #endif
479 #ifdef USING_MALLOC_PAGE_GROUPS
480 static size_t page_group_index (char *, char *);
481 static void set_page_group_in_use (page_group *, char *);
482 static void clear_page_group_in_use (page_group *, char *);
483 #endif
484 static struct page_entry * alloc_page (unsigned);
485 static void free_page (struct page_entry *);
486 static void release_pages (void);
487 static void clear_marks (void);
488 static void sweep_pages (void);
489 static void ggc_recalculate_in_use_p (page_entry *);
490 static void compute_inverse (unsigned);
491 static inline void adjust_depth (void);
492 static void move_ptes_to_front (int, int);
494 void debug_print_page_list (int);
495 static void push_depth (unsigned int);
496 static void push_by_depth (page_entry *, unsigned long *);
498 /* Push an entry onto G.depth. */
500 inline static void
501 push_depth (unsigned int i)
503 if (G.depth_in_use >= G.depth_max)
505 G.depth_max *= 2;
506 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
508 G.depth[G.depth_in_use++] = i;
511 /* Push an entry onto G.by_depth and G.save_in_use. */
513 inline static void
514 push_by_depth (page_entry *p, unsigned long *s)
516 if (G.by_depth_in_use >= G.by_depth_max)
518 G.by_depth_max *= 2;
519 G.by_depth = xrealloc (G.by_depth,
520 G.by_depth_max * sizeof (page_entry *));
521 G.save_in_use = xrealloc (G.save_in_use,
522 G.by_depth_max * sizeof (unsigned long *));
524 G.by_depth[G.by_depth_in_use] = p;
525 G.save_in_use[G.by_depth_in_use++] = s;
528 #if (GCC_VERSION < 3001)
529 #define prefetch(X) ((void) X)
530 #else
531 #define prefetch(X) __builtin_prefetch (X)
532 #endif
534 #define save_in_use_p_i(__i) \
535 (G.save_in_use[__i])
536 #define save_in_use_p(__p) \
537 (save_in_use_p_i (__p->index_by_depth))
539 /* Returns nonzero if P was allocated in GC'able memory. */
541 static inline int
542 ggc_allocated_p (const void *p)
544 page_entry ***base;
545 size_t L1, L2;
547 #if HOST_BITS_PER_PTR <= 32
548 base = &G.lookup[0];
549 #else
550 page_table table = G.lookup;
551 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
552 while (1)
554 if (table == NULL)
555 return 0;
556 if (table->high_bits == high_bits)
557 break;
558 table = table->next;
560 base = &table->table[0];
561 #endif
563 /* Extract the level 1 and 2 indices. */
564 L1 = LOOKUP_L1 (p);
565 L2 = LOOKUP_L2 (p);
567 return base[L1] && base[L1][L2];
570 /* Traverse the page table and find the entry for a page.
571 Die (probably) if the object wasn't allocated via GC. */
573 static inline page_entry *
574 lookup_page_table_entry (const void *p)
576 page_entry ***base;
577 size_t L1, L2;
579 #if HOST_BITS_PER_PTR <= 32
580 base = &G.lookup[0];
581 #else
582 page_table table = G.lookup;
583 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
584 while (table->high_bits != high_bits)
585 table = table->next;
586 base = &table->table[0];
587 #endif
589 /* Extract the level 1 and 2 indices. */
590 L1 = LOOKUP_L1 (p);
591 L2 = LOOKUP_L2 (p);
593 return base[L1][L2];
596 /* Set the page table entry for a page. */
598 static void
599 set_page_table_entry (void *p, page_entry *entry)
601 page_entry ***base;
602 size_t L1, L2;
604 #if HOST_BITS_PER_PTR <= 32
605 base = &G.lookup[0];
606 #else
607 page_table table;
608 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
609 for (table = G.lookup; table; table = table->next)
610 if (table->high_bits == high_bits)
611 goto found;
613 /* Not found -- allocate a new table. */
614 table = xcalloc (1, sizeof(*table));
615 table->next = G.lookup;
616 table->high_bits = high_bits;
617 G.lookup = table;
618 found:
619 base = &table->table[0];
620 #endif
622 /* Extract the level 1 and 2 indices. */
623 L1 = LOOKUP_L1 (p);
624 L2 = LOOKUP_L2 (p);
626 if (base[L1] == NULL)
627 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
629 base[L1][L2] = entry;
632 /* Prints the page-entry for object size ORDER, for debugging. */
634 void
635 debug_print_page_list (int order)
637 page_entry *p;
638 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
639 (void *) G.page_tails[order]);
640 p = G.pages[order];
641 while (p != NULL)
643 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
644 p->num_free_objects);
645 p = p->next;
647 printf ("NULL\n");
648 fflush (stdout);
651 #ifdef USING_MMAP
652 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
653 (if non-null). The ifdef structure here is intended to cause a
654 compile error unless exactly one of the HAVE_* is defined. */
656 static inline char *
657 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
659 #ifdef HAVE_MMAP_ANON
660 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
661 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
662 #endif
663 #ifdef HAVE_MMAP_DEV_ZERO
664 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
665 MAP_PRIVATE, G.dev_zero_fd, 0);
666 #endif
668 if (page == (char *) MAP_FAILED)
670 perror ("virtual memory exhausted");
671 exit (FATAL_EXIT_CODE);
674 /* Remember that we allocated this memory. */
675 G.bytes_mapped += size;
677 /* Pretend we don't have access to the allocated pages. We'll enable
678 access to smaller pieces of the area in ggc_alloc. Discard the
679 handle to avoid handle leak. */
680 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
682 return page;
684 #endif
685 #ifdef USING_MALLOC_PAGE_GROUPS
686 /* Compute the index for this page into the page group. */
688 static inline size_t
689 page_group_index (char *allocation, char *page)
691 return (size_t) (page - allocation) >> G.lg_pagesize;
694 /* Set and clear the in_use bit for this page in the page group. */
696 static inline void
697 set_page_group_in_use (page_group *group, char *page)
699 group->in_use |= 1 << page_group_index (group->allocation, page);
702 static inline void
703 clear_page_group_in_use (page_group *group, char *page)
705 group->in_use &= ~(1 << page_group_index (group->allocation, page));
707 #endif
709 /* Allocate a new page for allocating objects of size 2^ORDER,
710 and return an entry for it. The entry is not added to the
711 appropriate page_table list. */
713 static inline struct page_entry *
714 alloc_page (unsigned order)
716 struct page_entry *entry, *p, **pp;
717 char *page;
718 size_t num_objects;
719 size_t bitmap_size;
720 size_t page_entry_size;
721 size_t entry_size;
722 #ifdef USING_MALLOC_PAGE_GROUPS
723 page_group *group;
724 #endif
726 num_objects = OBJECTS_PER_PAGE (order);
727 bitmap_size = BITMAP_SIZE (num_objects + 1);
728 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
729 entry_size = num_objects * OBJECT_SIZE (order);
730 if (entry_size < G.pagesize)
731 entry_size = G.pagesize;
733 entry = NULL;
734 page = NULL;
736 /* Check the list of free pages for one we can use. */
737 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
738 if (p->bytes == entry_size)
739 break;
741 if (p != NULL)
743 /* Recycle the allocated memory from this page ... */
744 *pp = p->next;
745 page = p->page;
747 #ifdef USING_MALLOC_PAGE_GROUPS
748 group = p->group;
749 #endif
751 /* ... and, if possible, the page entry itself. */
752 if (p->order == order)
754 entry = p;
755 memset (entry, 0, page_entry_size);
757 else
758 free (p);
760 #ifdef USING_MMAP
761 else if (entry_size == G.pagesize)
763 /* We want just one page. Allocate a bunch of them and put the
764 extras on the freelist. (Can only do this optimization with
765 mmap for backing store.) */
766 struct page_entry *e, *f = G.free_pages;
767 int i;
769 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
771 /* This loop counts down so that the chain will be in ascending
772 memory order. */
773 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
775 e = xcalloc (1, page_entry_size);
776 e->order = order;
777 e->bytes = G.pagesize;
778 e->page = page + (i << G.lg_pagesize);
779 e->next = f;
780 f = e;
783 G.free_pages = f;
785 else
786 page = alloc_anon (NULL, entry_size);
787 #endif
788 #ifdef USING_MALLOC_PAGE_GROUPS
789 else
791 /* Allocate a large block of memory and serve out the aligned
792 pages therein. This results in much less memory wastage
793 than the traditional implementation of valloc. */
795 char *allocation, *a, *enda;
796 size_t alloc_size, head_slop, tail_slop;
797 int multiple_pages = (entry_size == G.pagesize);
799 if (multiple_pages)
800 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
801 else
802 alloc_size = entry_size + G.pagesize - 1;
803 allocation = xmalloc (alloc_size);
805 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
806 head_slop = page - allocation;
807 if (multiple_pages)
808 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
809 else
810 tail_slop = alloc_size - entry_size - head_slop;
811 enda = allocation + alloc_size - tail_slop;
813 /* We allocated N pages, which are likely not aligned, leaving
814 us with N-1 usable pages. We plan to place the page_group
815 structure somewhere in the slop. */
816 if (head_slop >= sizeof (page_group))
817 group = (page_group *)page - 1;
818 else
820 /* We magically got an aligned allocation. Too bad, we have
821 to waste a page anyway. */
822 if (tail_slop == 0)
824 enda -= G.pagesize;
825 tail_slop += G.pagesize;
827 gcc_assert (tail_slop >= sizeof (page_group));
828 group = (page_group *)enda;
829 tail_slop -= sizeof (page_group);
832 /* Remember that we allocated this memory. */
833 group->next = G.page_groups;
834 group->allocation = allocation;
835 group->alloc_size = alloc_size;
836 group->in_use = 0;
837 G.page_groups = group;
838 G.bytes_mapped += alloc_size;
840 /* If we allocated multiple pages, put the rest on the free list. */
841 if (multiple_pages)
843 struct page_entry *e, *f = G.free_pages;
844 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
846 e = xcalloc (1, page_entry_size);
847 e->order = order;
848 e->bytes = G.pagesize;
849 e->page = a;
850 e->group = group;
851 e->next = f;
852 f = e;
854 G.free_pages = f;
857 #endif
859 if (entry == NULL)
860 entry = xcalloc (1, page_entry_size);
862 entry->bytes = entry_size;
863 entry->page = page;
864 entry->context_depth = G.context_depth;
865 entry->order = order;
866 entry->num_free_objects = num_objects;
867 entry->next_bit_hint = 1;
869 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
871 #ifdef USING_MALLOC_PAGE_GROUPS
872 entry->group = group;
873 set_page_group_in_use (group, page);
874 #endif
876 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
877 increment the hint. */
878 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
879 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
881 set_page_table_entry (page, entry);
883 if (GGC_DEBUG_LEVEL >= 2)
884 fprintf (G.debug_file,
885 "Allocating page at %p, object size=%lu, data %p-%p\n",
886 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
887 page + entry_size - 1);
889 return entry;
892 /* Adjust the size of G.depth so that no index greater than the one
893 used by the top of the G.by_depth is used. */
895 static inline void
896 adjust_depth (void)
898 page_entry *top;
900 if (G.by_depth_in_use)
902 top = G.by_depth[G.by_depth_in_use-1];
904 /* Peel back indices in depth that index into by_depth, so that
905 as new elements are added to by_depth, we note the indices
906 of those elements, if they are for new context depths. */
907 while (G.depth_in_use > (size_t)top->context_depth+1)
908 --G.depth_in_use;
912 /* For a page that is no longer needed, put it on the free page list. */
914 static void
915 free_page (page_entry *entry)
917 if (GGC_DEBUG_LEVEL >= 2)
918 fprintf (G.debug_file,
919 "Deallocating page at %p, data %p-%p\n", (void *) entry,
920 entry->page, entry->page + entry->bytes - 1);
922 /* Mark the page as inaccessible. Discard the handle to avoid handle
923 leak. */
924 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
926 set_page_table_entry (entry->page, NULL);
928 #ifdef USING_MALLOC_PAGE_GROUPS
929 clear_page_group_in_use (entry->group, entry->page);
930 #endif
932 if (G.by_depth_in_use > 1)
934 page_entry *top = G.by_depth[G.by_depth_in_use-1];
935 int i = entry->index_by_depth;
937 /* We cannot free a page from a context deeper than the current
938 one. */
939 gcc_assert (entry->context_depth == top->context_depth);
941 /* Put top element into freed slot. */
942 G.by_depth[i] = top;
943 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
944 top->index_by_depth = i;
946 --G.by_depth_in_use;
948 adjust_depth ();
950 entry->next = G.free_pages;
951 G.free_pages = entry;
954 /* Release the free page cache to the system. */
956 static void
957 release_pages (void)
959 #ifdef USING_MMAP
960 page_entry *p, *next;
961 char *start;
962 size_t len;
964 /* Gather up adjacent pages so they are unmapped together. */
965 p = G.free_pages;
967 while (p)
969 start = p->page;
970 next = p->next;
971 len = p->bytes;
972 free (p);
973 p = next;
975 while (p && p->page == start + len)
977 next = p->next;
978 len += p->bytes;
979 free (p);
980 p = next;
983 munmap (start, len);
984 G.bytes_mapped -= len;
987 G.free_pages = NULL;
988 #endif
989 #ifdef USING_MALLOC_PAGE_GROUPS
990 page_entry **pp, *p;
991 page_group **gp, *g;
993 /* Remove all pages from free page groups from the list. */
994 pp = &G.free_pages;
995 while ((p = *pp) != NULL)
996 if (p->group->in_use == 0)
998 *pp = p->next;
999 free (p);
1001 else
1002 pp = &p->next;
1004 /* Remove all free page groups, and release the storage. */
1005 gp = &G.page_groups;
1006 while ((g = *gp) != NULL)
1007 if (g->in_use == 0)
1009 *gp = g->next;
1010 G.bytes_mapped -= g->alloc_size;
1011 free (g->allocation);
1013 else
1014 gp = &g->next;
1015 #endif
1018 /* This table provides a fast way to determine ceil(log_2(size)) for
1019 allocation requests. The minimum allocation size is eight bytes. */
1020 #define NUM_SIZE_LOOKUP 512
1021 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1023 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1024 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1025 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1026 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1027 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1028 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1029 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1030 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1031 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1032 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1033 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1040 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1041 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1042 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1043 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1044 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1045 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1046 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1047 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1048 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1049 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1050 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1051 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1052 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1053 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1054 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1057 /* Typed allocation function. Does nothing special in this collector. */
1059 void *
1060 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1061 MEM_STAT_DECL)
1063 return ggc_alloc_stat (size PASS_MEM_STAT);
1066 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1068 void *
1069 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1071 size_t order, word, bit, object_offset, object_size;
1072 struct page_entry *entry;
1073 void *result;
1075 if (size < NUM_SIZE_LOOKUP)
1077 order = size_lookup[size];
1078 object_size = OBJECT_SIZE (order);
1080 else
1082 order = 10;
1083 while (size > (object_size = OBJECT_SIZE (order)))
1084 order++;
1087 /* If there are non-full pages for this size allocation, they are at
1088 the head of the list. */
1089 entry = G.pages[order];
1091 /* If there is no page for this object size, or all pages in this
1092 context are full, allocate a new page. */
1093 if (entry == NULL || entry->num_free_objects == 0)
1095 struct page_entry *new_entry;
1096 new_entry = alloc_page (order);
1098 new_entry->index_by_depth = G.by_depth_in_use;
1099 push_by_depth (new_entry, 0);
1101 /* We can skip context depths, if we do, make sure we go all the
1102 way to the new depth. */
1103 while (new_entry->context_depth >= G.depth_in_use)
1104 push_depth (G.by_depth_in_use-1);
1106 /* If this is the only entry, it's also the tail. If it is not
1107 the only entry, then we must update the PREV pointer of the
1108 ENTRY (G.pages[order]) to point to our new page entry. */
1109 if (entry == NULL)
1110 G.page_tails[order] = new_entry;
1111 else
1112 entry->prev = new_entry;
1114 /* Put new pages at the head of the page list. By definition the
1115 entry at the head of the list always has a NULL pointer. */
1116 new_entry->next = entry;
1117 new_entry->prev = NULL;
1118 entry = new_entry;
1119 G.pages[order] = new_entry;
1121 /* For a new page, we know the word and bit positions (in the
1122 in_use bitmap) of the first available object -- they're zero. */
1123 new_entry->next_bit_hint = 1;
1124 word = 0;
1125 bit = 0;
1126 object_offset = 0;
1128 else
1130 /* First try to use the hint left from the previous allocation
1131 to locate a clear bit in the in-use bitmap. We've made sure
1132 that the one-past-the-end bit is always set, so if the hint
1133 has run over, this test will fail. */
1134 unsigned hint = entry->next_bit_hint;
1135 word = hint / HOST_BITS_PER_LONG;
1136 bit = hint % HOST_BITS_PER_LONG;
1138 /* If the hint didn't work, scan the bitmap from the beginning. */
1139 if ((entry->in_use_p[word] >> bit) & 1)
1141 word = bit = 0;
1142 while (~entry->in_use_p[word] == 0)
1143 ++word;
1145 #if GCC_VERSION >= 3004
1146 bit = __builtin_ctzl (~entry->in_use_p[word]);
1147 #else
1148 while ((entry->in_use_p[word] >> bit) & 1)
1149 ++bit;
1150 #endif
1152 hint = word * HOST_BITS_PER_LONG + bit;
1155 /* Next time, try the next bit. */
1156 entry->next_bit_hint = hint + 1;
1158 object_offset = hint * object_size;
1161 /* Set the in-use bit. */
1162 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1164 /* Keep a running total of the number of free objects. If this page
1165 fills up, we may have to move it to the end of the list if the
1166 next page isn't full. If the next page is full, all subsequent
1167 pages are full, so there's no need to move it. */
1168 if (--entry->num_free_objects == 0
1169 && entry->next != NULL
1170 && entry->next->num_free_objects > 0)
1172 /* We have a new head for the list. */
1173 G.pages[order] = entry->next;
1175 /* We are moving ENTRY to the end of the page table list.
1176 The new page at the head of the list will have NULL in
1177 its PREV field and ENTRY will have NULL in its NEXT field. */
1178 entry->next->prev = NULL;
1179 entry->next = NULL;
1181 /* Append ENTRY to the tail of the list. */
1182 entry->prev = G.page_tails[order];
1183 G.page_tails[order]->next = entry;
1184 G.page_tails[order] = entry;
1187 /* Calculate the object's address. */
1188 result = entry->page + object_offset;
1189 #ifdef GATHER_STATISTICS
1190 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1191 result PASS_MEM_STAT);
1192 #endif
1194 #ifdef ENABLE_GC_CHECKING
1195 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1196 exact same semantics in presence of memory bugs, regardless of
1197 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1198 handle to avoid handle leak. */
1199 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1201 /* `Poison' the entire allocated object, including any padding at
1202 the end. */
1203 memset (result, 0xaf, object_size);
1205 /* Make the bytes after the end of the object unaccessible. Discard the
1206 handle to avoid handle leak. */
1207 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1208 object_size - size));
1209 #endif
1211 /* Tell Valgrind that the memory is there, but its content isn't
1212 defined. The bytes at the end of the object are still marked
1213 unaccessible. */
1214 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1216 /* Keep track of how many bytes are being allocated. This
1217 information is used in deciding when to collect. */
1218 G.allocated += object_size;
1220 /* For timevar statistics. */
1221 timevar_ggc_mem_total += object_size;
1223 #ifdef GATHER_STATISTICS
1225 size_t overhead = object_size - size;
1227 G.stats.total_overhead += overhead;
1228 G.stats.total_allocated += object_size;
1229 G.stats.total_overhead_per_order[order] += overhead;
1230 G.stats.total_allocated_per_order[order] += object_size;
1232 if (size <= 32)
1234 G.stats.total_overhead_under32 += overhead;
1235 G.stats.total_allocated_under32 += object_size;
1237 if (size <= 64)
1239 G.stats.total_overhead_under64 += overhead;
1240 G.stats.total_allocated_under64 += object_size;
1242 if (size <= 128)
1244 G.stats.total_overhead_under128 += overhead;
1245 G.stats.total_allocated_under128 += object_size;
1248 #endif
1250 if (GGC_DEBUG_LEVEL >= 3)
1251 fprintf (G.debug_file,
1252 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1253 (unsigned long) size, (unsigned long) object_size, result,
1254 (void *) entry);
1256 return result;
1259 /* If P is not marked, marks it and return false. Otherwise return true.
1260 P must have been allocated by the GC allocator; it mustn't point to
1261 static objects, stack variables, or memory allocated with malloc. */
1264 ggc_set_mark (const void *p)
1266 page_entry *entry;
1267 unsigned bit, word;
1268 unsigned long mask;
1270 /* Look up the page on which the object is alloced. If the object
1271 wasn't allocated by the collector, we'll probably die. */
1272 entry = lookup_page_table_entry (p);
1273 gcc_assert (entry);
1275 /* Calculate the index of the object on the page; this is its bit
1276 position in the in_use_p bitmap. */
1277 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1278 word = bit / HOST_BITS_PER_LONG;
1279 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1281 /* If the bit was previously set, skip it. */
1282 if (entry->in_use_p[word] & mask)
1283 return 1;
1285 /* Otherwise set it, and decrement the free object count. */
1286 entry->in_use_p[word] |= mask;
1287 entry->num_free_objects -= 1;
1289 if (GGC_DEBUG_LEVEL >= 4)
1290 fprintf (G.debug_file, "Marking %p\n", p);
1292 return 0;
1295 /* Return 1 if P has been marked, zero otherwise.
1296 P must have been allocated by the GC allocator; it mustn't point to
1297 static objects, stack variables, or memory allocated with malloc. */
1300 ggc_marked_p (const void *p)
1302 page_entry *entry;
1303 unsigned bit, word;
1304 unsigned long mask;
1306 /* Look up the page on which the object is alloced. If the object
1307 wasn't allocated by the collector, we'll probably die. */
1308 entry = lookup_page_table_entry (p);
1309 gcc_assert (entry);
1311 /* Calculate the index of the object on the page; this is its bit
1312 position in the in_use_p bitmap. */
1313 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1314 word = bit / HOST_BITS_PER_LONG;
1315 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1317 return (entry->in_use_p[word] & mask) != 0;
1320 /* Return the size of the gc-able object P. */
1322 size_t
1323 ggc_get_size (const void *p)
1325 page_entry *pe = lookup_page_table_entry (p);
1326 return OBJECT_SIZE (pe->order);
1329 /* Release the memory for object P. */
1331 void
1332 ggc_free (void *p)
1334 page_entry *pe = lookup_page_table_entry (p);
1335 size_t order = pe->order;
1336 size_t size = OBJECT_SIZE (order);
1338 #ifdef GATHER_STATISTICS
1339 ggc_free_overhead (p);
1340 #endif
1342 if (GGC_DEBUG_LEVEL >= 3)
1343 fprintf (G.debug_file,
1344 "Freeing object, actual size=%lu, at %p on %p\n",
1345 (unsigned long) size, p, (void *) pe);
1347 #ifdef ENABLE_GC_CHECKING
1348 /* Poison the data, to indicate the data is garbage. */
1349 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1350 memset (p, 0xa5, size);
1351 #endif
1352 /* Let valgrind know the object is free. */
1353 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1355 #ifdef ENABLE_GC_ALWAYS_COLLECT
1356 /* In the completely-anal-checking mode, we do *not* immediately free
1357 the data, but instead verify that the data is *actually* not
1358 reachable the next time we collect. */
1360 struct free_object *fo = XNEW (struct free_object);
1361 fo->object = p;
1362 fo->next = G.free_object_list;
1363 G.free_object_list = fo;
1365 #else
1367 unsigned int bit_offset, word, bit;
1369 G.allocated -= size;
1371 /* Mark the object not-in-use. */
1372 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1373 word = bit_offset / HOST_BITS_PER_LONG;
1374 bit = bit_offset % HOST_BITS_PER_LONG;
1375 pe->in_use_p[word] &= ~(1UL << bit);
1377 if (pe->num_free_objects++ == 0)
1379 page_entry *p, *q;
1381 /* If the page is completely full, then it's supposed to
1382 be after all pages that aren't. Since we've freed one
1383 object from a page that was full, we need to move the
1384 page to the head of the list.
1386 PE is the node we want to move. Q is the previous node
1387 and P is the next node in the list. */
1388 q = pe->prev;
1389 if (q && q->num_free_objects == 0)
1391 p = pe->next;
1393 q->next = p;
1395 /* If PE was at the end of the list, then Q becomes the
1396 new end of the list. If PE was not the end of the
1397 list, then we need to update the PREV field for P. */
1398 if (!p)
1399 G.page_tails[order] = q;
1400 else
1401 p->prev = q;
1403 /* Move PE to the head of the list. */
1404 pe->next = G.pages[order];
1405 pe->prev = NULL;
1406 G.pages[order]->prev = pe;
1407 G.pages[order] = pe;
1410 /* Reset the hint bit to point to the only free object. */
1411 pe->next_bit_hint = bit_offset;
1414 #endif
1417 /* Subroutine of init_ggc which computes the pair of numbers used to
1418 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1420 This algorithm is taken from Granlund and Montgomery's paper
1421 "Division by Invariant Integers using Multiplication"
1422 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1423 constants). */
1425 static void
1426 compute_inverse (unsigned order)
1428 size_t size, inv;
1429 unsigned int e;
1431 size = OBJECT_SIZE (order);
1432 e = 0;
1433 while (size % 2 == 0)
1435 e++;
1436 size >>= 1;
1439 inv = size;
1440 while (inv * size != 1)
1441 inv = inv * (2 - inv*size);
1443 DIV_MULT (order) = inv;
1444 DIV_SHIFT (order) = e;
1447 /* Initialize the ggc-mmap allocator. */
1448 void
1449 init_ggc (void)
1451 unsigned order;
1453 G.pagesize = getpagesize();
1454 G.lg_pagesize = exact_log2 (G.pagesize);
1456 #ifdef HAVE_MMAP_DEV_ZERO
1457 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1458 if (G.dev_zero_fd == -1)
1459 internal_error ("open /dev/zero: %m");
1460 #endif
1462 #if 0
1463 G.debug_file = fopen ("ggc-mmap.debug", "w");
1464 #else
1465 G.debug_file = stdout;
1466 #endif
1468 #ifdef USING_MMAP
1469 /* StunOS has an amazing off-by-one error for the first mmap allocation
1470 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1471 believe, is an unaligned page allocation, which would cause us to
1472 hork badly if we tried to use it. */
1474 char *p = alloc_anon (NULL, G.pagesize);
1475 struct page_entry *e;
1476 if ((size_t)p & (G.pagesize - 1))
1478 /* How losing. Discard this one and try another. If we still
1479 can't get something useful, give up. */
1481 p = alloc_anon (NULL, G.pagesize);
1482 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1485 /* We have a good page, might as well hold onto it... */
1486 e = XCNEW (struct page_entry);
1487 e->bytes = G.pagesize;
1488 e->page = p;
1489 e->next = G.free_pages;
1490 G.free_pages = e;
1492 #endif
1494 /* Initialize the object size table. */
1495 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1496 object_size_table[order] = (size_t) 1 << order;
1497 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1499 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1501 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1502 so that we're sure of getting aligned memory. */
1503 s = ROUND_UP (s, MAX_ALIGNMENT);
1504 object_size_table[order] = s;
1507 /* Initialize the objects-per-page and inverse tables. */
1508 for (order = 0; order < NUM_ORDERS; ++order)
1510 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1511 if (objects_per_page_table[order] == 0)
1512 objects_per_page_table[order] = 1;
1513 compute_inverse (order);
1516 /* Reset the size_lookup array to put appropriately sized objects in
1517 the special orders. All objects bigger than the previous power
1518 of two, but no greater than the special size, should go in the
1519 new order. */
1520 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1522 int o;
1523 int i;
1525 i = OBJECT_SIZE (order);
1526 if (i >= NUM_SIZE_LOOKUP)
1527 continue;
1529 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1530 size_lookup[i] = order;
1533 G.depth_in_use = 0;
1534 G.depth_max = 10;
1535 G.depth = XNEWVEC (unsigned int, G.depth_max);
1537 G.by_depth_in_use = 0;
1538 G.by_depth_max = INITIAL_PTE_COUNT;
1539 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1540 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1543 /* Start a new GGC zone. */
1545 struct alloc_zone *
1546 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1548 return NULL;
1551 /* Destroy a GGC zone. */
1552 void
1553 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1557 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1558 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1560 static void
1561 ggc_recalculate_in_use_p (page_entry *p)
1563 unsigned int i;
1564 size_t num_objects;
1566 /* Because the past-the-end bit in in_use_p is always set, we
1567 pretend there is one additional object. */
1568 num_objects = OBJECTS_IN_PAGE (p) + 1;
1570 /* Reset the free object count. */
1571 p->num_free_objects = num_objects;
1573 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1574 for (i = 0;
1575 i < CEIL (BITMAP_SIZE (num_objects),
1576 sizeof (*p->in_use_p));
1577 ++i)
1579 unsigned long j;
1581 /* Something is in use if it is marked, or if it was in use in a
1582 context further down the context stack. */
1583 p->in_use_p[i] |= save_in_use_p (p)[i];
1585 /* Decrement the free object count for every object allocated. */
1586 for (j = p->in_use_p[i]; j; j >>= 1)
1587 p->num_free_objects -= (j & 1);
1590 gcc_assert (p->num_free_objects < num_objects);
1593 /* Unmark all objects. */
1595 static void
1596 clear_marks (void)
1598 unsigned order;
1600 for (order = 2; order < NUM_ORDERS; order++)
1602 page_entry *p;
1604 for (p = G.pages[order]; p != NULL; p = p->next)
1606 size_t num_objects = OBJECTS_IN_PAGE (p);
1607 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1609 /* The data should be page-aligned. */
1610 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1612 /* Pages that aren't in the topmost context are not collected;
1613 nevertheless, we need their in-use bit vectors to store GC
1614 marks. So, back them up first. */
1615 if (p->context_depth < G.context_depth)
1617 if (! save_in_use_p (p))
1618 save_in_use_p (p) = xmalloc (bitmap_size);
1619 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1622 /* Reset reset the number of free objects and clear the
1623 in-use bits. These will be adjusted by mark_obj. */
1624 p->num_free_objects = num_objects;
1625 memset (p->in_use_p, 0, bitmap_size);
1627 /* Make sure the one-past-the-end bit is always set. */
1628 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1629 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1634 /* Free all empty pages. Partially empty pages need no attention
1635 because the `mark' bit doubles as an `unused' bit. */
1637 static void
1638 sweep_pages (void)
1640 unsigned order;
1642 for (order = 2; order < NUM_ORDERS; order++)
1644 /* The last page-entry to consider, regardless of entries
1645 placed at the end of the list. */
1646 page_entry * const last = G.page_tails[order];
1648 size_t num_objects;
1649 size_t live_objects;
1650 page_entry *p, *previous;
1651 int done;
1653 p = G.pages[order];
1654 if (p == NULL)
1655 continue;
1657 previous = NULL;
1660 page_entry *next = p->next;
1662 /* Loop until all entries have been examined. */
1663 done = (p == last);
1665 num_objects = OBJECTS_IN_PAGE (p);
1667 /* Add all live objects on this page to the count of
1668 allocated memory. */
1669 live_objects = num_objects - p->num_free_objects;
1671 G.allocated += OBJECT_SIZE (order) * live_objects;
1673 /* Only objects on pages in the topmost context should get
1674 collected. */
1675 if (p->context_depth < G.context_depth)
1678 /* Remove the page if it's empty. */
1679 else if (live_objects == 0)
1681 /* If P was the first page in the list, then NEXT
1682 becomes the new first page in the list, otherwise
1683 splice P out of the forward pointers. */
1684 if (! previous)
1685 G.pages[order] = next;
1686 else
1687 previous->next = next;
1689 /* Splice P out of the back pointers too. */
1690 if (next)
1691 next->prev = previous;
1693 /* Are we removing the last element? */
1694 if (p == G.page_tails[order])
1695 G.page_tails[order] = previous;
1696 free_page (p);
1697 p = previous;
1700 /* If the page is full, move it to the end. */
1701 else if (p->num_free_objects == 0)
1703 /* Don't move it if it's already at the end. */
1704 if (p != G.page_tails[order])
1706 /* Move p to the end of the list. */
1707 p->next = NULL;
1708 p->prev = G.page_tails[order];
1709 G.page_tails[order]->next = p;
1711 /* Update the tail pointer... */
1712 G.page_tails[order] = p;
1714 /* ... and the head pointer, if necessary. */
1715 if (! previous)
1716 G.pages[order] = next;
1717 else
1718 previous->next = next;
1720 /* And update the backpointer in NEXT if necessary. */
1721 if (next)
1722 next->prev = previous;
1724 p = previous;
1728 /* If we've fallen through to here, it's a page in the
1729 topmost context that is neither full nor empty. Such a
1730 page must precede pages at lesser context depth in the
1731 list, so move it to the head. */
1732 else if (p != G.pages[order])
1734 previous->next = p->next;
1736 /* Update the backchain in the next node if it exists. */
1737 if (p->next)
1738 p->next->prev = previous;
1740 /* Move P to the head of the list. */
1741 p->next = G.pages[order];
1742 p->prev = NULL;
1743 G.pages[order]->prev = p;
1745 /* Update the head pointer. */
1746 G.pages[order] = p;
1748 /* Are we moving the last element? */
1749 if (G.page_tails[order] == p)
1750 G.page_tails[order] = previous;
1751 p = previous;
1754 previous = p;
1755 p = next;
1757 while (! done);
1759 /* Now, restore the in_use_p vectors for any pages from contexts
1760 other than the current one. */
1761 for (p = G.pages[order]; p; p = p->next)
1762 if (p->context_depth != G.context_depth)
1763 ggc_recalculate_in_use_p (p);
1767 #ifdef ENABLE_GC_CHECKING
1768 /* Clobber all free objects. */
1770 static void
1771 poison_pages (void)
1773 unsigned order;
1775 for (order = 2; order < NUM_ORDERS; order++)
1777 size_t size = OBJECT_SIZE (order);
1778 page_entry *p;
1780 for (p = G.pages[order]; p != NULL; p = p->next)
1782 size_t num_objects;
1783 size_t i;
1785 if (p->context_depth != G.context_depth)
1786 /* Since we don't do any collection for pages in pushed
1787 contexts, there's no need to do any poisoning. And
1788 besides, the IN_USE_P array isn't valid until we pop
1789 contexts. */
1790 continue;
1792 num_objects = OBJECTS_IN_PAGE (p);
1793 for (i = 0; i < num_objects; i++)
1795 size_t word, bit;
1796 word = i / HOST_BITS_PER_LONG;
1797 bit = i % HOST_BITS_PER_LONG;
1798 if (((p->in_use_p[word] >> bit) & 1) == 0)
1800 char *object = p->page + i * size;
1802 /* Keep poison-by-write when we expect to use Valgrind,
1803 so the exact same memory semantics is kept, in case
1804 there are memory errors. We override this request
1805 below. */
1806 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1807 size));
1808 memset (object, 0xa5, size);
1810 /* Drop the handle to avoid handle leak. */
1811 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1817 #else
1818 #define poison_pages()
1819 #endif
1821 #ifdef ENABLE_GC_ALWAYS_COLLECT
1822 /* Validate that the reportedly free objects actually are. */
1824 static void
1825 validate_free_objects (void)
1827 struct free_object *f, *next, *still_free = NULL;
1829 for (f = G.free_object_list; f ; f = next)
1831 page_entry *pe = lookup_page_table_entry (f->object);
1832 size_t bit, word;
1834 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1835 word = bit / HOST_BITS_PER_LONG;
1836 bit = bit % HOST_BITS_PER_LONG;
1837 next = f->next;
1839 /* Make certain it isn't visible from any root. Notice that we
1840 do this check before sweep_pages merges save_in_use_p. */
1841 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1843 /* If the object comes from an outer context, then retain the
1844 free_object entry, so that we can verify that the address
1845 isn't live on the stack in some outer context. */
1846 if (pe->context_depth != G.context_depth)
1848 f->next = still_free;
1849 still_free = f;
1851 else
1852 free (f);
1855 G.free_object_list = still_free;
1857 #else
1858 #define validate_free_objects()
1859 #endif
1861 /* Top level mark-and-sweep routine. */
1863 void
1864 ggc_collect (void)
1866 /* Avoid frequent unnecessary work by skipping collection if the
1867 total allocations haven't expanded much since the last
1868 collection. */
1869 float allocated_last_gc =
1870 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1872 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1874 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1875 return;
1877 timevar_push (TV_GC);
1878 if (!quiet_flag)
1879 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1880 if (GGC_DEBUG_LEVEL >= 2)
1881 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1883 /* Zero the total allocated bytes. This will be recalculated in the
1884 sweep phase. */
1885 G.allocated = 0;
1887 /* Release the pages we freed the last time we collected, but didn't
1888 reuse in the interim. */
1889 release_pages ();
1891 /* Indicate that we've seen collections at this context depth. */
1892 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1894 clear_marks ();
1895 ggc_mark_roots ();
1896 #ifdef GATHER_STATISTICS
1897 ggc_prune_overhead_list ();
1898 #endif
1899 poison_pages ();
1900 validate_free_objects ();
1901 sweep_pages ();
1903 G.allocated_last_gc = G.allocated;
1905 timevar_pop (TV_GC);
1907 if (!quiet_flag)
1908 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1909 if (GGC_DEBUG_LEVEL >= 2)
1910 fprintf (G.debug_file, "END COLLECTING\n");
1913 /* Print allocation statistics. */
1914 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1915 ? (x) \
1916 : ((x) < 1024*1024*10 \
1917 ? (x) / 1024 \
1918 : (x) / (1024*1024))))
1919 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1921 void
1922 ggc_print_statistics (void)
1924 struct ggc_statistics stats;
1925 unsigned int i;
1926 size_t total_overhead = 0;
1928 /* Clear the statistics. */
1929 memset (&stats, 0, sizeof (stats));
1931 /* Make sure collection will really occur. */
1932 G.allocated_last_gc = 0;
1934 /* Collect and print the statistics common across collectors. */
1935 ggc_print_common_statistics (stderr, &stats);
1937 /* Release free pages so that we will not count the bytes allocated
1938 there as part of the total allocated memory. */
1939 release_pages ();
1941 /* Collect some information about the various sizes of
1942 allocation. */
1943 fprintf (stderr,
1944 "Memory still allocated at the end of the compilation process\n");
1945 fprintf (stderr, "%-5s %10s %10s %10s\n",
1946 "Size", "Allocated", "Used", "Overhead");
1947 for (i = 0; i < NUM_ORDERS; ++i)
1949 page_entry *p;
1950 size_t allocated;
1951 size_t in_use;
1952 size_t overhead;
1954 /* Skip empty entries. */
1955 if (!G.pages[i])
1956 continue;
1958 overhead = allocated = in_use = 0;
1960 /* Figure out the total number of bytes allocated for objects of
1961 this size, and how many of them are actually in use. Also figure
1962 out how much memory the page table is using. */
1963 for (p = G.pages[i]; p; p = p->next)
1965 allocated += p->bytes;
1966 in_use +=
1967 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1969 overhead += (sizeof (page_entry) - sizeof (long)
1970 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1972 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1973 (unsigned long) OBJECT_SIZE (i),
1974 SCALE (allocated), STAT_LABEL (allocated),
1975 SCALE (in_use), STAT_LABEL (in_use),
1976 SCALE (overhead), STAT_LABEL (overhead));
1977 total_overhead += overhead;
1979 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1980 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
1981 SCALE (G.allocated), STAT_LABEL(G.allocated),
1982 SCALE (total_overhead), STAT_LABEL (total_overhead));
1984 #ifdef GATHER_STATISTICS
1986 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
1988 fprintf (stderr, "Total Overhead: %10lld\n",
1989 G.stats.total_overhead);
1990 fprintf (stderr, "Total Allocated: %10lld\n",
1991 G.stats.total_allocated);
1993 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
1994 G.stats.total_overhead_under32);
1995 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
1996 G.stats.total_allocated_under32);
1997 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
1998 G.stats.total_overhead_under64);
1999 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2000 G.stats.total_allocated_under64);
2001 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2002 G.stats.total_overhead_under128);
2003 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2004 G.stats.total_allocated_under128);
2006 for (i = 0; i < NUM_ORDERS; i++)
2007 if (G.stats.total_allocated_per_order[i])
2009 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2010 (unsigned long) OBJECT_SIZE (i),
2011 G.stats.total_overhead_per_order[i]);
2012 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2013 (unsigned long) OBJECT_SIZE (i),
2014 G.stats.total_allocated_per_order[i]);
2017 #endif
2020 struct ggc_pch_data
2022 struct ggc_pch_ondisk
2024 unsigned totals[NUM_ORDERS];
2025 } d;
2026 size_t base[NUM_ORDERS];
2027 size_t written[NUM_ORDERS];
2030 struct ggc_pch_data *
2031 init_ggc_pch (void)
2033 return XCNEW (struct ggc_pch_data);
2036 void
2037 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2038 size_t size, bool is_string ATTRIBUTE_UNUSED,
2039 enum gt_types_enum type ATTRIBUTE_UNUSED)
2041 unsigned order;
2043 if (size < NUM_SIZE_LOOKUP)
2044 order = size_lookup[size];
2045 else
2047 order = 10;
2048 while (size > OBJECT_SIZE (order))
2049 order++;
2052 d->d.totals[order]++;
2055 size_t
2056 ggc_pch_total_size (struct ggc_pch_data *d)
2058 size_t a = 0;
2059 unsigned i;
2061 for (i = 0; i < NUM_ORDERS; i++)
2062 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2063 return a;
2066 void
2067 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2069 size_t a = (size_t) base;
2070 unsigned i;
2072 for (i = 0; i < NUM_ORDERS; i++)
2074 d->base[i] = a;
2075 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2080 char *
2081 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2082 size_t size, bool is_string ATTRIBUTE_UNUSED,
2083 enum gt_types_enum type ATTRIBUTE_UNUSED)
2085 unsigned order;
2086 char *result;
2088 if (size < NUM_SIZE_LOOKUP)
2089 order = size_lookup[size];
2090 else
2092 order = 10;
2093 while (size > OBJECT_SIZE (order))
2094 order++;
2097 result = (char *) d->base[order];
2098 d->base[order] += OBJECT_SIZE (order);
2099 return result;
2102 void
2103 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2104 FILE *f ATTRIBUTE_UNUSED)
2106 /* Nothing to do. */
2109 void
2110 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2111 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2112 size_t size, bool is_string ATTRIBUTE_UNUSED)
2114 unsigned order;
2115 static const char emptyBytes[256];
2117 if (size < NUM_SIZE_LOOKUP)
2118 order = size_lookup[size];
2119 else
2121 order = 10;
2122 while (size > OBJECT_SIZE (order))
2123 order++;
2126 if (fwrite (x, size, 1, f) != 1)
2127 fatal_error ("can't write PCH file: %m");
2129 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2130 object out to OBJECT_SIZE(order). This happens for strings. */
2132 if (size != OBJECT_SIZE (order))
2134 unsigned padding = OBJECT_SIZE(order) - size;
2136 /* To speed small writes, we use a nulled-out array that's larger
2137 than most padding requests as the source for our null bytes. This
2138 permits us to do the padding with fwrite() rather than fseek(), and
2139 limits the chance the OS may try to flush any outstanding writes. */
2140 if (padding <= sizeof(emptyBytes))
2142 if (fwrite (emptyBytes, 1, padding, f) != padding)
2143 fatal_error ("can't write PCH file");
2145 else
2147 /* Larger than our buffer? Just default to fseek. */
2148 if (fseek (f, padding, SEEK_CUR) != 0)
2149 fatal_error ("can't write PCH file");
2153 d->written[order]++;
2154 if (d->written[order] == d->d.totals[order]
2155 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2156 G.pagesize),
2157 SEEK_CUR) != 0)
2158 fatal_error ("can't write PCH file: %m");
2161 void
2162 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2164 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2165 fatal_error ("can't write PCH file: %m");
2166 free (d);
2169 /* Move the PCH PTE entries just added to the end of by_depth, to the
2170 front. */
2172 static void
2173 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2175 unsigned i;
2177 /* First, we swap the new entries to the front of the varrays. */
2178 page_entry **new_by_depth;
2179 unsigned long **new_save_in_use;
2181 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2182 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2184 memcpy (&new_by_depth[0],
2185 &G.by_depth[count_old_page_tables],
2186 count_new_page_tables * sizeof (void *));
2187 memcpy (&new_by_depth[count_new_page_tables],
2188 &G.by_depth[0],
2189 count_old_page_tables * sizeof (void *));
2190 memcpy (&new_save_in_use[0],
2191 &G.save_in_use[count_old_page_tables],
2192 count_new_page_tables * sizeof (void *));
2193 memcpy (&new_save_in_use[count_new_page_tables],
2194 &G.save_in_use[0],
2195 count_old_page_tables * sizeof (void *));
2197 free (G.by_depth);
2198 free (G.save_in_use);
2200 G.by_depth = new_by_depth;
2201 G.save_in_use = new_save_in_use;
2203 /* Now update all the index_by_depth fields. */
2204 for (i = G.by_depth_in_use; i > 0; --i)
2206 page_entry *p = G.by_depth[i-1];
2207 p->index_by_depth = i-1;
2210 /* And last, we update the depth pointers in G.depth. The first
2211 entry is already 0, and context 0 entries always start at index
2212 0, so there is nothing to update in the first slot. We need a
2213 second slot, only if we have old ptes, and if we do, they start
2214 at index count_new_page_tables. */
2215 if (count_old_page_tables)
2216 push_depth (count_new_page_tables);
2219 void
2220 ggc_pch_read (FILE *f, void *addr)
2222 struct ggc_pch_ondisk d;
2223 unsigned i;
2224 char *offs = addr;
2225 unsigned long count_old_page_tables;
2226 unsigned long count_new_page_tables;
2228 count_old_page_tables = G.by_depth_in_use;
2230 /* We've just read in a PCH file. So, every object that used to be
2231 allocated is now free. */
2232 clear_marks ();
2233 #ifdef ENABLE_GC_CHECKING
2234 poison_pages ();
2235 #endif
2236 /* Since we free all the allocated objects, the free list becomes
2237 useless. Validate it now, which will also clear it. */
2238 validate_free_objects();
2240 /* No object read from a PCH file should ever be freed. So, set the
2241 context depth to 1, and set the depth of all the currently-allocated
2242 pages to be 1 too. PCH pages will have depth 0. */
2243 gcc_assert (!G.context_depth);
2244 G.context_depth = 1;
2245 for (i = 0; i < NUM_ORDERS; i++)
2247 page_entry *p;
2248 for (p = G.pages[i]; p != NULL; p = p->next)
2249 p->context_depth = G.context_depth;
2252 /* Allocate the appropriate page-table entries for the pages read from
2253 the PCH file. */
2254 if (fread (&d, sizeof (d), 1, f) != 1)
2255 fatal_error ("can't read PCH file: %m");
2257 for (i = 0; i < NUM_ORDERS; i++)
2259 struct page_entry *entry;
2260 char *pte;
2261 size_t bytes;
2262 size_t num_objs;
2263 size_t j;
2265 if (d.totals[i] == 0)
2266 continue;
2268 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2269 num_objs = bytes / OBJECT_SIZE (i);
2270 entry = xcalloc (1, (sizeof (struct page_entry)
2271 - sizeof (long)
2272 + BITMAP_SIZE (num_objs + 1)));
2273 entry->bytes = bytes;
2274 entry->page = offs;
2275 entry->context_depth = 0;
2276 offs += bytes;
2277 entry->num_free_objects = 0;
2278 entry->order = i;
2280 for (j = 0;
2281 j + HOST_BITS_PER_LONG <= num_objs + 1;
2282 j += HOST_BITS_PER_LONG)
2283 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2284 for (; j < num_objs + 1; j++)
2285 entry->in_use_p[j / HOST_BITS_PER_LONG]
2286 |= 1L << (j % HOST_BITS_PER_LONG);
2288 for (pte = entry->page;
2289 pte < entry->page + entry->bytes;
2290 pte += G.pagesize)
2291 set_page_table_entry (pte, entry);
2293 if (G.page_tails[i] != NULL)
2294 G.page_tails[i]->next = entry;
2295 else
2296 G.pages[i] = entry;
2297 G.page_tails[i] = entry;
2299 /* We start off by just adding all the new information to the
2300 end of the varrays, later, we will move the new information
2301 to the front of the varrays, as the PCH page tables are at
2302 context 0. */
2303 push_by_depth (entry, 0);
2306 /* Now, we update the various data structures that speed page table
2307 handling. */
2308 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2310 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2312 /* Update the statistics. */
2313 G.allocated = G.allocated_last_gc = offs - (char *)addr;