re PR bootstrap/54281 (Fails to bootstrap with --disable-nls)
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob8f1e2b4a964ac4ae59d79ba803681daa4c0b1dfc
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "intl.h"
30 #include "tree-flow.h"
31 #include "dumpfile.h"
32 #include "cfgloop.h"
33 #include "ggc.h"
34 #include "tree-chrec.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-data-ref.h"
37 #include "params.h"
38 #include "flags.h"
39 #include "diagnostic-core.h"
40 #include "tree-inline.h"
41 #include "gmp.h"
43 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
45 /* The maximum number of dominator BBs we search for conditions
46 of loop header copies we use for simplifying a conditional
47 expression. */
48 #define MAX_DOMINATORS_TO_WALK 8
52 Analysis of number of iterations of an affine exit test.
56 /* Bounds on some value, BELOW <= X <= UP. */
58 typedef struct
60 mpz_t below, up;
61 } bounds;
64 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
66 static void
67 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
69 tree type = TREE_TYPE (expr);
70 tree op0, op1;
71 double_int off;
72 bool negate = false;
74 *var = expr;
75 mpz_set_ui (offset, 0);
77 switch (TREE_CODE (expr))
79 case MINUS_EXPR:
80 negate = true;
81 /* Fallthru. */
83 case PLUS_EXPR:
84 case POINTER_PLUS_EXPR:
85 op0 = TREE_OPERAND (expr, 0);
86 op1 = TREE_OPERAND (expr, 1);
88 if (TREE_CODE (op1) != INTEGER_CST)
89 break;
91 *var = op0;
92 /* Always sign extend the offset. */
93 off = tree_to_double_int (op1);
94 off = double_int_sext (off, TYPE_PRECISION (type));
95 mpz_set_double_int (offset, off, false);
96 if (negate)
97 mpz_neg (offset, offset);
98 break;
100 case INTEGER_CST:
101 *var = build_int_cst_type (type, 0);
102 off = tree_to_double_int (expr);
103 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
104 break;
106 default:
107 break;
111 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
112 in TYPE to MIN and MAX. */
114 static void
115 determine_value_range (tree type, tree var, mpz_t off,
116 mpz_t min, mpz_t max)
118 /* If the expression is a constant, we know its value exactly. */
119 if (integer_zerop (var))
121 mpz_set (min, off);
122 mpz_set (max, off);
123 return;
126 /* If the computation may wrap, we know nothing about the value, except for
127 the range of the type. */
128 get_type_static_bounds (type, min, max);
129 if (!nowrap_type_p (type))
130 return;
132 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
133 add it to MIN, otherwise to MAX. */
134 if (mpz_sgn (off) < 0)
135 mpz_add (max, max, off);
136 else
137 mpz_add (min, min, off);
140 /* Stores the bounds on the difference of the values of the expressions
141 (var + X) and (var + Y), computed in TYPE, to BNDS. */
143 static void
144 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
145 bounds *bnds)
147 int rel = mpz_cmp (x, y);
148 bool may_wrap = !nowrap_type_p (type);
149 mpz_t m;
151 /* If X == Y, then the expressions are always equal.
152 If X > Y, there are the following possibilities:
153 a) neither of var + X and var + Y overflow or underflow, or both of
154 them do. Then their difference is X - Y.
155 b) var + X overflows, and var + Y does not. Then the values of the
156 expressions are var + X - M and var + Y, where M is the range of
157 the type, and their difference is X - Y - M.
158 c) var + Y underflows and var + X does not. Their difference again
159 is M - X + Y.
160 Therefore, if the arithmetics in type does not overflow, then the
161 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
162 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
163 (X - Y, X - Y + M). */
165 if (rel == 0)
167 mpz_set_ui (bnds->below, 0);
168 mpz_set_ui (bnds->up, 0);
169 return;
172 mpz_init (m);
173 mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
174 mpz_add_ui (m, m, 1);
175 mpz_sub (bnds->up, x, y);
176 mpz_set (bnds->below, bnds->up);
178 if (may_wrap)
180 if (rel > 0)
181 mpz_sub (bnds->below, bnds->below, m);
182 else
183 mpz_add (bnds->up, bnds->up, m);
186 mpz_clear (m);
189 /* From condition C0 CMP C1 derives information regarding the
190 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
191 and stores it to BNDS. */
193 static void
194 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
195 tree vary, mpz_t offy,
196 tree c0, enum tree_code cmp, tree c1,
197 bounds *bnds)
199 tree varc0, varc1, tmp, ctype;
200 mpz_t offc0, offc1, loffx, loffy, bnd;
201 bool lbound = false;
202 bool no_wrap = nowrap_type_p (type);
203 bool x_ok, y_ok;
205 switch (cmp)
207 case LT_EXPR:
208 case LE_EXPR:
209 case GT_EXPR:
210 case GE_EXPR:
211 STRIP_SIGN_NOPS (c0);
212 STRIP_SIGN_NOPS (c1);
213 ctype = TREE_TYPE (c0);
214 if (!useless_type_conversion_p (ctype, type))
215 return;
217 break;
219 case EQ_EXPR:
220 /* We could derive quite precise information from EQ_EXPR, however, such
221 a guard is unlikely to appear, so we do not bother with handling
222 it. */
223 return;
225 case NE_EXPR:
226 /* NE_EXPR comparisons do not contain much of useful information, except for
227 special case of comparing with the bounds of the type. */
228 if (TREE_CODE (c1) != INTEGER_CST
229 || !INTEGRAL_TYPE_P (type))
230 return;
232 /* Ensure that the condition speaks about an expression in the same type
233 as X and Y. */
234 ctype = TREE_TYPE (c0);
235 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
236 return;
237 c0 = fold_convert (type, c0);
238 c1 = fold_convert (type, c1);
240 if (TYPE_MIN_VALUE (type)
241 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
243 cmp = GT_EXPR;
244 break;
246 if (TYPE_MAX_VALUE (type)
247 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
249 cmp = LT_EXPR;
250 break;
253 return;
254 default:
255 return;
258 mpz_init (offc0);
259 mpz_init (offc1);
260 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
261 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
263 /* We are only interested in comparisons of expressions based on VARX and
264 VARY. TODO -- we might also be able to derive some bounds from
265 expressions containing just one of the variables. */
267 if (operand_equal_p (varx, varc1, 0))
269 tmp = varc0; varc0 = varc1; varc1 = tmp;
270 mpz_swap (offc0, offc1);
271 cmp = swap_tree_comparison (cmp);
274 if (!operand_equal_p (varx, varc0, 0)
275 || !operand_equal_p (vary, varc1, 0))
276 goto end;
278 mpz_init_set (loffx, offx);
279 mpz_init_set (loffy, offy);
281 if (cmp == GT_EXPR || cmp == GE_EXPR)
283 tmp = varx; varx = vary; vary = tmp;
284 mpz_swap (offc0, offc1);
285 mpz_swap (loffx, loffy);
286 cmp = swap_tree_comparison (cmp);
287 lbound = true;
290 /* If there is no overflow, the condition implies that
292 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
294 The overflows and underflows may complicate things a bit; each
295 overflow decreases the appropriate offset by M, and underflow
296 increases it by M. The above inequality would not necessarily be
297 true if
299 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
300 VARX + OFFC0 overflows, but VARX + OFFX does not.
301 This may only happen if OFFX < OFFC0.
302 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
303 VARY + OFFC1 underflows and VARY + OFFY does not.
304 This may only happen if OFFY > OFFC1. */
306 if (no_wrap)
308 x_ok = true;
309 y_ok = true;
311 else
313 x_ok = (integer_zerop (varx)
314 || mpz_cmp (loffx, offc0) >= 0);
315 y_ok = (integer_zerop (vary)
316 || mpz_cmp (loffy, offc1) <= 0);
319 if (x_ok && y_ok)
321 mpz_init (bnd);
322 mpz_sub (bnd, loffx, loffy);
323 mpz_add (bnd, bnd, offc1);
324 mpz_sub (bnd, bnd, offc0);
326 if (cmp == LT_EXPR)
327 mpz_sub_ui (bnd, bnd, 1);
329 if (lbound)
331 mpz_neg (bnd, bnd);
332 if (mpz_cmp (bnds->below, bnd) < 0)
333 mpz_set (bnds->below, bnd);
335 else
337 if (mpz_cmp (bnd, bnds->up) < 0)
338 mpz_set (bnds->up, bnd);
340 mpz_clear (bnd);
343 mpz_clear (loffx);
344 mpz_clear (loffy);
345 end:
346 mpz_clear (offc0);
347 mpz_clear (offc1);
350 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
351 The subtraction is considered to be performed in arbitrary precision,
352 without overflows.
354 We do not attempt to be too clever regarding the value ranges of X and
355 Y; most of the time, they are just integers or ssa names offsetted by
356 integer. However, we try to use the information contained in the
357 comparisons before the loop (usually created by loop header copying). */
359 static void
360 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
362 tree type = TREE_TYPE (x);
363 tree varx, vary;
364 mpz_t offx, offy;
365 mpz_t minx, maxx, miny, maxy;
366 int cnt = 0;
367 edge e;
368 basic_block bb;
369 tree c0, c1;
370 gimple cond;
371 enum tree_code cmp;
373 /* Get rid of unnecessary casts, but preserve the value of
374 the expressions. */
375 STRIP_SIGN_NOPS (x);
376 STRIP_SIGN_NOPS (y);
378 mpz_init (bnds->below);
379 mpz_init (bnds->up);
380 mpz_init (offx);
381 mpz_init (offy);
382 split_to_var_and_offset (x, &varx, offx);
383 split_to_var_and_offset (y, &vary, offy);
385 if (!integer_zerop (varx)
386 && operand_equal_p (varx, vary, 0))
388 /* Special case VARX == VARY -- we just need to compare the
389 offsets. The matters are a bit more complicated in the
390 case addition of offsets may wrap. */
391 bound_difference_of_offsetted_base (type, offx, offy, bnds);
393 else
395 /* Otherwise, use the value ranges to determine the initial
396 estimates on below and up. */
397 mpz_init (minx);
398 mpz_init (maxx);
399 mpz_init (miny);
400 mpz_init (maxy);
401 determine_value_range (type, varx, offx, minx, maxx);
402 determine_value_range (type, vary, offy, miny, maxy);
404 mpz_sub (bnds->below, minx, maxy);
405 mpz_sub (bnds->up, maxx, miny);
406 mpz_clear (minx);
407 mpz_clear (maxx);
408 mpz_clear (miny);
409 mpz_clear (maxy);
412 /* If both X and Y are constants, we cannot get any more precise. */
413 if (integer_zerop (varx) && integer_zerop (vary))
414 goto end;
416 /* Now walk the dominators of the loop header and use the entry
417 guards to refine the estimates. */
418 for (bb = loop->header;
419 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
420 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
422 if (!single_pred_p (bb))
423 continue;
424 e = single_pred_edge (bb);
426 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
427 continue;
429 cond = last_stmt (e->src);
430 c0 = gimple_cond_lhs (cond);
431 cmp = gimple_cond_code (cond);
432 c1 = gimple_cond_rhs (cond);
434 if (e->flags & EDGE_FALSE_VALUE)
435 cmp = invert_tree_comparison (cmp, false);
437 refine_bounds_using_guard (type, varx, offx, vary, offy,
438 c0, cmp, c1, bnds);
439 ++cnt;
442 end:
443 mpz_clear (offx);
444 mpz_clear (offy);
447 /* Update the bounds in BNDS that restrict the value of X to the bounds
448 that restrict the value of X + DELTA. X can be obtained as a
449 difference of two values in TYPE. */
451 static void
452 bounds_add (bounds *bnds, double_int delta, tree type)
454 mpz_t mdelta, max;
456 mpz_init (mdelta);
457 mpz_set_double_int (mdelta, delta, false);
459 mpz_init (max);
460 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
462 mpz_add (bnds->up, bnds->up, mdelta);
463 mpz_add (bnds->below, bnds->below, mdelta);
465 if (mpz_cmp (bnds->up, max) > 0)
466 mpz_set (bnds->up, max);
468 mpz_neg (max, max);
469 if (mpz_cmp (bnds->below, max) < 0)
470 mpz_set (bnds->below, max);
472 mpz_clear (mdelta);
473 mpz_clear (max);
476 /* Update the bounds in BNDS that restrict the value of X to the bounds
477 that restrict the value of -X. */
479 static void
480 bounds_negate (bounds *bnds)
482 mpz_t tmp;
484 mpz_init_set (tmp, bnds->up);
485 mpz_neg (bnds->up, bnds->below);
486 mpz_neg (bnds->below, tmp);
487 mpz_clear (tmp);
490 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
492 static tree
493 inverse (tree x, tree mask)
495 tree type = TREE_TYPE (x);
496 tree rslt;
497 unsigned ctr = tree_floor_log2 (mask);
499 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
501 unsigned HOST_WIDE_INT ix;
502 unsigned HOST_WIDE_INT imask;
503 unsigned HOST_WIDE_INT irslt = 1;
505 gcc_assert (cst_and_fits_in_hwi (x));
506 gcc_assert (cst_and_fits_in_hwi (mask));
508 ix = int_cst_value (x);
509 imask = int_cst_value (mask);
511 for (; ctr; ctr--)
513 irslt *= ix;
514 ix *= ix;
516 irslt &= imask;
518 rslt = build_int_cst_type (type, irslt);
520 else
522 rslt = build_int_cst (type, 1);
523 for (; ctr; ctr--)
525 rslt = int_const_binop (MULT_EXPR, rslt, x);
526 x = int_const_binop (MULT_EXPR, x, x);
528 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
531 return rslt;
534 /* Derives the upper bound BND on the number of executions of loop with exit
535 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
536 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
537 that the loop ends through this exit, i.e., the induction variable ever
538 reaches the value of C.
540 The value C is equal to final - base, where final and base are the final and
541 initial value of the actual induction variable in the analysed loop. BNDS
542 bounds the value of this difference when computed in signed type with
543 unbounded range, while the computation of C is performed in an unsigned
544 type with the range matching the range of the type of the induction variable.
545 In particular, BNDS.up contains an upper bound on C in the following cases:
546 -- if the iv must reach its final value without overflow, i.e., if
547 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
548 -- if final >= base, which we know to hold when BNDS.below >= 0. */
550 static void
551 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
552 bounds *bnds, bool exit_must_be_taken)
554 double_int max;
555 mpz_t d;
556 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
557 || mpz_sgn (bnds->below) >= 0);
559 if (multiple_of_p (TREE_TYPE (c), c, s))
561 /* If C is an exact multiple of S, then its value will be reached before
562 the induction variable overflows (unless the loop is exited in some
563 other way before). Note that the actual induction variable in the
564 loop (which ranges from base to final instead of from 0 to C) may
565 overflow, in which case BNDS.up will not be giving a correct upper
566 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
567 no_overflow = true;
568 exit_must_be_taken = true;
571 /* If the induction variable can overflow, the number of iterations is at
572 most the period of the control variable (or infinite, but in that case
573 the whole # of iterations analysis will fail). */
574 if (!no_overflow)
576 max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
577 - tree_low_cst (num_ending_zeros (s), 1));
578 mpz_set_double_int (bnd, max, true);
579 return;
582 /* Now we know that the induction variable does not overflow, so the loop
583 iterates at most (range of type / S) times. */
584 mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
585 true);
587 /* If the induction variable is guaranteed to reach the value of C before
588 overflow, ... */
589 if (exit_must_be_taken)
591 /* ... then we can strengthen this to C / S, and possibly we can use
592 the upper bound on C given by BNDS. */
593 if (TREE_CODE (c) == INTEGER_CST)
594 mpz_set_double_int (bnd, tree_to_double_int (c), true);
595 else if (bnds_u_valid)
596 mpz_set (bnd, bnds->up);
599 mpz_init (d);
600 mpz_set_double_int (d, tree_to_double_int (s), true);
601 mpz_fdiv_q (bnd, bnd, d);
602 mpz_clear (d);
605 /* Determines number of iterations of loop whose ending condition
606 is IV <> FINAL. TYPE is the type of the iv. The number of
607 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
608 we know that the exit must be taken eventually, i.e., that the IV
609 ever reaches the value FINAL (we derived this earlier, and possibly set
610 NITER->assumptions to make sure this is the case). BNDS contains the
611 bounds on the difference FINAL - IV->base. */
613 static bool
614 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
615 struct tree_niter_desc *niter, bool exit_must_be_taken,
616 bounds *bnds)
618 tree niter_type = unsigned_type_for (type);
619 tree s, c, d, bits, assumption, tmp, bound;
620 mpz_t max;
622 niter->control = *iv;
623 niter->bound = final;
624 niter->cmp = NE_EXPR;
626 /* Rearrange the terms so that we get inequality S * i <> C, with S
627 positive. Also cast everything to the unsigned type. If IV does
628 not overflow, BNDS bounds the value of C. Also, this is the
629 case if the computation |FINAL - IV->base| does not overflow, i.e.,
630 if BNDS->below in the result is nonnegative. */
631 if (tree_int_cst_sign_bit (iv->step))
633 s = fold_convert (niter_type,
634 fold_build1 (NEGATE_EXPR, type, iv->step));
635 c = fold_build2 (MINUS_EXPR, niter_type,
636 fold_convert (niter_type, iv->base),
637 fold_convert (niter_type, final));
638 bounds_negate (bnds);
640 else
642 s = fold_convert (niter_type, iv->step);
643 c = fold_build2 (MINUS_EXPR, niter_type,
644 fold_convert (niter_type, final),
645 fold_convert (niter_type, iv->base));
648 mpz_init (max);
649 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
650 exit_must_be_taken);
651 niter->max = mpz_get_double_int (niter_type, max, false);
652 mpz_clear (max);
654 /* First the trivial cases -- when the step is 1. */
655 if (integer_onep (s))
657 niter->niter = c;
658 return true;
661 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
662 is infinite. Otherwise, the number of iterations is
663 (inverse(s/d) * (c/d)) mod (size of mode/d). */
664 bits = num_ending_zeros (s);
665 bound = build_low_bits_mask (niter_type,
666 (TYPE_PRECISION (niter_type)
667 - tree_low_cst (bits, 1)));
669 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
670 build_int_cst (niter_type, 1), bits);
671 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
673 if (!exit_must_be_taken)
675 /* If we cannot assume that the exit is taken eventually, record the
676 assumptions for divisibility of c. */
677 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
678 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
679 assumption, build_int_cst (niter_type, 0));
680 if (!integer_nonzerop (assumption))
681 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
682 niter->assumptions, assumption);
685 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
686 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
687 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
688 return true;
691 /* Checks whether we can determine the final value of the control variable
692 of the loop with ending condition IV0 < IV1 (computed in TYPE).
693 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
694 of the step. The assumptions necessary to ensure that the computation
695 of the final value does not overflow are recorded in NITER. If we
696 find the final value, we adjust DELTA and return TRUE. Otherwise
697 we return false. BNDS bounds the value of IV1->base - IV0->base,
698 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
699 true if we know that the exit must be taken eventually. */
701 static bool
702 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
703 struct tree_niter_desc *niter,
704 tree *delta, tree step,
705 bool exit_must_be_taken, bounds *bnds)
707 tree niter_type = TREE_TYPE (step);
708 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
709 tree tmod;
710 mpz_t mmod;
711 tree assumption = boolean_true_node, bound, noloop;
712 bool ret = false, fv_comp_no_overflow;
713 tree type1 = type;
714 if (POINTER_TYPE_P (type))
715 type1 = sizetype;
717 if (TREE_CODE (mod) != INTEGER_CST)
718 return false;
719 if (integer_nonzerop (mod))
720 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
721 tmod = fold_convert (type1, mod);
723 mpz_init (mmod);
724 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
725 mpz_neg (mmod, mmod);
727 /* If the induction variable does not overflow and the exit is taken,
728 then the computation of the final value does not overflow. This is
729 also obviously the case if the new final value is equal to the
730 current one. Finally, we postulate this for pointer type variables,
731 as the code cannot rely on the object to that the pointer points being
732 placed at the end of the address space (and more pragmatically,
733 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
734 if (integer_zerop (mod) || POINTER_TYPE_P (type))
735 fv_comp_no_overflow = true;
736 else if (!exit_must_be_taken)
737 fv_comp_no_overflow = false;
738 else
739 fv_comp_no_overflow =
740 (iv0->no_overflow && integer_nonzerop (iv0->step))
741 || (iv1->no_overflow && integer_nonzerop (iv1->step));
743 if (integer_nonzerop (iv0->step))
745 /* The final value of the iv is iv1->base + MOD, assuming that this
746 computation does not overflow, and that
747 iv0->base <= iv1->base + MOD. */
748 if (!fv_comp_no_overflow)
750 bound = fold_build2 (MINUS_EXPR, type1,
751 TYPE_MAX_VALUE (type1), tmod);
752 assumption = fold_build2 (LE_EXPR, boolean_type_node,
753 iv1->base, bound);
754 if (integer_zerop (assumption))
755 goto end;
757 if (mpz_cmp (mmod, bnds->below) < 0)
758 noloop = boolean_false_node;
759 else if (POINTER_TYPE_P (type))
760 noloop = fold_build2 (GT_EXPR, boolean_type_node,
761 iv0->base,
762 fold_build_pointer_plus (iv1->base, tmod));
763 else
764 noloop = fold_build2 (GT_EXPR, boolean_type_node,
765 iv0->base,
766 fold_build2 (PLUS_EXPR, type1,
767 iv1->base, tmod));
769 else
771 /* The final value of the iv is iv0->base - MOD, assuming that this
772 computation does not overflow, and that
773 iv0->base - MOD <= iv1->base. */
774 if (!fv_comp_no_overflow)
776 bound = fold_build2 (PLUS_EXPR, type1,
777 TYPE_MIN_VALUE (type1), tmod);
778 assumption = fold_build2 (GE_EXPR, boolean_type_node,
779 iv0->base, bound);
780 if (integer_zerop (assumption))
781 goto end;
783 if (mpz_cmp (mmod, bnds->below) < 0)
784 noloop = boolean_false_node;
785 else if (POINTER_TYPE_P (type))
786 noloop = fold_build2 (GT_EXPR, boolean_type_node,
787 fold_build_pointer_plus (iv0->base,
788 fold_build1 (NEGATE_EXPR,
789 type1, tmod)),
790 iv1->base);
791 else
792 noloop = fold_build2 (GT_EXPR, boolean_type_node,
793 fold_build2 (MINUS_EXPR, type1,
794 iv0->base, tmod),
795 iv1->base);
798 if (!integer_nonzerop (assumption))
799 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
800 niter->assumptions,
801 assumption);
802 if (!integer_zerop (noloop))
803 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
804 niter->may_be_zero,
805 noloop);
806 bounds_add (bnds, tree_to_double_int (mod), type);
807 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
809 ret = true;
810 end:
811 mpz_clear (mmod);
812 return ret;
815 /* Add assertions to NITER that ensure that the control variable of the loop
816 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
817 are TYPE. Returns false if we can prove that there is an overflow, true
818 otherwise. STEP is the absolute value of the step. */
820 static bool
821 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
822 struct tree_niter_desc *niter, tree step)
824 tree bound, d, assumption, diff;
825 tree niter_type = TREE_TYPE (step);
827 if (integer_nonzerop (iv0->step))
829 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
830 if (iv0->no_overflow)
831 return true;
833 /* If iv0->base is a constant, we can determine the last value before
834 overflow precisely; otherwise we conservatively assume
835 MAX - STEP + 1. */
837 if (TREE_CODE (iv0->base) == INTEGER_CST)
839 d = fold_build2 (MINUS_EXPR, niter_type,
840 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
841 fold_convert (niter_type, iv0->base));
842 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
844 else
845 diff = fold_build2 (MINUS_EXPR, niter_type, step,
846 build_int_cst (niter_type, 1));
847 bound = fold_build2 (MINUS_EXPR, type,
848 TYPE_MAX_VALUE (type), fold_convert (type, diff));
849 assumption = fold_build2 (LE_EXPR, boolean_type_node,
850 iv1->base, bound);
852 else
854 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
855 if (iv1->no_overflow)
856 return true;
858 if (TREE_CODE (iv1->base) == INTEGER_CST)
860 d = fold_build2 (MINUS_EXPR, niter_type,
861 fold_convert (niter_type, iv1->base),
862 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
863 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
865 else
866 diff = fold_build2 (MINUS_EXPR, niter_type, step,
867 build_int_cst (niter_type, 1));
868 bound = fold_build2 (PLUS_EXPR, type,
869 TYPE_MIN_VALUE (type), fold_convert (type, diff));
870 assumption = fold_build2 (GE_EXPR, boolean_type_node,
871 iv0->base, bound);
874 if (integer_zerop (assumption))
875 return false;
876 if (!integer_nonzerop (assumption))
877 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
878 niter->assumptions, assumption);
880 iv0->no_overflow = true;
881 iv1->no_overflow = true;
882 return true;
885 /* Add an assumption to NITER that a loop whose ending condition
886 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
887 bounds the value of IV1->base - IV0->base. */
889 static void
890 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
891 struct tree_niter_desc *niter, bounds *bnds)
893 tree assumption = boolean_true_node, bound, diff;
894 tree mbz, mbzl, mbzr, type1;
895 bool rolls_p, no_overflow_p;
896 double_int dstep;
897 mpz_t mstep, max;
899 /* We are going to compute the number of iterations as
900 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
901 variant of TYPE. This formula only works if
903 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
905 (where MAX is the maximum value of the unsigned variant of TYPE, and
906 the computations in this formula are performed in full precision,
907 i.e., without overflows).
909 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
910 we have a condition of the form iv0->base - step < iv1->base before the loop,
911 and for loops iv0->base < iv1->base - step * i the condition
912 iv0->base < iv1->base + step, due to loop header copying, which enable us
913 to prove the lower bound.
915 The upper bound is more complicated. Unless the expressions for initial
916 and final value themselves contain enough information, we usually cannot
917 derive it from the context. */
919 /* First check whether the answer does not follow from the bounds we gathered
920 before. */
921 if (integer_nonzerop (iv0->step))
922 dstep = tree_to_double_int (iv0->step);
923 else
925 dstep = double_int_sext (tree_to_double_int (iv1->step),
926 TYPE_PRECISION (type));
927 dstep = double_int_neg (dstep);
930 mpz_init (mstep);
931 mpz_set_double_int (mstep, dstep, true);
932 mpz_neg (mstep, mstep);
933 mpz_add_ui (mstep, mstep, 1);
935 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
937 mpz_init (max);
938 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
939 mpz_add (max, max, mstep);
940 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
941 /* For pointers, only values lying inside a single object
942 can be compared or manipulated by pointer arithmetics.
943 Gcc in general does not allow or handle objects larger
944 than half of the address space, hence the upper bound
945 is satisfied for pointers. */
946 || POINTER_TYPE_P (type));
947 mpz_clear (mstep);
948 mpz_clear (max);
950 if (rolls_p && no_overflow_p)
951 return;
953 type1 = type;
954 if (POINTER_TYPE_P (type))
955 type1 = sizetype;
957 /* Now the hard part; we must formulate the assumption(s) as expressions, and
958 we must be careful not to introduce overflow. */
960 if (integer_nonzerop (iv0->step))
962 diff = fold_build2 (MINUS_EXPR, type1,
963 iv0->step, build_int_cst (type1, 1));
965 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
966 0 address never belongs to any object, we can assume this for
967 pointers. */
968 if (!POINTER_TYPE_P (type))
970 bound = fold_build2 (PLUS_EXPR, type1,
971 TYPE_MIN_VALUE (type), diff);
972 assumption = fold_build2 (GE_EXPR, boolean_type_node,
973 iv0->base, bound);
976 /* And then we can compute iv0->base - diff, and compare it with
977 iv1->base. */
978 mbzl = fold_build2 (MINUS_EXPR, type1,
979 fold_convert (type1, iv0->base), diff);
980 mbzr = fold_convert (type1, iv1->base);
982 else
984 diff = fold_build2 (PLUS_EXPR, type1,
985 iv1->step, build_int_cst (type1, 1));
987 if (!POINTER_TYPE_P (type))
989 bound = fold_build2 (PLUS_EXPR, type1,
990 TYPE_MAX_VALUE (type), diff);
991 assumption = fold_build2 (LE_EXPR, boolean_type_node,
992 iv1->base, bound);
995 mbzl = fold_convert (type1, iv0->base);
996 mbzr = fold_build2 (MINUS_EXPR, type1,
997 fold_convert (type1, iv1->base), diff);
1000 if (!integer_nonzerop (assumption))
1001 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1002 niter->assumptions, assumption);
1003 if (!rolls_p)
1005 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1006 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1007 niter->may_be_zero, mbz);
1011 /* Determines number of iterations of loop whose ending condition
1012 is IV0 < IV1. TYPE is the type of the iv. The number of
1013 iterations is stored to NITER. BNDS bounds the difference
1014 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1015 that the exit must be taken eventually. */
1017 static bool
1018 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1019 struct tree_niter_desc *niter,
1020 bool exit_must_be_taken, bounds *bnds)
1022 tree niter_type = unsigned_type_for (type);
1023 tree delta, step, s;
1024 mpz_t mstep, tmp;
1026 if (integer_nonzerop (iv0->step))
1028 niter->control = *iv0;
1029 niter->cmp = LT_EXPR;
1030 niter->bound = iv1->base;
1032 else
1034 niter->control = *iv1;
1035 niter->cmp = GT_EXPR;
1036 niter->bound = iv0->base;
1039 delta = fold_build2 (MINUS_EXPR, niter_type,
1040 fold_convert (niter_type, iv1->base),
1041 fold_convert (niter_type, iv0->base));
1043 /* First handle the special case that the step is +-1. */
1044 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1045 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1047 /* for (i = iv0->base; i < iv1->base; i++)
1051 for (i = iv1->base; i > iv0->base; i--).
1053 In both cases # of iterations is iv1->base - iv0->base, assuming that
1054 iv1->base >= iv0->base.
1056 First try to derive a lower bound on the value of
1057 iv1->base - iv0->base, computed in full precision. If the difference
1058 is nonnegative, we are done, otherwise we must record the
1059 condition. */
1061 if (mpz_sgn (bnds->below) < 0)
1062 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1063 iv1->base, iv0->base);
1064 niter->niter = delta;
1065 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1066 return true;
1069 if (integer_nonzerop (iv0->step))
1070 step = fold_convert (niter_type, iv0->step);
1071 else
1072 step = fold_convert (niter_type,
1073 fold_build1 (NEGATE_EXPR, type, iv1->step));
1075 /* If we can determine the final value of the control iv exactly, we can
1076 transform the condition to != comparison. In particular, this will be
1077 the case if DELTA is constant. */
1078 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1079 exit_must_be_taken, bnds))
1081 affine_iv zps;
1083 zps.base = build_int_cst (niter_type, 0);
1084 zps.step = step;
1085 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1086 zps does not overflow. */
1087 zps.no_overflow = true;
1089 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1092 /* Make sure that the control iv does not overflow. */
1093 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1094 return false;
1096 /* We determine the number of iterations as (delta + step - 1) / step. For
1097 this to work, we must know that iv1->base >= iv0->base - step + 1,
1098 otherwise the loop does not roll. */
1099 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1101 s = fold_build2 (MINUS_EXPR, niter_type,
1102 step, build_int_cst (niter_type, 1));
1103 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1104 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1106 mpz_init (mstep);
1107 mpz_init (tmp);
1108 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1109 mpz_add (tmp, bnds->up, mstep);
1110 mpz_sub_ui (tmp, tmp, 1);
1111 mpz_fdiv_q (tmp, tmp, mstep);
1112 niter->max = mpz_get_double_int (niter_type, tmp, false);
1113 mpz_clear (mstep);
1114 mpz_clear (tmp);
1116 return true;
1119 /* Determines number of iterations of loop whose ending condition
1120 is IV0 <= IV1. TYPE is the type of the iv. The number of
1121 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1122 we know that this condition must eventually become false (we derived this
1123 earlier, and possibly set NITER->assumptions to make sure this
1124 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1126 static bool
1127 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1128 struct tree_niter_desc *niter, bool exit_must_be_taken,
1129 bounds *bnds)
1131 tree assumption;
1132 tree type1 = type;
1133 if (POINTER_TYPE_P (type))
1134 type1 = sizetype;
1136 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1137 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1138 value of the type. This we must know anyway, since if it is
1139 equal to this value, the loop rolls forever. We do not check
1140 this condition for pointer type ivs, as the code cannot rely on
1141 the object to that the pointer points being placed at the end of
1142 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1143 not defined for pointers). */
1145 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1147 if (integer_nonzerop (iv0->step))
1148 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1149 iv1->base, TYPE_MAX_VALUE (type));
1150 else
1151 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1152 iv0->base, TYPE_MIN_VALUE (type));
1154 if (integer_zerop (assumption))
1155 return false;
1156 if (!integer_nonzerop (assumption))
1157 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1158 niter->assumptions, assumption);
1161 if (integer_nonzerop (iv0->step))
1163 if (POINTER_TYPE_P (type))
1164 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1165 else
1166 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1167 build_int_cst (type1, 1));
1169 else if (POINTER_TYPE_P (type))
1170 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1171 else
1172 iv0->base = fold_build2 (MINUS_EXPR, type1,
1173 iv0->base, build_int_cst (type1, 1));
1175 bounds_add (bnds, double_int_one, type1);
1177 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1178 bnds);
1181 /* Dumps description of affine induction variable IV to FILE. */
1183 static void
1184 dump_affine_iv (FILE *file, affine_iv *iv)
1186 if (!integer_zerop (iv->step))
1187 fprintf (file, "[");
1189 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1191 if (!integer_zerop (iv->step))
1193 fprintf (file, ", + , ");
1194 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1195 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1199 /* Determine the number of iterations according to condition (for staying
1200 inside loop) which compares two induction variables using comparison
1201 operator CODE. The induction variable on left side of the comparison
1202 is IV0, the right-hand side is IV1. Both induction variables must have
1203 type TYPE, which must be an integer or pointer type. The steps of the
1204 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1206 LOOP is the loop whose number of iterations we are determining.
1208 ONLY_EXIT is true if we are sure this is the only way the loop could be
1209 exited (including possibly non-returning function calls, exceptions, etc.)
1210 -- in this case we can use the information whether the control induction
1211 variables can overflow or not in a more efficient way.
1213 The results (number of iterations and assumptions as described in
1214 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1215 Returns false if it fails to determine number of iterations, true if it
1216 was determined (possibly with some assumptions). */
1218 static bool
1219 number_of_iterations_cond (struct loop *loop,
1220 tree type, affine_iv *iv0, enum tree_code code,
1221 affine_iv *iv1, struct tree_niter_desc *niter,
1222 bool only_exit)
1224 bool exit_must_be_taken = false, ret;
1225 bounds bnds;
1227 /* The meaning of these assumptions is this:
1228 if !assumptions
1229 then the rest of information does not have to be valid
1230 if may_be_zero then the loop does not roll, even if
1231 niter != 0. */
1232 niter->assumptions = boolean_true_node;
1233 niter->may_be_zero = boolean_false_node;
1234 niter->niter = NULL_TREE;
1235 niter->max = double_int_zero;
1237 niter->bound = NULL_TREE;
1238 niter->cmp = ERROR_MARK;
1240 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1241 the control variable is on lhs. */
1242 if (code == GE_EXPR || code == GT_EXPR
1243 || (code == NE_EXPR && integer_zerop (iv0->step)))
1245 SWAP (iv0, iv1);
1246 code = swap_tree_comparison (code);
1249 if (POINTER_TYPE_P (type))
1251 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1252 to the same object. If they do, the control variable cannot wrap
1253 (as wrap around the bounds of memory will never return a pointer
1254 that would be guaranteed to point to the same object, even if we
1255 avoid undefined behavior by casting to size_t and back). */
1256 iv0->no_overflow = true;
1257 iv1->no_overflow = true;
1260 /* If the control induction variable does not overflow and the only exit
1261 from the loop is the one that we analyze, we know it must be taken
1262 eventually. */
1263 if (only_exit)
1265 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1266 exit_must_be_taken = true;
1267 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1268 exit_must_be_taken = true;
1271 /* We can handle the case when neither of the sides of the comparison is
1272 invariant, provided that the test is NE_EXPR. This rarely occurs in
1273 practice, but it is simple enough to manage. */
1274 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1276 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1277 if (code != NE_EXPR)
1278 return false;
1280 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1281 iv0->step, iv1->step);
1282 iv0->no_overflow = false;
1283 iv1->step = build_int_cst (step_type, 0);
1284 iv1->no_overflow = true;
1287 /* If the result of the comparison is a constant, the loop is weird. More
1288 precise handling would be possible, but the situation is not common enough
1289 to waste time on it. */
1290 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1291 return false;
1293 /* Ignore loops of while (i-- < 10) type. */
1294 if (code != NE_EXPR)
1296 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1297 return false;
1299 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1300 return false;
1303 /* If the loop exits immediately, there is nothing to do. */
1304 if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1306 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1307 niter->max = double_int_zero;
1308 return true;
1311 /* OK, now we know we have a senseful loop. Handle several cases, depending
1312 on what comparison operator is used. */
1313 bound_difference (loop, iv1->base, iv0->base, &bnds);
1315 if (dump_file && (dump_flags & TDF_DETAILS))
1317 fprintf (dump_file,
1318 "Analyzing # of iterations of loop %d\n", loop->num);
1320 fprintf (dump_file, " exit condition ");
1321 dump_affine_iv (dump_file, iv0);
1322 fprintf (dump_file, " %s ",
1323 code == NE_EXPR ? "!="
1324 : code == LT_EXPR ? "<"
1325 : "<=");
1326 dump_affine_iv (dump_file, iv1);
1327 fprintf (dump_file, "\n");
1329 fprintf (dump_file, " bounds on difference of bases: ");
1330 mpz_out_str (dump_file, 10, bnds.below);
1331 fprintf (dump_file, " ... ");
1332 mpz_out_str (dump_file, 10, bnds.up);
1333 fprintf (dump_file, "\n");
1336 switch (code)
1338 case NE_EXPR:
1339 gcc_assert (integer_zerop (iv1->step));
1340 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1341 exit_must_be_taken, &bnds);
1342 break;
1344 case LT_EXPR:
1345 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1346 &bnds);
1347 break;
1349 case LE_EXPR:
1350 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1351 &bnds);
1352 break;
1354 default:
1355 gcc_unreachable ();
1358 mpz_clear (bnds.up);
1359 mpz_clear (bnds.below);
1361 if (dump_file && (dump_flags & TDF_DETAILS))
1363 if (ret)
1365 fprintf (dump_file, " result:\n");
1366 if (!integer_nonzerop (niter->assumptions))
1368 fprintf (dump_file, " under assumptions ");
1369 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1370 fprintf (dump_file, "\n");
1373 if (!integer_zerop (niter->may_be_zero))
1375 fprintf (dump_file, " zero if ");
1376 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1377 fprintf (dump_file, "\n");
1380 fprintf (dump_file, " # of iterations ");
1381 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1382 fprintf (dump_file, ", bounded by ");
1383 dump_double_int (dump_file, niter->max, true);
1384 fprintf (dump_file, "\n");
1386 else
1387 fprintf (dump_file, " failed\n\n");
1389 return ret;
1392 /* Substitute NEW for OLD in EXPR and fold the result. */
1394 static tree
1395 simplify_replace_tree (tree expr, tree old, tree new_tree)
1397 unsigned i, n;
1398 tree ret = NULL_TREE, e, se;
1400 if (!expr)
1401 return NULL_TREE;
1403 /* Do not bother to replace constants. */
1404 if (CONSTANT_CLASS_P (old))
1405 return expr;
1407 if (expr == old
1408 || operand_equal_p (expr, old, 0))
1409 return unshare_expr (new_tree);
1411 if (!EXPR_P (expr))
1412 return expr;
1414 n = TREE_OPERAND_LENGTH (expr);
1415 for (i = 0; i < n; i++)
1417 e = TREE_OPERAND (expr, i);
1418 se = simplify_replace_tree (e, old, new_tree);
1419 if (e == se)
1420 continue;
1422 if (!ret)
1423 ret = copy_node (expr);
1425 TREE_OPERAND (ret, i) = se;
1428 return (ret ? fold (ret) : expr);
1431 /* Expand definitions of ssa names in EXPR as long as they are simple
1432 enough, and return the new expression. */
1434 tree
1435 expand_simple_operations (tree expr)
1437 unsigned i, n;
1438 tree ret = NULL_TREE, e, ee, e1;
1439 enum tree_code code;
1440 gimple stmt;
1442 if (expr == NULL_TREE)
1443 return expr;
1445 if (is_gimple_min_invariant (expr))
1446 return expr;
1448 code = TREE_CODE (expr);
1449 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1451 n = TREE_OPERAND_LENGTH (expr);
1452 for (i = 0; i < n; i++)
1454 e = TREE_OPERAND (expr, i);
1455 ee = expand_simple_operations (e);
1456 if (e == ee)
1457 continue;
1459 if (!ret)
1460 ret = copy_node (expr);
1462 TREE_OPERAND (ret, i) = ee;
1465 if (!ret)
1466 return expr;
1468 fold_defer_overflow_warnings ();
1469 ret = fold (ret);
1470 fold_undefer_and_ignore_overflow_warnings ();
1471 return ret;
1474 if (TREE_CODE (expr) != SSA_NAME)
1475 return expr;
1477 stmt = SSA_NAME_DEF_STMT (expr);
1478 if (gimple_code (stmt) == GIMPLE_PHI)
1480 basic_block src, dest;
1482 if (gimple_phi_num_args (stmt) != 1)
1483 return expr;
1484 e = PHI_ARG_DEF (stmt, 0);
1486 /* Avoid propagating through loop exit phi nodes, which
1487 could break loop-closed SSA form restrictions. */
1488 dest = gimple_bb (stmt);
1489 src = single_pred (dest);
1490 if (TREE_CODE (e) == SSA_NAME
1491 && src->loop_father != dest->loop_father)
1492 return expr;
1494 return expand_simple_operations (e);
1496 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1497 return expr;
1499 e = gimple_assign_rhs1 (stmt);
1500 code = gimple_assign_rhs_code (stmt);
1501 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1503 if (is_gimple_min_invariant (e))
1504 return e;
1506 if (code == SSA_NAME)
1507 return expand_simple_operations (e);
1509 return expr;
1512 switch (code)
1514 CASE_CONVERT:
1515 /* Casts are simple. */
1516 ee = expand_simple_operations (e);
1517 return fold_build1 (code, TREE_TYPE (expr), ee);
1519 case PLUS_EXPR:
1520 case MINUS_EXPR:
1521 case POINTER_PLUS_EXPR:
1522 /* And increments and decrements by a constant are simple. */
1523 e1 = gimple_assign_rhs2 (stmt);
1524 if (!is_gimple_min_invariant (e1))
1525 return expr;
1527 ee = expand_simple_operations (e);
1528 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1530 default:
1531 return expr;
1535 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1536 expression (or EXPR unchanged, if no simplification was possible). */
1538 static tree
1539 tree_simplify_using_condition_1 (tree cond, tree expr)
1541 bool changed;
1542 tree e, te, e0, e1, e2, notcond;
1543 enum tree_code code = TREE_CODE (expr);
1545 if (code == INTEGER_CST)
1546 return expr;
1548 if (code == TRUTH_OR_EXPR
1549 || code == TRUTH_AND_EXPR
1550 || code == COND_EXPR)
1552 changed = false;
1554 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1555 if (TREE_OPERAND (expr, 0) != e0)
1556 changed = true;
1558 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1559 if (TREE_OPERAND (expr, 1) != e1)
1560 changed = true;
1562 if (code == COND_EXPR)
1564 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1565 if (TREE_OPERAND (expr, 2) != e2)
1566 changed = true;
1568 else
1569 e2 = NULL_TREE;
1571 if (changed)
1573 if (code == COND_EXPR)
1574 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1575 else
1576 expr = fold_build2 (code, boolean_type_node, e0, e1);
1579 return expr;
1582 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1583 propagation, and vice versa. Fold does not handle this, since it is
1584 considered too expensive. */
1585 if (TREE_CODE (cond) == EQ_EXPR)
1587 e0 = TREE_OPERAND (cond, 0);
1588 e1 = TREE_OPERAND (cond, 1);
1590 /* We know that e0 == e1. Check whether we cannot simplify expr
1591 using this fact. */
1592 e = simplify_replace_tree (expr, e0, e1);
1593 if (integer_zerop (e) || integer_nonzerop (e))
1594 return e;
1596 e = simplify_replace_tree (expr, e1, e0);
1597 if (integer_zerop (e) || integer_nonzerop (e))
1598 return e;
1600 if (TREE_CODE (expr) == EQ_EXPR)
1602 e0 = TREE_OPERAND (expr, 0);
1603 e1 = TREE_OPERAND (expr, 1);
1605 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1606 e = simplify_replace_tree (cond, e0, e1);
1607 if (integer_zerop (e))
1608 return e;
1609 e = simplify_replace_tree (cond, e1, e0);
1610 if (integer_zerop (e))
1611 return e;
1613 if (TREE_CODE (expr) == NE_EXPR)
1615 e0 = TREE_OPERAND (expr, 0);
1616 e1 = TREE_OPERAND (expr, 1);
1618 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1619 e = simplify_replace_tree (cond, e0, e1);
1620 if (integer_zerop (e))
1621 return boolean_true_node;
1622 e = simplify_replace_tree (cond, e1, e0);
1623 if (integer_zerop (e))
1624 return boolean_true_node;
1627 te = expand_simple_operations (expr);
1629 /* Check whether COND ==> EXPR. */
1630 notcond = invert_truthvalue (cond);
1631 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1632 if (e && integer_nonzerop (e))
1633 return e;
1635 /* Check whether COND ==> not EXPR. */
1636 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1637 if (e && integer_zerop (e))
1638 return e;
1640 return expr;
1643 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1644 expression (or EXPR unchanged, if no simplification was possible).
1645 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1646 of simple operations in definitions of ssa names in COND are expanded,
1647 so that things like casts or incrementing the value of the bound before
1648 the loop do not cause us to fail. */
1650 static tree
1651 tree_simplify_using_condition (tree cond, tree expr)
1653 cond = expand_simple_operations (cond);
1655 return tree_simplify_using_condition_1 (cond, expr);
1658 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1659 Returns the simplified expression (or EXPR unchanged, if no
1660 simplification was possible).*/
1662 static tree
1663 simplify_using_initial_conditions (struct loop *loop, tree expr)
1665 edge e;
1666 basic_block bb;
1667 gimple stmt;
1668 tree cond;
1669 int cnt = 0;
1671 if (TREE_CODE (expr) == INTEGER_CST)
1672 return expr;
1674 /* Limit walking the dominators to avoid quadraticness in
1675 the number of BBs times the number of loops in degenerate
1676 cases. */
1677 for (bb = loop->header;
1678 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1679 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1681 if (!single_pred_p (bb))
1682 continue;
1683 e = single_pred_edge (bb);
1685 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1686 continue;
1688 stmt = last_stmt (e->src);
1689 cond = fold_build2 (gimple_cond_code (stmt),
1690 boolean_type_node,
1691 gimple_cond_lhs (stmt),
1692 gimple_cond_rhs (stmt));
1693 if (e->flags & EDGE_FALSE_VALUE)
1694 cond = invert_truthvalue (cond);
1695 expr = tree_simplify_using_condition (cond, expr);
1696 ++cnt;
1699 return expr;
1702 /* Tries to simplify EXPR using the evolutions of the loop invariants
1703 in the superloops of LOOP. Returns the simplified expression
1704 (or EXPR unchanged, if no simplification was possible). */
1706 static tree
1707 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1709 enum tree_code code = TREE_CODE (expr);
1710 bool changed;
1711 tree e, e0, e1, e2;
1713 if (is_gimple_min_invariant (expr))
1714 return expr;
1716 if (code == TRUTH_OR_EXPR
1717 || code == TRUTH_AND_EXPR
1718 || code == COND_EXPR)
1720 changed = false;
1722 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1723 if (TREE_OPERAND (expr, 0) != e0)
1724 changed = true;
1726 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1727 if (TREE_OPERAND (expr, 1) != e1)
1728 changed = true;
1730 if (code == COND_EXPR)
1732 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1733 if (TREE_OPERAND (expr, 2) != e2)
1734 changed = true;
1736 else
1737 e2 = NULL_TREE;
1739 if (changed)
1741 if (code == COND_EXPR)
1742 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1743 else
1744 expr = fold_build2 (code, boolean_type_node, e0, e1);
1747 return expr;
1750 e = instantiate_parameters (loop, expr);
1751 if (is_gimple_min_invariant (e))
1752 return e;
1754 return expr;
1757 /* Returns true if EXIT is the only possible exit from LOOP. */
1759 bool
1760 loop_only_exit_p (const struct loop *loop, const_edge exit)
1762 basic_block *body;
1763 gimple_stmt_iterator bsi;
1764 unsigned i;
1765 gimple call;
1767 if (exit != single_exit (loop))
1768 return false;
1770 body = get_loop_body (loop);
1771 for (i = 0; i < loop->num_nodes; i++)
1773 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1775 call = gsi_stmt (bsi);
1776 if (gimple_code (call) != GIMPLE_CALL)
1777 continue;
1779 if (gimple_has_side_effects (call))
1781 free (body);
1782 return false;
1787 free (body);
1788 return true;
1791 /* Stores description of number of iterations of LOOP derived from
1792 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1793 useful information could be derived (and fields of NITER has
1794 meaning described in comments at struct tree_niter_desc
1795 declaration), false otherwise. If WARN is true and
1796 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1797 potentially unsafe assumptions. */
1799 bool
1800 number_of_iterations_exit (struct loop *loop, edge exit,
1801 struct tree_niter_desc *niter,
1802 bool warn)
1804 gimple stmt;
1805 tree type;
1806 tree op0, op1;
1807 enum tree_code code;
1808 affine_iv iv0, iv1;
1810 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1811 return false;
1813 niter->assumptions = boolean_false_node;
1814 stmt = last_stmt (exit->src);
1815 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1816 return false;
1818 /* We want the condition for staying inside loop. */
1819 code = gimple_cond_code (stmt);
1820 if (exit->flags & EDGE_TRUE_VALUE)
1821 code = invert_tree_comparison (code, false);
1823 switch (code)
1825 case GT_EXPR:
1826 case GE_EXPR:
1827 case NE_EXPR:
1828 case LT_EXPR:
1829 case LE_EXPR:
1830 break;
1832 default:
1833 return false;
1836 op0 = gimple_cond_lhs (stmt);
1837 op1 = gimple_cond_rhs (stmt);
1838 type = TREE_TYPE (op0);
1840 if (TREE_CODE (type) != INTEGER_TYPE
1841 && !POINTER_TYPE_P (type))
1842 return false;
1844 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1845 return false;
1846 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1847 return false;
1849 /* We don't want to see undefined signed overflow warnings while
1850 computing the number of iterations. */
1851 fold_defer_overflow_warnings ();
1853 iv0.base = expand_simple_operations (iv0.base);
1854 iv1.base = expand_simple_operations (iv1.base);
1855 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1856 loop_only_exit_p (loop, exit)))
1858 fold_undefer_and_ignore_overflow_warnings ();
1859 return false;
1862 if (optimize >= 3)
1864 niter->assumptions = simplify_using_outer_evolutions (loop,
1865 niter->assumptions);
1866 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1867 niter->may_be_zero);
1868 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1871 niter->assumptions
1872 = simplify_using_initial_conditions (loop,
1873 niter->assumptions);
1874 niter->may_be_zero
1875 = simplify_using_initial_conditions (loop,
1876 niter->may_be_zero);
1878 fold_undefer_and_ignore_overflow_warnings ();
1880 if (integer_onep (niter->assumptions))
1881 return true;
1883 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1884 But if we can prove that there is overflow or some other source of weird
1885 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1886 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1887 return false;
1889 if (flag_unsafe_loop_optimizations)
1890 niter->assumptions = boolean_true_node;
1892 if (warn)
1894 const char *wording;
1895 location_t loc = gimple_location (stmt);
1897 /* We can provide a more specific warning if one of the operator is
1898 constant and the other advances by +1 or -1. */
1899 if (!integer_zerop (iv1.step)
1900 ? (integer_zerop (iv0.step)
1901 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1902 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1903 wording =
1904 flag_unsafe_loop_optimizations
1905 ? N_("assuming that the loop is not infinite")
1906 : N_("cannot optimize possibly infinite loops");
1907 else
1908 wording =
1909 flag_unsafe_loop_optimizations
1910 ? N_("assuming that the loop counter does not overflow")
1911 : N_("cannot optimize loop, the loop counter may overflow");
1913 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1914 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1917 return flag_unsafe_loop_optimizations;
1920 /* Try to determine the number of iterations of LOOP. If we succeed,
1921 expression giving number of iterations is returned and *EXIT is
1922 set to the edge from that the information is obtained. Otherwise
1923 chrec_dont_know is returned. */
1925 tree
1926 find_loop_niter (struct loop *loop, edge *exit)
1928 unsigned i;
1929 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1930 edge ex;
1931 tree niter = NULL_TREE, aniter;
1932 struct tree_niter_desc desc;
1934 *exit = NULL;
1935 FOR_EACH_VEC_ELT (edge, exits, i, ex)
1937 if (!just_once_each_iteration_p (loop, ex->src))
1938 continue;
1940 if (!number_of_iterations_exit (loop, ex, &desc, false))
1941 continue;
1943 if (integer_nonzerop (desc.may_be_zero))
1945 /* We exit in the first iteration through this exit.
1946 We won't find anything better. */
1947 niter = build_int_cst (unsigned_type_node, 0);
1948 *exit = ex;
1949 break;
1952 if (!integer_zerop (desc.may_be_zero))
1953 continue;
1955 aniter = desc.niter;
1957 if (!niter)
1959 /* Nothing recorded yet. */
1960 niter = aniter;
1961 *exit = ex;
1962 continue;
1965 /* Prefer constants, the lower the better. */
1966 if (TREE_CODE (aniter) != INTEGER_CST)
1967 continue;
1969 if (TREE_CODE (niter) != INTEGER_CST)
1971 niter = aniter;
1972 *exit = ex;
1973 continue;
1976 if (tree_int_cst_lt (aniter, niter))
1978 niter = aniter;
1979 *exit = ex;
1980 continue;
1983 VEC_free (edge, heap, exits);
1985 return niter ? niter : chrec_dont_know;
1988 /* Return true if loop is known to have bounded number of iterations. */
1990 bool
1991 finite_loop_p (struct loop *loop)
1993 unsigned i;
1994 VEC (edge, heap) *exits;
1995 edge ex;
1996 struct tree_niter_desc desc;
1997 bool finite = false;
1998 int flags;
2000 if (flag_unsafe_loop_optimizations)
2001 return true;
2002 flags = flags_from_decl_or_type (current_function_decl);
2003 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2005 if (dump_file && (dump_flags & TDF_DETAILS))
2006 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2007 loop->num);
2008 return true;
2011 exits = get_loop_exit_edges (loop);
2012 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2014 if (!just_once_each_iteration_p (loop, ex->src))
2015 continue;
2017 if (number_of_iterations_exit (loop, ex, &desc, false))
2019 if (dump_file && (dump_flags & TDF_DETAILS))
2021 fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
2022 print_generic_expr (dump_file, desc.niter, TDF_SLIM);
2023 fprintf (dump_file, " times\n");
2025 finite = true;
2026 break;
2029 VEC_free (edge, heap, exits);
2030 return finite;
2035 Analysis of a number of iterations of a loop by a brute-force evaluation.
2039 /* Bound on the number of iterations we try to evaluate. */
2041 #define MAX_ITERATIONS_TO_TRACK \
2042 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2044 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2045 result by a chain of operations such that all but exactly one of their
2046 operands are constants. */
2048 static gimple
2049 chain_of_csts_start (struct loop *loop, tree x)
2051 gimple stmt = SSA_NAME_DEF_STMT (x);
2052 tree use;
2053 basic_block bb = gimple_bb (stmt);
2054 enum tree_code code;
2056 if (!bb
2057 || !flow_bb_inside_loop_p (loop, bb))
2058 return NULL;
2060 if (gimple_code (stmt) == GIMPLE_PHI)
2062 if (bb == loop->header)
2063 return stmt;
2065 return NULL;
2068 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2069 return NULL;
2071 code = gimple_assign_rhs_code (stmt);
2072 if (gimple_references_memory_p (stmt)
2073 || TREE_CODE_CLASS (code) == tcc_reference
2074 || (code == ADDR_EXPR
2075 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2076 return NULL;
2078 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2079 if (use == NULL_TREE)
2080 return NULL;
2082 return chain_of_csts_start (loop, use);
2085 /* Determines whether the expression X is derived from a result of a phi node
2086 in header of LOOP such that
2088 * the derivation of X consists only from operations with constants
2089 * the initial value of the phi node is constant
2090 * the value of the phi node in the next iteration can be derived from the
2091 value in the current iteration by a chain of operations with constants.
2093 If such phi node exists, it is returned, otherwise NULL is returned. */
2095 static gimple
2096 get_base_for (struct loop *loop, tree x)
2098 gimple phi;
2099 tree init, next;
2101 if (is_gimple_min_invariant (x))
2102 return NULL;
2104 phi = chain_of_csts_start (loop, x);
2105 if (!phi)
2106 return NULL;
2108 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2109 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2111 if (TREE_CODE (next) != SSA_NAME)
2112 return NULL;
2114 if (!is_gimple_min_invariant (init))
2115 return NULL;
2117 if (chain_of_csts_start (loop, next) != phi)
2118 return NULL;
2120 return phi;
2123 /* Given an expression X, then
2125 * if X is NULL_TREE, we return the constant BASE.
2126 * otherwise X is a SSA name, whose value in the considered loop is derived
2127 by a chain of operations with constant from a result of a phi node in
2128 the header of the loop. Then we return value of X when the value of the
2129 result of this phi node is given by the constant BASE. */
2131 static tree
2132 get_val_for (tree x, tree base)
2134 gimple stmt;
2136 gcc_assert (is_gimple_min_invariant (base));
2138 if (!x)
2139 return base;
2141 stmt = SSA_NAME_DEF_STMT (x);
2142 if (gimple_code (stmt) == GIMPLE_PHI)
2143 return base;
2145 gcc_assert (is_gimple_assign (stmt));
2147 /* STMT must be either an assignment of a single SSA name or an
2148 expression involving an SSA name and a constant. Try to fold that
2149 expression using the value for the SSA name. */
2150 if (gimple_assign_ssa_name_copy_p (stmt))
2151 return get_val_for (gimple_assign_rhs1 (stmt), base);
2152 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2153 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2155 return fold_build1 (gimple_assign_rhs_code (stmt),
2156 gimple_expr_type (stmt),
2157 get_val_for (gimple_assign_rhs1 (stmt), base));
2159 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2161 tree rhs1 = gimple_assign_rhs1 (stmt);
2162 tree rhs2 = gimple_assign_rhs2 (stmt);
2163 if (TREE_CODE (rhs1) == SSA_NAME)
2164 rhs1 = get_val_for (rhs1, base);
2165 else if (TREE_CODE (rhs2) == SSA_NAME)
2166 rhs2 = get_val_for (rhs2, base);
2167 else
2168 gcc_unreachable ();
2169 return fold_build2 (gimple_assign_rhs_code (stmt),
2170 gimple_expr_type (stmt), rhs1, rhs2);
2172 else
2173 gcc_unreachable ();
2177 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2178 by brute force -- i.e. by determining the value of the operands of the
2179 condition at EXIT in first few iterations of the loop (assuming that
2180 these values are constant) and determining the first one in that the
2181 condition is not satisfied. Returns the constant giving the number
2182 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2184 tree
2185 loop_niter_by_eval (struct loop *loop, edge exit)
2187 tree acnd;
2188 tree op[2], val[2], next[2], aval[2];
2189 gimple phi, cond;
2190 unsigned i, j;
2191 enum tree_code cmp;
2193 cond = last_stmt (exit->src);
2194 if (!cond || gimple_code (cond) != GIMPLE_COND)
2195 return chrec_dont_know;
2197 cmp = gimple_cond_code (cond);
2198 if (exit->flags & EDGE_TRUE_VALUE)
2199 cmp = invert_tree_comparison (cmp, false);
2201 switch (cmp)
2203 case EQ_EXPR:
2204 case NE_EXPR:
2205 case GT_EXPR:
2206 case GE_EXPR:
2207 case LT_EXPR:
2208 case LE_EXPR:
2209 op[0] = gimple_cond_lhs (cond);
2210 op[1] = gimple_cond_rhs (cond);
2211 break;
2213 default:
2214 return chrec_dont_know;
2217 for (j = 0; j < 2; j++)
2219 if (is_gimple_min_invariant (op[j]))
2221 val[j] = op[j];
2222 next[j] = NULL_TREE;
2223 op[j] = NULL_TREE;
2225 else
2227 phi = get_base_for (loop, op[j]);
2228 if (!phi)
2229 return chrec_dont_know;
2230 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2231 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2235 /* Don't issue signed overflow warnings. */
2236 fold_defer_overflow_warnings ();
2238 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2240 for (j = 0; j < 2; j++)
2241 aval[j] = get_val_for (op[j], val[j]);
2243 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2244 if (acnd && integer_zerop (acnd))
2246 fold_undefer_and_ignore_overflow_warnings ();
2247 if (dump_file && (dump_flags & TDF_DETAILS))
2248 fprintf (dump_file,
2249 "Proved that loop %d iterates %d times using brute force.\n",
2250 loop->num, i);
2251 return build_int_cst (unsigned_type_node, i);
2254 for (j = 0; j < 2; j++)
2256 val[j] = get_val_for (next[j], val[j]);
2257 if (!is_gimple_min_invariant (val[j]))
2259 fold_undefer_and_ignore_overflow_warnings ();
2260 return chrec_dont_know;
2265 fold_undefer_and_ignore_overflow_warnings ();
2267 return chrec_dont_know;
2270 /* Finds the exit of the LOOP by that the loop exits after a constant
2271 number of iterations and stores the exit edge to *EXIT. The constant
2272 giving the number of iterations of LOOP is returned. The number of
2273 iterations is determined using loop_niter_by_eval (i.e. by brute force
2274 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2275 determines the number of iterations, chrec_dont_know is returned. */
2277 tree
2278 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2280 unsigned i;
2281 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2282 edge ex;
2283 tree niter = NULL_TREE, aniter;
2285 *exit = NULL;
2287 /* Loops with multiple exits are expensive to handle and less important. */
2288 if (!flag_expensive_optimizations
2289 && VEC_length (edge, exits) > 1)
2291 VEC_free (edge, heap, exits);
2292 return chrec_dont_know;
2295 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2297 if (!just_once_each_iteration_p (loop, ex->src))
2298 continue;
2300 aniter = loop_niter_by_eval (loop, ex);
2301 if (chrec_contains_undetermined (aniter))
2302 continue;
2304 if (niter
2305 && !tree_int_cst_lt (aniter, niter))
2306 continue;
2308 niter = aniter;
2309 *exit = ex;
2311 VEC_free (edge, heap, exits);
2313 return niter ? niter : chrec_dont_know;
2318 Analysis of upper bounds on number of iterations of a loop.
2322 static double_int derive_constant_upper_bound_ops (tree, tree,
2323 enum tree_code, tree);
2325 /* Returns a constant upper bound on the value of the right-hand side of
2326 an assignment statement STMT. */
2328 static double_int
2329 derive_constant_upper_bound_assign (gimple stmt)
2331 enum tree_code code = gimple_assign_rhs_code (stmt);
2332 tree op0 = gimple_assign_rhs1 (stmt);
2333 tree op1 = gimple_assign_rhs2 (stmt);
2335 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2336 op0, code, op1);
2339 /* Returns a constant upper bound on the value of expression VAL. VAL
2340 is considered to be unsigned. If its type is signed, its value must
2341 be nonnegative. */
2343 static double_int
2344 derive_constant_upper_bound (tree val)
2346 enum tree_code code;
2347 tree op0, op1;
2349 extract_ops_from_tree (val, &code, &op0, &op1);
2350 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2353 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2354 whose type is TYPE. The expression is considered to be unsigned. If
2355 its type is signed, its value must be nonnegative. */
2357 static double_int
2358 derive_constant_upper_bound_ops (tree type, tree op0,
2359 enum tree_code code, tree op1)
2361 tree subtype, maxt;
2362 double_int bnd, max, mmax, cst;
2363 gimple stmt;
2365 if (INTEGRAL_TYPE_P (type))
2366 maxt = TYPE_MAX_VALUE (type);
2367 else
2368 maxt = upper_bound_in_type (type, type);
2370 max = tree_to_double_int (maxt);
2372 switch (code)
2374 case INTEGER_CST:
2375 return tree_to_double_int (op0);
2377 CASE_CONVERT:
2378 subtype = TREE_TYPE (op0);
2379 if (!TYPE_UNSIGNED (subtype)
2380 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2381 that OP0 is nonnegative. */
2382 && TYPE_UNSIGNED (type)
2383 && !tree_expr_nonnegative_p (op0))
2385 /* If we cannot prove that the casted expression is nonnegative,
2386 we cannot establish more useful upper bound than the precision
2387 of the type gives us. */
2388 return max;
2391 /* We now know that op0 is an nonnegative value. Try deriving an upper
2392 bound for it. */
2393 bnd = derive_constant_upper_bound (op0);
2395 /* If the bound does not fit in TYPE, max. value of TYPE could be
2396 attained. */
2397 if (double_int_ucmp (max, bnd) < 0)
2398 return max;
2400 return bnd;
2402 case PLUS_EXPR:
2403 case POINTER_PLUS_EXPR:
2404 case MINUS_EXPR:
2405 if (TREE_CODE (op1) != INTEGER_CST
2406 || !tree_expr_nonnegative_p (op0))
2407 return max;
2409 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2410 choose the most logical way how to treat this constant regardless
2411 of the signedness of the type. */
2412 cst = tree_to_double_int (op1);
2413 cst = double_int_sext (cst, TYPE_PRECISION (type));
2414 if (code != MINUS_EXPR)
2415 cst = double_int_neg (cst);
2417 bnd = derive_constant_upper_bound (op0);
2419 if (double_int_negative_p (cst))
2421 cst = double_int_neg (cst);
2422 /* Avoid CST == 0x80000... */
2423 if (double_int_negative_p (cst))
2424 return max;;
2426 /* OP0 + CST. We need to check that
2427 BND <= MAX (type) - CST. */
2429 mmax = double_int_sub (max, cst);
2430 if (double_int_ucmp (bnd, mmax) > 0)
2431 return max;
2433 return double_int_add (bnd, cst);
2435 else
2437 /* OP0 - CST, where CST >= 0.
2439 If TYPE is signed, we have already verified that OP0 >= 0, and we
2440 know that the result is nonnegative. This implies that
2441 VAL <= BND - CST.
2443 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2444 otherwise the operation underflows.
2447 /* This should only happen if the type is unsigned; however, for
2448 buggy programs that use overflowing signed arithmetics even with
2449 -fno-wrapv, this condition may also be true for signed values. */
2450 if (double_int_ucmp (bnd, cst) < 0)
2451 return max;
2453 if (TYPE_UNSIGNED (type))
2455 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2456 double_int_to_tree (type, cst));
2457 if (!tem || integer_nonzerop (tem))
2458 return max;
2461 bnd = double_int_sub (bnd, cst);
2464 return bnd;
2466 case FLOOR_DIV_EXPR:
2467 case EXACT_DIV_EXPR:
2468 if (TREE_CODE (op1) != INTEGER_CST
2469 || tree_int_cst_sign_bit (op1))
2470 return max;
2472 bnd = derive_constant_upper_bound (op0);
2473 return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
2475 case BIT_AND_EXPR:
2476 if (TREE_CODE (op1) != INTEGER_CST
2477 || tree_int_cst_sign_bit (op1))
2478 return max;
2479 return tree_to_double_int (op1);
2481 case SSA_NAME:
2482 stmt = SSA_NAME_DEF_STMT (op0);
2483 if (gimple_code (stmt) != GIMPLE_ASSIGN
2484 || gimple_assign_lhs (stmt) != op0)
2485 return max;
2486 return derive_constant_upper_bound_assign (stmt);
2488 default:
2489 return max;
2493 /* Records that every statement in LOOP is executed I_BOUND times.
2494 REALISTIC is true if I_BOUND is expected to be close to the real number
2495 of iterations. UPPER is true if we are sure the loop iterates at most
2496 I_BOUND times. */
2498 void
2499 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2500 bool upper)
2502 /* Update the bounds only when there is no previous estimation, or when the
2503 current estimation is smaller. */
2504 if (upper
2505 && (!loop->any_upper_bound
2506 || double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
2508 loop->any_upper_bound = true;
2509 loop->nb_iterations_upper_bound = i_bound;
2511 if (realistic
2512 && (!loop->any_estimate
2513 || double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
2515 loop->any_estimate = true;
2516 loop->nb_iterations_estimate = i_bound;
2519 /* If an upper bound is smaller than the realistic estimate of the
2520 number of iterations, use the upper bound instead. */
2521 if (loop->any_upper_bound
2522 && loop->any_estimate
2523 && double_int_ucmp (loop->nb_iterations_upper_bound,
2524 loop->nb_iterations_estimate) < 0)
2525 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2528 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2529 is true if the loop is exited immediately after STMT, and this exit
2530 is taken at last when the STMT is executed BOUND + 1 times.
2531 REALISTIC is true if BOUND is expected to be close to the real number
2532 of iterations. UPPER is true if we are sure the loop iterates at most
2533 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2535 static void
2536 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2537 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2539 double_int delta;
2540 edge exit;
2542 if (dump_file && (dump_flags & TDF_DETAILS))
2544 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2545 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2546 fprintf (dump_file, " is %sexecuted at most ",
2547 upper ? "" : "probably ");
2548 print_generic_expr (dump_file, bound, TDF_SLIM);
2549 fprintf (dump_file, " (bounded by ");
2550 dump_double_int (dump_file, i_bound, true);
2551 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2554 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2555 real number of iterations. */
2556 if (TREE_CODE (bound) != INTEGER_CST)
2557 realistic = false;
2558 if (!upper && !realistic)
2559 return;
2561 /* If we have a guaranteed upper bound, record it in the appropriate
2562 list. */
2563 if (upper)
2565 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2567 elt->bound = i_bound;
2568 elt->stmt = at_stmt;
2569 elt->is_exit = is_exit;
2570 elt->next = loop->bounds;
2571 loop->bounds = elt;
2574 /* Update the number of iteration estimates according to the bound.
2575 If at_stmt is an exit or dominates the single exit from the loop,
2576 then the loop latch is executed at most BOUND times, otherwise
2577 it can be executed BOUND + 1 times. */
2578 exit = single_exit (loop);
2579 if (is_exit
2580 || (exit != NULL
2581 && dominated_by_p (CDI_DOMINATORS,
2582 exit->src, gimple_bb (at_stmt))))
2583 delta = double_int_zero;
2584 else
2585 delta = double_int_one;
2586 i_bound = double_int_add (i_bound, delta);
2588 /* If an overflow occurred, ignore the result. */
2589 if (double_int_ucmp (i_bound, delta) < 0)
2590 return;
2592 record_niter_bound (loop, i_bound, realistic, upper);
2595 /* Record the estimate on number of iterations of LOOP based on the fact that
2596 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2597 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2598 estimated number of iterations is expected to be close to the real one.
2599 UPPER is true if we are sure the induction variable does not wrap. */
2601 static void
2602 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2603 tree low, tree high, bool realistic, bool upper)
2605 tree niter_bound, extreme, delta;
2606 tree type = TREE_TYPE (base), unsigned_type;
2607 double_int max;
2609 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2610 return;
2612 if (dump_file && (dump_flags & TDF_DETAILS))
2614 fprintf (dump_file, "Induction variable (");
2615 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2616 fprintf (dump_file, ") ");
2617 print_generic_expr (dump_file, base, TDF_SLIM);
2618 fprintf (dump_file, " + ");
2619 print_generic_expr (dump_file, step, TDF_SLIM);
2620 fprintf (dump_file, " * iteration does not wrap in statement ");
2621 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2622 fprintf (dump_file, " in loop %d.\n", loop->num);
2625 unsigned_type = unsigned_type_for (type);
2626 base = fold_convert (unsigned_type, base);
2627 step = fold_convert (unsigned_type, step);
2629 if (tree_int_cst_sign_bit (step))
2631 extreme = fold_convert (unsigned_type, low);
2632 if (TREE_CODE (base) != INTEGER_CST)
2633 base = fold_convert (unsigned_type, high);
2634 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2635 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2637 else
2639 extreme = fold_convert (unsigned_type, high);
2640 if (TREE_CODE (base) != INTEGER_CST)
2641 base = fold_convert (unsigned_type, low);
2642 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2645 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2646 would get out of the range. */
2647 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2648 max = derive_constant_upper_bound (niter_bound);
2649 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2652 /* Determine information about number of iterations a LOOP from the index
2653 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2654 guaranteed to be executed in every iteration of LOOP. Callback for
2655 for_each_index. */
2657 struct ilb_data
2659 struct loop *loop;
2660 gimple stmt;
2661 bool reliable;
2664 static bool
2665 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2667 struct ilb_data *data = (struct ilb_data *) dta;
2668 tree ev, init, step;
2669 tree low, high, type, next;
2670 bool sign, upper = data->reliable, at_end = false;
2671 struct loop *loop = data->loop;
2673 if (TREE_CODE (base) != ARRAY_REF)
2674 return true;
2676 /* For arrays at the end of the structure, we are not guaranteed that they
2677 do not really extend over their declared size. However, for arrays of
2678 size greater than one, this is unlikely to be intended. */
2679 if (array_at_struct_end_p (base))
2681 at_end = true;
2682 upper = false;
2685 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
2686 init = initial_condition (ev);
2687 step = evolution_part_in_loop_num (ev, loop->num);
2689 if (!init
2690 || !step
2691 || TREE_CODE (step) != INTEGER_CST
2692 || integer_zerop (step)
2693 || tree_contains_chrecs (init, NULL)
2694 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2695 return true;
2697 low = array_ref_low_bound (base);
2698 high = array_ref_up_bound (base);
2700 /* The case of nonconstant bounds could be handled, but it would be
2701 complicated. */
2702 if (TREE_CODE (low) != INTEGER_CST
2703 || !high
2704 || TREE_CODE (high) != INTEGER_CST)
2705 return true;
2706 sign = tree_int_cst_sign_bit (step);
2707 type = TREE_TYPE (step);
2709 /* The array of length 1 at the end of a structure most likely extends
2710 beyond its bounds. */
2711 if (at_end
2712 && operand_equal_p (low, high, 0))
2713 return true;
2715 /* In case the relevant bound of the array does not fit in type, or
2716 it does, but bound + step (in type) still belongs into the range of the
2717 array, the index may wrap and still stay within the range of the array
2718 (consider e.g. if the array is indexed by the full range of
2719 unsigned char).
2721 To make things simpler, we require both bounds to fit into type, although
2722 there are cases where this would not be strictly necessary. */
2723 if (!int_fits_type_p (high, type)
2724 || !int_fits_type_p (low, type))
2725 return true;
2726 low = fold_convert (type, low);
2727 high = fold_convert (type, high);
2729 if (sign)
2730 next = fold_binary (PLUS_EXPR, type, low, step);
2731 else
2732 next = fold_binary (PLUS_EXPR, type, high, step);
2734 if (tree_int_cst_compare (low, next) <= 0
2735 && tree_int_cst_compare (next, high) <= 0)
2736 return true;
2738 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2739 return true;
2742 /* Determine information about number of iterations a LOOP from the bounds
2743 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2744 STMT is guaranteed to be executed in every iteration of LOOP.*/
2746 static void
2747 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
2748 bool reliable)
2750 struct ilb_data data;
2752 data.loop = loop;
2753 data.stmt = stmt;
2754 data.reliable = reliable;
2755 for_each_index (&ref, idx_infer_loop_bounds, &data);
2758 /* Determine information about number of iterations of a LOOP from the way
2759 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2760 executed in every iteration of LOOP. */
2762 static void
2763 infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
2765 if (is_gimple_assign (stmt))
2767 tree op0 = gimple_assign_lhs (stmt);
2768 tree op1 = gimple_assign_rhs1 (stmt);
2770 /* For each memory access, analyze its access function
2771 and record a bound on the loop iteration domain. */
2772 if (REFERENCE_CLASS_P (op0))
2773 infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
2775 if (REFERENCE_CLASS_P (op1))
2776 infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
2778 else if (is_gimple_call (stmt))
2780 tree arg, lhs;
2781 unsigned i, n = gimple_call_num_args (stmt);
2783 lhs = gimple_call_lhs (stmt);
2784 if (lhs && REFERENCE_CLASS_P (lhs))
2785 infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
2787 for (i = 0; i < n; i++)
2789 arg = gimple_call_arg (stmt, i);
2790 if (REFERENCE_CLASS_P (arg))
2791 infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
2796 /* Determine information about number of iterations of a LOOP from the fact
2797 that pointer arithmetics in STMT does not overflow. */
2799 static void
2800 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2802 tree def, base, step, scev, type, low, high;
2803 tree var, ptr;
2805 if (!is_gimple_assign (stmt)
2806 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2807 return;
2809 def = gimple_assign_lhs (stmt);
2810 if (TREE_CODE (def) != SSA_NAME)
2811 return;
2813 type = TREE_TYPE (def);
2814 if (!nowrap_type_p (type))
2815 return;
2817 ptr = gimple_assign_rhs1 (stmt);
2818 if (!expr_invariant_in_loop_p (loop, ptr))
2819 return;
2821 var = gimple_assign_rhs2 (stmt);
2822 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2823 return;
2825 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2826 if (chrec_contains_undetermined (scev))
2827 return;
2829 base = initial_condition_in_loop_num (scev, loop->num);
2830 step = evolution_part_in_loop_num (scev, loop->num);
2832 if (!base || !step
2833 || TREE_CODE (step) != INTEGER_CST
2834 || tree_contains_chrecs (base, NULL)
2835 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2836 return;
2838 low = lower_bound_in_type (type, type);
2839 high = upper_bound_in_type (type, type);
2841 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2842 produce a NULL pointer. The contrary would mean NULL points to an object,
2843 while NULL is supposed to compare unequal with the address of all objects.
2844 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2845 NULL pointer since that would mean wrapping, which we assume here not to
2846 happen. So, we can exclude NULL from the valid range of pointer
2847 arithmetic. */
2848 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2849 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2851 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2854 /* Determine information about number of iterations of a LOOP from the fact
2855 that signed arithmetics in STMT does not overflow. */
2857 static void
2858 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2860 tree def, base, step, scev, type, low, high;
2862 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2863 return;
2865 def = gimple_assign_lhs (stmt);
2867 if (TREE_CODE (def) != SSA_NAME)
2868 return;
2870 type = TREE_TYPE (def);
2871 if (!INTEGRAL_TYPE_P (type)
2872 || !TYPE_OVERFLOW_UNDEFINED (type))
2873 return;
2875 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2876 if (chrec_contains_undetermined (scev))
2877 return;
2879 base = initial_condition_in_loop_num (scev, loop->num);
2880 step = evolution_part_in_loop_num (scev, loop->num);
2882 if (!base || !step
2883 || TREE_CODE (step) != INTEGER_CST
2884 || tree_contains_chrecs (base, NULL)
2885 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2886 return;
2888 low = lower_bound_in_type (type, type);
2889 high = upper_bound_in_type (type, type);
2891 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2894 /* The following analyzers are extracting informations on the bounds
2895 of LOOP from the following undefined behaviors:
2897 - data references should not access elements over the statically
2898 allocated size,
2900 - signed variables should not overflow when flag_wrapv is not set.
2903 static void
2904 infer_loop_bounds_from_undefined (struct loop *loop)
2906 unsigned i;
2907 basic_block *bbs;
2908 gimple_stmt_iterator bsi;
2909 basic_block bb;
2910 bool reliable;
2912 bbs = get_loop_body (loop);
2914 for (i = 0; i < loop->num_nodes; i++)
2916 bb = bbs[i];
2918 /* If BB is not executed in each iteration of the loop, we cannot
2919 use the operations in it to infer reliable upper bound on the
2920 # of iterations of the loop. However, we can use it as a guess. */
2921 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2923 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2925 gimple stmt = gsi_stmt (bsi);
2927 infer_loop_bounds_from_array (loop, stmt, reliable);
2929 if (reliable)
2931 infer_loop_bounds_from_signedness (loop, stmt);
2932 infer_loop_bounds_from_pointer_arith (loop, stmt);
2938 free (bbs);
2941 /* Converts VAL to double_int. */
2943 static double_int
2944 gcov_type_to_double_int (gcov_type val)
2946 double_int ret;
2948 ret.low = (unsigned HOST_WIDE_INT) val;
2949 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2950 the size of type. */
2951 val >>= HOST_BITS_PER_WIDE_INT - 1;
2952 val >>= 1;
2953 ret.high = (unsigned HOST_WIDE_INT) val;
2955 return ret;
2958 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
2959 is true also use estimates derived from undefined behavior. */
2961 void
2962 estimate_numbers_of_iterations_loop (struct loop *loop)
2964 VEC (edge, heap) *exits;
2965 tree niter, type;
2966 unsigned i;
2967 struct tree_niter_desc niter_desc;
2968 edge ex;
2969 double_int bound;
2971 /* Give up if we already have tried to compute an estimation. */
2972 if (loop->estimate_state != EST_NOT_COMPUTED)
2973 return;
2975 loop->estimate_state = EST_AVAILABLE;
2976 /* Force estimate compuation but leave any existing upper bound in place. */
2977 loop->any_estimate = false;
2979 exits = get_loop_exit_edges (loop);
2980 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2982 if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
2983 continue;
2985 niter = niter_desc.niter;
2986 type = TREE_TYPE (niter);
2987 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
2988 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
2989 build_int_cst (type, 0),
2990 niter);
2991 record_estimate (loop, niter, niter_desc.max,
2992 last_stmt (ex->src),
2993 true, true, true);
2995 VEC_free (edge, heap, exits);
2997 infer_loop_bounds_from_undefined (loop);
2999 /* If we have a measured profile, use it to estimate the number of
3000 iterations. */
3001 if (loop->header->count != 0)
3003 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3004 bound = gcov_type_to_double_int (nit);
3005 record_niter_bound (loop, bound, true, false);
3009 /* Sets NIT to the estimated number of executions of the latch of the
3010 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3011 large as the number of iterations. If we have no reliable estimate,
3012 the function returns false, otherwise returns true. */
3014 bool
3015 estimated_loop_iterations (struct loop *loop, double_int *nit)
3017 estimate_numbers_of_iterations_loop (loop);
3018 if (!loop->any_estimate)
3019 return false;
3021 *nit = loop->nb_iterations_estimate;
3022 return true;
3025 /* Sets NIT to an upper bound for the maximum number of executions of the
3026 latch of the LOOP. If we have no reliable estimate, the function returns
3027 false, otherwise returns true. */
3029 bool
3030 max_loop_iterations (struct loop *loop, double_int *nit)
3032 estimate_numbers_of_iterations_loop (loop);
3033 if (!loop->any_upper_bound)
3034 return false;
3036 *nit = loop->nb_iterations_upper_bound;
3037 return true;
3040 /* Similar to estimated_loop_iterations, but returns the estimate only
3041 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3042 on the number of iterations of LOOP could not be derived, returns -1. */
3044 HOST_WIDE_INT
3045 estimated_loop_iterations_int (struct loop *loop)
3047 double_int nit;
3048 HOST_WIDE_INT hwi_nit;
3050 if (!estimated_loop_iterations (loop, &nit))
3051 return -1;
3053 if (!double_int_fits_in_shwi_p (nit))
3054 return -1;
3055 hwi_nit = double_int_to_shwi (nit);
3057 return hwi_nit < 0 ? -1 : hwi_nit;
3060 /* Similar to max_loop_iterations, but returns the estimate only
3061 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3062 on the number of iterations of LOOP could not be derived, returns -1. */
3064 HOST_WIDE_INT
3065 max_loop_iterations_int (struct loop *loop)
3067 double_int nit;
3068 HOST_WIDE_INT hwi_nit;
3070 if (!max_loop_iterations (loop, &nit))
3071 return -1;
3073 if (!double_int_fits_in_shwi_p (nit))
3074 return -1;
3075 hwi_nit = double_int_to_shwi (nit);
3077 return hwi_nit < 0 ? -1 : hwi_nit;
3080 /* Returns an upper bound on the number of executions of statements
3081 in the LOOP. For statements before the loop exit, this exceeds
3082 the number of execution of the latch by one. */
3084 HOST_WIDE_INT
3085 max_stmt_executions_int (struct loop *loop)
3087 HOST_WIDE_INT nit = max_loop_iterations_int (loop);
3088 HOST_WIDE_INT snit;
3090 if (nit == -1)
3091 return -1;
3093 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3095 /* If the computation overflows, return -1. */
3096 return snit < 0 ? -1 : snit;
3099 /* Returns an estimate for the number of executions of statements
3100 in the LOOP. For statements before the loop exit, this exceeds
3101 the number of execution of the latch by one. */
3103 HOST_WIDE_INT
3104 estimated_stmt_executions_int (struct loop *loop)
3106 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3107 HOST_WIDE_INT snit;
3109 if (nit == -1)
3110 return -1;
3112 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3114 /* If the computation overflows, return -1. */
3115 return snit < 0 ? -1 : snit;
3118 /* Sets NIT to the estimated maximum number of executions of the latch of the
3119 LOOP, plus one. If we have no reliable estimate, the function returns
3120 false, otherwise returns true. */
3122 bool
3123 max_stmt_executions (struct loop *loop, double_int *nit)
3125 double_int nit_minus_one;
3127 if (!max_loop_iterations (loop, nit))
3128 return false;
3130 nit_minus_one = *nit;
3132 *nit = double_int_add (*nit, double_int_one);
3134 return double_int_ucmp (*nit, nit_minus_one) > 0;
3137 /* Sets NIT to the estimated number of executions of the latch of the
3138 LOOP, plus one. If we have no reliable estimate, the function returns
3139 false, otherwise returns true. */
3141 bool
3142 estimated_stmt_executions (struct loop *loop, double_int *nit)
3144 double_int nit_minus_one;
3146 if (!estimated_loop_iterations (loop, nit))
3147 return false;
3149 nit_minus_one = *nit;
3151 *nit = double_int_add (*nit, double_int_one);
3153 return double_int_ucmp (*nit, nit_minus_one) > 0;
3156 /* Records estimates on numbers of iterations of loops. */
3158 void
3159 estimate_numbers_of_iterations (void)
3161 loop_iterator li;
3162 struct loop *loop;
3164 /* We don't want to issue signed overflow warnings while getting
3165 loop iteration estimates. */
3166 fold_defer_overflow_warnings ();
3168 FOR_EACH_LOOP (li, loop, 0)
3170 estimate_numbers_of_iterations_loop (loop);
3173 fold_undefer_and_ignore_overflow_warnings ();
3176 /* Returns true if statement S1 dominates statement S2. */
3178 bool
3179 stmt_dominates_stmt_p (gimple s1, gimple s2)
3181 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3183 if (!bb1
3184 || s1 == s2)
3185 return true;
3187 if (bb1 == bb2)
3189 gimple_stmt_iterator bsi;
3191 if (gimple_code (s2) == GIMPLE_PHI)
3192 return false;
3194 if (gimple_code (s1) == GIMPLE_PHI)
3195 return true;
3197 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3198 if (gsi_stmt (bsi) == s1)
3199 return true;
3201 return false;
3204 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3207 /* Returns true when we can prove that the number of executions of
3208 STMT in the loop is at most NITER, according to the bound on
3209 the number of executions of the statement NITER_BOUND->stmt recorded in
3210 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3211 statements in the loop. */
3213 static bool
3214 n_of_executions_at_most (gimple stmt,
3215 struct nb_iter_bound *niter_bound,
3216 tree niter)
3218 double_int bound = niter_bound->bound;
3219 tree nit_type = TREE_TYPE (niter), e;
3220 enum tree_code cmp;
3222 gcc_assert (TYPE_UNSIGNED (nit_type));
3224 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3225 the number of iterations is small. */
3226 if (!double_int_fits_to_tree_p (nit_type, bound))
3227 return false;
3229 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3230 times. This means that:
3232 -- if NITER_BOUND->is_exit is true, then everything before
3233 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3234 times, and everything after it at most NITER_BOUND->bound times.
3236 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3237 is executed, then NITER_BOUND->stmt is executed as well in the same
3238 iteration (we conclude that if both statements belong to the same
3239 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3240 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3241 executed at most NITER_BOUND->bound + 2 times. */
3243 if (niter_bound->is_exit)
3245 if (stmt
3246 && stmt != niter_bound->stmt
3247 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3248 cmp = GE_EXPR;
3249 else
3250 cmp = GT_EXPR;
3252 else
3254 if (!stmt
3255 || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3256 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3258 bound = double_int_add (bound, double_int_one);
3259 if (double_int_zero_p (bound)
3260 || !double_int_fits_to_tree_p (nit_type, bound))
3261 return false;
3263 cmp = GT_EXPR;
3266 e = fold_binary (cmp, boolean_type_node,
3267 niter, double_int_to_tree (nit_type, bound));
3268 return e && integer_nonzerop (e);
3271 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3273 bool
3274 nowrap_type_p (tree type)
3276 if (INTEGRAL_TYPE_P (type)
3277 && TYPE_OVERFLOW_UNDEFINED (type))
3278 return true;
3280 if (POINTER_TYPE_P (type))
3281 return true;
3283 return false;
3286 /* Return false only when the induction variable BASE + STEP * I is
3287 known to not overflow: i.e. when the number of iterations is small
3288 enough with respect to the step and initial condition in order to
3289 keep the evolution confined in TYPEs bounds. Return true when the
3290 iv is known to overflow or when the property is not computable.
3292 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3293 the rules for overflow of the given language apply (e.g., that signed
3294 arithmetics in C does not overflow). */
3296 bool
3297 scev_probably_wraps_p (tree base, tree step,
3298 gimple at_stmt, struct loop *loop,
3299 bool use_overflow_semantics)
3301 struct nb_iter_bound *bound;
3302 tree delta, step_abs;
3303 tree unsigned_type, valid_niter;
3304 tree type = TREE_TYPE (step);
3306 /* FIXME: We really need something like
3307 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3309 We used to test for the following situation that frequently appears
3310 during address arithmetics:
3312 D.1621_13 = (long unsigned intD.4) D.1620_12;
3313 D.1622_14 = D.1621_13 * 8;
3314 D.1623_15 = (doubleD.29 *) D.1622_14;
3316 And derived that the sequence corresponding to D_14
3317 can be proved to not wrap because it is used for computing a
3318 memory access; however, this is not really the case -- for example,
3319 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3320 2032, 2040, 0, 8, ..., but the code is still legal. */
3322 if (chrec_contains_undetermined (base)
3323 || chrec_contains_undetermined (step))
3324 return true;
3326 if (integer_zerop (step))
3327 return false;
3329 /* If we can use the fact that signed and pointer arithmetics does not
3330 wrap, we are done. */
3331 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3332 return false;
3334 /* To be able to use estimates on number of iterations of the loop,
3335 we must have an upper bound on the absolute value of the step. */
3336 if (TREE_CODE (step) != INTEGER_CST)
3337 return true;
3339 /* Don't issue signed overflow warnings. */
3340 fold_defer_overflow_warnings ();
3342 /* Otherwise, compute the number of iterations before we reach the
3343 bound of the type, and verify that the loop is exited before this
3344 occurs. */
3345 unsigned_type = unsigned_type_for (type);
3346 base = fold_convert (unsigned_type, base);
3348 if (tree_int_cst_sign_bit (step))
3350 tree extreme = fold_convert (unsigned_type,
3351 lower_bound_in_type (type, type));
3352 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3353 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3354 fold_convert (unsigned_type, step));
3356 else
3358 tree extreme = fold_convert (unsigned_type,
3359 upper_bound_in_type (type, type));
3360 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3361 step_abs = fold_convert (unsigned_type, step);
3364 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3366 estimate_numbers_of_iterations_loop (loop);
3367 for (bound = loop->bounds; bound; bound = bound->next)
3369 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3371 fold_undefer_and_ignore_overflow_warnings ();
3372 return false;
3376 fold_undefer_and_ignore_overflow_warnings ();
3378 /* At this point we still don't have a proof that the iv does not
3379 overflow: give up. */
3380 return true;
3383 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3385 void
3386 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3388 struct nb_iter_bound *bound, *next;
3390 loop->nb_iterations = NULL;
3391 loop->estimate_state = EST_NOT_COMPUTED;
3392 for (bound = loop->bounds; bound; bound = next)
3394 next = bound->next;
3395 ggc_free (bound);
3398 loop->bounds = NULL;
3401 /* Frees the information on upper bounds on numbers of iterations of loops. */
3403 void
3404 free_numbers_of_iterations_estimates (void)
3406 loop_iterator li;
3407 struct loop *loop;
3409 FOR_EACH_LOOP (li, loop, 0)
3411 free_numbers_of_iterations_estimates_loop (loop);
3415 /* Substitute value VAL for ssa name NAME inside expressions held
3416 at LOOP. */
3418 void
3419 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3421 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);