Remove unused debug_str_hash_forced from dwarf2out.
[official-gcc.git] / gcc / tree-vrp.c
blob4c66571132542e5c59fd615020010180d7cdbb68
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
45 /* Type of value ranges. See value_range_d for a description of these
46 types. */
47 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
49 /* Range of values that can be associated with an SSA_NAME after VRP
50 has executed. */
51 struct value_range_d
53 /* Lattice value represented by this range. */
54 enum value_range_type type;
56 /* Minimum and maximum values represented by this range. These
57 values should be interpreted as follows:
59 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
60 be NULL.
62 - If TYPE == VR_RANGE then MIN holds the minimum value and
63 MAX holds the maximum value of the range [MIN, MAX].
65 - If TYPE == ANTI_RANGE the variable is known to NOT
66 take any values in the range [MIN, MAX]. */
67 tree min;
68 tree max;
70 /* Set of SSA names whose value ranges are equivalent to this one.
71 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
72 bitmap equiv;
75 typedef struct value_range_d value_range_t;
77 /* Set of SSA names found live during the RPO traversal of the function
78 for still active basic-blocks. */
79 static sbitmap *live;
81 /* Return true if the SSA name NAME is live on the edge E. */
83 static bool
84 live_on_edge (edge e, tree name)
86 return (live[e->dest->index]
87 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
90 /* Local functions. */
91 static int compare_values (tree val1, tree val2);
92 static int compare_values_warnv (tree val1, tree val2, bool *);
93 static void vrp_meet (value_range_t *, value_range_t *);
94 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
95 tree, tree, bool, bool *,
96 bool *);
98 /* Location information for ASSERT_EXPRs. Each instance of this
99 structure describes an ASSERT_EXPR for an SSA name. Since a single
100 SSA name may have more than one assertion associated with it, these
101 locations are kept in a linked list attached to the corresponding
102 SSA name. */
103 struct assert_locus_d
105 /* Basic block where the assertion would be inserted. */
106 basic_block bb;
108 /* Some assertions need to be inserted on an edge (e.g., assertions
109 generated by COND_EXPRs). In those cases, BB will be NULL. */
110 edge e;
112 /* Pointer to the statement that generated this assertion. */
113 gimple_stmt_iterator si;
115 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
116 enum tree_code comp_code;
118 /* Value being compared against. */
119 tree val;
121 /* Expression to compare. */
122 tree expr;
124 /* Next node in the linked list. */
125 struct assert_locus_d *next;
128 typedef struct assert_locus_d *assert_locus_t;
130 /* If bit I is present, it means that SSA name N_i has a list of
131 assertions that should be inserted in the IL. */
132 static bitmap need_assert_for;
134 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
135 holds a list of ASSERT_LOCUS_T nodes that describe where
136 ASSERT_EXPRs for SSA name N_I should be inserted. */
137 static assert_locus_t *asserts_for;
139 /* Value range array. After propagation, VR_VALUE[I] holds the range
140 of values that SSA name N_I may take. */
141 static value_range_t **vr_value;
143 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
144 number of executable edges we saw the last time we visited the
145 node. */
146 static int *vr_phi_edge_counts;
148 typedef struct {
149 gimple stmt;
150 tree vec;
151 } switch_update;
153 static VEC (edge, heap) *to_remove_edges;
154 DEF_VEC_O(switch_update);
155 DEF_VEC_ALLOC_O(switch_update, heap);
156 static VEC (switch_update, heap) *to_update_switch_stmts;
159 /* Return the maximum value for TYPE. */
161 static inline tree
162 vrp_val_max (const_tree type)
164 if (!INTEGRAL_TYPE_P (type))
165 return NULL_TREE;
167 return TYPE_MAX_VALUE (type);
170 /* Return the minimum value for TYPE. */
172 static inline tree
173 vrp_val_min (const_tree type)
175 if (!INTEGRAL_TYPE_P (type))
176 return NULL_TREE;
178 return TYPE_MIN_VALUE (type);
181 /* Return whether VAL is equal to the maximum value of its type. This
182 will be true for a positive overflow infinity. We can't do a
183 simple equality comparison with TYPE_MAX_VALUE because C typedefs
184 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
185 to the integer constant with the same value in the type. */
187 static inline bool
188 vrp_val_is_max (const_tree val)
190 tree type_max = vrp_val_max (TREE_TYPE (val));
191 return (val == type_max
192 || (type_max != NULL_TREE
193 && operand_equal_p (val, type_max, 0)));
196 /* Return whether VAL is equal to the minimum value of its type. This
197 will be true for a negative overflow infinity. */
199 static inline bool
200 vrp_val_is_min (const_tree val)
202 tree type_min = vrp_val_min (TREE_TYPE (val));
203 return (val == type_min
204 || (type_min != NULL_TREE
205 && operand_equal_p (val, type_min, 0)));
209 /* Return whether TYPE should use an overflow infinity distinct from
210 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
211 represent a signed overflow during VRP computations. An infinity
212 is distinct from a half-range, which will go from some number to
213 TYPE_{MIN,MAX}_VALUE. */
215 static inline bool
216 needs_overflow_infinity (const_tree type)
218 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
221 /* Return whether TYPE can support our overflow infinity
222 representation: we use the TREE_OVERFLOW flag, which only exists
223 for constants. If TYPE doesn't support this, we don't optimize
224 cases which would require signed overflow--we drop them to
225 VARYING. */
227 static inline bool
228 supports_overflow_infinity (const_tree type)
230 tree min = vrp_val_min (type), max = vrp_val_max (type);
231 #ifdef ENABLE_CHECKING
232 gcc_assert (needs_overflow_infinity (type));
233 #endif
234 return (min != NULL_TREE
235 && CONSTANT_CLASS_P (min)
236 && max != NULL_TREE
237 && CONSTANT_CLASS_P (max));
240 /* VAL is the maximum or minimum value of a type. Return a
241 corresponding overflow infinity. */
243 static inline tree
244 make_overflow_infinity (tree val)
246 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
247 val = copy_node (val);
248 TREE_OVERFLOW (val) = 1;
249 return val;
252 /* Return a negative overflow infinity for TYPE. */
254 static inline tree
255 negative_overflow_infinity (tree type)
257 gcc_checking_assert (supports_overflow_infinity (type));
258 return make_overflow_infinity (vrp_val_min (type));
261 /* Return a positive overflow infinity for TYPE. */
263 static inline tree
264 positive_overflow_infinity (tree type)
266 gcc_checking_assert (supports_overflow_infinity (type));
267 return make_overflow_infinity (vrp_val_max (type));
270 /* Return whether VAL is a negative overflow infinity. */
272 static inline bool
273 is_negative_overflow_infinity (const_tree val)
275 return (needs_overflow_infinity (TREE_TYPE (val))
276 && CONSTANT_CLASS_P (val)
277 && TREE_OVERFLOW (val)
278 && vrp_val_is_min (val));
281 /* Return whether VAL is a positive overflow infinity. */
283 static inline bool
284 is_positive_overflow_infinity (const_tree val)
286 return (needs_overflow_infinity (TREE_TYPE (val))
287 && CONSTANT_CLASS_P (val)
288 && TREE_OVERFLOW (val)
289 && vrp_val_is_max (val));
292 /* Return whether VAL is a positive or negative overflow infinity. */
294 static inline bool
295 is_overflow_infinity (const_tree val)
297 return (needs_overflow_infinity (TREE_TYPE (val))
298 && CONSTANT_CLASS_P (val)
299 && TREE_OVERFLOW (val)
300 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
303 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
305 static inline bool
306 stmt_overflow_infinity (gimple stmt)
308 if (is_gimple_assign (stmt)
309 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
310 GIMPLE_SINGLE_RHS)
311 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
312 return false;
315 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
316 the same value with TREE_OVERFLOW clear. This can be used to avoid
317 confusing a regular value with an overflow value. */
319 static inline tree
320 avoid_overflow_infinity (tree val)
322 if (!is_overflow_infinity (val))
323 return val;
325 if (vrp_val_is_max (val))
326 return vrp_val_max (TREE_TYPE (val));
327 else
329 gcc_checking_assert (vrp_val_is_min (val));
330 return vrp_val_min (TREE_TYPE (val));
335 /* Return true if ARG is marked with the nonnull attribute in the
336 current function signature. */
338 static bool
339 nonnull_arg_p (const_tree arg)
341 tree t, attrs, fntype;
342 unsigned HOST_WIDE_INT arg_num;
344 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
346 /* The static chain decl is always non null. */
347 if (arg == cfun->static_chain_decl)
348 return true;
350 fntype = TREE_TYPE (current_function_decl);
351 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
353 /* If "nonnull" wasn't specified, we know nothing about the argument. */
354 if (attrs == NULL_TREE)
355 return false;
357 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
358 if (TREE_VALUE (attrs) == NULL_TREE)
359 return true;
361 /* Get the position number for ARG in the function signature. */
362 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
364 t = DECL_CHAIN (t), arg_num++)
366 if (t == arg)
367 break;
370 gcc_assert (t == arg);
372 /* Now see if ARG_NUM is mentioned in the nonnull list. */
373 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
375 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
376 return true;
379 return false;
383 /* Set value range VR to VR_VARYING. */
385 static inline void
386 set_value_range_to_varying (value_range_t *vr)
388 vr->type = VR_VARYING;
389 vr->min = vr->max = NULL_TREE;
390 if (vr->equiv)
391 bitmap_clear (vr->equiv);
395 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
397 static void
398 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
399 tree max, bitmap equiv)
401 #if defined ENABLE_CHECKING
402 /* Check the validity of the range. */
403 if (t == VR_RANGE || t == VR_ANTI_RANGE)
405 int cmp;
407 gcc_assert (min && max);
409 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
410 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
412 cmp = compare_values (min, max);
413 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
415 if (needs_overflow_infinity (TREE_TYPE (min)))
416 gcc_assert (!is_overflow_infinity (min)
417 || !is_overflow_infinity (max));
420 if (t == VR_UNDEFINED || t == VR_VARYING)
421 gcc_assert (min == NULL_TREE && max == NULL_TREE);
423 if (t == VR_UNDEFINED || t == VR_VARYING)
424 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
425 #endif
427 vr->type = t;
428 vr->min = min;
429 vr->max = max;
431 /* Since updating the equivalence set involves deep copying the
432 bitmaps, only do it if absolutely necessary. */
433 if (vr->equiv == NULL
434 && equiv != NULL)
435 vr->equiv = BITMAP_ALLOC (NULL);
437 if (equiv != vr->equiv)
439 if (equiv && !bitmap_empty_p (equiv))
440 bitmap_copy (vr->equiv, equiv);
441 else
442 bitmap_clear (vr->equiv);
447 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
448 This means adjusting T, MIN and MAX representing the case of a
449 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
450 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
451 In corner cases where MAX+1 or MIN-1 wraps this will fall back
452 to varying.
453 This routine exists to ease canonicalization in the case where we
454 extract ranges from var + CST op limit. */
456 static void
457 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
458 tree min, tree max, bitmap equiv)
460 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
461 if ((t != VR_RANGE
462 && t != VR_ANTI_RANGE)
463 || TREE_CODE (min) != INTEGER_CST
464 || TREE_CODE (max) != INTEGER_CST)
466 set_value_range (vr, t, min, max, equiv);
467 return;
470 /* Wrong order for min and max, to swap them and the VR type we need
471 to adjust them. */
472 if (tree_int_cst_lt (max, min))
474 tree one = build_int_cst (TREE_TYPE (min), 1);
475 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
476 max = int_const_binop (MINUS_EXPR, min, one, 0);
477 min = tmp;
479 /* There's one corner case, if we had [C+1, C] before we now have
480 that again. But this represents an empty value range, so drop
481 to varying in this case. */
482 if (tree_int_cst_lt (max, min))
484 set_value_range_to_varying (vr);
485 return;
488 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
491 /* Anti-ranges that can be represented as ranges should be so. */
492 if (t == VR_ANTI_RANGE)
494 bool is_min = vrp_val_is_min (min);
495 bool is_max = vrp_val_is_max (max);
497 if (is_min && is_max)
499 /* We cannot deal with empty ranges, drop to varying. */
500 set_value_range_to_varying (vr);
501 return;
503 else if (is_min
504 /* As a special exception preserve non-null ranges. */
505 && !(TYPE_UNSIGNED (TREE_TYPE (min))
506 && integer_zerop (max)))
508 tree one = build_int_cst (TREE_TYPE (max), 1);
509 min = int_const_binop (PLUS_EXPR, max, one, 0);
510 max = vrp_val_max (TREE_TYPE (max));
511 t = VR_RANGE;
513 else if (is_max)
515 tree one = build_int_cst (TREE_TYPE (min), 1);
516 max = int_const_binop (MINUS_EXPR, min, one, 0);
517 min = vrp_val_min (TREE_TYPE (min));
518 t = VR_RANGE;
522 set_value_range (vr, t, min, max, equiv);
525 /* Copy value range FROM into value range TO. */
527 static inline void
528 copy_value_range (value_range_t *to, value_range_t *from)
530 set_value_range (to, from->type, from->min, from->max, from->equiv);
533 /* Set value range VR to a single value. This function is only called
534 with values we get from statements, and exists to clear the
535 TREE_OVERFLOW flag so that we don't think we have an overflow
536 infinity when we shouldn't. */
538 static inline void
539 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
541 gcc_assert (is_gimple_min_invariant (val));
542 val = avoid_overflow_infinity (val);
543 set_value_range (vr, VR_RANGE, val, val, equiv);
546 /* Set value range VR to a non-negative range of type TYPE.
547 OVERFLOW_INFINITY indicates whether to use an overflow infinity
548 rather than TYPE_MAX_VALUE; this should be true if we determine
549 that the range is nonnegative based on the assumption that signed
550 overflow does not occur. */
552 static inline void
553 set_value_range_to_nonnegative (value_range_t *vr, tree type,
554 bool overflow_infinity)
556 tree zero;
558 if (overflow_infinity && !supports_overflow_infinity (type))
560 set_value_range_to_varying (vr);
561 return;
564 zero = build_int_cst (type, 0);
565 set_value_range (vr, VR_RANGE, zero,
566 (overflow_infinity
567 ? positive_overflow_infinity (type)
568 : TYPE_MAX_VALUE (type)),
569 vr->equiv);
572 /* Set value range VR to a non-NULL range of type TYPE. */
574 static inline void
575 set_value_range_to_nonnull (value_range_t *vr, tree type)
577 tree zero = build_int_cst (type, 0);
578 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
582 /* Set value range VR to a NULL range of type TYPE. */
584 static inline void
585 set_value_range_to_null (value_range_t *vr, tree type)
587 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
591 /* Set value range VR to a range of a truthvalue of type TYPE. */
593 static inline void
594 set_value_range_to_truthvalue (value_range_t *vr, tree type)
596 if (TYPE_PRECISION (type) == 1)
597 set_value_range_to_varying (vr);
598 else
599 set_value_range (vr, VR_RANGE,
600 build_int_cst (type, 0), build_int_cst (type, 1),
601 vr->equiv);
605 /* Set value range VR to VR_UNDEFINED. */
607 static inline void
608 set_value_range_to_undefined (value_range_t *vr)
610 vr->type = VR_UNDEFINED;
611 vr->min = vr->max = NULL_TREE;
612 if (vr->equiv)
613 bitmap_clear (vr->equiv);
617 /* If abs (min) < abs (max), set VR to [-max, max], if
618 abs (min) >= abs (max), set VR to [-min, min]. */
620 static void
621 abs_extent_range (value_range_t *vr, tree min, tree max)
623 int cmp;
625 gcc_assert (TREE_CODE (min) == INTEGER_CST);
626 gcc_assert (TREE_CODE (max) == INTEGER_CST);
627 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
628 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
629 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
630 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
631 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
633 set_value_range_to_varying (vr);
634 return;
636 cmp = compare_values (min, max);
637 if (cmp == -1)
638 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
639 else if (cmp == 0 || cmp == 1)
641 max = min;
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
644 else
646 set_value_range_to_varying (vr);
647 return;
649 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
653 /* Return value range information for VAR.
655 If we have no values ranges recorded (ie, VRP is not running), then
656 return NULL. Otherwise create an empty range if none existed for VAR. */
658 static value_range_t *
659 get_value_range (const_tree var)
661 value_range_t *vr;
662 tree sym;
663 unsigned ver = SSA_NAME_VERSION (var);
665 /* If we have no recorded ranges, then return NULL. */
666 if (! vr_value)
667 return NULL;
669 vr = vr_value[ver];
670 if (vr)
671 return vr;
673 /* Create a default value range. */
674 vr_value[ver] = vr = XCNEW (value_range_t);
676 /* Defer allocating the equivalence set. */
677 vr->equiv = NULL;
679 /* If VAR is a default definition, the variable can take any value
680 in VAR's type. */
681 sym = SSA_NAME_VAR (var);
682 if (SSA_NAME_IS_DEFAULT_DEF (var))
684 /* Try to use the "nonnull" attribute to create ~[0, 0]
685 anti-ranges for pointers. Note that this is only valid with
686 default definitions of PARM_DECLs. */
687 if (TREE_CODE (sym) == PARM_DECL
688 && POINTER_TYPE_P (TREE_TYPE (sym))
689 && nonnull_arg_p (sym))
690 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
691 else
692 set_value_range_to_varying (vr);
695 return vr;
698 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
700 static inline bool
701 vrp_operand_equal_p (const_tree val1, const_tree val2)
703 if (val1 == val2)
704 return true;
705 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
706 return false;
707 if (is_overflow_infinity (val1))
708 return is_overflow_infinity (val2);
709 return true;
712 /* Return true, if the bitmaps B1 and B2 are equal. */
714 static inline bool
715 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
717 return (b1 == b2
718 || ((!b1 || bitmap_empty_p (b1))
719 && (!b2 || bitmap_empty_p (b2)))
720 || (b1 && b2
721 && bitmap_equal_p (b1, b2)));
724 /* Update the value range and equivalence set for variable VAR to
725 NEW_VR. Return true if NEW_VR is different from VAR's previous
726 value.
728 NOTE: This function assumes that NEW_VR is a temporary value range
729 object created for the sole purpose of updating VAR's range. The
730 storage used by the equivalence set from NEW_VR will be freed by
731 this function. Do not call update_value_range when NEW_VR
732 is the range object associated with another SSA name. */
734 static inline bool
735 update_value_range (const_tree var, value_range_t *new_vr)
737 value_range_t *old_vr;
738 bool is_new;
740 /* Update the value range, if necessary. */
741 old_vr = get_value_range (var);
742 is_new = old_vr->type != new_vr->type
743 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
744 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
745 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
747 if (is_new)
748 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
749 new_vr->equiv);
751 BITMAP_FREE (new_vr->equiv);
753 return is_new;
757 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
758 point where equivalence processing can be turned on/off. */
760 static void
761 add_equivalence (bitmap *equiv, const_tree var)
763 unsigned ver = SSA_NAME_VERSION (var);
764 value_range_t *vr = vr_value[ver];
766 if (*equiv == NULL)
767 *equiv = BITMAP_ALLOC (NULL);
768 bitmap_set_bit (*equiv, ver);
769 if (vr && vr->equiv)
770 bitmap_ior_into (*equiv, vr->equiv);
774 /* Return true if VR is ~[0, 0]. */
776 static inline bool
777 range_is_nonnull (value_range_t *vr)
779 return vr->type == VR_ANTI_RANGE
780 && integer_zerop (vr->min)
781 && integer_zerop (vr->max);
785 /* Return true if VR is [0, 0]. */
787 static inline bool
788 range_is_null (value_range_t *vr)
790 return vr->type == VR_RANGE
791 && integer_zerop (vr->min)
792 && integer_zerop (vr->max);
795 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
796 a singleton. */
798 static inline bool
799 range_int_cst_p (value_range_t *vr)
801 return (vr->type == VR_RANGE
802 && TREE_CODE (vr->max) == INTEGER_CST
803 && TREE_CODE (vr->min) == INTEGER_CST
804 && !TREE_OVERFLOW (vr->max)
805 && !TREE_OVERFLOW (vr->min));
808 /* Return true if VR is a INTEGER_CST singleton. */
810 static inline bool
811 range_int_cst_singleton_p (value_range_t *vr)
813 return (range_int_cst_p (vr)
814 && tree_int_cst_equal (vr->min, vr->max));
817 /* Return true if value range VR involves at least one symbol. */
819 static inline bool
820 symbolic_range_p (value_range_t *vr)
822 return (!is_gimple_min_invariant (vr->min)
823 || !is_gimple_min_invariant (vr->max));
826 /* Return true if value range VR uses an overflow infinity. */
828 static inline bool
829 overflow_infinity_range_p (value_range_t *vr)
831 return (vr->type == VR_RANGE
832 && (is_overflow_infinity (vr->min)
833 || is_overflow_infinity (vr->max)));
836 /* Return false if we can not make a valid comparison based on VR;
837 this will be the case if it uses an overflow infinity and overflow
838 is not undefined (i.e., -fno-strict-overflow is in effect).
839 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
840 uses an overflow infinity. */
842 static bool
843 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
845 gcc_assert (vr->type == VR_RANGE);
846 if (is_overflow_infinity (vr->min))
848 *strict_overflow_p = true;
849 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
850 return false;
852 if (is_overflow_infinity (vr->max))
854 *strict_overflow_p = true;
855 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
856 return false;
858 return true;
862 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
863 ranges obtained so far. */
865 static bool
866 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
868 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
869 || (TREE_CODE (expr) == SSA_NAME
870 && ssa_name_nonnegative_p (expr)));
873 /* Return true if the result of assignment STMT is know to be non-negative.
874 If the return value is based on the assumption that signed overflow is
875 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
876 *STRICT_OVERFLOW_P.*/
878 static bool
879 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
881 enum tree_code code = gimple_assign_rhs_code (stmt);
882 switch (get_gimple_rhs_class (code))
884 case GIMPLE_UNARY_RHS:
885 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
886 gimple_expr_type (stmt),
887 gimple_assign_rhs1 (stmt),
888 strict_overflow_p);
889 case GIMPLE_BINARY_RHS:
890 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
891 gimple_expr_type (stmt),
892 gimple_assign_rhs1 (stmt),
893 gimple_assign_rhs2 (stmt),
894 strict_overflow_p);
895 case GIMPLE_TERNARY_RHS:
896 return false;
897 case GIMPLE_SINGLE_RHS:
898 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
899 strict_overflow_p);
900 case GIMPLE_INVALID_RHS:
901 gcc_unreachable ();
902 default:
903 gcc_unreachable ();
907 /* Return true if return value of call STMT is know to be non-negative.
908 If the return value is based on the assumption that signed overflow is
909 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
910 *STRICT_OVERFLOW_P.*/
912 static bool
913 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
915 tree arg0 = gimple_call_num_args (stmt) > 0 ?
916 gimple_call_arg (stmt, 0) : NULL_TREE;
917 tree arg1 = gimple_call_num_args (stmt) > 1 ?
918 gimple_call_arg (stmt, 1) : NULL_TREE;
920 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
921 gimple_call_fndecl (stmt),
922 arg0,
923 arg1,
924 strict_overflow_p);
927 /* Return true if STMT is know to to compute a non-negative value.
928 If the return value is based on the assumption that signed overflow is
929 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
930 *STRICT_OVERFLOW_P.*/
932 static bool
933 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
935 switch (gimple_code (stmt))
937 case GIMPLE_ASSIGN:
938 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
939 case GIMPLE_CALL:
940 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
941 default:
942 gcc_unreachable ();
946 /* Return true if the result of assignment STMT is know to be non-zero.
947 If the return value is based on the assumption that signed overflow is
948 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
949 *STRICT_OVERFLOW_P.*/
951 static bool
952 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
954 enum tree_code code = gimple_assign_rhs_code (stmt);
955 switch (get_gimple_rhs_class (code))
957 case GIMPLE_UNARY_RHS:
958 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
959 gimple_expr_type (stmt),
960 gimple_assign_rhs1 (stmt),
961 strict_overflow_p);
962 case GIMPLE_BINARY_RHS:
963 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
964 gimple_expr_type (stmt),
965 gimple_assign_rhs1 (stmt),
966 gimple_assign_rhs2 (stmt),
967 strict_overflow_p);
968 case GIMPLE_TERNARY_RHS:
969 return false;
970 case GIMPLE_SINGLE_RHS:
971 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
972 strict_overflow_p);
973 case GIMPLE_INVALID_RHS:
974 gcc_unreachable ();
975 default:
976 gcc_unreachable ();
980 /* Return true if STMT is know to to compute a non-zero value.
981 If the return value is based on the assumption that signed overflow is
982 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
983 *STRICT_OVERFLOW_P.*/
985 static bool
986 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
988 switch (gimple_code (stmt))
990 case GIMPLE_ASSIGN:
991 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
992 case GIMPLE_CALL:
993 return gimple_alloca_call_p (stmt);
994 default:
995 gcc_unreachable ();
999 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1000 obtained so far. */
1002 static bool
1003 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1005 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1006 return true;
1008 /* If we have an expression of the form &X->a, then the expression
1009 is nonnull if X is nonnull. */
1010 if (is_gimple_assign (stmt)
1011 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1013 tree expr = gimple_assign_rhs1 (stmt);
1014 tree base = get_base_address (TREE_OPERAND (expr, 0));
1016 if (base != NULL_TREE
1017 && TREE_CODE (base) == MEM_REF
1018 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1020 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1021 if (range_is_nonnull (vr))
1022 return true;
1026 return false;
1029 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1030 a gimple invariant, or SSA_NAME +- CST. */
1032 static bool
1033 valid_value_p (tree expr)
1035 if (TREE_CODE (expr) == SSA_NAME)
1036 return true;
1038 if (TREE_CODE (expr) == PLUS_EXPR
1039 || TREE_CODE (expr) == MINUS_EXPR)
1040 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1041 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1043 return is_gimple_min_invariant (expr);
1046 /* Return
1047 1 if VAL < VAL2
1048 0 if !(VAL < VAL2)
1049 -2 if those are incomparable. */
1050 static inline int
1051 operand_less_p (tree val, tree val2)
1053 /* LT is folded faster than GE and others. Inline the common case. */
1054 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1056 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1057 return INT_CST_LT_UNSIGNED (val, val2);
1058 else
1060 if (INT_CST_LT (val, val2))
1061 return 1;
1064 else
1066 tree tcmp;
1068 fold_defer_overflow_warnings ();
1070 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1072 fold_undefer_and_ignore_overflow_warnings ();
1074 if (!tcmp
1075 || TREE_CODE (tcmp) != INTEGER_CST)
1076 return -2;
1078 if (!integer_zerop (tcmp))
1079 return 1;
1082 /* val >= val2, not considering overflow infinity. */
1083 if (is_negative_overflow_infinity (val))
1084 return is_negative_overflow_infinity (val2) ? 0 : 1;
1085 else if (is_positive_overflow_infinity (val2))
1086 return is_positive_overflow_infinity (val) ? 0 : 1;
1088 return 0;
1091 /* Compare two values VAL1 and VAL2. Return
1093 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1094 -1 if VAL1 < VAL2,
1095 0 if VAL1 == VAL2,
1096 +1 if VAL1 > VAL2, and
1097 +2 if VAL1 != VAL2
1099 This is similar to tree_int_cst_compare but supports pointer values
1100 and values that cannot be compared at compile time.
1102 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1103 true if the return value is only valid if we assume that signed
1104 overflow is undefined. */
1106 static int
1107 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1109 if (val1 == val2)
1110 return 0;
1112 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1113 both integers. */
1114 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1115 == POINTER_TYPE_P (TREE_TYPE (val2)));
1116 /* Convert the two values into the same type. This is needed because
1117 sizetype causes sign extension even for unsigned types. */
1118 val2 = fold_convert (TREE_TYPE (val1), val2);
1119 STRIP_USELESS_TYPE_CONVERSION (val2);
1121 if ((TREE_CODE (val1) == SSA_NAME
1122 || TREE_CODE (val1) == PLUS_EXPR
1123 || TREE_CODE (val1) == MINUS_EXPR)
1124 && (TREE_CODE (val2) == SSA_NAME
1125 || TREE_CODE (val2) == PLUS_EXPR
1126 || TREE_CODE (val2) == MINUS_EXPR))
1128 tree n1, c1, n2, c2;
1129 enum tree_code code1, code2;
1131 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1132 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1133 same name, return -2. */
1134 if (TREE_CODE (val1) == SSA_NAME)
1136 code1 = SSA_NAME;
1137 n1 = val1;
1138 c1 = NULL_TREE;
1140 else
1142 code1 = TREE_CODE (val1);
1143 n1 = TREE_OPERAND (val1, 0);
1144 c1 = TREE_OPERAND (val1, 1);
1145 if (tree_int_cst_sgn (c1) == -1)
1147 if (is_negative_overflow_infinity (c1))
1148 return -2;
1149 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1150 if (!c1)
1151 return -2;
1152 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1156 if (TREE_CODE (val2) == SSA_NAME)
1158 code2 = SSA_NAME;
1159 n2 = val2;
1160 c2 = NULL_TREE;
1162 else
1164 code2 = TREE_CODE (val2);
1165 n2 = TREE_OPERAND (val2, 0);
1166 c2 = TREE_OPERAND (val2, 1);
1167 if (tree_int_cst_sgn (c2) == -1)
1169 if (is_negative_overflow_infinity (c2))
1170 return -2;
1171 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1172 if (!c2)
1173 return -2;
1174 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1178 /* Both values must use the same name. */
1179 if (n1 != n2)
1180 return -2;
1182 if (code1 == SSA_NAME
1183 && code2 == SSA_NAME)
1184 /* NAME == NAME */
1185 return 0;
1187 /* If overflow is defined we cannot simplify more. */
1188 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1189 return -2;
1191 if (strict_overflow_p != NULL
1192 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1193 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1194 *strict_overflow_p = true;
1196 if (code1 == SSA_NAME)
1198 if (code2 == PLUS_EXPR)
1199 /* NAME < NAME + CST */
1200 return -1;
1201 else if (code2 == MINUS_EXPR)
1202 /* NAME > NAME - CST */
1203 return 1;
1205 else if (code1 == PLUS_EXPR)
1207 if (code2 == SSA_NAME)
1208 /* NAME + CST > NAME */
1209 return 1;
1210 else if (code2 == PLUS_EXPR)
1211 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1212 return compare_values_warnv (c1, c2, strict_overflow_p);
1213 else if (code2 == MINUS_EXPR)
1214 /* NAME + CST1 > NAME - CST2 */
1215 return 1;
1217 else if (code1 == MINUS_EXPR)
1219 if (code2 == SSA_NAME)
1220 /* NAME - CST < NAME */
1221 return -1;
1222 else if (code2 == PLUS_EXPR)
1223 /* NAME - CST1 < NAME + CST2 */
1224 return -1;
1225 else if (code2 == MINUS_EXPR)
1226 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1227 C1 and C2 are swapped in the call to compare_values. */
1228 return compare_values_warnv (c2, c1, strict_overflow_p);
1231 gcc_unreachable ();
1234 /* We cannot compare non-constants. */
1235 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1236 return -2;
1238 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1240 /* We cannot compare overflowed values, except for overflow
1241 infinities. */
1242 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1244 if (strict_overflow_p != NULL)
1245 *strict_overflow_p = true;
1246 if (is_negative_overflow_infinity (val1))
1247 return is_negative_overflow_infinity (val2) ? 0 : -1;
1248 else if (is_negative_overflow_infinity (val2))
1249 return 1;
1250 else if (is_positive_overflow_infinity (val1))
1251 return is_positive_overflow_infinity (val2) ? 0 : 1;
1252 else if (is_positive_overflow_infinity (val2))
1253 return -1;
1254 return -2;
1257 return tree_int_cst_compare (val1, val2);
1259 else
1261 tree t;
1263 /* First see if VAL1 and VAL2 are not the same. */
1264 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1265 return 0;
1267 /* If VAL1 is a lower address than VAL2, return -1. */
1268 if (operand_less_p (val1, val2) == 1)
1269 return -1;
1271 /* If VAL1 is a higher address than VAL2, return +1. */
1272 if (operand_less_p (val2, val1) == 1)
1273 return 1;
1275 /* If VAL1 is different than VAL2, return +2.
1276 For integer constants we either have already returned -1 or 1
1277 or they are equivalent. We still might succeed in proving
1278 something about non-trivial operands. */
1279 if (TREE_CODE (val1) != INTEGER_CST
1280 || TREE_CODE (val2) != INTEGER_CST)
1282 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1283 if (t && integer_onep (t))
1284 return 2;
1287 return -2;
1291 /* Compare values like compare_values_warnv, but treat comparisons of
1292 nonconstants which rely on undefined overflow as incomparable. */
1294 static int
1295 compare_values (tree val1, tree val2)
1297 bool sop;
1298 int ret;
1300 sop = false;
1301 ret = compare_values_warnv (val1, val2, &sop);
1302 if (sop
1303 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1304 ret = -2;
1305 return ret;
1309 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1310 0 if VAL is not inside VR,
1311 -2 if we cannot tell either way.
1313 FIXME, the current semantics of this functions are a bit quirky
1314 when taken in the context of VRP. In here we do not care
1315 about VR's type. If VR is the anti-range ~[3, 5] the call
1316 value_inside_range (4, VR) will return 1.
1318 This is counter-intuitive in a strict sense, but the callers
1319 currently expect this. They are calling the function
1320 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1321 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1322 themselves.
1324 This also applies to value_ranges_intersect_p and
1325 range_includes_zero_p. The semantics of VR_RANGE and
1326 VR_ANTI_RANGE should be encoded here, but that also means
1327 adapting the users of these functions to the new semantics.
1329 Benchmark compile/20001226-1.c compilation time after changing this
1330 function. */
1332 static inline int
1333 value_inside_range (tree val, value_range_t * vr)
1335 int cmp1, cmp2;
1337 cmp1 = operand_less_p (val, vr->min);
1338 if (cmp1 == -2)
1339 return -2;
1340 if (cmp1 == 1)
1341 return 0;
1343 cmp2 = operand_less_p (vr->max, val);
1344 if (cmp2 == -2)
1345 return -2;
1347 return !cmp2;
1351 /* Return true if value ranges VR0 and VR1 have a non-empty
1352 intersection.
1354 Benchmark compile/20001226-1.c compilation time after changing this
1355 function.
1358 static inline bool
1359 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1361 /* The value ranges do not intersect if the maximum of the first range is
1362 less than the minimum of the second range or vice versa.
1363 When those relations are unknown, we can't do any better. */
1364 if (operand_less_p (vr0->max, vr1->min) != 0)
1365 return false;
1366 if (operand_less_p (vr1->max, vr0->min) != 0)
1367 return false;
1368 return true;
1372 /* Return true if VR includes the value zero, false otherwise. FIXME,
1373 currently this will return false for an anti-range like ~[-4, 3].
1374 This will be wrong when the semantics of value_inside_range are
1375 modified (currently the users of this function expect these
1376 semantics). */
1378 static inline bool
1379 range_includes_zero_p (value_range_t *vr)
1381 tree zero;
1383 gcc_assert (vr->type != VR_UNDEFINED
1384 && vr->type != VR_VARYING
1385 && !symbolic_range_p (vr));
1387 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1388 return (value_inside_range (zero, vr) == 1);
1391 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1392 false otherwise or if no value range information is available. */
1394 bool
1395 ssa_name_nonnegative_p (const_tree t)
1397 value_range_t *vr = get_value_range (t);
1399 if (INTEGRAL_TYPE_P (t)
1400 && TYPE_UNSIGNED (t))
1401 return true;
1403 if (!vr)
1404 return false;
1406 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1407 which would return a useful value should be encoded as a VR_RANGE. */
1408 if (vr->type == VR_RANGE)
1410 int result = compare_values (vr->min, integer_zero_node);
1412 return (result == 0 || result == 1);
1414 return false;
1417 /* If OP has a value range with a single constant value return that,
1418 otherwise return NULL_TREE. This returns OP itself if OP is a
1419 constant. */
1421 static tree
1422 op_with_constant_singleton_value_range (tree op)
1424 value_range_t *vr;
1426 if (is_gimple_min_invariant (op))
1427 return op;
1429 if (TREE_CODE (op) != SSA_NAME)
1430 return NULL_TREE;
1432 vr = get_value_range (op);
1433 if (vr->type == VR_RANGE
1434 && operand_equal_p (vr->min, vr->max, 0)
1435 && is_gimple_min_invariant (vr->min))
1436 return vr->min;
1438 return NULL_TREE;
1442 /* Extract value range information from an ASSERT_EXPR EXPR and store
1443 it in *VR_P. */
1445 static void
1446 extract_range_from_assert (value_range_t *vr_p, tree expr)
1448 tree var, cond, limit, min, max, type;
1449 value_range_t *var_vr, *limit_vr;
1450 enum tree_code cond_code;
1452 var = ASSERT_EXPR_VAR (expr);
1453 cond = ASSERT_EXPR_COND (expr);
1455 gcc_assert (COMPARISON_CLASS_P (cond));
1457 /* Find VAR in the ASSERT_EXPR conditional. */
1458 if (var == TREE_OPERAND (cond, 0)
1459 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1460 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1462 /* If the predicate is of the form VAR COMP LIMIT, then we just
1463 take LIMIT from the RHS and use the same comparison code. */
1464 cond_code = TREE_CODE (cond);
1465 limit = TREE_OPERAND (cond, 1);
1466 cond = TREE_OPERAND (cond, 0);
1468 else
1470 /* If the predicate is of the form LIMIT COMP VAR, then we need
1471 to flip around the comparison code to create the proper range
1472 for VAR. */
1473 cond_code = swap_tree_comparison (TREE_CODE (cond));
1474 limit = TREE_OPERAND (cond, 0);
1475 cond = TREE_OPERAND (cond, 1);
1478 limit = avoid_overflow_infinity (limit);
1480 type = TREE_TYPE (limit);
1481 gcc_assert (limit != var);
1483 /* For pointer arithmetic, we only keep track of pointer equality
1484 and inequality. */
1485 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1487 set_value_range_to_varying (vr_p);
1488 return;
1491 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1492 try to use LIMIT's range to avoid creating symbolic ranges
1493 unnecessarily. */
1494 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1496 /* LIMIT's range is only interesting if it has any useful information. */
1497 if (limit_vr
1498 && (limit_vr->type == VR_UNDEFINED
1499 || limit_vr->type == VR_VARYING
1500 || symbolic_range_p (limit_vr)))
1501 limit_vr = NULL;
1503 /* Initially, the new range has the same set of equivalences of
1504 VAR's range. This will be revised before returning the final
1505 value. Since assertions may be chained via mutually exclusive
1506 predicates, we will need to trim the set of equivalences before
1507 we are done. */
1508 gcc_assert (vr_p->equiv == NULL);
1509 add_equivalence (&vr_p->equiv, var);
1511 /* Extract a new range based on the asserted comparison for VAR and
1512 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1513 will only use it for equality comparisons (EQ_EXPR). For any
1514 other kind of assertion, we cannot derive a range from LIMIT's
1515 anti-range that can be used to describe the new range. For
1516 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1517 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1518 no single range for x_2 that could describe LE_EXPR, so we might
1519 as well build the range [b_4, +INF] for it.
1520 One special case we handle is extracting a range from a
1521 range test encoded as (unsigned)var + CST <= limit. */
1522 if (TREE_CODE (cond) == NOP_EXPR
1523 || TREE_CODE (cond) == PLUS_EXPR)
1525 if (TREE_CODE (cond) == PLUS_EXPR)
1527 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1528 TREE_OPERAND (cond, 1));
1529 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1530 cond = TREE_OPERAND (cond, 0);
1532 else
1534 min = build_int_cst (TREE_TYPE (var), 0);
1535 max = limit;
1538 /* Make sure to not set TREE_OVERFLOW on the final type
1539 conversion. We are willingly interpreting large positive
1540 unsigned values as negative singed values here. */
1541 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1542 0, false);
1543 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1544 0, false);
1546 /* We can transform a max, min range to an anti-range or
1547 vice-versa. Use set_and_canonicalize_value_range which does
1548 this for us. */
1549 if (cond_code == LE_EXPR)
1550 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1551 min, max, vr_p->equiv);
1552 else if (cond_code == GT_EXPR)
1553 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1554 min, max, vr_p->equiv);
1555 else
1556 gcc_unreachable ();
1558 else if (cond_code == EQ_EXPR)
1560 enum value_range_type range_type;
1562 if (limit_vr)
1564 range_type = limit_vr->type;
1565 min = limit_vr->min;
1566 max = limit_vr->max;
1568 else
1570 range_type = VR_RANGE;
1571 min = limit;
1572 max = limit;
1575 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1577 /* When asserting the equality VAR == LIMIT and LIMIT is another
1578 SSA name, the new range will also inherit the equivalence set
1579 from LIMIT. */
1580 if (TREE_CODE (limit) == SSA_NAME)
1581 add_equivalence (&vr_p->equiv, limit);
1583 else if (cond_code == NE_EXPR)
1585 /* As described above, when LIMIT's range is an anti-range and
1586 this assertion is an inequality (NE_EXPR), then we cannot
1587 derive anything from the anti-range. For instance, if
1588 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1589 not imply that VAR's range is [0, 0]. So, in the case of
1590 anti-ranges, we just assert the inequality using LIMIT and
1591 not its anti-range.
1593 If LIMIT_VR is a range, we can only use it to build a new
1594 anti-range if LIMIT_VR is a single-valued range. For
1595 instance, if LIMIT_VR is [0, 1], the predicate
1596 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1597 Rather, it means that for value 0 VAR should be ~[0, 0]
1598 and for value 1, VAR should be ~[1, 1]. We cannot
1599 represent these ranges.
1601 The only situation in which we can build a valid
1602 anti-range is when LIMIT_VR is a single-valued range
1603 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1604 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1605 if (limit_vr
1606 && limit_vr->type == VR_RANGE
1607 && compare_values (limit_vr->min, limit_vr->max) == 0)
1609 min = limit_vr->min;
1610 max = limit_vr->max;
1612 else
1614 /* In any other case, we cannot use LIMIT's range to build a
1615 valid anti-range. */
1616 min = max = limit;
1619 /* If MIN and MAX cover the whole range for their type, then
1620 just use the original LIMIT. */
1621 if (INTEGRAL_TYPE_P (type)
1622 && vrp_val_is_min (min)
1623 && vrp_val_is_max (max))
1624 min = max = limit;
1626 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1628 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1630 min = TYPE_MIN_VALUE (type);
1632 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1633 max = limit;
1634 else
1636 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1637 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1638 LT_EXPR. */
1639 max = limit_vr->max;
1642 /* If the maximum value forces us to be out of bounds, simply punt.
1643 It would be pointless to try and do anything more since this
1644 all should be optimized away above us. */
1645 if ((cond_code == LT_EXPR
1646 && compare_values (max, min) == 0)
1647 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1648 set_value_range_to_varying (vr_p);
1649 else
1651 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1652 if (cond_code == LT_EXPR)
1654 tree one = build_int_cst (type, 1);
1655 max = fold_build2 (MINUS_EXPR, type, max, one);
1656 if (EXPR_P (max))
1657 TREE_NO_WARNING (max) = 1;
1660 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1663 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1665 max = TYPE_MAX_VALUE (type);
1667 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1668 min = limit;
1669 else
1671 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1672 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1673 GT_EXPR. */
1674 min = limit_vr->min;
1677 /* If the minimum value forces us to be out of bounds, simply punt.
1678 It would be pointless to try and do anything more since this
1679 all should be optimized away above us. */
1680 if ((cond_code == GT_EXPR
1681 && compare_values (min, max) == 0)
1682 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1683 set_value_range_to_varying (vr_p);
1684 else
1686 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1687 if (cond_code == GT_EXPR)
1689 tree one = build_int_cst (type, 1);
1690 min = fold_build2 (PLUS_EXPR, type, min, one);
1691 if (EXPR_P (min))
1692 TREE_NO_WARNING (min) = 1;
1695 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1698 else
1699 gcc_unreachable ();
1701 /* If VAR already had a known range, it may happen that the new
1702 range we have computed and VAR's range are not compatible. For
1703 instance,
1705 if (p_5 == NULL)
1706 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1707 x_7 = p_6->fld;
1708 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1710 While the above comes from a faulty program, it will cause an ICE
1711 later because p_8 and p_6 will have incompatible ranges and at
1712 the same time will be considered equivalent. A similar situation
1713 would arise from
1715 if (i_5 > 10)
1716 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1717 if (i_5 < 5)
1718 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1720 Again i_6 and i_7 will have incompatible ranges. It would be
1721 pointless to try and do anything with i_7's range because
1722 anything dominated by 'if (i_5 < 5)' will be optimized away.
1723 Note, due to the wa in which simulation proceeds, the statement
1724 i_7 = ASSERT_EXPR <...> we would never be visited because the
1725 conditional 'if (i_5 < 5)' always evaluates to false. However,
1726 this extra check does not hurt and may protect against future
1727 changes to VRP that may get into a situation similar to the
1728 NULL pointer dereference example.
1730 Note that these compatibility tests are only needed when dealing
1731 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1732 are both anti-ranges, they will always be compatible, because two
1733 anti-ranges will always have a non-empty intersection. */
1735 var_vr = get_value_range (var);
1737 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1738 ranges or anti-ranges. */
1739 if (vr_p->type == VR_VARYING
1740 || vr_p->type == VR_UNDEFINED
1741 || var_vr->type == VR_VARYING
1742 || var_vr->type == VR_UNDEFINED
1743 || symbolic_range_p (vr_p)
1744 || symbolic_range_p (var_vr))
1745 return;
1747 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1749 /* If the two ranges have a non-empty intersection, we can
1750 refine the resulting range. Since the assert expression
1751 creates an equivalency and at the same time it asserts a
1752 predicate, we can take the intersection of the two ranges to
1753 get better precision. */
1754 if (value_ranges_intersect_p (var_vr, vr_p))
1756 /* Use the larger of the two minimums. */
1757 if (compare_values (vr_p->min, var_vr->min) == -1)
1758 min = var_vr->min;
1759 else
1760 min = vr_p->min;
1762 /* Use the smaller of the two maximums. */
1763 if (compare_values (vr_p->max, var_vr->max) == 1)
1764 max = var_vr->max;
1765 else
1766 max = vr_p->max;
1768 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1770 else
1772 /* The two ranges do not intersect, set the new range to
1773 VARYING, because we will not be able to do anything
1774 meaningful with it. */
1775 set_value_range_to_varying (vr_p);
1778 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1779 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1781 /* A range and an anti-range will cancel each other only if
1782 their ends are the same. For instance, in the example above,
1783 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1784 so VR_P should be set to VR_VARYING. */
1785 if (compare_values (var_vr->min, vr_p->min) == 0
1786 && compare_values (var_vr->max, vr_p->max) == 0)
1787 set_value_range_to_varying (vr_p);
1788 else
1790 tree min, max, anti_min, anti_max, real_min, real_max;
1791 int cmp;
1793 /* We want to compute the logical AND of the two ranges;
1794 there are three cases to consider.
1797 1. The VR_ANTI_RANGE range is completely within the
1798 VR_RANGE and the endpoints of the ranges are
1799 different. In that case the resulting range
1800 should be whichever range is more precise.
1801 Typically that will be the VR_RANGE.
1803 2. The VR_ANTI_RANGE is completely disjoint from
1804 the VR_RANGE. In this case the resulting range
1805 should be the VR_RANGE.
1807 3. There is some overlap between the VR_ANTI_RANGE
1808 and the VR_RANGE.
1810 3a. If the high limit of the VR_ANTI_RANGE resides
1811 within the VR_RANGE, then the result is a new
1812 VR_RANGE starting at the high limit of the
1813 VR_ANTI_RANGE + 1 and extending to the
1814 high limit of the original VR_RANGE.
1816 3b. If the low limit of the VR_ANTI_RANGE resides
1817 within the VR_RANGE, then the result is a new
1818 VR_RANGE starting at the low limit of the original
1819 VR_RANGE and extending to the low limit of the
1820 VR_ANTI_RANGE - 1. */
1821 if (vr_p->type == VR_ANTI_RANGE)
1823 anti_min = vr_p->min;
1824 anti_max = vr_p->max;
1825 real_min = var_vr->min;
1826 real_max = var_vr->max;
1828 else
1830 anti_min = var_vr->min;
1831 anti_max = var_vr->max;
1832 real_min = vr_p->min;
1833 real_max = vr_p->max;
1837 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1838 not including any endpoints. */
1839 if (compare_values (anti_max, real_max) == -1
1840 && compare_values (anti_min, real_min) == 1)
1842 /* If the range is covering the whole valid range of
1843 the type keep the anti-range. */
1844 if (!vrp_val_is_min (real_min)
1845 || !vrp_val_is_max (real_max))
1846 set_value_range (vr_p, VR_RANGE, real_min,
1847 real_max, vr_p->equiv);
1849 /* Case 2, VR_ANTI_RANGE completely disjoint from
1850 VR_RANGE. */
1851 else if (compare_values (anti_min, real_max) == 1
1852 || compare_values (anti_max, real_min) == -1)
1854 set_value_range (vr_p, VR_RANGE, real_min,
1855 real_max, vr_p->equiv);
1857 /* Case 3a, the anti-range extends into the low
1858 part of the real range. Thus creating a new
1859 low for the real range. */
1860 else if (((cmp = compare_values (anti_max, real_min)) == 1
1861 || cmp == 0)
1862 && compare_values (anti_max, real_max) == -1)
1864 gcc_assert (!is_positive_overflow_infinity (anti_max));
1865 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1866 && vrp_val_is_max (anti_max))
1868 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1870 set_value_range_to_varying (vr_p);
1871 return;
1873 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1875 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1876 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1877 anti_max,
1878 build_int_cst (TREE_TYPE (var_vr->min), 1));
1879 else
1880 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1881 anti_max, size_int (1));
1882 max = real_max;
1883 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1885 /* Case 3b, the anti-range extends into the high
1886 part of the real range. Thus creating a new
1887 higher for the real range. */
1888 else if (compare_values (anti_min, real_min) == 1
1889 && ((cmp = compare_values (anti_min, real_max)) == -1
1890 || cmp == 0))
1892 gcc_assert (!is_negative_overflow_infinity (anti_min));
1893 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1894 && vrp_val_is_min (anti_min))
1896 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1898 set_value_range_to_varying (vr_p);
1899 return;
1901 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1903 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1904 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1905 anti_min,
1906 build_int_cst (TREE_TYPE (var_vr->min), 1));
1907 else
1908 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1909 anti_min,
1910 size_int (-1));
1911 min = real_min;
1912 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1919 /* Extract range information from SSA name VAR and store it in VR. If
1920 VAR has an interesting range, use it. Otherwise, create the
1921 range [VAR, VAR] and return it. This is useful in situations where
1922 we may have conditionals testing values of VARYING names. For
1923 instance,
1925 x_3 = y_5;
1926 if (x_3 > y_5)
1929 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1930 always false. */
1932 static void
1933 extract_range_from_ssa_name (value_range_t *vr, tree var)
1935 value_range_t *var_vr = get_value_range (var);
1937 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1938 copy_value_range (vr, var_vr);
1939 else
1940 set_value_range (vr, VR_RANGE, var, var, NULL);
1942 add_equivalence (&vr->equiv, var);
1946 /* Wrapper around int_const_binop. If the operation overflows and we
1947 are not using wrapping arithmetic, then adjust the result to be
1948 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1949 NULL_TREE if we need to use an overflow infinity representation but
1950 the type does not support it. */
1952 static tree
1953 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1955 tree res;
1957 res = int_const_binop (code, val1, val2, 0);
1959 /* If we are using unsigned arithmetic, operate symbolically
1960 on -INF and +INF as int_const_binop only handles signed overflow. */
1961 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1963 int checkz = compare_values (res, val1);
1964 bool overflow = false;
1966 /* Ensure that res = val1 [+*] val2 >= val1
1967 or that res = val1 - val2 <= val1. */
1968 if ((code == PLUS_EXPR
1969 && !(checkz == 1 || checkz == 0))
1970 || (code == MINUS_EXPR
1971 && !(checkz == 0 || checkz == -1)))
1973 overflow = true;
1975 /* Checking for multiplication overflow is done by dividing the
1976 output of the multiplication by the first input of the
1977 multiplication. If the result of that division operation is
1978 not equal to the second input of the multiplication, then the
1979 multiplication overflowed. */
1980 else if (code == MULT_EXPR && !integer_zerop (val1))
1982 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1983 res,
1984 val1, 0);
1985 int check = compare_values (tmp, val2);
1987 if (check != 0)
1988 overflow = true;
1991 if (overflow)
1993 res = copy_node (res);
1994 TREE_OVERFLOW (res) = 1;
1998 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1999 /* If the singed operation wraps then int_const_binop has done
2000 everything we want. */
2002 else if ((TREE_OVERFLOW (res)
2003 && !TREE_OVERFLOW (val1)
2004 && !TREE_OVERFLOW (val2))
2005 || is_overflow_infinity (val1)
2006 || is_overflow_infinity (val2))
2008 /* If the operation overflowed but neither VAL1 nor VAL2 are
2009 overflown, return -INF or +INF depending on the operation
2010 and the combination of signs of the operands. */
2011 int sgn1 = tree_int_cst_sgn (val1);
2012 int sgn2 = tree_int_cst_sgn (val2);
2014 if (needs_overflow_infinity (TREE_TYPE (res))
2015 && !supports_overflow_infinity (TREE_TYPE (res)))
2016 return NULL_TREE;
2018 /* We have to punt on adding infinities of different signs,
2019 since we can't tell what the sign of the result should be.
2020 Likewise for subtracting infinities of the same sign. */
2021 if (((code == PLUS_EXPR && sgn1 != sgn2)
2022 || (code == MINUS_EXPR && sgn1 == sgn2))
2023 && is_overflow_infinity (val1)
2024 && is_overflow_infinity (val2))
2025 return NULL_TREE;
2027 /* Don't try to handle division or shifting of infinities. */
2028 if ((code == TRUNC_DIV_EXPR
2029 || code == FLOOR_DIV_EXPR
2030 || code == CEIL_DIV_EXPR
2031 || code == EXACT_DIV_EXPR
2032 || code == ROUND_DIV_EXPR
2033 || code == RSHIFT_EXPR)
2034 && (is_overflow_infinity (val1)
2035 || is_overflow_infinity (val2)))
2036 return NULL_TREE;
2038 /* Notice that we only need to handle the restricted set of
2039 operations handled by extract_range_from_binary_expr.
2040 Among them, only multiplication, addition and subtraction
2041 can yield overflow without overflown operands because we
2042 are working with integral types only... except in the
2043 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2044 for division too. */
2046 /* For multiplication, the sign of the overflow is given
2047 by the comparison of the signs of the operands. */
2048 if ((code == MULT_EXPR && sgn1 == sgn2)
2049 /* For addition, the operands must be of the same sign
2050 to yield an overflow. Its sign is therefore that
2051 of one of the operands, for example the first. For
2052 infinite operands X + -INF is negative, not positive. */
2053 || (code == PLUS_EXPR
2054 && (sgn1 >= 0
2055 ? !is_negative_overflow_infinity (val2)
2056 : is_positive_overflow_infinity (val2)))
2057 /* For subtraction, non-infinite operands must be of
2058 different signs to yield an overflow. Its sign is
2059 therefore that of the first operand or the opposite of
2060 that of the second operand. A first operand of 0 counts
2061 as positive here, for the corner case 0 - (-INF), which
2062 overflows, but must yield +INF. For infinite operands 0
2063 - INF is negative, not positive. */
2064 || (code == MINUS_EXPR
2065 && (sgn1 >= 0
2066 ? !is_positive_overflow_infinity (val2)
2067 : is_negative_overflow_infinity (val2)))
2068 /* We only get in here with positive shift count, so the
2069 overflow direction is the same as the sign of val1.
2070 Actually rshift does not overflow at all, but we only
2071 handle the case of shifting overflowed -INF and +INF. */
2072 || (code == RSHIFT_EXPR
2073 && sgn1 >= 0)
2074 /* For division, the only case is -INF / -1 = +INF. */
2075 || code == TRUNC_DIV_EXPR
2076 || code == FLOOR_DIV_EXPR
2077 || code == CEIL_DIV_EXPR
2078 || code == EXACT_DIV_EXPR
2079 || code == ROUND_DIV_EXPR)
2080 return (needs_overflow_infinity (TREE_TYPE (res))
2081 ? positive_overflow_infinity (TREE_TYPE (res))
2082 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2083 else
2084 return (needs_overflow_infinity (TREE_TYPE (res))
2085 ? negative_overflow_infinity (TREE_TYPE (res))
2086 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2089 return res;
2093 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2094 bitmask if some bit is unset, it means for all numbers in the range
2095 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2096 bitmask if some bit is set, it means for all numbers in the range
2097 the bit is 1, otherwise it might be 0 or 1. */
2099 static bool
2100 zero_nonzero_bits_from_vr (value_range_t *vr, double_int *may_be_nonzero,
2101 double_int *must_be_nonzero)
2103 if (range_int_cst_p (vr))
2105 if (range_int_cst_singleton_p (vr))
2107 *may_be_nonzero = tree_to_double_int (vr->min);
2108 *must_be_nonzero = *may_be_nonzero;
2109 return true;
2111 if (tree_int_cst_sgn (vr->min) >= 0)
2113 double_int dmin = tree_to_double_int (vr->min);
2114 double_int dmax = tree_to_double_int (vr->max);
2115 double_int xor_mask = double_int_xor (dmin, dmax);
2116 *may_be_nonzero = double_int_ior (dmin, dmax);
2117 *must_be_nonzero = double_int_and (dmin, dmax);
2118 if (xor_mask.high != 0)
2120 unsigned HOST_WIDE_INT mask
2121 = ((unsigned HOST_WIDE_INT) 1
2122 << floor_log2 (xor_mask.high)) - 1;
2123 may_be_nonzero->low = ALL_ONES;
2124 may_be_nonzero->high |= mask;
2125 must_be_nonzero->low = 0;
2126 must_be_nonzero->high &= ~mask;
2128 else if (xor_mask.low != 0)
2130 unsigned HOST_WIDE_INT mask
2131 = ((unsigned HOST_WIDE_INT) 1
2132 << floor_log2 (xor_mask.low)) - 1;
2133 may_be_nonzero->low |= mask;
2134 must_be_nonzero->low &= ~mask;
2136 return true;
2139 may_be_nonzero->low = ALL_ONES;
2140 may_be_nonzero->high = ALL_ONES;
2141 must_be_nonzero->low = 0;
2142 must_be_nonzero->high = 0;
2143 return false;
2147 /* Extract range information from a binary expression EXPR based on
2148 the ranges of each of its operands and the expression code. */
2150 static void
2151 extract_range_from_binary_expr (value_range_t *vr,
2152 enum tree_code code,
2153 tree expr_type, tree op0, tree op1)
2155 enum value_range_type type;
2156 tree min, max;
2157 int cmp;
2158 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2159 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2161 /* Not all binary expressions can be applied to ranges in a
2162 meaningful way. Handle only arithmetic operations. */
2163 if (code != PLUS_EXPR
2164 && code != MINUS_EXPR
2165 && code != POINTER_PLUS_EXPR
2166 && code != MULT_EXPR
2167 && code != TRUNC_DIV_EXPR
2168 && code != FLOOR_DIV_EXPR
2169 && code != CEIL_DIV_EXPR
2170 && code != EXACT_DIV_EXPR
2171 && code != ROUND_DIV_EXPR
2172 && code != TRUNC_MOD_EXPR
2173 && code != RSHIFT_EXPR
2174 && code != MIN_EXPR
2175 && code != MAX_EXPR
2176 && code != BIT_AND_EXPR
2177 && code != BIT_IOR_EXPR
2178 && code != TRUTH_AND_EXPR
2179 && code != TRUTH_OR_EXPR)
2181 /* We can still do constant propagation here. */
2182 tree const_op0 = op_with_constant_singleton_value_range (op0);
2183 tree const_op1 = op_with_constant_singleton_value_range (op1);
2184 if (const_op0 || const_op1)
2186 tree tem = fold_binary (code, expr_type,
2187 const_op0 ? const_op0 : op0,
2188 const_op1 ? const_op1 : op1);
2189 if (tem
2190 && is_gimple_min_invariant (tem)
2191 && !is_overflow_infinity (tem))
2193 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2194 return;
2197 set_value_range_to_varying (vr);
2198 return;
2201 /* Get value ranges for each operand. For constant operands, create
2202 a new value range with the operand to simplify processing. */
2203 if (TREE_CODE (op0) == SSA_NAME)
2204 vr0 = *(get_value_range (op0));
2205 else if (is_gimple_min_invariant (op0))
2206 set_value_range_to_value (&vr0, op0, NULL);
2207 else
2208 set_value_range_to_varying (&vr0);
2210 if (TREE_CODE (op1) == SSA_NAME)
2211 vr1 = *(get_value_range (op1));
2212 else if (is_gimple_min_invariant (op1))
2213 set_value_range_to_value (&vr1, op1, NULL);
2214 else
2215 set_value_range_to_varying (&vr1);
2217 /* If either range is UNDEFINED, so is the result. */
2218 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2220 set_value_range_to_undefined (vr);
2221 return;
2224 /* The type of the resulting value range defaults to VR0.TYPE. */
2225 type = vr0.type;
2227 /* Refuse to operate on VARYING ranges, ranges of different kinds
2228 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2229 because we may be able to derive a useful range even if one of
2230 the operands is VR_VARYING or symbolic range. Similarly for
2231 divisions. TODO, we may be able to derive anti-ranges in
2232 some cases. */
2233 if (code != BIT_AND_EXPR
2234 && code != TRUTH_AND_EXPR
2235 && code != TRUTH_OR_EXPR
2236 && code != TRUNC_DIV_EXPR
2237 && code != FLOOR_DIV_EXPR
2238 && code != CEIL_DIV_EXPR
2239 && code != EXACT_DIV_EXPR
2240 && code != ROUND_DIV_EXPR
2241 && code != TRUNC_MOD_EXPR
2242 && (vr0.type == VR_VARYING
2243 || vr1.type == VR_VARYING
2244 || vr0.type != vr1.type
2245 || symbolic_range_p (&vr0)
2246 || symbolic_range_p (&vr1)))
2248 set_value_range_to_varying (vr);
2249 return;
2252 /* Now evaluate the expression to determine the new range. */
2253 if (POINTER_TYPE_P (expr_type)
2254 || POINTER_TYPE_P (TREE_TYPE (op0))
2255 || POINTER_TYPE_P (TREE_TYPE (op1)))
2257 if (code == MIN_EXPR || code == MAX_EXPR)
2259 /* For MIN/MAX expressions with pointers, we only care about
2260 nullness, if both are non null, then the result is nonnull.
2261 If both are null, then the result is null. Otherwise they
2262 are varying. */
2263 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2264 set_value_range_to_nonnull (vr, expr_type);
2265 else if (range_is_null (&vr0) && range_is_null (&vr1))
2266 set_value_range_to_null (vr, expr_type);
2267 else
2268 set_value_range_to_varying (vr);
2270 return;
2272 if (code == POINTER_PLUS_EXPR)
2274 /* For pointer types, we are really only interested in asserting
2275 whether the expression evaluates to non-NULL. */
2276 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2277 set_value_range_to_nonnull (vr, expr_type);
2278 else if (range_is_null (&vr0) && range_is_null (&vr1))
2279 set_value_range_to_null (vr, expr_type);
2280 else
2281 set_value_range_to_varying (vr);
2283 else if (code == BIT_AND_EXPR)
2285 /* For pointer types, we are really only interested in asserting
2286 whether the expression evaluates to non-NULL. */
2287 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2288 set_value_range_to_nonnull (vr, expr_type);
2289 else if (range_is_null (&vr0) || range_is_null (&vr1))
2290 set_value_range_to_null (vr, expr_type);
2291 else
2292 set_value_range_to_varying (vr);
2294 else
2295 gcc_unreachable ();
2297 return;
2300 /* For integer ranges, apply the operation to each end of the
2301 range and see what we end up with. */
2302 if (code == TRUTH_AND_EXPR
2303 || code == TRUTH_OR_EXPR)
2305 /* If one of the operands is zero, we know that the whole
2306 expression evaluates zero. */
2307 if (code == TRUTH_AND_EXPR
2308 && ((vr0.type == VR_RANGE
2309 && integer_zerop (vr0.min)
2310 && integer_zerop (vr0.max))
2311 || (vr1.type == VR_RANGE
2312 && integer_zerop (vr1.min)
2313 && integer_zerop (vr1.max))))
2315 type = VR_RANGE;
2316 min = max = build_int_cst (expr_type, 0);
2318 /* If one of the operands is one, we know that the whole
2319 expression evaluates one. */
2320 else if (code == TRUTH_OR_EXPR
2321 && ((vr0.type == VR_RANGE
2322 && integer_onep (vr0.min)
2323 && integer_onep (vr0.max))
2324 || (vr1.type == VR_RANGE
2325 && integer_onep (vr1.min)
2326 && integer_onep (vr1.max))))
2328 type = VR_RANGE;
2329 min = max = build_int_cst (expr_type, 1);
2331 else if (vr0.type != VR_VARYING
2332 && vr1.type != VR_VARYING
2333 && vr0.type == vr1.type
2334 && !symbolic_range_p (&vr0)
2335 && !overflow_infinity_range_p (&vr0)
2336 && !symbolic_range_p (&vr1)
2337 && !overflow_infinity_range_p (&vr1))
2339 /* Boolean expressions cannot be folded with int_const_binop. */
2340 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2341 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2343 else
2345 /* The result of a TRUTH_*_EXPR is always true or false. */
2346 set_value_range_to_truthvalue (vr, expr_type);
2347 return;
2350 else if (code == PLUS_EXPR
2351 || code == MIN_EXPR
2352 || code == MAX_EXPR)
2354 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2355 VR_VARYING. It would take more effort to compute a precise
2356 range for such a case. For example, if we have op0 == 1 and
2357 op1 == -1 with their ranges both being ~[0,0], we would have
2358 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2359 Note that we are guaranteed to have vr0.type == vr1.type at
2360 this point. */
2361 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2363 set_value_range_to_varying (vr);
2364 return;
2367 /* For operations that make the resulting range directly
2368 proportional to the original ranges, apply the operation to
2369 the same end of each range. */
2370 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2371 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2373 /* If both additions overflowed the range kind is still correct.
2374 This happens regularly with subtracting something in unsigned
2375 arithmetic.
2376 ??? See PR30318 for all the cases we do not handle. */
2377 if (code == PLUS_EXPR
2378 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2379 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2381 min = build_int_cst_wide (TREE_TYPE (min),
2382 TREE_INT_CST_LOW (min),
2383 TREE_INT_CST_HIGH (min));
2384 max = build_int_cst_wide (TREE_TYPE (max),
2385 TREE_INT_CST_LOW (max),
2386 TREE_INT_CST_HIGH (max));
2389 else if (code == MULT_EXPR
2390 || code == TRUNC_DIV_EXPR
2391 || code == FLOOR_DIV_EXPR
2392 || code == CEIL_DIV_EXPR
2393 || code == EXACT_DIV_EXPR
2394 || code == ROUND_DIV_EXPR
2395 || code == RSHIFT_EXPR)
2397 tree val[4];
2398 size_t i;
2399 bool sop;
2401 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2402 drop to VR_VARYING. It would take more effort to compute a
2403 precise range for such a case. For example, if we have
2404 op0 == 65536 and op1 == 65536 with their ranges both being
2405 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2406 we cannot claim that the product is in ~[0,0]. Note that we
2407 are guaranteed to have vr0.type == vr1.type at this
2408 point. */
2409 if (code == MULT_EXPR
2410 && vr0.type == VR_ANTI_RANGE
2411 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2413 set_value_range_to_varying (vr);
2414 return;
2417 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2418 then drop to VR_VARYING. Outside of this range we get undefined
2419 behavior from the shift operation. We cannot even trust
2420 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2421 shifts, and the operation at the tree level may be widened. */
2422 if (code == RSHIFT_EXPR)
2424 if (vr1.type == VR_ANTI_RANGE
2425 || !vrp_expr_computes_nonnegative (op1, &sop)
2426 || (operand_less_p
2427 (build_int_cst (TREE_TYPE (vr1.max),
2428 TYPE_PRECISION (expr_type) - 1),
2429 vr1.max) != 0))
2431 set_value_range_to_varying (vr);
2432 return;
2436 else if ((code == TRUNC_DIV_EXPR
2437 || code == FLOOR_DIV_EXPR
2438 || code == CEIL_DIV_EXPR
2439 || code == EXACT_DIV_EXPR
2440 || code == ROUND_DIV_EXPR)
2441 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2443 /* For division, if op1 has VR_RANGE but op0 does not, something
2444 can be deduced just from that range. Say [min, max] / [4, max]
2445 gives [min / 4, max / 4] range. */
2446 if (vr1.type == VR_RANGE
2447 && !symbolic_range_p (&vr1)
2448 && !range_includes_zero_p (&vr1))
2450 vr0.type = type = VR_RANGE;
2451 vr0.min = vrp_val_min (TREE_TYPE (op0));
2452 vr0.max = vrp_val_max (TREE_TYPE (op1));
2454 else
2456 set_value_range_to_varying (vr);
2457 return;
2461 /* For divisions, if flag_non_call_exceptions is true, we must
2462 not eliminate a division by zero. */
2463 if ((code == TRUNC_DIV_EXPR
2464 || code == FLOOR_DIV_EXPR
2465 || code == CEIL_DIV_EXPR
2466 || code == EXACT_DIV_EXPR
2467 || code == ROUND_DIV_EXPR)
2468 && cfun->can_throw_non_call_exceptions
2469 && (vr1.type != VR_RANGE
2470 || symbolic_range_p (&vr1)
2471 || range_includes_zero_p (&vr1)))
2473 set_value_range_to_varying (vr);
2474 return;
2477 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2478 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2479 include 0. */
2480 if ((code == TRUNC_DIV_EXPR
2481 || code == FLOOR_DIV_EXPR
2482 || code == CEIL_DIV_EXPR
2483 || code == EXACT_DIV_EXPR
2484 || code == ROUND_DIV_EXPR)
2485 && vr0.type == VR_RANGE
2486 && (vr1.type != VR_RANGE
2487 || symbolic_range_p (&vr1)
2488 || range_includes_zero_p (&vr1)))
2490 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2491 int cmp;
2493 sop = false;
2494 min = NULL_TREE;
2495 max = NULL_TREE;
2496 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2498 /* For unsigned division or when divisor is known
2499 to be non-negative, the range has to cover
2500 all numbers from 0 to max for positive max
2501 and all numbers from min to 0 for negative min. */
2502 cmp = compare_values (vr0.max, zero);
2503 if (cmp == -1)
2504 max = zero;
2505 else if (cmp == 0 || cmp == 1)
2506 max = vr0.max;
2507 else
2508 type = VR_VARYING;
2509 cmp = compare_values (vr0.min, zero);
2510 if (cmp == 1)
2511 min = zero;
2512 else if (cmp == 0 || cmp == -1)
2513 min = vr0.min;
2514 else
2515 type = VR_VARYING;
2517 else
2519 /* Otherwise the range is -max .. max or min .. -min
2520 depending on which bound is bigger in absolute value,
2521 as the division can change the sign. */
2522 abs_extent_range (vr, vr0.min, vr0.max);
2523 return;
2525 if (type == VR_VARYING)
2527 set_value_range_to_varying (vr);
2528 return;
2532 /* Multiplications and divisions are a bit tricky to handle,
2533 depending on the mix of signs we have in the two ranges, we
2534 need to operate on different values to get the minimum and
2535 maximum values for the new range. One approach is to figure
2536 out all the variations of range combinations and do the
2537 operations.
2539 However, this involves several calls to compare_values and it
2540 is pretty convoluted. It's simpler to do the 4 operations
2541 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2542 MAX1) and then figure the smallest and largest values to form
2543 the new range. */
2544 else
2546 gcc_assert ((vr0.type == VR_RANGE
2547 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2548 && vr0.type == vr1.type);
2550 /* Compute the 4 cross operations. */
2551 sop = false;
2552 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2553 if (val[0] == NULL_TREE)
2554 sop = true;
2556 if (vr1.max == vr1.min)
2557 val[1] = NULL_TREE;
2558 else
2560 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2561 if (val[1] == NULL_TREE)
2562 sop = true;
2565 if (vr0.max == vr0.min)
2566 val[2] = NULL_TREE;
2567 else
2569 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2570 if (val[2] == NULL_TREE)
2571 sop = true;
2574 if (vr0.min == vr0.max || vr1.min == vr1.max)
2575 val[3] = NULL_TREE;
2576 else
2578 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2579 if (val[3] == NULL_TREE)
2580 sop = true;
2583 if (sop)
2585 set_value_range_to_varying (vr);
2586 return;
2589 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2590 of VAL[i]. */
2591 min = val[0];
2592 max = val[0];
2593 for (i = 1; i < 4; i++)
2595 if (!is_gimple_min_invariant (min)
2596 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2597 || !is_gimple_min_invariant (max)
2598 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2599 break;
2601 if (val[i])
2603 if (!is_gimple_min_invariant (val[i])
2604 || (TREE_OVERFLOW (val[i])
2605 && !is_overflow_infinity (val[i])))
2607 /* If we found an overflowed value, set MIN and MAX
2608 to it so that we set the resulting range to
2609 VARYING. */
2610 min = max = val[i];
2611 break;
2614 if (compare_values (val[i], min) == -1)
2615 min = val[i];
2617 if (compare_values (val[i], max) == 1)
2618 max = val[i];
2623 else if (code == TRUNC_MOD_EXPR)
2625 bool sop = false;
2626 if (vr1.type != VR_RANGE
2627 || symbolic_range_p (&vr1)
2628 || range_includes_zero_p (&vr1)
2629 || vrp_val_is_min (vr1.min))
2631 set_value_range_to_varying (vr);
2632 return;
2634 type = VR_RANGE;
2635 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2636 max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
2637 if (tree_int_cst_lt (max, vr1.max))
2638 max = vr1.max;
2639 max = int_const_binop (MINUS_EXPR, max, integer_one_node, 0);
2640 /* If the dividend is non-negative the modulus will be
2641 non-negative as well. */
2642 if (TYPE_UNSIGNED (TREE_TYPE (max))
2643 || (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
2644 min = build_int_cst (TREE_TYPE (max), 0);
2645 else
2646 min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
2648 else if (code == MINUS_EXPR)
2650 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2651 VR_VARYING. It would take more effort to compute a precise
2652 range for such a case. For example, if we have op0 == 1 and
2653 op1 == 1 with their ranges both being ~[0,0], we would have
2654 op0 - op1 == 0, so we cannot claim that the difference is in
2655 ~[0,0]. Note that we are guaranteed to have
2656 vr0.type == vr1.type at this point. */
2657 if (vr0.type == VR_ANTI_RANGE)
2659 set_value_range_to_varying (vr);
2660 return;
2663 /* For MINUS_EXPR, apply the operation to the opposite ends of
2664 each range. */
2665 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2666 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2668 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2670 bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
2671 bool int_cst_range0, int_cst_range1;
2672 double_int may_be_nonzero0, may_be_nonzero1;
2673 double_int must_be_nonzero0, must_be_nonzero1;
2675 vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
2676 vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
2677 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2678 &must_be_nonzero0);
2679 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2680 &must_be_nonzero1);
2682 type = VR_RANGE;
2683 if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
2684 min = max = int_const_binop (code, vr0.max, vr1.max, 0);
2685 else if (!int_cst_range0 && !int_cst_range1)
2687 set_value_range_to_varying (vr);
2688 return;
2690 else if (code == BIT_AND_EXPR)
2692 min = double_int_to_tree (expr_type,
2693 double_int_and (must_be_nonzero0,
2694 must_be_nonzero1));
2695 max = double_int_to_tree (expr_type,
2696 double_int_and (may_be_nonzero0,
2697 may_be_nonzero1));
2698 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2699 min = NULL_TREE;
2700 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2701 max = NULL_TREE;
2702 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2704 if (min == NULL_TREE)
2705 min = build_int_cst (expr_type, 0);
2706 if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max))
2707 max = vr0.max;
2709 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2711 if (min == NULL_TREE)
2712 min = build_int_cst (expr_type, 0);
2713 if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max))
2714 max = vr1.max;
2717 else if (!int_cst_range0
2718 || !int_cst_range1
2719 || tree_int_cst_sgn (vr0.min) < 0
2720 || tree_int_cst_sgn (vr1.min) < 0)
2722 set_value_range_to_varying (vr);
2723 return;
2725 else
2727 min = double_int_to_tree (expr_type,
2728 double_int_ior (must_be_nonzero0,
2729 must_be_nonzero1));
2730 max = double_int_to_tree (expr_type,
2731 double_int_ior (may_be_nonzero0,
2732 may_be_nonzero1));
2733 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2734 min = vr0.min;
2735 else
2736 min = vrp_int_const_binop (MAX_EXPR, min, vr0.min);
2737 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2738 max = NULL_TREE;
2739 min = vrp_int_const_binop (MAX_EXPR, min, vr1.min);
2742 else
2743 gcc_unreachable ();
2745 /* If either MIN or MAX overflowed, then set the resulting range to
2746 VARYING. But we do accept an overflow infinity
2747 representation. */
2748 if (min == NULL_TREE
2749 || !is_gimple_min_invariant (min)
2750 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2751 || max == NULL_TREE
2752 || !is_gimple_min_invariant (max)
2753 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2755 set_value_range_to_varying (vr);
2756 return;
2759 /* We punt if:
2760 1) [-INF, +INF]
2761 2) [-INF, +-INF(OVF)]
2762 3) [+-INF(OVF), +INF]
2763 4) [+-INF(OVF), +-INF(OVF)]
2764 We learn nothing when we have INF and INF(OVF) on both sides.
2765 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2766 overflow. */
2767 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2768 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2770 set_value_range_to_varying (vr);
2771 return;
2774 cmp = compare_values (min, max);
2775 if (cmp == -2 || cmp == 1)
2777 /* If the new range has its limits swapped around (MIN > MAX),
2778 then the operation caused one of them to wrap around, mark
2779 the new range VARYING. */
2780 set_value_range_to_varying (vr);
2782 else
2783 set_value_range (vr, type, min, max, NULL);
2787 /* Extract range information from a unary expression EXPR based on
2788 the range of its operand and the expression code. */
2790 static void
2791 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2792 tree type, tree op0)
2794 tree min, max;
2795 int cmp;
2796 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2798 /* Refuse to operate on certain unary expressions for which we
2799 cannot easily determine a resulting range. */
2800 if (code == FIX_TRUNC_EXPR
2801 || code == FLOAT_EXPR
2802 || code == BIT_NOT_EXPR
2803 || code == CONJ_EXPR)
2805 /* We can still do constant propagation here. */
2806 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2808 tree tem = fold_unary (code, type, op0);
2809 if (tem
2810 && is_gimple_min_invariant (tem)
2811 && !is_overflow_infinity (tem))
2813 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2814 return;
2817 set_value_range_to_varying (vr);
2818 return;
2821 /* Get value ranges for the operand. For constant operands, create
2822 a new value range with the operand to simplify processing. */
2823 if (TREE_CODE (op0) == SSA_NAME)
2824 vr0 = *(get_value_range (op0));
2825 else if (is_gimple_min_invariant (op0))
2826 set_value_range_to_value (&vr0, op0, NULL);
2827 else
2828 set_value_range_to_varying (&vr0);
2830 /* If VR0 is UNDEFINED, so is the result. */
2831 if (vr0.type == VR_UNDEFINED)
2833 set_value_range_to_undefined (vr);
2834 return;
2837 /* Refuse to operate on symbolic ranges, or if neither operand is
2838 a pointer or integral type. */
2839 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2840 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2841 || (vr0.type != VR_VARYING
2842 && symbolic_range_p (&vr0)))
2844 set_value_range_to_varying (vr);
2845 return;
2848 /* If the expression involves pointers, we are only interested in
2849 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2850 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2852 bool sop;
2854 sop = false;
2855 if (range_is_nonnull (&vr0)
2856 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2857 && !sop))
2858 set_value_range_to_nonnull (vr, type);
2859 else if (range_is_null (&vr0))
2860 set_value_range_to_null (vr, type);
2861 else
2862 set_value_range_to_varying (vr);
2864 return;
2867 /* Handle unary expressions on integer ranges. */
2868 if (CONVERT_EXPR_CODE_P (code)
2869 && INTEGRAL_TYPE_P (type)
2870 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2872 tree inner_type = TREE_TYPE (op0);
2873 tree outer_type = type;
2875 /* If VR0 is varying and we increase the type precision, assume
2876 a full range for the following transformation. */
2877 if (vr0.type == VR_VARYING
2878 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2880 vr0.type = VR_RANGE;
2881 vr0.min = TYPE_MIN_VALUE (inner_type);
2882 vr0.max = TYPE_MAX_VALUE (inner_type);
2885 /* If VR0 is a constant range or anti-range and the conversion is
2886 not truncating we can convert the min and max values and
2887 canonicalize the resulting range. Otherwise we can do the
2888 conversion if the size of the range is less than what the
2889 precision of the target type can represent and the range is
2890 not an anti-range. */
2891 if ((vr0.type == VR_RANGE
2892 || vr0.type == VR_ANTI_RANGE)
2893 && TREE_CODE (vr0.min) == INTEGER_CST
2894 && TREE_CODE (vr0.max) == INTEGER_CST
2895 && (!is_overflow_infinity (vr0.min)
2896 || (vr0.type == VR_RANGE
2897 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2898 && needs_overflow_infinity (outer_type)
2899 && supports_overflow_infinity (outer_type)))
2900 && (!is_overflow_infinity (vr0.max)
2901 || (vr0.type == VR_RANGE
2902 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2903 && needs_overflow_infinity (outer_type)
2904 && supports_overflow_infinity (outer_type)))
2905 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2906 || (vr0.type == VR_RANGE
2907 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2908 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2909 size_int (TYPE_PRECISION (outer_type)), 0)))))
2911 tree new_min, new_max;
2912 new_min = force_fit_type_double (outer_type,
2913 tree_to_double_int (vr0.min),
2914 0, false);
2915 new_max = force_fit_type_double (outer_type,
2916 tree_to_double_int (vr0.max),
2917 0, false);
2918 if (is_overflow_infinity (vr0.min))
2919 new_min = negative_overflow_infinity (outer_type);
2920 if (is_overflow_infinity (vr0.max))
2921 new_max = positive_overflow_infinity (outer_type);
2922 set_and_canonicalize_value_range (vr, vr0.type,
2923 new_min, new_max, NULL);
2924 return;
2927 set_value_range_to_varying (vr);
2928 return;
2931 /* Conversion of a VR_VARYING value to a wider type can result
2932 in a usable range. So wait until after we've handled conversions
2933 before dropping the result to VR_VARYING if we had a source
2934 operand that is VR_VARYING. */
2935 if (vr0.type == VR_VARYING)
2937 set_value_range_to_varying (vr);
2938 return;
2941 /* Apply the operation to each end of the range and see what we end
2942 up with. */
2943 if (code == NEGATE_EXPR
2944 && !TYPE_UNSIGNED (type))
2946 /* NEGATE_EXPR flips the range around. We need to treat
2947 TYPE_MIN_VALUE specially. */
2948 if (is_positive_overflow_infinity (vr0.max))
2949 min = negative_overflow_infinity (type);
2950 else if (is_negative_overflow_infinity (vr0.max))
2951 min = positive_overflow_infinity (type);
2952 else if (!vrp_val_is_min (vr0.max))
2953 min = fold_unary_to_constant (code, type, vr0.max);
2954 else if (needs_overflow_infinity (type))
2956 if (supports_overflow_infinity (type)
2957 && !is_overflow_infinity (vr0.min)
2958 && !vrp_val_is_min (vr0.min))
2959 min = positive_overflow_infinity (type);
2960 else
2962 set_value_range_to_varying (vr);
2963 return;
2966 else
2967 min = TYPE_MIN_VALUE (type);
2969 if (is_positive_overflow_infinity (vr0.min))
2970 max = negative_overflow_infinity (type);
2971 else if (is_negative_overflow_infinity (vr0.min))
2972 max = positive_overflow_infinity (type);
2973 else if (!vrp_val_is_min (vr0.min))
2974 max = fold_unary_to_constant (code, type, vr0.min);
2975 else if (needs_overflow_infinity (type))
2977 if (supports_overflow_infinity (type))
2978 max = positive_overflow_infinity (type);
2979 else
2981 set_value_range_to_varying (vr);
2982 return;
2985 else
2986 max = TYPE_MIN_VALUE (type);
2988 else if (code == NEGATE_EXPR
2989 && TYPE_UNSIGNED (type))
2991 if (!range_includes_zero_p (&vr0))
2993 max = fold_unary_to_constant (code, type, vr0.min);
2994 min = fold_unary_to_constant (code, type, vr0.max);
2996 else
2998 if (range_is_null (&vr0))
2999 set_value_range_to_null (vr, type);
3000 else
3001 set_value_range_to_varying (vr);
3002 return;
3005 else if (code == ABS_EXPR
3006 && !TYPE_UNSIGNED (type))
3008 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3009 useful range. */
3010 if (!TYPE_OVERFLOW_UNDEFINED (type)
3011 && ((vr0.type == VR_RANGE
3012 && vrp_val_is_min (vr0.min))
3013 || (vr0.type == VR_ANTI_RANGE
3014 && !vrp_val_is_min (vr0.min)
3015 && !range_includes_zero_p (&vr0))))
3017 set_value_range_to_varying (vr);
3018 return;
3021 /* ABS_EXPR may flip the range around, if the original range
3022 included negative values. */
3023 if (is_overflow_infinity (vr0.min))
3024 min = positive_overflow_infinity (type);
3025 else if (!vrp_val_is_min (vr0.min))
3026 min = fold_unary_to_constant (code, type, vr0.min);
3027 else if (!needs_overflow_infinity (type))
3028 min = TYPE_MAX_VALUE (type);
3029 else if (supports_overflow_infinity (type))
3030 min = positive_overflow_infinity (type);
3031 else
3033 set_value_range_to_varying (vr);
3034 return;
3037 if (is_overflow_infinity (vr0.max))
3038 max = positive_overflow_infinity (type);
3039 else if (!vrp_val_is_min (vr0.max))
3040 max = fold_unary_to_constant (code, type, vr0.max);
3041 else if (!needs_overflow_infinity (type))
3042 max = TYPE_MAX_VALUE (type);
3043 else if (supports_overflow_infinity (type)
3044 /* We shouldn't generate [+INF, +INF] as set_value_range
3045 doesn't like this and ICEs. */
3046 && !is_positive_overflow_infinity (min))
3047 max = positive_overflow_infinity (type);
3048 else
3050 set_value_range_to_varying (vr);
3051 return;
3054 cmp = compare_values (min, max);
3056 /* If a VR_ANTI_RANGEs contains zero, then we have
3057 ~[-INF, min(MIN, MAX)]. */
3058 if (vr0.type == VR_ANTI_RANGE)
3060 if (range_includes_zero_p (&vr0))
3062 /* Take the lower of the two values. */
3063 if (cmp != 1)
3064 max = min;
3066 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3067 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3068 flag_wrapv is set and the original anti-range doesn't include
3069 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3070 if (TYPE_OVERFLOW_WRAPS (type))
3072 tree type_min_value = TYPE_MIN_VALUE (type);
3074 min = (vr0.min != type_min_value
3075 ? int_const_binop (PLUS_EXPR, type_min_value,
3076 integer_one_node, 0)
3077 : type_min_value);
3079 else
3081 if (overflow_infinity_range_p (&vr0))
3082 min = negative_overflow_infinity (type);
3083 else
3084 min = TYPE_MIN_VALUE (type);
3087 else
3089 /* All else has failed, so create the range [0, INF], even for
3090 flag_wrapv since TYPE_MIN_VALUE is in the original
3091 anti-range. */
3092 vr0.type = VR_RANGE;
3093 min = build_int_cst (type, 0);
3094 if (needs_overflow_infinity (type))
3096 if (supports_overflow_infinity (type))
3097 max = positive_overflow_infinity (type);
3098 else
3100 set_value_range_to_varying (vr);
3101 return;
3104 else
3105 max = TYPE_MAX_VALUE (type);
3109 /* If the range contains zero then we know that the minimum value in the
3110 range will be zero. */
3111 else if (range_includes_zero_p (&vr0))
3113 if (cmp == 1)
3114 max = min;
3115 min = build_int_cst (type, 0);
3117 else
3119 /* If the range was reversed, swap MIN and MAX. */
3120 if (cmp == 1)
3122 tree t = min;
3123 min = max;
3124 max = t;
3128 else
3130 /* Otherwise, operate on each end of the range. */
3131 min = fold_unary_to_constant (code, type, vr0.min);
3132 max = fold_unary_to_constant (code, type, vr0.max);
3134 if (needs_overflow_infinity (type))
3136 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3138 /* If both sides have overflowed, we don't know
3139 anything. */
3140 if ((is_overflow_infinity (vr0.min)
3141 || TREE_OVERFLOW (min))
3142 && (is_overflow_infinity (vr0.max)
3143 || TREE_OVERFLOW (max)))
3145 set_value_range_to_varying (vr);
3146 return;
3149 if (is_overflow_infinity (vr0.min))
3150 min = vr0.min;
3151 else if (TREE_OVERFLOW (min))
3153 if (supports_overflow_infinity (type))
3154 min = (tree_int_cst_sgn (min) >= 0
3155 ? positive_overflow_infinity (TREE_TYPE (min))
3156 : negative_overflow_infinity (TREE_TYPE (min)));
3157 else
3159 set_value_range_to_varying (vr);
3160 return;
3164 if (is_overflow_infinity (vr0.max))
3165 max = vr0.max;
3166 else if (TREE_OVERFLOW (max))
3168 if (supports_overflow_infinity (type))
3169 max = (tree_int_cst_sgn (max) >= 0
3170 ? positive_overflow_infinity (TREE_TYPE (max))
3171 : negative_overflow_infinity (TREE_TYPE (max)));
3172 else
3174 set_value_range_to_varying (vr);
3175 return;
3181 cmp = compare_values (min, max);
3182 if (cmp == -2 || cmp == 1)
3184 /* If the new range has its limits swapped around (MIN > MAX),
3185 then the operation caused one of them to wrap around, mark
3186 the new range VARYING. */
3187 set_value_range_to_varying (vr);
3189 else
3190 set_value_range (vr, vr0.type, min, max, NULL);
3194 /* Extract range information from a conditional expression EXPR based on
3195 the ranges of each of its operands and the expression code. */
3197 static void
3198 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3200 tree op0, op1;
3201 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3202 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3204 /* Get value ranges for each operand. For constant operands, create
3205 a new value range with the operand to simplify processing. */
3206 op0 = COND_EXPR_THEN (expr);
3207 if (TREE_CODE (op0) == SSA_NAME)
3208 vr0 = *(get_value_range (op0));
3209 else if (is_gimple_min_invariant (op0))
3210 set_value_range_to_value (&vr0, op0, NULL);
3211 else
3212 set_value_range_to_varying (&vr0);
3214 op1 = COND_EXPR_ELSE (expr);
3215 if (TREE_CODE (op1) == SSA_NAME)
3216 vr1 = *(get_value_range (op1));
3217 else if (is_gimple_min_invariant (op1))
3218 set_value_range_to_value (&vr1, op1, NULL);
3219 else
3220 set_value_range_to_varying (&vr1);
3222 /* The resulting value range is the union of the operand ranges */
3223 vrp_meet (&vr0, &vr1);
3224 copy_value_range (vr, &vr0);
3228 /* Extract range information from a comparison expression EXPR based
3229 on the range of its operand and the expression code. */
3231 static void
3232 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3233 tree type, tree op0, tree op1)
3235 bool sop = false;
3236 tree val;
3238 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3239 NULL);
3241 /* A disadvantage of using a special infinity as an overflow
3242 representation is that we lose the ability to record overflow
3243 when we don't have an infinity. So we have to ignore a result
3244 which relies on overflow. */
3246 if (val && !is_overflow_infinity (val) && !sop)
3248 /* Since this expression was found on the RHS of an assignment,
3249 its type may be different from _Bool. Convert VAL to EXPR's
3250 type. */
3251 val = fold_convert (type, val);
3252 if (is_gimple_min_invariant (val))
3253 set_value_range_to_value (vr, val, vr->equiv);
3254 else
3255 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3257 else
3258 /* The result of a comparison is always true or false. */
3259 set_value_range_to_truthvalue (vr, type);
3262 /* Try to derive a nonnegative or nonzero range out of STMT relying
3263 primarily on generic routines in fold in conjunction with range data.
3264 Store the result in *VR */
3266 static void
3267 extract_range_basic (value_range_t *vr, gimple stmt)
3269 bool sop = false;
3270 tree type = gimple_expr_type (stmt);
3272 if (INTEGRAL_TYPE_P (type)
3273 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3274 set_value_range_to_nonnegative (vr, type,
3275 sop || stmt_overflow_infinity (stmt));
3276 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3277 && !sop)
3278 set_value_range_to_nonnull (vr, type);
3279 else
3280 set_value_range_to_varying (vr);
3284 /* Try to compute a useful range out of assignment STMT and store it
3285 in *VR. */
3287 static void
3288 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3290 enum tree_code code = gimple_assign_rhs_code (stmt);
3292 if (code == ASSERT_EXPR)
3293 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3294 else if (code == SSA_NAME)
3295 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3296 else if (TREE_CODE_CLASS (code) == tcc_binary
3297 || code == TRUTH_AND_EXPR
3298 || code == TRUTH_OR_EXPR
3299 || code == TRUTH_XOR_EXPR)
3300 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3301 gimple_expr_type (stmt),
3302 gimple_assign_rhs1 (stmt),
3303 gimple_assign_rhs2 (stmt));
3304 else if (TREE_CODE_CLASS (code) == tcc_unary)
3305 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3306 gimple_expr_type (stmt),
3307 gimple_assign_rhs1 (stmt));
3308 else if (code == COND_EXPR)
3309 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3310 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3311 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3312 gimple_expr_type (stmt),
3313 gimple_assign_rhs1 (stmt),
3314 gimple_assign_rhs2 (stmt));
3315 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3316 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3317 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3318 else
3319 set_value_range_to_varying (vr);
3321 if (vr->type == VR_VARYING)
3322 extract_range_basic (vr, stmt);
3325 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3326 would be profitable to adjust VR using scalar evolution information
3327 for VAR. If so, update VR with the new limits. */
3329 static void
3330 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3331 gimple stmt, tree var)
3333 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3334 enum ev_direction dir;
3336 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3337 better opportunities than a regular range, but I'm not sure. */
3338 if (vr->type == VR_ANTI_RANGE)
3339 return;
3341 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3343 /* Like in PR19590, scev can return a constant function. */
3344 if (is_gimple_min_invariant (chrec))
3346 set_value_range_to_value (vr, chrec, vr->equiv);
3347 return;
3350 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3351 return;
3353 init = initial_condition_in_loop_num (chrec, loop->num);
3354 tem = op_with_constant_singleton_value_range (init);
3355 if (tem)
3356 init = tem;
3357 step = evolution_part_in_loop_num (chrec, loop->num);
3358 tem = op_with_constant_singleton_value_range (step);
3359 if (tem)
3360 step = tem;
3362 /* If STEP is symbolic, we can't know whether INIT will be the
3363 minimum or maximum value in the range. Also, unless INIT is
3364 a simple expression, compare_values and possibly other functions
3365 in tree-vrp won't be able to handle it. */
3366 if (step == NULL_TREE
3367 || !is_gimple_min_invariant (step)
3368 || !valid_value_p (init))
3369 return;
3371 dir = scev_direction (chrec);
3372 if (/* Do not adjust ranges if we do not know whether the iv increases
3373 or decreases, ... */
3374 dir == EV_DIR_UNKNOWN
3375 /* ... or if it may wrap. */
3376 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3377 true))
3378 return;
3380 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3381 negative_overflow_infinity and positive_overflow_infinity,
3382 because we have concluded that the loop probably does not
3383 wrap. */
3385 type = TREE_TYPE (var);
3386 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3387 tmin = lower_bound_in_type (type, type);
3388 else
3389 tmin = TYPE_MIN_VALUE (type);
3390 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3391 tmax = upper_bound_in_type (type, type);
3392 else
3393 tmax = TYPE_MAX_VALUE (type);
3395 /* Try to use estimated number of iterations for the loop to constrain the
3396 final value in the evolution.
3397 We are interested in the number of executions of the latch, while
3398 nb_iterations_upper_bound includes the last execution of the exit test. */
3399 if (TREE_CODE (step) == INTEGER_CST
3400 && loop->any_upper_bound
3401 && !double_int_zero_p (loop->nb_iterations_upper_bound)
3402 && is_gimple_val (init)
3403 && (TREE_CODE (init) != SSA_NAME
3404 || get_value_range (init)->type == VR_RANGE))
3406 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3407 double_int dtmp;
3408 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3409 int overflow = 0;
3411 dtmp = double_int_mul_with_sign (tree_to_double_int (step),
3412 double_int_sub (
3413 loop->nb_iterations_upper_bound,
3414 double_int_one),
3415 unsigned_p, &overflow);
3416 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3417 /* If the multiplication overflowed we can't do a meaningful
3418 adjustment. */
3419 if (!overflow && double_int_equal_p (dtmp, tree_to_double_int (tem)))
3421 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3422 TREE_TYPE (init), init, tem);
3423 /* Likewise if the addition did. */
3424 if (maxvr.type == VR_RANGE)
3426 tmin = maxvr.min;
3427 tmax = maxvr.max;
3432 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3434 min = tmin;
3435 max = tmax;
3437 /* For VARYING or UNDEFINED ranges, just about anything we get
3438 from scalar evolutions should be better. */
3440 if (dir == EV_DIR_DECREASES)
3441 max = init;
3442 else
3443 min = init;
3445 /* If we would create an invalid range, then just assume we
3446 know absolutely nothing. This may be over-conservative,
3447 but it's clearly safe, and should happen only in unreachable
3448 parts of code, or for invalid programs. */
3449 if (compare_values (min, max) == 1)
3450 return;
3452 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3454 else if (vr->type == VR_RANGE)
3456 min = vr->min;
3457 max = vr->max;
3459 if (dir == EV_DIR_DECREASES)
3461 /* INIT is the maximum value. If INIT is lower than VR->MAX
3462 but no smaller than VR->MIN, set VR->MAX to INIT. */
3463 if (compare_values (init, max) == -1)
3464 max = init;
3466 /* According to the loop information, the variable does not
3467 overflow. If we think it does, probably because of an
3468 overflow due to arithmetic on a different INF value,
3469 reset now. */
3470 if (is_negative_overflow_infinity (min)
3471 || compare_values (min, tmin) == -1)
3472 min = tmin;
3475 else
3477 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3478 if (compare_values (init, min) == 1)
3479 min = init;
3481 if (is_positive_overflow_infinity (max)
3482 || compare_values (tmax, max) == -1)
3483 max = tmax;
3486 /* If we just created an invalid range with the minimum
3487 greater than the maximum, we fail conservatively.
3488 This should happen only in unreachable
3489 parts of code, or for invalid programs. */
3490 if (compare_values (min, max) == 1)
3491 return;
3493 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3497 /* Return true if VAR may overflow at STMT. This checks any available
3498 loop information to see if we can determine that VAR does not
3499 overflow. */
3501 static bool
3502 vrp_var_may_overflow (tree var, gimple stmt)
3504 struct loop *l;
3505 tree chrec, init, step;
3507 if (current_loops == NULL)
3508 return true;
3510 l = loop_containing_stmt (stmt);
3511 if (l == NULL
3512 || !loop_outer (l))
3513 return true;
3515 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3516 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3517 return true;
3519 init = initial_condition_in_loop_num (chrec, l->num);
3520 step = evolution_part_in_loop_num (chrec, l->num);
3522 if (step == NULL_TREE
3523 || !is_gimple_min_invariant (step)
3524 || !valid_value_p (init))
3525 return true;
3527 /* If we get here, we know something useful about VAR based on the
3528 loop information. If it wraps, it may overflow. */
3530 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3531 true))
3532 return true;
3534 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3536 print_generic_expr (dump_file, var, 0);
3537 fprintf (dump_file, ": loop information indicates does not overflow\n");
3540 return false;
3544 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3546 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3547 all the values in the ranges.
3549 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3551 - Return NULL_TREE if it is not always possible to determine the
3552 value of the comparison.
3554 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3555 overflow infinity was used in the test. */
3558 static tree
3559 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3560 bool *strict_overflow_p)
3562 /* VARYING or UNDEFINED ranges cannot be compared. */
3563 if (vr0->type == VR_VARYING
3564 || vr0->type == VR_UNDEFINED
3565 || vr1->type == VR_VARYING
3566 || vr1->type == VR_UNDEFINED)
3567 return NULL_TREE;
3569 /* Anti-ranges need to be handled separately. */
3570 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3572 /* If both are anti-ranges, then we cannot compute any
3573 comparison. */
3574 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3575 return NULL_TREE;
3577 /* These comparisons are never statically computable. */
3578 if (comp == GT_EXPR
3579 || comp == GE_EXPR
3580 || comp == LT_EXPR
3581 || comp == LE_EXPR)
3582 return NULL_TREE;
3584 /* Equality can be computed only between a range and an
3585 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3586 if (vr0->type == VR_RANGE)
3588 /* To simplify processing, make VR0 the anti-range. */
3589 value_range_t *tmp = vr0;
3590 vr0 = vr1;
3591 vr1 = tmp;
3594 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3596 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3597 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3598 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3600 return NULL_TREE;
3603 if (!usable_range_p (vr0, strict_overflow_p)
3604 || !usable_range_p (vr1, strict_overflow_p))
3605 return NULL_TREE;
3607 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3608 operands around and change the comparison code. */
3609 if (comp == GT_EXPR || comp == GE_EXPR)
3611 value_range_t *tmp;
3612 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3613 tmp = vr0;
3614 vr0 = vr1;
3615 vr1 = tmp;
3618 if (comp == EQ_EXPR)
3620 /* Equality may only be computed if both ranges represent
3621 exactly one value. */
3622 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3623 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3625 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3626 strict_overflow_p);
3627 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3628 strict_overflow_p);
3629 if (cmp_min == 0 && cmp_max == 0)
3630 return boolean_true_node;
3631 else if (cmp_min != -2 && cmp_max != -2)
3632 return boolean_false_node;
3634 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3635 else if (compare_values_warnv (vr0->min, vr1->max,
3636 strict_overflow_p) == 1
3637 || compare_values_warnv (vr1->min, vr0->max,
3638 strict_overflow_p) == 1)
3639 return boolean_false_node;
3641 return NULL_TREE;
3643 else if (comp == NE_EXPR)
3645 int cmp1, cmp2;
3647 /* If VR0 is completely to the left or completely to the right
3648 of VR1, they are always different. Notice that we need to
3649 make sure that both comparisons yield similar results to
3650 avoid comparing values that cannot be compared at
3651 compile-time. */
3652 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3653 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3654 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3655 return boolean_true_node;
3657 /* If VR0 and VR1 represent a single value and are identical,
3658 return false. */
3659 else if (compare_values_warnv (vr0->min, vr0->max,
3660 strict_overflow_p) == 0
3661 && compare_values_warnv (vr1->min, vr1->max,
3662 strict_overflow_p) == 0
3663 && compare_values_warnv (vr0->min, vr1->min,
3664 strict_overflow_p) == 0
3665 && compare_values_warnv (vr0->max, vr1->max,
3666 strict_overflow_p) == 0)
3667 return boolean_false_node;
3669 /* Otherwise, they may or may not be different. */
3670 else
3671 return NULL_TREE;
3673 else if (comp == LT_EXPR || comp == LE_EXPR)
3675 int tst;
3677 /* If VR0 is to the left of VR1, return true. */
3678 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3679 if ((comp == LT_EXPR && tst == -1)
3680 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3682 if (overflow_infinity_range_p (vr0)
3683 || overflow_infinity_range_p (vr1))
3684 *strict_overflow_p = true;
3685 return boolean_true_node;
3688 /* If VR0 is to the right of VR1, return false. */
3689 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3690 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3691 || (comp == LE_EXPR && tst == 1))
3693 if (overflow_infinity_range_p (vr0)
3694 || overflow_infinity_range_p (vr1))
3695 *strict_overflow_p = true;
3696 return boolean_false_node;
3699 /* Otherwise, we don't know. */
3700 return NULL_TREE;
3703 gcc_unreachable ();
3707 /* Given a value range VR, a value VAL and a comparison code COMP, return
3708 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3709 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3710 always returns false. Return NULL_TREE if it is not always
3711 possible to determine the value of the comparison. Also set
3712 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3713 infinity was used in the test. */
3715 static tree
3716 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3717 bool *strict_overflow_p)
3719 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3720 return NULL_TREE;
3722 /* Anti-ranges need to be handled separately. */
3723 if (vr->type == VR_ANTI_RANGE)
3725 /* For anti-ranges, the only predicates that we can compute at
3726 compile time are equality and inequality. */
3727 if (comp == GT_EXPR
3728 || comp == GE_EXPR
3729 || comp == LT_EXPR
3730 || comp == LE_EXPR)
3731 return NULL_TREE;
3733 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3734 if (value_inside_range (val, vr) == 1)
3735 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3737 return NULL_TREE;
3740 if (!usable_range_p (vr, strict_overflow_p))
3741 return NULL_TREE;
3743 if (comp == EQ_EXPR)
3745 /* EQ_EXPR may only be computed if VR represents exactly
3746 one value. */
3747 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3749 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3750 if (cmp == 0)
3751 return boolean_true_node;
3752 else if (cmp == -1 || cmp == 1 || cmp == 2)
3753 return boolean_false_node;
3755 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3756 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3757 return boolean_false_node;
3759 return NULL_TREE;
3761 else if (comp == NE_EXPR)
3763 /* If VAL is not inside VR, then they are always different. */
3764 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3765 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3766 return boolean_true_node;
3768 /* If VR represents exactly one value equal to VAL, then return
3769 false. */
3770 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3771 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3772 return boolean_false_node;
3774 /* Otherwise, they may or may not be different. */
3775 return NULL_TREE;
3777 else if (comp == LT_EXPR || comp == LE_EXPR)
3779 int tst;
3781 /* If VR is to the left of VAL, return true. */
3782 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3783 if ((comp == LT_EXPR && tst == -1)
3784 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3786 if (overflow_infinity_range_p (vr))
3787 *strict_overflow_p = true;
3788 return boolean_true_node;
3791 /* If VR is to the right of VAL, return false. */
3792 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3793 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3794 || (comp == LE_EXPR && tst == 1))
3796 if (overflow_infinity_range_p (vr))
3797 *strict_overflow_p = true;
3798 return boolean_false_node;
3801 /* Otherwise, we don't know. */
3802 return NULL_TREE;
3804 else if (comp == GT_EXPR || comp == GE_EXPR)
3806 int tst;
3808 /* If VR is to the right of VAL, return true. */
3809 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3810 if ((comp == GT_EXPR && tst == 1)
3811 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3813 if (overflow_infinity_range_p (vr))
3814 *strict_overflow_p = true;
3815 return boolean_true_node;
3818 /* If VR is to the left of VAL, return false. */
3819 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3820 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3821 || (comp == GE_EXPR && tst == -1))
3823 if (overflow_infinity_range_p (vr))
3824 *strict_overflow_p = true;
3825 return boolean_false_node;
3828 /* Otherwise, we don't know. */
3829 return NULL_TREE;
3832 gcc_unreachable ();
3836 /* Debugging dumps. */
3838 void dump_value_range (FILE *, value_range_t *);
3839 void debug_value_range (value_range_t *);
3840 void dump_all_value_ranges (FILE *);
3841 void debug_all_value_ranges (void);
3842 void dump_vr_equiv (FILE *, bitmap);
3843 void debug_vr_equiv (bitmap);
3846 /* Dump value range VR to FILE. */
3848 void
3849 dump_value_range (FILE *file, value_range_t *vr)
3851 if (vr == NULL)
3852 fprintf (file, "[]");
3853 else if (vr->type == VR_UNDEFINED)
3854 fprintf (file, "UNDEFINED");
3855 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3857 tree type = TREE_TYPE (vr->min);
3859 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3861 if (is_negative_overflow_infinity (vr->min))
3862 fprintf (file, "-INF(OVF)");
3863 else if (INTEGRAL_TYPE_P (type)
3864 && !TYPE_UNSIGNED (type)
3865 && vrp_val_is_min (vr->min))
3866 fprintf (file, "-INF");
3867 else
3868 print_generic_expr (file, vr->min, 0);
3870 fprintf (file, ", ");
3872 if (is_positive_overflow_infinity (vr->max))
3873 fprintf (file, "+INF(OVF)");
3874 else if (INTEGRAL_TYPE_P (type)
3875 && vrp_val_is_max (vr->max))
3876 fprintf (file, "+INF");
3877 else
3878 print_generic_expr (file, vr->max, 0);
3880 fprintf (file, "]");
3882 if (vr->equiv)
3884 bitmap_iterator bi;
3885 unsigned i, c = 0;
3887 fprintf (file, " EQUIVALENCES: { ");
3889 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3891 print_generic_expr (file, ssa_name (i), 0);
3892 fprintf (file, " ");
3893 c++;
3896 fprintf (file, "} (%u elements)", c);
3899 else if (vr->type == VR_VARYING)
3900 fprintf (file, "VARYING");
3901 else
3902 fprintf (file, "INVALID RANGE");
3906 /* Dump value range VR to stderr. */
3908 DEBUG_FUNCTION void
3909 debug_value_range (value_range_t *vr)
3911 dump_value_range (stderr, vr);
3912 fprintf (stderr, "\n");
3916 /* Dump value ranges of all SSA_NAMEs to FILE. */
3918 void
3919 dump_all_value_ranges (FILE *file)
3921 size_t i;
3923 for (i = 0; i < num_ssa_names; i++)
3925 if (vr_value[i])
3927 print_generic_expr (file, ssa_name (i), 0);
3928 fprintf (file, ": ");
3929 dump_value_range (file, vr_value[i]);
3930 fprintf (file, "\n");
3934 fprintf (file, "\n");
3938 /* Dump all value ranges to stderr. */
3940 DEBUG_FUNCTION void
3941 debug_all_value_ranges (void)
3943 dump_all_value_ranges (stderr);
3947 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3948 create a new SSA name N and return the assertion assignment
3949 'V = ASSERT_EXPR <V, V OP W>'. */
3951 static gimple
3952 build_assert_expr_for (tree cond, tree v)
3954 tree n;
3955 gimple assertion;
3957 gcc_assert (TREE_CODE (v) == SSA_NAME);
3958 n = duplicate_ssa_name (v, NULL);
3960 if (COMPARISON_CLASS_P (cond))
3962 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3963 assertion = gimple_build_assign (n, a);
3965 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3967 /* Given !V, build the assignment N = false. */
3968 tree op0 = TREE_OPERAND (cond, 0);
3969 gcc_assert (op0 == v);
3970 assertion = gimple_build_assign (n, boolean_false_node);
3972 else if (TREE_CODE (cond) == SSA_NAME)
3974 /* Given V, build the assignment N = true. */
3975 gcc_assert (v == cond);
3976 assertion = gimple_build_assign (n, boolean_true_node);
3978 else
3979 gcc_unreachable ();
3981 SSA_NAME_DEF_STMT (n) = assertion;
3983 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3984 operand of the ASSERT_EXPR. Register the new name and the old one
3985 in the replacement table so that we can fix the SSA web after
3986 adding all the ASSERT_EXPRs. */
3987 register_new_name_mapping (n, v);
3989 return assertion;
3993 /* Return false if EXPR is a predicate expression involving floating
3994 point values. */
3996 static inline bool
3997 fp_predicate (gimple stmt)
3999 GIMPLE_CHECK (stmt, GIMPLE_COND);
4001 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4005 /* If the range of values taken by OP can be inferred after STMT executes,
4006 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4007 describes the inferred range. Return true if a range could be
4008 inferred. */
4010 static bool
4011 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4013 *val_p = NULL_TREE;
4014 *comp_code_p = ERROR_MARK;
4016 /* Do not attempt to infer anything in names that flow through
4017 abnormal edges. */
4018 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4019 return false;
4021 /* Similarly, don't infer anything from statements that may throw
4022 exceptions. */
4023 if (stmt_could_throw_p (stmt))
4024 return false;
4026 /* If STMT is the last statement of a basic block with no
4027 successors, there is no point inferring anything about any of its
4028 operands. We would not be able to find a proper insertion point
4029 for the assertion, anyway. */
4030 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4031 return false;
4033 /* We can only assume that a pointer dereference will yield
4034 non-NULL if -fdelete-null-pointer-checks is enabled. */
4035 if (flag_delete_null_pointer_checks
4036 && POINTER_TYPE_P (TREE_TYPE (op))
4037 && gimple_code (stmt) != GIMPLE_ASM)
4039 unsigned num_uses, num_loads, num_stores;
4041 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4042 if (num_loads + num_stores > 0)
4044 *val_p = build_int_cst (TREE_TYPE (op), 0);
4045 *comp_code_p = NE_EXPR;
4046 return true;
4050 return false;
4054 void dump_asserts_for (FILE *, tree);
4055 void debug_asserts_for (tree);
4056 void dump_all_asserts (FILE *);
4057 void debug_all_asserts (void);
4059 /* Dump all the registered assertions for NAME to FILE. */
4061 void
4062 dump_asserts_for (FILE *file, tree name)
4064 assert_locus_t loc;
4066 fprintf (file, "Assertions to be inserted for ");
4067 print_generic_expr (file, name, 0);
4068 fprintf (file, "\n");
4070 loc = asserts_for[SSA_NAME_VERSION (name)];
4071 while (loc)
4073 fprintf (file, "\t");
4074 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4075 fprintf (file, "\n\tBB #%d", loc->bb->index);
4076 if (loc->e)
4078 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4079 loc->e->dest->index);
4080 dump_edge_info (file, loc->e, 0);
4082 fprintf (file, "\n\tPREDICATE: ");
4083 print_generic_expr (file, name, 0);
4084 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4085 print_generic_expr (file, loc->val, 0);
4086 fprintf (file, "\n\n");
4087 loc = loc->next;
4090 fprintf (file, "\n");
4094 /* Dump all the registered assertions for NAME to stderr. */
4096 DEBUG_FUNCTION void
4097 debug_asserts_for (tree name)
4099 dump_asserts_for (stderr, name);
4103 /* Dump all the registered assertions for all the names to FILE. */
4105 void
4106 dump_all_asserts (FILE *file)
4108 unsigned i;
4109 bitmap_iterator bi;
4111 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4112 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4113 dump_asserts_for (file, ssa_name (i));
4114 fprintf (file, "\n");
4118 /* Dump all the registered assertions for all the names to stderr. */
4120 DEBUG_FUNCTION void
4121 debug_all_asserts (void)
4123 dump_all_asserts (stderr);
4127 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4128 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4129 E->DEST, then register this location as a possible insertion point
4130 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4132 BB, E and SI provide the exact insertion point for the new
4133 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4134 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4135 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4136 must not be NULL. */
4138 static void
4139 register_new_assert_for (tree name, tree expr,
4140 enum tree_code comp_code,
4141 tree val,
4142 basic_block bb,
4143 edge e,
4144 gimple_stmt_iterator si)
4146 assert_locus_t n, loc, last_loc;
4147 basic_block dest_bb;
4149 gcc_checking_assert (bb == NULL || e == NULL);
4151 if (e == NULL)
4152 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4153 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4155 /* Never build an assert comparing against an integer constant with
4156 TREE_OVERFLOW set. This confuses our undefined overflow warning
4157 machinery. */
4158 if (TREE_CODE (val) == INTEGER_CST
4159 && TREE_OVERFLOW (val))
4160 val = build_int_cst_wide (TREE_TYPE (val),
4161 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4163 /* The new assertion A will be inserted at BB or E. We need to
4164 determine if the new location is dominated by a previously
4165 registered location for A. If we are doing an edge insertion,
4166 assume that A will be inserted at E->DEST. Note that this is not
4167 necessarily true.
4169 If E is a critical edge, it will be split. But even if E is
4170 split, the new block will dominate the same set of blocks that
4171 E->DEST dominates.
4173 The reverse, however, is not true, blocks dominated by E->DEST
4174 will not be dominated by the new block created to split E. So,
4175 if the insertion location is on a critical edge, we will not use
4176 the new location to move another assertion previously registered
4177 at a block dominated by E->DEST. */
4178 dest_bb = (bb) ? bb : e->dest;
4180 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4181 VAL at a block dominating DEST_BB, then we don't need to insert a new
4182 one. Similarly, if the same assertion already exists at a block
4183 dominated by DEST_BB and the new location is not on a critical
4184 edge, then update the existing location for the assertion (i.e.,
4185 move the assertion up in the dominance tree).
4187 Note, this is implemented as a simple linked list because there
4188 should not be more than a handful of assertions registered per
4189 name. If this becomes a performance problem, a table hashed by
4190 COMP_CODE and VAL could be implemented. */
4191 loc = asserts_for[SSA_NAME_VERSION (name)];
4192 last_loc = loc;
4193 while (loc)
4195 if (loc->comp_code == comp_code
4196 && (loc->val == val
4197 || operand_equal_p (loc->val, val, 0))
4198 && (loc->expr == expr
4199 || operand_equal_p (loc->expr, expr, 0)))
4201 /* If the assertion NAME COMP_CODE VAL has already been
4202 registered at a basic block that dominates DEST_BB, then
4203 we don't need to insert the same assertion again. Note
4204 that we don't check strict dominance here to avoid
4205 replicating the same assertion inside the same basic
4206 block more than once (e.g., when a pointer is
4207 dereferenced several times inside a block).
4209 An exception to this rule are edge insertions. If the
4210 new assertion is to be inserted on edge E, then it will
4211 dominate all the other insertions that we may want to
4212 insert in DEST_BB. So, if we are doing an edge
4213 insertion, don't do this dominance check. */
4214 if (e == NULL
4215 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4216 return;
4218 /* Otherwise, if E is not a critical edge and DEST_BB
4219 dominates the existing location for the assertion, move
4220 the assertion up in the dominance tree by updating its
4221 location information. */
4222 if ((e == NULL || !EDGE_CRITICAL_P (e))
4223 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4225 loc->bb = dest_bb;
4226 loc->e = e;
4227 loc->si = si;
4228 return;
4232 /* Update the last node of the list and move to the next one. */
4233 last_loc = loc;
4234 loc = loc->next;
4237 /* If we didn't find an assertion already registered for
4238 NAME COMP_CODE VAL, add a new one at the end of the list of
4239 assertions associated with NAME. */
4240 n = XNEW (struct assert_locus_d);
4241 n->bb = dest_bb;
4242 n->e = e;
4243 n->si = si;
4244 n->comp_code = comp_code;
4245 n->val = val;
4246 n->expr = expr;
4247 n->next = NULL;
4249 if (last_loc)
4250 last_loc->next = n;
4251 else
4252 asserts_for[SSA_NAME_VERSION (name)] = n;
4254 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4257 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4258 Extract a suitable test code and value and store them into *CODE_P and
4259 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4261 If no extraction was possible, return FALSE, otherwise return TRUE.
4263 If INVERT is true, then we invert the result stored into *CODE_P. */
4265 static bool
4266 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4267 tree cond_op0, tree cond_op1,
4268 bool invert, enum tree_code *code_p,
4269 tree *val_p)
4271 enum tree_code comp_code;
4272 tree val;
4274 /* Otherwise, we have a comparison of the form NAME COMP VAL
4275 or VAL COMP NAME. */
4276 if (name == cond_op1)
4278 /* If the predicate is of the form VAL COMP NAME, flip
4279 COMP around because we need to register NAME as the
4280 first operand in the predicate. */
4281 comp_code = swap_tree_comparison (cond_code);
4282 val = cond_op0;
4284 else
4286 /* The comparison is of the form NAME COMP VAL, so the
4287 comparison code remains unchanged. */
4288 comp_code = cond_code;
4289 val = cond_op1;
4292 /* Invert the comparison code as necessary. */
4293 if (invert)
4294 comp_code = invert_tree_comparison (comp_code, 0);
4296 /* VRP does not handle float types. */
4297 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4298 return false;
4300 /* Do not register always-false predicates.
4301 FIXME: this works around a limitation in fold() when dealing with
4302 enumerations. Given 'enum { N1, N2 } x;', fold will not
4303 fold 'if (x > N2)' to 'if (0)'. */
4304 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4305 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4307 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4308 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4310 if (comp_code == GT_EXPR
4311 && (!max
4312 || compare_values (val, max) == 0))
4313 return false;
4315 if (comp_code == LT_EXPR
4316 && (!min
4317 || compare_values (val, min) == 0))
4318 return false;
4320 *code_p = comp_code;
4321 *val_p = val;
4322 return true;
4325 /* Try to register an edge assertion for SSA name NAME on edge E for
4326 the condition COND contributing to the conditional jump pointed to by BSI.
4327 Invert the condition COND if INVERT is true.
4328 Return true if an assertion for NAME could be registered. */
4330 static bool
4331 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4332 enum tree_code cond_code,
4333 tree cond_op0, tree cond_op1, bool invert)
4335 tree val;
4336 enum tree_code comp_code;
4337 bool retval = false;
4339 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4340 cond_op0,
4341 cond_op1,
4342 invert, &comp_code, &val))
4343 return false;
4345 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4346 reachable from E. */
4347 if (live_on_edge (e, name)
4348 && !has_single_use (name))
4350 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4351 retval = true;
4354 /* In the case of NAME <= CST and NAME being defined as
4355 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4356 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4357 This catches range and anti-range tests. */
4358 if ((comp_code == LE_EXPR
4359 || comp_code == GT_EXPR)
4360 && TREE_CODE (val) == INTEGER_CST
4361 && TYPE_UNSIGNED (TREE_TYPE (val)))
4363 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4364 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4366 /* Extract CST2 from the (optional) addition. */
4367 if (is_gimple_assign (def_stmt)
4368 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4370 name2 = gimple_assign_rhs1 (def_stmt);
4371 cst2 = gimple_assign_rhs2 (def_stmt);
4372 if (TREE_CODE (name2) == SSA_NAME
4373 && TREE_CODE (cst2) == INTEGER_CST)
4374 def_stmt = SSA_NAME_DEF_STMT (name2);
4377 /* Extract NAME2 from the (optional) sign-changing cast. */
4378 if (gimple_assign_cast_p (def_stmt))
4380 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4381 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4382 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4383 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4384 name3 = gimple_assign_rhs1 (def_stmt);
4387 /* If name3 is used later, create an ASSERT_EXPR for it. */
4388 if (name3 != NULL_TREE
4389 && TREE_CODE (name3) == SSA_NAME
4390 && (cst2 == NULL_TREE
4391 || TREE_CODE (cst2) == INTEGER_CST)
4392 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4393 && live_on_edge (e, name3)
4394 && !has_single_use (name3))
4396 tree tmp;
4398 /* Build an expression for the range test. */
4399 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4400 if (cst2 != NULL_TREE)
4401 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4403 if (dump_file)
4405 fprintf (dump_file, "Adding assert for ");
4406 print_generic_expr (dump_file, name3, 0);
4407 fprintf (dump_file, " from ");
4408 print_generic_expr (dump_file, tmp, 0);
4409 fprintf (dump_file, "\n");
4412 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4414 retval = true;
4417 /* If name2 is used later, create an ASSERT_EXPR for it. */
4418 if (name2 != NULL_TREE
4419 && TREE_CODE (name2) == SSA_NAME
4420 && TREE_CODE (cst2) == INTEGER_CST
4421 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4422 && live_on_edge (e, name2)
4423 && !has_single_use (name2))
4425 tree tmp;
4427 /* Build an expression for the range test. */
4428 tmp = name2;
4429 if (TREE_TYPE (name) != TREE_TYPE (name2))
4430 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4431 if (cst2 != NULL_TREE)
4432 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4434 if (dump_file)
4436 fprintf (dump_file, "Adding assert for ");
4437 print_generic_expr (dump_file, name2, 0);
4438 fprintf (dump_file, " from ");
4439 print_generic_expr (dump_file, tmp, 0);
4440 fprintf (dump_file, "\n");
4443 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4445 retval = true;
4449 return retval;
4452 /* OP is an operand of a truth value expression which is known to have
4453 a particular value. Register any asserts for OP and for any
4454 operands in OP's defining statement.
4456 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4457 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4459 static bool
4460 register_edge_assert_for_1 (tree op, enum tree_code code,
4461 edge e, gimple_stmt_iterator bsi)
4463 bool retval = false;
4464 gimple op_def;
4465 tree val;
4466 enum tree_code rhs_code;
4468 /* We only care about SSA_NAMEs. */
4469 if (TREE_CODE (op) != SSA_NAME)
4470 return false;
4472 /* We know that OP will have a zero or nonzero value. If OP is used
4473 more than once go ahead and register an assert for OP.
4475 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4476 it will always be set for OP (because OP is used in a COND_EXPR in
4477 the subgraph). */
4478 if (!has_single_use (op))
4480 val = build_int_cst (TREE_TYPE (op), 0);
4481 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4482 retval = true;
4485 /* Now look at how OP is set. If it's set from a comparison,
4486 a truth operation or some bit operations, then we may be able
4487 to register information about the operands of that assignment. */
4488 op_def = SSA_NAME_DEF_STMT (op);
4489 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4490 return retval;
4492 rhs_code = gimple_assign_rhs_code (op_def);
4494 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4496 bool invert = (code == EQ_EXPR ? true : false);
4497 tree op0 = gimple_assign_rhs1 (op_def);
4498 tree op1 = gimple_assign_rhs2 (op_def);
4500 if (TREE_CODE (op0) == SSA_NAME)
4501 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4502 invert);
4503 if (TREE_CODE (op1) == SSA_NAME)
4504 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4505 invert);
4507 else if ((code == NE_EXPR
4508 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4509 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4510 || (code == EQ_EXPR
4511 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4512 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4514 /* Recurse on each operand. */
4515 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4516 code, e, bsi);
4517 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4518 code, e, bsi);
4520 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4522 /* Recurse, flipping CODE. */
4523 code = invert_tree_comparison (code, false);
4524 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4525 code, e, bsi);
4527 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4529 /* Recurse through the copy. */
4530 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4531 code, e, bsi);
4533 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4535 /* Recurse through the type conversion. */
4536 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4537 code, e, bsi);
4540 return retval;
4543 /* Try to register an edge assertion for SSA name NAME on edge E for
4544 the condition COND contributing to the conditional jump pointed to by SI.
4545 Return true if an assertion for NAME could be registered. */
4547 static bool
4548 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4549 enum tree_code cond_code, tree cond_op0,
4550 tree cond_op1)
4552 tree val;
4553 enum tree_code comp_code;
4554 bool retval = false;
4555 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4557 /* Do not attempt to infer anything in names that flow through
4558 abnormal edges. */
4559 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4560 return false;
4562 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4563 cond_op0, cond_op1,
4564 is_else_edge,
4565 &comp_code, &val))
4566 return false;
4568 /* Register ASSERT_EXPRs for name. */
4569 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4570 cond_op1, is_else_edge);
4573 /* If COND is effectively an equality test of an SSA_NAME against
4574 the value zero or one, then we may be able to assert values
4575 for SSA_NAMEs which flow into COND. */
4577 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4578 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4579 have nonzero value. */
4580 if (((comp_code == EQ_EXPR && integer_onep (val))
4581 || (comp_code == NE_EXPR && integer_zerop (val))))
4583 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4585 if (is_gimple_assign (def_stmt)
4586 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4587 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4589 tree op0 = gimple_assign_rhs1 (def_stmt);
4590 tree op1 = gimple_assign_rhs2 (def_stmt);
4591 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4592 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4596 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4597 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4598 have zero value. */
4599 if (((comp_code == EQ_EXPR && integer_zerop (val))
4600 || (comp_code == NE_EXPR && integer_onep (val))))
4602 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4604 if (is_gimple_assign (def_stmt)
4605 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4606 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4607 necessarily zero value. */
4608 || (comp_code == EQ_EXPR
4609 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4611 tree op0 = gimple_assign_rhs1 (def_stmt);
4612 tree op1 = gimple_assign_rhs2 (def_stmt);
4613 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4614 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4618 return retval;
4622 /* Determine whether the outgoing edges of BB should receive an
4623 ASSERT_EXPR for each of the operands of BB's LAST statement.
4624 The last statement of BB must be a COND_EXPR.
4626 If any of the sub-graphs rooted at BB have an interesting use of
4627 the predicate operands, an assert location node is added to the
4628 list of assertions for the corresponding operands. */
4630 static bool
4631 find_conditional_asserts (basic_block bb, gimple last)
4633 bool need_assert;
4634 gimple_stmt_iterator bsi;
4635 tree op;
4636 edge_iterator ei;
4637 edge e;
4638 ssa_op_iter iter;
4640 need_assert = false;
4641 bsi = gsi_for_stmt (last);
4643 /* Look for uses of the operands in each of the sub-graphs
4644 rooted at BB. We need to check each of the outgoing edges
4645 separately, so that we know what kind of ASSERT_EXPR to
4646 insert. */
4647 FOR_EACH_EDGE (e, ei, bb->succs)
4649 if (e->dest == bb)
4650 continue;
4652 /* Register the necessary assertions for each operand in the
4653 conditional predicate. */
4654 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4656 need_assert |= register_edge_assert_for (op, e, bsi,
4657 gimple_cond_code (last),
4658 gimple_cond_lhs (last),
4659 gimple_cond_rhs (last));
4663 return need_assert;
4666 /* Compare two case labels sorting first by the destination label uid
4667 and then by the case value. */
4669 static int
4670 compare_case_labels (const void *p1, const void *p2)
4672 const_tree const case1 = *(const_tree const*)p1;
4673 const_tree const case2 = *(const_tree const*)p2;
4674 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4675 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4677 if (uid1 < uid2)
4678 return -1;
4679 else if (uid1 == uid2)
4681 /* Make sure the default label is first in a group. */
4682 if (!CASE_LOW (case1))
4683 return -1;
4684 else if (!CASE_LOW (case2))
4685 return 1;
4686 else
4687 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4689 else
4690 return 1;
4693 /* Determine whether the outgoing edges of BB should receive an
4694 ASSERT_EXPR for each of the operands of BB's LAST statement.
4695 The last statement of BB must be a SWITCH_EXPR.
4697 If any of the sub-graphs rooted at BB have an interesting use of
4698 the predicate operands, an assert location node is added to the
4699 list of assertions for the corresponding operands. */
4701 static bool
4702 find_switch_asserts (basic_block bb, gimple last)
4704 bool need_assert;
4705 gimple_stmt_iterator bsi;
4706 tree op;
4707 edge e;
4708 tree vec2;
4709 size_t n = gimple_switch_num_labels(last);
4710 #if GCC_VERSION >= 4000
4711 unsigned int idx;
4712 #else
4713 /* Work around GCC 3.4 bug (PR 37086). */
4714 volatile unsigned int idx;
4715 #endif
4717 need_assert = false;
4718 bsi = gsi_for_stmt (last);
4719 op = gimple_switch_index (last);
4720 if (TREE_CODE (op) != SSA_NAME)
4721 return false;
4723 /* Build a vector of case labels sorted by destination label. */
4724 vec2 = make_tree_vec (n);
4725 for (idx = 0; idx < n; ++idx)
4726 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4727 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4729 for (idx = 0; idx < n; ++idx)
4731 tree min, max;
4732 tree cl = TREE_VEC_ELT (vec2, idx);
4734 min = CASE_LOW (cl);
4735 max = CASE_HIGH (cl);
4737 /* If there are multiple case labels with the same destination
4738 we need to combine them to a single value range for the edge. */
4739 if (idx + 1 < n
4740 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4742 /* Skip labels until the last of the group. */
4743 do {
4744 ++idx;
4745 } while (idx < n
4746 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4747 --idx;
4749 /* Pick up the maximum of the case label range. */
4750 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4751 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4752 else
4753 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4756 /* Nothing to do if the range includes the default label until we
4757 can register anti-ranges. */
4758 if (min == NULL_TREE)
4759 continue;
4761 /* Find the edge to register the assert expr on. */
4762 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4764 /* Register the necessary assertions for the operand in the
4765 SWITCH_EXPR. */
4766 need_assert |= register_edge_assert_for (op, e, bsi,
4767 max ? GE_EXPR : EQ_EXPR,
4769 fold_convert (TREE_TYPE (op),
4770 min));
4771 if (max)
4773 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4775 fold_convert (TREE_TYPE (op),
4776 max));
4780 return need_assert;
4784 /* Traverse all the statements in block BB looking for statements that
4785 may generate useful assertions for the SSA names in their operand.
4786 If a statement produces a useful assertion A for name N_i, then the
4787 list of assertions already generated for N_i is scanned to
4788 determine if A is actually needed.
4790 If N_i already had the assertion A at a location dominating the
4791 current location, then nothing needs to be done. Otherwise, the
4792 new location for A is recorded instead.
4794 1- For every statement S in BB, all the variables used by S are
4795 added to bitmap FOUND_IN_SUBGRAPH.
4797 2- If statement S uses an operand N in a way that exposes a known
4798 value range for N, then if N was not already generated by an
4799 ASSERT_EXPR, create a new assert location for N. For instance,
4800 if N is a pointer and the statement dereferences it, we can
4801 assume that N is not NULL.
4803 3- COND_EXPRs are a special case of #2. We can derive range
4804 information from the predicate but need to insert different
4805 ASSERT_EXPRs for each of the sub-graphs rooted at the
4806 conditional block. If the last statement of BB is a conditional
4807 expression of the form 'X op Y', then
4809 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4811 b) If the conditional is the only entry point to the sub-graph
4812 corresponding to the THEN_CLAUSE, recurse into it. On
4813 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4814 an ASSERT_EXPR is added for the corresponding variable.
4816 c) Repeat step (b) on the ELSE_CLAUSE.
4818 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4820 For instance,
4822 if (a == 9)
4823 b = a;
4824 else
4825 b = c + 1;
4827 In this case, an assertion on the THEN clause is useful to
4828 determine that 'a' is always 9 on that edge. However, an assertion
4829 on the ELSE clause would be unnecessary.
4831 4- If BB does not end in a conditional expression, then we recurse
4832 into BB's dominator children.
4834 At the end of the recursive traversal, every SSA name will have a
4835 list of locations where ASSERT_EXPRs should be added. When a new
4836 location for name N is found, it is registered by calling
4837 register_new_assert_for. That function keeps track of all the
4838 registered assertions to prevent adding unnecessary assertions.
4839 For instance, if a pointer P_4 is dereferenced more than once in a
4840 dominator tree, only the location dominating all the dereference of
4841 P_4 will receive an ASSERT_EXPR.
4843 If this function returns true, then it means that there are names
4844 for which we need to generate ASSERT_EXPRs. Those assertions are
4845 inserted by process_assert_insertions. */
4847 static bool
4848 find_assert_locations_1 (basic_block bb, sbitmap live)
4850 gimple_stmt_iterator si;
4851 gimple last;
4852 gimple phi;
4853 bool need_assert;
4855 need_assert = false;
4856 last = last_stmt (bb);
4858 /* If BB's last statement is a conditional statement involving integer
4859 operands, determine if we need to add ASSERT_EXPRs. */
4860 if (last
4861 && gimple_code (last) == GIMPLE_COND
4862 && !fp_predicate (last)
4863 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4864 need_assert |= find_conditional_asserts (bb, last);
4866 /* If BB's last statement is a switch statement involving integer
4867 operands, determine if we need to add ASSERT_EXPRs. */
4868 if (last
4869 && gimple_code (last) == GIMPLE_SWITCH
4870 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4871 need_assert |= find_switch_asserts (bb, last);
4873 /* Traverse all the statements in BB marking used names and looking
4874 for statements that may infer assertions for their used operands. */
4875 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4877 gimple stmt;
4878 tree op;
4879 ssa_op_iter i;
4881 stmt = gsi_stmt (si);
4883 if (is_gimple_debug (stmt))
4884 continue;
4886 /* See if we can derive an assertion for any of STMT's operands. */
4887 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4889 tree value;
4890 enum tree_code comp_code;
4892 /* Mark OP in our live bitmap. */
4893 SET_BIT (live, SSA_NAME_VERSION (op));
4895 /* If OP is used in such a way that we can infer a value
4896 range for it, and we don't find a previous assertion for
4897 it, create a new assertion location node for OP. */
4898 if (infer_value_range (stmt, op, &comp_code, &value))
4900 /* If we are able to infer a nonzero value range for OP,
4901 then walk backwards through the use-def chain to see if OP
4902 was set via a typecast.
4904 If so, then we can also infer a nonzero value range
4905 for the operand of the NOP_EXPR. */
4906 if (comp_code == NE_EXPR && integer_zerop (value))
4908 tree t = op;
4909 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4911 while (is_gimple_assign (def_stmt)
4912 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4913 && TREE_CODE
4914 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4915 && POINTER_TYPE_P
4916 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4918 t = gimple_assign_rhs1 (def_stmt);
4919 def_stmt = SSA_NAME_DEF_STMT (t);
4921 /* Note we want to register the assert for the
4922 operand of the NOP_EXPR after SI, not after the
4923 conversion. */
4924 if (! has_single_use (t))
4926 register_new_assert_for (t, t, comp_code, value,
4927 bb, NULL, si);
4928 need_assert = true;
4933 /* If OP is used only once, namely in this STMT, don't
4934 bother creating an ASSERT_EXPR for it. Such an
4935 ASSERT_EXPR would do nothing but increase compile time. */
4936 if (!has_single_use (op))
4938 register_new_assert_for (op, op, comp_code, value,
4939 bb, NULL, si);
4940 need_assert = true;
4946 /* Traverse all PHI nodes in BB marking used operands. */
4947 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4949 use_operand_p arg_p;
4950 ssa_op_iter i;
4951 phi = gsi_stmt (si);
4953 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4955 tree arg = USE_FROM_PTR (arg_p);
4956 if (TREE_CODE (arg) == SSA_NAME)
4957 SET_BIT (live, SSA_NAME_VERSION (arg));
4961 return need_assert;
4964 /* Do an RPO walk over the function computing SSA name liveness
4965 on-the-fly and deciding on assert expressions to insert.
4966 Returns true if there are assert expressions to be inserted. */
4968 static bool
4969 find_assert_locations (void)
4971 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4972 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4973 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4974 int rpo_cnt, i;
4975 bool need_asserts;
4977 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4978 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4979 for (i = 0; i < rpo_cnt; ++i)
4980 bb_rpo[rpo[i]] = i;
4982 need_asserts = false;
4983 for (i = rpo_cnt-1; i >= 0; --i)
4985 basic_block bb = BASIC_BLOCK (rpo[i]);
4986 edge e;
4987 edge_iterator ei;
4989 if (!live[rpo[i]])
4991 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4992 sbitmap_zero (live[rpo[i]]);
4995 /* Process BB and update the live information with uses in
4996 this block. */
4997 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4999 /* Merge liveness into the predecessor blocks and free it. */
5000 if (!sbitmap_empty_p (live[rpo[i]]))
5002 int pred_rpo = i;
5003 FOR_EACH_EDGE (e, ei, bb->preds)
5005 int pred = e->src->index;
5006 if (e->flags & EDGE_DFS_BACK)
5007 continue;
5009 if (!live[pred])
5011 live[pred] = sbitmap_alloc (num_ssa_names);
5012 sbitmap_zero (live[pred]);
5014 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5016 if (bb_rpo[pred] < pred_rpo)
5017 pred_rpo = bb_rpo[pred];
5020 /* Record the RPO number of the last visited block that needs
5021 live information from this block. */
5022 last_rpo[rpo[i]] = pred_rpo;
5024 else
5026 sbitmap_free (live[rpo[i]]);
5027 live[rpo[i]] = NULL;
5030 /* We can free all successors live bitmaps if all their
5031 predecessors have been visited already. */
5032 FOR_EACH_EDGE (e, ei, bb->succs)
5033 if (last_rpo[e->dest->index] == i
5034 && live[e->dest->index])
5036 sbitmap_free (live[e->dest->index]);
5037 live[e->dest->index] = NULL;
5041 XDELETEVEC (rpo);
5042 XDELETEVEC (bb_rpo);
5043 XDELETEVEC (last_rpo);
5044 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5045 if (live[i])
5046 sbitmap_free (live[i]);
5047 XDELETEVEC (live);
5049 return need_asserts;
5052 /* Create an ASSERT_EXPR for NAME and insert it in the location
5053 indicated by LOC. Return true if we made any edge insertions. */
5055 static bool
5056 process_assert_insertions_for (tree name, assert_locus_t loc)
5058 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5059 gimple stmt;
5060 tree cond;
5061 gimple assert_stmt;
5062 edge_iterator ei;
5063 edge e;
5065 /* If we have X <=> X do not insert an assert expr for that. */
5066 if (loc->expr == loc->val)
5067 return false;
5069 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5070 assert_stmt = build_assert_expr_for (cond, name);
5071 if (loc->e)
5073 /* We have been asked to insert the assertion on an edge. This
5074 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5075 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5076 || (gimple_code (gsi_stmt (loc->si))
5077 == GIMPLE_SWITCH));
5079 gsi_insert_on_edge (loc->e, assert_stmt);
5080 return true;
5083 /* Otherwise, we can insert right after LOC->SI iff the
5084 statement must not be the last statement in the block. */
5085 stmt = gsi_stmt (loc->si);
5086 if (!stmt_ends_bb_p (stmt))
5088 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5089 return false;
5092 /* If STMT must be the last statement in BB, we can only insert new
5093 assertions on the non-abnormal edge out of BB. Note that since
5094 STMT is not control flow, there may only be one non-abnormal edge
5095 out of BB. */
5096 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5097 if (!(e->flags & EDGE_ABNORMAL))
5099 gsi_insert_on_edge (e, assert_stmt);
5100 return true;
5103 gcc_unreachable ();
5107 /* Process all the insertions registered for every name N_i registered
5108 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5109 found in ASSERTS_FOR[i]. */
5111 static void
5112 process_assert_insertions (void)
5114 unsigned i;
5115 bitmap_iterator bi;
5116 bool update_edges_p = false;
5117 int num_asserts = 0;
5119 if (dump_file && (dump_flags & TDF_DETAILS))
5120 dump_all_asserts (dump_file);
5122 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5124 assert_locus_t loc = asserts_for[i];
5125 gcc_assert (loc);
5127 while (loc)
5129 assert_locus_t next = loc->next;
5130 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5131 free (loc);
5132 loc = next;
5133 num_asserts++;
5137 if (update_edges_p)
5138 gsi_commit_edge_inserts ();
5140 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5141 num_asserts);
5145 /* Traverse the flowgraph looking for conditional jumps to insert range
5146 expressions. These range expressions are meant to provide information
5147 to optimizations that need to reason in terms of value ranges. They
5148 will not be expanded into RTL. For instance, given:
5150 x = ...
5151 y = ...
5152 if (x < y)
5153 y = x - 2;
5154 else
5155 x = y + 3;
5157 this pass will transform the code into:
5159 x = ...
5160 y = ...
5161 if (x < y)
5163 x = ASSERT_EXPR <x, x < y>
5164 y = x - 2
5166 else
5168 y = ASSERT_EXPR <y, x <= y>
5169 x = y + 3
5172 The idea is that once copy and constant propagation have run, other
5173 optimizations will be able to determine what ranges of values can 'x'
5174 take in different paths of the code, simply by checking the reaching
5175 definition of 'x'. */
5177 static void
5178 insert_range_assertions (void)
5180 need_assert_for = BITMAP_ALLOC (NULL);
5181 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5183 calculate_dominance_info (CDI_DOMINATORS);
5185 if (find_assert_locations ())
5187 process_assert_insertions ();
5188 update_ssa (TODO_update_ssa_no_phi);
5191 if (dump_file && (dump_flags & TDF_DETAILS))
5193 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5194 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5197 free (asserts_for);
5198 BITMAP_FREE (need_assert_for);
5201 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5202 and "struct" hacks. If VRP can determine that the
5203 array subscript is a constant, check if it is outside valid
5204 range. If the array subscript is a RANGE, warn if it is
5205 non-overlapping with valid range.
5206 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5208 static void
5209 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5211 value_range_t* vr = NULL;
5212 tree low_sub, up_sub;
5213 tree low_bound, up_bound, up_bound_p1;
5214 tree base;
5216 if (TREE_NO_WARNING (ref))
5217 return;
5219 low_sub = up_sub = TREE_OPERAND (ref, 1);
5220 up_bound = array_ref_up_bound (ref);
5222 /* Can not check flexible arrays. */
5223 if (!up_bound
5224 || TREE_CODE (up_bound) != INTEGER_CST)
5225 return;
5227 /* Accesses to trailing arrays via pointers may access storage
5228 beyond the types array bounds. */
5229 base = get_base_address (ref);
5230 if (base && TREE_CODE (base) == MEM_REF)
5232 tree cref, next = NULL_TREE;
5234 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5235 return;
5237 cref = TREE_OPERAND (ref, 0);
5238 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5239 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5240 next && TREE_CODE (next) != FIELD_DECL;
5241 next = DECL_CHAIN (next))
5244 /* If this is the last field in a struct type or a field in a
5245 union type do not warn. */
5246 if (!next)
5247 return;
5250 low_bound = array_ref_low_bound (ref);
5251 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node, 0);
5253 if (TREE_CODE (low_sub) == SSA_NAME)
5255 vr = get_value_range (low_sub);
5256 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5258 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5259 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5263 if (vr && vr->type == VR_ANTI_RANGE)
5265 if (TREE_CODE (up_sub) == INTEGER_CST
5266 && tree_int_cst_lt (up_bound, up_sub)
5267 && TREE_CODE (low_sub) == INTEGER_CST
5268 && tree_int_cst_lt (low_sub, low_bound))
5270 warning_at (location, OPT_Warray_bounds,
5271 "array subscript is outside array bounds");
5272 TREE_NO_WARNING (ref) = 1;
5275 else if (TREE_CODE (up_sub) == INTEGER_CST
5276 && (ignore_off_by_one
5277 ? (tree_int_cst_lt (up_bound, up_sub)
5278 && !tree_int_cst_equal (up_bound_p1, up_sub))
5279 : (tree_int_cst_lt (up_bound, up_sub)
5280 || tree_int_cst_equal (up_bound_p1, up_sub))))
5282 warning_at (location, OPT_Warray_bounds,
5283 "array subscript is above array bounds");
5284 TREE_NO_WARNING (ref) = 1;
5286 else if (TREE_CODE (low_sub) == INTEGER_CST
5287 && tree_int_cst_lt (low_sub, low_bound))
5289 warning_at (location, OPT_Warray_bounds,
5290 "array subscript is below array bounds");
5291 TREE_NO_WARNING (ref) = 1;
5295 /* Searches if the expr T, located at LOCATION computes
5296 address of an ARRAY_REF, and call check_array_ref on it. */
5298 static void
5299 search_for_addr_array (tree t, location_t location)
5301 while (TREE_CODE (t) == SSA_NAME)
5303 gimple g = SSA_NAME_DEF_STMT (t);
5305 if (gimple_code (g) != GIMPLE_ASSIGN)
5306 return;
5308 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5309 != GIMPLE_SINGLE_RHS)
5310 return;
5312 t = gimple_assign_rhs1 (g);
5316 /* We are only interested in addresses of ARRAY_REF's. */
5317 if (TREE_CODE (t) != ADDR_EXPR)
5318 return;
5320 /* Check each ARRAY_REFs in the reference chain. */
5323 if (TREE_CODE (t) == ARRAY_REF)
5324 check_array_ref (location, t, true /*ignore_off_by_one*/);
5326 t = TREE_OPERAND (t, 0);
5328 while (handled_component_p (t));
5330 if (TREE_CODE (t) == MEM_REF
5331 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5332 && !TREE_NO_WARNING (t))
5334 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5335 tree low_bound, up_bound, el_sz;
5336 double_int idx;
5337 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5338 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5339 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5340 return;
5342 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5343 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5344 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5345 if (!low_bound
5346 || TREE_CODE (low_bound) != INTEGER_CST
5347 || !up_bound
5348 || TREE_CODE (up_bound) != INTEGER_CST
5349 || !el_sz
5350 || TREE_CODE (el_sz) != INTEGER_CST)
5351 return;
5353 idx = mem_ref_offset (t);
5354 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5355 if (double_int_scmp (idx, double_int_zero) < 0)
5357 warning_at (location, OPT_Warray_bounds,
5358 "array subscript is below array bounds");
5359 TREE_NO_WARNING (t) = 1;
5361 else if (double_int_scmp (idx,
5362 double_int_add
5363 (double_int_add
5364 (tree_to_double_int (up_bound),
5365 double_int_neg
5366 (tree_to_double_int (low_bound))),
5367 double_int_one)) > 0)
5369 warning_at (location, OPT_Warray_bounds,
5370 "array subscript is above array bounds");
5371 TREE_NO_WARNING (t) = 1;
5376 /* walk_tree() callback that checks if *TP is
5377 an ARRAY_REF inside an ADDR_EXPR (in which an array
5378 subscript one outside the valid range is allowed). Call
5379 check_array_ref for each ARRAY_REF found. The location is
5380 passed in DATA. */
5382 static tree
5383 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5385 tree t = *tp;
5386 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5387 location_t location;
5389 if (EXPR_HAS_LOCATION (t))
5390 location = EXPR_LOCATION (t);
5391 else
5393 location_t *locp = (location_t *) wi->info;
5394 location = *locp;
5397 *walk_subtree = TRUE;
5399 if (TREE_CODE (t) == ARRAY_REF)
5400 check_array_ref (location, t, false /*ignore_off_by_one*/);
5402 if (TREE_CODE (t) == MEM_REF
5403 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5404 search_for_addr_array (TREE_OPERAND (t, 0), location);
5406 if (TREE_CODE (t) == ADDR_EXPR)
5407 *walk_subtree = FALSE;
5409 return NULL_TREE;
5412 /* Walk over all statements of all reachable BBs and call check_array_bounds
5413 on them. */
5415 static void
5416 check_all_array_refs (void)
5418 basic_block bb;
5419 gimple_stmt_iterator si;
5421 FOR_EACH_BB (bb)
5423 edge_iterator ei;
5424 edge e;
5425 bool executable = false;
5427 /* Skip blocks that were found to be unreachable. */
5428 FOR_EACH_EDGE (e, ei, bb->preds)
5429 executable |= !!(e->flags & EDGE_EXECUTABLE);
5430 if (!executable)
5431 continue;
5433 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5435 gimple stmt = gsi_stmt (si);
5436 struct walk_stmt_info wi;
5437 if (!gimple_has_location (stmt))
5438 continue;
5440 if (is_gimple_call (stmt))
5442 size_t i;
5443 size_t n = gimple_call_num_args (stmt);
5444 for (i = 0; i < n; i++)
5446 tree arg = gimple_call_arg (stmt, i);
5447 search_for_addr_array (arg, gimple_location (stmt));
5450 else
5452 memset (&wi, 0, sizeof (wi));
5453 wi.info = CONST_CAST (void *, (const void *)
5454 gimple_location_ptr (stmt));
5456 walk_gimple_op (gsi_stmt (si),
5457 check_array_bounds,
5458 &wi);
5464 /* Convert range assertion expressions into the implied copies and
5465 copy propagate away the copies. Doing the trivial copy propagation
5466 here avoids the need to run the full copy propagation pass after
5467 VRP.
5469 FIXME, this will eventually lead to copy propagation removing the
5470 names that had useful range information attached to them. For
5471 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5472 then N_i will have the range [3, +INF].
5474 However, by converting the assertion into the implied copy
5475 operation N_i = N_j, we will then copy-propagate N_j into the uses
5476 of N_i and lose the range information. We may want to hold on to
5477 ASSERT_EXPRs a little while longer as the ranges could be used in
5478 things like jump threading.
5480 The problem with keeping ASSERT_EXPRs around is that passes after
5481 VRP need to handle them appropriately.
5483 Another approach would be to make the range information a first
5484 class property of the SSA_NAME so that it can be queried from
5485 any pass. This is made somewhat more complex by the need for
5486 multiple ranges to be associated with one SSA_NAME. */
5488 static void
5489 remove_range_assertions (void)
5491 basic_block bb;
5492 gimple_stmt_iterator si;
5494 /* Note that the BSI iterator bump happens at the bottom of the
5495 loop and no bump is necessary if we're removing the statement
5496 referenced by the current BSI. */
5497 FOR_EACH_BB (bb)
5498 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5500 gimple stmt = gsi_stmt (si);
5501 gimple use_stmt;
5503 if (is_gimple_assign (stmt)
5504 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5506 tree rhs = gimple_assign_rhs1 (stmt);
5507 tree var;
5508 tree cond = fold (ASSERT_EXPR_COND (rhs));
5509 use_operand_p use_p;
5510 imm_use_iterator iter;
5512 gcc_assert (cond != boolean_false_node);
5514 /* Propagate the RHS into every use of the LHS. */
5515 var = ASSERT_EXPR_VAR (rhs);
5516 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5517 gimple_assign_lhs (stmt))
5518 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5520 SET_USE (use_p, var);
5521 gcc_assert (TREE_CODE (var) == SSA_NAME);
5524 /* And finally, remove the copy, it is not needed. */
5525 gsi_remove (&si, true);
5526 release_defs (stmt);
5528 else
5529 gsi_next (&si);
5534 /* Return true if STMT is interesting for VRP. */
5536 static bool
5537 stmt_interesting_for_vrp (gimple stmt)
5539 if (gimple_code (stmt) == GIMPLE_PHI
5540 && is_gimple_reg (gimple_phi_result (stmt))
5541 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5542 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5543 return true;
5544 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5546 tree lhs = gimple_get_lhs (stmt);
5548 /* In general, assignments with virtual operands are not useful
5549 for deriving ranges, with the obvious exception of calls to
5550 builtin functions. */
5551 if (lhs && TREE_CODE (lhs) == SSA_NAME
5552 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5553 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5554 && ((is_gimple_call (stmt)
5555 && gimple_call_fndecl (stmt) != NULL_TREE
5556 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5557 || !gimple_vuse (stmt)))
5558 return true;
5560 else if (gimple_code (stmt) == GIMPLE_COND
5561 || gimple_code (stmt) == GIMPLE_SWITCH)
5562 return true;
5564 return false;
5568 /* Initialize local data structures for VRP. */
5570 static void
5571 vrp_initialize (void)
5573 basic_block bb;
5575 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5576 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5578 FOR_EACH_BB (bb)
5580 gimple_stmt_iterator si;
5582 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5584 gimple phi = gsi_stmt (si);
5585 if (!stmt_interesting_for_vrp (phi))
5587 tree lhs = PHI_RESULT (phi);
5588 set_value_range_to_varying (get_value_range (lhs));
5589 prop_set_simulate_again (phi, false);
5591 else
5592 prop_set_simulate_again (phi, true);
5595 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5597 gimple stmt = gsi_stmt (si);
5599 /* If the statement is a control insn, then we do not
5600 want to avoid simulating the statement once. Failure
5601 to do so means that those edges will never get added. */
5602 if (stmt_ends_bb_p (stmt))
5603 prop_set_simulate_again (stmt, true);
5604 else if (!stmt_interesting_for_vrp (stmt))
5606 ssa_op_iter i;
5607 tree def;
5608 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5609 set_value_range_to_varying (get_value_range (def));
5610 prop_set_simulate_again (stmt, false);
5612 else
5613 prop_set_simulate_again (stmt, true);
5618 /* Return the singleton value-range for NAME or NAME. */
5620 static inline tree
5621 vrp_valueize (tree name)
5623 if (TREE_CODE (name) == SSA_NAME)
5625 value_range_t *vr = get_value_range (name);
5626 if (vr->type == VR_RANGE
5627 && (vr->min == vr->max
5628 || operand_equal_p (vr->min, vr->max, 0)))
5629 return vr->min;
5631 return name;
5634 /* Visit assignment STMT. If it produces an interesting range, record
5635 the SSA name in *OUTPUT_P. */
5637 static enum ssa_prop_result
5638 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5640 tree def, lhs;
5641 ssa_op_iter iter;
5642 enum gimple_code code = gimple_code (stmt);
5643 lhs = gimple_get_lhs (stmt);
5645 /* We only keep track of ranges in integral and pointer types. */
5646 if (TREE_CODE (lhs) == SSA_NAME
5647 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5648 /* It is valid to have NULL MIN/MAX values on a type. See
5649 build_range_type. */
5650 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5651 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5652 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5654 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5656 /* Try folding the statement to a constant first. */
5657 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5658 if (tem && !is_overflow_infinity (tem))
5659 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5660 /* Then dispatch to value-range extracting functions. */
5661 else if (code == GIMPLE_CALL)
5662 extract_range_basic (&new_vr, stmt);
5663 else
5664 extract_range_from_assignment (&new_vr, stmt);
5666 if (update_value_range (lhs, &new_vr))
5668 *output_p = lhs;
5670 if (dump_file && (dump_flags & TDF_DETAILS))
5672 fprintf (dump_file, "Found new range for ");
5673 print_generic_expr (dump_file, lhs, 0);
5674 fprintf (dump_file, ": ");
5675 dump_value_range (dump_file, &new_vr);
5676 fprintf (dump_file, "\n\n");
5679 if (new_vr.type == VR_VARYING)
5680 return SSA_PROP_VARYING;
5682 return SSA_PROP_INTERESTING;
5685 return SSA_PROP_NOT_INTERESTING;
5688 /* Every other statement produces no useful ranges. */
5689 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5690 set_value_range_to_varying (get_value_range (def));
5692 return SSA_PROP_VARYING;
5695 /* Helper that gets the value range of the SSA_NAME with version I
5696 or a symbolic range containing the SSA_NAME only if the value range
5697 is varying or undefined. */
5699 static inline value_range_t
5700 get_vr_for_comparison (int i)
5702 value_range_t vr = *(vr_value[i]);
5704 /* If name N_i does not have a valid range, use N_i as its own
5705 range. This allows us to compare against names that may
5706 have N_i in their ranges. */
5707 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5709 vr.type = VR_RANGE;
5710 vr.min = ssa_name (i);
5711 vr.max = ssa_name (i);
5714 return vr;
5717 /* Compare all the value ranges for names equivalent to VAR with VAL
5718 using comparison code COMP. Return the same value returned by
5719 compare_range_with_value, including the setting of
5720 *STRICT_OVERFLOW_P. */
5722 static tree
5723 compare_name_with_value (enum tree_code comp, tree var, tree val,
5724 bool *strict_overflow_p)
5726 bitmap_iterator bi;
5727 unsigned i;
5728 bitmap e;
5729 tree retval, t;
5730 int used_strict_overflow;
5731 bool sop;
5732 value_range_t equiv_vr;
5734 /* Get the set of equivalences for VAR. */
5735 e = get_value_range (var)->equiv;
5737 /* Start at -1. Set it to 0 if we do a comparison without relying
5738 on overflow, or 1 if all comparisons rely on overflow. */
5739 used_strict_overflow = -1;
5741 /* Compare vars' value range with val. */
5742 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5743 sop = false;
5744 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5745 if (retval)
5746 used_strict_overflow = sop ? 1 : 0;
5748 /* If the equiv set is empty we have done all work we need to do. */
5749 if (e == NULL)
5751 if (retval
5752 && used_strict_overflow > 0)
5753 *strict_overflow_p = true;
5754 return retval;
5757 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5759 equiv_vr = get_vr_for_comparison (i);
5760 sop = false;
5761 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5762 if (t)
5764 /* If we get different answers from different members
5765 of the equivalence set this check must be in a dead
5766 code region. Folding it to a trap representation
5767 would be correct here. For now just return don't-know. */
5768 if (retval != NULL
5769 && t != retval)
5771 retval = NULL_TREE;
5772 break;
5774 retval = t;
5776 if (!sop)
5777 used_strict_overflow = 0;
5778 else if (used_strict_overflow < 0)
5779 used_strict_overflow = 1;
5783 if (retval
5784 && used_strict_overflow > 0)
5785 *strict_overflow_p = true;
5787 return retval;
5791 /* Given a comparison code COMP and names N1 and N2, compare all the
5792 ranges equivalent to N1 against all the ranges equivalent to N2
5793 to determine the value of N1 COMP N2. Return the same value
5794 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5795 whether we relied on an overflow infinity in the comparison. */
5798 static tree
5799 compare_names (enum tree_code comp, tree n1, tree n2,
5800 bool *strict_overflow_p)
5802 tree t, retval;
5803 bitmap e1, e2;
5804 bitmap_iterator bi1, bi2;
5805 unsigned i1, i2;
5806 int used_strict_overflow;
5807 static bitmap_obstack *s_obstack = NULL;
5808 static bitmap s_e1 = NULL, s_e2 = NULL;
5810 /* Compare the ranges of every name equivalent to N1 against the
5811 ranges of every name equivalent to N2. */
5812 e1 = get_value_range (n1)->equiv;
5813 e2 = get_value_range (n2)->equiv;
5815 /* Use the fake bitmaps if e1 or e2 are not available. */
5816 if (s_obstack == NULL)
5818 s_obstack = XNEW (bitmap_obstack);
5819 bitmap_obstack_initialize (s_obstack);
5820 s_e1 = BITMAP_ALLOC (s_obstack);
5821 s_e2 = BITMAP_ALLOC (s_obstack);
5823 if (e1 == NULL)
5824 e1 = s_e1;
5825 if (e2 == NULL)
5826 e2 = s_e2;
5828 /* Add N1 and N2 to their own set of equivalences to avoid
5829 duplicating the body of the loop just to check N1 and N2
5830 ranges. */
5831 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5832 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5834 /* If the equivalence sets have a common intersection, then the two
5835 names can be compared without checking their ranges. */
5836 if (bitmap_intersect_p (e1, e2))
5838 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5839 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5841 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5842 ? boolean_true_node
5843 : boolean_false_node;
5846 /* Start at -1. Set it to 0 if we do a comparison without relying
5847 on overflow, or 1 if all comparisons rely on overflow. */
5848 used_strict_overflow = -1;
5850 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5851 N2 to their own set of equivalences to avoid duplicating the body
5852 of the loop just to check N1 and N2 ranges. */
5853 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5855 value_range_t vr1 = get_vr_for_comparison (i1);
5857 t = retval = NULL_TREE;
5858 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5860 bool sop = false;
5862 value_range_t vr2 = get_vr_for_comparison (i2);
5864 t = compare_ranges (comp, &vr1, &vr2, &sop);
5865 if (t)
5867 /* If we get different answers from different members
5868 of the equivalence set this check must be in a dead
5869 code region. Folding it to a trap representation
5870 would be correct here. For now just return don't-know. */
5871 if (retval != NULL
5872 && t != retval)
5874 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5875 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5876 return NULL_TREE;
5878 retval = t;
5880 if (!sop)
5881 used_strict_overflow = 0;
5882 else if (used_strict_overflow < 0)
5883 used_strict_overflow = 1;
5887 if (retval)
5889 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5890 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5891 if (used_strict_overflow > 0)
5892 *strict_overflow_p = true;
5893 return retval;
5897 /* None of the equivalent ranges are useful in computing this
5898 comparison. */
5899 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5900 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5901 return NULL_TREE;
5904 /* Helper function for vrp_evaluate_conditional_warnv. */
5906 static tree
5907 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5908 tree op0, tree op1,
5909 bool * strict_overflow_p)
5911 value_range_t *vr0, *vr1;
5913 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5914 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5916 if (vr0 && vr1)
5917 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5918 else if (vr0 && vr1 == NULL)
5919 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5920 else if (vr0 == NULL && vr1)
5921 return (compare_range_with_value
5922 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5923 return NULL;
5926 /* Helper function for vrp_evaluate_conditional_warnv. */
5928 static tree
5929 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5930 tree op1, bool use_equiv_p,
5931 bool *strict_overflow_p, bool *only_ranges)
5933 tree ret;
5934 if (only_ranges)
5935 *only_ranges = true;
5937 /* We only deal with integral and pointer types. */
5938 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5939 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5940 return NULL_TREE;
5942 if (use_equiv_p)
5944 if (only_ranges
5945 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5946 (code, op0, op1, strict_overflow_p)))
5947 return ret;
5948 *only_ranges = false;
5949 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5950 return compare_names (code, op0, op1, strict_overflow_p);
5951 else if (TREE_CODE (op0) == SSA_NAME)
5952 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5953 else if (TREE_CODE (op1) == SSA_NAME)
5954 return (compare_name_with_value
5955 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5957 else
5958 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5959 strict_overflow_p);
5960 return NULL_TREE;
5963 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5964 information. Return NULL if the conditional can not be evaluated.
5965 The ranges of all the names equivalent with the operands in COND
5966 will be used when trying to compute the value. If the result is
5967 based on undefined signed overflow, issue a warning if
5968 appropriate. */
5970 static tree
5971 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5973 bool sop;
5974 tree ret;
5975 bool only_ranges;
5977 /* Some passes and foldings leak constants with overflow flag set
5978 into the IL. Avoid doing wrong things with these and bail out. */
5979 if ((TREE_CODE (op0) == INTEGER_CST
5980 && TREE_OVERFLOW (op0))
5981 || (TREE_CODE (op1) == INTEGER_CST
5982 && TREE_OVERFLOW (op1)))
5983 return NULL_TREE;
5985 sop = false;
5986 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5987 &only_ranges);
5989 if (ret && sop)
5991 enum warn_strict_overflow_code wc;
5992 const char* warnmsg;
5994 if (is_gimple_min_invariant (ret))
5996 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5997 warnmsg = G_("assuming signed overflow does not occur when "
5998 "simplifying conditional to constant");
6000 else
6002 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6003 warnmsg = G_("assuming signed overflow does not occur when "
6004 "simplifying conditional");
6007 if (issue_strict_overflow_warning (wc))
6009 location_t location;
6011 if (!gimple_has_location (stmt))
6012 location = input_location;
6013 else
6014 location = gimple_location (stmt);
6015 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6019 if (warn_type_limits
6020 && ret && only_ranges
6021 && TREE_CODE_CLASS (code) == tcc_comparison
6022 && TREE_CODE (op0) == SSA_NAME)
6024 /* If the comparison is being folded and the operand on the LHS
6025 is being compared against a constant value that is outside of
6026 the natural range of OP0's type, then the predicate will
6027 always fold regardless of the value of OP0. If -Wtype-limits
6028 was specified, emit a warning. */
6029 tree type = TREE_TYPE (op0);
6030 value_range_t *vr0 = get_value_range (op0);
6032 if (vr0->type != VR_VARYING
6033 && INTEGRAL_TYPE_P (type)
6034 && vrp_val_is_min (vr0->min)
6035 && vrp_val_is_max (vr0->max)
6036 && is_gimple_min_invariant (op1))
6038 location_t location;
6040 if (!gimple_has_location (stmt))
6041 location = input_location;
6042 else
6043 location = gimple_location (stmt);
6045 warning_at (location, OPT_Wtype_limits,
6046 integer_zerop (ret)
6047 ? G_("comparison always false "
6048 "due to limited range of data type")
6049 : G_("comparison always true "
6050 "due to limited range of data type"));
6054 return ret;
6058 /* Visit conditional statement STMT. If we can determine which edge
6059 will be taken out of STMT's basic block, record it in
6060 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6061 SSA_PROP_VARYING. */
6063 static enum ssa_prop_result
6064 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6066 tree val;
6067 bool sop;
6069 *taken_edge_p = NULL;
6071 if (dump_file && (dump_flags & TDF_DETAILS))
6073 tree use;
6074 ssa_op_iter i;
6076 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6077 print_gimple_stmt (dump_file, stmt, 0, 0);
6078 fprintf (dump_file, "\nWith known ranges\n");
6080 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6082 fprintf (dump_file, "\t");
6083 print_generic_expr (dump_file, use, 0);
6084 fprintf (dump_file, ": ");
6085 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6088 fprintf (dump_file, "\n");
6091 /* Compute the value of the predicate COND by checking the known
6092 ranges of each of its operands.
6094 Note that we cannot evaluate all the equivalent ranges here
6095 because those ranges may not yet be final and with the current
6096 propagation strategy, we cannot determine when the value ranges
6097 of the names in the equivalence set have changed.
6099 For instance, given the following code fragment
6101 i_5 = PHI <8, i_13>
6103 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6104 if (i_14 == 1)
6107 Assume that on the first visit to i_14, i_5 has the temporary
6108 range [8, 8] because the second argument to the PHI function is
6109 not yet executable. We derive the range ~[0, 0] for i_14 and the
6110 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6111 the first time, since i_14 is equivalent to the range [8, 8], we
6112 determine that the predicate is always false.
6114 On the next round of propagation, i_13 is determined to be
6115 VARYING, which causes i_5 to drop down to VARYING. So, another
6116 visit to i_14 is scheduled. In this second visit, we compute the
6117 exact same range and equivalence set for i_14, namely ~[0, 0] and
6118 { i_5 }. But we did not have the previous range for i_5
6119 registered, so vrp_visit_assignment thinks that the range for
6120 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6121 is not visited again, which stops propagation from visiting
6122 statements in the THEN clause of that if().
6124 To properly fix this we would need to keep the previous range
6125 value for the names in the equivalence set. This way we would've
6126 discovered that from one visit to the other i_5 changed from
6127 range [8, 8] to VR_VARYING.
6129 However, fixing this apparent limitation may not be worth the
6130 additional checking. Testing on several code bases (GCC, DLV,
6131 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6132 4 more predicates folded in SPEC. */
6133 sop = false;
6135 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6136 gimple_cond_lhs (stmt),
6137 gimple_cond_rhs (stmt),
6138 false, &sop, NULL);
6139 if (val)
6141 if (!sop)
6142 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6143 else
6145 if (dump_file && (dump_flags & TDF_DETAILS))
6146 fprintf (dump_file,
6147 "\nIgnoring predicate evaluation because "
6148 "it assumes that signed overflow is undefined");
6149 val = NULL_TREE;
6153 if (dump_file && (dump_flags & TDF_DETAILS))
6155 fprintf (dump_file, "\nPredicate evaluates to: ");
6156 if (val == NULL_TREE)
6157 fprintf (dump_file, "DON'T KNOW\n");
6158 else
6159 print_generic_stmt (dump_file, val, 0);
6162 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6165 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6166 that includes the value VAL. The search is restricted to the range
6167 [START_IDX, n - 1] where n is the size of VEC.
6169 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6170 returned.
6172 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6173 it is placed in IDX and false is returned.
6175 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6176 returned. */
6178 static bool
6179 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6181 size_t n = gimple_switch_num_labels (stmt);
6182 size_t low, high;
6184 /* Find case label for minimum of the value range or the next one.
6185 At each iteration we are searching in [low, high - 1]. */
6187 for (low = start_idx, high = n; high != low; )
6189 tree t;
6190 int cmp;
6191 /* Note that i != high, so we never ask for n. */
6192 size_t i = (high + low) / 2;
6193 t = gimple_switch_label (stmt, i);
6195 /* Cache the result of comparing CASE_LOW and val. */
6196 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6198 if (cmp == 0)
6200 /* Ranges cannot be empty. */
6201 *idx = i;
6202 return true;
6204 else if (cmp > 0)
6205 high = i;
6206 else
6208 low = i + 1;
6209 if (CASE_HIGH (t) != NULL
6210 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6212 *idx = i;
6213 return true;
6218 *idx = high;
6219 return false;
6222 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6223 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6224 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6225 then MAX_IDX < MIN_IDX.
6226 Returns true if the default label is not needed. */
6228 static bool
6229 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6230 size_t *max_idx)
6232 size_t i, j;
6233 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6234 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6236 if (i == j
6237 && min_take_default
6238 && max_take_default)
6240 /* Only the default case label reached.
6241 Return an empty range. */
6242 *min_idx = 1;
6243 *max_idx = 0;
6244 return false;
6246 else
6248 bool take_default = min_take_default || max_take_default;
6249 tree low, high;
6250 size_t k;
6252 if (max_take_default)
6253 j--;
6255 /* If the case label range is continuous, we do not need
6256 the default case label. Verify that. */
6257 high = CASE_LOW (gimple_switch_label (stmt, i));
6258 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6259 high = CASE_HIGH (gimple_switch_label (stmt, i));
6260 for (k = i + 1; k <= j; ++k)
6262 low = CASE_LOW (gimple_switch_label (stmt, k));
6263 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
6265 take_default = true;
6266 break;
6268 high = low;
6269 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6270 high = CASE_HIGH (gimple_switch_label (stmt, k));
6273 *min_idx = i;
6274 *max_idx = j;
6275 return !take_default;
6279 /* Visit switch statement STMT. If we can determine which edge
6280 will be taken out of STMT's basic block, record it in
6281 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6282 SSA_PROP_VARYING. */
6284 static enum ssa_prop_result
6285 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6287 tree op, val;
6288 value_range_t *vr;
6289 size_t i = 0, j = 0;
6290 bool take_default;
6292 *taken_edge_p = NULL;
6293 op = gimple_switch_index (stmt);
6294 if (TREE_CODE (op) != SSA_NAME)
6295 return SSA_PROP_VARYING;
6297 vr = get_value_range (op);
6298 if (dump_file && (dump_flags & TDF_DETAILS))
6300 fprintf (dump_file, "\nVisiting switch expression with operand ");
6301 print_generic_expr (dump_file, op, 0);
6302 fprintf (dump_file, " with known range ");
6303 dump_value_range (dump_file, vr);
6304 fprintf (dump_file, "\n");
6307 if (vr->type != VR_RANGE
6308 || symbolic_range_p (vr))
6309 return SSA_PROP_VARYING;
6311 /* Find the single edge that is taken from the switch expression. */
6312 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6314 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6315 label */
6316 if (j < i)
6318 gcc_assert (take_default);
6319 val = gimple_switch_default_label (stmt);
6321 else
6323 /* Check if labels with index i to j and maybe the default label
6324 are all reaching the same label. */
6326 val = gimple_switch_label (stmt, i);
6327 if (take_default
6328 && CASE_LABEL (gimple_switch_default_label (stmt))
6329 != CASE_LABEL (val))
6331 if (dump_file && (dump_flags & TDF_DETAILS))
6332 fprintf (dump_file, " not a single destination for this "
6333 "range\n");
6334 return SSA_PROP_VARYING;
6336 for (++i; i <= j; ++i)
6338 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6340 if (dump_file && (dump_flags & TDF_DETAILS))
6341 fprintf (dump_file, " not a single destination for this "
6342 "range\n");
6343 return SSA_PROP_VARYING;
6348 *taken_edge_p = find_edge (gimple_bb (stmt),
6349 label_to_block (CASE_LABEL (val)));
6351 if (dump_file && (dump_flags & TDF_DETAILS))
6353 fprintf (dump_file, " will take edge to ");
6354 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6357 return SSA_PROP_INTERESTING;
6361 /* Evaluate statement STMT. If the statement produces a useful range,
6362 return SSA_PROP_INTERESTING and record the SSA name with the
6363 interesting range into *OUTPUT_P.
6365 If STMT is a conditional branch and we can determine its truth
6366 value, the taken edge is recorded in *TAKEN_EDGE_P.
6368 If STMT produces a varying value, return SSA_PROP_VARYING. */
6370 static enum ssa_prop_result
6371 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6373 tree def;
6374 ssa_op_iter iter;
6376 if (dump_file && (dump_flags & TDF_DETAILS))
6378 fprintf (dump_file, "\nVisiting statement:\n");
6379 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6380 fprintf (dump_file, "\n");
6383 if (!stmt_interesting_for_vrp (stmt))
6384 gcc_assert (stmt_ends_bb_p (stmt));
6385 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6387 /* In general, assignments with virtual operands are not useful
6388 for deriving ranges, with the obvious exception of calls to
6389 builtin functions. */
6390 if ((is_gimple_call (stmt)
6391 && gimple_call_fndecl (stmt) != NULL_TREE
6392 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6393 || !gimple_vuse (stmt))
6394 return vrp_visit_assignment_or_call (stmt, output_p);
6396 else if (gimple_code (stmt) == GIMPLE_COND)
6397 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6398 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6399 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6401 /* All other statements produce nothing of interest for VRP, so mark
6402 their outputs varying and prevent further simulation. */
6403 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6404 set_value_range_to_varying (get_value_range (def));
6406 return SSA_PROP_VARYING;
6410 /* Meet operation for value ranges. Given two value ranges VR0 and
6411 VR1, store in VR0 a range that contains both VR0 and VR1. This
6412 may not be the smallest possible such range. */
6414 static void
6415 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6417 if (vr0->type == VR_UNDEFINED)
6419 copy_value_range (vr0, vr1);
6420 return;
6423 if (vr1->type == VR_UNDEFINED)
6425 /* Nothing to do. VR0 already has the resulting range. */
6426 return;
6429 if (vr0->type == VR_VARYING)
6431 /* Nothing to do. VR0 already has the resulting range. */
6432 return;
6435 if (vr1->type == VR_VARYING)
6437 set_value_range_to_varying (vr0);
6438 return;
6441 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6443 int cmp;
6444 tree min, max;
6446 /* Compute the convex hull of the ranges. The lower limit of
6447 the new range is the minimum of the two ranges. If they
6448 cannot be compared, then give up. */
6449 cmp = compare_values (vr0->min, vr1->min);
6450 if (cmp == 0 || cmp == 1)
6451 min = vr1->min;
6452 else if (cmp == -1)
6453 min = vr0->min;
6454 else
6455 goto give_up;
6457 /* Similarly, the upper limit of the new range is the maximum
6458 of the two ranges. If they cannot be compared, then
6459 give up. */
6460 cmp = compare_values (vr0->max, vr1->max);
6461 if (cmp == 0 || cmp == -1)
6462 max = vr1->max;
6463 else if (cmp == 1)
6464 max = vr0->max;
6465 else
6466 goto give_up;
6468 /* Check for useless ranges. */
6469 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6470 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6471 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6472 goto give_up;
6474 /* The resulting set of equivalences is the intersection of
6475 the two sets. */
6476 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6477 bitmap_and_into (vr0->equiv, vr1->equiv);
6478 else if (vr0->equiv && !vr1->equiv)
6479 bitmap_clear (vr0->equiv);
6481 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6483 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6485 /* Two anti-ranges meet only if their complements intersect.
6486 Only handle the case of identical ranges. */
6487 if (compare_values (vr0->min, vr1->min) == 0
6488 && compare_values (vr0->max, vr1->max) == 0
6489 && compare_values (vr0->min, vr0->max) == 0)
6491 /* The resulting set of equivalences is the intersection of
6492 the two sets. */
6493 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6494 bitmap_and_into (vr0->equiv, vr1->equiv);
6495 else if (vr0->equiv && !vr1->equiv)
6496 bitmap_clear (vr0->equiv);
6498 else
6499 goto give_up;
6501 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6503 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6504 only handle the case where the ranges have an empty intersection.
6505 The result of the meet operation is the anti-range. */
6506 if (!symbolic_range_p (vr0)
6507 && !symbolic_range_p (vr1)
6508 && !value_ranges_intersect_p (vr0, vr1))
6510 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6511 set. We need to compute the intersection of the two
6512 equivalence sets. */
6513 if (vr1->type == VR_ANTI_RANGE)
6514 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6516 /* The resulting set of equivalences is the intersection of
6517 the two sets. */
6518 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6519 bitmap_and_into (vr0->equiv, vr1->equiv);
6520 else if (vr0->equiv && !vr1->equiv)
6521 bitmap_clear (vr0->equiv);
6523 else
6524 goto give_up;
6526 else
6527 gcc_unreachable ();
6529 return;
6531 give_up:
6532 /* Failed to find an efficient meet. Before giving up and setting
6533 the result to VARYING, see if we can at least derive a useful
6534 anti-range. FIXME, all this nonsense about distinguishing
6535 anti-ranges from ranges is necessary because of the odd
6536 semantics of range_includes_zero_p and friends. */
6537 if (!symbolic_range_p (vr0)
6538 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6539 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6540 && !symbolic_range_p (vr1)
6541 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6542 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6544 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6546 /* Since this meet operation did not result from the meeting of
6547 two equivalent names, VR0 cannot have any equivalences. */
6548 if (vr0->equiv)
6549 bitmap_clear (vr0->equiv);
6551 else
6552 set_value_range_to_varying (vr0);
6556 /* Visit all arguments for PHI node PHI that flow through executable
6557 edges. If a valid value range can be derived from all the incoming
6558 value ranges, set a new range for the LHS of PHI. */
6560 static enum ssa_prop_result
6561 vrp_visit_phi_node (gimple phi)
6563 size_t i;
6564 tree lhs = PHI_RESULT (phi);
6565 value_range_t *lhs_vr = get_value_range (lhs);
6566 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6567 int edges, old_edges;
6568 struct loop *l;
6570 if (dump_file && (dump_flags & TDF_DETAILS))
6572 fprintf (dump_file, "\nVisiting PHI node: ");
6573 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6576 edges = 0;
6577 for (i = 0; i < gimple_phi_num_args (phi); i++)
6579 edge e = gimple_phi_arg_edge (phi, i);
6581 if (dump_file && (dump_flags & TDF_DETAILS))
6583 fprintf (dump_file,
6584 "\n Argument #%d (%d -> %d %sexecutable)\n",
6585 (int) i, e->src->index, e->dest->index,
6586 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6589 if (e->flags & EDGE_EXECUTABLE)
6591 tree arg = PHI_ARG_DEF (phi, i);
6592 value_range_t vr_arg;
6594 ++edges;
6596 if (TREE_CODE (arg) == SSA_NAME)
6598 vr_arg = *(get_value_range (arg));
6600 else
6602 if (is_overflow_infinity (arg))
6604 arg = copy_node (arg);
6605 TREE_OVERFLOW (arg) = 0;
6608 vr_arg.type = VR_RANGE;
6609 vr_arg.min = arg;
6610 vr_arg.max = arg;
6611 vr_arg.equiv = NULL;
6614 if (dump_file && (dump_flags & TDF_DETAILS))
6616 fprintf (dump_file, "\t");
6617 print_generic_expr (dump_file, arg, dump_flags);
6618 fprintf (dump_file, "\n\tValue: ");
6619 dump_value_range (dump_file, &vr_arg);
6620 fprintf (dump_file, "\n");
6623 vrp_meet (&vr_result, &vr_arg);
6625 if (vr_result.type == VR_VARYING)
6626 break;
6630 if (vr_result.type == VR_VARYING)
6631 goto varying;
6633 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6634 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6636 /* To prevent infinite iterations in the algorithm, derive ranges
6637 when the new value is slightly bigger or smaller than the
6638 previous one. We don't do this if we have seen a new executable
6639 edge; this helps us avoid an overflow infinity for conditionals
6640 which are not in a loop. */
6641 if (edges > 0
6642 && gimple_phi_num_args (phi) > 1
6643 && edges == old_edges)
6645 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6646 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6648 /* For non VR_RANGE or for pointers fall back to varying if
6649 the range changed. */
6650 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6651 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6652 && (cmp_min != 0 || cmp_max != 0))
6653 goto varying;
6655 /* If the new minimum is smaller or larger than the previous
6656 one, go all the way to -INF. In the first case, to avoid
6657 iterating millions of times to reach -INF, and in the
6658 other case to avoid infinite bouncing between different
6659 minimums. */
6660 if (cmp_min > 0 || cmp_min < 0)
6662 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6663 || !vrp_var_may_overflow (lhs, phi))
6664 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6665 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6666 vr_result.min =
6667 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6670 /* Similarly, if the new maximum is smaller or larger than
6671 the previous one, go all the way to +INF. */
6672 if (cmp_max < 0 || cmp_max > 0)
6674 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6675 || !vrp_var_may_overflow (lhs, phi))
6676 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6677 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6678 vr_result.max =
6679 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6682 /* If we dropped either bound to +-INF then if this is a loop
6683 PHI node SCEV may known more about its value-range. */
6684 if ((cmp_min > 0 || cmp_min < 0
6685 || cmp_max < 0 || cmp_max > 0)
6686 && current_loops
6687 && (l = loop_containing_stmt (phi))
6688 && l->header == gimple_bb (phi))
6689 adjust_range_with_scev (&vr_result, l, phi, lhs);
6691 /* If we will end up with a (-INF, +INF) range, set it to
6692 VARYING. Same if the previous max value was invalid for
6693 the type and we end up with vr_result.min > vr_result.max. */
6694 if ((vrp_val_is_max (vr_result.max)
6695 && vrp_val_is_min (vr_result.min))
6696 || compare_values (vr_result.min,
6697 vr_result.max) > 0)
6698 goto varying;
6701 /* If the new range is different than the previous value, keep
6702 iterating. */
6703 if (update_value_range (lhs, &vr_result))
6705 if (dump_file && (dump_flags & TDF_DETAILS))
6707 fprintf (dump_file, "Found new range for ");
6708 print_generic_expr (dump_file, lhs, 0);
6709 fprintf (dump_file, ": ");
6710 dump_value_range (dump_file, &vr_result);
6711 fprintf (dump_file, "\n\n");
6714 return SSA_PROP_INTERESTING;
6717 /* Nothing changed, don't add outgoing edges. */
6718 return SSA_PROP_NOT_INTERESTING;
6720 /* No match found. Set the LHS to VARYING. */
6721 varying:
6722 set_value_range_to_varying (lhs_vr);
6723 return SSA_PROP_VARYING;
6726 /* Simplify boolean operations if the source is known
6727 to be already a boolean. */
6728 static bool
6729 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6731 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6732 tree val = NULL;
6733 tree op0, op1;
6734 value_range_t *vr;
6735 bool sop = false;
6736 bool need_conversion;
6738 op0 = gimple_assign_rhs1 (stmt);
6739 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6741 if (TREE_CODE (op0) != SSA_NAME)
6742 return false;
6743 vr = get_value_range (op0);
6745 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6746 if (!val || !integer_onep (val))
6747 return false;
6749 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6750 if (!val || !integer_onep (val))
6751 return false;
6754 if (rhs_code == TRUTH_NOT_EXPR)
6756 rhs_code = NE_EXPR;
6757 op1 = build_int_cst (TREE_TYPE (op0), 1);
6759 else
6761 op1 = gimple_assign_rhs2 (stmt);
6763 /* Reduce number of cases to handle. */
6764 if (is_gimple_min_invariant (op1))
6766 /* Exclude anything that should have been already folded. */
6767 if (rhs_code != EQ_EXPR
6768 && rhs_code != NE_EXPR
6769 && rhs_code != TRUTH_XOR_EXPR)
6770 return false;
6772 if (!integer_zerop (op1)
6773 && !integer_onep (op1)
6774 && !integer_all_onesp (op1))
6775 return false;
6777 /* Limit the number of cases we have to consider. */
6778 if (rhs_code == EQ_EXPR)
6780 rhs_code = NE_EXPR;
6781 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6784 else
6786 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6787 if (rhs_code == EQ_EXPR)
6788 return false;
6790 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6792 vr = get_value_range (op1);
6793 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6794 if (!val || !integer_onep (val))
6795 return false;
6797 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6798 if (!val || !integer_onep (val))
6799 return false;
6804 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6806 location_t location;
6808 if (!gimple_has_location (stmt))
6809 location = input_location;
6810 else
6811 location = gimple_location (stmt);
6813 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6814 warning_at (location, OPT_Wstrict_overflow,
6815 _("assuming signed overflow does not occur when "
6816 "simplifying && or || to & or |"));
6817 else
6818 warning_at (location, OPT_Wstrict_overflow,
6819 _("assuming signed overflow does not occur when "
6820 "simplifying ==, != or ! to identity or ^"));
6823 need_conversion =
6824 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6825 TREE_TYPE (op0));
6827 /* Make sure to not sign-extend -1 as a boolean value. */
6828 if (need_conversion
6829 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6830 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6831 return false;
6833 switch (rhs_code)
6835 case TRUTH_AND_EXPR:
6836 rhs_code = BIT_AND_EXPR;
6837 break;
6838 case TRUTH_OR_EXPR:
6839 rhs_code = BIT_IOR_EXPR;
6840 break;
6841 case TRUTH_XOR_EXPR:
6842 case NE_EXPR:
6843 if (integer_zerop (op1))
6845 gimple_assign_set_rhs_with_ops (gsi,
6846 need_conversion ? NOP_EXPR : SSA_NAME,
6847 op0, NULL);
6848 update_stmt (gsi_stmt (*gsi));
6849 return true;
6852 rhs_code = BIT_XOR_EXPR;
6853 break;
6854 default:
6855 gcc_unreachable ();
6858 if (need_conversion)
6859 return false;
6861 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6862 update_stmt (gsi_stmt (*gsi));
6863 return true;
6866 /* Simplify a division or modulo operator to a right shift or
6867 bitwise and if the first operand is unsigned or is greater
6868 than zero and the second operand is an exact power of two. */
6870 static bool
6871 simplify_div_or_mod_using_ranges (gimple stmt)
6873 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6874 tree val = NULL;
6875 tree op0 = gimple_assign_rhs1 (stmt);
6876 tree op1 = gimple_assign_rhs2 (stmt);
6877 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6879 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6881 val = integer_one_node;
6883 else
6885 bool sop = false;
6887 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6889 if (val
6890 && sop
6891 && integer_onep (val)
6892 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6894 location_t location;
6896 if (!gimple_has_location (stmt))
6897 location = input_location;
6898 else
6899 location = gimple_location (stmt);
6900 warning_at (location, OPT_Wstrict_overflow,
6901 "assuming signed overflow does not occur when "
6902 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6906 if (val && integer_onep (val))
6908 tree t;
6910 if (rhs_code == TRUNC_DIV_EXPR)
6912 t = build_int_cst (integer_type_node, tree_log2 (op1));
6913 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6914 gimple_assign_set_rhs1 (stmt, op0);
6915 gimple_assign_set_rhs2 (stmt, t);
6917 else
6919 t = build_int_cst (TREE_TYPE (op1), 1);
6920 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6921 t = fold_convert (TREE_TYPE (op0), t);
6923 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6924 gimple_assign_set_rhs1 (stmt, op0);
6925 gimple_assign_set_rhs2 (stmt, t);
6928 update_stmt (stmt);
6929 return true;
6932 return false;
6935 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6936 ABS_EXPR. If the operand is <= 0, then simplify the
6937 ABS_EXPR into a NEGATE_EXPR. */
6939 static bool
6940 simplify_abs_using_ranges (gimple stmt)
6942 tree val = NULL;
6943 tree op = gimple_assign_rhs1 (stmt);
6944 tree type = TREE_TYPE (op);
6945 value_range_t *vr = get_value_range (op);
6947 if (TYPE_UNSIGNED (type))
6949 val = integer_zero_node;
6951 else if (vr)
6953 bool sop = false;
6955 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6956 if (!val)
6958 sop = false;
6959 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6960 &sop);
6962 if (val)
6964 if (integer_zerop (val))
6965 val = integer_one_node;
6966 else if (integer_onep (val))
6967 val = integer_zero_node;
6971 if (val
6972 && (integer_onep (val) || integer_zerop (val)))
6974 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6976 location_t location;
6978 if (!gimple_has_location (stmt))
6979 location = input_location;
6980 else
6981 location = gimple_location (stmt);
6982 warning_at (location, OPT_Wstrict_overflow,
6983 "assuming signed overflow does not occur when "
6984 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6987 gimple_assign_set_rhs1 (stmt, op);
6988 if (integer_onep (val))
6989 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6990 else
6991 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6992 update_stmt (stmt);
6993 return true;
6997 return false;
7000 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
7001 If all the bits that are being cleared by & are already
7002 known to be zero from VR, or all the bits that are being
7003 set by | are already known to be one from VR, the bit
7004 operation is redundant. */
7006 static bool
7007 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7009 tree op0 = gimple_assign_rhs1 (stmt);
7010 tree op1 = gimple_assign_rhs2 (stmt);
7011 tree op = NULL_TREE;
7012 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7013 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7014 double_int may_be_nonzero0, may_be_nonzero1;
7015 double_int must_be_nonzero0, must_be_nonzero1;
7016 double_int mask;
7018 if (TREE_CODE (op0) == SSA_NAME)
7019 vr0 = *(get_value_range (op0));
7020 else if (is_gimple_min_invariant (op0))
7021 set_value_range_to_value (&vr0, op0, NULL);
7022 else
7023 return false;
7025 if (TREE_CODE (op1) == SSA_NAME)
7026 vr1 = *(get_value_range (op1));
7027 else if (is_gimple_min_invariant (op1))
7028 set_value_range_to_value (&vr1, op1, NULL);
7029 else
7030 return false;
7032 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7033 return false;
7034 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7035 return false;
7037 switch (gimple_assign_rhs_code (stmt))
7039 case BIT_AND_EXPR:
7040 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7041 if (double_int_zero_p (mask))
7043 op = op0;
7044 break;
7046 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7047 if (double_int_zero_p (mask))
7049 op = op1;
7050 break;
7052 break;
7053 case BIT_IOR_EXPR:
7054 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7055 if (double_int_zero_p (mask))
7057 op = op1;
7058 break;
7060 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7061 if (double_int_zero_p (mask))
7063 op = op0;
7064 break;
7066 break;
7067 default:
7068 gcc_unreachable ();
7071 if (op == NULL_TREE)
7072 return false;
7074 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7075 update_stmt (gsi_stmt (*gsi));
7076 return true;
7079 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7080 a known value range VR.
7082 If there is one and only one value which will satisfy the
7083 conditional, then return that value. Else return NULL. */
7085 static tree
7086 test_for_singularity (enum tree_code cond_code, tree op0,
7087 tree op1, value_range_t *vr)
7089 tree min = NULL;
7090 tree max = NULL;
7092 /* Extract minimum/maximum values which satisfy the
7093 the conditional as it was written. */
7094 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7096 /* This should not be negative infinity; there is no overflow
7097 here. */
7098 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7100 max = op1;
7101 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7103 tree one = build_int_cst (TREE_TYPE (op0), 1);
7104 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7105 if (EXPR_P (max))
7106 TREE_NO_WARNING (max) = 1;
7109 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7111 /* This should not be positive infinity; there is no overflow
7112 here. */
7113 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7115 min = op1;
7116 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7118 tree one = build_int_cst (TREE_TYPE (op0), 1);
7119 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7120 if (EXPR_P (min))
7121 TREE_NO_WARNING (min) = 1;
7125 /* Now refine the minimum and maximum values using any
7126 value range information we have for op0. */
7127 if (min && max)
7129 if (compare_values (vr->min, min) == 1)
7130 min = vr->min;
7131 if (compare_values (vr->max, max) == -1)
7132 max = vr->max;
7134 /* If the new min/max values have converged to a single value,
7135 then there is only one value which can satisfy the condition,
7136 return that value. */
7137 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7138 return min;
7140 return NULL;
7143 /* Simplify a conditional using a relational operator to an equality
7144 test if the range information indicates only one value can satisfy
7145 the original conditional. */
7147 static bool
7148 simplify_cond_using_ranges (gimple stmt)
7150 tree op0 = gimple_cond_lhs (stmt);
7151 tree op1 = gimple_cond_rhs (stmt);
7152 enum tree_code cond_code = gimple_cond_code (stmt);
7154 if (cond_code != NE_EXPR
7155 && cond_code != EQ_EXPR
7156 && TREE_CODE (op0) == SSA_NAME
7157 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7158 && is_gimple_min_invariant (op1))
7160 value_range_t *vr = get_value_range (op0);
7162 /* If we have range information for OP0, then we might be
7163 able to simplify this conditional. */
7164 if (vr->type == VR_RANGE)
7166 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7168 if (new_tree)
7170 if (dump_file)
7172 fprintf (dump_file, "Simplified relational ");
7173 print_gimple_stmt (dump_file, stmt, 0, 0);
7174 fprintf (dump_file, " into ");
7177 gimple_cond_set_code (stmt, EQ_EXPR);
7178 gimple_cond_set_lhs (stmt, op0);
7179 gimple_cond_set_rhs (stmt, new_tree);
7181 update_stmt (stmt);
7183 if (dump_file)
7185 print_gimple_stmt (dump_file, stmt, 0, 0);
7186 fprintf (dump_file, "\n");
7189 return true;
7192 /* Try again after inverting the condition. We only deal
7193 with integral types here, so no need to worry about
7194 issues with inverting FP comparisons. */
7195 cond_code = invert_tree_comparison (cond_code, false);
7196 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7198 if (new_tree)
7200 if (dump_file)
7202 fprintf (dump_file, "Simplified relational ");
7203 print_gimple_stmt (dump_file, stmt, 0, 0);
7204 fprintf (dump_file, " into ");
7207 gimple_cond_set_code (stmt, NE_EXPR);
7208 gimple_cond_set_lhs (stmt, op0);
7209 gimple_cond_set_rhs (stmt, new_tree);
7211 update_stmt (stmt);
7213 if (dump_file)
7215 print_gimple_stmt (dump_file, stmt, 0, 0);
7216 fprintf (dump_file, "\n");
7219 return true;
7224 return false;
7227 /* Simplify a switch statement using the value range of the switch
7228 argument. */
7230 static bool
7231 simplify_switch_using_ranges (gimple stmt)
7233 tree op = gimple_switch_index (stmt);
7234 value_range_t *vr;
7235 bool take_default;
7236 edge e;
7237 edge_iterator ei;
7238 size_t i = 0, j = 0, n, n2;
7239 tree vec2;
7240 switch_update su;
7242 if (TREE_CODE (op) == SSA_NAME)
7244 vr = get_value_range (op);
7246 /* We can only handle integer ranges. */
7247 if (vr->type != VR_RANGE
7248 || symbolic_range_p (vr))
7249 return false;
7251 /* Find case label for min/max of the value range. */
7252 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7254 else if (TREE_CODE (op) == INTEGER_CST)
7256 take_default = !find_case_label_index (stmt, 1, op, &i);
7257 if (take_default)
7259 i = 1;
7260 j = 0;
7262 else
7264 j = i;
7267 else
7268 return false;
7270 n = gimple_switch_num_labels (stmt);
7272 /* Bail out if this is just all edges taken. */
7273 if (i == 1
7274 && j == n - 1
7275 && take_default)
7276 return false;
7278 /* Build a new vector of taken case labels. */
7279 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7280 n2 = 0;
7282 /* Add the default edge, if necessary. */
7283 if (take_default)
7284 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7286 for (; i <= j; ++i, ++n2)
7287 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7289 /* Mark needed edges. */
7290 for (i = 0; i < n2; ++i)
7292 e = find_edge (gimple_bb (stmt),
7293 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7294 e->aux = (void *)-1;
7297 /* Queue not needed edges for later removal. */
7298 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7300 if (e->aux == (void *)-1)
7302 e->aux = NULL;
7303 continue;
7306 if (dump_file && (dump_flags & TDF_DETAILS))
7308 fprintf (dump_file, "removing unreachable case label\n");
7310 VEC_safe_push (edge, heap, to_remove_edges, e);
7311 e->flags &= ~EDGE_EXECUTABLE;
7314 /* And queue an update for the stmt. */
7315 su.stmt = stmt;
7316 su.vec = vec2;
7317 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7318 return false;
7321 /* Simplify STMT using ranges if possible. */
7323 static bool
7324 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7326 gimple stmt = gsi_stmt (*gsi);
7327 if (is_gimple_assign (stmt))
7329 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7331 switch (rhs_code)
7333 case EQ_EXPR:
7334 case NE_EXPR:
7335 case TRUTH_NOT_EXPR:
7336 case TRUTH_AND_EXPR:
7337 case TRUTH_OR_EXPR:
7338 case TRUTH_XOR_EXPR:
7339 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
7340 or identity if the RHS is zero or one, and the LHS are known
7341 to be boolean values. Transform all TRUTH_*_EXPR into
7342 BIT_*_EXPR if both arguments are known to be boolean values. */
7343 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7344 return simplify_truth_ops_using_ranges (gsi, stmt);
7345 break;
7347 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7348 and BIT_AND_EXPR respectively if the first operand is greater
7349 than zero and the second operand is an exact power of two. */
7350 case TRUNC_DIV_EXPR:
7351 case TRUNC_MOD_EXPR:
7352 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
7353 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7354 return simplify_div_or_mod_using_ranges (stmt);
7355 break;
7357 /* Transform ABS (X) into X or -X as appropriate. */
7358 case ABS_EXPR:
7359 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
7360 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7361 return simplify_abs_using_ranges (stmt);
7362 break;
7364 case BIT_AND_EXPR:
7365 case BIT_IOR_EXPR:
7366 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7367 if all the bits being cleared are already cleared or
7368 all the bits being set are already set. */
7369 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7370 return simplify_bit_ops_using_ranges (gsi, stmt);
7371 break;
7373 default:
7374 break;
7377 else if (gimple_code (stmt) == GIMPLE_COND)
7378 return simplify_cond_using_ranges (stmt);
7379 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7380 return simplify_switch_using_ranges (stmt);
7382 return false;
7385 /* If the statement pointed by SI has a predicate whose value can be
7386 computed using the value range information computed by VRP, compute
7387 its value and return true. Otherwise, return false. */
7389 static bool
7390 fold_predicate_in (gimple_stmt_iterator *si)
7392 bool assignment_p = false;
7393 tree val;
7394 gimple stmt = gsi_stmt (*si);
7396 if (is_gimple_assign (stmt)
7397 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7399 assignment_p = true;
7400 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7401 gimple_assign_rhs1 (stmt),
7402 gimple_assign_rhs2 (stmt),
7403 stmt);
7405 else if (gimple_code (stmt) == GIMPLE_COND)
7406 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7407 gimple_cond_lhs (stmt),
7408 gimple_cond_rhs (stmt),
7409 stmt);
7410 else
7411 return false;
7413 if (val)
7415 if (assignment_p)
7416 val = fold_convert (gimple_expr_type (stmt), val);
7418 if (dump_file)
7420 fprintf (dump_file, "Folding predicate ");
7421 print_gimple_expr (dump_file, stmt, 0, 0);
7422 fprintf (dump_file, " to ");
7423 print_generic_expr (dump_file, val, 0);
7424 fprintf (dump_file, "\n");
7427 if (is_gimple_assign (stmt))
7428 gimple_assign_set_rhs_from_tree (si, val);
7429 else
7431 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7432 if (integer_zerop (val))
7433 gimple_cond_make_false (stmt);
7434 else if (integer_onep (val))
7435 gimple_cond_make_true (stmt);
7436 else
7437 gcc_unreachable ();
7440 return true;
7443 return false;
7446 /* Callback for substitute_and_fold folding the stmt at *SI. */
7448 static bool
7449 vrp_fold_stmt (gimple_stmt_iterator *si)
7451 if (fold_predicate_in (si))
7452 return true;
7454 return simplify_stmt_using_ranges (si);
7457 /* Stack of dest,src equivalency pairs that need to be restored after
7458 each attempt to thread a block's incoming edge to an outgoing edge.
7460 A NULL entry is used to mark the end of pairs which need to be
7461 restored. */
7462 static VEC(tree,heap) *stack;
7464 /* A trivial wrapper so that we can present the generic jump threading
7465 code with a simple API for simplifying statements. STMT is the
7466 statement we want to simplify, WITHIN_STMT provides the location
7467 for any overflow warnings. */
7469 static tree
7470 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7472 /* We only use VRP information to simplify conditionals. This is
7473 overly conservative, but it's unclear if doing more would be
7474 worth the compile time cost. */
7475 if (gimple_code (stmt) != GIMPLE_COND)
7476 return NULL;
7478 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7479 gimple_cond_lhs (stmt),
7480 gimple_cond_rhs (stmt), within_stmt);
7483 /* Blocks which have more than one predecessor and more than
7484 one successor present jump threading opportunities, i.e.,
7485 when the block is reached from a specific predecessor, we
7486 may be able to determine which of the outgoing edges will
7487 be traversed. When this optimization applies, we are able
7488 to avoid conditionals at runtime and we may expose secondary
7489 optimization opportunities.
7491 This routine is effectively a driver for the generic jump
7492 threading code. It basically just presents the generic code
7493 with edges that may be suitable for jump threading.
7495 Unlike DOM, we do not iterate VRP if jump threading was successful.
7496 While iterating may expose new opportunities for VRP, it is expected
7497 those opportunities would be very limited and the compile time cost
7498 to expose those opportunities would be significant.
7500 As jump threading opportunities are discovered, they are registered
7501 for later realization. */
7503 static void
7504 identify_jump_threads (void)
7506 basic_block bb;
7507 gimple dummy;
7508 int i;
7509 edge e;
7511 /* Ugh. When substituting values earlier in this pass we can
7512 wipe the dominance information. So rebuild the dominator
7513 information as we need it within the jump threading code. */
7514 calculate_dominance_info (CDI_DOMINATORS);
7516 /* We do not allow VRP information to be used for jump threading
7517 across a back edge in the CFG. Otherwise it becomes too
7518 difficult to avoid eliminating loop exit tests. Of course
7519 EDGE_DFS_BACK is not accurate at this time so we have to
7520 recompute it. */
7521 mark_dfs_back_edges ();
7523 /* Do not thread across edges we are about to remove. Just marking
7524 them as EDGE_DFS_BACK will do. */
7525 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7526 e->flags |= EDGE_DFS_BACK;
7528 /* Allocate our unwinder stack to unwind any temporary equivalences
7529 that might be recorded. */
7530 stack = VEC_alloc (tree, heap, 20);
7532 /* To avoid lots of silly node creation, we create a single
7533 conditional and just modify it in-place when attempting to
7534 thread jumps. */
7535 dummy = gimple_build_cond (EQ_EXPR,
7536 integer_zero_node, integer_zero_node,
7537 NULL, NULL);
7539 /* Walk through all the blocks finding those which present a
7540 potential jump threading opportunity. We could set this up
7541 as a dominator walker and record data during the walk, but
7542 I doubt it's worth the effort for the classes of jump
7543 threading opportunities we are trying to identify at this
7544 point in compilation. */
7545 FOR_EACH_BB (bb)
7547 gimple last;
7549 /* If the generic jump threading code does not find this block
7550 interesting, then there is nothing to do. */
7551 if (! potentially_threadable_block (bb))
7552 continue;
7554 /* We only care about blocks ending in a COND_EXPR. While there
7555 may be some value in handling SWITCH_EXPR here, I doubt it's
7556 terribly important. */
7557 last = gsi_stmt (gsi_last_bb (bb));
7559 /* We're basically looking for a switch or any kind of conditional with
7560 integral or pointer type arguments. Note the type of the second
7561 argument will be the same as the first argument, so no need to
7562 check it explicitly. */
7563 if (gimple_code (last) == GIMPLE_SWITCH
7564 || (gimple_code (last) == GIMPLE_COND
7565 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7566 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7567 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7568 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7569 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7571 edge_iterator ei;
7573 /* We've got a block with multiple predecessors and multiple
7574 successors which also ends in a suitable conditional or
7575 switch statement. For each predecessor, see if we can thread
7576 it to a specific successor. */
7577 FOR_EACH_EDGE (e, ei, bb->preds)
7579 /* Do not thread across back edges or abnormal edges
7580 in the CFG. */
7581 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7582 continue;
7584 thread_across_edge (dummy, e, true, &stack,
7585 simplify_stmt_for_jump_threading);
7590 /* We do not actually update the CFG or SSA graphs at this point as
7591 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7592 handle ASSERT_EXPRs gracefully. */
7595 /* We identified all the jump threading opportunities earlier, but could
7596 not transform the CFG at that time. This routine transforms the
7597 CFG and arranges for the dominator tree to be rebuilt if necessary.
7599 Note the SSA graph update will occur during the normal TODO
7600 processing by the pass manager. */
7601 static void
7602 finalize_jump_threads (void)
7604 thread_through_all_blocks (false);
7605 VEC_free (tree, heap, stack);
7609 /* Traverse all the blocks folding conditionals with known ranges. */
7611 static void
7612 vrp_finalize (void)
7614 size_t i;
7615 unsigned num = num_ssa_names;
7617 if (dump_file)
7619 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7620 dump_all_value_ranges (dump_file);
7621 fprintf (dump_file, "\n");
7624 substitute_and_fold (op_with_constant_singleton_value_range,
7625 vrp_fold_stmt, false);
7627 if (warn_array_bounds)
7628 check_all_array_refs ();
7630 /* We must identify jump threading opportunities before we release
7631 the datastructures built by VRP. */
7632 identify_jump_threads ();
7634 /* Free allocated memory. */
7635 for (i = 0; i < num; i++)
7636 if (vr_value[i])
7638 BITMAP_FREE (vr_value[i]->equiv);
7639 free (vr_value[i]);
7642 free (vr_value);
7643 free (vr_phi_edge_counts);
7645 /* So that we can distinguish between VRP data being available
7646 and not available. */
7647 vr_value = NULL;
7648 vr_phi_edge_counts = NULL;
7652 /* Main entry point to VRP (Value Range Propagation). This pass is
7653 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7654 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7655 Programming Language Design and Implementation, pp. 67-78, 1995.
7656 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7658 This is essentially an SSA-CCP pass modified to deal with ranges
7659 instead of constants.
7661 While propagating ranges, we may find that two or more SSA name
7662 have equivalent, though distinct ranges. For instance,
7664 1 x_9 = p_3->a;
7665 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7666 3 if (p_4 == q_2)
7667 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7668 5 endif
7669 6 if (q_2)
7671 In the code above, pointer p_5 has range [q_2, q_2], but from the
7672 code we can also determine that p_5 cannot be NULL and, if q_2 had
7673 a non-varying range, p_5's range should also be compatible with it.
7675 These equivalences are created by two expressions: ASSERT_EXPR and
7676 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7677 result of another assertion, then we can use the fact that p_5 and
7678 p_4 are equivalent when evaluating p_5's range.
7680 Together with value ranges, we also propagate these equivalences
7681 between names so that we can take advantage of information from
7682 multiple ranges when doing final replacement. Note that this
7683 equivalency relation is transitive but not symmetric.
7685 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7686 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7687 in contexts where that assertion does not hold (e.g., in line 6).
7689 TODO, the main difference between this pass and Patterson's is that
7690 we do not propagate edge probabilities. We only compute whether
7691 edges can be taken or not. That is, instead of having a spectrum
7692 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7693 DON'T KNOW. In the future, it may be worthwhile to propagate
7694 probabilities to aid branch prediction. */
7696 static unsigned int
7697 execute_vrp (void)
7699 int i;
7700 edge e;
7701 switch_update *su;
7703 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7704 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7705 scev_initialize ();
7707 /* Estimate number of iterations - but do not use undefined behavior
7708 for this. We can't do this lazily as other functions may compute
7709 this using undefined behavior. */
7710 free_numbers_of_iterations_estimates ();
7711 estimate_numbers_of_iterations (false);
7713 insert_range_assertions ();
7715 to_remove_edges = VEC_alloc (edge, heap, 10);
7716 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7717 threadedge_initialize_values ();
7719 vrp_initialize ();
7720 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7721 vrp_finalize ();
7723 /* ASSERT_EXPRs must be removed before finalizing jump threads
7724 as finalizing jump threads calls the CFG cleanup code which
7725 does not properly handle ASSERT_EXPRs. */
7726 remove_range_assertions ();
7728 /* If we exposed any new variables, go ahead and put them into
7729 SSA form now, before we handle jump threading. This simplifies
7730 interactions between rewriting of _DECL nodes into SSA form
7731 and rewriting SSA_NAME nodes into SSA form after block
7732 duplication and CFG manipulation. */
7733 update_ssa (TODO_update_ssa);
7735 finalize_jump_threads ();
7737 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7738 CFG in a broken state and requires a cfg_cleanup run. */
7739 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7740 remove_edge (e);
7741 /* Update SWITCH_EXPR case label vector. */
7742 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7744 size_t j;
7745 size_t n = TREE_VEC_LENGTH (su->vec);
7746 tree label;
7747 gimple_switch_set_num_labels (su->stmt, n);
7748 for (j = 0; j < n; j++)
7749 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7750 /* As we may have replaced the default label with a regular one
7751 make sure to make it a real default label again. This ensures
7752 optimal expansion. */
7753 label = gimple_switch_default_label (su->stmt);
7754 CASE_LOW (label) = NULL_TREE;
7755 CASE_HIGH (label) = NULL_TREE;
7758 if (VEC_length (edge, to_remove_edges) > 0)
7759 free_dominance_info (CDI_DOMINATORS);
7761 VEC_free (edge, heap, to_remove_edges);
7762 VEC_free (switch_update, heap, to_update_switch_stmts);
7763 threadedge_finalize_values ();
7765 scev_finalize ();
7766 loop_optimizer_finalize ();
7767 return 0;
7770 static bool
7771 gate_vrp (void)
7773 return flag_tree_vrp != 0;
7776 struct gimple_opt_pass pass_vrp =
7779 GIMPLE_PASS,
7780 "vrp", /* name */
7781 gate_vrp, /* gate */
7782 execute_vrp, /* execute */
7783 NULL, /* sub */
7784 NULL, /* next */
7785 0, /* static_pass_number */
7786 TV_TREE_VRP, /* tv_id */
7787 PROP_ssa, /* properties_required */
7788 0, /* properties_provided */
7789 0, /* properties_destroyed */
7790 0, /* todo_flags_start */
7791 TODO_cleanup_cfg
7792 | TODO_update_ssa
7793 | TODO_verify_ssa
7794 | TODO_verify_flow
7795 | TODO_dump_func
7796 | TODO_ggc_collect /* todo_flags_finish */