re PR bootstrap/54281 (Fails to bootstrap with --disable-nls)
[official-gcc.git] / gcc / tree-predcom.c
blobb13300c4d11b753ca466dd34ad476f10d081b1bf
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
32 Let us demonstrate what is done on an example:
34 for (i = 0; i < 100; i++)
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
68 In our example, we get the following chains (the chain for c is invalid).
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
94 e[i] + f[i+1] + e[i+1] + f[i]
96 can be reassociated as
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
100 and we can combine the chains for e and f into one chain.
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 up to RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
141 In our case, F = 2 and the (main loop of the) result is
143 for (i = 0; i < ...; i += 2)
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
163 a[i] = 1;
164 a[i+2] = 2;
167 can be replaced with
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
178 a[n] = t0;
179 a[n+1] = t1;
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "gimple-pretty-print.h"
202 #include "tree-pass.h"
203 #include "tree-affine.h"
204 #include "tree-inline.h"
206 /* The maximum number of iterations between the considered memory
207 references. */
209 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
211 /* Data references (or phi nodes that carry data reference values across
212 loop iterations). */
214 typedef struct dref_d
216 /* The reference itself. */
217 struct data_reference *ref;
219 /* The statement in that the reference appears. */
220 gimple stmt;
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi;
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
229 unsigned distance;
231 /* Number of iterations offset from the first reference in the component. */
232 double_int offset;
234 /* Number of the reference in a component, in dominance ordering. */
235 unsigned pos;
237 /* True if the memory reference is always accessed when the loop is
238 entered. */
239 unsigned always_accessed : 1;
240 } *dref;
242 DEF_VEC_P (dref);
243 DEF_VEC_ALLOC_P (dref, heap);
245 /* Type of the chain of the references. */
247 enum chain_type
249 /* The addresses of the references in the chain are constant. */
250 CT_INVARIANT,
252 /* There are only loads in the chain. */
253 CT_LOAD,
255 /* Root of the chain is store, the rest are loads. */
256 CT_STORE_LOAD,
258 /* A combination of two chains. */
259 CT_COMBINATION
262 /* Chains of data references. */
264 typedef struct chain
266 /* Type of the chain. */
267 enum chain_type type;
269 /* For combination chains, the operator and the two chains that are
270 combined, and the type of the result. */
271 enum tree_code op;
272 tree rslt_type;
273 struct chain *ch1, *ch2;
275 /* The references in the chain. */
276 VEC(dref,heap) *refs;
278 /* The maximum distance of the reference in the chain from the root. */
279 unsigned length;
281 /* The variables used to copy the value throughout iterations. */
282 VEC(tree,heap) *vars;
284 /* Initializers for the variables. */
285 VEC(tree,heap) *inits;
287 /* True if there is a use of a variable with the maximal distance
288 that comes after the root in the loop. */
289 unsigned has_max_use_after : 1;
291 /* True if all the memory references in the chain are always accessed. */
292 unsigned all_always_accessed : 1;
294 /* True if this chain was combined together with some other chain. */
295 unsigned combined : 1;
296 } *chain_p;
298 DEF_VEC_P (chain_p);
299 DEF_VEC_ALLOC_P (chain_p, heap);
301 /* Describes the knowledge about the step of the memory references in
302 the component. */
304 enum ref_step_type
306 /* The step is zero. */
307 RS_INVARIANT,
309 /* The step is nonzero. */
310 RS_NONZERO,
312 /* The step may or may not be nonzero. */
313 RS_ANY
316 /* Components of the data dependence graph. */
318 struct component
320 /* The references in the component. */
321 VEC(dref,heap) *refs;
323 /* What we know about the step of the references in the component. */
324 enum ref_step_type comp_step;
326 /* Next component in the list. */
327 struct component *next;
330 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
332 static bitmap looparound_phis;
334 /* Cache used by tree_to_aff_combination_expand. */
336 static struct pointer_map_t *name_expansions;
338 /* Dumps data reference REF to FILE. */
340 extern void dump_dref (FILE *, dref);
341 void
342 dump_dref (FILE *file, dref ref)
344 if (ref->ref)
346 fprintf (file, " ");
347 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
348 fprintf (file, " (id %u%s)\n", ref->pos,
349 DR_IS_READ (ref->ref) ? "" : ", write");
351 fprintf (file, " offset ");
352 dump_double_int (file, ref->offset, false);
353 fprintf (file, "\n");
355 fprintf (file, " distance %u\n", ref->distance);
357 else
359 if (gimple_code (ref->stmt) == GIMPLE_PHI)
360 fprintf (file, " looparound ref\n");
361 else
362 fprintf (file, " combination ref\n");
363 fprintf (file, " in statement ");
364 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
365 fprintf (file, "\n");
366 fprintf (file, " distance %u\n", ref->distance);
371 /* Dumps CHAIN to FILE. */
373 extern void dump_chain (FILE *, chain_p);
374 void
375 dump_chain (FILE *file, chain_p chain)
377 dref a;
378 const char *chain_type;
379 unsigned i;
380 tree var;
382 switch (chain->type)
384 case CT_INVARIANT:
385 chain_type = "Load motion";
386 break;
388 case CT_LOAD:
389 chain_type = "Loads-only";
390 break;
392 case CT_STORE_LOAD:
393 chain_type = "Store-loads";
394 break;
396 case CT_COMBINATION:
397 chain_type = "Combination";
398 break;
400 default:
401 gcc_unreachable ();
404 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
405 chain->combined ? " (combined)" : "");
406 if (chain->type != CT_INVARIANT)
407 fprintf (file, " max distance %u%s\n", chain->length,
408 chain->has_max_use_after ? "" : ", may reuse first");
410 if (chain->type == CT_COMBINATION)
412 fprintf (file, " equal to %p %s %p in type ",
413 (void *) chain->ch1, op_symbol_code (chain->op),
414 (void *) chain->ch2);
415 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
416 fprintf (file, "\n");
419 if (chain->vars)
421 fprintf (file, " vars");
422 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
424 fprintf (file, " ");
425 print_generic_expr (file, var, TDF_SLIM);
427 fprintf (file, "\n");
430 if (chain->inits)
432 fprintf (file, " inits");
433 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
435 fprintf (file, " ");
436 print_generic_expr (file, var, TDF_SLIM);
438 fprintf (file, "\n");
441 fprintf (file, " references:\n");
442 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
443 dump_dref (file, a);
445 fprintf (file, "\n");
448 /* Dumps CHAINS to FILE. */
450 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
451 void
452 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
454 chain_p chain;
455 unsigned i;
457 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
458 dump_chain (file, chain);
461 /* Dumps COMP to FILE. */
463 extern void dump_component (FILE *, struct component *);
464 void
465 dump_component (FILE *file, struct component *comp)
467 dref a;
468 unsigned i;
470 fprintf (file, "Component%s:\n",
471 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
472 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
473 dump_dref (file, a);
474 fprintf (file, "\n");
477 /* Dumps COMPS to FILE. */
479 extern void dump_components (FILE *, struct component *);
480 void
481 dump_components (FILE *file, struct component *comps)
483 struct component *comp;
485 for (comp = comps; comp; comp = comp->next)
486 dump_component (file, comp);
489 /* Frees a chain CHAIN. */
491 static void
492 release_chain (chain_p chain)
494 dref ref;
495 unsigned i;
497 if (chain == NULL)
498 return;
500 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
501 free (ref);
503 VEC_free (dref, heap, chain->refs);
504 VEC_free (tree, heap, chain->vars);
505 VEC_free (tree, heap, chain->inits);
507 free (chain);
510 /* Frees CHAINS. */
512 static void
513 release_chains (VEC (chain_p, heap) *chains)
515 unsigned i;
516 chain_p chain;
518 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
519 release_chain (chain);
520 VEC_free (chain_p, heap, chains);
523 /* Frees a component COMP. */
525 static void
526 release_component (struct component *comp)
528 VEC_free (dref, heap, comp->refs);
529 free (comp);
532 /* Frees list of components COMPS. */
534 static void
535 release_components (struct component *comps)
537 struct component *act, *next;
539 for (act = comps; act; act = next)
541 next = act->next;
542 release_component (act);
546 /* Finds a root of tree given by FATHERS containing A, and performs path
547 shortening. */
549 static unsigned
550 component_of (unsigned fathers[], unsigned a)
552 unsigned root, n;
554 for (root = a; root != fathers[root]; root = fathers[root])
555 continue;
557 for (; a != root; a = n)
559 n = fathers[a];
560 fathers[a] = root;
563 return root;
566 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
567 components, A and B are components to merge. */
569 static void
570 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
572 unsigned ca = component_of (fathers, a);
573 unsigned cb = component_of (fathers, b);
575 if (ca == cb)
576 return;
578 if (sizes[ca] < sizes[cb])
580 sizes[cb] += sizes[ca];
581 fathers[ca] = cb;
583 else
585 sizes[ca] += sizes[cb];
586 fathers[cb] = ca;
590 /* Returns true if A is a reference that is suitable for predictive commoning
591 in the innermost loop that contains it. REF_STEP is set according to the
592 step of the reference A. */
594 static bool
595 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
597 tree ref = DR_REF (a), step = DR_STEP (a);
599 if (!step
600 || TREE_THIS_VOLATILE (ref)
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
603 return false;
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
612 return true;
615 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
617 static void
618 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
620 tree type = TREE_TYPE (DR_OFFSET (dr));
621 aff_tree delta;
623 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
624 &name_expansions);
625 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
626 aff_combination_add (offset, &delta);
629 /* Determines number of iterations of the innermost enclosing loop before B
630 refers to exactly the same location as A and stores it to OFF. If A and
631 B do not have the same step, they never meet, or anything else fails,
632 returns false, otherwise returns true. Both A and B are assumed to
633 satisfy suitable_reference_p. */
635 static bool
636 determine_offset (struct data_reference *a, struct data_reference *b,
637 double_int *off)
639 aff_tree diff, baseb, step;
640 tree typea, typeb;
642 /* Check that both the references access the location in the same type. */
643 typea = TREE_TYPE (DR_REF (a));
644 typeb = TREE_TYPE (DR_REF (b));
645 if (!useless_type_conversion_p (typeb, typea))
646 return false;
648 /* Check whether the base address and the step of both references is the
649 same. */
650 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
651 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
652 return false;
654 if (integer_zerop (DR_STEP (a)))
656 /* If the references have loop invariant address, check that they access
657 exactly the same location. */
658 *off = double_int_zero;
659 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
660 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
663 /* Compare the offsets of the addresses, and check whether the difference
664 is a multiple of step. */
665 aff_combination_dr_offset (a, &diff);
666 aff_combination_dr_offset (b, &baseb);
667 aff_combination_scale (&baseb, double_int_minus_one);
668 aff_combination_add (&diff, &baseb);
670 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
671 &step, &name_expansions);
672 return aff_combination_constant_multiple_p (&diff, &step, off);
675 /* Returns the last basic block in LOOP for that we are sure that
676 it is executed whenever the loop is entered. */
678 static basic_block
679 last_always_executed_block (struct loop *loop)
681 unsigned i;
682 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
683 edge ex;
684 basic_block last = loop->latch;
686 FOR_EACH_VEC_ELT (edge, exits, i, ex)
687 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
688 VEC_free (edge, heap, exits);
690 return last;
693 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
695 static struct component *
696 split_data_refs_to_components (struct loop *loop,
697 VEC (data_reference_p, heap) *datarefs,
698 VEC (ddr_p, heap) *depends)
700 unsigned i, n = VEC_length (data_reference_p, datarefs);
701 unsigned ca, ia, ib, bad;
702 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
703 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
704 struct component **comps;
705 struct data_reference *dr, *dra, *drb;
706 struct data_dependence_relation *ddr;
707 struct component *comp_list = NULL, *comp;
708 dref dataref;
709 basic_block last_always_executed = last_always_executed_block (loop);
711 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
713 if (!DR_REF (dr))
715 /* A fake reference for call or asm_expr that may clobber memory;
716 just fail. */
717 goto end;
719 dr->aux = (void *) (size_t) i;
720 comp_father[i] = i;
721 comp_size[i] = 1;
724 /* A component reserved for the "bad" data references. */
725 comp_father[n] = n;
726 comp_size[n] = 1;
728 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
730 enum ref_step_type dummy;
732 if (!suitable_reference_p (dr, &dummy))
734 ia = (unsigned) (size_t) dr->aux;
735 merge_comps (comp_father, comp_size, n, ia);
739 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
741 double_int dummy_off;
743 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
744 continue;
746 dra = DDR_A (ddr);
747 drb = DDR_B (ddr);
748 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
749 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
750 if (ia == ib)
751 continue;
753 bad = component_of (comp_father, n);
755 /* If both A and B are reads, we may ignore unsuitable dependences. */
756 if (DR_IS_READ (dra) && DR_IS_READ (drb)
757 && (ia == bad || ib == bad
758 || !determine_offset (dra, drb, &dummy_off)))
759 continue;
761 merge_comps (comp_father, comp_size, ia, ib);
764 comps = XCNEWVEC (struct component *, n);
765 bad = component_of (comp_father, n);
766 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
768 ia = (unsigned) (size_t) dr->aux;
769 ca = component_of (comp_father, ia);
770 if (ca == bad)
771 continue;
773 comp = comps[ca];
774 if (!comp)
776 comp = XCNEW (struct component);
777 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
778 comps[ca] = comp;
781 dataref = XCNEW (struct dref_d);
782 dataref->ref = dr;
783 dataref->stmt = DR_STMT (dr);
784 dataref->offset = double_int_zero;
785 dataref->distance = 0;
787 dataref->always_accessed
788 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
789 gimple_bb (dataref->stmt));
790 dataref->pos = VEC_length (dref, comp->refs);
791 VEC_quick_push (dref, comp->refs, dataref);
794 for (i = 0; i < n; i++)
796 comp = comps[i];
797 if (comp)
799 comp->next = comp_list;
800 comp_list = comp;
803 free (comps);
805 end:
806 free (comp_father);
807 free (comp_size);
808 return comp_list;
811 /* Returns true if the component COMP satisfies the conditions
812 described in 2) at the beginning of this file. LOOP is the current
813 loop. */
815 static bool
816 suitable_component_p (struct loop *loop, struct component *comp)
818 unsigned i;
819 dref a, first;
820 basic_block ba, bp = loop->header;
821 bool ok, has_write = false;
823 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
825 ba = gimple_bb (a->stmt);
827 if (!just_once_each_iteration_p (loop, ba))
828 return false;
830 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
831 bp = ba;
833 if (DR_IS_WRITE (a->ref))
834 has_write = true;
837 first = VEC_index (dref, comp->refs, 0);
838 ok = suitable_reference_p (first->ref, &comp->comp_step);
839 gcc_assert (ok);
840 first->offset = double_int_zero;
842 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
844 if (!determine_offset (first->ref, a->ref, &a->offset))
845 return false;
847 #ifdef ENABLE_CHECKING
849 enum ref_step_type a_step;
850 ok = suitable_reference_p (a->ref, &a_step);
851 gcc_assert (ok && a_step == comp->comp_step);
853 #endif
856 /* If there is a write inside the component, we must know whether the
857 step is nonzero or not -- we would not otherwise be able to recognize
858 whether the value accessed by reads comes from the OFFSET-th iteration
859 or the previous one. */
860 if (has_write && comp->comp_step == RS_ANY)
861 return false;
863 return true;
866 /* Check the conditions on references inside each of components COMPS,
867 and remove the unsuitable components from the list. The new list
868 of components is returned. The conditions are described in 2) at
869 the beginning of this file. LOOP is the current loop. */
871 static struct component *
872 filter_suitable_components (struct loop *loop, struct component *comps)
874 struct component **comp, *act;
876 for (comp = &comps; *comp; )
878 act = *comp;
879 if (suitable_component_p (loop, act))
880 comp = &act->next;
881 else
883 dref ref;
884 unsigned i;
886 *comp = act->next;
887 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
888 free (ref);
889 release_component (act);
893 return comps;
896 /* Compares two drefs A and B by their offset and position. Callback for
897 qsort. */
899 static int
900 order_drefs (const void *a, const void *b)
902 const dref *const da = (const dref *) a;
903 const dref *const db = (const dref *) b;
904 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
906 if (offcmp != 0)
907 return offcmp;
909 return (*da)->pos - (*db)->pos;
912 /* Returns root of the CHAIN. */
914 static inline dref
915 get_chain_root (chain_p chain)
917 return VEC_index (dref, chain->refs, 0);
920 /* Adds REF to the chain CHAIN. */
922 static void
923 add_ref_to_chain (chain_p chain, dref ref)
925 dref root = get_chain_root (chain);
926 double_int dist;
928 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
929 dist = double_int_sub (ref->offset, root->offset);
930 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
932 free (ref);
933 return;
935 gcc_assert (double_int_fits_in_uhwi_p (dist));
937 VEC_safe_push (dref, heap, chain->refs, ref);
939 ref->distance = double_int_to_uhwi (dist);
941 if (ref->distance >= chain->length)
943 chain->length = ref->distance;
944 chain->has_max_use_after = false;
947 if (ref->distance == chain->length
948 && ref->pos > root->pos)
949 chain->has_max_use_after = true;
951 chain->all_always_accessed &= ref->always_accessed;
954 /* Returns the chain for invariant component COMP. */
956 static chain_p
957 make_invariant_chain (struct component *comp)
959 chain_p chain = XCNEW (struct chain);
960 unsigned i;
961 dref ref;
963 chain->type = CT_INVARIANT;
965 chain->all_always_accessed = true;
967 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
969 VEC_safe_push (dref, heap, chain->refs, ref);
970 chain->all_always_accessed &= ref->always_accessed;
973 return chain;
976 /* Make a new chain rooted at REF. */
978 static chain_p
979 make_rooted_chain (dref ref)
981 chain_p chain = XCNEW (struct chain);
983 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
985 VEC_safe_push (dref, heap, chain->refs, ref);
986 chain->all_always_accessed = ref->always_accessed;
988 ref->distance = 0;
990 return chain;
993 /* Returns true if CHAIN is not trivial. */
995 static bool
996 nontrivial_chain_p (chain_p chain)
998 return chain != NULL && VEC_length (dref, chain->refs) > 1;
1001 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 is no such name. */
1004 static tree
1005 name_for_ref (dref ref)
1007 tree name;
1009 if (is_gimple_assign (ref->stmt))
1011 if (!ref->ref || DR_IS_READ (ref->ref))
1012 name = gimple_assign_lhs (ref->stmt);
1013 else
1014 name = gimple_assign_rhs1 (ref->stmt);
1016 else
1017 name = PHI_RESULT (ref->stmt);
1019 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1022 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1023 iterations of the innermost enclosing loop). */
1025 static bool
1026 valid_initializer_p (struct data_reference *ref,
1027 unsigned distance, struct data_reference *root)
1029 aff_tree diff, base, step;
1030 double_int off;
1032 /* Both REF and ROOT must be accessing the same object. */
1033 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1034 return false;
1036 /* The initializer is defined outside of loop, hence its address must be
1037 invariant inside the loop. */
1038 gcc_assert (integer_zerop (DR_STEP (ref)));
1040 /* If the address of the reference is invariant, initializer must access
1041 exactly the same location. */
1042 if (integer_zerop (DR_STEP (root)))
1043 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1044 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1046 /* Verify that this index of REF is equal to the root's index at
1047 -DISTANCE-th iteration. */
1048 aff_combination_dr_offset (root, &diff);
1049 aff_combination_dr_offset (ref, &base);
1050 aff_combination_scale (&base, double_int_minus_one);
1051 aff_combination_add (&diff, &base);
1053 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1054 &step, &name_expansions);
1055 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1056 return false;
1058 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1059 return false;
1061 return true;
1064 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1065 initial value is correct (equal to initial value of REF shifted by one
1066 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1067 is the root of the current chain. */
1069 static gimple
1070 find_looparound_phi (struct loop *loop, dref ref, dref root)
1072 tree name, init, init_ref;
1073 gimple phi = NULL, init_stmt;
1074 edge latch = loop_latch_edge (loop);
1075 struct data_reference init_dr;
1076 gimple_stmt_iterator psi;
1078 if (is_gimple_assign (ref->stmt))
1080 if (DR_IS_READ (ref->ref))
1081 name = gimple_assign_lhs (ref->stmt);
1082 else
1083 name = gimple_assign_rhs1 (ref->stmt);
1085 else
1086 name = PHI_RESULT (ref->stmt);
1087 if (!name)
1088 return NULL;
1090 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1092 phi = gsi_stmt (psi);
1093 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1094 break;
1097 if (gsi_end_p (psi))
1098 return NULL;
1100 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1101 if (TREE_CODE (init) != SSA_NAME)
1102 return NULL;
1103 init_stmt = SSA_NAME_DEF_STMT (init);
1104 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1105 return NULL;
1106 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1108 init_ref = gimple_assign_rhs1 (init_stmt);
1109 if (!REFERENCE_CLASS_P (init_ref)
1110 && !DECL_P (init_ref))
1111 return NULL;
1113 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1114 loop enclosing PHI). */
1115 memset (&init_dr, 0, sizeof (struct data_reference));
1116 DR_REF (&init_dr) = init_ref;
1117 DR_STMT (&init_dr) = phi;
1118 if (!dr_analyze_innermost (&init_dr, loop))
1119 return NULL;
1121 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1122 return NULL;
1124 return phi;
1127 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1129 static void
1130 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1132 dref nw = XCNEW (struct dref_d), aref;
1133 unsigned i;
1135 nw->stmt = phi;
1136 nw->distance = ref->distance + 1;
1137 nw->always_accessed = 1;
1139 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1140 if (aref->distance >= nw->distance)
1141 break;
1142 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1144 if (nw->distance > chain->length)
1146 chain->length = nw->distance;
1147 chain->has_max_use_after = false;
1151 /* For references in CHAIN that are copied around the LOOP (created previously
1152 by PRE, or by user), add the results of such copies to the chain. This
1153 enables us to remove the copies by unrolling, and may need less registers
1154 (also, it may allow us to combine chains together). */
1156 static void
1157 add_looparound_copies (struct loop *loop, chain_p chain)
1159 unsigned i;
1160 dref ref, root = get_chain_root (chain);
1161 gimple phi;
1163 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1165 phi = find_looparound_phi (loop, ref, root);
1166 if (!phi)
1167 continue;
1169 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1170 insert_looparound_copy (chain, ref, phi);
1174 /* Find roots of the values and determine distances in the component COMP.
1175 The references are redistributed into CHAINS. LOOP is the current
1176 loop. */
1178 static void
1179 determine_roots_comp (struct loop *loop,
1180 struct component *comp,
1181 VEC (chain_p, heap) **chains)
1183 unsigned i;
1184 dref a;
1185 chain_p chain = NULL;
1186 double_int last_ofs = double_int_zero;
1188 /* Invariants are handled specially. */
1189 if (comp->comp_step == RS_INVARIANT)
1191 chain = make_invariant_chain (comp);
1192 VEC_safe_push (chain_p, heap, *chains, chain);
1193 return;
1196 VEC_qsort (dref, comp->refs, order_drefs);
1198 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1200 if (!chain || DR_IS_WRITE (a->ref)
1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1202 double_int_sub (a->offset, last_ofs)) <= 0)
1204 if (nontrivial_chain_p (chain))
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1209 else
1210 release_chain (chain);
1211 chain = make_rooted_chain (a);
1212 last_ofs = a->offset;
1213 continue;
1216 add_ref_to_chain (chain, a);
1219 if (nontrivial_chain_p (chain))
1221 add_looparound_copies (loop, chain);
1222 VEC_safe_push (chain_p, heap, *chains, chain);
1224 else
1225 release_chain (chain);
1228 /* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1231 static void
1232 determine_roots (struct loop *loop,
1233 struct component *comps, VEC (chain_p, heap) **chains)
1235 struct component *comp;
1237 for (comp = comps; comp; comp = comp->next)
1238 determine_roots_comp (loop, comp, chains);
1241 /* Replace the reference in statement STMT with temporary variable
1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1246 static void
1247 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1249 tree val;
1250 gimple new_stmt;
1251 gimple_stmt_iterator bsi, psi;
1253 if (gimple_code (stmt) == GIMPLE_PHI)
1255 gcc_assert (!in_lhs && !set);
1257 val = PHI_RESULT (stmt);
1258 bsi = gsi_after_labels (gimple_bb (stmt));
1259 psi = gsi_for_stmt (stmt);
1260 remove_phi_node (&psi, false);
1262 /* Turn the phi node into GIMPLE_ASSIGN. */
1263 new_stmt = gimple_build_assign (val, new_tree);
1264 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1265 return;
1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
1270 gcc_assert (is_gimple_assign (stmt));
1272 bsi = gsi_for_stmt (stmt);
1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1275 if (!set)
1277 gcc_assert (!in_lhs);
1278 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1279 stmt = gsi_stmt (bsi);
1280 update_stmt (stmt);
1281 return;
1284 if (in_lhs)
1286 /* We have statement
1288 OLD = VAL
1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 this to
1293 OLD = VAL
1294 NEW = VAL
1296 Otherwise, we are replacing a combination chain,
1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1300 OLD = VAL
1301 NEW = OLD
1305 val = gimple_assign_lhs (stmt);
1306 if (TREE_CODE (val) != SSA_NAME)
1308 val = gimple_assign_rhs1 (stmt);
1309 gcc_assert (gimple_assign_single_p (stmt));
1310 if (TREE_CLOBBER_P (val))
1311 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1312 else
1313 gcc_assert (gimple_assign_copy_p (stmt));
1316 else
1318 /* VAL = OLD
1320 is transformed to
1322 VAL = OLD
1323 NEW = VAL */
1325 val = gimple_assign_lhs (stmt);
1328 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1329 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1332 /* Returns the reference to the address of REF in the ITER-th iteration of
1333 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1334 try to preserve the original shape of the reference (not rewrite it
1335 as an indirect ref to the address), to make tree_could_trap_p in
1336 prepare_initializers_chain return false more often. */
1338 static tree
1339 ref_at_iteration (struct loop *loop, tree ref, int iter)
1341 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1342 affine_iv iv;
1343 bool ok;
1345 if (handled_component_p (ref))
1347 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1348 if (!op0)
1349 return NULL_TREE;
1351 else if (!INDIRECT_REF_P (ref)
1352 && TREE_CODE (ref) != MEM_REF)
1353 return unshare_expr (ref);
1355 if (TREE_CODE (ref) == MEM_REF)
1357 ret = unshare_expr (ref);
1358 idx = TREE_OPERAND (ref, 0);
1359 idx_p = &TREE_OPERAND (ret, 0);
1361 else if (TREE_CODE (ref) == COMPONENT_REF)
1363 /* Check that the offset is loop invariant. */
1364 if (TREE_OPERAND (ref, 2)
1365 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1366 return NULL_TREE;
1368 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1369 unshare_expr (TREE_OPERAND (ref, 1)),
1370 unshare_expr (TREE_OPERAND (ref, 2)));
1372 else if (TREE_CODE (ref) == ARRAY_REF)
1374 /* Check that the lower bound and the step are loop invariant. */
1375 if (TREE_OPERAND (ref, 2)
1376 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1377 return NULL_TREE;
1378 if (TREE_OPERAND (ref, 3)
1379 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1380 return NULL_TREE;
1382 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1383 unshare_expr (TREE_OPERAND (ref, 2)),
1384 unshare_expr (TREE_OPERAND (ref, 3)));
1385 idx = TREE_OPERAND (ref, 1);
1386 idx_p = &TREE_OPERAND (ret, 1);
1388 else
1389 return NULL_TREE;
1391 ok = simple_iv (loop, loop, idx, &iv, true);
1392 if (!ok)
1393 return NULL_TREE;
1394 iv.base = expand_simple_operations (iv.base);
1395 if (integer_zerop (iv.step))
1396 *idx_p = unshare_expr (iv.base);
1397 else
1399 type = TREE_TYPE (iv.base);
1400 if (POINTER_TYPE_P (type))
1402 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1403 size_int (iter));
1404 val = fold_build_pointer_plus (iv.base, val);
1406 else
1408 val = fold_build2 (MULT_EXPR, type, iv.step,
1409 build_int_cst_type (type, iter));
1410 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1412 *idx_p = unshare_expr (val);
1415 return ret;
1418 /* Get the initialization expression for the INDEX-th temporary variable
1419 of CHAIN. */
1421 static tree
1422 get_init_expr (chain_p chain, unsigned index)
1424 if (chain->type == CT_COMBINATION)
1426 tree e1 = get_init_expr (chain->ch1, index);
1427 tree e2 = get_init_expr (chain->ch2, index);
1429 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1431 else
1432 return VEC_index (tree, chain->inits, index);
1435 /* Returns a new temporary variable used for the I-th variable carrying
1436 value of REF. The variable's uid is marked in TMP_VARS. */
1438 static tree
1439 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1441 tree type = TREE_TYPE (ref);
1442 /* We never access the components of the temporary variable in predictive
1443 commoning. */
1444 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1445 bitmap_set_bit (tmp_vars, DECL_UID (var));
1446 return var;
1449 /* Creates the variables for CHAIN, as well as phi nodes for them and
1450 initialization on entry to LOOP. Uids of the newly created
1451 temporary variables are marked in TMP_VARS. */
1453 static void
1454 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1456 unsigned i;
1457 unsigned n = chain->length;
1458 dref root = get_chain_root (chain);
1459 bool reuse_first = !chain->has_max_use_after;
1460 tree ref, init, var, next;
1461 gimple phi;
1462 gimple_seq stmts;
1463 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1465 /* If N == 0, then all the references are within the single iteration. And
1466 since this is an nonempty chain, reuse_first cannot be true. */
1467 gcc_assert (n > 0 || !reuse_first);
1469 chain->vars = VEC_alloc (tree, heap, n + 1);
1471 if (chain->type == CT_COMBINATION)
1472 ref = gimple_assign_lhs (root->stmt);
1473 else
1474 ref = DR_REF (root->ref);
1476 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1478 var = predcom_tmp_var (ref, i, tmp_vars);
1479 VEC_quick_push (tree, chain->vars, var);
1481 if (reuse_first)
1482 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1484 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1485 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1487 for (i = 0; i < n; i++)
1489 var = VEC_index (tree, chain->vars, i);
1490 next = VEC_index (tree, chain->vars, i + 1);
1491 init = get_init_expr (chain, i);
1493 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1494 if (stmts)
1495 gsi_insert_seq_on_edge_immediate (entry, stmts);
1497 phi = create_phi_node (var, loop->header);
1498 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1499 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1503 /* Create the variables and initialization statement for root of chain
1504 CHAIN. Uids of the newly created temporary variables are marked
1505 in TMP_VARS. */
1507 static void
1508 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1510 dref root = get_chain_root (chain);
1511 bool in_lhs = (chain->type == CT_STORE_LOAD
1512 || chain->type == CT_COMBINATION);
1514 initialize_root_vars (loop, chain, tmp_vars);
1515 replace_ref_with (root->stmt,
1516 VEC_index (tree, chain->vars, chain->length),
1517 true, in_lhs);
1520 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1521 initialization on entry to LOOP if necessary. The ssa name for the variable
1522 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1523 around the loop is created. Uid of the newly created temporary variable
1524 is marked in TMP_VARS. INITS is the list containing the (single)
1525 initializer. */
1527 static void
1528 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1529 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1530 bitmap tmp_vars)
1532 unsigned i;
1533 tree ref = DR_REF (root->ref), init, var, next;
1534 gimple_seq stmts;
1535 gimple phi;
1536 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1538 /* Find the initializer for the variable, and check that it cannot
1539 trap. */
1540 init = VEC_index (tree, inits, 0);
1542 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1543 var = predcom_tmp_var (ref, 0, tmp_vars);
1544 VEC_quick_push (tree, *vars, var);
1545 if (written)
1546 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1548 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1549 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1551 var = VEC_index (tree, *vars, 0);
1553 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1554 if (stmts)
1555 gsi_insert_seq_on_edge_immediate (entry, stmts);
1557 if (written)
1559 next = VEC_index (tree, *vars, 1);
1560 phi = create_phi_node (var, loop->header);
1561 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1562 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1564 else
1566 gimple init_stmt = gimple_build_assign (var, init);
1567 gsi_insert_on_edge_immediate (entry, init_stmt);
1572 /* Execute load motion for references in chain CHAIN. Uids of the newly
1573 created temporary variables are marked in TMP_VARS. */
1575 static void
1576 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1578 VEC (tree, heap) *vars;
1579 dref a;
1580 unsigned n_writes = 0, ridx, i;
1581 tree var;
1583 gcc_assert (chain->type == CT_INVARIANT);
1584 gcc_assert (!chain->combined);
1585 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1586 if (DR_IS_WRITE (a->ref))
1587 n_writes++;
1589 /* If there are no reads in the loop, there is nothing to do. */
1590 if (n_writes == VEC_length (dref, chain->refs))
1591 return;
1593 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1594 &vars, chain->inits, tmp_vars);
1596 ridx = 0;
1597 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1599 bool is_read = DR_IS_READ (a->ref);
1601 if (DR_IS_WRITE (a->ref))
1603 n_writes--;
1604 if (n_writes)
1606 var = VEC_index (tree, vars, 0);
1607 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1608 VEC_replace (tree, vars, 0, var);
1610 else
1611 ridx = 1;
1614 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1615 !is_read, !is_read);
1618 VEC_free (tree, heap, vars);
1621 /* Returns the single statement in that NAME is used, excepting
1622 the looparound phi nodes contained in one of the chains. If there is no
1623 such statement, or more statements, NULL is returned. */
1625 static gimple
1626 single_nonlooparound_use (tree name)
1628 use_operand_p use;
1629 imm_use_iterator it;
1630 gimple stmt, ret = NULL;
1632 FOR_EACH_IMM_USE_FAST (use, it, name)
1634 stmt = USE_STMT (use);
1636 if (gimple_code (stmt) == GIMPLE_PHI)
1638 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1639 could not be processed anyway, so just fail for them. */
1640 if (bitmap_bit_p (looparound_phis,
1641 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1642 continue;
1644 return NULL;
1646 else if (is_gimple_debug (stmt))
1647 continue;
1648 else if (ret != NULL)
1649 return NULL;
1650 else
1651 ret = stmt;
1654 return ret;
1657 /* Remove statement STMT, as well as the chain of assignments in that it is
1658 used. */
1660 static void
1661 remove_stmt (gimple stmt)
1663 tree name;
1664 gimple next;
1665 gimple_stmt_iterator psi;
1667 if (gimple_code (stmt) == GIMPLE_PHI)
1669 name = PHI_RESULT (stmt);
1670 next = single_nonlooparound_use (name);
1671 reset_debug_uses (stmt);
1672 psi = gsi_for_stmt (stmt);
1673 remove_phi_node (&psi, true);
1675 if (!next
1676 || !gimple_assign_ssa_name_copy_p (next)
1677 || gimple_assign_rhs1 (next) != name)
1678 return;
1680 stmt = next;
1683 while (1)
1685 gimple_stmt_iterator bsi;
1687 bsi = gsi_for_stmt (stmt);
1689 name = gimple_assign_lhs (stmt);
1690 gcc_assert (TREE_CODE (name) == SSA_NAME);
1692 next = single_nonlooparound_use (name);
1693 reset_debug_uses (stmt);
1695 unlink_stmt_vdef (stmt);
1696 gsi_remove (&bsi, true);
1697 release_defs (stmt);
1699 if (!next
1700 || !gimple_assign_ssa_name_copy_p (next)
1701 || gimple_assign_rhs1 (next) != name)
1702 return;
1704 stmt = next;
1708 /* Perform the predictive commoning optimization for a chain CHAIN.
1709 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1711 static void
1712 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1713 bitmap tmp_vars)
1715 unsigned i;
1716 dref a;
1717 tree var;
1719 if (chain->combined)
1721 /* For combined chains, just remove the statements that are used to
1722 compute the values of the expression (except for the root one). */
1723 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1724 remove_stmt (a->stmt);
1726 else
1728 /* For non-combined chains, set up the variables that hold its value,
1729 and replace the uses of the original references by these
1730 variables. */
1731 initialize_root (loop, chain, tmp_vars);
1732 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1734 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1735 replace_ref_with (a->stmt, var, false, false);
1740 /* Determines the unroll factor necessary to remove as many temporary variable
1741 copies as possible. CHAINS is the list of chains that will be
1742 optimized. */
1744 static unsigned
1745 determine_unroll_factor (VEC (chain_p, heap) *chains)
1747 chain_p chain;
1748 unsigned factor = 1, af, nfactor, i;
1749 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1751 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1753 if (chain->type == CT_INVARIANT || chain->combined)
1754 continue;
1756 /* The best unroll factor for this chain is equal to the number of
1757 temporary variables that we create for it. */
1758 af = chain->length;
1759 if (chain->has_max_use_after)
1760 af++;
1762 nfactor = factor * af / gcd (factor, af);
1763 if (nfactor <= max)
1764 factor = nfactor;
1767 return factor;
1770 /* Perform the predictive commoning optimization for CHAINS.
1771 Uids of the newly created temporary variables are marked in TMP_VARS. */
1773 static void
1774 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1775 bitmap tmp_vars)
1777 chain_p chain;
1778 unsigned i;
1780 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1782 if (chain->type == CT_INVARIANT)
1783 execute_load_motion (loop, chain, tmp_vars);
1784 else
1785 execute_pred_commoning_chain (loop, chain, tmp_vars);
1788 update_ssa (TODO_update_ssa_only_virtuals);
1791 /* For each reference in CHAINS, if its defining statement is
1792 phi node, record the ssa name that is defined by it. */
1794 static void
1795 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1797 chain_p chain;
1798 dref a;
1799 unsigned i, j;
1801 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1802 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1804 if (gimple_code (a->stmt) == GIMPLE_PHI)
1806 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1807 a->stmt = NULL;
1812 /* For each reference in CHAINS, if name_defined_by_phi is not
1813 NULL, use it to set the stmt field. */
1815 static void
1816 replace_names_by_phis (VEC (chain_p, heap) *chains)
1818 chain_p chain;
1819 dref a;
1820 unsigned i, j;
1822 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1823 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1824 if (a->stmt == NULL)
1826 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1827 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1828 a->name_defined_by_phi = NULL_TREE;
1832 /* Wrapper over execute_pred_commoning, to pass it as a callback
1833 to tree_transform_and_unroll_loop. */
1835 struct epcc_data
1837 VEC (chain_p, heap) *chains;
1838 bitmap tmp_vars;
1841 static void
1842 execute_pred_commoning_cbck (struct loop *loop, void *data)
1844 struct epcc_data *const dta = (struct epcc_data *) data;
1846 /* Restore phi nodes that were replaced by ssa names before
1847 tree_transform_and_unroll_loop (see detailed description in
1848 tree_predictive_commoning_loop). */
1849 replace_names_by_phis (dta->chains);
1850 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1853 /* Base NAME and all the names in the chain of phi nodes that use it
1854 on variable VAR. The phi nodes are recognized by being in the copies of
1855 the header of the LOOP. */
1857 static void
1858 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1860 gimple stmt, phi;
1861 imm_use_iterator iter;
1863 replace_ssa_name_symbol (name, var);
1865 while (1)
1867 phi = NULL;
1868 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1870 if (gimple_code (stmt) == GIMPLE_PHI
1871 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1873 phi = stmt;
1874 BREAK_FROM_IMM_USE_STMT (iter);
1877 if (!phi)
1878 return;
1880 name = PHI_RESULT (phi);
1881 replace_ssa_name_symbol (name, var);
1885 /* Given an unrolled LOOP after predictive commoning, remove the
1886 register copies arising from phi nodes by changing the base
1887 variables of SSA names. TMP_VARS is the set of the temporary variables
1888 for those we want to perform this. */
1890 static void
1891 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1893 edge e;
1894 gimple phi, stmt;
1895 tree name, use, var;
1896 gimple_stmt_iterator psi;
1898 e = loop_latch_edge (loop);
1899 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1901 phi = gsi_stmt (psi);
1902 name = PHI_RESULT (phi);
1903 var = SSA_NAME_VAR (name);
1904 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
1905 continue;
1906 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1907 gcc_assert (TREE_CODE (use) == SSA_NAME);
1909 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1910 stmt = SSA_NAME_DEF_STMT (use);
1911 while (gimple_code (stmt) == GIMPLE_PHI
1912 /* In case we could not unroll the loop enough to eliminate
1913 all copies, we may reach the loop header before the defining
1914 statement (in that case, some register copies will be present
1915 in loop latch in the final code, corresponding to the newly
1916 created looparound phi nodes). */
1917 && gimple_bb (stmt) != loop->header)
1919 gcc_assert (single_pred_p (gimple_bb (stmt)));
1920 use = PHI_ARG_DEF (stmt, 0);
1921 stmt = SSA_NAME_DEF_STMT (use);
1924 base_names_in_chain_on (loop, use, var);
1928 /* Returns true if CHAIN is suitable to be combined. */
1930 static bool
1931 chain_can_be_combined_p (chain_p chain)
1933 return (!chain->combined
1934 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1937 /* Returns the modify statement that uses NAME. Skips over assignment
1938 statements, NAME is replaced with the actual name used in the returned
1939 statement. */
1941 static gimple
1942 find_use_stmt (tree *name)
1944 gimple stmt;
1945 tree rhs, lhs;
1947 /* Skip over assignments. */
1948 while (1)
1950 stmt = single_nonlooparound_use (*name);
1951 if (!stmt)
1952 return NULL;
1954 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1955 return NULL;
1957 lhs = gimple_assign_lhs (stmt);
1958 if (TREE_CODE (lhs) != SSA_NAME)
1959 return NULL;
1961 if (gimple_assign_copy_p (stmt))
1963 rhs = gimple_assign_rhs1 (stmt);
1964 if (rhs != *name)
1965 return NULL;
1967 *name = lhs;
1969 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1970 == GIMPLE_BINARY_RHS)
1971 return stmt;
1972 else
1973 return NULL;
1977 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1979 static bool
1980 may_reassociate_p (tree type, enum tree_code code)
1982 if (FLOAT_TYPE_P (type)
1983 && !flag_unsafe_math_optimizations)
1984 return false;
1986 return (commutative_tree_code (code)
1987 && associative_tree_code (code));
1990 /* If the operation used in STMT is associative and commutative, go through the
1991 tree of the same operations and returns its root. Distance to the root
1992 is stored in DISTANCE. */
1994 static gimple
1995 find_associative_operation_root (gimple stmt, unsigned *distance)
1997 tree lhs;
1998 gimple next;
1999 enum tree_code code = gimple_assign_rhs_code (stmt);
2000 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2001 unsigned dist = 0;
2003 if (!may_reassociate_p (type, code))
2004 return NULL;
2006 while (1)
2008 lhs = gimple_assign_lhs (stmt);
2009 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2011 next = find_use_stmt (&lhs);
2012 if (!next
2013 || gimple_assign_rhs_code (next) != code)
2014 break;
2016 stmt = next;
2017 dist++;
2020 if (distance)
2021 *distance = dist;
2022 return stmt;
2025 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2026 is no such statement, returns NULL_TREE. In case the operation used on
2027 NAME1 and NAME2 is associative and commutative, returns the root of the
2028 tree formed by this operation instead of the statement that uses NAME1 or
2029 NAME2. */
2031 static gimple
2032 find_common_use_stmt (tree *name1, tree *name2)
2034 gimple stmt1, stmt2;
2036 stmt1 = find_use_stmt (name1);
2037 if (!stmt1)
2038 return NULL;
2040 stmt2 = find_use_stmt (name2);
2041 if (!stmt2)
2042 return NULL;
2044 if (stmt1 == stmt2)
2045 return stmt1;
2047 stmt1 = find_associative_operation_root (stmt1, NULL);
2048 if (!stmt1)
2049 return NULL;
2050 stmt2 = find_associative_operation_root (stmt2, NULL);
2051 if (!stmt2)
2052 return NULL;
2054 return (stmt1 == stmt2 ? stmt1 : NULL);
2057 /* Checks whether R1 and R2 are combined together using CODE, with the result
2058 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2059 if it is true. If CODE is ERROR_MARK, set these values instead. */
2061 static bool
2062 combinable_refs_p (dref r1, dref r2,
2063 enum tree_code *code, bool *swap, tree *rslt_type)
2065 enum tree_code acode;
2066 bool aswap;
2067 tree atype;
2068 tree name1, name2;
2069 gimple stmt;
2071 name1 = name_for_ref (r1);
2072 name2 = name_for_ref (r2);
2073 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2075 stmt = find_common_use_stmt (&name1, &name2);
2077 if (!stmt)
2078 return false;
2080 acode = gimple_assign_rhs_code (stmt);
2081 aswap = (!commutative_tree_code (acode)
2082 && gimple_assign_rhs1 (stmt) != name1);
2083 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2085 if (*code == ERROR_MARK)
2087 *code = acode;
2088 *swap = aswap;
2089 *rslt_type = atype;
2090 return true;
2093 return (*code == acode
2094 && *swap == aswap
2095 && *rslt_type == atype);
2098 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2099 an assignment of the remaining operand. */
2101 static void
2102 remove_name_from_operation (gimple stmt, tree op)
2104 tree other_op;
2105 gimple_stmt_iterator si;
2107 gcc_assert (is_gimple_assign (stmt));
2109 if (gimple_assign_rhs1 (stmt) == op)
2110 other_op = gimple_assign_rhs2 (stmt);
2111 else
2112 other_op = gimple_assign_rhs1 (stmt);
2114 si = gsi_for_stmt (stmt);
2115 gimple_assign_set_rhs_from_tree (&si, other_op);
2117 /* We should not have reallocated STMT. */
2118 gcc_assert (gsi_stmt (si) == stmt);
2120 update_stmt (stmt);
2123 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2124 are combined in a single statement, and returns this statement. */
2126 static gimple
2127 reassociate_to_the_same_stmt (tree name1, tree name2)
2129 gimple stmt1, stmt2, root1, root2, s1, s2;
2130 gimple new_stmt, tmp_stmt;
2131 tree new_name, tmp_name, var, r1, r2;
2132 unsigned dist1, dist2;
2133 enum tree_code code;
2134 tree type = TREE_TYPE (name1);
2135 gimple_stmt_iterator bsi;
2137 stmt1 = find_use_stmt (&name1);
2138 stmt2 = find_use_stmt (&name2);
2139 root1 = find_associative_operation_root (stmt1, &dist1);
2140 root2 = find_associative_operation_root (stmt2, &dist2);
2141 code = gimple_assign_rhs_code (stmt1);
2143 gcc_assert (root1 && root2 && root1 == root2
2144 && code == gimple_assign_rhs_code (stmt2));
2146 /* Find the root of the nearest expression in that both NAME1 and NAME2
2147 are used. */
2148 r1 = name1;
2149 s1 = stmt1;
2150 r2 = name2;
2151 s2 = stmt2;
2153 while (dist1 > dist2)
2155 s1 = find_use_stmt (&r1);
2156 r1 = gimple_assign_lhs (s1);
2157 dist1--;
2159 while (dist2 > dist1)
2161 s2 = find_use_stmt (&r2);
2162 r2 = gimple_assign_lhs (s2);
2163 dist2--;
2166 while (s1 != s2)
2168 s1 = find_use_stmt (&r1);
2169 r1 = gimple_assign_lhs (s1);
2170 s2 = find_use_stmt (&r2);
2171 r2 = gimple_assign_lhs (s2);
2174 /* Remove NAME1 and NAME2 from the statements in that they are used
2175 currently. */
2176 remove_name_from_operation (stmt1, name1);
2177 remove_name_from_operation (stmt2, name2);
2179 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2180 combine it with the rhs of S1. */
2181 var = create_tmp_reg (type, "predreastmp");
2182 new_name = make_ssa_name (var, NULL);
2183 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2185 var = create_tmp_reg (type, "predreastmp");
2186 tmp_name = make_ssa_name (var, NULL);
2188 /* Rhs of S1 may now be either a binary expression with operation
2189 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2190 so that name1 or name2 was removed from it). */
2191 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2192 tmp_name,
2193 gimple_assign_rhs1 (s1),
2194 gimple_assign_rhs2 (s1));
2196 bsi = gsi_for_stmt (s1);
2197 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2198 s1 = gsi_stmt (bsi);
2199 update_stmt (s1);
2201 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2202 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2204 return new_stmt;
2207 /* Returns the statement that combines references R1 and R2. In case R1
2208 and R2 are not used in the same statement, but they are used with an
2209 associative and commutative operation in the same expression, reassociate
2210 the expression so that they are used in the same statement. */
2212 static gimple
2213 stmt_combining_refs (dref r1, dref r2)
2215 gimple stmt1, stmt2;
2216 tree name1 = name_for_ref (r1);
2217 tree name2 = name_for_ref (r2);
2219 stmt1 = find_use_stmt (&name1);
2220 stmt2 = find_use_stmt (&name2);
2221 if (stmt1 == stmt2)
2222 return stmt1;
2224 return reassociate_to_the_same_stmt (name1, name2);
2227 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2228 description of the new chain is returned, otherwise we return NULL. */
2230 static chain_p
2231 combine_chains (chain_p ch1, chain_p ch2)
2233 dref r1, r2, nw;
2234 enum tree_code op = ERROR_MARK;
2235 bool swap = false;
2236 chain_p new_chain;
2237 unsigned i;
2238 gimple root_stmt;
2239 tree rslt_type = NULL_TREE;
2241 if (ch1 == ch2)
2242 return NULL;
2243 if (ch1->length != ch2->length)
2244 return NULL;
2246 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2247 return NULL;
2249 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2250 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2252 if (r1->distance != r2->distance)
2253 return NULL;
2255 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2256 return NULL;
2259 if (swap)
2261 chain_p tmp = ch1;
2262 ch1 = ch2;
2263 ch2 = tmp;
2266 new_chain = XCNEW (struct chain);
2267 new_chain->type = CT_COMBINATION;
2268 new_chain->op = op;
2269 new_chain->ch1 = ch1;
2270 new_chain->ch2 = ch2;
2271 new_chain->rslt_type = rslt_type;
2272 new_chain->length = ch1->length;
2274 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2275 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2277 nw = XCNEW (struct dref_d);
2278 nw->stmt = stmt_combining_refs (r1, r2);
2279 nw->distance = r1->distance;
2281 VEC_safe_push (dref, heap, new_chain->refs, nw);
2284 new_chain->has_max_use_after = false;
2285 root_stmt = get_chain_root (new_chain)->stmt;
2286 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2288 if (nw->distance == new_chain->length
2289 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2291 new_chain->has_max_use_after = true;
2292 break;
2296 ch1->combined = true;
2297 ch2->combined = true;
2298 return new_chain;
2301 /* Try to combine the CHAINS. */
2303 static void
2304 try_combine_chains (VEC (chain_p, heap) **chains)
2306 unsigned i, j;
2307 chain_p ch1, ch2, cch;
2308 VEC (chain_p, heap) *worklist = NULL;
2310 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2311 if (chain_can_be_combined_p (ch1))
2312 VEC_safe_push (chain_p, heap, worklist, ch1);
2314 while (!VEC_empty (chain_p, worklist))
2316 ch1 = VEC_pop (chain_p, worklist);
2317 if (!chain_can_be_combined_p (ch1))
2318 continue;
2320 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2322 if (!chain_can_be_combined_p (ch2))
2323 continue;
2325 cch = combine_chains (ch1, ch2);
2326 if (cch)
2328 VEC_safe_push (chain_p, heap, worklist, cch);
2329 VEC_safe_push (chain_p, heap, *chains, cch);
2330 break;
2336 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2337 impossible because one of these initializers may trap, true otherwise. */
2339 static bool
2340 prepare_initializers_chain (struct loop *loop, chain_p chain)
2342 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2343 struct data_reference *dr = get_chain_root (chain)->ref;
2344 tree init;
2345 gimple_seq stmts;
2346 dref laref;
2347 edge entry = loop_preheader_edge (loop);
2349 /* Find the initializers for the variables, and check that they cannot
2350 trap. */
2351 chain->inits = VEC_alloc (tree, heap, n);
2352 for (i = 0; i < n; i++)
2353 VEC_quick_push (tree, chain->inits, NULL_TREE);
2355 /* If we have replaced some looparound phi nodes, use their initializers
2356 instead of creating our own. */
2357 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2359 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2360 continue;
2362 gcc_assert (laref->distance > 0);
2363 VEC_replace (tree, chain->inits, n - laref->distance,
2364 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2367 for (i = 0; i < n; i++)
2369 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2370 continue;
2372 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2373 if (!init)
2374 return false;
2376 if (!chain->all_always_accessed && tree_could_trap_p (init))
2377 return false;
2379 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2380 if (stmts)
2381 gsi_insert_seq_on_edge_immediate (entry, stmts);
2383 VEC_replace (tree, chain->inits, i, init);
2386 return true;
2389 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2390 be used because the initializers might trap. */
2392 static void
2393 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2395 chain_p chain;
2396 unsigned i;
2398 for (i = 0; i < VEC_length (chain_p, chains); )
2400 chain = VEC_index (chain_p, chains, i);
2401 if (prepare_initializers_chain (loop, chain))
2402 i++;
2403 else
2405 release_chain (chain);
2406 VEC_unordered_remove (chain_p, chains, i);
2411 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2412 unrolled. */
2414 static bool
2415 tree_predictive_commoning_loop (struct loop *loop)
2417 VEC (loop_p, heap) *loop_nest;
2418 VEC (data_reference_p, heap) *datarefs;
2419 VEC (ddr_p, heap) *dependences;
2420 struct component *components;
2421 VEC (chain_p, heap) *chains = NULL;
2422 unsigned unroll_factor;
2423 struct tree_niter_desc desc;
2424 bool unroll = false;
2425 edge exit;
2426 bitmap tmp_vars;
2428 if (dump_file && (dump_flags & TDF_DETAILS))
2429 fprintf (dump_file, "Processing loop %d\n", loop->num);
2431 /* Find the data references and split them into components according to their
2432 dependence relations. */
2433 datarefs = VEC_alloc (data_reference_p, heap, 10);
2434 dependences = VEC_alloc (ddr_p, heap, 10);
2435 loop_nest = VEC_alloc (loop_p, heap, 3);
2436 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2437 &dependences))
2439 if (dump_file && (dump_flags & TDF_DETAILS))
2440 fprintf (dump_file, "Cannot analyze data dependencies\n");
2441 VEC_free (loop_p, heap, loop_nest);
2442 free_data_refs (datarefs);
2443 free_dependence_relations (dependences);
2444 return false;
2447 if (dump_file && (dump_flags & TDF_DETAILS))
2448 dump_data_dependence_relations (dump_file, dependences);
2450 components = split_data_refs_to_components (loop, datarefs, dependences);
2451 VEC_free (loop_p, heap, loop_nest);
2452 free_dependence_relations (dependences);
2453 if (!components)
2455 free_data_refs (datarefs);
2456 return false;
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2461 fprintf (dump_file, "Initial state:\n\n");
2462 dump_components (dump_file, components);
2465 /* Find the suitable components and split them into chains. */
2466 components = filter_suitable_components (loop, components);
2468 tmp_vars = BITMAP_ALLOC (NULL);
2469 looparound_phis = BITMAP_ALLOC (NULL);
2470 determine_roots (loop, components, &chains);
2471 release_components (components);
2473 if (!chains)
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2476 fprintf (dump_file,
2477 "Predictive commoning failed: no suitable chains\n");
2478 goto end;
2480 prepare_initializers (loop, chains);
2482 /* Try to combine the chains that are always worked with together. */
2483 try_combine_chains (&chains);
2485 if (dump_file && (dump_flags & TDF_DETAILS))
2487 fprintf (dump_file, "Before commoning:\n\n");
2488 dump_chains (dump_file, chains);
2491 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2492 that its number of iterations is divisible by the factor. */
2493 unroll_factor = determine_unroll_factor (chains);
2494 scev_reset ();
2495 unroll = (unroll_factor > 1
2496 && can_unroll_loop_p (loop, unroll_factor, &desc));
2497 exit = single_dom_exit (loop);
2499 /* Execute the predictive commoning transformations, and possibly unroll the
2500 loop. */
2501 if (unroll)
2503 struct epcc_data dta;
2505 if (dump_file && (dump_flags & TDF_DETAILS))
2506 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2508 dta.chains = chains;
2509 dta.tmp_vars = tmp_vars;
2511 update_ssa (TODO_update_ssa_only_virtuals);
2513 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2514 execute_pred_commoning_cbck is called may cause phi nodes to be
2515 reallocated, which is a problem since CHAINS may point to these
2516 statements. To fix this, we store the ssa names defined by the
2517 phi nodes here instead of the phi nodes themselves, and restore
2518 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2519 replace_phis_by_defined_names (chains);
2521 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2522 execute_pred_commoning_cbck, &dta);
2523 eliminate_temp_copies (loop, tmp_vars);
2525 else
2527 if (dump_file && (dump_flags & TDF_DETAILS))
2528 fprintf (dump_file,
2529 "Executing predictive commoning without unrolling.\n");
2530 execute_pred_commoning (loop, chains, tmp_vars);
2533 end: ;
2534 release_chains (chains);
2535 free_data_refs (datarefs);
2536 BITMAP_FREE (tmp_vars);
2537 BITMAP_FREE (looparound_phis);
2539 free_affine_expand_cache (&name_expansions);
2541 return unroll;
2544 /* Runs predictive commoning. */
2546 unsigned
2547 tree_predictive_commoning (void)
2549 bool unrolled = false;
2550 struct loop *loop;
2551 loop_iterator li;
2552 unsigned ret = 0;
2554 initialize_original_copy_tables ();
2555 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2556 if (optimize_loop_for_speed_p (loop))
2558 unrolled |= tree_predictive_commoning_loop (loop);
2561 if (unrolled)
2563 scev_reset ();
2564 ret = TODO_cleanup_cfg;
2566 free_original_copy_tables ();
2568 return ret;