PR c++/26266
[official-gcc.git] / gcc / tree-vrp.c
blobb6b6d409d0b92e9c2d650adfa8f1576e07eb15e3
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
274 /* If VAR is a default definition, the variable can take any value
275 in VAR's type. */
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
286 else
287 set_value_range_to_varying (vr);
290 return vr;
294 /* Update the value range and equivalence set for variable VAR to
295 NEW_VR. Return true if NEW_VR is different from VAR's previous
296 value.
298 NOTE: This function assumes that NEW_VR is a temporary value range
299 object created for the sole purpose of updating VAR's range. The
300 storage used by the equivalence set from NEW_VR will be freed by
301 this function. Do not call update_value_range when NEW_VR
302 is the range object associated with another SSA name. */
304 static inline bool
305 update_value_range (tree var, value_range_t *new_vr)
307 value_range_t *old_vr;
308 bool is_new;
310 /* Update the value range, if necessary. */
311 old_vr = get_value_range (var);
312 is_new = old_vr->type != new_vr->type
313 || old_vr->min != new_vr->min
314 || old_vr->max != new_vr->max
315 || (old_vr->equiv == NULL && new_vr->equiv)
316 || (old_vr->equiv && new_vr->equiv == NULL)
317 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
319 if (is_new)
320 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
321 new_vr->equiv);
323 BITMAP_FREE (new_vr->equiv);
324 new_vr->equiv = NULL;
326 return is_new;
330 /* Add VAR and VAR's equivalence set to EQUIV. */
332 static void
333 add_equivalence (bitmap equiv, tree var)
335 unsigned ver = SSA_NAME_VERSION (var);
336 value_range_t *vr = vr_value[ver];
338 bitmap_set_bit (equiv, ver);
339 if (vr && vr->equiv)
340 bitmap_ior_into (equiv, vr->equiv);
344 /* Return true if VR is ~[0, 0]. */
346 static inline bool
347 range_is_nonnull (value_range_t *vr)
349 return vr->type == VR_ANTI_RANGE
350 && integer_zerop (vr->min)
351 && integer_zerop (vr->max);
355 /* Return true if VR is [0, 0]. */
357 static inline bool
358 range_is_null (value_range_t *vr)
360 return vr->type == VR_RANGE
361 && integer_zerop (vr->min)
362 && integer_zerop (vr->max);
366 /* Return true if value range VR involves at least one symbol. */
368 static inline bool
369 symbolic_range_p (value_range_t *vr)
371 return (!is_gimple_min_invariant (vr->min)
372 || !is_gimple_min_invariant (vr->max));
375 /* Like tree_expr_nonnegative_p, but this function uses value ranges
376 obtained so far. */
378 static bool
379 vrp_expr_computes_nonnegative (tree expr)
381 return tree_expr_nonnegative_p (expr);
384 /* Like tree_expr_nonzero_p, but this function uses value ranges
385 obtained so far. */
387 static bool
388 vrp_expr_computes_nonzero (tree expr)
390 if (tree_expr_nonzero_p (expr))
391 return true;
393 /* If we have an expression of the form &X->a, then the expression
394 is nonnull if X is nonnull. */
395 if (TREE_CODE (expr) == ADDR_EXPR)
397 tree base = get_base_address (TREE_OPERAND (expr, 0));
399 if (base != NULL_TREE
400 && TREE_CODE (base) == INDIRECT_REF
401 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
403 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
404 if (range_is_nonnull (vr))
405 return true;
409 return false;
413 /* Compare two values VAL1 and VAL2. Return
415 -2 if VAL1 and VAL2 cannot be compared at compile-time,
416 -1 if VAL1 < VAL2,
417 0 if VAL1 == VAL2,
418 +1 if VAL1 > VAL2, and
419 +2 if VAL1 != VAL2
421 This is similar to tree_int_cst_compare but supports pointer values
422 and values that cannot be compared at compile time. */
424 static int
425 compare_values (tree val1, tree val2)
427 if (val1 == val2)
428 return 0;
430 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
431 both integers. */
432 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
433 == POINTER_TYPE_P (TREE_TYPE (val2)));
435 /* Do some limited symbolic comparisons. */
436 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
438 /* We can determine some comparisons against +INF and -INF even
439 if the other value is an expression. */
440 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
441 && TREE_CODE (val2) == MINUS_EXPR)
443 /* +INF > NAME - CST. */
444 return 1;
446 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
447 && TREE_CODE (val2) == PLUS_EXPR)
449 /* -INF < NAME + CST. */
450 return -1;
452 else if (TREE_CODE (val1) == MINUS_EXPR
453 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
455 /* NAME - CST < +INF. */
456 return -1;
458 else if (TREE_CODE (val1) == PLUS_EXPR
459 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
461 /* NAME + CST > -INF. */
462 return 1;
466 if ((TREE_CODE (val1) == SSA_NAME
467 || TREE_CODE (val1) == PLUS_EXPR
468 || TREE_CODE (val1) == MINUS_EXPR)
469 && (TREE_CODE (val2) == SSA_NAME
470 || TREE_CODE (val2) == PLUS_EXPR
471 || TREE_CODE (val2) == MINUS_EXPR))
473 tree n1, c1, n2, c2;
475 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
476 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
477 same name, return -2. */
478 if (TREE_CODE (val1) == SSA_NAME)
480 n1 = val1;
481 c1 = NULL_TREE;
483 else
485 n1 = TREE_OPERAND (val1, 0);
486 c1 = TREE_OPERAND (val1, 1);
489 if (TREE_CODE (val2) == SSA_NAME)
491 n2 = val2;
492 c2 = NULL_TREE;
494 else
496 n2 = TREE_OPERAND (val2, 0);
497 c2 = TREE_OPERAND (val2, 1);
500 /* Both values must use the same name. */
501 if (n1 != n2)
502 return -2;
504 if (TREE_CODE (val1) == SSA_NAME)
506 if (TREE_CODE (val2) == SSA_NAME)
507 /* NAME == NAME */
508 return 0;
509 else if (TREE_CODE (val2) == PLUS_EXPR)
510 /* NAME < NAME + CST */
511 return -1;
512 else if (TREE_CODE (val2) == MINUS_EXPR)
513 /* NAME > NAME - CST */
514 return 1;
516 else if (TREE_CODE (val1) == PLUS_EXPR)
518 if (TREE_CODE (val2) == SSA_NAME)
519 /* NAME + CST > NAME */
520 return 1;
521 else if (TREE_CODE (val2) == PLUS_EXPR)
522 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
523 return compare_values (c1, c2);
524 else if (TREE_CODE (val2) == MINUS_EXPR)
525 /* NAME + CST1 > NAME - CST2 */
526 return 1;
528 else if (TREE_CODE (val1) == MINUS_EXPR)
530 if (TREE_CODE (val2) == SSA_NAME)
531 /* NAME - CST < NAME */
532 return -1;
533 else if (TREE_CODE (val2) == PLUS_EXPR)
534 /* NAME - CST1 < NAME + CST2 */
535 return -1;
536 else if (TREE_CODE (val2) == MINUS_EXPR)
537 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
538 C1 and C2 are swapped in the call to compare_values. */
539 return compare_values (c2, c1);
542 gcc_unreachable ();
545 /* We cannot compare non-constants. */
546 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
547 return -2;
549 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
551 /* We cannot compare overflowed values. */
552 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
553 return -2;
555 return tree_int_cst_compare (val1, val2);
557 else
559 tree t;
561 /* First see if VAL1 and VAL2 are not the same. */
562 if (val1 == val2 || operand_equal_p (val1, val2, 0))
563 return 0;
565 /* If VAL1 is a lower address than VAL2, return -1. */
566 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
567 if (t == boolean_true_node)
568 return -1;
570 /* If VAL1 is a higher address than VAL2, return +1. */
571 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
572 if (t == boolean_true_node)
573 return 1;
575 /* If VAL1 is different than VAL2, return +2. */
576 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
577 if (t == boolean_true_node)
578 return 2;
580 return -2;
585 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
586 0 if VAL is not inside VR,
587 -2 if we cannot tell either way.
589 FIXME, the current semantics of this functions are a bit quirky
590 when taken in the context of VRP. In here we do not care
591 about VR's type. If VR is the anti-range ~[3, 5] the call
592 value_inside_range (4, VR) will return 1.
594 This is counter-intuitive in a strict sense, but the callers
595 currently expect this. They are calling the function
596 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
597 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
598 themselves.
600 This also applies to value_ranges_intersect_p and
601 range_includes_zero_p. The semantics of VR_RANGE and
602 VR_ANTI_RANGE should be encoded here, but that also means
603 adapting the users of these functions to the new semantics. */
605 static inline int
606 value_inside_range (tree val, value_range_t *vr)
608 int cmp1, cmp2;
610 cmp1 = compare_values (val, vr->min);
611 if (cmp1 == -2 || cmp1 == 2)
612 return -2;
614 cmp2 = compare_values (val, vr->max);
615 if (cmp2 == -2 || cmp2 == 2)
616 return -2;
618 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
622 /* Return true if value ranges VR0 and VR1 have a non-empty
623 intersection. */
625 static inline bool
626 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
628 return (value_inside_range (vr1->min, vr0) == 1
629 || value_inside_range (vr1->max, vr0) == 1
630 || value_inside_range (vr0->min, vr1) == 1
631 || value_inside_range (vr0->max, vr1) == 1);
635 /* Return true if VR includes the value zero, false otherwise. FIXME,
636 currently this will return false for an anti-range like ~[-4, 3].
637 This will be wrong when the semantics of value_inside_range are
638 modified (currently the users of this function expect these
639 semantics). */
641 static inline bool
642 range_includes_zero_p (value_range_t *vr)
644 tree zero;
646 gcc_assert (vr->type != VR_UNDEFINED
647 && vr->type != VR_VARYING
648 && !symbolic_range_p (vr));
650 zero = build_int_cst (TREE_TYPE (vr->min), 0);
651 return (value_inside_range (zero, vr) == 1);
654 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
655 false otherwise or if no value range information is available. */
657 bool
658 ssa_name_nonnegative_p (tree t)
660 value_range_t *vr = get_value_range (t);
662 if (!vr)
663 return false;
665 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
666 which would return a useful value should be encoded as a VR_RANGE. */
667 if (vr->type == VR_RANGE)
669 int result = compare_values (vr->min, integer_zero_node);
671 return (result == 0 || result == 1);
673 return false;
676 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
677 false otherwise or if no value range information is available. */
679 bool
680 ssa_name_nonzero_p (tree t)
682 value_range_t *vr = get_value_range (t);
684 if (!vr)
685 return false;
687 /* A VR_RANGE which does not include zero is a nonzero value. */
688 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
689 return ! range_includes_zero_p (vr);
691 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
692 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
693 return range_includes_zero_p (vr);
695 return false;
699 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
700 initially consider X_i and Y_j equivalent, so the equivalence set
701 of Y_j is added to the equivalence set of X_i. However, it is
702 possible to have a chain of ASSERT_EXPRs whose predicates are
703 actually incompatible. This is usually the result of nesting of
704 contradictory if-then-else statements. For instance, in PR 24670:
706 count_4 has range [-INF, 63]
708 if (count_4 != 0)
710 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
711 if (count_19 > 63)
713 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
714 if (count_18 <= 63)
719 Notice that 'if (count_19 > 63)' is trivially false and will be
720 folded out at the end. However, during propagation, the flowgraph
721 is not cleaned up and so, VRP will evaluate predicates more
722 predicates than necessary, so it must support these
723 inconsistencies. The problem here is that because of the chaining
724 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
725 Since count_4 has an incompatible range, we ICE when evaluating the
726 ranges in the equivalency set. So, we need to remove count_4 from
727 it. */
729 static void
730 fix_equivalence_set (value_range_t *vr_p)
732 bitmap_iterator bi;
733 unsigned i;
734 bitmap e = vr_p->equiv;
735 bitmap to_remove = BITMAP_ALLOC (NULL);
737 /* Only detect inconsistencies on numeric ranges. */
738 if (vr_p->type == VR_VARYING
739 || vr_p->type == VR_UNDEFINED
740 || symbolic_range_p (vr_p))
741 return;
743 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
745 value_range_t *equiv_vr = vr_value[i];
747 if (equiv_vr->type == VR_VARYING
748 || equiv_vr->type == VR_UNDEFINED
749 || symbolic_range_p (equiv_vr))
750 continue;
752 if (equiv_vr->type == VR_RANGE
753 && vr_p->type == VR_RANGE
754 && !value_ranges_intersect_p (vr_p, equiv_vr))
755 bitmap_set_bit (to_remove, i);
756 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
757 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
759 /* A range and an anti-range have an empty intersection if
760 their end points are the same. FIXME,
761 value_ranges_intersect_p should handle this
762 automatically. */
763 if (compare_values (equiv_vr->min, vr_p->min) == 0
764 && compare_values (equiv_vr->max, vr_p->max) == 0)
765 bitmap_set_bit (to_remove, i);
769 bitmap_and_compl_into (vr_p->equiv, to_remove);
770 BITMAP_FREE (to_remove);
774 /* Extract value range information from an ASSERT_EXPR EXPR and store
775 it in *VR_P. */
777 static void
778 extract_range_from_assert (value_range_t *vr_p, tree expr)
780 tree var, cond, limit, min, max, type;
781 value_range_t *var_vr, *limit_vr;
782 enum tree_code cond_code;
784 var = ASSERT_EXPR_VAR (expr);
785 cond = ASSERT_EXPR_COND (expr);
787 gcc_assert (COMPARISON_CLASS_P (cond));
789 /* Find VAR in the ASSERT_EXPR conditional. */
790 if (var == TREE_OPERAND (cond, 0))
792 /* If the predicate is of the form VAR COMP LIMIT, then we just
793 take LIMIT from the RHS and use the same comparison code. */
794 limit = TREE_OPERAND (cond, 1);
795 cond_code = TREE_CODE (cond);
797 else
799 /* If the predicate is of the form LIMIT COMP VAR, then we need
800 to flip around the comparison code to create the proper range
801 for VAR. */
802 limit = TREE_OPERAND (cond, 0);
803 cond_code = swap_tree_comparison (TREE_CODE (cond));
806 type = TREE_TYPE (limit);
807 gcc_assert (limit != var);
809 /* For pointer arithmetic, we only keep track of pointer equality
810 and inequality. */
811 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
813 set_value_range_to_varying (vr_p);
814 return;
817 /* If LIMIT is another SSA name and LIMIT has a range of its own,
818 try to use LIMIT's range to avoid creating symbolic ranges
819 unnecessarily. */
820 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
822 /* LIMIT's range is only interesting if it has any useful information. */
823 if (limit_vr
824 && (limit_vr->type == VR_UNDEFINED
825 || limit_vr->type == VR_VARYING
826 || symbolic_range_p (limit_vr)))
827 limit_vr = NULL;
829 /* Special handling for integral types with super-types. Some FEs
830 construct integral types derived from other types and restrict
831 the range of values these new types may take.
833 It may happen that LIMIT is actually smaller than TYPE's minimum
834 value. For instance, the Ada FE is generating code like this
835 during bootstrap:
837 D.1480_32 = nam_30 - 300000361;
838 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
839 <L112>:;
840 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
842 All the names are of type types__name_id___XDLU_300000000__399999999
843 which has min == 300000000 and max == 399999999. This means that
844 the ASSERT_EXPR would try to create the range [3000000, 1] which
845 is invalid.
847 The fact that the type specifies MIN and MAX values does not
848 automatically mean that every variable of that type will always
849 be within that range, so the predicate may well be true at run
850 time. If we had symbolic -INF and +INF values, we could
851 represent this range, but we currently represent -INF and +INF
852 using the type's min and max values.
854 So, the only sensible thing we can do for now is set the
855 resulting range to VR_VARYING. TODO, would having symbolic -INF
856 and +INF values be worth the trouble? */
857 if (TREE_CODE (limit) != SSA_NAME
858 && INTEGRAL_TYPE_P (type)
859 && TREE_TYPE (type))
861 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
863 tree type_min = TYPE_MIN_VALUE (type);
864 int cmp = compare_values (limit, type_min);
866 /* For < or <= comparisons, if LIMIT is smaller than
867 TYPE_MIN, set the range to VR_VARYING. */
868 if (cmp == -1 || cmp == 0)
870 set_value_range_to_varying (vr_p);
871 return;
874 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
876 tree type_max = TYPE_MIN_VALUE (type);
877 int cmp = compare_values (limit, type_max);
879 /* For > or >= comparisons, if LIMIT is bigger than
880 TYPE_MAX, set the range to VR_VARYING. */
881 if (cmp == 1 || cmp == 0)
883 set_value_range_to_varying (vr_p);
884 return;
889 /* Initially, the new range has the same set of equivalences of
890 VAR's range. This will be revised before returning the final
891 value. Since assertions may be chained via mutually exclusive
892 predicates, we will need to trim the set of equivalences before
893 we are done. */
894 gcc_assert (vr_p->equiv == NULL);
895 vr_p->equiv = BITMAP_ALLOC (NULL);
896 add_equivalence (vr_p->equiv, var);
898 /* Extract a new range based on the asserted comparison for VAR and
899 LIMIT's value range. Notice that if LIMIT has an anti-range, we
900 will only use it for equality comparisons (EQ_EXPR). For any
901 other kind of assertion, we cannot derive a range from LIMIT's
902 anti-range that can be used to describe the new range. For
903 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
904 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
905 no single range for x_2 that could describe LE_EXPR, so we might
906 as well build the range [b_4, +INF] for it. */
907 if (cond_code == EQ_EXPR)
909 enum value_range_type range_type;
911 if (limit_vr)
913 range_type = limit_vr->type;
914 min = limit_vr->min;
915 max = limit_vr->max;
917 else
919 range_type = VR_RANGE;
920 min = limit;
921 max = limit;
924 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
926 /* When asserting the equality VAR == LIMIT and LIMIT is another
927 SSA name, the new range will also inherit the equivalence set
928 from LIMIT. */
929 if (TREE_CODE (limit) == SSA_NAME)
930 add_equivalence (vr_p->equiv, limit);
932 else if (cond_code == NE_EXPR)
934 /* As described above, when LIMIT's range is an anti-range and
935 this assertion is an inequality (NE_EXPR), then we cannot
936 derive anything from the anti-range. For instance, if
937 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
938 not imply that VAR's range is [0, 0]. So, in the case of
939 anti-ranges, we just assert the inequality using LIMIT and
940 not its anti-range.
942 If LIMIT_VR is a range, we can only use it to build a new
943 anti-range if LIMIT_VR is a single-valued range. For
944 instance, if LIMIT_VR is [0, 1], the predicate
945 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
946 Rather, it means that for value 0 VAR should be ~[0, 0]
947 and for value 1, VAR should be ~[1, 1]. We cannot
948 represent these ranges.
950 The only situation in which we can build a valid
951 anti-range is when LIMIT_VR is a single-valued range
952 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
953 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
954 if (limit_vr
955 && limit_vr->type == VR_RANGE
956 && compare_values (limit_vr->min, limit_vr->max) == 0)
958 min = limit_vr->min;
959 max = limit_vr->max;
961 else
963 /* In any other case, we cannot use LIMIT's range to build a
964 valid anti-range. */
965 min = max = limit;
968 /* If MIN and MAX cover the whole range for their type, then
969 just use the original LIMIT. */
970 if (INTEGRAL_TYPE_P (type)
971 && min == TYPE_MIN_VALUE (type)
972 && max == TYPE_MAX_VALUE (type))
973 min = max = limit;
975 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
977 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
979 min = TYPE_MIN_VALUE (type);
981 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
982 max = limit;
983 else
985 /* If LIMIT_VR is of the form [N1, N2], we need to build the
986 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
987 LT_EXPR. */
988 max = limit_vr->max;
991 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
992 if (cond_code == LT_EXPR)
994 tree one = build_int_cst (type, 1);
995 max = fold_build2 (MINUS_EXPR, type, max, one);
998 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1000 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1002 max = TYPE_MAX_VALUE (type);
1004 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1005 min = limit;
1006 else
1008 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1009 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1010 GT_EXPR. */
1011 min = limit_vr->min;
1014 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1015 if (cond_code == GT_EXPR)
1017 tree one = build_int_cst (type, 1);
1018 min = fold_build2 (PLUS_EXPR, type, min, one);
1021 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1023 else
1024 gcc_unreachable ();
1026 /* If VAR already had a known range, it may happen that the new
1027 range we have computed and VAR's range are not compatible. For
1028 instance,
1030 if (p_5 == NULL)
1031 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1032 x_7 = p_6->fld;
1033 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1035 While the above comes from a faulty program, it will cause an ICE
1036 later because p_8 and p_6 will have incompatible ranges and at
1037 the same time will be considered equivalent. A similar situation
1038 would arise from
1040 if (i_5 > 10)
1041 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1042 if (i_5 < 5)
1043 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1045 Again i_6 and i_7 will have incompatible ranges. It would be
1046 pointless to try and do anything with i_7's range because
1047 anything dominated by 'if (i_5 < 5)' will be optimized away.
1048 Note, due to the wa in which simulation proceeds, the statement
1049 i_7 = ASSERT_EXPR <...> we would never be visited because the
1050 conditional 'if (i_5 < 5)' always evaluates to false. However,
1051 this extra check does not hurt and may protect against future
1052 changes to VRP that may get into a situation similar to the
1053 NULL pointer dereference example.
1055 Note that these compatibility tests are only needed when dealing
1056 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1057 are both anti-ranges, they will always be compatible, because two
1058 anti-ranges will always have a non-empty intersection. */
1060 var_vr = get_value_range (var);
1062 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1063 ranges or anti-ranges. */
1064 if (vr_p->type == VR_VARYING
1065 || vr_p->type == VR_UNDEFINED
1066 || var_vr->type == VR_VARYING
1067 || var_vr->type == VR_UNDEFINED
1068 || symbolic_range_p (vr_p)
1069 || symbolic_range_p (var_vr))
1070 goto done;
1072 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1074 /* If the two ranges have a non-empty intersection, we can
1075 refine the resulting range. Since the assert expression
1076 creates an equivalency and at the same time it asserts a
1077 predicate, we can take the intersection of the two ranges to
1078 get better precision. */
1079 if (value_ranges_intersect_p (var_vr, vr_p))
1081 /* Use the larger of the two minimums. */
1082 if (compare_values (vr_p->min, var_vr->min) == -1)
1083 min = var_vr->min;
1084 else
1085 min = vr_p->min;
1087 /* Use the smaller of the two maximums. */
1088 if (compare_values (vr_p->max, var_vr->max) == 1)
1089 max = var_vr->max;
1090 else
1091 max = vr_p->max;
1093 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1095 else
1097 /* The two ranges do not intersect, set the new range to
1098 VARYING, because we will not be able to do anything
1099 meaningful with it. */
1100 set_value_range_to_varying (vr_p);
1103 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1104 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1106 /* A range and an anti-range will cancel each other only if
1107 their ends are the same. For instance, in the example above,
1108 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1109 so VR_P should be set to VR_VARYING. */
1110 if (compare_values (var_vr->min, vr_p->min) == 0
1111 && compare_values (var_vr->max, vr_p->max) == 0)
1112 set_value_range_to_varying (vr_p);
1113 else
1115 tree min, max, anti_min, anti_max, real_min, real_max;
1117 /* We want to compute the logical AND of the two ranges;
1118 there are three cases to consider.
1121 1. The VR_ANTI_RANGE range is competely within the
1122 VR_RANGE and the endpoints of the ranges are
1123 different. In that case the resulting range
1124 should be whichever range is more precise.
1125 Typically that will be the VR_RANGE.
1127 2. The VR_ANTI_RANGE is completely disjoint from
1128 the VR_RANGE. In this case the resulting range
1129 should be the VR_RANGE.
1131 3. There is some overlap between the VR_ANTI_RANGE
1132 and the VR_RANGE.
1134 3a. If the high limit of the VR_ANTI_RANGE resides
1135 within the VR_RANGE, then the result is a new
1136 VR_RANGE starting at the high limit of the
1137 the VR_ANTI_RANGE + 1 and extending to the
1138 high limit of the original VR_RANGE.
1140 3b. If the low limit of the VR_ANTI_RANGE resides
1141 within the VR_RANGE, then the result is a new
1142 VR_RANGE starting at the low limit of the original
1143 VR_RANGE and extending to the low limit of the
1144 VR_ANTI_RANGE - 1. */
1145 if (vr_p->type == VR_ANTI_RANGE)
1147 anti_min = vr_p->min;
1148 anti_max = vr_p->max;
1149 real_min = var_vr->min;
1150 real_max = var_vr->max;
1152 else
1154 anti_min = var_vr->min;
1155 anti_max = var_vr->max;
1156 real_min = vr_p->min;
1157 real_max = vr_p->max;
1161 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1162 not including any endpoints. */
1163 if (compare_values (anti_max, real_max) == -1
1164 && compare_values (anti_min, real_min) == 1)
1166 set_value_range (vr_p, VR_RANGE, real_min,
1167 real_max, vr_p->equiv);
1169 /* Case 2, VR_ANTI_RANGE completely disjoint from
1170 VR_RANGE. */
1171 else if (compare_values (anti_min, real_max) == 1
1172 || compare_values (anti_max, real_min) == -1)
1174 set_value_range (vr_p, VR_RANGE, real_min,
1175 real_max, vr_p->equiv);
1177 /* Case 3a, the anti-range extends into the low
1178 part of the real range. Thus creating a new
1179 low for the real reange. */
1180 else if ((compare_values (anti_max, real_min) == 1
1181 || compare_values (anti_max, real_min) == 0)
1182 && compare_values (anti_max, real_max) == -1)
1184 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1185 anti_max,
1186 build_int_cst (TREE_TYPE (var_vr->min), 1));
1187 max = real_max;
1188 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1190 /* Case 3b, the anti-range extends into the high
1191 part of the real range. Thus creating a new
1192 higher for the real reange. */
1193 else if (compare_values (anti_min, real_min) == 1
1194 && (compare_values (anti_min, real_max) == -1
1195 || compare_values (anti_min, real_max) == 0))
1197 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1198 anti_min,
1199 build_int_cst (TREE_TYPE (var_vr->min), 1));
1200 min = real_min;
1201 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1206 /* Remove names from the equivalence set that have ranges
1207 incompatible with VR_P. */
1208 done:
1209 fix_equivalence_set (vr_p);
1213 /* Extract range information from SSA name VAR and store it in VR. If
1214 VAR has an interesting range, use it. Otherwise, create the
1215 range [VAR, VAR] and return it. This is useful in situations where
1216 we may have conditionals testing values of VARYING names. For
1217 instance,
1219 x_3 = y_5;
1220 if (x_3 > y_5)
1223 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1224 always false. */
1226 static void
1227 extract_range_from_ssa_name (value_range_t *vr, tree var)
1229 value_range_t *var_vr = get_value_range (var);
1231 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1232 copy_value_range (vr, var_vr);
1233 else
1234 set_value_range (vr, VR_RANGE, var, var, NULL);
1236 add_equivalence (vr->equiv, var);
1240 /* Wrapper around int_const_binop. If the operation overflows and we
1241 are not using wrapping arithmetic, then adjust the result to be
1242 -INF or +INF depending on CODE, VAL1 and VAL2. */
1244 static inline tree
1245 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1247 tree res;
1249 if (flag_wrapv)
1250 return int_const_binop (code, val1, val2, 0);
1252 /* If we are not using wrapping arithmetic, operate symbolically
1253 on -INF and +INF. */
1254 res = int_const_binop (code, val1, val2, 0);
1256 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1258 int checkz = compare_values (res, val1);
1260 /* Ensure that res = val1 [+*] val2 >= val1
1261 or that res = val1 - val2 <= val1. */
1262 if (((code == PLUS_EXPR || code == MULT_EXPR)
1263 && !(checkz == 1 || checkz == 0))
1264 || (code == MINUS_EXPR
1265 && !(checkz == 0 || checkz == -1)))
1267 res = copy_node (res);
1268 TREE_OVERFLOW (res) = 1;
1271 else if (TREE_OVERFLOW (res)
1272 && !TREE_OVERFLOW (val1)
1273 && !TREE_OVERFLOW (val2))
1275 /* If the operation overflowed but neither VAL1 nor VAL2 are
1276 overflown, return -INF or +INF depending on the operation
1277 and the combination of signs of the operands. */
1278 int sgn1 = tree_int_cst_sgn (val1);
1279 int sgn2 = tree_int_cst_sgn (val2);
1281 /* Notice that we only need to handle the restricted set of
1282 operations handled by extract_range_from_binary_expr.
1283 Among them, only multiplication, addition and subtraction
1284 can yield overflow without overflown operands because we
1285 are working with integral types only... except in the
1286 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1287 for division too. */
1289 /* For multiplication, the sign of the overflow is given
1290 by the comparison of the signs of the operands. */
1291 if ((code == MULT_EXPR && sgn1 == sgn2)
1292 /* For addition, the operands must be of the same sign
1293 to yield an overflow. Its sign is therefore that
1294 of one of the operands, for example the first. */
1295 || (code == PLUS_EXPR && sgn1 > 0)
1296 /* For subtraction, the operands must be of different
1297 signs to yield an overflow. Its sign is therefore
1298 that of the first operand or the opposite of that
1299 of the second operand. A first operand of 0 counts
1300 as positive here, for the corner case 0 - (-INF),
1301 which overflows, but must yield +INF. */
1302 || (code == MINUS_EXPR && sgn1 >= 0)
1303 /* For division, the only case is -INF / -1 = +INF. */
1304 || code == TRUNC_DIV_EXPR
1305 || code == FLOOR_DIV_EXPR
1306 || code == CEIL_DIV_EXPR
1307 || code == EXACT_DIV_EXPR
1308 || code == ROUND_DIV_EXPR)
1309 return TYPE_MAX_VALUE (TREE_TYPE (res));
1310 else
1311 return TYPE_MIN_VALUE (TREE_TYPE (res));
1314 return res;
1318 /* Extract range information from a binary expression EXPR based on
1319 the ranges of each of its operands and the expression code. */
1321 static void
1322 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1324 enum tree_code code = TREE_CODE (expr);
1325 enum value_range_type type;
1326 tree op0, op1, min, max;
1327 int cmp;
1328 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1329 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1331 /* Not all binary expressions can be applied to ranges in a
1332 meaningful way. Handle only arithmetic operations. */
1333 if (code != PLUS_EXPR
1334 && code != MINUS_EXPR
1335 && code != MULT_EXPR
1336 && code != TRUNC_DIV_EXPR
1337 && code != FLOOR_DIV_EXPR
1338 && code != CEIL_DIV_EXPR
1339 && code != EXACT_DIV_EXPR
1340 && code != ROUND_DIV_EXPR
1341 && code != MIN_EXPR
1342 && code != MAX_EXPR
1343 && code != BIT_AND_EXPR
1344 && code != TRUTH_ANDIF_EXPR
1345 && code != TRUTH_ORIF_EXPR
1346 && code != TRUTH_AND_EXPR
1347 && code != TRUTH_OR_EXPR)
1349 set_value_range_to_varying (vr);
1350 return;
1353 /* Get value ranges for each operand. For constant operands, create
1354 a new value range with the operand to simplify processing. */
1355 op0 = TREE_OPERAND (expr, 0);
1356 if (TREE_CODE (op0) == SSA_NAME)
1357 vr0 = *(get_value_range (op0));
1358 else if (is_gimple_min_invariant (op0))
1359 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1360 else
1361 set_value_range_to_varying (&vr0);
1363 op1 = TREE_OPERAND (expr, 1);
1364 if (TREE_CODE (op1) == SSA_NAME)
1365 vr1 = *(get_value_range (op1));
1366 else if (is_gimple_min_invariant (op1))
1367 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1368 else
1369 set_value_range_to_varying (&vr1);
1371 /* If either range is UNDEFINED, so is the result. */
1372 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1374 set_value_range_to_undefined (vr);
1375 return;
1378 /* The type of the resulting value range defaults to VR0.TYPE. */
1379 type = vr0.type;
1381 /* Refuse to operate on VARYING ranges, ranges of different kinds
1382 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1383 because we may be able to derive a useful range even if one of
1384 the operands is VR_VARYING or symbolic range. TODO, we may be
1385 able to derive anti-ranges in some cases. */
1386 if (code != BIT_AND_EXPR
1387 && code != TRUTH_AND_EXPR
1388 && code != TRUTH_OR_EXPR
1389 && (vr0.type == VR_VARYING
1390 || vr1.type == VR_VARYING
1391 || vr0.type != vr1.type
1392 || symbolic_range_p (&vr0)
1393 || symbolic_range_p (&vr1)))
1395 set_value_range_to_varying (vr);
1396 return;
1399 /* Now evaluate the expression to determine the new range. */
1400 if (POINTER_TYPE_P (TREE_TYPE (expr))
1401 || POINTER_TYPE_P (TREE_TYPE (op0))
1402 || POINTER_TYPE_P (TREE_TYPE (op1)))
1404 /* For pointer types, we are really only interested in asserting
1405 whether the expression evaluates to non-NULL. FIXME, we used
1406 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1407 ivopts is generating expressions with pointer multiplication
1408 in them. */
1409 if (code == PLUS_EXPR)
1411 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1412 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1413 else if (range_is_null (&vr0) && range_is_null (&vr1))
1414 set_value_range_to_null (vr, TREE_TYPE (expr));
1415 else
1416 set_value_range_to_varying (vr);
1418 else
1420 /* Subtracting from a pointer, may yield 0, so just drop the
1421 resulting range to varying. */
1422 set_value_range_to_varying (vr);
1425 return;
1428 /* For integer ranges, apply the operation to each end of the
1429 range and see what we end up with. */
1430 if (code == TRUTH_ANDIF_EXPR
1431 || code == TRUTH_ORIF_EXPR
1432 || code == TRUTH_AND_EXPR
1433 || code == TRUTH_OR_EXPR)
1435 /* If one of the operands is zero, we know that the whole
1436 expression evaluates zero. */
1437 if (code == TRUTH_AND_EXPR
1438 && ((vr0.type == VR_RANGE
1439 && integer_zerop (vr0.min)
1440 && integer_zerop (vr0.max))
1441 || (vr1.type == VR_RANGE
1442 && integer_zerop (vr1.min)
1443 && integer_zerop (vr1.max))))
1445 type = VR_RANGE;
1446 min = max = build_int_cst (TREE_TYPE (expr), 0);
1448 /* If one of the operands is one, we know that the whole
1449 expression evaluates one. */
1450 else if (code == TRUTH_OR_EXPR
1451 && ((vr0.type == VR_RANGE
1452 && integer_onep (vr0.min)
1453 && integer_onep (vr0.max))
1454 || (vr1.type == VR_RANGE
1455 && integer_onep (vr1.min)
1456 && integer_onep (vr1.max))))
1458 type = VR_RANGE;
1459 min = max = build_int_cst (TREE_TYPE (expr), 1);
1461 else if (vr0.type != VR_VARYING
1462 && vr1.type != VR_VARYING
1463 && vr0.type == vr1.type
1464 && !symbolic_range_p (&vr0)
1465 && !symbolic_range_p (&vr1))
1467 /* Boolean expressions cannot be folded with int_const_binop. */
1468 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1469 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1471 else
1473 set_value_range_to_varying (vr);
1474 return;
1477 else if (code == PLUS_EXPR
1478 || code == MIN_EXPR
1479 || code == MAX_EXPR)
1481 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1482 VR_VARYING. It would take more effort to compute a precise
1483 range for such a case. For example, if we have op0 == 1 and
1484 op1 == -1 with their ranges both being ~[0,0], we would have
1485 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1486 Note that we are guaranteed to have vr0.type == vr1.type at
1487 this point. */
1488 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1490 set_value_range_to_varying (vr);
1491 return;
1494 /* For operations that make the resulting range directly
1495 proportional to the original ranges, apply the operation to
1496 the same end of each range. */
1497 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1498 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1500 else if (code == MULT_EXPR
1501 || code == TRUNC_DIV_EXPR
1502 || code == FLOOR_DIV_EXPR
1503 || code == CEIL_DIV_EXPR
1504 || code == EXACT_DIV_EXPR
1505 || code == ROUND_DIV_EXPR)
1507 tree val[4];
1508 size_t i;
1510 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1511 drop to VR_VARYING. It would take more effort to compute a
1512 precise range for such a case. For example, if we have
1513 op0 == 65536 and op1 == 65536 with their ranges both being
1514 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1515 we cannot claim that the product is in ~[0,0]. Note that we
1516 are guaranteed to have vr0.type == vr1.type at this
1517 point. */
1518 if (code == MULT_EXPR
1519 && vr0.type == VR_ANTI_RANGE
1520 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1522 set_value_range_to_varying (vr);
1523 return;
1526 /* Multiplications and divisions are a bit tricky to handle,
1527 depending on the mix of signs we have in the two ranges, we
1528 need to operate on different values to get the minimum and
1529 maximum values for the new range. One approach is to figure
1530 out all the variations of range combinations and do the
1531 operations.
1533 However, this involves several calls to compare_values and it
1534 is pretty convoluted. It's simpler to do the 4 operations
1535 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1536 MAX1) and then figure the smallest and largest values to form
1537 the new range. */
1539 /* Divisions by zero result in a VARYING value. */
1540 if (code != MULT_EXPR
1541 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1543 set_value_range_to_varying (vr);
1544 return;
1547 /* Compute the 4 cross operations. */
1548 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1550 val[1] = (vr1.max != vr1.min)
1551 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1552 : NULL_TREE;
1554 val[2] = (vr0.max != vr0.min)
1555 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1556 : NULL_TREE;
1558 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1559 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1560 : NULL_TREE;
1562 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1563 of VAL[i]. */
1564 min = val[0];
1565 max = val[0];
1566 for (i = 1; i < 4; i++)
1568 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1569 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1570 break;
1572 if (val[i])
1574 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1576 /* If we found an overflowed value, set MIN and MAX
1577 to it so that we set the resulting range to
1578 VARYING. */
1579 min = max = val[i];
1580 break;
1583 if (compare_values (val[i], min) == -1)
1584 min = val[i];
1586 if (compare_values (val[i], max) == 1)
1587 max = val[i];
1591 else if (code == MINUS_EXPR)
1593 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1594 VR_VARYING. It would take more effort to compute a precise
1595 range for such a case. For example, if we have op0 == 1 and
1596 op1 == 1 with their ranges both being ~[0,0], we would have
1597 op0 - op1 == 0, so we cannot claim that the difference is in
1598 ~[0,0]. Note that we are guaranteed to have
1599 vr0.type == vr1.type at this point. */
1600 if (vr0.type == VR_ANTI_RANGE)
1602 set_value_range_to_varying (vr);
1603 return;
1606 /* For MINUS_EXPR, apply the operation to the opposite ends of
1607 each range. */
1608 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1609 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1611 else if (code == BIT_AND_EXPR)
1613 if (vr0.type == VR_RANGE
1614 && vr0.min == vr0.max
1615 && tree_expr_nonnegative_p (vr0.max)
1616 && TREE_CODE (vr0.max) == INTEGER_CST)
1618 min = build_int_cst (TREE_TYPE (expr), 0);
1619 max = vr0.max;
1621 else if (vr1.type == VR_RANGE
1622 && vr1.min == vr1.max
1623 && tree_expr_nonnegative_p (vr1.max)
1624 && TREE_CODE (vr1.max) == INTEGER_CST)
1626 type = VR_RANGE;
1627 min = build_int_cst (TREE_TYPE (expr), 0);
1628 max = vr1.max;
1630 else
1632 set_value_range_to_varying (vr);
1633 return;
1636 else
1637 gcc_unreachable ();
1639 /* If either MIN or MAX overflowed, then set the resulting range to
1640 VARYING. */
1641 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1642 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1644 set_value_range_to_varying (vr);
1645 return;
1648 cmp = compare_values (min, max);
1649 if (cmp == -2 || cmp == 1)
1651 /* If the new range has its limits swapped around (MIN > MAX),
1652 then the operation caused one of them to wrap around, mark
1653 the new range VARYING. */
1654 set_value_range_to_varying (vr);
1656 else
1657 set_value_range (vr, type, min, max, NULL);
1661 /* Extract range information from a unary expression EXPR based on
1662 the range of its operand and the expression code. */
1664 static void
1665 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1667 enum tree_code code = TREE_CODE (expr);
1668 tree min, max, op0;
1669 int cmp;
1670 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1672 /* Refuse to operate on certain unary expressions for which we
1673 cannot easily determine a resulting range. */
1674 if (code == FIX_TRUNC_EXPR
1675 || code == FIX_CEIL_EXPR
1676 || code == FIX_FLOOR_EXPR
1677 || code == FIX_ROUND_EXPR
1678 || code == FLOAT_EXPR
1679 || code == BIT_NOT_EXPR
1680 || code == NON_LVALUE_EXPR
1681 || code == CONJ_EXPR)
1683 set_value_range_to_varying (vr);
1684 return;
1687 /* Get value ranges for the operand. For constant operands, create
1688 a new value range with the operand to simplify processing. */
1689 op0 = TREE_OPERAND (expr, 0);
1690 if (TREE_CODE (op0) == SSA_NAME)
1691 vr0 = *(get_value_range (op0));
1692 else if (is_gimple_min_invariant (op0))
1693 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1694 else
1695 set_value_range_to_varying (&vr0);
1697 /* If VR0 is UNDEFINED, so is the result. */
1698 if (vr0.type == VR_UNDEFINED)
1700 set_value_range_to_undefined (vr);
1701 return;
1704 /* Refuse to operate on varying and symbolic ranges. Also, if the
1705 operand is neither a pointer nor an integral type, set the
1706 resulting range to VARYING. TODO, in some cases we may be able
1707 to derive anti-ranges (like nonzero values). */
1708 if (vr0.type == VR_VARYING
1709 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1710 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1711 || symbolic_range_p (&vr0))
1713 set_value_range_to_varying (vr);
1714 return;
1717 /* If the expression involves pointers, we are only interested in
1718 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1719 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1721 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1722 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1723 else if (range_is_null (&vr0))
1724 set_value_range_to_null (vr, TREE_TYPE (expr));
1725 else
1726 set_value_range_to_varying (vr);
1728 return;
1731 /* Handle unary expressions on integer ranges. */
1732 if (code == NOP_EXPR || code == CONVERT_EXPR)
1734 tree inner_type = TREE_TYPE (op0);
1735 tree outer_type = TREE_TYPE (expr);
1737 /* If VR0 represents a simple range, then try to convert
1738 the min and max values for the range to the same type
1739 as OUTER_TYPE. If the results compare equal to VR0's
1740 min and max values and the new min is still less than
1741 or equal to the new max, then we can safely use the newly
1742 computed range for EXPR. This allows us to compute
1743 accurate ranges through many casts. */
1744 if (vr0.type == VR_RANGE)
1746 tree new_min, new_max;
1748 /* Convert VR0's min/max to OUTER_TYPE. */
1749 new_min = fold_convert (outer_type, vr0.min);
1750 new_max = fold_convert (outer_type, vr0.max);
1752 /* Verify the new min/max values are gimple values and
1753 that they compare equal to VR0's min/max values. */
1754 if (is_gimple_val (new_min)
1755 && is_gimple_val (new_max)
1756 && tree_int_cst_equal (new_min, vr0.min)
1757 && tree_int_cst_equal (new_max, vr0.max)
1758 && compare_values (new_min, new_max) <= 0
1759 && compare_values (new_min, new_max) >= -1)
1761 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1762 return;
1766 /* When converting types of different sizes, set the result to
1767 VARYING. Things like sign extensions and precision loss may
1768 change the range. For instance, if x_3 is of type 'long long
1769 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1770 is impossible to know at compile time whether y_5 will be
1771 ~[0, 0]. */
1772 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1773 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1775 set_value_range_to_varying (vr);
1776 return;
1780 /* Apply the operation to each end of the range and see what we end
1781 up with. */
1782 if (code == NEGATE_EXPR
1783 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1785 /* NEGATE_EXPR flips the range around. */
1786 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1787 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1788 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1790 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1791 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1792 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1794 else if (code == ABS_EXPR
1795 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1797 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1798 useful range. */
1799 if (flag_wrapv
1800 && ((vr0.type == VR_RANGE
1801 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1802 || (vr0.type == VR_ANTI_RANGE
1803 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1804 && !range_includes_zero_p (&vr0))))
1806 set_value_range_to_varying (vr);
1807 return;
1810 /* ABS_EXPR may flip the range around, if the original range
1811 included negative values. */
1812 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1813 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1814 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1816 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1818 cmp = compare_values (min, max);
1820 /* If a VR_ANTI_RANGEs contains zero, then we have
1821 ~[-INF, min(MIN, MAX)]. */
1822 if (vr0.type == VR_ANTI_RANGE)
1824 if (range_includes_zero_p (&vr0))
1826 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1828 /* Take the lower of the two values. */
1829 if (cmp != 1)
1830 max = min;
1832 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1833 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1834 flag_wrapv is set and the original anti-range doesn't include
1835 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1836 min = (flag_wrapv && vr0.min != type_min_value
1837 ? int_const_binop (PLUS_EXPR,
1838 type_min_value,
1839 integer_one_node, 0)
1840 : type_min_value);
1842 else
1844 /* All else has failed, so create the range [0, INF], even for
1845 flag_wrapv since TYPE_MIN_VALUE is in the original
1846 anti-range. */
1847 vr0.type = VR_RANGE;
1848 min = build_int_cst (TREE_TYPE (expr), 0);
1849 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1853 /* If the range contains zero then we know that the minimum value in the
1854 range will be zero. */
1855 else if (range_includes_zero_p (&vr0))
1857 if (cmp == 1)
1858 max = min;
1859 min = build_int_cst (TREE_TYPE (expr), 0);
1861 else
1863 /* If the range was reversed, swap MIN and MAX. */
1864 if (cmp == 1)
1866 tree t = min;
1867 min = max;
1868 max = t;
1872 else
1874 /* Otherwise, operate on each end of the range. */
1875 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1876 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1879 cmp = compare_values (min, max);
1880 if (cmp == -2 || cmp == 1)
1882 /* If the new range has its limits swapped around (MIN > MAX),
1883 then the operation caused one of them to wrap around, mark
1884 the new range VARYING. */
1885 set_value_range_to_varying (vr);
1887 else
1888 set_value_range (vr, vr0.type, min, max, NULL);
1892 /* Extract range information from a comparison expression EXPR based
1893 on the range of its operand and the expression code. */
1895 static void
1896 extract_range_from_comparison (value_range_t *vr, tree expr)
1898 tree val = vrp_evaluate_conditional (expr, false);
1899 if (val)
1901 /* Since this expression was found on the RHS of an assignment,
1902 its type may be different from _Bool. Convert VAL to EXPR's
1903 type. */
1904 val = fold_convert (TREE_TYPE (expr), val);
1905 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1907 else
1908 set_value_range_to_varying (vr);
1912 /* Try to compute a useful range out of expression EXPR and store it
1913 in *VR. */
1915 static void
1916 extract_range_from_expr (value_range_t *vr, tree expr)
1918 enum tree_code code = TREE_CODE (expr);
1920 if (code == ASSERT_EXPR)
1921 extract_range_from_assert (vr, expr);
1922 else if (code == SSA_NAME)
1923 extract_range_from_ssa_name (vr, expr);
1924 else if (TREE_CODE_CLASS (code) == tcc_binary
1925 || code == TRUTH_ANDIF_EXPR
1926 || code == TRUTH_ORIF_EXPR
1927 || code == TRUTH_AND_EXPR
1928 || code == TRUTH_OR_EXPR
1929 || code == TRUTH_XOR_EXPR)
1930 extract_range_from_binary_expr (vr, expr);
1931 else if (TREE_CODE_CLASS (code) == tcc_unary)
1932 extract_range_from_unary_expr (vr, expr);
1933 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1934 extract_range_from_comparison (vr, expr);
1935 else if (is_gimple_min_invariant (expr))
1936 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1937 else
1938 set_value_range_to_varying (vr);
1940 /* If we got a varying range from the tests above, try a final
1941 time to derive a nonnegative or nonzero range. This time
1942 relying primarily on generic routines in fold in conjunction
1943 with range data. */
1944 if (vr->type == VR_VARYING)
1946 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1947 && vrp_expr_computes_nonnegative (expr))
1948 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1949 else if (vrp_expr_computes_nonzero (expr))
1950 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1954 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1955 would be profitable to adjust VR using scalar evolution information
1956 for VAR. If so, update VR with the new limits. */
1958 static void
1959 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1960 tree var)
1962 tree init, step, chrec;
1963 bool init_is_max, unknown_max;
1965 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1966 better opportunities than a regular range, but I'm not sure. */
1967 if (vr->type == VR_ANTI_RANGE)
1968 return;
1970 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1971 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1972 return;
1974 init = initial_condition_in_loop_num (chrec, loop->num);
1975 step = evolution_part_in_loop_num (chrec, loop->num);
1977 /* If STEP is symbolic, we can't know whether INIT will be the
1978 minimum or maximum value in the range. */
1979 if (step == NULL_TREE
1980 || !is_gimple_min_invariant (step))
1981 return;
1983 /* Do not adjust ranges when chrec may wrap. */
1984 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1985 current_loops->parray[CHREC_VARIABLE (chrec)],
1986 &init_is_max, &unknown_max)
1987 || unknown_max)
1988 return;
1990 if (!POINTER_TYPE_P (TREE_TYPE (init))
1991 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1993 /* For VARYING or UNDEFINED ranges, just about anything we get
1994 from scalar evolutions should be better. */
1995 tree min = TYPE_MIN_VALUE (TREE_TYPE (init));
1996 tree max = TYPE_MAX_VALUE (TREE_TYPE (init));
1998 if (init_is_max)
1999 max = init;
2000 else
2001 min = init;
2003 /* If we would create an invalid range, then just assume we
2004 know absolutely nothing. This may be over-conservative,
2005 but it's clearly safe. */
2006 if (compare_values (min, max) == 1)
2007 return;
2009 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2011 else if (vr->type == VR_RANGE)
2013 tree min = vr->min;
2014 tree max = vr->max;
2016 if (init_is_max)
2018 /* INIT is the maximum value. If INIT is lower than VR->MAX
2019 but no smaller than VR->MIN, set VR->MAX to INIT. */
2020 if (compare_values (init, max) == -1)
2022 max = init;
2024 /* If we just created an invalid range with the minimum
2025 greater than the maximum, take the minimum all the
2026 way to -INF. */
2027 if (compare_values (min, max) == 1)
2028 min = TYPE_MIN_VALUE (TREE_TYPE (min));
2031 else
2033 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2034 if (compare_values (init, min) == 1)
2036 min = init;
2038 /* If we just created an invalid range with the minimum
2039 greater than the maximum, take the maximum all the
2040 way to +INF. */
2041 if (compare_values (min, max) == 1)
2042 max = TYPE_MAX_VALUE (TREE_TYPE (max));
2046 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2051 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2053 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2054 all the values in the ranges.
2056 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2058 - Return NULL_TREE if it is not always possible to determine the
2059 value of the comparison. */
2062 static tree
2063 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2065 /* VARYING or UNDEFINED ranges cannot be compared. */
2066 if (vr0->type == VR_VARYING
2067 || vr0->type == VR_UNDEFINED
2068 || vr1->type == VR_VARYING
2069 || vr1->type == VR_UNDEFINED)
2070 return NULL_TREE;
2072 /* Anti-ranges need to be handled separately. */
2073 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2075 /* If both are anti-ranges, then we cannot compute any
2076 comparison. */
2077 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2078 return NULL_TREE;
2080 /* These comparisons are never statically computable. */
2081 if (comp == GT_EXPR
2082 || comp == GE_EXPR
2083 || comp == LT_EXPR
2084 || comp == LE_EXPR)
2085 return NULL_TREE;
2087 /* Equality can be computed only between a range and an
2088 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2089 if (vr0->type == VR_RANGE)
2091 /* To simplify processing, make VR0 the anti-range. */
2092 value_range_t *tmp = vr0;
2093 vr0 = vr1;
2094 vr1 = tmp;
2097 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2099 if (compare_values (vr0->min, vr1->min) == 0
2100 && compare_values (vr0->max, vr1->max) == 0)
2101 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2103 return NULL_TREE;
2106 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2107 operands around and change the comparison code. */
2108 if (comp == GT_EXPR || comp == GE_EXPR)
2110 value_range_t *tmp;
2111 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2112 tmp = vr0;
2113 vr0 = vr1;
2114 vr1 = tmp;
2117 if (comp == EQ_EXPR)
2119 /* Equality may only be computed if both ranges represent
2120 exactly one value. */
2121 if (compare_values (vr0->min, vr0->max) == 0
2122 && compare_values (vr1->min, vr1->max) == 0)
2124 int cmp_min = compare_values (vr0->min, vr1->min);
2125 int cmp_max = compare_values (vr0->max, vr1->max);
2126 if (cmp_min == 0 && cmp_max == 0)
2127 return boolean_true_node;
2128 else if (cmp_min != -2 && cmp_max != -2)
2129 return boolean_false_node;
2131 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2132 else if (compare_values (vr0->min, vr1->max) == 1
2133 || compare_values (vr1->min, vr0->max) == 1)
2134 return boolean_false_node;
2136 return NULL_TREE;
2138 else if (comp == NE_EXPR)
2140 int cmp1, cmp2;
2142 /* If VR0 is completely to the left or completely to the right
2143 of VR1, they are always different. Notice that we need to
2144 make sure that both comparisons yield similar results to
2145 avoid comparing values that cannot be compared at
2146 compile-time. */
2147 cmp1 = compare_values (vr0->max, vr1->min);
2148 cmp2 = compare_values (vr0->min, vr1->max);
2149 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2150 return boolean_true_node;
2152 /* If VR0 and VR1 represent a single value and are identical,
2153 return false. */
2154 else if (compare_values (vr0->min, vr0->max) == 0
2155 && compare_values (vr1->min, vr1->max) == 0
2156 && compare_values (vr0->min, vr1->min) == 0
2157 && compare_values (vr0->max, vr1->max) == 0)
2158 return boolean_false_node;
2160 /* Otherwise, they may or may not be different. */
2161 else
2162 return NULL_TREE;
2164 else if (comp == LT_EXPR || comp == LE_EXPR)
2166 int tst;
2168 /* If VR0 is to the left of VR1, return true. */
2169 tst = compare_values (vr0->max, vr1->min);
2170 if ((comp == LT_EXPR && tst == -1)
2171 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2172 return boolean_true_node;
2174 /* If VR0 is to the right of VR1, return false. */
2175 tst = compare_values (vr0->min, vr1->max);
2176 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2177 || (comp == LE_EXPR && tst == 1))
2178 return boolean_false_node;
2180 /* Otherwise, we don't know. */
2181 return NULL_TREE;
2184 gcc_unreachable ();
2188 /* Given a value range VR, a value VAL and a comparison code COMP, return
2189 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2190 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2191 always returns false. Return NULL_TREE if it is not always
2192 possible to determine the value of the comparison. */
2194 static tree
2195 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2197 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2198 return NULL_TREE;
2200 /* Anti-ranges need to be handled separately. */
2201 if (vr->type == VR_ANTI_RANGE)
2203 /* For anti-ranges, the only predicates that we can compute at
2204 compile time are equality and inequality. */
2205 if (comp == GT_EXPR
2206 || comp == GE_EXPR
2207 || comp == LT_EXPR
2208 || comp == LE_EXPR)
2209 return NULL_TREE;
2211 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2212 if (value_inside_range (val, vr) == 1)
2213 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2215 return NULL_TREE;
2218 if (comp == EQ_EXPR)
2220 /* EQ_EXPR may only be computed if VR represents exactly
2221 one value. */
2222 if (compare_values (vr->min, vr->max) == 0)
2224 int cmp = compare_values (vr->min, val);
2225 if (cmp == 0)
2226 return boolean_true_node;
2227 else if (cmp == -1 || cmp == 1 || cmp == 2)
2228 return boolean_false_node;
2230 else if (compare_values (val, vr->min) == -1
2231 || compare_values (vr->max, val) == -1)
2232 return boolean_false_node;
2234 return NULL_TREE;
2236 else if (comp == NE_EXPR)
2238 /* If VAL is not inside VR, then they are always different. */
2239 if (compare_values (vr->max, val) == -1
2240 || compare_values (vr->min, val) == 1)
2241 return boolean_true_node;
2243 /* If VR represents exactly one value equal to VAL, then return
2244 false. */
2245 if (compare_values (vr->min, vr->max) == 0
2246 && compare_values (vr->min, val) == 0)
2247 return boolean_false_node;
2249 /* Otherwise, they may or may not be different. */
2250 return NULL_TREE;
2252 else if (comp == LT_EXPR || comp == LE_EXPR)
2254 int tst;
2256 /* If VR is to the left of VAL, return true. */
2257 tst = compare_values (vr->max, val);
2258 if ((comp == LT_EXPR && tst == -1)
2259 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2260 return boolean_true_node;
2262 /* If VR is to the right of VAL, return false. */
2263 tst = compare_values (vr->min, val);
2264 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2265 || (comp == LE_EXPR && tst == 1))
2266 return boolean_false_node;
2268 /* Otherwise, we don't know. */
2269 return NULL_TREE;
2271 else if (comp == GT_EXPR || comp == GE_EXPR)
2273 int tst;
2275 /* If VR is to the right of VAL, return true. */
2276 tst = compare_values (vr->min, val);
2277 if ((comp == GT_EXPR && tst == 1)
2278 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2279 return boolean_true_node;
2281 /* If VR is to the left of VAL, return false. */
2282 tst = compare_values (vr->max, val);
2283 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2284 || (comp == GE_EXPR && tst == -1))
2285 return boolean_false_node;
2287 /* Otherwise, we don't know. */
2288 return NULL_TREE;
2291 gcc_unreachable ();
2295 /* Debugging dumps. */
2297 void dump_value_range (FILE *, value_range_t *);
2298 void debug_value_range (value_range_t *);
2299 void dump_all_value_ranges (FILE *);
2300 void debug_all_value_ranges (void);
2301 void dump_vr_equiv (FILE *, bitmap);
2302 void debug_vr_equiv (bitmap);
2305 /* Dump value range VR to FILE. */
2307 void
2308 dump_value_range (FILE *file, value_range_t *vr)
2310 if (vr == NULL)
2311 fprintf (file, "[]");
2312 else if (vr->type == VR_UNDEFINED)
2313 fprintf (file, "UNDEFINED");
2314 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2316 tree type = TREE_TYPE (vr->min);
2318 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2320 if (INTEGRAL_TYPE_P (type)
2321 && !TYPE_UNSIGNED (type)
2322 && vr->min == TYPE_MIN_VALUE (type))
2323 fprintf (file, "-INF");
2324 else
2325 print_generic_expr (file, vr->min, 0);
2327 fprintf (file, ", ");
2329 if (INTEGRAL_TYPE_P (type)
2330 && vr->max == TYPE_MAX_VALUE (type))
2331 fprintf (file, "+INF");
2332 else
2333 print_generic_expr (file, vr->max, 0);
2335 fprintf (file, "]");
2337 if (vr->equiv)
2339 bitmap_iterator bi;
2340 unsigned i, c = 0;
2342 fprintf (file, " EQUIVALENCES: { ");
2344 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2346 print_generic_expr (file, ssa_name (i), 0);
2347 fprintf (file, " ");
2348 c++;
2351 fprintf (file, "} (%u elements)", c);
2354 else if (vr->type == VR_VARYING)
2355 fprintf (file, "VARYING");
2356 else
2357 fprintf (file, "INVALID RANGE");
2361 /* Dump value range VR to stderr. */
2363 void
2364 debug_value_range (value_range_t *vr)
2366 dump_value_range (stderr, vr);
2370 /* Dump value ranges of all SSA_NAMEs to FILE. */
2372 void
2373 dump_all_value_ranges (FILE *file)
2375 size_t i;
2377 for (i = 0; i < num_ssa_names; i++)
2379 if (vr_value[i])
2381 print_generic_expr (file, ssa_name (i), 0);
2382 fprintf (file, ": ");
2383 dump_value_range (file, vr_value[i]);
2384 fprintf (file, "\n");
2388 fprintf (file, "\n");
2392 /* Dump all value ranges to stderr. */
2394 void
2395 debug_all_value_ranges (void)
2397 dump_all_value_ranges (stderr);
2401 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2402 create a new SSA name N and return the assertion assignment
2403 'V = ASSERT_EXPR <V, V OP W>'. */
2405 static tree
2406 build_assert_expr_for (tree cond, tree v)
2408 tree n, assertion;
2410 gcc_assert (TREE_CODE (v) == SSA_NAME);
2411 n = duplicate_ssa_name (v, NULL_TREE);
2413 if (COMPARISON_CLASS_P (cond))
2415 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2416 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2418 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2420 /* Given !V, build the assignment N = false. */
2421 tree op0 = TREE_OPERAND (cond, 0);
2422 gcc_assert (op0 == v);
2423 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2425 else if (TREE_CODE (cond) == SSA_NAME)
2427 /* Given V, build the assignment N = true. */
2428 gcc_assert (v == cond);
2429 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2431 else
2432 gcc_unreachable ();
2434 SSA_NAME_DEF_STMT (n) = assertion;
2436 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2437 operand of the ASSERT_EXPR. Register the new name and the old one
2438 in the replacement table so that we can fix the SSA web after
2439 adding all the ASSERT_EXPRs. */
2440 register_new_name_mapping (n, v);
2442 return assertion;
2446 /* Return false if EXPR is a predicate expression involving floating
2447 point values. */
2449 static inline bool
2450 fp_predicate (tree expr)
2452 return (COMPARISON_CLASS_P (expr)
2453 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2457 /* If the range of values taken by OP can be inferred after STMT executes,
2458 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2459 describes the inferred range. Return true if a range could be
2460 inferred. */
2462 static bool
2463 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2465 *val_p = NULL_TREE;
2466 *comp_code_p = ERROR_MARK;
2468 /* Do not attempt to infer anything in names that flow through
2469 abnormal edges. */
2470 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2471 return false;
2473 /* Similarly, don't infer anything from statements that may throw
2474 exceptions. */
2475 if (tree_could_throw_p (stmt))
2476 return false;
2478 /* If STMT is the last statement of a basic block with no
2479 successors, there is no point inferring anything about any of its
2480 operands. We would not be able to find a proper insertion point
2481 for the assertion, anyway. */
2482 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2483 return false;
2485 if (POINTER_TYPE_P (TREE_TYPE (op)))
2487 bool is_store;
2488 unsigned num_uses, num_derefs;
2490 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2491 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2493 /* We can only assume that a pointer dereference will yield
2494 non-NULL if -fdelete-null-pointer-checks is enabled. */
2495 *val_p = build_int_cst (TREE_TYPE (op), 0);
2496 *comp_code_p = NE_EXPR;
2497 return true;
2501 return false;
2505 void dump_asserts_for (FILE *, tree);
2506 void debug_asserts_for (tree);
2507 void dump_all_asserts (FILE *);
2508 void debug_all_asserts (void);
2510 /* Dump all the registered assertions for NAME to FILE. */
2512 void
2513 dump_asserts_for (FILE *file, tree name)
2515 assert_locus_t loc;
2517 fprintf (file, "Assertions to be inserted for ");
2518 print_generic_expr (file, name, 0);
2519 fprintf (file, "\n");
2521 loc = asserts_for[SSA_NAME_VERSION (name)];
2522 while (loc)
2524 fprintf (file, "\t");
2525 print_generic_expr (file, bsi_stmt (loc->si), 0);
2526 fprintf (file, "\n\tBB #%d", loc->bb->index);
2527 if (loc->e)
2529 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2530 loc->e->dest->index);
2531 dump_edge_info (file, loc->e, 0);
2533 fprintf (file, "\n\tPREDICATE: ");
2534 print_generic_expr (file, name, 0);
2535 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2536 print_generic_expr (file, loc->val, 0);
2537 fprintf (file, "\n\n");
2538 loc = loc->next;
2541 fprintf (file, "\n");
2545 /* Dump all the registered assertions for NAME to stderr. */
2547 void
2548 debug_asserts_for (tree name)
2550 dump_asserts_for (stderr, name);
2554 /* Dump all the registered assertions for all the names to FILE. */
2556 void
2557 dump_all_asserts (FILE *file)
2559 unsigned i;
2560 bitmap_iterator bi;
2562 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2563 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2564 dump_asserts_for (file, ssa_name (i));
2565 fprintf (file, "\n");
2569 /* Dump all the registered assertions for all the names to stderr. */
2571 void
2572 debug_all_asserts (void)
2574 dump_all_asserts (stderr);
2578 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2579 'NAME COMP_CODE VAL' at a location that dominates block BB or
2580 E->DEST, then register this location as a possible insertion point
2581 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2583 BB, E and SI provide the exact insertion point for the new
2584 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2585 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2586 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2587 must not be NULL. */
2589 static void
2590 register_new_assert_for (tree name,
2591 enum tree_code comp_code,
2592 tree val,
2593 basic_block bb,
2594 edge e,
2595 block_stmt_iterator si)
2597 assert_locus_t n, loc, last_loc;
2598 bool found;
2599 basic_block dest_bb;
2601 #if defined ENABLE_CHECKING
2602 gcc_assert (bb == NULL || e == NULL);
2604 if (e == NULL)
2605 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2606 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2607 #endif
2609 /* The new assertion A will be inserted at BB or E. We need to
2610 determine if the new location is dominated by a previously
2611 registered location for A. If we are doing an edge insertion,
2612 assume that A will be inserted at E->DEST. Note that this is not
2613 necessarily true.
2615 If E is a critical edge, it will be split. But even if E is
2616 split, the new block will dominate the same set of blocks that
2617 E->DEST dominates.
2619 The reverse, however, is not true, blocks dominated by E->DEST
2620 will not be dominated by the new block created to split E. So,
2621 if the insertion location is on a critical edge, we will not use
2622 the new location to move another assertion previously registered
2623 at a block dominated by E->DEST. */
2624 dest_bb = (bb) ? bb : e->dest;
2626 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2627 VAL at a block dominating DEST_BB, then we don't need to insert a new
2628 one. Similarly, if the same assertion already exists at a block
2629 dominated by DEST_BB and the new location is not on a critical
2630 edge, then update the existing location for the assertion (i.e.,
2631 move the assertion up in the dominance tree).
2633 Note, this is implemented as a simple linked list because there
2634 should not be more than a handful of assertions registered per
2635 name. If this becomes a performance problem, a table hashed by
2636 COMP_CODE and VAL could be implemented. */
2637 loc = asserts_for[SSA_NAME_VERSION (name)];
2638 last_loc = loc;
2639 found = false;
2640 while (loc)
2642 if (loc->comp_code == comp_code
2643 && (loc->val == val
2644 || operand_equal_p (loc->val, val, 0)))
2646 /* If the assertion NAME COMP_CODE VAL has already been
2647 registered at a basic block that dominates DEST_BB, then
2648 we don't need to insert the same assertion again. Note
2649 that we don't check strict dominance here to avoid
2650 replicating the same assertion inside the same basic
2651 block more than once (e.g., when a pointer is
2652 dereferenced several times inside a block).
2654 An exception to this rule are edge insertions. If the
2655 new assertion is to be inserted on edge E, then it will
2656 dominate all the other insertions that we may want to
2657 insert in DEST_BB. So, if we are doing an edge
2658 insertion, don't do this dominance check. */
2659 if (e == NULL
2660 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2661 return;
2663 /* Otherwise, if E is not a critical edge and DEST_BB
2664 dominates the existing location for the assertion, move
2665 the assertion up in the dominance tree by updating its
2666 location information. */
2667 if ((e == NULL || !EDGE_CRITICAL_P (e))
2668 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2670 loc->bb = dest_bb;
2671 loc->e = e;
2672 loc->si = si;
2673 return;
2677 /* Update the last node of the list and move to the next one. */
2678 last_loc = loc;
2679 loc = loc->next;
2682 /* If we didn't find an assertion already registered for
2683 NAME COMP_CODE VAL, add a new one at the end of the list of
2684 assertions associated with NAME. */
2685 n = XNEW (struct assert_locus_d);
2686 n->bb = dest_bb;
2687 n->e = e;
2688 n->si = si;
2689 n->comp_code = comp_code;
2690 n->val = val;
2691 n->next = NULL;
2693 if (last_loc)
2694 last_loc->next = n;
2695 else
2696 asserts_for[SSA_NAME_VERSION (name)] = n;
2698 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2702 /* Try to register an edge assertion for SSA name NAME on edge E for
2703 the conditional jump pointed to by SI. Return true if an assertion
2704 for NAME could be registered. */
2706 static bool
2707 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2709 tree val, stmt;
2710 enum tree_code comp_code;
2712 stmt = bsi_stmt (si);
2714 /* Do not attempt to infer anything in names that flow through
2715 abnormal edges. */
2716 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2717 return false;
2719 /* If NAME was not found in the sub-graph reachable from E, then
2720 there's nothing to do. */
2721 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2722 return false;
2724 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2725 Register an assertion for NAME according to the value that NAME
2726 takes on edge E. */
2727 if (TREE_CODE (stmt) == COND_EXPR)
2729 /* If BB ends in a COND_EXPR then NAME then we should insert
2730 the original predicate on EDGE_TRUE_VALUE and the
2731 opposite predicate on EDGE_FALSE_VALUE. */
2732 tree cond = COND_EXPR_COND (stmt);
2733 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2735 /* Predicates may be a single SSA name or NAME OP VAL. */
2736 if (cond == name)
2738 /* If the predicate is a name, it must be NAME, in which
2739 case we create the predicate NAME == true or
2740 NAME == false accordingly. */
2741 comp_code = EQ_EXPR;
2742 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2744 else
2746 /* Otherwise, we have a comparison of the form NAME COMP VAL
2747 or VAL COMP NAME. */
2748 if (name == TREE_OPERAND (cond, 1))
2750 /* If the predicate is of the form VAL COMP NAME, flip
2751 COMP around because we need to register NAME as the
2752 first operand in the predicate. */
2753 comp_code = swap_tree_comparison (TREE_CODE (cond));
2754 val = TREE_OPERAND (cond, 0);
2756 else
2758 /* The comparison is of the form NAME COMP VAL, so the
2759 comparison code remains unchanged. */
2760 comp_code = TREE_CODE (cond);
2761 val = TREE_OPERAND (cond, 1);
2764 /* If we are inserting the assertion on the ELSE edge, we
2765 need to invert the sign comparison. */
2766 if (is_else_edge)
2767 comp_code = invert_tree_comparison (comp_code, 0);
2769 /* Do not register always-false predicates. FIXME, this
2770 works around a limitation in fold() when dealing with
2771 enumerations. Given 'enum { N1, N2 } x;', fold will not
2772 fold 'if (x > N2)' to 'if (0)'. */
2773 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2774 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2775 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2777 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2778 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2780 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2781 return false;
2783 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2784 return false;
2788 else
2790 /* FIXME. Handle SWITCH_EXPR. */
2791 gcc_unreachable ();
2794 register_new_assert_for (name, comp_code, val, NULL, e, si);
2795 return true;
2799 static bool find_assert_locations (basic_block bb);
2801 /* Determine whether the outgoing edges of BB should receive an
2802 ASSERT_EXPR for each of the operands of BB's last statement. The
2803 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2805 If any of the sub-graphs rooted at BB have an interesting use of
2806 the predicate operands, an assert location node is added to the
2807 list of assertions for the corresponding operands. */
2809 static bool
2810 find_conditional_asserts (basic_block bb)
2812 bool need_assert;
2813 block_stmt_iterator last_si;
2814 tree op, last;
2815 edge_iterator ei;
2816 edge e;
2817 ssa_op_iter iter;
2819 need_assert = false;
2820 last_si = bsi_last (bb);
2821 last = bsi_stmt (last_si);
2823 /* Look for uses of the operands in each of the sub-graphs
2824 rooted at BB. We need to check each of the outgoing edges
2825 separately, so that we know what kind of ASSERT_EXPR to
2826 insert. */
2827 FOR_EACH_EDGE (e, ei, bb->succs)
2829 if (e->dest == bb)
2830 continue;
2832 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2833 Otherwise, when we finish traversing each of the sub-graphs, we
2834 won't know whether the variables were found in the sub-graphs or
2835 if they had been found in a block upstream from BB.
2837 This is actually a bad idea is some cases, particularly jump
2838 threading. Consider a CFG like the following:
2848 Assume that one or more operands in the conditional at the
2849 end of block 0 are used in a conditional in block 2, but not
2850 anywhere in block 1. In this case we will not insert any
2851 assert statements in block 1, which may cause us to miss
2852 opportunities to optimize, particularly for jump threading. */
2853 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2854 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2856 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2857 to determine if any of the operands in the conditional
2858 predicate are used. */
2859 if (e->dest != bb)
2860 need_assert |= find_assert_locations (e->dest);
2862 /* Register the necessary assertions for each operand in the
2863 conditional predicate. */
2864 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2865 need_assert |= register_edge_assert_for (op, e, last_si);
2868 /* Finally, indicate that we have found the operands in the
2869 conditional. */
2870 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2871 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2873 return need_assert;
2877 /* Traverse all the statements in block BB looking for statements that
2878 may generate useful assertions for the SSA names in their operand.
2879 If a statement produces a useful assertion A for name N_i, then the
2880 list of assertions already generated for N_i is scanned to
2881 determine if A is actually needed.
2883 If N_i already had the assertion A at a location dominating the
2884 current location, then nothing needs to be done. Otherwise, the
2885 new location for A is recorded instead.
2887 1- For every statement S in BB, all the variables used by S are
2888 added to bitmap FOUND_IN_SUBGRAPH.
2890 2- If statement S uses an operand N in a way that exposes a known
2891 value range for N, then if N was not already generated by an
2892 ASSERT_EXPR, create a new assert location for N. For instance,
2893 if N is a pointer and the statement dereferences it, we can
2894 assume that N is not NULL.
2896 3- COND_EXPRs are a special case of #2. We can derive range
2897 information from the predicate but need to insert different
2898 ASSERT_EXPRs for each of the sub-graphs rooted at the
2899 conditional block. If the last statement of BB is a conditional
2900 expression of the form 'X op Y', then
2902 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2904 b) If the conditional is the only entry point to the sub-graph
2905 corresponding to the THEN_CLAUSE, recurse into it. On
2906 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2907 an ASSERT_EXPR is added for the corresponding variable.
2909 c) Repeat step (b) on the ELSE_CLAUSE.
2911 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2913 For instance,
2915 if (a == 9)
2916 b = a;
2917 else
2918 b = c + 1;
2920 In this case, an assertion on the THEN clause is useful to
2921 determine that 'a' is always 9 on that edge. However, an assertion
2922 on the ELSE clause would be unnecessary.
2924 4- If BB does not end in a conditional expression, then we recurse
2925 into BB's dominator children.
2927 At the end of the recursive traversal, every SSA name will have a
2928 list of locations where ASSERT_EXPRs should be added. When a new
2929 location for name N is found, it is registered by calling
2930 register_new_assert_for. That function keeps track of all the
2931 registered assertions to prevent adding unnecessary assertions.
2932 For instance, if a pointer P_4 is dereferenced more than once in a
2933 dominator tree, only the location dominating all the dereference of
2934 P_4 will receive an ASSERT_EXPR.
2936 If this function returns true, then it means that there are names
2937 for which we need to generate ASSERT_EXPRs. Those assertions are
2938 inserted by process_assert_insertions.
2940 TODO. Handle SWITCH_EXPR. */
2942 static bool
2943 find_assert_locations (basic_block bb)
2945 block_stmt_iterator si;
2946 tree last, phi;
2947 bool need_assert;
2948 basic_block son;
2950 if (TEST_BIT (blocks_visited, bb->index))
2951 return false;
2953 SET_BIT (blocks_visited, bb->index);
2955 need_assert = false;
2957 /* Traverse all PHI nodes in BB marking used operands. */
2958 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2960 use_operand_p arg_p;
2961 ssa_op_iter i;
2963 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2965 tree arg = USE_FROM_PTR (arg_p);
2966 if (TREE_CODE (arg) == SSA_NAME)
2968 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2969 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2974 /* Traverse all the statements in BB marking used names and looking
2975 for statements that may infer assertions for their used operands. */
2976 last = NULL_TREE;
2977 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2979 tree stmt, op;
2980 ssa_op_iter i;
2982 stmt = bsi_stmt (si);
2984 /* See if we can derive an assertion for any of STMT's operands. */
2985 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2987 tree value;
2988 enum tree_code comp_code;
2990 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2991 the sub-graph of a conditional block, when we return from
2992 this recursive walk, our parent will use the
2993 FOUND_IN_SUBGRAPH bitset to determine if one of the
2994 operands it was looking for was present in the sub-graph. */
2995 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2997 /* If OP is used only once, namely in this STMT, don't
2998 bother creating an ASSERT_EXPR for it. Such an
2999 ASSERT_EXPR would do nothing but increase compile time.
3000 Experiments show that with this simple check, we can save
3001 more than 20% of ASSERT_EXPRs. */
3002 if (has_single_use (op))
3003 continue;
3005 /* If OP is used in such a way that we can infer a value
3006 range for it, and we don't find a previous assertion for
3007 it, create a new assertion location node for OP. */
3008 if (infer_value_range (stmt, op, &comp_code, &value))
3010 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3011 need_assert = true;
3015 /* Remember the last statement of the block. */
3016 last = stmt;
3019 /* If BB's last statement is a conditional expression
3020 involving integer operands, recurse into each of the sub-graphs
3021 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3022 if (last
3023 && TREE_CODE (last) == COND_EXPR
3024 && !fp_predicate (COND_EXPR_COND (last))
3025 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3026 need_assert |= find_conditional_asserts (bb);
3028 /* Recurse into the dominator children of BB. */
3029 for (son = first_dom_son (CDI_DOMINATORS, bb);
3030 son;
3031 son = next_dom_son (CDI_DOMINATORS, son))
3032 need_assert |= find_assert_locations (son);
3034 return need_assert;
3038 /* Create an ASSERT_EXPR for NAME and insert it in the location
3039 indicated by LOC. Return true if we made any edge insertions. */
3041 static bool
3042 process_assert_insertions_for (tree name, assert_locus_t loc)
3044 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3045 tree stmt, cond, assert_expr;
3046 edge_iterator ei;
3047 edge e;
3049 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3050 assert_expr = build_assert_expr_for (cond, name);
3052 if (loc->e)
3054 /* We have been asked to insert the assertion on an edge. This
3055 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3056 #if defined ENABLE_CHECKING
3057 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3058 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3059 #endif
3061 bsi_insert_on_edge (loc->e, assert_expr);
3062 return true;
3065 /* Otherwise, we can insert right after LOC->SI iff the
3066 statement must not be the last statement in the block. */
3067 stmt = bsi_stmt (loc->si);
3068 if (!stmt_ends_bb_p (stmt))
3070 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3071 return false;
3074 /* If STMT must be the last statement in BB, we can only insert new
3075 assertions on the non-abnormal edge out of BB. Note that since
3076 STMT is not control flow, there may only be one non-abnormal edge
3077 out of BB. */
3078 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3079 if (!(e->flags & EDGE_ABNORMAL))
3081 bsi_insert_on_edge (e, assert_expr);
3082 return true;
3085 gcc_unreachable ();
3089 /* Process all the insertions registered for every name N_i registered
3090 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3091 found in ASSERTS_FOR[i]. */
3093 static void
3094 process_assert_insertions (void)
3096 unsigned i;
3097 bitmap_iterator bi;
3098 bool update_edges_p = false;
3099 int num_asserts = 0;
3101 if (dump_file && (dump_flags & TDF_DETAILS))
3102 dump_all_asserts (dump_file);
3104 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3106 assert_locus_t loc = asserts_for[i];
3107 gcc_assert (loc);
3109 while (loc)
3111 assert_locus_t next = loc->next;
3112 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3113 free (loc);
3114 loc = next;
3115 num_asserts++;
3119 if (update_edges_p)
3120 bsi_commit_edge_inserts ();
3122 if (dump_file && (dump_flags & TDF_STATS))
3123 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3124 num_asserts);
3128 /* Traverse the flowgraph looking for conditional jumps to insert range
3129 expressions. These range expressions are meant to provide information
3130 to optimizations that need to reason in terms of value ranges. They
3131 will not be expanded into RTL. For instance, given:
3133 x = ...
3134 y = ...
3135 if (x < y)
3136 y = x - 2;
3137 else
3138 x = y + 3;
3140 this pass will transform the code into:
3142 x = ...
3143 y = ...
3144 if (x < y)
3146 x = ASSERT_EXPR <x, x < y>
3147 y = x - 2
3149 else
3151 y = ASSERT_EXPR <y, x <= y>
3152 x = y + 3
3155 The idea is that once copy and constant propagation have run, other
3156 optimizations will be able to determine what ranges of values can 'x'
3157 take in different paths of the code, simply by checking the reaching
3158 definition of 'x'. */
3160 static void
3161 insert_range_assertions (void)
3163 edge e;
3164 edge_iterator ei;
3165 bool update_ssa_p;
3167 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3168 sbitmap_zero (found_in_subgraph);
3170 blocks_visited = sbitmap_alloc (last_basic_block);
3171 sbitmap_zero (blocks_visited);
3173 need_assert_for = BITMAP_ALLOC (NULL);
3174 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3175 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3177 calculate_dominance_info (CDI_DOMINATORS);
3179 update_ssa_p = false;
3180 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3181 if (find_assert_locations (e->dest))
3182 update_ssa_p = true;
3184 if (update_ssa_p)
3186 process_assert_insertions ();
3187 update_ssa (TODO_update_ssa_no_phi);
3190 if (dump_file && (dump_flags & TDF_DETAILS))
3192 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3193 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3196 sbitmap_free (found_in_subgraph);
3197 free (asserts_for);
3198 BITMAP_FREE (need_assert_for);
3202 /* Convert range assertion expressions into the implied copies and
3203 copy propagate away the copies. Doing the trivial copy propagation
3204 here avoids the need to run the full copy propagation pass after
3205 VRP.
3207 FIXME, this will eventually lead to copy propagation removing the
3208 names that had useful range information attached to them. For
3209 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3210 then N_i will have the range [3, +INF].
3212 However, by converting the assertion into the implied copy
3213 operation N_i = N_j, we will then copy-propagate N_j into the uses
3214 of N_i and lose the range information. We may want to hold on to
3215 ASSERT_EXPRs a little while longer as the ranges could be used in
3216 things like jump threading.
3218 The problem with keeping ASSERT_EXPRs around is that passes after
3219 VRP need to handle them appropriately.
3221 Another approach would be to make the range information a first
3222 class property of the SSA_NAME so that it can be queried from
3223 any pass. This is made somewhat more complex by the need for
3224 multiple ranges to be associated with one SSA_NAME. */
3226 static void
3227 remove_range_assertions (void)
3229 basic_block bb;
3230 block_stmt_iterator si;
3232 /* Note that the BSI iterator bump happens at the bottom of the
3233 loop and no bump is necessary if we're removing the statement
3234 referenced by the current BSI. */
3235 FOR_EACH_BB (bb)
3236 for (si = bsi_start (bb); !bsi_end_p (si);)
3238 tree stmt = bsi_stmt (si);
3240 if (TREE_CODE (stmt) == MODIFY_EXPR
3241 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3243 tree rhs = TREE_OPERAND (stmt, 1);
3244 tree cond = fold (ASSERT_EXPR_COND (rhs));
3245 use_operand_p use_p;
3246 imm_use_iterator iter;
3248 gcc_assert (cond != boolean_false_node);
3249 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
3250 update_stmt (stmt);
3252 /* The statement is now a copy. Propagate the RHS into
3253 every use of the LHS. */
3254 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
3256 SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
3257 update_stmt (USE_STMT (use_p));
3260 /* And finally, remove the copy, it is not needed. */
3261 bsi_remove (&si, true);
3263 else
3264 bsi_next (&si);
3267 sbitmap_free (blocks_visited);
3271 /* Return true if STMT is interesting for VRP. */
3273 static bool
3274 stmt_interesting_for_vrp (tree stmt)
3276 if (TREE_CODE (stmt) == PHI_NODE
3277 && is_gimple_reg (PHI_RESULT (stmt))
3278 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3279 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3280 return true;
3281 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3283 tree lhs = TREE_OPERAND (stmt, 0);
3285 if (TREE_CODE (lhs) == SSA_NAME
3286 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3287 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3288 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3289 return true;
3291 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3292 return true;
3294 return false;
3298 /* Initialize local data structures for VRP. */
3300 static void
3301 vrp_initialize (void)
3303 basic_block bb;
3305 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3306 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3308 FOR_EACH_BB (bb)
3310 block_stmt_iterator si;
3311 tree phi;
3313 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3315 if (!stmt_interesting_for_vrp (phi))
3317 tree lhs = PHI_RESULT (phi);
3318 set_value_range_to_varying (get_value_range (lhs));
3319 DONT_SIMULATE_AGAIN (phi) = true;
3321 else
3322 DONT_SIMULATE_AGAIN (phi) = false;
3325 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3327 tree stmt = bsi_stmt (si);
3329 if (!stmt_interesting_for_vrp (stmt))
3331 ssa_op_iter i;
3332 tree def;
3333 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3334 set_value_range_to_varying (get_value_range (def));
3335 DONT_SIMULATE_AGAIN (stmt) = true;
3337 else
3339 DONT_SIMULATE_AGAIN (stmt) = false;
3346 /* Visit assignment STMT. If it produces an interesting range, record
3347 the SSA name in *OUTPUT_P. */
3349 static enum ssa_prop_result
3350 vrp_visit_assignment (tree stmt, tree *output_p)
3352 tree lhs, rhs, def;
3353 ssa_op_iter iter;
3355 lhs = TREE_OPERAND (stmt, 0);
3356 rhs = TREE_OPERAND (stmt, 1);
3358 /* We only keep track of ranges in integral and pointer types. */
3359 if (TREE_CODE (lhs) == SSA_NAME
3360 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3361 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3363 struct loop *l;
3364 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3366 extract_range_from_expr (&new_vr, rhs);
3368 /* If STMT is inside a loop, we may be able to know something
3369 else about the range of LHS by examining scalar evolution
3370 information. */
3371 if (current_loops && (l = loop_containing_stmt (stmt)))
3372 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3374 if (update_value_range (lhs, &new_vr))
3376 *output_p = lhs;
3378 if (dump_file && (dump_flags & TDF_DETAILS))
3380 fprintf (dump_file, "Found new range for ");
3381 print_generic_expr (dump_file, lhs, 0);
3382 fprintf (dump_file, ": ");
3383 dump_value_range (dump_file, &new_vr);
3384 fprintf (dump_file, "\n\n");
3387 if (new_vr.type == VR_VARYING)
3388 return SSA_PROP_VARYING;
3390 return SSA_PROP_INTERESTING;
3393 return SSA_PROP_NOT_INTERESTING;
3396 /* Every other statement produces no useful ranges. */
3397 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3398 set_value_range_to_varying (get_value_range (def));
3400 return SSA_PROP_VARYING;
3404 /* Compare all the value ranges for names equivalent to VAR with VAL
3405 using comparison code COMP. Return the same value returned by
3406 compare_range_with_value. */
3408 static tree
3409 compare_name_with_value (enum tree_code comp, tree var, tree val)
3411 bitmap_iterator bi;
3412 unsigned i;
3413 bitmap e;
3414 tree retval, t;
3416 t = retval = NULL_TREE;
3418 /* Get the set of equivalences for VAR. */
3419 e = get_value_range (var)->equiv;
3421 /* Add VAR to its own set of equivalences so that VAR's value range
3422 is processed by this loop (otherwise, we would have to replicate
3423 the body of the loop just to check VAR's value range). */
3424 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3426 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3428 value_range_t equiv_vr = *(vr_value[i]);
3430 /* If name N_i does not have a valid range, use N_i as its own
3431 range. This allows us to compare against names that may
3432 have N_i in their ranges. */
3433 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3435 equiv_vr.type = VR_RANGE;
3436 equiv_vr.min = ssa_name (i);
3437 equiv_vr.max = ssa_name (i);
3440 t = compare_range_with_value (comp, &equiv_vr, val);
3441 if (t)
3443 /* All the ranges should compare the same against VAL. */
3444 gcc_assert (retval == NULL || t == retval);
3445 retval = t;
3449 /* Remove VAR from its own equivalence set. */
3450 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3452 if (retval)
3453 return retval;
3455 /* We couldn't find a non-NULL value for the predicate. */
3456 return NULL_TREE;
3460 /* Given a comparison code COMP and names N1 and N2, compare all the
3461 ranges equivalent to N1 against all the ranges equivalent to N2
3462 to determine the value of N1 COMP N2. Return the same value
3463 returned by compare_ranges. */
3465 static tree
3466 compare_names (enum tree_code comp, tree n1, tree n2)
3468 tree t, retval;
3469 bitmap e1, e2;
3470 bitmap_iterator bi1, bi2;
3471 unsigned i1, i2;
3473 /* Compare the ranges of every name equivalent to N1 against the
3474 ranges of every name equivalent to N2. */
3475 e1 = get_value_range (n1)->equiv;
3476 e2 = get_value_range (n2)->equiv;
3478 /* Add N1 and N2 to their own set of equivalences to avoid
3479 duplicating the body of the loop just to check N1 and N2
3480 ranges. */
3481 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3482 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3484 /* If the equivalence sets have a common intersection, then the two
3485 names can be compared without checking their ranges. */
3486 if (bitmap_intersect_p (e1, e2))
3488 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3489 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3491 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3492 ? boolean_true_node
3493 : boolean_false_node;
3496 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3497 N2 to their own set of equivalences to avoid duplicating the body
3498 of the loop just to check N1 and N2 ranges. */
3499 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3501 value_range_t vr1 = *(vr_value[i1]);
3503 /* If the range is VARYING or UNDEFINED, use the name itself. */
3504 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3506 vr1.type = VR_RANGE;
3507 vr1.min = ssa_name (i1);
3508 vr1.max = ssa_name (i1);
3511 t = retval = NULL_TREE;
3512 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3514 value_range_t vr2 = *(vr_value[i2]);
3516 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3518 vr2.type = VR_RANGE;
3519 vr2.min = ssa_name (i2);
3520 vr2.max = ssa_name (i2);
3523 t = compare_ranges (comp, &vr1, &vr2);
3524 if (t)
3526 /* All the ranges in the equivalent sets should compare
3527 the same. */
3528 gcc_assert (retval == NULL || t == retval);
3529 retval = t;
3533 if (retval)
3535 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3536 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3537 return retval;
3541 /* None of the equivalent ranges are useful in computing this
3542 comparison. */
3543 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3544 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3545 return NULL_TREE;
3549 /* Given a conditional predicate COND, try to determine if COND yields
3550 true or false based on the value ranges of its operands. Return
3551 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3552 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3553 NULL if the conditional cannot be evaluated at compile time.
3555 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3556 the operands in COND are used when trying to compute its value.
3557 This is only used during final substitution. During propagation,
3558 we only check the range of each variable and not its equivalents. */
3560 tree
3561 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3563 gcc_assert (TREE_CODE (cond) == SSA_NAME
3564 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3566 if (TREE_CODE (cond) == SSA_NAME)
3568 value_range_t *vr;
3569 tree retval;
3571 if (use_equiv_p)
3572 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3573 else
3575 value_range_t *vr = get_value_range (cond);
3576 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3579 /* If COND has a known boolean range, return it. */
3580 if (retval)
3581 return retval;
3583 /* Otherwise, if COND has a symbolic range of exactly one value,
3584 return it. */
3585 vr = get_value_range (cond);
3586 if (vr->type == VR_RANGE && vr->min == vr->max)
3587 return vr->min;
3589 else
3591 tree op0 = TREE_OPERAND (cond, 0);
3592 tree op1 = TREE_OPERAND (cond, 1);
3594 /* We only deal with integral and pointer types. */
3595 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3596 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3597 return NULL_TREE;
3599 if (use_equiv_p)
3601 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3602 return compare_names (TREE_CODE (cond), op0, op1);
3603 else if (TREE_CODE (op0) == SSA_NAME)
3604 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3605 else if (TREE_CODE (op1) == SSA_NAME)
3606 return compare_name_with_value (
3607 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3609 else
3611 value_range_t *vr0, *vr1;
3613 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3614 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3616 if (vr0 && vr1)
3617 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3618 else if (vr0 && vr1 == NULL)
3619 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3620 else if (vr0 == NULL && vr1)
3621 return compare_range_with_value (
3622 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3626 /* Anything else cannot be computed statically. */
3627 return NULL_TREE;
3631 /* Visit conditional statement STMT. If we can determine which edge
3632 will be taken out of STMT's basic block, record it in
3633 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3634 SSA_PROP_VARYING. */
3636 static enum ssa_prop_result
3637 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3639 tree cond, val;
3641 *taken_edge_p = NULL;
3643 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3644 add ASSERT_EXPRs for them. */
3645 if (TREE_CODE (stmt) == SWITCH_EXPR)
3646 return SSA_PROP_VARYING;
3648 cond = COND_EXPR_COND (stmt);
3650 if (dump_file && (dump_flags & TDF_DETAILS))
3652 tree use;
3653 ssa_op_iter i;
3655 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3656 print_generic_expr (dump_file, cond, 0);
3657 fprintf (dump_file, "\nWith known ranges\n");
3659 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3661 fprintf (dump_file, "\t");
3662 print_generic_expr (dump_file, use, 0);
3663 fprintf (dump_file, ": ");
3664 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3667 fprintf (dump_file, "\n");
3670 /* Compute the value of the predicate COND by checking the known
3671 ranges of each of its operands.
3673 Note that we cannot evaluate all the equivalent ranges here
3674 because those ranges may not yet be final and with the current
3675 propagation strategy, we cannot determine when the value ranges
3676 of the names in the equivalence set have changed.
3678 For instance, given the following code fragment
3680 i_5 = PHI <8, i_13>
3682 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3683 if (i_14 == 1)
3686 Assume that on the first visit to i_14, i_5 has the temporary
3687 range [8, 8] because the second argument to the PHI function is
3688 not yet executable. We derive the range ~[0, 0] for i_14 and the
3689 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3690 the first time, since i_14 is equivalent to the range [8, 8], we
3691 determine that the predicate is always false.
3693 On the next round of propagation, i_13 is determined to be
3694 VARYING, which causes i_5 to drop down to VARYING. So, another
3695 visit to i_14 is scheduled. In this second visit, we compute the
3696 exact same range and equivalence set for i_14, namely ~[0, 0] and
3697 { i_5 }. But we did not have the previous range for i_5
3698 registered, so vrp_visit_assignment thinks that the range for
3699 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3700 is not visited again, which stops propagation from visiting
3701 statements in the THEN clause of that if().
3703 To properly fix this we would need to keep the previous range
3704 value for the names in the equivalence set. This way we would've
3705 discovered that from one visit to the other i_5 changed from
3706 range [8, 8] to VR_VARYING.
3708 However, fixing this apparent limitation may not be worth the
3709 additional checking. Testing on several code bases (GCC, DLV,
3710 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3711 4 more predicates folded in SPEC. */
3712 val = vrp_evaluate_conditional (cond, false);
3713 if (val)
3714 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3716 if (dump_file && (dump_flags & TDF_DETAILS))
3718 fprintf (dump_file, "\nPredicate evaluates to: ");
3719 if (val == NULL_TREE)
3720 fprintf (dump_file, "DON'T KNOW\n");
3721 else
3722 print_generic_stmt (dump_file, val, 0);
3725 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3729 /* Evaluate statement STMT. If the statement produces a useful range,
3730 return SSA_PROP_INTERESTING and record the SSA name with the
3731 interesting range into *OUTPUT_P.
3733 If STMT is a conditional branch and we can determine its truth
3734 value, the taken edge is recorded in *TAKEN_EDGE_P.
3736 If STMT produces a varying value, return SSA_PROP_VARYING. */
3738 static enum ssa_prop_result
3739 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3741 tree def;
3742 ssa_op_iter iter;
3743 stmt_ann_t ann;
3745 if (dump_file && (dump_flags & TDF_DETAILS))
3747 fprintf (dump_file, "\nVisiting statement:\n");
3748 print_generic_stmt (dump_file, stmt, dump_flags);
3749 fprintf (dump_file, "\n");
3752 ann = stmt_ann (stmt);
3753 if (TREE_CODE (stmt) == MODIFY_EXPR
3754 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3755 return vrp_visit_assignment (stmt, output_p);
3756 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3757 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3759 /* All other statements produce nothing of interest for VRP, so mark
3760 their outputs varying and prevent further simulation. */
3761 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3762 set_value_range_to_varying (get_value_range (def));
3764 return SSA_PROP_VARYING;
3768 /* Meet operation for value ranges. Given two value ranges VR0 and
3769 VR1, store in VR0 the result of meeting VR0 and VR1.
3771 The meeting rules are as follows:
3773 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3775 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3776 union of VR0 and VR1. */
3778 static void
3779 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3781 if (vr0->type == VR_UNDEFINED)
3783 copy_value_range (vr0, vr1);
3784 return;
3787 if (vr1->type == VR_UNDEFINED)
3789 /* Nothing to do. VR0 already has the resulting range. */
3790 return;
3793 if (vr0->type == VR_VARYING)
3795 /* Nothing to do. VR0 already has the resulting range. */
3796 return;
3799 if (vr1->type == VR_VARYING)
3801 set_value_range_to_varying (vr0);
3802 return;
3805 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3807 /* If VR0 and VR1 have a non-empty intersection, compute the
3808 union of both ranges. */
3809 if (value_ranges_intersect_p (vr0, vr1))
3811 int cmp;
3812 tree min, max;
3814 /* The lower limit of the new range is the minimum of the
3815 two ranges. If they cannot be compared, the result is
3816 VARYING. */
3817 cmp = compare_values (vr0->min, vr1->min);
3818 if (cmp == 0 || cmp == 1)
3819 min = vr1->min;
3820 else if (cmp == -1)
3821 min = vr0->min;
3822 else
3824 set_value_range_to_varying (vr0);
3825 return;
3828 /* Similarly, the upper limit of the new range is the
3829 maximum of the two ranges. If they cannot be compared,
3830 the result is VARYING. */
3831 cmp = compare_values (vr0->max, vr1->max);
3832 if (cmp == 0 || cmp == -1)
3833 max = vr1->max;
3834 else if (cmp == 1)
3835 max = vr0->max;
3836 else
3838 set_value_range_to_varying (vr0);
3839 return;
3842 /* The resulting set of equivalences is the intersection of
3843 the two sets. */
3844 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3845 bitmap_and_into (vr0->equiv, vr1->equiv);
3846 else if (vr0->equiv && !vr1->equiv)
3847 bitmap_clear (vr0->equiv);
3849 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3851 else
3852 goto no_meet;
3854 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3856 /* Two anti-ranges meet only if they are both identical. */
3857 if (compare_values (vr0->min, vr1->min) == 0
3858 && compare_values (vr0->max, vr1->max) == 0
3859 && compare_values (vr0->min, vr0->max) == 0)
3861 /* The resulting set of equivalences is the intersection of
3862 the two sets. */
3863 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3864 bitmap_and_into (vr0->equiv, vr1->equiv);
3865 else if (vr0->equiv && !vr1->equiv)
3866 bitmap_clear (vr0->equiv);
3868 else
3869 goto no_meet;
3871 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3873 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3874 meet only if the ranges have an empty intersection. The
3875 result of the meet operation is the anti-range. */
3876 if (!symbolic_range_p (vr0)
3877 && !symbolic_range_p (vr1)
3878 && !value_ranges_intersect_p (vr0, vr1))
3880 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3881 set. We need to compute the intersection of the two
3882 equivalence sets. */
3883 if (vr1->type == VR_ANTI_RANGE)
3884 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3886 /* The resulting set of equivalences is the intersection of
3887 the two sets. */
3888 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3889 bitmap_and_into (vr0->equiv, vr1->equiv);
3890 else if (vr0->equiv && !vr1->equiv)
3891 bitmap_clear (vr0->equiv);
3893 else
3894 goto no_meet;
3896 else
3897 gcc_unreachable ();
3899 return;
3901 no_meet:
3902 /* The two range VR0 and VR1 do not meet. Before giving up and
3903 setting the result to VARYING, see if we can at least derive a
3904 useful anti-range. FIXME, all this nonsense about distinguishing
3905 anti-ranges from ranges is necessary because of the odd
3906 semantics of range_includes_zero_p and friends. */
3907 if (!symbolic_range_p (vr0)
3908 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3909 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3910 && !symbolic_range_p (vr1)
3911 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3912 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3914 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3916 /* Since this meet operation did not result from the meeting of
3917 two equivalent names, VR0 cannot have any equivalences. */
3918 if (vr0->equiv)
3919 bitmap_clear (vr0->equiv);
3921 else
3922 set_value_range_to_varying (vr0);
3926 /* Visit all arguments for PHI node PHI that flow through executable
3927 edges. If a valid value range can be derived from all the incoming
3928 value ranges, set a new range for the LHS of PHI. */
3930 static enum ssa_prop_result
3931 vrp_visit_phi_node (tree phi)
3933 int i;
3934 tree lhs = PHI_RESULT (phi);
3935 value_range_t *lhs_vr = get_value_range (lhs);
3936 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3938 copy_value_range (&vr_result, lhs_vr);
3940 if (dump_file && (dump_flags & TDF_DETAILS))
3942 fprintf (dump_file, "\nVisiting PHI node: ");
3943 print_generic_expr (dump_file, phi, dump_flags);
3946 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3948 edge e = PHI_ARG_EDGE (phi, i);
3950 if (dump_file && (dump_flags & TDF_DETAILS))
3952 fprintf (dump_file,
3953 "\n Argument #%d (%d -> %d %sexecutable)\n",
3954 i, e->src->index, e->dest->index,
3955 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3958 if (e->flags & EDGE_EXECUTABLE)
3960 tree arg = PHI_ARG_DEF (phi, i);
3961 value_range_t vr_arg;
3963 if (TREE_CODE (arg) == SSA_NAME)
3964 vr_arg = *(get_value_range (arg));
3965 else
3967 vr_arg.type = VR_RANGE;
3968 vr_arg.min = arg;
3969 vr_arg.max = arg;
3970 vr_arg.equiv = NULL;
3973 if (dump_file && (dump_flags & TDF_DETAILS))
3975 fprintf (dump_file, "\t");
3976 print_generic_expr (dump_file, arg, dump_flags);
3977 fprintf (dump_file, "\n\tValue: ");
3978 dump_value_range (dump_file, &vr_arg);
3979 fprintf (dump_file, "\n");
3982 vrp_meet (&vr_result, &vr_arg);
3984 if (vr_result.type == VR_VARYING)
3985 break;
3989 if (vr_result.type == VR_VARYING)
3990 goto varying;
3992 /* To prevent infinite iterations in the algorithm, derive ranges
3993 when the new value is slightly bigger or smaller than the
3994 previous one. */
3995 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
3997 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3999 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4000 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4002 /* If the new minimum is smaller or larger than the previous
4003 one, go all the way to -INF. In the first case, to avoid
4004 iterating millions of times to reach -INF, and in the
4005 other case to avoid infinite bouncing between different
4006 minimums. */
4007 if (cmp_min > 0 || cmp_min < 0)
4008 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4010 /* Similarly, if the new maximum is smaller or larger than
4011 the previous one, go all the way to +INF. */
4012 if (cmp_max < 0 || cmp_max > 0)
4013 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4015 /* If we ended up with a (-INF, +INF) range, set it to
4016 VARYING. */
4017 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4018 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4019 goto varying;
4023 /* If the new range is different than the previous value, keep
4024 iterating. */
4025 if (update_value_range (lhs, &vr_result))
4026 return SSA_PROP_INTERESTING;
4028 /* Nothing changed, don't add outgoing edges. */
4029 return SSA_PROP_NOT_INTERESTING;
4031 /* No match found. Set the LHS to VARYING. */
4032 varying:
4033 set_value_range_to_varying (lhs_vr);
4034 return SSA_PROP_VARYING;
4037 /* Simplify a division or modulo operator to a right shift or
4038 bitwise and if the first operand is unsigned or is greater
4039 than zero and the second operand is an exact power of two. */
4041 static void
4042 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4044 tree val = NULL;
4045 tree op = TREE_OPERAND (rhs, 0);
4046 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4048 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4050 val = integer_one_node;
4052 else
4054 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4057 if (val && integer_onep (val))
4059 tree t;
4060 tree op0 = TREE_OPERAND (rhs, 0);
4061 tree op1 = TREE_OPERAND (rhs, 1);
4063 if (rhs_code == TRUNC_DIV_EXPR)
4065 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4066 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4068 else
4070 t = build_int_cst (TREE_TYPE (op1), 1);
4071 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4072 t = fold_convert (TREE_TYPE (op0), t);
4073 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4076 TREE_OPERAND (stmt, 1) = t;
4077 update_stmt (stmt);
4081 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4082 ABS_EXPR. If the operand is <= 0, then simplify the
4083 ABS_EXPR into a NEGATE_EXPR. */
4085 static void
4086 simplify_abs_using_ranges (tree stmt, tree rhs)
4088 tree val = NULL;
4089 tree op = TREE_OPERAND (rhs, 0);
4090 tree type = TREE_TYPE (op);
4091 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4093 if (TYPE_UNSIGNED (type))
4095 val = integer_zero_node;
4097 else if (vr)
4099 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4100 if (!val)
4102 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4104 if (val)
4106 if (integer_zerop (val))
4107 val = integer_one_node;
4108 else if (integer_onep (val))
4109 val = integer_zero_node;
4113 if (val
4114 && (integer_onep (val) || integer_zerop (val)))
4116 tree t;
4118 if (integer_onep (val))
4119 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4120 else
4121 t = op;
4123 TREE_OPERAND (stmt, 1) = t;
4124 update_stmt (stmt);
4129 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4130 a known value range VR.
4132 If there is one and only one value which will satisfy the
4133 conditional, then return that value. Else return NULL. */
4135 static tree
4136 test_for_singularity (enum tree_code cond_code, tree op0,
4137 tree op1, value_range_t *vr)
4139 tree min = NULL;
4140 tree max = NULL;
4142 /* Extract minimum/maximum values which satisfy the
4143 the conditional as it was written. */
4144 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4146 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4148 max = op1;
4149 if (cond_code == LT_EXPR)
4151 tree one = build_int_cst (TREE_TYPE (op0), 1);
4152 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4155 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4157 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4159 min = op1;
4160 if (cond_code == GT_EXPR)
4162 tree one = build_int_cst (TREE_TYPE (op0), 1);
4163 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4167 /* Now refine the minimum and maximum values using any
4168 value range information we have for op0. */
4169 if (min && max)
4171 if (compare_values (vr->min, min) == -1)
4172 min = min;
4173 else
4174 min = vr->min;
4175 if (compare_values (vr->max, max) == 1)
4176 max = max;
4177 else
4178 max = vr->max;
4180 /* If the new min/max values have converged to a single value,
4181 then there is only one value which can satisfy the condition,
4182 return that value. */
4183 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4184 return min;
4186 return NULL;
4189 /* Simplify a conditional using a relational operator to an equality
4190 test if the range information indicates only one value can satisfy
4191 the original conditional. */
4193 static void
4194 simplify_cond_using_ranges (tree stmt)
4196 tree cond = COND_EXPR_COND (stmt);
4197 tree op0 = TREE_OPERAND (cond, 0);
4198 tree op1 = TREE_OPERAND (cond, 1);
4199 enum tree_code cond_code = TREE_CODE (cond);
4201 if (cond_code != NE_EXPR
4202 && cond_code != EQ_EXPR
4203 && TREE_CODE (op0) == SSA_NAME
4204 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4205 && is_gimple_min_invariant (op1))
4207 value_range_t *vr = get_value_range (op0);
4209 /* If we have range information for OP0, then we might be
4210 able to simplify this conditional. */
4211 if (vr->type == VR_RANGE)
4213 tree new = test_for_singularity (cond_code, op0, op1, vr);
4215 if (new)
4217 if (dump_file)
4219 fprintf (dump_file, "Simplified relational ");
4220 print_generic_expr (dump_file, cond, 0);
4221 fprintf (dump_file, " into ");
4224 COND_EXPR_COND (stmt)
4225 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4226 update_stmt (stmt);
4228 if (dump_file)
4230 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4231 fprintf (dump_file, "\n");
4233 return;
4237 /* Try again after inverting the condition. We only deal
4238 with integral types here, so no need to worry about
4239 issues with inverting FP comparisons. */
4240 cond_code = invert_tree_comparison (cond_code, false);
4241 new = test_for_singularity (cond_code, op0, op1, vr);
4243 if (new)
4245 if (dump_file)
4247 fprintf (dump_file, "Simplified relational ");
4248 print_generic_expr (dump_file, cond, 0);
4249 fprintf (dump_file, " into ");
4252 COND_EXPR_COND (stmt)
4253 = build2 (NE_EXPR, boolean_type_node, op0, new);
4254 update_stmt (stmt);
4256 if (dump_file)
4258 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4259 fprintf (dump_file, "\n");
4261 return;
4268 /* Simplify STMT using ranges if possible. */
4270 void
4271 simplify_stmt_using_ranges (tree stmt)
4273 if (TREE_CODE (stmt) == MODIFY_EXPR)
4275 tree rhs = TREE_OPERAND (stmt, 1);
4276 enum tree_code rhs_code = TREE_CODE (rhs);
4278 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4279 and BIT_AND_EXPR respectively if the first operand is greater
4280 than zero and the second operand is an exact power of two. */
4281 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4282 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4283 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4284 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4286 /* Transform ABS (X) into X or -X as appropriate. */
4287 if (rhs_code == ABS_EXPR
4288 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4289 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4290 simplify_abs_using_ranges (stmt, rhs);
4292 else if (TREE_CODE (stmt) == COND_EXPR
4293 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4295 simplify_cond_using_ranges (stmt);
4299 /* Stack of dest,src equivalency pairs that need to be restored after
4300 each attempt to thread a block's incoming edge to an outgoing edge.
4302 A NULL entry is used to mark the end of pairs which need to be
4303 restored. */
4304 static VEC(tree,heap) *stack;
4306 /* A trivial wrapper so that we can present the generic jump
4307 threading code with a simple API for simplifying statements. */
4308 static tree
4309 simplify_stmt_for_jump_threading (tree stmt)
4311 /* We only use VRP information to simplify conditionals. This is
4312 overly conservative, but it's unclear if doing more would be
4313 worth the compile time cost. */
4314 if (TREE_CODE (stmt) != COND_EXPR)
4315 return NULL;
4317 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4320 /* Blocks which have more than one predecessor and more than
4321 one successor present jump threading opportunities. ie,
4322 when the block is reached from a specific predecessor, we
4323 may be able to determine which of the outgoing edges will
4324 be traversed. When this optimization applies, we are able
4325 to avoid conditionals at runtime and we may expose secondary
4326 optimization opportunities.
4328 This routine is effectively a driver for the generic jump
4329 threading code. It basically just presents the generic code
4330 with edges that may be suitable for jump threading.
4332 Unlike DOM, we do not iterate VRP if jump threading was successful.
4333 While iterating may expose new opportunities for VRP, it is expected
4334 those opportunities would be very limited and the compile time cost
4335 to expose those opportunities would be significant.
4337 As jump threading opportunities are discovered, they are registered
4338 for later realization. */
4340 static void
4341 identify_jump_threads (void)
4343 basic_block bb;
4344 tree dummy;
4346 /* Ugh. When substituting values earlier in this pass we can
4347 wipe the dominance information. So rebuild the dominator
4348 information as we need it within the jump threading code. */
4349 calculate_dominance_info (CDI_DOMINATORS);
4351 /* We do not allow VRP information to be used for jump threading
4352 across a back edge in the CFG. Otherwise it becomes too
4353 difficult to avoid eliminating loop exit tests. Of course
4354 EDGE_DFS_BACK is not accurate at this time so we have to
4355 recompute it. */
4356 mark_dfs_back_edges ();
4358 /* Allocate our unwinder stack to unwind any temporary equivalences
4359 that might be recorded. */
4360 stack = VEC_alloc (tree, heap, 20);
4362 /* To avoid lots of silly node creation, we create a single
4363 conditional and just modify it in-place when attempting to
4364 thread jumps. */
4365 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4366 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4368 /* Walk through all the blocks finding those which present a
4369 potential jump threading opportunity. We could set this up
4370 as a dominator walker and record data during the walk, but
4371 I doubt it's worth the effort for the classes of jump
4372 threading opportunities we are trying to identify at this
4373 point in compilation. */
4374 FOR_EACH_BB (bb)
4376 tree last, cond;
4378 /* If the generic jump threading code does not find this block
4379 interesting, then there is nothing to do. */
4380 if (! potentially_threadable_block (bb))
4381 continue;
4383 /* We only care about blocks ending in a COND_EXPR. While there
4384 may be some value in handling SWITCH_EXPR here, I doubt it's
4385 terribly important. */
4386 last = bsi_stmt (bsi_last (bb));
4387 if (TREE_CODE (last) != COND_EXPR)
4388 continue;
4390 /* We're basically looking for any kind of conditional with
4391 integral type arguments. */
4392 cond = COND_EXPR_COND (last);
4393 if ((TREE_CODE (cond) == SSA_NAME
4394 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4395 || (COMPARISON_CLASS_P (cond)
4396 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4397 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4398 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4399 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4400 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4402 edge_iterator ei;
4403 edge e;
4405 /* We've got a block with multiple predecessors and multiple
4406 successors which also ends in a suitable conditional. For
4407 each predecessor, see if we can thread it to a specific
4408 successor. */
4409 FOR_EACH_EDGE (e, ei, bb->preds)
4411 /* Do not thread across back edges or abnormal edges
4412 in the CFG. */
4413 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4414 continue;
4416 thread_across_edge (dummy, e, true,
4417 &stack,
4418 simplify_stmt_for_jump_threading);
4423 /* We do not actually update the CFG or SSA graphs at this point as
4424 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4425 handle ASSERT_EXPRs gracefully. */
4428 /* We identified all the jump threading opportunities earlier, but could
4429 not transform the CFG at that time. This routine transforms the
4430 CFG and arranges for the dominator tree to be rebuilt if necessary.
4432 Note the SSA graph update will occur during the normal TODO
4433 processing by the pass manager. */
4434 static void
4435 finalize_jump_threads (void)
4437 bool cfg_altered = false;
4438 cfg_altered = thread_through_all_blocks ();
4440 /* If we threaded jumps, then we need to recompute the dominance
4441 information, to safely do that we must clean up the CFG first. */
4442 if (cfg_altered)
4444 free_dominance_info (CDI_DOMINATORS);
4445 cleanup_tree_cfg ();
4446 calculate_dominance_info (CDI_DOMINATORS);
4448 VEC_free (tree, heap, stack);
4452 /* Traverse all the blocks folding conditionals with known ranges. */
4454 static void
4455 vrp_finalize (void)
4457 size_t i;
4458 prop_value_t *single_val_range;
4459 bool do_value_subst_p;
4461 if (dump_file)
4463 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4464 dump_all_value_ranges (dump_file);
4465 fprintf (dump_file, "\n");
4468 /* We may have ended with ranges that have exactly one value. Those
4469 values can be substituted as any other copy/const propagated
4470 value using substitute_and_fold. */
4471 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4472 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4474 do_value_subst_p = false;
4475 for (i = 0; i < num_ssa_names; i++)
4476 if (vr_value[i]
4477 && vr_value[i]->type == VR_RANGE
4478 && vr_value[i]->min == vr_value[i]->max)
4480 single_val_range[i].value = vr_value[i]->min;
4481 do_value_subst_p = true;
4484 if (!do_value_subst_p)
4486 /* We found no single-valued ranges, don't waste time trying to
4487 do single value substitution in substitute_and_fold. */
4488 free (single_val_range);
4489 single_val_range = NULL;
4492 substitute_and_fold (single_val_range, true);
4494 /* We must identify jump threading opportunities before we release
4495 the datastructures built by VRP. */
4496 identify_jump_threads ();
4498 /* Free allocated memory. */
4499 for (i = 0; i < num_ssa_names; i++)
4500 if (vr_value[i])
4502 BITMAP_FREE (vr_value[i]->equiv);
4503 free (vr_value[i]);
4506 free (single_val_range);
4507 free (vr_value);
4509 /* So that we can distinguish between VRP data being available
4510 and not available. */
4511 vr_value = NULL;
4515 /* Main entry point to VRP (Value Range Propagation). This pass is
4516 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4517 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4518 Programming Language Design and Implementation, pp. 67-78, 1995.
4519 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4521 This is essentially an SSA-CCP pass modified to deal with ranges
4522 instead of constants.
4524 While propagating ranges, we may find that two or more SSA name
4525 have equivalent, though distinct ranges. For instance,
4527 1 x_9 = p_3->a;
4528 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4529 3 if (p_4 == q_2)
4530 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4531 5 endif
4532 6 if (q_2)
4534 In the code above, pointer p_5 has range [q_2, q_2], but from the
4535 code we can also determine that p_5 cannot be NULL and, if q_2 had
4536 a non-varying range, p_5's range should also be compatible with it.
4538 These equivalences are created by two expressions: ASSERT_EXPR and
4539 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4540 result of another assertion, then we can use the fact that p_5 and
4541 p_4 are equivalent when evaluating p_5's range.
4543 Together with value ranges, we also propagate these equivalences
4544 between names so that we can take advantage of information from
4545 multiple ranges when doing final replacement. Note that this
4546 equivalency relation is transitive but not symmetric.
4548 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4549 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4550 in contexts where that assertion does not hold (e.g., in line 6).
4552 TODO, the main difference between this pass and Patterson's is that
4553 we do not propagate edge probabilities. We only compute whether
4554 edges can be taken or not. That is, instead of having a spectrum
4555 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4556 DON'T KNOW. In the future, it may be worthwhile to propagate
4557 probabilities to aid branch prediction. */
4559 static void
4560 execute_vrp (void)
4562 insert_range_assertions ();
4564 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4565 if (current_loops)
4566 scev_initialize (current_loops);
4568 vrp_initialize ();
4569 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4570 vrp_finalize ();
4572 if (current_loops)
4574 scev_finalize ();
4575 loop_optimizer_finalize (current_loops);
4576 current_loops = NULL;
4579 /* ASSERT_EXPRs must be removed before finalizing jump threads
4580 as finalizing jump threads calls the CFG cleanup code which
4581 does not properly handle ASSERT_EXPRs. */
4582 remove_range_assertions ();
4584 /* If we exposed any new variables, go ahead and put them into
4585 SSA form now, before we handle jump threading. This simplifies
4586 interactions between rewriting of _DECL nodes into SSA form
4587 and rewriting SSA_NAME nodes into SSA form after block
4588 duplication and CFG manipulation. */
4589 update_ssa (TODO_update_ssa);
4591 finalize_jump_threads ();
4595 static bool
4596 gate_vrp (void)
4598 return flag_tree_vrp != 0;
4601 struct tree_opt_pass pass_vrp =
4603 "vrp", /* name */
4604 gate_vrp, /* gate */
4605 execute_vrp, /* execute */
4606 NULL, /* sub */
4607 NULL, /* next */
4608 0, /* static_pass_number */
4609 TV_TREE_VRP, /* tv_id */
4610 PROP_ssa | PROP_alias, /* properties_required */
4611 0, /* properties_provided */
4612 0, /* properties_destroyed */
4613 0, /* todo_flags_start */
4614 TODO_cleanup_cfg
4615 | TODO_ggc_collect
4616 | TODO_verify_ssa
4617 | TODO_dump_func
4618 | TODO_update_ssa, /* todo_flags_finish */
4619 0 /* letter */