2016-12-24 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / libgo / runtime / malloc.h
blobf13d5b3a99ee7290f393239ee8de5b3294637538
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
14 // allocators.
16 // The allocator's data structures are:
18 // FixAlloc: a free-list allocator for fixed-size objects,
19 // used to manage storage used by the allocator.
20 // MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 // MSpan: a run of pages managed by the MHeap.
22 // MCentral: a shared free list for a given size class.
23 // MCache: a per-thread (in Go, per-P) cache for small objects.
24 // MStats: allocation statistics.
26 // Allocating a small object proceeds up a hierarchy of caches:
28 // 1. Round the size up to one of the small size classes
29 // and look in the corresponding MCache free list.
30 // If the list is not empty, allocate an object from it.
31 // This can all be done without acquiring a lock.
33 // 2. If the MCache free list is empty, replenish it by
34 // taking a bunch of objects from the MCentral free list.
35 // Moving a bunch amortizes the cost of acquiring the MCentral lock.
37 // 3. If the MCentral free list is empty, replenish it by
38 // allocating a run of pages from the MHeap and then
39 // chopping that memory into a objects of the given size.
40 // Allocating many objects amortizes the cost of locking
41 // the heap.
43 // 4. If the MHeap is empty or has no page runs large enough,
44 // allocate a new group of pages (at least 1MB) from the
45 // operating system. Allocating a large run of pages
46 // amortizes the cost of talking to the operating system.
48 // Freeing a small object proceeds up the same hierarchy:
50 // 1. Look up the size class for the object and add it to
51 // the MCache free list.
53 // 2. If the MCache free list is too long or the MCache has
54 // too much memory, return some to the MCentral free lists.
56 // 3. If all the objects in a given span have returned to
57 // the MCentral list, return that span to the page heap.
59 // 4. If the heap has too much memory, return some to the
60 // operating system.
62 // TODO(rsc): Step 4 is not implemented.
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed. They are zeroed if and only if
69 // the second word of the object is zero. A span in the
70 // page heap is zeroed unless s->needzero is set. When a span
71 // is allocated to break into small objects, it is zeroed if needed
72 // and s->needzero is set. There are two main benefits to delaying the
73 // zeroing this way:
75 // 1. stack frames allocated from the small object lists
76 // or the page heap can avoid zeroing altogether.
77 // 2. the cost of zeroing when reusing a small object is
78 // charged to the mutator, not the garbage collector.
80 // This C code was written with an eye toward translating to Go
81 // in the future. Methods have the form Type_Method(Type *t, ...).
83 typedef struct MCentral MCentral;
84 typedef struct MHeap MHeap;
85 typedef struct mspan MSpan;
86 typedef struct mstats MStats;
87 typedef struct mlink MLink;
88 typedef struct mtypes MTypes;
89 typedef struct gcstats GCStats;
91 enum
93 PageShift = 13,
94 PageSize = 1<<PageShift,
95 PageMask = PageSize - 1,
97 typedef uintptr PageID; // address >> PageShift
99 enum
101 // Computed constant. The definition of MaxSmallSize and the
102 // algorithm in msize.c produce some number of different allocation
103 // size classes. _NumSizeClasses is that number. It's needed here
104 // because there are static arrays of this length; when msize runs its
105 // size choosing algorithm it double-checks that NumSizeClasses agrees.
106 // _NumSizeClasses is defined in runtime2.go as 67.
108 // Tunable constants.
109 MaxSmallSize = 32<<10,
111 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
112 TinySize = 16,
113 TinySizeClass = 2,
115 FixAllocChunk = 16<<10, // Chunk size for FixAlloc
116 MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
117 HeapAllocChunk = 1<<20, // Chunk size for heap growth
119 // Number of bits in page to span calculations (4k pages).
120 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
121 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
122 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
123 #if __SIZEOF_POINTER__ == 8
124 #ifdef GOOS_windows
125 // Windows counts memory used by page table into committed memory
126 // of the process, so we can't reserve too much memory.
127 // See http://golang.org/issue/5402 and http://golang.org/issue/5236.
128 MHeapMap_Bits = 35 - PageShift,
129 #else
130 MHeapMap_Bits = 37 - PageShift,
131 #endif
132 #else
133 MHeapMap_Bits = 32 - PageShift,
134 #endif
136 // Max number of threads to run garbage collection.
137 // 2, 3, and 4 are all plausible maximums depending
138 // on the hardware details of the machine. The garbage
139 // collector scales well to 8 cpus.
140 MaxGcproc = 8,
143 // Maximum memory allocation size, a hint for callers.
144 // This must be a #define instead of an enum because it
145 // is so large.
146 #if __SIZEOF_POINTER__ == 8
147 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
148 #else
149 #define MaxMem ((uintptr)-1)
150 #endif
151 // SysAlloc obtains a large chunk of zeroed memory from the
152 // operating system, typically on the order of a hundred kilobytes
153 // or a megabyte.
154 // NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
155 // may use larger alignment, so the caller must be careful to realign the
156 // memory obtained by SysAlloc.
158 // SysUnused notifies the operating system that the contents
159 // of the memory region are no longer needed and can be reused
160 // for other purposes.
161 // SysUsed notifies the operating system that the contents
162 // of the memory region are needed again.
164 // SysFree returns it unconditionally; this is only used if
165 // an out-of-memory error has been detected midway through
166 // an allocation. It is okay if SysFree is a no-op.
168 // SysReserve reserves address space without allocating memory.
169 // If the pointer passed to it is non-nil, the caller wants the
170 // reservation there, but SysReserve can still choose another
171 // location if that one is unavailable. On some systems and in some
172 // cases SysReserve will simply check that the address space is
173 // available and not actually reserve it. If SysReserve returns
174 // non-nil, it sets *reserved to true if the address space is
175 // reserved, false if it has merely been checked.
176 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
177 // may use larger alignment, so the caller must be careful to realign the
178 // memory obtained by SysAlloc.
180 // SysMap maps previously reserved address space for use.
181 // The reserved argument is true if the address space was really
182 // reserved, not merely checked.
184 // SysFault marks a (already SysAlloc'd) region to fault
185 // if accessed. Used only for debugging the runtime.
187 void* runtime_SysAlloc(uintptr nbytes, uint64 *stat)
188 __asm__ (GOSYM_PREFIX "runtime.sysAlloc");
189 void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
190 void runtime_SysUnused(void *v, uintptr nbytes);
191 void runtime_SysUsed(void *v, uintptr nbytes);
192 void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
193 void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
194 void runtime_SysFault(void *v, uintptr nbytes);
196 // FixAlloc is a simple free-list allocator for fixed size objects.
197 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
198 // MCache and MSpan objects.
200 // Memory returned by FixAlloc_Alloc is not zeroed.
201 // The caller is responsible for locking around FixAlloc calls.
202 // Callers can keep state in the object but the first word is
203 // smashed by freeing and reallocating.
204 struct FixAlloc
206 uintptr size;
207 void (*first)(void *arg, byte *p); // called first time p is returned
208 void* arg;
209 MLink* list;
210 byte* chunk;
211 uint32 nchunk;
212 uintptr inuse; // in-use bytes now
213 uint64* stat;
216 void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
217 void* runtime_FixAlloc_Alloc(FixAlloc *f);
218 void runtime_FixAlloc_Free(FixAlloc *f, void *p);
220 extern MStats *mstats(void)
221 __asm__ (GOSYM_PREFIX "runtime.getMstats");
222 void runtime_updatememstats(GCStats *stats)
223 __asm__ (GOSYM_PREFIX "runtime.updatememstats");
225 // Size classes. Computed and initialized by InitSizes.
227 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
228 // 1 <= sizeclass < _NumSizeClasses, for n.
229 // Size class 0 is reserved to mean "not small".
231 // class_to_size[i] = largest size in class i
232 // class_to_allocnpages[i] = number of pages to allocate when
233 // making new objects in class i
235 int32 runtime_SizeToClass(int32);
236 uintptr runtime_roundupsize(uintptr)
237 __asm__(GOSYM_PREFIX "runtime.roundupsize");
238 extern int32 runtime_class_to_size[_NumSizeClasses];
239 extern int32 runtime_class_to_allocnpages[_NumSizeClasses];
240 extern int8 runtime_size_to_class8[1024/8 + 1];
241 extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
242 extern void runtime_InitSizes(void);
245 typedef struct mcachelist MCacheList;
247 MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass);
248 void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
249 void runtime_MCache_ReleaseAll(MCache *c);
251 // MTypes describes the types of blocks allocated within a span.
252 // The compression field describes the layout of the data.
254 // MTypes_Empty:
255 // All blocks are free, or no type information is available for
256 // allocated blocks.
257 // The data field has no meaning.
258 // MTypes_Single:
259 // The span contains just one block.
260 // The data field holds the type information.
261 // The sysalloc field has no meaning.
262 // MTypes_Words:
263 // The span contains multiple blocks.
264 // The data field points to an array of type [NumBlocks]uintptr,
265 // and each element of the array holds the type of the corresponding
266 // block.
267 // MTypes_Bytes:
268 // The span contains at most seven different types of blocks.
269 // The data field points to the following structure:
270 // struct {
271 // type [8]uintptr // type[0] is always 0
272 // index [NumBlocks]byte
273 // }
274 // The type of the i-th block is: data.type[data.index[i]]
275 enum
277 MTypes_Empty = 0,
278 MTypes_Single = 1,
279 MTypes_Words = 2,
280 MTypes_Bytes = 3,
283 enum
285 KindSpecialFinalizer = 1,
286 KindSpecialProfile = 2,
287 // Note: The finalizer special must be first because if we're freeing
288 // an object, a finalizer special will cause the freeing operation
289 // to abort, and we want to keep the other special records around
290 // if that happens.
293 typedef struct special Special;
295 // The described object has a finalizer set for it.
296 typedef struct SpecialFinalizer SpecialFinalizer;
297 struct SpecialFinalizer
299 Special;
300 FuncVal* fn;
301 const FuncType* ft;
302 const PtrType* ot;
305 // The described object is being heap profiled.
306 typedef struct bucket Bucket; // from mprof.go
307 typedef struct SpecialProfile SpecialProfile;
308 struct SpecialProfile
310 Special;
311 Bucket* b;
314 // An MSpan is a run of pages.
315 enum
317 MSpanInUse = 0,
318 MSpanFree,
319 MSpanListHead,
320 MSpanDead,
323 void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
324 void runtime_MSpan_EnsureSwept(MSpan *span);
325 bool runtime_MSpan_Sweep(MSpan *span);
327 // Every MSpan is in one doubly-linked list,
328 // either one of the MHeap's free lists or one of the
329 // MCentral's span lists. We use empty MSpan structures as list heads.
330 void runtime_MSpanList_Init(MSpan *list);
331 bool runtime_MSpanList_IsEmpty(MSpan *list);
332 void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
333 void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
334 void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
337 // Central list of free objects of a given size.
338 struct MCentral
340 Lock;
341 int32 sizeclass;
342 MSpan nonempty; // list of spans with a free object
343 MSpan mempty; // list of spans with no free objects (or cached in an MCache)
344 int32 nfree; // # of objects available in nonempty spans
347 void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
348 MSpan* runtime_MCentral_CacheSpan(MCentral *c);
349 void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
350 bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
351 void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
353 // Main malloc heap.
354 // The heap itself is the "free[]" and "large" arrays,
355 // but all the other global data is here too.
356 struct MHeap
358 Lock;
359 MSpan free[MaxMHeapList]; // free lists of given length
360 MSpan freelarge; // free lists length >= MaxMHeapList
361 MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
362 MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
363 MSpan **allspans; // all spans out there
364 MSpan **sweepspans; // copy of allspans referenced by sweeper
365 uint32 nspan;
366 uint32 nspancap;
367 uint32 sweepgen; // sweep generation, see comment in MSpan
368 uint32 sweepdone; // all spans are swept
370 // span lookup
371 MSpan** spans;
372 uintptr spans_mapped;
374 // range of addresses we might see in the heap
375 byte *bitmap;
376 uintptr bitmap_mapped;
377 byte *arena_start;
378 byte *arena_used;
379 byte *arena_end;
380 bool arena_reserved;
382 // central free lists for small size classes.
383 // the padding makes sure that the MCentrals are
384 // spaced CacheLineSize bytes apart, so that each MCentral.Lock
385 // gets its own cache line.
386 struct {
387 MCentral;
388 byte pad[64];
389 } central[_NumSizeClasses];
391 FixAlloc spanalloc; // allocator for Span*
392 FixAlloc cachealloc; // allocator for MCache*
393 FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
394 FixAlloc specialprofilealloc; // allocator for SpecialProfile*
395 Lock speciallock; // lock for sepcial record allocators.
397 // Malloc stats.
398 uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
399 uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
400 uint64 nsmallfree[_NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
402 extern MHeap runtime_mheap;
404 void runtime_MHeap_Init(MHeap *h);
405 MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
406 void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
407 MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
408 MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
409 void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
410 void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
411 void runtime_MHeap_MapBits(MHeap *h);
412 void runtime_MHeap_MapSpans(MHeap *h);
413 void runtime_MHeap_Scavenger(void*);
414 void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
416 void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
417 void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
418 __asm__(GOSYM_PREFIX "runtime.persistentalloc");
419 int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
420 void runtime_gc(int32 force);
421 uintptr runtime_sweepone(void);
422 void runtime_markscan(void *v);
423 void runtime_marknogc(void *v);
424 void runtime_checkallocated(void *v, uintptr n);
425 void runtime_markfreed(void *v);
426 void runtime_checkfreed(void *v, uintptr n);
427 extern int32 runtime_checking;
428 void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
429 void runtime_unmarkspan(void *v, uintptr size);
430 void runtime_purgecachedstats(MCache*);
431 void* runtime_cnew(const Type*)
432 __asm__(GOSYM_PREFIX "runtime.newobject");
433 void* runtime_cnewarray(const Type*, intgo)
434 __asm__(GOSYM_PREFIX "runtime.newarray");
435 void runtime_tracealloc(void*, uintptr, uintptr)
436 __asm__ (GOSYM_PREFIX "runtime.tracealloc");
437 void runtime_tracefree(void*, uintptr)
438 __asm__ (GOSYM_PREFIX "runtime.tracefree");
439 void runtime_tracegc(void)
440 __asm__ (GOSYM_PREFIX "runtime.tracegc");
442 uintptr runtime_gettype(void*);
444 enum
446 // flags to malloc
447 FlagNoScan = 1<<0, // GC doesn't have to scan object
448 FlagNoProfiling = 1<<1, // must not profile
449 FlagNoGC = 1<<2, // must not free or scan for pointers
450 FlagNoZero = 1<<3, // don't zero memory
451 FlagNoInvokeGC = 1<<4, // don't invoke GC
454 typedef struct Obj Obj;
455 struct Obj
457 byte *p; // data pointer
458 uintptr n; // size of data in bytes
459 uintptr ti; // type info
462 void runtime_MProf_Malloc(void*, uintptr)
463 __asm__ (GOSYM_PREFIX "runtime.mProf_Malloc");
464 void runtime_MProf_Free(Bucket*, uintptr, bool)
465 __asm__ (GOSYM_PREFIX "runtime.mProf_Free");
466 void runtime_MProf_GC(void)
467 __asm__ (GOSYM_PREFIX "runtime.mProf_GC");
468 void runtime_iterate_memprof(FuncVal* callback)
469 __asm__ (GOSYM_PREFIX "runtime.iterate_memprof");
470 int32 runtime_gcprocs(void);
471 void runtime_helpgc(int32 nproc);
472 void runtime_gchelper(void);
473 void runtime_createfing(void);
474 G* runtime_wakefing(void);
475 extern bool runtime_fingwait;
476 extern bool runtime_fingwake;
478 void runtime_setprofilebucket(void *p, Bucket *b)
479 __asm__ (GOSYM_PREFIX "runtime.setprofilebucket");
481 struct __go_func_type;
482 struct __go_ptr_type;
483 bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
484 void runtime_removefinalizer(void*);
485 void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
487 void runtime_freeallspecials(MSpan *span, void *p, uintptr size);
488 bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
490 enum
492 TypeInfo_SingleObject = 0,
493 TypeInfo_Array = 1,
494 TypeInfo_Chan = 2,
496 // Enables type information at the end of blocks allocated from heap
497 DebugTypeAtBlockEnd = 0,
500 // Information from the compiler about the layout of stack frames.
501 typedef struct BitVector BitVector;
502 struct BitVector
504 int32 n; // # of bits
505 uint32 *data;
507 typedef struct StackMap StackMap;
508 struct StackMap
510 int32 n; // number of bitmaps
511 int32 nbit; // number of bits in each bitmap
512 uint32 data[];
514 enum {
515 // Pointer map
516 BitsPerPointer = 2,
517 BitsDead = 0,
518 BitsScalar = 1,
519 BitsPointer = 2,
520 BitsMultiWord = 3,
521 // BitsMultiWord will be set for the first word of a multi-word item.
522 // When it is set, one of the following will be set for the second word.
523 BitsString = 0,
524 BitsSlice = 1,
525 BitsIface = 2,
526 BitsEface = 3,
528 // Returns pointer map data for the given stackmap index
529 // (the index is encoded in PCDATA_StackMapIndex).
530 BitVector runtime_stackmapdata(StackMap *stackmap, int32 n);
532 // defined in mgc0.go
533 void runtime_gc_m_ptr(Eface*);
534 void runtime_gc_g_ptr(Eface*);
535 void runtime_gc_itab_ptr(Eface*);
537 void runtime_memorydump(void);
538 int32 runtime_setgcpercent(int32)
539 __asm__ (GOSYM_PREFIX "runtime.setgcpercent");
541 // Value we use to mark dead pointers when GODEBUG=gcdead=1.
542 #define PoisonGC ((uintptr)0xf969696969696969ULL)
543 #define PoisonStack ((uintptr)0x6868686868686868ULL)
545 struct Workbuf;