1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
44 #include "basic-block.h"
47 struct target_optabs default_target_optabs
;
48 struct target_libfuncs default_target_libfuncs
;
50 struct target_optabs
*this_target_optabs
= &default_target_optabs
;
51 struct target_libfuncs
*this_target_libfuncs
= &default_target_libfuncs
;
54 #define libfunc_hash \
55 (this_target_libfuncs->x_libfunc_hash)
57 /* Contains the optab used for each rtx code. */
58 optab code_to_optab
[NUM_RTX_CODE
+ 1];
60 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
62 static rtx
expand_unop_direct (enum machine_mode
, optab
, rtx
, rtx
, int);
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
71 #define DECIMAL_PREFIX "dpd_"
74 /* Used for libfunc_hash. */
77 hash_libfunc (const void *p
)
79 const struct libfunc_entry
*const e
= (const struct libfunc_entry
*) p
;
81 return (((int) e
->mode1
+ (int) e
->mode2
* NUM_MACHINE_MODES
)
85 /* Used for libfunc_hash. */
88 eq_libfunc (const void *p
, const void *q
)
90 const struct libfunc_entry
*const e1
= (const struct libfunc_entry
*) p
;
91 const struct libfunc_entry
*const e2
= (const struct libfunc_entry
*) q
;
93 return (e1
->optab
== e2
->optab
94 && e1
->mode1
== e2
->mode1
95 && e1
->mode2
== e2
->mode2
);
98 /* Return libfunc corresponding operation defined by OPTAB converting
99 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
100 if no libfunc is available. */
102 convert_optab_libfunc (convert_optab optab
, enum machine_mode mode1
,
103 enum machine_mode mode2
)
105 struct libfunc_entry e
;
106 struct libfunc_entry
**slot
;
108 e
.optab
= (size_t) (optab
- &convert_optab_table
[0]);
111 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, NO_INSERT
);
114 if (optab
->libcall_gen
)
116 optab
->libcall_gen (optab
, optab
->libcall_basename
, mode1
, mode2
);
117 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, NO_INSERT
);
119 return (*slot
)->libfunc
;
125 return (*slot
)->libfunc
;
128 /* Return libfunc corresponding operation defined by OPTAB in MODE.
129 Trigger lazy initialization if needed, return NULL if no libfunc is
132 optab_libfunc (optab optab
, enum machine_mode mode
)
134 struct libfunc_entry e
;
135 struct libfunc_entry
**slot
;
137 e
.optab
= (size_t) (optab
- &optab_table
[0]);
140 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, NO_INSERT
);
143 if (optab
->libcall_gen
)
145 optab
->libcall_gen (optab
, optab
->libcall_basename
,
146 optab
->libcall_suffix
, mode
);
147 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
,
150 return (*slot
)->libfunc
;
156 return (*slot
)->libfunc
;
160 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
161 the result of operation CODE applied to OP0 (and OP1 if it is a binary
164 If the last insn does not set TARGET, don't do anything, but return 1.
166 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
167 don't add the REG_EQUAL note but return 0. Our caller can then try
168 again, ensuring that TARGET is not one of the operands. */
171 add_equal_note (rtx insns
, rtx target
, enum rtx_code code
, rtx op0
, rtx op1
)
173 rtx last_insn
, insn
, set
;
176 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
178 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
179 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
180 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
181 && GET_RTX_CLASS (code
) != RTX_COMPARE
182 && GET_RTX_CLASS (code
) != RTX_UNARY
)
185 if (GET_CODE (target
) == ZERO_EXTRACT
)
188 for (last_insn
= insns
;
189 NEXT_INSN (last_insn
) != NULL_RTX
;
190 last_insn
= NEXT_INSN (last_insn
))
193 set
= single_set (last_insn
);
197 if (! rtx_equal_p (SET_DEST (set
), target
)
198 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
199 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
200 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
203 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
204 besides the last insn. */
205 if (reg_overlap_mentioned_p (target
, op0
)
206 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
208 insn
= PREV_INSN (last_insn
);
209 while (insn
!= NULL_RTX
)
211 if (reg_set_p (target
, insn
))
214 insn
= PREV_INSN (insn
);
218 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
219 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
221 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
223 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
228 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
229 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
230 not actually do a sign-extend or zero-extend, but can leave the
231 higher-order bits of the result rtx undefined, for example, in the case
232 of logical operations, but not right shifts. */
235 widen_operand (rtx op
, enum machine_mode mode
, enum machine_mode oldmode
,
236 int unsignedp
, int no_extend
)
240 /* If we don't have to extend and this is a constant, return it. */
241 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
244 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
245 extend since it will be more efficient to do so unless the signedness of
246 a promoted object differs from our extension. */
248 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
249 && SUBREG_PROMOTED_UNSIGNED_P (op
) == unsignedp
))
250 return convert_modes (mode
, oldmode
, op
, unsignedp
);
252 /* If MODE is no wider than a single word, we return a paradoxical
254 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
255 return gen_rtx_SUBREG (mode
, force_reg (GET_MODE (op
), op
), 0);
257 /* Otherwise, get an object of MODE, clobber it, and set the low-order
260 result
= gen_reg_rtx (mode
);
261 emit_clobber (result
);
262 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
266 /* Return the optab used for computing the operation given by the tree code,
267 CODE and the tree EXP. This function is not always usable (for example, it
268 cannot give complete results for multiplication or division) but probably
269 ought to be relied on more widely throughout the expander. */
271 optab_for_tree_code (enum tree_code code
, const_tree type
,
272 enum optab_subtype subtype
)
284 return one_cmpl_optab
;
293 return TYPE_UNSIGNED (type
) ? umod_optab
: smod_optab
;
301 if (TYPE_SATURATING(type
))
302 return TYPE_UNSIGNED(type
) ? usdiv_optab
: ssdiv_optab
;
303 return TYPE_UNSIGNED (type
) ? udiv_optab
: sdiv_optab
;
306 if (TREE_CODE (type
) == VECTOR_TYPE
)
308 if (subtype
== optab_vector
)
309 return TYPE_SATURATING (type
) ? NULL
: vashl_optab
;
311 gcc_assert (subtype
== optab_scalar
);
313 if (TYPE_SATURATING(type
))
314 return TYPE_UNSIGNED(type
) ? usashl_optab
: ssashl_optab
;
318 if (TREE_CODE (type
) == VECTOR_TYPE
)
320 if (subtype
== optab_vector
)
321 return TYPE_UNSIGNED (type
) ? vlshr_optab
: vashr_optab
;
323 gcc_assert (subtype
== optab_scalar
);
325 return TYPE_UNSIGNED (type
) ? lshr_optab
: ashr_optab
;
328 if (TREE_CODE (type
) == VECTOR_TYPE
)
330 if (subtype
== optab_vector
)
333 gcc_assert (subtype
== optab_scalar
);
338 if (TREE_CODE (type
) == VECTOR_TYPE
)
340 if (subtype
== optab_vector
)
343 gcc_assert (subtype
== optab_scalar
);
348 return TYPE_UNSIGNED (type
) ? umax_optab
: smax_optab
;
351 return TYPE_UNSIGNED (type
) ? umin_optab
: smin_optab
;
353 case REALIGN_LOAD_EXPR
:
354 return vec_realign_load_optab
;
357 return TYPE_UNSIGNED (type
) ? usum_widen_optab
: ssum_widen_optab
;
360 return TYPE_UNSIGNED (type
) ? udot_prod_optab
: sdot_prod_optab
;
362 case WIDEN_MULT_PLUS_EXPR
:
363 return (TYPE_UNSIGNED (type
)
364 ? (TYPE_SATURATING (type
)
365 ? usmadd_widen_optab
: umadd_widen_optab
)
366 : (TYPE_SATURATING (type
)
367 ? ssmadd_widen_optab
: smadd_widen_optab
));
369 case WIDEN_MULT_MINUS_EXPR
:
370 return (TYPE_UNSIGNED (type
)
371 ? (TYPE_SATURATING (type
)
372 ? usmsub_widen_optab
: umsub_widen_optab
)
373 : (TYPE_SATURATING (type
)
374 ? ssmsub_widen_optab
: smsub_widen_optab
));
380 return TYPE_UNSIGNED (type
) ? reduc_umax_optab
: reduc_smax_optab
;
383 return TYPE_UNSIGNED (type
) ? reduc_umin_optab
: reduc_smin_optab
;
385 case REDUC_PLUS_EXPR
:
386 return TYPE_UNSIGNED (type
) ? reduc_uplus_optab
: reduc_splus_optab
;
388 case VEC_LSHIFT_EXPR
:
389 return vec_shl_optab
;
391 case VEC_RSHIFT_EXPR
:
392 return vec_shr_optab
;
394 case VEC_WIDEN_MULT_HI_EXPR
:
395 return TYPE_UNSIGNED (type
) ?
396 vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
398 case VEC_WIDEN_MULT_LO_EXPR
:
399 return TYPE_UNSIGNED (type
) ?
400 vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
402 case VEC_UNPACK_HI_EXPR
:
403 return TYPE_UNSIGNED (type
) ?
404 vec_unpacku_hi_optab
: vec_unpacks_hi_optab
;
406 case VEC_UNPACK_LO_EXPR
:
407 return TYPE_UNSIGNED (type
) ?
408 vec_unpacku_lo_optab
: vec_unpacks_lo_optab
;
410 case VEC_UNPACK_FLOAT_HI_EXPR
:
411 /* The signedness is determined from input operand. */
412 return TYPE_UNSIGNED (type
) ?
413 vec_unpacku_float_hi_optab
: vec_unpacks_float_hi_optab
;
415 case VEC_UNPACK_FLOAT_LO_EXPR
:
416 /* The signedness is determined from input operand. */
417 return TYPE_UNSIGNED (type
) ?
418 vec_unpacku_float_lo_optab
: vec_unpacks_float_lo_optab
;
420 case VEC_PACK_TRUNC_EXPR
:
421 return vec_pack_trunc_optab
;
423 case VEC_PACK_SAT_EXPR
:
424 return TYPE_UNSIGNED (type
) ? vec_pack_usat_optab
: vec_pack_ssat_optab
;
426 case VEC_PACK_FIX_TRUNC_EXPR
:
427 /* The signedness is determined from output operand. */
428 return TYPE_UNSIGNED (type
) ?
429 vec_pack_ufix_trunc_optab
: vec_pack_sfix_trunc_optab
;
435 trapv
= INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_TRAPS (type
);
438 case POINTER_PLUS_EXPR
:
440 if (TYPE_SATURATING(type
))
441 return TYPE_UNSIGNED(type
) ? usadd_optab
: ssadd_optab
;
442 return trapv
? addv_optab
: add_optab
;
445 if (TYPE_SATURATING(type
))
446 return TYPE_UNSIGNED(type
) ? ussub_optab
: sssub_optab
;
447 return trapv
? subv_optab
: sub_optab
;
450 if (TYPE_SATURATING(type
))
451 return TYPE_UNSIGNED(type
) ? usmul_optab
: ssmul_optab
;
452 return trapv
? smulv_optab
: smul_optab
;
455 if (TYPE_SATURATING(type
))
456 return TYPE_UNSIGNED(type
) ? usneg_optab
: ssneg_optab
;
457 return trapv
? negv_optab
: neg_optab
;
460 return trapv
? absv_optab
: abs_optab
;
462 case VEC_EXTRACT_EVEN_EXPR
:
463 return vec_extract_even_optab
;
465 case VEC_EXTRACT_ODD_EXPR
:
466 return vec_extract_odd_optab
;
468 case VEC_INTERLEAVE_HIGH_EXPR
:
469 return vec_interleave_high_optab
;
471 case VEC_INTERLEAVE_LOW_EXPR
:
472 return vec_interleave_low_optab
;
480 /* Expand vector widening operations.
482 There are two different classes of operations handled here:
483 1) Operations whose result is wider than all the arguments to the operation.
484 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
485 In this case OP0 and optionally OP1 would be initialized,
486 but WIDE_OP wouldn't (not relevant for this case).
487 2) Operations whose result is of the same size as the last argument to the
488 operation, but wider than all the other arguments to the operation.
489 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
490 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
492 E.g, when called to expand the following operations, this is how
493 the arguments will be initialized:
495 widening-sum 2 oprnd0 - oprnd1
496 widening-dot-product 3 oprnd0 oprnd1 oprnd2
497 widening-mult 2 oprnd0 oprnd1 -
498 type-promotion (vec-unpack) 1 oprnd0 - - */
501 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
502 rtx target
, int unsignedp
)
504 struct expand_operand eops
[4];
505 tree oprnd0
, oprnd1
, oprnd2
;
506 enum machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
507 optab widen_pattern_optab
;
508 enum insn_code icode
;
509 int nops
= TREE_CODE_LENGTH (ops
->code
);
513 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
514 widen_pattern_optab
=
515 optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
516 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
517 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
518 icode
= optab_handler (widen_pattern_optab
,
519 TYPE_MODE (TREE_TYPE (ops
->op2
)));
521 icode
= optab_handler (widen_pattern_optab
, tmode0
);
522 gcc_assert (icode
!= CODE_FOR_nothing
);
527 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
530 /* The last operand is of a wider mode than the rest of the operands. */
535 gcc_assert (tmode1
== tmode0
);
538 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
542 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
543 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
545 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
547 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
548 expand_insn (icode
, op
, eops
);
549 return eops
[0].value
;
552 /* Generate code to perform an operation specified by TERNARY_OPTAB
553 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
555 UNSIGNEDP is for the case where we have to widen the operands
556 to perform the operation. It says to use zero-extension.
558 If TARGET is nonzero, the value
559 is generated there, if it is convenient to do so.
560 In all cases an rtx is returned for the locus of the value;
561 this may or may not be TARGET. */
564 expand_ternary_op (enum machine_mode mode
, optab ternary_optab
, rtx op0
,
565 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
567 struct expand_operand ops
[4];
568 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
570 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
572 create_output_operand (&ops
[0], target
, mode
);
573 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
574 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
575 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
576 expand_insn (icode
, 4, ops
);
581 /* Like expand_binop, but return a constant rtx if the result can be
582 calculated at compile time. The arguments and return value are
583 otherwise the same as for expand_binop. */
586 simplify_expand_binop (enum machine_mode mode
, optab binoptab
,
587 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
588 enum optab_methods methods
)
590 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
592 rtx x
= simplify_binary_operation (binoptab
->code
, mode
, op0
, op1
);
598 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
601 /* Like simplify_expand_binop, but always put the result in TARGET.
602 Return true if the expansion succeeded. */
605 force_expand_binop (enum machine_mode mode
, optab binoptab
,
606 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
607 enum optab_methods methods
)
609 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
610 target
, unsignedp
, methods
);
614 emit_move_insn (target
, x
);
618 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
621 expand_vec_shift_expr (sepops ops
, rtx target
)
623 struct expand_operand eops
[3];
624 enum insn_code icode
;
625 rtx rtx_op1
, rtx_op2
;
626 enum machine_mode mode
= TYPE_MODE (ops
->type
);
627 tree vec_oprnd
= ops
->op0
;
628 tree shift_oprnd
= ops
->op1
;
633 case VEC_RSHIFT_EXPR
:
634 shift_optab
= vec_shr_optab
;
636 case VEC_LSHIFT_EXPR
:
637 shift_optab
= vec_shl_optab
;
643 icode
= optab_handler (shift_optab
, mode
);
644 gcc_assert (icode
!= CODE_FOR_nothing
);
646 rtx_op1
= expand_normal (vec_oprnd
);
647 rtx_op2
= expand_normal (shift_oprnd
);
649 create_output_operand (&eops
[0], target
, mode
);
650 create_input_operand (&eops
[1], rtx_op1
, GET_MODE (rtx_op1
));
651 create_convert_operand_from_type (&eops
[2], rtx_op2
, TREE_TYPE (shift_oprnd
));
652 expand_insn (icode
, 3, eops
);
654 return eops
[0].value
;
657 /* This subroutine of expand_doubleword_shift handles the cases in which
658 the effective shift value is >= BITS_PER_WORD. The arguments and return
659 value are the same as for the parent routine, except that SUPERWORD_OP1
660 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
661 INTO_TARGET may be null if the caller has decided to calculate it. */
664 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
665 rtx outof_target
, rtx into_target
,
666 int unsignedp
, enum optab_methods methods
)
668 if (into_target
!= 0)
669 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
670 into_target
, unsignedp
, methods
))
673 if (outof_target
!= 0)
675 /* For a signed right shift, we must fill OUTOF_TARGET with copies
676 of the sign bit, otherwise we must fill it with zeros. */
677 if (binoptab
!= ashr_optab
)
678 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
680 if (!force_expand_binop (word_mode
, binoptab
,
681 outof_input
, GEN_INT (BITS_PER_WORD
- 1),
682 outof_target
, unsignedp
, methods
))
688 /* This subroutine of expand_doubleword_shift handles the cases in which
689 the effective shift value is < BITS_PER_WORD. The arguments and return
690 value are the same as for the parent routine. */
693 expand_subword_shift (enum machine_mode op1_mode
, optab binoptab
,
694 rtx outof_input
, rtx into_input
, rtx op1
,
695 rtx outof_target
, rtx into_target
,
696 int unsignedp
, enum optab_methods methods
,
697 unsigned HOST_WIDE_INT shift_mask
)
699 optab reverse_unsigned_shift
, unsigned_shift
;
702 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
703 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
705 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
706 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
707 the opposite direction to BINOPTAB. */
708 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
710 carries
= outof_input
;
711 tmp
= immed_double_const (BITS_PER_WORD
, 0, op1_mode
);
712 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
717 /* We must avoid shifting by BITS_PER_WORD bits since that is either
718 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
719 has unknown behavior. Do a single shift first, then shift by the
720 remainder. It's OK to use ~OP1 as the remainder if shift counts
721 are truncated to the mode size. */
722 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
723 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
724 if (shift_mask
== BITS_PER_WORD
- 1)
726 tmp
= immed_double_const (-1, -1, op1_mode
);
727 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
732 tmp
= immed_double_const (BITS_PER_WORD
- 1, 0, op1_mode
);
733 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
737 if (tmp
== 0 || carries
== 0)
739 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
740 carries
, tmp
, 0, unsignedp
, methods
);
744 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
745 so the result can go directly into INTO_TARGET if convenient. */
746 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
747 into_target
, unsignedp
, methods
);
751 /* Now OR in the bits carried over from OUTOF_INPUT. */
752 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
753 into_target
, unsignedp
, methods
))
756 /* Use a standard word_mode shift for the out-of half. */
757 if (outof_target
!= 0)
758 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
759 outof_target
, unsignedp
, methods
))
766 #ifdef HAVE_conditional_move
767 /* Try implementing expand_doubleword_shift using conditional moves.
768 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
769 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
770 are the shift counts to use in the former and latter case. All other
771 arguments are the same as the parent routine. */
774 expand_doubleword_shift_condmove (enum machine_mode op1_mode
, optab binoptab
,
775 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
776 rtx outof_input
, rtx into_input
,
777 rtx subword_op1
, rtx superword_op1
,
778 rtx outof_target
, rtx into_target
,
779 int unsignedp
, enum optab_methods methods
,
780 unsigned HOST_WIDE_INT shift_mask
)
782 rtx outof_superword
, into_superword
;
784 /* Put the superword version of the output into OUTOF_SUPERWORD and
786 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
787 if (outof_target
!= 0 && subword_op1
== superword_op1
)
789 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
790 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
791 into_superword
= outof_target
;
792 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
793 outof_superword
, 0, unsignedp
, methods
))
798 into_superword
= gen_reg_rtx (word_mode
);
799 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
800 outof_superword
, into_superword
,
805 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
806 if (!expand_subword_shift (op1_mode
, binoptab
,
807 outof_input
, into_input
, subword_op1
,
808 outof_target
, into_target
,
809 unsignedp
, methods
, shift_mask
))
812 /* Select between them. Do the INTO half first because INTO_SUPERWORD
813 might be the current value of OUTOF_TARGET. */
814 if (!emit_conditional_move (into_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
815 into_target
, into_superword
, word_mode
, false))
818 if (outof_target
!= 0)
819 if (!emit_conditional_move (outof_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
820 outof_target
, outof_superword
,
828 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
829 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
830 input operand; the shift moves bits in the direction OUTOF_INPUT->
831 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
832 of the target. OP1 is the shift count and OP1_MODE is its mode.
833 If OP1 is constant, it will have been truncated as appropriate
834 and is known to be nonzero.
836 If SHIFT_MASK is zero, the result of word shifts is undefined when the
837 shift count is outside the range [0, BITS_PER_WORD). This routine must
838 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
840 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
841 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
842 fill with zeros or sign bits as appropriate.
844 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
845 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
846 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
847 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
850 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
851 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
852 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
853 function wants to calculate it itself.
855 Return true if the shift could be successfully synthesized. */
858 expand_doubleword_shift (enum machine_mode op1_mode
, optab binoptab
,
859 rtx outof_input
, rtx into_input
, rtx op1
,
860 rtx outof_target
, rtx into_target
,
861 int unsignedp
, enum optab_methods methods
,
862 unsigned HOST_WIDE_INT shift_mask
)
864 rtx superword_op1
, tmp
, cmp1
, cmp2
;
865 rtx subword_label
, done_label
;
866 enum rtx_code cmp_code
;
868 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
869 fill the result with sign or zero bits as appropriate. If so, the value
870 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
871 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
872 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
874 This isn't worthwhile for constant shifts since the optimizers will
875 cope better with in-range shift counts. */
876 if (shift_mask
>= BITS_PER_WORD
878 && !CONSTANT_P (op1
))
880 if (!expand_doubleword_shift (op1_mode
, binoptab
,
881 outof_input
, into_input
, op1
,
883 unsignedp
, methods
, shift_mask
))
885 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
886 outof_target
, unsignedp
, methods
))
891 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
892 is true when the effective shift value is less than BITS_PER_WORD.
893 Set SUPERWORD_OP1 to the shift count that should be used to shift
894 OUTOF_INPUT into INTO_TARGET when the condition is false. */
895 tmp
= immed_double_const (BITS_PER_WORD
, 0, op1_mode
);
896 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
898 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
899 is a subword shift count. */
900 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
902 cmp2
= CONST0_RTX (op1_mode
);
908 /* Set CMP1 to OP1 - BITS_PER_WORD. */
909 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
911 cmp2
= CONST0_RTX (op1_mode
);
913 superword_op1
= cmp1
;
918 /* If we can compute the condition at compile time, pick the
919 appropriate subroutine. */
920 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
921 if (tmp
!= 0 && CONST_INT_P (tmp
))
923 if (tmp
== const0_rtx
)
924 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
925 outof_target
, into_target
,
928 return expand_subword_shift (op1_mode
, binoptab
,
929 outof_input
, into_input
, op1
,
930 outof_target
, into_target
,
931 unsignedp
, methods
, shift_mask
);
934 #ifdef HAVE_conditional_move
935 /* Try using conditional moves to generate straight-line code. */
937 rtx start
= get_last_insn ();
938 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
939 cmp_code
, cmp1
, cmp2
,
940 outof_input
, into_input
,
942 outof_target
, into_target
,
943 unsignedp
, methods
, shift_mask
))
945 delete_insns_since (start
);
949 /* As a last resort, use branches to select the correct alternative. */
950 subword_label
= gen_label_rtx ();
951 done_label
= gen_label_rtx ();
954 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
955 0, 0, subword_label
, -1);
958 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
959 outof_target
, into_target
,
963 emit_jump_insn (gen_jump (done_label
));
965 emit_label (subword_label
);
967 if (!expand_subword_shift (op1_mode
, binoptab
,
968 outof_input
, into_input
, op1
,
969 outof_target
, into_target
,
970 unsignedp
, methods
, shift_mask
))
973 emit_label (done_label
);
977 /* Subroutine of expand_binop. Perform a double word multiplication of
978 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
979 as the target's word_mode. This function return NULL_RTX if anything
980 goes wrong, in which case it may have already emitted instructions
981 which need to be deleted.
983 If we want to multiply two two-word values and have normal and widening
984 multiplies of single-word values, we can do this with three smaller
987 The multiplication proceeds as follows:
988 _______________________
989 [__op0_high_|__op0_low__]
990 _______________________
991 * [__op1_high_|__op1_low__]
992 _______________________________________________
993 _______________________
994 (1) [__op0_low__*__op1_low__]
995 _______________________
996 (2a) [__op0_low__*__op1_high_]
997 _______________________
998 (2b) [__op0_high_*__op1_low__]
999 _______________________
1000 (3) [__op0_high_*__op1_high_]
1003 This gives a 4-word result. Since we are only interested in the
1004 lower 2 words, partial result (3) and the upper words of (2a) and
1005 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1006 calculated using non-widening multiplication.
1008 (1), however, needs to be calculated with an unsigned widening
1009 multiplication. If this operation is not directly supported we
1010 try using a signed widening multiplication and adjust the result.
1011 This adjustment works as follows:
1013 If both operands are positive then no adjustment is needed.
1015 If the operands have different signs, for example op0_low < 0 and
1016 op1_low >= 0, the instruction treats the most significant bit of
1017 op0_low as a sign bit instead of a bit with significance
1018 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1019 with 2**BITS_PER_WORD - op0_low, and two's complements the
1020 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1023 Similarly, if both operands are negative, we need to add
1024 (op0_low + op1_low) * 2**BITS_PER_WORD.
1026 We use a trick to adjust quickly. We logically shift op0_low right
1027 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1028 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1029 logical shift exists, we do an arithmetic right shift and subtract
1033 expand_doubleword_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
1034 bool umulp
, enum optab_methods methods
)
1036 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
1037 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
1038 rtx wordm1
= umulp
? NULL_RTX
: GEN_INT (BITS_PER_WORD
- 1);
1039 rtx product
, adjust
, product_high
, temp
;
1041 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
1042 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
1043 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
1044 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
1046 /* If we're using an unsigned multiply to directly compute the product
1047 of the low-order words of the operands and perform any required
1048 adjustments of the operands, we begin by trying two more multiplications
1049 and then computing the appropriate sum.
1051 We have checked above that the required addition is provided.
1052 Full-word addition will normally always succeed, especially if
1053 it is provided at all, so we don't worry about its failure. The
1054 multiplication may well fail, however, so we do handle that. */
1058 /* ??? This could be done with emit_store_flag where available. */
1059 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
1060 NULL_RTX
, 1, methods
);
1062 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
1063 NULL_RTX
, 0, OPTAB_DIRECT
);
1066 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
1067 NULL_RTX
, 0, methods
);
1070 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
1071 NULL_RTX
, 0, OPTAB_DIRECT
);
1078 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
1079 NULL_RTX
, 0, OPTAB_DIRECT
);
1083 /* OP0_HIGH should now be dead. */
1087 /* ??? This could be done with emit_store_flag where available. */
1088 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
1089 NULL_RTX
, 1, methods
);
1091 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
1092 NULL_RTX
, 0, OPTAB_DIRECT
);
1095 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
1096 NULL_RTX
, 0, methods
);
1099 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
1100 NULL_RTX
, 0, OPTAB_DIRECT
);
1107 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
1108 NULL_RTX
, 0, OPTAB_DIRECT
);
1112 /* OP1_HIGH should now be dead. */
1114 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
1115 NULL_RTX
, 0, OPTAB_DIRECT
);
1117 if (target
&& !REG_P (target
))
1121 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
1122 target
, 1, OPTAB_DIRECT
);
1124 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
1125 target
, 1, OPTAB_DIRECT
);
1130 product_high
= operand_subword (product
, high
, 1, mode
);
1131 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
1132 NULL_RTX
, 0, OPTAB_DIRECT
);
1133 emit_move_insn (product_high
, adjust
);
1137 /* Wrapper around expand_binop which takes an rtx code to specify
1138 the operation to perform, not an optab pointer. All other
1139 arguments are the same. */
1141 expand_simple_binop (enum machine_mode mode
, enum rtx_code code
, rtx op0
,
1142 rtx op1
, rtx target
, int unsignedp
,
1143 enum optab_methods methods
)
1145 optab binop
= code_to_optab
[(int) code
];
1148 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
1151 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1152 binop. Order them according to commutative_operand_precedence and, if
1153 possible, try to put TARGET or a pseudo first. */
1155 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
1157 int op0_prec
= commutative_operand_precedence (op0
);
1158 int op1_prec
= commutative_operand_precedence (op1
);
1160 if (op0_prec
< op1_prec
)
1163 if (op0_prec
> op1_prec
)
1166 /* With equal precedence, both orders are ok, but it is better if the
1167 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1168 if (target
== 0 || REG_P (target
))
1169 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
1171 return rtx_equal_p (op1
, target
);
1174 /* Return true if BINOPTAB implements a shift operation. */
1177 shift_optab_p (optab binoptab
)
1179 switch (binoptab
->code
)
1195 /* Return true if BINOPTAB implements a commutative binary operation. */
1198 commutative_optab_p (optab binoptab
)
1200 return (GET_RTX_CLASS (binoptab
->code
) == RTX_COMM_ARITH
1201 || binoptab
== smul_widen_optab
1202 || binoptab
== umul_widen_optab
1203 || binoptab
== smul_highpart_optab
1204 || binoptab
== umul_highpart_optab
);
1207 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1208 optimizing, and if the operand is a constant that costs more than
1209 1 instruction, force the constant into a register and return that
1210 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1213 avoid_expensive_constant (enum machine_mode mode
, optab binoptab
,
1214 rtx x
, bool unsignedp
)
1216 bool speed
= optimize_insn_for_speed_p ();
1218 if (mode
!= VOIDmode
1221 && rtx_cost (x
, binoptab
->code
, speed
) > rtx_cost (x
, SET
, speed
))
1223 if (CONST_INT_P (x
))
1225 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
1226 if (intval
!= INTVAL (x
))
1227 x
= GEN_INT (intval
);
1230 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
1231 x
= force_reg (mode
, x
);
1236 /* Helper function for expand_binop: handle the case where there
1237 is an insn that directly implements the indicated operation.
1238 Returns null if this is not possible. */
1240 expand_binop_directly (enum machine_mode mode
, optab binoptab
,
1242 rtx target
, int unsignedp
, enum optab_methods methods
,
1245 enum insn_code icode
= optab_handler (binoptab
, mode
);
1246 enum machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
1247 enum machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
1248 enum machine_mode mode0
, mode1
, tmp_mode
;
1249 struct expand_operand ops
[3];
1252 rtx xop0
= op0
, xop1
= op1
;
1255 /* If it is a commutative operator and the modes would match
1256 if we would swap the operands, we can save the conversions. */
1257 commutative_p
= commutative_optab_p (binoptab
);
1259 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1260 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode1
)
1267 /* If we are optimizing, force expensive constants into a register. */
1268 xop0
= avoid_expensive_constant (xmode0
, binoptab
, xop0
, unsignedp
);
1269 if (!shift_optab_p (binoptab
))
1270 xop1
= avoid_expensive_constant (xmode1
, binoptab
, xop1
, unsignedp
);
1272 /* In case the insn wants input operands in modes different from
1273 those of the actual operands, convert the operands. It would
1274 seem that we don't need to convert CONST_INTs, but we do, so
1275 that they're properly zero-extended, sign-extended or truncated
1278 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1279 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1281 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1285 mode1
= GET_MODE (xop1
) != VOIDmode
? GET_MODE (xop1
) : mode
;
1286 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1288 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1292 /* If operation is commutative,
1293 try to make the first operand a register.
1294 Even better, try to make it the same as the target.
1295 Also try to make the last operand a constant. */
1297 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1304 /* Now, if insn's predicates don't allow our operands, put them into
1307 if (binoptab
== vec_pack_trunc_optab
1308 || binoptab
== vec_pack_usat_optab
1309 || binoptab
== vec_pack_ssat_optab
1310 || binoptab
== vec_pack_ufix_trunc_optab
1311 || binoptab
== vec_pack_sfix_trunc_optab
)
1313 /* The mode of the result is different then the mode of the
1315 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1316 if (GET_MODE_NUNITS (tmp_mode
) != 2 * GET_MODE_NUNITS (mode
))
1318 delete_insns_since (last
);
1325 create_output_operand (&ops
[0], target
, tmp_mode
);
1326 create_input_operand (&ops
[1], xop0
, mode0
);
1327 create_input_operand (&ops
[2], xop1
, mode1
);
1328 pat
= maybe_gen_insn (icode
, 3, ops
);
1331 /* If PAT is composed of more than one insn, try to add an appropriate
1332 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1333 operand, call expand_binop again, this time without a target. */
1334 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1335 && ! add_equal_note (pat
, ops
[0].value
, binoptab
->code
,
1336 ops
[1].value
, ops
[2].value
))
1338 delete_insns_since (last
);
1339 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1340 unsignedp
, methods
);
1344 return ops
[0].value
;
1346 delete_insns_since (last
);
1350 /* Generate code to perform an operation specified by BINOPTAB
1351 on operands OP0 and OP1, with result having machine-mode MODE.
1353 UNSIGNEDP is for the case where we have to widen the operands
1354 to perform the operation. It says to use zero-extension.
1356 If TARGET is nonzero, the value
1357 is generated there, if it is convenient to do so.
1358 In all cases an rtx is returned for the locus of the value;
1359 this may or may not be TARGET. */
1362 expand_binop (enum machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1363 rtx target
, int unsignedp
, enum optab_methods methods
)
1365 enum optab_methods next_methods
1366 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1367 ? OPTAB_WIDEN
: methods
);
1368 enum mode_class mclass
;
1369 enum machine_mode wider_mode
;
1372 rtx entry_last
= get_last_insn ();
1375 mclass
= GET_MODE_CLASS (mode
);
1377 /* If subtracting an integer constant, convert this into an addition of
1378 the negated constant. */
1380 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1382 op1
= negate_rtx (mode
, op1
);
1383 binoptab
= add_optab
;
1386 /* Record where to delete back to if we backtrack. */
1387 last
= get_last_insn ();
1389 /* If we can do it with a three-operand insn, do so. */
1391 if (methods
!= OPTAB_MUST_WIDEN
1392 && optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
1394 temp
= expand_binop_directly (mode
, binoptab
, op0
, op1
, target
,
1395 unsignedp
, methods
, last
);
1400 /* If we were trying to rotate, and that didn't work, try rotating
1401 the other direction before falling back to shifts and bitwise-or. */
1402 if (((binoptab
== rotl_optab
1403 && optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
1404 || (binoptab
== rotr_optab
1405 && optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
))
1406 && mclass
== MODE_INT
)
1408 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1410 unsigned int bits
= GET_MODE_BITSIZE (mode
);
1412 if (CONST_INT_P (op1
))
1413 newop1
= GEN_INT (bits
- INTVAL (op1
));
1414 else if (targetm
.shift_truncation_mask (mode
) == bits
- 1)
1415 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1417 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1418 GEN_INT (bits
), op1
,
1419 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1421 temp
= expand_binop_directly (mode
, otheroptab
, op0
, newop1
,
1422 target
, unsignedp
, methods
, last
);
1427 /* If this is a multiply, see if we can do a widening operation that
1428 takes operands of this mode and makes a wider mode. */
1430 if (binoptab
== smul_optab
1431 && GET_MODE_WIDER_MODE (mode
) != VOIDmode
1432 && (optab_handler ((unsignedp
? umul_widen_optab
: smul_widen_optab
),
1433 GET_MODE_WIDER_MODE (mode
))
1434 != CODE_FOR_nothing
))
1436 temp
= expand_binop (GET_MODE_WIDER_MODE (mode
),
1437 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1438 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1442 if (GET_MODE_CLASS (mode
) == MODE_INT
1443 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1444 GET_MODE_BITSIZE (GET_MODE (temp
))))
1445 return gen_lowpart (mode
, temp
);
1447 return convert_to_mode (mode
, temp
, unsignedp
);
1451 /* Look for a wider mode of the same class for which we think we
1452 can open-code the operation. Check for a widening multiply at the
1453 wider mode as well. */
1455 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1456 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1457 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
1458 wider_mode
!= VOIDmode
;
1459 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1461 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1462 || (binoptab
== smul_optab
1463 && GET_MODE_WIDER_MODE (wider_mode
) != VOIDmode
1464 && (optab_handler ((unsignedp
? umul_widen_optab
1465 : smul_widen_optab
),
1466 GET_MODE_WIDER_MODE (wider_mode
))
1467 != CODE_FOR_nothing
)))
1469 rtx xop0
= op0
, xop1
= op1
;
1472 /* For certain integer operations, we need not actually extend
1473 the narrow operands, as long as we will truncate
1474 the results to the same narrowness. */
1476 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1477 || binoptab
== xor_optab
1478 || binoptab
== add_optab
|| binoptab
== sub_optab
1479 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1480 && mclass
== MODE_INT
)
1483 xop0
= avoid_expensive_constant (mode
, binoptab
,
1485 if (binoptab
!= ashl_optab
)
1486 xop1
= avoid_expensive_constant (mode
, binoptab
,
1490 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1492 /* The second operand of a shift must always be extended. */
1493 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1494 no_extend
&& binoptab
!= ashl_optab
);
1496 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1497 unsignedp
, OPTAB_DIRECT
);
1500 if (mclass
!= MODE_INT
1501 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1502 GET_MODE_BITSIZE (wider_mode
)))
1505 target
= gen_reg_rtx (mode
);
1506 convert_move (target
, temp
, 0);
1510 return gen_lowpart (mode
, temp
);
1513 delete_insns_since (last
);
1517 /* If operation is commutative,
1518 try to make the first operand a register.
1519 Even better, try to make it the same as the target.
1520 Also try to make the last operand a constant. */
1521 if (commutative_optab_p (binoptab
)
1522 && swap_commutative_operands_with_target (target
, op0
, op1
))
1529 /* These can be done a word at a time. */
1530 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1531 && mclass
== MODE_INT
1532 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
1533 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1538 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1539 won't be accurate, so use a new target. */
1540 if (target
== 0 || target
== op0
|| target
== op1
)
1541 target
= gen_reg_rtx (mode
);
1545 /* Do the actual arithmetic. */
1546 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
1548 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
1549 rtx x
= expand_binop (word_mode
, binoptab
,
1550 operand_subword_force (op0
, i
, mode
),
1551 operand_subword_force (op1
, i
, mode
),
1552 target_piece
, unsignedp
, next_methods
);
1557 if (target_piece
!= x
)
1558 emit_move_insn (target_piece
, x
);
1561 insns
= get_insns ();
1564 if (i
== GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
)
1571 /* Synthesize double word shifts from single word shifts. */
1572 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1573 || binoptab
== ashr_optab
)
1574 && mclass
== MODE_INT
1575 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1576 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1577 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1578 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1579 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1581 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1582 enum machine_mode op1_mode
;
1584 double_shift_mask
= targetm
.shift_truncation_mask (mode
);
1585 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1586 op1_mode
= GET_MODE (op1
) != VOIDmode
? GET_MODE (op1
) : word_mode
;
1588 /* Apply the truncation to constant shifts. */
1589 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1590 op1
= GEN_INT (INTVAL (op1
) & double_shift_mask
);
1592 if (op1
== CONST0_RTX (op1_mode
))
1595 /* Make sure that this is a combination that expand_doubleword_shift
1596 can handle. See the comments there for details. */
1597 if (double_shift_mask
== 0
1598 || (shift_mask
== BITS_PER_WORD
- 1
1599 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1602 rtx into_target
, outof_target
;
1603 rtx into_input
, outof_input
;
1604 int left_shift
, outof_word
;
1606 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1607 won't be accurate, so use a new target. */
1608 if (target
== 0 || target
== op0
|| target
== op1
)
1609 target
= gen_reg_rtx (mode
);
1613 /* OUTOF_* is the word we are shifting bits away from, and
1614 INTO_* is the word that we are shifting bits towards, thus
1615 they differ depending on the direction of the shift and
1616 WORDS_BIG_ENDIAN. */
1618 left_shift
= binoptab
== ashl_optab
;
1619 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1621 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1622 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1624 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1625 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1627 if (expand_doubleword_shift (op1_mode
, binoptab
,
1628 outof_input
, into_input
, op1
,
1629 outof_target
, into_target
,
1630 unsignedp
, next_methods
, shift_mask
))
1632 insns
= get_insns ();
1642 /* Synthesize double word rotates from single word shifts. */
1643 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1644 && mclass
== MODE_INT
1645 && CONST_INT_P (op1
)
1646 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1647 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1648 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1651 rtx into_target
, outof_target
;
1652 rtx into_input
, outof_input
;
1654 int shift_count
, left_shift
, outof_word
;
1656 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1657 won't be accurate, so use a new target. Do this also if target is not
1658 a REG, first because having a register instead may open optimization
1659 opportunities, and second because if target and op0 happen to be MEMs
1660 designating the same location, we would risk clobbering it too early
1661 in the code sequence we generate below. */
1662 if (target
== 0 || target
== op0
|| target
== op1
|| ! REG_P (target
))
1663 target
= gen_reg_rtx (mode
);
1667 shift_count
= INTVAL (op1
);
1669 /* OUTOF_* is the word we are shifting bits away from, and
1670 INTO_* is the word that we are shifting bits towards, thus
1671 they differ depending on the direction of the shift and
1672 WORDS_BIG_ENDIAN. */
1674 left_shift
= (binoptab
== rotl_optab
);
1675 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1677 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1678 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1680 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1681 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1683 if (shift_count
== BITS_PER_WORD
)
1685 /* This is just a word swap. */
1686 emit_move_insn (outof_target
, into_input
);
1687 emit_move_insn (into_target
, outof_input
);
1692 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1693 rtx first_shift_count
, second_shift_count
;
1694 optab reverse_unsigned_shift
, unsigned_shift
;
1696 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1697 ? lshr_optab
: ashl_optab
);
1699 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1700 ? ashl_optab
: lshr_optab
);
1702 if (shift_count
> BITS_PER_WORD
)
1704 first_shift_count
= GEN_INT (shift_count
- BITS_PER_WORD
);
1705 second_shift_count
= GEN_INT (2 * BITS_PER_WORD
- shift_count
);
1709 first_shift_count
= GEN_INT (BITS_PER_WORD
- shift_count
);
1710 second_shift_count
= GEN_INT (shift_count
);
1713 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1714 outof_input
, first_shift_count
,
1715 NULL_RTX
, unsignedp
, next_methods
);
1716 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1717 into_input
, second_shift_count
,
1718 NULL_RTX
, unsignedp
, next_methods
);
1720 if (into_temp1
!= 0 && into_temp2
!= 0)
1721 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1722 into_target
, unsignedp
, next_methods
);
1726 if (inter
!= 0 && inter
!= into_target
)
1727 emit_move_insn (into_target
, inter
);
1729 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1730 into_input
, first_shift_count
,
1731 NULL_RTX
, unsignedp
, next_methods
);
1732 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1733 outof_input
, second_shift_count
,
1734 NULL_RTX
, unsignedp
, next_methods
);
1736 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1737 inter
= expand_binop (word_mode
, ior_optab
,
1738 outof_temp1
, outof_temp2
,
1739 outof_target
, unsignedp
, next_methods
);
1741 if (inter
!= 0 && inter
!= outof_target
)
1742 emit_move_insn (outof_target
, inter
);
1745 insns
= get_insns ();
1755 /* These can be done a word at a time by propagating carries. */
1756 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1757 && mclass
== MODE_INT
1758 && GET_MODE_SIZE (mode
) >= 2 * UNITS_PER_WORD
1759 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1762 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1763 const unsigned int nwords
= GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
;
1764 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1765 rtx xop0
, xop1
, xtarget
;
1767 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1768 value is one of those, use it. Otherwise, use 1 since it is the
1769 one easiest to get. */
1770 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1771 int normalizep
= STORE_FLAG_VALUE
;
1776 /* Prepare the operands. */
1777 xop0
= force_reg (mode
, op0
);
1778 xop1
= force_reg (mode
, op1
);
1780 xtarget
= gen_reg_rtx (mode
);
1782 if (target
== 0 || !REG_P (target
))
1785 /* Indicate for flow that the entire target reg is being set. */
1787 emit_clobber (xtarget
);
1789 /* Do the actual arithmetic. */
1790 for (i
= 0; i
< nwords
; i
++)
1792 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1793 rtx target_piece
= operand_subword (xtarget
, index
, 1, mode
);
1794 rtx op0_piece
= operand_subword_force (xop0
, index
, mode
);
1795 rtx op1_piece
= operand_subword_force (xop1
, index
, mode
);
1798 /* Main add/subtract of the input operands. */
1799 x
= expand_binop (word_mode
, binoptab
,
1800 op0_piece
, op1_piece
,
1801 target_piece
, unsignedp
, next_methods
);
1807 /* Store carry from main add/subtract. */
1808 carry_out
= gen_reg_rtx (word_mode
);
1809 carry_out
= emit_store_flag_force (carry_out
,
1810 (binoptab
== add_optab
1813 word_mode
, 1, normalizep
);
1820 /* Add/subtract previous carry to main result. */
1821 newx
= expand_binop (word_mode
,
1822 normalizep
== 1 ? binoptab
: otheroptab
,
1824 NULL_RTX
, 1, next_methods
);
1828 /* Get out carry from adding/subtracting carry in. */
1829 rtx carry_tmp
= gen_reg_rtx (word_mode
);
1830 carry_tmp
= emit_store_flag_force (carry_tmp
,
1831 (binoptab
== add_optab
1834 word_mode
, 1, normalizep
);
1836 /* Logical-ior the two poss. carry together. */
1837 carry_out
= expand_binop (word_mode
, ior_optab
,
1838 carry_out
, carry_tmp
,
1839 carry_out
, 0, next_methods
);
1843 emit_move_insn (target_piece
, newx
);
1847 if (x
!= target_piece
)
1848 emit_move_insn (target_piece
, x
);
1851 carry_in
= carry_out
;
1854 if (i
== GET_MODE_BITSIZE (mode
) / (unsigned) BITS_PER_WORD
)
1856 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
1857 || ! rtx_equal_p (target
, xtarget
))
1859 rtx temp
= emit_move_insn (target
, xtarget
);
1861 set_unique_reg_note (temp
,
1863 gen_rtx_fmt_ee (binoptab
->code
, mode
,
1874 delete_insns_since (last
);
1877 /* Attempt to synthesize double word multiplies using a sequence of word
1878 mode multiplications. We first attempt to generate a sequence using a
1879 more efficient unsigned widening multiply, and if that fails we then
1880 try using a signed widening multiply. */
1882 if (binoptab
== smul_optab
1883 && mclass
== MODE_INT
1884 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1885 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
1886 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
1888 rtx product
= NULL_RTX
;
1890 if (optab_handler (umul_widen_optab
, mode
) != CODE_FOR_nothing
)
1892 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
1895 delete_insns_since (last
);
1898 if (product
== NULL_RTX
1899 && optab_handler (smul_widen_optab
, mode
) != CODE_FOR_nothing
)
1901 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
1904 delete_insns_since (last
);
1907 if (product
!= NULL_RTX
)
1909 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
)
1911 temp
= emit_move_insn (target
? target
: product
, product
);
1912 set_unique_reg_note (temp
,
1914 gen_rtx_fmt_ee (MULT
, mode
,
1922 /* It can't be open-coded in this mode.
1923 Use a library call if one is available and caller says that's ok. */
1925 libfunc
= optab_libfunc (binoptab
, mode
);
1927 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
1931 enum machine_mode op1_mode
= mode
;
1936 if (shift_optab_p (binoptab
))
1938 op1_mode
= targetm
.libgcc_shift_count_mode ();
1939 /* Specify unsigned here,
1940 since negative shift counts are meaningless. */
1941 op1x
= convert_to_mode (op1_mode
, op1
, 1);
1944 if (GET_MODE (op0
) != VOIDmode
1945 && GET_MODE (op0
) != mode
)
1946 op0
= convert_to_mode (mode
, op0
, unsignedp
);
1948 /* Pass 1 for NO_QUEUE so we don't lose any increments
1949 if the libcall is cse'd or moved. */
1950 value
= emit_library_call_value (libfunc
,
1951 NULL_RTX
, LCT_CONST
, mode
, 2,
1952 op0
, mode
, op1x
, op1_mode
);
1954 insns
= get_insns ();
1957 target
= gen_reg_rtx (mode
);
1958 emit_libcall_block (insns
, target
, value
,
1959 gen_rtx_fmt_ee (binoptab
->code
, mode
, op0
, op1
));
1964 delete_insns_since (last
);
1966 /* It can't be done in this mode. Can we do it in a wider mode? */
1968 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
1969 || methods
== OPTAB_MUST_WIDEN
))
1971 /* Caller says, don't even try. */
1972 delete_insns_since (entry_last
);
1976 /* Compute the value of METHODS to pass to recursive calls.
1977 Don't allow widening to be tried recursively. */
1979 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
1981 /* Look for a wider mode of the same class for which it appears we can do
1984 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1986 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
1987 wider_mode
!= VOIDmode
;
1988 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1990 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1991 || (methods
== OPTAB_LIB
1992 && optab_libfunc (binoptab
, wider_mode
)))
1994 rtx xop0
= op0
, xop1
= op1
;
1997 /* For certain integer operations, we need not actually extend
1998 the narrow operands, as long as we will truncate
1999 the results to the same narrowness. */
2001 if ((binoptab
== ior_optab
|| binoptab
== and_optab
2002 || binoptab
== xor_optab
2003 || binoptab
== add_optab
|| binoptab
== sub_optab
2004 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
2005 && mclass
== MODE_INT
)
2008 xop0
= widen_operand (xop0
, wider_mode
, mode
,
2009 unsignedp
, no_extend
);
2011 /* The second operand of a shift must always be extended. */
2012 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
2013 no_extend
&& binoptab
!= ashl_optab
);
2015 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
2016 unsignedp
, methods
);
2019 if (mclass
!= MODE_INT
2020 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
2021 GET_MODE_BITSIZE (wider_mode
)))
2024 target
= gen_reg_rtx (mode
);
2025 convert_move (target
, temp
, 0);
2029 return gen_lowpart (mode
, temp
);
2032 delete_insns_since (last
);
2037 delete_insns_since (entry_last
);
2041 /* Expand a binary operator which has both signed and unsigned forms.
2042 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2045 If we widen unsigned operands, we may use a signed wider operation instead
2046 of an unsigned wider operation, since the result would be the same. */
2049 sign_expand_binop (enum machine_mode mode
, optab uoptab
, optab soptab
,
2050 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
2051 enum optab_methods methods
)
2054 optab direct_optab
= unsignedp
? uoptab
: soptab
;
2055 struct optab_d wide_soptab
;
2057 /* Do it without widening, if possible. */
2058 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2059 unsignedp
, OPTAB_DIRECT
);
2060 if (temp
|| methods
== OPTAB_DIRECT
)
2063 /* Try widening to a signed int. Make a fake signed optab that
2064 hides any signed insn for direct use. */
2065 wide_soptab
= *soptab
;
2066 set_optab_handler (&wide_soptab
, mode
, CODE_FOR_nothing
);
2067 /* We don't want to generate new hash table entries from this fake
2069 wide_soptab
.libcall_gen
= NULL
;
2071 temp
= expand_binop (mode
, &wide_soptab
, op0
, op1
, target
,
2072 unsignedp
, OPTAB_WIDEN
);
2074 /* For unsigned operands, try widening to an unsigned int. */
2075 if (temp
== 0 && unsignedp
)
2076 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2077 unsignedp
, OPTAB_WIDEN
);
2078 if (temp
|| methods
== OPTAB_WIDEN
)
2081 /* Use the right width libcall if that exists. */
2082 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
, unsignedp
, OPTAB_LIB
);
2083 if (temp
|| methods
== OPTAB_LIB
)
2086 /* Must widen and use a libcall, use either signed or unsigned. */
2087 temp
= expand_binop (mode
, &wide_soptab
, op0
, op1
, target
,
2088 unsignedp
, methods
);
2092 return expand_binop (mode
, uoptab
, op0
, op1
, target
,
2093 unsignedp
, methods
);
2097 /* Generate code to perform an operation specified by UNOPPTAB
2098 on operand OP0, with two results to TARG0 and TARG1.
2099 We assume that the order of the operands for the instruction
2100 is TARG0, TARG1, OP0.
2102 Either TARG0 or TARG1 may be zero, but what that means is that
2103 the result is not actually wanted. We will generate it into
2104 a dummy pseudo-reg and discard it. They may not both be zero.
2106 Returns 1 if this operation can be performed; 0 if not. */
2109 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
2112 enum machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2113 enum mode_class mclass
;
2114 enum machine_mode wider_mode
;
2115 rtx entry_last
= get_last_insn ();
2118 mclass
= GET_MODE_CLASS (mode
);
2121 targ0
= gen_reg_rtx (mode
);
2123 targ1
= gen_reg_rtx (mode
);
2125 /* Record where to go back to if we fail. */
2126 last
= get_last_insn ();
2128 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2130 struct expand_operand ops
[3];
2131 enum insn_code icode
= optab_handler (unoptab
, mode
);
2133 create_fixed_operand (&ops
[0], targ0
);
2134 create_fixed_operand (&ops
[1], targ1
);
2135 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
2136 if (maybe_expand_insn (icode
, 3, ops
))
2140 /* It can't be done in this mode. Can we do it in a wider mode? */
2142 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2144 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2145 wider_mode
!= VOIDmode
;
2146 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2148 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2150 rtx t0
= gen_reg_rtx (wider_mode
);
2151 rtx t1
= gen_reg_rtx (wider_mode
);
2152 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2154 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
2156 convert_move (targ0
, t0
, unsignedp
);
2157 convert_move (targ1
, t1
, unsignedp
);
2161 delete_insns_since (last
);
2166 delete_insns_since (entry_last
);
2170 /* Generate code to perform an operation specified by BINOPTAB
2171 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2172 We assume that the order of the operands for the instruction
2173 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2174 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2176 Either TARG0 or TARG1 may be zero, but what that means is that
2177 the result is not actually wanted. We will generate it into
2178 a dummy pseudo-reg and discard it. They may not both be zero.
2180 Returns 1 if this operation can be performed; 0 if not. */
2183 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
2186 enum machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2187 enum mode_class mclass
;
2188 enum machine_mode wider_mode
;
2189 rtx entry_last
= get_last_insn ();
2192 mclass
= GET_MODE_CLASS (mode
);
2195 targ0
= gen_reg_rtx (mode
);
2197 targ1
= gen_reg_rtx (mode
);
2199 /* Record where to go back to if we fail. */
2200 last
= get_last_insn ();
2202 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2204 struct expand_operand ops
[4];
2205 enum insn_code icode
= optab_handler (binoptab
, mode
);
2206 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2207 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2208 rtx xop0
= op0
, xop1
= op1
;
2210 /* If we are optimizing, force expensive constants into a register. */
2211 xop0
= avoid_expensive_constant (mode0
, binoptab
, xop0
, unsignedp
);
2212 xop1
= avoid_expensive_constant (mode1
, binoptab
, xop1
, unsignedp
);
2214 create_fixed_operand (&ops
[0], targ0
);
2215 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2216 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
2217 create_fixed_operand (&ops
[3], targ1
);
2218 if (maybe_expand_insn (icode
, 4, ops
))
2220 delete_insns_since (last
);
2223 /* It can't be done in this mode. Can we do it in a wider mode? */
2225 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2227 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2228 wider_mode
!= VOIDmode
;
2229 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2231 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2233 rtx t0
= gen_reg_rtx (wider_mode
);
2234 rtx t1
= gen_reg_rtx (wider_mode
);
2235 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2236 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2238 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2241 convert_move (targ0
, t0
, unsignedp
);
2242 convert_move (targ1
, t1
, unsignedp
);
2246 delete_insns_since (last
);
2251 delete_insns_since (entry_last
);
2255 /* Expand the two-valued library call indicated by BINOPTAB, but
2256 preserve only one of the values. If TARG0 is non-NULL, the first
2257 value is placed into TARG0; otherwise the second value is placed
2258 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2259 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2260 This routine assumes that the value returned by the library call is
2261 as if the return value was of an integral mode twice as wide as the
2262 mode of OP0. Returns 1 if the call was successful. */
2265 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2266 rtx targ0
, rtx targ1
, enum rtx_code code
)
2268 enum machine_mode mode
;
2269 enum machine_mode libval_mode
;
2274 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2275 gcc_assert (!targ0
!= !targ1
);
2277 mode
= GET_MODE (op0
);
2278 libfunc
= optab_libfunc (binoptab
, mode
);
2282 /* The value returned by the library function will have twice as
2283 many bits as the nominal MODE. */
2284 libval_mode
= smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode
),
2287 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2291 /* Get the part of VAL containing the value that we want. */
2292 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2293 targ0
? 0 : GET_MODE_SIZE (mode
));
2294 insns
= get_insns ();
2296 /* Move the into the desired location. */
2297 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2298 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2304 /* Wrapper around expand_unop which takes an rtx code to specify
2305 the operation to perform, not an optab pointer. All other
2306 arguments are the same. */
2308 expand_simple_unop (enum machine_mode mode
, enum rtx_code code
, rtx op0
,
2309 rtx target
, int unsignedp
)
2311 optab unop
= code_to_optab
[(int) code
];
2314 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2320 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2322 widen_clz (enum machine_mode mode
, rtx op0
, rtx target
)
2324 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2325 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2327 enum machine_mode wider_mode
;
2328 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2329 wider_mode
!= VOIDmode
;
2330 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2332 if (optab_handler (clz_optab
, wider_mode
) != CODE_FOR_nothing
)
2334 rtx xop0
, temp
, last
;
2336 last
= get_last_insn ();
2339 target
= gen_reg_rtx (mode
);
2340 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2341 temp
= expand_unop (wider_mode
, clz_optab
, xop0
, NULL_RTX
, true);
2343 temp
= expand_binop (wider_mode
, sub_optab
, temp
,
2344 GEN_INT (GET_MODE_BITSIZE (wider_mode
)
2345 - GET_MODE_BITSIZE (mode
)),
2346 target
, true, OPTAB_DIRECT
);
2348 delete_insns_since (last
);
2357 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2358 quantities, choosing which based on whether the high word is nonzero. */
2360 expand_doubleword_clz (enum machine_mode mode
, rtx op0
, rtx target
)
2362 rtx xop0
= force_reg (mode
, op0
);
2363 rtx subhi
= gen_highpart (word_mode
, xop0
);
2364 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2365 rtx hi0_label
= gen_label_rtx ();
2366 rtx after_label
= gen_label_rtx ();
2367 rtx seq
, temp
, result
;
2369 /* If we were not given a target, use a word_mode register, not a
2370 'mode' register. The result will fit, and nobody is expecting
2371 anything bigger (the return type of __builtin_clz* is int). */
2373 target
= gen_reg_rtx (word_mode
);
2375 /* In any case, write to a word_mode scratch in both branches of the
2376 conditional, so we can ensure there is a single move insn setting
2377 'target' to tag a REG_EQUAL note on. */
2378 result
= gen_reg_rtx (word_mode
);
2382 /* If the high word is not equal to zero,
2383 then clz of the full value is clz of the high word. */
2384 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2385 word_mode
, true, hi0_label
);
2387 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2392 convert_move (result
, temp
, true);
2394 emit_jump_insn (gen_jump (after_label
));
2397 /* Else clz of the full value is clz of the low word plus the number
2398 of bits in the high word. */
2399 emit_label (hi0_label
);
2401 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2404 temp
= expand_binop (word_mode
, add_optab
, temp
,
2405 GEN_INT (GET_MODE_BITSIZE (word_mode
)),
2406 result
, true, OPTAB_DIRECT
);
2410 convert_move (result
, temp
, true);
2412 emit_label (after_label
);
2413 convert_move (target
, result
, true);
2418 add_equal_note (seq
, target
, CLZ
, xop0
, 0);
2430 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2432 widen_bswap (enum machine_mode mode
, rtx op0
, rtx target
)
2434 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2435 enum machine_mode wider_mode
;
2438 if (!CLASS_HAS_WIDER_MODES_P (mclass
))
2441 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2442 wider_mode
!= VOIDmode
;
2443 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2444 if (optab_handler (bswap_optab
, wider_mode
) != CODE_FOR_nothing
)
2449 last
= get_last_insn ();
2451 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2452 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2455 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2456 GET_MODE_BITSIZE (wider_mode
)
2457 - GET_MODE_BITSIZE (mode
),
2463 target
= gen_reg_rtx (mode
);
2464 emit_move_insn (target
, gen_lowpart (mode
, x
));
2467 delete_insns_since (last
);
2472 /* Try calculating bswap as two bswaps of two word-sized operands. */
2475 expand_doubleword_bswap (enum machine_mode mode
, rtx op
, rtx target
)
2479 t1
= expand_unop (word_mode
, bswap_optab
,
2480 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2481 t0
= expand_unop (word_mode
, bswap_optab
,
2482 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2485 target
= gen_reg_rtx (mode
);
2487 emit_clobber (target
);
2488 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2489 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2494 /* Try calculating (parity x) as (and (popcount x) 1), where
2495 popcount can also be done in a wider mode. */
2497 expand_parity (enum machine_mode mode
, rtx op0
, rtx target
)
2499 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2500 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2502 enum machine_mode wider_mode
;
2503 for (wider_mode
= mode
; wider_mode
!= VOIDmode
;
2504 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2506 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2508 rtx xop0
, temp
, last
;
2510 last
= get_last_insn ();
2513 target
= gen_reg_rtx (mode
);
2514 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2515 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2518 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2519 target
, true, OPTAB_DIRECT
);
2521 delete_insns_since (last
);
2530 /* Try calculating ctz(x) as K - clz(x & -x) ,
2531 where K is GET_MODE_BITSIZE(mode) - 1.
2533 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2534 don't have to worry about what the hardware does in that case. (If
2535 the clz instruction produces the usual value at 0, which is K, the
2536 result of this code sequence will be -1; expand_ffs, below, relies
2537 on this. It might be nice to have it be K instead, for consistency
2538 with the (very few) processors that provide a ctz with a defined
2539 value, but that would take one more instruction, and it would be
2540 less convenient for expand_ffs anyway. */
2543 expand_ctz (enum machine_mode mode
, rtx op0
, rtx target
)
2547 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2552 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2554 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2555 true, OPTAB_DIRECT
);
2557 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2559 temp
= expand_binop (mode
, sub_optab
, GEN_INT (GET_MODE_BITSIZE (mode
) - 1),
2561 true, OPTAB_DIRECT
);
2571 add_equal_note (seq
, temp
, CTZ
, op0
, 0);
2577 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2578 else with the sequence used by expand_clz.
2580 The ffs builtin promises to return zero for a zero value and ctz/clz
2581 may have an undefined value in that case. If they do not give us a
2582 convenient value, we have to generate a test and branch. */
2584 expand_ffs (enum machine_mode mode
, rtx op0
, rtx target
)
2586 HOST_WIDE_INT val
= 0;
2587 bool defined_at_zero
= false;
2590 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2594 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2598 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2600 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2603 temp
= expand_ctz (mode
, op0
, 0);
2607 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
2609 defined_at_zero
= true;
2610 val
= (GET_MODE_BITSIZE (mode
) - 1) - val
;
2616 if (defined_at_zero
&& val
== -1)
2617 /* No correction needed at zero. */;
2620 /* We don't try to do anything clever with the situation found
2621 on some processors (eg Alpha) where ctz(0:mode) ==
2622 bitsize(mode). If someone can think of a way to send N to -1
2623 and leave alone all values in the range 0..N-1 (where N is a
2624 power of two), cheaper than this test-and-branch, please add it.
2626 The test-and-branch is done after the operation itself, in case
2627 the operation sets condition codes that can be recycled for this.
2628 (This is true on i386, for instance.) */
2630 rtx nonzero_label
= gen_label_rtx ();
2631 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
2632 mode
, true, nonzero_label
);
2634 convert_move (temp
, GEN_INT (-1), false);
2635 emit_label (nonzero_label
);
2638 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2639 to produce a value in the range 0..bitsize. */
2640 temp
= expand_binop (mode
, add_optab
, temp
, GEN_INT (1),
2641 target
, false, OPTAB_DIRECT
);
2648 add_equal_note (seq
, temp
, FFS
, op0
, 0);
2657 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2658 conditions, VAL may already be a SUBREG against which we cannot generate
2659 a further SUBREG. In this case, we expect forcing the value into a
2660 register will work around the situation. */
2663 lowpart_subreg_maybe_copy (enum machine_mode omode
, rtx val
,
2664 enum machine_mode imode
)
2667 ret
= lowpart_subreg (omode
, val
, imode
);
2670 val
= force_reg (imode
, val
);
2671 ret
= lowpart_subreg (omode
, val
, imode
);
2672 gcc_assert (ret
!= NULL
);
2677 /* Expand a floating point absolute value or negation operation via a
2678 logical operation on the sign bit. */
2681 expand_absneg_bit (enum rtx_code code
, enum machine_mode mode
,
2682 rtx op0
, rtx target
)
2684 const struct real_format
*fmt
;
2685 int bitpos
, word
, nwords
, i
;
2686 enum machine_mode imode
;
2690 /* The format has to have a simple sign bit. */
2691 fmt
= REAL_MODE_FORMAT (mode
);
2695 bitpos
= fmt
->signbit_rw
;
2699 /* Don't create negative zeros if the format doesn't support them. */
2700 if (code
== NEG
&& !fmt
->has_signed_zero
)
2703 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
2705 imode
= int_mode_for_mode (mode
);
2706 if (imode
== BLKmode
)
2715 if (FLOAT_WORDS_BIG_ENDIAN
)
2716 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
2718 word
= bitpos
/ BITS_PER_WORD
;
2719 bitpos
= bitpos
% BITS_PER_WORD
;
2720 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
2723 mask
= double_int_setbit (double_int_zero
, bitpos
);
2725 mask
= double_int_not (mask
);
2727 if (target
== 0 || target
== op0
)
2728 target
= gen_reg_rtx (mode
);
2734 for (i
= 0; i
< nwords
; ++i
)
2736 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
2737 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
2741 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2743 immed_double_int_const (mask
, imode
),
2744 targ_piece
, 1, OPTAB_LIB_WIDEN
);
2745 if (temp
!= targ_piece
)
2746 emit_move_insn (targ_piece
, temp
);
2749 emit_move_insn (targ_piece
, op0_piece
);
2752 insns
= get_insns ();
2759 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2760 gen_lowpart (imode
, op0
),
2761 immed_double_int_const (mask
, imode
),
2762 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
2763 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
2765 set_unique_reg_note (get_last_insn (), REG_EQUAL
,
2766 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)));
2772 /* As expand_unop, but will fail rather than attempt the operation in a
2773 different mode or with a libcall. */
2775 expand_unop_direct (enum machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2778 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2780 struct expand_operand ops
[2];
2781 enum insn_code icode
= optab_handler (unoptab
, mode
);
2782 rtx last
= get_last_insn ();
2785 create_output_operand (&ops
[0], target
, mode
);
2786 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2787 pat
= maybe_gen_insn (icode
, 2, ops
);
2790 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
2791 && ! add_equal_note (pat
, ops
[0].value
, unoptab
->code
,
2792 ops
[1].value
, NULL_RTX
))
2794 delete_insns_since (last
);
2795 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
2800 return ops
[0].value
;
2806 /* Generate code to perform an operation specified by UNOPTAB
2807 on operand OP0, with result having machine-mode MODE.
2809 UNSIGNEDP is for the case where we have to widen the operands
2810 to perform the operation. It says to use zero-extension.
2812 If TARGET is nonzero, the value
2813 is generated there, if it is convenient to do so.
2814 In all cases an rtx is returned for the locus of the value;
2815 this may or may not be TARGET. */
2818 expand_unop (enum machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2821 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2822 enum machine_mode wider_mode
;
2826 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
2830 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2832 /* Widening (or narrowing) clz needs special treatment. */
2833 if (unoptab
== clz_optab
)
2835 temp
= widen_clz (mode
, op0
, target
);
2839 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2840 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2842 temp
= expand_doubleword_clz (mode
, op0
, target
);
2850 /* Widening (or narrowing) bswap needs special treatment. */
2851 if (unoptab
== bswap_optab
)
2853 temp
= widen_bswap (mode
, op0
, target
);
2857 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2858 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2860 temp
= expand_doubleword_bswap (mode
, op0
, target
);
2868 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2869 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2870 wider_mode
!= VOIDmode
;
2871 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2873 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2876 rtx last
= get_last_insn ();
2878 /* For certain operations, we need not actually extend
2879 the narrow operand, as long as we will truncate the
2880 results to the same narrowness. */
2882 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2883 (unoptab
== neg_optab
2884 || unoptab
== one_cmpl_optab
)
2885 && mclass
== MODE_INT
);
2887 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2892 if (mclass
!= MODE_INT
2893 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
2894 GET_MODE_BITSIZE (wider_mode
)))
2897 target
= gen_reg_rtx (mode
);
2898 convert_move (target
, temp
, 0);
2902 return gen_lowpart (mode
, temp
);
2905 delete_insns_since (last
);
2909 /* These can be done a word at a time. */
2910 if (unoptab
== one_cmpl_optab
2911 && mclass
== MODE_INT
2912 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
2913 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2918 if (target
== 0 || target
== op0
)
2919 target
= gen_reg_rtx (mode
);
2923 /* Do the actual arithmetic. */
2924 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
2926 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
2927 rtx x
= expand_unop (word_mode
, unoptab
,
2928 operand_subword_force (op0
, i
, mode
),
2929 target_piece
, unsignedp
);
2931 if (target_piece
!= x
)
2932 emit_move_insn (target_piece
, x
);
2935 insns
= get_insns ();
2942 if (unoptab
->code
== NEG
)
2944 /* Try negating floating point values by flipping the sign bit. */
2945 if (SCALAR_FLOAT_MODE_P (mode
))
2947 temp
= expand_absneg_bit (NEG
, mode
, op0
, target
);
2952 /* If there is no negation pattern, and we have no negative zero,
2953 try subtracting from zero. */
2954 if (!HONOR_SIGNED_ZEROS (mode
))
2956 temp
= expand_binop (mode
, (unoptab
== negv_optab
2957 ? subv_optab
: sub_optab
),
2958 CONST0_RTX (mode
), op0
, target
,
2959 unsignedp
, OPTAB_DIRECT
);
2965 /* Try calculating parity (x) as popcount (x) % 2. */
2966 if (unoptab
== parity_optab
)
2968 temp
= expand_parity (mode
, op0
, target
);
2973 /* Try implementing ffs (x) in terms of clz (x). */
2974 if (unoptab
== ffs_optab
)
2976 temp
= expand_ffs (mode
, op0
, target
);
2981 /* Try implementing ctz (x) in terms of clz (x). */
2982 if (unoptab
== ctz_optab
)
2984 temp
= expand_ctz (mode
, op0
, target
);
2990 /* Now try a library call in this mode. */
2991 libfunc
= optab_libfunc (unoptab
, mode
);
2997 enum machine_mode outmode
= mode
;
2999 /* All of these functions return small values. Thus we choose to
3000 have them return something that isn't a double-word. */
3001 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
3002 || unoptab
== popcount_optab
|| unoptab
== parity_optab
)
3004 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
3005 optab_libfunc (unoptab
, mode
)));
3009 /* Pass 1 for NO_QUEUE so we don't lose any increments
3010 if the libcall is cse'd or moved. */
3011 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
3013 insns
= get_insns ();
3016 target
= gen_reg_rtx (outmode
);
3017 eq_value
= gen_rtx_fmt_e (unoptab
->code
, mode
, op0
);
3018 if (GET_MODE_SIZE (outmode
) < GET_MODE_SIZE (mode
))
3019 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
3020 else if (GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (mode
))
3021 eq_value
= simplify_gen_unary (ZERO_EXTEND
, outmode
, eq_value
, mode
);
3022 emit_libcall_block (insns
, target
, value
, eq_value
);
3027 /* It can't be done in this mode. Can we do it in a wider mode? */
3029 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3031 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
3032 wider_mode
!= VOIDmode
;
3033 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
3035 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
3036 || optab_libfunc (unoptab
, wider_mode
))
3039 rtx last
= get_last_insn ();
3041 /* For certain operations, we need not actually extend
3042 the narrow operand, as long as we will truncate the
3043 results to the same narrowness. */
3045 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3046 (unoptab
== neg_optab
3047 || unoptab
== one_cmpl_optab
)
3048 && mclass
== MODE_INT
);
3050 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3053 /* If we are generating clz using wider mode, adjust the
3055 if (unoptab
== clz_optab
&& temp
!= 0)
3056 temp
= expand_binop (wider_mode
, sub_optab
, temp
,
3057 GEN_INT (GET_MODE_BITSIZE (wider_mode
)
3058 - GET_MODE_BITSIZE (mode
)),
3059 target
, true, OPTAB_DIRECT
);
3063 if (mclass
!= MODE_INT
)
3066 target
= gen_reg_rtx (mode
);
3067 convert_move (target
, temp
, 0);
3071 return gen_lowpart (mode
, temp
);
3074 delete_insns_since (last
);
3079 /* One final attempt at implementing negation via subtraction,
3080 this time allowing widening of the operand. */
3081 if (unoptab
->code
== NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3084 temp
= expand_binop (mode
,
3085 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3086 CONST0_RTX (mode
), op0
,
3087 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3095 /* Emit code to compute the absolute value of OP0, with result to
3096 TARGET if convenient. (TARGET may be 0.) The return value says
3097 where the result actually is to be found.
3099 MODE is the mode of the operand; the mode of the result is
3100 different but can be deduced from MODE.
3105 expand_abs_nojump (enum machine_mode mode
, rtx op0
, rtx target
,
3106 int result_unsignedp
)
3111 result_unsignedp
= 1;
3113 /* First try to do it with a special abs instruction. */
3114 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3119 /* For floating point modes, try clearing the sign bit. */
3120 if (SCALAR_FLOAT_MODE_P (mode
))
3122 temp
= expand_absneg_bit (ABS
, mode
, op0
, target
);
3127 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3128 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3129 && !HONOR_SIGNED_ZEROS (mode
))
3131 rtx last
= get_last_insn ();
3133 temp
= expand_unop (mode
, neg_optab
, op0
, NULL_RTX
, 0);
3135 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3141 delete_insns_since (last
);
3144 /* If this machine has expensive jumps, we can do integer absolute
3145 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3146 where W is the width of MODE. */
3148 if (GET_MODE_CLASS (mode
) == MODE_INT
3149 && BRANCH_COST (optimize_insn_for_speed_p (),
3152 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3153 GET_MODE_BITSIZE (mode
) - 1,
3156 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3159 temp
= expand_binop (mode
, result_unsignedp
? sub_optab
: subv_optab
,
3160 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3170 expand_abs (enum machine_mode mode
, rtx op0
, rtx target
,
3171 int result_unsignedp
, int safe
)
3176 result_unsignedp
= 1;
3178 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3182 /* If that does not win, use conditional jump and negate. */
3184 /* It is safe to use the target if it is the same
3185 as the source if this is also a pseudo register */
3186 if (op0
== target
&& REG_P (op0
)
3187 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3190 op1
= gen_label_rtx ();
3191 if (target
== 0 || ! safe
3192 || GET_MODE (target
) != mode
3193 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3195 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3196 target
= gen_reg_rtx (mode
);
3198 emit_move_insn (target
, op0
);
3201 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3202 NULL_RTX
, NULL_RTX
, op1
, -1);
3204 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3207 emit_move_insn (target
, op0
);
3213 /* Emit code to compute the one's complement absolute value of OP0
3214 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3215 (TARGET may be NULL_RTX.) The return value says where the result
3216 actually is to be found.
3218 MODE is the mode of the operand; the mode of the result is
3219 different but can be deduced from MODE. */
3222 expand_one_cmpl_abs_nojump (enum machine_mode mode
, rtx op0
, rtx target
)
3226 /* Not applicable for floating point modes. */
3227 if (FLOAT_MODE_P (mode
))
3230 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3231 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3233 rtx last
= get_last_insn ();
3235 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3237 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3243 delete_insns_since (last
);
3246 /* If this machine has expensive jumps, we can do one's complement
3247 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3249 if (GET_MODE_CLASS (mode
) == MODE_INT
3250 && BRANCH_COST (optimize_insn_for_speed_p (),
3253 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3254 GET_MODE_BITSIZE (mode
) - 1,
3257 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3267 /* A subroutine of expand_copysign, perform the copysign operation using the
3268 abs and neg primitives advertised to exist on the target. The assumption
3269 is that we have a split register file, and leaving op0 in fp registers,
3270 and not playing with subregs so much, will help the register allocator. */
3273 expand_copysign_absneg (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3274 int bitpos
, bool op0_is_abs
)
3276 enum machine_mode imode
;
3277 enum insn_code icode
;
3283 /* Check if the back end provides an insn that handles signbit for the
3285 icode
= optab_handler (signbit_optab
, mode
);
3286 if (icode
!= CODE_FOR_nothing
)
3288 imode
= insn_data
[(int) icode
].operand
[0].mode
;
3289 sign
= gen_reg_rtx (imode
);
3290 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3296 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3298 imode
= int_mode_for_mode (mode
);
3299 if (imode
== BLKmode
)
3301 op1
= gen_lowpart (imode
, op1
);
3308 if (FLOAT_WORDS_BIG_ENDIAN
)
3309 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3311 word
= bitpos
/ BITS_PER_WORD
;
3312 bitpos
= bitpos
% BITS_PER_WORD
;
3313 op1
= operand_subword_force (op1
, word
, mode
);
3316 mask
= double_int_setbit (double_int_zero
, bitpos
);
3318 sign
= expand_binop (imode
, and_optab
, op1
,
3319 immed_double_int_const (mask
, imode
),
3320 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3325 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3332 if (target
== NULL_RTX
)
3333 target
= copy_to_reg (op0
);
3335 emit_move_insn (target
, op0
);
3338 label
= gen_label_rtx ();
3339 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3341 if (GET_CODE (op0
) == CONST_DOUBLE
)
3342 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3344 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3346 emit_move_insn (target
, op0
);
3354 /* A subroutine of expand_copysign, perform the entire copysign operation
3355 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3356 is true if op0 is known to have its sign bit clear. */
3359 expand_copysign_bit (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3360 int bitpos
, bool op0_is_abs
)
3362 enum machine_mode imode
;
3364 int word
, nwords
, i
;
3367 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3369 imode
= int_mode_for_mode (mode
);
3370 if (imode
== BLKmode
)
3379 if (FLOAT_WORDS_BIG_ENDIAN
)
3380 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3382 word
= bitpos
/ BITS_PER_WORD
;
3383 bitpos
= bitpos
% BITS_PER_WORD
;
3384 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3387 mask
= double_int_setbit (double_int_zero
, bitpos
);
3389 if (target
== 0 || target
== op0
|| target
== op1
)
3390 target
= gen_reg_rtx (mode
);
3396 for (i
= 0; i
< nwords
; ++i
)
3398 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3399 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3405 = expand_binop (imode
, and_optab
, op0_piece
,
3406 immed_double_int_const (double_int_not (mask
),
3408 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3410 op1
= expand_binop (imode
, and_optab
,
3411 operand_subword_force (op1
, i
, mode
),
3412 immed_double_int_const (mask
, imode
),
3413 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3415 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3416 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3417 if (temp
!= targ_piece
)
3418 emit_move_insn (targ_piece
, temp
);
3421 emit_move_insn (targ_piece
, op0_piece
);
3424 insns
= get_insns ();
3431 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3432 immed_double_int_const (mask
, imode
),
3433 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3435 op0
= gen_lowpart (imode
, op0
);
3437 op0
= expand_binop (imode
, and_optab
, op0
,
3438 immed_double_int_const (double_int_not (mask
),
3440 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3442 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3443 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3444 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3450 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3451 scalar floating point mode. Return NULL if we do not know how to
3452 expand the operation inline. */
3455 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3457 enum machine_mode mode
= GET_MODE (op0
);
3458 const struct real_format
*fmt
;
3462 gcc_assert (SCALAR_FLOAT_MODE_P (mode
));
3463 gcc_assert (GET_MODE (op1
) == mode
);
3465 /* First try to do it with a special instruction. */
3466 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
3467 target
, 0, OPTAB_DIRECT
);
3471 fmt
= REAL_MODE_FORMAT (mode
);
3472 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
3476 if (GET_CODE (op0
) == CONST_DOUBLE
)
3478 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
3479 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
3483 if (fmt
->signbit_ro
>= 0
3484 && (GET_CODE (op0
) == CONST_DOUBLE
3485 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
3486 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
3488 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
3489 fmt
->signbit_ro
, op0_is_abs
);
3494 if (fmt
->signbit_rw
< 0)
3496 return expand_copysign_bit (mode
, op0
, op1
, target
,
3497 fmt
->signbit_rw
, op0_is_abs
);
3500 /* Generate an instruction whose insn-code is INSN_CODE,
3501 with two operands: an output TARGET and an input OP0.
3502 TARGET *must* be nonzero, and the output is always stored there.
3503 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3504 the value that is stored into TARGET.
3506 Return false if expansion failed. */
3509 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
3512 struct expand_operand ops
[2];
3515 create_output_operand (&ops
[0], target
, GET_MODE (target
));
3516 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
3517 pat
= maybe_gen_insn (icode
, 2, ops
);
3521 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
&& code
!= UNKNOWN
)
3522 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
);
3526 if (ops
[0].value
!= target
)
3527 emit_move_insn (target
, ops
[0].value
);
3530 /* Generate an instruction whose insn-code is INSN_CODE,
3531 with two operands: an output TARGET and an input OP0.
3532 TARGET *must* be nonzero, and the output is always stored there.
3533 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3534 the value that is stored into TARGET. */
3537 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
3539 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
3543 struct no_conflict_data
3545 rtx target
, first
, insn
;
3549 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3550 the currently examined clobber / store has to stay in the list of
3551 insns that constitute the actual libcall block. */
3553 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
3555 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
3557 /* If this inns directly contributes to setting the target, it must stay. */
3558 if (reg_overlap_mentioned_p (p
->target
, dest
))
3559 p
->must_stay
= true;
3560 /* If we haven't committed to keeping any other insns in the list yet,
3561 there is nothing more to check. */
3562 else if (p
->insn
== p
->first
)
3564 /* If this insn sets / clobbers a register that feeds one of the insns
3565 already in the list, this insn has to stay too. */
3566 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
3567 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
3568 || reg_used_between_p (dest
, p
->first
, p
->insn
)
3569 /* Likewise if this insn depends on a register set by a previous
3570 insn in the list, or if it sets a result (presumably a hard
3571 register) that is set or clobbered by a previous insn.
3572 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3573 SET_DEST perform the former check on the address, and the latter
3574 check on the MEM. */
3575 || (GET_CODE (set
) == SET
3576 && (modified_in_p (SET_SRC (set
), p
->first
)
3577 || modified_in_p (SET_DEST (set
), p
->first
)
3578 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
3579 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
3580 p
->must_stay
= true;
3584 /* Emit code to make a call to a constant function or a library call.
3586 INSNS is a list containing all insns emitted in the call.
3587 These insns leave the result in RESULT. Our block is to copy RESULT
3588 to TARGET, which is logically equivalent to EQUIV.
3590 We first emit any insns that set a pseudo on the assumption that these are
3591 loading constants into registers; doing so allows them to be safely cse'ed
3592 between blocks. Then we emit all the other insns in the block, followed by
3593 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3594 note with an operand of EQUIV. */
3597 emit_libcall_block (rtx insns
, rtx target
, rtx result
, rtx equiv
)
3599 rtx final_dest
= target
;
3600 rtx next
, last
, insn
;
3602 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3603 into a MEM later. Protect the libcall block from this change. */
3604 if (! REG_P (target
) || REG_USERVAR_P (target
))
3605 target
= gen_reg_rtx (GET_MODE (target
));
3607 /* If we're using non-call exceptions, a libcall corresponding to an
3608 operation that may trap may also trap. */
3609 /* ??? See the comment in front of make_reg_eh_region_note. */
3610 if (cfun
->can_throw_non_call_exceptions
&& may_trap_p (equiv
))
3612 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3615 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3618 int lp_nr
= INTVAL (XEXP (note
, 0));
3619 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
3620 remove_note (insn
, note
);
3626 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3627 reg note to indicate that this call cannot throw or execute a nonlocal
3628 goto (unless there is already a REG_EH_REGION note, in which case
3630 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3632 make_reg_eh_region_note_nothrow_nononlocal (insn
);
3635 /* First emit all insns that set pseudos. Remove them from the list as
3636 we go. Avoid insns that set pseudos which were referenced in previous
3637 insns. These can be generated by move_by_pieces, for example,
3638 to update an address. Similarly, avoid insns that reference things
3639 set in previous insns. */
3641 for (insn
= insns
; insn
; insn
= next
)
3643 rtx set
= single_set (insn
);
3645 next
= NEXT_INSN (insn
);
3647 if (set
!= 0 && REG_P (SET_DEST (set
))
3648 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3650 struct no_conflict_data data
;
3652 data
.target
= const0_rtx
;
3656 note_stores (PATTERN (insn
), no_conflict_move_test
, &data
);
3657 if (! data
.must_stay
)
3659 if (PREV_INSN (insn
))
3660 NEXT_INSN (PREV_INSN (insn
)) = next
;
3665 PREV_INSN (next
) = PREV_INSN (insn
);
3671 /* Some ports use a loop to copy large arguments onto the stack.
3672 Don't move anything outside such a loop. */
3677 /* Write the remaining insns followed by the final copy. */
3678 for (insn
= insns
; insn
; insn
= next
)
3680 next
= NEXT_INSN (insn
);
3685 last
= emit_move_insn (target
, result
);
3686 if (optab_handler (mov_optab
, GET_MODE (target
)) != CODE_FOR_nothing
)
3687 set_unique_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
));
3689 if (final_dest
!= target
)
3690 emit_move_insn (final_dest
, target
);
3693 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3694 PURPOSE describes how this comparison will be used. CODE is the rtx
3695 comparison code we will be using.
3697 ??? Actually, CODE is slightly weaker than that. A target is still
3698 required to implement all of the normal bcc operations, but not
3699 required to implement all (or any) of the unordered bcc operations. */
3702 can_compare_p (enum rtx_code code
, enum machine_mode mode
,
3703 enum can_compare_purpose purpose
)
3706 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
3709 enum insn_code icode
;
3711 if (purpose
== ccp_jump
3712 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
3713 && insn_operand_matches (icode
, 0, test
))
3715 if (purpose
== ccp_store_flag
3716 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
3717 && insn_operand_matches (icode
, 1, test
))
3719 if (purpose
== ccp_cmov
3720 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
3723 mode
= GET_MODE_WIDER_MODE (mode
);
3724 PUT_MODE (test
, mode
);
3726 while (mode
!= VOIDmode
);
3731 /* This function is called when we are going to emit a compare instruction that
3732 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3734 *PMODE is the mode of the inputs (in case they are const_int).
3735 *PUNSIGNEDP nonzero says that the operands are unsigned;
3736 this matters if they need to be widened (as given by METHODS).
3738 If they have mode BLKmode, then SIZE specifies the size of both operands.
3740 This function performs all the setup necessary so that the caller only has
3741 to emit a single comparison insn. This setup can involve doing a BLKmode
3742 comparison or emitting a library call to perform the comparison if no insn
3743 is available to handle it.
3744 The values which are passed in through pointers can be modified; the caller
3745 should perform the comparison on the modified values. Constant
3746 comparisons must have already been folded. */
3749 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
3750 int unsignedp
, enum optab_methods methods
,
3751 rtx
*ptest
, enum machine_mode
*pmode
)
3753 enum machine_mode mode
= *pmode
;
3755 enum machine_mode cmp_mode
;
3756 enum mode_class mclass
;
3758 /* The other methods are not needed. */
3759 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
3760 || methods
== OPTAB_LIB_WIDEN
);
3762 /* If we are optimizing, force expensive constants into a register. */
3763 if (CONSTANT_P (x
) && optimize
3764 && (rtx_cost (x
, COMPARE
, optimize_insn_for_speed_p ())
3765 > COSTS_N_INSNS (1)))
3766 x
= force_reg (mode
, x
);
3768 if (CONSTANT_P (y
) && optimize
3769 && (rtx_cost (y
, COMPARE
, optimize_insn_for_speed_p ())
3770 > COSTS_N_INSNS (1)))
3771 y
= force_reg (mode
, y
);
3774 /* Make sure if we have a canonical comparison. The RTL
3775 documentation states that canonical comparisons are required only
3776 for targets which have cc0. */
3777 gcc_assert (!CONSTANT_P (x
) || CONSTANT_P (y
));
3780 /* Don't let both operands fail to indicate the mode. */
3781 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
3782 x
= force_reg (mode
, x
);
3783 if (mode
== VOIDmode
)
3784 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
3786 /* Handle all BLKmode compares. */
3788 if (mode
== BLKmode
)
3790 enum machine_mode result_mode
;
3791 enum insn_code cmp_code
;
3796 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
3800 /* Try to use a memory block compare insn - either cmpstr
3801 or cmpmem will do. */
3802 for (cmp_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
3803 cmp_mode
!= VOIDmode
;
3804 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
))
3806 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
3807 if (cmp_code
== CODE_FOR_nothing
)
3808 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
3809 if (cmp_code
== CODE_FOR_nothing
)
3810 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
3811 if (cmp_code
== CODE_FOR_nothing
)
3814 /* Must make sure the size fits the insn's mode. */
3815 if ((CONST_INT_P (size
)
3816 && INTVAL (size
) >= (1 << GET_MODE_BITSIZE (cmp_mode
)))
3817 || (GET_MODE_BITSIZE (GET_MODE (size
))
3818 > GET_MODE_BITSIZE (cmp_mode
)))
3821 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
3822 result
= gen_reg_rtx (result_mode
);
3823 size
= convert_to_mode (cmp_mode
, size
, 1);
3824 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
3826 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
3827 *pmode
= result_mode
;
3831 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
3834 /* Otherwise call a library function, memcmp. */
3835 libfunc
= memcmp_libfunc
;
3836 length_type
= sizetype
;
3837 result_mode
= TYPE_MODE (integer_type_node
);
3838 cmp_mode
= TYPE_MODE (length_type
);
3839 size
= convert_to_mode (TYPE_MODE (length_type
), size
,
3840 TYPE_UNSIGNED (length_type
));
3842 result
= emit_library_call_value (libfunc
, 0, LCT_PURE
,
3848 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
3849 *pmode
= result_mode
;
3853 /* Don't allow operands to the compare to trap, as that can put the
3854 compare and branch in different basic blocks. */
3855 if (cfun
->can_throw_non_call_exceptions
)
3858 x
= force_reg (mode
, x
);
3860 y
= force_reg (mode
, y
);
3863 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3865 gcc_assert (can_compare_p (comparison
, CCmode
, ccp_jump
));
3866 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3870 mclass
= GET_MODE_CLASS (mode
);
3871 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3875 enum insn_code icode
;
3876 icode
= optab_handler (cbranch_optab
, cmp_mode
);
3877 if (icode
!= CODE_FOR_nothing
3878 && insn_operand_matches (icode
, 0, test
))
3880 rtx last
= get_last_insn ();
3881 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
3882 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
3884 && insn_operand_matches (icode
, 1, op0
)
3885 && insn_operand_matches (icode
, 2, op1
))
3887 XEXP (test
, 0) = op0
;
3888 XEXP (test
, 1) = op1
;
3893 delete_insns_since (last
);
3896 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
3898 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
);
3900 while (cmp_mode
!= VOIDmode
);
3902 if (methods
!= OPTAB_LIB_WIDEN
)
3905 if (!SCALAR_FLOAT_MODE_P (mode
))
3909 /* Handle a libcall just for the mode we are using. */
3910 libfunc
= optab_libfunc (cmp_optab
, mode
);
3911 gcc_assert (libfunc
);
3913 /* If we want unsigned, and this mode has a distinct unsigned
3914 comparison routine, use that. */
3917 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
3922 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
3923 targetm
.libgcc_cmp_return_mode (),
3924 2, x
, mode
, y
, mode
);
3926 /* There are two kinds of comparison routines. Biased routines
3927 return 0/1/2, and unbiased routines return -1/0/1. Other parts
3928 of gcc expect that the comparison operation is equivalent
3929 to the modified comparison. For signed comparisons compare the
3930 result against 1 in the biased case, and zero in the unbiased
3931 case. For unsigned comparisons always compare against 1 after
3932 biasing the unbiased result by adding 1. This gives us a way to
3937 if (!TARGET_LIB_INT_CMP_BIASED
)
3940 x
= plus_constant (result
, 1);
3946 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
3950 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
3958 /* Before emitting an insn with code ICODE, make sure that X, which is going
3959 to be used for operand OPNUM of the insn, is converted from mode MODE to
3960 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3961 that it is accepted by the operand predicate. Return the new value. */
3964 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, enum machine_mode mode
,
3965 enum machine_mode wider_mode
, int unsignedp
)
3967 if (mode
!= wider_mode
)
3968 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
3970 if (!insn_operand_matches (icode
, opnum
, x
))
3972 if (reload_completed
)
3974 x
= copy_to_mode_reg (insn_data
[(int) icode
].operand
[opnum
].mode
, x
);
3980 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3981 we can do the branch. */
3984 emit_cmp_and_jump_insn_1 (rtx test
, enum machine_mode mode
, rtx label
)
3986 enum machine_mode optab_mode
;
3987 enum mode_class mclass
;
3988 enum insn_code icode
;
3990 mclass
= GET_MODE_CLASS (mode
);
3991 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
3992 icode
= optab_handler (cbranch_optab
, optab_mode
);
3994 gcc_assert (icode
!= CODE_FOR_nothing
);
3995 gcc_assert (insn_operand_matches (icode
, 0, test
));
3996 emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0), XEXP (test
, 1), label
));
3999 /* Generate code to compare X with Y so that the condition codes are
4000 set and to jump to LABEL if the condition is true. If X is a
4001 constant and Y is not a constant, then the comparison is swapped to
4002 ensure that the comparison RTL has the canonical form.
4004 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4005 need to be widened. UNSIGNEDP is also used to select the proper
4006 branch condition code.
4008 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4010 MODE is the mode of the inputs (in case they are const_int).
4012 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4013 It will be potentially converted into an unsigned variant based on
4014 UNSIGNEDP to select a proper jump instruction. */
4017 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4018 enum machine_mode mode
, int unsignedp
, rtx label
)
4020 rtx op0
= x
, op1
= y
;
4023 /* Swap operands and condition to ensure canonical RTL. */
4024 if (swap_commutative_operands_p (x
, y
)
4025 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4028 comparison
= swap_condition (comparison
);
4031 /* If OP0 is still a constant, then both X and Y must be constants
4032 or the opposite comparison is not supported. Force X into a register
4033 to create canonical RTL. */
4034 if (CONSTANT_P (op0
))
4035 op0
= force_reg (mode
, op0
);
4038 comparison
= unsigned_condition (comparison
);
4040 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4042 emit_cmp_and_jump_insn_1 (test
, mode
, label
);
4046 /* Emit a library call comparison between floating point X and Y.
4047 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4050 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4051 rtx
*ptest
, enum machine_mode
*pmode
)
4053 enum rtx_code swapped
= swap_condition (comparison
);
4054 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4055 enum machine_mode orig_mode
= GET_MODE (x
);
4056 enum machine_mode mode
, cmp_mode
;
4057 rtx true_rtx
, false_rtx
;
4058 rtx value
, target
, insns
, equiv
;
4060 bool reversed_p
= false;
4061 cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4063 for (mode
= orig_mode
;
4065 mode
= GET_MODE_WIDER_MODE (mode
))
4067 if (code_to_optab
[comparison
]
4068 && (libfunc
= optab_libfunc (code_to_optab
[comparison
], mode
)))
4071 if (code_to_optab
[swapped
]
4072 && (libfunc
= optab_libfunc (code_to_optab
[swapped
], mode
)))
4075 tmp
= x
; x
= y
; y
= tmp
;
4076 comparison
= swapped
;
4080 if (code_to_optab
[reversed
]
4081 && (libfunc
= optab_libfunc (code_to_optab
[reversed
], mode
)))
4083 comparison
= reversed
;
4089 gcc_assert (mode
!= VOIDmode
);
4091 if (mode
!= orig_mode
)
4093 x
= convert_to_mode (mode
, x
, 0);
4094 y
= convert_to_mode (mode
, y
, 0);
4097 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4098 the RTL. The allows the RTL optimizers to delete the libcall if the
4099 condition can be determined at compile-time. */
4100 if (comparison
== UNORDERED
4101 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4103 true_rtx
= const_true_rtx
;
4104 false_rtx
= const0_rtx
;
4111 true_rtx
= const0_rtx
;
4112 false_rtx
= const_true_rtx
;
4116 true_rtx
= const_true_rtx
;
4117 false_rtx
= const0_rtx
;
4121 true_rtx
= const1_rtx
;
4122 false_rtx
= const0_rtx
;
4126 true_rtx
= const0_rtx
;
4127 false_rtx
= constm1_rtx
;
4131 true_rtx
= constm1_rtx
;
4132 false_rtx
= const0_rtx
;
4136 true_rtx
= const0_rtx
;
4137 false_rtx
= const1_rtx
;
4145 if (comparison
== UNORDERED
)
4147 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4148 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4149 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4150 temp
, const_true_rtx
, equiv
);
4154 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4155 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4156 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4157 equiv
, true_rtx
, false_rtx
);
4161 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4162 cmp_mode
, 2, x
, mode
, y
, mode
);
4163 insns
= get_insns ();
4166 target
= gen_reg_rtx (cmp_mode
);
4167 emit_libcall_block (insns
, target
, value
, equiv
);
4169 if (comparison
== UNORDERED
4170 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4172 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4174 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4179 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4182 emit_indirect_jump (rtx loc
)
4184 struct expand_operand ops
[1];
4186 create_address_operand (&ops
[0], loc
);
4187 expand_jump_insn (CODE_FOR_indirect_jump
, 1, ops
);
4191 #ifdef HAVE_conditional_move
4193 /* Emit a conditional move instruction if the machine supports one for that
4194 condition and machine mode.
4196 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4197 the mode to use should they be constants. If it is VOIDmode, they cannot
4200 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4201 should be stored there. MODE is the mode to use should they be constants.
4202 If it is VOIDmode, they cannot both be constants.
4204 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4205 is not supported. */
4208 emit_conditional_move (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4209 enum machine_mode cmode
, rtx op2
, rtx op3
,
4210 enum machine_mode mode
, int unsignedp
)
4212 rtx tem
, comparison
, last
;
4213 enum insn_code icode
;
4214 enum rtx_code reversed
;
4216 /* If one operand is constant, make it the second one. Only do this
4217 if the other operand is not constant as well. */
4219 if (swap_commutative_operands_p (op0
, op1
))
4224 code
= swap_condition (code
);
4227 /* get_condition will prefer to generate LT and GT even if the old
4228 comparison was against zero, so undo that canonicalization here since
4229 comparisons against zero are cheaper. */
4230 if (code
== LT
&& op1
== const1_rtx
)
4231 code
= LE
, op1
= const0_rtx
;
4232 else if (code
== GT
&& op1
== constm1_rtx
)
4233 code
= GE
, op1
= const0_rtx
;
4235 if (cmode
== VOIDmode
)
4236 cmode
= GET_MODE (op0
);
4238 if (swap_commutative_operands_p (op2
, op3
)
4239 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4248 if (mode
== VOIDmode
)
4249 mode
= GET_MODE (op2
);
4251 icode
= direct_optab_handler (movcc_optab
, mode
);
4253 if (icode
== CODE_FOR_nothing
)
4257 target
= gen_reg_rtx (mode
);
4259 code
= unsignedp
? unsigned_condition (code
) : code
;
4260 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4262 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4263 return NULL and let the caller figure out how best to deal with this
4265 if (!COMPARISON_P (comparison
))
4268 do_pending_stack_adjust ();
4269 last
= get_last_insn ();
4270 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4271 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4272 &comparison
, &cmode
);
4275 struct expand_operand ops
[4];
4277 create_output_operand (&ops
[0], target
, mode
);
4278 create_fixed_operand (&ops
[1], comparison
);
4279 create_input_operand (&ops
[2], op2
, mode
);
4280 create_input_operand (&ops
[3], op3
, mode
);
4281 if (maybe_expand_insn (icode
, 4, ops
))
4283 if (ops
[0].value
!= target
)
4284 convert_move (target
, ops
[0].value
, false);
4288 delete_insns_since (last
);
4292 /* Return nonzero if a conditional move of mode MODE is supported.
4294 This function is for combine so it can tell whether an insn that looks
4295 like a conditional move is actually supported by the hardware. If we
4296 guess wrong we lose a bit on optimization, but that's it. */
4297 /* ??? sparc64 supports conditionally moving integers values based on fp
4298 comparisons, and vice versa. How do we handle them? */
4301 can_conditionally_move_p (enum machine_mode mode
)
4303 if (direct_optab_handler (movcc_optab
, mode
) != CODE_FOR_nothing
)
4309 #endif /* HAVE_conditional_move */
4311 /* Emit a conditional addition instruction if the machine supports one for that
4312 condition and machine mode.
4314 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4315 the mode to use should they be constants. If it is VOIDmode, they cannot
4318 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4319 should be stored there. MODE is the mode to use should they be constants.
4320 If it is VOIDmode, they cannot both be constants.
4322 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4323 is not supported. */
4326 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4327 enum machine_mode cmode
, rtx op2
, rtx op3
,
4328 enum machine_mode mode
, int unsignedp
)
4330 rtx tem
, comparison
, last
;
4331 enum insn_code icode
;
4332 enum rtx_code reversed
;
4334 /* If one operand is constant, make it the second one. Only do this
4335 if the other operand is not constant as well. */
4337 if (swap_commutative_operands_p (op0
, op1
))
4342 code
= swap_condition (code
);
4345 /* get_condition will prefer to generate LT and GT even if the old
4346 comparison was against zero, so undo that canonicalization here since
4347 comparisons against zero are cheaper. */
4348 if (code
== LT
&& op1
== const1_rtx
)
4349 code
= LE
, op1
= const0_rtx
;
4350 else if (code
== GT
&& op1
== constm1_rtx
)
4351 code
= GE
, op1
= const0_rtx
;
4353 if (cmode
== VOIDmode
)
4354 cmode
= GET_MODE (op0
);
4356 if (swap_commutative_operands_p (op2
, op3
)
4357 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4366 if (mode
== VOIDmode
)
4367 mode
= GET_MODE (op2
);
4369 icode
= optab_handler (addcc_optab
, mode
);
4371 if (icode
== CODE_FOR_nothing
)
4375 target
= gen_reg_rtx (mode
);
4377 code
= unsignedp
? unsigned_condition (code
) : code
;
4378 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4380 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4381 return NULL and let the caller figure out how best to deal with this
4383 if (!COMPARISON_P (comparison
))
4386 do_pending_stack_adjust ();
4387 last
= get_last_insn ();
4388 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4389 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4390 &comparison
, &cmode
);
4393 struct expand_operand ops
[4];
4395 create_output_operand (&ops
[0], target
, mode
);
4396 create_fixed_operand (&ops
[1], comparison
);
4397 create_input_operand (&ops
[2], op2
, mode
);
4398 create_input_operand (&ops
[3], op3
, mode
);
4399 if (maybe_expand_insn (icode
, 4, ops
))
4401 if (ops
[0].value
!= target
)
4402 convert_move (target
, ops
[0].value
, false);
4406 delete_insns_since (last
);
4410 /* These functions attempt to generate an insn body, rather than
4411 emitting the insn, but if the gen function already emits them, we
4412 make no attempt to turn them back into naked patterns. */
4414 /* Generate and return an insn body to add Y to X. */
4417 gen_add2_insn (rtx x
, rtx y
)
4419 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
4421 gcc_assert (insn_operand_matches (icode
, 0, x
));
4422 gcc_assert (insn_operand_matches (icode
, 1, x
));
4423 gcc_assert (insn_operand_matches (icode
, 2, y
));
4425 return GEN_FCN (icode
) (x
, x
, y
);
4428 /* Generate and return an insn body to add r1 and c,
4429 storing the result in r0. */
4432 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
4434 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
4436 if (icode
== CODE_FOR_nothing
4437 || !insn_operand_matches (icode
, 0, r0
)
4438 || !insn_operand_matches (icode
, 1, r1
)
4439 || !insn_operand_matches (icode
, 2, c
))
4442 return GEN_FCN (icode
) (r0
, r1
, c
);
4446 have_add2_insn (rtx x
, rtx y
)
4448 enum insn_code icode
;
4450 gcc_assert (GET_MODE (x
) != VOIDmode
);
4452 icode
= optab_handler (add_optab
, GET_MODE (x
));
4454 if (icode
== CODE_FOR_nothing
)
4457 if (!insn_operand_matches (icode
, 0, x
)
4458 || !insn_operand_matches (icode
, 1, x
)
4459 || !insn_operand_matches (icode
, 2, y
))
4465 /* Generate and return an insn body to subtract Y from X. */
4468 gen_sub2_insn (rtx x
, rtx y
)
4470 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
4472 gcc_assert (insn_operand_matches (icode
, 0, x
));
4473 gcc_assert (insn_operand_matches (icode
, 1, x
));
4474 gcc_assert (insn_operand_matches (icode
, 2, y
));
4476 return GEN_FCN (icode
) (x
, x
, y
);
4479 /* Generate and return an insn body to subtract r1 and c,
4480 storing the result in r0. */
4483 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
4485 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
4487 if (icode
== CODE_FOR_nothing
4488 || !insn_operand_matches (icode
, 0, r0
)
4489 || !insn_operand_matches (icode
, 1, r1
)
4490 || !insn_operand_matches (icode
, 2, c
))
4493 return GEN_FCN (icode
) (r0
, r1
, c
);
4497 have_sub2_insn (rtx x
, rtx y
)
4499 enum insn_code icode
;
4501 gcc_assert (GET_MODE (x
) != VOIDmode
);
4503 icode
= optab_handler (sub_optab
, GET_MODE (x
));
4505 if (icode
== CODE_FOR_nothing
)
4508 if (!insn_operand_matches (icode
, 0, x
)
4509 || !insn_operand_matches (icode
, 1, x
)
4510 || !insn_operand_matches (icode
, 2, y
))
4516 /* Generate the body of an instruction to copy Y into X.
4517 It may be a list of insns, if one insn isn't enough. */
4520 gen_move_insn (rtx x
, rtx y
)
4525 emit_move_insn_1 (x
, y
);
4531 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4532 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4533 no such operation exists, CODE_FOR_nothing will be returned. */
4536 can_extend_p (enum machine_mode to_mode
, enum machine_mode from_mode
,
4540 #ifdef HAVE_ptr_extend
4542 return CODE_FOR_ptr_extend
;
4545 tab
= unsignedp
? zext_optab
: sext_optab
;
4546 return convert_optab_handler (tab
, to_mode
, from_mode
);
4549 /* Generate the body of an insn to extend Y (with mode MFROM)
4550 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4553 gen_extend_insn (rtx x
, rtx y
, enum machine_mode mto
,
4554 enum machine_mode mfrom
, int unsignedp
)
4556 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
4557 return GEN_FCN (icode
) (x
, y
);
4560 /* can_fix_p and can_float_p say whether the target machine
4561 can directly convert a given fixed point type to
4562 a given floating point type, or vice versa.
4563 The returned value is the CODE_FOR_... value to use,
4564 or CODE_FOR_nothing if these modes cannot be directly converted.
4566 *TRUNCP_PTR is set to 1 if it is necessary to output
4567 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4569 static enum insn_code
4570 can_fix_p (enum machine_mode fixmode
, enum machine_mode fltmode
,
4571 int unsignedp
, int *truncp_ptr
)
4574 enum insn_code icode
;
4576 tab
= unsignedp
? ufixtrunc_optab
: sfixtrunc_optab
;
4577 icode
= convert_optab_handler (tab
, fixmode
, fltmode
);
4578 if (icode
!= CODE_FOR_nothing
)
4584 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4585 for this to work. We need to rework the fix* and ftrunc* patterns
4586 and documentation. */
4587 tab
= unsignedp
? ufix_optab
: sfix_optab
;
4588 icode
= convert_optab_handler (tab
, fixmode
, fltmode
);
4589 if (icode
!= CODE_FOR_nothing
4590 && optab_handler (ftrunc_optab
, fltmode
) != CODE_FOR_nothing
)
4597 return CODE_FOR_nothing
;
4600 static enum insn_code
4601 can_float_p (enum machine_mode fltmode
, enum machine_mode fixmode
,
4606 tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4607 return convert_optab_handler (tab
, fltmode
, fixmode
);
4610 /* Generate code to convert FROM to floating point
4611 and store in TO. FROM must be fixed point and not VOIDmode.
4612 UNSIGNEDP nonzero means regard FROM as unsigned.
4613 Normally this is done by correcting the final value
4614 if it is negative. */
4617 expand_float (rtx to
, rtx from
, int unsignedp
)
4619 enum insn_code icode
;
4621 enum machine_mode fmode
, imode
;
4622 bool can_do_signed
= false;
4624 /* Crash now, because we won't be able to decide which mode to use. */
4625 gcc_assert (GET_MODE (from
) != VOIDmode
);
4627 /* Look for an insn to do the conversion. Do it in the specified
4628 modes if possible; otherwise convert either input, output or both to
4629 wider mode. If the integer mode is wider than the mode of FROM,
4630 we can do the conversion signed even if the input is unsigned. */
4632 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4633 fmode
= GET_MODE_WIDER_MODE (fmode
))
4634 for (imode
= GET_MODE (from
); imode
!= VOIDmode
;
4635 imode
= GET_MODE_WIDER_MODE (imode
))
4637 int doing_unsigned
= unsignedp
;
4639 if (fmode
!= GET_MODE (to
)
4640 && significand_size (fmode
) < GET_MODE_BITSIZE (GET_MODE (from
)))
4643 icode
= can_float_p (fmode
, imode
, unsignedp
);
4644 if (icode
== CODE_FOR_nothing
&& unsignedp
)
4646 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
4647 if (scode
!= CODE_FOR_nothing
)
4648 can_do_signed
= true;
4649 if (imode
!= GET_MODE (from
))
4650 icode
= scode
, doing_unsigned
= 0;
4653 if (icode
!= CODE_FOR_nothing
)
4655 if (imode
!= GET_MODE (from
))
4656 from
= convert_to_mode (imode
, from
, unsignedp
);
4658 if (fmode
!= GET_MODE (to
))
4659 target
= gen_reg_rtx (fmode
);
4661 emit_unop_insn (icode
, target
, from
,
4662 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
4665 convert_move (to
, target
, 0);
4670 /* Unsigned integer, and no way to convert directly. Convert as signed,
4671 then unconditionally adjust the result. */
4672 if (unsignedp
&& can_do_signed
)
4674 rtx label
= gen_label_rtx ();
4676 REAL_VALUE_TYPE offset
;
4678 /* Look for a usable floating mode FMODE wider than the source and at
4679 least as wide as the target. Using FMODE will avoid rounding woes
4680 with unsigned values greater than the signed maximum value. */
4682 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4683 fmode
= GET_MODE_WIDER_MODE (fmode
))
4684 if (GET_MODE_BITSIZE (GET_MODE (from
)) < GET_MODE_BITSIZE (fmode
)
4685 && can_float_p (fmode
, GET_MODE (from
), 0) != CODE_FOR_nothing
)
4688 if (fmode
== VOIDmode
)
4690 /* There is no such mode. Pretend the target is wide enough. */
4691 fmode
= GET_MODE (to
);
4693 /* Avoid double-rounding when TO is narrower than FROM. */
4694 if ((significand_size (fmode
) + 1)
4695 < GET_MODE_BITSIZE (GET_MODE (from
)))
4698 rtx neglabel
= gen_label_rtx ();
4700 /* Don't use TARGET if it isn't a register, is a hard register,
4701 or is the wrong mode. */
4703 || REGNO (target
) < FIRST_PSEUDO_REGISTER
4704 || GET_MODE (target
) != fmode
)
4705 target
= gen_reg_rtx (fmode
);
4707 imode
= GET_MODE (from
);
4708 do_pending_stack_adjust ();
4710 /* Test whether the sign bit is set. */
4711 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
4714 /* The sign bit is not set. Convert as signed. */
4715 expand_float (target
, from
, 0);
4716 emit_jump_insn (gen_jump (label
));
4719 /* The sign bit is set.
4720 Convert to a usable (positive signed) value by shifting right
4721 one bit, while remembering if a nonzero bit was shifted
4722 out; i.e., compute (from & 1) | (from >> 1). */
4724 emit_label (neglabel
);
4725 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
4726 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4727 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
4728 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
4730 expand_float (target
, temp
, 0);
4732 /* Multiply by 2 to undo the shift above. */
4733 temp
= expand_binop (fmode
, add_optab
, target
, target
,
4734 target
, 0, OPTAB_LIB_WIDEN
);
4736 emit_move_insn (target
, temp
);
4738 do_pending_stack_adjust ();
4744 /* If we are about to do some arithmetic to correct for an
4745 unsigned operand, do it in a pseudo-register. */
4747 if (GET_MODE (to
) != fmode
4748 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
4749 target
= gen_reg_rtx (fmode
);
4751 /* Convert as signed integer to floating. */
4752 expand_float (target
, from
, 0);
4754 /* If FROM is negative (and therefore TO is negative),
4755 correct its value by 2**bitwidth. */
4757 do_pending_stack_adjust ();
4758 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, GET_MODE (from
),
4762 real_2expN (&offset
, GET_MODE_BITSIZE (GET_MODE (from
)), fmode
);
4763 temp
= expand_binop (fmode
, add_optab
, target
,
4764 CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
),
4765 target
, 0, OPTAB_LIB_WIDEN
);
4767 emit_move_insn (target
, temp
);
4769 do_pending_stack_adjust ();
4774 /* No hardware instruction available; call a library routine. */
4779 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4781 if (GET_MODE_SIZE (GET_MODE (from
)) < GET_MODE_SIZE (SImode
))
4782 from
= convert_to_mode (SImode
, from
, unsignedp
);
4784 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4785 gcc_assert (libfunc
);
4789 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4790 GET_MODE (to
), 1, from
,
4792 insns
= get_insns ();
4795 emit_libcall_block (insns
, target
, value
,
4796 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
4797 GET_MODE (to
), from
));
4802 /* Copy result to requested destination
4803 if we have been computing in a temp location. */
4807 if (GET_MODE (target
) == GET_MODE (to
))
4808 emit_move_insn (to
, target
);
4810 convert_move (to
, target
, 0);
4814 /* Generate code to convert FROM to fixed point and store in TO. FROM
4815 must be floating point. */
4818 expand_fix (rtx to
, rtx from
, int unsignedp
)
4820 enum insn_code icode
;
4822 enum machine_mode fmode
, imode
;
4825 /* We first try to find a pair of modes, one real and one integer, at
4826 least as wide as FROM and TO, respectively, in which we can open-code
4827 this conversion. If the integer mode is wider than the mode of TO,
4828 we can do the conversion either signed or unsigned. */
4830 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
4831 fmode
= GET_MODE_WIDER_MODE (fmode
))
4832 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
4833 imode
= GET_MODE_WIDER_MODE (imode
))
4835 int doing_unsigned
= unsignedp
;
4837 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
4838 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
4839 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
4841 if (icode
!= CODE_FOR_nothing
)
4843 rtx last
= get_last_insn ();
4844 if (fmode
!= GET_MODE (from
))
4845 from
= convert_to_mode (fmode
, from
, 0);
4849 rtx temp
= gen_reg_rtx (GET_MODE (from
));
4850 from
= expand_unop (GET_MODE (from
), ftrunc_optab
, from
,
4854 if (imode
!= GET_MODE (to
))
4855 target
= gen_reg_rtx (imode
);
4857 if (maybe_emit_unop_insn (icode
, target
, from
,
4858 doing_unsigned
? UNSIGNED_FIX
: FIX
))
4861 convert_move (to
, target
, unsignedp
);
4864 delete_insns_since (last
);
4868 /* For an unsigned conversion, there is one more way to do it.
4869 If we have a signed conversion, we generate code that compares
4870 the real value to the largest representable positive number. If if
4871 is smaller, the conversion is done normally. Otherwise, subtract
4872 one plus the highest signed number, convert, and add it back.
4874 We only need to check all real modes, since we know we didn't find
4875 anything with a wider integer mode.
4877 This code used to extend FP value into mode wider than the destination.
4878 This is needed for decimal float modes which cannot accurately
4879 represent one plus the highest signed number of the same size, but
4880 not for binary modes. Consider, for instance conversion from SFmode
4883 The hot path through the code is dealing with inputs smaller than 2^63
4884 and doing just the conversion, so there is no bits to lose.
4886 In the other path we know the value is positive in the range 2^63..2^64-1
4887 inclusive. (as for other input overflow happens and result is undefined)
4888 So we know that the most important bit set in mantissa corresponds to
4889 2^63. The subtraction of 2^63 should not generate any rounding as it
4890 simply clears out that bit. The rest is trivial. */
4892 if (unsignedp
&& GET_MODE_BITSIZE (GET_MODE (to
)) <= HOST_BITS_PER_WIDE_INT
)
4893 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
4894 fmode
= GET_MODE_WIDER_MODE (fmode
))
4895 if (CODE_FOR_nothing
!= can_fix_p (GET_MODE (to
), fmode
, 0, &must_trunc
)
4896 && (!DECIMAL_FLOAT_MODE_P (fmode
)
4897 || GET_MODE_BITSIZE (fmode
) > GET_MODE_BITSIZE (GET_MODE (to
))))
4900 REAL_VALUE_TYPE offset
;
4901 rtx limit
, lab1
, lab2
, insn
;
4903 bitsize
= GET_MODE_BITSIZE (GET_MODE (to
));
4904 real_2expN (&offset
, bitsize
- 1, fmode
);
4905 limit
= CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
);
4906 lab1
= gen_label_rtx ();
4907 lab2
= gen_label_rtx ();
4909 if (fmode
!= GET_MODE (from
))
4910 from
= convert_to_mode (fmode
, from
, 0);
4912 /* See if we need to do the subtraction. */
4913 do_pending_stack_adjust ();
4914 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
, GET_MODE (from
),
4917 /* If not, do the signed "fix" and branch around fixup code. */
4918 expand_fix (to
, from
, 0);
4919 emit_jump_insn (gen_jump (lab2
));
4922 /* Otherwise, subtract 2**(N-1), convert to signed number,
4923 then add 2**(N-1). Do the addition using XOR since this
4924 will often generate better code. */
4926 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
4927 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4928 expand_fix (to
, target
, 0);
4929 target
= expand_binop (GET_MODE (to
), xor_optab
, to
,
4931 ((HOST_WIDE_INT
) 1 << (bitsize
- 1),
4933 to
, 1, OPTAB_LIB_WIDEN
);
4936 emit_move_insn (to
, target
);
4940 if (optab_handler (mov_optab
, GET_MODE (to
)) != CODE_FOR_nothing
)
4942 /* Make a place for a REG_NOTE and add it. */
4943 insn
= emit_move_insn (to
, to
);
4944 set_unique_reg_note (insn
,
4946 gen_rtx_fmt_e (UNSIGNED_FIX
,
4954 /* We can't do it with an insn, so use a library call. But first ensure
4955 that the mode of TO is at least as wide as SImode, since those are the
4956 only library calls we know about. */
4958 if (GET_MODE_SIZE (GET_MODE (to
)) < GET_MODE_SIZE (SImode
))
4960 target
= gen_reg_rtx (SImode
);
4962 expand_fix (target
, from
, unsignedp
);
4970 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
4971 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4972 gcc_assert (libfunc
);
4976 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4977 GET_MODE (to
), 1, from
,
4979 insns
= get_insns ();
4982 emit_libcall_block (insns
, target
, value
,
4983 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
4984 GET_MODE (to
), from
));
4989 if (GET_MODE (to
) == GET_MODE (target
))
4990 emit_move_insn (to
, target
);
4992 convert_move (to
, target
, 0);
4996 /* Generate code to convert FROM or TO a fixed-point.
4997 If UINTP is true, either TO or FROM is an unsigned integer.
4998 If SATP is true, we need to saturate the result. */
5001 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5003 enum machine_mode to_mode
= GET_MODE (to
);
5004 enum machine_mode from_mode
= GET_MODE (from
);
5006 enum rtx_code this_code
;
5007 enum insn_code code
;
5011 if (to_mode
== from_mode
)
5013 emit_move_insn (to
, from
);
5019 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5020 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5024 tab
= satp
? satfract_optab
: fract_optab
;
5025 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5027 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5028 if (code
!= CODE_FOR_nothing
)
5030 emit_unop_insn (code
, to
, from
, this_code
);
5034 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5035 gcc_assert (libfunc
);
5038 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5039 1, from
, from_mode
);
5040 insns
= get_insns ();
5043 emit_libcall_block (insns
, to
, value
,
5044 gen_rtx_fmt_e (tab
->code
, to_mode
, from
));
5047 /* Generate code to convert FROM to fixed point and store in TO. FROM
5048 must be floating point, TO must be signed. Use the conversion optab
5049 TAB to do the conversion. */
5052 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5054 enum insn_code icode
;
5056 enum machine_mode fmode
, imode
;
5058 /* We first try to find a pair of modes, one real and one integer, at
5059 least as wide as FROM and TO, respectively, in which we can open-code
5060 this conversion. If the integer mode is wider than the mode of TO,
5061 we can do the conversion either signed or unsigned. */
5063 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5064 fmode
= GET_MODE_WIDER_MODE (fmode
))
5065 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
5066 imode
= GET_MODE_WIDER_MODE (imode
))
5068 icode
= convert_optab_handler (tab
, imode
, fmode
);
5069 if (icode
!= CODE_FOR_nothing
)
5071 rtx last
= get_last_insn ();
5072 if (fmode
!= GET_MODE (from
))
5073 from
= convert_to_mode (fmode
, from
, 0);
5075 if (imode
!= GET_MODE (to
))
5076 target
= gen_reg_rtx (imode
);
5078 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5080 delete_insns_since (last
);
5084 convert_move (to
, target
, 0);
5092 /* Report whether we have an instruction to perform the operation
5093 specified by CODE on operands of mode MODE. */
5095 have_insn_for (enum rtx_code code
, enum machine_mode mode
)
5097 return (code_to_optab
[(int) code
] != 0
5098 && (optab_handler (code_to_optab
[(int) code
], mode
)
5099 != CODE_FOR_nothing
));
5102 /* Set all insn_code fields to CODE_FOR_nothing. */
5105 init_insn_codes (void)
5107 memset (optab_table
, 0, sizeof (optab_table
));
5108 memset (convert_optab_table
, 0, sizeof (convert_optab_table
));
5109 memset (direct_optab_table
, 0, sizeof (direct_optab_table
));
5112 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5114 init_optab (optab op
, enum rtx_code code
)
5117 code_to_optab
[(int) code
] = op
;
5120 /* Same, but fill in its code as CODE, and do _not_ write it into
5121 the code_to_optab table. */
5123 init_optabv (optab op
, enum rtx_code code
)
5128 /* Conversion optabs never go in the code_to_optab table. */
5130 init_convert_optab (convert_optab op
, enum rtx_code code
)
5135 /* Initialize the libfunc fields of an entire group of entries in some
5136 optab. Each entry is set equal to a string consisting of a leading
5137 pair of underscores followed by a generic operation name followed by
5138 a mode name (downshifted to lowercase) followed by a single character
5139 representing the number of operands for the given operation (which is
5140 usually one of the characters '2', '3', or '4').
5142 OPTABLE is the table in which libfunc fields are to be initialized.
5143 OPNAME is the generic (string) name of the operation.
5144 SUFFIX is the character which specifies the number of operands for
5145 the given generic operation.
5146 MODE is the mode to generate for.
5150 gen_libfunc (optab optable
, const char *opname
, int suffix
, enum machine_mode mode
)
5152 unsigned opname_len
= strlen (opname
);
5153 const char *mname
= GET_MODE_NAME (mode
);
5154 unsigned mname_len
= strlen (mname
);
5155 char *libfunc_name
= XALLOCAVEC (char, 2 + opname_len
+ mname_len
+ 1 + 1);
5162 for (q
= opname
; *q
; )
5164 for (q
= mname
; *q
; q
++)
5165 *p
++ = TOLOWER (*q
);
5169 set_optab_libfunc (optable
, mode
,
5170 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5173 /* Like gen_libfunc, but verify that integer operation is involved. */
5176 gen_int_libfunc (optab optable
, const char *opname
, char suffix
,
5177 enum machine_mode mode
)
5179 int maxsize
= 2 * BITS_PER_WORD
;
5181 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5183 if (maxsize
< LONG_LONG_TYPE_SIZE
)
5184 maxsize
= LONG_LONG_TYPE_SIZE
;
5185 if (GET_MODE_CLASS (mode
) != MODE_INT
5186 || mode
< word_mode
|| GET_MODE_BITSIZE (mode
) > maxsize
)
5188 gen_libfunc (optable
, opname
, suffix
, mode
);
5191 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5194 gen_fp_libfunc (optab optable
, const char *opname
, char suffix
,
5195 enum machine_mode mode
)
5199 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5200 gen_libfunc (optable
, opname
, suffix
, mode
);
5201 if (DECIMAL_FLOAT_MODE_P (mode
))
5203 dec_opname
= XALLOCAVEC (char, sizeof (DECIMAL_PREFIX
) + strlen (opname
));
5204 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5205 depending on the low level floating format used. */
5206 memcpy (dec_opname
, DECIMAL_PREFIX
, sizeof (DECIMAL_PREFIX
) - 1);
5207 strcpy (dec_opname
+ sizeof (DECIMAL_PREFIX
) - 1, opname
);
5208 gen_libfunc (optable
, dec_opname
, suffix
, mode
);
5212 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5215 gen_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5216 enum machine_mode mode
)
5218 if (!ALL_FIXED_POINT_MODE_P (mode
))
5220 gen_libfunc (optable
, opname
, suffix
, mode
);
5223 /* Like gen_libfunc, but verify that signed fixed-point operation is
5227 gen_signed_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5228 enum machine_mode mode
)
5230 if (!SIGNED_FIXED_POINT_MODE_P (mode
))
5232 gen_libfunc (optable
, opname
, suffix
, mode
);
5235 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5239 gen_unsigned_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5240 enum machine_mode mode
)
5242 if (!UNSIGNED_FIXED_POINT_MODE_P (mode
))
5244 gen_libfunc (optable
, opname
, suffix
, mode
);
5247 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5250 gen_int_fp_libfunc (optab optable
, const char *name
, char suffix
,
5251 enum machine_mode mode
)
5253 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5254 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5255 if (INTEGRAL_MODE_P (mode
))
5256 gen_int_libfunc (optable
, name
, suffix
, mode
);
5259 /* Like gen_libfunc, but verify that FP or INT operation is involved
5260 and add 'v' suffix for integer operation. */
5263 gen_intv_fp_libfunc (optab optable
, const char *name
, char suffix
,
5264 enum machine_mode mode
)
5266 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5267 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5268 if (GET_MODE_CLASS (mode
) == MODE_INT
)
5270 int len
= strlen (name
);
5271 char *v_name
= XALLOCAVEC (char, len
+ 2);
5272 strcpy (v_name
, name
);
5274 v_name
[len
+ 1] = 0;
5275 gen_int_libfunc (optable
, v_name
, suffix
, mode
);
5279 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5283 gen_int_fp_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5284 enum machine_mode mode
)
5286 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5287 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5288 if (INTEGRAL_MODE_P (mode
))
5289 gen_int_libfunc (optable
, name
, suffix
, mode
);
5290 if (ALL_FIXED_POINT_MODE_P (mode
))
5291 gen_fixed_libfunc (optable
, name
, suffix
, mode
);
5294 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5298 gen_int_fp_signed_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5299 enum machine_mode mode
)
5301 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5302 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5303 if (INTEGRAL_MODE_P (mode
))
5304 gen_int_libfunc (optable
, name
, suffix
, mode
);
5305 if (SIGNED_FIXED_POINT_MODE_P (mode
))
5306 gen_signed_fixed_libfunc (optable
, name
, suffix
, mode
);
5309 /* Like gen_libfunc, but verify that INT or FIXED operation is
5313 gen_int_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5314 enum machine_mode mode
)
5316 if (INTEGRAL_MODE_P (mode
))
5317 gen_int_libfunc (optable
, name
, suffix
, mode
);
5318 if (ALL_FIXED_POINT_MODE_P (mode
))
5319 gen_fixed_libfunc (optable
, name
, suffix
, mode
);
5322 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5326 gen_int_signed_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5327 enum machine_mode mode
)
5329 if (INTEGRAL_MODE_P (mode
))
5330 gen_int_libfunc (optable
, name
, suffix
, mode
);
5331 if (SIGNED_FIXED_POINT_MODE_P (mode
))
5332 gen_signed_fixed_libfunc (optable
, name
, suffix
, mode
);
5335 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5339 gen_int_unsigned_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5340 enum machine_mode mode
)
5342 if (INTEGRAL_MODE_P (mode
))
5343 gen_int_libfunc (optable
, name
, suffix
, mode
);
5344 if (UNSIGNED_FIXED_POINT_MODE_P (mode
))
5345 gen_unsigned_fixed_libfunc (optable
, name
, suffix
, mode
);
5348 /* Initialize the libfunc fields of an entire group of entries of an
5349 inter-mode-class conversion optab. The string formation rules are
5350 similar to the ones for init_libfuncs, above, but instead of having
5351 a mode name and an operand count these functions have two mode names
5352 and no operand count. */
5355 gen_interclass_conv_libfunc (convert_optab tab
,
5357 enum machine_mode tmode
,
5358 enum machine_mode fmode
)
5360 size_t opname_len
= strlen (opname
);
5361 size_t mname_len
= 0;
5363 const char *fname
, *tname
;
5365 char *libfunc_name
, *suffix
;
5366 char *nondec_name
, *dec_name
, *nondec_suffix
, *dec_suffix
;
5369 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5370 depends on which underlying decimal floating point format is used. */
5371 const size_t dec_len
= sizeof (DECIMAL_PREFIX
) - 1;
5373 mname_len
= strlen (GET_MODE_NAME (tmode
)) + strlen (GET_MODE_NAME (fmode
));
5375 nondec_name
= XALLOCAVEC (char, 2 + opname_len
+ mname_len
+ 1 + 1);
5376 nondec_name
[0] = '_';
5377 nondec_name
[1] = '_';
5378 memcpy (&nondec_name
[2], opname
, opname_len
);
5379 nondec_suffix
= nondec_name
+ opname_len
+ 2;
5381 dec_name
= XALLOCAVEC (char, 2 + dec_len
+ opname_len
+ mname_len
+ 1 + 1);
5384 memcpy (&dec_name
[2], DECIMAL_PREFIX
, dec_len
);
5385 memcpy (&dec_name
[2+dec_len
], opname
, opname_len
);
5386 dec_suffix
= dec_name
+ dec_len
+ opname_len
+ 2;
5388 fname
= GET_MODE_NAME (fmode
);
5389 tname
= GET_MODE_NAME (tmode
);
5391 if (DECIMAL_FLOAT_MODE_P(fmode
) || DECIMAL_FLOAT_MODE_P(tmode
))
5393 libfunc_name
= dec_name
;
5394 suffix
= dec_suffix
;
5398 libfunc_name
= nondec_name
;
5399 suffix
= nondec_suffix
;
5403 for (q
= fname
; *q
; p
++, q
++)
5405 for (q
= tname
; *q
; p
++, q
++)
5410 set_conv_libfunc (tab
, tmode
, fmode
,
5411 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5414 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5415 int->fp conversion. */
5418 gen_int_to_fp_conv_libfunc (convert_optab tab
,
5420 enum machine_mode tmode
,
5421 enum machine_mode fmode
)
5423 if (GET_MODE_CLASS (fmode
) != MODE_INT
)
5425 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5427 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5430 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5434 gen_ufloat_conv_libfunc (convert_optab tab
,
5435 const char *opname ATTRIBUTE_UNUSED
,
5436 enum machine_mode tmode
,
5437 enum machine_mode fmode
)
5439 if (DECIMAL_FLOAT_MODE_P (tmode
))
5440 gen_int_to_fp_conv_libfunc (tab
, "floatuns", tmode
, fmode
);
5442 gen_int_to_fp_conv_libfunc (tab
, "floatun", tmode
, fmode
);
5445 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5446 fp->int conversion. */
5449 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab
,
5451 enum machine_mode tmode
,
5452 enum machine_mode fmode
)
5454 if (GET_MODE_CLASS (fmode
) != MODE_INT
)
5456 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
)
5458 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5461 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5462 fp->int conversion with no decimal floating point involved. */
5465 gen_fp_to_int_conv_libfunc (convert_optab tab
,
5467 enum machine_mode tmode
,
5468 enum machine_mode fmode
)
5470 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5472 if (GET_MODE_CLASS (tmode
) != MODE_INT
)
5474 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5477 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5478 The string formation rules are
5479 similar to the ones for init_libfunc, above. */
5482 gen_intraclass_conv_libfunc (convert_optab tab
, const char *opname
,
5483 enum machine_mode tmode
, enum machine_mode fmode
)
5485 size_t opname_len
= strlen (opname
);
5486 size_t mname_len
= 0;
5488 const char *fname
, *tname
;
5490 char *nondec_name
, *dec_name
, *nondec_suffix
, *dec_suffix
;
5491 char *libfunc_name
, *suffix
;
5494 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5495 depends on which underlying decimal floating point format is used. */
5496 const size_t dec_len
= sizeof (DECIMAL_PREFIX
) - 1;
5498 mname_len
= strlen (GET_MODE_NAME (tmode
)) + strlen (GET_MODE_NAME (fmode
));
5500 nondec_name
= XALLOCAVEC (char, 2 + opname_len
+ mname_len
+ 1 + 1);
5501 nondec_name
[0] = '_';
5502 nondec_name
[1] = '_';
5503 memcpy (&nondec_name
[2], opname
, opname_len
);
5504 nondec_suffix
= nondec_name
+ opname_len
+ 2;
5506 dec_name
= XALLOCAVEC (char, 2 + dec_len
+ opname_len
+ mname_len
+ 1 + 1);
5509 memcpy (&dec_name
[2], DECIMAL_PREFIX
, dec_len
);
5510 memcpy (&dec_name
[2 + dec_len
], opname
, opname_len
);
5511 dec_suffix
= dec_name
+ dec_len
+ opname_len
+ 2;
5513 fname
= GET_MODE_NAME (fmode
);
5514 tname
= GET_MODE_NAME (tmode
);
5516 if (DECIMAL_FLOAT_MODE_P(fmode
) || DECIMAL_FLOAT_MODE_P(tmode
))
5518 libfunc_name
= dec_name
;
5519 suffix
= dec_suffix
;
5523 libfunc_name
= nondec_name
;
5524 suffix
= nondec_suffix
;
5528 for (q
= fname
; *q
; p
++, q
++)
5530 for (q
= tname
; *q
; p
++, q
++)
5536 set_conv_libfunc (tab
, tmode
, fmode
,
5537 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5540 /* Pick proper libcall for trunc_optab. We need to chose if we do
5541 truncation or extension and interclass or intraclass. */
5544 gen_trunc_conv_libfunc (convert_optab tab
,
5546 enum machine_mode tmode
,
5547 enum machine_mode fmode
)
5549 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5551 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5556 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (fmode
))
5557 || (GET_MODE_CLASS (fmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (tmode
)))
5558 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5560 if (GET_MODE_PRECISION (fmode
) <= GET_MODE_PRECISION (tmode
))
5563 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
5564 && GET_MODE_CLASS (fmode
) == MODE_FLOAT
)
5565 || (DECIMAL_FLOAT_MODE_P (fmode
) && DECIMAL_FLOAT_MODE_P (tmode
)))
5566 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5569 /* Pick proper libcall for extend_optab. We need to chose if we do
5570 truncation or extension and interclass or intraclass. */
5573 gen_extend_conv_libfunc (convert_optab tab
,
5574 const char *opname ATTRIBUTE_UNUSED
,
5575 enum machine_mode tmode
,
5576 enum machine_mode fmode
)
5578 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5580 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5585 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (fmode
))
5586 || (GET_MODE_CLASS (fmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (tmode
)))
5587 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5589 if (GET_MODE_PRECISION (fmode
) > GET_MODE_PRECISION (tmode
))
5592 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
5593 && GET_MODE_CLASS (fmode
) == MODE_FLOAT
)
5594 || (DECIMAL_FLOAT_MODE_P (fmode
) && DECIMAL_FLOAT_MODE_P (tmode
)))
5595 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5598 /* Pick proper libcall for fract_optab. We need to chose if we do
5599 interclass or intraclass. */
5602 gen_fract_conv_libfunc (convert_optab tab
,
5604 enum machine_mode tmode
,
5605 enum machine_mode fmode
)
5609 if (!(ALL_FIXED_POINT_MODE_P (tmode
) || ALL_FIXED_POINT_MODE_P (fmode
)))
5612 if (GET_MODE_CLASS (tmode
) == GET_MODE_CLASS (fmode
))
5613 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5615 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5618 /* Pick proper libcall for fractuns_optab. */
5621 gen_fractuns_conv_libfunc (convert_optab tab
,
5623 enum machine_mode tmode
,
5624 enum machine_mode fmode
)
5628 /* One mode must be a fixed-point mode, and the other must be an integer
5630 if (!((ALL_FIXED_POINT_MODE_P (tmode
) && GET_MODE_CLASS (fmode
) == MODE_INT
)
5631 || (ALL_FIXED_POINT_MODE_P (fmode
)
5632 && GET_MODE_CLASS (tmode
) == MODE_INT
)))
5635 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5638 /* Pick proper libcall for satfract_optab. We need to chose if we do
5639 interclass or intraclass. */
5642 gen_satfract_conv_libfunc (convert_optab tab
,
5644 enum machine_mode tmode
,
5645 enum machine_mode fmode
)
5649 /* TMODE must be a fixed-point mode. */
5650 if (!ALL_FIXED_POINT_MODE_P (tmode
))
5653 if (GET_MODE_CLASS (tmode
) == GET_MODE_CLASS (fmode
))
5654 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5656 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5659 /* Pick proper libcall for satfractuns_optab. */
5662 gen_satfractuns_conv_libfunc (convert_optab tab
,
5664 enum machine_mode tmode
,
5665 enum machine_mode fmode
)
5669 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5670 if (!(ALL_FIXED_POINT_MODE_P (tmode
) && GET_MODE_CLASS (fmode
) == MODE_INT
))
5673 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5676 /* A table of previously-created libfuncs, hashed by name. */
5677 static GTY ((param_is (union tree_node
))) htab_t libfunc_decls
;
5679 /* Hashtable callbacks for libfunc_decls. */
5682 libfunc_decl_hash (const void *entry
)
5684 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree
) entry
));
5688 libfunc_decl_eq (const void *entry1
, const void *entry2
)
5690 return DECL_NAME ((const_tree
) entry1
) == (const_tree
) entry2
;
5693 /* Build a decl for a libfunc named NAME. */
5696 build_libfunc_function (const char *name
)
5698 tree decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
5699 get_identifier (name
),
5700 build_function_type (integer_type_node
, NULL_TREE
));
5701 /* ??? We don't have any type information except for this is
5702 a function. Pretend this is "int foo()". */
5703 DECL_ARTIFICIAL (decl
) = 1;
5704 DECL_EXTERNAL (decl
) = 1;
5705 TREE_PUBLIC (decl
) = 1;
5706 gcc_assert (DECL_ASSEMBLER_NAME (decl
));
5708 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5709 are the flags assigned by targetm.encode_section_info. */
5710 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
5716 init_one_libfunc (const char *name
)
5722 if (libfunc_decls
== NULL
)
5723 libfunc_decls
= htab_create_ggc (37, libfunc_decl_hash
,
5724 libfunc_decl_eq
, NULL
);
5726 /* See if we have already created a libfunc decl for this function. */
5727 id
= get_identifier (name
);
5728 hash
= IDENTIFIER_HASH_VALUE (id
);
5729 slot
= htab_find_slot_with_hash (libfunc_decls
, id
, hash
, INSERT
);
5730 decl
= (tree
) *slot
;
5733 /* Create a new decl, so that it can be passed to
5734 targetm.encode_section_info. */
5735 decl
= build_libfunc_function (name
);
5738 return XEXP (DECL_RTL (decl
), 0);
5741 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
5744 set_user_assembler_libfunc (const char *name
, const char *asmspec
)
5750 id
= get_identifier (name
);
5751 hash
= IDENTIFIER_HASH_VALUE (id
);
5752 slot
= htab_find_slot_with_hash (libfunc_decls
, id
, hash
, NO_INSERT
);
5754 decl
= (tree
) *slot
;
5755 set_user_assembler_name (decl
, asmspec
);
5756 return XEXP (DECL_RTL (decl
), 0);
5759 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5760 MODE to NAME, which should be either 0 or a string constant. */
5762 set_optab_libfunc (optab optable
, enum machine_mode mode
, const char *name
)
5765 struct libfunc_entry e
;
5766 struct libfunc_entry
**slot
;
5767 e
.optab
= (size_t) (optable
- &optab_table
[0]);
5772 val
= init_one_libfunc (name
);
5775 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, INSERT
);
5777 *slot
= ggc_alloc_libfunc_entry ();
5778 (*slot
)->optab
= (size_t) (optable
- &optab_table
[0]);
5779 (*slot
)->mode1
= mode
;
5780 (*slot
)->mode2
= VOIDmode
;
5781 (*slot
)->libfunc
= val
;
5784 /* Call this to reset the function entry for one conversion optab
5785 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5786 either 0 or a string constant. */
5788 set_conv_libfunc (convert_optab optable
, enum machine_mode tmode
,
5789 enum machine_mode fmode
, const char *name
)
5792 struct libfunc_entry e
;
5793 struct libfunc_entry
**slot
;
5794 e
.optab
= (size_t) (optable
- &convert_optab_table
[0]);
5799 val
= init_one_libfunc (name
);
5802 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, INSERT
);
5804 *slot
= ggc_alloc_libfunc_entry ();
5805 (*slot
)->optab
= (size_t) (optable
- &convert_optab_table
[0]);
5806 (*slot
)->mode1
= tmode
;
5807 (*slot
)->mode2
= fmode
;
5808 (*slot
)->libfunc
= val
;
5811 /* Call this to initialize the contents of the optabs
5812 appropriately for the current target machine. */
5819 htab_empty (libfunc_hash
);
5820 /* We statically initialize the insn_codes with the equivalent of
5821 CODE_FOR_nothing. Repeat the process if reinitialising. */
5825 libfunc_hash
= htab_create_ggc (10, hash_libfunc
, eq_libfunc
, NULL
);
5827 init_optab (add_optab
, PLUS
);
5828 init_optabv (addv_optab
, PLUS
);
5829 init_optab (sub_optab
, MINUS
);
5830 init_optabv (subv_optab
, MINUS
);
5831 init_optab (ssadd_optab
, SS_PLUS
);
5832 init_optab (usadd_optab
, US_PLUS
);
5833 init_optab (sssub_optab
, SS_MINUS
);
5834 init_optab (ussub_optab
, US_MINUS
);
5835 init_optab (smul_optab
, MULT
);
5836 init_optab (ssmul_optab
, SS_MULT
);
5837 init_optab (usmul_optab
, US_MULT
);
5838 init_optabv (smulv_optab
, MULT
);
5839 init_optab (smul_highpart_optab
, UNKNOWN
);
5840 init_optab (umul_highpart_optab
, UNKNOWN
);
5841 init_optab (smul_widen_optab
, UNKNOWN
);
5842 init_optab (umul_widen_optab
, UNKNOWN
);
5843 init_optab (usmul_widen_optab
, UNKNOWN
);
5844 init_optab (smadd_widen_optab
, UNKNOWN
);
5845 init_optab (umadd_widen_optab
, UNKNOWN
);
5846 init_optab (ssmadd_widen_optab
, UNKNOWN
);
5847 init_optab (usmadd_widen_optab
, UNKNOWN
);
5848 init_optab (smsub_widen_optab
, UNKNOWN
);
5849 init_optab (umsub_widen_optab
, UNKNOWN
);
5850 init_optab (ssmsub_widen_optab
, UNKNOWN
);
5851 init_optab (usmsub_widen_optab
, UNKNOWN
);
5852 init_optab (sdiv_optab
, DIV
);
5853 init_optab (ssdiv_optab
, SS_DIV
);
5854 init_optab (usdiv_optab
, US_DIV
);
5855 init_optabv (sdivv_optab
, DIV
);
5856 init_optab (sdivmod_optab
, UNKNOWN
);
5857 init_optab (udiv_optab
, UDIV
);
5858 init_optab (udivmod_optab
, UNKNOWN
);
5859 init_optab (smod_optab
, MOD
);
5860 init_optab (umod_optab
, UMOD
);
5861 init_optab (fmod_optab
, UNKNOWN
);
5862 init_optab (remainder_optab
, UNKNOWN
);
5863 init_optab (ftrunc_optab
, UNKNOWN
);
5864 init_optab (and_optab
, AND
);
5865 init_optab (ior_optab
, IOR
);
5866 init_optab (xor_optab
, XOR
);
5867 init_optab (ashl_optab
, ASHIFT
);
5868 init_optab (ssashl_optab
, SS_ASHIFT
);
5869 init_optab (usashl_optab
, US_ASHIFT
);
5870 init_optab (ashr_optab
, ASHIFTRT
);
5871 init_optab (lshr_optab
, LSHIFTRT
);
5872 init_optab (rotl_optab
, ROTATE
);
5873 init_optab (rotr_optab
, ROTATERT
);
5874 init_optab (smin_optab
, SMIN
);
5875 init_optab (smax_optab
, SMAX
);
5876 init_optab (umin_optab
, UMIN
);
5877 init_optab (umax_optab
, UMAX
);
5878 init_optab (pow_optab
, UNKNOWN
);
5879 init_optab (atan2_optab
, UNKNOWN
);
5880 init_optab (fma_optab
, FMA
);
5881 init_optab (fms_optab
, UNKNOWN
);
5882 init_optab (fnma_optab
, UNKNOWN
);
5883 init_optab (fnms_optab
, UNKNOWN
);
5885 /* These three have codes assigned exclusively for the sake of
5887 init_optab (mov_optab
, SET
);
5888 init_optab (movstrict_optab
, STRICT_LOW_PART
);
5889 init_optab (cbranch_optab
, COMPARE
);
5891 init_optab (cmov_optab
, UNKNOWN
);
5892 init_optab (cstore_optab
, UNKNOWN
);
5893 init_optab (ctrap_optab
, UNKNOWN
);
5895 init_optab (storent_optab
, UNKNOWN
);
5897 init_optab (cmp_optab
, UNKNOWN
);
5898 init_optab (ucmp_optab
, UNKNOWN
);
5900 init_optab (eq_optab
, EQ
);
5901 init_optab (ne_optab
, NE
);
5902 init_optab (gt_optab
, GT
);
5903 init_optab (ge_optab
, GE
);
5904 init_optab (lt_optab
, LT
);
5905 init_optab (le_optab
, LE
);
5906 init_optab (unord_optab
, UNORDERED
);
5908 init_optab (neg_optab
, NEG
);
5909 init_optab (ssneg_optab
, SS_NEG
);
5910 init_optab (usneg_optab
, US_NEG
);
5911 init_optabv (negv_optab
, NEG
);
5912 init_optab (abs_optab
, ABS
);
5913 init_optabv (absv_optab
, ABS
);
5914 init_optab (addcc_optab
, UNKNOWN
);
5915 init_optab (one_cmpl_optab
, NOT
);
5916 init_optab (bswap_optab
, BSWAP
);
5917 init_optab (ffs_optab
, FFS
);
5918 init_optab (clz_optab
, CLZ
);
5919 init_optab (ctz_optab
, CTZ
);
5920 init_optab (popcount_optab
, POPCOUNT
);
5921 init_optab (parity_optab
, PARITY
);
5922 init_optab (sqrt_optab
, SQRT
);
5923 init_optab (floor_optab
, UNKNOWN
);
5924 init_optab (ceil_optab
, UNKNOWN
);
5925 init_optab (round_optab
, UNKNOWN
);
5926 init_optab (btrunc_optab
, UNKNOWN
);
5927 init_optab (nearbyint_optab
, UNKNOWN
);
5928 init_optab (rint_optab
, UNKNOWN
);
5929 init_optab (sincos_optab
, UNKNOWN
);
5930 init_optab (sin_optab
, UNKNOWN
);
5931 init_optab (asin_optab
, UNKNOWN
);
5932 init_optab (cos_optab
, UNKNOWN
);
5933 init_optab (acos_optab
, UNKNOWN
);
5934 init_optab (exp_optab
, UNKNOWN
);
5935 init_optab (exp10_optab
, UNKNOWN
);
5936 init_optab (exp2_optab
, UNKNOWN
);
5937 init_optab (expm1_optab
, UNKNOWN
);
5938 init_optab (ldexp_optab
, UNKNOWN
);
5939 init_optab (scalb_optab
, UNKNOWN
);
5940 init_optab (significand_optab
, UNKNOWN
);
5941 init_optab (logb_optab
, UNKNOWN
);
5942 init_optab (ilogb_optab
, UNKNOWN
);
5943 init_optab (log_optab
, UNKNOWN
);
5944 init_optab (log10_optab
, UNKNOWN
);
5945 init_optab (log2_optab
, UNKNOWN
);
5946 init_optab (log1p_optab
, UNKNOWN
);
5947 init_optab (tan_optab
, UNKNOWN
);
5948 init_optab (atan_optab
, UNKNOWN
);
5949 init_optab (copysign_optab
, UNKNOWN
);
5950 init_optab (signbit_optab
, UNKNOWN
);
5952 init_optab (isinf_optab
, UNKNOWN
);
5954 init_optab (strlen_optab
, UNKNOWN
);
5955 init_optab (push_optab
, UNKNOWN
);
5957 init_optab (reduc_smax_optab
, UNKNOWN
);
5958 init_optab (reduc_umax_optab
, UNKNOWN
);
5959 init_optab (reduc_smin_optab
, UNKNOWN
);
5960 init_optab (reduc_umin_optab
, UNKNOWN
);
5961 init_optab (reduc_splus_optab
, UNKNOWN
);
5962 init_optab (reduc_uplus_optab
, UNKNOWN
);
5964 init_optab (ssum_widen_optab
, UNKNOWN
);
5965 init_optab (usum_widen_optab
, UNKNOWN
);
5966 init_optab (sdot_prod_optab
, UNKNOWN
);
5967 init_optab (udot_prod_optab
, UNKNOWN
);
5969 init_optab (vec_extract_optab
, UNKNOWN
);
5970 init_optab (vec_extract_even_optab
, UNKNOWN
);
5971 init_optab (vec_extract_odd_optab
, UNKNOWN
);
5972 init_optab (vec_interleave_high_optab
, UNKNOWN
);
5973 init_optab (vec_interleave_low_optab
, UNKNOWN
);
5974 init_optab (vec_set_optab
, UNKNOWN
);
5975 init_optab (vec_init_optab
, UNKNOWN
);
5976 init_optab (vec_shl_optab
, UNKNOWN
);
5977 init_optab (vec_shr_optab
, UNKNOWN
);
5978 init_optab (vec_realign_load_optab
, UNKNOWN
);
5979 init_optab (movmisalign_optab
, UNKNOWN
);
5980 init_optab (vec_widen_umult_hi_optab
, UNKNOWN
);
5981 init_optab (vec_widen_umult_lo_optab
, UNKNOWN
);
5982 init_optab (vec_widen_smult_hi_optab
, UNKNOWN
);
5983 init_optab (vec_widen_smult_lo_optab
, UNKNOWN
);
5984 init_optab (vec_unpacks_hi_optab
, UNKNOWN
);
5985 init_optab (vec_unpacks_lo_optab
, UNKNOWN
);
5986 init_optab (vec_unpacku_hi_optab
, UNKNOWN
);
5987 init_optab (vec_unpacku_lo_optab
, UNKNOWN
);
5988 init_optab (vec_unpacks_float_hi_optab
, UNKNOWN
);
5989 init_optab (vec_unpacks_float_lo_optab
, UNKNOWN
);
5990 init_optab (vec_unpacku_float_hi_optab
, UNKNOWN
);
5991 init_optab (vec_unpacku_float_lo_optab
, UNKNOWN
);
5992 init_optab (vec_pack_trunc_optab
, UNKNOWN
);
5993 init_optab (vec_pack_usat_optab
, UNKNOWN
);
5994 init_optab (vec_pack_ssat_optab
, UNKNOWN
);
5995 init_optab (vec_pack_ufix_trunc_optab
, UNKNOWN
);
5996 init_optab (vec_pack_sfix_trunc_optab
, UNKNOWN
);
5998 init_optab (powi_optab
, UNKNOWN
);
6001 init_convert_optab (sext_optab
, SIGN_EXTEND
);
6002 init_convert_optab (zext_optab
, ZERO_EXTEND
);
6003 init_convert_optab (trunc_optab
, TRUNCATE
);
6004 init_convert_optab (sfix_optab
, FIX
);
6005 init_convert_optab (ufix_optab
, UNSIGNED_FIX
);
6006 init_convert_optab (sfixtrunc_optab
, UNKNOWN
);
6007 init_convert_optab (ufixtrunc_optab
, UNKNOWN
);
6008 init_convert_optab (sfloat_optab
, FLOAT
);
6009 init_convert_optab (ufloat_optab
, UNSIGNED_FLOAT
);
6010 init_convert_optab (lrint_optab
, UNKNOWN
);
6011 init_convert_optab (lround_optab
, UNKNOWN
);
6012 init_convert_optab (lfloor_optab
, UNKNOWN
);
6013 init_convert_optab (lceil_optab
, UNKNOWN
);
6015 init_convert_optab (fract_optab
, FRACT_CONVERT
);
6016 init_convert_optab (fractuns_optab
, UNSIGNED_FRACT_CONVERT
);
6017 init_convert_optab (satfract_optab
, SAT_FRACT
);
6018 init_convert_optab (satfractuns_optab
, UNSIGNED_SAT_FRACT
);
6020 /* Fill in the optabs with the insns we support. */
6023 /* Initialize the optabs with the names of the library functions. */
6024 add_optab
->libcall_basename
= "add";
6025 add_optab
->libcall_suffix
= '3';
6026 add_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6027 addv_optab
->libcall_basename
= "add";
6028 addv_optab
->libcall_suffix
= '3';
6029 addv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6030 ssadd_optab
->libcall_basename
= "ssadd";
6031 ssadd_optab
->libcall_suffix
= '3';
6032 ssadd_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6033 usadd_optab
->libcall_basename
= "usadd";
6034 usadd_optab
->libcall_suffix
= '3';
6035 usadd_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6036 sub_optab
->libcall_basename
= "sub";
6037 sub_optab
->libcall_suffix
= '3';
6038 sub_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6039 subv_optab
->libcall_basename
= "sub";
6040 subv_optab
->libcall_suffix
= '3';
6041 subv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6042 sssub_optab
->libcall_basename
= "sssub";
6043 sssub_optab
->libcall_suffix
= '3';
6044 sssub_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6045 ussub_optab
->libcall_basename
= "ussub";
6046 ussub_optab
->libcall_suffix
= '3';
6047 ussub_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6048 smul_optab
->libcall_basename
= "mul";
6049 smul_optab
->libcall_suffix
= '3';
6050 smul_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6051 smulv_optab
->libcall_basename
= "mul";
6052 smulv_optab
->libcall_suffix
= '3';
6053 smulv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6054 ssmul_optab
->libcall_basename
= "ssmul";
6055 ssmul_optab
->libcall_suffix
= '3';
6056 ssmul_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6057 usmul_optab
->libcall_basename
= "usmul";
6058 usmul_optab
->libcall_suffix
= '3';
6059 usmul_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6060 sdiv_optab
->libcall_basename
= "div";
6061 sdiv_optab
->libcall_suffix
= '3';
6062 sdiv_optab
->libcall_gen
= gen_int_fp_signed_fixed_libfunc
;
6063 sdivv_optab
->libcall_basename
= "divv";
6064 sdivv_optab
->libcall_suffix
= '3';
6065 sdivv_optab
->libcall_gen
= gen_int_libfunc
;
6066 ssdiv_optab
->libcall_basename
= "ssdiv";
6067 ssdiv_optab
->libcall_suffix
= '3';
6068 ssdiv_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6069 udiv_optab
->libcall_basename
= "udiv";
6070 udiv_optab
->libcall_suffix
= '3';
6071 udiv_optab
->libcall_gen
= gen_int_unsigned_fixed_libfunc
;
6072 usdiv_optab
->libcall_basename
= "usdiv";
6073 usdiv_optab
->libcall_suffix
= '3';
6074 usdiv_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6075 sdivmod_optab
->libcall_basename
= "divmod";
6076 sdivmod_optab
->libcall_suffix
= '4';
6077 sdivmod_optab
->libcall_gen
= gen_int_libfunc
;
6078 udivmod_optab
->libcall_basename
= "udivmod";
6079 udivmod_optab
->libcall_suffix
= '4';
6080 udivmod_optab
->libcall_gen
= gen_int_libfunc
;
6081 smod_optab
->libcall_basename
= "mod";
6082 smod_optab
->libcall_suffix
= '3';
6083 smod_optab
->libcall_gen
= gen_int_libfunc
;
6084 umod_optab
->libcall_basename
= "umod";
6085 umod_optab
->libcall_suffix
= '3';
6086 umod_optab
->libcall_gen
= gen_int_libfunc
;
6087 ftrunc_optab
->libcall_basename
= "ftrunc";
6088 ftrunc_optab
->libcall_suffix
= '2';
6089 ftrunc_optab
->libcall_gen
= gen_fp_libfunc
;
6090 and_optab
->libcall_basename
= "and";
6091 and_optab
->libcall_suffix
= '3';
6092 and_optab
->libcall_gen
= gen_int_libfunc
;
6093 ior_optab
->libcall_basename
= "ior";
6094 ior_optab
->libcall_suffix
= '3';
6095 ior_optab
->libcall_gen
= gen_int_libfunc
;
6096 xor_optab
->libcall_basename
= "xor";
6097 xor_optab
->libcall_suffix
= '3';
6098 xor_optab
->libcall_gen
= gen_int_libfunc
;
6099 ashl_optab
->libcall_basename
= "ashl";
6100 ashl_optab
->libcall_suffix
= '3';
6101 ashl_optab
->libcall_gen
= gen_int_fixed_libfunc
;
6102 ssashl_optab
->libcall_basename
= "ssashl";
6103 ssashl_optab
->libcall_suffix
= '3';
6104 ssashl_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6105 usashl_optab
->libcall_basename
= "usashl";
6106 usashl_optab
->libcall_suffix
= '3';
6107 usashl_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6108 ashr_optab
->libcall_basename
= "ashr";
6109 ashr_optab
->libcall_suffix
= '3';
6110 ashr_optab
->libcall_gen
= gen_int_signed_fixed_libfunc
;
6111 lshr_optab
->libcall_basename
= "lshr";
6112 lshr_optab
->libcall_suffix
= '3';
6113 lshr_optab
->libcall_gen
= gen_int_unsigned_fixed_libfunc
;
6114 smin_optab
->libcall_basename
= "min";
6115 smin_optab
->libcall_suffix
= '3';
6116 smin_optab
->libcall_gen
= gen_int_fp_libfunc
;
6117 smax_optab
->libcall_basename
= "max";
6118 smax_optab
->libcall_suffix
= '3';
6119 smax_optab
->libcall_gen
= gen_int_fp_libfunc
;
6120 umin_optab
->libcall_basename
= "umin";
6121 umin_optab
->libcall_suffix
= '3';
6122 umin_optab
->libcall_gen
= gen_int_libfunc
;
6123 umax_optab
->libcall_basename
= "umax";
6124 umax_optab
->libcall_suffix
= '3';
6125 umax_optab
->libcall_gen
= gen_int_libfunc
;
6126 neg_optab
->libcall_basename
= "neg";
6127 neg_optab
->libcall_suffix
= '2';
6128 neg_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6129 ssneg_optab
->libcall_basename
= "ssneg";
6130 ssneg_optab
->libcall_suffix
= '2';
6131 ssneg_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6132 usneg_optab
->libcall_basename
= "usneg";
6133 usneg_optab
->libcall_suffix
= '2';
6134 usneg_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6135 negv_optab
->libcall_basename
= "neg";
6136 negv_optab
->libcall_suffix
= '2';
6137 negv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6138 one_cmpl_optab
->libcall_basename
= "one_cmpl";
6139 one_cmpl_optab
->libcall_suffix
= '2';
6140 one_cmpl_optab
->libcall_gen
= gen_int_libfunc
;
6141 ffs_optab
->libcall_basename
= "ffs";
6142 ffs_optab
->libcall_suffix
= '2';
6143 ffs_optab
->libcall_gen
= gen_int_libfunc
;
6144 clz_optab
->libcall_basename
= "clz";
6145 clz_optab
->libcall_suffix
= '2';
6146 clz_optab
->libcall_gen
= gen_int_libfunc
;
6147 ctz_optab
->libcall_basename
= "ctz";
6148 ctz_optab
->libcall_suffix
= '2';
6149 ctz_optab
->libcall_gen
= gen_int_libfunc
;
6150 popcount_optab
->libcall_basename
= "popcount";
6151 popcount_optab
->libcall_suffix
= '2';
6152 popcount_optab
->libcall_gen
= gen_int_libfunc
;
6153 parity_optab
->libcall_basename
= "parity";
6154 parity_optab
->libcall_suffix
= '2';
6155 parity_optab
->libcall_gen
= gen_int_libfunc
;
6157 /* Comparison libcalls for integers MUST come in pairs,
6159 cmp_optab
->libcall_basename
= "cmp";
6160 cmp_optab
->libcall_suffix
= '2';
6161 cmp_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6162 ucmp_optab
->libcall_basename
= "ucmp";
6163 ucmp_optab
->libcall_suffix
= '2';
6164 ucmp_optab
->libcall_gen
= gen_int_libfunc
;
6166 /* EQ etc are floating point only. */
6167 eq_optab
->libcall_basename
= "eq";
6168 eq_optab
->libcall_suffix
= '2';
6169 eq_optab
->libcall_gen
= gen_fp_libfunc
;
6170 ne_optab
->libcall_basename
= "ne";
6171 ne_optab
->libcall_suffix
= '2';
6172 ne_optab
->libcall_gen
= gen_fp_libfunc
;
6173 gt_optab
->libcall_basename
= "gt";
6174 gt_optab
->libcall_suffix
= '2';
6175 gt_optab
->libcall_gen
= gen_fp_libfunc
;
6176 ge_optab
->libcall_basename
= "ge";
6177 ge_optab
->libcall_suffix
= '2';
6178 ge_optab
->libcall_gen
= gen_fp_libfunc
;
6179 lt_optab
->libcall_basename
= "lt";
6180 lt_optab
->libcall_suffix
= '2';
6181 lt_optab
->libcall_gen
= gen_fp_libfunc
;
6182 le_optab
->libcall_basename
= "le";
6183 le_optab
->libcall_suffix
= '2';
6184 le_optab
->libcall_gen
= gen_fp_libfunc
;
6185 unord_optab
->libcall_basename
= "unord";
6186 unord_optab
->libcall_suffix
= '2';
6187 unord_optab
->libcall_gen
= gen_fp_libfunc
;
6189 powi_optab
->libcall_basename
= "powi";
6190 powi_optab
->libcall_suffix
= '2';
6191 powi_optab
->libcall_gen
= gen_fp_libfunc
;
6194 sfloat_optab
->libcall_basename
= "float";
6195 sfloat_optab
->libcall_gen
= gen_int_to_fp_conv_libfunc
;
6196 ufloat_optab
->libcall_gen
= gen_ufloat_conv_libfunc
;
6197 sfix_optab
->libcall_basename
= "fix";
6198 sfix_optab
->libcall_gen
= gen_fp_to_int_conv_libfunc
;
6199 ufix_optab
->libcall_basename
= "fixuns";
6200 ufix_optab
->libcall_gen
= gen_fp_to_int_conv_libfunc
;
6201 lrint_optab
->libcall_basename
= "lrint";
6202 lrint_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6203 lround_optab
->libcall_basename
= "lround";
6204 lround_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6205 lfloor_optab
->libcall_basename
= "lfloor";
6206 lfloor_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6207 lceil_optab
->libcall_basename
= "lceil";
6208 lceil_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6210 /* trunc_optab is also used for FLOAT_EXTEND. */
6211 sext_optab
->libcall_basename
= "extend";
6212 sext_optab
->libcall_gen
= gen_extend_conv_libfunc
;
6213 trunc_optab
->libcall_basename
= "trunc";
6214 trunc_optab
->libcall_gen
= gen_trunc_conv_libfunc
;
6216 /* Conversions for fixed-point modes and other modes. */
6217 fract_optab
->libcall_basename
= "fract";
6218 fract_optab
->libcall_gen
= gen_fract_conv_libfunc
;
6219 satfract_optab
->libcall_basename
= "satfract";
6220 satfract_optab
->libcall_gen
= gen_satfract_conv_libfunc
;
6221 fractuns_optab
->libcall_basename
= "fractuns";
6222 fractuns_optab
->libcall_gen
= gen_fractuns_conv_libfunc
;
6223 satfractuns_optab
->libcall_basename
= "satfractuns";
6224 satfractuns_optab
->libcall_gen
= gen_satfractuns_conv_libfunc
;
6226 /* The ffs function operates on `int'. Fall back on it if we do not
6227 have a libgcc2 function for that width. */
6228 if (INT_TYPE_SIZE
< BITS_PER_WORD
)
6229 set_optab_libfunc (ffs_optab
, mode_for_size (INT_TYPE_SIZE
, MODE_INT
, 0),
6232 /* Explicitly initialize the bswap libfuncs since we need them to be
6233 valid for things other than word_mode. */
6234 set_optab_libfunc (bswap_optab
, SImode
, "__bswapsi2");
6235 set_optab_libfunc (bswap_optab
, DImode
, "__bswapdi2");
6237 /* Use cabs for double complex abs, since systems generally have cabs.
6238 Don't define any libcall for float complex, so that cabs will be used. */
6239 if (complex_double_type_node
)
6240 set_optab_libfunc (abs_optab
, TYPE_MODE (complex_double_type_node
), "cabs");
6242 abort_libfunc
= init_one_libfunc ("abort");
6243 memcpy_libfunc
= init_one_libfunc ("memcpy");
6244 memmove_libfunc
= init_one_libfunc ("memmove");
6245 memcmp_libfunc
= init_one_libfunc ("memcmp");
6246 memset_libfunc
= init_one_libfunc ("memset");
6247 setbits_libfunc
= init_one_libfunc ("__setbits");
6249 #ifndef DONT_USE_BUILTIN_SETJMP
6250 setjmp_libfunc
= init_one_libfunc ("__builtin_setjmp");
6251 longjmp_libfunc
= init_one_libfunc ("__builtin_longjmp");
6253 setjmp_libfunc
= init_one_libfunc ("setjmp");
6254 longjmp_libfunc
= init_one_libfunc ("longjmp");
6256 unwind_sjlj_register_libfunc
= init_one_libfunc ("_Unwind_SjLj_Register");
6257 unwind_sjlj_unregister_libfunc
6258 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6260 /* For function entry/exit instrumentation. */
6261 profile_function_entry_libfunc
6262 = init_one_libfunc ("__cyg_profile_func_enter");
6263 profile_function_exit_libfunc
6264 = init_one_libfunc ("__cyg_profile_func_exit");
6266 gcov_flush_libfunc
= init_one_libfunc ("__gcov_flush");
6268 /* Allow the target to add more libcalls or rename some, etc. */
6269 targetm
.init_libfuncs ();
6272 /* Print information about the current contents of the optabs on
6276 debug_optab_libfuncs (void)
6282 /* Dump the arithmetic optabs. */
6283 for (i
= 0; i
!= (int) OTI_MAX
; i
++)
6284 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6289 o
= &optab_table
[i
];
6290 l
= optab_libfunc (o
, (enum machine_mode
) j
);
6293 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6294 fprintf (stderr
, "%s\t%s:\t%s\n",
6295 GET_RTX_NAME (o
->code
),
6301 /* Dump the conversion optabs. */
6302 for (i
= 0; i
< (int) COI_MAX
; ++i
)
6303 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6304 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
6309 o
= &convert_optab_table
[i
];
6310 l
= convert_optab_libfunc (o
, (enum machine_mode
) j
,
6311 (enum machine_mode
) k
);
6314 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6315 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
6316 GET_RTX_NAME (o
->code
),
6325 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6326 CODE. Return 0 on failure. */
6329 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
6331 enum machine_mode mode
= GET_MODE (op1
);
6332 enum insn_code icode
;
6336 if (mode
== VOIDmode
)
6339 icode
= optab_handler (ctrap_optab
, mode
);
6340 if (icode
== CODE_FOR_nothing
)
6343 /* Some targets only accept a zero trap code. */
6344 if (!insn_operand_matches (icode
, 3, tcode
))
6347 do_pending_stack_adjust ();
6349 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
6354 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
6357 /* If that failed, then give up. */
6365 insn
= get_insns ();
6370 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6371 or unsigned operation code. */
6373 static enum rtx_code
6374 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
6386 code
= unsignedp
? LTU
: LT
;
6389 code
= unsignedp
? LEU
: LE
;
6392 code
= unsignedp
? GTU
: GT
;
6395 code
= unsignedp
? GEU
: GE
;
6398 case UNORDERED_EXPR
:
6429 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6430 unsigned operators. Do not generate compare instruction. */
6433 vector_compare_rtx (tree cond
, bool unsignedp
, enum insn_code icode
)
6435 struct expand_operand ops
[2];
6436 enum rtx_code rcode
;
6438 rtx rtx_op0
, rtx_op1
;
6440 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6441 ensures that condition is a relational operation. */
6442 gcc_assert (COMPARISON_CLASS_P (cond
));
6444 rcode
= get_rtx_code (TREE_CODE (cond
), unsignedp
);
6445 t_op0
= TREE_OPERAND (cond
, 0);
6446 t_op1
= TREE_OPERAND (cond
, 1);
6448 /* Expand operands. */
6449 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
6451 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
6454 create_input_operand (&ops
[0], rtx_op0
, GET_MODE (rtx_op0
));
6455 create_input_operand (&ops
[1], rtx_op1
, GET_MODE (rtx_op1
));
6456 if (!maybe_legitimize_operands (icode
, 4, 2, ops
))
6458 return gen_rtx_fmt_ee (rcode
, VOIDmode
, ops
[0].value
, ops
[1].value
);
6461 /* Return insn code for TYPE, the type of a VEC_COND_EXPR. */
6463 static inline enum insn_code
6464 get_vcond_icode (tree type
, enum machine_mode mode
)
6466 enum insn_code icode
= CODE_FOR_nothing
;
6468 if (TYPE_UNSIGNED (type
))
6469 icode
= direct_optab_handler (vcondu_optab
, mode
);
6471 icode
= direct_optab_handler (vcond_optab
, mode
);
6475 /* Return TRUE iff, appropriate vector insns are available
6476 for vector cond expr with type TYPE in VMODE mode. */
6479 expand_vec_cond_expr_p (tree type
, enum machine_mode vmode
)
6481 if (get_vcond_icode (type
, vmode
) == CODE_FOR_nothing
)
6486 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6490 expand_vec_cond_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
6493 struct expand_operand ops
[6];
6494 enum insn_code icode
;
6495 rtx comparison
, rtx_op1
, rtx_op2
;
6496 enum machine_mode mode
= TYPE_MODE (vec_cond_type
);
6497 bool unsignedp
= TYPE_UNSIGNED (vec_cond_type
);
6499 icode
= get_vcond_icode (vec_cond_type
, mode
);
6500 if (icode
== CODE_FOR_nothing
)
6503 comparison
= vector_compare_rtx (op0
, unsignedp
, icode
);
6504 rtx_op1
= expand_normal (op1
);
6505 rtx_op2
= expand_normal (op2
);
6507 create_output_operand (&ops
[0], target
, mode
);
6508 create_input_operand (&ops
[1], rtx_op1
, mode
);
6509 create_input_operand (&ops
[2], rtx_op2
, mode
);
6510 create_fixed_operand (&ops
[3], comparison
);
6511 create_fixed_operand (&ops
[4], XEXP (comparison
, 0));
6512 create_fixed_operand (&ops
[5], XEXP (comparison
, 1));
6513 expand_insn (icode
, 6, ops
);
6514 return ops
[0].value
;
6518 /* This is an internal subroutine of the other compare_and_swap expanders.
6519 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6520 operation. TARGET is an optional place to store the value result of
6521 the operation. ICODE is the particular instruction to expand. Return
6522 the result of the operation. */
6525 expand_val_compare_and_swap_1 (rtx mem
, rtx old_val
, rtx new_val
,
6526 rtx target
, enum insn_code icode
)
6528 struct expand_operand ops
[4];
6529 enum machine_mode mode
= GET_MODE (mem
);
6531 create_output_operand (&ops
[0], target
, mode
);
6532 create_fixed_operand (&ops
[1], mem
);
6533 /* OLD_VAL and NEW_VAL may have been promoted to a wider mode.
6534 Shrink them if so. */
6535 create_convert_operand_to (&ops
[2], old_val
, mode
, true);
6536 create_convert_operand_to (&ops
[3], new_val
, mode
, true);
6537 if (maybe_expand_insn (icode
, 4, ops
))
6538 return ops
[0].value
;
6542 /* Expand a compare-and-swap operation and return its value. */
6545 expand_val_compare_and_swap (rtx mem
, rtx old_val
, rtx new_val
, rtx target
)
6547 enum machine_mode mode
= GET_MODE (mem
);
6548 enum insn_code icode
6549 = direct_optab_handler (sync_compare_and_swap_optab
, mode
);
6551 if (icode
== CODE_FOR_nothing
)
6554 return expand_val_compare_and_swap_1 (mem
, old_val
, new_val
, target
, icode
);
6557 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6561 find_cc_set (rtx x
, const_rtx pat
, void *data
)
6563 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
6564 && GET_CODE (pat
) == SET
)
6566 rtx
*p_cc_reg
= (rtx
*) data
;
6567 gcc_assert (!*p_cc_reg
);
6572 /* Expand a compare-and-swap operation and store true into the result if
6573 the operation was successful and false otherwise. Return the result.
6574 Unlike other routines, TARGET is not optional. */
6577 expand_bool_compare_and_swap (rtx mem
, rtx old_val
, rtx new_val
, rtx target
)
6579 enum machine_mode mode
= GET_MODE (mem
);
6580 enum insn_code icode
;
6581 rtx subtarget
, seq
, cc_reg
;
6583 /* If the target supports a compare-and-swap pattern that simultaneously
6584 sets some flag for success, then use it. Otherwise use the regular
6585 compare-and-swap and follow that immediately with a compare insn. */
6586 icode
= direct_optab_handler (sync_compare_and_swap_optab
, mode
);
6587 if (icode
== CODE_FOR_nothing
)
6590 do_pending_stack_adjust ();
6594 subtarget
= expand_val_compare_and_swap_1 (mem
, old_val
, new_val
,
6597 if (subtarget
== NULL_RTX
)
6603 if (have_insn_for (COMPARE
, CCmode
))
6604 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
6608 /* We might be comparing against an old value. Try again. :-( */
6609 if (!cc_reg
&& MEM_P (old_val
))
6612 old_val
= force_reg (mode
, old_val
);
6619 return emit_store_flag_force (target
, EQ
, cc_reg
, const0_rtx
, VOIDmode
, 0, 1);
6621 return emit_store_flag_force (target
, EQ
, subtarget
, old_val
, VOIDmode
, 1, 1);
6624 /* This is a helper function for the other atomic operations. This function
6625 emits a loop that contains SEQ that iterates until a compare-and-swap
6626 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6627 a set of instructions that takes a value from OLD_REG as an input and
6628 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6629 set to the current contents of MEM. After SEQ, a compare-and-swap will
6630 attempt to update MEM with NEW_REG. The function returns true when the
6631 loop was generated successfully. */
6634 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
6636 enum machine_mode mode
= GET_MODE (mem
);
6637 enum insn_code icode
;
6638 rtx label
, cmp_reg
, subtarget
, cc_reg
;
6640 /* The loop we want to generate looks like
6646 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
6647 if (cmp_reg != old_reg)
6650 Note that we only do the plain load from memory once. Subsequent
6651 iterations use the value loaded by the compare-and-swap pattern. */
6653 label
= gen_label_rtx ();
6654 cmp_reg
= gen_reg_rtx (mode
);
6656 emit_move_insn (cmp_reg
, mem
);
6658 emit_move_insn (old_reg
, cmp_reg
);
6662 /* If the target supports a compare-and-swap pattern that simultaneously
6663 sets some flag for success, then use it. Otherwise use the regular
6664 compare-and-swap and follow that immediately with a compare insn. */
6665 icode
= direct_optab_handler (sync_compare_and_swap_optab
, mode
);
6666 if (icode
== CODE_FOR_nothing
)
6669 subtarget
= expand_val_compare_and_swap_1 (mem
, old_reg
, new_reg
,
6671 if (subtarget
== NULL_RTX
)
6675 if (have_insn_for (COMPARE
, CCmode
))
6676 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
6680 old_reg
= const0_rtx
;
6684 if (subtarget
!= cmp_reg
)
6685 emit_move_insn (cmp_reg
, subtarget
);
6688 /* ??? Mark this jump predicted not taken? */
6689 emit_cmp_and_jump_insns (cmp_reg
, old_reg
, NE
, const0_rtx
, GET_MODE (cmp_reg
), 1,
6694 /* This function generates the atomic operation MEM CODE= VAL. In this
6695 case, we do not care about any resulting value. Returns NULL if we
6696 cannot generate the operation. */
6699 expand_sync_operation (rtx mem
, rtx val
, enum rtx_code code
)
6701 enum machine_mode mode
= GET_MODE (mem
);
6702 enum insn_code icode
;
6705 /* Look to see if the target supports the operation directly. */
6709 icode
= direct_optab_handler (sync_add_optab
, mode
);
6712 icode
= direct_optab_handler (sync_ior_optab
, mode
);
6715 icode
= direct_optab_handler (sync_xor_optab
, mode
);
6718 icode
= direct_optab_handler (sync_and_optab
, mode
);
6721 icode
= direct_optab_handler (sync_nand_optab
, mode
);
6725 icode
= direct_optab_handler (sync_sub_optab
, mode
);
6726 if (icode
== CODE_FOR_nothing
|| CONST_INT_P (val
))
6728 icode
= direct_optab_handler (sync_add_optab
, mode
);
6729 if (icode
!= CODE_FOR_nothing
)
6731 val
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, 1);
6741 /* Generate the direct operation, if present. */
6742 if (icode
!= CODE_FOR_nothing
)
6744 struct expand_operand ops
[2];
6746 create_fixed_operand (&ops
[0], mem
);
6747 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6748 create_convert_operand_to (&ops
[1], val
, mode
, true);
6749 if (maybe_expand_insn (icode
, 2, ops
))
6753 /* Failing that, generate a compare-and-swap loop in which we perform the
6754 operation with normal arithmetic instructions. */
6755 if (direct_optab_handler (sync_compare_and_swap_optab
, mode
)
6756 != CODE_FOR_nothing
)
6758 rtx t0
= gen_reg_rtx (mode
), t1
;
6765 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
6766 true, OPTAB_LIB_WIDEN
);
6767 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
6770 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
,
6771 true, OPTAB_LIB_WIDEN
);
6772 insn
= get_insns ();
6775 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
6782 /* This function generates the atomic operation MEM CODE= VAL. In this
6783 case, we do care about the resulting value: if AFTER is true then
6784 return the value MEM holds after the operation, if AFTER is false
6785 then return the value MEM holds before the operation. TARGET is an
6786 optional place for the result value to be stored. */
6789 expand_sync_fetch_operation (rtx mem
, rtx val
, enum rtx_code code
,
6790 bool after
, rtx target
)
6792 enum machine_mode mode
= GET_MODE (mem
);
6793 enum insn_code old_code
, new_code
, icode
;
6797 /* Look to see if the target supports the operation directly. */
6801 old_code
= direct_optab_handler (sync_old_add_optab
, mode
);
6802 new_code
= direct_optab_handler (sync_new_add_optab
, mode
);
6805 old_code
= direct_optab_handler (sync_old_ior_optab
, mode
);
6806 new_code
= direct_optab_handler (sync_new_ior_optab
, mode
);
6809 old_code
= direct_optab_handler (sync_old_xor_optab
, mode
);
6810 new_code
= direct_optab_handler (sync_new_xor_optab
, mode
);
6813 old_code
= direct_optab_handler (sync_old_and_optab
, mode
);
6814 new_code
= direct_optab_handler (sync_new_and_optab
, mode
);
6817 old_code
= direct_optab_handler (sync_old_nand_optab
, mode
);
6818 new_code
= direct_optab_handler (sync_new_nand_optab
, mode
);
6822 old_code
= direct_optab_handler (sync_old_sub_optab
, mode
);
6823 new_code
= direct_optab_handler (sync_new_sub_optab
, mode
);
6824 if ((old_code
== CODE_FOR_nothing
&& new_code
== CODE_FOR_nothing
)
6825 || CONST_INT_P (val
))
6827 old_code
= direct_optab_handler (sync_old_add_optab
, mode
);
6828 new_code
= direct_optab_handler (sync_new_add_optab
, mode
);
6829 if (old_code
!= CODE_FOR_nothing
|| new_code
!= CODE_FOR_nothing
)
6831 val
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, 1);
6841 /* If the target does supports the proper new/old operation, great. But
6842 if we only support the opposite old/new operation, check to see if we
6843 can compensate. In the case in which the old value is supported, then
6844 we can always perform the operation again with normal arithmetic. In
6845 the case in which the new value is supported, then we can only handle
6846 this in the case the operation is reversible. */
6851 if (icode
== CODE_FOR_nothing
)
6854 if (icode
!= CODE_FOR_nothing
)
6861 if (icode
== CODE_FOR_nothing
6862 && (code
== PLUS
|| code
== MINUS
|| code
== XOR
))
6865 if (icode
!= CODE_FOR_nothing
)
6870 /* If we found something supported, great. */
6871 if (icode
!= CODE_FOR_nothing
)
6873 struct expand_operand ops
[3];
6875 create_output_operand (&ops
[0], target
, mode
);
6876 create_fixed_operand (&ops
[1], mem
);
6877 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6878 create_convert_operand_to (&ops
[2], val
, mode
, true);
6879 if (maybe_expand_insn (icode
, 3, ops
))
6881 target
= ops
[0].value
;
6883 /* If we need to compensate for using an operation with the
6884 wrong return value, do so now. */
6891 else if (code
== MINUS
)
6897 target
= expand_simple_binop (mode
, AND
, target
, val
,
6900 target
= expand_simple_unop (mode
, code
, target
,
6904 target
= expand_simple_binop (mode
, code
, target
, val
,
6913 /* Failing that, generate a compare-and-swap loop in which we perform the
6914 operation with normal arithmetic instructions. */
6915 if (direct_optab_handler (sync_compare_and_swap_optab
, mode
)
6916 != CODE_FOR_nothing
)
6918 rtx t0
= gen_reg_rtx (mode
), t1
;
6920 if (!target
|| !register_operand (target
, mode
))
6921 target
= gen_reg_rtx (mode
);
6926 emit_move_insn (target
, t0
);
6930 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
6931 true, OPTAB_LIB_WIDEN
);
6932 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
6935 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
,
6936 true, OPTAB_LIB_WIDEN
);
6938 emit_move_insn (target
, t1
);
6940 insn
= get_insns ();
6943 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
6950 /* This function expands a test-and-set operation. Ideally we atomically
6951 store VAL in MEM and return the previous value in MEM. Some targets
6952 may not support this operation and only support VAL with the constant 1;
6953 in this case while the return value will be 0/1, but the exact value
6954 stored in MEM is target defined. TARGET is an option place to stick
6955 the return value. */
6958 expand_sync_lock_test_and_set (rtx mem
, rtx val
, rtx target
)
6960 enum machine_mode mode
= GET_MODE (mem
);
6961 enum insn_code icode
;
6963 /* If the target supports the test-and-set directly, great. */
6964 icode
= direct_optab_handler (sync_lock_test_and_set_optab
, mode
);
6965 if (icode
!= CODE_FOR_nothing
)
6967 struct expand_operand ops
[3];
6969 create_output_operand (&ops
[0], target
, mode
);
6970 create_fixed_operand (&ops
[1], mem
);
6971 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6972 create_convert_operand_to (&ops
[2], val
, mode
, true);
6973 if (maybe_expand_insn (icode
, 3, ops
))
6974 return ops
[0].value
;
6977 /* Otherwise, use a compare-and-swap loop for the exchange. */
6978 if (direct_optab_handler (sync_compare_and_swap_optab
, mode
)
6979 != CODE_FOR_nothing
)
6981 if (!target
|| !register_operand (target
, mode
))
6982 target
= gen_reg_rtx (mode
);
6983 if (GET_MODE (val
) != VOIDmode
&& GET_MODE (val
) != mode
)
6984 val
= convert_modes (mode
, GET_MODE (val
), val
, 1);
6985 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
6992 /* Return true if OPERAND is suitable for operand number OPNO of
6993 instruction ICODE. */
6996 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
6998 return (!insn_data
[(int) icode
].operand
[opno
].predicate
6999 || (insn_data
[(int) icode
].operand
[opno
].predicate
7000 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
7003 /* Like maybe_legitimize_operand, but do not change the code of the
7004 current rtx value. */
7007 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
7008 struct expand_operand
*op
)
7010 /* See if the operand matches in its current form. */
7011 if (insn_operand_matches (icode
, opno
, op
->value
))
7014 /* If the operand is a memory whose address has no side effects,
7015 try forcing the address into a register. The check for side
7016 effects is important because force_reg cannot handle things
7017 like auto-modified addresses. */
7018 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
7019 && MEM_P (op
->value
)
7020 && !side_effects_p (XEXP (op
->value
, 0)))
7022 rtx addr
, mem
, last
;
7024 last
= get_last_insn ();
7025 addr
= force_reg (Pmode
, XEXP (op
->value
, 0));
7026 mem
= replace_equiv_address (op
->value
, addr
);
7027 if (insn_operand_matches (icode
, opno
, mem
))
7032 delete_insns_since (last
);
7038 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7039 on success, storing the new operand value back in OP. */
7042 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
7043 struct expand_operand
*op
)
7045 enum machine_mode mode
, imode
;
7046 bool old_volatile_ok
, result
;
7052 old_volatile_ok
= volatile_ok
;
7054 result
= maybe_legitimize_operand_same_code (icode
, opno
, op
);
7055 volatile_ok
= old_volatile_ok
;
7059 gcc_assert (mode
!= VOIDmode
);
7061 && op
->value
!= const0_rtx
7062 && GET_MODE (op
->value
) == mode
7063 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
7066 op
->value
= gen_reg_rtx (mode
);
7071 gcc_assert (mode
!= VOIDmode
);
7072 gcc_assert (GET_MODE (op
->value
) == VOIDmode
7073 || GET_MODE (op
->value
) == mode
);
7074 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
7077 op
->value
= copy_to_mode_reg (mode
, op
->value
);
7080 case EXPAND_CONVERT_TO
:
7081 gcc_assert (mode
!= VOIDmode
);
7082 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
7085 case EXPAND_CONVERT_FROM
:
7086 if (GET_MODE (op
->value
) != VOIDmode
)
7087 mode
= GET_MODE (op
->value
);
7089 /* The caller must tell us what mode this value has. */
7090 gcc_assert (mode
!= VOIDmode
);
7092 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7093 if (imode
!= VOIDmode
&& imode
!= mode
)
7095 op
->value
= convert_modes (imode
, mode
, op
->value
, op
->unsigned_p
);
7100 case EXPAND_ADDRESS
:
7101 gcc_assert (mode
!= VOIDmode
);
7102 op
->value
= convert_memory_address (mode
, op
->value
);
7105 case EXPAND_INTEGER
:
7106 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7107 if (mode
!= VOIDmode
&& const_int_operand (op
->value
, mode
))
7111 return insn_operand_matches (icode
, opno
, op
->value
);
7114 /* Make OP describe an input operand that should have the same value
7115 as VALUE, after any mode conversion that the target might request.
7116 TYPE is the type of VALUE. */
7119 create_convert_operand_from_type (struct expand_operand
*op
,
7120 rtx value
, tree type
)
7122 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
7123 TYPE_UNSIGNED (type
));
7126 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7127 of instruction ICODE. Return true on success, leaving the new operand
7128 values in the OPS themselves. Emit no code on failure. */
7131 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
7132 unsigned int nops
, struct expand_operand
*ops
)
7137 last
= get_last_insn ();
7138 for (i
= 0; i
< nops
; i
++)
7139 if (!maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
7141 delete_insns_since (last
);
7147 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7148 as its operands. Return the instruction pattern on success,
7149 and emit any necessary set-up code. Return null and emit no
7153 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
7154 struct expand_operand
*ops
)
7156 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
7157 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
7163 return GEN_FCN (icode
) (ops
[0].value
);
7165 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
7167 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
7169 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7172 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7173 ops
[3].value
, ops
[4].value
);
7175 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7176 ops
[3].value
, ops
[4].value
, ops
[5].value
);
7181 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7182 as its operands. Return true on success and emit no code on failure. */
7185 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
7186 struct expand_operand
*ops
)
7188 rtx pat
= maybe_gen_insn (icode
, nops
, ops
);
7197 /* Like maybe_expand_insn, but for jumps. */
7200 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7201 struct expand_operand
*ops
)
7203 rtx pat
= maybe_gen_insn (icode
, nops
, ops
);
7206 emit_jump_insn (pat
);
7212 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7216 expand_insn (enum insn_code icode
, unsigned int nops
,
7217 struct expand_operand
*ops
)
7219 if (!maybe_expand_insn (icode
, nops
, ops
))
7223 /* Like expand_insn, but for jumps. */
7226 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7227 struct expand_operand
*ops
)
7229 if (!maybe_expand_jump_insn (icode
, nops
, ops
))
7233 #include "gt-optabs.h"