Daily bump.
[official-gcc.git] / gcc / basic-block.h
blobc04c6f6ee53de92b3b5e09ca5197feaba8ec7161
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
90 typedef bitmap_iterator reg_set_iterator;
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109 /* Type we use to hold basic block counters. Should be at least
110 64bit. Although a counter cannot be negative, we use a signed
111 type, because erroneous negative counts can be generated when the
112 flow graph is manipulated by various optimizations. A signed type
113 makes those easy to detect. */
114 typedef HOST_WIDEST_INT gcov_type;
116 /* Control flow edge information. */
117 struct edge_def GTY(())
119 /* The two blocks at the ends of the edge. */
120 struct basic_block_def *src;
121 struct basic_block_def *dest;
123 /* Instructions queued on the edge. */
124 union edge_def_insns {
125 tree GTY ((tag ("true"))) t;
126 rtx GTY ((tag ("false"))) r;
127 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
129 /* Auxiliary info specific to a pass. */
130 PTR GTY ((skip (""))) aux;
132 /* Location of any goto implicit in the edge, during tree-ssa. */
133 source_locus goto_locus;
135 /* The index number corresponding to this edge in the edge vector
136 dest->preds. */
137 unsigned int dest_idx;
139 int flags; /* see EDGE_* below */
140 int probability; /* biased by REG_BR_PROB_BASE */
141 gcov_type count; /* Expected number of executions calculated
142 in profile.c */
145 typedef struct edge_def *edge;
146 typedef const struct edge_def *const_edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
181 /* Declared in cfgloop.h. */
182 struct loop;
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
186 struct rtl_bb_info;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
207 the labels.
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* The edges into and out of the block. */
217 VEC(edge,gc) *preds;
218 VEC(edge,gc) *succs;
220 /* Auxiliary info specific to a pass. */
221 PTR GTY ((skip (""))) aux;
223 /* Innermost loop containing the block. */
224 struct loop *loop_father;
226 /* The dominance and postdominance information node. */
227 struct et_node * GTY ((skip (""))) dom[2];
229 /* Previous and next blocks in the chain. */
230 struct basic_block_def *prev_bb;
231 struct basic_block_def *next_bb;
233 union basic_block_il_dependent {
234 struct tree_bb_info * GTY ((tag ("0"))) tree;
235 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
236 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
238 /* Expected number of executions: calculated in profile.c. */
239 gcov_type count;
241 /* The index of this block. */
242 int index;
244 /* The loop depth of this block. */
245 int loop_depth;
247 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
248 int frequency;
250 /* Various flags. See BB_* below. */
251 int flags;
254 struct rtl_bb_info GTY(())
256 /* The first and last insns of the block. */
257 rtx head_;
258 rtx end_;
260 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
261 and after the block. */
262 rtx header;
263 rtx footer;
265 /* This field is used by the bb-reorder and tracer passes. */
266 int visited;
269 struct tree_bb_info GTY(())
271 /* Pointers to the first and last trees of the block. */
272 tree stmt_list;
274 /* Chain of PHI nodes for this block. */
275 tree phi_nodes;
278 typedef struct basic_block_def *basic_block;
279 typedef const struct basic_block_def *const_basic_block;
281 DEF_VEC_P(basic_block);
282 DEF_VEC_ALLOC_P(basic_block,gc);
283 DEF_VEC_ALLOC_P(basic_block,heap);
285 #define BB_FREQ_MAX 10000
287 /* Masks for basic_block.flags.
289 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
290 the compilation, so they are never cleared.
292 All other flags may be cleared by clear_bb_flags(). It is generally
293 a bad idea to rely on any flags being up-to-date. */
295 enum bb_flags
297 /* Only set on blocks that have just been created by create_bb. */
298 BB_NEW = 1 << 0,
300 /* Set by find_unreachable_blocks. Do not rely on this being set in any
301 pass. */
302 BB_REACHABLE = 1 << 1,
304 /* Set for blocks in an irreducible loop by loop analysis. */
305 BB_IRREDUCIBLE_LOOP = 1 << 2,
307 /* Set on blocks that may actually not be single-entry single-exit block. */
308 BB_SUPERBLOCK = 1 << 3,
310 /* Set on basic blocks that the scheduler should not touch. This is used
311 by SMS to prevent other schedulers from messing with the loop schedule. */
312 BB_DISABLE_SCHEDULE = 1 << 4,
314 /* Set on blocks that should be put in a hot section. */
315 BB_HOT_PARTITION = 1 << 5,
317 /* Set on blocks that should be put in a cold section. */
318 BB_COLD_PARTITION = 1 << 6,
320 /* Set on block that was duplicated. */
321 BB_DUPLICATED = 1 << 7,
323 /* Set if the label at the top of this block is the target of a non-local goto. */
324 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
326 /* Set on blocks that are in RTL format. */
327 BB_RTL = 1 << 9 ,
329 /* Set on blocks that are forwarder blocks.
330 Only used in cfgcleanup.c. */
331 BB_FORWARDER_BLOCK = 1 << 10,
333 /* Set on blocks that cannot be threaded through.
334 Only used in cfgcleanup.c. */
335 BB_NONTHREADABLE_BLOCK = 1 << 11
338 /* Dummy flag for convenience in the hot/cold partitioning code. */
339 #define BB_UNPARTITIONED 0
341 /* Partitions, to be used when partitioning hot and cold basic blocks into
342 separate sections. */
343 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344 #define BB_SET_PARTITION(bb, part) do { \
345 basic_block bb_ = (bb); \
346 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
347 | (part)); \
348 } while (0)
350 #define BB_COPY_PARTITION(dstbb, srcbb) \
351 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
353 /* State of dominance information. */
355 enum dom_state
357 DOM_NONE, /* Not computed at all. */
358 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
359 DOM_OK /* Everything is ok. */
362 /* A structure to group all the per-function control flow graph data.
363 The x_* prefixing is necessary because otherwise references to the
364 fields of this struct are interpreted as the defines for backward
365 source compatibility following the definition of this struct. */
366 struct control_flow_graph GTY(())
368 /* Block pointers for the exit and entry of a function.
369 These are always the head and tail of the basic block list. */
370 basic_block x_entry_block_ptr;
371 basic_block x_exit_block_ptr;
373 /* Index by basic block number, get basic block struct info. */
374 VEC(basic_block,gc) *x_basic_block_info;
376 /* Number of basic blocks in this flow graph. */
377 int x_n_basic_blocks;
379 /* Number of edges in this flow graph. */
380 int x_n_edges;
382 /* The first free basic block number. */
383 int x_last_basic_block;
385 /* Mapping of labels to their associated blocks. At present
386 only used for the tree CFG. */
387 VEC(basic_block,gc) *x_label_to_block_map;
389 enum profile_status {
390 PROFILE_ABSENT,
391 PROFILE_GUESSED,
392 PROFILE_READ
393 } x_profile_status;
395 /* Whether the dominators and the postdominators are available. */
396 enum dom_state x_dom_computed[2];
398 /* Number of basic blocks in the dominance tree. */
399 unsigned x_n_bbs_in_dom_tree[2];
402 /* Defines for accessing the fields of the CFG structure for function FN. */
403 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
404 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
405 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
406 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
407 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
408 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
409 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
411 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
412 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
414 /* Defines for textual backward source compatibility. */
415 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
416 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
417 #define basic_block_info (cfun->cfg->x_basic_block_info)
418 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
419 #define n_edges (cfun->cfg->x_n_edges)
420 #define last_basic_block (cfun->cfg->x_last_basic_block)
421 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
422 #define profile_status (cfun->cfg->x_profile_status)
424 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
425 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
427 /* For iterating over basic blocks. */
428 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
429 for (BB = FROM; BB != TO; BB = BB->DIR)
431 #define FOR_EACH_BB_FN(BB, FN) \
432 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
434 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
436 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
437 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
439 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
441 /* For iterating over insns in basic block. */
442 #define FOR_BB_INSNS(BB, INSN) \
443 for ((INSN) = BB_HEAD (BB); \
444 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
445 (INSN) = NEXT_INSN (INSN))
447 /* For iterating over insns in basic block when we might remove the
448 current insn. */
449 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
450 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
451 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
452 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
454 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
455 for ((INSN) = BB_END (BB); \
456 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
457 (INSN) = PREV_INSN (INSN))
459 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
460 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
461 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
462 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
464 /* Cycles through _all_ basic blocks, even the fake ones (entry and
465 exit block). */
467 #define FOR_ALL_BB(BB) \
468 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
470 #define FOR_ALL_BB_FN(BB, FN) \
471 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
473 extern bitmap_obstack reg_obstack;
476 /* Stuff for recording basic block info. */
478 #define BB_HEAD(B) (B)->il.rtl->head_
479 #define BB_END(B) (B)->il.rtl->end_
481 /* Special block numbers [markers] for entry and exit. */
482 #define ENTRY_BLOCK (0)
483 #define EXIT_BLOCK (1)
485 /* The two blocks that are always in the cfg. */
486 #define NUM_FIXED_BLOCKS (2)
489 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
490 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
492 extern void compute_bb_for_insn (void);
493 extern unsigned int free_bb_for_insn (void);
494 extern void update_bb_for_insn (basic_block);
496 extern void insert_insn_on_edge (rtx, edge);
497 basic_block split_edge_and_insert (edge, rtx);
499 extern void commit_edge_insertions (void);
501 extern void remove_fake_edges (void);
502 extern void remove_fake_exit_edges (void);
503 extern void add_noreturn_fake_exit_edges (void);
504 extern void connect_infinite_loops_to_exit (void);
505 extern edge unchecked_make_edge (basic_block, basic_block, int);
506 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
507 extern edge make_edge (basic_block, basic_block, int);
508 extern edge make_single_succ_edge (basic_block, basic_block, int);
509 extern void remove_edge_raw (edge);
510 extern void redirect_edge_succ (edge, basic_block);
511 extern edge redirect_edge_succ_nodup (edge, basic_block);
512 extern void redirect_edge_pred (edge, basic_block);
513 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
514 extern void clear_bb_flags (void);
515 extern int post_order_compute (int *, bool, bool);
516 extern int inverted_post_order_compute (int *);
517 extern int pre_and_rev_post_order_compute (int *, int *, bool);
518 extern int dfs_enumerate_from (basic_block, int,
519 bool (*)(const_basic_block, const void *),
520 basic_block *, int, const void *);
521 extern void compute_dominance_frontiers (bitmap *);
522 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
523 extern void dump_edge_info (FILE *, edge, int);
524 extern void brief_dump_cfg (FILE *);
525 extern void clear_edges (void);
526 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
527 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
528 gcov_type);
530 /* Structure to group all of the information to process IF-THEN and
531 IF-THEN-ELSE blocks for the conditional execution support. This
532 needs to be in a public file in case the IFCVT macros call
533 functions passing the ce_if_block data structure. */
535 typedef struct ce_if_block
537 basic_block test_bb; /* First test block. */
538 basic_block then_bb; /* THEN block. */
539 basic_block else_bb; /* ELSE block or NULL. */
540 basic_block join_bb; /* Join THEN/ELSE blocks. */
541 basic_block last_test_bb; /* Last bb to hold && or || tests. */
542 int num_multiple_test_blocks; /* # of && and || basic blocks. */
543 int num_and_and_blocks; /* # of && blocks. */
544 int num_or_or_blocks; /* # of || blocks. */
545 int num_multiple_test_insns; /* # of insns in && and || blocks. */
546 int and_and_p; /* Complex test is &&. */
547 int num_then_insns; /* # of insns in THEN block. */
548 int num_else_insns; /* # of insns in ELSE block. */
549 int pass; /* Pass number. */
551 #ifdef IFCVT_EXTRA_FIELDS
552 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
553 #endif
555 } ce_if_block_t;
557 /* This structure maintains an edge list vector. */
558 struct edge_list
560 int num_blocks;
561 int num_edges;
562 edge *index_to_edge;
565 /* The base value for branch probability notes and edge probabilities. */
566 #define REG_BR_PROB_BASE 10000
568 /* This is the value which indicates no edge is present. */
569 #define EDGE_INDEX_NO_EDGE -1
571 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
572 if there is no edge between the 2 basic blocks. */
573 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
575 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
576 block which is either the pred or succ end of the indexed edge. */
577 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
578 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
580 /* INDEX_EDGE returns a pointer to the edge. */
581 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
583 /* Number of edges in the compressed edge list. */
584 #define NUM_EDGES(el) ((el)->num_edges)
586 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
587 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
588 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
590 /* BB is assumed to contain conditional jump. Return the branch edge. */
591 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
592 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
594 /* Return expected execution frequency of the edge E. */
595 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
596 * (e)->probability \
597 + REG_BR_PROB_BASE / 2) \
598 / REG_BR_PROB_BASE)
600 /* Return nonzero if edge is critical. */
601 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
602 && EDGE_COUNT ((e)->dest->preds) >= 2)
604 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
605 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
606 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
607 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
609 /* Returns true if BB has precisely one successor. */
611 static inline bool
612 single_succ_p (const_basic_block bb)
614 return EDGE_COUNT (bb->succs) == 1;
617 /* Returns true if BB has precisely one predecessor. */
619 static inline bool
620 single_pred_p (const_basic_block bb)
622 return EDGE_COUNT (bb->preds) == 1;
625 /* Returns the single successor edge of basic block BB. Aborts if
626 BB does not have exactly one successor. */
628 static inline edge
629 single_succ_edge (const_basic_block bb)
631 gcc_assert (single_succ_p (bb));
632 return EDGE_SUCC (bb, 0);
635 /* Returns the single predecessor edge of basic block BB. Aborts
636 if BB does not have exactly one predecessor. */
638 static inline edge
639 single_pred_edge (const_basic_block bb)
641 gcc_assert (single_pred_p (bb));
642 return EDGE_PRED (bb, 0);
645 /* Returns the single successor block of basic block BB. Aborts
646 if BB does not have exactly one successor. */
648 static inline basic_block
649 single_succ (const_basic_block bb)
651 return single_succ_edge (bb)->dest;
654 /* Returns the single predecessor block of basic block BB. Aborts
655 if BB does not have exactly one predecessor.*/
657 static inline basic_block
658 single_pred (const_basic_block bb)
660 return single_pred_edge (bb)->src;
663 /* Iterator object for edges. */
665 typedef struct {
666 unsigned index;
667 VEC(edge,gc) **container;
668 } edge_iterator;
670 static inline VEC(edge,gc) *
671 ei_container (edge_iterator i)
673 gcc_assert (i.container);
674 return *i.container;
677 #define ei_start(iter) ei_start_1 (&(iter))
678 #define ei_last(iter) ei_last_1 (&(iter))
680 /* Return an iterator pointing to the start of an edge vector. */
681 static inline edge_iterator
682 ei_start_1 (VEC(edge,gc) **ev)
684 edge_iterator i;
686 i.index = 0;
687 i.container = ev;
689 return i;
692 /* Return an iterator pointing to the last element of an edge
693 vector. */
694 static inline edge_iterator
695 ei_last_1 (VEC(edge,gc) **ev)
697 edge_iterator i;
699 i.index = EDGE_COUNT (*ev) - 1;
700 i.container = ev;
702 return i;
705 /* Is the iterator `i' at the end of the sequence? */
706 static inline bool
707 ei_end_p (edge_iterator i)
709 return (i.index == EDGE_COUNT (ei_container (i)));
712 /* Is the iterator `i' at one position before the end of the
713 sequence? */
714 static inline bool
715 ei_one_before_end_p (edge_iterator i)
717 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
720 /* Advance the iterator to the next element. */
721 static inline void
722 ei_next (edge_iterator *i)
724 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
725 i->index++;
728 /* Move the iterator to the previous element. */
729 static inline void
730 ei_prev (edge_iterator *i)
732 gcc_assert (i->index > 0);
733 i->index--;
736 /* Return the edge pointed to by the iterator `i'. */
737 static inline edge
738 ei_edge (edge_iterator i)
740 return EDGE_I (ei_container (i), i.index);
743 /* Return an edge pointed to by the iterator. Do it safely so that
744 NULL is returned when the iterator is pointing at the end of the
745 sequence. */
746 static inline edge
747 ei_safe_edge (edge_iterator i)
749 return !ei_end_p (i) ? ei_edge (i) : NULL;
752 /* Return 1 if we should continue to iterate. Return 0 otherwise.
753 *Edge P is set to the next edge if we are to continue to iterate
754 and NULL otherwise. */
756 static inline bool
757 ei_cond (edge_iterator ei, edge *p)
759 if (!ei_end_p (ei))
761 *p = ei_edge (ei);
762 return 1;
764 else
766 *p = NULL;
767 return 0;
771 /* This macro serves as a convenient way to iterate each edge in a
772 vector of predecessor or successor edges. It must not be used when
773 an element might be removed during the traversal, otherwise
774 elements will be missed. Instead, use a for-loop like that shown
775 in the following pseudo-code:
777 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
779 IF (e != taken_edge)
780 remove_edge (e);
781 ELSE
782 ei_next (&ei);
786 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
787 for ((ITER) = ei_start ((EDGE_VEC)); \
788 ei_cond ((ITER), &(EDGE)); \
789 ei_next (&(ITER)))
791 struct edge_list * create_edge_list (void);
792 void free_edge_list (struct edge_list *);
793 void print_edge_list (FILE *, struct edge_list *);
794 void verify_edge_list (FILE *, struct edge_list *);
795 int find_edge_index (struct edge_list *, basic_block, basic_block);
796 edge find_edge (basic_block, basic_block);
798 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
799 except for edge forwarding */
800 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
801 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
802 to care REG_DEAD notes. */
803 #define CLEANUP_THREADING 8 /* Do jump threading. */
804 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
805 insns. */
806 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
808 /* The following are ORed in on top of the CLEANUP* flags in calls to
809 struct_equiv_block_eq. */
810 #define STRUCT_EQUIV_START 64 /* Initializes the search range. */
811 #define STRUCT_EQUIV_RERUN 128 /* Rerun to find register use in
812 found equivalence. */
813 #define STRUCT_EQUIV_FINAL 256 /* Make any changes necessary to get
814 actual equivalence. */
815 #define STRUCT_EQUIV_NEED_FULL_BLOCK 512 /* struct_equiv_block_eq is required
816 to match only full blocks */
817 #define STRUCT_EQUIV_MATCH_JUMPS 1024 /* Also include the jumps at the end of the block in the comparison. */
819 /* In lcm.c */
820 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
821 sbitmap *, sbitmap *, sbitmap **,
822 sbitmap **);
823 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
824 sbitmap *, sbitmap *,
825 sbitmap *, sbitmap **,
826 sbitmap **);
827 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
829 /* In predict.c */
830 extern bool maybe_hot_bb_p (const_basic_block);
831 extern bool probably_cold_bb_p (const_basic_block);
832 extern bool probably_never_executed_bb_p (const_basic_block);
833 extern bool tree_predicted_by_p (const_basic_block, enum br_predictor);
834 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
835 extern void tree_predict_edge (edge, enum br_predictor, int);
836 extern void rtl_predict_edge (edge, enum br_predictor, int);
837 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
838 extern void guess_outgoing_edge_probabilities (basic_block);
839 extern void remove_predictions_associated_with_edge (edge);
840 extern bool edge_probability_reliable_p (const_edge);
841 extern bool br_prob_note_reliable_p (const_rtx);
843 /* In cfg.c */
844 extern void dump_regset (regset, FILE *);
845 extern void debug_regset (regset);
846 extern void init_flow (void);
847 extern void debug_bb (basic_block);
848 extern basic_block debug_bb_n (int);
849 extern void dump_regset (regset, FILE *);
850 extern void debug_regset (regset);
851 extern void expunge_block (basic_block);
852 extern void link_block (basic_block, basic_block);
853 extern void unlink_block (basic_block);
854 extern void compact_blocks (void);
855 extern basic_block alloc_block (void);
856 extern void alloc_aux_for_block (basic_block, int);
857 extern void alloc_aux_for_blocks (int);
858 extern void clear_aux_for_blocks (void);
859 extern void free_aux_for_blocks (void);
860 extern void alloc_aux_for_edge (edge, int);
861 extern void alloc_aux_for_edges (int);
862 extern void clear_aux_for_edges (void);
863 extern void free_aux_for_edges (void);
865 /* In cfganal.c */
866 extern void find_unreachable_blocks (void);
867 extern bool forwarder_block_p (const_basic_block);
868 extern bool can_fallthru (basic_block, basic_block);
869 extern bool could_fall_through (basic_block, basic_block);
870 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
871 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
873 /* In cfgrtl.c */
874 extern basic_block force_nonfallthru (edge);
875 extern rtx block_label (basic_block);
876 extern bool purge_all_dead_edges (void);
877 extern bool purge_dead_edges (basic_block);
879 /* In cfgbuild.c. */
880 extern void find_many_sub_basic_blocks (sbitmap);
881 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
882 extern void find_basic_blocks (rtx);
884 /* In cfgcleanup.c. */
885 extern bool cleanup_cfg (int);
886 extern bool delete_unreachable_blocks (void);
888 extern bool mark_dfs_back_edges (void);
889 extern void set_edge_can_fallthru_flag (void);
890 extern void update_br_prob_note (basic_block);
891 extern void fixup_abnormal_edges (void);
892 extern bool inside_basic_block_p (const_rtx);
893 extern bool control_flow_insn_p (const_rtx);
894 extern rtx get_last_bb_insn (basic_block);
896 /* In bb-reorder.c */
897 extern void reorder_basic_blocks (void);
899 /* In dominance.c */
901 enum cdi_direction
903 CDI_DOMINATORS = 1,
904 CDI_POST_DOMINATORS = 2
907 extern enum dom_state dom_info_state (enum cdi_direction);
908 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
909 extern bool dom_info_available_p (enum cdi_direction);
910 extern void calculate_dominance_info (enum cdi_direction);
911 extern void free_dominance_info (enum cdi_direction);
912 extern basic_block nearest_common_dominator (enum cdi_direction,
913 basic_block, basic_block);
914 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
915 bitmap);
916 extern void set_immediate_dominator (enum cdi_direction, basic_block,
917 basic_block);
918 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
919 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
920 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
921 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
922 basic_block *,
923 unsigned);
924 extern void add_to_dominance_info (enum cdi_direction, basic_block);
925 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
926 basic_block recompute_dominator (enum cdi_direction, basic_block);
927 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
928 basic_block);
929 extern void iterate_fix_dominators (enum cdi_direction,
930 VEC (basic_block, heap) *, bool);
931 extern void verify_dominators (enum cdi_direction);
932 extern basic_block first_dom_son (enum cdi_direction, basic_block);
933 extern basic_block next_dom_son (enum cdi_direction, basic_block);
934 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
935 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
937 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
938 extern void break_superblocks (void);
939 extern void relink_block_chain (bool);
940 extern void check_bb_profile (basic_block, FILE *);
941 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
942 extern void init_rtl_bb_info (basic_block);
944 extern void initialize_original_copy_tables (void);
945 extern void free_original_copy_tables (void);
946 extern void set_bb_original (basic_block, basic_block);
947 extern basic_block get_bb_original (basic_block);
948 extern void set_bb_copy (basic_block, basic_block);
949 extern basic_block get_bb_copy (basic_block);
950 void set_loop_copy (struct loop *, struct loop *);
951 struct loop *get_loop_copy (struct loop *);
954 extern rtx insert_insn_end_bb_new (rtx, basic_block);
956 #include "cfghooks.h"
958 /* In struct-equiv.c */
960 /* Constants used to size arrays in struct equiv_info (currently only one).
961 When these limits are exceeded, struct_equiv returns zero.
962 The maximum number of pseudo registers that are different in the two blocks,
963 but appear in equivalent places and are dead at the end (or where one of
964 a pair is dead at the end). */
965 #define STRUCT_EQUIV_MAX_LOCAL 16
966 /* The maximum number of references to an input register that struct_equiv
967 can handle. */
969 /* Structure used to track state during struct_equiv that can be rolled
970 back when we find we can't match an insn, or if we want to match part
971 of it in a different way.
972 This information pertains to the pair of partial blocks that has been
973 matched so far. Since this pair is structurally equivalent, this is
974 conceptually just one partial block expressed in two potentially
975 different ways. */
976 struct struct_equiv_checkpoint
978 int ninsns; /* Insns are matched so far. */
979 int local_count; /* Number of block-local registers. */
980 int input_count; /* Number of inputs to the block. */
982 /* X_START and Y_START are the first insns (in insn stream order)
983 of the partial blocks that have been considered for matching so far.
984 Since we are scanning backwards, they are also the instructions that
985 are currently considered - or the last ones that have been considered -
986 for matching (Unless we tracked back to these because a preceding
987 instruction failed to match). */
988 rtx x_start, y_start;
990 /* INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
991 during the current pass; we keep X_INPUT / Y_INPUT around between passes
992 so that we can match REG_EQUAL / REG_EQUIV notes referring to these. */
993 bool input_valid;
995 /* Some information would be expensive to exactly checkpoint, so we
996 merely increment VERSION any time information about local
997 registers, inputs and/or register liveness changes. When backtracking,
998 it is decremented for changes that can be undone, and if a discrepancy
999 remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1000 that a new pass should be made over the entire block match to get
1001 accurate register information. */
1002 int version;
1005 /* A struct equiv_info is used to pass information to struct_equiv and
1006 to gather state while two basic blocks are checked for structural
1007 equivalence. */
1009 struct equiv_info
1011 /* Fields set up by the caller to struct_equiv_block_eq */
1013 basic_block x_block, y_block; /* The two blocks being matched. */
1015 /* MODE carries the mode bits from cleanup_cfg if we are called from
1016 try_crossjump_to_edge, and additionally it carries the
1017 STRUCT_EQUIV_* bits described above. */
1018 int mode;
1020 /* INPUT_COST is the cost that adding an extra input to the matched blocks
1021 is supposed to have, and is taken into account when considering if the
1022 matched sequence should be extended backwards. input_cost < 0 means
1023 don't accept any inputs at all. */
1024 int input_cost;
1027 /* Fields to track state inside of struct_equiv_block_eq. Some of these
1028 are also outputs. */
1030 /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1031 is used as an input parameter, i.e. where different registers are used
1032 as sources. This is only used for a register that is live at the end
1033 of the blocks, or in some identical code at the end of the blocks;
1034 Inputs that are dead at the end go into X_LOCAL / Y_LOCAL. */
1035 rtx x_input, y_input;
1036 /* When a previous pass has identified a valid input, INPUT_REG is set
1037 by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1038 for the input. */
1039 rtx input_reg;
1041 /* COMMON_LIVE keeps track of the registers which are currently live
1042 (as we scan backwards from the end) and have the same numbers in both
1043 blocks. N.B. a register that is in common_live is unsuitable to become
1044 a local reg. */
1045 regset common_live;
1046 /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1047 local to one of the blocks; these registers must not be accepted as
1048 identical when encountered in both blocks. */
1049 regset x_local_live, y_local_live;
1051 /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1052 being used, to avoid having to backtrack in the next pass, so that we
1053 get accurate life info for this insn then. For each such insn,
1054 the bit with the number corresponding to the CUR.NINSNS value at the
1055 time of scanning is set. */
1056 bitmap equiv_used;
1058 /* Current state that can be saved & restored easily. */
1059 struct struct_equiv_checkpoint cur;
1060 /* BEST_MATCH is used to store the best match so far, weighing the
1061 cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1062 CUR.INPUT_COUNT * INPUT_COST of setting up the inputs. */
1063 struct struct_equiv_checkpoint best_match;
1064 /* If a checkpoint restore failed, or an input conflict newly arises,
1065 NEED_RERUN is set. This has to be tested by the caller to re-run
1066 the comparison if the match appears otherwise sound. The state kept in
1067 x_start, y_start, equiv_used and check_input_conflict ensures that
1068 we won't loop indefinitely. */
1069 bool need_rerun;
1070 /* If there is indication of an input conflict at the end,
1071 CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1072 for each insn in the next pass. This is needed so that we won't discard
1073 a partial match if there is a longer match that has to be abandoned due
1074 to an input conflict. */
1075 bool check_input_conflict;
1076 /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1077 have passed a point where there were multiple dying inputs. This helps
1078 us decide if we should set check_input_conflict for the next pass. */
1079 bool had_input_conflict;
1081 /* LIVE_UPDATE controls if we want to change any life info at all. We
1082 set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1083 pass so that we don't introduce new registers just for the note; if we
1084 can't match the notes without the current register information, we drop
1085 them. */
1086 bool live_update;
1088 /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1089 that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1090 to the next free entry. */
1091 rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1092 /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1093 was a source operand (including STRICT_LOW_PART) for the last invocation
1094 of struct_equiv mentioning it, zero if it was a destination-only operand.
1095 Since we are scanning backwards, this means the register is input/local
1096 for the (partial) block scanned so far. */
1097 bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1100 /* Additional fields that are computed for the convenience of the caller. */
1102 /* DYING_INPUTS is set to the number of local registers that turn out
1103 to be inputs to the (possibly partial) block. */
1104 int dying_inputs;
1105 /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1106 that are being compared. A final jump insn will not be included. */
1107 rtx x_end, y_end;
1109 /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1110 Y_LABEL in Y_BLOCK. */
1111 rtx x_label, y_label;
1115 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1116 extern int struct_equiv_block_eq (int, struct equiv_info *);
1117 extern bool struct_equiv_init (int, struct equiv_info *);
1118 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1120 /* In cfgcleanup.c */
1121 extern bool condjump_equiv_p (struct equiv_info *, bool);
1123 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
1124 static inline bool
1125 bb_has_eh_pred (basic_block bb)
1127 edge e;
1128 edge_iterator ei;
1130 FOR_EACH_EDGE (e, ei, bb->preds)
1132 if (e->flags & EDGE_EH)
1133 return true;
1135 return false;
1138 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
1139 static inline bool
1140 bb_has_abnormal_pred (basic_block bb)
1142 edge e;
1143 edge_iterator ei;
1145 FOR_EACH_EDGE (e, ei, bb->preds)
1147 if (e->flags & EDGE_ABNORMAL)
1148 return true;
1150 return false;
1153 /* In cfgloopmanip.c. */
1154 extern edge mfb_kj_edge;
1155 bool mfb_keep_just (edge);
1157 #endif /* GCC_BASIC_BLOCK_H */