re PR bootstrap/54281 (Fails to bootstrap with --disable-nls)
[official-gcc.git] / gcc / tree-ssa-ccp.c
blobac6ad5da74ff6ef2f7ba4c62215023b62aeb48be
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
102 References:
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "tree-flow.h"
124 #include "tree-pass.h"
125 #include "tree-ssa-propagate.h"
126 #include "value-prof.h"
127 #include "langhooks.h"
128 #include "target.h"
129 #include "diagnostic-core.h"
130 #include "dbgcnt.h"
131 #include "gimple-fold.h"
132 #include "params.h"
133 #include "hash-table.h"
136 /* Possible lattice values. */
137 typedef enum
139 UNINITIALIZED,
140 UNDEFINED,
141 CONSTANT,
142 VARYING
143 } ccp_lattice_t;
145 struct prop_value_d {
146 /* Lattice value. */
147 ccp_lattice_t lattice_val;
149 /* Propagated value. */
150 tree value;
152 /* Mask that applies to the propagated value during CCP. For
153 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
154 double_int mask;
157 typedef struct prop_value_d prop_value_t;
159 /* Array of propagated constant values. After propagation,
160 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
161 the constant is held in an SSA name representing a memory store
162 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
163 memory reference used to store (i.e., the LHS of the assignment
164 doing the store). */
165 static prop_value_t *const_val;
167 static void canonicalize_float_value (prop_value_t *);
168 static bool ccp_fold_stmt (gimple_stmt_iterator *);
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
172 static void
173 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
175 switch (val.lattice_val)
177 case UNINITIALIZED:
178 fprintf (outf, "%sUNINITIALIZED", prefix);
179 break;
180 case UNDEFINED:
181 fprintf (outf, "%sUNDEFINED", prefix);
182 break;
183 case VARYING:
184 fprintf (outf, "%sVARYING", prefix);
185 break;
186 case CONSTANT:
187 fprintf (outf, "%sCONSTANT ", prefix);
188 if (TREE_CODE (val.value) != INTEGER_CST
189 || double_int_zero_p (val.mask))
190 print_generic_expr (outf, val.value, dump_flags);
191 else
193 double_int cval = double_int_and_not (tree_to_double_int (val.value),
194 val.mask);
195 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
196 prefix, cval.high, cval.low);
197 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
198 val.mask.high, val.mask.low);
200 break;
201 default:
202 gcc_unreachable ();
207 /* Print lattice value VAL to stderr. */
209 void debug_lattice_value (prop_value_t val);
211 DEBUG_FUNCTION void
212 debug_lattice_value (prop_value_t val)
214 dump_lattice_value (stderr, "", val);
215 fprintf (stderr, "\n");
219 /* Compute a default value for variable VAR and store it in the
220 CONST_VAL array. The following rules are used to get default
221 values:
223 1- Global and static variables that are declared constant are
224 considered CONSTANT.
226 2- Any other value is considered UNDEFINED. This is useful when
227 considering PHI nodes. PHI arguments that are undefined do not
228 change the constant value of the PHI node, which allows for more
229 constants to be propagated.
231 3- Variables defined by statements other than assignments and PHI
232 nodes are considered VARYING.
234 4- Initial values of variables that are not GIMPLE registers are
235 considered VARYING. */
237 static prop_value_t
238 get_default_value (tree var)
240 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
241 gimple stmt;
243 stmt = SSA_NAME_DEF_STMT (var);
245 if (gimple_nop_p (stmt))
247 /* Variables defined by an empty statement are those used
248 before being initialized. If VAR is a local variable, we
249 can assume initially that it is UNDEFINED, otherwise we must
250 consider it VARYING. */
251 if (!virtual_operand_p (var)
252 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
253 val.lattice_val = UNDEFINED;
254 else
256 val.lattice_val = VARYING;
257 val.mask = double_int_minus_one;
260 else if (is_gimple_assign (stmt)
261 /* Value-returning GIMPLE_CALL statements assign to
262 a variable, and are treated similarly to GIMPLE_ASSIGN. */
263 || (is_gimple_call (stmt)
264 && gimple_call_lhs (stmt) != NULL_TREE)
265 || gimple_code (stmt) == GIMPLE_PHI)
267 tree cst;
268 if (gimple_assign_single_p (stmt)
269 && DECL_P (gimple_assign_rhs1 (stmt))
270 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
272 val.lattice_val = CONSTANT;
273 val.value = cst;
275 else
276 /* Any other variable defined by an assignment or a PHI node
277 is considered UNDEFINED. */
278 val.lattice_val = UNDEFINED;
280 else
282 /* Otherwise, VAR will never take on a constant value. */
283 val.lattice_val = VARYING;
284 val.mask = double_int_minus_one;
287 return val;
291 /* Get the constant value associated with variable VAR. */
293 static inline prop_value_t *
294 get_value (tree var)
296 prop_value_t *val;
298 if (const_val == NULL)
299 return NULL;
301 val = &const_val[SSA_NAME_VERSION (var)];
302 if (val->lattice_val == UNINITIALIZED)
303 *val = get_default_value (var);
305 canonicalize_float_value (val);
307 return val;
310 /* Return the constant tree value associated with VAR. */
312 static inline tree
313 get_constant_value (tree var)
315 prop_value_t *val;
316 if (TREE_CODE (var) != SSA_NAME)
318 if (is_gimple_min_invariant (var))
319 return var;
320 return NULL_TREE;
322 val = get_value (var);
323 if (val
324 && val->lattice_val == CONSTANT
325 && (TREE_CODE (val->value) != INTEGER_CST
326 || double_int_zero_p (val->mask)))
327 return val->value;
328 return NULL_TREE;
331 /* Sets the value associated with VAR to VARYING. */
333 static inline void
334 set_value_varying (tree var)
336 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
338 val->lattice_val = VARYING;
339 val->value = NULL_TREE;
340 val->mask = double_int_minus_one;
343 /* For float types, modify the value of VAL to make ccp work correctly
344 for non-standard values (-0, NaN):
346 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
347 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
348 This is to fix the following problem (see PR 29921): Suppose we have
350 x = 0.0 * y
352 and we set value of y to NaN. This causes value of x to be set to NaN.
353 When we later determine that y is in fact VARYING, fold uses the fact
354 that HONOR_NANS is false, and we try to change the value of x to 0,
355 causing an ICE. With HONOR_NANS being false, the real appearance of
356 NaN would cause undefined behavior, though, so claiming that y (and x)
357 are UNDEFINED initially is correct. */
359 static void
360 canonicalize_float_value (prop_value_t *val)
362 enum machine_mode mode;
363 tree type;
364 REAL_VALUE_TYPE d;
366 if (val->lattice_val != CONSTANT
367 || TREE_CODE (val->value) != REAL_CST)
368 return;
370 d = TREE_REAL_CST (val->value);
371 type = TREE_TYPE (val->value);
372 mode = TYPE_MODE (type);
374 if (!HONOR_SIGNED_ZEROS (mode)
375 && REAL_VALUE_MINUS_ZERO (d))
377 val->value = build_real (type, dconst0);
378 return;
381 if (!HONOR_NANS (mode)
382 && REAL_VALUE_ISNAN (d))
384 val->lattice_val = UNDEFINED;
385 val->value = NULL;
386 return;
390 /* Return whether the lattice transition is valid. */
392 static bool
393 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
395 /* Lattice transitions must always be monotonically increasing in
396 value. */
397 if (old_val.lattice_val < new_val.lattice_val)
398 return true;
400 if (old_val.lattice_val != new_val.lattice_val)
401 return false;
403 if (!old_val.value && !new_val.value)
404 return true;
406 /* Now both lattice values are CONSTANT. */
408 /* Allow transitioning from PHI <&x, not executable> == &x
409 to PHI <&x, &y> == common alignment. */
410 if (TREE_CODE (old_val.value) != INTEGER_CST
411 && TREE_CODE (new_val.value) == INTEGER_CST)
412 return true;
414 /* Bit-lattices have to agree in the still valid bits. */
415 if (TREE_CODE (old_val.value) == INTEGER_CST
416 && TREE_CODE (new_val.value) == INTEGER_CST)
417 return double_int_equal_p
418 (double_int_and_not (tree_to_double_int (old_val.value),
419 new_val.mask),
420 double_int_and_not (tree_to_double_int (new_val.value),
421 new_val.mask));
423 /* Otherwise constant values have to agree. */
424 return operand_equal_p (old_val.value, new_val.value, 0);
427 /* Set the value for variable VAR to NEW_VAL. Return true if the new
428 value is different from VAR's previous value. */
430 static bool
431 set_lattice_value (tree var, prop_value_t new_val)
433 /* We can deal with old UNINITIALIZED values just fine here. */
434 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
436 canonicalize_float_value (&new_val);
438 /* We have to be careful to not go up the bitwise lattice
439 represented by the mask.
440 ??? This doesn't seem to be the best place to enforce this. */
441 if (new_val.lattice_val == CONSTANT
442 && old_val->lattice_val == CONSTANT
443 && TREE_CODE (new_val.value) == INTEGER_CST
444 && TREE_CODE (old_val->value) == INTEGER_CST)
446 double_int diff;
447 diff = double_int_xor (tree_to_double_int (new_val.value),
448 tree_to_double_int (old_val->value));
449 new_val.mask = double_int_ior (new_val.mask,
450 double_int_ior (old_val->mask, diff));
453 gcc_assert (valid_lattice_transition (*old_val, new_val));
455 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
456 caller that this was a non-transition. */
457 if (old_val->lattice_val != new_val.lattice_val
458 || (new_val.lattice_val == CONSTANT
459 && TREE_CODE (new_val.value) == INTEGER_CST
460 && (TREE_CODE (old_val->value) != INTEGER_CST
461 || !double_int_equal_p (new_val.mask, old_val->mask))))
463 /* ??? We would like to delay creation of INTEGER_CSTs from
464 partially constants here. */
466 if (dump_file && (dump_flags & TDF_DETAILS))
468 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
469 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
472 *old_val = new_val;
474 gcc_assert (new_val.lattice_val != UNINITIALIZED);
475 return true;
478 return false;
481 static prop_value_t get_value_for_expr (tree, bool);
482 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
483 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
484 tree, double_int, double_int,
485 tree, double_int, double_int);
487 /* Return a double_int that can be used for bitwise simplifications
488 from VAL. */
490 static double_int
491 value_to_double_int (prop_value_t val)
493 if (val.value
494 && TREE_CODE (val.value) == INTEGER_CST)
495 return tree_to_double_int (val.value);
496 else
497 return double_int_zero;
500 /* Return the value for the address expression EXPR based on alignment
501 information. */
503 static prop_value_t
504 get_value_from_alignment (tree expr)
506 tree type = TREE_TYPE (expr);
507 prop_value_t val;
508 unsigned HOST_WIDE_INT bitpos;
509 unsigned int align;
511 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
513 get_pointer_alignment_1 (expr, &align, &bitpos);
514 val.mask
515 = double_int_and_not (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
516 ? double_int_mask (TYPE_PRECISION (type))
517 : double_int_minus_one,
518 uhwi_to_double_int (align / BITS_PER_UNIT - 1));
519 val.lattice_val = double_int_minus_one_p (val.mask) ? VARYING : CONSTANT;
520 if (val.lattice_val == CONSTANT)
521 val.value
522 = double_int_to_tree (type, uhwi_to_double_int (bitpos / BITS_PER_UNIT));
523 else
524 val.value = NULL_TREE;
526 return val;
529 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
530 return constant bits extracted from alignment information for
531 invariant addresses. */
533 static prop_value_t
534 get_value_for_expr (tree expr, bool for_bits_p)
536 prop_value_t val;
538 if (TREE_CODE (expr) == SSA_NAME)
540 val = *get_value (expr);
541 if (for_bits_p
542 && val.lattice_val == CONSTANT
543 && TREE_CODE (val.value) == ADDR_EXPR)
544 val = get_value_from_alignment (val.value);
546 else if (is_gimple_min_invariant (expr)
547 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
549 val.lattice_val = CONSTANT;
550 val.value = expr;
551 val.mask = double_int_zero;
552 canonicalize_float_value (&val);
554 else if (TREE_CODE (expr) == ADDR_EXPR)
555 val = get_value_from_alignment (expr);
556 else
558 val.lattice_val = VARYING;
559 val.mask = double_int_minus_one;
560 val.value = NULL_TREE;
562 return val;
565 /* Return the likely CCP lattice value for STMT.
567 If STMT has no operands, then return CONSTANT.
569 Else if undefinedness of operands of STMT cause its value to be
570 undefined, then return UNDEFINED.
572 Else if any operands of STMT are constants, then return CONSTANT.
574 Else return VARYING. */
576 static ccp_lattice_t
577 likely_value (gimple stmt)
579 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
580 tree use;
581 ssa_op_iter iter;
582 unsigned i;
584 enum gimple_code code = gimple_code (stmt);
586 /* This function appears to be called only for assignments, calls,
587 conditionals, and switches, due to the logic in visit_stmt. */
588 gcc_assert (code == GIMPLE_ASSIGN
589 || code == GIMPLE_CALL
590 || code == GIMPLE_COND
591 || code == GIMPLE_SWITCH);
593 /* If the statement has volatile operands, it won't fold to a
594 constant value. */
595 if (gimple_has_volatile_ops (stmt))
596 return VARYING;
598 /* Arrive here for more complex cases. */
599 has_constant_operand = false;
600 has_undefined_operand = false;
601 all_undefined_operands = true;
602 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
604 prop_value_t *val = get_value (use);
606 if (val->lattice_val == UNDEFINED)
607 has_undefined_operand = true;
608 else
609 all_undefined_operands = false;
611 if (val->lattice_val == CONSTANT)
612 has_constant_operand = true;
615 /* There may be constants in regular rhs operands. For calls we
616 have to ignore lhs, fndecl and static chain, otherwise only
617 the lhs. */
618 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
619 i < gimple_num_ops (stmt); ++i)
621 tree op = gimple_op (stmt, i);
622 if (!op || TREE_CODE (op) == SSA_NAME)
623 continue;
624 if (is_gimple_min_invariant (op))
625 has_constant_operand = true;
628 if (has_constant_operand)
629 all_undefined_operands = false;
631 /* If the operation combines operands like COMPLEX_EXPR make sure to
632 not mark the result UNDEFINED if only one part of the result is
633 undefined. */
634 if (has_undefined_operand && all_undefined_operands)
635 return UNDEFINED;
636 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
638 switch (gimple_assign_rhs_code (stmt))
640 /* Unary operators are handled with all_undefined_operands. */
641 case PLUS_EXPR:
642 case MINUS_EXPR:
643 case POINTER_PLUS_EXPR:
644 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
645 Not bitwise operators, one VARYING operand may specify the
646 result completely. Not logical operators for the same reason.
647 Not COMPLEX_EXPR as one VARYING operand makes the result partly
648 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
649 the undefined operand may be promoted. */
650 return UNDEFINED;
652 case ADDR_EXPR:
653 /* If any part of an address is UNDEFINED, like the index
654 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
655 return UNDEFINED;
657 default:
661 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
662 fall back to CONSTANT. During iteration UNDEFINED may still drop
663 to CONSTANT. */
664 if (has_undefined_operand)
665 return CONSTANT;
667 /* We do not consider virtual operands here -- load from read-only
668 memory may have only VARYING virtual operands, but still be
669 constant. */
670 if (has_constant_operand
671 || gimple_references_memory_p (stmt))
672 return CONSTANT;
674 return VARYING;
677 /* Returns true if STMT cannot be constant. */
679 static bool
680 surely_varying_stmt_p (gimple stmt)
682 /* If the statement has operands that we cannot handle, it cannot be
683 constant. */
684 if (gimple_has_volatile_ops (stmt))
685 return true;
687 /* If it is a call and does not return a value or is not a
688 builtin and not an indirect call, it is varying. */
689 if (is_gimple_call (stmt))
691 tree fndecl;
692 if (!gimple_call_lhs (stmt)
693 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
694 && !DECL_BUILT_IN (fndecl)))
695 return true;
698 /* Any other store operation is not interesting. */
699 else if (gimple_vdef (stmt))
700 return true;
702 /* Anything other than assignments and conditional jumps are not
703 interesting for CCP. */
704 if (gimple_code (stmt) != GIMPLE_ASSIGN
705 && gimple_code (stmt) != GIMPLE_COND
706 && gimple_code (stmt) != GIMPLE_SWITCH
707 && gimple_code (stmt) != GIMPLE_CALL)
708 return true;
710 return false;
713 /* Initialize local data structures for CCP. */
715 static void
716 ccp_initialize (void)
718 basic_block bb;
720 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
722 /* Initialize simulation flags for PHI nodes and statements. */
723 FOR_EACH_BB (bb)
725 gimple_stmt_iterator i;
727 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
729 gimple stmt = gsi_stmt (i);
730 bool is_varying;
732 /* If the statement is a control insn, then we do not
733 want to avoid simulating the statement once. Failure
734 to do so means that those edges will never get added. */
735 if (stmt_ends_bb_p (stmt))
736 is_varying = false;
737 else
738 is_varying = surely_varying_stmt_p (stmt);
740 if (is_varying)
742 tree def;
743 ssa_op_iter iter;
745 /* If the statement will not produce a constant, mark
746 all its outputs VARYING. */
747 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
748 set_value_varying (def);
750 prop_set_simulate_again (stmt, !is_varying);
754 /* Now process PHI nodes. We never clear the simulate_again flag on
755 phi nodes, since we do not know which edges are executable yet,
756 except for phi nodes for virtual operands when we do not do store ccp. */
757 FOR_EACH_BB (bb)
759 gimple_stmt_iterator i;
761 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
763 gimple phi = gsi_stmt (i);
765 if (virtual_operand_p (gimple_phi_result (phi)))
766 prop_set_simulate_again (phi, false);
767 else
768 prop_set_simulate_again (phi, true);
773 /* Debug count support. Reset the values of ssa names
774 VARYING when the total number ssa names analyzed is
775 beyond the debug count specified. */
777 static void
778 do_dbg_cnt (void)
780 unsigned i;
781 for (i = 0; i < num_ssa_names; i++)
783 if (!dbg_cnt (ccp))
785 const_val[i].lattice_val = VARYING;
786 const_val[i].mask = double_int_minus_one;
787 const_val[i].value = NULL_TREE;
793 /* Do final substitution of propagated values, cleanup the flowgraph and
794 free allocated storage.
796 Return TRUE when something was optimized. */
798 static bool
799 ccp_finalize (void)
801 bool something_changed;
802 unsigned i;
804 do_dbg_cnt ();
806 /* Derive alignment and misalignment information from partially
807 constant pointers in the lattice. */
808 for (i = 1; i < num_ssa_names; ++i)
810 tree name = ssa_name (i);
811 prop_value_t *val;
812 unsigned int tem, align;
814 if (!name
815 || !POINTER_TYPE_P (TREE_TYPE (name)))
816 continue;
818 val = get_value (name);
819 if (val->lattice_val != CONSTANT
820 || TREE_CODE (val->value) != INTEGER_CST)
821 continue;
823 /* Trailing constant bits specify the alignment, trailing value
824 bits the misalignment. */
825 tem = val->mask.low;
826 align = (tem & -tem);
827 if (align > 1)
828 set_ptr_info_alignment (get_ptr_info (name), align,
829 TREE_INT_CST_LOW (val->value) & (align - 1));
832 /* Perform substitutions based on the known constant values. */
833 something_changed = substitute_and_fold (get_constant_value,
834 ccp_fold_stmt, true);
836 free (const_val);
837 const_val = NULL;
838 return something_changed;;
842 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
843 in VAL1.
845 any M UNDEFINED = any
846 any M VARYING = VARYING
847 Ci M Cj = Ci if (i == j)
848 Ci M Cj = VARYING if (i != j)
851 static void
852 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
854 if (val1->lattice_val == UNDEFINED)
856 /* UNDEFINED M any = any */
857 *val1 = *val2;
859 else if (val2->lattice_val == UNDEFINED)
861 /* any M UNDEFINED = any
862 Nothing to do. VAL1 already contains the value we want. */
865 else if (val1->lattice_val == VARYING
866 || val2->lattice_val == VARYING)
868 /* any M VARYING = VARYING. */
869 val1->lattice_val = VARYING;
870 val1->mask = double_int_minus_one;
871 val1->value = NULL_TREE;
873 else if (val1->lattice_val == CONSTANT
874 && val2->lattice_val == CONSTANT
875 && TREE_CODE (val1->value) == INTEGER_CST
876 && TREE_CODE (val2->value) == INTEGER_CST)
878 /* Ci M Cj = Ci if (i == j)
879 Ci M Cj = VARYING if (i != j)
881 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
882 drop to varying. */
883 val1->mask
884 = double_int_ior (double_int_ior (val1->mask,
885 val2->mask),
886 double_int_xor (tree_to_double_int (val1->value),
887 tree_to_double_int (val2->value)));
888 if (double_int_minus_one_p (val1->mask))
890 val1->lattice_val = VARYING;
891 val1->value = NULL_TREE;
894 else if (val1->lattice_val == CONSTANT
895 && val2->lattice_val == CONSTANT
896 && simple_cst_equal (val1->value, val2->value) == 1)
898 /* Ci M Cj = Ci if (i == j)
899 Ci M Cj = VARYING if (i != j)
901 VAL1 already contains the value we want for equivalent values. */
903 else if (val1->lattice_val == CONSTANT
904 && val2->lattice_val == CONSTANT
905 && (TREE_CODE (val1->value) == ADDR_EXPR
906 || TREE_CODE (val2->value) == ADDR_EXPR))
908 /* When not equal addresses are involved try meeting for
909 alignment. */
910 prop_value_t tem = *val2;
911 if (TREE_CODE (val1->value) == ADDR_EXPR)
912 *val1 = get_value_for_expr (val1->value, true);
913 if (TREE_CODE (val2->value) == ADDR_EXPR)
914 tem = get_value_for_expr (val2->value, true);
915 ccp_lattice_meet (val1, &tem);
917 else
919 /* Any other combination is VARYING. */
920 val1->lattice_val = VARYING;
921 val1->mask = double_int_minus_one;
922 val1->value = NULL_TREE;
927 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
928 lattice values to determine PHI_NODE's lattice value. The value of a
929 PHI node is determined calling ccp_lattice_meet with all the arguments
930 of the PHI node that are incoming via executable edges. */
932 static enum ssa_prop_result
933 ccp_visit_phi_node (gimple phi)
935 unsigned i;
936 prop_value_t *old_val, new_val;
938 if (dump_file && (dump_flags & TDF_DETAILS))
940 fprintf (dump_file, "\nVisiting PHI node: ");
941 print_gimple_stmt (dump_file, phi, 0, dump_flags);
944 old_val = get_value (gimple_phi_result (phi));
945 switch (old_val->lattice_val)
947 case VARYING:
948 return SSA_PROP_VARYING;
950 case CONSTANT:
951 new_val = *old_val;
952 break;
954 case UNDEFINED:
955 new_val.lattice_val = UNDEFINED;
956 new_val.value = NULL_TREE;
957 break;
959 default:
960 gcc_unreachable ();
963 for (i = 0; i < gimple_phi_num_args (phi); i++)
965 /* Compute the meet operator over all the PHI arguments flowing
966 through executable edges. */
967 edge e = gimple_phi_arg_edge (phi, i);
969 if (dump_file && (dump_flags & TDF_DETAILS))
971 fprintf (dump_file,
972 "\n Argument #%d (%d -> %d %sexecutable)\n",
973 i, e->src->index, e->dest->index,
974 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
977 /* If the incoming edge is executable, Compute the meet operator for
978 the existing value of the PHI node and the current PHI argument. */
979 if (e->flags & EDGE_EXECUTABLE)
981 tree arg = gimple_phi_arg (phi, i)->def;
982 prop_value_t arg_val = get_value_for_expr (arg, false);
984 ccp_lattice_meet (&new_val, &arg_val);
986 if (dump_file && (dump_flags & TDF_DETAILS))
988 fprintf (dump_file, "\t");
989 print_generic_expr (dump_file, arg, dump_flags);
990 dump_lattice_value (dump_file, "\tValue: ", arg_val);
991 fprintf (dump_file, "\n");
994 if (new_val.lattice_val == VARYING)
995 break;
999 if (dump_file && (dump_flags & TDF_DETAILS))
1001 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1002 fprintf (dump_file, "\n\n");
1005 /* Make the transition to the new value. */
1006 if (set_lattice_value (gimple_phi_result (phi), new_val))
1008 if (new_val.lattice_val == VARYING)
1009 return SSA_PROP_VARYING;
1010 else
1011 return SSA_PROP_INTERESTING;
1013 else
1014 return SSA_PROP_NOT_INTERESTING;
1017 /* Return the constant value for OP or OP otherwise. */
1019 static tree
1020 valueize_op (tree op)
1022 if (TREE_CODE (op) == SSA_NAME)
1024 tree tem = get_constant_value (op);
1025 if (tem)
1026 return tem;
1028 return op;
1031 /* CCP specific front-end to the non-destructive constant folding
1032 routines.
1034 Attempt to simplify the RHS of STMT knowing that one or more
1035 operands are constants.
1037 If simplification is possible, return the simplified RHS,
1038 otherwise return the original RHS or NULL_TREE. */
1040 static tree
1041 ccp_fold (gimple stmt)
1043 location_t loc = gimple_location (stmt);
1044 switch (gimple_code (stmt))
1046 case GIMPLE_COND:
1048 /* Handle comparison operators that can appear in GIMPLE form. */
1049 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1050 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1051 enum tree_code code = gimple_cond_code (stmt);
1052 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1055 case GIMPLE_SWITCH:
1057 /* Return the constant switch index. */
1058 return valueize_op (gimple_switch_index (stmt));
1061 case GIMPLE_ASSIGN:
1062 case GIMPLE_CALL:
1063 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1065 default:
1066 gcc_unreachable ();
1070 /* Apply the operation CODE in type TYPE to the value, mask pair
1071 RVAL and RMASK representing a value of type RTYPE and set
1072 the value, mask pair *VAL and *MASK to the result. */
1074 static void
1075 bit_value_unop_1 (enum tree_code code, tree type,
1076 double_int *val, double_int *mask,
1077 tree rtype, double_int rval, double_int rmask)
1079 switch (code)
1081 case BIT_NOT_EXPR:
1082 *mask = rmask;
1083 *val = double_int_not (rval);
1084 break;
1086 case NEGATE_EXPR:
1088 double_int temv, temm;
1089 /* Return ~rval + 1. */
1090 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1091 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1092 type, temv, temm,
1093 type, double_int_one, double_int_zero);
1094 break;
1097 CASE_CONVERT:
1099 bool uns;
1101 /* First extend mask and value according to the original type. */
1102 uns = TYPE_UNSIGNED (rtype);
1103 *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1104 *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1106 /* Then extend mask and value according to the target type. */
1107 uns = TYPE_UNSIGNED (type);
1108 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1109 *val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1110 break;
1113 default:
1114 *mask = double_int_minus_one;
1115 break;
1119 /* Apply the operation CODE in type TYPE to the value, mask pairs
1120 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1121 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1123 static void
1124 bit_value_binop_1 (enum tree_code code, tree type,
1125 double_int *val, double_int *mask,
1126 tree r1type, double_int r1val, double_int r1mask,
1127 tree r2type, double_int r2val, double_int r2mask)
1129 bool uns = TYPE_UNSIGNED (type);
1130 /* Assume we'll get a constant result. Use an initial varying value,
1131 we fall back to varying in the end if necessary. */
1132 *mask = double_int_minus_one;
1133 switch (code)
1135 case BIT_AND_EXPR:
1136 /* The mask is constant where there is a known not
1137 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1138 *mask = double_int_and (double_int_ior (r1mask, r2mask),
1139 double_int_and (double_int_ior (r1val, r1mask),
1140 double_int_ior (r2val, r2mask)));
1141 *val = double_int_and (r1val, r2val);
1142 break;
1144 case BIT_IOR_EXPR:
1145 /* The mask is constant where there is a known
1146 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1147 *mask = double_int_and_not
1148 (double_int_ior (r1mask, r2mask),
1149 double_int_ior (double_int_and_not (r1val, r1mask),
1150 double_int_and_not (r2val, r2mask)));
1151 *val = double_int_ior (r1val, r2val);
1152 break;
1154 case BIT_XOR_EXPR:
1155 /* m1 | m2 */
1156 *mask = double_int_ior (r1mask, r2mask);
1157 *val = double_int_xor (r1val, r2val);
1158 break;
1160 case LROTATE_EXPR:
1161 case RROTATE_EXPR:
1162 if (double_int_zero_p (r2mask))
1164 HOST_WIDE_INT shift = r2val.low;
1165 if (code == RROTATE_EXPR)
1166 shift = -shift;
1167 *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1168 *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1170 break;
1172 case LSHIFT_EXPR:
1173 case RSHIFT_EXPR:
1174 /* ??? We can handle partially known shift counts if we know
1175 its sign. That way we can tell that (x << (y | 8)) & 255
1176 is zero. */
1177 if (double_int_zero_p (r2mask))
1179 HOST_WIDE_INT shift = r2val.low;
1180 if (code == RSHIFT_EXPR)
1181 shift = -shift;
1182 /* We need to know if we are doing a left or a right shift
1183 to properly shift in zeros for left shift and unsigned
1184 right shifts and the sign bit for signed right shifts.
1185 For signed right shifts we shift in varying in case
1186 the sign bit was varying. */
1187 if (shift > 0)
1189 *mask = double_int_lshift (r1mask, shift,
1190 TYPE_PRECISION (type), false);
1191 *val = double_int_lshift (r1val, shift,
1192 TYPE_PRECISION (type), false);
1194 else if (shift < 0)
1196 shift = -shift;
1197 *mask = double_int_rshift (r1mask, shift,
1198 TYPE_PRECISION (type), !uns);
1199 *val = double_int_rshift (r1val, shift,
1200 TYPE_PRECISION (type), !uns);
1202 else
1204 *mask = r1mask;
1205 *val = r1val;
1208 break;
1210 case PLUS_EXPR:
1211 case POINTER_PLUS_EXPR:
1213 double_int lo, hi;
1214 /* Do the addition with unknown bits set to zero, to give carry-ins of
1215 zero wherever possible. */
1216 lo = double_int_add (double_int_and_not (r1val, r1mask),
1217 double_int_and_not (r2val, r2mask));
1218 lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1219 /* Do the addition with unknown bits set to one, to give carry-ins of
1220 one wherever possible. */
1221 hi = double_int_add (double_int_ior (r1val, r1mask),
1222 double_int_ior (r2val, r2mask));
1223 hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1224 /* Each bit in the result is known if (a) the corresponding bits in
1225 both inputs are known, and (b) the carry-in to that bit position
1226 is known. We can check condition (b) by seeing if we got the same
1227 result with minimised carries as with maximised carries. */
1228 *mask = double_int_ior (double_int_ior (r1mask, r2mask),
1229 double_int_xor (lo, hi));
1230 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1231 /* It shouldn't matter whether we choose lo or hi here. */
1232 *val = lo;
1233 break;
1236 case MINUS_EXPR:
1238 double_int temv, temm;
1239 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1240 r2type, r2val, r2mask);
1241 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1242 r1type, r1val, r1mask,
1243 r2type, temv, temm);
1244 break;
1247 case MULT_EXPR:
1249 /* Just track trailing zeros in both operands and transfer
1250 them to the other. */
1251 int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1252 int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1253 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1255 *mask = double_int_zero;
1256 *val = double_int_zero;
1258 else if (r1tz + r2tz > 0)
1260 *mask = double_int_not (double_int_mask (r1tz + r2tz));
1261 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1262 *val = double_int_zero;
1264 break;
1267 case EQ_EXPR:
1268 case NE_EXPR:
1270 double_int m = double_int_ior (r1mask, r2mask);
1271 if (!double_int_equal_p (double_int_and_not (r1val, m),
1272 double_int_and_not (r2val, m)))
1274 *mask = double_int_zero;
1275 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1277 else
1279 /* We know the result of a comparison is always one or zero. */
1280 *mask = double_int_one;
1281 *val = double_int_zero;
1283 break;
1286 case GE_EXPR:
1287 case GT_EXPR:
1289 double_int tem = r1val;
1290 r1val = r2val;
1291 r2val = tem;
1292 tem = r1mask;
1293 r1mask = r2mask;
1294 r2mask = tem;
1295 code = swap_tree_comparison (code);
1297 /* Fallthru. */
1298 case LT_EXPR:
1299 case LE_EXPR:
1301 int minmax, maxmin;
1302 /* If the most significant bits are not known we know nothing. */
1303 if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1304 break;
1306 /* For comparisons the signedness is in the comparison operands. */
1307 uns = TYPE_UNSIGNED (r1type);
1309 /* If we know the most significant bits we know the values
1310 value ranges by means of treating varying bits as zero
1311 or one. Do a cross comparison of the max/min pairs. */
1312 maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1313 double_int_and_not (r2val, r2mask), uns);
1314 minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1315 double_int_ior (r2val, r2mask), uns);
1316 if (maxmin < 0) /* r1 is less than r2. */
1318 *mask = double_int_zero;
1319 *val = double_int_one;
1321 else if (minmax > 0) /* r1 is not less or equal to r2. */
1323 *mask = double_int_zero;
1324 *val = double_int_zero;
1326 else if (maxmin == minmax) /* r1 and r2 are equal. */
1328 /* This probably should never happen as we'd have
1329 folded the thing during fully constant value folding. */
1330 *mask = double_int_zero;
1331 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1333 else
1335 /* We know the result of a comparison is always one or zero. */
1336 *mask = double_int_one;
1337 *val = double_int_zero;
1339 break;
1342 default:;
1346 /* Return the propagation value when applying the operation CODE to
1347 the value RHS yielding type TYPE. */
1349 static prop_value_t
1350 bit_value_unop (enum tree_code code, tree type, tree rhs)
1352 prop_value_t rval = get_value_for_expr (rhs, true);
1353 double_int value, mask;
1354 prop_value_t val;
1356 if (rval.lattice_val == UNDEFINED)
1357 return rval;
1359 gcc_assert ((rval.lattice_val == CONSTANT
1360 && TREE_CODE (rval.value) == INTEGER_CST)
1361 || double_int_minus_one_p (rval.mask));
1362 bit_value_unop_1 (code, type, &value, &mask,
1363 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1364 if (!double_int_minus_one_p (mask))
1366 val.lattice_val = CONSTANT;
1367 val.mask = mask;
1368 /* ??? Delay building trees here. */
1369 val.value = double_int_to_tree (type, value);
1371 else
1373 val.lattice_val = VARYING;
1374 val.value = NULL_TREE;
1375 val.mask = double_int_minus_one;
1377 return val;
1380 /* Return the propagation value when applying the operation CODE to
1381 the values RHS1 and RHS2 yielding type TYPE. */
1383 static prop_value_t
1384 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1386 prop_value_t r1val = get_value_for_expr (rhs1, true);
1387 prop_value_t r2val = get_value_for_expr (rhs2, true);
1388 double_int value, mask;
1389 prop_value_t val;
1391 if (r1val.lattice_val == UNDEFINED
1392 || r2val.lattice_val == UNDEFINED)
1394 val.lattice_val = VARYING;
1395 val.value = NULL_TREE;
1396 val.mask = double_int_minus_one;
1397 return val;
1400 gcc_assert ((r1val.lattice_val == CONSTANT
1401 && TREE_CODE (r1val.value) == INTEGER_CST)
1402 || double_int_minus_one_p (r1val.mask));
1403 gcc_assert ((r2val.lattice_val == CONSTANT
1404 && TREE_CODE (r2val.value) == INTEGER_CST)
1405 || double_int_minus_one_p (r2val.mask));
1406 bit_value_binop_1 (code, type, &value, &mask,
1407 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1408 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1409 if (!double_int_minus_one_p (mask))
1411 val.lattice_val = CONSTANT;
1412 val.mask = mask;
1413 /* ??? Delay building trees here. */
1414 val.value = double_int_to_tree (type, value);
1416 else
1418 val.lattice_val = VARYING;
1419 val.value = NULL_TREE;
1420 val.mask = double_int_minus_one;
1422 return val;
1425 /* Return the propagation value when applying __builtin_assume_aligned to
1426 its arguments. */
1428 static prop_value_t
1429 bit_value_assume_aligned (gimple stmt)
1431 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1432 tree type = TREE_TYPE (ptr);
1433 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1434 prop_value_t ptrval = get_value_for_expr (ptr, true);
1435 prop_value_t alignval;
1436 double_int value, mask;
1437 prop_value_t val;
1438 if (ptrval.lattice_val == UNDEFINED)
1439 return ptrval;
1440 gcc_assert ((ptrval.lattice_val == CONSTANT
1441 && TREE_CODE (ptrval.value) == INTEGER_CST)
1442 || double_int_minus_one_p (ptrval.mask));
1443 align = gimple_call_arg (stmt, 1);
1444 if (!host_integerp (align, 1))
1445 return ptrval;
1446 aligni = tree_low_cst (align, 1);
1447 if (aligni <= 1
1448 || (aligni & (aligni - 1)) != 0)
1449 return ptrval;
1450 if (gimple_call_num_args (stmt) > 2)
1452 misalign = gimple_call_arg (stmt, 2);
1453 if (!host_integerp (misalign, 1))
1454 return ptrval;
1455 misaligni = tree_low_cst (misalign, 1);
1456 if (misaligni >= aligni)
1457 return ptrval;
1459 align = build_int_cst_type (type, -aligni);
1460 alignval = get_value_for_expr (align, true);
1461 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1462 type, value_to_double_int (ptrval), ptrval.mask,
1463 type, value_to_double_int (alignval), alignval.mask);
1464 if (!double_int_minus_one_p (mask))
1466 val.lattice_val = CONSTANT;
1467 val.mask = mask;
1468 gcc_assert ((mask.low & (aligni - 1)) == 0);
1469 gcc_assert ((value.low & (aligni - 1)) == 0);
1470 value.low |= misaligni;
1471 /* ??? Delay building trees here. */
1472 val.value = double_int_to_tree (type, value);
1474 else
1476 val.lattice_val = VARYING;
1477 val.value = NULL_TREE;
1478 val.mask = double_int_minus_one;
1480 return val;
1483 /* Evaluate statement STMT.
1484 Valid only for assignments, calls, conditionals, and switches. */
1486 static prop_value_t
1487 evaluate_stmt (gimple stmt)
1489 prop_value_t val;
1490 tree simplified = NULL_TREE;
1491 ccp_lattice_t likelyvalue = likely_value (stmt);
1492 bool is_constant = false;
1493 unsigned int align;
1495 if (dump_file && (dump_flags & TDF_DETAILS))
1497 fprintf (dump_file, "which is likely ");
1498 switch (likelyvalue)
1500 case CONSTANT:
1501 fprintf (dump_file, "CONSTANT");
1502 break;
1503 case UNDEFINED:
1504 fprintf (dump_file, "UNDEFINED");
1505 break;
1506 case VARYING:
1507 fprintf (dump_file, "VARYING");
1508 break;
1509 default:;
1511 fprintf (dump_file, "\n");
1514 /* If the statement is likely to have a CONSTANT result, then try
1515 to fold the statement to determine the constant value. */
1516 /* FIXME. This is the only place that we call ccp_fold.
1517 Since likely_value never returns CONSTANT for calls, we will
1518 not attempt to fold them, including builtins that may profit. */
1519 if (likelyvalue == CONSTANT)
1521 fold_defer_overflow_warnings ();
1522 simplified = ccp_fold (stmt);
1523 is_constant = simplified && is_gimple_min_invariant (simplified);
1524 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1525 if (is_constant)
1527 /* The statement produced a constant value. */
1528 val.lattice_val = CONSTANT;
1529 val.value = simplified;
1530 val.mask = double_int_zero;
1533 /* If the statement is likely to have a VARYING result, then do not
1534 bother folding the statement. */
1535 else if (likelyvalue == VARYING)
1537 enum gimple_code code = gimple_code (stmt);
1538 if (code == GIMPLE_ASSIGN)
1540 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1542 /* Other cases cannot satisfy is_gimple_min_invariant
1543 without folding. */
1544 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1545 simplified = gimple_assign_rhs1 (stmt);
1547 else if (code == GIMPLE_SWITCH)
1548 simplified = gimple_switch_index (stmt);
1549 else
1550 /* These cannot satisfy is_gimple_min_invariant without folding. */
1551 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1552 is_constant = simplified && is_gimple_min_invariant (simplified);
1553 if (is_constant)
1555 /* The statement produced a constant value. */
1556 val.lattice_val = CONSTANT;
1557 val.value = simplified;
1558 val.mask = double_int_zero;
1562 /* Resort to simplification for bitwise tracking. */
1563 if (flag_tree_bit_ccp
1564 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1565 && !is_constant)
1567 enum gimple_code code = gimple_code (stmt);
1568 tree fndecl;
1569 val.lattice_val = VARYING;
1570 val.value = NULL_TREE;
1571 val.mask = double_int_minus_one;
1572 if (code == GIMPLE_ASSIGN)
1574 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1575 tree rhs1 = gimple_assign_rhs1 (stmt);
1576 switch (get_gimple_rhs_class (subcode))
1578 case GIMPLE_SINGLE_RHS:
1579 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1580 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1581 val = get_value_for_expr (rhs1, true);
1582 break;
1584 case GIMPLE_UNARY_RHS:
1585 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1586 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1587 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1588 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1589 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1590 break;
1592 case GIMPLE_BINARY_RHS:
1593 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1594 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1596 tree lhs = gimple_assign_lhs (stmt);
1597 tree rhs2 = gimple_assign_rhs2 (stmt);
1598 val = bit_value_binop (subcode,
1599 TREE_TYPE (lhs), rhs1, rhs2);
1601 break;
1603 default:;
1606 else if (code == GIMPLE_COND)
1608 enum tree_code code = gimple_cond_code (stmt);
1609 tree rhs1 = gimple_cond_lhs (stmt);
1610 tree rhs2 = gimple_cond_rhs (stmt);
1611 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1612 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1613 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1615 else if (code == GIMPLE_CALL
1616 && (fndecl = gimple_call_fndecl (stmt))
1617 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1619 switch (DECL_FUNCTION_CODE (fndecl))
1621 case BUILT_IN_MALLOC:
1622 case BUILT_IN_REALLOC:
1623 case BUILT_IN_CALLOC:
1624 case BUILT_IN_STRDUP:
1625 case BUILT_IN_STRNDUP:
1626 val.lattice_val = CONSTANT;
1627 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1628 val.mask = shwi_to_double_int
1629 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1630 / BITS_PER_UNIT - 1));
1631 break;
1633 case BUILT_IN_ALLOCA:
1634 case BUILT_IN_ALLOCA_WITH_ALIGN:
1635 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1636 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1637 : BIGGEST_ALIGNMENT);
1638 val.lattice_val = CONSTANT;
1639 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1640 val.mask = shwi_to_double_int
1641 (~(((HOST_WIDE_INT) align)
1642 / BITS_PER_UNIT - 1));
1643 break;
1645 /* These builtins return their first argument, unmodified. */
1646 case BUILT_IN_MEMCPY:
1647 case BUILT_IN_MEMMOVE:
1648 case BUILT_IN_MEMSET:
1649 case BUILT_IN_STRCPY:
1650 case BUILT_IN_STRNCPY:
1651 case BUILT_IN_MEMCPY_CHK:
1652 case BUILT_IN_MEMMOVE_CHK:
1653 case BUILT_IN_MEMSET_CHK:
1654 case BUILT_IN_STRCPY_CHK:
1655 case BUILT_IN_STRNCPY_CHK:
1656 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1657 break;
1659 case BUILT_IN_ASSUME_ALIGNED:
1660 val = bit_value_assume_aligned (stmt);
1661 break;
1663 default:;
1666 is_constant = (val.lattice_val == CONSTANT);
1669 if (!is_constant)
1671 /* The statement produced a nonconstant value. If the statement
1672 had UNDEFINED operands, then the result of the statement
1673 should be UNDEFINED. Otherwise, the statement is VARYING. */
1674 if (likelyvalue == UNDEFINED)
1676 val.lattice_val = likelyvalue;
1677 val.mask = double_int_zero;
1679 else
1681 val.lattice_val = VARYING;
1682 val.mask = double_int_minus_one;
1685 val.value = NULL_TREE;
1688 return val;
1691 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1693 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1694 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1696 static void
1697 insert_clobber_before_stack_restore (tree saved_val, tree var,
1698 gimple_htab *visited)
1700 gimple stmt, clobber_stmt;
1701 tree clobber;
1702 imm_use_iterator iter;
1703 gimple_stmt_iterator i;
1704 gimple *slot;
1706 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1707 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1709 clobber = build_constructor (TREE_TYPE (var), NULL);
1710 TREE_THIS_VOLATILE (clobber) = 1;
1711 clobber_stmt = gimple_build_assign (var, clobber);
1713 i = gsi_for_stmt (stmt);
1714 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1716 else if (gimple_code (stmt) == GIMPLE_PHI)
1718 if (!visited->is_created ())
1719 visited->create (10);
1721 slot = visited->find_slot (stmt, INSERT);
1722 if (*slot != NULL)
1723 continue;
1725 *slot = stmt;
1726 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1727 visited);
1729 else
1730 gcc_assert (is_gimple_debug (stmt));
1733 /* Advance the iterator to the previous non-debug gimple statement in the same
1734 or dominating basic block. */
1736 static inline void
1737 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1739 basic_block dom;
1741 gsi_prev_nondebug (i);
1742 while (gsi_end_p (*i))
1744 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1745 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1746 return;
1748 *i = gsi_last_bb (dom);
1752 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1753 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1755 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1756 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1757 that case the function gives up without inserting the clobbers. */
1759 static void
1760 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1762 gimple stmt;
1763 tree saved_val;
1764 gimple_htab visited;
1766 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1768 stmt = gsi_stmt (i);
1770 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1771 continue;
1773 saved_val = gimple_call_lhs (stmt);
1774 if (saved_val == NULL_TREE)
1775 continue;
1777 insert_clobber_before_stack_restore (saved_val, var, &visited);
1778 break;
1781 if (visited.is_created ())
1782 visited.dispose ();
1785 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1786 fixed-size array and returns the address, if found, otherwise returns
1787 NULL_TREE. */
1789 static tree
1790 fold_builtin_alloca_with_align (gimple stmt)
1792 unsigned HOST_WIDE_INT size, threshold, n_elem;
1793 tree lhs, arg, block, var, elem_type, array_type;
1795 /* Get lhs. */
1796 lhs = gimple_call_lhs (stmt);
1797 if (lhs == NULL_TREE)
1798 return NULL_TREE;
1800 /* Detect constant argument. */
1801 arg = get_constant_value (gimple_call_arg (stmt, 0));
1802 if (arg == NULL_TREE
1803 || TREE_CODE (arg) != INTEGER_CST
1804 || !host_integerp (arg, 1))
1805 return NULL_TREE;
1807 size = TREE_INT_CST_LOW (arg);
1809 /* Heuristic: don't fold large allocas. */
1810 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1811 /* In case the alloca is located at function entry, it has the same lifetime
1812 as a declared array, so we allow a larger size. */
1813 block = gimple_block (stmt);
1814 if (!(cfun->after_inlining
1815 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1816 threshold /= 10;
1817 if (size > threshold)
1818 return NULL_TREE;
1820 /* Declare array. */
1821 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1822 n_elem = size * 8 / BITS_PER_UNIT;
1823 array_type = build_array_type_nelts (elem_type, n_elem);
1824 var = create_tmp_var (array_type, NULL);
1825 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1827 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1828 if (pi != NULL && !pi->pt.anything)
1830 bool singleton_p;
1831 unsigned uid;
1832 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1833 gcc_assert (singleton_p);
1834 SET_DECL_PT_UID (var, uid);
1838 /* Fold alloca to the address of the array. */
1839 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1842 /* Fold the stmt at *GSI with CCP specific information that propagating
1843 and regular folding does not catch. */
1845 static bool
1846 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1848 gimple stmt = gsi_stmt (*gsi);
1850 switch (gimple_code (stmt))
1852 case GIMPLE_COND:
1854 prop_value_t val;
1855 /* Statement evaluation will handle type mismatches in constants
1856 more gracefully than the final propagation. This allows us to
1857 fold more conditionals here. */
1858 val = evaluate_stmt (stmt);
1859 if (val.lattice_val != CONSTANT
1860 || !double_int_zero_p (val.mask))
1861 return false;
1863 if (dump_file)
1865 fprintf (dump_file, "Folding predicate ");
1866 print_gimple_expr (dump_file, stmt, 0, 0);
1867 fprintf (dump_file, " to ");
1868 print_generic_expr (dump_file, val.value, 0);
1869 fprintf (dump_file, "\n");
1872 if (integer_zerop (val.value))
1873 gimple_cond_make_false (stmt);
1874 else
1875 gimple_cond_make_true (stmt);
1877 return true;
1880 case GIMPLE_CALL:
1882 tree lhs = gimple_call_lhs (stmt);
1883 int flags = gimple_call_flags (stmt);
1884 tree val;
1885 tree argt;
1886 bool changed = false;
1887 unsigned i;
1889 /* If the call was folded into a constant make sure it goes
1890 away even if we cannot propagate into all uses because of
1891 type issues. */
1892 if (lhs
1893 && TREE_CODE (lhs) == SSA_NAME
1894 && (val = get_constant_value (lhs))
1895 /* Don't optimize away calls that have side-effects. */
1896 && (flags & (ECF_CONST|ECF_PURE)) != 0
1897 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1899 tree new_rhs = unshare_expr (val);
1900 bool res;
1901 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1902 TREE_TYPE (new_rhs)))
1903 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1904 res = update_call_from_tree (gsi, new_rhs);
1905 gcc_assert (res);
1906 return true;
1909 /* Internal calls provide no argument types, so the extra laxity
1910 for normal calls does not apply. */
1911 if (gimple_call_internal_p (stmt))
1912 return false;
1914 /* The heuristic of fold_builtin_alloca_with_align differs before and
1915 after inlining, so we don't require the arg to be changed into a
1916 constant for folding, but just to be constant. */
1917 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1919 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1920 if (new_rhs)
1922 bool res = update_call_from_tree (gsi, new_rhs);
1923 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1924 gcc_assert (res);
1925 insert_clobbers_for_var (*gsi, var);
1926 return true;
1930 /* Propagate into the call arguments. Compared to replace_uses_in
1931 this can use the argument slot types for type verification
1932 instead of the current argument type. We also can safely
1933 drop qualifiers here as we are dealing with constants anyway. */
1934 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1935 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1936 ++i, argt = TREE_CHAIN (argt))
1938 tree arg = gimple_call_arg (stmt, i);
1939 if (TREE_CODE (arg) == SSA_NAME
1940 && (val = get_constant_value (arg))
1941 && useless_type_conversion_p
1942 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1943 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1945 gimple_call_set_arg (stmt, i, unshare_expr (val));
1946 changed = true;
1950 return changed;
1953 case GIMPLE_ASSIGN:
1955 tree lhs = gimple_assign_lhs (stmt);
1956 tree val;
1958 /* If we have a load that turned out to be constant replace it
1959 as we cannot propagate into all uses in all cases. */
1960 if (gimple_assign_single_p (stmt)
1961 && TREE_CODE (lhs) == SSA_NAME
1962 && (val = get_constant_value (lhs)))
1964 tree rhs = unshare_expr (val);
1965 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1966 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1967 gimple_assign_set_rhs_from_tree (gsi, rhs);
1968 return true;
1971 return false;
1974 default:
1975 return false;
1979 /* Visit the assignment statement STMT. Set the value of its LHS to the
1980 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1981 creates virtual definitions, set the value of each new name to that
1982 of the RHS (if we can derive a constant out of the RHS).
1983 Value-returning call statements also perform an assignment, and
1984 are handled here. */
1986 static enum ssa_prop_result
1987 visit_assignment (gimple stmt, tree *output_p)
1989 prop_value_t val;
1990 enum ssa_prop_result retval;
1992 tree lhs = gimple_get_lhs (stmt);
1994 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1995 || gimple_call_lhs (stmt) != NULL_TREE);
1997 if (gimple_assign_single_p (stmt)
1998 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1999 /* For a simple copy operation, we copy the lattice values. */
2000 val = *get_value (gimple_assign_rhs1 (stmt));
2001 else
2002 /* Evaluate the statement, which could be
2003 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2004 val = evaluate_stmt (stmt);
2006 retval = SSA_PROP_NOT_INTERESTING;
2008 /* Set the lattice value of the statement's output. */
2009 if (TREE_CODE (lhs) == SSA_NAME)
2011 /* If STMT is an assignment to an SSA_NAME, we only have one
2012 value to set. */
2013 if (set_lattice_value (lhs, val))
2015 *output_p = lhs;
2016 if (val.lattice_val == VARYING)
2017 retval = SSA_PROP_VARYING;
2018 else
2019 retval = SSA_PROP_INTERESTING;
2023 return retval;
2027 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2028 if it can determine which edge will be taken. Otherwise, return
2029 SSA_PROP_VARYING. */
2031 static enum ssa_prop_result
2032 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2034 prop_value_t val;
2035 basic_block block;
2037 block = gimple_bb (stmt);
2038 val = evaluate_stmt (stmt);
2039 if (val.lattice_val != CONSTANT
2040 || !double_int_zero_p (val.mask))
2041 return SSA_PROP_VARYING;
2043 /* Find which edge out of the conditional block will be taken and add it
2044 to the worklist. If no single edge can be determined statically,
2045 return SSA_PROP_VARYING to feed all the outgoing edges to the
2046 propagation engine. */
2047 *taken_edge_p = find_taken_edge (block, val.value);
2048 if (*taken_edge_p)
2049 return SSA_PROP_INTERESTING;
2050 else
2051 return SSA_PROP_VARYING;
2055 /* Evaluate statement STMT. If the statement produces an output value and
2056 its evaluation changes the lattice value of its output, return
2057 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2058 output value.
2060 If STMT is a conditional branch and we can determine its truth
2061 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2062 value, return SSA_PROP_VARYING. */
2064 static enum ssa_prop_result
2065 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2067 tree def;
2068 ssa_op_iter iter;
2070 if (dump_file && (dump_flags & TDF_DETAILS))
2072 fprintf (dump_file, "\nVisiting statement:\n");
2073 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2076 switch (gimple_code (stmt))
2078 case GIMPLE_ASSIGN:
2079 /* If the statement is an assignment that produces a single
2080 output value, evaluate its RHS to see if the lattice value of
2081 its output has changed. */
2082 return visit_assignment (stmt, output_p);
2084 case GIMPLE_CALL:
2085 /* A value-returning call also performs an assignment. */
2086 if (gimple_call_lhs (stmt) != NULL_TREE)
2087 return visit_assignment (stmt, output_p);
2088 break;
2090 case GIMPLE_COND:
2091 case GIMPLE_SWITCH:
2092 /* If STMT is a conditional branch, see if we can determine
2093 which branch will be taken. */
2094 /* FIXME. It appears that we should be able to optimize
2095 computed GOTOs here as well. */
2096 return visit_cond_stmt (stmt, taken_edge_p);
2098 default:
2099 break;
2102 /* Any other kind of statement is not interesting for constant
2103 propagation and, therefore, not worth simulating. */
2104 if (dump_file && (dump_flags & TDF_DETAILS))
2105 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2107 /* Definitions made by statements other than assignments to
2108 SSA_NAMEs represent unknown modifications to their outputs.
2109 Mark them VARYING. */
2110 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2112 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2113 set_lattice_value (def, v);
2116 return SSA_PROP_VARYING;
2120 /* Main entry point for SSA Conditional Constant Propagation. */
2122 static unsigned int
2123 do_ssa_ccp (void)
2125 unsigned int todo = 0;
2126 calculate_dominance_info (CDI_DOMINATORS);
2127 ccp_initialize ();
2128 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2129 if (ccp_finalize ())
2130 todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2131 free_dominance_info (CDI_DOMINATORS);
2132 return todo;
2136 static bool
2137 gate_ccp (void)
2139 return flag_tree_ccp != 0;
2143 struct gimple_opt_pass pass_ccp =
2146 GIMPLE_PASS,
2147 "ccp", /* name */
2148 gate_ccp, /* gate */
2149 do_ssa_ccp, /* execute */
2150 NULL, /* sub */
2151 NULL, /* next */
2152 0, /* static_pass_number */
2153 TV_TREE_CCP, /* tv_id */
2154 PROP_cfg | PROP_ssa, /* properties_required */
2155 0, /* properties_provided */
2156 0, /* properties_destroyed */
2157 0, /* todo_flags_start */
2158 TODO_verify_ssa
2159 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2165 /* Try to optimize out __builtin_stack_restore. Optimize it out
2166 if there is another __builtin_stack_restore in the same basic
2167 block and no calls or ASM_EXPRs are in between, or if this block's
2168 only outgoing edge is to EXIT_BLOCK and there are no calls or
2169 ASM_EXPRs after this __builtin_stack_restore. */
2171 static tree
2172 optimize_stack_restore (gimple_stmt_iterator i)
2174 tree callee;
2175 gimple stmt;
2177 basic_block bb = gsi_bb (i);
2178 gimple call = gsi_stmt (i);
2180 if (gimple_code (call) != GIMPLE_CALL
2181 || gimple_call_num_args (call) != 1
2182 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2183 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2184 return NULL_TREE;
2186 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2188 stmt = gsi_stmt (i);
2189 if (gimple_code (stmt) == GIMPLE_ASM)
2190 return NULL_TREE;
2191 if (gimple_code (stmt) != GIMPLE_CALL)
2192 continue;
2194 callee = gimple_call_fndecl (stmt);
2195 if (!callee
2196 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2197 /* All regular builtins are ok, just obviously not alloca. */
2198 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2199 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2200 return NULL_TREE;
2202 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2203 goto second_stack_restore;
2206 if (!gsi_end_p (i))
2207 return NULL_TREE;
2209 /* Allow one successor of the exit block, or zero successors. */
2210 switch (EDGE_COUNT (bb->succs))
2212 case 0:
2213 break;
2214 case 1:
2215 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2216 return NULL_TREE;
2217 break;
2218 default:
2219 return NULL_TREE;
2221 second_stack_restore:
2223 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2224 If there are multiple uses, then the last one should remove the call.
2225 In any case, whether the call to __builtin_stack_save can be removed
2226 or not is irrelevant to removing the call to __builtin_stack_restore. */
2227 if (has_single_use (gimple_call_arg (call, 0)))
2229 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2230 if (is_gimple_call (stack_save))
2232 callee = gimple_call_fndecl (stack_save);
2233 if (callee
2234 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2235 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2237 gimple_stmt_iterator stack_save_gsi;
2238 tree rhs;
2240 stack_save_gsi = gsi_for_stmt (stack_save);
2241 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2242 update_call_from_tree (&stack_save_gsi, rhs);
2247 /* No effect, so the statement will be deleted. */
2248 return integer_zero_node;
2251 /* If va_list type is a simple pointer and nothing special is needed,
2252 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2253 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2254 pointer assignment. */
2256 static tree
2257 optimize_stdarg_builtin (gimple call)
2259 tree callee, lhs, rhs, cfun_va_list;
2260 bool va_list_simple_ptr;
2261 location_t loc = gimple_location (call);
2263 if (gimple_code (call) != GIMPLE_CALL)
2264 return NULL_TREE;
2266 callee = gimple_call_fndecl (call);
2268 cfun_va_list = targetm.fn_abi_va_list (callee);
2269 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2270 && (TREE_TYPE (cfun_va_list) == void_type_node
2271 || TREE_TYPE (cfun_va_list) == char_type_node);
2273 switch (DECL_FUNCTION_CODE (callee))
2275 case BUILT_IN_VA_START:
2276 if (!va_list_simple_ptr
2277 || targetm.expand_builtin_va_start != NULL
2278 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2279 return NULL_TREE;
2281 if (gimple_call_num_args (call) != 2)
2282 return NULL_TREE;
2284 lhs = gimple_call_arg (call, 0);
2285 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2286 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2287 != TYPE_MAIN_VARIANT (cfun_va_list))
2288 return NULL_TREE;
2290 lhs = build_fold_indirect_ref_loc (loc, lhs);
2291 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2292 1, integer_zero_node);
2293 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2294 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2296 case BUILT_IN_VA_COPY:
2297 if (!va_list_simple_ptr)
2298 return NULL_TREE;
2300 if (gimple_call_num_args (call) != 2)
2301 return NULL_TREE;
2303 lhs = gimple_call_arg (call, 0);
2304 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2305 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2306 != TYPE_MAIN_VARIANT (cfun_va_list))
2307 return NULL_TREE;
2309 lhs = build_fold_indirect_ref_loc (loc, lhs);
2310 rhs = gimple_call_arg (call, 1);
2311 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2312 != TYPE_MAIN_VARIANT (cfun_va_list))
2313 return NULL_TREE;
2315 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2316 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2318 case BUILT_IN_VA_END:
2319 /* No effect, so the statement will be deleted. */
2320 return integer_zero_node;
2322 default:
2323 gcc_unreachable ();
2327 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2328 the incoming jumps. Return true if at least one jump was changed. */
2330 static bool
2331 optimize_unreachable (gimple_stmt_iterator i)
2333 basic_block bb = gsi_bb (i);
2334 gimple_stmt_iterator gsi;
2335 gimple stmt;
2336 edge_iterator ei;
2337 edge e;
2338 bool ret;
2340 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2342 stmt = gsi_stmt (gsi);
2344 if (is_gimple_debug (stmt))
2345 continue;
2347 if (gimple_code (stmt) == GIMPLE_LABEL)
2349 /* Verify we do not need to preserve the label. */
2350 if (FORCED_LABEL (gimple_label_label (stmt)))
2351 return false;
2353 continue;
2356 /* Only handle the case that __builtin_unreachable is the first statement
2357 in the block. We rely on DCE to remove stmts without side-effects
2358 before __builtin_unreachable. */
2359 if (gsi_stmt (gsi) != gsi_stmt (i))
2360 return false;
2363 ret = false;
2364 FOR_EACH_EDGE (e, ei, bb->preds)
2366 gsi = gsi_last_bb (e->src);
2367 if (gsi_end_p (gsi))
2368 continue;
2370 stmt = gsi_stmt (gsi);
2371 if (gimple_code (stmt) == GIMPLE_COND)
2373 if (e->flags & EDGE_TRUE_VALUE)
2374 gimple_cond_make_false (stmt);
2375 else if (e->flags & EDGE_FALSE_VALUE)
2376 gimple_cond_make_true (stmt);
2377 else
2378 gcc_unreachable ();
2380 else
2382 /* Todo: handle other cases, f.i. switch statement. */
2383 continue;
2386 ret = true;
2389 return ret;
2392 /* A simple pass that attempts to fold all builtin functions. This pass
2393 is run after we've propagated as many constants as we can. */
2395 static unsigned int
2396 execute_fold_all_builtins (void)
2398 bool cfg_changed = false;
2399 basic_block bb;
2400 unsigned int todoflags = 0;
2402 FOR_EACH_BB (bb)
2404 gimple_stmt_iterator i;
2405 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2407 gimple stmt, old_stmt;
2408 tree callee, result;
2409 enum built_in_function fcode;
2411 stmt = gsi_stmt (i);
2413 if (gimple_code (stmt) != GIMPLE_CALL)
2415 gsi_next (&i);
2416 continue;
2418 callee = gimple_call_fndecl (stmt);
2419 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2421 gsi_next (&i);
2422 continue;
2424 fcode = DECL_FUNCTION_CODE (callee);
2426 result = gimple_fold_builtin (stmt);
2428 if (result)
2429 gimple_remove_stmt_histograms (cfun, stmt);
2431 if (!result)
2432 switch (DECL_FUNCTION_CODE (callee))
2434 case BUILT_IN_CONSTANT_P:
2435 /* Resolve __builtin_constant_p. If it hasn't been
2436 folded to integer_one_node by now, it's fairly
2437 certain that the value simply isn't constant. */
2438 result = integer_zero_node;
2439 break;
2441 case BUILT_IN_ASSUME_ALIGNED:
2442 /* Remove __builtin_assume_aligned. */
2443 result = gimple_call_arg (stmt, 0);
2444 break;
2446 case BUILT_IN_STACK_RESTORE:
2447 result = optimize_stack_restore (i);
2448 if (result)
2449 break;
2450 gsi_next (&i);
2451 continue;
2453 case BUILT_IN_UNREACHABLE:
2454 if (optimize_unreachable (i))
2455 cfg_changed = true;
2456 break;
2458 case BUILT_IN_VA_START:
2459 case BUILT_IN_VA_END:
2460 case BUILT_IN_VA_COPY:
2461 /* These shouldn't be folded before pass_stdarg. */
2462 result = optimize_stdarg_builtin (stmt);
2463 if (result)
2464 break;
2465 /* FALLTHRU */
2467 default:
2468 gsi_next (&i);
2469 continue;
2472 if (result == NULL_TREE)
2473 break;
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2477 fprintf (dump_file, "Simplified\n ");
2478 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2481 old_stmt = stmt;
2482 if (!update_call_from_tree (&i, result))
2484 gimplify_and_update_call_from_tree (&i, result);
2485 todoflags |= TODO_update_address_taken;
2488 stmt = gsi_stmt (i);
2489 update_stmt (stmt);
2491 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2492 && gimple_purge_dead_eh_edges (bb))
2493 cfg_changed = true;
2495 if (dump_file && (dump_flags & TDF_DETAILS))
2497 fprintf (dump_file, "to\n ");
2498 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2499 fprintf (dump_file, "\n");
2502 /* Retry the same statement if it changed into another
2503 builtin, there might be new opportunities now. */
2504 if (gimple_code (stmt) != GIMPLE_CALL)
2506 gsi_next (&i);
2507 continue;
2509 callee = gimple_call_fndecl (stmt);
2510 if (!callee
2511 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2512 || DECL_FUNCTION_CODE (callee) == fcode)
2513 gsi_next (&i);
2517 /* Delete unreachable blocks. */
2518 if (cfg_changed)
2519 todoflags |= TODO_cleanup_cfg;
2521 return todoflags;
2525 struct gimple_opt_pass pass_fold_builtins =
2528 GIMPLE_PASS,
2529 "fab", /* name */
2530 NULL, /* gate */
2531 execute_fold_all_builtins, /* execute */
2532 NULL, /* sub */
2533 NULL, /* next */
2534 0, /* static_pass_number */
2535 TV_NONE, /* tv_id */
2536 PROP_cfg | PROP_ssa, /* properties_required */
2537 0, /* properties_provided */
2538 0, /* properties_destroyed */
2539 0, /* todo_flags_start */
2540 TODO_verify_ssa
2541 | TODO_update_ssa /* todo_flags_finish */