1 /* Combining of if-expressions on trees.
2 Copyright (C) 2007-2016 Free Software Foundation, Inc.
3 Contributed by Richard Guenther <rguenther@suse.de>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "tree-pass.h"
32 #include "tree-pretty-print.h"
33 /* rtl is needed only because arm back-end requires it for
35 #include "fold-const.h"
37 #include "gimple-fold.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
43 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
44 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
45 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
49 /* This pass combines COND_EXPRs to simplify control flow. It
50 currently recognizes bit tests and comparisons in chains that
51 represent logical and or logical or of two COND_EXPRs.
53 It does so by walking basic blocks in a approximate reverse
54 post-dominator order and trying to match CFG patterns that
55 represent logical and or logical or of two COND_EXPRs.
56 Transformations are done if the COND_EXPR conditions match
59 1. two single bit tests X & (1 << Yn) (for logical and)
61 2. two bit tests X & Yn (for logical or)
63 3. two comparisons X OPn Y (for logical or)
65 To simplify this pass, removing basic blocks and dead code
66 is left to CFG cleanup and DCE. */
69 /* Recognize a if-then-else CFG pattern starting to match with the
70 COND_BB basic-block containing the COND_EXPR. The recognized
71 then end else blocks are stored to *THEN_BB and *ELSE_BB. If
72 *THEN_BB and/or *ELSE_BB are already set, they are required to
73 match the then and else basic-blocks to make the pattern match.
74 Returns true if the pattern matched, false otherwise. */
77 recognize_if_then_else (basic_block cond_bb
,
78 basic_block
*then_bb
, basic_block
*else_bb
)
82 if (EDGE_COUNT (cond_bb
->succs
) != 2)
85 /* Find the then/else edges. */
86 t
= EDGE_SUCC (cond_bb
, 0);
87 e
= EDGE_SUCC (cond_bb
, 1);
88 if (!(t
->flags
& EDGE_TRUE_VALUE
))
90 if (!(t
->flags
& EDGE_TRUE_VALUE
)
91 || !(e
->flags
& EDGE_FALSE_VALUE
))
94 /* Check if the edge destinations point to the required block. */
96 && t
->dest
!= *then_bb
)
99 && e
->dest
!= *else_bb
)
110 /* Verify if the basic block BB does not have side-effects. Return
111 true in this case, else false. */
114 bb_no_side_effects_p (basic_block bb
)
116 gimple_stmt_iterator gsi
;
118 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
120 gimple
*stmt
= gsi_stmt (gsi
);
122 if (is_gimple_debug (stmt
))
125 if (gimple_has_side_effects (stmt
)
126 || gimple_uses_undefined_value_p (stmt
)
127 || gimple_could_trap_p (stmt
)
128 || gimple_vuse (stmt
)
129 /* const calls don't match any of the above, yet they could
130 still have some side-effects - they could contain
131 gimple_could_trap_p statements, like floating point
132 exceptions or integer division by zero. See PR70586.
133 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
134 should handle this. */
135 || is_gimple_call (stmt
))
142 /* Return true if BB is an empty forwarder block to TO_BB. */
145 forwarder_block_to (basic_block bb
, basic_block to_bb
)
147 return empty_block_p (bb
)
148 && single_succ_p (bb
)
149 && single_succ (bb
) == to_bb
;
152 /* Verify if all PHI node arguments in DEST for edges from BB1 or
153 BB2 to DEST are the same. This makes the CFG merge point
154 free from side-effects. Return true in this case, else false. */
157 same_phi_args_p (basic_block bb1
, basic_block bb2
, basic_block dest
)
159 edge e1
= find_edge (bb1
, dest
);
160 edge e2
= find_edge (bb2
, dest
);
164 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
167 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi
, e1
),
168 PHI_ARG_DEF_FROM_EDGE (phi
, e2
), 0))
175 /* Return the best representative SSA name for CANDIDATE which is used
179 get_name_for_bit_test (tree candidate
)
181 /* Skip single-use names in favor of using the name from a
182 non-widening conversion definition. */
183 if (TREE_CODE (candidate
) == SSA_NAME
184 && has_single_use (candidate
))
186 gimple
*def_stmt
= SSA_NAME_DEF_STMT (candidate
);
187 if (is_gimple_assign (def_stmt
)
188 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
190 if (TYPE_PRECISION (TREE_TYPE (candidate
))
191 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
192 return gimple_assign_rhs1 (def_stmt
);
199 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
200 statements. Store the name being tested in *NAME and the bit
201 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
202 Returns true if the pattern matched, false otherwise. */
205 recognize_single_bit_test (gcond
*cond
, tree
*name
, tree
*bit
, bool inv
)
209 /* Get at the definition of the result of the bit test. */
210 if (gimple_cond_code (cond
) != (inv
? EQ_EXPR
: NE_EXPR
)
211 || TREE_CODE (gimple_cond_lhs (cond
)) != SSA_NAME
212 || !integer_zerop (gimple_cond_rhs (cond
)))
214 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (cond
));
215 if (!is_gimple_assign (stmt
))
218 /* Look at which bit is tested. One form to recognize is
219 D.1985_5 = state_3(D) >> control1_4(D);
220 D.1986_6 = (int) D.1985_5;
222 if (D.1987_7 != 0) */
223 if (gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
224 && integer_onep (gimple_assign_rhs2 (stmt
))
225 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
227 tree orig_name
= gimple_assign_rhs1 (stmt
);
229 /* Look through copies and conversions to eventually
230 find the stmt that computes the shift. */
231 stmt
= SSA_NAME_DEF_STMT (orig_name
);
233 while (is_gimple_assign (stmt
)
234 && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt
))
235 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt
)))
236 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
237 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
238 || gimple_assign_ssa_name_copy_p (stmt
)))
239 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
241 /* If we found such, decompose it. */
242 if (is_gimple_assign (stmt
)
243 && gimple_assign_rhs_code (stmt
) == RSHIFT_EXPR
)
245 /* op0 & (1 << op1) */
246 *bit
= gimple_assign_rhs2 (stmt
);
247 *name
= gimple_assign_rhs1 (stmt
);
252 *bit
= integer_zero_node
;
253 *name
= get_name_for_bit_test (orig_name
);
260 D.1987_7 = op0 & (1 << CST)
261 if (D.1987_7 != 0) */
262 if (gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
263 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
264 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
266 *name
= gimple_assign_rhs1 (stmt
);
267 *bit
= build_int_cst (integer_type_node
,
268 tree_log2 (gimple_assign_rhs2 (stmt
)));
273 D.1986_6 = 1 << control1_4(D)
274 D.1987_7 = op0 & D.1986_6
275 if (D.1987_7 != 0) */
276 if (gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
277 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
278 && TREE_CODE (gimple_assign_rhs2 (stmt
)) == SSA_NAME
)
282 /* Both arguments of the BIT_AND_EXPR can be the single-bit
283 specifying expression. */
284 tmp
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
285 if (is_gimple_assign (tmp
)
286 && gimple_assign_rhs_code (tmp
) == LSHIFT_EXPR
287 && integer_onep (gimple_assign_rhs1 (tmp
)))
289 *name
= gimple_assign_rhs2 (stmt
);
290 *bit
= gimple_assign_rhs2 (tmp
);
294 tmp
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
295 if (is_gimple_assign (tmp
)
296 && gimple_assign_rhs_code (tmp
) == LSHIFT_EXPR
297 && integer_onep (gimple_assign_rhs1 (tmp
)))
299 *name
= gimple_assign_rhs1 (stmt
);
300 *bit
= gimple_assign_rhs2 (tmp
);
308 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
309 statements. Store the name being tested in *NAME and the bits
310 in *BITS. The COND_EXPR computes *NAME & *BITS.
311 Returns true if the pattern matched, false otherwise. */
314 recognize_bits_test (gcond
*cond
, tree
*name
, tree
*bits
, bool inv
)
318 /* Get at the definition of the result of the bit test. */
319 if (gimple_cond_code (cond
) != (inv
? EQ_EXPR
: NE_EXPR
)
320 || TREE_CODE (gimple_cond_lhs (cond
)) != SSA_NAME
321 || !integer_zerop (gimple_cond_rhs (cond
)))
323 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (cond
));
324 if (!is_gimple_assign (stmt
)
325 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
)
328 *name
= get_name_for_bit_test (gimple_assign_rhs1 (stmt
));
329 *bits
= gimple_assign_rhs2 (stmt
);
334 /* If-convert on a and pattern with a common else block. The inner
335 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
336 inner_inv, outer_inv and result_inv indicate whether the conditions
338 Returns true if the edges to the common else basic-block were merged. */
341 ifcombine_ifandif (basic_block inner_cond_bb
, bool inner_inv
,
342 basic_block outer_cond_bb
, bool outer_inv
, bool result_inv
)
344 gimple_stmt_iterator gsi
;
345 gimple
*inner_stmt
, *outer_stmt
;
346 gcond
*inner_cond
, *outer_cond
;
347 tree name1
, name2
, bit1
, bit2
, bits1
, bits2
;
349 inner_stmt
= last_stmt (inner_cond_bb
);
351 || gimple_code (inner_stmt
) != GIMPLE_COND
)
353 inner_cond
= as_a
<gcond
*> (inner_stmt
);
355 outer_stmt
= last_stmt (outer_cond_bb
);
357 || gimple_code (outer_stmt
) != GIMPLE_COND
)
359 outer_cond
= as_a
<gcond
*> (outer_stmt
);
361 /* See if we test a single bit of the same name in both tests. In
362 that case remove the outer test, merging both else edges,
363 and change the inner one to test for
364 name & (bit1 | bit2) == (bit1 | bit2). */
365 if (recognize_single_bit_test (inner_cond
, &name1
, &bit1
, inner_inv
)
366 && recognize_single_bit_test (outer_cond
, &name2
, &bit2
, outer_inv
)
372 gsi
= gsi_for_stmt (inner_cond
);
373 t
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (name1
),
374 build_int_cst (TREE_TYPE (name1
), 1), bit1
);
375 t2
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (name1
),
376 build_int_cst (TREE_TYPE (name1
), 1), bit2
);
377 t
= fold_build2 (BIT_IOR_EXPR
, TREE_TYPE (name1
), t
, t2
);
378 t
= force_gimple_operand_gsi (&gsi
, t
, true, NULL_TREE
,
379 true, GSI_SAME_STMT
);
380 t2
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (name1
), name1
, t
);
381 t2
= force_gimple_operand_gsi (&gsi
, t2
, true, NULL_TREE
,
382 true, GSI_SAME_STMT
);
383 t
= fold_build2 (result_inv
? NE_EXPR
: EQ_EXPR
,
384 boolean_type_node
, t2
, t
);
385 t
= canonicalize_cond_expr_cond (t
);
388 gimple_cond_set_condition_from_tree (inner_cond
, t
);
389 update_stmt (inner_cond
);
391 /* Leave CFG optimization to cfg_cleanup. */
392 gimple_cond_set_condition_from_tree (outer_cond
,
393 outer_inv
? boolean_false_node
: boolean_true_node
);
394 update_stmt (outer_cond
);
398 fprintf (dump_file
, "optimizing double bit test to ");
399 print_generic_expr (dump_file
, name1
, 0);
400 fprintf (dump_file
, " & T == T\nwith temporary T = (1 << ");
401 print_generic_expr (dump_file
, bit1
, 0);
402 fprintf (dump_file
, ") | (1 << ");
403 print_generic_expr (dump_file
, bit2
, 0);
404 fprintf (dump_file
, ")\n");
410 /* See if we have two bit tests of the same name in both tests.
411 In that case remove the outer test and change the inner one to
412 test for name & (bits1 | bits2) != 0. */
413 else if (recognize_bits_test (inner_cond
, &name1
, &bits1
, !inner_inv
)
414 && recognize_bits_test (outer_cond
, &name2
, &bits2
, !outer_inv
))
416 gimple_stmt_iterator gsi
;
419 /* Find the common name which is bit-tested. */
422 else if (bits1
== bits2
)
424 std::swap (name2
, bits2
);
425 std::swap (name1
, bits1
);
427 else if (name1
== bits2
)
428 std::swap (name2
, bits2
);
429 else if (bits1
== name2
)
430 std::swap (name1
, bits1
);
434 /* As we strip non-widening conversions in finding a common
435 name that is tested make sure to end up with an integral
436 type for building the bit operations. */
437 if (TYPE_PRECISION (TREE_TYPE (bits1
))
438 >= TYPE_PRECISION (TREE_TYPE (bits2
)))
440 bits1
= fold_convert (unsigned_type_for (TREE_TYPE (bits1
)), bits1
);
441 name1
= fold_convert (TREE_TYPE (bits1
), name1
);
442 bits2
= fold_convert (unsigned_type_for (TREE_TYPE (bits2
)), bits2
);
443 bits2
= fold_convert (TREE_TYPE (bits1
), bits2
);
447 bits2
= fold_convert (unsigned_type_for (TREE_TYPE (bits2
)), bits2
);
448 name1
= fold_convert (TREE_TYPE (bits2
), name1
);
449 bits1
= fold_convert (unsigned_type_for (TREE_TYPE (bits1
)), bits1
);
450 bits1
= fold_convert (TREE_TYPE (bits2
), bits1
);
454 gsi
= gsi_for_stmt (inner_cond
);
455 t
= fold_build2 (BIT_IOR_EXPR
, TREE_TYPE (name1
), bits1
, bits2
);
456 t
= force_gimple_operand_gsi (&gsi
, t
, true, NULL_TREE
,
457 true, GSI_SAME_STMT
);
458 t
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (name1
), name1
, t
);
459 t
= force_gimple_operand_gsi (&gsi
, t
, true, NULL_TREE
,
460 true, GSI_SAME_STMT
);
461 t
= fold_build2 (result_inv
? NE_EXPR
: EQ_EXPR
, boolean_type_node
, t
,
462 build_int_cst (TREE_TYPE (t
), 0));
463 t
= canonicalize_cond_expr_cond (t
);
466 gimple_cond_set_condition_from_tree (inner_cond
, t
);
467 update_stmt (inner_cond
);
469 /* Leave CFG optimization to cfg_cleanup. */
470 gimple_cond_set_condition_from_tree (outer_cond
,
471 outer_inv
? boolean_false_node
: boolean_true_node
);
472 update_stmt (outer_cond
);
476 fprintf (dump_file
, "optimizing bits or bits test to ");
477 print_generic_expr (dump_file
, name1
, 0);
478 fprintf (dump_file
, " & T != 0\nwith temporary T = ");
479 print_generic_expr (dump_file
, bits1
, 0);
480 fprintf (dump_file
, " | ");
481 print_generic_expr (dump_file
, bits2
, 0);
482 fprintf (dump_file
, "\n");
488 /* See if we have two comparisons that we can merge into one. */
489 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond
)) == tcc_comparison
490 && TREE_CODE_CLASS (gimple_cond_code (outer_cond
)) == tcc_comparison
)
493 enum tree_code inner_cond_code
= gimple_cond_code (inner_cond
);
494 enum tree_code outer_cond_code
= gimple_cond_code (outer_cond
);
496 /* Invert comparisons if necessary (and possible). */
498 inner_cond_code
= invert_tree_comparison (inner_cond_code
,
499 HONOR_NANS (gimple_cond_lhs (inner_cond
)));
500 if (inner_cond_code
== ERROR_MARK
)
503 outer_cond_code
= invert_tree_comparison (outer_cond_code
,
504 HONOR_NANS (gimple_cond_lhs (outer_cond
)));
505 if (outer_cond_code
== ERROR_MARK
)
507 /* Don't return false so fast, try maybe_fold_or_comparisons? */
509 if (!(t
= maybe_fold_and_comparisons (inner_cond_code
,
510 gimple_cond_lhs (inner_cond
),
511 gimple_cond_rhs (inner_cond
),
513 gimple_cond_lhs (outer_cond
),
514 gimple_cond_rhs (outer_cond
))))
517 gimple_stmt_iterator gsi
;
518 if (!LOGICAL_OP_NON_SHORT_CIRCUIT
)
520 /* Only do this optimization if the inner bb contains only the conditional. */
521 if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb
)))
523 t1
= fold_build2_loc (gimple_location (inner_cond
),
526 gimple_cond_lhs (inner_cond
),
527 gimple_cond_rhs (inner_cond
));
528 t2
= fold_build2_loc (gimple_location (outer_cond
),
531 gimple_cond_lhs (outer_cond
),
532 gimple_cond_rhs (outer_cond
));
533 t
= fold_build2_loc (gimple_location (inner_cond
),
534 TRUTH_AND_EXPR
, boolean_type_node
, t1
, t2
);
537 t
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (t
), t
);
540 gsi
= gsi_for_stmt (inner_cond
);
541 t
= force_gimple_operand_gsi_1 (&gsi
, t
, is_gimple_condexpr
, NULL
, true,
545 t
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (t
), t
);
546 t
= canonicalize_cond_expr_cond (t
);
549 gimple_cond_set_condition_from_tree (inner_cond
, t
);
550 update_stmt (inner_cond
);
552 /* Leave CFG optimization to cfg_cleanup. */
553 gimple_cond_set_condition_from_tree (outer_cond
,
554 outer_inv
? boolean_false_node
: boolean_true_node
);
555 update_stmt (outer_cond
);
559 fprintf (dump_file
, "optimizing two comparisons to ");
560 print_generic_expr (dump_file
, t
, 0);
561 fprintf (dump_file
, "\n");
570 /* Helper function for tree_ssa_ifcombine_bb. Recognize a CFG pattern and
571 dispatch to the appropriate if-conversion helper for a particular
572 set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB.
573 PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB. */
576 tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb
, basic_block outer_cond_bb
,
577 basic_block then_bb
, basic_block else_bb
,
578 basic_block phi_pred_bb
)
580 /* The && form is characterized by a common else_bb with
581 the two edges leading to it mergable. The latter is
582 guaranteed by matching PHI arguments in the else_bb and
583 the inner cond_bb having no side-effects. */
584 if (phi_pred_bb
!= else_bb
585 && recognize_if_then_else (outer_cond_bb
, &inner_cond_bb
, &else_bb
)
586 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, else_bb
))
590 if (q) goto inner_cond_bb; else goto else_bb;
592 if (p) goto ...; else goto else_bb;
597 return ifcombine_ifandif (inner_cond_bb
, false, outer_cond_bb
, false,
601 /* And a version where the outer condition is negated. */
602 if (phi_pred_bb
!= else_bb
603 && recognize_if_then_else (outer_cond_bb
, &else_bb
, &inner_cond_bb
)
604 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, else_bb
))
608 if (q) goto else_bb; else goto inner_cond_bb;
610 if (p) goto ...; else goto else_bb;
615 return ifcombine_ifandif (inner_cond_bb
, false, outer_cond_bb
, true,
619 /* The || form is characterized by a common then_bb with the
620 two edges leading to it mergable. The latter is guaranteed
621 by matching PHI arguments in the then_bb and the inner cond_bb
622 having no side-effects. */
623 if (phi_pred_bb
!= then_bb
624 && recognize_if_then_else (outer_cond_bb
, &then_bb
, &inner_cond_bb
)
625 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, then_bb
))
629 if (q) goto then_bb; else goto inner_cond_bb;
631 if (q) goto then_bb; else goto ...;
635 return ifcombine_ifandif (inner_cond_bb
, true, outer_cond_bb
, true,
639 /* And a version where the outer condition is negated. */
640 if (phi_pred_bb
!= then_bb
641 && recognize_if_then_else (outer_cond_bb
, &inner_cond_bb
, &then_bb
)
642 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, then_bb
))
646 if (q) goto inner_cond_bb; else goto then_bb;
648 if (q) goto then_bb; else goto ...;
652 return ifcombine_ifandif (inner_cond_bb
, true, outer_cond_bb
, false,
659 /* Recognize a CFG pattern and dispatch to the appropriate
660 if-conversion helper. We start with BB as the innermost
661 worker basic-block. Returns true if a transformation was done. */
664 tree_ssa_ifcombine_bb (basic_block inner_cond_bb
)
666 basic_block then_bb
= NULL
, else_bb
= NULL
;
668 if (!recognize_if_then_else (inner_cond_bb
, &then_bb
, &else_bb
))
671 /* Recognize && and || of two conditions with a common
672 then/else block which entry edges we can merge. That is:
678 This requires a single predecessor of the inner cond_bb. */
679 if (single_pred_p (inner_cond_bb
)
680 && bb_no_side_effects_p (inner_cond_bb
))
682 basic_block outer_cond_bb
= single_pred (inner_cond_bb
);
684 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb
, outer_cond_bb
,
685 then_bb
, else_bb
, inner_cond_bb
))
688 if (forwarder_block_to (else_bb
, then_bb
))
690 /* Other possibilities for the && form, if else_bb is
691 empty forwarder block to then_bb. Compared to the above simpler
692 forms this can be treated as if then_bb and else_bb were swapped,
693 and the corresponding inner_cond_bb not inverted because of that.
694 For same_phi_args_p we look at equality of arguments between
695 edge from outer_cond_bb and the forwarder block. */
696 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb
, outer_cond_bb
, else_bb
,
700 else if (forwarder_block_to (then_bb
, else_bb
))
702 /* Other possibilities for the || form, if then_bb is
703 empty forwarder block to else_bb. Compared to the above simpler
704 forms this can be treated as if then_bb and else_bb were swapped,
705 and the corresponding inner_cond_bb not inverted because of that.
706 For same_phi_args_p we look at equality of arguments between
707 edge from outer_cond_bb and the forwarder block. */
708 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb
, outer_cond_bb
, else_bb
,
717 /* Main entry for the tree if-conversion pass. */
721 const pass_data pass_data_tree_ifcombine
=
723 GIMPLE_PASS
, /* type */
724 "ifcombine", /* name */
725 OPTGROUP_NONE
, /* optinfo_flags */
726 TV_TREE_IFCOMBINE
, /* tv_id */
727 ( PROP_cfg
| PROP_ssa
), /* properties_required */
728 0, /* properties_provided */
729 0, /* properties_destroyed */
730 0, /* todo_flags_start */
731 TODO_update_ssa
, /* todo_flags_finish */
734 class pass_tree_ifcombine
: public gimple_opt_pass
737 pass_tree_ifcombine (gcc::context
*ctxt
)
738 : gimple_opt_pass (pass_data_tree_ifcombine
, ctxt
)
741 /* opt_pass methods: */
742 virtual unsigned int execute (function
*);
744 }; // class pass_tree_ifcombine
747 pass_tree_ifcombine::execute (function
*fun
)
750 bool cfg_changed
= false;
753 bbs
= single_pred_before_succ_order ();
754 calculate_dominance_info (CDI_DOMINATORS
);
756 /* Search every basic block for COND_EXPR we may be able to optimize.
758 We walk the blocks in order that guarantees that a block with
759 a single predecessor is processed after the predecessor.
760 This ensures that we collapse outter ifs before visiting the
761 inner ones, and also that we do not try to visit a removed
762 block. This is opposite of PHI-OPT, because we cascade the
763 combining rather than cascading PHIs. */
764 for (i
= n_basic_blocks_for_fn (fun
) - NUM_FIXED_BLOCKS
- 1; i
>= 0; i
--)
766 basic_block bb
= bbs
[i
];
767 gimple
*stmt
= last_stmt (bb
);
770 && gimple_code (stmt
) == GIMPLE_COND
)
771 if (tree_ssa_ifcombine_bb (bb
))
773 /* Clear range info from all stmts in BB which is now executed
774 conditional on a always true/false condition. */
775 reset_flow_sensitive_info_in_bb (bb
);
782 return cfg_changed
? TODO_cleanup_cfg
: 0;
788 make_pass_tree_ifcombine (gcc::context
*ctxt
)
790 return new pass_tree_ifcombine (ctxt
);