1 /* Building internal representation for IRA.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "insn-config.h"
35 #include "sparseset.h"
38 static ira_copy_t
find_allocno_copy (ira_allocno_t
, ira_allocno_t
, rtx_insn
*,
39 ira_loop_tree_node_t
);
41 /* The root of the loop tree corresponding to the all function. */
42 ira_loop_tree_node_t ira_loop_tree_root
;
44 /* Height of the loop tree. */
45 int ira_loop_tree_height
;
47 /* All nodes representing basic blocks are referred through the
48 following array. We can not use basic block member `aux' for this
49 because it is used for insertion of insns on edges. */
50 ira_loop_tree_node_t ira_bb_nodes
;
52 /* All nodes representing loops are referred through the following
54 ira_loop_tree_node_t ira_loop_nodes
;
56 /* And size of the ira_loop_nodes array. */
57 unsigned int ira_loop_nodes_count
;
59 /* Map regno -> allocnos with given regno (see comments for
60 allocno member `next_regno_allocno'). */
61 ira_allocno_t
*ira_regno_allocno_map
;
63 /* Array of references to all allocnos. The order number of the
64 allocno corresponds to the index in the array. Removed allocnos
65 have NULL element value. */
66 ira_allocno_t
*ira_allocnos
;
68 /* Sizes of the previous array. */
71 /* Count of conflict record structures we've created, used when creating
75 /* Map a conflict id to its conflict record. */
76 ira_object_t
*ira_object_id_map
;
78 /* Array of references to all allocno preferences. The order number
79 of the preference corresponds to the index in the array. */
80 ira_pref_t
*ira_prefs
;
82 /* Size of the previous array. */
85 /* Array of references to all copies. The order number of the copy
86 corresponds to the index in the array. Removed copies have NULL
88 ira_copy_t
*ira_copies
;
90 /* Size of the previous array. */
95 /* LAST_BASIC_BLOCK before generating additional insns because of live
96 range splitting. Emitting insns on a critical edge creates a new
98 static int last_basic_block_before_change
;
100 /* Initialize some members in loop tree node NODE. Use LOOP_NUM for
101 the member loop_num. */
103 init_loop_tree_node (struct ira_loop_tree_node
*node
, int loop_num
)
105 int max_regno
= max_reg_num ();
107 node
->regno_allocno_map
108 = (ira_allocno_t
*) ira_allocate (sizeof (ira_allocno_t
) * max_regno
);
109 memset (node
->regno_allocno_map
, 0, sizeof (ira_allocno_t
) * max_regno
);
110 memset (node
->reg_pressure
, 0, sizeof (node
->reg_pressure
));
111 node
->all_allocnos
= ira_allocate_bitmap ();
112 node
->modified_regnos
= ira_allocate_bitmap ();
113 node
->border_allocnos
= ira_allocate_bitmap ();
114 node
->local_copies
= ira_allocate_bitmap ();
115 node
->loop_num
= loop_num
;
116 node
->children
= NULL
;
117 node
->subloops
= NULL
;
121 /* The following function allocates the loop tree nodes. If
122 CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
123 the root which corresponds the all function) will be not allocated
124 but nodes will still be allocated for basic blocks. */
126 create_loop_tree_nodes (void)
136 = ((struct ira_loop_tree_node
*)
137 ira_allocate (sizeof (struct ira_loop_tree_node
)
138 * last_basic_block_for_fn (cfun
)));
139 last_basic_block_before_change
= last_basic_block_for_fn (cfun
);
140 for (i
= 0; i
< (unsigned int) last_basic_block_for_fn (cfun
); i
++)
142 ira_bb_nodes
[i
].regno_allocno_map
= NULL
;
143 memset (ira_bb_nodes
[i
].reg_pressure
, 0,
144 sizeof (ira_bb_nodes
[i
].reg_pressure
));
145 ira_bb_nodes
[i
].all_allocnos
= NULL
;
146 ira_bb_nodes
[i
].modified_regnos
= NULL
;
147 ira_bb_nodes
[i
].border_allocnos
= NULL
;
148 ira_bb_nodes
[i
].local_copies
= NULL
;
150 if (current_loops
== NULL
)
152 ira_loop_nodes_count
= 1;
153 ira_loop_nodes
= ((struct ira_loop_tree_node
*)
154 ira_allocate (sizeof (struct ira_loop_tree_node
)));
155 init_loop_tree_node (ira_loop_nodes
, 0);
158 ira_loop_nodes_count
= number_of_loops (cfun
);
159 ira_loop_nodes
= ((struct ira_loop_tree_node
*)
160 ira_allocate (sizeof (struct ira_loop_tree_node
)
161 * ira_loop_nodes_count
));
162 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun
), i
, loop
)
164 if (loop_outer (loop
) != NULL
)
166 ira_loop_nodes
[i
].regno_allocno_map
= NULL
;
168 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
169 if (e
->src
!= loop
->latch
170 && (e
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (e
))
177 edges
= get_loop_exit_edges (loop
);
178 FOR_EACH_VEC_ELT (edges
, j
, e
)
179 if ((e
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (e
))
188 init_loop_tree_node (&ira_loop_nodes
[i
], loop
->num
);
192 /* The function returns TRUE if there are more one allocation
195 more_one_region_p (void)
200 if (current_loops
!= NULL
)
201 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun
), i
, loop
)
202 if (ira_loop_nodes
[i
].regno_allocno_map
!= NULL
203 && ira_loop_tree_root
!= &ira_loop_nodes
[i
])
208 /* Free the loop tree node of a loop. */
210 finish_loop_tree_node (ira_loop_tree_node_t loop
)
212 if (loop
->regno_allocno_map
!= NULL
)
214 ira_assert (loop
->bb
== NULL
);
215 ira_free_bitmap (loop
->local_copies
);
216 ira_free_bitmap (loop
->border_allocnos
);
217 ira_free_bitmap (loop
->modified_regnos
);
218 ira_free_bitmap (loop
->all_allocnos
);
219 ira_free (loop
->regno_allocno_map
);
220 loop
->regno_allocno_map
= NULL
;
224 /* Free the loop tree nodes. */
226 finish_loop_tree_nodes (void)
230 for (i
= 0; i
< ira_loop_nodes_count
; i
++)
231 finish_loop_tree_node (&ira_loop_nodes
[i
]);
232 ira_free (ira_loop_nodes
);
233 for (i
= 0; i
< (unsigned int) last_basic_block_before_change
; i
++)
235 if (ira_bb_nodes
[i
].local_copies
!= NULL
)
236 ira_free_bitmap (ira_bb_nodes
[i
].local_copies
);
237 if (ira_bb_nodes
[i
].border_allocnos
!= NULL
)
238 ira_free_bitmap (ira_bb_nodes
[i
].border_allocnos
);
239 if (ira_bb_nodes
[i
].modified_regnos
!= NULL
)
240 ira_free_bitmap (ira_bb_nodes
[i
].modified_regnos
);
241 if (ira_bb_nodes
[i
].all_allocnos
!= NULL
)
242 ira_free_bitmap (ira_bb_nodes
[i
].all_allocnos
);
243 if (ira_bb_nodes
[i
].regno_allocno_map
!= NULL
)
244 ira_free (ira_bb_nodes
[i
].regno_allocno_map
);
246 ira_free (ira_bb_nodes
);
251 /* The following recursive function adds LOOP to the loop tree
252 hierarchy. LOOP is added only once. If LOOP is NULL we adding
253 loop designating the whole function when CFG loops are not
256 add_loop_to_tree (struct loop
*loop
)
260 ira_loop_tree_node_t loop_node
, parent_node
;
262 /* We can not use loop node access macros here because of potential
263 checking and because the nodes are not initialized enough
265 if (loop
!= NULL
&& loop_outer (loop
) != NULL
)
266 add_loop_to_tree (loop_outer (loop
));
267 loop_num
= loop
!= NULL
? loop
->num
: 0;
268 if (ira_loop_nodes
[loop_num
].regno_allocno_map
!= NULL
269 && ira_loop_nodes
[loop_num
].children
== NULL
)
271 /* We have not added loop node to the tree yet. */
272 loop_node
= &ira_loop_nodes
[loop_num
];
273 loop_node
->loop
= loop
;
274 loop_node
->bb
= NULL
;
279 for (parent
= loop_outer (loop
);
281 parent
= loop_outer (parent
))
282 if (ira_loop_nodes
[parent
->num
].regno_allocno_map
!= NULL
)
287 loop_node
->next
= NULL
;
288 loop_node
->subloop_next
= NULL
;
289 loop_node
->parent
= NULL
;
293 parent_node
= &ira_loop_nodes
[parent
->num
];
294 loop_node
->next
= parent_node
->children
;
295 parent_node
->children
= loop_node
;
296 loop_node
->subloop_next
= parent_node
->subloops
;
297 parent_node
->subloops
= loop_node
;
298 loop_node
->parent
= parent_node
;
303 /* The following recursive function sets up levels of nodes of the
304 tree given its root LOOP_NODE. The enumeration starts with LEVEL.
305 The function returns maximal value of level in the tree + 1. */
307 setup_loop_tree_level (ira_loop_tree_node_t loop_node
, int level
)
309 int height
, max_height
;
310 ira_loop_tree_node_t subloop_node
;
312 ira_assert (loop_node
->bb
== NULL
);
313 loop_node
->level
= level
;
314 max_height
= level
+ 1;
315 for (subloop_node
= loop_node
->subloops
;
316 subloop_node
!= NULL
;
317 subloop_node
= subloop_node
->subloop_next
)
319 ira_assert (subloop_node
->bb
== NULL
);
320 height
= setup_loop_tree_level (subloop_node
, level
+ 1);
321 if (height
> max_height
)
327 /* Create the loop tree. The algorithm is designed to provide correct
328 order of loops (they are ordered by their last loop BB) and basic
329 blocks in the chain formed by member next. */
331 form_loop_tree (void)
335 ira_loop_tree_node_t bb_node
, loop_node
;
337 /* We can not use loop/bb node access macros because of potential
338 checking and because the nodes are not initialized enough
340 FOR_EACH_BB_FN (bb
, cfun
)
342 bb_node
= &ira_bb_nodes
[bb
->index
];
344 bb_node
->loop
= NULL
;
345 bb_node
->subloops
= NULL
;
346 bb_node
->children
= NULL
;
347 bb_node
->subloop_next
= NULL
;
348 bb_node
->next
= NULL
;
349 if (current_loops
== NULL
)
353 for (parent
= bb
->loop_father
;
355 parent
= loop_outer (parent
))
356 if (ira_loop_nodes
[parent
->num
].regno_allocno_map
!= NULL
)
359 add_loop_to_tree (parent
);
360 loop_node
= &ira_loop_nodes
[parent
== NULL
? 0 : parent
->num
];
361 bb_node
->next
= loop_node
->children
;
362 bb_node
->parent
= loop_node
;
363 loop_node
->children
= bb_node
;
365 ira_loop_tree_root
= IRA_LOOP_NODE_BY_INDEX (0);
366 ira_loop_tree_height
= setup_loop_tree_level (ira_loop_tree_root
, 0);
367 ira_assert (ira_loop_tree_root
->regno_allocno_map
!= NULL
);
372 /* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
375 rebuild_regno_allocno_maps (void)
378 int max_regno
, regno
;
380 ira_loop_tree_node_t loop_tree_node
;
382 ira_allocno_iterator ai
;
384 ira_assert (current_loops
!= NULL
);
385 max_regno
= max_reg_num ();
386 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun
), l
, loop
)
387 if (ira_loop_nodes
[l
].regno_allocno_map
!= NULL
)
389 ira_free (ira_loop_nodes
[l
].regno_allocno_map
);
390 ira_loop_nodes
[l
].regno_allocno_map
391 = (ira_allocno_t
*) ira_allocate (sizeof (ira_allocno_t
)
393 memset (ira_loop_nodes
[l
].regno_allocno_map
, 0,
394 sizeof (ira_allocno_t
) * max_regno
);
396 ira_free (ira_regno_allocno_map
);
397 ira_regno_allocno_map
398 = (ira_allocno_t
*) ira_allocate (max_regno
* sizeof (ira_allocno_t
));
399 memset (ira_regno_allocno_map
, 0, max_regno
* sizeof (ira_allocno_t
));
400 FOR_EACH_ALLOCNO (a
, ai
)
402 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
403 /* Caps are not in the regno allocno maps. */
405 regno
= ALLOCNO_REGNO (a
);
406 loop_tree_node
= ALLOCNO_LOOP_TREE_NODE (a
);
407 ALLOCNO_NEXT_REGNO_ALLOCNO (a
) = ira_regno_allocno_map
[regno
];
408 ira_regno_allocno_map
[regno
] = a
;
409 if (loop_tree_node
->regno_allocno_map
[regno
] == NULL
)
410 /* Remember that we can create temporary allocnos to break
411 cycles in register shuffle. */
412 loop_tree_node
->regno_allocno_map
[regno
] = a
;
417 /* Pools for allocnos, allocno live ranges and objects. */
418 static object_allocator
<live_range
> live_range_pool ("live ranges");
419 static object_allocator
<ira_allocno
> allocno_pool ("allocnos");
420 static object_allocator
<ira_object
> object_pool ("objects");
422 /* Vec containing references to all created allocnos. It is a
423 container of array allocnos. */
424 static vec
<ira_allocno_t
> allocno_vec
;
426 /* Vec containing references to all created ira_objects. It is a
427 container of ira_object_id_map. */
428 static vec
<ira_object_t
> ira_object_id_map_vec
;
430 /* Initialize data concerning allocnos. */
432 initiate_allocnos (void)
434 allocno_vec
.create (max_reg_num () * 2);
436 ira_allocnos_num
= 0;
438 ira_object_id_map_vec
.create (max_reg_num () * 2);
439 ira_object_id_map
= NULL
;
440 ira_regno_allocno_map
441 = (ira_allocno_t
*) ira_allocate (max_reg_num ()
442 * sizeof (ira_allocno_t
));
443 memset (ira_regno_allocno_map
, 0, max_reg_num () * sizeof (ira_allocno_t
));
446 /* Create and return an object corresponding to a new allocno A. */
448 ira_create_object (ira_allocno_t a
, int subword
)
450 enum reg_class aclass
= ALLOCNO_CLASS (a
);
451 ira_object_t obj
= object_pool
.allocate ();
453 OBJECT_ALLOCNO (obj
) = a
;
454 OBJECT_SUBWORD (obj
) = subword
;
455 OBJECT_CONFLICT_ID (obj
) = ira_objects_num
;
456 OBJECT_CONFLICT_VEC_P (obj
) = false;
457 OBJECT_CONFLICT_ARRAY (obj
) = NULL
;
458 OBJECT_NUM_CONFLICTS (obj
) = 0;
459 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
), ira_no_alloc_regs
);
460 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), ira_no_alloc_regs
);
461 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
462 reg_class_contents
[aclass
]);
463 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
464 reg_class_contents
[aclass
]);
465 OBJECT_MIN (obj
) = INT_MAX
;
466 OBJECT_MAX (obj
) = -1;
467 OBJECT_LIVE_RANGES (obj
) = NULL
;
469 ira_object_id_map_vec
.safe_push (obj
);
471 = ira_object_id_map_vec
.address ();
472 ira_objects_num
= ira_object_id_map_vec
.length ();
477 /* Create and return the allocno corresponding to REGNO in
478 LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
479 same regno if CAP_P is FALSE. */
481 ira_create_allocno (int regno
, bool cap_p
,
482 ira_loop_tree_node_t loop_tree_node
)
486 a
= allocno_pool
.allocate ();
487 ALLOCNO_REGNO (a
) = regno
;
488 ALLOCNO_LOOP_TREE_NODE (a
) = loop_tree_node
;
491 ALLOCNO_NEXT_REGNO_ALLOCNO (a
) = ira_regno_allocno_map
[regno
];
492 ira_regno_allocno_map
[regno
] = a
;
493 if (loop_tree_node
->regno_allocno_map
[regno
] == NULL
)
494 /* Remember that we can create temporary allocnos to break
495 cycles in register shuffle on region borders (see
497 loop_tree_node
->regno_allocno_map
[regno
] = a
;
499 ALLOCNO_CAP (a
) = NULL
;
500 ALLOCNO_CAP_MEMBER (a
) = NULL
;
501 ALLOCNO_NUM (a
) = ira_allocnos_num
;
502 bitmap_set_bit (loop_tree_node
->all_allocnos
, ALLOCNO_NUM (a
));
503 ALLOCNO_NREFS (a
) = 0;
504 ALLOCNO_FREQ (a
) = 0;
505 ALLOCNO_HARD_REGNO (a
) = -1;
506 ALLOCNO_CALL_FREQ (a
) = 0;
507 ALLOCNO_CALLS_CROSSED_NUM (a
) = 0;
508 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
) = 0;
509 CLEAR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a
));
511 ALLOCNO_NO_STACK_REG_P (a
) = false;
512 ALLOCNO_TOTAL_NO_STACK_REG_P (a
) = false;
514 ALLOCNO_DONT_REASSIGN_P (a
) = false;
515 ALLOCNO_BAD_SPILL_P (a
) = false;
516 ALLOCNO_ASSIGNED_P (a
) = false;
517 ALLOCNO_MODE (a
) = (regno
< 0 ? VOIDmode
: PSEUDO_REGNO_MODE (regno
));
518 ALLOCNO_WMODE (a
) = ALLOCNO_MODE (a
);
519 ALLOCNO_PREFS (a
) = NULL
;
520 ALLOCNO_COPIES (a
) = NULL
;
521 ALLOCNO_HARD_REG_COSTS (a
) = NULL
;
522 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
523 ALLOCNO_UPDATED_HARD_REG_COSTS (a
) = NULL
;
524 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
525 ALLOCNO_CLASS (a
) = NO_REGS
;
526 ALLOCNO_UPDATED_CLASS_COST (a
) = 0;
527 ALLOCNO_CLASS_COST (a
) = 0;
528 ALLOCNO_MEMORY_COST (a
) = 0;
529 ALLOCNO_UPDATED_MEMORY_COST (a
) = 0;
530 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
) = 0;
531 ALLOCNO_NUM_OBJECTS (a
) = 0;
533 ALLOCNO_ADD_DATA (a
) = NULL
;
534 allocno_vec
.safe_push (a
);
535 ira_allocnos
= allocno_vec
.address ();
536 ira_allocnos_num
= allocno_vec
.length ();
541 /* Set up register class for A and update its conflict hard
544 ira_set_allocno_class (ira_allocno_t a
, enum reg_class aclass
)
546 ira_allocno_object_iterator oi
;
549 ALLOCNO_CLASS (a
) = aclass
;
550 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
552 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
553 reg_class_contents
[aclass
]);
554 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
555 reg_class_contents
[aclass
]);
559 /* Determine the number of objects we should associate with allocno A
560 and allocate them. */
562 ira_create_allocno_objects (ira_allocno_t a
)
564 machine_mode mode
= ALLOCNO_MODE (a
);
565 enum reg_class aclass
= ALLOCNO_CLASS (a
);
566 int n
= ira_reg_class_max_nregs
[aclass
][mode
];
569 if (GET_MODE_SIZE (mode
) != 2 * UNITS_PER_WORD
|| n
!= 2)
572 ALLOCNO_NUM_OBJECTS (a
) = n
;
573 for (i
= 0; i
< n
; i
++)
574 ALLOCNO_OBJECT (a
, i
) = ira_create_object (a
, i
);
577 /* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
578 ALLOCNO_OBJECT structures. This must be called after the allocno
579 classes are known. */
581 create_allocno_objects (void)
584 ira_allocno_iterator ai
;
586 FOR_EACH_ALLOCNO (a
, ai
)
587 ira_create_allocno_objects (a
);
590 /* Merge hard register conflict information for all objects associated with
591 allocno TO into the corresponding objects associated with FROM.
592 If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
594 merge_hard_reg_conflicts (ira_allocno_t from
, ira_allocno_t to
,
598 gcc_assert (ALLOCNO_NUM_OBJECTS (to
) == ALLOCNO_NUM_OBJECTS (from
));
599 for (i
= 0; i
< ALLOCNO_NUM_OBJECTS (to
); i
++)
601 ira_object_t from_obj
= ALLOCNO_OBJECT (from
, i
);
602 ira_object_t to_obj
= ALLOCNO_OBJECT (to
, i
);
605 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj
),
606 OBJECT_CONFLICT_HARD_REGS (from_obj
));
607 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj
),
608 OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj
));
611 if (!total_only
&& ALLOCNO_NO_STACK_REG_P (from
))
612 ALLOCNO_NO_STACK_REG_P (to
) = true;
613 if (ALLOCNO_TOTAL_NO_STACK_REG_P (from
))
614 ALLOCNO_TOTAL_NO_STACK_REG_P (to
) = true;
618 /* Update hard register conflict information for all objects associated with
619 A to include the regs in SET. */
621 ior_hard_reg_conflicts (ira_allocno_t a
, HARD_REG_SET
*set
)
623 ira_allocno_object_iterator i
;
626 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, i
)
628 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
), *set
);
629 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), *set
);
633 /* Return TRUE if a conflict vector with NUM elements is more
634 profitable than a conflict bit vector for OBJ. */
636 ira_conflict_vector_profitable_p (ira_object_t obj
, int num
)
639 int max
= OBJECT_MAX (obj
);
640 int min
= OBJECT_MIN (obj
);
643 /* We prefer a bit vector in such case because it does not result
647 nw
= (max
- min
+ IRA_INT_BITS
) / IRA_INT_BITS
;
648 return (2 * sizeof (ira_object_t
) * (num
+ 1)
649 < 3 * nw
* sizeof (IRA_INT_TYPE
));
652 /* Allocates and initialize the conflict vector of OBJ for NUM
653 conflicting objects. */
655 ira_allocate_conflict_vec (ira_object_t obj
, int num
)
660 ira_assert (OBJECT_CONFLICT_ARRAY (obj
) == NULL
);
661 num
++; /* for NULL end marker */
662 size
= sizeof (ira_object_t
) * num
;
663 OBJECT_CONFLICT_ARRAY (obj
) = ira_allocate (size
);
664 vec
= (ira_object_t
*) OBJECT_CONFLICT_ARRAY (obj
);
666 OBJECT_NUM_CONFLICTS (obj
) = 0;
667 OBJECT_CONFLICT_ARRAY_SIZE (obj
) = size
;
668 OBJECT_CONFLICT_VEC_P (obj
) = true;
671 /* Allocate and initialize the conflict bit vector of OBJ. */
673 allocate_conflict_bit_vec (ira_object_t obj
)
677 ira_assert (OBJECT_CONFLICT_ARRAY (obj
) == NULL
);
678 size
= ((OBJECT_MAX (obj
) - OBJECT_MIN (obj
) + IRA_INT_BITS
)
679 / IRA_INT_BITS
* sizeof (IRA_INT_TYPE
));
680 OBJECT_CONFLICT_ARRAY (obj
) = ira_allocate (size
);
681 memset (OBJECT_CONFLICT_ARRAY (obj
), 0, size
);
682 OBJECT_CONFLICT_ARRAY_SIZE (obj
) = size
;
683 OBJECT_CONFLICT_VEC_P (obj
) = false;
686 /* Allocate and initialize the conflict vector or conflict bit vector
687 of OBJ for NUM conflicting allocnos whatever is more profitable. */
689 ira_allocate_object_conflicts (ira_object_t obj
, int num
)
691 if (ira_conflict_vector_profitable_p (obj
, num
))
692 ira_allocate_conflict_vec (obj
, num
);
694 allocate_conflict_bit_vec (obj
);
697 /* Add OBJ2 to the conflicts of OBJ1. */
699 add_to_conflicts (ira_object_t obj1
, ira_object_t obj2
)
704 if (OBJECT_CONFLICT_VEC_P (obj1
))
706 ira_object_t
*vec
= OBJECT_CONFLICT_VEC (obj1
);
707 int curr_num
= OBJECT_NUM_CONFLICTS (obj1
);
709 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1
) < num
* sizeof (ira_object_t
))
711 ira_object_t
*newvec
;
712 size
= (3 * num
/ 2 + 1) * sizeof (ira_allocno_t
);
713 newvec
= (ira_object_t
*) ira_allocate (size
);
714 memcpy (newvec
, vec
, curr_num
* sizeof (ira_object_t
));
717 OBJECT_CONFLICT_ARRAY (obj1
) = vec
;
718 OBJECT_CONFLICT_ARRAY_SIZE (obj1
) = size
;
722 OBJECT_NUM_CONFLICTS (obj1
)++;
726 int nw
, added_head_nw
, id
;
727 IRA_INT_TYPE
*vec
= OBJECT_CONFLICT_BITVEC (obj1
);
729 id
= OBJECT_CONFLICT_ID (obj2
);
730 if (OBJECT_MIN (obj1
) > id
)
732 /* Expand head of the bit vector. */
733 added_head_nw
= (OBJECT_MIN (obj1
) - id
- 1) / IRA_INT_BITS
+ 1;
734 nw
= (OBJECT_MAX (obj1
) - OBJECT_MIN (obj1
)) / IRA_INT_BITS
+ 1;
735 size
= (nw
+ added_head_nw
) * sizeof (IRA_INT_TYPE
);
736 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1
) >= size
)
738 memmove ((char *) vec
+ added_head_nw
* sizeof (IRA_INT_TYPE
),
739 vec
, nw
* sizeof (IRA_INT_TYPE
));
740 memset (vec
, 0, added_head_nw
* sizeof (IRA_INT_TYPE
));
745 = (3 * (nw
+ added_head_nw
) / 2 + 1) * sizeof (IRA_INT_TYPE
);
746 vec
= (IRA_INT_TYPE
*) ira_allocate (size
);
747 memcpy ((char *) vec
+ added_head_nw
* sizeof (IRA_INT_TYPE
),
748 OBJECT_CONFLICT_ARRAY (obj1
), nw
* sizeof (IRA_INT_TYPE
));
749 memset (vec
, 0, added_head_nw
* sizeof (IRA_INT_TYPE
));
751 + (nw
+ added_head_nw
) * sizeof (IRA_INT_TYPE
),
752 0, size
- (nw
+ added_head_nw
) * sizeof (IRA_INT_TYPE
));
753 ira_free (OBJECT_CONFLICT_ARRAY (obj1
));
754 OBJECT_CONFLICT_ARRAY (obj1
) = vec
;
755 OBJECT_CONFLICT_ARRAY_SIZE (obj1
) = size
;
757 OBJECT_MIN (obj1
) -= added_head_nw
* IRA_INT_BITS
;
759 else if (OBJECT_MAX (obj1
) < id
)
761 nw
= (id
- OBJECT_MIN (obj1
)) / IRA_INT_BITS
+ 1;
762 size
= nw
* sizeof (IRA_INT_TYPE
);
763 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1
) < size
)
765 /* Expand tail of the bit vector. */
766 size
= (3 * nw
/ 2 + 1) * sizeof (IRA_INT_TYPE
);
767 vec
= (IRA_INT_TYPE
*) ira_allocate (size
);
768 memcpy (vec
, OBJECT_CONFLICT_ARRAY (obj1
), OBJECT_CONFLICT_ARRAY_SIZE (obj1
));
769 memset ((char *) vec
+ OBJECT_CONFLICT_ARRAY_SIZE (obj1
),
770 0, size
- OBJECT_CONFLICT_ARRAY_SIZE (obj1
));
771 ira_free (OBJECT_CONFLICT_ARRAY (obj1
));
772 OBJECT_CONFLICT_ARRAY (obj1
) = vec
;
773 OBJECT_CONFLICT_ARRAY_SIZE (obj1
) = size
;
775 OBJECT_MAX (obj1
) = id
;
777 SET_MINMAX_SET_BIT (vec
, id
, OBJECT_MIN (obj1
), OBJECT_MAX (obj1
));
781 /* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
783 ira_add_conflict (ira_object_t obj1
, ira_object_t obj2
)
785 add_to_conflicts (obj1
, obj2
);
786 add_to_conflicts (obj2
, obj1
);
789 /* Clear all conflicts of OBJ. */
791 clear_conflicts (ira_object_t obj
)
793 if (OBJECT_CONFLICT_VEC_P (obj
))
795 OBJECT_NUM_CONFLICTS (obj
) = 0;
796 OBJECT_CONFLICT_VEC (obj
)[0] = NULL
;
798 else if (OBJECT_CONFLICT_ARRAY_SIZE (obj
) != 0)
802 nw
= (OBJECT_MAX (obj
) - OBJECT_MIN (obj
)) / IRA_INT_BITS
+ 1;
803 memset (OBJECT_CONFLICT_BITVEC (obj
), 0, nw
* sizeof (IRA_INT_TYPE
));
807 /* The array used to find duplications in conflict vectors of
809 static int *conflict_check
;
811 /* The value used to mark allocation presence in conflict vector of
812 the current allocno. */
813 static int curr_conflict_check_tick
;
815 /* Remove duplications in conflict vector of OBJ. */
817 compress_conflict_vec (ira_object_t obj
)
819 ira_object_t
*vec
, conflict_obj
;
822 ira_assert (OBJECT_CONFLICT_VEC_P (obj
));
823 vec
= OBJECT_CONFLICT_VEC (obj
);
824 curr_conflict_check_tick
++;
825 for (i
= j
= 0; (conflict_obj
= vec
[i
]) != NULL
; i
++)
827 int id
= OBJECT_CONFLICT_ID (conflict_obj
);
828 if (conflict_check
[id
] != curr_conflict_check_tick
)
830 conflict_check
[id
] = curr_conflict_check_tick
;
831 vec
[j
++] = conflict_obj
;
834 OBJECT_NUM_CONFLICTS (obj
) = j
;
838 /* Remove duplications in conflict vectors of all allocnos. */
840 compress_conflict_vecs (void)
843 ira_object_iterator oi
;
845 conflict_check
= (int *) ira_allocate (sizeof (int) * ira_objects_num
);
846 memset (conflict_check
, 0, sizeof (int) * ira_objects_num
);
847 curr_conflict_check_tick
= 0;
848 FOR_EACH_OBJECT (obj
, oi
)
850 if (OBJECT_CONFLICT_VEC_P (obj
))
851 compress_conflict_vec (obj
);
853 ira_free (conflict_check
);
856 /* This recursive function outputs allocno A and if it is a cap the
857 function outputs its members. */
859 ira_print_expanded_allocno (ira_allocno_t a
)
863 fprintf (ira_dump_file
, " a%d(r%d", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
864 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
865 fprintf (ira_dump_file
, ",b%d", bb
->index
);
867 fprintf (ira_dump_file
, ",l%d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
868 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
870 fprintf (ira_dump_file
, ":");
871 ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a
));
873 fprintf (ira_dump_file
, ")");
876 /* Create and return the cap representing allocno A in the
879 create_cap_allocno (ira_allocno_t a
)
882 ira_loop_tree_node_t parent
;
883 enum reg_class aclass
;
885 parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
;
886 cap
= ira_create_allocno (ALLOCNO_REGNO (a
), true, parent
);
887 ALLOCNO_MODE (cap
) = ALLOCNO_MODE (a
);
888 ALLOCNO_WMODE (cap
) = ALLOCNO_WMODE (a
);
889 aclass
= ALLOCNO_CLASS (a
);
890 ira_set_allocno_class (cap
, aclass
);
891 ira_create_allocno_objects (cap
);
892 ALLOCNO_CAP_MEMBER (cap
) = a
;
893 ALLOCNO_CAP (a
) = cap
;
894 ALLOCNO_CLASS_COST (cap
) = ALLOCNO_CLASS_COST (a
);
895 ALLOCNO_MEMORY_COST (cap
) = ALLOCNO_MEMORY_COST (a
);
896 ira_allocate_and_copy_costs
897 (&ALLOCNO_HARD_REG_COSTS (cap
), aclass
, ALLOCNO_HARD_REG_COSTS (a
));
898 ira_allocate_and_copy_costs
899 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap
), aclass
,
900 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
));
901 ALLOCNO_BAD_SPILL_P (cap
) = ALLOCNO_BAD_SPILL_P (a
);
902 ALLOCNO_NREFS (cap
) = ALLOCNO_NREFS (a
);
903 ALLOCNO_FREQ (cap
) = ALLOCNO_FREQ (a
);
904 ALLOCNO_CALL_FREQ (cap
) = ALLOCNO_CALL_FREQ (a
);
906 merge_hard_reg_conflicts (a
, cap
, false);
908 ALLOCNO_CALLS_CROSSED_NUM (cap
) = ALLOCNO_CALLS_CROSSED_NUM (a
);
909 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap
) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
910 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (cap
),
911 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a
));
912 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
914 fprintf (ira_dump_file
, " Creating cap ");
915 ira_print_expanded_allocno (cap
);
916 fprintf (ira_dump_file
, "\n");
921 /* Create and return a live range for OBJECT with given attributes. */
923 ira_create_live_range (ira_object_t obj
, int start
, int finish
,
928 p
= live_range_pool
.allocate ();
936 /* Create a new live range for OBJECT and queue it at the head of its
939 ira_add_live_range_to_object (ira_object_t object
, int start
, int finish
)
942 p
= ira_create_live_range (object
, start
, finish
,
943 OBJECT_LIVE_RANGES (object
));
944 OBJECT_LIVE_RANGES (object
) = p
;
947 /* Copy allocno live range R and return the result. */
949 copy_live_range (live_range_t r
)
953 p
= live_range_pool
.allocate ();
958 /* Copy allocno live range list given by its head R and return the
961 ira_copy_live_range_list (live_range_t r
)
963 live_range_t p
, first
, last
;
967 for (first
= last
= NULL
; r
!= NULL
; r
= r
->next
)
969 p
= copy_live_range (r
);
979 /* Merge ranges R1 and R2 and returns the result. The function
980 maintains the order of ranges and tries to minimize number of the
983 ira_merge_live_ranges (live_range_t r1
, live_range_t r2
)
985 live_range_t first
, last
;
991 for (first
= last
= NULL
; r1
!= NULL
&& r2
!= NULL
;)
993 if (r1
->start
< r2
->start
)
995 if (r1
->start
<= r2
->finish
+ 1)
997 /* Intersected ranges: merge r1 and r2 into r1. */
998 r1
->start
= r2
->start
;
999 if (r1
->finish
< r2
->finish
)
1000 r1
->finish
= r2
->finish
;
1001 live_range_t temp
= r2
;
1003 ira_finish_live_range (temp
);
1006 /* To try to merge with subsequent ranges in r1. */
1013 /* Add r1 to the result. */
1024 /* To try to merge with subsequent ranges in r2. */
1036 ira_assert (r1
->next
== NULL
);
1038 else if (r2
!= NULL
)
1044 ira_assert (r2
->next
== NULL
);
1048 ira_assert (last
->next
== NULL
);
1053 /* Return TRUE if live ranges R1 and R2 intersect. */
1055 ira_live_ranges_intersect_p (live_range_t r1
, live_range_t r2
)
1057 /* Remember the live ranges are always kept ordered. */
1058 while (r1
!= NULL
&& r2
!= NULL
)
1060 if (r1
->start
> r2
->finish
)
1062 else if (r2
->start
> r1
->finish
)
1070 /* Free allocno live range R. */
1072 ira_finish_live_range (live_range_t r
)
1074 live_range_pool
.remove (r
);
1077 /* Free list of allocno live ranges starting with R. */
1079 ira_finish_live_range_list (live_range_t r
)
1081 live_range_t next_r
;
1083 for (; r
!= NULL
; r
= next_r
)
1086 ira_finish_live_range (r
);
1090 /* Free updated register costs of allocno A. */
1092 ira_free_allocno_updated_costs (ira_allocno_t a
)
1094 enum reg_class aclass
;
1096 aclass
= ALLOCNO_CLASS (a
);
1097 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a
) != NULL
)
1098 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a
), aclass
);
1099 ALLOCNO_UPDATED_HARD_REG_COSTS (a
) = NULL
;
1100 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) != NULL
)
1101 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
),
1103 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
1106 /* Free and nullify all cost vectors allocated earlier for allocno
1109 ira_free_allocno_costs (ira_allocno_t a
)
1111 enum reg_class aclass
= ALLOCNO_CLASS (a
);
1113 ira_allocno_object_iterator oi
;
1115 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
1117 ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj
));
1118 ira_object_id_map
[OBJECT_CONFLICT_ID (obj
)] = NULL
;
1119 if (OBJECT_CONFLICT_ARRAY (obj
) != NULL
)
1120 ira_free (OBJECT_CONFLICT_ARRAY (obj
));
1121 object_pool
.remove (obj
);
1124 ira_allocnos
[ALLOCNO_NUM (a
)] = NULL
;
1125 if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
)
1126 ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a
), aclass
);
1127 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) != NULL
)
1128 ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
), aclass
);
1129 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a
) != NULL
)
1130 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a
), aclass
);
1131 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) != NULL
)
1132 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
),
1134 ALLOCNO_HARD_REG_COSTS (a
) = NULL
;
1135 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
1136 ALLOCNO_UPDATED_HARD_REG_COSTS (a
) = NULL
;
1137 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
1140 /* Free the memory allocated for allocno A. */
1142 finish_allocno (ira_allocno_t a
)
1144 ira_free_allocno_costs (a
);
1145 allocno_pool
.remove (a
);
1148 /* Free the memory allocated for all allocnos. */
1150 finish_allocnos (void)
1153 ira_allocno_iterator ai
;
1155 FOR_EACH_ALLOCNO (a
, ai
)
1157 ira_free (ira_regno_allocno_map
);
1158 ira_object_id_map_vec
.release ();
1159 allocno_vec
.release ();
1160 allocno_pool
.release ();
1161 object_pool
.release ();
1162 live_range_pool
.release ();
1167 /* Pools for allocno preferences. */
1168 static object_allocator
<ira_allocno_pref
> pref_pool ("prefs");
1170 /* Vec containing references to all created preferences. It is a
1171 container of array ira_prefs. */
1172 static vec
<ira_pref_t
> pref_vec
;
1174 /* The function initializes data concerning allocno prefs. */
1176 initiate_prefs (void)
1178 pref_vec
.create (get_max_uid ());
1183 /* Return pref for A and HARD_REGNO if any. */
1185 find_allocno_pref (ira_allocno_t a
, int hard_regno
)
1189 for (pref
= ALLOCNO_PREFS (a
); pref
!= NULL
; pref
= pref
->next_pref
)
1190 if (pref
->allocno
== a
&& pref
->hard_regno
== hard_regno
)
1195 /* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */
1197 ira_create_pref (ira_allocno_t a
, int hard_regno
, int freq
)
1201 pref
= pref_pool
.allocate ();
1202 pref
->num
= ira_prefs_num
;
1204 pref
->hard_regno
= hard_regno
;
1206 pref_vec
.safe_push (pref
);
1207 ira_prefs
= pref_vec
.address ();
1208 ira_prefs_num
= pref_vec
.length ();
1212 /* Attach a pref PREF to the corresponding allocno. */
1214 add_allocno_pref_to_list (ira_pref_t pref
)
1216 ira_allocno_t a
= pref
->allocno
;
1218 pref
->next_pref
= ALLOCNO_PREFS (a
);
1219 ALLOCNO_PREFS (a
) = pref
;
1222 /* Create (or update frequency if the pref already exists) the pref of
1223 allocnos A preferring HARD_REGNO with frequency FREQ. */
1225 ira_add_allocno_pref (ira_allocno_t a
, int hard_regno
, int freq
)
1231 if ((pref
= find_allocno_pref (a
, hard_regno
)) != NULL
)
1236 pref
= ira_create_pref (a
, hard_regno
, freq
);
1237 ira_assert (a
!= NULL
);
1238 add_allocno_pref_to_list (pref
);
1241 /* Print info about PREF into file F. */
1243 print_pref (FILE *f
, ira_pref_t pref
)
1245 fprintf (f
, " pref%d:a%d(r%d)<-hr%d@%d\n", pref
->num
,
1246 ALLOCNO_NUM (pref
->allocno
), ALLOCNO_REGNO (pref
->allocno
),
1247 pref
->hard_regno
, pref
->freq
);
1250 /* Print info about PREF into stderr. */
1252 ira_debug_pref (ira_pref_t pref
)
1254 print_pref (stderr
, pref
);
1257 /* Print info about all prefs into file F. */
1259 print_prefs (FILE *f
)
1262 ira_pref_iterator pi
;
1264 FOR_EACH_PREF (pref
, pi
)
1265 print_pref (f
, pref
);
1268 /* Print info about all prefs into stderr. */
1270 ira_debug_prefs (void)
1272 print_prefs (stderr
);
1275 /* Print info about prefs involving allocno A into file F. */
1277 print_allocno_prefs (FILE *f
, ira_allocno_t a
)
1281 fprintf (f
, " a%d(r%d):", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
1282 for (pref
= ALLOCNO_PREFS (a
); pref
!= NULL
; pref
= pref
->next_pref
)
1283 fprintf (f
, " pref%d:hr%d@%d", pref
->num
, pref
->hard_regno
, pref
->freq
);
1287 /* Print info about prefs involving allocno A into stderr. */
1289 ira_debug_allocno_prefs (ira_allocno_t a
)
1291 print_allocno_prefs (stderr
, a
);
1294 /* The function frees memory allocated for PREF. */
1296 finish_pref (ira_pref_t pref
)
1298 ira_prefs
[pref
->num
] = NULL
;
1299 pref_pool
.remove (pref
);
1302 /* Remove PREF from the list of allocno prefs and free memory for
1305 ira_remove_pref (ira_pref_t pref
)
1307 ira_pref_t cpref
, prev
;
1309 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
1310 fprintf (ira_dump_file
, " Removing pref%d:hr%d@%d\n",
1311 pref
->num
, pref
->hard_regno
, pref
->freq
);
1312 for (prev
= NULL
, cpref
= ALLOCNO_PREFS (pref
->allocno
);
1314 prev
= cpref
, cpref
= cpref
->next_pref
)
1317 ira_assert (cpref
!= NULL
);
1319 ALLOCNO_PREFS (pref
->allocno
) = pref
->next_pref
;
1321 prev
->next_pref
= pref
->next_pref
;
1325 /* Remove all prefs of allocno A. */
1327 ira_remove_allocno_prefs (ira_allocno_t a
)
1329 ira_pref_t pref
, next_pref
;
1331 for (pref
= ALLOCNO_PREFS (a
); pref
!= NULL
; pref
= next_pref
)
1333 next_pref
= pref
->next_pref
;
1336 ALLOCNO_PREFS (a
) = NULL
;
1339 /* Free memory allocated for all prefs. */
1344 ira_pref_iterator pi
;
1346 FOR_EACH_PREF (pref
, pi
)
1348 pref_vec
.release ();
1349 pref_pool
.release ();
1354 /* Pools for copies. */
1355 static object_allocator
<ira_allocno_copy
> copy_pool ("copies");
1357 /* Vec containing references to all created copies. It is a
1358 container of array ira_copies. */
1359 static vec
<ira_copy_t
> copy_vec
;
1361 /* The function initializes data concerning allocno copies. */
1363 initiate_copies (void)
1365 copy_vec
.create (get_max_uid ());
1370 /* Return copy connecting A1 and A2 and originated from INSN of
1371 LOOP_TREE_NODE if any. */
1373 find_allocno_copy (ira_allocno_t a1
, ira_allocno_t a2
, rtx_insn
*insn
,
1374 ira_loop_tree_node_t loop_tree_node
)
1376 ira_copy_t cp
, next_cp
;
1377 ira_allocno_t another_a
;
1379 for (cp
= ALLOCNO_COPIES (a1
); cp
!= NULL
; cp
= next_cp
)
1381 if (cp
->first
== a1
)
1383 next_cp
= cp
->next_first_allocno_copy
;
1384 another_a
= cp
->second
;
1386 else if (cp
->second
== a1
)
1388 next_cp
= cp
->next_second_allocno_copy
;
1389 another_a
= cp
->first
;
1393 if (another_a
== a2
&& cp
->insn
== insn
1394 && cp
->loop_tree_node
== loop_tree_node
)
1400 /* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
1401 SECOND, FREQ, CONSTRAINT_P, and INSN. */
1403 ira_create_copy (ira_allocno_t first
, ira_allocno_t second
, int freq
,
1404 bool constraint_p
, rtx_insn
*insn
,
1405 ira_loop_tree_node_t loop_tree_node
)
1409 cp
= copy_pool
.allocate ();
1410 cp
->num
= ira_copies_num
;
1412 cp
->second
= second
;
1414 cp
->constraint_p
= constraint_p
;
1416 cp
->loop_tree_node
= loop_tree_node
;
1417 copy_vec
.safe_push (cp
);
1418 ira_copies
= copy_vec
.address ();
1419 ira_copies_num
= copy_vec
.length ();
1423 /* Attach a copy CP to allocnos involved into the copy. */
1425 add_allocno_copy_to_list (ira_copy_t cp
)
1427 ira_allocno_t first
= cp
->first
, second
= cp
->second
;
1429 cp
->prev_first_allocno_copy
= NULL
;
1430 cp
->prev_second_allocno_copy
= NULL
;
1431 cp
->next_first_allocno_copy
= ALLOCNO_COPIES (first
);
1432 if (cp
->next_first_allocno_copy
!= NULL
)
1434 if (cp
->next_first_allocno_copy
->first
== first
)
1435 cp
->next_first_allocno_copy
->prev_first_allocno_copy
= cp
;
1437 cp
->next_first_allocno_copy
->prev_second_allocno_copy
= cp
;
1439 cp
->next_second_allocno_copy
= ALLOCNO_COPIES (second
);
1440 if (cp
->next_second_allocno_copy
!= NULL
)
1442 if (cp
->next_second_allocno_copy
->second
== second
)
1443 cp
->next_second_allocno_copy
->prev_second_allocno_copy
= cp
;
1445 cp
->next_second_allocno_copy
->prev_first_allocno_copy
= cp
;
1447 ALLOCNO_COPIES (first
) = cp
;
1448 ALLOCNO_COPIES (second
) = cp
;
1451 /* Make a copy CP a canonical copy where number of the
1452 first allocno is less than the second one. */
1454 swap_allocno_copy_ends_if_necessary (ira_copy_t cp
)
1456 if (ALLOCNO_NUM (cp
->first
) <= ALLOCNO_NUM (cp
->second
))
1459 std::swap (cp
->first
, cp
->second
);
1460 std::swap (cp
->prev_first_allocno_copy
, cp
->prev_second_allocno_copy
);
1461 std::swap (cp
->next_first_allocno_copy
, cp
->next_second_allocno_copy
);
1464 /* Create (or update frequency if the copy already exists) and return
1465 the copy of allocnos FIRST and SECOND with frequency FREQ
1466 corresponding to move insn INSN (if any) and originated from
1469 ira_add_allocno_copy (ira_allocno_t first
, ira_allocno_t second
, int freq
,
1470 bool constraint_p
, rtx_insn
*insn
,
1471 ira_loop_tree_node_t loop_tree_node
)
1475 if ((cp
= find_allocno_copy (first
, second
, insn
, loop_tree_node
)) != NULL
)
1480 cp
= ira_create_copy (first
, second
, freq
, constraint_p
, insn
,
1482 ira_assert (first
!= NULL
&& second
!= NULL
);
1483 add_allocno_copy_to_list (cp
);
1484 swap_allocno_copy_ends_if_necessary (cp
);
1488 /* Print info about copy CP into file F. */
1490 print_copy (FILE *f
, ira_copy_t cp
)
1492 fprintf (f
, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp
->num
,
1493 ALLOCNO_NUM (cp
->first
), ALLOCNO_REGNO (cp
->first
),
1494 ALLOCNO_NUM (cp
->second
), ALLOCNO_REGNO (cp
->second
), cp
->freq
,
1496 ? "move" : cp
->constraint_p
? "constraint" : "shuffle");
1500 debug (ira_allocno_copy
&ref
)
1502 print_copy (stderr
, &ref
);
1506 debug (ira_allocno_copy
*ptr
)
1511 fprintf (stderr
, "<nil>\n");
1514 /* Print info about copy CP into stderr. */
1516 ira_debug_copy (ira_copy_t cp
)
1518 print_copy (stderr
, cp
);
1521 /* Print info about all copies into file F. */
1523 print_copies (FILE *f
)
1526 ira_copy_iterator ci
;
1528 FOR_EACH_COPY (cp
, ci
)
1532 /* Print info about all copies into stderr. */
1534 ira_debug_copies (void)
1536 print_copies (stderr
);
1539 /* Print info about copies involving allocno A into file F. */
1541 print_allocno_copies (FILE *f
, ira_allocno_t a
)
1543 ira_allocno_t another_a
;
1544 ira_copy_t cp
, next_cp
;
1546 fprintf (f
, " a%d(r%d):", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
1547 for (cp
= ALLOCNO_COPIES (a
); cp
!= NULL
; cp
= next_cp
)
1551 next_cp
= cp
->next_first_allocno_copy
;
1552 another_a
= cp
->second
;
1554 else if (cp
->second
== a
)
1556 next_cp
= cp
->next_second_allocno_copy
;
1557 another_a
= cp
->first
;
1561 fprintf (f
, " cp%d:a%d(r%d)@%d", cp
->num
,
1562 ALLOCNO_NUM (another_a
), ALLOCNO_REGNO (another_a
), cp
->freq
);
1568 debug (ira_allocno
&ref
)
1570 print_allocno_copies (stderr
, &ref
);
1574 debug (ira_allocno
*ptr
)
1579 fprintf (stderr
, "<nil>\n");
1583 /* Print info about copies involving allocno A into stderr. */
1585 ira_debug_allocno_copies (ira_allocno_t a
)
1587 print_allocno_copies (stderr
, a
);
1590 /* The function frees memory allocated for copy CP. */
1592 finish_copy (ira_copy_t cp
)
1594 copy_pool
.remove (cp
);
1598 /* Free memory allocated for all copies. */
1600 finish_copies (void)
1603 ira_copy_iterator ci
;
1605 FOR_EACH_COPY (cp
, ci
)
1607 copy_vec
.release ();
1608 copy_pool
.release ();
1613 /* Pools for cost vectors. It is defined only for allocno classes. */
1614 static pool_allocator
*cost_vector_pool
[N_REG_CLASSES
];
1616 /* The function initiates work with hard register cost vectors. It
1617 creates allocation pool for each allocno class. */
1619 initiate_cost_vectors (void)
1622 enum reg_class aclass
;
1624 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1626 aclass
= ira_allocno_classes
[i
];
1627 cost_vector_pool
[aclass
] = new pool_allocator
1628 ("cost vectors", sizeof (int) * (ira_class_hard_regs_num
[aclass
]));
1632 /* Allocate and return a cost vector VEC for ACLASS. */
1634 ira_allocate_cost_vector (reg_class_t aclass
)
1636 return (int*) cost_vector_pool
[(int) aclass
]->allocate ();
1639 /* Free a cost vector VEC for ACLASS. */
1641 ira_free_cost_vector (int *vec
, reg_class_t aclass
)
1643 ira_assert (vec
!= NULL
);
1644 cost_vector_pool
[(int) aclass
]->remove (vec
);
1647 /* Finish work with hard register cost vectors. Release allocation
1648 pool for each allocno class. */
1650 finish_cost_vectors (void)
1653 enum reg_class aclass
;
1655 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1657 aclass
= ira_allocno_classes
[i
];
1658 delete cost_vector_pool
[aclass
];
1664 /* Compute a post-ordering of the reverse control flow of the loop body
1665 designated by the children nodes of LOOP_NODE, whose body nodes in
1666 pre-order are input as LOOP_PREORDER. Return a VEC with a post-order
1667 of the reverse loop body.
1669 For the post-order of the reverse CFG, we visit the basic blocks in
1670 LOOP_PREORDER array in the reverse order of where they appear.
1671 This is important: We do not just want to compute a post-order of
1672 the reverse CFG, we want to make a best-guess for a visiting order that
1673 minimizes the number of chain elements per allocno live range. If the
1674 blocks would be visited in a different order, we would still compute a
1675 correct post-ordering but it would be less likely that two nodes
1676 connected by an edge in the CFG are neighbors in the topsort. */
1678 static vec
<ira_loop_tree_node_t
>
1679 ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED
,
1680 vec
<ira_loop_tree_node_t
> loop_preorder
)
1682 vec
<ira_loop_tree_node_t
> topsort_nodes
= vNULL
;
1683 unsigned int n_loop_preorder
;
1685 n_loop_preorder
= loop_preorder
.length ();
1686 if (n_loop_preorder
!= 0)
1688 ira_loop_tree_node_t subloop_node
;
1690 auto_vec
<ira_loop_tree_node_t
> dfs_stack
;
1692 /* This is a bit of strange abuse of the BB_VISITED flag: We use
1693 the flag to mark blocks we still have to visit to add them to
1694 our post-order. Define an alias to avoid confusion. */
1695 #define BB_TO_VISIT BB_VISITED
1697 FOR_EACH_VEC_ELT (loop_preorder
, i
, subloop_node
)
1699 gcc_checking_assert (! (subloop_node
->bb
->flags
& BB_TO_VISIT
));
1700 subloop_node
->bb
->flags
|= BB_TO_VISIT
;
1703 topsort_nodes
.create (n_loop_preorder
);
1704 dfs_stack
.create (n_loop_preorder
);
1706 FOR_EACH_VEC_ELT_REVERSE (loop_preorder
, i
, subloop_node
)
1708 if (! (subloop_node
->bb
->flags
& BB_TO_VISIT
))
1711 subloop_node
->bb
->flags
&= ~BB_TO_VISIT
;
1712 dfs_stack
.quick_push (subloop_node
);
1713 while (! dfs_stack
.is_empty ())
1718 ira_loop_tree_node_t n
= dfs_stack
.last ();
1719 FOR_EACH_EDGE (e
, ei
, n
->bb
->preds
)
1721 ira_loop_tree_node_t pred_node
;
1722 basic_block pred_bb
= e
->src
;
1724 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1727 pred_node
= IRA_BB_NODE_BY_INDEX (pred_bb
->index
);
1729 && (pred_node
->bb
->flags
& BB_TO_VISIT
))
1731 pred_node
->bb
->flags
&= ~BB_TO_VISIT
;
1732 dfs_stack
.quick_push (pred_node
);
1735 if (n
== dfs_stack
.last ())
1738 topsort_nodes
.quick_push (n
);
1746 gcc_assert (topsort_nodes
.length () == n_loop_preorder
);
1747 return topsort_nodes
;
1750 /* The current loop tree node and its regno allocno map. */
1751 ira_loop_tree_node_t ira_curr_loop_tree_node
;
1752 ira_allocno_t
*ira_curr_regno_allocno_map
;
1754 /* This recursive function traverses loop tree with root LOOP_NODE
1755 calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
1756 correspondingly in preorder and postorder. The function sets up
1757 IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
1758 basic block nodes of LOOP_NODE is also processed (before its
1761 If BB_P is set and POSTORDER_FUNC is given, the basic blocks in
1762 the loop are passed in the *reverse* post-order of the *reverse*
1763 CFG. This is only used by ira_create_allocno_live_ranges, which
1764 wants to visit basic blocks in this order to minimize the number
1765 of elements per live range chain.
1766 Note that the loop tree nodes are still visited in the normal,
1767 forward post-order of the loop tree. */
1770 ira_traverse_loop_tree (bool bb_p
, ira_loop_tree_node_t loop_node
,
1771 void (*preorder_func
) (ira_loop_tree_node_t
),
1772 void (*postorder_func
) (ira_loop_tree_node_t
))
1774 ira_loop_tree_node_t subloop_node
;
1776 ira_assert (loop_node
->bb
== NULL
);
1777 ira_curr_loop_tree_node
= loop_node
;
1778 ira_curr_regno_allocno_map
= ira_curr_loop_tree_node
->regno_allocno_map
;
1780 if (preorder_func
!= NULL
)
1781 (*preorder_func
) (loop_node
);
1785 auto_vec
<ira_loop_tree_node_t
> loop_preorder
;
1788 /* Add all nodes to the set of nodes to visit. The IRA loop tree
1789 is set up such that nodes in the loop body appear in a pre-order
1790 of their place in the CFG. */
1791 for (subloop_node
= loop_node
->children
;
1792 subloop_node
!= NULL
;
1793 subloop_node
= subloop_node
->next
)
1794 if (subloop_node
->bb
!= NULL
)
1795 loop_preorder
.safe_push (subloop_node
);
1797 if (preorder_func
!= NULL
)
1798 FOR_EACH_VEC_ELT (loop_preorder
, i
, subloop_node
)
1799 (*preorder_func
) (subloop_node
);
1801 if (postorder_func
!= NULL
)
1803 vec
<ira_loop_tree_node_t
> loop_rev_postorder
=
1804 ira_loop_tree_body_rev_postorder (loop_node
, loop_preorder
);
1805 FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder
, i
, subloop_node
)
1806 (*postorder_func
) (subloop_node
);
1807 loop_rev_postorder
.release ();
1811 for (subloop_node
= loop_node
->subloops
;
1812 subloop_node
!= NULL
;
1813 subloop_node
= subloop_node
->subloop_next
)
1815 ira_assert (subloop_node
->bb
== NULL
);
1816 ira_traverse_loop_tree (bb_p
, subloop_node
,
1817 preorder_func
, postorder_func
);
1820 ira_curr_loop_tree_node
= loop_node
;
1821 ira_curr_regno_allocno_map
= ira_curr_loop_tree_node
->regno_allocno_map
;
1823 if (postorder_func
!= NULL
)
1824 (*postorder_func
) (loop_node
);
1829 /* The basic block currently being processed. */
1830 static basic_block curr_bb
;
1832 /* This recursive function creates allocnos corresponding to
1833 pseudo-registers containing in X. True OUTPUT_P means that X is
1834 an lvalue. PARENT corresponds to the parent expression of X. */
1836 create_insn_allocnos (rtx x
, rtx outer
, bool output_p
)
1840 enum rtx_code code
= GET_CODE (x
);
1846 if ((regno
= REGNO (x
)) >= FIRST_PSEUDO_REGISTER
)
1850 if ((a
= ira_curr_regno_allocno_map
[regno
]) == NULL
)
1852 a
= ira_create_allocno (regno
, false, ira_curr_loop_tree_node
);
1853 if (outer
!= NULL
&& GET_CODE (outer
) == SUBREG
)
1855 machine_mode wmode
= GET_MODE (outer
);
1856 if (partial_subreg_p (ALLOCNO_WMODE (a
), wmode
))
1857 ALLOCNO_WMODE (a
) = wmode
;
1861 ALLOCNO_NREFS (a
)++;
1862 ALLOCNO_FREQ (a
) += REG_FREQ_FROM_BB (curr_bb
);
1864 bitmap_set_bit (ira_curr_loop_tree_node
->modified_regnos
, regno
);
1868 else if (code
== SET
)
1870 create_insn_allocnos (SET_DEST (x
), NULL
, true);
1871 create_insn_allocnos (SET_SRC (x
), NULL
, false);
1874 else if (code
== CLOBBER
)
1876 create_insn_allocnos (XEXP (x
, 0), NULL
, true);
1879 else if (code
== MEM
)
1881 create_insn_allocnos (XEXP (x
, 0), NULL
, false);
1884 else if (code
== PRE_DEC
|| code
== POST_DEC
|| code
== PRE_INC
||
1885 code
== POST_INC
|| code
== POST_MODIFY
|| code
== PRE_MODIFY
)
1887 create_insn_allocnos (XEXP (x
, 0), NULL
, true);
1888 create_insn_allocnos (XEXP (x
, 0), NULL
, false);
1892 fmt
= GET_RTX_FORMAT (code
);
1893 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1896 create_insn_allocnos (XEXP (x
, i
), x
, output_p
);
1897 else if (fmt
[i
] == 'E')
1898 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1899 create_insn_allocnos (XVECEXP (x
, i
, j
), x
, output_p
);
1903 /* Create allocnos corresponding to pseudo-registers living in the
1904 basic block represented by the corresponding loop tree node
1907 create_bb_allocnos (ira_loop_tree_node_t bb_node
)
1914 curr_bb
= bb
= bb_node
->bb
;
1915 ira_assert (bb
!= NULL
);
1916 FOR_BB_INSNS_REVERSE (bb
, insn
)
1917 if (NONDEBUG_INSN_P (insn
))
1918 create_insn_allocnos (PATTERN (insn
), NULL
, false);
1919 /* It might be a allocno living through from one subloop to
1921 EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb
), FIRST_PSEUDO_REGISTER
, i
, bi
)
1922 if (ira_curr_regno_allocno_map
[i
] == NULL
)
1923 ira_create_allocno (i
, false, ira_curr_loop_tree_node
);
1926 /* Create allocnos corresponding to pseudo-registers living on edge E
1927 (a loop entry or exit). Also mark the allocnos as living on the
1930 create_loop_allocnos (edge e
)
1933 bitmap live_in_regs
, border_allocnos
;
1935 ira_loop_tree_node_t parent
;
1937 live_in_regs
= df_get_live_in (e
->dest
);
1938 border_allocnos
= ira_curr_loop_tree_node
->border_allocnos
;
1939 EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e
->src
),
1940 FIRST_PSEUDO_REGISTER
, i
, bi
)
1941 if (bitmap_bit_p (live_in_regs
, i
))
1943 if (ira_curr_regno_allocno_map
[i
] == NULL
)
1945 /* The order of creations is important for right
1946 ira_regno_allocno_map. */
1947 if ((parent
= ira_curr_loop_tree_node
->parent
) != NULL
1948 && parent
->regno_allocno_map
[i
] == NULL
)
1949 ira_create_allocno (i
, false, parent
);
1950 ira_create_allocno (i
, false, ira_curr_loop_tree_node
);
1952 bitmap_set_bit (border_allocnos
,
1953 ALLOCNO_NUM (ira_curr_regno_allocno_map
[i
]));
1957 /* Create allocnos corresponding to pseudo-registers living in loop
1958 represented by the corresponding loop tree node LOOP_NODE. This
1959 function is called by ira_traverse_loop_tree. */
1961 create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node
)
1963 if (loop_node
->bb
!= NULL
)
1964 create_bb_allocnos (loop_node
);
1965 else if (loop_node
!= ira_loop_tree_root
)
1972 ira_assert (current_loops
!= NULL
);
1973 FOR_EACH_EDGE (e
, ei
, loop_node
->loop
->header
->preds
)
1974 if (e
->src
!= loop_node
->loop
->latch
)
1975 create_loop_allocnos (e
);
1977 edges
= get_loop_exit_edges (loop_node
->loop
);
1978 FOR_EACH_VEC_ELT (edges
, i
, e
)
1979 create_loop_allocnos (e
);
1984 /* Propagate information about allocnos modified inside the loop given
1985 by its LOOP_TREE_NODE to its parent. */
1987 propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node
)
1989 if (loop_tree_node
== ira_loop_tree_root
)
1991 ira_assert (loop_tree_node
->bb
== NULL
);
1992 bitmap_ior_into (loop_tree_node
->parent
->modified_regnos
,
1993 loop_tree_node
->modified_regnos
);
1996 /* Propagate new info about allocno A (see comments about accumulated
1997 info in allocno definition) to the corresponding allocno on upper
1998 loop tree level. So allocnos on upper levels accumulate
1999 information about the corresponding allocnos in nested regions.
2000 The new info means allocno info finally calculated in this
2003 propagate_allocno_info (void)
2006 ira_allocno_t a
, parent_a
;
2007 ira_loop_tree_node_t parent
;
2008 enum reg_class aclass
;
2010 if (flag_ira_region
!= IRA_REGION_ALL
2011 && flag_ira_region
!= IRA_REGION_MIXED
)
2013 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
2014 for (a
= ira_regno_allocno_map
[i
];
2016 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
2017 if ((parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
) != NULL
2018 && (parent_a
= parent
->regno_allocno_map
[i
]) != NULL
2019 /* There are no caps yet at this point. So use
2020 border_allocnos to find allocnos for the propagation. */
2021 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a
)->border_allocnos
,
2024 if (! ALLOCNO_BAD_SPILL_P (a
))
2025 ALLOCNO_BAD_SPILL_P (parent_a
) = false;
2026 ALLOCNO_NREFS (parent_a
) += ALLOCNO_NREFS (a
);
2027 ALLOCNO_FREQ (parent_a
) += ALLOCNO_FREQ (a
);
2028 ALLOCNO_CALL_FREQ (parent_a
) += ALLOCNO_CALL_FREQ (a
);
2029 merge_hard_reg_conflicts (a
, parent_a
, true);
2030 ALLOCNO_CALLS_CROSSED_NUM (parent_a
)
2031 += ALLOCNO_CALLS_CROSSED_NUM (a
);
2032 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a
)
2033 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
2034 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a
),
2035 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a
));
2036 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a
)
2037 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
);
2038 aclass
= ALLOCNO_CLASS (a
);
2039 ira_assert (aclass
== ALLOCNO_CLASS (parent_a
));
2040 ira_allocate_and_accumulate_costs
2041 (&ALLOCNO_HARD_REG_COSTS (parent_a
), aclass
,
2042 ALLOCNO_HARD_REG_COSTS (a
));
2043 ira_allocate_and_accumulate_costs
2044 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a
),
2046 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
));
2047 ALLOCNO_CLASS_COST (parent_a
)
2048 += ALLOCNO_CLASS_COST (a
);
2049 ALLOCNO_MEMORY_COST (parent_a
) += ALLOCNO_MEMORY_COST (a
);
2053 /* Create allocnos corresponding to pseudo-registers in the current
2054 function. Traverse the loop tree for this. */
2056 create_allocnos (void)
2058 /* We need to process BB first to correctly link allocnos by member
2059 next_regno_allocno. */
2060 ira_traverse_loop_tree (true, ira_loop_tree_root
,
2061 create_loop_tree_node_allocnos
, NULL
);
2063 ira_traverse_loop_tree (false, ira_loop_tree_root
, NULL
,
2064 propagate_modified_regnos
);
2069 /* The page contains function to remove some regions from a separate
2070 register allocation. We remove regions whose separate allocation
2071 will hardly improve the result. As a result we speed up regional
2072 register allocation. */
2074 /* The function changes the object in range list given by R to OBJ. */
2076 change_object_in_range_list (live_range_t r
, ira_object_t obj
)
2078 for (; r
!= NULL
; r
= r
->next
)
2082 /* Move all live ranges associated with allocno FROM to allocno TO. */
2084 move_allocno_live_ranges (ira_allocno_t from
, ira_allocno_t to
)
2087 int n
= ALLOCNO_NUM_OBJECTS (from
);
2089 gcc_assert (n
== ALLOCNO_NUM_OBJECTS (to
));
2091 for (i
= 0; i
< n
; i
++)
2093 ira_object_t from_obj
= ALLOCNO_OBJECT (from
, i
);
2094 ira_object_t to_obj
= ALLOCNO_OBJECT (to
, i
);
2095 live_range_t lr
= OBJECT_LIVE_RANGES (from_obj
);
2097 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
2099 fprintf (ira_dump_file
,
2100 " Moving ranges of a%dr%d to a%dr%d: ",
2101 ALLOCNO_NUM (from
), ALLOCNO_REGNO (from
),
2102 ALLOCNO_NUM (to
), ALLOCNO_REGNO (to
));
2103 ira_print_live_range_list (ira_dump_file
, lr
);
2105 change_object_in_range_list (lr
, to_obj
);
2106 OBJECT_LIVE_RANGES (to_obj
)
2107 = ira_merge_live_ranges (lr
, OBJECT_LIVE_RANGES (to_obj
));
2108 OBJECT_LIVE_RANGES (from_obj
) = NULL
;
2113 copy_allocno_live_ranges (ira_allocno_t from
, ira_allocno_t to
)
2116 int n
= ALLOCNO_NUM_OBJECTS (from
);
2118 gcc_assert (n
== ALLOCNO_NUM_OBJECTS (to
));
2120 for (i
= 0; i
< n
; i
++)
2122 ira_object_t from_obj
= ALLOCNO_OBJECT (from
, i
);
2123 ira_object_t to_obj
= ALLOCNO_OBJECT (to
, i
);
2124 live_range_t lr
= OBJECT_LIVE_RANGES (from_obj
);
2126 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
2128 fprintf (ira_dump_file
, " Copying ranges of a%dr%d to a%dr%d: ",
2129 ALLOCNO_NUM (from
), ALLOCNO_REGNO (from
),
2130 ALLOCNO_NUM (to
), ALLOCNO_REGNO (to
));
2131 ira_print_live_range_list (ira_dump_file
, lr
);
2133 lr
= ira_copy_live_range_list (lr
);
2134 change_object_in_range_list (lr
, to_obj
);
2135 OBJECT_LIVE_RANGES (to_obj
)
2136 = ira_merge_live_ranges (lr
, OBJECT_LIVE_RANGES (to_obj
));
2140 /* Return TRUE if NODE represents a loop with low register
2143 low_pressure_loop_node_p (ira_loop_tree_node_t node
)
2146 enum reg_class pclass
;
2148 if (node
->bb
!= NULL
)
2151 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
2153 pclass
= ira_pressure_classes
[i
];
2154 if (node
->reg_pressure
[pclass
] > ira_class_hard_regs_num
[pclass
]
2155 && ira_class_hard_regs_num
[pclass
] > 1)
2162 /* Return TRUE if LOOP has a complex enter or exit edge. We don't
2163 form a region from such loop if the target use stack register
2164 because reg-stack.c can not deal with such edges. */
2166 loop_with_complex_edge_p (struct loop
*loop
)
2174 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
2175 if (e
->flags
& EDGE_EH
)
2177 edges
= get_loop_exit_edges (loop
);
2179 FOR_EACH_VEC_ELT (edges
, i
, e
)
2180 if (e
->flags
& EDGE_COMPLEX
)
2190 /* Sort loops for marking them for removal. We put already marked
2191 loops first, then less frequent loops next, and then outer loops
2194 loop_compare_func (const void *v1p
, const void *v2p
)
2197 ira_loop_tree_node_t l1
= *(const ira_loop_tree_node_t
*) v1p
;
2198 ira_loop_tree_node_t l2
= *(const ira_loop_tree_node_t
*) v2p
;
2200 ira_assert (l1
->parent
!= NULL
&& l2
->parent
!= NULL
);
2201 if (l1
->to_remove_p
&& ! l2
->to_remove_p
)
2203 if (! l1
->to_remove_p
&& l2
->to_remove_p
)
2205 if ((diff
= l1
->loop
->header
->count
.to_frequency (cfun
)
2206 - l2
->loop
->header
->count
.to_frequency (cfun
)) != 0)
2208 if ((diff
= (int) loop_depth (l1
->loop
) - (int) loop_depth (l2
->loop
)) != 0)
2210 /* Make sorting stable. */
2211 return l1
->loop_num
- l2
->loop_num
;
2214 /* Mark loops which should be removed from regional allocation. We
2215 remove a loop with low register pressure inside another loop with
2216 register pressure. In this case a separate allocation of the loop
2217 hardly helps (for irregular register file architecture it could
2218 help by choosing a better hard register in the loop but we prefer
2219 faster allocation even in this case). We also remove cheap loops
2220 if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
2221 exit or enter edges are removed too because the allocation might
2222 require put pseudo moves on the EH edges (we could still do this
2223 for pseudos with caller saved hard registers in some cases but it
2224 is impossible to say here or during top-down allocation pass what
2225 hard register the pseudos get finally). */
2227 mark_loops_for_removal (void)
2230 ira_loop_tree_node_t
*sorted_loops
;
2233 ira_assert (current_loops
!= NULL
);
2235 = (ira_loop_tree_node_t
*) ira_allocate (sizeof (ira_loop_tree_node_t
)
2236 * number_of_loops (cfun
));
2237 for (n
= i
= 0; vec_safe_iterate (get_loops (cfun
), i
, &loop
); i
++)
2238 if (ira_loop_nodes
[i
].regno_allocno_map
!= NULL
)
2240 if (ira_loop_nodes
[i
].parent
== NULL
)
2242 /* Don't remove the root. */
2243 ira_loop_nodes
[i
].to_remove_p
= false;
2246 sorted_loops
[n
++] = &ira_loop_nodes
[i
];
2247 ira_loop_nodes
[i
].to_remove_p
2248 = ((low_pressure_loop_node_p (ira_loop_nodes
[i
].parent
)
2249 && low_pressure_loop_node_p (&ira_loop_nodes
[i
]))
2251 || loop_with_complex_edge_p (ira_loop_nodes
[i
].loop
)
2255 qsort (sorted_loops
, n
, sizeof (ira_loop_tree_node_t
), loop_compare_func
);
2256 for (i
= 0; i
< n
- IRA_MAX_LOOPS_NUM
; i
++)
2258 sorted_loops
[i
]->to_remove_p
= true;
2259 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
2262 " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
2263 sorted_loops
[i
]->loop_num
, sorted_loops
[i
]->loop
->header
->index
,
2264 sorted_loops
[i
]->loop
->header
->count
.to_frequency (cfun
),
2265 loop_depth (sorted_loops
[i
]->loop
),
2266 low_pressure_loop_node_p (sorted_loops
[i
]->parent
)
2267 && low_pressure_loop_node_p (sorted_loops
[i
])
2268 ? "low pressure" : "cheap loop");
2270 ira_free (sorted_loops
);
2273 /* Mark all loops but root for removing. */
2275 mark_all_loops_for_removal (void)
2280 ira_assert (current_loops
!= NULL
);
2281 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun
), i
, loop
)
2282 if (ira_loop_nodes
[i
].regno_allocno_map
!= NULL
)
2284 if (ira_loop_nodes
[i
].parent
== NULL
)
2286 /* Don't remove the root. */
2287 ira_loop_nodes
[i
].to_remove_p
= false;
2290 ira_loop_nodes
[i
].to_remove_p
= true;
2291 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
2294 " Mark loop %d (header %d, freq %d, depth %d) for removal\n",
2295 ira_loop_nodes
[i
].loop_num
,
2296 ira_loop_nodes
[i
].loop
->header
->index
,
2297 ira_loop_nodes
[i
].loop
->header
->count
.to_frequency (cfun
),
2298 loop_depth (ira_loop_nodes
[i
].loop
));
2302 /* Definition of vector of loop tree nodes. */
2304 /* Vec containing references to all removed loop tree nodes. */
2305 static vec
<ira_loop_tree_node_t
> removed_loop_vec
;
2307 /* Vec containing references to all children of loop tree nodes. */
2308 static vec
<ira_loop_tree_node_t
> children_vec
;
2310 /* Remove subregions of NODE if their separate allocation will not
2311 improve the result. */
2313 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node
)
2317 ira_loop_tree_node_t subnode
;
2319 remove_p
= node
->to_remove_p
;
2321 children_vec
.safe_push (node
);
2322 start
= children_vec
.length ();
2323 for (subnode
= node
->children
; subnode
!= NULL
; subnode
= subnode
->next
)
2324 if (subnode
->bb
== NULL
)
2325 remove_uneccesary_loop_nodes_from_loop_tree (subnode
);
2327 children_vec
.safe_push (subnode
);
2328 node
->children
= node
->subloops
= NULL
;
2331 removed_loop_vec
.safe_push (node
);
2334 while (children_vec
.length () > start
)
2336 subnode
= children_vec
.pop ();
2337 subnode
->parent
= node
;
2338 subnode
->next
= node
->children
;
2339 node
->children
= subnode
;
2340 if (subnode
->bb
== NULL
)
2342 subnode
->subloop_next
= node
->subloops
;
2343 node
->subloops
= subnode
;
2348 /* Return TRUE if NODE is inside PARENT. */
2350 loop_is_inside_p (ira_loop_tree_node_t node
, ira_loop_tree_node_t parent
)
2352 for (node
= node
->parent
; node
!= NULL
; node
= node
->parent
)
2358 /* Sort allocnos according to their order in regno allocno list. */
2360 regno_allocno_order_compare_func (const void *v1p
, const void *v2p
)
2362 ira_allocno_t a1
= *(const ira_allocno_t
*) v1p
;
2363 ira_allocno_t a2
= *(const ira_allocno_t
*) v2p
;
2364 ira_loop_tree_node_t n1
= ALLOCNO_LOOP_TREE_NODE (a1
);
2365 ira_loop_tree_node_t n2
= ALLOCNO_LOOP_TREE_NODE (a2
);
2367 if (loop_is_inside_p (n1
, n2
))
2369 else if (loop_is_inside_p (n2
, n1
))
2371 /* If allocnos are equally good, sort by allocno numbers, so that
2372 the results of qsort leave nothing to chance. We put allocnos
2373 with higher number first in the list because it is the original
2374 order for allocnos from loops on the same levels. */
2375 return ALLOCNO_NUM (a2
) - ALLOCNO_NUM (a1
);
2378 /* This array is used to sort allocnos to restore allocno order in
2379 the regno allocno list. */
2380 static ira_allocno_t
*regno_allocnos
;
2382 /* Restore allocno order for REGNO in the regno allocno list. */
2384 ira_rebuild_regno_allocno_list (int regno
)
2389 for (n
= 0, a
= ira_regno_allocno_map
[regno
];
2391 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
2392 regno_allocnos
[n
++] = a
;
2394 qsort (regno_allocnos
, n
, sizeof (ira_allocno_t
),
2395 regno_allocno_order_compare_func
);
2396 for (i
= 1; i
< n
; i
++)
2397 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos
[i
- 1]) = regno_allocnos
[i
];
2398 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos
[n
- 1]) = NULL
;
2399 ira_regno_allocno_map
[regno
] = regno_allocnos
[0];
2400 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
2401 fprintf (ira_dump_file
, " Rebuilding regno allocno list for %d\n", regno
);
2404 /* Propagate info from allocno FROM_A to allocno A. */
2406 propagate_some_info_from_allocno (ira_allocno_t a
, ira_allocno_t from_a
)
2408 enum reg_class aclass
;
2410 merge_hard_reg_conflicts (from_a
, a
, false);
2411 ALLOCNO_NREFS (a
) += ALLOCNO_NREFS (from_a
);
2412 ALLOCNO_FREQ (a
) += ALLOCNO_FREQ (from_a
);
2413 ALLOCNO_CALL_FREQ (a
) += ALLOCNO_CALL_FREQ (from_a
);
2414 ALLOCNO_CALLS_CROSSED_NUM (a
) += ALLOCNO_CALLS_CROSSED_NUM (from_a
);
2415 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
)
2416 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a
);
2417 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a
),
2418 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (from_a
));
2420 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
)
2421 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a
);
2422 if (! ALLOCNO_BAD_SPILL_P (from_a
))
2423 ALLOCNO_BAD_SPILL_P (a
) = false;
2424 aclass
= ALLOCNO_CLASS (from_a
);
2425 ira_assert (aclass
== ALLOCNO_CLASS (a
));
2426 ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a
), aclass
,
2427 ALLOCNO_HARD_REG_COSTS (from_a
));
2428 ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a
),
2430 ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a
));
2431 ALLOCNO_CLASS_COST (a
) += ALLOCNO_CLASS_COST (from_a
);
2432 ALLOCNO_MEMORY_COST (a
) += ALLOCNO_MEMORY_COST (from_a
);
2435 /* Remove allocnos from loops removed from the allocation
2438 remove_unnecessary_allocnos (void)
2441 bool merged_p
, rebuild_p
;
2442 ira_allocno_t a
, prev_a
, next_a
, parent_a
;
2443 ira_loop_tree_node_t a_node
, parent
;
2446 regno_allocnos
= NULL
;
2447 for (regno
= max_reg_num () - 1; regno
>= FIRST_PSEUDO_REGISTER
; regno
--)
2450 for (prev_a
= NULL
, a
= ira_regno_allocno_map
[regno
];
2454 next_a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
);
2455 a_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2456 if (! a_node
->to_remove_p
)
2460 for (parent
= a_node
->parent
;
2461 (parent_a
= parent
->regno_allocno_map
[regno
]) == NULL
2462 && parent
->to_remove_p
;
2463 parent
= parent
->parent
)
2465 if (parent_a
== NULL
)
2467 /* There are no allocnos with the same regno in
2468 upper region -- just move the allocno to the
2471 ALLOCNO_LOOP_TREE_NODE (a
) = parent
;
2472 parent
->regno_allocno_map
[regno
] = a
;
2473 bitmap_set_bit (parent
->all_allocnos
, ALLOCNO_NUM (a
));
2478 /* Remove the allocno and update info of allocno in
2479 the upper region. */
2481 ira_regno_allocno_map
[regno
] = next_a
;
2483 ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a
) = next_a
;
2484 move_allocno_live_ranges (a
, parent_a
);
2486 propagate_some_info_from_allocno (parent_a
, a
);
2487 /* Remove it from the corresponding regno allocno
2488 map to avoid info propagation of subsequent
2489 allocno into this already removed allocno. */
2490 a_node
->regno_allocno_map
[regno
] = NULL
;
2491 ira_remove_allocno_prefs (a
);
2497 /* We need to restore the order in regno allocno list. */
2499 if (regno_allocnos
== NULL
)
2501 = (ira_allocno_t
*) ira_allocate (sizeof (ira_allocno_t
)
2502 * ira_allocnos_num
);
2503 ira_rebuild_regno_allocno_list (regno
);
2507 ira_rebuild_start_finish_chains ();
2508 if (regno_allocnos
!= NULL
)
2509 ira_free (regno_allocnos
);
2512 /* Remove allocnos from all loops but the root. */
2514 remove_low_level_allocnos (void)
2517 bool merged_p
, propagate_p
;
2518 ira_allocno_t a
, top_a
;
2519 ira_loop_tree_node_t a_node
, parent
;
2520 ira_allocno_iterator ai
;
2523 FOR_EACH_ALLOCNO (a
, ai
)
2525 a_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2526 if (a_node
== ira_loop_tree_root
|| ALLOCNO_CAP_MEMBER (a
) != NULL
)
2528 regno
= ALLOCNO_REGNO (a
);
2529 if ((top_a
= ira_loop_tree_root
->regno_allocno_map
[regno
]) == NULL
)
2531 ALLOCNO_LOOP_TREE_NODE (a
) = ira_loop_tree_root
;
2532 ira_loop_tree_root
->regno_allocno_map
[regno
] = a
;
2535 propagate_p
= a_node
->parent
->regno_allocno_map
[regno
] == NULL
;
2536 /* Remove the allocno and update info of allocno in the upper
2538 move_allocno_live_ranges (a
, top_a
);
2541 propagate_some_info_from_allocno (top_a
, a
);
2543 FOR_EACH_ALLOCNO (a
, ai
)
2545 a_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2546 if (a_node
== ira_loop_tree_root
)
2548 parent
= a_node
->parent
;
2549 regno
= ALLOCNO_REGNO (a
);
2550 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2551 ira_assert (ALLOCNO_CAP (a
) != NULL
);
2552 else if (ALLOCNO_CAP (a
) == NULL
)
2553 ira_assert (parent
->regno_allocno_map
[regno
] != NULL
);
2555 FOR_EACH_ALLOCNO (a
, ai
)
2557 regno
= ALLOCNO_REGNO (a
);
2558 if (ira_loop_tree_root
->regno_allocno_map
[regno
] == a
)
2561 ira_allocno_object_iterator oi
;
2563 ira_regno_allocno_map
[regno
] = a
;
2564 ALLOCNO_NEXT_REGNO_ALLOCNO (a
) = NULL
;
2565 ALLOCNO_CAP_MEMBER (a
) = NULL
;
2566 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2567 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
2568 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
));
2570 if (ALLOCNO_TOTAL_NO_STACK_REG_P (a
))
2571 ALLOCNO_NO_STACK_REG_P (a
) = true;
2576 ira_remove_allocno_prefs (a
);
2581 ira_rebuild_start_finish_chains ();
2584 /* Remove loops from consideration. We remove all loops except for
2585 root if ALL_P or loops for which a separate allocation will not
2586 improve the result. We have to do this after allocno creation and
2587 their costs and allocno class evaluation because only after that
2588 the register pressure can be known and is calculated. */
2590 remove_unnecessary_regions (bool all_p
)
2592 if (current_loops
== NULL
)
2595 mark_all_loops_for_removal ();
2597 mark_loops_for_removal ();
2598 children_vec
.create (last_basic_block_for_fn (cfun
)
2599 + number_of_loops (cfun
));
2600 removed_loop_vec
.create (last_basic_block_for_fn (cfun
)
2601 + number_of_loops (cfun
));
2602 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root
);
2603 children_vec
.release ();
2605 remove_low_level_allocnos ();
2607 remove_unnecessary_allocnos ();
2608 while (removed_loop_vec
.length () > 0)
2609 finish_loop_tree_node (removed_loop_vec
.pop ());
2610 removed_loop_vec
.release ();
2615 /* At this point true value of allocno attribute bad_spill_p means
2616 that there is an insn where allocno occurs and where the allocno
2617 can not be used as memory. The function updates the attribute, now
2618 it can be true only for allocnos which can not be used as memory in
2619 an insn and in whose live ranges there is other allocno deaths.
2620 Spilling allocnos with true value will not improve the code because
2621 it will not make other allocnos colorable and additional reloads
2622 for the corresponding pseudo will be generated in reload pass for
2623 each insn it occurs.
2625 This is a trick mentioned in one classic article of Chaitin etc
2626 which is frequently omitted in other implementations of RA based on
2629 update_bad_spill_attribute (void)
2633 ira_allocno_iterator ai
;
2634 ira_allocno_object_iterator aoi
;
2637 enum reg_class aclass
;
2638 bitmap_head dead_points
[N_REG_CLASSES
];
2640 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
2642 aclass
= ira_allocno_classes
[i
];
2643 bitmap_initialize (&dead_points
[aclass
], ®_obstack
);
2645 FOR_EACH_ALLOCNO (a
, ai
)
2647 aclass
= ALLOCNO_CLASS (a
);
2648 if (aclass
== NO_REGS
)
2650 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, aoi
)
2651 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
2652 bitmap_set_bit (&dead_points
[aclass
], r
->finish
);
2654 FOR_EACH_ALLOCNO (a
, ai
)
2656 aclass
= ALLOCNO_CLASS (a
);
2657 if (aclass
== NO_REGS
)
2659 if (! ALLOCNO_BAD_SPILL_P (a
))
2661 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, aoi
)
2663 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
2665 for (i
= r
->start
+ 1; i
< r
->finish
; i
++)
2666 if (bitmap_bit_p (&dead_points
[aclass
], i
))
2673 ALLOCNO_BAD_SPILL_P (a
) = false;
2678 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
2680 aclass
= ira_allocno_classes
[i
];
2681 bitmap_clear (&dead_points
[aclass
]);
2687 /* Set up minimal and maximal live range points for allocnos. */
2689 setup_min_max_allocno_live_range_point (void)
2692 ira_allocno_t a
, parent_a
, cap
;
2693 ira_allocno_iterator ai
;
2694 #ifdef ENABLE_IRA_CHECKING
2695 ira_object_iterator oi
;
2699 ira_loop_tree_node_t parent
;
2701 FOR_EACH_ALLOCNO (a
, ai
)
2703 int n
= ALLOCNO_NUM_OBJECTS (a
);
2705 for (i
= 0; i
< n
; i
++)
2707 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2708 r
= OBJECT_LIVE_RANGES (obj
);
2711 OBJECT_MAX (obj
) = r
->finish
;
2712 for (; r
->next
!= NULL
; r
= r
->next
)
2714 OBJECT_MIN (obj
) = r
->start
;
2717 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
2718 for (a
= ira_regno_allocno_map
[i
];
2720 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
2723 int n
= ALLOCNO_NUM_OBJECTS (a
);
2725 for (j
= 0; j
< n
; j
++)
2727 ira_object_t obj
= ALLOCNO_OBJECT (a
, j
);
2728 ira_object_t parent_obj
;
2730 if (OBJECT_MAX (obj
) < 0)
2732 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
2733 /* Accumulation of range info. */
2734 if (ALLOCNO_CAP (a
) != NULL
)
2736 for (cap
= ALLOCNO_CAP (a
); cap
!= NULL
; cap
= ALLOCNO_CAP (cap
))
2738 ira_object_t cap_obj
= ALLOCNO_OBJECT (cap
, j
);
2739 if (OBJECT_MAX (cap_obj
) < OBJECT_MAX (obj
))
2740 OBJECT_MAX (cap_obj
) = OBJECT_MAX (obj
);
2741 if (OBJECT_MIN (cap_obj
) > OBJECT_MIN (obj
))
2742 OBJECT_MIN (cap_obj
) = OBJECT_MIN (obj
);
2746 if ((parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
) == NULL
)
2748 parent_a
= parent
->regno_allocno_map
[i
];
2749 parent_obj
= ALLOCNO_OBJECT (parent_a
, j
);
2750 if (OBJECT_MAX (parent_obj
) < OBJECT_MAX (obj
))
2751 OBJECT_MAX (parent_obj
) = OBJECT_MAX (obj
);
2752 if (OBJECT_MIN (parent_obj
) > OBJECT_MIN (obj
))
2753 OBJECT_MIN (parent_obj
) = OBJECT_MIN (obj
);
2756 #ifdef ENABLE_IRA_CHECKING
2757 FOR_EACH_OBJECT (obj
, oi
)
2759 if ((OBJECT_MIN (obj
) >= 0 && OBJECT_MIN (obj
) <= ira_max_point
)
2760 && (OBJECT_MAX (obj
) >= 0 && OBJECT_MAX (obj
) <= ira_max_point
))
2767 /* Sort allocnos according to their live ranges. Allocnos with
2768 smaller allocno class are put first unless we use priority
2769 coloring. Allocnos with the same class are ordered according
2770 their start (min). Allocnos with the same start are ordered
2771 according their finish (max). */
2773 object_range_compare_func (const void *v1p
, const void *v2p
)
2776 ira_object_t obj1
= *(const ira_object_t
*) v1p
;
2777 ira_object_t obj2
= *(const ira_object_t
*) v2p
;
2778 ira_allocno_t a1
= OBJECT_ALLOCNO (obj1
);
2779 ira_allocno_t a2
= OBJECT_ALLOCNO (obj2
);
2781 if ((diff
= OBJECT_MIN (obj1
) - OBJECT_MIN (obj2
)) != 0)
2783 if ((diff
= OBJECT_MAX (obj1
) - OBJECT_MAX (obj2
)) != 0)
2785 return ALLOCNO_NUM (a1
) - ALLOCNO_NUM (a2
);
2788 /* Sort ira_object_id_map and set up conflict id of allocnos. */
2790 sort_conflict_id_map (void)
2794 ira_allocno_iterator ai
;
2797 FOR_EACH_ALLOCNO (a
, ai
)
2799 ira_allocno_object_iterator oi
;
2802 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2803 ira_object_id_map
[num
++] = obj
;
2806 qsort (ira_object_id_map
, num
, sizeof (ira_object_t
),
2807 object_range_compare_func
);
2808 for (i
= 0; i
< num
; i
++)
2810 ira_object_t obj
= ira_object_id_map
[i
];
2812 gcc_assert (obj
!= NULL
);
2813 OBJECT_CONFLICT_ID (obj
) = i
;
2815 for (i
= num
; i
< ira_objects_num
; i
++)
2816 ira_object_id_map
[i
] = NULL
;
2819 /* Set up minimal and maximal conflict ids of allocnos with which
2820 given allocno can conflict. */
2822 setup_min_max_conflict_allocno_ids (void)
2825 int i
, j
, min
, max
, start
, finish
, first_not_finished
, filled_area_start
;
2826 int *live_range_min
, *last_lived
;
2827 int word0_min
, word0_max
;
2829 ira_allocno_iterator ai
;
2831 live_range_min
= (int *) ira_allocate (sizeof (int) * ira_objects_num
);
2833 first_not_finished
= -1;
2834 for (i
= 0; i
< ira_objects_num
; i
++)
2836 ira_object_t obj
= ira_object_id_map
[i
];
2841 a
= OBJECT_ALLOCNO (obj
);
2845 aclass
= ALLOCNO_CLASS (a
);
2847 first_not_finished
= i
;
2851 start
= OBJECT_MIN (obj
);
2852 /* If we skip an allocno, the allocno with smaller ids will
2853 be also skipped because of the secondary sorting the
2854 range finishes (see function
2855 object_range_compare_func). */
2856 while (first_not_finished
< i
2857 && start
> OBJECT_MAX (ira_object_id_map
2858 [first_not_finished
]))
2859 first_not_finished
++;
2860 min
= first_not_finished
;
2863 /* We could increase min further in this case but it is good
2866 live_range_min
[i
] = OBJECT_MIN (obj
);
2867 OBJECT_MIN (obj
) = min
;
2869 last_lived
= (int *) ira_allocate (sizeof (int) * ira_max_point
);
2871 filled_area_start
= -1;
2872 for (i
= ira_objects_num
- 1; i
>= 0; i
--)
2874 ira_object_t obj
= ira_object_id_map
[i
];
2879 a
= OBJECT_ALLOCNO (obj
);
2882 aclass
= ALLOCNO_CLASS (a
);
2883 for (j
= 0; j
< ira_max_point
; j
++)
2885 filled_area_start
= ira_max_point
;
2887 min
= live_range_min
[i
];
2888 finish
= OBJECT_MAX (obj
);
2889 max
= last_lived
[finish
];
2891 /* We could decrease max further in this case but it is good
2893 max
= OBJECT_CONFLICT_ID (obj
) - 1;
2894 OBJECT_MAX (obj
) = max
;
2895 /* In filling, we can go further A range finish to recognize
2896 intersection quickly because if the finish of subsequently
2897 processed allocno (it has smaller conflict id) range is
2898 further A range finish than they are definitely intersected
2899 (the reason for this is the allocnos with bigger conflict id
2900 have their range starts not smaller than allocnos with
2902 for (j
= min
; j
< filled_area_start
; j
++)
2904 filled_area_start
= min
;
2906 ira_free (last_lived
);
2907 ira_free (live_range_min
);
2909 /* For allocnos with more than one object, we may later record extra conflicts in
2910 subobject 0 that we cannot really know about here.
2911 For now, simply widen the min/max range of these subobjects. */
2913 word0_min
= INT_MAX
;
2914 word0_max
= INT_MIN
;
2916 FOR_EACH_ALLOCNO (a
, ai
)
2918 int n
= ALLOCNO_NUM_OBJECTS (a
);
2923 obj0
= ALLOCNO_OBJECT (a
, 0);
2924 if (OBJECT_CONFLICT_ID (obj0
) < word0_min
)
2925 word0_min
= OBJECT_CONFLICT_ID (obj0
);
2926 if (OBJECT_CONFLICT_ID (obj0
) > word0_max
)
2927 word0_max
= OBJECT_CONFLICT_ID (obj0
);
2929 FOR_EACH_ALLOCNO (a
, ai
)
2931 int n
= ALLOCNO_NUM_OBJECTS (a
);
2936 obj0
= ALLOCNO_OBJECT (a
, 0);
2937 if (OBJECT_MIN (obj0
) > word0_min
)
2938 OBJECT_MIN (obj0
) = word0_min
;
2939 if (OBJECT_MAX (obj0
) < word0_max
)
2940 OBJECT_MAX (obj0
) = word0_max
;
2950 ira_allocno_iterator ai
;
2951 ira_loop_tree_node_t loop_tree_node
;
2953 FOR_EACH_ALLOCNO (a
, ai
)
2955 if (ALLOCNO_LOOP_TREE_NODE (a
) == ira_loop_tree_root
)
2957 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2958 create_cap_allocno (a
);
2959 else if (ALLOCNO_CAP (a
) == NULL
)
2961 loop_tree_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2962 if (!bitmap_bit_p (loop_tree_node
->border_allocnos
, ALLOCNO_NUM (a
)))
2963 create_cap_allocno (a
);
2970 /* The page contains code transforming more one region internal
2971 representation (IR) to one region IR which is necessary for reload.
2972 This transformation is called IR flattening. We might just rebuild
2973 the IR for one region but we don't do it because it takes a lot of
2976 /* Map: regno -> allocnos which will finally represent the regno for
2977 IR with one region. */
2978 static ira_allocno_t
*regno_top_level_allocno_map
;
2980 /* Find the allocno that corresponds to A at a level one higher up in the
2981 loop tree. Returns NULL if A is a cap, or if it has no parent. */
2983 ira_parent_allocno (ira_allocno_t a
)
2985 ira_loop_tree_node_t parent
;
2987 if (ALLOCNO_CAP (a
) != NULL
)
2990 parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
;
2994 return parent
->regno_allocno_map
[ALLOCNO_REGNO (a
)];
2997 /* Find the allocno that corresponds to A at a level one higher up in the
2998 loop tree. If ALLOCNO_CAP is set for A, return that. */
3000 ira_parent_or_cap_allocno (ira_allocno_t a
)
3002 if (ALLOCNO_CAP (a
) != NULL
)
3003 return ALLOCNO_CAP (a
);
3005 return ira_parent_allocno (a
);
3008 /* Process all allocnos originated from pseudo REGNO and copy live
3009 ranges, hard reg conflicts, and allocno stack reg attributes from
3010 low level allocnos to final allocnos which are destinations of
3011 removed stores at a loop exit. Return true if we copied live
3014 copy_info_to_removed_store_destinations (int regno
)
3017 ira_allocno_t parent_a
= NULL
;
3018 ira_loop_tree_node_t parent
;
3022 for (a
= ira_regno_allocno_map
[regno
];
3024 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
3026 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))])
3027 /* This allocno will be removed. */
3030 /* Caps will be removed. */
3031 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
3032 for (parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
;
3034 parent
= parent
->parent
)
3035 if ((parent_a
= parent
->regno_allocno_map
[regno
]) == NULL
3037 == regno_top_level_allocno_map
[REGNO
3038 (allocno_emit_reg (parent_a
))]
3039 && ALLOCNO_EMIT_DATA (parent_a
)->mem_optimized_dest_p
))
3041 if (parent
== NULL
|| parent_a
== NULL
)
3044 copy_allocno_live_ranges (a
, parent_a
);
3045 merge_hard_reg_conflicts (a
, parent_a
, true);
3047 ALLOCNO_CALL_FREQ (parent_a
) += ALLOCNO_CALL_FREQ (a
);
3048 ALLOCNO_CALLS_CROSSED_NUM (parent_a
)
3049 += ALLOCNO_CALLS_CROSSED_NUM (a
);
3050 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a
)
3051 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
3052 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a
),
3053 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a
));
3054 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a
)
3055 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
);
3061 /* Flatten the IR. In other words, this function transforms IR as if
3062 it were built with one region (without loops). We could make it
3063 much simpler by rebuilding IR with one region, but unfortunately it
3064 takes a lot of time. MAX_REGNO_BEFORE_EMIT and
3065 IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
3066 IRA_MAX_POINT before emitting insns on the loop borders. */
3068 ira_flattening (int max_regno_before_emit
, int ira_max_point_before_emit
)
3073 bool new_pseudos_p
, merged_p
, mem_dest_p
;
3075 enum reg_class aclass
;
3076 ira_allocno_t a
, parent_a
, first
, second
, node_first
, node_second
;
3078 ira_loop_tree_node_t node
;
3080 ira_allocno_iterator ai
;
3081 ira_copy_iterator ci
;
3083 regno_top_level_allocno_map
3084 = (ira_allocno_t
*) ira_allocate (max_reg_num ()
3085 * sizeof (ira_allocno_t
));
3086 memset (regno_top_level_allocno_map
, 0,
3087 max_reg_num () * sizeof (ira_allocno_t
));
3088 new_pseudos_p
= merged_p
= false;
3089 FOR_EACH_ALLOCNO (a
, ai
)
3091 ira_allocno_object_iterator oi
;
3094 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
3095 /* Caps are not in the regno allocno maps and they are never
3096 will be transformed into allocnos existing after IR
3099 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
3100 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
3101 OBJECT_CONFLICT_HARD_REGS (obj
));
3103 ALLOCNO_TOTAL_NO_STACK_REG_P (a
) = ALLOCNO_NO_STACK_REG_P (a
);
3106 /* Fix final allocno attributes. */
3107 for (i
= max_regno_before_emit
- 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
3110 for (a
= ira_regno_allocno_map
[i
];
3112 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
3114 ira_emit_data_t parent_data
, data
= ALLOCNO_EMIT_DATA (a
);
3116 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
3117 if (data
->somewhere_renamed_p
)
3118 new_pseudos_p
= true;
3119 parent_a
= ira_parent_allocno (a
);
3120 if (parent_a
== NULL
)
3122 ALLOCNO_COPIES (a
) = NULL
;
3123 regno_top_level_allocno_map
[REGNO (data
->reg
)] = a
;
3126 ira_assert (ALLOCNO_CAP_MEMBER (parent_a
) == NULL
);
3128 if (data
->mem_optimized_dest
!= NULL
)
3130 parent_data
= ALLOCNO_EMIT_DATA (parent_a
);
3131 if (REGNO (data
->reg
) == REGNO (parent_data
->reg
))
3133 merge_hard_reg_conflicts (a
, parent_a
, true);
3134 move_allocno_live_ranges (a
, parent_a
);
3136 parent_data
->mem_optimized_dest_p
3137 = (parent_data
->mem_optimized_dest_p
3138 || data
->mem_optimized_dest_p
);
3141 new_pseudos_p
= true;
3144 ALLOCNO_NREFS (parent_a
) -= ALLOCNO_NREFS (a
);
3145 ALLOCNO_FREQ (parent_a
) -= ALLOCNO_FREQ (a
);
3146 ALLOCNO_CALL_FREQ (parent_a
) -= ALLOCNO_CALL_FREQ (a
);
3147 ALLOCNO_CALLS_CROSSED_NUM (parent_a
)
3148 -= ALLOCNO_CALLS_CROSSED_NUM (a
);
3149 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a
)
3150 -= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
3151 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a
)
3152 -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
);
3153 ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a
) >= 0
3154 && ALLOCNO_NREFS (parent_a
) >= 0
3155 && ALLOCNO_FREQ (parent_a
) >= 0);
3156 aclass
= ALLOCNO_CLASS (parent_a
);
3157 hard_regs_num
= ira_class_hard_regs_num
[aclass
];
3158 if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
3159 && ALLOCNO_HARD_REG_COSTS (parent_a
) != NULL
)
3160 for (j
= 0; j
< hard_regs_num
; j
++)
3161 ALLOCNO_HARD_REG_COSTS (parent_a
)[j
]
3162 -= ALLOCNO_HARD_REG_COSTS (a
)[j
];
3163 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) != NULL
3164 && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a
) != NULL
)
3165 for (j
= 0; j
< hard_regs_num
; j
++)
3166 ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a
)[j
]
3167 -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a
)[j
];
3168 ALLOCNO_CLASS_COST (parent_a
)
3169 -= ALLOCNO_CLASS_COST (a
);
3170 ALLOCNO_MEMORY_COST (parent_a
) -= ALLOCNO_MEMORY_COST (a
);
3171 parent_a
= ira_parent_allocno (parent_a
);
3172 if (parent_a
== NULL
)
3175 ALLOCNO_COPIES (a
) = NULL
;
3176 regno_top_level_allocno_map
[REGNO (data
->reg
)] = a
;
3178 if (mem_dest_p
&& copy_info_to_removed_store_destinations (i
))
3181 ira_assert (new_pseudos_p
|| ira_max_point_before_emit
== ira_max_point
);
3182 if (merged_p
|| ira_max_point_before_emit
!= ira_max_point
)
3183 ira_rebuild_start_finish_chains ();
3186 sparseset objects_live
;
3188 /* Rebuild conflicts. */
3189 FOR_EACH_ALLOCNO (a
, ai
)
3191 ira_allocno_object_iterator oi
;
3194 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))]
3195 || ALLOCNO_CAP_MEMBER (a
) != NULL
)
3197 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
3199 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
3200 ira_assert (r
->object
== obj
);
3201 clear_conflicts (obj
);
3204 objects_live
= sparseset_alloc (ira_objects_num
);
3205 for (i
= 0; i
< ira_max_point
; i
++)
3207 for (r
= ira_start_point_ranges
[i
]; r
!= NULL
; r
= r
->start_next
)
3209 ira_object_t obj
= r
->object
;
3211 a
= OBJECT_ALLOCNO (obj
);
3212 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))]
3213 || ALLOCNO_CAP_MEMBER (a
) != NULL
)
3216 aclass
= ALLOCNO_CLASS (a
);
3217 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, n
)
3219 ira_object_t live_obj
= ira_object_id_map
[n
];
3220 ira_allocno_t live_a
= OBJECT_ALLOCNO (live_obj
);
3221 enum reg_class live_aclass
= ALLOCNO_CLASS (live_a
);
3223 if (ira_reg_classes_intersect_p
[aclass
][live_aclass
]
3224 /* Don't set up conflict for the allocno with itself. */
3226 ira_add_conflict (obj
, live_obj
);
3228 sparseset_set_bit (objects_live
, OBJECT_CONFLICT_ID (obj
));
3231 for (r
= ira_finish_point_ranges
[i
]; r
!= NULL
; r
= r
->finish_next
)
3232 sparseset_clear_bit (objects_live
, OBJECT_CONFLICT_ID (r
->object
));
3234 sparseset_free (objects_live
);
3235 compress_conflict_vecs ();
3237 /* Mark some copies for removing and change allocnos in the rest
3239 FOR_EACH_COPY (cp
, ci
)
3241 if (ALLOCNO_CAP_MEMBER (cp
->first
) != NULL
3242 || ALLOCNO_CAP_MEMBER (cp
->second
) != NULL
)
3244 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
3246 (ira_dump_file
, " Remove cp%d:%c%dr%d-%c%dr%d\n",
3247 cp
->num
, ALLOCNO_CAP_MEMBER (cp
->first
) != NULL
? 'c' : 'a',
3248 ALLOCNO_NUM (cp
->first
),
3249 REGNO (allocno_emit_reg (cp
->first
)),
3250 ALLOCNO_CAP_MEMBER (cp
->second
) != NULL
? 'c' : 'a',
3251 ALLOCNO_NUM (cp
->second
),
3252 REGNO (allocno_emit_reg (cp
->second
)));
3253 cp
->loop_tree_node
= NULL
;
3257 = regno_top_level_allocno_map
[REGNO (allocno_emit_reg (cp
->first
))];
3259 = regno_top_level_allocno_map
[REGNO (allocno_emit_reg (cp
->second
))];
3260 node
= cp
->loop_tree_node
;
3262 keep_p
= true; /* It copy generated in ira-emit.c. */
3265 /* Check that the copy was not propagated from level on
3266 which we will have different pseudos. */
3267 node_first
= node
->regno_allocno_map
[ALLOCNO_REGNO (cp
->first
)];
3268 node_second
= node
->regno_allocno_map
[ALLOCNO_REGNO (cp
->second
)];
3269 keep_p
= ((REGNO (allocno_emit_reg (first
))
3270 == REGNO (allocno_emit_reg (node_first
)))
3271 && (REGNO (allocno_emit_reg (second
))
3272 == REGNO (allocno_emit_reg (node_second
))));
3276 cp
->loop_tree_node
= ira_loop_tree_root
;
3278 cp
->second
= second
;
3282 cp
->loop_tree_node
= NULL
;
3283 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
3284 fprintf (ira_dump_file
, " Remove cp%d:a%dr%d-a%dr%d\n",
3285 cp
->num
, ALLOCNO_NUM (cp
->first
),
3286 REGNO (allocno_emit_reg (cp
->first
)),
3287 ALLOCNO_NUM (cp
->second
),
3288 REGNO (allocno_emit_reg (cp
->second
)));
3291 /* Remove unnecessary allocnos on lower levels of the loop tree. */
3292 FOR_EACH_ALLOCNO (a
, ai
)
3294 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))]
3295 || ALLOCNO_CAP_MEMBER (a
) != NULL
)
3297 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
3298 fprintf (ira_dump_file
, " Remove a%dr%d\n",
3299 ALLOCNO_NUM (a
), REGNO (allocno_emit_reg (a
)));
3300 ira_remove_allocno_prefs (a
);
3304 ALLOCNO_LOOP_TREE_NODE (a
) = ira_loop_tree_root
;
3305 ALLOCNO_REGNO (a
) = REGNO (allocno_emit_reg (a
));
3306 ALLOCNO_CAP (a
) = NULL
;
3307 /* Restore updated costs for assignments from reload. */
3308 ALLOCNO_UPDATED_MEMORY_COST (a
) = ALLOCNO_MEMORY_COST (a
);
3309 ALLOCNO_UPDATED_CLASS_COST (a
) = ALLOCNO_CLASS_COST (a
);
3310 if (! ALLOCNO_ASSIGNED_P (a
))
3311 ira_free_allocno_updated_costs (a
);
3312 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a
) == NULL
);
3313 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) == NULL
);
3315 /* Remove unnecessary copies. */
3316 FOR_EACH_COPY (cp
, ci
)
3318 if (cp
->loop_tree_node
== NULL
)
3320 ira_copies
[cp
->num
] = NULL
;
3325 (ALLOCNO_LOOP_TREE_NODE (cp
->first
) == ira_loop_tree_root
3326 && ALLOCNO_LOOP_TREE_NODE (cp
->second
) == ira_loop_tree_root
);
3327 add_allocno_copy_to_list (cp
);
3328 swap_allocno_copy_ends_if_necessary (cp
);
3330 rebuild_regno_allocno_maps ();
3331 if (ira_max_point
!= ira_max_point_before_emit
)
3332 ira_compress_allocno_live_ranges ();
3333 ira_free (regno_top_level_allocno_map
);
3338 #ifdef ENABLE_IRA_CHECKING
3339 /* Check creation of all allocnos. Allocnos on lower levels should
3340 have allocnos or caps on all upper levels. */
3342 check_allocno_creation (void)
3345 ira_allocno_iterator ai
;
3346 ira_loop_tree_node_t loop_tree_node
;
3348 FOR_EACH_ALLOCNO (a
, ai
)
3350 loop_tree_node
= ALLOCNO_LOOP_TREE_NODE (a
);
3351 ira_assert (bitmap_bit_p (loop_tree_node
->all_allocnos
,
3353 if (loop_tree_node
== ira_loop_tree_root
)
3355 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
3356 ira_assert (ALLOCNO_CAP (a
) != NULL
);
3357 else if (ALLOCNO_CAP (a
) == NULL
)
3358 ira_assert (loop_tree_node
->parent
3359 ->regno_allocno_map
[ALLOCNO_REGNO (a
)] != NULL
3360 && bitmap_bit_p (loop_tree_node
->border_allocnos
,
3366 /* Identify allocnos which prefer a register class with a single hard register.
3367 Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
3368 less likely to use the preferred singleton register. */
3370 update_conflict_hard_reg_costs (void)
3373 ira_allocno_iterator ai
;
3376 FOR_EACH_ALLOCNO (a
, ai
)
3378 reg_class_t aclass
= ALLOCNO_CLASS (a
);
3379 reg_class_t pref
= reg_preferred_class (ALLOCNO_REGNO (a
));
3380 int singleton
= ira_class_singleton
[pref
][ALLOCNO_MODE (a
)];
3383 index
= ira_class_hard_reg_index
[(int) aclass
][singleton
];
3386 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) == NULL
3387 || ALLOCNO_HARD_REG_COSTS (a
) == NULL
)
3390 for (i
= ira_class_hard_regs_num
[(int) aclass
] - 1; i
>= 0; i
--)
3391 if (ALLOCNO_HARD_REG_COSTS (a
)[i
] > ALLOCNO_CLASS_COST (a
)
3392 && min
> ALLOCNO_HARD_REG_COSTS (a
)[i
])
3393 min
= ALLOCNO_HARD_REG_COSTS (a
)[i
];
3396 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a
),
3398 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
)[index
]
3399 -= min
- ALLOCNO_CLASS_COST (a
);
3403 /* Create a internal representation (IR) for IRA (allocnos, copies,
3404 loop tree nodes). The function returns TRUE if we generate loop
3405 structure (besides nodes representing all function and the basic
3406 blocks) for regional allocation. A true return means that we
3407 really need to flatten IR before the reload. */
3414 initiate_cost_vectors ();
3415 initiate_allocnos ();
3418 create_loop_tree_nodes ();
3422 create_allocno_objects ();
3423 ira_create_allocno_live_ranges ();
3424 remove_unnecessary_regions (false);
3425 ira_compress_allocno_live_ranges ();
3426 update_bad_spill_attribute ();
3427 loops_p
= more_one_region_p ();
3430 propagate_allocno_info ();
3433 ira_tune_allocno_costs ();
3434 #ifdef ENABLE_IRA_CHECKING
3435 check_allocno_creation ();
3437 setup_min_max_allocno_live_range_point ();
3438 sort_conflict_id_map ();
3439 setup_min_max_conflict_allocno_ids ();
3440 ira_build_conflicts ();
3441 update_conflict_hard_reg_costs ();
3442 if (! ira_conflicts_p
)
3445 ira_allocno_iterator ai
;
3447 /* Remove all regions but root one. */
3450 remove_unnecessary_regions (true);
3453 /* We don't save hard registers around calls for fast allocation
3454 -- add caller clobbered registers as conflicting ones to
3455 allocno crossing calls. */
3456 FOR_EACH_ALLOCNO (a
, ai
)
3457 if (ALLOCNO_CALLS_CROSSED_NUM (a
) != 0)
3458 ior_hard_reg_conflicts (a
, &call_used_reg_set
);
3460 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
3461 print_copies (ira_dump_file
);
3462 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
3463 print_prefs (ira_dump_file
);
3464 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
3469 ira_allocno_iterator ai
;
3474 FOR_EACH_ALLOCNO (a
, ai
)
3476 int j
, nobj
= ALLOCNO_NUM_OBJECTS (a
);
3480 for (j
= 0; j
< nobj
; j
++)
3482 ira_object_t obj
= ALLOCNO_OBJECT (a
, j
);
3483 n
+= OBJECT_NUM_CONFLICTS (obj
);
3484 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
3488 fprintf (ira_dump_file
, " regions=%d, blocks=%d, points=%d\n",
3489 current_loops
== NULL
? 1 : number_of_loops (cfun
),
3490 n_basic_blocks_for_fn (cfun
), ira_max_point
);
3491 fprintf (ira_dump_file
,
3492 " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
3493 ira_allocnos_num
, nr_big
, ira_copies_num
, n
, nr
);
3498 /* Release the data created by function ira_build. */
3502 finish_loop_tree_nodes ();
3506 finish_cost_vectors ();
3507 ira_finish_allocno_live_ranges ();