Daily bump.
[official-gcc.git] / gcc / reload1.c
blob7b420a1ea3d5282b0974c62f59da451a5202dba4
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
45 /* This file contains the reload pass of the compiler, which is
46 run after register allocation has been done. It checks that
47 each insn is valid (operands required to be in registers really
48 are in registers of the proper class) and fixes up invalid ones
49 by copying values temporarily into registers for the insns
50 that need them.
52 The results of register allocation are described by the vector
53 reg_renumber; the insns still contain pseudo regs, but reg_renumber
54 can be used to find which hard reg, if any, a pseudo reg is in.
56 The technique we always use is to free up a few hard regs that are
57 called ``reload regs'', and for each place where a pseudo reg
58 must be in a hard reg, copy it temporarily into one of the reload regs.
60 Reload regs are allocated locally for every instruction that needs
61 reloads. When there are pseudos which are allocated to a register that
62 has been chosen as a reload reg, such pseudos must be ``spilled''.
63 This means that they go to other hard regs, or to stack slots if no other
64 available hard regs can be found. Spilling can invalidate more
65 insns, requiring additional need for reloads, so we must keep checking
66 until the process stabilizes.
68 For machines with different classes of registers, we must keep track
69 of the register class needed for each reload, and make sure that
70 we allocate enough reload registers of each class.
72 The file reload.c contains the code that checks one insn for
73 validity and reports the reloads that it needs. This file
74 is in charge of scanning the entire rtl code, accumulating the
75 reload needs, spilling, assigning reload registers to use for
76 fixing up each insn, and generating the new insns to copy values
77 into the reload registers. */
79 #ifndef REGISTER_MOVE_COST
80 #define REGISTER_MOVE_COST(m, x, y) 2
81 #endif
83 #ifndef LOCAL_REGNO
84 #define LOCAL_REGNO(REGNO) 0
85 #endif
87 /* During reload_as_needed, element N contains a REG rtx for the hard reg
88 into which reg N has been reloaded (perhaps for a previous insn). */
89 static rtx *reg_last_reload_reg;
91 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93 static char *reg_has_output_reload;
95 /* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97 static HARD_REG_SET reg_is_output_reload;
99 /* Element N is the constant value to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a constant.
101 find_reloads looks at this in order to replace pseudo reg N
102 with the constant it stands for. */
103 rtx *reg_equiv_constant;
105 /* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
109 rtx *reg_equiv_memory_loc;
111 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
112 This is used when the address is not valid as a memory address
113 (because its displacement is too big for the machine.) */
114 rtx *reg_equiv_address;
116 /* Element N is the memory slot to which pseudo reg N is equivalent,
117 or zero if pseudo reg N is not equivalent to a memory slot. */
118 rtx *reg_equiv_mem;
120 /* Widest width in which each pseudo reg is referred to (via subreg). */
121 static unsigned int *reg_max_ref_width;
123 /* Element N is the list of insns that initialized reg N from its equivalent
124 constant or memory slot. */
125 static rtx *reg_equiv_init;
127 /* Vector to remember old contents of reg_renumber before spilling. */
128 static short *reg_old_renumber;
130 /* During reload_as_needed, element N contains the last pseudo regno reloaded
131 into hard register N. If that pseudo reg occupied more than one register,
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
136 /* During reload_as_needed, element N contains the insn for which
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
139 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
141 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
142 static HARD_REG_SET reg_reloaded_valid;
143 /* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145 static HARD_REG_SET reg_reloaded_dead;
147 /* Number of spill-regs so far; number of valid elements of spill_regs. */
148 static int n_spills;
150 /* In parallel with spill_regs, contains REG rtx's for those regs.
151 Holds the last rtx used for any given reg, or 0 if it has never
152 been used for spilling yet. This rtx is reused, provided it has
153 the proper mode. */
154 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
156 /* In parallel with spill_regs, contains nonzero for a spill reg
157 that was stored after the last time it was used.
158 The precise value is the insn generated to do the store. */
159 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
161 /* This is the register that was stored with spill_reg_store. This is a
162 copy of reload_out / reload_out_reg when the value was stored; if
163 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
164 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
166 /* This table is the inverse mapping of spill_regs:
167 indexed by hard reg number,
168 it contains the position of that reg in spill_regs,
169 or -1 for something that is not in spill_regs.
171 ?!? This is no longer accurate. */
172 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
174 /* This reg set indicates registers that can't be used as spill registers for
175 the currently processed insn. These are the hard registers which are live
176 during the insn, but not allocated to pseudos, as well as fixed
177 registers. */
178 static HARD_REG_SET bad_spill_regs;
180 /* These are the hard registers that can't be used as spill register for any
181 insn. This includes registers used for user variables and registers that
182 we can't eliminate. A register that appears in this set also can't be used
183 to retry register allocation. */
184 static HARD_REG_SET bad_spill_regs_global;
186 /* Describes order of use of registers for reloading
187 of spilled pseudo-registers. `n_spills' is the number of
188 elements that are actually valid; new ones are added at the end.
190 Both spill_regs and spill_reg_order are used on two occasions:
191 once during find_reload_regs, where they keep track of the spill registers
192 for a single insn, but also during reload_as_needed where they show all
193 the registers ever used by reload. For the latter case, the information
194 is calculated during finish_spills. */
195 static short spill_regs[FIRST_PSEUDO_REGISTER];
197 /* This vector of reg sets indicates, for each pseudo, which hard registers
198 may not be used for retrying global allocation because the register was
199 formerly spilled from one of them. If we allowed reallocating a pseudo to
200 a register that it was already allocated to, reload might not
201 terminate. */
202 static HARD_REG_SET *pseudo_previous_regs;
204 /* This vector of reg sets indicates, for each pseudo, which hard
205 registers may not be used for retrying global allocation because they
206 are used as spill registers during one of the insns in which the
207 pseudo is live. */
208 static HARD_REG_SET *pseudo_forbidden_regs;
210 /* All hard regs that have been used as spill registers for any insn are
211 marked in this set. */
212 static HARD_REG_SET used_spill_regs;
214 /* Index of last register assigned as a spill register. We allocate in
215 a round-robin fashion. */
216 static int last_spill_reg;
218 /* Nonzero if indirect addressing is supported on the machine; this means
219 that spilling (REG n) does not require reloading it into a register in
220 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
221 value indicates the level of indirect addressing supported, e.g., two
222 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
223 a hard register. */
224 static char spill_indirect_levels;
226 /* Nonzero if indirect addressing is supported when the innermost MEM is
227 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
228 which these are valid is the same as spill_indirect_levels, above. */
229 char indirect_symref_ok;
231 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
232 char double_reg_address_ok;
234 /* Record the stack slot for each spilled hard register. */
235 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
237 /* Width allocated so far for that stack slot. */
238 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
240 /* Record which pseudos needed to be spilled. */
241 static regset_head spilled_pseudos;
243 /* Used for communication between order_regs_for_reload and count_pseudo.
244 Used to avoid counting one pseudo twice. */
245 static regset_head pseudos_counted;
247 /* First uid used by insns created by reload in this function.
248 Used in find_equiv_reg. */
249 int reload_first_uid;
251 /* Flag set by local-alloc or global-alloc if anything is live in
252 a call-clobbered reg across calls. */
253 int caller_save_needed;
255 /* Set to 1 while reload_as_needed is operating.
256 Required by some machines to handle any generated moves differently. */
257 int reload_in_progress = 0;
259 /* These arrays record the insn_code of insns that may be needed to
260 perform input and output reloads of special objects. They provide a
261 place to pass a scratch register. */
262 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
263 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
265 /* This obstack is used for allocation of rtl during register elimination.
266 The allocated storage can be freed once find_reloads has processed the
267 insn. */
268 struct obstack reload_obstack;
270 /* Points to the beginning of the reload_obstack. All insn_chain structures
271 are allocated first. */
272 char *reload_startobj;
274 /* The point after all insn_chain structures. Used to quickly deallocate
275 memory allocated in copy_reloads during calculate_needs_all_insns. */
276 char *reload_firstobj;
278 /* This points before all local rtl generated by register elimination.
279 Used to quickly free all memory after processing one insn. */
280 static char *reload_insn_firstobj;
282 #define obstack_chunk_alloc xmalloc
283 #define obstack_chunk_free free
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
289 #ifdef TREE_CODE
290 extern tree current_function_decl;
291 #else
292 extern union tree_node *current_function_decl;
293 #endif
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
303 struct elim_table
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Non-zero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
322 static struct elim_table *reg_eliminate = 0;
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static const struct elim_table_1
328 const int from;
329 const int to;
330 } reg_eliminate_1[] =
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If non-zero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the number of the label.
358 The first table is an array of flags that records whether we have yet
359 encountered a label and the second table is an array of arrays, one
360 entry in the latter array for each elimination. */
362 static char *offsets_known_at;
363 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
365 /* Number of labels in the current function. */
367 static int num_labels;
369 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
370 enum machine_mode,
371 rtx));
372 static void maybe_fix_stack_asms PARAMS ((void));
373 static void copy_reloads PARAMS ((struct insn_chain *));
374 static void calculate_needs_all_insns PARAMS ((int));
375 static int find_reg PARAMS ((struct insn_chain *, int));
376 static void find_reload_regs PARAMS ((struct insn_chain *));
377 static void select_reload_regs PARAMS ((void));
378 static void delete_caller_save_insns PARAMS ((void));
380 static void spill_failure PARAMS ((rtx, enum reg_class));
381 static void count_spilled_pseudo PARAMS ((int, int, int));
382 static void delete_dead_insn PARAMS ((rtx));
383 static void alter_reg PARAMS ((int, int));
384 static void set_label_offsets PARAMS ((rtx, rtx, int));
385 static void check_eliminable_occurrences PARAMS ((rtx));
386 static void elimination_effects PARAMS ((rtx, enum machine_mode));
387 static int eliminate_regs_in_insn PARAMS ((rtx, int));
388 static void update_eliminable_offsets PARAMS ((void));
389 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390 static void set_initial_elim_offsets PARAMS ((void));
391 static void verify_initial_elim_offsets PARAMS ((void));
392 static void set_initial_label_offsets PARAMS ((void));
393 static void set_offsets_for_label PARAMS ((rtx));
394 static void init_elim_table PARAMS ((void));
395 static void update_eliminables PARAMS ((HARD_REG_SET *));
396 static void spill_hard_reg PARAMS ((unsigned int, int));
397 static int finish_spills PARAMS ((int));
398 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399 static void scan_paradoxical_subregs PARAMS ((rtx));
400 static void count_pseudo PARAMS ((int));
401 static void order_regs_for_reload PARAMS ((struct insn_chain *));
402 static void reload_as_needed PARAMS ((int));
403 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
405 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
413 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
414 enum reload_type,
415 rtx, rtx, int, int));
416 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
417 enum reload_type, rtx, rtx,
418 int, int));
419 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
420 enum reload_type));
421 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
422 int));
423 static int conflicts_with_override PARAMS ((rtx));
424 static void failed_reload PARAMS ((rtx, int));
425 static int set_reload_reg PARAMS ((int, int));
426 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
427 static void choose_reload_regs PARAMS ((struct insn_chain *));
428 static void merge_assigned_reloads PARAMS ((rtx));
429 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
430 struct reload *, rtx, int));
431 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void do_input_reload PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void do_output_reload PARAMS ((struct insn_chain *,
436 struct reload *, int));
437 static void emit_reload_insns PARAMS ((struct insn_chain *));
438 static void delete_output_reload PARAMS ((rtx, int, int));
439 static void delete_address_reloads PARAMS ((rtx, rtx));
440 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
441 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
442 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
443 static void reload_cse_regs_1 PARAMS ((rtx));
444 static int reload_cse_noop_set_p PARAMS ((rtx));
445 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
446 static int reload_cse_simplify_operands PARAMS ((rtx));
447 static void reload_combine PARAMS ((void));
448 static void reload_combine_note_use PARAMS ((rtx *, rtx));
449 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
450 static void reload_cse_move2add PARAMS ((rtx));
451 static void move2add_note_store PARAMS ((rtx, rtx, void *));
452 #ifdef AUTO_INC_DEC
453 static void add_auto_inc_notes PARAMS ((rtx, rtx));
454 #endif
455 static void copy_eh_notes PARAMS ((rtx, rtx));
456 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
457 HOST_WIDE_INT));
458 static void failed_reload PARAMS ((rtx, int));
459 static int set_reload_reg PARAMS ((int, int));
460 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
461 static void reload_cse_simplify PARAMS ((rtx));
462 static void fixup_abnormal_edges PARAMS ((void));
463 extern void dump_needs PARAMS ((struct insn_chain *));
465 /* Initialize the reload pass once per compilation. */
467 void
468 init_reload ()
470 int i;
472 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
473 Set spill_indirect_levels to the number of levels such addressing is
474 permitted, zero if it is not permitted at all. */
476 rtx tem
477 = gen_rtx_MEM (Pmode,
478 gen_rtx_PLUS (Pmode,
479 gen_rtx_REG (Pmode,
480 LAST_VIRTUAL_REGISTER + 1),
481 GEN_INT (4)));
482 spill_indirect_levels = 0;
484 while (memory_address_p (QImode, tem))
486 spill_indirect_levels++;
487 tem = gen_rtx_MEM (Pmode, tem);
490 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
492 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
493 indirect_symref_ok = memory_address_p (QImode, tem);
495 /* See if reg+reg is a valid (and offsettable) address. */
497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
499 tem = gen_rtx_PLUS (Pmode,
500 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
501 gen_rtx_REG (Pmode, i));
503 /* This way, we make sure that reg+reg is an offsettable address. */
504 tem = plus_constant (tem, 4);
506 if (memory_address_p (QImode, tem))
508 double_reg_address_ok = 1;
509 break;
513 /* Initialize obstack for our rtl allocation. */
514 gcc_obstack_init (&reload_obstack);
515 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
517 INIT_REG_SET (&spilled_pseudos);
518 INIT_REG_SET (&pseudos_counted);
521 /* List of insn chains that are currently unused. */
522 static struct insn_chain *unused_insn_chains = 0;
524 /* Allocate an empty insn_chain structure. */
525 struct insn_chain *
526 new_insn_chain ()
528 struct insn_chain *c;
530 if (unused_insn_chains == 0)
532 c = (struct insn_chain *)
533 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
534 INIT_REG_SET (&c->live_throughout);
535 INIT_REG_SET (&c->dead_or_set);
537 else
539 c = unused_insn_chains;
540 unused_insn_chains = c->next;
542 c->is_caller_save_insn = 0;
543 c->need_operand_change = 0;
544 c->need_reload = 0;
545 c->need_elim = 0;
546 return c;
549 /* Small utility function to set all regs in hard reg set TO which are
550 allocated to pseudos in regset FROM. */
552 void
553 compute_use_by_pseudos (to, from)
554 HARD_REG_SET *to;
555 regset from;
557 unsigned int regno;
559 EXECUTE_IF_SET_IN_REG_SET
560 (from, FIRST_PSEUDO_REGISTER, regno,
562 int r = reg_renumber[regno];
563 int nregs;
565 if (r < 0)
567 /* reload_combine uses the information from
568 BASIC_BLOCK->global_live_at_start, which might still
569 contain registers that have not actually been allocated
570 since they have an equivalence. */
571 if (! reload_completed)
572 abort ();
574 else
576 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
577 while (nregs-- > 0)
578 SET_HARD_REG_BIT (*to, r + nregs);
583 /* Replace all pseudos found in LOC with their corresponding
584 equivalences. */
586 static void
587 replace_pseudos_in_call_usage (loc, mem_mode, usage)
588 rtx *loc;
589 enum machine_mode mem_mode;
590 rtx usage;
592 rtx x = *loc;
593 enum rtx_code code;
594 const char *fmt;
595 int i, j;
597 if (! x)
598 return;
600 code = GET_CODE (x);
601 if (code == REG)
603 unsigned int regno = REGNO (x);
605 if (regno < FIRST_PSEUDO_REGISTER)
606 return;
608 x = eliminate_regs (x, mem_mode, usage);
609 if (x != *loc)
611 *loc = x;
612 replace_pseudos_in_call_usage (loc, mem_mode, usage);
613 return;
616 if (reg_equiv_constant[regno])
617 *loc = reg_equiv_constant[regno];
618 else if (reg_equiv_mem[regno])
619 *loc = reg_equiv_mem[regno];
620 else if (reg_equiv_address[regno])
621 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
622 else if (GET_CODE (regno_reg_rtx[regno]) != REG
623 || REGNO (regno_reg_rtx[regno]) != regno)
624 *loc = regno_reg_rtx[regno];
625 else
626 abort ();
628 return;
630 else if (code == MEM)
632 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
633 return;
636 /* Process each of our operands recursively. */
637 fmt = GET_RTX_FORMAT (code);
638 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
639 if (*fmt == 'e')
640 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
641 else if (*fmt == 'E')
642 for (j = 0; j < XVECLEN (x, i); j++)
643 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
647 /* Global variables used by reload and its subroutines. */
649 /* Set during calculate_needs if an insn needs register elimination. */
650 static int something_needs_elimination;
651 /* Set during calculate_needs if an insn needs an operand changed. */
652 int something_needs_operands_changed;
654 /* Nonzero means we couldn't get enough spill regs. */
655 static int failure;
657 /* Main entry point for the reload pass.
659 FIRST is the first insn of the function being compiled.
661 GLOBAL nonzero means we were called from global_alloc
662 and should attempt to reallocate any pseudoregs that we
663 displace from hard regs we will use for reloads.
664 If GLOBAL is zero, we do not have enough information to do that,
665 so any pseudo reg that is spilled must go to the stack.
667 Return value is nonzero if reload failed
668 and we must not do any more for this function. */
671 reload (first, global)
672 rtx first;
673 int global;
675 int i;
676 rtx insn;
677 struct elim_table *ep;
679 /* The two pointers used to track the true location of the memory used
680 for label offsets. */
681 char *real_known_ptr = NULL;
682 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
684 /* Make sure even insns with volatile mem refs are recognizable. */
685 init_recog ();
687 failure = 0;
689 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
691 /* Make sure that the last insn in the chain
692 is not something that needs reloading. */
693 emit_note (NULL, NOTE_INSN_DELETED);
695 /* Enable find_equiv_reg to distinguish insns made by reload. */
696 reload_first_uid = get_max_uid ();
698 #ifdef SECONDARY_MEMORY_NEEDED
699 /* Initialize the secondary memory table. */
700 clear_secondary_mem ();
701 #endif
703 /* We don't have a stack slot for any spill reg yet. */
704 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
705 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
707 /* Initialize the save area information for caller-save, in case some
708 are needed. */
709 init_save_areas ();
711 /* Compute which hard registers are now in use
712 as homes for pseudo registers.
713 This is done here rather than (eg) in global_alloc
714 because this point is reached even if not optimizing. */
715 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
716 mark_home_live (i);
718 /* A function that receives a nonlocal goto must save all call-saved
719 registers. */
720 if (current_function_has_nonlocal_label)
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
722 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
723 regs_ever_live[i] = 1;
725 /* Find all the pseudo registers that didn't get hard regs
726 but do have known equivalent constants or memory slots.
727 These include parameters (known equivalent to parameter slots)
728 and cse'd or loop-moved constant memory addresses.
730 Record constant equivalents in reg_equiv_constant
731 so they will be substituted by find_reloads.
732 Record memory equivalents in reg_mem_equiv so they can
733 be substituted eventually by altering the REG-rtx's. */
735 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
740 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
741 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
742 pseudo_forbidden_regs
743 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
744 pseudo_previous_regs
745 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
747 CLEAR_HARD_REG_SET (bad_spill_regs_global);
749 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
750 Also find all paradoxical subregs and find largest such for each pseudo.
751 On machines with small register classes, record hard registers that
752 are used for user variables. These can never be used for spills.
753 Also look for a "constant" REG_SETJMP. This means that all
754 caller-saved registers must be marked live. */
756 num_eliminable_invariants = 0;
757 for (insn = first; insn; insn = NEXT_INSN (insn))
759 rtx set = single_set (insn);
761 /* We may introduce USEs that we want to remove at the end, so
762 we'll mark them with QImode. Make sure there are no
763 previously-marked insns left by say regmove. */
764 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
765 && GET_MODE (insn) != VOIDmode)
766 PUT_MODE (insn, VOIDmode);
768 if (GET_CODE (insn) == CALL_INSN
769 && find_reg_note (insn, REG_SETJMP, NULL))
770 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
771 if (! call_used_regs[i])
772 regs_ever_live[i] = 1;
774 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
776 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
777 if (note
778 #ifdef LEGITIMATE_PIC_OPERAND_P
779 && (! function_invariant_p (XEXP (note, 0))
780 || ! flag_pic
781 /* A function invariant is often CONSTANT_P but may
782 include a register. We promise to only pass
783 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
784 || (CONSTANT_P (XEXP (note, 0))
785 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
786 #endif
789 rtx x = XEXP (note, 0);
790 i = REGNO (SET_DEST (set));
791 if (i > LAST_VIRTUAL_REGISTER)
793 if (GET_CODE (x) == MEM)
795 /* Always unshare the equivalence, so we can
796 substitute into this insn without touching the
797 equivalence. */
798 reg_equiv_memory_loc[i] = copy_rtx (x);
800 else if (function_invariant_p (x))
802 if (GET_CODE (x) == PLUS)
804 /* This is PLUS of frame pointer and a constant,
805 and might be shared. Unshare it. */
806 reg_equiv_constant[i] = copy_rtx (x);
807 num_eliminable_invariants++;
809 else if (x == frame_pointer_rtx
810 || x == arg_pointer_rtx)
812 reg_equiv_constant[i] = x;
813 num_eliminable_invariants++;
815 else if (LEGITIMATE_CONSTANT_P (x))
816 reg_equiv_constant[i] = x;
817 else
818 reg_equiv_memory_loc[i]
819 = force_const_mem (GET_MODE (SET_DEST (set)), x);
821 else
822 continue;
824 /* If this register is being made equivalent to a MEM
825 and the MEM is not SET_SRC, the equivalencing insn
826 is one with the MEM as a SET_DEST and it occurs later.
827 So don't mark this insn now. */
828 if (GET_CODE (x) != MEM
829 || rtx_equal_p (SET_SRC (set), x))
830 reg_equiv_init[i]
831 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
836 /* If this insn is setting a MEM from a register equivalent to it,
837 this is the equivalencing insn. */
838 else if (set && GET_CODE (SET_DEST (set)) == MEM
839 && GET_CODE (SET_SRC (set)) == REG
840 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
841 && rtx_equal_p (SET_DEST (set),
842 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
843 reg_equiv_init[REGNO (SET_SRC (set))]
844 = gen_rtx_INSN_LIST (VOIDmode, insn,
845 reg_equiv_init[REGNO (SET_SRC (set))]);
847 if (INSN_P (insn))
848 scan_paradoxical_subregs (PATTERN (insn));
851 init_elim_table ();
853 num_labels = max_label_num () - get_first_label_num ();
855 /* Allocate the tables used to store offset information at labels. */
856 /* We used to use alloca here, but the size of what it would try to
857 allocate would occasionally cause it to exceed the stack limit and
858 cause a core dump. */
859 real_known_ptr = xmalloc (num_labels);
860 real_at_ptr
861 = (int (*)[NUM_ELIMINABLE_REGS])
862 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
864 offsets_known_at = real_known_ptr - get_first_label_num ();
865 offsets_at
866 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
868 /* Alter each pseudo-reg rtx to contain its hard reg number.
869 Assign stack slots to the pseudos that lack hard regs or equivalents.
870 Do not touch virtual registers. */
872 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
873 alter_reg (i, -1);
875 /* If we have some registers we think can be eliminated, scan all insns to
876 see if there is an insn that sets one of these registers to something
877 other than itself plus a constant. If so, the register cannot be
878 eliminated. Doing this scan here eliminates an extra pass through the
879 main reload loop in the most common case where register elimination
880 cannot be done. */
881 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
882 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
883 || GET_CODE (insn) == CALL_INSN)
884 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
886 maybe_fix_stack_asms ();
888 insns_need_reload = 0;
889 something_needs_elimination = 0;
891 /* Initialize to -1, which means take the first spill register. */
892 last_spill_reg = -1;
894 /* Spill any hard regs that we know we can't eliminate. */
895 CLEAR_HARD_REG_SET (used_spill_regs);
896 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
897 if (! ep->can_eliminate)
898 spill_hard_reg (ep->from, 1);
900 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
901 if (frame_pointer_needed)
902 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
903 #endif
904 finish_spills (global);
906 /* From now on, we may need to generate moves differently. We may also
907 allow modifications of insns which cause them to not be recognized.
908 Any such modifications will be cleaned up during reload itself. */
909 reload_in_progress = 1;
911 /* This loop scans the entire function each go-round
912 and repeats until one repetition spills no additional hard regs. */
913 for (;;)
915 int something_changed;
916 int did_spill;
918 HOST_WIDE_INT starting_frame_size;
920 /* Round size of stack frame to stack_alignment_needed. This must be done
921 here because the stack size may be a part of the offset computation
922 for register elimination, and there might have been new stack slots
923 created in the last iteration of this loop. */
924 if (cfun->stack_alignment_needed)
925 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
927 starting_frame_size = get_frame_size ();
929 set_initial_elim_offsets ();
930 set_initial_label_offsets ();
932 /* For each pseudo register that has an equivalent location defined,
933 try to eliminate any eliminable registers (such as the frame pointer)
934 assuming initial offsets for the replacement register, which
935 is the normal case.
937 If the resulting location is directly addressable, substitute
938 the MEM we just got directly for the old REG.
940 If it is not addressable but is a constant or the sum of a hard reg
941 and constant, it is probably not addressable because the constant is
942 out of range, in that case record the address; we will generate
943 hairy code to compute the address in a register each time it is
944 needed. Similarly if it is a hard register, but one that is not
945 valid as an address register.
947 If the location is not addressable, but does not have one of the
948 above forms, assign a stack slot. We have to do this to avoid the
949 potential of producing lots of reloads if, e.g., a location involves
950 a pseudo that didn't get a hard register and has an equivalent memory
951 location that also involves a pseudo that didn't get a hard register.
953 Perhaps at some point we will improve reload_when_needed handling
954 so this problem goes away. But that's very hairy. */
956 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
957 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
959 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
961 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
962 XEXP (x, 0)))
963 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
964 else if (CONSTANT_P (XEXP (x, 0))
965 || (GET_CODE (XEXP (x, 0)) == REG
966 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
967 || (GET_CODE (XEXP (x, 0)) == PLUS
968 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
969 && (REGNO (XEXP (XEXP (x, 0), 0))
970 < FIRST_PSEUDO_REGISTER)
971 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
972 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
973 else
975 /* Make a new stack slot. Then indicate that something
976 changed so we go back and recompute offsets for
977 eliminable registers because the allocation of memory
978 below might change some offset. reg_equiv_{mem,address}
979 will be set up for this pseudo on the next pass around
980 the loop. */
981 reg_equiv_memory_loc[i] = 0;
982 reg_equiv_init[i] = 0;
983 alter_reg (i, -1);
987 if (caller_save_needed)
988 setup_save_areas ();
990 /* If we allocated another stack slot, redo elimination bookkeeping. */
991 if (starting_frame_size != get_frame_size ())
992 continue;
994 if (caller_save_needed)
996 save_call_clobbered_regs ();
997 /* That might have allocated new insn_chain structures. */
998 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1001 calculate_needs_all_insns (global);
1003 CLEAR_REG_SET (&spilled_pseudos);
1004 did_spill = 0;
1006 something_changed = 0;
1008 /* If we allocated any new memory locations, make another pass
1009 since it might have changed elimination offsets. */
1010 if (starting_frame_size != get_frame_size ())
1011 something_changed = 1;
1014 HARD_REG_SET to_spill;
1015 CLEAR_HARD_REG_SET (to_spill);
1016 update_eliminables (&to_spill);
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (TEST_HARD_REG_BIT (to_spill, i))
1020 spill_hard_reg (i, 1);
1021 did_spill = 1;
1023 /* Regardless of the state of spills, if we previously had
1024 a register that we thought we could eliminate, but no can
1025 not eliminate, we must run another pass.
1027 Consider pseudos which have an entry in reg_equiv_* which
1028 reference an eliminable register. We must make another pass
1029 to update reg_equiv_* so that we do not substitute in the
1030 old value from when we thought the elimination could be
1031 performed. */
1032 something_changed = 1;
1036 select_reload_regs ();
1037 if (failure)
1038 goto failed;
1040 if (insns_need_reload != 0 || did_spill)
1041 something_changed |= finish_spills (global);
1043 if (! something_changed)
1044 break;
1046 if (caller_save_needed)
1047 delete_caller_save_insns ();
1049 obstack_free (&reload_obstack, reload_firstobj);
1052 /* If global-alloc was run, notify it of any register eliminations we have
1053 done. */
1054 if (global)
1055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1056 if (ep->can_eliminate)
1057 mark_elimination (ep->from, ep->to);
1059 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1060 If that insn didn't set the register (i.e., it copied the register to
1061 memory), just delete that insn instead of the equivalencing insn plus
1062 anything now dead. If we call delete_dead_insn on that insn, we may
1063 delete the insn that actually sets the register if the register dies
1064 there and that is incorrect. */
1066 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1068 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1070 rtx list;
1071 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1073 rtx equiv_insn = XEXP (list, 0);
1075 /* If we already deleted the insn or if it may trap, we can't
1076 delete it. The latter case shouldn't happen, but can
1077 if an insn has a variable address, gets a REG_EH_REGION
1078 note added to it, and then gets converted into an load
1079 from a constant address. */
1080 if (GET_CODE (equiv_insn) == NOTE
1081 || can_throw_internal (equiv_insn))
1083 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1084 delete_dead_insn (equiv_insn);
1085 else
1087 PUT_CODE (equiv_insn, NOTE);
1088 NOTE_SOURCE_FILE (equiv_insn) = 0;
1089 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1095 /* Use the reload registers where necessary
1096 by generating move instructions to move the must-be-register
1097 values into or out of the reload registers. */
1099 if (insns_need_reload != 0 || something_needs_elimination
1100 || something_needs_operands_changed)
1102 HOST_WIDE_INT old_frame_size = get_frame_size ();
1104 reload_as_needed (global);
1106 if (old_frame_size != get_frame_size ())
1107 abort ();
1109 if (num_eliminable)
1110 verify_initial_elim_offsets ();
1113 /* If we were able to eliminate the frame pointer, show that it is no
1114 longer live at the start of any basic block. If it ls live by
1115 virtue of being in a pseudo, that pseudo will be marked live
1116 and hence the frame pointer will be known to be live via that
1117 pseudo. */
1119 if (! frame_pointer_needed)
1120 for (i = 0; i < n_basic_blocks; i++)
1121 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1122 HARD_FRAME_POINTER_REGNUM);
1124 /* Come here (with failure set nonzero) if we can't get enough spill regs
1125 and we decide not to abort about it. */
1126 failed:
1128 CLEAR_REG_SET (&spilled_pseudos);
1129 reload_in_progress = 0;
1131 /* Now eliminate all pseudo regs by modifying them into
1132 their equivalent memory references.
1133 The REG-rtx's for the pseudos are modified in place,
1134 so all insns that used to refer to them now refer to memory.
1136 For a reg that has a reg_equiv_address, all those insns
1137 were changed by reloading so that no insns refer to it any longer;
1138 but the DECL_RTL of a variable decl may refer to it,
1139 and if so this causes the debugging info to mention the variable. */
1141 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1143 rtx addr = 0;
1145 if (reg_equiv_mem[i])
1146 addr = XEXP (reg_equiv_mem[i], 0);
1148 if (reg_equiv_address[i])
1149 addr = reg_equiv_address[i];
1151 if (addr)
1153 if (reg_renumber[i] < 0)
1155 rtx reg = regno_reg_rtx[i];
1157 PUT_CODE (reg, MEM);
1158 XEXP (reg, 0) = addr;
1159 REG_USERVAR_P (reg) = 0;
1160 if (reg_equiv_memory_loc[i])
1161 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1162 else
1164 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1165 = MEM_SCALAR_P (reg) = 0;
1166 MEM_ATTRS (reg) = 0;
1169 else if (reg_equiv_mem[i])
1170 XEXP (reg_equiv_mem[i], 0) = addr;
1174 /* We must set reload_completed now since the cleanup_subreg_operands call
1175 below will re-recognize each insn and reload may have generated insns
1176 which are only valid during and after reload. */
1177 reload_completed = 1;
1179 /* Make a pass over all the insns and delete all USEs which we inserted
1180 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1181 notes. Delete all CLOBBER insns that don't refer to the return value
1182 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1183 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1184 and regenerate REG_INC notes that may have been moved around. */
1186 for (insn = first; insn; insn = NEXT_INSN (insn))
1187 if (INSN_P (insn))
1189 rtx *pnote;
1191 if (GET_CODE (insn) == CALL_INSN)
1192 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1193 VOIDmode,
1194 CALL_INSN_FUNCTION_USAGE (insn));
1196 if ((GET_CODE (PATTERN (insn)) == USE
1197 /* We mark with QImode USEs introduced by reload itself. */
1198 && (GET_MODE (insn) == QImode
1199 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1200 || (GET_CODE (PATTERN (insn)) == CLOBBER
1201 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1202 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1204 delete_insn (insn);
1205 continue;
1208 pnote = &REG_NOTES (insn);
1209 while (*pnote != 0)
1211 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1212 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1213 || REG_NOTE_KIND (*pnote) == REG_INC
1214 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1215 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1216 *pnote = XEXP (*pnote, 1);
1217 else
1218 pnote = &XEXP (*pnote, 1);
1221 #ifdef AUTO_INC_DEC
1222 add_auto_inc_notes (insn, PATTERN (insn));
1223 #endif
1225 /* And simplify (subreg (reg)) if it appears as an operand. */
1226 cleanup_subreg_operands (insn);
1229 /* If we are doing stack checking, give a warning if this function's
1230 frame size is larger than we expect. */
1231 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1233 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1234 static int verbose_warned = 0;
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1238 size += UNITS_PER_WORD;
1240 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1242 warning ("frame size too large for reliable stack checking");
1243 if (! verbose_warned)
1245 warning ("try reducing the number of local variables");
1246 verbose_warned = 1;
1251 /* Indicate that we no longer have known memory locations or constants. */
1252 if (reg_equiv_constant)
1253 free (reg_equiv_constant);
1254 reg_equiv_constant = 0;
1255 if (reg_equiv_memory_loc)
1256 free (reg_equiv_memory_loc);
1257 reg_equiv_memory_loc = 0;
1259 if (real_known_ptr)
1260 free (real_known_ptr);
1261 if (real_at_ptr)
1262 free (real_at_ptr);
1264 free (reg_equiv_mem);
1265 free (reg_equiv_init);
1266 free (reg_equiv_address);
1267 free (reg_max_ref_width);
1268 free (reg_old_renumber);
1269 free (pseudo_previous_regs);
1270 free (pseudo_forbidden_regs);
1272 CLEAR_HARD_REG_SET (used_spill_regs);
1273 for (i = 0; i < n_spills; i++)
1274 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1276 /* Free all the insn_chain structures at once. */
1277 obstack_free (&reload_obstack, reload_startobj);
1278 unused_insn_chains = 0;
1279 fixup_abnormal_edges ();
1281 return failure;
1284 /* Yet another special case. Unfortunately, reg-stack forces people to
1285 write incorrect clobbers in asm statements. These clobbers must not
1286 cause the register to appear in bad_spill_regs, otherwise we'll call
1287 fatal_insn later. We clear the corresponding regnos in the live
1288 register sets to avoid this.
1289 The whole thing is rather sick, I'm afraid. */
1291 static void
1292 maybe_fix_stack_asms ()
1294 #ifdef STACK_REGS
1295 const char *constraints[MAX_RECOG_OPERANDS];
1296 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1297 struct insn_chain *chain;
1299 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1301 int i, noperands;
1302 HARD_REG_SET clobbered, allowed;
1303 rtx pat;
1305 if (! INSN_P (chain->insn)
1306 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1307 continue;
1308 pat = PATTERN (chain->insn);
1309 if (GET_CODE (pat) != PARALLEL)
1310 continue;
1312 CLEAR_HARD_REG_SET (clobbered);
1313 CLEAR_HARD_REG_SET (allowed);
1315 /* First, make a mask of all stack regs that are clobbered. */
1316 for (i = 0; i < XVECLEN (pat, 0); i++)
1318 rtx t = XVECEXP (pat, 0, i);
1319 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1320 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1323 /* Get the operand values and constraints out of the insn. */
1324 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1325 constraints, operand_mode);
1327 /* For every operand, see what registers are allowed. */
1328 for (i = 0; i < noperands; i++)
1330 const char *p = constraints[i];
1331 /* For every alternative, we compute the class of registers allowed
1332 for reloading in CLS, and merge its contents into the reg set
1333 ALLOWED. */
1334 int cls = (int) NO_REGS;
1336 for (;;)
1338 char c = *p++;
1340 if (c == '\0' || c == ',' || c == '#')
1342 /* End of one alternative - mark the regs in the current
1343 class, and reset the class. */
1344 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1345 cls = NO_REGS;
1346 if (c == '#')
1347 do {
1348 c = *p++;
1349 } while (c != '\0' && c != ',');
1350 if (c == '\0')
1351 break;
1352 continue;
1355 switch (c)
1357 case '=': case '+': case '*': case '%': case '?': case '!':
1358 case '0': case '1': case '2': case '3': case '4': case 'm':
1359 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1360 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1361 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1362 case 'P':
1363 break;
1365 case 'p':
1366 cls = (int) reg_class_subunion[cls]
1367 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1368 break;
1370 case 'g':
1371 case 'r':
1372 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1373 break;
1375 default:
1376 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1381 /* Those of the registers which are clobbered, but allowed by the
1382 constraints, must be usable as reload registers. So clear them
1383 out of the life information. */
1384 AND_HARD_REG_SET (allowed, clobbered);
1385 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1386 if (TEST_HARD_REG_BIT (allowed, i))
1388 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1389 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1393 #endif
1396 /* Copy the global variables n_reloads and rld into the corresponding elts
1397 of CHAIN. */
1398 static void
1399 copy_reloads (chain)
1400 struct insn_chain *chain;
1402 chain->n_reloads = n_reloads;
1403 chain->rld
1404 = (struct reload *) obstack_alloc (&reload_obstack,
1405 n_reloads * sizeof (struct reload));
1406 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1407 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1410 /* Walk the chain of insns, and determine for each whether it needs reloads
1411 and/or eliminations. Build the corresponding insns_need_reload list, and
1412 set something_needs_elimination as appropriate. */
1413 static void
1414 calculate_needs_all_insns (global)
1415 int global;
1417 struct insn_chain **pprev_reload = &insns_need_reload;
1418 struct insn_chain *chain, *next = 0;
1420 something_needs_elimination = 0;
1422 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1423 for (chain = reload_insn_chain; chain != 0; chain = next)
1425 rtx insn = chain->insn;
1427 next = chain->next;
1429 /* Clear out the shortcuts. */
1430 chain->n_reloads = 0;
1431 chain->need_elim = 0;
1432 chain->need_reload = 0;
1433 chain->need_operand_change = 0;
1435 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1436 include REG_LABEL), we need to see what effects this has on the
1437 known offsets at labels. */
1439 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1440 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1441 set_label_offsets (insn, insn, 0);
1443 if (INSN_P (insn))
1445 rtx old_body = PATTERN (insn);
1446 int old_code = INSN_CODE (insn);
1447 rtx old_notes = REG_NOTES (insn);
1448 int did_elimination = 0;
1449 int operands_changed = 0;
1450 rtx set = single_set (insn);
1452 /* Skip insns that only set an equivalence. */
1453 if (set && GET_CODE (SET_DEST (set)) == REG
1454 && reg_renumber[REGNO (SET_DEST (set))] < 0
1455 && reg_equiv_constant[REGNO (SET_DEST (set))])
1456 continue;
1458 /* If needed, eliminate any eliminable registers. */
1459 if (num_eliminable || num_eliminable_invariants)
1460 did_elimination = eliminate_regs_in_insn (insn, 0);
1462 /* Analyze the instruction. */
1463 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1464 global, spill_reg_order);
1466 /* If a no-op set needs more than one reload, this is likely
1467 to be something that needs input address reloads. We
1468 can't get rid of this cleanly later, and it is of no use
1469 anyway, so discard it now.
1470 We only do this when expensive_optimizations is enabled,
1471 since this complements reload inheritance / output
1472 reload deletion, and it can make debugging harder. */
1473 if (flag_expensive_optimizations && n_reloads > 1)
1475 rtx set = single_set (insn);
1476 if (set
1477 && SET_SRC (set) == SET_DEST (set)
1478 && GET_CODE (SET_SRC (set)) == REG
1479 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1481 delete_insn (insn);
1482 /* Delete it from the reload chain */
1483 if (chain->prev)
1484 chain->prev->next = next;
1485 else
1486 reload_insn_chain = next;
1487 if (next)
1488 next->prev = chain->prev;
1489 chain->next = unused_insn_chains;
1490 unused_insn_chains = chain;
1491 continue;
1494 if (num_eliminable)
1495 update_eliminable_offsets ();
1497 /* Remember for later shortcuts which insns had any reloads or
1498 register eliminations. */
1499 chain->need_elim = did_elimination;
1500 chain->need_reload = n_reloads > 0;
1501 chain->need_operand_change = operands_changed;
1503 /* Discard any register replacements done. */
1504 if (did_elimination)
1506 obstack_free (&reload_obstack, reload_insn_firstobj);
1507 PATTERN (insn) = old_body;
1508 INSN_CODE (insn) = old_code;
1509 REG_NOTES (insn) = old_notes;
1510 something_needs_elimination = 1;
1513 something_needs_operands_changed |= operands_changed;
1515 if (n_reloads != 0)
1517 copy_reloads (chain);
1518 *pprev_reload = chain;
1519 pprev_reload = &chain->next_need_reload;
1523 *pprev_reload = 0;
1526 /* Comparison function for qsort to decide which of two reloads
1527 should be handled first. *P1 and *P2 are the reload numbers. */
1529 static int
1530 reload_reg_class_lower (r1p, r2p)
1531 const PTR r1p;
1532 const PTR r2p;
1534 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1535 int t;
1537 /* Consider required reloads before optional ones. */
1538 t = rld[r1].optional - rld[r2].optional;
1539 if (t != 0)
1540 return t;
1542 /* Count all solitary classes before non-solitary ones. */
1543 t = ((reg_class_size[(int) rld[r2].class] == 1)
1544 - (reg_class_size[(int) rld[r1].class] == 1));
1545 if (t != 0)
1546 return t;
1548 /* Aside from solitaires, consider all multi-reg groups first. */
1549 t = rld[r2].nregs - rld[r1].nregs;
1550 if (t != 0)
1551 return t;
1553 /* Consider reloads in order of increasing reg-class number. */
1554 t = (int) rld[r1].class - (int) rld[r2].class;
1555 if (t != 0)
1556 return t;
1558 /* If reloads are equally urgent, sort by reload number,
1559 so that the results of qsort leave nothing to chance. */
1560 return r1 - r2;
1563 /* The cost of spilling each hard reg. */
1564 static int spill_cost[FIRST_PSEUDO_REGISTER];
1566 /* When spilling multiple hard registers, we use SPILL_COST for the first
1567 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1568 only the first hard reg for a multi-reg pseudo. */
1569 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1571 /* Update the spill cost arrays, considering that pseudo REG is live. */
1573 static void
1574 count_pseudo (reg)
1575 int reg;
1577 int freq = REG_FREQ (reg);
1578 int r = reg_renumber[reg];
1579 int nregs;
1581 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1582 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1583 return;
1585 SET_REGNO_REG_SET (&pseudos_counted, reg);
1587 if (r < 0)
1588 abort ();
1590 spill_add_cost[r] += freq;
1592 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1593 while (nregs-- > 0)
1594 spill_cost[r + nregs] += freq;
1597 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1598 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1600 static void
1601 order_regs_for_reload (chain)
1602 struct insn_chain *chain;
1604 int i;
1605 HARD_REG_SET used_by_pseudos;
1606 HARD_REG_SET used_by_pseudos2;
1608 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1610 memset (spill_cost, 0, sizeof spill_cost);
1611 memset (spill_add_cost, 0, sizeof spill_add_cost);
1613 /* Count number of uses of each hard reg by pseudo regs allocated to it
1614 and then order them by decreasing use. First exclude hard registers
1615 that are live in or across this insn. */
1617 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1618 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1619 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1620 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1622 /* Now find out which pseudos are allocated to it, and update
1623 hard_reg_n_uses. */
1624 CLEAR_REG_SET (&pseudos_counted);
1626 EXECUTE_IF_SET_IN_REG_SET
1627 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1629 count_pseudo (i);
1631 EXECUTE_IF_SET_IN_REG_SET
1632 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1634 count_pseudo (i);
1636 CLEAR_REG_SET (&pseudos_counted);
1639 /* Vector of reload-numbers showing the order in which the reloads should
1640 be processed. */
1641 static short reload_order[MAX_RELOADS];
1643 /* This is used to keep track of the spill regs used in one insn. */
1644 static HARD_REG_SET used_spill_regs_local;
1646 /* We decided to spill hard register SPILLED, which has a size of
1647 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1648 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1649 update SPILL_COST/SPILL_ADD_COST. */
1651 static void
1652 count_spilled_pseudo (spilled, spilled_nregs, reg)
1653 int spilled, spilled_nregs, reg;
1655 int r = reg_renumber[reg];
1656 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1658 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1659 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1660 return;
1662 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1664 spill_add_cost[r] -= REG_FREQ (reg);
1665 while (nregs-- > 0)
1666 spill_cost[r + nregs] -= REG_FREQ (reg);
1669 /* Find reload register to use for reload number ORDER. */
1671 static int
1672 find_reg (chain, order)
1673 struct insn_chain *chain;
1674 int order;
1676 int rnum = reload_order[order];
1677 struct reload *rl = rld + rnum;
1678 int best_cost = INT_MAX;
1679 int best_reg = -1;
1680 unsigned int i, j;
1681 int k;
1682 HARD_REG_SET not_usable;
1683 HARD_REG_SET used_by_other_reload;
1685 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1686 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1687 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1689 CLEAR_HARD_REG_SET (used_by_other_reload);
1690 for (k = 0; k < order; k++)
1692 int other = reload_order[k];
1694 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1695 for (j = 0; j < rld[other].nregs; j++)
1696 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1699 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1701 unsigned int regno = i;
1703 if (! TEST_HARD_REG_BIT (not_usable, regno)
1704 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1705 && HARD_REGNO_MODE_OK (regno, rl->mode))
1707 int this_cost = spill_cost[regno];
1708 int ok = 1;
1709 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1711 for (j = 1; j < this_nregs; j++)
1713 this_cost += spill_add_cost[regno + j];
1714 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1715 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1716 ok = 0;
1718 if (! ok)
1719 continue;
1720 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1721 this_cost--;
1722 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1723 this_cost--;
1724 if (this_cost < best_cost
1725 /* Among registers with equal cost, prefer caller-saved ones, or
1726 use REG_ALLOC_ORDER if it is defined. */
1727 || (this_cost == best_cost
1728 #ifdef REG_ALLOC_ORDER
1729 && (inv_reg_alloc_order[regno]
1730 < inv_reg_alloc_order[best_reg])
1731 #else
1732 && call_used_regs[regno]
1733 && ! call_used_regs[best_reg]
1734 #endif
1737 best_reg = regno;
1738 best_cost = this_cost;
1742 if (best_reg == -1)
1743 return 0;
1745 if (rtl_dump_file)
1746 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1748 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1749 rl->regno = best_reg;
1751 EXECUTE_IF_SET_IN_REG_SET
1752 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1754 count_spilled_pseudo (best_reg, rl->nregs, j);
1757 EXECUTE_IF_SET_IN_REG_SET
1758 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1760 count_spilled_pseudo (best_reg, rl->nregs, j);
1763 for (i = 0; i < rl->nregs; i++)
1765 if (spill_cost[best_reg + i] != 0
1766 || spill_add_cost[best_reg + i] != 0)
1767 abort ();
1768 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1770 return 1;
1773 /* Find more reload regs to satisfy the remaining need of an insn, which
1774 is given by CHAIN.
1775 Do it by ascending class number, since otherwise a reg
1776 might be spilled for a big class and might fail to count
1777 for a smaller class even though it belongs to that class. */
1779 static void
1780 find_reload_regs (chain)
1781 struct insn_chain *chain;
1783 int i;
1785 /* In order to be certain of getting the registers we need,
1786 we must sort the reloads into order of increasing register class.
1787 Then our grabbing of reload registers will parallel the process
1788 that provided the reload registers. */
1789 for (i = 0; i < chain->n_reloads; i++)
1791 /* Show whether this reload already has a hard reg. */
1792 if (chain->rld[i].reg_rtx)
1794 int regno = REGNO (chain->rld[i].reg_rtx);
1795 chain->rld[i].regno = regno;
1796 chain->rld[i].nregs
1797 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1799 else
1800 chain->rld[i].regno = -1;
1801 reload_order[i] = i;
1804 n_reloads = chain->n_reloads;
1805 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1807 CLEAR_HARD_REG_SET (used_spill_regs_local);
1809 if (rtl_dump_file)
1810 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1812 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1814 /* Compute the order of preference for hard registers to spill. */
1816 order_regs_for_reload (chain);
1818 for (i = 0; i < n_reloads; i++)
1820 int r = reload_order[i];
1822 /* Ignore reloads that got marked inoperative. */
1823 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1824 && ! rld[r].optional
1825 && rld[r].regno == -1)
1826 if (! find_reg (chain, i))
1828 spill_failure (chain->insn, rld[r].class);
1829 failure = 1;
1830 return;
1834 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1835 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1837 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1840 static void
1841 select_reload_regs ()
1843 struct insn_chain *chain;
1845 /* Try to satisfy the needs for each insn. */
1846 for (chain = insns_need_reload; chain != 0;
1847 chain = chain->next_need_reload)
1848 find_reload_regs (chain);
1851 /* Delete all insns that were inserted by emit_caller_save_insns during
1852 this iteration. */
1853 static void
1854 delete_caller_save_insns ()
1856 struct insn_chain *c = reload_insn_chain;
1858 while (c != 0)
1860 while (c != 0 && c->is_caller_save_insn)
1862 struct insn_chain *next = c->next;
1863 rtx insn = c->insn;
1865 if (c == reload_insn_chain)
1866 reload_insn_chain = next;
1867 delete_insn (insn);
1869 if (next)
1870 next->prev = c->prev;
1871 if (c->prev)
1872 c->prev->next = next;
1873 c->next = unused_insn_chains;
1874 unused_insn_chains = c;
1875 c = next;
1877 if (c != 0)
1878 c = c->next;
1882 /* Handle the failure to find a register to spill.
1883 INSN should be one of the insns which needed this particular spill reg. */
1885 static void
1886 spill_failure (insn, class)
1887 rtx insn;
1888 enum reg_class class;
1890 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1891 if (asm_noperands (PATTERN (insn)) >= 0)
1892 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1893 reg_class_names[class]);
1894 else
1896 error ("unable to find a register to spill in class `%s'",
1897 reg_class_names[class]);
1898 fatal_insn ("this is the insn:", insn);
1902 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1903 data that is dead in INSN. */
1905 static void
1906 delete_dead_insn (insn)
1907 rtx insn;
1909 rtx prev = prev_real_insn (insn);
1910 rtx prev_dest;
1912 /* If the previous insn sets a register that dies in our insn, delete it
1913 too. */
1914 if (prev && GET_CODE (PATTERN (prev)) == SET
1915 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1916 && reg_mentioned_p (prev_dest, PATTERN (insn))
1917 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1918 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1919 delete_dead_insn (prev);
1921 PUT_CODE (insn, NOTE);
1922 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1923 NOTE_SOURCE_FILE (insn) = 0;
1926 /* Modify the home of pseudo-reg I.
1927 The new home is present in reg_renumber[I].
1929 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1930 or it may be -1, meaning there is none or it is not relevant.
1931 This is used so that all pseudos spilled from a given hard reg
1932 can share one stack slot. */
1934 static void
1935 alter_reg (i, from_reg)
1936 int i;
1937 int from_reg;
1939 /* When outputting an inline function, this can happen
1940 for a reg that isn't actually used. */
1941 if (regno_reg_rtx[i] == 0)
1942 return;
1944 /* If the reg got changed to a MEM at rtl-generation time,
1945 ignore it. */
1946 if (GET_CODE (regno_reg_rtx[i]) != REG)
1947 return;
1949 /* Modify the reg-rtx to contain the new hard reg
1950 number or else to contain its pseudo reg number. */
1951 REGNO (regno_reg_rtx[i])
1952 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1954 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1955 allocate a stack slot for it. */
1957 if (reg_renumber[i] < 0
1958 && REG_N_REFS (i) > 0
1959 && reg_equiv_constant[i] == 0
1960 && reg_equiv_memory_loc[i] == 0)
1962 rtx x;
1963 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1964 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1965 int adjust = 0;
1967 /* Each pseudo reg has an inherent size which comes from its own mode,
1968 and a total size which provides room for paradoxical subregs
1969 which refer to the pseudo reg in wider modes.
1971 We can use a slot already allocated if it provides both
1972 enough inherent space and enough total space.
1973 Otherwise, we allocate a new slot, making sure that it has no less
1974 inherent space, and no less total space, then the previous slot. */
1975 if (from_reg == -1)
1977 /* No known place to spill from => no slot to reuse. */
1978 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1979 inherent_size == total_size ? 0 : -1);
1980 if (BYTES_BIG_ENDIAN)
1981 /* Cancel the big-endian correction done in assign_stack_local.
1982 Get the address of the beginning of the slot.
1983 This is so we can do a big-endian correction unconditionally
1984 below. */
1985 adjust = inherent_size - total_size;
1987 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1989 /* Nothing can alias this slot except this pseudo. */
1990 set_mem_alias_set (x, new_alias_set ());
1993 /* Reuse a stack slot if possible. */
1994 else if (spill_stack_slot[from_reg] != 0
1995 && spill_stack_slot_width[from_reg] >= total_size
1996 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1997 >= inherent_size))
1998 x = spill_stack_slot[from_reg];
2000 /* Allocate a bigger slot. */
2001 else
2003 /* Compute maximum size needed, both for inherent size
2004 and for total size. */
2005 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2006 rtx stack_slot;
2008 if (spill_stack_slot[from_reg])
2010 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2011 > inherent_size)
2012 mode = GET_MODE (spill_stack_slot[from_reg]);
2013 if (spill_stack_slot_width[from_reg] > total_size)
2014 total_size = spill_stack_slot_width[from_reg];
2017 /* Make a slot with that size. */
2018 x = assign_stack_local (mode, total_size,
2019 inherent_size == total_size ? 0 : -1);
2020 stack_slot = x;
2022 /* All pseudos mapped to this slot can alias each other. */
2023 if (spill_stack_slot[from_reg])
2024 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2025 else
2026 set_mem_alias_set (x, new_alias_set ());
2028 if (BYTES_BIG_ENDIAN)
2030 /* Cancel the big-endian correction done in assign_stack_local.
2031 Get the address of the beginning of the slot.
2032 This is so we can do a big-endian correction unconditionally
2033 below. */
2034 adjust = GET_MODE_SIZE (mode) - total_size;
2035 if (adjust)
2036 stack_slot
2037 = adjust_address_nv (x, mode_for_size (total_size
2038 * BITS_PER_UNIT,
2039 MODE_INT, 1),
2040 adjust);
2043 spill_stack_slot[from_reg] = stack_slot;
2044 spill_stack_slot_width[from_reg] = total_size;
2047 /* On a big endian machine, the "address" of the slot
2048 is the address of the low part that fits its inherent mode. */
2049 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2050 adjust += (total_size - inherent_size);
2052 /* If we have any adjustment to make, or if the stack slot is the
2053 wrong mode, make a new stack slot. */
2054 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2056 /* If we have a decl for the original register, set it for the
2057 memory. If this is a shared MEM, make a copy. */
2058 if (REGNO_DECL (i))
2060 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2061 x = copy_rtx (x);
2063 set_mem_expr (x, REGNO_DECL (i));
2066 /* Save the stack slot for later. */
2067 reg_equiv_memory_loc[i] = x;
2071 /* Mark the slots in regs_ever_live for the hard regs
2072 used by pseudo-reg number REGNO. */
2074 void
2075 mark_home_live (regno)
2076 int regno;
2078 int i, lim;
2080 i = reg_renumber[regno];
2081 if (i < 0)
2082 return;
2083 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2084 while (i < lim)
2085 regs_ever_live[i++] = 1;
2088 /* This function handles the tracking of elimination offsets around branches.
2090 X is a piece of RTL being scanned.
2092 INSN is the insn that it came from, if any.
2094 INITIAL_P is non-zero if we are to set the offset to be the initial
2095 offset and zero if we are setting the offset of the label to be the
2096 current offset. */
2098 static void
2099 set_label_offsets (x, insn, initial_p)
2100 rtx x;
2101 rtx insn;
2102 int initial_p;
2104 enum rtx_code code = GET_CODE (x);
2105 rtx tem;
2106 unsigned int i;
2107 struct elim_table *p;
2109 switch (code)
2111 case LABEL_REF:
2112 if (LABEL_REF_NONLOCAL_P (x))
2113 return;
2115 x = XEXP (x, 0);
2117 /* ... fall through ... */
2119 case CODE_LABEL:
2120 /* If we know nothing about this label, set the desired offsets. Note
2121 that this sets the offset at a label to be the offset before a label
2122 if we don't know anything about the label. This is not correct for
2123 the label after a BARRIER, but is the best guess we can make. If
2124 we guessed wrong, we will suppress an elimination that might have
2125 been possible had we been able to guess correctly. */
2127 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2129 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2130 offsets_at[CODE_LABEL_NUMBER (x)][i]
2131 = (initial_p ? reg_eliminate[i].initial_offset
2132 : reg_eliminate[i].offset);
2133 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2136 /* Otherwise, if this is the definition of a label and it is
2137 preceded by a BARRIER, set our offsets to the known offset of
2138 that label. */
2140 else if (x == insn
2141 && (tem = prev_nonnote_insn (insn)) != 0
2142 && GET_CODE (tem) == BARRIER)
2143 set_offsets_for_label (insn);
2144 else
2145 /* If neither of the above cases is true, compare each offset
2146 with those previously recorded and suppress any eliminations
2147 where the offsets disagree. */
2149 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2150 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2151 != (initial_p ? reg_eliminate[i].initial_offset
2152 : reg_eliminate[i].offset))
2153 reg_eliminate[i].can_eliminate = 0;
2155 return;
2157 case JUMP_INSN:
2158 set_label_offsets (PATTERN (insn), insn, initial_p);
2160 /* ... fall through ... */
2162 case INSN:
2163 case CALL_INSN:
2164 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2165 and hence must have all eliminations at their initial offsets. */
2166 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2167 if (REG_NOTE_KIND (tem) == REG_LABEL)
2168 set_label_offsets (XEXP (tem, 0), insn, 1);
2169 return;
2171 case PARALLEL:
2172 case ADDR_VEC:
2173 case ADDR_DIFF_VEC:
2174 /* Each of the labels in the parallel or address vector must be
2175 at their initial offsets. We want the first field for PARALLEL
2176 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2178 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2179 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2180 insn, initial_p);
2181 return;
2183 case SET:
2184 /* We only care about setting PC. If the source is not RETURN,
2185 IF_THEN_ELSE, or a label, disable any eliminations not at
2186 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2187 isn't one of those possibilities. For branches to a label,
2188 call ourselves recursively.
2190 Note that this can disable elimination unnecessarily when we have
2191 a non-local goto since it will look like a non-constant jump to
2192 someplace in the current function. This isn't a significant
2193 problem since such jumps will normally be when all elimination
2194 pairs are back to their initial offsets. */
2196 if (SET_DEST (x) != pc_rtx)
2197 return;
2199 switch (GET_CODE (SET_SRC (x)))
2201 case PC:
2202 case RETURN:
2203 return;
2205 case LABEL_REF:
2206 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2207 return;
2209 case IF_THEN_ELSE:
2210 tem = XEXP (SET_SRC (x), 1);
2211 if (GET_CODE (tem) == LABEL_REF)
2212 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2213 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2214 break;
2216 tem = XEXP (SET_SRC (x), 2);
2217 if (GET_CODE (tem) == LABEL_REF)
2218 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2219 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2220 break;
2221 return;
2223 default:
2224 break;
2227 /* If we reach here, all eliminations must be at their initial
2228 offset because we are doing a jump to a variable address. */
2229 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2230 if (p->offset != p->initial_offset)
2231 p->can_eliminate = 0;
2232 break;
2234 default:
2235 break;
2239 /* Scan X and replace any eliminable registers (such as fp) with a
2240 replacement (such as sp), plus an offset.
2242 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2243 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2244 MEM, we are allowed to replace a sum of a register and the constant zero
2245 with the register, which we cannot do outside a MEM. In addition, we need
2246 to record the fact that a register is referenced outside a MEM.
2248 If INSN is an insn, it is the insn containing X. If we replace a REG
2249 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2250 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2251 the REG is being modified.
2253 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2254 That's used when we eliminate in expressions stored in notes.
2255 This means, do not set ref_outside_mem even if the reference
2256 is outside of MEMs.
2258 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2259 replacements done assuming all offsets are at their initial values. If
2260 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2261 encounter, return the actual location so that find_reloads will do
2262 the proper thing. */
2265 eliminate_regs (x, mem_mode, insn)
2266 rtx x;
2267 enum machine_mode mem_mode;
2268 rtx insn;
2270 enum rtx_code code = GET_CODE (x);
2271 struct elim_table *ep;
2272 int regno;
2273 rtx new;
2274 int i, j;
2275 const char *fmt;
2276 int copied = 0;
2278 if (! current_function_decl)
2279 return x;
2281 switch (code)
2283 case CONST_INT:
2284 case CONST_DOUBLE:
2285 case CONST_VECTOR:
2286 case CONST:
2287 case SYMBOL_REF:
2288 case CODE_LABEL:
2289 case PC:
2290 case CC0:
2291 case ASM_INPUT:
2292 case ADDR_VEC:
2293 case ADDR_DIFF_VEC:
2294 case RETURN:
2295 return x;
2297 case ADDRESSOF:
2298 /* This is only for the benefit of the debugging backends, which call
2299 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2300 removed after CSE. */
2301 new = eliminate_regs (XEXP (x, 0), 0, insn);
2302 if (GET_CODE (new) == MEM)
2303 return XEXP (new, 0);
2304 return x;
2306 case REG:
2307 regno = REGNO (x);
2309 /* First handle the case where we encounter a bare register that
2310 is eliminable. Replace it with a PLUS. */
2311 if (regno < FIRST_PSEUDO_REGISTER)
2313 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2314 ep++)
2315 if (ep->from_rtx == x && ep->can_eliminate)
2316 return plus_constant (ep->to_rtx, ep->previous_offset);
2319 else if (reg_renumber && reg_renumber[regno] < 0
2320 && reg_equiv_constant && reg_equiv_constant[regno]
2321 && ! CONSTANT_P (reg_equiv_constant[regno]))
2322 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2323 mem_mode, insn);
2324 return x;
2326 /* You might think handling MINUS in a manner similar to PLUS is a
2327 good idea. It is not. It has been tried multiple times and every
2328 time the change has had to have been reverted.
2330 Other parts of reload know a PLUS is special (gen_reload for example)
2331 and require special code to handle code a reloaded PLUS operand.
2333 Also consider backends where the flags register is clobbered by a
2334 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2335 lea instruction comes to mind). If we try to reload a MINUS, we
2336 may kill the flags register that was holding a useful value.
2338 So, please before trying to handle MINUS, consider reload as a
2339 whole instead of this little section as well as the backend issues. */
2340 case PLUS:
2341 /* If this is the sum of an eliminable register and a constant, rework
2342 the sum. */
2343 if (GET_CODE (XEXP (x, 0)) == REG
2344 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2345 && CONSTANT_P (XEXP (x, 1)))
2347 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2348 ep++)
2349 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2351 /* The only time we want to replace a PLUS with a REG (this
2352 occurs when the constant operand of the PLUS is the negative
2353 of the offset) is when we are inside a MEM. We won't want
2354 to do so at other times because that would change the
2355 structure of the insn in a way that reload can't handle.
2356 We special-case the commonest situation in
2357 eliminate_regs_in_insn, so just replace a PLUS with a
2358 PLUS here, unless inside a MEM. */
2359 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2360 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2361 return ep->to_rtx;
2362 else
2363 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2364 plus_constant (XEXP (x, 1),
2365 ep->previous_offset));
2368 /* If the register is not eliminable, we are done since the other
2369 operand is a constant. */
2370 return x;
2373 /* If this is part of an address, we want to bring any constant to the
2374 outermost PLUS. We will do this by doing register replacement in
2375 our operands and seeing if a constant shows up in one of them.
2377 Note that there is no risk of modifying the structure of the insn,
2378 since we only get called for its operands, thus we are either
2379 modifying the address inside a MEM, or something like an address
2380 operand of a load-address insn. */
2383 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2384 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2386 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2388 /* If one side is a PLUS and the other side is a pseudo that
2389 didn't get a hard register but has a reg_equiv_constant,
2390 we must replace the constant here since it may no longer
2391 be in the position of any operand. */
2392 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2393 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2394 && reg_renumber[REGNO (new1)] < 0
2395 && reg_equiv_constant != 0
2396 && reg_equiv_constant[REGNO (new1)] != 0)
2397 new1 = reg_equiv_constant[REGNO (new1)];
2398 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2399 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2400 && reg_renumber[REGNO (new0)] < 0
2401 && reg_equiv_constant[REGNO (new0)] != 0)
2402 new0 = reg_equiv_constant[REGNO (new0)];
2404 new = form_sum (new0, new1);
2406 /* As above, if we are not inside a MEM we do not want to
2407 turn a PLUS into something else. We might try to do so here
2408 for an addition of 0 if we aren't optimizing. */
2409 if (! mem_mode && GET_CODE (new) != PLUS)
2410 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2411 else
2412 return new;
2415 return x;
2417 case MULT:
2418 /* If this is the product of an eliminable register and a
2419 constant, apply the distribute law and move the constant out
2420 so that we have (plus (mult ..) ..). This is needed in order
2421 to keep load-address insns valid. This case is pathological.
2422 We ignore the possibility of overflow here. */
2423 if (GET_CODE (XEXP (x, 0)) == REG
2424 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2425 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2426 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2427 ep++)
2428 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2430 if (! mem_mode
2431 /* Refs inside notes don't count for this purpose. */
2432 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2433 || GET_CODE (insn) == INSN_LIST)))
2434 ep->ref_outside_mem = 1;
2436 return
2437 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2438 ep->previous_offset * INTVAL (XEXP (x, 1)));
2441 /* ... fall through ... */
2443 case CALL:
2444 case COMPARE:
2445 /* See comments before PLUS about handling MINUS. */
2446 case MINUS:
2447 case DIV: case UDIV:
2448 case MOD: case UMOD:
2449 case AND: case IOR: case XOR:
2450 case ROTATERT: case ROTATE:
2451 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2452 case NE: case EQ:
2453 case GE: case GT: case GEU: case GTU:
2454 case LE: case LT: case LEU: case LTU:
2456 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2457 rtx new1
2458 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2460 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2461 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2463 return x;
2465 case EXPR_LIST:
2466 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2467 if (XEXP (x, 0))
2469 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2470 if (new != XEXP (x, 0))
2472 /* If this is a REG_DEAD note, it is not valid anymore.
2473 Using the eliminated version could result in creating a
2474 REG_DEAD note for the stack or frame pointer. */
2475 if (GET_MODE (x) == REG_DEAD)
2476 return (XEXP (x, 1)
2477 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2478 : NULL_RTX);
2480 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2484 /* ... fall through ... */
2486 case INSN_LIST:
2487 /* Now do eliminations in the rest of the chain. If this was
2488 an EXPR_LIST, this might result in allocating more memory than is
2489 strictly needed, but it simplifies the code. */
2490 if (XEXP (x, 1))
2492 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2493 if (new != XEXP (x, 1))
2494 return
2495 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2497 return x;
2499 case PRE_INC:
2500 case POST_INC:
2501 case PRE_DEC:
2502 case POST_DEC:
2503 case STRICT_LOW_PART:
2504 case NEG: case NOT:
2505 case SIGN_EXTEND: case ZERO_EXTEND:
2506 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2507 case FLOAT: case FIX:
2508 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2509 case ABS:
2510 case SQRT:
2511 case FFS:
2512 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2513 if (new != XEXP (x, 0))
2514 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2515 return x;
2517 case SUBREG:
2518 /* Similar to above processing, but preserve SUBREG_BYTE.
2519 Convert (subreg (mem)) to (mem) if not paradoxical.
2520 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2521 pseudo didn't get a hard reg, we must replace this with the
2522 eliminated version of the memory location because push_reloads
2523 may do the replacement in certain circumstances. */
2524 if (GET_CODE (SUBREG_REG (x)) == REG
2525 && (GET_MODE_SIZE (GET_MODE (x))
2526 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2527 && reg_equiv_memory_loc != 0
2528 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2530 new = SUBREG_REG (x);
2532 else
2533 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2535 if (new != SUBREG_REG (x))
2537 int x_size = GET_MODE_SIZE (GET_MODE (x));
2538 int new_size = GET_MODE_SIZE (GET_MODE (new));
2540 if (GET_CODE (new) == MEM
2541 && ((x_size < new_size
2542 #ifdef WORD_REGISTER_OPERATIONS
2543 /* On these machines, combine can create rtl of the form
2544 (set (subreg:m1 (reg:m2 R) 0) ...)
2545 where m1 < m2, and expects something interesting to
2546 happen to the entire word. Moreover, it will use the
2547 (reg:m2 R) later, expecting all bits to be preserved.
2548 So if the number of words is the same, preserve the
2549 subreg so that push_reloads can see it. */
2550 && ! ((x_size - 1) / UNITS_PER_WORD
2551 == (new_size -1 ) / UNITS_PER_WORD)
2552 #endif
2554 || x_size == new_size)
2556 return adjust_address_nv (x, GET_MODE (x), SUBREG_BYTE (x));
2557 else
2558 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2561 return x;
2563 case MEM:
2564 /* This is only for the benefit of the debugging backends, which call
2565 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2566 removed after CSE. */
2567 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2568 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2570 /* Our only special processing is to pass the mode of the MEM to our
2571 recursive call and copy the flags. While we are here, handle this
2572 case more efficiently. */
2573 return
2574 replace_equiv_address_nv (x,
2575 eliminate_regs (XEXP (x, 0),
2576 GET_MODE (x), insn));
2578 case USE:
2579 /* Handle insn_list USE that a call to a pure function may generate. */
2580 new = eliminate_regs (XEXP (x, 0), 0, insn);
2581 if (new != XEXP (x, 0))
2582 return gen_rtx_USE (GET_MODE (x), new);
2583 return x;
2585 case CLOBBER:
2586 case ASM_OPERANDS:
2587 case SET:
2588 abort ();
2590 default:
2591 break;
2594 /* Process each of our operands recursively. If any have changed, make a
2595 copy of the rtx. */
2596 fmt = GET_RTX_FORMAT (code);
2597 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2599 if (*fmt == 'e')
2601 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2602 if (new != XEXP (x, i) && ! copied)
2604 rtx new_x = rtx_alloc (code);
2605 memcpy (new_x, x,
2606 (sizeof (*new_x) - sizeof (new_x->fld)
2607 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2608 x = new_x;
2609 copied = 1;
2611 XEXP (x, i) = new;
2613 else if (*fmt == 'E')
2615 int copied_vec = 0;
2616 for (j = 0; j < XVECLEN (x, i); j++)
2618 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2619 if (new != XVECEXP (x, i, j) && ! copied_vec)
2621 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2622 XVEC (x, i)->elem);
2623 if (! copied)
2625 rtx new_x = rtx_alloc (code);
2626 memcpy (new_x, x,
2627 (sizeof (*new_x) - sizeof (new_x->fld)
2628 + (sizeof (new_x->fld[0])
2629 * GET_RTX_LENGTH (code))));
2630 x = new_x;
2631 copied = 1;
2633 XVEC (x, i) = new_v;
2634 copied_vec = 1;
2636 XVECEXP (x, i, j) = new;
2641 return x;
2644 /* Scan rtx X for modifications of elimination target registers. Update
2645 the table of eliminables to reflect the changed state. MEM_MODE is
2646 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2648 static void
2649 elimination_effects (x, mem_mode)
2650 rtx x;
2651 enum machine_mode mem_mode;
2654 enum rtx_code code = GET_CODE (x);
2655 struct elim_table *ep;
2656 int regno;
2657 int i, j;
2658 const char *fmt;
2660 switch (code)
2662 case CONST_INT:
2663 case CONST_DOUBLE:
2664 case CONST_VECTOR:
2665 case CONST:
2666 case SYMBOL_REF:
2667 case CODE_LABEL:
2668 case PC:
2669 case CC0:
2670 case ASM_INPUT:
2671 case ADDR_VEC:
2672 case ADDR_DIFF_VEC:
2673 case RETURN:
2674 return;
2676 case ADDRESSOF:
2677 abort ();
2679 case REG:
2680 regno = REGNO (x);
2682 /* First handle the case where we encounter a bare register that
2683 is eliminable. Replace it with a PLUS. */
2684 if (regno < FIRST_PSEUDO_REGISTER)
2686 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2687 ep++)
2688 if (ep->from_rtx == x && ep->can_eliminate)
2690 if (! mem_mode)
2691 ep->ref_outside_mem = 1;
2692 return;
2696 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2697 && reg_equiv_constant[regno]
2698 && ! function_invariant_p (reg_equiv_constant[regno]))
2699 elimination_effects (reg_equiv_constant[regno], mem_mode);
2700 return;
2702 case PRE_INC:
2703 case POST_INC:
2704 case PRE_DEC:
2705 case POST_DEC:
2706 case POST_MODIFY:
2707 case PRE_MODIFY:
2708 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2709 if (ep->to_rtx == XEXP (x, 0))
2711 int size = GET_MODE_SIZE (mem_mode);
2713 /* If more bytes than MEM_MODE are pushed, account for them. */
2714 #ifdef PUSH_ROUNDING
2715 if (ep->to_rtx == stack_pointer_rtx)
2716 size = PUSH_ROUNDING (size);
2717 #endif
2718 if (code == PRE_DEC || code == POST_DEC)
2719 ep->offset += size;
2720 else if (code == PRE_INC || code == POST_INC)
2721 ep->offset -= size;
2722 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2723 && GET_CODE (XEXP (x, 1)) == PLUS
2724 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2725 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2726 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2729 /* These two aren't unary operators. */
2730 if (code == POST_MODIFY || code == PRE_MODIFY)
2731 break;
2733 /* Fall through to generic unary operation case. */
2734 case STRICT_LOW_PART:
2735 case NEG: case NOT:
2736 case SIGN_EXTEND: case ZERO_EXTEND:
2737 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2738 case FLOAT: case FIX:
2739 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2740 case ABS:
2741 case SQRT:
2742 case FFS:
2743 elimination_effects (XEXP (x, 0), mem_mode);
2744 return;
2746 case SUBREG:
2747 if (GET_CODE (SUBREG_REG (x)) == REG
2748 && (GET_MODE_SIZE (GET_MODE (x))
2749 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2750 && reg_equiv_memory_loc != 0
2751 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2752 return;
2754 elimination_effects (SUBREG_REG (x), mem_mode);
2755 return;
2757 case USE:
2758 /* If using a register that is the source of an eliminate we still
2759 think can be performed, note it cannot be performed since we don't
2760 know how this register is used. */
2761 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2762 if (ep->from_rtx == XEXP (x, 0))
2763 ep->can_eliminate = 0;
2765 elimination_effects (XEXP (x, 0), mem_mode);
2766 return;
2768 case CLOBBER:
2769 /* If clobbering a register that is the replacement register for an
2770 elimination we still think can be performed, note that it cannot
2771 be performed. Otherwise, we need not be concerned about it. */
2772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2773 if (ep->to_rtx == XEXP (x, 0))
2774 ep->can_eliminate = 0;
2776 elimination_effects (XEXP (x, 0), mem_mode);
2777 return;
2779 case SET:
2780 /* Check for setting a register that we know about. */
2781 if (GET_CODE (SET_DEST (x)) == REG)
2783 /* See if this is setting the replacement register for an
2784 elimination.
2786 If DEST is the hard frame pointer, we do nothing because we
2787 assume that all assignments to the frame pointer are for
2788 non-local gotos and are being done at a time when they are valid
2789 and do not disturb anything else. Some machines want to
2790 eliminate a fake argument pointer (or even a fake frame pointer)
2791 with either the real frame or the stack pointer. Assignments to
2792 the hard frame pointer must not prevent this elimination. */
2794 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2795 ep++)
2796 if (ep->to_rtx == SET_DEST (x)
2797 && SET_DEST (x) != hard_frame_pointer_rtx)
2799 /* If it is being incremented, adjust the offset. Otherwise,
2800 this elimination can't be done. */
2801 rtx src = SET_SRC (x);
2803 if (GET_CODE (src) == PLUS
2804 && XEXP (src, 0) == SET_DEST (x)
2805 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2806 ep->offset -= INTVAL (XEXP (src, 1));
2807 else
2808 ep->can_eliminate = 0;
2812 elimination_effects (SET_DEST (x), 0);
2813 elimination_effects (SET_SRC (x), 0);
2814 return;
2816 case MEM:
2817 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2818 abort ();
2820 /* Our only special processing is to pass the mode of the MEM to our
2821 recursive call. */
2822 elimination_effects (XEXP (x, 0), GET_MODE (x));
2823 return;
2825 default:
2826 break;
2829 fmt = GET_RTX_FORMAT (code);
2830 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2832 if (*fmt == 'e')
2833 elimination_effects (XEXP (x, i), mem_mode);
2834 else if (*fmt == 'E')
2835 for (j = 0; j < XVECLEN (x, i); j++)
2836 elimination_effects (XVECEXP (x, i, j), mem_mode);
2840 /* Descend through rtx X and verify that no references to eliminable registers
2841 remain. If any do remain, mark the involved register as not
2842 eliminable. */
2844 static void
2845 check_eliminable_occurrences (x)
2846 rtx x;
2848 const char *fmt;
2849 int i;
2850 enum rtx_code code;
2852 if (x == 0)
2853 return;
2855 code = GET_CODE (x);
2857 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2859 struct elim_table *ep;
2861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2862 if (ep->from_rtx == x && ep->can_eliminate)
2863 ep->can_eliminate = 0;
2864 return;
2867 fmt = GET_RTX_FORMAT (code);
2868 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2870 if (*fmt == 'e')
2871 check_eliminable_occurrences (XEXP (x, i));
2872 else if (*fmt == 'E')
2874 int j;
2875 for (j = 0; j < XVECLEN (x, i); j++)
2876 check_eliminable_occurrences (XVECEXP (x, i, j));
2881 /* Scan INSN and eliminate all eliminable registers in it.
2883 If REPLACE is nonzero, do the replacement destructively. Also
2884 delete the insn as dead it if it is setting an eliminable register.
2886 If REPLACE is zero, do all our allocations in reload_obstack.
2888 If no eliminations were done and this insn doesn't require any elimination
2889 processing (these are not identical conditions: it might be updating sp,
2890 but not referencing fp; this needs to be seen during reload_as_needed so
2891 that the offset between fp and sp can be taken into consideration), zero
2892 is returned. Otherwise, 1 is returned. */
2894 static int
2895 eliminate_regs_in_insn (insn, replace)
2896 rtx insn;
2897 int replace;
2899 int icode = recog_memoized (insn);
2900 rtx old_body = PATTERN (insn);
2901 int insn_is_asm = asm_noperands (old_body) >= 0;
2902 rtx old_set = single_set (insn);
2903 rtx new_body;
2904 int val = 0;
2905 int i, any_changes;
2906 rtx substed_operand[MAX_RECOG_OPERANDS];
2907 rtx orig_operand[MAX_RECOG_OPERANDS];
2908 struct elim_table *ep;
2910 if (! insn_is_asm && icode < 0)
2912 if (GET_CODE (PATTERN (insn)) == USE
2913 || GET_CODE (PATTERN (insn)) == CLOBBER
2914 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2915 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2916 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2917 return 0;
2918 abort ();
2921 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2922 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2924 /* Check for setting an eliminable register. */
2925 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2926 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2928 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2929 /* If this is setting the frame pointer register to the
2930 hardware frame pointer register and this is an elimination
2931 that will be done (tested above), this insn is really
2932 adjusting the frame pointer downward to compensate for
2933 the adjustment done before a nonlocal goto. */
2934 if (ep->from == FRAME_POINTER_REGNUM
2935 && ep->to == HARD_FRAME_POINTER_REGNUM)
2937 rtx base = SET_SRC (old_set);
2938 rtx base_insn = insn;
2939 int offset = 0;
2941 while (base != ep->to_rtx)
2943 rtx prev_insn, prev_set;
2945 if (GET_CODE (base) == PLUS
2946 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2948 offset += INTVAL (XEXP (base, 1));
2949 base = XEXP (base, 0);
2951 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2952 && (prev_set = single_set (prev_insn)) != 0
2953 && rtx_equal_p (SET_DEST (prev_set), base))
2955 base = SET_SRC (prev_set);
2956 base_insn = prev_insn;
2958 else
2959 break;
2962 if (base == ep->to_rtx)
2964 rtx src
2965 = plus_constant (ep->to_rtx, offset - ep->offset);
2967 new_body = old_body;
2968 if (! replace)
2970 new_body = copy_insn (old_body);
2971 if (REG_NOTES (insn))
2972 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2974 PATTERN (insn) = new_body;
2975 old_set = single_set (insn);
2977 /* First see if this insn remains valid when we
2978 make the change. If not, keep the INSN_CODE
2979 the same and let reload fit it up. */
2980 validate_change (insn, &SET_SRC (old_set), src, 1);
2981 validate_change (insn, &SET_DEST (old_set),
2982 ep->to_rtx, 1);
2983 if (! apply_change_group ())
2985 SET_SRC (old_set) = src;
2986 SET_DEST (old_set) = ep->to_rtx;
2989 val = 1;
2990 goto done;
2993 #endif
2995 /* In this case this insn isn't serving a useful purpose. We
2996 will delete it in reload_as_needed once we know that this
2997 elimination is, in fact, being done.
2999 If REPLACE isn't set, we can't delete this insn, but needn't
3000 process it since it won't be used unless something changes. */
3001 if (replace)
3003 delete_dead_insn (insn);
3004 return 1;
3006 val = 1;
3007 goto done;
3011 /* We allow one special case which happens to work on all machines we
3012 currently support: a single set with the source being a PLUS of an
3013 eliminable register and a constant. */
3014 if (old_set
3015 && GET_CODE (SET_DEST (old_set)) == REG
3016 && GET_CODE (SET_SRC (old_set)) == PLUS
3017 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3018 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3019 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3021 rtx reg = XEXP (SET_SRC (old_set), 0);
3022 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3024 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3025 if (ep->from_rtx == reg && ep->can_eliminate)
3027 offset += ep->offset;
3029 if (offset == 0)
3031 int num_clobbers;
3032 /* We assume here that if we need a PARALLEL with
3033 CLOBBERs for this assignment, we can do with the
3034 MATCH_SCRATCHes that add_clobbers allocates.
3035 There's not much we can do if that doesn't work. */
3036 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3037 SET_DEST (old_set),
3038 ep->to_rtx);
3039 num_clobbers = 0;
3040 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3041 if (num_clobbers)
3043 rtvec vec = rtvec_alloc (num_clobbers + 1);
3045 vec->elem[0] = PATTERN (insn);
3046 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3047 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3049 if (INSN_CODE (insn) < 0)
3050 abort ();
3052 else
3054 new_body = old_body;
3055 if (! replace)
3057 new_body = copy_insn (old_body);
3058 if (REG_NOTES (insn))
3059 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3061 PATTERN (insn) = new_body;
3062 old_set = single_set (insn);
3064 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3065 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3067 val = 1;
3068 /* This can't have an effect on elimination offsets, so skip right
3069 to the end. */
3070 goto done;
3074 /* Determine the effects of this insn on elimination offsets. */
3075 elimination_effects (old_body, 0);
3077 /* Eliminate all eliminable registers occurring in operands that
3078 can be handled by reload. */
3079 extract_insn (insn);
3080 any_changes = 0;
3081 for (i = 0; i < recog_data.n_operands; i++)
3083 orig_operand[i] = recog_data.operand[i];
3084 substed_operand[i] = recog_data.operand[i];
3086 /* For an asm statement, every operand is eliminable. */
3087 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3089 /* Check for setting a register that we know about. */
3090 if (recog_data.operand_type[i] != OP_IN
3091 && GET_CODE (orig_operand[i]) == REG)
3093 /* If we are assigning to a register that can be eliminated, it
3094 must be as part of a PARALLEL, since the code above handles
3095 single SETs. We must indicate that we can no longer
3096 eliminate this reg. */
3097 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3098 ep++)
3099 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3100 ep->can_eliminate = 0;
3103 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3104 replace ? insn : NULL_RTX);
3105 if (substed_operand[i] != orig_operand[i])
3106 val = any_changes = 1;
3107 /* Terminate the search in check_eliminable_occurrences at
3108 this point. */
3109 *recog_data.operand_loc[i] = 0;
3111 /* If an output operand changed from a REG to a MEM and INSN is an
3112 insn, write a CLOBBER insn. */
3113 if (recog_data.operand_type[i] != OP_IN
3114 && GET_CODE (orig_operand[i]) == REG
3115 && GET_CODE (substed_operand[i]) == MEM
3116 && replace)
3117 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3118 insn);
3122 for (i = 0; i < recog_data.n_dups; i++)
3123 *recog_data.dup_loc[i]
3124 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3126 /* If any eliminable remain, they aren't eliminable anymore. */
3127 check_eliminable_occurrences (old_body);
3129 /* Substitute the operands; the new values are in the substed_operand
3130 array. */
3131 for (i = 0; i < recog_data.n_operands; i++)
3132 *recog_data.operand_loc[i] = substed_operand[i];
3133 for (i = 0; i < recog_data.n_dups; i++)
3134 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3136 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3137 re-recognize the insn. We do this in case we had a simple addition
3138 but now can do this as a load-address. This saves an insn in this
3139 common case.
3140 If re-recognition fails, the old insn code number will still be used,
3141 and some register operands may have changed into PLUS expressions.
3142 These will be handled by find_reloads by loading them into a register
3143 again. */
3145 if (val)
3147 /* If we aren't replacing things permanently and we changed something,
3148 make another copy to ensure that all the RTL is new. Otherwise
3149 things can go wrong if find_reload swaps commutative operands
3150 and one is inside RTL that has been copied while the other is not. */
3151 new_body = old_body;
3152 if (! replace)
3154 new_body = copy_insn (old_body);
3155 if (REG_NOTES (insn))
3156 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3158 PATTERN (insn) = new_body;
3160 /* If we had a move insn but now we don't, rerecognize it. This will
3161 cause spurious re-recognition if the old move had a PARALLEL since
3162 the new one still will, but we can't call single_set without
3163 having put NEW_BODY into the insn and the re-recognition won't
3164 hurt in this rare case. */
3165 /* ??? Why this huge if statement - why don't we just rerecognize the
3166 thing always? */
3167 if (! insn_is_asm
3168 && old_set != 0
3169 && ((GET_CODE (SET_SRC (old_set)) == REG
3170 && (GET_CODE (new_body) != SET
3171 || GET_CODE (SET_SRC (new_body)) != REG))
3172 /* If this was a load from or store to memory, compare
3173 the MEM in recog_data.operand to the one in the insn.
3174 If they are not equal, then rerecognize the insn. */
3175 || (old_set != 0
3176 && ((GET_CODE (SET_SRC (old_set)) == MEM
3177 && SET_SRC (old_set) != recog_data.operand[1])
3178 || (GET_CODE (SET_DEST (old_set)) == MEM
3179 && SET_DEST (old_set) != recog_data.operand[0])))
3180 /* If this was an add insn before, rerecognize. */
3181 || GET_CODE (SET_SRC (old_set)) == PLUS))
3183 int new_icode = recog (PATTERN (insn), insn, 0);
3184 if (new_icode < 0)
3185 INSN_CODE (insn) = icode;
3189 /* Restore the old body. If there were any changes to it, we made a copy
3190 of it while the changes were still in place, so we'll correctly return
3191 a modified insn below. */
3192 if (! replace)
3194 /* Restore the old body. */
3195 for (i = 0; i < recog_data.n_operands; i++)
3196 *recog_data.operand_loc[i] = orig_operand[i];
3197 for (i = 0; i < recog_data.n_dups; i++)
3198 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3201 /* Update all elimination pairs to reflect the status after the current
3202 insn. The changes we make were determined by the earlier call to
3203 elimination_effects.
3205 We also detect a cases where register elimination cannot be done,
3206 namely, if a register would be both changed and referenced outside a MEM
3207 in the resulting insn since such an insn is often undefined and, even if
3208 not, we cannot know what meaning will be given to it. Note that it is
3209 valid to have a register used in an address in an insn that changes it
3210 (presumably with a pre- or post-increment or decrement).
3212 If anything changes, return nonzero. */
3214 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3216 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3217 ep->can_eliminate = 0;
3219 ep->ref_outside_mem = 0;
3221 if (ep->previous_offset != ep->offset)
3222 val = 1;
3225 done:
3226 /* If we changed something, perform elimination in REG_NOTES. This is
3227 needed even when REPLACE is zero because a REG_DEAD note might refer
3228 to a register that we eliminate and could cause a different number
3229 of spill registers to be needed in the final reload pass than in
3230 the pre-passes. */
3231 if (val && REG_NOTES (insn) != 0)
3232 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3234 return val;
3237 /* Loop through all elimination pairs.
3238 Recalculate the number not at initial offset.
3240 Compute the maximum offset (minimum offset if the stack does not
3241 grow downward) for each elimination pair. */
3243 static void
3244 update_eliminable_offsets ()
3246 struct elim_table *ep;
3248 num_not_at_initial_offset = 0;
3249 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3251 ep->previous_offset = ep->offset;
3252 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3253 num_not_at_initial_offset++;
3257 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3258 replacement we currently believe is valid, mark it as not eliminable if X
3259 modifies DEST in any way other than by adding a constant integer to it.
3261 If DEST is the frame pointer, we do nothing because we assume that
3262 all assignments to the hard frame pointer are nonlocal gotos and are being
3263 done at a time when they are valid and do not disturb anything else.
3264 Some machines want to eliminate a fake argument pointer with either the
3265 frame or stack pointer. Assignments to the hard frame pointer must not
3266 prevent this elimination.
3268 Called via note_stores from reload before starting its passes to scan
3269 the insns of the function. */
3271 static void
3272 mark_not_eliminable (dest, x, data)
3273 rtx dest;
3274 rtx x;
3275 void *data ATTRIBUTE_UNUSED;
3277 unsigned int i;
3279 /* A SUBREG of a hard register here is just changing its mode. We should
3280 not see a SUBREG of an eliminable hard register, but check just in
3281 case. */
3282 if (GET_CODE (dest) == SUBREG)
3283 dest = SUBREG_REG (dest);
3285 if (dest == hard_frame_pointer_rtx)
3286 return;
3288 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3289 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3290 && (GET_CODE (x) != SET
3291 || GET_CODE (SET_SRC (x)) != PLUS
3292 || XEXP (SET_SRC (x), 0) != dest
3293 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3295 reg_eliminate[i].can_eliminate_previous
3296 = reg_eliminate[i].can_eliminate = 0;
3297 num_eliminable--;
3301 /* Verify that the initial elimination offsets did not change since the
3302 last call to set_initial_elim_offsets. This is used to catch cases
3303 where something illegal happened during reload_as_needed that could
3304 cause incorrect code to be generated if we did not check for it. */
3306 static void
3307 verify_initial_elim_offsets ()
3309 int t;
3311 #ifdef ELIMINABLE_REGS
3312 struct elim_table *ep;
3314 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3316 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3317 if (t != ep->initial_offset)
3318 abort ();
3320 #else
3321 INITIAL_FRAME_POINTER_OFFSET (t);
3322 if (t != reg_eliminate[0].initial_offset)
3323 abort ();
3324 #endif
3327 /* Reset all offsets on eliminable registers to their initial values. */
3329 static void
3330 set_initial_elim_offsets ()
3332 struct elim_table *ep = reg_eliminate;
3334 #ifdef ELIMINABLE_REGS
3335 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3337 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3338 ep->previous_offset = ep->offset = ep->initial_offset;
3340 #else
3341 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3342 ep->previous_offset = ep->offset = ep->initial_offset;
3343 #endif
3345 num_not_at_initial_offset = 0;
3348 /* Initialize the known label offsets.
3349 Set a known offset for each forced label to be at the initial offset
3350 of each elimination. We do this because we assume that all
3351 computed jumps occur from a location where each elimination is
3352 at its initial offset.
3353 For all other labels, show that we don't know the offsets. */
3355 static void
3356 set_initial_label_offsets ()
3358 rtx x;
3359 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3361 for (x = forced_labels; x; x = XEXP (x, 1))
3362 if (XEXP (x, 0))
3363 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3366 /* Set all elimination offsets to the known values for the code label given
3367 by INSN. */
3369 static void
3370 set_offsets_for_label (insn)
3371 rtx insn;
3373 unsigned int i;
3374 int label_nr = CODE_LABEL_NUMBER (insn);
3375 struct elim_table *ep;
3377 num_not_at_initial_offset = 0;
3378 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3380 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3381 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3382 num_not_at_initial_offset++;
3386 /* See if anything that happened changes which eliminations are valid.
3387 For example, on the Sparc, whether or not the frame pointer can
3388 be eliminated can depend on what registers have been used. We need
3389 not check some conditions again (such as flag_omit_frame_pointer)
3390 since they can't have changed. */
3392 static void
3393 update_eliminables (pset)
3394 HARD_REG_SET *pset;
3396 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3397 int previous_frame_pointer_needed = frame_pointer_needed;
3398 #endif
3399 struct elim_table *ep;
3401 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3402 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3403 #ifdef ELIMINABLE_REGS
3404 || ! CAN_ELIMINATE (ep->from, ep->to)
3405 #endif
3407 ep->can_eliminate = 0;
3409 /* Look for the case where we have discovered that we can't replace
3410 register A with register B and that means that we will now be
3411 trying to replace register A with register C. This means we can
3412 no longer replace register C with register B and we need to disable
3413 such an elimination, if it exists. This occurs often with A == ap,
3414 B == sp, and C == fp. */
3416 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3418 struct elim_table *op;
3419 int new_to = -1;
3421 if (! ep->can_eliminate && ep->can_eliminate_previous)
3423 /* Find the current elimination for ep->from, if there is a
3424 new one. */
3425 for (op = reg_eliminate;
3426 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3427 if (op->from == ep->from && op->can_eliminate)
3429 new_to = op->to;
3430 break;
3433 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3434 disable it. */
3435 for (op = reg_eliminate;
3436 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3437 if (op->from == new_to && op->to == ep->to)
3438 op->can_eliminate = 0;
3442 /* See if any registers that we thought we could eliminate the previous
3443 time are no longer eliminable. If so, something has changed and we
3444 must spill the register. Also, recompute the number of eliminable
3445 registers and see if the frame pointer is needed; it is if there is
3446 no elimination of the frame pointer that we can perform. */
3448 frame_pointer_needed = 1;
3449 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3451 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3452 && ep->to != HARD_FRAME_POINTER_REGNUM)
3453 frame_pointer_needed = 0;
3455 if (! ep->can_eliminate && ep->can_eliminate_previous)
3457 ep->can_eliminate_previous = 0;
3458 SET_HARD_REG_BIT (*pset, ep->from);
3459 num_eliminable--;
3463 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3464 /* If we didn't need a frame pointer last time, but we do now, spill
3465 the hard frame pointer. */
3466 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3467 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3468 #endif
3471 /* Initialize the table of registers to eliminate. */
3473 static void
3474 init_elim_table ()
3476 struct elim_table *ep;
3477 #ifdef ELIMINABLE_REGS
3478 const struct elim_table_1 *ep1;
3479 #endif
3481 if (!reg_eliminate)
3482 reg_eliminate = (struct elim_table *)
3483 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3485 /* Does this function require a frame pointer? */
3487 frame_pointer_needed = (! flag_omit_frame_pointer
3488 #ifdef EXIT_IGNORE_STACK
3489 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3490 and restore sp for alloca. So we can't eliminate
3491 the frame pointer in that case. At some point,
3492 we should improve this by emitting the
3493 sp-adjusting insns for this case. */
3494 || (current_function_calls_alloca
3495 && EXIT_IGNORE_STACK)
3496 #endif
3497 || FRAME_POINTER_REQUIRED);
3499 num_eliminable = 0;
3501 #ifdef ELIMINABLE_REGS
3502 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3503 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3505 ep->from = ep1->from;
3506 ep->to = ep1->to;
3507 ep->can_eliminate = ep->can_eliminate_previous
3508 = (CAN_ELIMINATE (ep->from, ep->to)
3509 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3511 #else
3512 reg_eliminate[0].from = reg_eliminate_1[0].from;
3513 reg_eliminate[0].to = reg_eliminate_1[0].to;
3514 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3515 = ! frame_pointer_needed;
3516 #endif
3518 /* Count the number of eliminable registers and build the FROM and TO
3519 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3520 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3521 We depend on this. */
3522 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3524 num_eliminable += ep->can_eliminate;
3525 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3526 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3530 /* Kick all pseudos out of hard register REGNO.
3532 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3533 because we found we can't eliminate some register. In the case, no pseudos
3534 are allowed to be in the register, even if they are only in a block that
3535 doesn't require spill registers, unlike the case when we are spilling this
3536 hard reg to produce another spill register.
3538 Return nonzero if any pseudos needed to be kicked out. */
3540 static void
3541 spill_hard_reg (regno, cant_eliminate)
3542 unsigned int regno;
3543 int cant_eliminate;
3545 int i;
3547 if (cant_eliminate)
3549 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3550 regs_ever_live[regno] = 1;
3553 /* Spill every pseudo reg that was allocated to this reg
3554 or to something that overlaps this reg. */
3556 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3557 if (reg_renumber[i] >= 0
3558 && (unsigned int) reg_renumber[i] <= regno
3559 && ((unsigned int) reg_renumber[i]
3560 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3561 PSEUDO_REGNO_MODE (i))
3562 > regno))
3563 SET_REGNO_REG_SET (&spilled_pseudos, i);
3566 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3567 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3569 static void
3570 ior_hard_reg_set (set1, set2)
3571 HARD_REG_SET *set1, *set2;
3573 IOR_HARD_REG_SET (*set1, *set2);
3576 /* After find_reload_regs has been run for all insn that need reloads,
3577 and/or spill_hard_regs was called, this function is used to actually
3578 spill pseudo registers and try to reallocate them. It also sets up the
3579 spill_regs array for use by choose_reload_regs. */
3581 static int
3582 finish_spills (global)
3583 int global;
3585 struct insn_chain *chain;
3586 int something_changed = 0;
3587 int i;
3589 /* Build the spill_regs array for the function. */
3590 /* If there are some registers still to eliminate and one of the spill regs
3591 wasn't ever used before, additional stack space may have to be
3592 allocated to store this register. Thus, we may have changed the offset
3593 between the stack and frame pointers, so mark that something has changed.
3595 One might think that we need only set VAL to 1 if this is a call-used
3596 register. However, the set of registers that must be saved by the
3597 prologue is not identical to the call-used set. For example, the
3598 register used by the call insn for the return PC is a call-used register,
3599 but must be saved by the prologue. */
3601 n_spills = 0;
3602 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3603 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3605 spill_reg_order[i] = n_spills;
3606 spill_regs[n_spills++] = i;
3607 if (num_eliminable && ! regs_ever_live[i])
3608 something_changed = 1;
3609 regs_ever_live[i] = 1;
3611 else
3612 spill_reg_order[i] = -1;
3614 EXECUTE_IF_SET_IN_REG_SET
3615 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3617 /* Record the current hard register the pseudo is allocated to in
3618 pseudo_previous_regs so we avoid reallocating it to the same
3619 hard reg in a later pass. */
3620 if (reg_renumber[i] < 0)
3621 abort ();
3623 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3624 /* Mark it as no longer having a hard register home. */
3625 reg_renumber[i] = -1;
3626 /* We will need to scan everything again. */
3627 something_changed = 1;
3630 /* Retry global register allocation if possible. */
3631 if (global)
3633 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3634 /* For every insn that needs reloads, set the registers used as spill
3635 regs in pseudo_forbidden_regs for every pseudo live across the
3636 insn. */
3637 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3639 EXECUTE_IF_SET_IN_REG_SET
3640 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3642 ior_hard_reg_set (pseudo_forbidden_regs + i,
3643 &chain->used_spill_regs);
3645 EXECUTE_IF_SET_IN_REG_SET
3646 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3648 ior_hard_reg_set (pseudo_forbidden_regs + i,
3649 &chain->used_spill_regs);
3653 /* Retry allocating the spilled pseudos. For each reg, merge the
3654 various reg sets that indicate which hard regs can't be used,
3655 and call retry_global_alloc.
3656 We change spill_pseudos here to only contain pseudos that did not
3657 get a new hard register. */
3658 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3659 if (reg_old_renumber[i] != reg_renumber[i])
3661 HARD_REG_SET forbidden;
3662 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3663 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3664 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3665 retry_global_alloc (i, forbidden);
3666 if (reg_renumber[i] >= 0)
3667 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3671 /* Fix up the register information in the insn chain.
3672 This involves deleting those of the spilled pseudos which did not get
3673 a new hard register home from the live_{before,after} sets. */
3674 for (chain = reload_insn_chain; chain; chain = chain->next)
3676 HARD_REG_SET used_by_pseudos;
3677 HARD_REG_SET used_by_pseudos2;
3679 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3680 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3682 /* Mark any unallocated hard regs as available for spills. That
3683 makes inheritance work somewhat better. */
3684 if (chain->need_reload)
3686 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3687 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3688 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3690 /* Save the old value for the sanity test below. */
3691 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3693 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3694 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3695 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3696 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3698 /* Make sure we only enlarge the set. */
3699 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3700 abort ();
3701 ok:;
3705 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3706 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3708 int regno = reg_renumber[i];
3709 if (reg_old_renumber[i] == regno)
3710 continue;
3712 alter_reg (i, reg_old_renumber[i]);
3713 reg_old_renumber[i] = regno;
3714 if (rtl_dump_file)
3716 if (regno == -1)
3717 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3718 else
3719 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3720 i, reg_renumber[i]);
3724 return something_changed;
3727 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3728 Also mark any hard registers used to store user variables as
3729 forbidden from being used for spill registers. */
3731 static void
3732 scan_paradoxical_subregs (x)
3733 rtx x;
3735 int i;
3736 const char *fmt;
3737 enum rtx_code code = GET_CODE (x);
3739 switch (code)
3741 case REG:
3742 #if 0
3743 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3744 && REG_USERVAR_P (x))
3745 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3746 #endif
3747 return;
3749 case CONST_INT:
3750 case CONST:
3751 case SYMBOL_REF:
3752 case LABEL_REF:
3753 case CONST_DOUBLE:
3754 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3755 case CC0:
3756 case PC:
3757 case USE:
3758 case CLOBBER:
3759 return;
3761 case SUBREG:
3762 if (GET_CODE (SUBREG_REG (x)) == REG
3763 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3764 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3765 = GET_MODE_SIZE (GET_MODE (x));
3766 return;
3768 default:
3769 break;
3772 fmt = GET_RTX_FORMAT (code);
3773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3775 if (fmt[i] == 'e')
3776 scan_paradoxical_subregs (XEXP (x, i));
3777 else if (fmt[i] == 'E')
3779 int j;
3780 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3781 scan_paradoxical_subregs (XVECEXP (x, i, j));
3786 /* Reload pseudo-registers into hard regs around each insn as needed.
3787 Additional register load insns are output before the insn that needs it
3788 and perhaps store insns after insns that modify the reloaded pseudo reg.
3790 reg_last_reload_reg and reg_reloaded_contents keep track of
3791 which registers are already available in reload registers.
3792 We update these for the reloads that we perform,
3793 as the insns are scanned. */
3795 static void
3796 reload_as_needed (live_known)
3797 int live_known;
3799 struct insn_chain *chain;
3800 #if defined (AUTO_INC_DEC)
3801 int i;
3802 #endif
3803 rtx x;
3805 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3806 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3807 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3808 reg_has_output_reload = (char *) xmalloc (max_regno);
3809 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3811 set_initial_elim_offsets ();
3813 for (chain = reload_insn_chain; chain; chain = chain->next)
3815 rtx prev;
3816 rtx insn = chain->insn;
3817 rtx old_next = NEXT_INSN (insn);
3819 /* If we pass a label, copy the offsets from the label information
3820 into the current offsets of each elimination. */
3821 if (GET_CODE (insn) == CODE_LABEL)
3822 set_offsets_for_label (insn);
3824 else if (INSN_P (insn))
3826 rtx oldpat = PATTERN (insn);
3828 /* If this is a USE and CLOBBER of a MEM, ensure that any
3829 references to eliminable registers have been removed. */
3831 if ((GET_CODE (PATTERN (insn)) == USE
3832 || GET_CODE (PATTERN (insn)) == CLOBBER)
3833 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3834 XEXP (XEXP (PATTERN (insn), 0), 0)
3835 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3836 GET_MODE (XEXP (PATTERN (insn), 0)),
3837 NULL_RTX);
3839 /* If we need to do register elimination processing, do so.
3840 This might delete the insn, in which case we are done. */
3841 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3843 eliminate_regs_in_insn (insn, 1);
3844 if (GET_CODE (insn) == NOTE)
3846 update_eliminable_offsets ();
3847 continue;
3851 /* If need_elim is nonzero but need_reload is zero, one might think
3852 that we could simply set n_reloads to 0. However, find_reloads
3853 could have done some manipulation of the insn (such as swapping
3854 commutative operands), and these manipulations are lost during
3855 the first pass for every insn that needs register elimination.
3856 So the actions of find_reloads must be redone here. */
3858 if (! chain->need_elim && ! chain->need_reload
3859 && ! chain->need_operand_change)
3860 n_reloads = 0;
3861 /* First find the pseudo regs that must be reloaded for this insn.
3862 This info is returned in the tables reload_... (see reload.h).
3863 Also modify the body of INSN by substituting RELOAD
3864 rtx's for those pseudo regs. */
3865 else
3867 memset (reg_has_output_reload, 0, max_regno);
3868 CLEAR_HARD_REG_SET (reg_is_output_reload);
3870 find_reloads (insn, 1, spill_indirect_levels, live_known,
3871 spill_reg_order);
3874 if (n_reloads > 0)
3876 rtx next = NEXT_INSN (insn);
3877 rtx p;
3879 prev = PREV_INSN (insn);
3881 /* Now compute which reload regs to reload them into. Perhaps
3882 reusing reload regs from previous insns, or else output
3883 load insns to reload them. Maybe output store insns too.
3884 Record the choices of reload reg in reload_reg_rtx. */
3885 choose_reload_regs (chain);
3887 /* Merge any reloads that we didn't combine for fear of
3888 increasing the number of spill registers needed but now
3889 discover can be safely merged. */
3890 if (SMALL_REGISTER_CLASSES)
3891 merge_assigned_reloads (insn);
3893 /* Generate the insns to reload operands into or out of
3894 their reload regs. */
3895 emit_reload_insns (chain);
3897 /* Substitute the chosen reload regs from reload_reg_rtx
3898 into the insn's body (or perhaps into the bodies of other
3899 load and store insn that we just made for reloading
3900 and that we moved the structure into). */
3901 subst_reloads (insn);
3903 /* If this was an ASM, make sure that all the reload insns
3904 we have generated are valid. If not, give an error
3905 and delete them. */
3907 if (asm_noperands (PATTERN (insn)) >= 0)
3908 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3909 if (p != insn && INSN_P (p)
3910 && (recog_memoized (p) < 0
3911 || (extract_insn (p), ! constrain_operands (1))))
3913 error_for_asm (insn,
3914 "`asm' operand requires impossible reload");
3915 delete_insn (p);
3919 if (num_eliminable && chain->need_elim)
3920 update_eliminable_offsets ();
3922 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3923 is no longer validly lying around to save a future reload.
3924 Note that this does not detect pseudos that were reloaded
3925 for this insn in order to be stored in
3926 (obeying register constraints). That is correct; such reload
3927 registers ARE still valid. */
3928 note_stores (oldpat, forget_old_reloads_1, NULL);
3930 /* There may have been CLOBBER insns placed after INSN. So scan
3931 between INSN and NEXT and use them to forget old reloads. */
3932 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3933 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3934 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3936 #ifdef AUTO_INC_DEC
3937 /* Likewise for regs altered by auto-increment in this insn.
3938 REG_INC notes have been changed by reloading:
3939 find_reloads_address_1 records substitutions for them,
3940 which have been performed by subst_reloads above. */
3941 for (i = n_reloads - 1; i >= 0; i--)
3943 rtx in_reg = rld[i].in_reg;
3944 if (in_reg)
3946 enum rtx_code code = GET_CODE (in_reg);
3947 /* PRE_INC / PRE_DEC will have the reload register ending up
3948 with the same value as the stack slot, but that doesn't
3949 hold true for POST_INC / POST_DEC. Either we have to
3950 convert the memory access to a true POST_INC / POST_DEC,
3951 or we can't use the reload register for inheritance. */
3952 if ((code == POST_INC || code == POST_DEC)
3953 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3954 REGNO (rld[i].reg_rtx))
3955 /* Make sure it is the inc/dec pseudo, and not
3956 some other (e.g. output operand) pseudo. */
3957 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3958 == REGNO (XEXP (in_reg, 0))))
3961 rtx reload_reg = rld[i].reg_rtx;
3962 enum machine_mode mode = GET_MODE (reload_reg);
3963 int n = 0;
3964 rtx p;
3966 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3968 /* We really want to ignore REG_INC notes here, so
3969 use PATTERN (p) as argument to reg_set_p . */
3970 if (reg_set_p (reload_reg, PATTERN (p)))
3971 break;
3972 n = count_occurrences (PATTERN (p), reload_reg, 0);
3973 if (! n)
3974 continue;
3975 if (n == 1)
3977 n = validate_replace_rtx (reload_reg,
3978 gen_rtx (code, mode,
3979 reload_reg),
3982 /* We must also verify that the constraints
3983 are met after the replacement. */
3984 extract_insn (p);
3985 if (n)
3986 n = constrain_operands (1);
3987 else
3988 break;
3990 /* If the constraints were not met, then
3991 undo the replacement. */
3992 if (!n)
3994 validate_replace_rtx (gen_rtx (code, mode,
3995 reload_reg),
3996 reload_reg, p);
3997 break;
4001 break;
4003 if (n == 1)
4005 REG_NOTES (p)
4006 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4007 REG_NOTES (p));
4008 /* Mark this as having an output reload so that the
4009 REG_INC processing code below won't invalidate
4010 the reload for inheritance. */
4011 SET_HARD_REG_BIT (reg_is_output_reload,
4012 REGNO (reload_reg));
4013 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4015 else
4016 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4017 NULL);
4019 else if ((code == PRE_INC || code == PRE_DEC)
4020 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4021 REGNO (rld[i].reg_rtx))
4022 /* Make sure it is the inc/dec pseudo, and not
4023 some other (e.g. output operand) pseudo. */
4024 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4025 == REGNO (XEXP (in_reg, 0))))
4027 SET_HARD_REG_BIT (reg_is_output_reload,
4028 REGNO (rld[i].reg_rtx));
4029 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4033 /* If a pseudo that got a hard register is auto-incremented,
4034 we must purge records of copying it into pseudos without
4035 hard registers. */
4036 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4037 if (REG_NOTE_KIND (x) == REG_INC)
4039 /* See if this pseudo reg was reloaded in this insn.
4040 If so, its last-reload info is still valid
4041 because it is based on this insn's reload. */
4042 for (i = 0; i < n_reloads; i++)
4043 if (rld[i].out == XEXP (x, 0))
4044 break;
4046 if (i == n_reloads)
4047 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4049 #endif
4051 /* A reload reg's contents are unknown after a label. */
4052 if (GET_CODE (insn) == CODE_LABEL)
4053 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4055 /* Don't assume a reload reg is still good after a call insn
4056 if it is a call-used reg. */
4057 else if (GET_CODE (insn) == CALL_INSN)
4058 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4061 /* Clean up. */
4062 free (reg_last_reload_reg);
4063 free (reg_has_output_reload);
4066 /* Discard all record of any value reloaded from X,
4067 or reloaded in X from someplace else;
4068 unless X is an output reload reg of the current insn.
4070 X may be a hard reg (the reload reg)
4071 or it may be a pseudo reg that was reloaded from. */
4073 static void
4074 forget_old_reloads_1 (x, ignored, data)
4075 rtx x;
4076 rtx ignored ATTRIBUTE_UNUSED;
4077 void *data ATTRIBUTE_UNUSED;
4079 unsigned int regno;
4080 unsigned int nr;
4081 int offset = 0;
4083 /* note_stores does give us subregs of hard regs,
4084 subreg_regno_offset will abort if it is not a hard reg. */
4085 while (GET_CODE (x) == SUBREG)
4087 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4088 GET_MODE (SUBREG_REG (x)),
4089 SUBREG_BYTE (x),
4090 GET_MODE (x));
4091 x = SUBREG_REG (x);
4094 if (GET_CODE (x) != REG)
4095 return;
4097 regno = REGNO (x) + offset;
4099 if (regno >= FIRST_PSEUDO_REGISTER)
4100 nr = 1;
4101 else
4103 unsigned int i;
4105 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4106 /* Storing into a spilled-reg invalidates its contents.
4107 This can happen if a block-local pseudo is allocated to that reg
4108 and it wasn't spilled because this block's total need is 0.
4109 Then some insn might have an optional reload and use this reg. */
4110 for (i = 0; i < nr; i++)
4111 /* But don't do this if the reg actually serves as an output
4112 reload reg in the current instruction. */
4113 if (n_reloads == 0
4114 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4116 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4117 spill_reg_store[regno + i] = 0;
4121 /* Since value of X has changed,
4122 forget any value previously copied from it. */
4124 while (nr-- > 0)
4125 /* But don't forget a copy if this is the output reload
4126 that establishes the copy's validity. */
4127 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4128 reg_last_reload_reg[regno + nr] = 0;
4131 /* The following HARD_REG_SETs indicate when each hard register is
4132 used for a reload of various parts of the current insn. */
4134 /* If reg is unavailable for all reloads. */
4135 static HARD_REG_SET reload_reg_unavailable;
4136 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4137 static HARD_REG_SET reload_reg_used;
4138 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4139 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4140 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4141 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4142 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4143 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4144 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4145 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4146 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4147 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4148 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4149 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4150 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4151 static HARD_REG_SET reload_reg_used_in_op_addr;
4152 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4153 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4154 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4155 static HARD_REG_SET reload_reg_used_in_insn;
4156 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4157 static HARD_REG_SET reload_reg_used_in_other_addr;
4159 /* If reg is in use as a reload reg for any sort of reload. */
4160 static HARD_REG_SET reload_reg_used_at_all;
4162 /* If reg is use as an inherited reload. We just mark the first register
4163 in the group. */
4164 static HARD_REG_SET reload_reg_used_for_inherit;
4166 /* Records which hard regs are used in any way, either as explicit use or
4167 by being allocated to a pseudo during any point of the current insn. */
4168 static HARD_REG_SET reg_used_in_insn;
4170 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4171 TYPE. MODE is used to indicate how many consecutive regs are
4172 actually used. */
4174 static void
4175 mark_reload_reg_in_use (regno, opnum, type, mode)
4176 unsigned int regno;
4177 int opnum;
4178 enum reload_type type;
4179 enum machine_mode mode;
4181 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4182 unsigned int i;
4184 for (i = regno; i < nregs + regno; i++)
4186 switch (type)
4188 case RELOAD_OTHER:
4189 SET_HARD_REG_BIT (reload_reg_used, i);
4190 break;
4192 case RELOAD_FOR_INPUT_ADDRESS:
4193 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4194 break;
4196 case RELOAD_FOR_INPADDR_ADDRESS:
4197 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4198 break;
4200 case RELOAD_FOR_OUTPUT_ADDRESS:
4201 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4202 break;
4204 case RELOAD_FOR_OUTADDR_ADDRESS:
4205 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4206 break;
4208 case RELOAD_FOR_OPERAND_ADDRESS:
4209 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4210 break;
4212 case RELOAD_FOR_OPADDR_ADDR:
4213 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4214 break;
4216 case RELOAD_FOR_OTHER_ADDRESS:
4217 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4218 break;
4220 case RELOAD_FOR_INPUT:
4221 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4222 break;
4224 case RELOAD_FOR_OUTPUT:
4225 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4226 break;
4228 case RELOAD_FOR_INSN:
4229 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4230 break;
4233 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4237 /* Similarly, but show REGNO is no longer in use for a reload. */
4239 static void
4240 clear_reload_reg_in_use (regno, opnum, type, mode)
4241 unsigned int regno;
4242 int opnum;
4243 enum reload_type type;
4244 enum machine_mode mode;
4246 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4247 unsigned int start_regno, end_regno, r;
4248 int i;
4249 /* A complication is that for some reload types, inheritance might
4250 allow multiple reloads of the same types to share a reload register.
4251 We set check_opnum if we have to check only reloads with the same
4252 operand number, and check_any if we have to check all reloads. */
4253 int check_opnum = 0;
4254 int check_any = 0;
4255 HARD_REG_SET *used_in_set;
4257 switch (type)
4259 case RELOAD_OTHER:
4260 used_in_set = &reload_reg_used;
4261 break;
4263 case RELOAD_FOR_INPUT_ADDRESS:
4264 used_in_set = &reload_reg_used_in_input_addr[opnum];
4265 break;
4267 case RELOAD_FOR_INPADDR_ADDRESS:
4268 check_opnum = 1;
4269 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4270 break;
4272 case RELOAD_FOR_OUTPUT_ADDRESS:
4273 used_in_set = &reload_reg_used_in_output_addr[opnum];
4274 break;
4276 case RELOAD_FOR_OUTADDR_ADDRESS:
4277 check_opnum = 1;
4278 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4279 break;
4281 case RELOAD_FOR_OPERAND_ADDRESS:
4282 used_in_set = &reload_reg_used_in_op_addr;
4283 break;
4285 case RELOAD_FOR_OPADDR_ADDR:
4286 check_any = 1;
4287 used_in_set = &reload_reg_used_in_op_addr_reload;
4288 break;
4290 case RELOAD_FOR_OTHER_ADDRESS:
4291 used_in_set = &reload_reg_used_in_other_addr;
4292 check_any = 1;
4293 break;
4295 case RELOAD_FOR_INPUT:
4296 used_in_set = &reload_reg_used_in_input[opnum];
4297 break;
4299 case RELOAD_FOR_OUTPUT:
4300 used_in_set = &reload_reg_used_in_output[opnum];
4301 break;
4303 case RELOAD_FOR_INSN:
4304 used_in_set = &reload_reg_used_in_insn;
4305 break;
4306 default:
4307 abort ();
4309 /* We resolve conflicts with remaining reloads of the same type by
4310 excluding the intervals of of reload registers by them from the
4311 interval of freed reload registers. Since we only keep track of
4312 one set of interval bounds, we might have to exclude somewhat
4313 more than what would be necessary if we used a HARD_REG_SET here.
4314 But this should only happen very infrequently, so there should
4315 be no reason to worry about it. */
4317 start_regno = regno;
4318 end_regno = regno + nregs;
4319 if (check_opnum || check_any)
4321 for (i = n_reloads - 1; i >= 0; i--)
4323 if (rld[i].when_needed == type
4324 && (check_any || rld[i].opnum == opnum)
4325 && rld[i].reg_rtx)
4327 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4328 unsigned int conflict_end
4329 = (conflict_start
4330 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4332 /* If there is an overlap with the first to-be-freed register,
4333 adjust the interval start. */
4334 if (conflict_start <= start_regno && conflict_end > start_regno)
4335 start_regno = conflict_end;
4336 /* Otherwise, if there is a conflict with one of the other
4337 to-be-freed registers, adjust the interval end. */
4338 if (conflict_start > start_regno && conflict_start < end_regno)
4339 end_regno = conflict_start;
4344 for (r = start_regno; r < end_regno; r++)
4345 CLEAR_HARD_REG_BIT (*used_in_set, r);
4348 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4349 specified by OPNUM and TYPE. */
4351 static int
4352 reload_reg_free_p (regno, opnum, type)
4353 unsigned int regno;
4354 int opnum;
4355 enum reload_type type;
4357 int i;
4359 /* In use for a RELOAD_OTHER means it's not available for anything. */
4360 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4361 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4362 return 0;
4364 switch (type)
4366 case RELOAD_OTHER:
4367 /* In use for anything means we can't use it for RELOAD_OTHER. */
4368 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4369 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4370 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4371 return 0;
4373 for (i = 0; i < reload_n_operands; i++)
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4375 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4376 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4377 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4378 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4379 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4380 return 0;
4382 return 1;
4384 case RELOAD_FOR_INPUT:
4385 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4386 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4387 return 0;
4389 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4390 return 0;
4392 /* If it is used for some other input, can't use it. */
4393 for (i = 0; i < reload_n_operands; i++)
4394 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4395 return 0;
4397 /* If it is used in a later operand's address, can't use it. */
4398 for (i = opnum + 1; i < reload_n_operands; i++)
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4400 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4401 return 0;
4403 return 1;
4405 case RELOAD_FOR_INPUT_ADDRESS:
4406 /* Can't use a register if it is used for an input address for this
4407 operand or used as an input in an earlier one. */
4408 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4409 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4410 return 0;
4412 for (i = 0; i < opnum; i++)
4413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4414 return 0;
4416 return 1;
4418 case RELOAD_FOR_INPADDR_ADDRESS:
4419 /* Can't use a register if it is used for an input address
4420 for this operand or used as an input in an earlier
4421 one. */
4422 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4423 return 0;
4425 for (i = 0; i < opnum; i++)
4426 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4427 return 0;
4429 return 1;
4431 case RELOAD_FOR_OUTPUT_ADDRESS:
4432 /* Can't use a register if it is used for an output address for this
4433 operand or used as an output in this or a later operand. Note
4434 that multiple output operands are emitted in reverse order, so
4435 the conflicting ones are those with lower indices. */
4436 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4437 return 0;
4439 for (i = 0; i <= opnum; i++)
4440 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4441 return 0;
4443 return 1;
4445 case RELOAD_FOR_OUTADDR_ADDRESS:
4446 /* Can't use a register if it is used for an output address
4447 for this operand or used as an output in this or a
4448 later operand. Note that multiple output operands are
4449 emitted in reverse order, so the conflicting ones are
4450 those with lower indices. */
4451 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4452 return 0;
4454 for (i = 0; i <= opnum; i++)
4455 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4456 return 0;
4458 return 1;
4460 case RELOAD_FOR_OPERAND_ADDRESS:
4461 for (i = 0; i < reload_n_operands; i++)
4462 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4463 return 0;
4465 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4466 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4468 case RELOAD_FOR_OPADDR_ADDR:
4469 for (i = 0; i < reload_n_operands; i++)
4470 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4471 return 0;
4473 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4475 case RELOAD_FOR_OUTPUT:
4476 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4477 outputs, or an operand address for this or an earlier output.
4478 Note that multiple output operands are emitted in reverse order,
4479 so the conflicting ones are those with higher indices. */
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4481 return 0;
4483 for (i = 0; i < reload_n_operands; i++)
4484 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4485 return 0;
4487 for (i = opnum; i < reload_n_operands; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4489 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4490 return 0;
4492 return 1;
4494 case RELOAD_FOR_INSN:
4495 for (i = 0; i < reload_n_operands; i++)
4496 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4497 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4498 return 0;
4500 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4501 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4503 case RELOAD_FOR_OTHER_ADDRESS:
4504 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4506 abort ();
4509 /* Return 1 if the value in reload reg REGNO, as used by a reload
4510 needed for the part of the insn specified by OPNUM and TYPE,
4511 is still available in REGNO at the end of the insn.
4513 We can assume that the reload reg was already tested for availability
4514 at the time it is needed, and we should not check this again,
4515 in case the reg has already been marked in use. */
4517 static int
4518 reload_reg_reaches_end_p (regno, opnum, type)
4519 unsigned int regno;
4520 int opnum;
4521 enum reload_type type;
4523 int i;
4525 switch (type)
4527 case RELOAD_OTHER:
4528 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4529 its value must reach the end. */
4530 return 1;
4532 /* If this use is for part of the insn,
4533 its value reaches if no subsequent part uses the same register.
4534 Just like the above function, don't try to do this with lots
4535 of fallthroughs. */
4537 case RELOAD_FOR_OTHER_ADDRESS:
4538 /* Here we check for everything else, since these don't conflict
4539 with anything else and everything comes later. */
4541 for (i = 0; i < reload_n_operands; i++)
4542 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4543 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4544 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4545 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4546 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4547 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4548 return 0;
4550 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4551 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4552 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4554 case RELOAD_FOR_INPUT_ADDRESS:
4555 case RELOAD_FOR_INPADDR_ADDRESS:
4556 /* Similar, except that we check only for this and subsequent inputs
4557 and the address of only subsequent inputs and we do not need
4558 to check for RELOAD_OTHER objects since they are known not to
4559 conflict. */
4561 for (i = opnum; i < reload_n_operands; i++)
4562 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4563 return 0;
4565 for (i = opnum + 1; i < reload_n_operands; i++)
4566 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4567 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4568 return 0;
4570 for (i = 0; i < reload_n_operands; i++)
4571 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4572 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4573 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4574 return 0;
4576 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4577 return 0;
4579 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4580 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4581 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4583 case RELOAD_FOR_INPUT:
4584 /* Similar to input address, except we start at the next operand for
4585 both input and input address and we do not check for
4586 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4587 would conflict. */
4589 for (i = opnum + 1; i < reload_n_operands; i++)
4590 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4592 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4593 return 0;
4595 /* ... fall through ... */
4597 case RELOAD_FOR_OPERAND_ADDRESS:
4598 /* Check outputs and their addresses. */
4600 for (i = 0; i < reload_n_operands; i++)
4601 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4602 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4603 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4604 return 0;
4606 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4608 case RELOAD_FOR_OPADDR_ADDR:
4609 for (i = 0; i < reload_n_operands; i++)
4610 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4611 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4612 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4613 return 0;
4615 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4616 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4617 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4619 case RELOAD_FOR_INSN:
4620 /* These conflict with other outputs with RELOAD_OTHER. So
4621 we need only check for output addresses. */
4623 opnum = reload_n_operands;
4625 /* ... fall through ... */
4627 case RELOAD_FOR_OUTPUT:
4628 case RELOAD_FOR_OUTPUT_ADDRESS:
4629 case RELOAD_FOR_OUTADDR_ADDRESS:
4630 /* We already know these can't conflict with a later output. So the
4631 only thing to check are later output addresses.
4632 Note that multiple output operands are emitted in reverse order,
4633 so the conflicting ones are those with lower indices. */
4634 for (i = 0; i < opnum; i++)
4635 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4636 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4637 return 0;
4639 return 1;
4642 abort ();
4645 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4646 Return 0 otherwise.
4648 This function uses the same algorithm as reload_reg_free_p above. */
4651 reloads_conflict (r1, r2)
4652 int r1, r2;
4654 enum reload_type r1_type = rld[r1].when_needed;
4655 enum reload_type r2_type = rld[r2].when_needed;
4656 int r1_opnum = rld[r1].opnum;
4657 int r2_opnum = rld[r2].opnum;
4659 /* RELOAD_OTHER conflicts with everything. */
4660 if (r2_type == RELOAD_OTHER)
4661 return 1;
4663 /* Otherwise, check conflicts differently for each type. */
4665 switch (r1_type)
4667 case RELOAD_FOR_INPUT:
4668 return (r2_type == RELOAD_FOR_INSN
4669 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4670 || r2_type == RELOAD_FOR_OPADDR_ADDR
4671 || r2_type == RELOAD_FOR_INPUT
4672 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4673 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4674 && r2_opnum > r1_opnum));
4676 case RELOAD_FOR_INPUT_ADDRESS:
4677 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4678 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4680 case RELOAD_FOR_INPADDR_ADDRESS:
4681 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4682 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4684 case RELOAD_FOR_OUTPUT_ADDRESS:
4685 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4686 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4688 case RELOAD_FOR_OUTADDR_ADDRESS:
4689 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4690 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4692 case RELOAD_FOR_OPERAND_ADDRESS:
4693 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4694 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4696 case RELOAD_FOR_OPADDR_ADDR:
4697 return (r2_type == RELOAD_FOR_INPUT
4698 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4700 case RELOAD_FOR_OUTPUT:
4701 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4702 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4703 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4704 && r2_opnum >= r1_opnum));
4706 case RELOAD_FOR_INSN:
4707 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4708 || r2_type == RELOAD_FOR_INSN
4709 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4711 case RELOAD_FOR_OTHER_ADDRESS:
4712 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4714 case RELOAD_OTHER:
4715 return 1;
4717 default:
4718 abort ();
4722 /* Indexed by reload number, 1 if incoming value
4723 inherited from previous insns. */
4724 char reload_inherited[MAX_RELOADS];
4726 /* For an inherited reload, this is the insn the reload was inherited from,
4727 if we know it. Otherwise, this is 0. */
4728 rtx reload_inheritance_insn[MAX_RELOADS];
4730 /* If non-zero, this is a place to get the value of the reload,
4731 rather than using reload_in. */
4732 rtx reload_override_in[MAX_RELOADS];
4734 /* For each reload, the hard register number of the register used,
4735 or -1 if we did not need a register for this reload. */
4736 int reload_spill_index[MAX_RELOADS];
4738 /* Subroutine of free_for_value_p, used to check a single register.
4739 START_REGNO is the starting regno of the full reload register
4740 (possibly comprising multiple hard registers) that we are considering. */
4742 static int
4743 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4744 reloadnum, ignore_address_reloads)
4745 int start_regno, regno;
4746 int opnum;
4747 enum reload_type type;
4748 rtx value, out;
4749 int reloadnum;
4750 int ignore_address_reloads;
4752 int time1;
4753 /* Set if we see an input reload that must not share its reload register
4754 with any new earlyclobber, but might otherwise share the reload
4755 register with an output or input-output reload. */
4756 int check_earlyclobber = 0;
4757 int i;
4758 int copy = 0;
4760 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4761 return 0;
4763 if (out == const0_rtx)
4765 copy = 1;
4766 out = NULL_RTX;
4769 /* We use some pseudo 'time' value to check if the lifetimes of the
4770 new register use would overlap with the one of a previous reload
4771 that is not read-only or uses a different value.
4772 The 'time' used doesn't have to be linear in any shape or form, just
4773 monotonic.
4774 Some reload types use different 'buckets' for each operand.
4775 So there are MAX_RECOG_OPERANDS different time values for each
4776 such reload type.
4777 We compute TIME1 as the time when the register for the prospective
4778 new reload ceases to be live, and TIME2 for each existing
4779 reload as the time when that the reload register of that reload
4780 becomes live.
4781 Where there is little to be gained by exact lifetime calculations,
4782 we just make conservative assumptions, i.e. a longer lifetime;
4783 this is done in the 'default:' cases. */
4784 switch (type)
4786 case RELOAD_FOR_OTHER_ADDRESS:
4787 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4788 time1 = copy ? 0 : 1;
4789 break;
4790 case RELOAD_OTHER:
4791 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4792 break;
4793 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4794 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4795 respectively, to the time values for these, we get distinct time
4796 values. To get distinct time values for each operand, we have to
4797 multiply opnum by at least three. We round that up to four because
4798 multiply by four is often cheaper. */
4799 case RELOAD_FOR_INPADDR_ADDRESS:
4800 time1 = opnum * 4 + 2;
4801 break;
4802 case RELOAD_FOR_INPUT_ADDRESS:
4803 time1 = opnum * 4 + 3;
4804 break;
4805 case RELOAD_FOR_INPUT:
4806 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4807 executes (inclusive). */
4808 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4809 break;
4810 case RELOAD_FOR_OPADDR_ADDR:
4811 /* opnum * 4 + 4
4812 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4813 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4814 break;
4815 case RELOAD_FOR_OPERAND_ADDRESS:
4816 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4817 is executed. */
4818 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4819 break;
4820 case RELOAD_FOR_OUTADDR_ADDRESS:
4821 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4822 break;
4823 case RELOAD_FOR_OUTPUT_ADDRESS:
4824 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4825 break;
4826 default:
4827 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4830 for (i = 0; i < n_reloads; i++)
4832 rtx reg = rld[i].reg_rtx;
4833 if (reg && GET_CODE (reg) == REG
4834 && ((unsigned) regno - true_regnum (reg)
4835 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4836 && i != reloadnum)
4838 rtx other_input = rld[i].in;
4840 /* If the other reload loads the same input value, that
4841 will not cause a conflict only if it's loading it into
4842 the same register. */
4843 if (true_regnum (reg) != start_regno)
4844 other_input = NULL_RTX;
4845 if (! other_input || ! rtx_equal_p (other_input, value)
4846 || rld[i].out || out)
4848 int time2;
4849 switch (rld[i].when_needed)
4851 case RELOAD_FOR_OTHER_ADDRESS:
4852 time2 = 0;
4853 break;
4854 case RELOAD_FOR_INPADDR_ADDRESS:
4855 /* find_reloads makes sure that a
4856 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4857 by at most one - the first -
4858 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4859 address reload is inherited, the address address reload
4860 goes away, so we can ignore this conflict. */
4861 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4862 && ignore_address_reloads
4863 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4864 Then the address address is still needed to store
4865 back the new address. */
4866 && ! rld[reloadnum].out)
4867 continue;
4868 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4869 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4870 reloads go away. */
4871 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4872 && ignore_address_reloads
4873 /* Unless we are reloading an auto_inc expression. */
4874 && ! rld[reloadnum].out)
4875 continue;
4876 time2 = rld[i].opnum * 4 + 2;
4877 break;
4878 case RELOAD_FOR_INPUT_ADDRESS:
4879 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4880 && ignore_address_reloads
4881 && ! rld[reloadnum].out)
4882 continue;
4883 time2 = rld[i].opnum * 4 + 3;
4884 break;
4885 case RELOAD_FOR_INPUT:
4886 time2 = rld[i].opnum * 4 + 4;
4887 check_earlyclobber = 1;
4888 break;
4889 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4890 == MAX_RECOG_OPERAND * 4 */
4891 case RELOAD_FOR_OPADDR_ADDR:
4892 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4893 && ignore_address_reloads
4894 && ! rld[reloadnum].out)
4895 continue;
4896 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4897 break;
4898 case RELOAD_FOR_OPERAND_ADDRESS:
4899 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4900 check_earlyclobber = 1;
4901 break;
4902 case RELOAD_FOR_INSN:
4903 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4904 break;
4905 case RELOAD_FOR_OUTPUT:
4906 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4907 instruction is executed. */
4908 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4909 break;
4910 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4911 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4912 value. */
4913 case RELOAD_FOR_OUTADDR_ADDRESS:
4914 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4915 && ignore_address_reloads
4916 && ! rld[reloadnum].out)
4917 continue;
4918 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4919 break;
4920 case RELOAD_FOR_OUTPUT_ADDRESS:
4921 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4922 break;
4923 case RELOAD_OTHER:
4924 /* If there is no conflict in the input part, handle this
4925 like an output reload. */
4926 if (! rld[i].in || rtx_equal_p (other_input, value))
4928 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4929 /* Earlyclobbered outputs must conflict with inputs. */
4930 if (earlyclobber_operand_p (rld[i].out))
4931 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4933 break;
4935 time2 = 1;
4936 /* RELOAD_OTHER might be live beyond instruction execution,
4937 but this is not obvious when we set time2 = 1. So check
4938 here if there might be a problem with the new reload
4939 clobbering the register used by the RELOAD_OTHER. */
4940 if (out)
4941 return 0;
4942 break;
4943 default:
4944 return 0;
4946 if ((time1 >= time2
4947 && (! rld[i].in || rld[i].out
4948 || ! rtx_equal_p (other_input, value)))
4949 || (out && rld[reloadnum].out_reg
4950 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4951 return 0;
4956 /* Earlyclobbered outputs must conflict with inputs. */
4957 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4958 return 0;
4960 return 1;
4963 /* Return 1 if the value in reload reg REGNO, as used by a reload
4964 needed for the part of the insn specified by OPNUM and TYPE,
4965 may be used to load VALUE into it.
4967 MODE is the mode in which the register is used, this is needed to
4968 determine how many hard regs to test.
4970 Other read-only reloads with the same value do not conflict
4971 unless OUT is non-zero and these other reloads have to live while
4972 output reloads live.
4973 If OUT is CONST0_RTX, this is a special case: it means that the
4974 test should not be for using register REGNO as reload register, but
4975 for copying from register REGNO into the reload register.
4977 RELOADNUM is the number of the reload we want to load this value for;
4978 a reload does not conflict with itself.
4980 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4981 reloads that load an address for the very reload we are considering.
4983 The caller has to make sure that there is no conflict with the return
4984 register. */
4986 static int
4987 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4988 ignore_address_reloads)
4989 int regno;
4990 enum machine_mode mode;
4991 int opnum;
4992 enum reload_type type;
4993 rtx value, out;
4994 int reloadnum;
4995 int ignore_address_reloads;
4997 int nregs = HARD_REGNO_NREGS (regno, mode);
4998 while (nregs-- > 0)
4999 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5000 value, out, reloadnum,
5001 ignore_address_reloads))
5002 return 0;
5003 return 1;
5006 /* Determine whether the reload reg X overlaps any rtx'es used for
5007 overriding inheritance. Return nonzero if so. */
5009 static int
5010 conflicts_with_override (x)
5011 rtx x;
5013 int i;
5014 for (i = 0; i < n_reloads; i++)
5015 if (reload_override_in[i]
5016 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5017 return 1;
5018 return 0;
5021 /* Give an error message saying we failed to find a reload for INSN,
5022 and clear out reload R. */
5023 static void
5024 failed_reload (insn, r)
5025 rtx insn;
5026 int r;
5028 if (asm_noperands (PATTERN (insn)) < 0)
5029 /* It's the compiler's fault. */
5030 fatal_insn ("could not find a spill register", insn);
5032 /* It's the user's fault; the operand's mode and constraint
5033 don't match. Disable this reload so we don't crash in final. */
5034 error_for_asm (insn,
5035 "`asm' operand constraint incompatible with operand size");
5036 rld[r].in = 0;
5037 rld[r].out = 0;
5038 rld[r].reg_rtx = 0;
5039 rld[r].optional = 1;
5040 rld[r].secondary_p = 1;
5043 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5044 for reload R. If it's valid, get an rtx for it. Return nonzero if
5045 successful. */
5046 static int
5047 set_reload_reg (i, r)
5048 int i, r;
5050 int regno;
5051 rtx reg = spill_reg_rtx[i];
5053 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5054 spill_reg_rtx[i] = reg
5055 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5057 regno = true_regnum (reg);
5059 /* Detect when the reload reg can't hold the reload mode.
5060 This used to be one `if', but Sequent compiler can't handle that. */
5061 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5063 enum machine_mode test_mode = VOIDmode;
5064 if (rld[r].in)
5065 test_mode = GET_MODE (rld[r].in);
5066 /* If rld[r].in has VOIDmode, it means we will load it
5067 in whatever mode the reload reg has: to wit, rld[r].mode.
5068 We have already tested that for validity. */
5069 /* Aside from that, we need to test that the expressions
5070 to reload from or into have modes which are valid for this
5071 reload register. Otherwise the reload insns would be invalid. */
5072 if (! (rld[r].in != 0 && test_mode != VOIDmode
5073 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5074 if (! (rld[r].out != 0
5075 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5077 /* The reg is OK. */
5078 last_spill_reg = i;
5080 /* Mark as in use for this insn the reload regs we use
5081 for this. */
5082 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5083 rld[r].when_needed, rld[r].mode);
5085 rld[r].reg_rtx = reg;
5086 reload_spill_index[r] = spill_regs[i];
5087 return 1;
5090 return 0;
5093 /* Find a spill register to use as a reload register for reload R.
5094 LAST_RELOAD is non-zero if this is the last reload for the insn being
5095 processed.
5097 Set rld[R].reg_rtx to the register allocated.
5099 We return 1 if successful, or 0 if we couldn't find a spill reg and
5100 we didn't change anything. */
5102 static int
5103 allocate_reload_reg (chain, r, last_reload)
5104 struct insn_chain *chain ATTRIBUTE_UNUSED;
5105 int r;
5106 int last_reload;
5108 int i, pass, count;
5110 /* If we put this reload ahead, thinking it is a group,
5111 then insist on finding a group. Otherwise we can grab a
5112 reg that some other reload needs.
5113 (That can happen when we have a 68000 DATA_OR_FP_REG
5114 which is a group of data regs or one fp reg.)
5115 We need not be so restrictive if there are no more reloads
5116 for this insn.
5118 ??? Really it would be nicer to have smarter handling
5119 for that kind of reg class, where a problem like this is normal.
5120 Perhaps those classes should be avoided for reloading
5121 by use of more alternatives. */
5123 int force_group = rld[r].nregs > 1 && ! last_reload;
5125 /* If we want a single register and haven't yet found one,
5126 take any reg in the right class and not in use.
5127 If we want a consecutive group, here is where we look for it.
5129 We use two passes so we can first look for reload regs to
5130 reuse, which are already in use for other reloads in this insn,
5131 and only then use additional registers.
5132 I think that maximizing reuse is needed to make sure we don't
5133 run out of reload regs. Suppose we have three reloads, and
5134 reloads A and B can share regs. These need two regs.
5135 Suppose A and B are given different regs.
5136 That leaves none for C. */
5137 for (pass = 0; pass < 2; pass++)
5139 /* I is the index in spill_regs.
5140 We advance it round-robin between insns to use all spill regs
5141 equally, so that inherited reloads have a chance
5142 of leapfrogging each other. */
5144 i = last_spill_reg;
5146 for (count = 0; count < n_spills; count++)
5148 int class = (int) rld[r].class;
5149 int regnum;
5151 i++;
5152 if (i >= n_spills)
5153 i -= n_spills;
5154 regnum = spill_regs[i];
5156 if ((reload_reg_free_p (regnum, rld[r].opnum,
5157 rld[r].when_needed)
5158 || (rld[r].in
5159 /* We check reload_reg_used to make sure we
5160 don't clobber the return register. */
5161 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5162 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5163 rld[r].when_needed, rld[r].in,
5164 rld[r].out, r, 1)))
5165 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5166 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5167 /* Look first for regs to share, then for unshared. But
5168 don't share regs used for inherited reloads; they are
5169 the ones we want to preserve. */
5170 && (pass
5171 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5172 regnum)
5173 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5174 regnum))))
5176 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5177 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5178 (on 68000) got us two FP regs. If NR is 1,
5179 we would reject both of them. */
5180 if (force_group)
5181 nr = rld[r].nregs;
5182 /* If we need only one reg, we have already won. */
5183 if (nr == 1)
5185 /* But reject a single reg if we demand a group. */
5186 if (force_group)
5187 continue;
5188 break;
5190 /* Otherwise check that as many consecutive regs as we need
5191 are available here. */
5192 while (nr > 1)
5194 int regno = regnum + nr - 1;
5195 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5196 && spill_reg_order[regno] >= 0
5197 && reload_reg_free_p (regno, rld[r].opnum,
5198 rld[r].when_needed)))
5199 break;
5200 nr--;
5202 if (nr == 1)
5203 break;
5207 /* If we found something on pass 1, omit pass 2. */
5208 if (count < n_spills)
5209 break;
5212 /* We should have found a spill register by now. */
5213 if (count >= n_spills)
5214 return 0;
5216 /* I is the index in SPILL_REG_RTX of the reload register we are to
5217 allocate. Get an rtx for it and find its register number. */
5219 return set_reload_reg (i, r);
5222 /* Initialize all the tables needed to allocate reload registers.
5223 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5224 is the array we use to restore the reg_rtx field for every reload. */
5226 static void
5227 choose_reload_regs_init (chain, save_reload_reg_rtx)
5228 struct insn_chain *chain;
5229 rtx *save_reload_reg_rtx;
5231 int i;
5233 for (i = 0; i < n_reloads; i++)
5234 rld[i].reg_rtx = save_reload_reg_rtx[i];
5236 memset (reload_inherited, 0, MAX_RELOADS);
5237 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5238 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5240 CLEAR_HARD_REG_SET (reload_reg_used);
5241 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5242 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5243 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5244 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5245 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5247 CLEAR_HARD_REG_SET (reg_used_in_insn);
5249 HARD_REG_SET tmp;
5250 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5251 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5252 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5253 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5254 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5255 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5258 for (i = 0; i < reload_n_operands; i++)
5260 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5261 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5262 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5263 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5264 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5265 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5268 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5270 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5272 for (i = 0; i < n_reloads; i++)
5273 /* If we have already decided to use a certain register,
5274 don't use it in another way. */
5275 if (rld[i].reg_rtx)
5276 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5277 rld[i].when_needed, rld[i].mode);
5280 /* Assign hard reg targets for the pseudo-registers we must reload
5281 into hard regs for this insn.
5282 Also output the instructions to copy them in and out of the hard regs.
5284 For machines with register classes, we are responsible for
5285 finding a reload reg in the proper class. */
5287 static void
5288 choose_reload_regs (chain)
5289 struct insn_chain *chain;
5291 rtx insn = chain->insn;
5292 int i, j;
5293 unsigned int max_group_size = 1;
5294 enum reg_class group_class = NO_REGS;
5295 int pass, win, inheritance;
5297 rtx save_reload_reg_rtx[MAX_RELOADS];
5299 /* In order to be certain of getting the registers we need,
5300 we must sort the reloads into order of increasing register class.
5301 Then our grabbing of reload registers will parallel the process
5302 that provided the reload registers.
5304 Also note whether any of the reloads wants a consecutive group of regs.
5305 If so, record the maximum size of the group desired and what
5306 register class contains all the groups needed by this insn. */
5308 for (j = 0; j < n_reloads; j++)
5310 reload_order[j] = j;
5311 reload_spill_index[j] = -1;
5313 if (rld[j].nregs > 1)
5315 max_group_size = MAX (rld[j].nregs, max_group_size);
5316 group_class
5317 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5320 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5323 if (n_reloads > 1)
5324 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5326 /* If -O, try first with inheritance, then turning it off.
5327 If not -O, don't do inheritance.
5328 Using inheritance when not optimizing leads to paradoxes
5329 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5330 because one side of the comparison might be inherited. */
5331 win = 0;
5332 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5334 choose_reload_regs_init (chain, save_reload_reg_rtx);
5336 /* Process the reloads in order of preference just found.
5337 Beyond this point, subregs can be found in reload_reg_rtx.
5339 This used to look for an existing reloaded home for all of the
5340 reloads, and only then perform any new reloads. But that could lose
5341 if the reloads were done out of reg-class order because a later
5342 reload with a looser constraint might have an old home in a register
5343 needed by an earlier reload with a tighter constraint.
5345 To solve this, we make two passes over the reloads, in the order
5346 described above. In the first pass we try to inherit a reload
5347 from a previous insn. If there is a later reload that needs a
5348 class that is a proper subset of the class being processed, we must
5349 also allocate a spill register during the first pass.
5351 Then make a second pass over the reloads to allocate any reloads
5352 that haven't been given registers yet. */
5354 for (j = 0; j < n_reloads; j++)
5356 int r = reload_order[j];
5357 rtx search_equiv = NULL_RTX;
5359 /* Ignore reloads that got marked inoperative. */
5360 if (rld[r].out == 0 && rld[r].in == 0
5361 && ! rld[r].secondary_p)
5362 continue;
5364 /* If find_reloads chose to use reload_in or reload_out as a reload
5365 register, we don't need to chose one. Otherwise, try even if it
5366 found one since we might save an insn if we find the value lying
5367 around.
5368 Try also when reload_in is a pseudo without a hard reg. */
5369 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5370 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5371 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5372 && GET_CODE (rld[r].in) != MEM
5373 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5374 continue;
5376 #if 0 /* No longer needed for correct operation.
5377 It might give better code, or might not; worth an experiment? */
5378 /* If this is an optional reload, we can't inherit from earlier insns
5379 until we are sure that any non-optional reloads have been allocated.
5380 The following code takes advantage of the fact that optional reloads
5381 are at the end of reload_order. */
5382 if (rld[r].optional != 0)
5383 for (i = 0; i < j; i++)
5384 if ((rld[reload_order[i]].out != 0
5385 || rld[reload_order[i]].in != 0
5386 || rld[reload_order[i]].secondary_p)
5387 && ! rld[reload_order[i]].optional
5388 && rld[reload_order[i]].reg_rtx == 0)
5389 allocate_reload_reg (chain, reload_order[i], 0);
5390 #endif
5392 /* First see if this pseudo is already available as reloaded
5393 for a previous insn. We cannot try to inherit for reloads
5394 that are smaller than the maximum number of registers needed
5395 for groups unless the register we would allocate cannot be used
5396 for the groups.
5398 We could check here to see if this is a secondary reload for
5399 an object that is already in a register of the desired class.
5400 This would avoid the need for the secondary reload register.
5401 But this is complex because we can't easily determine what
5402 objects might want to be loaded via this reload. So let a
5403 register be allocated here. In `emit_reload_insns' we suppress
5404 one of the loads in the case described above. */
5406 if (inheritance)
5408 int byte = 0;
5409 int regno = -1;
5410 enum machine_mode mode = VOIDmode;
5412 if (rld[r].in == 0)
5414 else if (GET_CODE (rld[r].in) == REG)
5416 regno = REGNO (rld[r].in);
5417 mode = GET_MODE (rld[r].in);
5419 else if (GET_CODE (rld[r].in_reg) == REG)
5421 regno = REGNO (rld[r].in_reg);
5422 mode = GET_MODE (rld[r].in_reg);
5424 else if (GET_CODE (rld[r].in_reg) == SUBREG
5425 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5427 byte = SUBREG_BYTE (rld[r].in_reg);
5428 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5429 if (regno < FIRST_PSEUDO_REGISTER)
5430 regno = subreg_regno (rld[r].in_reg);
5431 mode = GET_MODE (rld[r].in_reg);
5433 #ifdef AUTO_INC_DEC
5434 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5435 || GET_CODE (rld[r].in_reg) == PRE_DEC
5436 || GET_CODE (rld[r].in_reg) == POST_INC
5437 || GET_CODE (rld[r].in_reg) == POST_DEC)
5438 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5440 regno = REGNO (XEXP (rld[r].in_reg, 0));
5441 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5442 rld[r].out = rld[r].in;
5444 #endif
5445 #if 0
5446 /* This won't work, since REGNO can be a pseudo reg number.
5447 Also, it takes much more hair to keep track of all the things
5448 that can invalidate an inherited reload of part of a pseudoreg. */
5449 else if (GET_CODE (rld[r].in) == SUBREG
5450 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5451 regno = subreg_regno (rld[r].in);
5452 #endif
5454 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5456 enum reg_class class = rld[r].class, last_class;
5457 rtx last_reg = reg_last_reload_reg[regno];
5458 enum machine_mode need_mode;
5460 i = REGNO (last_reg);
5461 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5462 last_class = REGNO_REG_CLASS (i);
5464 if (byte == 0)
5465 need_mode = mode;
5466 else
5467 need_mode
5468 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5469 GET_MODE_CLASS (mode));
5471 if (
5472 #ifdef CLASS_CANNOT_CHANGE_MODE
5473 (TEST_HARD_REG_BIT
5474 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5475 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5476 need_mode)
5477 : (GET_MODE_SIZE (GET_MODE (last_reg))
5478 >= GET_MODE_SIZE (need_mode)))
5479 #else
5480 (GET_MODE_SIZE (GET_MODE (last_reg))
5481 >= GET_MODE_SIZE (need_mode))
5482 #endif
5483 && reg_reloaded_contents[i] == regno
5484 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5485 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5486 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5487 /* Even if we can't use this register as a reload
5488 register, we might use it for reload_override_in,
5489 if copying it to the desired class is cheap
5490 enough. */
5491 || ((REGISTER_MOVE_COST (mode, last_class, class)
5492 < MEMORY_MOVE_COST (mode, class, 1))
5493 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5494 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5495 last_reg)
5496 == NO_REGS)
5497 #endif
5498 #ifdef SECONDARY_MEMORY_NEEDED
5499 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5500 mode)
5501 #endif
5504 && (rld[r].nregs == max_group_size
5505 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5507 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5508 rld[r].when_needed, rld[r].in,
5509 const0_rtx, r, 1))
5511 /* If a group is needed, verify that all the subsequent
5512 registers still have their values intact. */
5513 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5514 int k;
5516 for (k = 1; k < nr; k++)
5517 if (reg_reloaded_contents[i + k] != regno
5518 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5519 break;
5521 if (k == nr)
5523 int i1;
5524 int bad_for_class;
5526 last_reg = (GET_MODE (last_reg) == mode
5527 ? last_reg : gen_rtx_REG (mode, i));
5529 bad_for_class = 0;
5530 for (k = 0; k < nr; k++)
5531 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5532 i+k);
5534 /* We found a register that contains the
5535 value we need. If this register is the
5536 same as an `earlyclobber' operand of the
5537 current insn, just mark it as a place to
5538 reload from since we can't use it as the
5539 reload register itself. */
5541 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5542 if (reg_overlap_mentioned_for_reload_p
5543 (reg_last_reload_reg[regno],
5544 reload_earlyclobbers[i1]))
5545 break;
5547 if (i1 != n_earlyclobbers
5548 || ! (free_for_value_p (i, rld[r].mode,
5549 rld[r].opnum,
5550 rld[r].when_needed, rld[r].in,
5551 rld[r].out, r, 1))
5552 /* Don't use it if we'd clobber a pseudo reg. */
5553 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5554 && rld[r].out
5555 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5556 /* Don't clobber the frame pointer. */
5557 || (i == HARD_FRAME_POINTER_REGNUM
5558 && rld[r].out)
5559 /* Don't really use the inherited spill reg
5560 if we need it wider than we've got it. */
5561 || (GET_MODE_SIZE (rld[r].mode)
5562 > GET_MODE_SIZE (mode))
5563 || bad_for_class
5565 /* If find_reloads chose reload_out as reload
5566 register, stay with it - that leaves the
5567 inherited register for subsequent reloads. */
5568 || (rld[r].out && rld[r].reg_rtx
5569 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5571 if (! rld[r].optional)
5573 reload_override_in[r] = last_reg;
5574 reload_inheritance_insn[r]
5575 = reg_reloaded_insn[i];
5578 else
5580 int k;
5581 /* We can use this as a reload reg. */
5582 /* Mark the register as in use for this part of
5583 the insn. */
5584 mark_reload_reg_in_use (i,
5585 rld[r].opnum,
5586 rld[r].when_needed,
5587 rld[r].mode);
5588 rld[r].reg_rtx = last_reg;
5589 reload_inherited[r] = 1;
5590 reload_inheritance_insn[r]
5591 = reg_reloaded_insn[i];
5592 reload_spill_index[r] = i;
5593 for (k = 0; k < nr; k++)
5594 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5595 i + k);
5602 /* Here's another way to see if the value is already lying around. */
5603 if (inheritance
5604 && rld[r].in != 0
5605 && ! reload_inherited[r]
5606 && rld[r].out == 0
5607 && (CONSTANT_P (rld[r].in)
5608 || GET_CODE (rld[r].in) == PLUS
5609 || GET_CODE (rld[r].in) == REG
5610 || GET_CODE (rld[r].in) == MEM)
5611 && (rld[r].nregs == max_group_size
5612 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5613 search_equiv = rld[r].in;
5614 /* If this is an output reload from a simple move insn, look
5615 if an equivalence for the input is available. */
5616 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5618 rtx set = single_set (insn);
5620 if (set
5621 && rtx_equal_p (rld[r].out, SET_DEST (set))
5622 && CONSTANT_P (SET_SRC (set)))
5623 search_equiv = SET_SRC (set);
5626 if (search_equiv)
5628 rtx equiv
5629 = find_equiv_reg (search_equiv, insn, rld[r].class,
5630 -1, NULL, 0, rld[r].mode);
5631 int regno = 0;
5633 if (equiv != 0)
5635 if (GET_CODE (equiv) == REG)
5636 regno = REGNO (equiv);
5637 else if (GET_CODE (equiv) == SUBREG)
5639 /* This must be a SUBREG of a hard register.
5640 Make a new REG since this might be used in an
5641 address and not all machines support SUBREGs
5642 there. */
5643 regno = subreg_regno (equiv);
5644 equiv = gen_rtx_REG (rld[r].mode, regno);
5646 else
5647 abort ();
5650 /* If we found a spill reg, reject it unless it is free
5651 and of the desired class. */
5652 if (equiv != 0
5653 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5654 && ! free_for_value_p (regno, rld[r].mode,
5655 rld[r].opnum, rld[r].when_needed,
5656 rld[r].in, rld[r].out, r, 1))
5657 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5658 regno)))
5659 equiv = 0;
5661 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5662 equiv = 0;
5664 /* We found a register that contains the value we need.
5665 If this register is the same as an `earlyclobber' operand
5666 of the current insn, just mark it as a place to reload from
5667 since we can't use it as the reload register itself. */
5669 if (equiv != 0)
5670 for (i = 0; i < n_earlyclobbers; i++)
5671 if (reg_overlap_mentioned_for_reload_p (equiv,
5672 reload_earlyclobbers[i]))
5674 if (! rld[r].optional)
5675 reload_override_in[r] = equiv;
5676 equiv = 0;
5677 break;
5680 /* If the equiv register we have found is explicitly clobbered
5681 in the current insn, it depends on the reload type if we
5682 can use it, use it for reload_override_in, or not at all.
5683 In particular, we then can't use EQUIV for a
5684 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5686 if (equiv != 0)
5688 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5689 switch (rld[r].when_needed)
5691 case RELOAD_FOR_OTHER_ADDRESS:
5692 case RELOAD_FOR_INPADDR_ADDRESS:
5693 case RELOAD_FOR_INPUT_ADDRESS:
5694 case RELOAD_FOR_OPADDR_ADDR:
5695 break;
5696 case RELOAD_OTHER:
5697 case RELOAD_FOR_INPUT:
5698 case RELOAD_FOR_OPERAND_ADDRESS:
5699 if (! rld[r].optional)
5700 reload_override_in[r] = equiv;
5701 /* Fall through. */
5702 default:
5703 equiv = 0;
5704 break;
5706 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5707 switch (rld[r].when_needed)
5709 case RELOAD_FOR_OTHER_ADDRESS:
5710 case RELOAD_FOR_INPADDR_ADDRESS:
5711 case RELOAD_FOR_INPUT_ADDRESS:
5712 case RELOAD_FOR_OPADDR_ADDR:
5713 case RELOAD_FOR_OPERAND_ADDRESS:
5714 case RELOAD_FOR_INPUT:
5715 break;
5716 case RELOAD_OTHER:
5717 if (! rld[r].optional)
5718 reload_override_in[r] = equiv;
5719 /* Fall through. */
5720 default:
5721 equiv = 0;
5722 break;
5726 /* If we found an equivalent reg, say no code need be generated
5727 to load it, and use it as our reload reg. */
5728 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5730 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5731 int k;
5732 rld[r].reg_rtx = equiv;
5733 reload_inherited[r] = 1;
5735 /* If reg_reloaded_valid is not set for this register,
5736 there might be a stale spill_reg_store lying around.
5737 We must clear it, since otherwise emit_reload_insns
5738 might delete the store. */
5739 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5740 spill_reg_store[regno] = NULL_RTX;
5741 /* If any of the hard registers in EQUIV are spill
5742 registers, mark them as in use for this insn. */
5743 for (k = 0; k < nr; k++)
5745 i = spill_reg_order[regno + k];
5746 if (i >= 0)
5748 mark_reload_reg_in_use (regno, rld[r].opnum,
5749 rld[r].when_needed,
5750 rld[r].mode);
5751 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5752 regno + k);
5758 /* If we found a register to use already, or if this is an optional
5759 reload, we are done. */
5760 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5761 continue;
5763 #if 0
5764 /* No longer needed for correct operation. Might or might
5765 not give better code on the average. Want to experiment? */
5767 /* See if there is a later reload that has a class different from our
5768 class that intersects our class or that requires less register
5769 than our reload. If so, we must allocate a register to this
5770 reload now, since that reload might inherit a previous reload
5771 and take the only available register in our class. Don't do this
5772 for optional reloads since they will force all previous reloads
5773 to be allocated. Also don't do this for reloads that have been
5774 turned off. */
5776 for (i = j + 1; i < n_reloads; i++)
5778 int s = reload_order[i];
5780 if ((rld[s].in == 0 && rld[s].out == 0
5781 && ! rld[s].secondary_p)
5782 || rld[s].optional)
5783 continue;
5785 if ((rld[s].class != rld[r].class
5786 && reg_classes_intersect_p (rld[r].class,
5787 rld[s].class))
5788 || rld[s].nregs < rld[r].nregs)
5789 break;
5792 if (i == n_reloads)
5793 continue;
5795 allocate_reload_reg (chain, r, j == n_reloads - 1);
5796 #endif
5799 /* Now allocate reload registers for anything non-optional that
5800 didn't get one yet. */
5801 for (j = 0; j < n_reloads; j++)
5803 int r = reload_order[j];
5805 /* Ignore reloads that got marked inoperative. */
5806 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5807 continue;
5809 /* Skip reloads that already have a register allocated or are
5810 optional. */
5811 if (rld[r].reg_rtx != 0 || rld[r].optional)
5812 continue;
5814 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5815 break;
5818 /* If that loop got all the way, we have won. */
5819 if (j == n_reloads)
5821 win = 1;
5822 break;
5825 /* Loop around and try without any inheritance. */
5828 if (! win)
5830 /* First undo everything done by the failed attempt
5831 to allocate with inheritance. */
5832 choose_reload_regs_init (chain, save_reload_reg_rtx);
5834 /* Some sanity tests to verify that the reloads found in the first
5835 pass are identical to the ones we have now. */
5836 if (chain->n_reloads != n_reloads)
5837 abort ();
5839 for (i = 0; i < n_reloads; i++)
5841 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5842 continue;
5843 if (chain->rld[i].when_needed != rld[i].when_needed)
5844 abort ();
5845 for (j = 0; j < n_spills; j++)
5846 if (spill_regs[j] == chain->rld[i].regno)
5847 if (! set_reload_reg (j, i))
5848 failed_reload (chain->insn, i);
5852 /* If we thought we could inherit a reload, because it seemed that
5853 nothing else wanted the same reload register earlier in the insn,
5854 verify that assumption, now that all reloads have been assigned.
5855 Likewise for reloads where reload_override_in has been set. */
5857 /* If doing expensive optimizations, do one preliminary pass that doesn't
5858 cancel any inheritance, but removes reloads that have been needed only
5859 for reloads that we know can be inherited. */
5860 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5862 for (j = 0; j < n_reloads; j++)
5864 int r = reload_order[j];
5865 rtx check_reg;
5866 if (reload_inherited[r] && rld[r].reg_rtx)
5867 check_reg = rld[r].reg_rtx;
5868 else if (reload_override_in[r]
5869 && (GET_CODE (reload_override_in[r]) == REG
5870 || GET_CODE (reload_override_in[r]) == SUBREG))
5871 check_reg = reload_override_in[r];
5872 else
5873 continue;
5874 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5875 rld[r].opnum, rld[r].when_needed, rld[r].in,
5876 (reload_inherited[r]
5877 ? rld[r].out : const0_rtx),
5878 r, 1))
5880 if (pass)
5881 continue;
5882 reload_inherited[r] = 0;
5883 reload_override_in[r] = 0;
5885 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5886 reload_override_in, then we do not need its related
5887 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5888 likewise for other reload types.
5889 We handle this by removing a reload when its only replacement
5890 is mentioned in reload_in of the reload we are going to inherit.
5891 A special case are auto_inc expressions; even if the input is
5892 inherited, we still need the address for the output. We can
5893 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5894 If we succeeded removing some reload and we are doing a preliminary
5895 pass just to remove such reloads, make another pass, since the
5896 removal of one reload might allow us to inherit another one. */
5897 else if (rld[r].in
5898 && rld[r].out != rld[r].in
5899 && remove_address_replacements (rld[r].in) && pass)
5900 pass = 2;
5904 /* Now that reload_override_in is known valid,
5905 actually override reload_in. */
5906 for (j = 0; j < n_reloads; j++)
5907 if (reload_override_in[j])
5908 rld[j].in = reload_override_in[j];
5910 /* If this reload won't be done because it has been cancelled or is
5911 optional and not inherited, clear reload_reg_rtx so other
5912 routines (such as subst_reloads) don't get confused. */
5913 for (j = 0; j < n_reloads; j++)
5914 if (rld[j].reg_rtx != 0
5915 && ((rld[j].optional && ! reload_inherited[j])
5916 || (rld[j].in == 0 && rld[j].out == 0
5917 && ! rld[j].secondary_p)))
5919 int regno = true_regnum (rld[j].reg_rtx);
5921 if (spill_reg_order[regno] >= 0)
5922 clear_reload_reg_in_use (regno, rld[j].opnum,
5923 rld[j].when_needed, rld[j].mode);
5924 rld[j].reg_rtx = 0;
5925 reload_spill_index[j] = -1;
5928 /* Record which pseudos and which spill regs have output reloads. */
5929 for (j = 0; j < n_reloads; j++)
5931 int r = reload_order[j];
5933 i = reload_spill_index[r];
5935 /* I is nonneg if this reload uses a register.
5936 If rld[r].reg_rtx is 0, this is an optional reload
5937 that we opted to ignore. */
5938 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5939 && rld[r].reg_rtx != 0)
5941 int nregno = REGNO (rld[r].out_reg);
5942 int nr = 1;
5944 if (nregno < FIRST_PSEUDO_REGISTER)
5945 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5947 while (--nr >= 0)
5948 reg_has_output_reload[nregno + nr] = 1;
5950 if (i >= 0)
5952 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5953 while (--nr >= 0)
5954 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5957 if (rld[r].when_needed != RELOAD_OTHER
5958 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5959 && rld[r].when_needed != RELOAD_FOR_INSN)
5960 abort ();
5965 /* Deallocate the reload register for reload R. This is called from
5966 remove_address_replacements. */
5968 void
5969 deallocate_reload_reg (r)
5970 int r;
5972 int regno;
5974 if (! rld[r].reg_rtx)
5975 return;
5976 regno = true_regnum (rld[r].reg_rtx);
5977 rld[r].reg_rtx = 0;
5978 if (spill_reg_order[regno] >= 0)
5979 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5980 rld[r].mode);
5981 reload_spill_index[r] = -1;
5984 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5985 reloads of the same item for fear that we might not have enough reload
5986 registers. However, normally they will get the same reload register
5987 and hence actually need not be loaded twice.
5989 Here we check for the most common case of this phenomenon: when we have
5990 a number of reloads for the same object, each of which were allocated
5991 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5992 reload, and is not modified in the insn itself. If we find such,
5993 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5994 This will not increase the number of spill registers needed and will
5995 prevent redundant code. */
5997 static void
5998 merge_assigned_reloads (insn)
5999 rtx insn;
6001 int i, j;
6003 /* Scan all the reloads looking for ones that only load values and
6004 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6005 assigned and not modified by INSN. */
6007 for (i = 0; i < n_reloads; i++)
6009 int conflicting_input = 0;
6010 int max_input_address_opnum = -1;
6011 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6013 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6014 || rld[i].out != 0 || rld[i].reg_rtx == 0
6015 || reg_set_p (rld[i].reg_rtx, insn))
6016 continue;
6018 /* Look at all other reloads. Ensure that the only use of this
6019 reload_reg_rtx is in a reload that just loads the same value
6020 as we do. Note that any secondary reloads must be of the identical
6021 class since the values, modes, and result registers are the
6022 same, so we need not do anything with any secondary reloads. */
6024 for (j = 0; j < n_reloads; j++)
6026 if (i == j || rld[j].reg_rtx == 0
6027 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6028 rld[i].reg_rtx))
6029 continue;
6031 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6032 && rld[j].opnum > max_input_address_opnum)
6033 max_input_address_opnum = rld[j].opnum;
6035 /* If the reload regs aren't exactly the same (e.g, different modes)
6036 or if the values are different, we can't merge this reload.
6037 But if it is an input reload, we might still merge
6038 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6040 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6041 || rld[j].out != 0 || rld[j].in == 0
6042 || ! rtx_equal_p (rld[i].in, rld[j].in))
6044 if (rld[j].when_needed != RELOAD_FOR_INPUT
6045 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6046 || rld[i].opnum > rld[j].opnum)
6047 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6048 break;
6049 conflicting_input = 1;
6050 if (min_conflicting_input_opnum > rld[j].opnum)
6051 min_conflicting_input_opnum = rld[j].opnum;
6055 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6056 we, in fact, found any matching reloads. */
6058 if (j == n_reloads
6059 && max_input_address_opnum <= min_conflicting_input_opnum)
6061 for (j = 0; j < n_reloads; j++)
6062 if (i != j && rld[j].reg_rtx != 0
6063 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6064 && (! conflicting_input
6065 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6066 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6068 rld[i].when_needed = RELOAD_OTHER;
6069 rld[j].in = 0;
6070 reload_spill_index[j] = -1;
6071 transfer_replacements (i, j);
6074 /* If this is now RELOAD_OTHER, look for any reloads that load
6075 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6076 if they were for inputs, RELOAD_OTHER for outputs. Note that
6077 this test is equivalent to looking for reloads for this operand
6078 number. */
6080 if (rld[i].when_needed == RELOAD_OTHER)
6081 for (j = 0; j < n_reloads; j++)
6082 if (rld[j].in != 0
6083 && rld[j].when_needed != RELOAD_OTHER
6084 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6085 rld[i].in))
6086 rld[j].when_needed
6087 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6088 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6089 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6094 /* These arrays are filled by emit_reload_insns and its subroutines. */
6095 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6096 static rtx other_input_address_reload_insns = 0;
6097 static rtx other_input_reload_insns = 0;
6098 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6099 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6100 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6101 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6102 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6103 static rtx operand_reload_insns = 0;
6104 static rtx other_operand_reload_insns = 0;
6105 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6107 /* Values to be put in spill_reg_store are put here first. */
6108 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6109 static HARD_REG_SET reg_reloaded_died;
6111 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6112 has the number J. OLD contains the value to be used as input. */
6114 static void
6115 emit_input_reload_insns (chain, rl, old, j)
6116 struct insn_chain *chain;
6117 struct reload *rl;
6118 rtx old;
6119 int j;
6121 rtx insn = chain->insn;
6122 rtx reloadreg = rl->reg_rtx;
6123 rtx oldequiv_reg = 0;
6124 rtx oldequiv = 0;
6125 int special = 0;
6126 enum machine_mode mode;
6127 rtx *where;
6129 /* Determine the mode to reload in.
6130 This is very tricky because we have three to choose from.
6131 There is the mode the insn operand wants (rl->inmode).
6132 There is the mode of the reload register RELOADREG.
6133 There is the intrinsic mode of the operand, which we could find
6134 by stripping some SUBREGs.
6135 It turns out that RELOADREG's mode is irrelevant:
6136 we can change that arbitrarily.
6138 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6139 then the reload reg may not support QImode moves, so use SImode.
6140 If foo is in memory due to spilling a pseudo reg, this is safe,
6141 because the QImode value is in the least significant part of a
6142 slot big enough for a SImode. If foo is some other sort of
6143 memory reference, then it is impossible to reload this case,
6144 so previous passes had better make sure this never happens.
6146 Then consider a one-word union which has SImode and one of its
6147 members is a float, being fetched as (SUBREG:SF union:SI).
6148 We must fetch that as SFmode because we could be loading into
6149 a float-only register. In this case OLD's mode is correct.
6151 Consider an immediate integer: it has VOIDmode. Here we need
6152 to get a mode from something else.
6154 In some cases, there is a fourth mode, the operand's
6155 containing mode. If the insn specifies a containing mode for
6156 this operand, it overrides all others.
6158 I am not sure whether the algorithm here is always right,
6159 but it does the right things in those cases. */
6161 mode = GET_MODE (old);
6162 if (mode == VOIDmode)
6163 mode = rl->inmode;
6165 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6166 /* If we need a secondary register for this operation, see if
6167 the value is already in a register in that class. Don't
6168 do this if the secondary register will be used as a scratch
6169 register. */
6171 if (rl->secondary_in_reload >= 0
6172 && rl->secondary_in_icode == CODE_FOR_nothing
6173 && optimize)
6174 oldequiv
6175 = find_equiv_reg (old, insn,
6176 rld[rl->secondary_in_reload].class,
6177 -1, NULL, 0, mode);
6178 #endif
6180 /* If reloading from memory, see if there is a register
6181 that already holds the same value. If so, reload from there.
6182 We can pass 0 as the reload_reg_p argument because
6183 any other reload has either already been emitted,
6184 in which case find_equiv_reg will see the reload-insn,
6185 or has yet to be emitted, in which case it doesn't matter
6186 because we will use this equiv reg right away. */
6188 if (oldequiv == 0 && optimize
6189 && (GET_CODE (old) == MEM
6190 || (GET_CODE (old) == REG
6191 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6192 && reg_renumber[REGNO (old)] < 0)))
6193 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6195 if (oldequiv)
6197 unsigned int regno = true_regnum (oldequiv);
6199 /* Don't use OLDEQUIV if any other reload changes it at an
6200 earlier stage of this insn or at this stage. */
6201 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6202 rl->in, const0_rtx, j, 0))
6203 oldequiv = 0;
6205 /* If it is no cheaper to copy from OLDEQUIV into the
6206 reload register than it would be to move from memory,
6207 don't use it. Likewise, if we need a secondary register
6208 or memory. */
6210 if (oldequiv != 0
6211 && ((REGNO_REG_CLASS (regno) != rl->class
6212 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6213 rl->class)
6214 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6215 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6216 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6217 mode, oldequiv)
6218 != NO_REGS)
6219 #endif
6220 #ifdef SECONDARY_MEMORY_NEEDED
6221 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6222 rl->class,
6223 mode)
6224 #endif
6226 oldequiv = 0;
6229 /* delete_output_reload is only invoked properly if old contains
6230 the original pseudo register. Since this is replaced with a
6231 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6232 find the pseudo in RELOAD_IN_REG. */
6233 if (oldequiv == 0
6234 && reload_override_in[j]
6235 && GET_CODE (rl->in_reg) == REG)
6237 oldequiv = old;
6238 old = rl->in_reg;
6240 if (oldequiv == 0)
6241 oldequiv = old;
6242 else if (GET_CODE (oldequiv) == REG)
6243 oldequiv_reg = oldequiv;
6244 else if (GET_CODE (oldequiv) == SUBREG)
6245 oldequiv_reg = SUBREG_REG (oldequiv);
6247 /* If we are reloading from a register that was recently stored in
6248 with an output-reload, see if we can prove there was
6249 actually no need to store the old value in it. */
6251 if (optimize && GET_CODE (oldequiv) == REG
6252 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6253 && spill_reg_store[REGNO (oldequiv)]
6254 && GET_CODE (old) == REG
6255 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6256 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6257 rl->out_reg)))
6258 delete_output_reload (insn, j, REGNO (oldequiv));
6260 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6261 then load RELOADREG from OLDEQUIV. Note that we cannot use
6262 gen_lowpart_common since it can do the wrong thing when
6263 RELOADREG has a multi-word mode. Note that RELOADREG
6264 must always be a REG here. */
6266 if (GET_MODE (reloadreg) != mode)
6267 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6268 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6269 oldequiv = SUBREG_REG (oldequiv);
6270 if (GET_MODE (oldequiv) != VOIDmode
6271 && mode != GET_MODE (oldequiv))
6272 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6274 /* Switch to the right place to emit the reload insns. */
6275 switch (rl->when_needed)
6277 case RELOAD_OTHER:
6278 where = &other_input_reload_insns;
6279 break;
6280 case RELOAD_FOR_INPUT:
6281 where = &input_reload_insns[rl->opnum];
6282 break;
6283 case RELOAD_FOR_INPUT_ADDRESS:
6284 where = &input_address_reload_insns[rl->opnum];
6285 break;
6286 case RELOAD_FOR_INPADDR_ADDRESS:
6287 where = &inpaddr_address_reload_insns[rl->opnum];
6288 break;
6289 case RELOAD_FOR_OUTPUT_ADDRESS:
6290 where = &output_address_reload_insns[rl->opnum];
6291 break;
6292 case RELOAD_FOR_OUTADDR_ADDRESS:
6293 where = &outaddr_address_reload_insns[rl->opnum];
6294 break;
6295 case RELOAD_FOR_OPERAND_ADDRESS:
6296 where = &operand_reload_insns;
6297 break;
6298 case RELOAD_FOR_OPADDR_ADDR:
6299 where = &other_operand_reload_insns;
6300 break;
6301 case RELOAD_FOR_OTHER_ADDRESS:
6302 where = &other_input_address_reload_insns;
6303 break;
6304 default:
6305 abort ();
6308 push_to_sequence (*where);
6310 /* Auto-increment addresses must be reloaded in a special way. */
6311 if (rl->out && ! rl->out_reg)
6313 /* We are not going to bother supporting the case where a
6314 incremented register can't be copied directly from
6315 OLDEQUIV since this seems highly unlikely. */
6316 if (rl->secondary_in_reload >= 0)
6317 abort ();
6319 if (reload_inherited[j])
6320 oldequiv = reloadreg;
6322 old = XEXP (rl->in_reg, 0);
6324 if (optimize && GET_CODE (oldequiv) == REG
6325 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6326 && spill_reg_store[REGNO (oldequiv)]
6327 && GET_CODE (old) == REG
6328 && (dead_or_set_p (insn,
6329 spill_reg_stored_to[REGNO (oldequiv)])
6330 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6331 old)))
6332 delete_output_reload (insn, j, REGNO (oldequiv));
6334 /* Prevent normal processing of this reload. */
6335 special = 1;
6336 /* Output a special code sequence for this case. */
6337 new_spill_reg_store[REGNO (reloadreg)]
6338 = inc_for_reload (reloadreg, oldequiv, rl->out,
6339 rl->inc);
6342 /* If we are reloading a pseudo-register that was set by the previous
6343 insn, see if we can get rid of that pseudo-register entirely
6344 by redirecting the previous insn into our reload register. */
6346 else if (optimize && GET_CODE (old) == REG
6347 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6348 && dead_or_set_p (insn, old)
6349 /* This is unsafe if some other reload
6350 uses the same reg first. */
6351 && ! conflicts_with_override (reloadreg)
6352 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6353 rl->when_needed, old, rl->out, j, 0))
6355 rtx temp = PREV_INSN (insn);
6356 while (temp && GET_CODE (temp) == NOTE)
6357 temp = PREV_INSN (temp);
6358 if (temp
6359 && GET_CODE (temp) == INSN
6360 && GET_CODE (PATTERN (temp)) == SET
6361 && SET_DEST (PATTERN (temp)) == old
6362 /* Make sure we can access insn_operand_constraint. */
6363 && asm_noperands (PATTERN (temp)) < 0
6364 /* This is unsafe if prev insn rejects our reload reg. */
6365 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6366 reloadreg)
6367 /* This is unsafe if operand occurs more than once in current
6368 insn. Perhaps some occurrences aren't reloaded. */
6369 && count_occurrences (PATTERN (insn), old, 0) == 1
6370 /* Don't risk splitting a matching pair of operands. */
6371 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6373 /* Store into the reload register instead of the pseudo. */
6374 SET_DEST (PATTERN (temp)) = reloadreg;
6376 /* If the previous insn is an output reload, the source is
6377 a reload register, and its spill_reg_store entry will
6378 contain the previous destination. This is now
6379 invalid. */
6380 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6381 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6383 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6384 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6387 /* If these are the only uses of the pseudo reg,
6388 pretend for GDB it lives in the reload reg we used. */
6389 if (REG_N_DEATHS (REGNO (old)) == 1
6390 && REG_N_SETS (REGNO (old)) == 1)
6392 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6393 alter_reg (REGNO (old), -1);
6395 special = 1;
6399 /* We can't do that, so output an insn to load RELOADREG. */
6401 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6402 /* If we have a secondary reload, pick up the secondary register
6403 and icode, if any. If OLDEQUIV and OLD are different or
6404 if this is an in-out reload, recompute whether or not we
6405 still need a secondary register and what the icode should
6406 be. If we still need a secondary register and the class or
6407 icode is different, go back to reloading from OLD if using
6408 OLDEQUIV means that we got the wrong type of register. We
6409 cannot have different class or icode due to an in-out reload
6410 because we don't make such reloads when both the input and
6411 output need secondary reload registers. */
6413 if (! special && rl->secondary_in_reload >= 0)
6415 rtx second_reload_reg = 0;
6416 int secondary_reload = rl->secondary_in_reload;
6417 rtx real_oldequiv = oldequiv;
6418 rtx real_old = old;
6419 rtx tmp;
6420 enum insn_code icode;
6422 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6423 and similarly for OLD.
6424 See comments in get_secondary_reload in reload.c. */
6425 /* If it is a pseudo that cannot be replaced with its
6426 equivalent MEM, we must fall back to reload_in, which
6427 will have all the necessary substitutions registered.
6428 Likewise for a pseudo that can't be replaced with its
6429 equivalent constant.
6431 Take extra care for subregs of such pseudos. Note that
6432 we cannot use reg_equiv_mem in this case because it is
6433 not in the right mode. */
6435 tmp = oldequiv;
6436 if (GET_CODE (tmp) == SUBREG)
6437 tmp = SUBREG_REG (tmp);
6438 if (GET_CODE (tmp) == REG
6439 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6440 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6441 || reg_equiv_constant[REGNO (tmp)] != 0))
6443 if (! reg_equiv_mem[REGNO (tmp)]
6444 || num_not_at_initial_offset
6445 || GET_CODE (oldequiv) == SUBREG)
6446 real_oldequiv = rl->in;
6447 else
6448 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6451 tmp = old;
6452 if (GET_CODE (tmp) == SUBREG)
6453 tmp = SUBREG_REG (tmp);
6454 if (GET_CODE (tmp) == REG
6455 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6456 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6457 || reg_equiv_constant[REGNO (tmp)] != 0))
6459 if (! reg_equiv_mem[REGNO (tmp)]
6460 || num_not_at_initial_offset
6461 || GET_CODE (old) == SUBREG)
6462 real_old = rl->in;
6463 else
6464 real_old = reg_equiv_mem[REGNO (tmp)];
6467 second_reload_reg = rld[secondary_reload].reg_rtx;
6468 icode = rl->secondary_in_icode;
6470 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6471 || (rl->in != 0 && rl->out != 0))
6473 enum reg_class new_class
6474 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6475 mode, real_oldequiv);
6477 if (new_class == NO_REGS)
6478 second_reload_reg = 0;
6479 else
6481 enum insn_code new_icode;
6482 enum machine_mode new_mode;
6484 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6485 REGNO (second_reload_reg)))
6486 oldequiv = old, real_oldequiv = real_old;
6487 else
6489 new_icode = reload_in_optab[(int) mode];
6490 if (new_icode != CODE_FOR_nothing
6491 && ((insn_data[(int) new_icode].operand[0].predicate
6492 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6493 (reloadreg, mode)))
6494 || (insn_data[(int) new_icode].operand[1].predicate
6495 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6496 (real_oldequiv, mode)))))
6497 new_icode = CODE_FOR_nothing;
6499 if (new_icode == CODE_FOR_nothing)
6500 new_mode = mode;
6501 else
6502 new_mode = insn_data[(int) new_icode].operand[2].mode;
6504 if (GET_MODE (second_reload_reg) != new_mode)
6506 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6507 new_mode))
6508 oldequiv = old, real_oldequiv = real_old;
6509 else
6510 second_reload_reg
6511 = gen_rtx_REG (new_mode,
6512 REGNO (second_reload_reg));
6518 /* If we still need a secondary reload register, check
6519 to see if it is being used as a scratch or intermediate
6520 register and generate code appropriately. If we need
6521 a scratch register, use REAL_OLDEQUIV since the form of
6522 the insn may depend on the actual address if it is
6523 a MEM. */
6525 if (second_reload_reg)
6527 if (icode != CODE_FOR_nothing)
6529 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6530 second_reload_reg));
6531 special = 1;
6533 else
6535 /* See if we need a scratch register to load the
6536 intermediate register (a tertiary reload). */
6537 enum insn_code tertiary_icode
6538 = rld[secondary_reload].secondary_in_icode;
6540 if (tertiary_icode != CODE_FOR_nothing)
6542 rtx third_reload_reg
6543 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6545 emit_insn ((GEN_FCN (tertiary_icode)
6546 (second_reload_reg, real_oldequiv,
6547 third_reload_reg)));
6549 else
6550 gen_reload (second_reload_reg, real_oldequiv,
6551 rl->opnum,
6552 rl->when_needed);
6554 oldequiv = second_reload_reg;
6558 #endif
6560 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6562 rtx real_oldequiv = oldequiv;
6564 if ((GET_CODE (oldequiv) == REG
6565 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6566 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6567 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6568 || (GET_CODE (oldequiv) == SUBREG
6569 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6570 && (REGNO (SUBREG_REG (oldequiv))
6571 >= FIRST_PSEUDO_REGISTER)
6572 && ((reg_equiv_memory_loc
6573 [REGNO (SUBREG_REG (oldequiv))] != 0)
6574 || (reg_equiv_constant
6575 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6576 || (CONSTANT_P (oldequiv)
6577 && (PREFERRED_RELOAD_CLASS (oldequiv,
6578 REGNO_REG_CLASS (REGNO (reloadreg)))
6579 == NO_REGS)))
6580 real_oldequiv = rl->in;
6581 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6582 rl->when_needed);
6585 if (flag_non_call_exceptions)
6586 copy_eh_notes (insn, get_insns ());
6588 /* End this sequence. */
6589 *where = get_insns ();
6590 end_sequence ();
6592 /* Update reload_override_in so that delete_address_reloads_1
6593 can see the actual register usage. */
6594 if (oldequiv_reg)
6595 reload_override_in[j] = oldequiv;
6598 /* Generate insns to for the output reload RL, which is for the insn described
6599 by CHAIN and has the number J. */
6600 static void
6601 emit_output_reload_insns (chain, rl, j)
6602 struct insn_chain *chain;
6603 struct reload *rl;
6604 int j;
6606 rtx reloadreg = rl->reg_rtx;
6607 rtx insn = chain->insn;
6608 int special = 0;
6609 rtx old = rl->out;
6610 enum machine_mode mode = GET_MODE (old);
6611 rtx p;
6613 if (rl->when_needed == RELOAD_OTHER)
6614 start_sequence ();
6615 else
6616 push_to_sequence (output_reload_insns[rl->opnum]);
6618 /* Determine the mode to reload in.
6619 See comments above (for input reloading). */
6621 if (mode == VOIDmode)
6623 /* VOIDmode should never happen for an output. */
6624 if (asm_noperands (PATTERN (insn)) < 0)
6625 /* It's the compiler's fault. */
6626 fatal_insn ("VOIDmode on an output", insn);
6627 error_for_asm (insn, "output operand is constant in `asm'");
6628 /* Prevent crash--use something we know is valid. */
6629 mode = word_mode;
6630 old = gen_rtx_REG (mode, REGNO (reloadreg));
6633 if (GET_MODE (reloadreg) != mode)
6634 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6636 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6638 /* If we need two reload regs, set RELOADREG to the intermediate
6639 one, since it will be stored into OLD. We might need a secondary
6640 register only for an input reload, so check again here. */
6642 if (rl->secondary_out_reload >= 0)
6644 rtx real_old = old;
6646 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6647 && reg_equiv_mem[REGNO (old)] != 0)
6648 real_old = reg_equiv_mem[REGNO (old)];
6650 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6651 mode, real_old)
6652 != NO_REGS))
6654 rtx second_reloadreg = reloadreg;
6655 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6657 /* See if RELOADREG is to be used as a scratch register
6658 or as an intermediate register. */
6659 if (rl->secondary_out_icode != CODE_FOR_nothing)
6661 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6662 (real_old, second_reloadreg, reloadreg)));
6663 special = 1;
6665 else
6667 /* See if we need both a scratch and intermediate reload
6668 register. */
6670 int secondary_reload = rl->secondary_out_reload;
6671 enum insn_code tertiary_icode
6672 = rld[secondary_reload].secondary_out_icode;
6674 if (GET_MODE (reloadreg) != mode)
6675 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6677 if (tertiary_icode != CODE_FOR_nothing)
6679 rtx third_reloadreg
6680 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6681 rtx tem;
6683 /* Copy primary reload reg to secondary reload reg.
6684 (Note that these have been swapped above, then
6685 secondary reload reg to OLD using our insn.) */
6687 /* If REAL_OLD is a paradoxical SUBREG, remove it
6688 and try to put the opposite SUBREG on
6689 RELOADREG. */
6690 if (GET_CODE (real_old) == SUBREG
6691 && (GET_MODE_SIZE (GET_MODE (real_old))
6692 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6693 && 0 != (tem = gen_lowpart_common
6694 (GET_MODE (SUBREG_REG (real_old)),
6695 reloadreg)))
6696 real_old = SUBREG_REG (real_old), reloadreg = tem;
6698 gen_reload (reloadreg, second_reloadreg,
6699 rl->opnum, rl->when_needed);
6700 emit_insn ((GEN_FCN (tertiary_icode)
6701 (real_old, reloadreg, third_reloadreg)));
6702 special = 1;
6705 else
6706 /* Copy between the reload regs here and then to
6707 OUT later. */
6709 gen_reload (reloadreg, second_reloadreg,
6710 rl->opnum, rl->when_needed);
6714 #endif
6716 /* Output the last reload insn. */
6717 if (! special)
6719 rtx set;
6721 /* Don't output the last reload if OLD is not the dest of
6722 INSN and is in the src and is clobbered by INSN. */
6723 if (! flag_expensive_optimizations
6724 || GET_CODE (old) != REG
6725 || !(set = single_set (insn))
6726 || rtx_equal_p (old, SET_DEST (set))
6727 || !reg_mentioned_p (old, SET_SRC (set))
6728 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6729 gen_reload (old, reloadreg, rl->opnum,
6730 rl->when_needed);
6733 /* Look at all insns we emitted, just to be safe. */
6734 for (p = get_insns (); p; p = NEXT_INSN (p))
6735 if (INSN_P (p))
6737 rtx pat = PATTERN (p);
6739 /* If this output reload doesn't come from a spill reg,
6740 clear any memory of reloaded copies of the pseudo reg.
6741 If this output reload comes from a spill reg,
6742 reg_has_output_reload will make this do nothing. */
6743 note_stores (pat, forget_old_reloads_1, NULL);
6745 if (reg_mentioned_p (rl->reg_rtx, pat))
6747 rtx set = single_set (insn);
6748 if (reload_spill_index[j] < 0
6749 && set
6750 && SET_SRC (set) == rl->reg_rtx)
6752 int src = REGNO (SET_SRC (set));
6754 reload_spill_index[j] = src;
6755 SET_HARD_REG_BIT (reg_is_output_reload, src);
6756 if (find_regno_note (insn, REG_DEAD, src))
6757 SET_HARD_REG_BIT (reg_reloaded_died, src);
6759 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6761 int s = rl->secondary_out_reload;
6762 set = single_set (p);
6763 /* If this reload copies only to the secondary reload
6764 register, the secondary reload does the actual
6765 store. */
6766 if (s >= 0 && set == NULL_RTX)
6767 /* We can't tell what function the secondary reload
6768 has and where the actual store to the pseudo is
6769 made; leave new_spill_reg_store alone. */
6771 else if (s >= 0
6772 && SET_SRC (set) == rl->reg_rtx
6773 && SET_DEST (set) == rld[s].reg_rtx)
6775 /* Usually the next instruction will be the
6776 secondary reload insn; if we can confirm
6777 that it is, setting new_spill_reg_store to
6778 that insn will allow an extra optimization. */
6779 rtx s_reg = rld[s].reg_rtx;
6780 rtx next = NEXT_INSN (p);
6781 rld[s].out = rl->out;
6782 rld[s].out_reg = rl->out_reg;
6783 set = single_set (next);
6784 if (set && SET_SRC (set) == s_reg
6785 && ! new_spill_reg_store[REGNO (s_reg)])
6787 SET_HARD_REG_BIT (reg_is_output_reload,
6788 REGNO (s_reg));
6789 new_spill_reg_store[REGNO (s_reg)] = next;
6792 else
6793 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6798 if (rl->when_needed == RELOAD_OTHER)
6800 emit_insns (other_output_reload_insns[rl->opnum]);
6801 other_output_reload_insns[rl->opnum] = get_insns ();
6803 else
6804 output_reload_insns[rl->opnum] = get_insns ();
6806 if (flag_non_call_exceptions)
6807 copy_eh_notes (insn, get_insns ());
6809 end_sequence ();
6812 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6813 and has the number J. */
6814 static void
6815 do_input_reload (chain, rl, j)
6816 struct insn_chain *chain;
6817 struct reload *rl;
6818 int j;
6820 int expect_occurrences = 1;
6821 rtx insn = chain->insn;
6822 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6823 ? rl->in_reg : rl->in);
6825 if (old != 0
6826 /* AUTO_INC reloads need to be handled even if inherited. We got an
6827 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6828 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6829 && ! rtx_equal_p (rl->reg_rtx, old)
6830 && rl->reg_rtx != 0)
6831 emit_input_reload_insns (chain, rld + j, old, j);
6833 /* When inheriting a wider reload, we have a MEM in rl->in,
6834 e.g. inheriting a SImode output reload for
6835 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6836 if (optimize && reload_inherited[j] && rl->in
6837 && GET_CODE (rl->in) == MEM
6838 && GET_CODE (rl->in_reg) == MEM
6839 && reload_spill_index[j] >= 0
6840 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6842 expect_occurrences
6843 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6844 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6847 /* If we are reloading a register that was recently stored in with an
6848 output-reload, see if we can prove there was
6849 actually no need to store the old value in it. */
6851 if (optimize
6852 && (reload_inherited[j] || reload_override_in[j])
6853 && rl->reg_rtx
6854 && GET_CODE (rl->reg_rtx) == REG
6855 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6856 #if 0
6857 /* There doesn't seem to be any reason to restrict this to pseudos
6858 and doing so loses in the case where we are copying from a
6859 register of the wrong class. */
6860 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6861 >= FIRST_PSEUDO_REGISTER)
6862 #endif
6863 /* The insn might have already some references to stackslots
6864 replaced by MEMs, while reload_out_reg still names the
6865 original pseudo. */
6866 && (dead_or_set_p (insn,
6867 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6868 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6869 rl->out_reg)))
6870 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6873 /* Do output reloading for reload RL, which is for the insn described by
6874 CHAIN and has the number J.
6875 ??? At some point we need to support handling output reloads of
6876 JUMP_INSNs or insns that set cc0. */
6877 static void
6878 do_output_reload (chain, rl, j)
6879 struct insn_chain *chain;
6880 struct reload *rl;
6881 int j;
6883 rtx note, old;
6884 rtx insn = chain->insn;
6885 /* If this is an output reload that stores something that is
6886 not loaded in this same reload, see if we can eliminate a previous
6887 store. */
6888 rtx pseudo = rl->out_reg;
6890 if (pseudo
6891 && GET_CODE (pseudo) == REG
6892 && ! rtx_equal_p (rl->in_reg, pseudo)
6893 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6894 && reg_last_reload_reg[REGNO (pseudo)])
6896 int pseudo_no = REGNO (pseudo);
6897 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6899 /* We don't need to test full validity of last_regno for
6900 inherit here; we only want to know if the store actually
6901 matches the pseudo. */
6902 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6903 && reg_reloaded_contents[last_regno] == pseudo_no
6904 && spill_reg_store[last_regno]
6905 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6906 delete_output_reload (insn, j, last_regno);
6909 old = rl->out_reg;
6910 if (old == 0
6911 || rl->reg_rtx == old
6912 || rl->reg_rtx == 0)
6913 return;
6915 /* An output operand that dies right away does need a reload,
6916 but need not be copied from it. Show the new location in the
6917 REG_UNUSED note. */
6918 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6919 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6921 XEXP (note, 0) = rl->reg_rtx;
6922 return;
6924 /* Likewise for a SUBREG of an operand that dies. */
6925 else if (GET_CODE (old) == SUBREG
6926 && GET_CODE (SUBREG_REG (old)) == REG
6927 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6928 SUBREG_REG (old))))
6930 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6931 rl->reg_rtx);
6932 return;
6934 else if (GET_CODE (old) == SCRATCH)
6935 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6936 but we don't want to make an output reload. */
6937 return;
6939 /* If is a JUMP_INSN, we can't support output reloads yet. */
6940 if (GET_CODE (insn) == JUMP_INSN)
6941 abort ();
6943 emit_output_reload_insns (chain, rld + j, j);
6946 /* Output insns to reload values in and out of the chosen reload regs. */
6948 static void
6949 emit_reload_insns (chain)
6950 struct insn_chain *chain;
6952 rtx insn = chain->insn;
6954 int j;
6956 CLEAR_HARD_REG_SET (reg_reloaded_died);
6958 for (j = 0; j < reload_n_operands; j++)
6959 input_reload_insns[j] = input_address_reload_insns[j]
6960 = inpaddr_address_reload_insns[j]
6961 = output_reload_insns[j] = output_address_reload_insns[j]
6962 = outaddr_address_reload_insns[j]
6963 = other_output_reload_insns[j] = 0;
6964 other_input_address_reload_insns = 0;
6965 other_input_reload_insns = 0;
6966 operand_reload_insns = 0;
6967 other_operand_reload_insns = 0;
6969 /* Dump reloads into the dump file. */
6970 if (rtl_dump_file)
6972 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6973 debug_reload_to_stream (rtl_dump_file);
6976 /* Now output the instructions to copy the data into and out of the
6977 reload registers. Do these in the order that the reloads were reported,
6978 since reloads of base and index registers precede reloads of operands
6979 and the operands may need the base and index registers reloaded. */
6981 for (j = 0; j < n_reloads; j++)
6983 if (rld[j].reg_rtx
6984 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6985 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6987 do_input_reload (chain, rld + j, j);
6988 do_output_reload (chain, rld + j, j);
6991 /* Now write all the insns we made for reloads in the order expected by
6992 the allocation functions. Prior to the insn being reloaded, we write
6993 the following reloads:
6995 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6997 RELOAD_OTHER reloads.
6999 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7000 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7001 RELOAD_FOR_INPUT reload for the operand.
7003 RELOAD_FOR_OPADDR_ADDRS reloads.
7005 RELOAD_FOR_OPERAND_ADDRESS reloads.
7007 After the insn being reloaded, we write the following:
7009 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7010 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7011 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7012 reloads for the operand. The RELOAD_OTHER output reloads are
7013 output in descending order by reload number. */
7015 emit_insns_before (other_input_address_reload_insns, insn);
7016 emit_insns_before (other_input_reload_insns, insn);
7018 for (j = 0; j < reload_n_operands; j++)
7020 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7021 emit_insns_before (input_address_reload_insns[j], insn);
7022 emit_insns_before (input_reload_insns[j], insn);
7025 emit_insns_before (other_operand_reload_insns, insn);
7026 emit_insns_before (operand_reload_insns, insn);
7028 for (j = 0; j < reload_n_operands; j++)
7030 rtx x = emit_insns_after (outaddr_address_reload_insns[j], insn);
7031 x = emit_insns_after (output_address_reload_insns[j], x);
7032 x = emit_insns_after (output_reload_insns[j], x);
7033 emit_insns_after (other_output_reload_insns[j], x);
7036 /* For all the spill regs newly reloaded in this instruction,
7037 record what they were reloaded from, so subsequent instructions
7038 can inherit the reloads.
7040 Update spill_reg_store for the reloads of this insn.
7041 Copy the elements that were updated in the loop above. */
7043 for (j = 0; j < n_reloads; j++)
7045 int r = reload_order[j];
7046 int i = reload_spill_index[r];
7048 /* If this is a non-inherited input reload from a pseudo, we must
7049 clear any memory of a previous store to the same pseudo. Only do
7050 something if there will not be an output reload for the pseudo
7051 being reloaded. */
7052 if (rld[r].in_reg != 0
7053 && ! (reload_inherited[r] || reload_override_in[r]))
7055 rtx reg = rld[r].in_reg;
7057 if (GET_CODE (reg) == SUBREG)
7058 reg = SUBREG_REG (reg);
7060 if (GET_CODE (reg) == REG
7061 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7062 && ! reg_has_output_reload[REGNO (reg)])
7064 int nregno = REGNO (reg);
7066 if (reg_last_reload_reg[nregno])
7068 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7070 if (reg_reloaded_contents[last_regno] == nregno)
7071 spill_reg_store[last_regno] = 0;
7076 /* I is nonneg if this reload used a register.
7077 If rld[r].reg_rtx is 0, this is an optional reload
7078 that we opted to ignore. */
7080 if (i >= 0 && rld[r].reg_rtx != 0)
7082 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7083 int k;
7084 int part_reaches_end = 0;
7085 int all_reaches_end = 1;
7087 /* For a multi register reload, we need to check if all or part
7088 of the value lives to the end. */
7089 for (k = 0; k < nr; k++)
7091 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7092 rld[r].when_needed))
7093 part_reaches_end = 1;
7094 else
7095 all_reaches_end = 0;
7098 /* Ignore reloads that don't reach the end of the insn in
7099 entirety. */
7100 if (all_reaches_end)
7102 /* First, clear out memory of what used to be in this spill reg.
7103 If consecutive registers are used, clear them all. */
7105 for (k = 0; k < nr; k++)
7106 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7108 /* Maybe the spill reg contains a copy of reload_out. */
7109 if (rld[r].out != 0
7110 && (GET_CODE (rld[r].out) == REG
7111 #ifdef AUTO_INC_DEC
7112 || ! rld[r].out_reg
7113 #endif
7114 || GET_CODE (rld[r].out_reg) == REG))
7116 rtx out = (GET_CODE (rld[r].out) == REG
7117 ? rld[r].out
7118 : rld[r].out_reg
7119 ? rld[r].out_reg
7120 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7121 int nregno = REGNO (out);
7122 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7123 : HARD_REGNO_NREGS (nregno,
7124 GET_MODE (rld[r].reg_rtx)));
7126 spill_reg_store[i] = new_spill_reg_store[i];
7127 spill_reg_stored_to[i] = out;
7128 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7130 /* If NREGNO is a hard register, it may occupy more than
7131 one register. If it does, say what is in the
7132 rest of the registers assuming that both registers
7133 agree on how many words the object takes. If not,
7134 invalidate the subsequent registers. */
7136 if (nregno < FIRST_PSEUDO_REGISTER)
7137 for (k = 1; k < nnr; k++)
7138 reg_last_reload_reg[nregno + k]
7139 = (nr == nnr
7140 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7141 REGNO (rld[r].reg_rtx) + k)
7142 : 0);
7144 /* Now do the inverse operation. */
7145 for (k = 0; k < nr; k++)
7147 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7148 reg_reloaded_contents[i + k]
7149 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7150 ? nregno
7151 : nregno + k);
7152 reg_reloaded_insn[i + k] = insn;
7153 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7157 /* Maybe the spill reg contains a copy of reload_in. Only do
7158 something if there will not be an output reload for
7159 the register being reloaded. */
7160 else if (rld[r].out_reg == 0
7161 && rld[r].in != 0
7162 && ((GET_CODE (rld[r].in) == REG
7163 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7164 && ! reg_has_output_reload[REGNO (rld[r].in)])
7165 || (GET_CODE (rld[r].in_reg) == REG
7166 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7167 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7169 int nregno;
7170 int nnr;
7172 if (GET_CODE (rld[r].in) == REG
7173 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7174 nregno = REGNO (rld[r].in);
7175 else if (GET_CODE (rld[r].in_reg) == REG)
7176 nregno = REGNO (rld[r].in_reg);
7177 else
7178 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7180 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7181 : HARD_REGNO_NREGS (nregno,
7182 GET_MODE (rld[r].reg_rtx)));
7184 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7186 if (nregno < FIRST_PSEUDO_REGISTER)
7187 for (k = 1; k < nnr; k++)
7188 reg_last_reload_reg[nregno + k]
7189 = (nr == nnr
7190 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7191 REGNO (rld[r].reg_rtx) + k)
7192 : 0);
7194 /* Unless we inherited this reload, show we haven't
7195 recently done a store.
7196 Previous stores of inherited auto_inc expressions
7197 also have to be discarded. */
7198 if (! reload_inherited[r]
7199 || (rld[r].out && ! rld[r].out_reg))
7200 spill_reg_store[i] = 0;
7202 for (k = 0; k < nr; k++)
7204 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7205 reg_reloaded_contents[i + k]
7206 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7207 ? nregno
7208 : nregno + k);
7209 reg_reloaded_insn[i + k] = insn;
7210 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7215 /* However, if part of the reload reaches the end, then we must
7216 invalidate the old info for the part that survives to the end. */
7217 else if (part_reaches_end)
7219 for (k = 0; k < nr; k++)
7220 if (reload_reg_reaches_end_p (i + k,
7221 rld[r].opnum,
7222 rld[r].when_needed))
7223 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7227 /* The following if-statement was #if 0'd in 1.34 (or before...).
7228 It's reenabled in 1.35 because supposedly nothing else
7229 deals with this problem. */
7231 /* If a register gets output-reloaded from a non-spill register,
7232 that invalidates any previous reloaded copy of it.
7233 But forget_old_reloads_1 won't get to see it, because
7234 it thinks only about the original insn. So invalidate it here. */
7235 if (i < 0 && rld[r].out != 0
7236 && (GET_CODE (rld[r].out) == REG
7237 || (GET_CODE (rld[r].out) == MEM
7238 && GET_CODE (rld[r].out_reg) == REG)))
7240 rtx out = (GET_CODE (rld[r].out) == REG
7241 ? rld[r].out : rld[r].out_reg);
7242 int nregno = REGNO (out);
7243 if (nregno >= FIRST_PSEUDO_REGISTER)
7245 rtx src_reg, store_insn = NULL_RTX;
7247 reg_last_reload_reg[nregno] = 0;
7249 /* If we can find a hard register that is stored, record
7250 the storing insn so that we may delete this insn with
7251 delete_output_reload. */
7252 src_reg = rld[r].reg_rtx;
7254 /* If this is an optional reload, try to find the source reg
7255 from an input reload. */
7256 if (! src_reg)
7258 rtx set = single_set (insn);
7259 if (set && SET_DEST (set) == rld[r].out)
7261 int k;
7263 src_reg = SET_SRC (set);
7264 store_insn = insn;
7265 for (k = 0; k < n_reloads; k++)
7267 if (rld[k].in == src_reg)
7269 src_reg = rld[k].reg_rtx;
7270 break;
7275 else
7276 store_insn = new_spill_reg_store[REGNO (src_reg)];
7277 if (src_reg && GET_CODE (src_reg) == REG
7278 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7280 int src_regno = REGNO (src_reg);
7281 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7282 /* The place where to find a death note varies with
7283 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7284 necessarily checked exactly in the code that moves
7285 notes, so just check both locations. */
7286 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7287 if (! note && store_insn)
7288 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7289 while (nr-- > 0)
7291 spill_reg_store[src_regno + nr] = store_insn;
7292 spill_reg_stored_to[src_regno + nr] = out;
7293 reg_reloaded_contents[src_regno + nr] = nregno;
7294 reg_reloaded_insn[src_regno + nr] = store_insn;
7295 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7296 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7297 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7298 if (note)
7299 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7300 else
7301 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7303 reg_last_reload_reg[nregno] = src_reg;
7306 else
7308 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7310 while (num_regs-- > 0)
7311 reg_last_reload_reg[nregno + num_regs] = 0;
7315 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7318 /* Emit code to perform a reload from IN (which may be a reload register) to
7319 OUT (which may also be a reload register). IN or OUT is from operand
7320 OPNUM with reload type TYPE.
7322 Returns first insn emitted. */
7325 gen_reload (out, in, opnum, type)
7326 rtx out;
7327 rtx in;
7328 int opnum;
7329 enum reload_type type;
7331 rtx last = get_last_insn ();
7332 rtx tem;
7334 /* If IN is a paradoxical SUBREG, remove it and try to put the
7335 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7336 if (GET_CODE (in) == SUBREG
7337 && (GET_MODE_SIZE (GET_MODE (in))
7338 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7339 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7340 in = SUBREG_REG (in), out = tem;
7341 else if (GET_CODE (out) == SUBREG
7342 && (GET_MODE_SIZE (GET_MODE (out))
7343 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7344 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7345 out = SUBREG_REG (out), in = tem;
7347 /* How to do this reload can get quite tricky. Normally, we are being
7348 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7349 register that didn't get a hard register. In that case we can just
7350 call emit_move_insn.
7352 We can also be asked to reload a PLUS that adds a register or a MEM to
7353 another register, constant or MEM. This can occur during frame pointer
7354 elimination and while reloading addresses. This case is handled by
7355 trying to emit a single insn to perform the add. If it is not valid,
7356 we use a two insn sequence.
7358 Finally, we could be called to handle an 'o' constraint by putting
7359 an address into a register. In that case, we first try to do this
7360 with a named pattern of "reload_load_address". If no such pattern
7361 exists, we just emit a SET insn and hope for the best (it will normally
7362 be valid on machines that use 'o').
7364 This entire process is made complex because reload will never
7365 process the insns we generate here and so we must ensure that
7366 they will fit their constraints and also by the fact that parts of
7367 IN might be being reloaded separately and replaced with spill registers.
7368 Because of this, we are, in some sense, just guessing the right approach
7369 here. The one listed above seems to work.
7371 ??? At some point, this whole thing needs to be rethought. */
7373 if (GET_CODE (in) == PLUS
7374 && (GET_CODE (XEXP (in, 0)) == REG
7375 || GET_CODE (XEXP (in, 0)) == SUBREG
7376 || GET_CODE (XEXP (in, 0)) == MEM)
7377 && (GET_CODE (XEXP (in, 1)) == REG
7378 || GET_CODE (XEXP (in, 1)) == SUBREG
7379 || CONSTANT_P (XEXP (in, 1))
7380 || GET_CODE (XEXP (in, 1)) == MEM))
7382 /* We need to compute the sum of a register or a MEM and another
7383 register, constant, or MEM, and put it into the reload
7384 register. The best possible way of doing this is if the machine
7385 has a three-operand ADD insn that accepts the required operands.
7387 The simplest approach is to try to generate such an insn and see if it
7388 is recognized and matches its constraints. If so, it can be used.
7390 It might be better not to actually emit the insn unless it is valid,
7391 but we need to pass the insn as an operand to `recog' and
7392 `extract_insn' and it is simpler to emit and then delete the insn if
7393 not valid than to dummy things up. */
7395 rtx op0, op1, tem, insn;
7396 int code;
7398 op0 = find_replacement (&XEXP (in, 0));
7399 op1 = find_replacement (&XEXP (in, 1));
7401 /* Since constraint checking is strict, commutativity won't be
7402 checked, so we need to do that here to avoid spurious failure
7403 if the add instruction is two-address and the second operand
7404 of the add is the same as the reload reg, which is frequently
7405 the case. If the insn would be A = B + A, rearrange it so
7406 it will be A = A + B as constrain_operands expects. */
7408 if (GET_CODE (XEXP (in, 1)) == REG
7409 && REGNO (out) == REGNO (XEXP (in, 1)))
7410 tem = op0, op0 = op1, op1 = tem;
7412 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7413 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7415 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7416 code = recog_memoized (insn);
7418 if (code >= 0)
7420 extract_insn (insn);
7421 /* We want constrain operands to treat this insn strictly in
7422 its validity determination, i.e., the way it would after reload
7423 has completed. */
7424 if (constrain_operands (1))
7425 return insn;
7428 delete_insns_since (last);
7430 /* If that failed, we must use a conservative two-insn sequence.
7432 Use a move to copy one operand into the reload register. Prefer
7433 to reload a constant, MEM or pseudo since the move patterns can
7434 handle an arbitrary operand. If OP1 is not a constant, MEM or
7435 pseudo and OP1 is not a valid operand for an add instruction, then
7436 reload OP1.
7438 After reloading one of the operands into the reload register, add
7439 the reload register to the output register.
7441 If there is another way to do this for a specific machine, a
7442 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7443 we emit below. */
7445 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7447 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7448 || (GET_CODE (op1) == REG
7449 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7450 || (code != CODE_FOR_nothing
7451 && ! ((*insn_data[code].operand[2].predicate)
7452 (op1, insn_data[code].operand[2].mode))))
7453 tem = op0, op0 = op1, op1 = tem;
7455 gen_reload (out, op0, opnum, type);
7457 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7458 This fixes a problem on the 32K where the stack pointer cannot
7459 be used as an operand of an add insn. */
7461 if (rtx_equal_p (op0, op1))
7462 op1 = out;
7464 insn = emit_insn (gen_add2_insn (out, op1));
7466 /* If that failed, copy the address register to the reload register.
7467 Then add the constant to the reload register. */
7469 code = recog_memoized (insn);
7471 if (code >= 0)
7473 extract_insn (insn);
7474 /* We want constrain operands to treat this insn strictly in
7475 its validity determination, i.e., the way it would after reload
7476 has completed. */
7477 if (constrain_operands (1))
7479 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7480 REG_NOTES (insn)
7481 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7482 return insn;
7486 delete_insns_since (last);
7488 gen_reload (out, op1, opnum, type);
7489 insn = emit_insn (gen_add2_insn (out, op0));
7490 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7493 #ifdef SECONDARY_MEMORY_NEEDED
7494 /* If we need a memory location to do the move, do it that way. */
7495 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7496 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7497 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7498 REGNO_REG_CLASS (REGNO (out)),
7499 GET_MODE (out)))
7501 /* Get the memory to use and rewrite both registers to its mode. */
7502 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7504 if (GET_MODE (loc) != GET_MODE (out))
7505 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7507 if (GET_MODE (loc) != GET_MODE (in))
7508 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7510 gen_reload (loc, in, opnum, type);
7511 gen_reload (out, loc, opnum, type);
7513 #endif
7515 /* If IN is a simple operand, use gen_move_insn. */
7516 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7517 emit_insn (gen_move_insn (out, in));
7519 #ifdef HAVE_reload_load_address
7520 else if (HAVE_reload_load_address)
7521 emit_insn (gen_reload_load_address (out, in));
7522 #endif
7524 /* Otherwise, just write (set OUT IN) and hope for the best. */
7525 else
7526 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7528 /* Return the first insn emitted.
7529 We can not just return get_last_insn, because there may have
7530 been multiple instructions emitted. Also note that gen_move_insn may
7531 emit more than one insn itself, so we can not assume that there is one
7532 insn emitted per emit_insn_before call. */
7534 return last ? NEXT_INSN (last) : get_insns ();
7537 /* Delete a previously made output-reload whose result we now believe
7538 is not needed. First we double-check.
7540 INSN is the insn now being processed.
7541 LAST_RELOAD_REG is the hard register number for which we want to delete
7542 the last output reload.
7543 J is the reload-number that originally used REG. The caller has made
7544 certain that reload J doesn't use REG any longer for input. */
7546 static void
7547 delete_output_reload (insn, j, last_reload_reg)
7548 rtx insn;
7549 int j;
7550 int last_reload_reg;
7552 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7553 rtx reg = spill_reg_stored_to[last_reload_reg];
7554 int k;
7555 int n_occurrences;
7556 int n_inherited = 0;
7557 rtx i1;
7558 rtx substed;
7560 /* Get the raw pseudo-register referred to. */
7562 while (GET_CODE (reg) == SUBREG)
7563 reg = SUBREG_REG (reg);
7564 substed = reg_equiv_memory_loc[REGNO (reg)];
7566 /* This is unsafe if the operand occurs more often in the current
7567 insn than it is inherited. */
7568 for (k = n_reloads - 1; k >= 0; k--)
7570 rtx reg2 = rld[k].in;
7571 if (! reg2)
7572 continue;
7573 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7574 reg2 = rld[k].in_reg;
7575 #ifdef AUTO_INC_DEC
7576 if (rld[k].out && ! rld[k].out_reg)
7577 reg2 = XEXP (rld[k].in_reg, 0);
7578 #endif
7579 while (GET_CODE (reg2) == SUBREG)
7580 reg2 = SUBREG_REG (reg2);
7581 if (rtx_equal_p (reg2, reg))
7583 if (reload_inherited[k] || reload_override_in[k] || k == j)
7585 n_inherited++;
7586 reg2 = rld[k].out_reg;
7587 if (! reg2)
7588 continue;
7589 while (GET_CODE (reg2) == SUBREG)
7590 reg2 = XEXP (reg2, 0);
7591 if (rtx_equal_p (reg2, reg))
7592 n_inherited++;
7594 else
7595 return;
7598 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7599 if (substed)
7600 n_occurrences += count_occurrences (PATTERN (insn),
7601 eliminate_regs (substed, 0,
7602 NULL_RTX), 0);
7603 if (n_occurrences > n_inherited)
7604 return;
7606 /* If the pseudo-reg we are reloading is no longer referenced
7607 anywhere between the store into it and here,
7608 and no jumps or labels intervene, then the value can get
7609 here through the reload reg alone.
7610 Otherwise, give up--return. */
7611 for (i1 = NEXT_INSN (output_reload_insn);
7612 i1 != insn; i1 = NEXT_INSN (i1))
7614 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7615 return;
7616 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7617 && reg_mentioned_p (reg, PATTERN (i1)))
7619 /* If this is USE in front of INSN, we only have to check that
7620 there are no more references than accounted for by inheritance. */
7621 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7623 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7624 i1 = NEXT_INSN (i1);
7626 if (n_occurrences <= n_inherited && i1 == insn)
7627 break;
7628 return;
7632 /* We will be deleting the insn. Remove the spill reg information. */
7633 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7635 spill_reg_store[last_reload_reg + k] = 0;
7636 spill_reg_stored_to[last_reload_reg + k] = 0;
7639 /* The caller has already checked that REG dies or is set in INSN.
7640 It has also checked that we are optimizing, and thus some
7641 inaccurancies in the debugging information are acceptable.
7642 So we could just delete output_reload_insn. But in some cases
7643 we can improve the debugging information without sacrificing
7644 optimization - maybe even improving the code: See if the pseudo
7645 reg has been completely replaced with reload regs. If so, delete
7646 the store insn and forget we had a stack slot for the pseudo. */
7647 if (rld[j].out != rld[j].in
7648 && REG_N_DEATHS (REGNO (reg)) == 1
7649 && REG_N_SETS (REGNO (reg)) == 1
7650 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7651 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7653 rtx i2;
7655 /* We know that it was used only between here and the beginning of
7656 the current basic block. (We also know that the last use before
7657 INSN was the output reload we are thinking of deleting, but never
7658 mind that.) Search that range; see if any ref remains. */
7659 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7661 rtx set = single_set (i2);
7663 /* Uses which just store in the pseudo don't count,
7664 since if they are the only uses, they are dead. */
7665 if (set != 0 && SET_DEST (set) == reg)
7666 continue;
7667 if (GET_CODE (i2) == CODE_LABEL
7668 || GET_CODE (i2) == JUMP_INSN)
7669 break;
7670 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7671 && reg_mentioned_p (reg, PATTERN (i2)))
7673 /* Some other ref remains; just delete the output reload we
7674 know to be dead. */
7675 delete_address_reloads (output_reload_insn, insn);
7676 delete_insn (output_reload_insn);
7677 return;
7681 /* Delete the now-dead stores into this pseudo. Note that this
7682 loop also takes care of deleting output_reload_insn. */
7683 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7685 rtx set = single_set (i2);
7687 if (set != 0 && SET_DEST (set) == reg)
7689 delete_address_reloads (i2, insn);
7690 delete_insn (i2);
7692 if (GET_CODE (i2) == CODE_LABEL
7693 || GET_CODE (i2) == JUMP_INSN)
7694 break;
7697 /* For the debugging info, say the pseudo lives in this reload reg. */
7698 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7699 alter_reg (REGNO (reg), -1);
7701 else
7703 delete_address_reloads (output_reload_insn, insn);
7704 delete_insn (output_reload_insn);
7708 /* We are going to delete DEAD_INSN. Recursively delete loads of
7709 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7710 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7711 static void
7712 delete_address_reloads (dead_insn, current_insn)
7713 rtx dead_insn, current_insn;
7715 rtx set = single_set (dead_insn);
7716 rtx set2, dst, prev, next;
7717 if (set)
7719 rtx dst = SET_DEST (set);
7720 if (GET_CODE (dst) == MEM)
7721 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7723 /* If we deleted the store from a reloaded post_{in,de}c expression,
7724 we can delete the matching adds. */
7725 prev = PREV_INSN (dead_insn);
7726 next = NEXT_INSN (dead_insn);
7727 if (! prev || ! next)
7728 return;
7729 set = single_set (next);
7730 set2 = single_set (prev);
7731 if (! set || ! set2
7732 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7733 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7734 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7735 return;
7736 dst = SET_DEST (set);
7737 if (! rtx_equal_p (dst, SET_DEST (set2))
7738 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7739 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7740 || (INTVAL (XEXP (SET_SRC (set), 1))
7741 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7742 return;
7743 delete_related_insns (prev);
7744 delete_related_insns (next);
7747 /* Subfunction of delete_address_reloads: process registers found in X. */
7748 static void
7749 delete_address_reloads_1 (dead_insn, x, current_insn)
7750 rtx dead_insn, x, current_insn;
7752 rtx prev, set, dst, i2;
7753 int i, j;
7754 enum rtx_code code = GET_CODE (x);
7756 if (code != REG)
7758 const char *fmt = GET_RTX_FORMAT (code);
7759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7761 if (fmt[i] == 'e')
7762 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7763 else if (fmt[i] == 'E')
7765 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7766 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7767 current_insn);
7770 return;
7773 if (spill_reg_order[REGNO (x)] < 0)
7774 return;
7776 /* Scan backwards for the insn that sets x. This might be a way back due
7777 to inheritance. */
7778 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7780 code = GET_CODE (prev);
7781 if (code == CODE_LABEL || code == JUMP_INSN)
7782 return;
7783 if (GET_RTX_CLASS (code) != 'i')
7784 continue;
7785 if (reg_set_p (x, PATTERN (prev)))
7786 break;
7787 if (reg_referenced_p (x, PATTERN (prev)))
7788 return;
7790 if (! prev || INSN_UID (prev) < reload_first_uid)
7791 return;
7792 /* Check that PREV only sets the reload register. */
7793 set = single_set (prev);
7794 if (! set)
7795 return;
7796 dst = SET_DEST (set);
7797 if (GET_CODE (dst) != REG
7798 || ! rtx_equal_p (dst, x))
7799 return;
7800 if (! reg_set_p (dst, PATTERN (dead_insn)))
7802 /* Check if DST was used in a later insn -
7803 it might have been inherited. */
7804 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7806 if (GET_CODE (i2) == CODE_LABEL)
7807 break;
7808 if (! INSN_P (i2))
7809 continue;
7810 if (reg_referenced_p (dst, PATTERN (i2)))
7812 /* If there is a reference to the register in the current insn,
7813 it might be loaded in a non-inherited reload. If no other
7814 reload uses it, that means the register is set before
7815 referenced. */
7816 if (i2 == current_insn)
7818 for (j = n_reloads - 1; j >= 0; j--)
7819 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7820 || reload_override_in[j] == dst)
7821 return;
7822 for (j = n_reloads - 1; j >= 0; j--)
7823 if (rld[j].in && rld[j].reg_rtx == dst)
7824 break;
7825 if (j >= 0)
7826 break;
7828 return;
7830 if (GET_CODE (i2) == JUMP_INSN)
7831 break;
7832 /* If DST is still live at CURRENT_INSN, check if it is used for
7833 any reload. Note that even if CURRENT_INSN sets DST, we still
7834 have to check the reloads. */
7835 if (i2 == current_insn)
7837 for (j = n_reloads - 1; j >= 0; j--)
7838 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7839 || reload_override_in[j] == dst)
7840 return;
7841 /* ??? We can't finish the loop here, because dst might be
7842 allocated to a pseudo in this block if no reload in this
7843 block needs any of the clsses containing DST - see
7844 spill_hard_reg. There is no easy way to tell this, so we
7845 have to scan till the end of the basic block. */
7847 if (reg_set_p (dst, PATTERN (i2)))
7848 break;
7851 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7852 reg_reloaded_contents[REGNO (dst)] = -1;
7853 delete_insn (prev);
7856 /* Output reload-insns to reload VALUE into RELOADREG.
7857 VALUE is an autoincrement or autodecrement RTX whose operand
7858 is a register or memory location;
7859 so reloading involves incrementing that location.
7860 IN is either identical to VALUE, or some cheaper place to reload from.
7862 INC_AMOUNT is the number to increment or decrement by (always positive).
7863 This cannot be deduced from VALUE.
7865 Return the instruction that stores into RELOADREG. */
7867 static rtx
7868 inc_for_reload (reloadreg, in, value, inc_amount)
7869 rtx reloadreg;
7870 rtx in, value;
7871 int inc_amount;
7873 /* REG or MEM to be copied and incremented. */
7874 rtx incloc = XEXP (value, 0);
7875 /* Nonzero if increment after copying. */
7876 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7877 rtx last;
7878 rtx inc;
7879 rtx add_insn;
7880 int code;
7881 rtx store;
7882 rtx real_in = in == value ? XEXP (in, 0) : in;
7884 /* No hard register is equivalent to this register after
7885 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7886 we could inc/dec that register as well (maybe even using it for
7887 the source), but I'm not sure it's worth worrying about. */
7888 if (GET_CODE (incloc) == REG)
7889 reg_last_reload_reg[REGNO (incloc)] = 0;
7891 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7892 inc_amount = -inc_amount;
7894 inc = GEN_INT (inc_amount);
7896 /* If this is post-increment, first copy the location to the reload reg. */
7897 if (post && real_in != reloadreg)
7898 emit_insn (gen_move_insn (reloadreg, real_in));
7900 if (in == value)
7902 /* See if we can directly increment INCLOC. Use a method similar to
7903 that in gen_reload. */
7905 last = get_last_insn ();
7906 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7907 gen_rtx_PLUS (GET_MODE (incloc),
7908 incloc, inc)));
7910 code = recog_memoized (add_insn);
7911 if (code >= 0)
7913 extract_insn (add_insn);
7914 if (constrain_operands (1))
7916 /* If this is a pre-increment and we have incremented the value
7917 where it lives, copy the incremented value to RELOADREG to
7918 be used as an address. */
7920 if (! post)
7921 emit_insn (gen_move_insn (reloadreg, incloc));
7923 return add_insn;
7926 delete_insns_since (last);
7929 /* If couldn't do the increment directly, must increment in RELOADREG.
7930 The way we do this depends on whether this is pre- or post-increment.
7931 For pre-increment, copy INCLOC to the reload register, increment it
7932 there, then save back. */
7934 if (! post)
7936 if (in != reloadreg)
7937 emit_insn (gen_move_insn (reloadreg, real_in));
7938 emit_insn (gen_add2_insn (reloadreg, inc));
7939 store = emit_insn (gen_move_insn (incloc, reloadreg));
7941 else
7943 /* Postincrement.
7944 Because this might be a jump insn or a compare, and because RELOADREG
7945 may not be available after the insn in an input reload, we must do
7946 the incrementation before the insn being reloaded for.
7948 We have already copied IN to RELOADREG. Increment the copy in
7949 RELOADREG, save that back, then decrement RELOADREG so it has
7950 the original value. */
7952 emit_insn (gen_add2_insn (reloadreg, inc));
7953 store = emit_insn (gen_move_insn (incloc, reloadreg));
7954 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7957 return store;
7960 /* Return 1 if we are certain that the constraint-string STRING allows
7961 the hard register REG. Return 0 if we can't be sure of this. */
7963 static int
7964 constraint_accepts_reg_p (string, reg)
7965 const char *string;
7966 rtx reg;
7968 int value = 0;
7969 int regno = true_regnum (reg);
7970 int c;
7972 /* Initialize for first alternative. */
7973 value = 0;
7974 /* Check that each alternative contains `g' or `r'. */
7975 while (1)
7976 switch (c = *string++)
7978 case 0:
7979 /* If an alternative lacks `g' or `r', we lose. */
7980 return value;
7981 case ',':
7982 /* If an alternative lacks `g' or `r', we lose. */
7983 if (value == 0)
7984 return 0;
7985 /* Initialize for next alternative. */
7986 value = 0;
7987 break;
7988 case 'g':
7989 case 'r':
7990 /* Any general reg wins for this alternative. */
7991 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7992 value = 1;
7993 break;
7994 default:
7995 /* Any reg in specified class wins for this alternative. */
7997 enum reg_class class = REG_CLASS_FROM_LETTER (c);
7999 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
8000 value = 1;
8005 /* INSN is a no-op; delete it.
8006 If this sets the return value of the function, we must keep a USE around,
8007 in case this is in a different basic block than the final USE. Otherwise,
8008 we could loose important register lifeness information on
8009 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8010 spills: subsequent passes assume that spill registers are dead at the end
8011 of a basic block.
8012 VALUE must be the return value in such a case, NULL otherwise. */
8013 static void
8014 reload_cse_delete_noop_set (insn, value)
8015 rtx insn, value;
8017 if (value)
8019 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8020 INSN_CODE (insn) = -1;
8021 REG_NOTES (insn) = NULL_RTX;
8023 else
8024 delete_insn (insn);
8027 /* See whether a single set SET is a noop. */
8028 static int
8029 reload_cse_noop_set_p (set)
8030 rtx set;
8032 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8035 /* Try to simplify INSN. */
8036 static void
8037 reload_cse_simplify (insn)
8038 rtx insn;
8040 rtx body = PATTERN (insn);
8042 if (GET_CODE (body) == SET)
8044 int count = 0;
8046 /* Simplify even if we may think it is a no-op.
8047 We may think a memory load of a value smaller than WORD_SIZE
8048 is redundant because we haven't taken into account possible
8049 implicit extension. reload_cse_simplify_set() will bring
8050 this out, so it's safer to simplify before we delete. */
8051 count += reload_cse_simplify_set (body, insn);
8053 if (!count && reload_cse_noop_set_p (body))
8055 rtx value = SET_DEST (body);
8056 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8057 value = 0;
8058 reload_cse_delete_noop_set (insn, value);
8059 return;
8062 if (count > 0)
8063 apply_change_group ();
8064 else
8065 reload_cse_simplify_operands (insn);
8067 else if (GET_CODE (body) == PARALLEL)
8069 int i;
8070 int count = 0;
8071 rtx value = NULL_RTX;
8073 /* If every action in a PARALLEL is a noop, we can delete
8074 the entire PARALLEL. */
8075 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8077 rtx part = XVECEXP (body, 0, i);
8078 if (GET_CODE (part) == SET)
8080 if (! reload_cse_noop_set_p (part))
8081 break;
8082 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8084 if (value)
8085 break;
8086 value = SET_DEST (part);
8089 else if (GET_CODE (part) != CLOBBER)
8090 break;
8093 if (i < 0)
8095 reload_cse_delete_noop_set (insn, value);
8096 /* We're done with this insn. */
8097 return;
8100 /* It's not a no-op, but we can try to simplify it. */
8101 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8102 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8103 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8105 if (count > 0)
8106 apply_change_group ();
8107 else
8108 reload_cse_simplify_operands (insn);
8112 /* Do a very simple CSE pass over the hard registers.
8114 This function detects no-op moves where we happened to assign two
8115 different pseudo-registers to the same hard register, and then
8116 copied one to the other. Reload will generate a useless
8117 instruction copying a register to itself.
8119 This function also detects cases where we load a value from memory
8120 into two different registers, and (if memory is more expensive than
8121 registers) changes it to simply copy the first register into the
8122 second register.
8124 Another optimization is performed that scans the operands of each
8125 instruction to see whether the value is already available in a
8126 hard register. It then replaces the operand with the hard register
8127 if possible, much like an optional reload would. */
8129 static void
8130 reload_cse_regs_1 (first)
8131 rtx first;
8133 rtx insn;
8135 cselib_init ();
8136 init_alias_analysis ();
8138 for (insn = first; insn; insn = NEXT_INSN (insn))
8140 if (INSN_P (insn))
8141 reload_cse_simplify (insn);
8143 cselib_process_insn (insn);
8146 /* Clean up. */
8147 end_alias_analysis ();
8148 cselib_finish ();
8151 /* Call cse / combine like post-reload optimization phases.
8152 FIRST is the first instruction. */
8153 void
8154 reload_cse_regs (first)
8155 rtx first;
8157 reload_cse_regs_1 (first);
8158 reload_combine ();
8159 reload_cse_move2add (first);
8160 if (flag_expensive_optimizations)
8161 reload_cse_regs_1 (first);
8164 /* Try to simplify a single SET instruction. SET is the set pattern.
8165 INSN is the instruction it came from.
8166 This function only handles one case: if we set a register to a value
8167 which is not a register, we try to find that value in some other register
8168 and change the set into a register copy. */
8170 static int
8171 reload_cse_simplify_set (set, insn)
8172 rtx set;
8173 rtx insn;
8175 int did_change = 0;
8176 int dreg;
8177 rtx src;
8178 enum reg_class dclass;
8179 int old_cost;
8180 cselib_val *val;
8181 struct elt_loc_list *l;
8182 #ifdef LOAD_EXTEND_OP
8183 enum rtx_code extend_op = NIL;
8184 #endif
8186 dreg = true_regnum (SET_DEST (set));
8187 if (dreg < 0)
8188 return 0;
8190 src = SET_SRC (set);
8191 if (side_effects_p (src) || true_regnum (src) >= 0)
8192 return 0;
8194 dclass = REGNO_REG_CLASS (dreg);
8196 #ifdef LOAD_EXTEND_OP
8197 /* When replacing a memory with a register, we need to honor assumptions
8198 that combine made wrt the contents of sign bits. We'll do this by
8199 generating an extend instruction instead of a reg->reg copy. Thus
8200 the destination must be a register that we can widen. */
8201 if (GET_CODE (src) == MEM
8202 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8203 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8204 && GET_CODE (SET_DEST (set)) != REG)
8205 return 0;
8206 #endif
8208 /* If memory loads are cheaper than register copies, don't change them. */
8209 if (GET_CODE (src) == MEM)
8210 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8211 else if (CONSTANT_P (src))
8212 old_cost = rtx_cost (src, SET);
8213 else if (GET_CODE (src) == REG)
8214 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8215 REGNO_REG_CLASS (REGNO (src)), dclass);
8216 else
8217 /* ??? */
8218 old_cost = rtx_cost (src, SET);
8220 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8221 if (! val)
8222 return 0;
8223 for (l = val->locs; l; l = l->next)
8225 rtx this_rtx = l->loc;
8226 int this_cost;
8228 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8230 #ifdef LOAD_EXTEND_OP
8231 if (extend_op != NIL)
8233 HOST_WIDE_INT this_val;
8235 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8236 constants, such as SYMBOL_REF, cannot be extended. */
8237 if (GET_CODE (this_rtx) != CONST_INT)
8238 continue;
8240 this_val = INTVAL (this_rtx);
8241 switch (extend_op)
8243 case ZERO_EXTEND:
8244 this_val &= GET_MODE_MASK (GET_MODE (src));
8245 break;
8246 case SIGN_EXTEND:
8247 /* ??? In theory we're already extended. */
8248 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8249 break;
8250 default:
8251 abort ();
8253 this_rtx = GEN_INT (this_val);
8255 #endif
8256 this_cost = rtx_cost (this_rtx, SET);
8258 else if (GET_CODE (this_rtx) == REG)
8260 #ifdef LOAD_EXTEND_OP
8261 if (extend_op != NIL)
8263 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8264 this_cost = rtx_cost (this_rtx, SET);
8266 else
8267 #endif
8268 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8269 REGNO_REG_CLASS (REGNO (this_rtx)),
8270 dclass);
8272 else
8273 continue;
8275 /* If equal costs, prefer registers over anything else. That
8276 tends to lead to smaller instructions on some machines. */
8277 if (this_cost < old_cost
8278 || (this_cost == old_cost
8279 && GET_CODE (this_rtx) == REG
8280 && GET_CODE (SET_SRC (set)) != REG))
8282 #ifdef LOAD_EXTEND_OP
8283 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8284 && extend_op != NIL)
8286 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8287 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8288 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8290 #endif
8292 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8293 old_cost = this_cost, did_change = 1;
8297 return did_change;
8300 /* Try to replace operands in INSN with equivalent values that are already
8301 in registers. This can be viewed as optional reloading.
8303 For each non-register operand in the insn, see if any hard regs are
8304 known to be equivalent to that operand. Record the alternatives which
8305 can accept these hard registers. Among all alternatives, select the
8306 ones which are better or equal to the one currently matching, where
8307 "better" is in terms of '?' and '!' constraints. Among the remaining
8308 alternatives, select the one which replaces most operands with
8309 hard registers. */
8311 static int
8312 reload_cse_simplify_operands (insn)
8313 rtx insn;
8315 int i, j;
8317 /* For each operand, all registers that are equivalent to it. */
8318 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8320 const char *constraints[MAX_RECOG_OPERANDS];
8322 /* Vector recording how bad an alternative is. */
8323 int *alternative_reject;
8324 /* Vector recording how many registers can be introduced by choosing
8325 this alternative. */
8326 int *alternative_nregs;
8327 /* Array of vectors recording, for each operand and each alternative,
8328 which hard register to substitute, or -1 if the operand should be
8329 left as it is. */
8330 int *op_alt_regno[MAX_RECOG_OPERANDS];
8331 /* Array of alternatives, sorted in order of decreasing desirability. */
8332 int *alternative_order;
8333 rtx reg = gen_rtx_REG (VOIDmode, -1);
8335 extract_insn (insn);
8337 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8338 return 0;
8340 /* Figure out which alternative currently matches. */
8341 if (! constrain_operands (1))
8342 fatal_insn_not_found (insn);
8344 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8345 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8346 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8347 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8348 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8350 /* For each operand, find out which regs are equivalent. */
8351 for (i = 0; i < recog_data.n_operands; i++)
8353 cselib_val *v;
8354 struct elt_loc_list *l;
8356 CLEAR_HARD_REG_SET (equiv_regs[i]);
8358 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8359 right, so avoid the problem here. Likewise if we have a constant
8360 and the insn pattern doesn't tell us the mode we need. */
8361 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8362 || (CONSTANT_P (recog_data.operand[i])
8363 && recog_data.operand_mode[i] == VOIDmode))
8364 continue;
8366 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8367 if (! v)
8368 continue;
8370 for (l = v->locs; l; l = l->next)
8371 if (GET_CODE (l->loc) == REG)
8372 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8375 for (i = 0; i < recog_data.n_operands; i++)
8377 enum machine_mode mode;
8378 int regno;
8379 const char *p;
8381 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8382 for (j = 0; j < recog_data.n_alternatives; j++)
8383 op_alt_regno[i][j] = -1;
8385 p = constraints[i] = recog_data.constraints[i];
8386 mode = recog_data.operand_mode[i];
8388 /* Add the reject values for each alternative given by the constraints
8389 for this operand. */
8390 j = 0;
8391 while (*p != '\0')
8393 char c = *p++;
8394 if (c == ',')
8395 j++;
8396 else if (c == '?')
8397 alternative_reject[j] += 3;
8398 else if (c == '!')
8399 alternative_reject[j] += 300;
8402 /* We won't change operands which are already registers. We
8403 also don't want to modify output operands. */
8404 regno = true_regnum (recog_data.operand[i]);
8405 if (regno >= 0
8406 || constraints[i][0] == '='
8407 || constraints[i][0] == '+')
8408 continue;
8410 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8412 int class = (int) NO_REGS;
8414 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8415 continue;
8417 REGNO (reg) = regno;
8418 PUT_MODE (reg, mode);
8420 /* We found a register equal to this operand. Now look for all
8421 alternatives that can accept this register and have not been
8422 assigned a register they can use yet. */
8423 j = 0;
8424 p = constraints[i];
8425 for (;;)
8427 char c = *p++;
8429 switch (c)
8431 case '=': case '+': case '?':
8432 case '#': case '&': case '!':
8433 case '*': case '%':
8434 case '0': case '1': case '2': case '3': case '4':
8435 case '5': case '6': case '7': case '8': case '9':
8436 case 'm': case '<': case '>': case 'V': case 'o':
8437 case 'E': case 'F': case 'G': case 'H':
8438 case 's': case 'i': case 'n':
8439 case 'I': case 'J': case 'K': case 'L':
8440 case 'M': case 'N': case 'O': case 'P':
8441 case 'p': case 'X':
8442 /* These don't say anything we care about. */
8443 break;
8445 case 'g': case 'r':
8446 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8447 break;
8449 default:
8450 class
8451 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
8452 break;
8454 case ',': case '\0':
8455 /* See if REGNO fits this alternative, and set it up as the
8456 replacement register if we don't have one for this
8457 alternative yet and the operand being replaced is not
8458 a cheap CONST_INT. */
8459 if (op_alt_regno[i][j] == -1
8460 && reg_fits_class_p (reg, class, 0, mode)
8461 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8462 || (rtx_cost (recog_data.operand[i], SET)
8463 > rtx_cost (reg, SET))))
8465 alternative_nregs[j]++;
8466 op_alt_regno[i][j] = regno;
8468 j++;
8469 break;
8472 if (c == '\0')
8473 break;
8478 /* Record all alternatives which are better or equal to the currently
8479 matching one in the alternative_order array. */
8480 for (i = j = 0; i < recog_data.n_alternatives; i++)
8481 if (alternative_reject[i] <= alternative_reject[which_alternative])
8482 alternative_order[j++] = i;
8483 recog_data.n_alternatives = j;
8485 /* Sort it. Given a small number of alternatives, a dumb algorithm
8486 won't hurt too much. */
8487 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8489 int best = i;
8490 int best_reject = alternative_reject[alternative_order[i]];
8491 int best_nregs = alternative_nregs[alternative_order[i]];
8492 int tmp;
8494 for (j = i + 1; j < recog_data.n_alternatives; j++)
8496 int this_reject = alternative_reject[alternative_order[j]];
8497 int this_nregs = alternative_nregs[alternative_order[j]];
8499 if (this_reject < best_reject
8500 || (this_reject == best_reject && this_nregs < best_nregs))
8502 best = j;
8503 best_reject = this_reject;
8504 best_nregs = this_nregs;
8508 tmp = alternative_order[best];
8509 alternative_order[best] = alternative_order[i];
8510 alternative_order[i] = tmp;
8513 /* Substitute the operands as determined by op_alt_regno for the best
8514 alternative. */
8515 j = alternative_order[0];
8517 for (i = 0; i < recog_data.n_operands; i++)
8519 enum machine_mode mode = recog_data.operand_mode[i];
8520 if (op_alt_regno[i][j] == -1)
8521 continue;
8523 validate_change (insn, recog_data.operand_loc[i],
8524 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8527 for (i = recog_data.n_dups - 1; i >= 0; i--)
8529 int op = recog_data.dup_num[i];
8530 enum machine_mode mode = recog_data.operand_mode[op];
8532 if (op_alt_regno[op][j] == -1)
8533 continue;
8535 validate_change (insn, recog_data.dup_loc[i],
8536 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8539 return apply_change_group ();
8542 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8543 addressing now.
8544 This code might also be useful when reload gave up on reg+reg addresssing
8545 because of clashes between the return register and INDEX_REG_CLASS. */
8547 /* The maximum number of uses of a register we can keep track of to
8548 replace them with reg+reg addressing. */
8549 #define RELOAD_COMBINE_MAX_USES 6
8551 /* INSN is the insn where a register has ben used, and USEP points to the
8552 location of the register within the rtl. */
8553 struct reg_use { rtx insn, *usep; };
8555 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8556 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8557 indicates where it becomes live again.
8558 Otherwise, USE_INDEX is the index of the last encountered use of the
8559 register (which is first among these we have seen since we scan backwards),
8560 OFFSET contains the constant offset that is added to the register in
8561 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8562 last, of these uses.
8563 STORE_RUID is always meaningful if we only want to use a value in a
8564 register in a different place: it denotes the next insn in the insn
8565 stream (i.e. the last ecountered) that sets or clobbers the register. */
8566 static struct
8568 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8569 int use_index;
8570 rtx offset;
8571 int store_ruid;
8572 int use_ruid;
8573 } reg_state[FIRST_PSEUDO_REGISTER];
8575 /* Reverse linear uid. This is increased in reload_combine while scanning
8576 the instructions from last to first. It is used to set last_label_ruid
8577 and the store_ruid / use_ruid fields in reg_state. */
8578 static int reload_combine_ruid;
8580 #define LABEL_LIVE(LABEL) \
8581 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8583 static void
8584 reload_combine ()
8586 rtx insn, set;
8587 int first_index_reg = -1;
8588 int last_index_reg = 0;
8589 int i;
8590 unsigned int r;
8591 int last_label_ruid;
8592 int min_labelno, n_labels;
8593 HARD_REG_SET ever_live_at_start, *label_live;
8595 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8596 reload has already used it where appropriate, so there is no use in
8597 trying to generate it now. */
8598 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8599 return;
8601 /* To avoid wasting too much time later searching for an index register,
8602 determine the minimum and maximum index register numbers. */
8603 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8604 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8606 if (first_index_reg == -1)
8607 first_index_reg = r;
8609 last_index_reg = r;
8612 /* If no index register is available, we can quit now. */
8613 if (first_index_reg == -1)
8614 return;
8616 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8617 information is a bit fuzzy immediately after reload, but it's
8618 still good enough to determine which registers are live at a jump
8619 destination. */
8620 min_labelno = get_first_label_num ();
8621 n_labels = max_label_num () - min_labelno;
8622 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8623 CLEAR_HARD_REG_SET (ever_live_at_start);
8625 for (i = n_basic_blocks - 1; i >= 0; i--)
8627 insn = BLOCK_HEAD (i);
8628 if (GET_CODE (insn) == CODE_LABEL)
8630 HARD_REG_SET live;
8632 REG_SET_TO_HARD_REG_SET (live,
8633 BASIC_BLOCK (i)->global_live_at_start);
8634 compute_use_by_pseudos (&live,
8635 BASIC_BLOCK (i)->global_live_at_start);
8636 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8637 IOR_HARD_REG_SET (ever_live_at_start, live);
8641 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8642 last_label_ruid = reload_combine_ruid = 0;
8643 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8645 reg_state[r].store_ruid = reload_combine_ruid;
8646 if (fixed_regs[r])
8647 reg_state[r].use_index = -1;
8648 else
8649 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8652 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8654 rtx note;
8656 /* We cannot do our optimization across labels. Invalidating all the use
8657 information we have would be costly, so we just note where the label
8658 is and then later disable any optimization that would cross it. */
8659 if (GET_CODE (insn) == CODE_LABEL)
8660 last_label_ruid = reload_combine_ruid;
8661 else if (GET_CODE (insn) == BARRIER)
8662 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8663 if (! fixed_regs[r])
8664 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8666 if (! INSN_P (insn))
8667 continue;
8669 reload_combine_ruid++;
8671 /* Look for (set (REGX) (CONST_INT))
8672 (set (REGX) (PLUS (REGX) (REGY)))
8674 ... (MEM (REGX)) ...
8675 and convert it to
8676 (set (REGZ) (CONST_INT))
8678 ... (MEM (PLUS (REGZ) (REGY)))... .
8680 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8681 and that we know all uses of REGX before it dies. */
8682 set = single_set (insn);
8683 if (set != NULL_RTX
8684 && GET_CODE (SET_DEST (set)) == REG
8685 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8686 GET_MODE (SET_DEST (set)))
8687 == 1)
8688 && GET_CODE (SET_SRC (set)) == PLUS
8689 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8690 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8691 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8693 rtx reg = SET_DEST (set);
8694 rtx plus = SET_SRC (set);
8695 rtx base = XEXP (plus, 1);
8696 rtx prev = prev_nonnote_insn (insn);
8697 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8698 unsigned int regno = REGNO (reg);
8699 rtx const_reg = NULL_RTX;
8700 rtx reg_sum = NULL_RTX;
8702 /* Now, we need an index register.
8703 We'll set index_reg to this index register, const_reg to the
8704 register that is to be loaded with the constant
8705 (denoted as REGZ in the substitution illustration above),
8706 and reg_sum to the register-register that we want to use to
8707 substitute uses of REG (typically in MEMs) with.
8708 First check REG and BASE for being index registers;
8709 we can use them even if they are not dead. */
8710 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8711 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8712 REGNO (base)))
8714 const_reg = reg;
8715 reg_sum = plus;
8717 else
8719 /* Otherwise, look for a free index register. Since we have
8720 checked above that neiter REG nor BASE are index registers,
8721 if we find anything at all, it will be different from these
8722 two registers. */
8723 for (i = first_index_reg; i <= last_index_reg; i++)
8725 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8727 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8728 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8729 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8731 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8733 const_reg = index_reg;
8734 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8735 break;
8740 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8741 (REGY), i.e. BASE, is not clobbered before the last use we'll
8742 create. */
8743 if (prev_set != 0
8744 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8745 && rtx_equal_p (SET_DEST (prev_set), reg)
8746 && reg_state[regno].use_index >= 0
8747 && (reg_state[REGNO (base)].store_ruid
8748 <= reg_state[regno].use_ruid)
8749 && reg_sum != 0)
8751 int i;
8753 /* Change destination register and, if necessary, the
8754 constant value in PREV, the constant loading instruction. */
8755 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8756 if (reg_state[regno].offset != const0_rtx)
8757 validate_change (prev,
8758 &SET_SRC (prev_set),
8759 GEN_INT (INTVAL (SET_SRC (prev_set))
8760 + INTVAL (reg_state[regno].offset)),
8763 /* Now for every use of REG that we have recorded, replace REG
8764 with REG_SUM. */
8765 for (i = reg_state[regno].use_index;
8766 i < RELOAD_COMBINE_MAX_USES; i++)
8767 validate_change (reg_state[regno].reg_use[i].insn,
8768 reg_state[regno].reg_use[i].usep,
8769 /* Each change must have its own
8770 replacement. */
8771 copy_rtx (reg_sum), 1);
8773 if (apply_change_group ())
8775 rtx *np;
8777 /* Delete the reg-reg addition. */
8778 delete_insn (insn);
8780 if (reg_state[regno].offset != const0_rtx)
8781 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8782 are now invalid. */
8783 for (np = &REG_NOTES (prev); *np;)
8785 if (REG_NOTE_KIND (*np) == REG_EQUAL
8786 || REG_NOTE_KIND (*np) == REG_EQUIV)
8787 *np = XEXP (*np, 1);
8788 else
8789 np = &XEXP (*np, 1);
8792 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8793 reg_state[REGNO (const_reg)].store_ruid
8794 = reload_combine_ruid;
8795 continue;
8800 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8802 if (GET_CODE (insn) == CALL_INSN)
8804 rtx link;
8806 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8807 if (call_used_regs[r])
8809 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8810 reg_state[r].store_ruid = reload_combine_ruid;
8813 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8814 link = XEXP (link, 1))
8816 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8817 if (GET_CODE (usage_rtx) == REG)
8819 unsigned int i;
8820 unsigned int start_reg = REGNO (usage_rtx);
8821 unsigned int num_regs =
8822 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8823 unsigned int end_reg = start_reg + num_regs - 1;
8824 for (i = start_reg; i <= end_reg; i++)
8825 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8827 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8828 reg_state[i].store_ruid = reload_combine_ruid;
8830 else
8831 reg_state[i].use_index = -1;
8836 else if (GET_CODE (insn) == JUMP_INSN
8837 && GET_CODE (PATTERN (insn)) != RETURN)
8839 /* Non-spill registers might be used at the call destination in
8840 some unknown fashion, so we have to mark the unknown use. */
8841 HARD_REG_SET *live;
8843 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8844 && JUMP_LABEL (insn))
8845 live = &LABEL_LIVE (JUMP_LABEL (insn));
8846 else
8847 live = &ever_live_at_start;
8849 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8850 if (TEST_HARD_REG_BIT (*live, i))
8851 reg_state[i].use_index = -1;
8854 reload_combine_note_use (&PATTERN (insn), insn);
8855 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8857 if (REG_NOTE_KIND (note) == REG_INC
8858 && GET_CODE (XEXP (note, 0)) == REG)
8860 int regno = REGNO (XEXP (note, 0));
8862 reg_state[regno].store_ruid = reload_combine_ruid;
8863 reg_state[regno].use_index = -1;
8868 free (label_live);
8871 /* Check if DST is a register or a subreg of a register; if it is,
8872 update reg_state[regno].store_ruid and reg_state[regno].use_index
8873 accordingly. Called via note_stores from reload_combine. */
8875 static void
8876 reload_combine_note_store (dst, set, data)
8877 rtx dst, set;
8878 void *data ATTRIBUTE_UNUSED;
8880 int regno = 0;
8881 int i;
8882 enum machine_mode mode = GET_MODE (dst);
8884 if (GET_CODE (dst) == SUBREG)
8886 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8887 GET_MODE (SUBREG_REG (dst)),
8888 SUBREG_BYTE (dst),
8889 GET_MODE (dst));
8890 dst = SUBREG_REG (dst);
8892 if (GET_CODE (dst) != REG)
8893 return;
8894 regno += REGNO (dst);
8896 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8897 careful with registers / register parts that are not full words.
8899 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8900 if (GET_CODE (set) != SET
8901 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8902 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8903 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8905 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8907 reg_state[i].use_index = -1;
8908 reg_state[i].store_ruid = reload_combine_ruid;
8911 else
8913 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8915 reg_state[i].store_ruid = reload_combine_ruid;
8916 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8921 /* XP points to a piece of rtl that has to be checked for any uses of
8922 registers.
8923 *XP is the pattern of INSN, or a part of it.
8924 Called from reload_combine, and recursively by itself. */
8925 static void
8926 reload_combine_note_use (xp, insn)
8927 rtx *xp, insn;
8929 rtx x = *xp;
8930 enum rtx_code code = x->code;
8931 const char *fmt;
8932 int i, j;
8933 rtx offset = const0_rtx; /* For the REG case below. */
8935 switch (code)
8937 case SET:
8938 if (GET_CODE (SET_DEST (x)) == REG)
8940 reload_combine_note_use (&SET_SRC (x), insn);
8941 return;
8943 break;
8945 case USE:
8946 /* If this is the USE of a return value, we can't change it. */
8947 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8949 /* Mark the return register as used in an unknown fashion. */
8950 rtx reg = XEXP (x, 0);
8951 int regno = REGNO (reg);
8952 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8954 while (--nregs >= 0)
8955 reg_state[regno + nregs].use_index = -1;
8956 return;
8958 break;
8960 case CLOBBER:
8961 if (GET_CODE (SET_DEST (x)) == REG)
8963 /* No spurious CLOBBERs of pseudo registers may remain. */
8964 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8965 abort ();
8966 return;
8968 break;
8970 case PLUS:
8971 /* We are interested in (plus (reg) (const_int)) . */
8972 if (GET_CODE (XEXP (x, 0)) != REG
8973 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8974 break;
8975 offset = XEXP (x, 1);
8976 x = XEXP (x, 0);
8977 /* Fall through. */
8978 case REG:
8980 int regno = REGNO (x);
8981 int use_index;
8982 int nregs;
8984 /* No spurious USEs of pseudo registers may remain. */
8985 if (regno >= FIRST_PSEUDO_REGISTER)
8986 abort ();
8988 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8990 /* We can't substitute into multi-hard-reg uses. */
8991 if (nregs > 1)
8993 while (--nregs >= 0)
8994 reg_state[regno + nregs].use_index = -1;
8995 return;
8998 /* If this register is already used in some unknown fashion, we
8999 can't do anything.
9000 If we decrement the index from zero to -1, we can't store more
9001 uses, so this register becomes used in an unknown fashion. */
9002 use_index = --reg_state[regno].use_index;
9003 if (use_index < 0)
9004 return;
9006 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9008 /* We have found another use for a register that is already
9009 used later. Check if the offsets match; if not, mark the
9010 register as used in an unknown fashion. */
9011 if (! rtx_equal_p (offset, reg_state[regno].offset))
9013 reg_state[regno].use_index = -1;
9014 return;
9017 else
9019 /* This is the first use of this register we have seen since we
9020 marked it as dead. */
9021 reg_state[regno].offset = offset;
9022 reg_state[regno].use_ruid = reload_combine_ruid;
9024 reg_state[regno].reg_use[use_index].insn = insn;
9025 reg_state[regno].reg_use[use_index].usep = xp;
9026 return;
9029 default:
9030 break;
9033 /* Recursively process the components of X. */
9034 fmt = GET_RTX_FORMAT (code);
9035 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9037 if (fmt[i] == 'e')
9038 reload_combine_note_use (&XEXP (x, i), insn);
9039 else if (fmt[i] == 'E')
9041 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9042 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9047 /* See if we can reduce the cost of a constant by replacing a move
9048 with an add. We track situations in which a register is set to a
9049 constant or to a register plus a constant. */
9050 /* We cannot do our optimization across labels. Invalidating all the
9051 information about register contents we have would be costly, so we
9052 use move2add_last_label_luid to note where the label is and then
9053 later disable any optimization that would cross it.
9054 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9055 reg_set_luid[n] is greater than last_label_luid[n] . */
9056 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9058 /* If reg_base_reg[n] is negative, register n has been set to
9059 reg_offset[n] in mode reg_mode[n] .
9060 If reg_base_reg[n] is non-negative, register n has been set to the
9061 sum of reg_offset[n] and the value of register reg_base_reg[n]
9062 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9063 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9064 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9065 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9067 /* move2add_luid is linearily increased while scanning the instructions
9068 from first to last. It is used to set reg_set_luid in
9069 reload_cse_move2add and move2add_note_store. */
9070 static int move2add_luid;
9072 /* move2add_last_label_luid is set whenever a label is found. Labels
9073 invalidate all previously collected reg_offset data. */
9074 static int move2add_last_label_luid;
9076 /* Generate a CONST_INT and force it in the range of MODE. */
9078 static HOST_WIDE_INT
9079 sext_for_mode (mode, value)
9080 enum machine_mode mode;
9081 HOST_WIDE_INT value;
9083 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9084 int width = GET_MODE_BITSIZE (mode);
9086 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9087 sign extend it. */
9088 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9089 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9090 cval |= (HOST_WIDE_INT) -1 << width;
9092 return cval;
9095 /* ??? We don't know how zero / sign extension is handled, hence we
9096 can't go from a narrower to a wider mode. */
9097 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9098 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9099 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9100 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9101 GET_MODE_BITSIZE (INMODE))))
9103 static void
9104 reload_cse_move2add (first)
9105 rtx first;
9107 int i;
9108 rtx insn;
9110 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9111 reg_set_luid[i] = 0;
9113 move2add_last_label_luid = 0;
9114 move2add_luid = 2;
9115 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9117 rtx pat, note;
9119 if (GET_CODE (insn) == CODE_LABEL)
9121 move2add_last_label_luid = move2add_luid;
9122 /* We're going to increment move2add_luid twice after a
9123 label, so that we can use move2add_last_label_luid + 1 as
9124 the luid for constants. */
9125 move2add_luid++;
9126 continue;
9128 if (! INSN_P (insn))
9129 continue;
9130 pat = PATTERN (insn);
9131 /* For simplicity, we only perform this optimization on
9132 straightforward SETs. */
9133 if (GET_CODE (pat) == SET
9134 && GET_CODE (SET_DEST (pat)) == REG)
9136 rtx reg = SET_DEST (pat);
9137 int regno = REGNO (reg);
9138 rtx src = SET_SRC (pat);
9140 /* Check if we have valid information on the contents of this
9141 register in the mode of REG. */
9142 if (reg_set_luid[regno] > move2add_last_label_luid
9143 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9145 /* Try to transform (set (REGX) (CONST_INT A))
9147 (set (REGX) (CONST_INT B))
9149 (set (REGX) (CONST_INT A))
9151 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9153 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9155 int success = 0;
9156 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9157 INTVAL (src)
9158 - reg_offset[regno]));
9159 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9160 use (set (reg) (reg)) instead.
9161 We don't delete this insn, nor do we convert it into a
9162 note, to avoid losing register notes or the return
9163 value flag. jump2 already knowns how to get rid of
9164 no-op moves. */
9165 if (new_src == const0_rtx)
9166 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9167 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9168 && have_add2_insn (reg, new_src))
9169 success = validate_change (insn, &PATTERN (insn),
9170 gen_add2_insn (reg, new_src), 0);
9171 reg_set_luid[regno] = move2add_luid;
9172 reg_mode[regno] = GET_MODE (reg);
9173 reg_offset[regno] = INTVAL (src);
9174 continue;
9177 /* Try to transform (set (REGX) (REGY))
9178 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9180 (set (REGX) (REGY))
9181 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9183 (REGX) (REGY))
9184 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9186 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9187 else if (GET_CODE (src) == REG
9188 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9189 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9190 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9191 reg_mode[REGNO (src)]))
9193 rtx next = next_nonnote_insn (insn);
9194 rtx set = NULL_RTX;
9195 if (next)
9196 set = single_set (next);
9197 if (set
9198 && SET_DEST (set) == reg
9199 && GET_CODE (SET_SRC (set)) == PLUS
9200 && XEXP (SET_SRC (set), 0) == reg
9201 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9203 rtx src3 = XEXP (SET_SRC (set), 1);
9204 HOST_WIDE_INT added_offset = INTVAL (src3);
9205 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9206 HOST_WIDE_INT regno_offset = reg_offset[regno];
9207 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9208 added_offset
9209 + base_offset
9210 - regno_offset));
9211 int success = 0;
9213 if (new_src == const0_rtx)
9214 /* See above why we create (set (reg) (reg)) here. */
9215 success
9216 = validate_change (next, &SET_SRC (set), reg, 0);
9217 else if ((rtx_cost (new_src, PLUS)
9218 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9219 && have_add2_insn (reg, new_src))
9220 success
9221 = validate_change (next, &PATTERN (next),
9222 gen_add2_insn (reg, new_src), 0);
9223 if (success)
9224 delete_insn (insn);
9225 insn = next;
9226 reg_mode[regno] = GET_MODE (reg);
9227 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9228 added_offset
9229 + base_offset);
9230 continue;
9236 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9238 if (REG_NOTE_KIND (note) == REG_INC
9239 && GET_CODE (XEXP (note, 0)) == REG)
9241 /* Reset the information about this register. */
9242 int regno = REGNO (XEXP (note, 0));
9243 if (regno < FIRST_PSEUDO_REGISTER)
9244 reg_set_luid[regno] = 0;
9247 note_stores (PATTERN (insn), move2add_note_store, NULL);
9248 /* If this is a CALL_INSN, all call used registers are stored with
9249 unknown values. */
9250 if (GET_CODE (insn) == CALL_INSN)
9252 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9254 if (call_used_regs[i])
9255 /* Reset the information about this register. */
9256 reg_set_luid[i] = 0;
9262 /* SET is a SET or CLOBBER that sets DST.
9263 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9264 Called from reload_cse_move2add via note_stores. */
9266 static void
9267 move2add_note_store (dst, set, data)
9268 rtx dst, set;
9269 void *data ATTRIBUTE_UNUSED;
9271 unsigned int regno = 0;
9272 unsigned int i;
9273 enum machine_mode mode = GET_MODE (dst);
9275 if (GET_CODE (dst) == SUBREG)
9277 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9278 GET_MODE (SUBREG_REG (dst)),
9279 SUBREG_BYTE (dst),
9280 GET_MODE (dst));
9281 dst = SUBREG_REG (dst);
9284 /* Some targets do argument pushes without adding REG_INC notes. */
9286 if (GET_CODE (dst) == MEM)
9288 dst = XEXP (dst, 0);
9289 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9290 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9291 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9292 return;
9294 if (GET_CODE (dst) != REG)
9295 return;
9297 regno += REGNO (dst);
9299 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9300 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9301 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9302 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9304 rtx src = SET_SRC (set);
9305 rtx base_reg;
9306 HOST_WIDE_INT offset;
9307 int base_regno;
9308 /* This may be different from mode, if SET_DEST (set) is a
9309 SUBREG. */
9310 enum machine_mode dst_mode = GET_MODE (dst);
9312 switch (GET_CODE (src))
9314 case PLUS:
9315 if (GET_CODE (XEXP (src, 0)) == REG)
9317 base_reg = XEXP (src, 0);
9319 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9320 offset = INTVAL (XEXP (src, 1));
9321 else if (GET_CODE (XEXP (src, 1)) == REG
9322 && (reg_set_luid[REGNO (XEXP (src, 1))]
9323 > move2add_last_label_luid)
9324 && (MODES_OK_FOR_MOVE2ADD
9325 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9327 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9328 offset = reg_offset[REGNO (XEXP (src, 1))];
9329 /* Maybe the first register is known to be a
9330 constant. */
9331 else if (reg_set_luid[REGNO (base_reg)]
9332 > move2add_last_label_luid
9333 && (MODES_OK_FOR_MOVE2ADD
9334 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9335 && reg_base_reg[REGNO (base_reg)] < 0)
9337 offset = reg_offset[REGNO (base_reg)];
9338 base_reg = XEXP (src, 1);
9340 else
9341 goto invalidate;
9343 else
9344 goto invalidate;
9346 break;
9349 goto invalidate;
9351 case REG:
9352 base_reg = src;
9353 offset = 0;
9354 break;
9356 case CONST_INT:
9357 /* Start tracking the register as a constant. */
9358 reg_base_reg[regno] = -1;
9359 reg_offset[regno] = INTVAL (SET_SRC (set));
9360 /* We assign the same luid to all registers set to constants. */
9361 reg_set_luid[regno] = move2add_last_label_luid + 1;
9362 reg_mode[regno] = mode;
9363 return;
9365 default:
9366 invalidate:
9367 /* Invalidate the contents of the register. */
9368 reg_set_luid[regno] = 0;
9369 return;
9372 base_regno = REGNO (base_reg);
9373 /* If information about the base register is not valid, set it
9374 up as a new base register, pretending its value is known
9375 starting from the current insn. */
9376 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9378 reg_base_reg[base_regno] = base_regno;
9379 reg_offset[base_regno] = 0;
9380 reg_set_luid[base_regno] = move2add_luid;
9381 reg_mode[base_regno] = mode;
9383 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9384 reg_mode[base_regno]))
9385 goto invalidate;
9387 reg_mode[regno] = mode;
9389 /* Copy base information from our base register. */
9390 reg_set_luid[regno] = reg_set_luid[base_regno];
9391 reg_base_reg[regno] = reg_base_reg[base_regno];
9393 /* Compute the sum of the offsets or constants. */
9394 reg_offset[regno] = sext_for_mode (dst_mode,
9395 offset
9396 + reg_offset[base_regno]);
9398 else
9400 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9402 for (i = regno; i < endregno; i++)
9403 /* Reset the information about this register. */
9404 reg_set_luid[i] = 0;
9408 #ifdef AUTO_INC_DEC
9409 static void
9410 add_auto_inc_notes (insn, x)
9411 rtx insn;
9412 rtx x;
9414 enum rtx_code code = GET_CODE (x);
9415 const char *fmt;
9416 int i, j;
9418 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9420 REG_NOTES (insn)
9421 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9422 return;
9425 /* Scan all the operand sub-expressions. */
9426 fmt = GET_RTX_FORMAT (code);
9427 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9429 if (fmt[i] == 'e')
9430 add_auto_inc_notes (insn, XEXP (x, i));
9431 else if (fmt[i] == 'E')
9432 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9433 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9436 #endif
9438 /* Copy EH notes from an insn to its reloads. */
9439 static void
9440 copy_eh_notes (insn, x)
9441 rtx insn;
9442 rtx x;
9444 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9445 if (eh_note)
9447 for (; x != 0; x = NEXT_INSN (x))
9449 if (may_trap_p (PATTERN (x)))
9450 REG_NOTES (x)
9451 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9452 REG_NOTES (x));
9457 /* This is used by reload pass, that does emit some instructions after
9458 abnormal calls moving basic block end, but in fact it wants to emit
9459 them on the edge. Looks for abnormal call edges, find backward the
9460 proper call and fix the damage.
9462 Similar handle instructions throwing exceptions internally. */
9463 static void
9464 fixup_abnormal_edges ()
9466 int i;
9467 bool inserted = false;
9469 for (i = 0; i < n_basic_blocks; i++)
9471 basic_block bb = BASIC_BLOCK (i);
9472 edge e;
9474 /* Look for cases we are interested in - an calls or instructions causing
9475 exceptions. */
9476 for (e = bb->succ; e; e = e->succ_next)
9478 if (e->flags & EDGE_ABNORMAL_CALL)
9479 break;
9480 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9481 == (EDGE_ABNORMAL | EDGE_EH))
9482 break;
9484 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9486 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9487 rtx next;
9488 for (e = bb->succ; e; e = e->succ_next)
9489 if (e->flags & EDGE_FALLTHRU)
9490 break;
9491 /* Get past the new insns generated. Allow notes, as the insns may
9492 be already deleted. */
9493 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9494 && !can_throw_internal (insn)
9495 && insn != bb->head)
9496 insn = PREV_INSN (insn);
9497 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9498 abort ();
9499 bb->end = insn;
9500 inserted = true;
9501 insn = NEXT_INSN (insn);
9502 while (insn && insn != stop)
9504 next = NEXT_INSN (insn);
9505 if (INSN_P (insn))
9507 insert_insn_on_edge (PATTERN (insn), e);
9508 delete_insn (insn);
9510 insn = next;
9514 if (inserted)
9515 commit_edge_insertions ();