1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
36 #include "coretypes.h"
41 #include "gimple-expr.h"
46 #include "stringpool.h"
52 #include "rtl-error.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
62 #include "optabs-tree.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
67 #include "tree-pass.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
76 #include "tree-chkp.h"
80 #include "stringpool.h"
83 /* So we can assign to cfun in this file. */
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
97 /* Similar, but round to the next highest integer that meets the
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated
;
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no
;
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function
* (*init_machine_status
) (void);
114 /* The currently compiled function. */
115 struct function
*cfun
= 0;
117 /* These hashes record the prologue and epilogue insns. */
119 struct insn_cache_hasher
: ggc_cache_ptr_hash
<rtx_def
>
121 static hashval_t
hash (rtx x
) { return htab_hash_pointer (x
); }
122 static bool equal (rtx a
, rtx b
) { return a
== b
; }
126 hash_table
<insn_cache_hasher
> *prologue_insn_hash
;
128 hash_table
<insn_cache_hasher
> *epilogue_insn_hash
;
131 hash_table
<used_type_hasher
> *types_used_by_vars_hash
= NULL
;
132 vec
<tree
, va_gc
> *types_used_by_cur_var_decl
;
134 /* Forward declarations. */
136 static struct temp_slot
*find_temp_slot_from_address (rtx
);
137 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
138 static void pad_below (struct args_size
*, machine_mode
, tree
);
139 static void reorder_blocks_1 (rtx_insn
*, tree
, vec
<tree
> *);
140 static int all_blocks (tree
, tree
*);
141 static tree
*get_block_vector (tree
, int *);
142 extern tree
debug_find_var_in_block_tree (tree
, tree
);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn
*, rtx
, hash_table
<insn_cache_hasher
> **)
147 static bool contains (const rtx_insn
*, hash_table
<insn_cache_hasher
> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx
, void *);
150 static void do_use_return_reg (rtx
, void *);
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
156 static vec
<function
*> function_context_stack
;
158 /* Save the current context for compilation of a nested function.
159 This is called from language-specific code. */
162 push_function_context (void)
165 allocate_struct_function (NULL
, false);
167 function_context_stack
.safe_push (cfun
);
171 /* Restore the last saved context, at the end of a nested function.
172 This function is called from language-specific code. */
175 pop_function_context (void)
177 struct function
*p
= function_context_stack
.pop ();
179 current_function_decl
= p
->decl
;
181 /* Reset variables that have known state during rtx generation. */
182 virtuals_instantiated
= 0;
183 generating_concat_p
= 1;
186 /* Clear out all parts of the state in F that can safely be discarded
187 after the function has been parsed, but not compiled, to let
188 garbage collection reclaim the memory. */
191 free_after_parsing (struct function
*f
)
196 /* Clear out all parts of the state in F that can safely be discarded
197 after the function has been compiled, to let garbage collection
198 reclaim the memory. */
201 free_after_compilation (struct function
*f
)
203 prologue_insn_hash
= NULL
;
204 epilogue_insn_hash
= NULL
;
206 free (crtl
->emit
.regno_pointer_align
);
208 memset (crtl
, 0, sizeof (struct rtl_data
));
212 f
->curr_properties
&= ~PROP_cfg
;
214 regno_reg_rtx
= NULL
;
217 /* Return size needed for stack frame based on slots so far allocated.
218 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
219 the caller may have to do that. */
222 get_frame_size (void)
224 if (FRAME_GROWS_DOWNWARD
)
225 return -frame_offset
;
230 /* Issue an error message and return TRUE if frame OFFSET overflows in
231 the signed target pointer arithmetics for function FUNC. Otherwise
235 frame_offset_overflow (poly_int64 offset
, tree func
)
237 poly_uint64 size
= FRAME_GROWS_DOWNWARD
? -offset
: offset
;
238 unsigned HOST_WIDE_INT limit
239 = ((HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (Pmode
) - 1))
240 /* Leave room for the fixed part of the frame. */
241 - 64 * UNITS_PER_WORD
);
243 if (!coeffs_in_range_p (size
, 0U, limit
))
245 error_at (DECL_SOURCE_LOCATION (func
),
246 "total size of local objects too large");
253 /* Return the minimum spill slot alignment for a register of mode MODE. */
256 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED
)
258 return STACK_SLOT_ALIGNMENT (NULL_TREE
, mode
, GET_MODE_ALIGNMENT (mode
));
261 /* Return stack slot alignment in bits for TYPE and MODE. */
264 get_stack_local_alignment (tree type
, machine_mode mode
)
266 unsigned int alignment
;
269 alignment
= BIGGEST_ALIGNMENT
;
271 alignment
= GET_MODE_ALIGNMENT (mode
);
273 /* Allow the frond-end to (possibly) increase the alignment of this
276 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
278 return STACK_SLOT_ALIGNMENT (type
, mode
, alignment
);
281 /* Determine whether it is possible to fit a stack slot of size SIZE and
282 alignment ALIGNMENT into an area in the stack frame that starts at
283 frame offset START and has a length of LENGTH. If so, store the frame
284 offset to be used for the stack slot in *POFFSET and return true;
285 return false otherwise. This function will extend the frame size when
286 given a start/length pair that lies at the end of the frame. */
289 try_fit_stack_local (poly_int64 start
, poly_int64 length
,
290 poly_int64 size
, unsigned int alignment
,
291 poly_int64_pod
*poffset
)
293 poly_int64 this_frame_offset
;
294 int frame_off
, frame_alignment
, frame_phase
;
296 /* Calculate how many bytes the start of local variables is off from
298 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
299 frame_off
= targetm
.starting_frame_offset () % frame_alignment
;
300 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
302 /* Round the frame offset to the specified alignment. */
304 if (FRAME_GROWS_DOWNWARD
)
306 = (aligned_lower_bound (start
+ length
- size
- frame_phase
, alignment
)
310 = aligned_upper_bound (start
- frame_phase
, alignment
) + frame_phase
;
312 /* See if it fits. If this space is at the edge of the frame,
313 consider extending the frame to make it fit. Our caller relies on
314 this when allocating a new slot. */
315 if (maybe_lt (this_frame_offset
, start
))
317 if (known_eq (frame_offset
, start
))
318 frame_offset
= this_frame_offset
;
322 else if (maybe_gt (this_frame_offset
+ size
, start
+ length
))
324 if (known_eq (frame_offset
, start
+ length
))
325 frame_offset
= this_frame_offset
+ size
;
330 *poffset
= this_frame_offset
;
334 /* Create a new frame_space structure describing free space in the stack
335 frame beginning at START and ending at END, and chain it into the
336 function's frame_space_list. */
339 add_frame_space (poly_int64 start
, poly_int64 end
)
341 struct frame_space
*space
= ggc_alloc
<frame_space
> ();
342 space
->next
= crtl
->frame_space_list
;
343 crtl
->frame_space_list
= space
;
344 space
->start
= start
;
345 space
->length
= end
- start
;
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349 with machine mode MODE.
351 ALIGN controls the amount of alignment for the address of the slot:
352 0 means according to MODE,
353 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354 -2 means use BITS_PER_UNIT,
355 positive specifies alignment boundary in bits.
357 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358 alignment and ASLK_RECORD_PAD bit set if we should remember
359 extra space we allocated for alignment purposes. When we are
360 called from assign_stack_temp_for_type, it is not set so we don't
361 track the same stack slot in two independent lists.
363 We do not round to stack_boundary here. */
366 assign_stack_local_1 (machine_mode mode
, poly_int64 size
,
370 poly_int64 bigend_correction
= 0;
371 poly_int64 slot_offset
= 0, old_frame_offset
;
372 unsigned int alignment
, alignment_in_bits
;
376 alignment
= get_stack_local_alignment (NULL
, mode
);
377 alignment
/= BITS_PER_UNIT
;
379 else if (align
== -1)
381 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
382 size
= aligned_upper_bound (size
, alignment
);
384 else if (align
== -2)
385 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
387 alignment
= align
/ BITS_PER_UNIT
;
389 alignment_in_bits
= alignment
* BITS_PER_UNIT
;
391 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
392 if (alignment_in_bits
> MAX_SUPPORTED_STACK_ALIGNMENT
)
394 alignment_in_bits
= MAX_SUPPORTED_STACK_ALIGNMENT
;
395 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
398 if (SUPPORTS_STACK_ALIGNMENT
)
400 if (crtl
->stack_alignment_estimated
< alignment_in_bits
)
402 if (!crtl
->stack_realign_processed
)
403 crtl
->stack_alignment_estimated
= alignment_in_bits
;
406 /* If stack is realigned and stack alignment value
407 hasn't been finalized, it is OK not to increase
408 stack_alignment_estimated. The bigger alignment
409 requirement is recorded in stack_alignment_needed
411 gcc_assert (!crtl
->stack_realign_finalized
);
412 if (!crtl
->stack_realign_needed
)
414 /* It is OK to reduce the alignment as long as the
415 requested size is 0 or the estimated stack
416 alignment >= mode alignment. */
417 gcc_assert ((kind
& ASLK_REDUCE_ALIGN
)
418 || known_eq (size
, 0)
419 || (crtl
->stack_alignment_estimated
420 >= GET_MODE_ALIGNMENT (mode
)));
421 alignment_in_bits
= crtl
->stack_alignment_estimated
;
422 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
428 if (crtl
->stack_alignment_needed
< alignment_in_bits
)
429 crtl
->stack_alignment_needed
= alignment_in_bits
;
430 if (crtl
->max_used_stack_slot_alignment
< alignment_in_bits
)
431 crtl
->max_used_stack_slot_alignment
= alignment_in_bits
;
433 if (mode
!= BLKmode
|| maybe_ne (size
, 0))
435 if (kind
& ASLK_RECORD_PAD
)
437 struct frame_space
**psp
;
439 for (psp
= &crtl
->frame_space_list
; *psp
; psp
= &(*psp
)->next
)
441 struct frame_space
*space
= *psp
;
442 if (!try_fit_stack_local (space
->start
, space
->length
, size
,
443 alignment
, &slot_offset
))
446 if (known_gt (slot_offset
, space
->start
))
447 add_frame_space (space
->start
, slot_offset
);
448 if (known_lt (slot_offset
+ size
, space
->start
+ space
->length
))
449 add_frame_space (slot_offset
+ size
,
450 space
->start
+ space
->length
);
455 else if (!STACK_ALIGNMENT_NEEDED
)
457 slot_offset
= frame_offset
;
461 old_frame_offset
= frame_offset
;
463 if (FRAME_GROWS_DOWNWARD
)
465 frame_offset
-= size
;
466 try_fit_stack_local (frame_offset
, size
, size
, alignment
, &slot_offset
);
468 if (kind
& ASLK_RECORD_PAD
)
470 if (known_gt (slot_offset
, frame_offset
))
471 add_frame_space (frame_offset
, slot_offset
);
472 if (known_lt (slot_offset
+ size
, old_frame_offset
))
473 add_frame_space (slot_offset
+ size
, old_frame_offset
);
478 frame_offset
+= size
;
479 try_fit_stack_local (old_frame_offset
, size
, size
, alignment
, &slot_offset
);
481 if (kind
& ASLK_RECORD_PAD
)
483 if (known_gt (slot_offset
, old_frame_offset
))
484 add_frame_space (old_frame_offset
, slot_offset
);
485 if (known_lt (slot_offset
+ size
, frame_offset
))
486 add_frame_space (slot_offset
+ size
, frame_offset
);
491 /* On a big-endian machine, if we are allocating more space than we will use,
492 use the least significant bytes of those that are allocated. */
495 /* The slot size can sometimes be smaller than the mode size;
496 e.g. the rs6000 port allocates slots with a vector mode
497 that have the size of only one element. However, the slot
498 size must always be ordered wrt to the mode size, in the
499 same way as for a subreg. */
500 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode
), size
));
501 if (BYTES_BIG_ENDIAN
&& maybe_lt (GET_MODE_SIZE (mode
), size
))
502 bigend_correction
= size
- GET_MODE_SIZE (mode
);
505 /* If we have already instantiated virtual registers, return the actual
506 address relative to the frame pointer. */
507 if (virtuals_instantiated
)
508 addr
= plus_constant (Pmode
, frame_pointer_rtx
,
510 (slot_offset
+ bigend_correction
511 + targetm
.starting_frame_offset (), Pmode
));
513 addr
= plus_constant (Pmode
, virtual_stack_vars_rtx
,
515 (slot_offset
+ bigend_correction
,
518 x
= gen_rtx_MEM (mode
, addr
);
519 set_mem_align (x
, alignment_in_bits
);
520 MEM_NOTRAP_P (x
) = 1;
522 vec_safe_push (stack_slot_list
, x
);
524 if (frame_offset_overflow (frame_offset
, current_function_decl
))
530 /* Wrap up assign_stack_local_1 with last parameter as false. */
533 assign_stack_local (machine_mode mode
, poly_int64 size
, int align
)
535 return assign_stack_local_1 (mode
, size
, align
, ASLK_RECORD_PAD
);
538 /* In order to evaluate some expressions, such as function calls returning
539 structures in memory, we need to temporarily allocate stack locations.
540 We record each allocated temporary in the following structure.
542 Associated with each temporary slot is a nesting level. When we pop up
543 one level, all temporaries associated with the previous level are freed.
544 Normally, all temporaries are freed after the execution of the statement
545 in which they were created. However, if we are inside a ({...}) grouping,
546 the result may be in a temporary and hence must be preserved. If the
547 result could be in a temporary, we preserve it if we can determine which
548 one it is in. If we cannot determine which temporary may contain the
549 result, all temporaries are preserved. A temporary is preserved by
550 pretending it was allocated at the previous nesting level. */
552 struct GTY(()) temp_slot
{
553 /* Points to next temporary slot. */
554 struct temp_slot
*next
;
555 /* Points to previous temporary slot. */
556 struct temp_slot
*prev
;
557 /* The rtx to used to reference the slot. */
559 /* The size, in units, of the slot. */
561 /* The type of the object in the slot, or zero if it doesn't correspond
562 to a type. We use this to determine whether a slot can be reused.
563 It can be reused if objects of the type of the new slot will always
564 conflict with objects of the type of the old slot. */
566 /* The alignment (in bits) of the slot. */
568 /* Nonzero if this temporary is currently in use. */
570 /* Nesting level at which this slot is being used. */
572 /* The offset of the slot from the frame_pointer, including extra space
573 for alignment. This info is for combine_temp_slots. */
574 poly_int64 base_offset
;
575 /* The size of the slot, including extra space for alignment. This
576 info is for combine_temp_slots. */
577 poly_int64 full_size
;
580 /* Entry for the below hash table. */
581 struct GTY((for_user
)) temp_slot_address_entry
{
584 struct temp_slot
*temp_slot
;
587 struct temp_address_hasher
: ggc_ptr_hash
<temp_slot_address_entry
>
589 static hashval_t
hash (temp_slot_address_entry
*);
590 static bool equal (temp_slot_address_entry
*, temp_slot_address_entry
*);
593 /* A table of addresses that represent a stack slot. The table is a mapping
594 from address RTXen to a temp slot. */
595 static GTY(()) hash_table
<temp_address_hasher
> *temp_slot_address_table
;
596 static size_t n_temp_slots_in_use
;
598 /* Removes temporary slot TEMP from LIST. */
601 cut_slot_from_list (struct temp_slot
*temp
, struct temp_slot
**list
)
604 temp
->next
->prev
= temp
->prev
;
606 temp
->prev
->next
= temp
->next
;
610 temp
->prev
= temp
->next
= NULL
;
613 /* Inserts temporary slot TEMP to LIST. */
616 insert_slot_to_list (struct temp_slot
*temp
, struct temp_slot
**list
)
620 (*list
)->prev
= temp
;
625 /* Returns the list of used temp slots at LEVEL. */
627 static struct temp_slot
**
628 temp_slots_at_level (int level
)
630 if (level
>= (int) vec_safe_length (used_temp_slots
))
631 vec_safe_grow_cleared (used_temp_slots
, level
+ 1);
633 return &(*used_temp_slots
)[level
];
636 /* Returns the maximal temporary slot level. */
639 max_slot_level (void)
641 if (!used_temp_slots
)
644 return used_temp_slots
->length () - 1;
647 /* Moves temporary slot TEMP to LEVEL. */
650 move_slot_to_level (struct temp_slot
*temp
, int level
)
652 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
653 insert_slot_to_list (temp
, temp_slots_at_level (level
));
657 /* Make temporary slot TEMP available. */
660 make_slot_available (struct temp_slot
*temp
)
662 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
663 insert_slot_to_list (temp
, &avail_temp_slots
);
666 n_temp_slots_in_use
--;
669 /* Compute the hash value for an address -> temp slot mapping.
670 The value is cached on the mapping entry. */
672 temp_slot_address_compute_hash (struct temp_slot_address_entry
*t
)
674 int do_not_record
= 0;
675 return hash_rtx (t
->address
, GET_MODE (t
->address
),
676 &do_not_record
, NULL
, false);
679 /* Return the hash value for an address -> temp slot mapping. */
681 temp_address_hasher::hash (temp_slot_address_entry
*t
)
686 /* Compare two address -> temp slot mapping entries. */
688 temp_address_hasher::equal (temp_slot_address_entry
*t1
,
689 temp_slot_address_entry
*t2
)
691 return exp_equiv_p (t1
->address
, t2
->address
, 0, true);
694 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
696 insert_temp_slot_address (rtx address
, struct temp_slot
*temp_slot
)
698 struct temp_slot_address_entry
*t
= ggc_alloc
<temp_slot_address_entry
> ();
699 t
->address
= address
;
700 t
->temp_slot
= temp_slot
;
701 t
->hash
= temp_slot_address_compute_hash (t
);
702 *temp_slot_address_table
->find_slot_with_hash (t
, t
->hash
, INSERT
) = t
;
705 /* Remove an address -> temp slot mapping entry if the temp slot is
706 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
708 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry
**slot
, void *)
710 const struct temp_slot_address_entry
*t
= *slot
;
711 if (! t
->temp_slot
->in_use
)
712 temp_slot_address_table
->clear_slot (slot
);
716 /* Remove all mappings of addresses to unused temp slots. */
718 remove_unused_temp_slot_addresses (void)
720 /* Use quicker clearing if there aren't any active temp slots. */
721 if (n_temp_slots_in_use
)
722 temp_slot_address_table
->traverse
723 <void *, remove_unused_temp_slot_addresses_1
> (NULL
);
725 temp_slot_address_table
->empty ();
728 /* Find the temp slot corresponding to the object at address X. */
730 static struct temp_slot
*
731 find_temp_slot_from_address (rtx x
)
734 struct temp_slot_address_entry tmp
, *t
;
736 /* First try the easy way:
737 See if X exists in the address -> temp slot mapping. */
739 tmp
.temp_slot
= NULL
;
740 tmp
.hash
= temp_slot_address_compute_hash (&tmp
);
741 t
= temp_slot_address_table
->find_with_hash (&tmp
, tmp
.hash
);
745 /* If we have a sum involving a register, see if it points to a temp
747 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
748 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
750 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
751 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
754 /* Last resort: Address is a virtual stack var address. */
756 if (strip_offset (x
, &offset
) == virtual_stack_vars_rtx
)
759 for (i
= max_slot_level (); i
>= 0; i
--)
760 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
761 if (known_in_range_p (offset
, p
->base_offset
, p
->full_size
))
768 /* Allocate a temporary stack slot and record it for possible later
771 MODE is the machine mode to be given to the returned rtx.
773 SIZE is the size in units of the space required. We do no rounding here
774 since assign_stack_local will do any required rounding.
776 TYPE is the type that will be used for the stack slot. */
779 assign_stack_temp_for_type (machine_mode mode
, poly_int64 size
, tree type
)
782 struct temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
785 gcc_assert (known_size_p (size
));
787 align
= get_stack_local_alignment (type
, mode
);
789 /* Try to find an available, already-allocated temporary of the proper
790 mode which meets the size and alignment requirements. Choose the
791 smallest one with the closest alignment.
793 If assign_stack_temp is called outside of the tree->rtl expansion,
794 we cannot reuse the stack slots (that may still refer to
795 VIRTUAL_STACK_VARS_REGNUM). */
796 if (!virtuals_instantiated
)
798 for (p
= avail_temp_slots
; p
; p
= p
->next
)
800 if (p
->align
>= align
801 && known_ge (p
->size
, size
)
802 && GET_MODE (p
->slot
) == mode
803 && objects_must_conflict_p (p
->type
, type
)
805 || (known_eq (best_p
->size
, p
->size
)
806 ? best_p
->align
> p
->align
807 : known_ge (best_p
->size
, p
->size
))))
809 if (p
->align
== align
&& known_eq (p
->size
, size
))
812 cut_slot_from_list (selected
, &avail_temp_slots
);
821 /* Make our best, if any, the one to use. */
825 cut_slot_from_list (selected
, &avail_temp_slots
);
827 /* If there are enough aligned bytes left over, make them into a new
828 temp_slot so that the extra bytes don't get wasted. Do this only
829 for BLKmode slots, so that we can be sure of the alignment. */
830 if (GET_MODE (best_p
->slot
) == BLKmode
)
832 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
833 poly_int64 rounded_size
= aligned_upper_bound (size
, alignment
);
835 if (known_ge (best_p
->size
- rounded_size
, alignment
))
837 p
= ggc_alloc
<temp_slot
> ();
839 p
->size
= best_p
->size
- rounded_size
;
840 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
841 p
->full_size
= best_p
->full_size
- rounded_size
;
842 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
843 p
->align
= best_p
->align
;
844 p
->type
= best_p
->type
;
845 insert_slot_to_list (p
, &avail_temp_slots
);
847 vec_safe_push (stack_slot_list
, p
->slot
);
849 best_p
->size
= rounded_size
;
850 best_p
->full_size
= rounded_size
;
855 /* If we still didn't find one, make a new temporary. */
858 poly_int64 frame_offset_old
= frame_offset
;
860 p
= ggc_alloc
<temp_slot
> ();
862 /* We are passing an explicit alignment request to assign_stack_local.
863 One side effect of that is assign_stack_local will not round SIZE
864 to ensure the frame offset remains suitably aligned.
866 So for requests which depended on the rounding of SIZE, we go ahead
867 and round it now. We also make sure ALIGNMENT is at least
868 BIGGEST_ALIGNMENT. */
869 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
870 p
->slot
= assign_stack_local_1 (mode
,
872 ? aligned_upper_bound (size
,
880 /* The following slot size computation is necessary because we don't
881 know the actual size of the temporary slot until assign_stack_local
882 has performed all the frame alignment and size rounding for the
883 requested temporary. Note that extra space added for alignment
884 can be either above or below this stack slot depending on which
885 way the frame grows. We include the extra space if and only if it
886 is above this slot. */
887 if (FRAME_GROWS_DOWNWARD
)
888 p
->size
= frame_offset_old
- frame_offset
;
892 /* Now define the fields used by combine_temp_slots. */
893 if (FRAME_GROWS_DOWNWARD
)
895 p
->base_offset
= frame_offset
;
896 p
->full_size
= frame_offset_old
- frame_offset
;
900 p
->base_offset
= frame_offset_old
;
901 p
->full_size
= frame_offset
- frame_offset_old
;
910 p
->level
= temp_slot_level
;
911 n_temp_slots_in_use
++;
913 pp
= temp_slots_at_level (p
->level
);
914 insert_slot_to_list (p
, pp
);
915 insert_temp_slot_address (XEXP (p
->slot
, 0), p
);
917 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
918 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
919 vec_safe_push (stack_slot_list
, slot
);
921 /* If we know the alias set for the memory that will be used, use
922 it. If there's no TYPE, then we don't know anything about the
923 alias set for the memory. */
924 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
925 set_mem_align (slot
, align
);
927 /* If a type is specified, set the relevant flags. */
929 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
930 MEM_NOTRAP_P (slot
) = 1;
935 /* Allocate a temporary stack slot and record it for possible later
936 reuse. First two arguments are same as in preceding function. */
939 assign_stack_temp (machine_mode mode
, poly_int64 size
)
941 return assign_stack_temp_for_type (mode
, size
, NULL_TREE
);
944 /* Assign a temporary.
945 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
946 and so that should be used in error messages. In either case, we
947 allocate of the given type.
948 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
949 it is 0 if a register is OK.
950 DONT_PROMOTE is 1 if we should not promote values in register
954 assign_temp (tree type_or_decl
, int memory_required
,
955 int dont_promote ATTRIBUTE_UNUSED
)
963 if (DECL_P (type_or_decl
))
964 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
966 decl
= NULL
, type
= type_or_decl
;
968 mode
= TYPE_MODE (type
);
970 unsignedp
= TYPE_UNSIGNED (type
);
973 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
974 end. See also create_tmp_var for the gimplification-time check. */
975 gcc_assert (!TREE_ADDRESSABLE (type
) && COMPLETE_TYPE_P (type
));
977 if (mode
== BLKmode
|| memory_required
)
979 HOST_WIDE_INT size
= int_size_in_bytes (type
);
982 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
983 problems with allocating the stack space. */
987 /* Unfortunately, we don't yet know how to allocate variable-sized
988 temporaries. However, sometimes we can find a fixed upper limit on
989 the size, so try that instead. */
991 size
= max_int_size_in_bytes (type
);
993 /* The size of the temporary may be too large to fit into an integer. */
994 /* ??? Not sure this should happen except for user silliness, so limit
995 this to things that aren't compiler-generated temporaries. The
996 rest of the time we'll die in assign_stack_temp_for_type. */
997 if (decl
&& size
== -1
998 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
1000 error ("size of variable %q+D is too large", decl
);
1004 tmp
= assign_stack_temp_for_type (mode
, size
, type
);
1010 mode
= promote_mode (type
, mode
, &unsignedp
);
1013 return gen_reg_rtx (mode
);
1016 /* Combine temporary stack slots which are adjacent on the stack.
1018 This allows for better use of already allocated stack space. This is only
1019 done for BLKmode slots because we can be sure that we won't have alignment
1020 problems in this case. */
1023 combine_temp_slots (void)
1025 struct temp_slot
*p
, *q
, *next
, *next_q
;
1028 /* We can't combine slots, because the information about which slot
1029 is in which alias set will be lost. */
1030 if (flag_strict_aliasing
)
1033 /* If there are a lot of temp slots, don't do anything unless
1034 high levels of optimization. */
1035 if (! flag_expensive_optimizations
)
1036 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
1037 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
1040 for (p
= avail_temp_slots
; p
; p
= next
)
1046 if (GET_MODE (p
->slot
) != BLKmode
)
1049 for (q
= p
->next
; q
; q
= next_q
)
1055 if (GET_MODE (q
->slot
) != BLKmode
)
1058 if (known_eq (p
->base_offset
+ p
->full_size
, q
->base_offset
))
1060 /* Q comes after P; combine Q into P. */
1062 p
->full_size
+= q
->full_size
;
1065 else if (known_eq (q
->base_offset
+ q
->full_size
, p
->base_offset
))
1067 /* P comes after Q; combine P into Q. */
1069 q
->full_size
+= p
->full_size
;
1074 cut_slot_from_list (q
, &avail_temp_slots
);
1077 /* Either delete P or advance past it. */
1079 cut_slot_from_list (p
, &avail_temp_slots
);
1083 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1084 slot that previously was known by OLD_RTX. */
1087 update_temp_slot_address (rtx old_rtx
, rtx new_rtx
)
1089 struct temp_slot
*p
;
1091 if (rtx_equal_p (old_rtx
, new_rtx
))
1094 p
= find_temp_slot_from_address (old_rtx
);
1096 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1097 NEW_RTX is a register, see if one operand of the PLUS is a
1098 temporary location. If so, NEW_RTX points into it. Otherwise,
1099 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1100 in common between them. If so, try a recursive call on those
1104 if (GET_CODE (old_rtx
) != PLUS
)
1107 if (REG_P (new_rtx
))
1109 update_temp_slot_address (XEXP (old_rtx
, 0), new_rtx
);
1110 update_temp_slot_address (XEXP (old_rtx
, 1), new_rtx
);
1113 else if (GET_CODE (new_rtx
) != PLUS
)
1116 if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0)))
1117 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1));
1118 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0)))
1119 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1));
1120 else if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1)))
1121 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0));
1122 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1)))
1123 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0));
1128 /* Otherwise add an alias for the temp's address. */
1129 insert_temp_slot_address (new_rtx
, p
);
1132 /* If X could be a reference to a temporary slot, mark that slot as
1133 belonging to the to one level higher than the current level. If X
1134 matched one of our slots, just mark that one. Otherwise, we can't
1135 easily predict which it is, so upgrade all of them.
1137 This is called when an ({...}) construct occurs and a statement
1138 returns a value in memory. */
1141 preserve_temp_slots (rtx x
)
1143 struct temp_slot
*p
= 0, *next
;
1148 /* If X is a register that is being used as a pointer, see if we have
1149 a temporary slot we know it points to. */
1150 if (REG_P (x
) && REG_POINTER (x
))
1151 p
= find_temp_slot_from_address (x
);
1153 /* If X is not in memory or is at a constant address, it cannot be in
1154 a temporary slot. */
1155 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1158 /* First see if we can find a match. */
1160 p
= find_temp_slot_from_address (XEXP (x
, 0));
1164 if (p
->level
== temp_slot_level
)
1165 move_slot_to_level (p
, temp_slot_level
- 1);
1169 /* Otherwise, preserve all non-kept slots at this level. */
1170 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1173 move_slot_to_level (p
, temp_slot_level
- 1);
1177 /* Free all temporaries used so far. This is normally called at the
1178 end of generating code for a statement. */
1181 free_temp_slots (void)
1183 struct temp_slot
*p
, *next
;
1184 bool some_available
= false;
1186 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1189 make_slot_available (p
);
1190 some_available
= true;
1195 remove_unused_temp_slot_addresses ();
1196 combine_temp_slots ();
1200 /* Push deeper into the nesting level for stack temporaries. */
1203 push_temp_slots (void)
1208 /* Pop a temporary nesting level. All slots in use in the current level
1212 pop_temp_slots (void)
1218 /* Initialize temporary slots. */
1221 init_temp_slots (void)
1223 /* We have not allocated any temporaries yet. */
1224 avail_temp_slots
= 0;
1225 vec_alloc (used_temp_slots
, 0);
1226 temp_slot_level
= 0;
1227 n_temp_slots_in_use
= 0;
1229 /* Set up the table to map addresses to temp slots. */
1230 if (! temp_slot_address_table
)
1231 temp_slot_address_table
= hash_table
<temp_address_hasher
>::create_ggc (32);
1233 temp_slot_address_table
->empty ();
1236 /* Functions and data structures to keep track of the values hard regs
1237 had at the start of the function. */
1239 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1240 and has_hard_reg_initial_val.. */
1241 struct GTY(()) initial_value_pair
{
1245 /* ??? This could be a VEC but there is currently no way to define an
1246 opaque VEC type. This could be worked around by defining struct
1247 initial_value_pair in function.h. */
1248 struct GTY(()) initial_value_struct
{
1251 initial_value_pair
* GTY ((length ("%h.num_entries"))) entries
;
1254 /* If a pseudo represents an initial hard reg (or expression), return
1255 it, else return NULL_RTX. */
1258 get_hard_reg_initial_reg (rtx reg
)
1260 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1266 for (i
= 0; i
< ivs
->num_entries
; i
++)
1267 if (rtx_equal_p (ivs
->entries
[i
].pseudo
, reg
))
1268 return ivs
->entries
[i
].hard_reg
;
1273 /* Make sure that there's a pseudo register of mode MODE that stores the
1274 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1277 get_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1279 struct initial_value_struct
*ivs
;
1282 rv
= has_hard_reg_initial_val (mode
, regno
);
1286 ivs
= crtl
->hard_reg_initial_vals
;
1289 ivs
= ggc_alloc
<initial_value_struct
> ();
1290 ivs
->num_entries
= 0;
1291 ivs
->max_entries
= 5;
1292 ivs
->entries
= ggc_vec_alloc
<initial_value_pair
> (5);
1293 crtl
->hard_reg_initial_vals
= ivs
;
1296 if (ivs
->num_entries
>= ivs
->max_entries
)
1298 ivs
->max_entries
+= 5;
1299 ivs
->entries
= GGC_RESIZEVEC (initial_value_pair
, ivs
->entries
,
1303 ivs
->entries
[ivs
->num_entries
].hard_reg
= gen_rtx_REG (mode
, regno
);
1304 ivs
->entries
[ivs
->num_entries
].pseudo
= gen_reg_rtx (mode
);
1306 return ivs
->entries
[ivs
->num_entries
++].pseudo
;
1309 /* See if get_hard_reg_initial_val has been used to create a pseudo
1310 for the initial value of hard register REGNO in mode MODE. Return
1311 the associated pseudo if so, otherwise return NULL. */
1314 has_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1316 struct initial_value_struct
*ivs
;
1319 ivs
= crtl
->hard_reg_initial_vals
;
1321 for (i
= 0; i
< ivs
->num_entries
; i
++)
1322 if (GET_MODE (ivs
->entries
[i
].hard_reg
) == mode
1323 && REGNO (ivs
->entries
[i
].hard_reg
) == regno
)
1324 return ivs
->entries
[i
].pseudo
;
1330 emit_initial_value_sets (void)
1332 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1340 for (i
= 0; i
< ivs
->num_entries
; i
++)
1341 emit_move_insn (ivs
->entries
[i
].pseudo
, ivs
->entries
[i
].hard_reg
);
1345 emit_insn_at_entry (seq
);
1349 /* Return the hardreg-pseudoreg initial values pair entry I and
1350 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1352 initial_value_entry (int i
, rtx
*hreg
, rtx
*preg
)
1354 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1355 if (!ivs
|| i
>= ivs
->num_entries
)
1358 *hreg
= ivs
->entries
[i
].hard_reg
;
1359 *preg
= ivs
->entries
[i
].pseudo
;
1363 /* These routines are responsible for converting virtual register references
1364 to the actual hard register references once RTL generation is complete.
1366 The following four variables are used for communication between the
1367 routines. They contain the offsets of the virtual registers from their
1368 respective hard registers. */
1370 static poly_int64 in_arg_offset
;
1371 static poly_int64 var_offset
;
1372 static poly_int64 dynamic_offset
;
1373 static poly_int64 out_arg_offset
;
1374 static poly_int64 cfa_offset
;
1376 /* In most machines, the stack pointer register is equivalent to the bottom
1379 #ifndef STACK_POINTER_OFFSET
1380 #define STACK_POINTER_OFFSET 0
1383 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1384 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1387 /* If not defined, pick an appropriate default for the offset of dynamically
1388 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1389 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1391 #ifndef STACK_DYNAMIC_OFFSET
1393 /* The bottom of the stack points to the actual arguments. If
1394 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1395 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1396 stack space for register parameters is not pushed by the caller, but
1397 rather part of the fixed stack areas and hence not included in
1398 `crtl->outgoing_args_size'. Nevertheless, we must allow
1399 for it when allocating stack dynamic objects. */
1401 #ifdef INCOMING_REG_PARM_STACK_SPACE
1402 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1403 ((ACCUMULATE_OUTGOING_ARGS \
1404 ? (crtl->outgoing_args_size \
1405 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1406 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1407 : 0) + (STACK_POINTER_OFFSET))
1409 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1410 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1411 + (STACK_POINTER_OFFSET))
1416 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1417 is a virtual register, return the equivalent hard register and set the
1418 offset indirectly through the pointer. Otherwise, return 0. */
1421 instantiate_new_reg (rtx x
, poly_int64_pod
*poffset
)
1426 if (x
== virtual_incoming_args_rtx
)
1428 if (stack_realign_drap
)
1430 /* Replace virtual_incoming_args_rtx with internal arg
1431 pointer if DRAP is used to realign stack. */
1432 new_rtx
= crtl
->args
.internal_arg_pointer
;
1436 new_rtx
= arg_pointer_rtx
, offset
= in_arg_offset
;
1438 else if (x
== virtual_stack_vars_rtx
)
1439 new_rtx
= frame_pointer_rtx
, offset
= var_offset
;
1440 else if (x
== virtual_stack_dynamic_rtx
)
1441 new_rtx
= stack_pointer_rtx
, offset
= dynamic_offset
;
1442 else if (x
== virtual_outgoing_args_rtx
)
1443 new_rtx
= stack_pointer_rtx
, offset
= out_arg_offset
;
1444 else if (x
== virtual_cfa_rtx
)
1446 #ifdef FRAME_POINTER_CFA_OFFSET
1447 new_rtx
= frame_pointer_rtx
;
1449 new_rtx
= arg_pointer_rtx
;
1451 offset
= cfa_offset
;
1453 else if (x
== virtual_preferred_stack_boundary_rtx
)
1455 new_rtx
= GEN_INT (crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
);
1465 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1466 registers present inside of *LOC. The expression is simplified,
1467 as much as possible, but is not to be considered "valid" in any sense
1468 implied by the target. Return true if any change is made. */
1471 instantiate_virtual_regs_in_rtx (rtx
*loc
)
1475 bool changed
= false;
1476 subrtx_ptr_iterator::array_type array
;
1477 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
1484 switch (GET_CODE (x
))
1487 new_rtx
= instantiate_new_reg (x
, &offset
);
1490 *loc
= plus_constant (GET_MODE (x
), new_rtx
, offset
);
1493 iter
.skip_subrtxes ();
1497 new_rtx
= instantiate_new_reg (XEXP (x
, 0), &offset
);
1500 XEXP (x
, 0) = new_rtx
;
1501 *loc
= plus_constant (GET_MODE (x
), x
, offset
, true);
1503 iter
.skip_subrtxes ();
1507 /* FIXME -- from old code */
1508 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1509 we can commute the PLUS and SUBREG because pointers into the
1510 frame are well-behaved. */
1521 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1522 matches the predicate for insn CODE operand OPERAND. */
1525 safe_insn_predicate (int code
, int operand
, rtx x
)
1527 return code
< 0 || insn_operand_matches ((enum insn_code
) code
, operand
, x
);
1530 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1531 registers present inside of insn. The result will be a valid insn. */
1534 instantiate_virtual_regs_in_insn (rtx_insn
*insn
)
1538 bool any_change
= false;
1539 rtx set
, new_rtx
, x
;
1542 /* There are some special cases to be handled first. */
1543 set
= single_set (insn
);
1546 /* We're allowed to assign to a virtual register. This is interpreted
1547 to mean that the underlying register gets assigned the inverse
1548 transformation. This is used, for example, in the handling of
1550 new_rtx
= instantiate_new_reg (SET_DEST (set
), &offset
);
1555 instantiate_virtual_regs_in_rtx (&SET_SRC (set
));
1556 x
= simplify_gen_binary (PLUS
, GET_MODE (new_rtx
), SET_SRC (set
),
1557 gen_int_mode (-offset
, GET_MODE (new_rtx
)));
1558 x
= force_operand (x
, new_rtx
);
1560 emit_move_insn (new_rtx
, x
);
1565 emit_insn_before (seq
, insn
);
1570 /* Handle a straight copy from a virtual register by generating a
1571 new add insn. The difference between this and falling through
1572 to the generic case is avoiding a new pseudo and eliminating a
1573 move insn in the initial rtl stream. */
1574 new_rtx
= instantiate_new_reg (SET_SRC (set
), &offset
);
1576 && maybe_ne (offset
, 0)
1577 && REG_P (SET_DEST (set
))
1578 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1582 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
, new_rtx
,
1583 gen_int_mode (offset
,
1584 GET_MODE (SET_DEST (set
))),
1585 SET_DEST (set
), 1, OPTAB_LIB_WIDEN
);
1586 if (x
!= SET_DEST (set
))
1587 emit_move_insn (SET_DEST (set
), x
);
1592 emit_insn_before (seq
, insn
);
1597 extract_insn (insn
);
1598 insn_code
= INSN_CODE (insn
);
1600 /* Handle a plus involving a virtual register by determining if the
1601 operands remain valid if they're modified in place. */
1603 if (GET_CODE (SET_SRC (set
)) == PLUS
1604 && recog_data
.n_operands
>= 3
1605 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1606 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1607 && poly_int_rtx_p (recog_data
.operand
[2], &delta
)
1608 && (new_rtx
= instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1612 /* If the sum is zero, then replace with a plain move. */
1613 if (known_eq (offset
, 0)
1614 && REG_P (SET_DEST (set
))
1615 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1618 emit_move_insn (SET_DEST (set
), new_rtx
);
1622 emit_insn_before (seq
, insn
);
1627 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1629 /* Using validate_change and apply_change_group here leaves
1630 recog_data in an invalid state. Since we know exactly what
1631 we want to check, do those two by hand. */
1632 if (safe_insn_predicate (insn_code
, 1, new_rtx
)
1633 && safe_insn_predicate (insn_code
, 2, x
))
1635 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new_rtx
;
1636 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1639 /* Fall through into the regular operand fixup loop in
1640 order to take care of operands other than 1 and 2. */
1646 extract_insn (insn
);
1647 insn_code
= INSN_CODE (insn
);
1650 /* In the general case, we expect virtual registers to appear only in
1651 operands, and then only as either bare registers or inside memories. */
1652 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1654 x
= recog_data
.operand
[i
];
1655 switch (GET_CODE (x
))
1659 rtx addr
= XEXP (x
, 0);
1661 if (!instantiate_virtual_regs_in_rtx (&addr
))
1665 x
= replace_equiv_address (x
, addr
, true);
1666 /* It may happen that the address with the virtual reg
1667 was valid (e.g. based on the virtual stack reg, which might
1668 be acceptable to the predicates with all offsets), whereas
1669 the address now isn't anymore, for instance when the address
1670 is still offsetted, but the base reg isn't virtual-stack-reg
1671 anymore. Below we would do a force_reg on the whole operand,
1672 but this insn might actually only accept memory. Hence,
1673 before doing that last resort, try to reload the address into
1674 a register, so this operand stays a MEM. */
1675 if (!safe_insn_predicate (insn_code
, i
, x
))
1677 addr
= force_reg (GET_MODE (addr
), addr
);
1678 x
= replace_equiv_address (x
, addr
, true);
1683 emit_insn_before (seq
, insn
);
1688 new_rtx
= instantiate_new_reg (x
, &offset
);
1689 if (new_rtx
== NULL
)
1691 if (known_eq (offset
, 0))
1697 /* Careful, special mode predicates may have stuff in
1698 insn_data[insn_code].operand[i].mode that isn't useful
1699 to us for computing a new value. */
1700 /* ??? Recognize address_operand and/or "p" constraints
1701 to see if (plus new offset) is a valid before we put
1702 this through expand_simple_binop. */
1703 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new_rtx
,
1704 gen_int_mode (offset
, GET_MODE (x
)),
1705 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1708 emit_insn_before (seq
, insn
);
1713 new_rtx
= instantiate_new_reg (SUBREG_REG (x
), &offset
);
1714 if (new_rtx
== NULL
)
1716 if (maybe_ne (offset
, 0))
1719 new_rtx
= expand_simple_binop
1720 (GET_MODE (new_rtx
), PLUS
, new_rtx
,
1721 gen_int_mode (offset
, GET_MODE (new_rtx
)),
1722 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1725 emit_insn_before (seq
, insn
);
1727 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new_rtx
,
1728 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
1736 /* At this point, X contains the new value for the operand.
1737 Validate the new value vs the insn predicate. Note that
1738 asm insns will have insn_code -1 here. */
1739 if (!safe_insn_predicate (insn_code
, i
, x
))
1744 gcc_assert (REGNO (x
) <= LAST_VIRTUAL_REGISTER
);
1745 x
= copy_to_reg (x
);
1748 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1752 emit_insn_before (seq
, insn
);
1755 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1761 /* Propagate operand changes into the duplicates. */
1762 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1763 *recog_data
.dup_loc
[i
]
1764 = copy_rtx (recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]]);
1766 /* Force re-recognition of the instruction for validation. */
1767 INSN_CODE (insn
) = -1;
1770 if (asm_noperands (PATTERN (insn
)) >= 0)
1772 if (!check_asm_operands (PATTERN (insn
)))
1774 error_for_asm (insn
, "impossible constraint in %<asm%>");
1775 /* For asm goto, instead of fixing up all the edges
1776 just clear the template and clear input operands
1777 (asm goto doesn't have any output operands). */
1780 rtx asm_op
= extract_asm_operands (PATTERN (insn
));
1781 ASM_OPERANDS_TEMPLATE (asm_op
) = ggc_strdup ("");
1782 ASM_OPERANDS_INPUT_VEC (asm_op
) = rtvec_alloc (0);
1783 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op
) = rtvec_alloc (0);
1791 if (recog_memoized (insn
) < 0)
1792 fatal_insn_not_found (insn
);
1796 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1797 do any instantiation required. */
1800 instantiate_decl_rtl (rtx x
)
1807 /* If this is a CONCAT, recurse for the pieces. */
1808 if (GET_CODE (x
) == CONCAT
)
1810 instantiate_decl_rtl (XEXP (x
, 0));
1811 instantiate_decl_rtl (XEXP (x
, 1));
1815 /* If this is not a MEM, no need to do anything. Similarly if the
1816 address is a constant or a register that is not a virtual register. */
1821 if (CONSTANT_P (addr
)
1823 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
1824 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
1827 instantiate_virtual_regs_in_rtx (&XEXP (x
, 0));
1830 /* Helper for instantiate_decls called via walk_tree: Process all decls
1831 in the given DECL_VALUE_EXPR. */
1834 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1842 if (DECL_RTL_SET_P (t
))
1843 instantiate_decl_rtl (DECL_RTL (t
));
1844 if (TREE_CODE (t
) == PARM_DECL
&& DECL_NAMELESS (t
)
1845 && DECL_INCOMING_RTL (t
))
1846 instantiate_decl_rtl (DECL_INCOMING_RTL (t
));
1847 if ((VAR_P (t
) || TREE_CODE (t
) == RESULT_DECL
)
1848 && DECL_HAS_VALUE_EXPR_P (t
))
1850 tree v
= DECL_VALUE_EXPR (t
);
1851 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1858 /* Subroutine of instantiate_decls: Process all decls in the given
1859 BLOCK node and all its subblocks. */
1862 instantiate_decls_1 (tree let
)
1866 for (t
= BLOCK_VARS (let
); t
; t
= DECL_CHAIN (t
))
1868 if (DECL_RTL_SET_P (t
))
1869 instantiate_decl_rtl (DECL_RTL (t
));
1870 if (VAR_P (t
) && DECL_HAS_VALUE_EXPR_P (t
))
1872 tree v
= DECL_VALUE_EXPR (t
);
1873 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1877 /* Process all subblocks. */
1878 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= BLOCK_CHAIN (t
))
1879 instantiate_decls_1 (t
);
1882 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1883 all virtual registers in their DECL_RTL's. */
1886 instantiate_decls (tree fndecl
)
1891 /* Process all parameters of the function. */
1892 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= DECL_CHAIN (decl
))
1894 instantiate_decl_rtl (DECL_RTL (decl
));
1895 instantiate_decl_rtl (DECL_INCOMING_RTL (decl
));
1896 if (DECL_HAS_VALUE_EXPR_P (decl
))
1898 tree v
= DECL_VALUE_EXPR (decl
);
1899 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1903 if ((decl
= DECL_RESULT (fndecl
))
1904 && TREE_CODE (decl
) == RESULT_DECL
)
1906 if (DECL_RTL_SET_P (decl
))
1907 instantiate_decl_rtl (DECL_RTL (decl
));
1908 if (DECL_HAS_VALUE_EXPR_P (decl
))
1910 tree v
= DECL_VALUE_EXPR (decl
);
1911 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1915 /* Process the saved static chain if it exists. */
1916 decl
= DECL_STRUCT_FUNCTION (fndecl
)->static_chain_decl
;
1917 if (decl
&& DECL_HAS_VALUE_EXPR_P (decl
))
1918 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl
)));
1920 /* Now process all variables defined in the function or its subblocks. */
1921 if (DECL_INITIAL (fndecl
))
1922 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1924 FOR_EACH_LOCAL_DECL (cfun
, ix
, decl
)
1925 if (DECL_RTL_SET_P (decl
))
1926 instantiate_decl_rtl (DECL_RTL (decl
));
1927 vec_free (cfun
->local_decls
);
1930 /* Pass through the INSNS of function FNDECL and convert virtual register
1931 references to hard register references. */
1934 instantiate_virtual_regs (void)
1938 /* Compute the offsets to use for this function. */
1939 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1940 var_offset
= targetm
.starting_frame_offset ();
1941 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1942 out_arg_offset
= STACK_POINTER_OFFSET
;
1943 #ifdef FRAME_POINTER_CFA_OFFSET
1944 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1946 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1949 /* Initialize recognition, indicating that volatile is OK. */
1952 /* Scan through all the insns, instantiating every virtual register still
1954 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1957 /* These patterns in the instruction stream can never be recognized.
1958 Fortunately, they shouldn't contain virtual registers either. */
1959 if (GET_CODE (PATTERN (insn
)) == USE
1960 || GET_CODE (PATTERN (insn
)) == CLOBBER
1961 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
1962 || DEBUG_MARKER_INSN_P (insn
))
1964 else if (DEBUG_BIND_INSN_P (insn
))
1965 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn
));
1967 instantiate_virtual_regs_in_insn (insn
);
1969 if (insn
->deleted ())
1972 instantiate_virtual_regs_in_rtx (®_NOTES (insn
));
1974 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1976 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn
));
1979 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1980 instantiate_decls (current_function_decl
);
1982 targetm
.instantiate_decls ();
1984 /* Indicate that, from now on, assign_stack_local should use
1985 frame_pointer_rtx. */
1986 virtuals_instantiated
= 1;
1993 const pass_data pass_data_instantiate_virtual_regs
=
1995 RTL_PASS
, /* type */
1997 OPTGROUP_NONE
, /* optinfo_flags */
1998 TV_NONE
, /* tv_id */
1999 0, /* properties_required */
2000 0, /* properties_provided */
2001 0, /* properties_destroyed */
2002 0, /* todo_flags_start */
2003 0, /* todo_flags_finish */
2006 class pass_instantiate_virtual_regs
: public rtl_opt_pass
2009 pass_instantiate_virtual_regs (gcc::context
*ctxt
)
2010 : rtl_opt_pass (pass_data_instantiate_virtual_regs
, ctxt
)
2013 /* opt_pass methods: */
2014 virtual unsigned int execute (function
*)
2016 return instantiate_virtual_regs ();
2019 }; // class pass_instantiate_virtual_regs
2024 make_pass_instantiate_virtual_regs (gcc::context
*ctxt
)
2026 return new pass_instantiate_virtual_regs (ctxt
);
2030 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2031 This means a type for which function calls must pass an address to the
2032 function or get an address back from the function.
2033 EXP may be a type node or an expression (whose type is tested). */
2036 aggregate_value_p (const_tree exp
, const_tree fntype
)
2038 const_tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
2039 int i
, regno
, nregs
;
2043 switch (TREE_CODE (fntype
))
2047 tree fndecl
= get_callee_fndecl (fntype
);
2049 fntype
= TREE_TYPE (fndecl
);
2050 else if (CALL_EXPR_FN (fntype
))
2051 fntype
= TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype
)));
2053 /* For internal functions, assume nothing needs to be
2054 returned in memory. */
2059 fntype
= TREE_TYPE (fntype
);
2064 case IDENTIFIER_NODE
:
2068 /* We don't expect other tree types here. */
2072 if (VOID_TYPE_P (type
))
2075 /* If a record should be passed the same as its first (and only) member
2076 don't pass it as an aggregate. */
2077 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2078 return aggregate_value_p (first_field (type
), fntype
);
2080 /* If the front end has decided that this needs to be passed by
2081 reference, do so. */
2082 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
2083 && DECL_BY_REFERENCE (exp
))
2086 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2087 if (fntype
&& TREE_ADDRESSABLE (fntype
))
2090 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2091 and thus can't be returned in registers. */
2092 if (TREE_ADDRESSABLE (type
))
2095 if (TYPE_EMPTY_P (type
))
2098 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
2101 if (targetm
.calls
.return_in_memory (type
, fntype
))
2104 /* Make sure we have suitable call-clobbered regs to return
2105 the value in; if not, we must return it in memory. */
2106 reg
= hard_function_value (type
, 0, fntype
, 0);
2108 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2113 regno
= REGNO (reg
);
2114 nregs
= hard_regno_nregs (regno
, TYPE_MODE (type
));
2115 for (i
= 0; i
< nregs
; i
++)
2116 if (! call_used_regs
[regno
+ i
])
2122 /* Return true if we should assign DECL a pseudo register; false if it
2123 should live on the local stack. */
2126 use_register_for_decl (const_tree decl
)
2128 if (TREE_CODE (decl
) == SSA_NAME
)
2130 /* We often try to use the SSA_NAME, instead of its underlying
2131 decl, to get type information and guide decisions, to avoid
2132 differences of behavior between anonymous and named
2133 variables, but in this one case we have to go for the actual
2134 variable if there is one. The main reason is that, at least
2135 at -O0, we want to place user variables on the stack, but we
2136 don't mind using pseudos for anonymous or ignored temps.
2137 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2138 should go in pseudos, whereas their corresponding variables
2139 might have to go on the stack. So, disregarding the decl
2140 here would negatively impact debug info at -O0, enable
2141 coalescing between SSA_NAMEs that ought to get different
2142 stack/pseudo assignments, and get the incoming argument
2143 processing thoroughly confused by PARM_DECLs expected to live
2144 in stack slots but assigned to pseudos. */
2145 if (!SSA_NAME_VAR (decl
))
2146 return TYPE_MODE (TREE_TYPE (decl
)) != BLKmode
2147 && !(flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)));
2149 decl
= SSA_NAME_VAR (decl
);
2152 /* Honor volatile. */
2153 if (TREE_SIDE_EFFECTS (decl
))
2156 /* Honor addressability. */
2157 if (TREE_ADDRESSABLE (decl
))
2160 /* RESULT_DECLs are a bit special in that they're assigned without
2161 regard to use_register_for_decl, but we generally only store in
2162 them. If we coalesce their SSA NAMEs, we'd better return a
2163 result that matches the assignment in expand_function_start. */
2164 if (TREE_CODE (decl
) == RESULT_DECL
)
2166 /* If it's not an aggregate, we're going to use a REG or a
2167 PARALLEL containing a REG. */
2168 if (!aggregate_value_p (decl
, current_function_decl
))
2171 /* If expand_function_start determines the return value, we'll
2172 use MEM if it's not by reference. */
2173 if (cfun
->returns_pcc_struct
2174 || (targetm
.calls
.struct_value_rtx
2175 (TREE_TYPE (current_function_decl
), 1)))
2176 return DECL_BY_REFERENCE (decl
);
2178 /* Otherwise, we're taking an extra all.function_result_decl
2179 argument. It's set up in assign_parms_augmented_arg_list,
2180 under the (negated) conditions above, and then it's used to
2181 set up the RESULT_DECL rtl in assign_params, after looping
2182 over all parameters. Now, if the RESULT_DECL is not by
2183 reference, we'll use a MEM either way. */
2184 if (!DECL_BY_REFERENCE (decl
))
2187 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2188 the function_result_decl's assignment. Since it's a pointer,
2189 we can short-circuit a number of the tests below, and we must
2190 duplicat e them because we don't have the
2191 function_result_decl to test. */
2192 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2194 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2197 /* We don't set DECL_REGISTER for the function_result_decl. */
2201 /* Decl is implicitly addressible by bound stores and loads
2202 if it is an aggregate holding bounds. */
2203 if (chkp_function_instrumented_p (current_function_decl
)
2205 && !BOUNDED_P (decl
)
2206 && chkp_type_has_pointer (TREE_TYPE (decl
)))
2209 /* Only register-like things go in registers. */
2210 if (DECL_MODE (decl
) == BLKmode
)
2213 /* If -ffloat-store specified, don't put explicit float variables
2215 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2216 propagates values across these stores, and it probably shouldn't. */
2217 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
2220 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2223 /* If we're not interested in tracking debugging information for
2224 this decl, then we can certainly put it in a register. */
2225 if (DECL_IGNORED_P (decl
))
2231 if (!DECL_REGISTER (decl
))
2234 /* When not optimizing, disregard register keyword for types that
2235 could have methods, otherwise the methods won't be callable from
2237 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl
)))
2243 /* Structures to communicate between the subroutines of assign_parms.
2244 The first holds data persistent across all parameters, the second
2245 is cleared out for each parameter. */
2247 struct assign_parm_data_all
2249 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2250 should become a job of the target or otherwise encapsulated. */
2251 CUMULATIVE_ARGS args_so_far_v
;
2252 cumulative_args_t args_so_far
;
2253 struct args_size stack_args_size
;
2254 tree function_result_decl
;
2256 rtx_insn
*first_conversion_insn
;
2257 rtx_insn
*last_conversion_insn
;
2258 HOST_WIDE_INT pretend_args_size
;
2259 HOST_WIDE_INT extra_pretend_bytes
;
2260 int reg_parm_stack_space
;
2263 struct assign_parm_data_one
2269 machine_mode nominal_mode
;
2270 machine_mode passed_mode
;
2271 machine_mode promoted_mode
;
2272 struct locate_and_pad_arg_data locate
;
2274 BOOL_BITFIELD named_arg
: 1;
2275 BOOL_BITFIELD passed_pointer
: 1;
2276 BOOL_BITFIELD on_stack
: 1;
2277 BOOL_BITFIELD loaded_in_reg
: 1;
2280 struct bounds_parm_data
2282 assign_parm_data_one parm_data
;
2289 /* A subroutine of assign_parms. Initialize ALL. */
2292 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
2294 tree fntype ATTRIBUTE_UNUSED
;
2296 memset (all
, 0, sizeof (*all
));
2298 fntype
= TREE_TYPE (current_function_decl
);
2300 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2301 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
);
2303 INIT_CUMULATIVE_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
,
2304 current_function_decl
, -1);
2306 all
->args_so_far
= pack_cumulative_args (&all
->args_so_far_v
);
2308 #ifdef INCOMING_REG_PARM_STACK_SPACE
2309 all
->reg_parm_stack_space
2310 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl
);
2314 /* If ARGS contains entries with complex types, split the entry into two
2315 entries of the component type. Return a new list of substitutions are
2316 needed, else the old list. */
2319 split_complex_args (vec
<tree
> *args
)
2324 FOR_EACH_VEC_ELT (*args
, i
, p
)
2326 tree type
= TREE_TYPE (p
);
2327 if (TREE_CODE (type
) == COMPLEX_TYPE
2328 && targetm
.calls
.split_complex_arg (type
))
2331 tree subtype
= TREE_TYPE (type
);
2332 bool addressable
= TREE_ADDRESSABLE (p
);
2334 /* Rewrite the PARM_DECL's type with its component. */
2336 TREE_TYPE (p
) = subtype
;
2337 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
2338 SET_DECL_MODE (p
, VOIDmode
);
2339 DECL_SIZE (p
) = NULL
;
2340 DECL_SIZE_UNIT (p
) = NULL
;
2341 /* If this arg must go in memory, put it in a pseudo here.
2342 We can't allow it to go in memory as per normal parms,
2343 because the usual place might not have the imag part
2344 adjacent to the real part. */
2345 DECL_ARTIFICIAL (p
) = addressable
;
2346 DECL_IGNORED_P (p
) = addressable
;
2347 TREE_ADDRESSABLE (p
) = 0;
2351 /* Build a second synthetic decl. */
2352 decl
= build_decl (EXPR_LOCATION (p
),
2353 PARM_DECL
, NULL_TREE
, subtype
);
2354 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
2355 DECL_ARTIFICIAL (decl
) = addressable
;
2356 DECL_IGNORED_P (decl
) = addressable
;
2357 layout_decl (decl
, 0);
2358 args
->safe_insert (++i
, decl
);
2363 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2364 the hidden struct return argument, and (abi willing) complex args.
2365 Return the new parameter list. */
2368 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
2370 tree fndecl
= current_function_decl
;
2371 tree fntype
= TREE_TYPE (fndecl
);
2372 vec
<tree
> fnargs
= vNULL
;
2375 for (arg
= DECL_ARGUMENTS (fndecl
); arg
; arg
= DECL_CHAIN (arg
))
2376 fnargs
.safe_push (arg
);
2378 all
->orig_fnargs
= DECL_ARGUMENTS (fndecl
);
2380 /* If struct value address is treated as the first argument, make it so. */
2381 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
2382 && ! cfun
->returns_pcc_struct
2383 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2385 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2388 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2389 PARM_DECL
, get_identifier (".result_ptr"), type
);
2390 DECL_ARG_TYPE (decl
) = type
;
2391 DECL_ARTIFICIAL (decl
) = 1;
2392 DECL_NAMELESS (decl
) = 1;
2393 TREE_CONSTANT (decl
) = 1;
2394 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2395 changes, the end of the RESULT_DECL handling block in
2396 use_register_for_decl must be adjusted to match. */
2398 DECL_CHAIN (decl
) = all
->orig_fnargs
;
2399 all
->orig_fnargs
= decl
;
2400 fnargs
.safe_insert (0, decl
);
2402 all
->function_result_decl
= decl
;
2404 /* If function is instrumented then bounds of the
2405 passed structure address is the second argument. */
2406 if (chkp_function_instrumented_p (fndecl
))
2408 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2409 PARM_DECL
, get_identifier (".result_bnd"),
2410 pointer_bounds_type_node
);
2411 DECL_ARG_TYPE (decl
) = pointer_bounds_type_node
;
2412 DECL_ARTIFICIAL (decl
) = 1;
2413 DECL_NAMELESS (decl
) = 1;
2414 TREE_CONSTANT (decl
) = 1;
2416 DECL_CHAIN (decl
) = DECL_CHAIN (all
->orig_fnargs
);
2417 DECL_CHAIN (all
->orig_fnargs
) = decl
;
2418 fnargs
.safe_insert (1, decl
);
2422 /* If the target wants to split complex arguments into scalars, do so. */
2423 if (targetm
.calls
.split_complex_arg
)
2424 split_complex_args (&fnargs
);
2429 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2430 data for the parameter. Incorporate ABI specifics such as pass-by-
2431 reference and type promotion. */
2434 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2435 struct assign_parm_data_one
*data
)
2437 tree nominal_type
, passed_type
;
2438 machine_mode nominal_mode
, passed_mode
, promoted_mode
;
2441 memset (data
, 0, sizeof (*data
));
2443 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2445 data
->named_arg
= 1; /* No variadic parms. */
2446 else if (DECL_CHAIN (parm
))
2447 data
->named_arg
= 1; /* Not the last non-variadic parm. */
2448 else if (targetm
.calls
.strict_argument_naming (all
->args_so_far
))
2449 data
->named_arg
= 1; /* Only variadic ones are unnamed. */
2451 data
->named_arg
= 0; /* Treat as variadic. */
2453 nominal_type
= TREE_TYPE (parm
);
2454 passed_type
= DECL_ARG_TYPE (parm
);
2456 /* Look out for errors propagating this far. Also, if the parameter's
2457 type is void then its value doesn't matter. */
2458 if (TREE_TYPE (parm
) == error_mark_node
2459 /* This can happen after weird syntax errors
2460 or if an enum type is defined among the parms. */
2461 || TREE_CODE (parm
) != PARM_DECL
2462 || passed_type
== NULL
2463 || VOID_TYPE_P (nominal_type
))
2465 nominal_type
= passed_type
= void_type_node
;
2466 nominal_mode
= passed_mode
= promoted_mode
= VOIDmode
;
2470 /* Find mode of arg as it is passed, and mode of arg as it should be
2471 during execution of this function. */
2472 passed_mode
= TYPE_MODE (passed_type
);
2473 nominal_mode
= TYPE_MODE (nominal_type
);
2475 /* If the parm is to be passed as a transparent union or record, use the
2476 type of the first field for the tests below. We have already verified
2477 that the modes are the same. */
2478 if ((TREE_CODE (passed_type
) == UNION_TYPE
2479 || TREE_CODE (passed_type
) == RECORD_TYPE
)
2480 && TYPE_TRANSPARENT_AGGR (passed_type
))
2481 passed_type
= TREE_TYPE (first_field (passed_type
));
2483 /* See if this arg was passed by invisible reference. */
2484 if (pass_by_reference (&all
->args_so_far_v
, passed_mode
,
2485 passed_type
, data
->named_arg
))
2487 passed_type
= nominal_type
= build_pointer_type (passed_type
);
2488 data
->passed_pointer
= true;
2489 passed_mode
= nominal_mode
= TYPE_MODE (nominal_type
);
2492 /* Find mode as it is passed by the ABI. */
2493 unsignedp
= TYPE_UNSIGNED (passed_type
);
2494 promoted_mode
= promote_function_mode (passed_type
, passed_mode
, &unsignedp
,
2495 TREE_TYPE (current_function_decl
), 0);
2498 data
->nominal_type
= nominal_type
;
2499 data
->passed_type
= passed_type
;
2500 data
->nominal_mode
= nominal_mode
;
2501 data
->passed_mode
= passed_mode
;
2502 data
->promoted_mode
= promoted_mode
;
2505 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2508 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2509 struct assign_parm_data_one
*data
, bool no_rtl
)
2511 int varargs_pretend_bytes
= 0;
2513 targetm
.calls
.setup_incoming_varargs (all
->args_so_far
,
2514 data
->promoted_mode
,
2516 &varargs_pretend_bytes
, no_rtl
);
2518 /* If the back-end has requested extra stack space, record how much is
2519 needed. Do not change pretend_args_size otherwise since it may be
2520 nonzero from an earlier partial argument. */
2521 if (varargs_pretend_bytes
> 0)
2522 all
->pretend_args_size
= varargs_pretend_bytes
;
2525 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2526 the incoming location of the current parameter. */
2529 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2530 struct assign_parm_data_one
*data
)
2532 HOST_WIDE_INT pretend_bytes
= 0;
2536 if (data
->promoted_mode
== VOIDmode
)
2538 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2542 targetm
.calls
.warn_parameter_passing_abi (all
->args_so_far
,
2545 entry_parm
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2546 data
->promoted_mode
,
2550 if (entry_parm
== 0)
2551 data
->promoted_mode
= data
->passed_mode
;
2553 /* Determine parm's home in the stack, in case it arrives in the stack
2554 or we should pretend it did. Compute the stack position and rtx where
2555 the argument arrives and its size.
2557 There is one complexity here: If this was a parameter that would
2558 have been passed in registers, but wasn't only because it is
2559 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2560 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2561 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2562 as it was the previous time. */
2563 in_regs
= (entry_parm
!= 0) || POINTER_BOUNDS_TYPE_P (data
->passed_type
);
2564 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2567 if (!in_regs
&& !data
->named_arg
)
2569 if (targetm
.calls
.pretend_outgoing_varargs_named (all
->args_so_far
))
2572 tem
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2573 data
->promoted_mode
,
2574 data
->passed_type
, true);
2575 in_regs
= tem
!= NULL
;
2579 /* If this parameter was passed both in registers and in the stack, use
2580 the copy on the stack. */
2581 if (targetm
.calls
.must_pass_in_stack (data
->promoted_mode
,
2589 partial
= targetm
.calls
.arg_partial_bytes (all
->args_so_far
,
2590 data
->promoted_mode
,
2593 data
->partial
= partial
;
2595 /* The caller might already have allocated stack space for the
2596 register parameters. */
2597 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2599 /* Part of this argument is passed in registers and part
2600 is passed on the stack. Ask the prologue code to extend
2601 the stack part so that we can recreate the full value.
2603 PRETEND_BYTES is the size of the registers we need to store.
2604 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2605 stack space that the prologue should allocate.
2607 Internally, gcc assumes that the argument pointer is aligned
2608 to STACK_BOUNDARY bits. This is used both for alignment
2609 optimizations (see init_emit) and to locate arguments that are
2610 aligned to more than PARM_BOUNDARY bits. We must preserve this
2611 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2612 a stack boundary. */
2614 /* We assume at most one partial arg, and it must be the first
2615 argument on the stack. */
2616 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2618 pretend_bytes
= partial
;
2619 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2621 /* We want to align relative to the actual stack pointer, so
2622 don't include this in the stack size until later. */
2623 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2627 locate_and_pad_parm (data
->promoted_mode
, data
->passed_type
, in_regs
,
2628 all
->reg_parm_stack_space
,
2629 entry_parm
? data
->partial
: 0, current_function_decl
,
2630 &all
->stack_args_size
, &data
->locate
);
2632 /* Update parm_stack_boundary if this parameter is passed in the
2634 if (!in_regs
&& crtl
->parm_stack_boundary
< data
->locate
.boundary
)
2635 crtl
->parm_stack_boundary
= data
->locate
.boundary
;
2637 /* Adjust offsets to include the pretend args. */
2638 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2639 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2640 data
->locate
.offset
.constant
+= pretend_bytes
;
2642 data
->entry_parm
= entry_parm
;
2645 /* A subroutine of assign_parms. If there is actually space on the stack
2646 for this parm, count it in stack_args_size and return true. */
2649 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2650 struct assign_parm_data_one
*data
)
2652 /* Bounds are never passed on the stack to keep compatibility
2653 with not instrumented code. */
2654 if (POINTER_BOUNDS_TYPE_P (data
->passed_type
))
2656 /* Trivially true if we've no incoming register. */
2657 else if (data
->entry_parm
== NULL
)
2659 /* Also true if we're partially in registers and partially not,
2660 since we've arranged to drop the entire argument on the stack. */
2661 else if (data
->partial
!= 0)
2663 /* Also true if the target says that it's passed in both registers
2664 and on the stack. */
2665 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2666 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2668 /* Also true if the target says that there's stack allocated for
2669 all register parameters. */
2670 else if (all
->reg_parm_stack_space
> 0)
2672 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2676 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2677 if (data
->locate
.size
.var
)
2678 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2683 /* A subroutine of assign_parms. Given that this parameter is allocated
2684 stack space by the ABI, find it. */
2687 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2689 rtx offset_rtx
, stack_parm
;
2690 unsigned int align
, boundary
;
2692 /* If we're passing this arg using a reg, make its stack home the
2693 aligned stack slot. */
2694 if (data
->entry_parm
)
2695 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2697 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2699 stack_parm
= crtl
->args
.internal_arg_pointer
;
2700 if (offset_rtx
!= const0_rtx
)
2701 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2702 stack_parm
= gen_rtx_MEM (data
->promoted_mode
, stack_parm
);
2704 if (!data
->passed_pointer
)
2706 set_mem_attributes (stack_parm
, parm
, 1);
2707 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2708 while promoted mode's size is needed. */
2709 if (data
->promoted_mode
!= BLKmode
2710 && data
->promoted_mode
!= DECL_MODE (parm
))
2712 set_mem_size (stack_parm
, GET_MODE_SIZE (data
->promoted_mode
));
2713 if (MEM_EXPR (stack_parm
) && MEM_OFFSET_KNOWN_P (stack_parm
))
2715 poly_int64 offset
= subreg_lowpart_offset (DECL_MODE (parm
),
2716 data
->promoted_mode
);
2717 if (maybe_ne (offset
, 0))
2718 set_mem_offset (stack_parm
, MEM_OFFSET (stack_parm
) - offset
);
2723 boundary
= data
->locate
.boundary
;
2724 align
= BITS_PER_UNIT
;
2726 /* If we're padding upward, we know that the alignment of the slot
2727 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2728 intentionally forcing upward padding. Otherwise we have to come
2729 up with a guess at the alignment based on OFFSET_RTX. */
2731 if (data
->locate
.where_pad
!= PAD_DOWNWARD
|| data
->entry_parm
)
2733 else if (poly_int_rtx_p (offset_rtx
, &offset
))
2735 align
= least_bit_hwi (boundary
);
2736 unsigned int offset_align
= known_alignment (offset
) * BITS_PER_UNIT
;
2737 if (offset_align
!= 0)
2738 align
= MIN (align
, offset_align
);
2740 set_mem_align (stack_parm
, align
);
2742 if (data
->entry_parm
)
2743 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2745 data
->stack_parm
= stack_parm
;
2748 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2749 always valid and contiguous. */
2752 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2754 rtx entry_parm
= data
->entry_parm
;
2755 rtx stack_parm
= data
->stack_parm
;
2757 /* If this parm was passed part in regs and part in memory, pretend it
2758 arrived entirely in memory by pushing the register-part onto the stack.
2759 In the special case of a DImode or DFmode that is split, we could put
2760 it together in a pseudoreg directly, but for now that's not worth
2762 if (data
->partial
!= 0)
2764 /* Handle calls that pass values in multiple non-contiguous
2765 locations. The Irix 6 ABI has examples of this. */
2766 if (GET_CODE (entry_parm
) == PARALLEL
)
2767 emit_group_store (validize_mem (copy_rtx (stack_parm
)), entry_parm
,
2769 int_size_in_bytes (data
->passed_type
));
2772 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2773 move_block_from_reg (REGNO (entry_parm
),
2774 validize_mem (copy_rtx (stack_parm
)),
2775 data
->partial
/ UNITS_PER_WORD
);
2778 entry_parm
= stack_parm
;
2781 /* If we didn't decide this parm came in a register, by default it came
2783 else if (entry_parm
== NULL
)
2784 entry_parm
= stack_parm
;
2786 /* When an argument is passed in multiple locations, we can't make use
2787 of this information, but we can save some copying if the whole argument
2788 is passed in a single register. */
2789 else if (GET_CODE (entry_parm
) == PARALLEL
2790 && data
->nominal_mode
!= BLKmode
2791 && data
->passed_mode
!= BLKmode
)
2793 size_t i
, len
= XVECLEN (entry_parm
, 0);
2795 for (i
= 0; i
< len
; i
++)
2796 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2797 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2798 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2799 == data
->passed_mode
)
2800 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2802 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2807 data
->entry_parm
= entry_parm
;
2810 /* A subroutine of assign_parms. Reconstitute any values which were
2811 passed in multiple registers and would fit in a single register. */
2814 assign_parm_remove_parallels (struct assign_parm_data_one
*data
)
2816 rtx entry_parm
= data
->entry_parm
;
2818 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2819 This can be done with register operations rather than on the
2820 stack, even if we will store the reconstituted parameter on the
2822 if (GET_CODE (entry_parm
) == PARALLEL
&& GET_MODE (entry_parm
) != BLKmode
)
2824 rtx parmreg
= gen_reg_rtx (GET_MODE (entry_parm
));
2825 emit_group_store (parmreg
, entry_parm
, data
->passed_type
,
2826 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2827 entry_parm
= parmreg
;
2830 data
->entry_parm
= entry_parm
;
2833 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2834 always valid and properly aligned. */
2837 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2839 rtx stack_parm
= data
->stack_parm
;
2841 /* If we can't trust the parm stack slot to be aligned enough for its
2842 ultimate type, don't use that slot after entry. We'll make another
2843 stack slot, if we need one. */
2845 && ((STRICT_ALIGNMENT
2846 && GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
))
2847 || (data
->nominal_type
2848 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2849 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2852 /* If parm was passed in memory, and we need to convert it on entry,
2853 don't store it back in that same slot. */
2854 else if (data
->entry_parm
== stack_parm
2855 && data
->nominal_mode
!= BLKmode
2856 && data
->nominal_mode
!= data
->passed_mode
)
2859 /* If stack protection is in effect for this function, don't leave any
2860 pointers in their passed stack slots. */
2861 else if (crtl
->stack_protect_guard
2862 && (flag_stack_protect
== 2
2863 || data
->passed_pointer
2864 || POINTER_TYPE_P (data
->nominal_type
)))
2867 data
->stack_parm
= stack_parm
;
2870 /* A subroutine of assign_parms. Return true if the current parameter
2871 should be stored as a BLKmode in the current frame. */
2874 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2876 if (data
->nominal_mode
== BLKmode
)
2878 if (GET_MODE (data
->entry_parm
) == BLKmode
)
2881 #ifdef BLOCK_REG_PADDING
2882 /* Only assign_parm_setup_block knows how to deal with register arguments
2883 that are padded at the least significant end. */
2884 if (REG_P (data
->entry_parm
)
2885 && GET_MODE_SIZE (data
->promoted_mode
) < UNITS_PER_WORD
2886 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->passed_type
, 1)
2887 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)))
2894 /* A subroutine of assign_parms. Arrange for the parameter to be
2895 present and valid in DATA->STACK_RTL. */
2898 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2899 tree parm
, struct assign_parm_data_one
*data
)
2901 rtx entry_parm
= data
->entry_parm
;
2902 rtx stack_parm
= data
->stack_parm
;
2903 rtx target_reg
= NULL_RTX
;
2904 bool in_conversion_seq
= false;
2906 HOST_WIDE_INT size_stored
;
2908 if (GET_CODE (entry_parm
) == PARALLEL
)
2909 entry_parm
= emit_group_move_into_temps (entry_parm
);
2911 /* If we want the parameter in a pseudo, don't use a stack slot. */
2912 if (is_gimple_reg (parm
) && use_register_for_decl (parm
))
2914 tree def
= ssa_default_def (cfun
, parm
);
2916 machine_mode mode
= promote_ssa_mode (def
, NULL
);
2917 rtx reg
= gen_reg_rtx (mode
);
2918 if (GET_CODE (reg
) != CONCAT
)
2923 /* Avoid allocating a stack slot, if there isn't one
2924 preallocated by the ABI. It might seem like we should
2925 always prefer a pseudo, but converting between
2926 floating-point and integer modes goes through the stack
2927 on various machines, so it's better to use the reserved
2928 stack slot than to risk wasting it and allocating more
2929 for the conversion. */
2930 if (stack_parm
== NULL_RTX
)
2932 int save
= generating_concat_p
;
2933 generating_concat_p
= 0;
2934 stack_parm
= gen_reg_rtx (mode
);
2935 generating_concat_p
= save
;
2938 data
->stack_parm
= NULL
;
2941 size
= int_size_in_bytes (data
->passed_type
);
2942 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2943 if (stack_parm
== 0)
2945 SET_DECL_ALIGN (parm
, MAX (DECL_ALIGN (parm
), BITS_PER_WORD
));
2946 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2948 if (GET_MODE_SIZE (GET_MODE (entry_parm
)) == size
)
2949 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2950 set_mem_attributes (stack_parm
, parm
, 1);
2953 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2954 calls that pass values in multiple non-contiguous locations. */
2955 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2959 /* Note that we will be storing an integral number of words.
2960 So we have to be careful to ensure that we allocate an
2961 integral number of words. We do this above when we call
2962 assign_stack_local if space was not allocated in the argument
2963 list. If it was, this will not work if PARM_BOUNDARY is not
2964 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2965 if it becomes a problem. Exception is when BLKmode arrives
2966 with arguments not conforming to word_mode. */
2968 if (data
->stack_parm
== 0)
2970 else if (GET_CODE (entry_parm
) == PARALLEL
)
2973 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2975 mem
= validize_mem (copy_rtx (stack_parm
));
2977 /* Handle values in multiple non-contiguous locations. */
2978 if (GET_CODE (entry_parm
) == PARALLEL
&& !MEM_P (mem
))
2979 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2980 else if (GET_CODE (entry_parm
) == PARALLEL
)
2982 push_to_sequence2 (all
->first_conversion_insn
,
2983 all
->last_conversion_insn
);
2984 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2985 all
->first_conversion_insn
= get_insns ();
2986 all
->last_conversion_insn
= get_last_insn ();
2988 in_conversion_seq
= true;
2994 /* If SIZE is that of a mode no bigger than a word, just use
2995 that mode's store operation. */
2996 else if (size
<= UNITS_PER_WORD
)
2998 unsigned int bits
= size
* BITS_PER_UNIT
;
2999 machine_mode mode
= int_mode_for_size (bits
, 0).else_blk ();
3002 #ifdef BLOCK_REG_PADDING
3003 && (size
== UNITS_PER_WORD
3004 || (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
3005 != (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)))
3011 /* We are really truncating a word_mode value containing
3012 SIZE bytes into a value of mode MODE. If such an
3013 operation requires no actual instructions, we can refer
3014 to the value directly in mode MODE, otherwise we must
3015 start with the register in word_mode and explicitly
3017 if (targetm
.truly_noop_truncation (size
* BITS_PER_UNIT
,
3019 reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
3022 reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3023 reg
= convert_to_mode (mode
, copy_to_reg (reg
), 1);
3025 emit_move_insn (change_address (mem
, mode
, 0), reg
);
3028 #ifdef BLOCK_REG_PADDING
3029 /* Storing the register in memory as a full word, as
3030 move_block_from_reg below would do, and then using the
3031 MEM in a smaller mode, has the effect of shifting right
3032 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3033 shifting must be explicit. */
3034 else if (!MEM_P (mem
))
3038 /* If the assert below fails, we should have taken the
3039 mode != BLKmode path above, unless we have downward
3040 padding of smaller-than-word arguments on a machine
3041 with little-endian bytes, which would likely require
3042 additional changes to work correctly. */
3043 gcc_checking_assert (BYTES_BIG_ENDIAN
3044 && (BLOCK_REG_PADDING (mode
,
3045 data
->passed_type
, 1)
3048 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3050 x
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3051 x
= expand_shift (RSHIFT_EXPR
, word_mode
, x
, by
,
3053 x
= force_reg (word_mode
, x
);
3054 x
= gen_lowpart_SUBREG (GET_MODE (mem
), x
);
3056 emit_move_insn (mem
, x
);
3060 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3061 machine must be aligned to the left before storing
3062 to memory. Note that the previous test doesn't
3063 handle all cases (e.g. SIZE == 3). */
3064 else if (size
!= UNITS_PER_WORD
3065 #ifdef BLOCK_REG_PADDING
3066 && (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
3074 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3075 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3077 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
, by
, NULL_RTX
, 1);
3078 tem
= change_address (mem
, word_mode
, 0);
3079 emit_move_insn (tem
, x
);
3082 move_block_from_reg (REGNO (entry_parm
), mem
,
3083 size_stored
/ UNITS_PER_WORD
);
3085 else if (!MEM_P (mem
))
3087 gcc_checking_assert (size
> UNITS_PER_WORD
);
3088 #ifdef BLOCK_REG_PADDING
3089 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem
),
3090 data
->passed_type
, 0)
3093 emit_move_insn (mem
, entry_parm
);
3096 move_block_from_reg (REGNO (entry_parm
), mem
,
3097 size_stored
/ UNITS_PER_WORD
);
3099 else if (data
->stack_parm
== 0)
3101 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3102 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
3104 all
->first_conversion_insn
= get_insns ();
3105 all
->last_conversion_insn
= get_last_insn ();
3107 in_conversion_seq
= true;
3112 if (!in_conversion_seq
)
3113 emit_move_insn (target_reg
, stack_parm
);
3116 push_to_sequence2 (all
->first_conversion_insn
,
3117 all
->last_conversion_insn
);
3118 emit_move_insn (target_reg
, stack_parm
);
3119 all
->first_conversion_insn
= get_insns ();
3120 all
->last_conversion_insn
= get_last_insn ();
3123 stack_parm
= target_reg
;
3126 data
->stack_parm
= stack_parm
;
3127 set_parm_rtl (parm
, stack_parm
);
3130 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3131 parameter. Get it there. Perform all ABI specified conversions. */
3134 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
3135 struct assign_parm_data_one
*data
)
3137 rtx parmreg
, validated_mem
;
3138 rtx equiv_stack_parm
;
3139 machine_mode promoted_nominal_mode
;
3140 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3141 bool did_conversion
= false;
3142 bool need_conversion
, moved
;
3145 /* Store the parm in a pseudoregister during the function, but we may
3146 need to do it in a wider mode. Using 2 here makes the result
3147 consistent with promote_decl_mode and thus expand_expr_real_1. */
3148 promoted_nominal_mode
3149 = promote_function_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
,
3150 TREE_TYPE (current_function_decl
), 2);
3152 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
3153 if (!DECL_ARTIFICIAL (parm
))
3154 mark_user_reg (parmreg
);
3156 /* If this was an item that we received a pointer to,
3157 set rtl appropriately. */
3158 if (data
->passed_pointer
)
3160 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->passed_type
)), parmreg
);
3161 set_mem_attributes (rtl
, parm
, 1);
3166 assign_parm_remove_parallels (data
);
3168 /* Copy the value into the register, thus bridging between
3169 assign_parm_find_data_types and expand_expr_real_1. */
3171 equiv_stack_parm
= data
->stack_parm
;
3172 validated_mem
= validize_mem (copy_rtx (data
->entry_parm
));
3174 need_conversion
= (data
->nominal_mode
!= data
->passed_mode
3175 || promoted_nominal_mode
!= data
->promoted_mode
);
3179 && GET_MODE_CLASS (data
->nominal_mode
) == MODE_INT
3180 && data
->nominal_mode
== data
->passed_mode
3181 && data
->nominal_mode
== GET_MODE (data
->entry_parm
))
3183 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3184 mode, by the caller. We now have to convert it to
3185 NOMINAL_MODE, if different. However, PARMREG may be in
3186 a different mode than NOMINAL_MODE if it is being stored
3189 If ENTRY_PARM is a hard register, it might be in a register
3190 not valid for operating in its mode (e.g., an odd-numbered
3191 register for a DFmode). In that case, moves are the only
3192 thing valid, so we can't do a convert from there. This
3193 occurs when the calling sequence allow such misaligned
3196 In addition, the conversion may involve a call, which could
3197 clobber parameters which haven't been copied to pseudo
3200 First, we try to emit an insn which performs the necessary
3201 conversion. We verify that this insn does not clobber any
3204 enum insn_code icode
;
3207 icode
= can_extend_p (promoted_nominal_mode
, data
->passed_mode
,
3211 op1
= validated_mem
;
3212 if (icode
!= CODE_FOR_nothing
3213 && insn_operand_matches (icode
, 0, op0
)
3214 && insn_operand_matches (icode
, 1, op1
))
3216 enum rtx_code code
= unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
;
3217 rtx_insn
*insn
, *insns
;
3219 HARD_REG_SET hardregs
;
3222 /* If op1 is a hard register that is likely spilled, first
3223 force it into a pseudo, otherwise combiner might extend
3224 its lifetime too much. */
3225 if (GET_CODE (t
) == SUBREG
)
3228 && HARD_REGISTER_P (t
)
3229 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (t
))
3230 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t
))))
3232 t
= gen_reg_rtx (GET_MODE (op1
));
3233 emit_move_insn (t
, op1
);
3237 rtx_insn
*pat
= gen_extend_insn (op0
, t
, promoted_nominal_mode
,
3238 data
->passed_mode
, unsignedp
);
3240 insns
= get_insns ();
3243 CLEAR_HARD_REG_SET (hardregs
);
3244 for (insn
= insns
; insn
&& moved
; insn
= NEXT_INSN (insn
))
3247 note_stores (PATTERN (insn
), record_hard_reg_sets
,
3249 if (!hard_reg_set_empty_p (hardregs
))
3258 if (equiv_stack_parm
!= NULL_RTX
)
3259 equiv_stack_parm
= gen_rtx_fmt_e (code
, GET_MODE (parmreg
),
3266 /* Nothing to do. */
3268 else if (need_conversion
)
3270 /* We did not have an insn to convert directly, or the sequence
3271 generated appeared unsafe. We must first copy the parm to a
3272 pseudo reg, and save the conversion until after all
3273 parameters have been moved. */
3276 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3278 emit_move_insn (tempreg
, validated_mem
);
3280 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3281 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
3283 if (partial_subreg_p (tempreg
)
3284 && GET_MODE (tempreg
) == data
->nominal_mode
3285 && REG_P (SUBREG_REG (tempreg
))
3286 && data
->nominal_mode
== data
->passed_mode
3287 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
))
3289 /* The argument is already sign/zero extended, so note it
3291 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
3292 SUBREG_PROMOTED_SET (tempreg
, unsignedp
);
3295 /* TREE_USED gets set erroneously during expand_assignment. */
3296 save_tree_used
= TREE_USED (parm
);
3297 SET_DECL_RTL (parm
, rtl
);
3298 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
), false);
3299 SET_DECL_RTL (parm
, NULL_RTX
);
3300 TREE_USED (parm
) = save_tree_used
;
3301 all
->first_conversion_insn
= get_insns ();
3302 all
->last_conversion_insn
= get_last_insn ();
3305 did_conversion
= true;
3308 emit_move_insn (parmreg
, validated_mem
);
3310 /* If we were passed a pointer but the actual value can safely live
3311 in a register, retrieve it and use it directly. */
3312 if (data
->passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
)
3314 /* We can't use nominal_mode, because it will have been set to
3315 Pmode above. We must use the actual mode of the parm. */
3316 if (use_register_for_decl (parm
))
3318 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
3319 mark_user_reg (parmreg
);
3323 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3324 TYPE_MODE (TREE_TYPE (parm
)),
3325 TYPE_ALIGN (TREE_TYPE (parm
)));
3327 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm
)),
3328 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm
))),
3330 set_mem_attributes (parmreg
, parm
, 1);
3333 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3334 the debug info in case it is not legitimate. */
3335 if (GET_MODE (parmreg
) != GET_MODE (rtl
))
3337 rtx tempreg
= gen_reg_rtx (GET_MODE (rtl
));
3338 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3340 push_to_sequence2 (all
->first_conversion_insn
,
3341 all
->last_conversion_insn
);
3342 emit_move_insn (tempreg
, rtl
);
3343 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
3344 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
,
3346 all
->first_conversion_insn
= get_insns ();
3347 all
->last_conversion_insn
= get_last_insn ();
3350 did_conversion
= true;
3353 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
, rtl
);
3357 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3359 data
->stack_parm
= NULL
;
3362 set_parm_rtl (parm
, rtl
);
3364 /* Mark the register as eliminable if we did no conversion and it was
3365 copied from memory at a fixed offset, and the arg pointer was not
3366 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3367 offset formed an invalid address, such memory-equivalences as we
3368 make here would screw up life analysis for it. */
3369 if (data
->nominal_mode
== data
->passed_mode
3371 && data
->stack_parm
!= 0
3372 && MEM_P (data
->stack_parm
)
3373 && data
->locate
.offset
.var
== 0
3374 && reg_mentioned_p (virtual_incoming_args_rtx
,
3375 XEXP (data
->stack_parm
, 0)))
3377 rtx_insn
*linsn
= get_last_insn ();
3381 /* Mark complex types separately. */
3382 if (GET_CODE (parmreg
) == CONCAT
)
3384 scalar_mode submode
= GET_MODE_INNER (GET_MODE (parmreg
));
3385 int regnor
= REGNO (XEXP (parmreg
, 0));
3386 int regnoi
= REGNO (XEXP (parmreg
, 1));
3387 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
3388 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
3389 GET_MODE_SIZE (submode
));
3391 /* Scan backwards for the set of the real and
3393 for (sinsn
= linsn
; sinsn
!= 0;
3394 sinsn
= prev_nonnote_insn (sinsn
))
3396 set
= single_set (sinsn
);
3400 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
3401 set_unique_reg_note (sinsn
, REG_EQUIV
, stacki
);
3402 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
3403 set_unique_reg_note (sinsn
, REG_EQUIV
, stackr
);
3407 set_dst_reg_note (linsn
, REG_EQUIV
, equiv_stack_parm
, parmreg
);
3410 /* For pointer data type, suggest pointer register. */
3411 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
3412 mark_reg_pointer (parmreg
,
3413 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
3416 /* A subroutine of assign_parms. Allocate stack space to hold the current
3417 parameter. Get it there. Perform all ABI specified conversions. */
3420 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
3421 struct assign_parm_data_one
*data
)
3423 /* Value must be stored in the stack slot STACK_PARM during function
3425 bool to_conversion
= false;
3427 assign_parm_remove_parallels (data
);
3429 if (data
->promoted_mode
!= data
->nominal_mode
)
3431 /* Conversion is required. */
3432 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3434 emit_move_insn (tempreg
, validize_mem (copy_rtx (data
->entry_parm
)));
3436 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3437 to_conversion
= true;
3439 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
3440 TYPE_UNSIGNED (TREE_TYPE (parm
)));
3442 if (data
->stack_parm
)
3445 = subreg_lowpart_offset (data
->nominal_mode
,
3446 GET_MODE (data
->stack_parm
));
3447 /* ??? This may need a big-endian conversion on sparc64. */
3449 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
3450 if (maybe_ne (offset
, 0) && MEM_OFFSET_KNOWN_P (data
->stack_parm
))
3451 set_mem_offset (data
->stack_parm
,
3452 MEM_OFFSET (data
->stack_parm
) + offset
);
3456 if (data
->entry_parm
!= data
->stack_parm
)
3460 if (data
->stack_parm
== 0)
3462 int align
= STACK_SLOT_ALIGNMENT (data
->passed_type
,
3463 GET_MODE (data
->entry_parm
),
3464 TYPE_ALIGN (data
->passed_type
));
3466 = assign_stack_local (GET_MODE (data
->entry_parm
),
3467 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
3469 set_mem_attributes (data
->stack_parm
, parm
, 1);
3472 dest
= validize_mem (copy_rtx (data
->stack_parm
));
3473 src
= validize_mem (copy_rtx (data
->entry_parm
));
3477 /* Use a block move to handle potentially misaligned entry_parm. */
3479 push_to_sequence2 (all
->first_conversion_insn
,
3480 all
->last_conversion_insn
);
3481 to_conversion
= true;
3483 emit_block_move (dest
, src
,
3484 GEN_INT (int_size_in_bytes (data
->passed_type
)),
3490 src
= force_reg (GET_MODE (src
), src
);
3491 emit_move_insn (dest
, src
);
3497 all
->first_conversion_insn
= get_insns ();
3498 all
->last_conversion_insn
= get_last_insn ();
3502 set_parm_rtl (parm
, data
->stack_parm
);
3505 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3506 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3509 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
,
3513 tree orig_fnargs
= all
->orig_fnargs
;
3516 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
), ++i
)
3518 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
3519 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
3521 rtx tmp
, real
, imag
;
3522 scalar_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
3524 real
= DECL_RTL (fnargs
[i
]);
3525 imag
= DECL_RTL (fnargs
[i
+ 1]);
3526 if (inner
!= GET_MODE (real
))
3528 real
= gen_lowpart_SUBREG (inner
, real
);
3529 imag
= gen_lowpart_SUBREG (inner
, imag
);
3532 if (TREE_ADDRESSABLE (parm
))
3535 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
3536 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3538 TYPE_ALIGN (TREE_TYPE (parm
)));
3540 /* split_complex_arg put the real and imag parts in
3541 pseudos. Move them to memory. */
3542 tmp
= assign_stack_local (DECL_MODE (parm
), size
, align
);
3543 set_mem_attributes (tmp
, parm
, 1);
3544 rmem
= adjust_address_nv (tmp
, inner
, 0);
3545 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
3546 push_to_sequence2 (all
->first_conversion_insn
,
3547 all
->last_conversion_insn
);
3548 emit_move_insn (rmem
, real
);
3549 emit_move_insn (imem
, imag
);
3550 all
->first_conversion_insn
= get_insns ();
3551 all
->last_conversion_insn
= get_last_insn ();
3555 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3556 set_parm_rtl (parm
, tmp
);
3558 real
= DECL_INCOMING_RTL (fnargs
[i
]);
3559 imag
= DECL_INCOMING_RTL (fnargs
[i
+ 1]);
3560 if (inner
!= GET_MODE (real
))
3562 real
= gen_lowpart_SUBREG (inner
, real
);
3563 imag
= gen_lowpart_SUBREG (inner
, imag
);
3565 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3566 set_decl_incoming_rtl (parm
, tmp
, false);
3572 /* Load bounds of PARM from bounds table. */
3574 assign_parm_load_bounds (struct assign_parm_data_one
*data
,
3580 unsigned i
, offs
= 0;
3582 rtx slot
= NULL
, ptr
= NULL
;
3587 bitmap_obstack_initialize (NULL
);
3588 slots
= BITMAP_ALLOC (NULL
);
3589 chkp_find_bound_slots (TREE_TYPE (parm
), slots
);
3590 EXECUTE_IF_SET_IN_BITMAP (slots
, 0, i
, bi
)
3600 BITMAP_FREE (slots
);
3601 bitmap_obstack_release (NULL
);
3604 /* We may have bounds not associated with any pointer. */
3606 offs
= bnd_no
* POINTER_SIZE
/ BITS_PER_UNIT
;
3608 /* Find associated pointer. */
3611 /* If bounds are not associated with any bounds,
3612 then it is passed in a register or special slot. */
3613 gcc_assert (data
->entry_parm
);
3616 else if (MEM_P (entry
))
3617 slot
= adjust_address (entry
, Pmode
, offs
);
3618 else if (REG_P (entry
))
3619 ptr
= gen_rtx_REG (Pmode
, REGNO (entry
) + bnd_no
);
3620 else if (GET_CODE (entry
) == PARALLEL
)
3621 ptr
= chkp_get_value_with_offs (entry
, GEN_INT (offs
));
3624 data
->entry_parm
= targetm
.calls
.load_bounds_for_arg (slot
, ptr
,
3628 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3631 assign_bounds (vec
<bounds_parm_data
> &bndargs
,
3632 struct assign_parm_data_all
&all
,
3633 bool assign_regs
, bool assign_special
,
3637 bounds_parm_data
*pbdata
;
3639 if (!bndargs
.exists ())
3642 /* We make few passes to store input bounds. Firstly handle bounds
3643 passed in registers. After that we load bounds passed in special
3644 slots. Finally we load bounds from Bounds Table. */
3645 for (pass
= 0; pass
< 3; pass
++)
3646 FOR_EACH_VEC_ELT (bndargs
, i
, pbdata
)
3648 /* Pass 0 => regs only. */
3651 ||(!pbdata
->parm_data
.entry_parm
3652 || GET_CODE (pbdata
->parm_data
.entry_parm
) != REG
)))
3654 /* Pass 1 => slots only. */
3657 || (!pbdata
->parm_data
.entry_parm
3658 || GET_CODE (pbdata
->parm_data
.entry_parm
) == REG
)))
3660 /* Pass 2 => BT only. */
3663 || pbdata
->parm_data
.entry_parm
))
3666 if (!pbdata
->parm_data
.entry_parm
3667 || GET_CODE (pbdata
->parm_data
.entry_parm
) != REG
)
3668 assign_parm_load_bounds (&pbdata
->parm_data
, pbdata
->ptr_parm
,
3669 pbdata
->ptr_entry
, pbdata
->bound_no
);
3671 set_decl_incoming_rtl (pbdata
->bounds_parm
,
3672 pbdata
->parm_data
.entry_parm
, false);
3674 if (assign_parm_setup_block_p (&pbdata
->parm_data
))
3675 assign_parm_setup_block (&all
, pbdata
->bounds_parm
,
3676 &pbdata
->parm_data
);
3677 else if (pbdata
->parm_data
.passed_pointer
3678 || use_register_for_decl (pbdata
->bounds_parm
))
3679 assign_parm_setup_reg (&all
, pbdata
->bounds_parm
,
3680 &pbdata
->parm_data
);
3682 assign_parm_setup_stack (&all
, pbdata
->bounds_parm
,
3683 &pbdata
->parm_data
);
3687 /* Assign RTL expressions to the function's parameters. This may involve
3688 copying them into registers and using those registers as the DECL_RTL. */
3691 assign_parms (tree fndecl
)
3693 struct assign_parm_data_all all
;
3696 unsigned i
, bound_no
= 0;
3697 tree last_arg
= NULL
;
3698 rtx last_arg_entry
= NULL
;
3699 vec
<bounds_parm_data
> bndargs
= vNULL
;
3700 bounds_parm_data bdata
;
3702 crtl
->args
.internal_arg_pointer
3703 = targetm
.calls
.internal_arg_pointer ();
3705 assign_parms_initialize_all (&all
);
3706 fnargs
= assign_parms_augmented_arg_list (&all
);
3708 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3710 struct assign_parm_data_one data
;
3712 /* Extract the type of PARM; adjust it according to ABI. */
3713 assign_parm_find_data_types (&all
, parm
, &data
);
3715 /* Early out for errors and void parameters. */
3716 if (data
.passed_mode
== VOIDmode
)
3718 SET_DECL_RTL (parm
, const0_rtx
);
3719 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
3723 /* Estimate stack alignment from parameter alignment. */
3724 if (SUPPORTS_STACK_ALIGNMENT
)
3727 = targetm
.calls
.function_arg_boundary (data
.promoted_mode
,
3729 align
= MINIMUM_ALIGNMENT (data
.passed_type
, data
.promoted_mode
,
3731 if (TYPE_ALIGN (data
.nominal_type
) > align
)
3732 align
= MINIMUM_ALIGNMENT (data
.nominal_type
,
3733 TYPE_MODE (data
.nominal_type
),
3734 TYPE_ALIGN (data
.nominal_type
));
3735 if (crtl
->stack_alignment_estimated
< align
)
3737 gcc_assert (!crtl
->stack_realign_processed
);
3738 crtl
->stack_alignment_estimated
= align
;
3742 /* Find out where the parameter arrives in this function. */
3743 assign_parm_find_entry_rtl (&all
, &data
);
3745 /* Find out where stack space for this parameter might be. */
3746 if (assign_parm_is_stack_parm (&all
, &data
))
3748 assign_parm_find_stack_rtl (parm
, &data
);
3749 assign_parm_adjust_entry_rtl (&data
);
3751 if (!POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3753 /* Remember where last non bounds arg was passed in case
3754 we have to load associated bounds for it from Bounds
3757 last_arg_entry
= data
.entry_parm
;
3760 /* Record permanently how this parm was passed. */
3761 if (data
.passed_pointer
)
3764 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
.passed_type
)),
3766 set_decl_incoming_rtl (parm
, incoming_rtl
, true);
3769 set_decl_incoming_rtl (parm
, data
.entry_parm
, false);
3771 assign_parm_adjust_stack_rtl (&data
);
3773 /* Bounds should be loaded in the particular order to
3774 have registers allocated correctly. Collect info about
3775 input bounds and load them later. */
3776 if (POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3778 /* Expect bounds in instrumented functions only. */
3779 gcc_assert (chkp_function_instrumented_p (fndecl
));
3781 bdata
.parm_data
= data
;
3782 bdata
.bounds_parm
= parm
;
3783 bdata
.ptr_parm
= last_arg
;
3784 bdata
.ptr_entry
= last_arg_entry
;
3785 bdata
.bound_no
= bound_no
;
3786 bndargs
.safe_push (bdata
);
3790 if (assign_parm_setup_block_p (&data
))
3791 assign_parm_setup_block (&all
, parm
, &data
);
3792 else if (data
.passed_pointer
|| use_register_for_decl (parm
))
3793 assign_parm_setup_reg (&all
, parm
, &data
);
3795 assign_parm_setup_stack (&all
, parm
, &data
);
3798 if (cfun
->stdarg
&& !DECL_CHAIN (parm
))
3800 int pretend_bytes
= 0;
3802 assign_parms_setup_varargs (&all
, &data
, false);
3804 if (chkp_function_instrumented_p (fndecl
))
3806 /* We expect this is the last parm. Otherwise it is wrong
3807 to assign bounds right now. */
3808 gcc_assert (i
== (fnargs
.length () - 1));
3809 assign_bounds (bndargs
, all
, true, false, false);
3810 targetm
.calls
.setup_incoming_vararg_bounds (all
.args_so_far
,
3815 assign_bounds (bndargs
, all
, false, true, true);
3820 /* Update info on where next arg arrives in registers. */
3821 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
3822 data
.passed_type
, data
.named_arg
);
3824 if (POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3828 assign_bounds (bndargs
, all
, true, true, true);
3831 if (targetm
.calls
.split_complex_arg
)
3832 assign_parms_unsplit_complex (&all
, fnargs
);
3836 /* Output all parameter conversion instructions (possibly including calls)
3837 now that all parameters have been copied out of hard registers. */
3838 emit_insn (all
.first_conversion_insn
);
3840 /* Estimate reload stack alignment from scalar return mode. */
3841 if (SUPPORTS_STACK_ALIGNMENT
)
3843 if (DECL_RESULT (fndecl
))
3845 tree type
= TREE_TYPE (DECL_RESULT (fndecl
));
3846 machine_mode mode
= TYPE_MODE (type
);
3850 && !AGGREGATE_TYPE_P (type
))
3852 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
3853 if (crtl
->stack_alignment_estimated
< align
)
3855 gcc_assert (!crtl
->stack_realign_processed
);
3856 crtl
->stack_alignment_estimated
= align
;
3862 /* If we are receiving a struct value address as the first argument, set up
3863 the RTL for the function result. As this might require code to convert
3864 the transmitted address to Pmode, we do this here to ensure that possible
3865 preliminary conversions of the address have been emitted already. */
3866 if (all
.function_result_decl
)
3868 tree result
= DECL_RESULT (current_function_decl
);
3869 rtx addr
= DECL_RTL (all
.function_result_decl
);
3872 if (DECL_BY_REFERENCE (result
))
3874 SET_DECL_VALUE_EXPR (result
, all
.function_result_decl
);
3879 SET_DECL_VALUE_EXPR (result
,
3880 build1 (INDIRECT_REF
, TREE_TYPE (result
),
3881 all
.function_result_decl
));
3882 addr
= convert_memory_address (Pmode
, addr
);
3883 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3884 set_mem_attributes (x
, result
, 1);
3887 DECL_HAS_VALUE_EXPR_P (result
) = 1;
3889 set_parm_rtl (result
, x
);
3892 /* We have aligned all the args, so add space for the pretend args. */
3893 crtl
->args
.pretend_args_size
= all
.pretend_args_size
;
3894 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3895 crtl
->args
.size
= all
.stack_args_size
.constant
;
3897 /* Adjust function incoming argument size for alignment and
3900 crtl
->args
.size
= upper_bound (crtl
->args
.size
, all
.reg_parm_stack_space
);
3901 crtl
->args
.size
= aligned_upper_bound (crtl
->args
.size
,
3902 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3904 if (ARGS_GROW_DOWNWARD
)
3906 crtl
->args
.arg_offset_rtx
3907 = (all
.stack_args_size
.var
== 0
3908 ? gen_int_mode (-all
.stack_args_size
.constant
, Pmode
)
3909 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3910 size_int (-all
.stack_args_size
.constant
)),
3911 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
));
3914 crtl
->args
.arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3916 /* See how many bytes, if any, of its args a function should try to pop
3919 crtl
->args
.pops_args
= targetm
.calls
.return_pops_args (fndecl
,
3923 /* For stdarg.h function, save info about
3924 regs and stack space used by the named args. */
3926 crtl
->args
.info
= all
.args_so_far_v
;
3928 /* Set the rtx used for the function return value. Put this in its
3929 own variable so any optimizers that need this information don't have
3930 to include tree.h. Do this here so it gets done when an inlined
3931 function gets output. */
3934 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3935 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3937 /* If scalar return value was computed in a pseudo-reg, or was a named
3938 return value that got dumped to the stack, copy that to the hard
3940 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3942 tree decl_result
= DECL_RESULT (fndecl
);
3943 rtx decl_rtl
= DECL_RTL (decl_result
);
3945 if (REG_P (decl_rtl
)
3946 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3947 : DECL_REGISTER (decl_result
))
3951 real_decl_rtl
= targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3953 if (chkp_function_instrumented_p (fndecl
))
3955 = targetm
.calls
.chkp_function_value_bounds (TREE_TYPE (decl_result
),
3957 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3958 /* The delay slot scheduler assumes that crtl->return_rtx
3959 holds the hard register containing the return value, not a
3960 temporary pseudo. */
3961 crtl
->return_rtx
= real_decl_rtl
;
3966 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3967 For all seen types, gimplify their sizes. */
3970 gimplify_parm_type (tree
*tp
, int *walk_subtrees
, void *data
)
3977 if (POINTER_TYPE_P (t
))
3979 else if (TYPE_SIZE (t
) && !TREE_CONSTANT (TYPE_SIZE (t
))
3980 && !TYPE_SIZES_GIMPLIFIED (t
))
3982 gimplify_type_sizes (t
, (gimple_seq
*) data
);
3990 /* Gimplify the parameter list for current_function_decl. This involves
3991 evaluating SAVE_EXPRs of variable sized parameters and generating code
3992 to implement callee-copies reference parameters. Returns a sequence of
3993 statements to add to the beginning of the function. */
3996 gimplify_parameters (void)
3998 struct assign_parm_data_all all
;
4000 gimple_seq stmts
= NULL
;
4004 assign_parms_initialize_all (&all
);
4005 fnargs
= assign_parms_augmented_arg_list (&all
);
4007 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
4009 struct assign_parm_data_one data
;
4011 /* Extract the type of PARM; adjust it according to ABI. */
4012 assign_parm_find_data_types (&all
, parm
, &data
);
4014 /* Early out for errors and void parameters. */
4015 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
4018 /* Update info on where next arg arrives in registers. */
4019 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
4020 data
.passed_type
, data
.named_arg
);
4022 /* ??? Once upon a time variable_size stuffed parameter list
4023 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4024 turned out to be less than manageable in the gimple world.
4025 Now we have to hunt them down ourselves. */
4026 walk_tree_without_duplicates (&data
.passed_type
,
4027 gimplify_parm_type
, &stmts
);
4029 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) != INTEGER_CST
)
4031 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
4032 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
4035 if (data
.passed_pointer
)
4037 tree type
= TREE_TYPE (data
.passed_type
);
4038 if (reference_callee_copied (&all
.args_so_far_v
, TYPE_MODE (type
),
4039 type
, data
.named_arg
))
4043 /* For constant-sized objects, this is trivial; for
4044 variable-sized objects, we have to play games. */
4045 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) == INTEGER_CST
4046 && !(flag_stack_check
== GENERIC_STACK_CHECK
4047 && compare_tree_int (DECL_SIZE_UNIT (parm
),
4048 STACK_CHECK_MAX_VAR_SIZE
) > 0))
4050 local
= create_tmp_var (type
, get_name (parm
));
4051 DECL_IGNORED_P (local
) = 0;
4052 /* If PARM was addressable, move that flag over
4053 to the local copy, as its address will be taken,
4054 not the PARMs. Keep the parms address taken
4055 as we'll query that flag during gimplification. */
4056 if (TREE_ADDRESSABLE (parm
))
4057 TREE_ADDRESSABLE (local
) = 1;
4058 else if (TREE_CODE (type
) == COMPLEX_TYPE
4059 || TREE_CODE (type
) == VECTOR_TYPE
)
4060 DECL_GIMPLE_REG_P (local
) = 1;
4064 tree ptr_type
, addr
;
4066 ptr_type
= build_pointer_type (type
);
4067 addr
= create_tmp_reg (ptr_type
, get_name (parm
));
4068 DECL_IGNORED_P (addr
) = 0;
4069 local
= build_fold_indirect_ref (addr
);
4071 t
= build_alloca_call_expr (DECL_SIZE_UNIT (parm
),
4073 max_int_size_in_bytes (type
));
4074 /* The call has been built for a variable-sized object. */
4075 CALL_ALLOCA_FOR_VAR_P (t
) = 1;
4076 t
= fold_convert (ptr_type
, t
);
4077 t
= build2 (MODIFY_EXPR
, TREE_TYPE (addr
), addr
, t
);
4078 gimplify_and_add (t
, &stmts
);
4081 gimplify_assign (local
, parm
, &stmts
);
4083 SET_DECL_VALUE_EXPR (parm
, local
);
4084 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
4094 /* Compute the size and offset from the start of the stacked arguments for a
4095 parm passed in mode PASSED_MODE and with type TYPE.
4097 INITIAL_OFFSET_PTR points to the current offset into the stacked
4100 The starting offset and size for this parm are returned in
4101 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4102 nonzero, the offset is that of stack slot, which is returned in
4103 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4104 padding required from the initial offset ptr to the stack slot.
4106 IN_REGS is nonzero if the argument will be passed in registers. It will
4107 never be set if REG_PARM_STACK_SPACE is not defined.
4109 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4110 for arguments which are passed in registers.
4112 FNDECL is the function in which the argument was defined.
4114 There are two types of rounding that are done. The first, controlled by
4115 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4116 argument list to be aligned to the specific boundary (in bits). This
4117 rounding affects the initial and starting offsets, but not the argument
4120 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4121 optionally rounds the size of the parm to PARM_BOUNDARY. The
4122 initial offset is not affected by this rounding, while the size always
4123 is and the starting offset may be. */
4125 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4126 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4127 callers pass in the total size of args so far as
4128 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4131 locate_and_pad_parm (machine_mode passed_mode
, tree type
, int in_regs
,
4132 int reg_parm_stack_space
, int partial
,
4133 tree fndecl ATTRIBUTE_UNUSED
,
4134 struct args_size
*initial_offset_ptr
,
4135 struct locate_and_pad_arg_data
*locate
)
4138 pad_direction where_pad
;
4139 unsigned int boundary
, round_boundary
;
4140 int part_size_in_regs
;
4142 /* If we have found a stack parm before we reach the end of the
4143 area reserved for registers, skip that area. */
4146 if (reg_parm_stack_space
> 0)
4148 if (initial_offset_ptr
->var
4149 || !ordered_p (initial_offset_ptr
->constant
,
4150 reg_parm_stack_space
))
4152 initial_offset_ptr
->var
4153 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
4154 ssize_int (reg_parm_stack_space
));
4155 initial_offset_ptr
->constant
= 0;
4158 initial_offset_ptr
->constant
4159 = ordered_max (initial_offset_ptr
->constant
,
4160 reg_parm_stack_space
);
4164 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
4167 ? arg_size_in_bytes (type
)
4168 : size_int (GET_MODE_SIZE (passed_mode
)));
4169 where_pad
= targetm
.calls
.function_arg_padding (passed_mode
, type
);
4170 boundary
= targetm
.calls
.function_arg_boundary (passed_mode
, type
);
4171 round_boundary
= targetm
.calls
.function_arg_round_boundary (passed_mode
,
4173 locate
->where_pad
= where_pad
;
4175 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4176 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
4177 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
4179 locate
->boundary
= boundary
;
4181 if (SUPPORTS_STACK_ALIGNMENT
)
4183 /* stack_alignment_estimated can't change after stack has been
4185 if (crtl
->stack_alignment_estimated
< boundary
)
4187 if (!crtl
->stack_realign_processed
)
4188 crtl
->stack_alignment_estimated
= boundary
;
4191 /* If stack is realigned and stack alignment value
4192 hasn't been finalized, it is OK not to increase
4193 stack_alignment_estimated. The bigger alignment
4194 requirement is recorded in stack_alignment_needed
4196 gcc_assert (!crtl
->stack_realign_finalized
4197 && crtl
->stack_realign_needed
);
4202 /* Remember if the outgoing parameter requires extra alignment on the
4203 calling function side. */
4204 if (crtl
->stack_alignment_needed
< boundary
)
4205 crtl
->stack_alignment_needed
= boundary
;
4206 if (crtl
->preferred_stack_boundary
< boundary
)
4207 crtl
->preferred_stack_boundary
= boundary
;
4209 if (ARGS_GROW_DOWNWARD
)
4211 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
4212 if (initial_offset_ptr
->var
)
4213 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
4214 initial_offset_ptr
->var
);
4218 if (where_pad
!= PAD_NONE
4219 && (!tree_fits_uhwi_p (sizetree
)
4220 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4221 s2
= round_up (s2
, round_boundary
/ BITS_PER_UNIT
);
4222 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
4225 locate
->slot_offset
.constant
+= part_size_in_regs
;
4227 if (!in_regs
|| reg_parm_stack_space
> 0)
4228 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
4229 &locate
->alignment_pad
);
4231 locate
->size
.constant
= (-initial_offset_ptr
->constant
4232 - locate
->slot_offset
.constant
);
4233 if (initial_offset_ptr
->var
)
4234 locate
->size
.var
= size_binop (MINUS_EXPR
,
4235 size_binop (MINUS_EXPR
,
4237 initial_offset_ptr
->var
),
4238 locate
->slot_offset
.var
);
4240 /* Pad_below needs the pre-rounded size to know how much to pad
4242 locate
->offset
= locate
->slot_offset
;
4243 if (where_pad
== PAD_DOWNWARD
)
4244 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4249 if (!in_regs
|| reg_parm_stack_space
> 0)
4250 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
4251 &locate
->alignment_pad
);
4252 locate
->slot_offset
= *initial_offset_ptr
;
4254 #ifdef PUSH_ROUNDING
4255 if (passed_mode
!= BLKmode
)
4256 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
4259 /* Pad_below needs the pre-rounded size to know how much to pad below
4260 so this must be done before rounding up. */
4261 locate
->offset
= locate
->slot_offset
;
4262 if (where_pad
== PAD_DOWNWARD
)
4263 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4265 if (where_pad
!= PAD_NONE
4266 && (!tree_fits_uhwi_p (sizetree
)
4267 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4268 sizetree
= round_up (sizetree
, round_boundary
/ BITS_PER_UNIT
);
4270 ADD_PARM_SIZE (locate
->size
, sizetree
);
4272 locate
->size
.constant
-= part_size_in_regs
;
4275 locate
->offset
.constant
4276 += targetm
.calls
.function_arg_offset (passed_mode
, type
);
4279 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4280 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4283 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
4284 struct args_size
*alignment_pad
)
4286 tree save_var
= NULL_TREE
;
4287 poly_int64 save_constant
= 0;
4288 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
4289 poly_int64 sp_offset
= STACK_POINTER_OFFSET
;
4291 #ifdef SPARC_STACK_BOUNDARY_HACK
4292 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4293 the real alignment of %sp. However, when it does this, the
4294 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4295 if (SPARC_STACK_BOUNDARY_HACK
)
4299 if (boundary
> PARM_BOUNDARY
)
4301 save_var
= offset_ptr
->var
;
4302 save_constant
= offset_ptr
->constant
;
4305 alignment_pad
->var
= NULL_TREE
;
4306 alignment_pad
->constant
= 0;
4308 if (boundary
> BITS_PER_UNIT
)
4312 || !known_misalignment (offset_ptr
->constant
+ sp_offset
,
4313 boundary_in_bytes
, &misalign
))
4315 tree sp_offset_tree
= ssize_int (sp_offset
);
4316 tree offset
= size_binop (PLUS_EXPR
,
4317 ARGS_SIZE_TREE (*offset_ptr
),
4320 if (ARGS_GROW_DOWNWARD
)
4321 rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
4323 rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
4325 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
4326 /* ARGS_SIZE_TREE includes constant term. */
4327 offset_ptr
->constant
= 0;
4328 if (boundary
> PARM_BOUNDARY
)
4329 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
4334 if (ARGS_GROW_DOWNWARD
)
4335 offset_ptr
->constant
-= misalign
;
4337 offset_ptr
->constant
+= -misalign
& (boundary_in_bytes
- 1);
4339 if (boundary
> PARM_BOUNDARY
)
4340 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
4346 pad_below (struct args_size
*offset_ptr
, machine_mode passed_mode
, tree sizetree
)
4348 unsigned int align
= PARM_BOUNDARY
/ BITS_PER_UNIT
;
4349 if (passed_mode
!= BLKmode
)
4350 offset_ptr
->constant
+= -GET_MODE_SIZE (passed_mode
) & (align
- 1);
4353 if (TREE_CODE (sizetree
) != INTEGER_CST
4354 || (TREE_INT_CST_LOW (sizetree
) & (align
- 1)) != 0)
4356 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4357 tree s2
= round_up (sizetree
, align
);
4359 ADD_PARM_SIZE (*offset_ptr
, s2
);
4360 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
4366 /* True if register REGNO was alive at a place where `setjmp' was
4367 called and was set more than once or is an argument. Such regs may
4368 be clobbered by `longjmp'. */
4371 regno_clobbered_at_setjmp (bitmap setjmp_crosses
, int regno
)
4373 /* There appear to be cases where some local vars never reach the
4374 backend but have bogus regnos. */
4375 if (regno
>= max_reg_num ())
4378 return ((REG_N_SETS (regno
) > 1
4379 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
4381 && REGNO_REG_SET_P (setjmp_crosses
, regno
));
4384 /* Walk the tree of blocks describing the binding levels within a
4385 function and warn about variables the might be killed by setjmp or
4386 vfork. This is done after calling flow_analysis before register
4387 allocation since that will clobber the pseudo-regs to hard
4391 setjmp_vars_warning (bitmap setjmp_crosses
, tree block
)
4395 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
4398 && DECL_RTL_SET_P (decl
)
4399 && REG_P (DECL_RTL (decl
))
4400 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4401 warning (OPT_Wclobbered
, "variable %q+D might be clobbered by"
4402 " %<longjmp%> or %<vfork%>", decl
);
4405 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= BLOCK_CHAIN (sub
))
4406 setjmp_vars_warning (setjmp_crosses
, sub
);
4409 /* Do the appropriate part of setjmp_vars_warning
4410 but for arguments instead of local variables. */
4413 setjmp_args_warning (bitmap setjmp_crosses
)
4416 for (decl
= DECL_ARGUMENTS (current_function_decl
);
4417 decl
; decl
= DECL_CHAIN (decl
))
4418 if (DECL_RTL (decl
) != 0
4419 && REG_P (DECL_RTL (decl
))
4420 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4421 warning (OPT_Wclobbered
,
4422 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4426 /* Generate warning messages for variables live across setjmp. */
4429 generate_setjmp_warnings (void)
4431 bitmap setjmp_crosses
= regstat_get_setjmp_crosses ();
4433 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
4434 || bitmap_empty_p (setjmp_crosses
))
4437 setjmp_vars_warning (setjmp_crosses
, DECL_INITIAL (current_function_decl
));
4438 setjmp_args_warning (setjmp_crosses
);
4442 /* Reverse the order of elements in the fragment chain T of blocks,
4443 and return the new head of the chain (old last element).
4444 In addition to that clear BLOCK_SAME_RANGE flags when needed
4445 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4446 its super fragment origin. */
4449 block_fragments_nreverse (tree t
)
4451 tree prev
= 0, block
, next
, prev_super
= 0;
4452 tree super
= BLOCK_SUPERCONTEXT (t
);
4453 if (BLOCK_FRAGMENT_ORIGIN (super
))
4454 super
= BLOCK_FRAGMENT_ORIGIN (super
);
4455 for (block
= t
; block
; block
= next
)
4457 next
= BLOCK_FRAGMENT_CHAIN (block
);
4458 BLOCK_FRAGMENT_CHAIN (block
) = prev
;
4459 if ((prev
&& !BLOCK_SAME_RANGE (prev
))
4460 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block
))
4462 BLOCK_SAME_RANGE (block
) = 0;
4463 prev_super
= BLOCK_SUPERCONTEXT (block
);
4464 BLOCK_SUPERCONTEXT (block
) = super
;
4467 t
= BLOCK_FRAGMENT_ORIGIN (t
);
4468 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t
))
4470 BLOCK_SAME_RANGE (t
) = 0;
4471 BLOCK_SUPERCONTEXT (t
) = super
;
4475 /* Reverse the order of elements in the chain T of blocks,
4476 and return the new head of the chain (old last element).
4477 Also do the same on subblocks and reverse the order of elements
4478 in BLOCK_FRAGMENT_CHAIN as well. */
4481 blocks_nreverse_all (tree t
)
4483 tree prev
= 0, block
, next
;
4484 for (block
= t
; block
; block
= next
)
4486 next
= BLOCK_CHAIN (block
);
4487 BLOCK_CHAIN (block
) = prev
;
4488 if (BLOCK_FRAGMENT_CHAIN (block
)
4489 && BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
)
4491 BLOCK_FRAGMENT_CHAIN (block
)
4492 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block
));
4493 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block
)))
4494 BLOCK_SAME_RANGE (block
) = 0;
4496 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4503 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4504 and create duplicate blocks. */
4505 /* ??? Need an option to either create block fragments or to create
4506 abstract origin duplicates of a source block. It really depends
4507 on what optimization has been performed. */
4510 reorder_blocks (void)
4512 tree block
= DECL_INITIAL (current_function_decl
);
4514 if (block
== NULL_TREE
)
4517 auto_vec
<tree
, 10> block_stack
;
4519 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4520 clear_block_marks (block
);
4522 /* Prune the old trees away, so that they don't get in the way. */
4523 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
4524 BLOCK_CHAIN (block
) = NULL_TREE
;
4526 /* Recreate the block tree from the note nesting. */
4527 reorder_blocks_1 (get_insns (), block
, &block_stack
);
4528 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4531 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4534 clear_block_marks (tree block
)
4538 TREE_ASM_WRITTEN (block
) = 0;
4539 clear_block_marks (BLOCK_SUBBLOCKS (block
));
4540 block
= BLOCK_CHAIN (block
);
4545 reorder_blocks_1 (rtx_insn
*insns
, tree current_block
,
4546 vec
<tree
> *p_block_stack
)
4549 tree prev_beg
= NULL_TREE
, prev_end
= NULL_TREE
;
4551 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4555 if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_BEG
)
4557 tree block
= NOTE_BLOCK (insn
);
4560 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
);
4564 BLOCK_SAME_RANGE (prev_end
) = 0;
4565 prev_end
= NULL_TREE
;
4567 /* If we have seen this block before, that means it now
4568 spans multiple address regions. Create a new fragment. */
4569 if (TREE_ASM_WRITTEN (block
))
4571 tree new_block
= copy_node (block
);
4573 BLOCK_SAME_RANGE (new_block
) = 0;
4574 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
4575 BLOCK_FRAGMENT_CHAIN (new_block
)
4576 = BLOCK_FRAGMENT_CHAIN (origin
);
4577 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
4579 NOTE_BLOCK (insn
) = new_block
;
4583 if (prev_beg
== current_block
&& prev_beg
)
4584 BLOCK_SAME_RANGE (block
) = 1;
4588 BLOCK_SUBBLOCKS (block
) = 0;
4589 TREE_ASM_WRITTEN (block
) = 1;
4590 /* When there's only one block for the entire function,
4591 current_block == block and we mustn't do this, it
4592 will cause infinite recursion. */
4593 if (block
!= current_block
)
4596 if (block
!= origin
)
4597 gcc_assert (BLOCK_SUPERCONTEXT (origin
) == current_block
4598 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4601 if (p_block_stack
->is_empty ())
4602 super
= current_block
;
4605 super
= p_block_stack
->last ();
4606 gcc_assert (super
== current_block
4607 || BLOCK_FRAGMENT_ORIGIN (super
)
4610 BLOCK_SUPERCONTEXT (block
) = super
;
4611 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
4612 BLOCK_SUBBLOCKS (current_block
) = block
;
4613 current_block
= origin
;
4615 p_block_stack
->safe_push (block
);
4617 else if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_END
)
4619 NOTE_BLOCK (insn
) = p_block_stack
->pop ();
4620 current_block
= BLOCK_SUPERCONTEXT (current_block
);
4621 if (BLOCK_FRAGMENT_ORIGIN (current_block
))
4622 current_block
= BLOCK_FRAGMENT_ORIGIN (current_block
);
4623 prev_beg
= NULL_TREE
;
4624 prev_end
= BLOCK_SAME_RANGE (NOTE_BLOCK (insn
))
4625 ? NOTE_BLOCK (insn
) : NULL_TREE
;
4630 prev_beg
= NULL_TREE
;
4632 BLOCK_SAME_RANGE (prev_end
) = 0;
4633 prev_end
= NULL_TREE
;
4638 /* Reverse the order of elements in the chain T of blocks,
4639 and return the new head of the chain (old last element). */
4642 blocks_nreverse (tree t
)
4644 tree prev
= 0, block
, next
;
4645 for (block
= t
; block
; block
= next
)
4647 next
= BLOCK_CHAIN (block
);
4648 BLOCK_CHAIN (block
) = prev
;
4654 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4655 by modifying the last node in chain 1 to point to chain 2. */
4658 block_chainon (tree op1
, tree op2
)
4667 for (t1
= op1
; BLOCK_CHAIN (t1
); t1
= BLOCK_CHAIN (t1
))
4669 BLOCK_CHAIN (t1
) = op2
;
4671 #ifdef ENABLE_TREE_CHECKING
4674 for (t2
= op2
; t2
; t2
= BLOCK_CHAIN (t2
))
4675 gcc_assert (t2
!= t1
);
4682 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4683 non-NULL, list them all into VECTOR, in a depth-first preorder
4684 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4688 all_blocks (tree block
, tree
*vector
)
4694 TREE_ASM_WRITTEN (block
) = 0;
4696 /* Record this block. */
4698 vector
[n_blocks
] = block
;
4702 /* Record the subblocks, and their subblocks... */
4703 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
4704 vector
? vector
+ n_blocks
: 0);
4705 block
= BLOCK_CHAIN (block
);
4711 /* Return a vector containing all the blocks rooted at BLOCK. The
4712 number of elements in the vector is stored in N_BLOCKS_P. The
4713 vector is dynamically allocated; it is the caller's responsibility
4714 to call `free' on the pointer returned. */
4717 get_block_vector (tree block
, int *n_blocks_p
)
4721 *n_blocks_p
= all_blocks (block
, NULL
);
4722 block_vector
= XNEWVEC (tree
, *n_blocks_p
);
4723 all_blocks (block
, block_vector
);
4725 return block_vector
;
4728 static GTY(()) int next_block_index
= 2;
4730 /* Set BLOCK_NUMBER for all the blocks in FN. */
4733 number_blocks (tree fn
)
4739 /* For XCOFF debugging output, we start numbering the blocks
4740 from 1 within each function, rather than keeping a running
4742 #if defined (XCOFF_DEBUGGING_INFO)
4743 if (write_symbols
== XCOFF_DEBUG
)
4744 next_block_index
= 1;
4747 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
4749 /* The top-level BLOCK isn't numbered at all. */
4750 for (i
= 1; i
< n_blocks
; ++i
)
4751 /* We number the blocks from two. */
4752 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
4754 free (block_vector
);
4759 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4762 debug_find_var_in_block_tree (tree var
, tree block
)
4766 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
4770 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
4772 tree ret
= debug_find_var_in_block_tree (var
, t
);
4780 /* Keep track of whether we're in a dummy function context. If we are,
4781 we don't want to invoke the set_current_function hook, because we'll
4782 get into trouble if the hook calls target_reinit () recursively or
4783 when the initial initialization is not yet complete. */
4785 static bool in_dummy_function
;
4787 /* Invoke the target hook when setting cfun. Update the optimization options
4788 if the function uses different options than the default. */
4791 invoke_set_current_function_hook (tree fndecl
)
4793 if (!in_dummy_function
)
4795 tree opts
= ((fndecl
)
4796 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl
)
4797 : optimization_default_node
);
4800 opts
= optimization_default_node
;
4802 /* Change optimization options if needed. */
4803 if (optimization_current_node
!= opts
)
4805 optimization_current_node
= opts
;
4806 cl_optimization_restore (&global_options
, TREE_OPTIMIZATION (opts
));
4809 targetm
.set_current_function (fndecl
);
4810 this_fn_optabs
= this_target_optabs
;
4812 if (opts
!= optimization_default_node
)
4814 init_tree_optimization_optabs (opts
);
4815 if (TREE_OPTIMIZATION_OPTABS (opts
))
4816 this_fn_optabs
= (struct target_optabs
*)
4817 TREE_OPTIMIZATION_OPTABS (opts
);
4822 /* cfun should never be set directly; use this function. */
4825 set_cfun (struct function
*new_cfun
, bool force
)
4827 if (cfun
!= new_cfun
|| force
)
4830 invoke_set_current_function_hook (new_cfun
? new_cfun
->decl
: NULL_TREE
);
4831 redirect_edge_var_map_empty ();
4835 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4837 static vec
<function
*> cfun_stack
;
4839 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4840 current_function_decl accordingly. */
4843 push_cfun (struct function
*new_cfun
)
4845 gcc_assert ((!cfun
&& !current_function_decl
)
4846 || (cfun
&& current_function_decl
== cfun
->decl
));
4847 cfun_stack
.safe_push (cfun
);
4848 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4849 set_cfun (new_cfun
);
4852 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4857 struct function
*new_cfun
= cfun_stack
.pop ();
4858 /* When in_dummy_function, we do have a cfun but current_function_decl is
4859 NULL. We also allow pushing NULL cfun and subsequently changing
4860 current_function_decl to something else and have both restored by
4862 gcc_checking_assert (in_dummy_function
4864 || current_function_decl
== cfun
->decl
);
4865 set_cfun (new_cfun
);
4866 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4869 /* Return value of funcdef and increase it. */
4871 get_next_funcdef_no (void)
4873 return funcdef_no
++;
4876 /* Return value of funcdef. */
4878 get_last_funcdef_no (void)
4883 /* Allocate a function structure for FNDECL and set its contents
4884 to the defaults. Set cfun to the newly-allocated object.
4885 Some of the helper functions invoked during initialization assume
4886 that cfun has already been set. Therefore, assign the new object
4887 directly into cfun and invoke the back end hook explicitly at the
4888 very end, rather than initializing a temporary and calling set_cfun
4891 ABSTRACT_P is true if this is a function that will never be seen by
4892 the middle-end. Such functions are front-end concepts (like C++
4893 function templates) that do not correspond directly to functions
4894 placed in object files. */
4897 allocate_struct_function (tree fndecl
, bool abstract_p
)
4899 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
4901 cfun
= ggc_cleared_alloc
<function
> ();
4903 init_eh_for_function ();
4905 if (init_machine_status
)
4906 cfun
->machine
= (*init_machine_status
) ();
4908 #ifdef OVERRIDE_ABI_FORMAT
4909 OVERRIDE_ABI_FORMAT (fndecl
);
4912 if (fndecl
!= NULL_TREE
)
4914 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
4915 cfun
->decl
= fndecl
;
4916 current_function_funcdef_no
= get_next_funcdef_no ();
4919 invoke_set_current_function_hook (fndecl
);
4921 if (fndecl
!= NULL_TREE
)
4923 tree result
= DECL_RESULT (fndecl
);
4927 /* Now that we have activated any function-specific attributes
4928 that might affect layout, particularly vector modes, relayout
4929 each of the parameters and the result. */
4930 relayout_decl (result
);
4931 for (tree parm
= DECL_ARGUMENTS (fndecl
); parm
;
4932 parm
= DECL_CHAIN (parm
))
4933 relayout_decl (parm
);
4935 /* Similarly relayout the function decl. */
4936 targetm
.target_option
.relayout_function (fndecl
);
4939 if (!abstract_p
&& aggregate_value_p (result
, fndecl
))
4941 #ifdef PCC_STATIC_STRUCT_RETURN
4942 cfun
->returns_pcc_struct
= 1;
4944 cfun
->returns_struct
= 1;
4947 cfun
->stdarg
= stdarg_p (fntype
);
4949 /* Assume all registers in stdarg functions need to be saved. */
4950 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
4951 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
4953 /* ??? This could be set on a per-function basis by the front-end
4954 but is this worth the hassle? */
4955 cfun
->can_throw_non_call_exceptions
= flag_non_call_exceptions
;
4956 cfun
->can_delete_dead_exceptions
= flag_delete_dead_exceptions
;
4958 if (!profile_flag
&& !flag_instrument_function_entry_exit
)
4959 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl
) = 1;
4962 /* Don't enable begin stmt markers if var-tracking at assignments is
4963 disabled. The markers make little sense without the variable
4964 binding annotations among them. */
4965 cfun
->debug_nonbind_markers
= lang_hooks
.emits_begin_stmt
4966 && MAY_HAVE_DEBUG_MARKER_STMTS
;
4969 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4970 instead of just setting it. */
4973 push_struct_function (tree fndecl
)
4975 /* When in_dummy_function we might be in the middle of a pop_cfun and
4976 current_function_decl and cfun may not match. */
4977 gcc_assert (in_dummy_function
4978 || (!cfun
&& !current_function_decl
)
4979 || (cfun
&& current_function_decl
== cfun
->decl
));
4980 cfun_stack
.safe_push (cfun
);
4981 current_function_decl
= fndecl
;
4982 allocate_struct_function (fndecl
, false);
4985 /* Reset crtl and other non-struct-function variables to defaults as
4986 appropriate for emitting rtl at the start of a function. */
4989 prepare_function_start (void)
4991 gcc_assert (!get_last_insn ());
4994 init_varasm_status ();
4996 default_rtl_profile ();
4998 if (flag_stack_usage_info
)
5000 cfun
->su
= ggc_cleared_alloc
<stack_usage
> ();
5001 cfun
->su
->static_stack_size
= -1;
5004 cse_not_expected
= ! optimize
;
5006 /* Caller save not needed yet. */
5007 caller_save_needed
= 0;
5009 /* We haven't done register allocation yet. */
5012 /* Indicate that we have not instantiated virtual registers yet. */
5013 virtuals_instantiated
= 0;
5015 /* Indicate that we want CONCATs now. */
5016 generating_concat_p
= 1;
5018 /* Indicate we have no need of a frame pointer yet. */
5019 frame_pointer_needed
= 0;
5023 push_dummy_function (bool with_decl
)
5025 tree fn_decl
, fn_type
, fn_result_decl
;
5027 gcc_assert (!in_dummy_function
);
5028 in_dummy_function
= true;
5032 fn_type
= build_function_type_list (void_type_node
, NULL_TREE
);
5033 fn_decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, NULL_TREE
,
5035 fn_result_decl
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
5036 NULL_TREE
, void_type_node
);
5037 DECL_RESULT (fn_decl
) = fn_result_decl
;
5040 fn_decl
= NULL_TREE
;
5042 push_struct_function (fn_decl
);
5045 /* Initialize the rtl expansion mechanism so that we can do simple things
5046 like generate sequences. This is used to provide a context during global
5047 initialization of some passes. You must call expand_dummy_function_end
5048 to exit this context. */
5051 init_dummy_function_start (void)
5053 push_dummy_function (false);
5054 prepare_function_start ();
5057 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5058 and initialize static variables for generating RTL for the statements
5062 init_function_start (tree subr
)
5064 /* Initialize backend, if needed. */
5067 prepare_function_start ();
5068 decide_function_section (subr
);
5070 /* Warn if this value is an aggregate type,
5071 regardless of which calling convention we are using for it. */
5072 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
5073 warning (OPT_Waggregate_return
, "function returns an aggregate");
5076 /* Expand code to verify the stack_protect_guard. This is invoked at
5077 the end of a function to be protected. */
5080 stack_protect_epilogue (void)
5082 tree guard_decl
= targetm
.stack_protect_guard ();
5083 rtx_code_label
*label
= gen_label_rtx ();
5087 x
= expand_normal (crtl
->stack_protect_guard
);
5089 y
= expand_normal (guard_decl
);
5093 /* Allow the target to compare Y with X without leaking either into
5095 if (targetm
.have_stack_protect_test ()
5096 && ((seq
= targetm
.gen_stack_protect_test (x
, y
, label
)) != NULL_RTX
))
5099 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
5101 /* The noreturn predictor has been moved to the tree level. The rtl-level
5102 predictors estimate this branch about 20%, which isn't enough to get
5103 things moved out of line. Since this is the only extant case of adding
5104 a noreturn function at the rtl level, it doesn't seem worth doing ought
5105 except adding the prediction by hand. */
5106 rtx_insn
*tmp
= get_last_insn ();
5108 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
5110 expand_call (targetm
.stack_protect_fail (), NULL_RTX
, /*ignore=*/true);
5115 /* Start the RTL for a new function, and set variables used for
5117 SUBR is the FUNCTION_DECL node.
5118 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5119 the function's parameters, which must be run at any return statement. */
5122 expand_function_start (tree subr
)
5124 /* Make sure volatile mem refs aren't considered
5125 valid operands of arithmetic insns. */
5126 init_recog_no_volatile ();
5130 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
5133 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
5135 /* Make the label for return statements to jump to. Do not special
5136 case machines with special return instructions -- they will be
5137 handled later during jump, ifcvt, or epilogue creation. */
5138 return_label
= gen_label_rtx ();
5140 /* Initialize rtx used to return the value. */
5141 /* Do this before assign_parms so that we copy the struct value address
5142 before any library calls that assign parms might generate. */
5144 /* Decide whether to return the value in memory or in a register. */
5145 tree res
= DECL_RESULT (subr
);
5146 if (aggregate_value_p (res
, subr
))
5148 /* Returning something that won't go in a register. */
5149 rtx value_address
= 0;
5151 #ifdef PCC_STATIC_STRUCT_RETURN
5152 if (cfun
->returns_pcc_struct
)
5154 int size
= int_size_in_bytes (TREE_TYPE (res
));
5155 value_address
= assemble_static_space (size
);
5160 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 2);
5161 /* Expect to be passed the address of a place to store the value.
5162 If it is passed as an argument, assign_parms will take care of
5166 value_address
= gen_reg_rtx (Pmode
);
5167 emit_move_insn (value_address
, sv
);
5172 rtx x
= value_address
;
5173 if (!DECL_BY_REFERENCE (res
))
5175 x
= gen_rtx_MEM (DECL_MODE (res
), x
);
5176 set_mem_attributes (x
, res
, 1);
5178 set_parm_rtl (res
, x
);
5181 else if (DECL_MODE (res
) == VOIDmode
)
5182 /* If return mode is void, this decl rtl should not be used. */
5183 set_parm_rtl (res
, NULL_RTX
);
5186 /* Compute the return values into a pseudo reg, which we will copy
5187 into the true return register after the cleanups are done. */
5188 tree return_type
= TREE_TYPE (res
);
5190 /* If we may coalesce this result, make sure it has the expected mode
5191 in case it was promoted. But we need not bother about BLKmode. */
5192 machine_mode promoted_mode
5193 = flag_tree_coalesce_vars
&& is_gimple_reg (res
)
5194 ? promote_ssa_mode (ssa_default_def (cfun
, res
), NULL
)
5197 if (promoted_mode
!= BLKmode
)
5198 set_parm_rtl (res
, gen_reg_rtx (promoted_mode
));
5199 else if (TYPE_MODE (return_type
) != BLKmode
5200 && targetm
.calls
.return_in_msb (return_type
))
5201 /* expand_function_end will insert the appropriate padding in
5202 this case. Use the return value's natural (unpadded) mode
5203 within the function proper. */
5204 set_parm_rtl (res
, gen_reg_rtx (TYPE_MODE (return_type
)));
5207 /* In order to figure out what mode to use for the pseudo, we
5208 figure out what the mode of the eventual return register will
5209 actually be, and use that. */
5210 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
5212 /* Structures that are returned in registers are not
5213 aggregate_value_p, so we may see a PARALLEL or a REG. */
5214 if (REG_P (hard_reg
))
5215 set_parm_rtl (res
, gen_reg_rtx (GET_MODE (hard_reg
)));
5218 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
5219 set_parm_rtl (res
, gen_group_rtx (hard_reg
));
5223 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5224 result to the real return register(s). */
5225 DECL_REGISTER (res
) = 1;
5227 if (chkp_function_instrumented_p (current_function_decl
))
5229 tree return_type
= TREE_TYPE (res
);
5230 rtx bounds
= targetm
.calls
.chkp_function_value_bounds (return_type
,
5232 SET_DECL_BOUNDS_RTL (res
, bounds
);
5236 /* Initialize rtx for parameters and local variables.
5237 In some cases this requires emitting insns. */
5238 assign_parms (subr
);
5240 /* If function gets a static chain arg, store it. */
5241 if (cfun
->static_chain_decl
)
5243 tree parm
= cfun
->static_chain_decl
;
5248 local
= gen_reg_rtx (promote_decl_mode (parm
, &unsignedp
));
5249 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
5251 set_decl_incoming_rtl (parm
, chain
, false);
5252 set_parm_rtl (parm
, local
);
5253 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
5255 if (GET_MODE (local
) != GET_MODE (chain
))
5257 convert_move (local
, chain
, unsignedp
);
5258 insn
= get_last_insn ();
5261 insn
= emit_move_insn (local
, chain
);
5263 /* Mark the register as eliminable, similar to parameters. */
5265 && reg_mentioned_p (arg_pointer_rtx
, XEXP (chain
, 0)))
5266 set_dst_reg_note (insn
, REG_EQUIV
, chain
, local
);
5268 /* If we aren't optimizing, save the static chain onto the stack. */
5271 tree saved_static_chain_decl
5272 = build_decl (DECL_SOURCE_LOCATION (parm
), VAR_DECL
,
5273 DECL_NAME (parm
), TREE_TYPE (parm
));
5274 rtx saved_static_chain_rtx
5275 = assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5276 SET_DECL_RTL (saved_static_chain_decl
, saved_static_chain_rtx
);
5277 emit_move_insn (saved_static_chain_rtx
, chain
);
5278 SET_DECL_VALUE_EXPR (parm
, saved_static_chain_decl
);
5279 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
5283 /* The following was moved from init_function_start.
5284 The move was supposed to make sdb output more accurate. */
5285 /* Indicate the beginning of the function body,
5286 as opposed to parm setup. */
5287 emit_note (NOTE_INSN_FUNCTION_BEG
);
5289 gcc_assert (NOTE_P (get_last_insn ()));
5291 parm_birth_insn
= get_last_insn ();
5293 /* If the function receives a non-local goto, then store the
5294 bits we need to restore the frame pointer. */
5295 if (cfun
->nonlocal_goto_save_area
)
5300 tree var
= TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0);
5301 gcc_assert (DECL_RTL_SET_P (var
));
5303 t_save
= build4 (ARRAY_REF
,
5304 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
5305 cfun
->nonlocal_goto_save_area
,
5306 integer_zero_node
, NULL_TREE
, NULL_TREE
);
5307 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5308 gcc_assert (GET_MODE (r_save
) == Pmode
);
5310 emit_move_insn (r_save
, targetm
.builtin_setjmp_frame_value ());
5311 update_nonlocal_goto_save_area ();
5317 PROFILE_HOOK (current_function_funcdef_no
);
5321 /* If we are doing generic stack checking, the probe should go here. */
5322 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5323 stack_check_probe_note
= emit_note (NOTE_INSN_DELETED
);
5327 pop_dummy_function (void)
5330 in_dummy_function
= false;
5333 /* Undo the effects of init_dummy_function_start. */
5335 expand_dummy_function_end (void)
5337 gcc_assert (in_dummy_function
);
5339 /* End any sequences that failed to be closed due to syntax errors. */
5340 while (in_sequence_p ())
5343 /* Outside function body, can't compute type's actual size
5344 until next function's body starts. */
5346 free_after_parsing (cfun
);
5347 free_after_compilation (cfun
);
5348 pop_dummy_function ();
5351 /* Helper for diddle_return_value. */
5354 diddle_return_value_1 (void (*doit
) (rtx
, void *), void *arg
, rtx outgoing
)
5359 if (REG_P (outgoing
))
5360 (*doit
) (outgoing
, arg
);
5361 else if (GET_CODE (outgoing
) == PARALLEL
)
5365 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
5367 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
5369 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5375 /* Call DOIT for each hard register used as a return value from
5376 the current function. */
5379 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
5381 diddle_return_value_1 (doit
, arg
, crtl
->return_bnd
);
5382 diddle_return_value_1 (doit
, arg
, crtl
->return_rtx
);
5386 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5392 clobber_return_register (void)
5394 diddle_return_value (do_clobber_return_reg
, NULL
);
5396 /* In case we do use pseudo to return value, clobber it too. */
5397 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5399 tree decl_result
= DECL_RESULT (current_function_decl
);
5400 rtx decl_rtl
= DECL_RTL (decl_result
);
5401 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
5403 do_clobber_return_reg (decl_rtl
, NULL
);
5409 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5415 use_return_register (void)
5417 diddle_return_value (do_use_return_reg
, NULL
);
5420 /* Set the location of the insn chain starting at INSN to LOC. */
5423 set_insn_locations (rtx_insn
*insn
, int loc
)
5425 while (insn
!= NULL
)
5428 INSN_LOCATION (insn
) = loc
;
5429 insn
= NEXT_INSN (insn
);
5433 /* Generate RTL for the end of the current function. */
5436 expand_function_end (void)
5438 /* If arg_pointer_save_area was referenced only from a nested
5439 function, we will not have initialized it yet. Do that now. */
5440 if (arg_pointer_save_area
&& ! crtl
->arg_pointer_save_area_init
)
5441 get_arg_pointer_save_area ();
5443 /* If we are doing generic stack checking and this function makes calls,
5444 do a stack probe at the start of the function to ensure we have enough
5445 space for another stack frame. */
5446 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5448 rtx_insn
*insn
, *seq
;
5450 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5453 rtx max_frame_size
= GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
);
5455 if (STACK_CHECK_MOVING_SP
)
5456 anti_adjust_stack_and_probe (max_frame_size
, true);
5458 probe_stack_range (STACK_OLD_CHECK_PROTECT
, max_frame_size
);
5461 set_insn_locations (seq
, prologue_location
);
5462 emit_insn_before (seq
, stack_check_probe_note
);
5467 /* End any sequences that failed to be closed due to syntax errors. */
5468 while (in_sequence_p ())
5471 clear_pending_stack_adjust ();
5472 do_pending_stack_adjust ();
5474 /* Output a linenumber for the end of the function.
5475 SDB depended on this. */
5476 set_curr_insn_location (input_location
);
5478 /* Before the return label (if any), clobber the return
5479 registers so that they are not propagated live to the rest of
5480 the function. This can only happen with functions that drop
5481 through; if there had been a return statement, there would
5482 have either been a return rtx, or a jump to the return label.
5484 We delay actual code generation after the current_function_value_rtx
5486 rtx_insn
*clobber_after
= get_last_insn ();
5488 /* Output the label for the actual return from the function. */
5489 emit_label (return_label
);
5491 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
5493 /* Let except.c know where it should emit the call to unregister
5494 the function context for sjlj exceptions. */
5495 if (flag_exceptions
)
5496 sjlj_emit_function_exit_after (get_last_insn ());
5500 /* We want to ensure that instructions that may trap are not
5501 moved into the epilogue by scheduling, because we don't
5502 always emit unwind information for the epilogue. */
5503 if (cfun
->can_throw_non_call_exceptions
)
5504 emit_insn (gen_blockage ());
5507 /* If this is an implementation of throw, do what's necessary to
5508 communicate between __builtin_eh_return and the epilogue. */
5509 expand_eh_return ();
5511 /* If scalar return value was computed in a pseudo-reg, or was a named
5512 return value that got dumped to the stack, copy that to the hard
5514 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5516 tree decl_result
= DECL_RESULT (current_function_decl
);
5517 rtx decl_rtl
= DECL_RTL (decl_result
);
5519 if (REG_P (decl_rtl
)
5520 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
5521 : DECL_REGISTER (decl_result
))
5523 rtx real_decl_rtl
= crtl
->return_rtx
;
5526 /* This should be set in assign_parms. */
5527 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
5529 /* If this is a BLKmode structure being returned in registers,
5530 then use the mode computed in expand_return. Note that if
5531 decl_rtl is memory, then its mode may have been changed,
5532 but that crtl->return_rtx has not. */
5533 if (GET_MODE (real_decl_rtl
) == BLKmode
)
5534 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
5536 /* If a non-BLKmode return value should be padded at the least
5537 significant end of the register, shift it left by the appropriate
5538 amount. BLKmode results are handled using the group load/store
5540 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
5541 && REG_P (real_decl_rtl
)
5542 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
5544 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
5545 REGNO (real_decl_rtl
)),
5547 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
5549 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
5551 /* If expand_function_start has created a PARALLEL for decl_rtl,
5552 move the result to the real return registers. Otherwise, do
5553 a group load from decl_rtl for a named return. */
5554 if (GET_CODE (decl_rtl
) == PARALLEL
)
5555 emit_group_move (real_decl_rtl
, decl_rtl
);
5557 emit_group_load (real_decl_rtl
, decl_rtl
,
5558 TREE_TYPE (decl_result
),
5559 int_size_in_bytes (TREE_TYPE (decl_result
)));
5561 /* In the case of complex integer modes smaller than a word, we'll
5562 need to generate some non-trivial bitfield insertions. Do that
5563 on a pseudo and not the hard register. */
5564 else if (GET_CODE (decl_rtl
) == CONCAT
5565 && is_complex_int_mode (GET_MODE (decl_rtl
), &cmode
)
5566 && GET_MODE_BITSIZE (cmode
) <= BITS_PER_WORD
)
5568 int old_generating_concat_p
;
5571 old_generating_concat_p
= generating_concat_p
;
5572 generating_concat_p
= 0;
5573 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
5574 generating_concat_p
= old_generating_concat_p
;
5576 emit_move_insn (tmp
, decl_rtl
);
5577 emit_move_insn (real_decl_rtl
, tmp
);
5579 /* If a named return value dumped decl_return to memory, then
5580 we may need to re-do the PROMOTE_MODE signed/unsigned
5582 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
5584 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
5585 promote_function_mode (TREE_TYPE (decl_result
),
5586 GET_MODE (decl_rtl
), &unsignedp
,
5587 TREE_TYPE (current_function_decl
), 1);
5589 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
5592 emit_move_insn (real_decl_rtl
, decl_rtl
);
5596 /* If returning a structure, arrange to return the address of the value
5597 in a place where debuggers expect to find it.
5599 If returning a structure PCC style,
5600 the caller also depends on this value.
5601 And cfun->returns_pcc_struct is not necessarily set. */
5602 if ((cfun
->returns_struct
|| cfun
->returns_pcc_struct
)
5603 && !targetm
.calls
.omit_struct_return_reg
)
5605 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
5606 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
5609 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
5610 type
= TREE_TYPE (type
);
5612 value_address
= XEXP (value_address
, 0);
5614 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
5615 current_function_decl
, true);
5617 /* Mark this as a function return value so integrate will delete the
5618 assignment and USE below when inlining this function. */
5619 REG_FUNCTION_VALUE_P (outgoing
) = 1;
5621 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5622 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (outgoing
));
5623 value_address
= convert_memory_address (mode
, value_address
);
5625 emit_move_insn (outgoing
, value_address
);
5627 /* Show return register used to hold result (in this case the address
5629 crtl
->return_rtx
= outgoing
;
5632 /* Emit the actual code to clobber return register. Don't emit
5633 it if clobber_after is a barrier, then the previous basic block
5634 certainly doesn't fall thru into the exit block. */
5635 if (!BARRIER_P (clobber_after
))
5638 clobber_return_register ();
5639 rtx_insn
*seq
= get_insns ();
5642 emit_insn_after (seq
, clobber_after
);
5645 /* Output the label for the naked return from the function. */
5646 if (naked_return_label
)
5647 emit_label (naked_return_label
);
5649 /* @@@ This is a kludge. We want to ensure that instructions that
5650 may trap are not moved into the epilogue by scheduling, because
5651 we don't always emit unwind information for the epilogue. */
5652 if (cfun
->can_throw_non_call_exceptions
5653 && targetm_common
.except_unwind_info (&global_options
) != UI_SJLJ
)
5654 emit_insn (gen_blockage ());
5656 /* If stack protection is enabled for this function, check the guard. */
5657 if (crtl
->stack_protect_guard
&& targetm
.stack_protect_runtime_enabled_p ())
5658 stack_protect_epilogue ();
5660 /* If we had calls to alloca, and this machine needs
5661 an accurate stack pointer to exit the function,
5662 insert some code to save and restore the stack pointer. */
5663 if (! EXIT_IGNORE_STACK
5664 && cfun
->calls_alloca
)
5669 emit_stack_save (SAVE_FUNCTION
, &tem
);
5670 rtx_insn
*seq
= get_insns ();
5672 emit_insn_before (seq
, parm_birth_insn
);
5674 emit_stack_restore (SAVE_FUNCTION
, tem
);
5677 /* ??? This should no longer be necessary since stupid is no longer with
5678 us, but there are some parts of the compiler (eg reload_combine, and
5679 sh mach_dep_reorg) that still try and compute their own lifetime info
5680 instead of using the general framework. */
5681 use_return_register ();
5685 get_arg_pointer_save_area (void)
5687 rtx ret
= arg_pointer_save_area
;
5691 ret
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5692 arg_pointer_save_area
= ret
;
5695 if (! crtl
->arg_pointer_save_area_init
)
5697 /* Save the arg pointer at the beginning of the function. The
5698 generated stack slot may not be a valid memory address, so we
5699 have to check it and fix it if necessary. */
5701 emit_move_insn (validize_mem (copy_rtx (ret
)),
5702 crtl
->args
.internal_arg_pointer
);
5703 rtx_insn
*seq
= get_insns ();
5706 push_topmost_sequence ();
5707 emit_insn_after (seq
, entry_of_function ());
5708 pop_topmost_sequence ();
5710 crtl
->arg_pointer_save_area_init
= true;
5717 /* If debugging dumps are requested, dump information about how the
5718 target handled -fstack-check=clash for the prologue.
5720 PROBES describes what if any probes were emitted.
5722 RESIDUALS indicates if the prologue had any residual allocation
5723 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5726 dump_stack_clash_frame_info (enum stack_clash_probes probes
, bool residuals
)
5733 case NO_PROBE_NO_FRAME
:
5735 "Stack clash no probe no stack adjustment in prologue.\n");
5737 case NO_PROBE_SMALL_FRAME
:
5739 "Stack clash no probe small stack adjustment in prologue.\n");
5742 fprintf (dump_file
, "Stack clash inline probes in prologue.\n");
5745 fprintf (dump_file
, "Stack clash probe loop in prologue.\n");
5750 fprintf (dump_file
, "Stack clash residual allocation in prologue.\n");
5752 fprintf (dump_file
, "Stack clash no residual allocation in prologue.\n");
5754 if (frame_pointer_needed
)
5755 fprintf (dump_file
, "Stack clash frame pointer needed.\n");
5757 fprintf (dump_file
, "Stack clash no frame pointer needed.\n");
5759 if (TREE_THIS_VOLATILE (cfun
->decl
))
5761 "Stack clash noreturn prologue, assuming no implicit"
5762 " probes in caller.\n");
5765 "Stack clash not noreturn prologue.\n");
5768 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5769 for the first time. */
5772 record_insns (rtx_insn
*insns
, rtx end
, hash_table
<insn_cache_hasher
> **hashp
)
5775 hash_table
<insn_cache_hasher
> *hash
= *hashp
;
5778 *hashp
= hash
= hash_table
<insn_cache_hasher
>::create_ggc (17);
5780 for (tmp
= insns
; tmp
!= end
; tmp
= NEXT_INSN (tmp
))
5782 rtx
*slot
= hash
->find_slot (tmp
, INSERT
);
5783 gcc_assert (*slot
== NULL
);
5788 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5789 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5790 insn, then record COPY as well. */
5793 maybe_copy_prologue_epilogue_insn (rtx insn
, rtx copy
)
5795 hash_table
<insn_cache_hasher
> *hash
;
5798 hash
= epilogue_insn_hash
;
5799 if (!hash
|| !hash
->find (insn
))
5801 hash
= prologue_insn_hash
;
5802 if (!hash
|| !hash
->find (insn
))
5806 slot
= hash
->find_slot (copy
, INSERT
);
5807 gcc_assert (*slot
== NULL
);
5811 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5812 we can be running after reorg, SEQUENCE rtl is possible. */
5815 contains (const rtx_insn
*insn
, hash_table
<insn_cache_hasher
> *hash
)
5820 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
5822 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (PATTERN (insn
));
5824 for (i
= seq
->len () - 1; i
>= 0; i
--)
5825 if (hash
->find (seq
->element (i
)))
5830 return hash
->find (const_cast<rtx_insn
*> (insn
)) != NULL
;
5834 prologue_contains (const rtx_insn
*insn
)
5836 return contains (insn
, prologue_insn_hash
);
5840 epilogue_contains (const rtx_insn
*insn
)
5842 return contains (insn
, epilogue_insn_hash
);
5846 prologue_epilogue_contains (const rtx_insn
*insn
)
5848 if (contains (insn
, prologue_insn_hash
))
5850 if (contains (insn
, epilogue_insn_hash
))
5856 record_prologue_seq (rtx_insn
*seq
)
5858 record_insns (seq
, NULL
, &prologue_insn_hash
);
5862 record_epilogue_seq (rtx_insn
*seq
)
5864 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5867 /* Set JUMP_LABEL for a return insn. */
5870 set_return_jump_label (rtx_insn
*returnjump
)
5872 rtx pat
= PATTERN (returnjump
);
5873 if (GET_CODE (pat
) == PARALLEL
)
5874 pat
= XVECEXP (pat
, 0, 0);
5875 if (ANY_RETURN_P (pat
))
5876 JUMP_LABEL (returnjump
) = pat
;
5878 JUMP_LABEL (returnjump
) = ret_rtx
;
5881 /* Return a sequence to be used as the split prologue for the current
5882 function, or NULL. */
5885 make_split_prologue_seq (void)
5887 if (!flag_split_stack
5888 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun
->decl
)))
5892 emit_insn (targetm
.gen_split_stack_prologue ());
5893 rtx_insn
*seq
= get_insns ();
5896 record_insns (seq
, NULL
, &prologue_insn_hash
);
5897 set_insn_locations (seq
, prologue_location
);
5902 /* Return a sequence to be used as the prologue for the current function,
5906 make_prologue_seq (void)
5908 if (!targetm
.have_prologue ())
5912 rtx_insn
*seq
= targetm
.gen_prologue ();
5915 /* Insert an explicit USE for the frame pointer
5916 if the profiling is on and the frame pointer is required. */
5917 if (crtl
->profile
&& frame_pointer_needed
)
5918 emit_use (hard_frame_pointer_rtx
);
5920 /* Retain a map of the prologue insns. */
5921 record_insns (seq
, NULL
, &prologue_insn_hash
);
5922 emit_note (NOTE_INSN_PROLOGUE_END
);
5924 /* Ensure that instructions are not moved into the prologue when
5925 profiling is on. The call to the profiling routine can be
5926 emitted within the live range of a call-clobbered register. */
5927 if (!targetm
.profile_before_prologue () && crtl
->profile
)
5928 emit_insn (gen_blockage ());
5932 set_insn_locations (seq
, prologue_location
);
5937 /* Return a sequence to be used as the epilogue for the current function,
5941 make_epilogue_seq (void)
5943 if (!targetm
.have_epilogue ())
5947 emit_note (NOTE_INSN_EPILOGUE_BEG
);
5948 rtx_insn
*seq
= targetm
.gen_epilogue ();
5950 emit_jump_insn (seq
);
5952 /* Retain a map of the epilogue insns. */
5953 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5954 set_insn_locations (seq
, epilogue_location
);
5957 rtx_insn
*returnjump
= get_last_insn ();
5960 if (JUMP_P (returnjump
))
5961 set_return_jump_label (returnjump
);
5967 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5968 this into place with notes indicating where the prologue ends and where
5969 the epilogue begins. Update the basic block information when possible.
5971 Notes on epilogue placement:
5972 There are several kinds of edges to the exit block:
5973 * a single fallthru edge from LAST_BB
5974 * possibly, edges from blocks containing sibcalls
5975 * possibly, fake edges from infinite loops
5977 The epilogue is always emitted on the fallthru edge from the last basic
5978 block in the function, LAST_BB, into the exit block.
5980 If LAST_BB is empty except for a label, it is the target of every
5981 other basic block in the function that ends in a return. If a
5982 target has a return or simple_return pattern (possibly with
5983 conditional variants), these basic blocks can be changed so that a
5984 return insn is emitted into them, and their target is adjusted to
5985 the real exit block.
5987 Notes on shrink wrapping: We implement a fairly conservative
5988 version of shrink-wrapping rather than the textbook one. We only
5989 generate a single prologue and a single epilogue. This is
5990 sufficient to catch a number of interesting cases involving early
5993 First, we identify the blocks that require the prologue to occur before
5994 them. These are the ones that modify a call-saved register, or reference
5995 any of the stack or frame pointer registers. To simplify things, we then
5996 mark everything reachable from these blocks as also requiring a prologue.
5997 This takes care of loops automatically, and avoids the need to examine
5998 whether MEMs reference the frame, since it is sufficient to check for
5999 occurrences of the stack or frame pointer.
6001 We then compute the set of blocks for which the need for a prologue
6002 is anticipatable (borrowing terminology from the shrink-wrapping
6003 description in Muchnick's book). These are the blocks which either
6004 require a prologue themselves, or those that have only successors
6005 where the prologue is anticipatable. The prologue needs to be
6006 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6007 is not. For the moment, we ensure that only one such edge exists.
6009 The epilogue is placed as described above, but we make a
6010 distinction between inserting return and simple_return patterns
6011 when modifying other blocks that end in a return. Blocks that end
6012 in a sibcall omit the sibcall_epilogue if the block is not in
6016 thread_prologue_and_epilogue_insns (void)
6020 /* Can't deal with multiple successors of the entry block at the
6021 moment. Function should always have at least one entry
6023 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
6025 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
6026 edge orig_entry_edge
= entry_edge
;
6028 rtx_insn
*split_prologue_seq
= make_split_prologue_seq ();
6029 rtx_insn
*prologue_seq
= make_prologue_seq ();
6030 rtx_insn
*epilogue_seq
= make_epilogue_seq ();
6032 /* Try to perform a kind of shrink-wrapping, making sure the
6033 prologue/epilogue is emitted only around those parts of the
6034 function that require it. */
6035 try_shrink_wrapping (&entry_edge
, prologue_seq
);
6037 /* If the target can handle splitting the prologue/epilogue into separate
6038 components, try to shrink-wrap these components separately. */
6039 try_shrink_wrapping_separate (entry_edge
->dest
);
6041 /* If that did anything for any component we now need the generate the
6042 "main" prologue again. Because some targets require some of these
6043 to be called in a specific order (i386 requires the split prologue
6044 to be first, for example), we create all three sequences again here.
6045 If this does not work for some target, that target should not enable
6046 separate shrink-wrapping. */
6047 if (crtl
->shrink_wrapped_separate
)
6049 split_prologue_seq
= make_split_prologue_seq ();
6050 prologue_seq
= make_prologue_seq ();
6051 epilogue_seq
= make_epilogue_seq ();
6054 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
6056 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6057 this marker for the splits of EH_RETURN patterns, and nothing else
6058 uses the flag in the meantime. */
6059 epilogue_completed
= 1;
6061 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6062 some targets, these get split to a special version of the epilogue
6063 code. In order to be able to properly annotate these with unwind
6064 info, try to split them now. If we get a valid split, drop an
6065 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6068 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6070 rtx_insn
*prev
, *last
, *trial
;
6072 if (e
->flags
& EDGE_FALLTHRU
)
6074 last
= BB_END (e
->src
);
6075 if (!eh_returnjump_p (last
))
6078 prev
= PREV_INSN (last
);
6079 trial
= try_split (PATTERN (last
), last
, 1);
6083 record_insns (NEXT_INSN (prev
), NEXT_INSN (trial
), &epilogue_insn_hash
);
6084 emit_note_after (NOTE_INSN_EPILOGUE_BEG
, prev
);
6087 edge exit_fallthru_edge
= find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6089 if (exit_fallthru_edge
)
6093 insert_insn_on_edge (epilogue_seq
, exit_fallthru_edge
);
6094 commit_edge_insertions ();
6096 /* The epilogue insns we inserted may cause the exit edge to no longer
6098 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6100 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
6101 && returnjump_p (BB_END (e
->src
)))
6102 e
->flags
&= ~EDGE_FALLTHRU
;
6105 else if (next_active_insn (BB_END (exit_fallthru_edge
->src
)))
6107 /* We have a fall-through edge to the exit block, the source is not
6108 at the end of the function, and there will be an assembler epilogue
6109 at the end of the function.
6110 We can't use force_nonfallthru here, because that would try to
6111 use return. Inserting a jump 'by hand' is extremely messy, so
6112 we take advantage of cfg_layout_finalize using
6113 fixup_fallthru_exit_predecessor. */
6114 cfg_layout_initialize (0);
6116 FOR_EACH_BB_FN (cur_bb
, cfun
)
6117 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
6118 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
6119 cur_bb
->aux
= cur_bb
->next_bb
;
6120 cfg_layout_finalize ();
6124 /* Insert the prologue. */
6126 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
6128 if (split_prologue_seq
|| prologue_seq
)
6130 rtx_insn
*split_prologue_insn
= split_prologue_seq
;
6131 if (split_prologue_seq
)
6133 while (split_prologue_insn
&& !NONDEBUG_INSN_P (split_prologue_insn
))
6134 split_prologue_insn
= NEXT_INSN (split_prologue_insn
);
6135 insert_insn_on_edge (split_prologue_seq
, orig_entry_edge
);
6138 rtx_insn
*prologue_insn
= prologue_seq
;
6141 while (prologue_insn
&& !NONDEBUG_INSN_P (prologue_insn
))
6142 prologue_insn
= NEXT_INSN (prologue_insn
);
6143 insert_insn_on_edge (prologue_seq
, entry_edge
);
6146 commit_edge_insertions ();
6148 /* Look for basic blocks within the prologue insns. */
6149 if (split_prologue_insn
6150 && BLOCK_FOR_INSN (split_prologue_insn
) == NULL
)
6151 split_prologue_insn
= NULL
;
6153 && BLOCK_FOR_INSN (prologue_insn
) == NULL
)
6154 prologue_insn
= NULL
;
6155 if (split_prologue_insn
|| prologue_insn
)
6157 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
6158 bitmap_clear (blocks
);
6159 if (split_prologue_insn
)
6160 bitmap_set_bit (blocks
,
6161 BLOCK_FOR_INSN (split_prologue_insn
)->index
);
6163 bitmap_set_bit (blocks
, BLOCK_FOR_INSN (prologue_insn
)->index
);
6164 find_many_sub_basic_blocks (blocks
);
6168 default_rtl_profile ();
6170 /* Emit sibling epilogues before any sibling call sites. */
6171 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6172 (e
= ei_safe_edge (ei
));
6175 /* Skip those already handled, the ones that run without prologue. */
6176 if (e
->flags
& EDGE_IGNORE
)
6178 e
->flags
&= ~EDGE_IGNORE
;
6182 rtx_insn
*insn
= BB_END (e
->src
);
6184 if (!(CALL_P (insn
) && SIBLING_CALL_P (insn
)))
6187 if (rtx_insn
*ep_seq
= targetm
.gen_sibcall_epilogue ())
6190 emit_note (NOTE_INSN_EPILOGUE_BEG
);
6192 rtx_insn
*seq
= get_insns ();
6195 /* Retain a map of the epilogue insns. Used in life analysis to
6196 avoid getting rid of sibcall epilogue insns. Do this before we
6197 actually emit the sequence. */
6198 record_insns (seq
, NULL
, &epilogue_insn_hash
);
6199 set_insn_locations (seq
, epilogue_location
);
6201 emit_insn_before (seq
, insn
);
6207 rtx_insn
*insn
, *next
;
6209 /* Similarly, move any line notes that appear after the epilogue.
6210 There is no need, however, to be quite so anal about the existence
6211 of such a note. Also possibly move
6212 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6214 for (insn
= epilogue_seq
; insn
; insn
= next
)
6216 next
= NEXT_INSN (insn
);
6218 && (NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
))
6219 reorder_insns (insn
, insn
, PREV_INSN (epilogue_seq
));
6223 /* Threading the prologue and epilogue changes the artificial refs
6224 in the entry and exit blocks. */
6225 epilogue_completed
= 1;
6226 df_update_entry_exit_and_calls ();
6229 /* Reposition the prologue-end and epilogue-begin notes after
6230 instruction scheduling. */
6233 reposition_prologue_and_epilogue_notes (void)
6235 if (!targetm
.have_prologue ()
6236 && !targetm
.have_epilogue ()
6237 && !targetm
.have_sibcall_epilogue ())
6240 /* Since the hash table is created on demand, the fact that it is
6241 non-null is a signal that it is non-empty. */
6242 if (prologue_insn_hash
!= NULL
)
6244 size_t len
= prologue_insn_hash
->elements ();
6245 rtx_insn
*insn
, *last
= NULL
, *note
= NULL
;
6247 /* Scan from the beginning until we reach the last prologue insn. */
6248 /* ??? While we do have the CFG intact, there are two problems:
6249 (1) The prologue can contain loops (typically probing the stack),
6250 which means that the end of the prologue isn't in the first bb.
6251 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6252 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6256 if (NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
6259 else if (contains (insn
, prologue_insn_hash
))
6271 /* Scan forward looking for the PROLOGUE_END note. It should
6272 be right at the beginning of the block, possibly with other
6273 insn notes that got moved there. */
6274 for (note
= NEXT_INSN (last
); ; note
= NEXT_INSN (note
))
6277 && NOTE_KIND (note
) == NOTE_INSN_PROLOGUE_END
)
6282 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6284 last
= NEXT_INSN (last
);
6285 reorder_insns (note
, note
, last
);
6289 if (epilogue_insn_hash
!= NULL
)
6294 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6296 rtx_insn
*insn
, *first
= NULL
, *note
= NULL
;
6297 basic_block bb
= e
->src
;
6299 /* Scan from the beginning until we reach the first epilogue insn. */
6300 FOR_BB_INSNS (bb
, insn
)
6304 if (NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
6311 else if (first
== NULL
&& contains (insn
, epilogue_insn_hash
))
6321 /* If the function has a single basic block, and no real
6322 epilogue insns (e.g. sibcall with no cleanup), the
6323 epilogue note can get scheduled before the prologue
6324 note. If we have frame related prologue insns, having
6325 them scanned during the epilogue will result in a crash.
6326 In this case re-order the epilogue note to just before
6327 the last insn in the block. */
6329 first
= BB_END (bb
);
6331 if (PREV_INSN (first
) != note
)
6332 reorder_insns (note
, note
, PREV_INSN (first
));
6338 /* Returns the name of function declared by FNDECL. */
6340 fndecl_name (tree fndecl
)
6344 return lang_hooks
.decl_printable_name (fndecl
, 1);
6347 /* Returns the name of function FN. */
6349 function_name (struct function
*fn
)
6351 tree fndecl
= (fn
== NULL
) ? NULL
: fn
->decl
;
6352 return fndecl_name (fndecl
);
6355 /* Returns the name of the current function. */
6357 current_function_name (void)
6359 return function_name (cfun
);
6364 rest_of_handle_check_leaf_regs (void)
6366 #ifdef LEAF_REGISTERS
6367 crtl
->uses_only_leaf_regs
6368 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
6373 /* Insert a TYPE into the used types hash table of CFUN. */
6376 used_types_insert_helper (tree type
, struct function
*func
)
6378 if (type
!= NULL
&& func
!= NULL
)
6380 if (func
->used_types_hash
== NULL
)
6381 func
->used_types_hash
= hash_set
<tree
>::create_ggc (37);
6383 func
->used_types_hash
->add (type
);
6387 /* Given a type, insert it into the used hash table in cfun. */
6389 used_types_insert (tree t
)
6391 while (POINTER_TYPE_P (t
) || TREE_CODE (t
) == ARRAY_TYPE
)
6396 if (TREE_CODE (t
) == ERROR_MARK
)
6398 if (TYPE_NAME (t
) == NULL_TREE
6399 || TYPE_NAME (t
) == TYPE_NAME (TYPE_MAIN_VARIANT (t
)))
6400 t
= TYPE_MAIN_VARIANT (t
);
6401 if (debug_info_level
> DINFO_LEVEL_NONE
)
6404 used_types_insert_helper (t
, cfun
);
6407 /* So this might be a type referenced by a global variable.
6408 Record that type so that we can later decide to emit its
6409 debug information. */
6410 vec_safe_push (types_used_by_cur_var_decl
, t
);
6415 /* Helper to Hash a struct types_used_by_vars_entry. */
6418 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry
*entry
)
6420 gcc_assert (entry
&& entry
->var_decl
&& entry
->type
);
6422 return iterative_hash_object (entry
->type
,
6423 iterative_hash_object (entry
->var_decl
, 0));
6426 /* Hash function of the types_used_by_vars_entry hash table. */
6429 used_type_hasher::hash (types_used_by_vars_entry
*entry
)
6431 return hash_types_used_by_vars_entry (entry
);
6434 /*Equality function of the types_used_by_vars_entry hash table. */
6437 used_type_hasher::equal (types_used_by_vars_entry
*e1
,
6438 types_used_by_vars_entry
*e2
)
6440 return (e1
->var_decl
== e2
->var_decl
&& e1
->type
== e2
->type
);
6443 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6446 types_used_by_var_decl_insert (tree type
, tree var_decl
)
6448 if (type
!= NULL
&& var_decl
!= NULL
)
6450 types_used_by_vars_entry
**slot
;
6451 struct types_used_by_vars_entry e
;
6452 e
.var_decl
= var_decl
;
6454 if (types_used_by_vars_hash
== NULL
)
6455 types_used_by_vars_hash
6456 = hash_table
<used_type_hasher
>::create_ggc (37);
6458 slot
= types_used_by_vars_hash
->find_slot (&e
, INSERT
);
6461 struct types_used_by_vars_entry
*entry
;
6462 entry
= ggc_alloc
<types_used_by_vars_entry
> ();
6464 entry
->var_decl
= var_decl
;
6472 const pass_data pass_data_leaf_regs
=
6474 RTL_PASS
, /* type */
6475 "*leaf_regs", /* name */
6476 OPTGROUP_NONE
, /* optinfo_flags */
6477 TV_NONE
, /* tv_id */
6478 0, /* properties_required */
6479 0, /* properties_provided */
6480 0, /* properties_destroyed */
6481 0, /* todo_flags_start */
6482 0, /* todo_flags_finish */
6485 class pass_leaf_regs
: public rtl_opt_pass
6488 pass_leaf_regs (gcc::context
*ctxt
)
6489 : rtl_opt_pass (pass_data_leaf_regs
, ctxt
)
6492 /* opt_pass methods: */
6493 virtual unsigned int execute (function
*)
6495 return rest_of_handle_check_leaf_regs ();
6498 }; // class pass_leaf_regs
6503 make_pass_leaf_regs (gcc::context
*ctxt
)
6505 return new pass_leaf_regs (ctxt
);
6509 rest_of_handle_thread_prologue_and_epilogue (void)
6511 /* prepare_shrink_wrap is sensitive to the block structure of the control
6512 flow graph, so clean it up first. */
6516 /* On some machines, the prologue and epilogue code, or parts thereof,
6517 can be represented as RTL. Doing so lets us schedule insns between
6518 it and the rest of the code and also allows delayed branch
6519 scheduling to operate in the epilogue. */
6520 thread_prologue_and_epilogue_insns ();
6522 /* Some non-cold blocks may now be only reachable from cold blocks.
6524 fixup_partitions ();
6526 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6528 cleanup_cfg (optimize
? CLEANUP_EXPENSIVE
: 0);
6530 /* The stack usage info is finalized during prologue expansion. */
6531 if (flag_stack_usage_info
)
6532 output_stack_usage ();
6539 const pass_data pass_data_thread_prologue_and_epilogue
=
6541 RTL_PASS
, /* type */
6542 "pro_and_epilogue", /* name */
6543 OPTGROUP_NONE
, /* optinfo_flags */
6544 TV_THREAD_PROLOGUE_AND_EPILOGUE
, /* tv_id */
6545 0, /* properties_required */
6546 0, /* properties_provided */
6547 0, /* properties_destroyed */
6548 0, /* todo_flags_start */
6549 ( TODO_df_verify
| TODO_df_finish
), /* todo_flags_finish */
6552 class pass_thread_prologue_and_epilogue
: public rtl_opt_pass
6555 pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6556 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue
, ctxt
)
6559 /* opt_pass methods: */
6560 virtual unsigned int execute (function
*)
6562 return rest_of_handle_thread_prologue_and_epilogue ();
6565 }; // class pass_thread_prologue_and_epilogue
6570 make_pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6572 return new pass_thread_prologue_and_epilogue (ctxt
);
6576 /* This mini-pass fixes fall-out from SSA in asm statements that have
6577 in-out constraints. Say you start with
6580 asm ("": "+mr" (inout));
6583 which is transformed very early to use explicit output and match operands:
6586 asm ("": "=mr" (inout) : "0" (inout));
6589 Or, after SSA and copyprop,
6591 asm ("": "=mr" (inout_2) : "0" (inout_1));
6594 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6595 they represent two separate values, so they will get different pseudo
6596 registers during expansion. Then, since the two operands need to match
6597 per the constraints, but use different pseudo registers, reload can
6598 only register a reload for these operands. But reloads can only be
6599 satisfied by hardregs, not by memory, so we need a register for this
6600 reload, just because we are presented with non-matching operands.
6601 So, even though we allow memory for this operand, no memory can be
6602 used for it, just because the two operands don't match. This can
6603 cause reload failures on register-starved targets.
6605 So it's a symptom of reload not being able to use memory for reloads
6606 or, alternatively it's also a symptom of both operands not coming into
6607 reload as matching (in which case the pseudo could go to memory just
6608 fine, as the alternative allows it, and no reload would be necessary).
6609 We fix the latter problem here, by transforming
6611 asm ("": "=mr" (inout_2) : "0" (inout_1));
6616 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6619 match_asm_constraints_1 (rtx_insn
*insn
, rtx
*p_sets
, int noutputs
)
6622 bool changed
= false;
6623 rtx op
= SET_SRC (p_sets
[0]);
6624 int ninputs
= ASM_OPERANDS_INPUT_LENGTH (op
);
6625 rtvec inputs
= ASM_OPERANDS_INPUT_VEC (op
);
6626 bool *output_matched
= XALLOCAVEC (bool, noutputs
);
6628 memset (output_matched
, 0, noutputs
* sizeof (bool));
6629 for (i
= 0; i
< ninputs
; i
++)
6633 const char *constraint
= ASM_OPERANDS_INPUT_CONSTRAINT (op
, i
);
6637 if (*constraint
== '%')
6640 match
= strtoul (constraint
, &end
, 10);
6641 if (end
== constraint
)
6644 gcc_assert (match
< noutputs
);
6645 output
= SET_DEST (p_sets
[match
]);
6646 input
= RTVEC_ELT (inputs
, i
);
6647 /* Only do the transformation for pseudos. */
6648 if (! REG_P (output
)
6649 || rtx_equal_p (output
, input
)
6650 || (GET_MODE (input
) != VOIDmode
6651 && GET_MODE (input
) != GET_MODE (output
)))
6654 /* We can't do anything if the output is also used as input,
6655 as we're going to overwrite it. */
6656 for (j
= 0; j
< ninputs
; j
++)
6657 if (reg_overlap_mentioned_p (output
, RTVEC_ELT (inputs
, j
)))
6662 /* Avoid changing the same input several times. For
6663 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6664 only change in once (to out1), rather than changing it
6665 first to out1 and afterwards to out2. */
6668 for (j
= 0; j
< noutputs
; j
++)
6669 if (output_matched
[j
] && input
== SET_DEST (p_sets
[j
]))
6674 output_matched
[match
] = true;
6677 emit_move_insn (output
, input
);
6678 insns
= get_insns ();
6680 emit_insn_before (insns
, insn
);
6682 /* Now replace all mentions of the input with output. We can't
6683 just replace the occurrence in inputs[i], as the register might
6684 also be used in some other input (or even in an address of an
6685 output), which would mean possibly increasing the number of
6686 inputs by one (namely 'output' in addition), which might pose
6687 a too complicated problem for reload to solve. E.g. this situation:
6689 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6691 Here 'input' is used in two occurrences as input (once for the
6692 input operand, once for the address in the second output operand).
6693 If we would replace only the occurrence of the input operand (to
6694 make the matching) we would be left with this:
6697 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6699 Now we suddenly have two different input values (containing the same
6700 value, but different pseudos) where we formerly had only one.
6701 With more complicated asms this might lead to reload failures
6702 which wouldn't have happen without this pass. So, iterate over
6703 all operands and replace all occurrences of the register used. */
6704 for (j
= 0; j
< noutputs
; j
++)
6705 if (!rtx_equal_p (SET_DEST (p_sets
[j
]), input
)
6706 && reg_overlap_mentioned_p (input
, SET_DEST (p_sets
[j
])))
6707 SET_DEST (p_sets
[j
]) = replace_rtx (SET_DEST (p_sets
[j
]),
6709 for (j
= 0; j
< ninputs
; j
++)
6710 if (reg_overlap_mentioned_p (input
, RTVEC_ELT (inputs
, j
)))
6711 RTVEC_ELT (inputs
, j
) = replace_rtx (RTVEC_ELT (inputs
, j
),
6718 df_insn_rescan (insn
);
6721 /* Add the decl D to the local_decls list of FUN. */
6724 add_local_decl (struct function
*fun
, tree d
)
6726 gcc_assert (VAR_P (d
));
6727 vec_safe_push (fun
->local_decls
, d
);
6732 const pass_data pass_data_match_asm_constraints
=
6734 RTL_PASS
, /* type */
6735 "asmcons", /* name */
6736 OPTGROUP_NONE
, /* optinfo_flags */
6737 TV_NONE
, /* tv_id */
6738 0, /* properties_required */
6739 0, /* properties_provided */
6740 0, /* properties_destroyed */
6741 0, /* todo_flags_start */
6742 0, /* todo_flags_finish */
6745 class pass_match_asm_constraints
: public rtl_opt_pass
6748 pass_match_asm_constraints (gcc::context
*ctxt
)
6749 : rtl_opt_pass (pass_data_match_asm_constraints
, ctxt
)
6752 /* opt_pass methods: */
6753 virtual unsigned int execute (function
*);
6755 }; // class pass_match_asm_constraints
6758 pass_match_asm_constraints::execute (function
*fun
)
6765 if (!crtl
->has_asm_statement
)
6768 df_set_flags (DF_DEFER_INSN_RESCAN
);
6769 FOR_EACH_BB_FN (bb
, fun
)
6771 FOR_BB_INSNS (bb
, insn
)
6776 pat
= PATTERN (insn
);
6777 if (GET_CODE (pat
) == PARALLEL
)
6778 p_sets
= &XVECEXP (pat
, 0, 0), noutputs
= XVECLEN (pat
, 0);
6779 else if (GET_CODE (pat
) == SET
)
6780 p_sets
= &PATTERN (insn
), noutputs
= 1;
6784 if (GET_CODE (*p_sets
) == SET
6785 && GET_CODE (SET_SRC (*p_sets
)) == ASM_OPERANDS
)
6786 match_asm_constraints_1 (insn
, p_sets
, noutputs
);
6790 return TODO_df_finish
;
6796 make_pass_match_asm_constraints (gcc::context
*ctxt
)
6798 return new pass_match_asm_constraints (ctxt
);
6802 #include "gt-function.h"