2002-02-19 Philip Blundell <philb@gnu.org>
[official-gcc.git] / gcc / local-alloc.c
blobc44f3686bb895de426686b8dbb0ed976693a2830
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 #include "integrate.h"
79 /* Next quantity number available for allocation. */
81 static int next_qty;
83 /* Information we maintain about each quantity. */
84 struct qty
86 /* The number of refs to quantity Q. */
88 int n_refs;
90 /* The frequency of uses of quantity Q. */
92 int freq;
94 /* Insn number (counting from head of basic block)
95 where quantity Q was born. -1 if birth has not been recorded. */
97 int birth;
99 /* Insn number (counting from head of basic block)
100 where given quantity died. Due to the way tying is done,
101 and the fact that we consider in this pass only regs that die but once,
102 a quantity can die only once. Each quantity's life span
103 is a set of consecutive insns. -1 if death has not been recorded. */
105 int death;
107 /* Number of words needed to hold the data in given quantity.
108 This depends on its machine mode. It is used for these purposes:
109 1. It is used in computing the relative importances of qtys,
110 which determines the order in which we look for regs for them.
111 2. It is used in rules that prevent tying several registers of
112 different sizes in a way that is geometrically impossible
113 (see combine_regs). */
115 int size;
117 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
119 int n_calls_crossed;
121 /* The register number of one pseudo register whose reg_qty value is Q.
122 This register should be the head of the chain
123 maintained in reg_next_in_qty. */
125 int first_reg;
127 /* Reg class contained in (smaller than) the preferred classes of all
128 the pseudo regs that are tied in given quantity.
129 This is the preferred class for allocating that quantity. */
131 enum reg_class min_class;
133 /* Register class within which we allocate given qty if we can't get
134 its preferred class. */
136 enum reg_class alternate_class;
138 /* This holds the mode of the registers that are tied to given qty,
139 or VOIDmode if registers with differing modes are tied together. */
141 enum machine_mode mode;
143 /* the hard reg number chosen for given quantity,
144 or -1 if none was found. */
146 short phys_reg;
148 /* Nonzero if this quantity has been used in a SUBREG in some
149 way that is illegal. */
151 char changes_mode;
155 static struct qty *qty;
157 /* These fields are kept separately to speedup their clearing. */
159 /* We maintain two hard register sets that indicate suggested hard registers
160 for each quantity. The first, phys_copy_sugg, contains hard registers
161 that are tied to the quantity by a simple copy. The second contains all
162 hard registers that are tied to the quantity via an arithmetic operation.
164 The former register set is given priority for allocation. This tends to
165 eliminate copy insns. */
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 copy insns. */
170 static HARD_REG_SET *qty_phys_copy_sugg;
172 /* Element Q is a set of hard registers that are suggested for quantity Q by
173 arithmetic insns. */
175 static HARD_REG_SET *qty_phys_sugg;
177 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
179 static short *qty_phys_num_copy_sugg;
181 /* Element Q is the number of suggested registers in qty_phys_sugg. */
183 static short *qty_phys_num_sugg;
185 /* If (REG N) has been assigned a quantity number, is a register number
186 of another register assigned the same quantity number, or -1 for the
187 end of the chain. qty->first_reg point to the head of this chain. */
189 static int *reg_next_in_qty;
191 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
192 if it is >= 0,
193 of -1 if this register cannot be allocated by local-alloc,
194 or -2 if not known yet.
196 Note that if we see a use or death of pseudo register N with
197 reg_qty[N] == -2, register N must be local to the current block. If
198 it were used in more than one block, we would have reg_qty[N] == -1.
199 This relies on the fact that if reg_basic_block[N] is >= 0, register N
200 will not appear in any other block. We save a considerable number of
201 tests by exploiting this.
203 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
204 be referenced. */
206 static int *reg_qty;
208 /* The offset (in words) of register N within its quantity.
209 This can be nonzero if register N is SImode, and has been tied
210 to a subreg of a DImode register. */
212 static char *reg_offset;
214 /* Vector of substitutions of register numbers,
215 used to map pseudo regs into hardware regs.
216 This is set up as a result of register allocation.
217 Element N is the hard reg assigned to pseudo reg N,
218 or is -1 if no hard reg was assigned.
219 If N is a hard reg number, element N is N. */
221 short *reg_renumber;
223 /* Set of hard registers live at the current point in the scan
224 of the instructions in a basic block. */
226 static HARD_REG_SET regs_live;
228 /* Each set of hard registers indicates registers live at a particular
229 point in the basic block. For N even, regs_live_at[N] says which
230 hard registers are needed *after* insn N/2 (i.e., they may not
231 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
233 If an object is to conflict with the inputs of insn J but not the
234 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
235 if it is to conflict with the outputs of insn J but not the inputs of
236 insn J + 1, it is said to die at index J*2 + 1. */
238 static HARD_REG_SET *regs_live_at;
240 /* Communicate local vars `insn_number' and `insn'
241 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
242 static int this_insn_number;
243 static rtx this_insn;
245 struct equivalence
247 /* Set when an attempt should be made to replace a register
248 with the associated src entry. */
250 char replace;
252 /* Set when a REG_EQUIV note is found or created. Use to
253 keep track of what memory accesses might be created later,
254 e.g. by reload. */
256 rtx replacement;
258 rtx src;
260 /* Loop depth is used to recognize equivalences which appear
261 to be present within the same loop (or in an inner loop). */
263 int loop_depth;
265 /* The list of each instruction which initializes this register. */
267 rtx init_insns;
270 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
271 structure for that register. */
273 static struct equivalence *reg_equiv;
275 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
276 static int recorded_label_ref;
278 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
279 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
280 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
281 static int equiv_init_varies_p PARAMS ((rtx));
282 static int equiv_init_movable_p PARAMS ((rtx, int));
283 static int contains_replace_regs PARAMS ((rtx));
284 static int memref_referenced_p PARAMS ((rtx, rtx));
285 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
286 static void update_equiv_regs PARAMS ((void));
287 static void no_equiv PARAMS ((rtx, rtx, void *));
288 static void block_alloc PARAMS ((int));
289 static int qty_sugg_compare PARAMS ((int, int));
290 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
291 static int qty_compare PARAMS ((int, int));
292 static int qty_compare_1 PARAMS ((const PTR, const PTR));
293 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
294 static int reg_meets_class_p PARAMS ((int, enum reg_class));
295 static void update_qty_class PARAMS ((int, int));
296 static void reg_is_set PARAMS ((rtx, rtx, void *));
297 static void reg_is_born PARAMS ((rtx, int));
298 static void wipe_dead_reg PARAMS ((rtx, int));
299 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
300 int, int, int, int, int));
301 static void mark_life PARAMS ((int, enum machine_mode, int));
302 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
303 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
304 static int requires_inout PARAMS ((const char *));
306 /* Allocate a new quantity (new within current basic block)
307 for register number REGNO which is born at index BIRTH
308 within the block. MODE and SIZE are info on reg REGNO. */
310 static void
311 alloc_qty (regno, mode, size, birth)
312 int regno;
313 enum machine_mode mode;
314 int size, birth;
316 int qtyno = next_qty++;
318 reg_qty[regno] = qtyno;
319 reg_offset[regno] = 0;
320 reg_next_in_qty[regno] = -1;
322 qty[qtyno].first_reg = regno;
323 qty[qtyno].size = size;
324 qty[qtyno].mode = mode;
325 qty[qtyno].birth = birth;
326 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
327 qty[qtyno].min_class = reg_preferred_class (regno);
328 qty[qtyno].alternate_class = reg_alternate_class (regno);
329 qty[qtyno].n_refs = REG_N_REFS (regno);
330 qty[qtyno].freq = REG_FREQ (regno);
331 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
334 /* Main entry point of this file. */
337 local_alloc ()
339 int b, i;
340 int max_qty;
342 /* We need to keep track of whether or not we recorded a LABEL_REF so
343 that we know if the jump optimizer needs to be rerun. */
344 recorded_label_ref = 0;
346 /* Leaf functions and non-leaf functions have different needs.
347 If defined, let the machine say what kind of ordering we
348 should use. */
349 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
350 ORDER_REGS_FOR_LOCAL_ALLOC;
351 #endif
353 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
354 registers. */
355 update_equiv_regs ();
357 /* This sets the maximum number of quantities we can have. Quantity
358 numbers start at zero and we can have one for each pseudo. */
359 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
361 /* Allocate vectors of temporary data.
362 See the declarations of these variables, above,
363 for what they mean. */
365 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
366 qty_phys_copy_sugg
367 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
368 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
369 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
370 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
372 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
373 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
374 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
376 /* Determine which pseudo-registers can be allocated by local-alloc.
377 In general, these are the registers used only in a single block and
378 which only die once.
380 We need not be concerned with which block actually uses the register
381 since we will never see it outside that block. */
383 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
385 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
386 reg_qty[i] = -2;
387 else
388 reg_qty[i] = -1;
391 /* Force loop below to initialize entire quantity array. */
392 next_qty = max_qty;
394 /* Allocate each block's local registers, block by block. */
396 for (b = 0; b < n_basic_blocks; b++)
398 /* NEXT_QTY indicates which elements of the `qty_...'
399 vectors might need to be initialized because they were used
400 for the previous block; it is set to the entire array before
401 block 0. Initialize those, with explicit loop if there are few,
402 else with bzero and bcopy. Do not initialize vectors that are
403 explicit set by `alloc_qty'. */
405 if (next_qty < 6)
407 for (i = 0; i < next_qty; i++)
409 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
410 qty_phys_num_copy_sugg[i] = 0;
411 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
412 qty_phys_num_sugg[i] = 0;
415 else
417 #define CLEAR(vector) \
418 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
420 CLEAR (qty_phys_copy_sugg);
421 CLEAR (qty_phys_num_copy_sugg);
422 CLEAR (qty_phys_sugg);
423 CLEAR (qty_phys_num_sugg);
426 next_qty = 0;
428 block_alloc (b);
431 free (qty);
432 free (qty_phys_copy_sugg);
433 free (qty_phys_num_copy_sugg);
434 free (qty_phys_sugg);
435 free (qty_phys_num_sugg);
437 free (reg_qty);
438 free (reg_offset);
439 free (reg_next_in_qty);
441 return recorded_label_ref;
444 /* Used for communication between the following two functions: contains
445 a MEM that we wish to ensure remains unchanged. */
446 static rtx equiv_mem;
448 /* Set nonzero if EQUIV_MEM is modified. */
449 static int equiv_mem_modified;
451 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
452 Called via note_stores. */
454 static void
455 validate_equiv_mem_from_store (dest, set, data)
456 rtx dest;
457 rtx set ATTRIBUTE_UNUSED;
458 void *data ATTRIBUTE_UNUSED;
460 if ((GET_CODE (dest) == REG
461 && reg_overlap_mentioned_p (dest, equiv_mem))
462 || (GET_CODE (dest) == MEM
463 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
464 equiv_mem_modified = 1;
467 /* Verify that no store between START and the death of REG invalidates
468 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
469 by storing into an overlapping memory location, or with a non-const
470 CALL_INSN.
472 Return 1 if MEMREF remains valid. */
474 static int
475 validate_equiv_mem (start, reg, memref)
476 rtx start;
477 rtx reg;
478 rtx memref;
480 rtx insn;
481 rtx note;
483 equiv_mem = memref;
484 equiv_mem_modified = 0;
486 /* If the memory reference has side effects or is volatile, it isn't a
487 valid equivalence. */
488 if (side_effects_p (memref))
489 return 0;
491 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
493 if (! INSN_P (insn))
494 continue;
496 if (find_reg_note (insn, REG_DEAD, reg))
497 return 1;
499 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
500 && ! CONST_OR_PURE_CALL_P (insn))
501 return 0;
503 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
505 /* If a register mentioned in MEMREF is modified via an
506 auto-increment, we lose the equivalence. Do the same if one
507 dies; although we could extend the life, it doesn't seem worth
508 the trouble. */
510 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
511 if ((REG_NOTE_KIND (note) == REG_INC
512 || REG_NOTE_KIND (note) == REG_DEAD)
513 && GET_CODE (XEXP (note, 0)) == REG
514 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
515 return 0;
518 return 0;
521 /* Returns zero if X is known to be invariant. */
523 static int
524 equiv_init_varies_p (x)
525 rtx x;
527 RTX_CODE code = GET_CODE (x);
528 int i;
529 const char *fmt;
531 switch (code)
533 case MEM:
534 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
536 case QUEUED:
537 return 1;
539 case CONST:
540 case CONST_INT:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case SYMBOL_REF:
544 case LABEL_REF:
545 return 0;
547 case REG:
548 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
550 case ASM_OPERANDS:
551 if (MEM_VOLATILE_P (x))
552 return 1;
554 /* FALLTHROUGH */
556 default:
557 break;
560 fmt = GET_RTX_FORMAT (code);
561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
562 if (fmt[i] == 'e')
564 if (equiv_init_varies_p (XEXP (x, i)))
565 return 1;
567 else if (fmt[i] == 'E')
569 int j;
570 for (j = 0; j < XVECLEN (x, i); j++)
571 if (equiv_init_varies_p (XVECEXP (x, i, j)))
572 return 1;
575 return 0;
578 /* Returns non-zero if X (used to initialize register REGNO) is movable.
579 X is only movable if the registers it uses have equivalent initializations
580 which appear to be within the same loop (or in an inner loop) and movable
581 or if they are not candidates for local_alloc and don't vary. */
583 static int
584 equiv_init_movable_p (x, regno)
585 rtx x;
586 int regno;
588 int i, j;
589 const char *fmt;
590 enum rtx_code code = GET_CODE (x);
592 switch (code)
594 case SET:
595 return equiv_init_movable_p (SET_SRC (x), regno);
597 case CC0:
598 case CLOBBER:
599 return 0;
601 case PRE_INC:
602 case PRE_DEC:
603 case POST_INC:
604 case POST_DEC:
605 case PRE_MODIFY:
606 case POST_MODIFY:
607 return 0;
609 case REG:
610 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
611 && reg_equiv[REGNO (x)].replace)
612 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
614 case UNSPEC_VOLATILE:
615 return 0;
617 case ASM_OPERANDS:
618 if (MEM_VOLATILE_P (x))
619 return 0;
621 /* FALLTHROUGH */
623 default:
624 break;
627 fmt = GET_RTX_FORMAT (code);
628 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
629 switch (fmt[i])
631 case 'e':
632 if (! equiv_init_movable_p (XEXP (x, i), regno))
633 return 0;
634 break;
635 case 'E':
636 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
637 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
638 return 0;
639 break;
642 return 1;
645 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
647 static int
648 contains_replace_regs (x)
649 rtx x;
651 int i, j;
652 const char *fmt;
653 enum rtx_code code = GET_CODE (x);
655 switch (code)
657 case CONST_INT:
658 case CONST:
659 case LABEL_REF:
660 case SYMBOL_REF:
661 case CONST_DOUBLE:
662 case CONST_VECTOR:
663 case PC:
664 case CC0:
665 case HIGH:
666 case LO_SUM:
667 return 0;
669 case REG:
670 return reg_equiv[REGNO (x)].replace;
672 default:
673 break;
676 fmt = GET_RTX_FORMAT (code);
677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
678 switch (fmt[i])
680 case 'e':
681 if (contains_replace_regs (XEXP (x, i)))
682 return 1;
683 break;
684 case 'E':
685 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
686 if (contains_replace_regs (XVECEXP (x, i, j)))
687 return 1;
688 break;
691 return 0;
694 /* TRUE if X references a memory location that would be affected by a store
695 to MEMREF. */
697 static int
698 memref_referenced_p (memref, x)
699 rtx x;
700 rtx memref;
702 int i, j;
703 const char *fmt;
704 enum rtx_code code = GET_CODE (x);
706 switch (code)
708 case CONST_INT:
709 case CONST:
710 case LABEL_REF:
711 case SYMBOL_REF:
712 case CONST_DOUBLE:
713 case CONST_VECTOR:
714 case PC:
715 case CC0:
716 case HIGH:
717 case LO_SUM:
718 return 0;
720 case REG:
721 return (reg_equiv[REGNO (x)].replacement
722 && memref_referenced_p (memref,
723 reg_equiv[REGNO (x)].replacement));
725 case MEM:
726 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
727 return 1;
728 break;
730 case SET:
731 /* If we are setting a MEM, it doesn't count (its address does), but any
732 other SET_DEST that has a MEM in it is referencing the MEM. */
733 if (GET_CODE (SET_DEST (x)) == MEM)
735 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
736 return 1;
738 else if (memref_referenced_p (memref, SET_DEST (x)))
739 return 1;
741 return memref_referenced_p (memref, SET_SRC (x));
743 default:
744 break;
747 fmt = GET_RTX_FORMAT (code);
748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
749 switch (fmt[i])
751 case 'e':
752 if (memref_referenced_p (memref, XEXP (x, i)))
753 return 1;
754 break;
755 case 'E':
756 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
757 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
758 return 1;
759 break;
762 return 0;
765 /* TRUE if some insn in the range (START, END] references a memory location
766 that would be affected by a store to MEMREF. */
768 static int
769 memref_used_between_p (memref, start, end)
770 rtx memref;
771 rtx start;
772 rtx end;
774 rtx insn;
776 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
777 insn = NEXT_INSN (insn))
778 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
779 return 1;
781 return 0;
784 /* Return nonzero if the rtx X is invariant over the current function. */
785 /* ??? Actually, the places this is used in reload expect exactly what
786 is tested here, and not everything that is function invariant. In
787 particular, the frame pointer and arg pointer are special cased;
788 pic_offset_table_rtx is not, and this will cause aborts when we
789 go to spill these things to memory. */
792 function_invariant_p (x)
793 rtx x;
795 if (CONSTANT_P (x))
796 return 1;
797 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
798 return 1;
799 if (GET_CODE (x) == PLUS
800 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
801 && CONSTANT_P (XEXP (x, 1)))
802 return 1;
803 return 0;
806 /* Find registers that are equivalent to a single value throughout the
807 compilation (either because they can be referenced in memory or are set once
808 from a single constant). Lower their priority for a register.
810 If such a register is only referenced once, try substituting its value
811 into the using insn. If it succeeds, we can eliminate the register
812 completely. */
814 static void
815 update_equiv_regs ()
817 rtx insn;
818 int block;
819 int loop_depth;
820 regset_head cleared_regs;
821 int clear_regnos = 0;
823 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
824 INIT_REG_SET (&cleared_regs);
826 init_alias_analysis ();
828 /* Scan the insns and find which registers have equivalences. Do this
829 in a separate scan of the insns because (due to -fcse-follow-jumps)
830 a register can be set below its use. */
831 for (block = 0; block < n_basic_blocks; block++)
833 basic_block bb = BASIC_BLOCK (block);
834 loop_depth = bb->loop_depth;
836 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
838 rtx note;
839 rtx set;
840 rtx dest, src;
841 int regno;
843 if (! INSN_P (insn))
844 continue;
846 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
847 if (REG_NOTE_KIND (note) == REG_INC)
848 no_equiv (XEXP (note, 0), note, NULL);
850 set = single_set (insn);
852 /* If this insn contains more (or less) than a single SET,
853 only mark all destinations as having no known equivalence. */
854 if (set == 0)
856 note_stores (PATTERN (insn), no_equiv, NULL);
857 continue;
859 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
861 int i;
863 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
865 rtx part = XVECEXP (PATTERN (insn), 0, i);
866 if (part != set)
867 note_stores (part, no_equiv, NULL);
871 dest = SET_DEST (set);
872 src = SET_SRC (set);
874 /* If this sets a MEM to the contents of a REG that is only used
875 in a single basic block, see if the register is always equivalent
876 to that memory location and if moving the store from INSN to the
877 insn that set REG is safe. If so, put a REG_EQUIV note on the
878 initializing insn.
880 Don't add a REG_EQUIV note if the insn already has one. The existing
881 REG_EQUIV is likely more useful than the one we are adding.
883 If one of the regs in the address has reg_equiv[REGNO].replace set,
884 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
885 optimization may move the set of this register immediately before
886 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
887 the mention in the REG_EQUIV note would be to an uninitialized
888 pseudo. */
889 /* ????? This test isn't good enough; we might see a MEM with a use of
890 a pseudo register before we see its setting insn that will cause
891 reg_equiv[].replace for that pseudo to be set.
892 Equivalences to MEMs should be made in another pass, after the
893 reg_equiv[].replace information has been gathered. */
895 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
896 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
897 && REG_BASIC_BLOCK (regno) >= 0
898 && REG_N_SETS (regno) == 1
899 && reg_equiv[regno].init_insns != 0
900 && reg_equiv[regno].init_insns != const0_rtx
901 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
902 REG_EQUIV, NULL_RTX)
903 && ! contains_replace_regs (XEXP (dest, 0)))
905 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
906 if (validate_equiv_mem (init_insn, src, dest)
907 && ! memref_used_between_p (dest, init_insn, insn))
908 REG_NOTES (init_insn)
909 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
912 /* We only handle the case of a pseudo register being set
913 once, or always to the same value. */
914 /* ??? The mn10200 port breaks if we add equivalences for
915 values that need an ADDRESS_REGS register and set them equivalent
916 to a MEM of a pseudo. The actual problem is in the over-conservative
917 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
918 calculate_needs, but we traditionally work around this problem
919 here by rejecting equivalences when the destination is in a register
920 that's likely spilled. This is fragile, of course, since the
921 preferred class of a pseudo depends on all instructions that set
922 or use it. */
924 if (GET_CODE (dest) != REG
925 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
926 || reg_equiv[regno].init_insns == const0_rtx
927 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
928 && GET_CODE (src) == MEM))
930 /* This might be seting a SUBREG of a pseudo, a pseudo that is
931 also set somewhere else to a constant. */
932 note_stores (set, no_equiv, NULL);
933 continue;
936 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
938 /* cse sometimes generates function invariants, but doesn't put a
939 REG_EQUAL note on the insn. Since this note would be redundant,
940 there's no point creating it earlier than here. */
941 if (! note && ! rtx_varies_p (src, 0))
942 note = set_unique_reg_note (insn, REG_EQUAL, src);
944 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
945 since it represents a function call */
946 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
947 note = NULL_RTX;
949 if (REG_N_SETS (regno) != 1
950 && (! note
951 || rtx_varies_p (XEXP (note, 0), 0)
952 || (reg_equiv[regno].replacement
953 && ! rtx_equal_p (XEXP (note, 0),
954 reg_equiv[regno].replacement))))
956 no_equiv (dest, set, NULL);
957 continue;
959 /* Record this insn as initializing this register. */
960 reg_equiv[regno].init_insns
961 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
963 /* If this register is known to be equal to a constant, record that
964 it is always equivalent to the constant. */
965 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
966 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
968 /* If this insn introduces a "constant" register, decrease the priority
969 of that register. Record this insn if the register is only used once
970 more and the equivalence value is the same as our source.
972 The latter condition is checked for two reasons: First, it is an
973 indication that it may be more efficient to actually emit the insn
974 as written (if no registers are available, reload will substitute
975 the equivalence). Secondly, it avoids problems with any registers
976 dying in this insn whose death notes would be missed.
978 If we don't have a REG_EQUIV note, see if this insn is loading
979 a register used only in one basic block from a MEM. If so, and the
980 MEM remains unchanged for the life of the register, add a REG_EQUIV
981 note. */
983 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
985 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
986 && GET_CODE (SET_SRC (set)) == MEM
987 && validate_equiv_mem (insn, dest, SET_SRC (set)))
988 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
989 REG_NOTES (insn));
991 if (note)
993 int regno = REGNO (dest);
995 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
996 We might end up substituting the LABEL_REF for uses of the
997 pseudo here or later. That kind of transformation may turn an
998 indirect jump into a direct jump, in which case we must rerun the
999 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
1000 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
1001 || (GET_CODE (XEXP (note, 0)) == CONST
1002 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
1003 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1004 == LABEL_REF)))
1005 recorded_label_ref = 1;
1007 reg_equiv[regno].replacement = XEXP (note, 0);
1008 reg_equiv[regno].src = src;
1009 reg_equiv[regno].loop_depth = loop_depth;
1011 /* Don't mess with things live during setjmp. */
1012 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1014 /* Note that the statement below does not affect the priority
1015 in local-alloc! */
1016 REG_LIVE_LENGTH (regno) *= 2;
1019 /* If the register is referenced exactly twice, meaning it is
1020 set once and used once, indicate that the reference may be
1021 replaced by the equivalence we computed above. Do this
1022 even if the register is only used in one block so that
1023 dependencies can be handled where the last register is
1024 used in a different block (i.e. HIGH / LO_SUM sequences)
1025 and to reduce the number of registers alive across
1026 calls. */
1028 if (REG_N_REFS (regno) == 2
1029 && (rtx_equal_p (XEXP (note, 0), src)
1030 || ! equiv_init_varies_p (src))
1031 && GET_CODE (insn) == INSN
1032 && equiv_init_movable_p (PATTERN (insn), regno))
1033 reg_equiv[regno].replace = 1;
1039 /* Now scan all regs killed in an insn to see if any of them are
1040 registers only used that once. If so, see if we can replace the
1041 reference with the equivalent from. If we can, delete the
1042 initializing reference and this register will go away. If we
1043 can't replace the reference, and the initialzing reference is
1044 within the same loop (or in an inner loop), then move the register
1045 initialization just before the use, so that they are in the same
1046 basic block. */
1047 for (block = n_basic_blocks - 1; block >= 0; block--)
1049 basic_block bb = BASIC_BLOCK (block);
1051 loop_depth = bb->loop_depth;
1052 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1054 rtx link;
1056 if (! INSN_P (insn))
1057 continue;
1059 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1061 if (REG_NOTE_KIND (link) == REG_DEAD
1062 /* Make sure this insn still refers to the register. */
1063 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1065 int regno = REGNO (XEXP (link, 0));
1066 rtx equiv_insn;
1068 if (! reg_equiv[regno].replace
1069 || reg_equiv[regno].loop_depth < loop_depth)
1070 continue;
1072 /* reg_equiv[REGNO].replace gets set only when
1073 REG_N_REFS[REGNO] is 2, i.e. the register is set
1074 once and used once. (If it were only set, but not used,
1075 flow would have deleted the setting insns.) Hence
1076 there can only be one insn in reg_equiv[REGNO].init_insns. */
1077 if (reg_equiv[regno].init_insns == NULL_RTX
1078 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1079 abort ();
1080 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1082 /* We may not move instructions that can throw, since
1083 that changes basic block boundaries and we are not
1084 prepared to adjust the CFG to match. */
1085 if (can_throw_internal (equiv_insn))
1086 continue;
1088 if (asm_noperands (PATTERN (equiv_insn)) < 0
1089 && validate_replace_rtx (regno_reg_rtx[regno],
1090 reg_equiv[regno].src, insn))
1092 rtx equiv_link;
1093 rtx last_link;
1094 rtx note;
1096 /* Find the last note. */
1097 for (last_link = link; XEXP (last_link, 1);
1098 last_link = XEXP (last_link, 1))
1101 /* Append the REG_DEAD notes from equiv_insn. */
1102 equiv_link = REG_NOTES (equiv_insn);
1103 while (equiv_link)
1105 note = equiv_link;
1106 equiv_link = XEXP (equiv_link, 1);
1107 if (REG_NOTE_KIND (note) == REG_DEAD)
1109 remove_note (equiv_insn, note);
1110 XEXP (last_link, 1) = note;
1111 XEXP (note, 1) = NULL_RTX;
1112 last_link = note;
1116 remove_death (regno, insn);
1117 REG_N_REFS (regno) = 0;
1118 REG_FREQ (regno) = 0;
1119 delete_insn (equiv_insn);
1121 reg_equiv[regno].init_insns
1122 = XEXP (reg_equiv[regno].init_insns, 1);
1124 /* Move the initialization of the register to just before
1125 INSN. Update the flow information. */
1126 else if (PREV_INSN (insn) != equiv_insn)
1128 rtx new_insn;
1130 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1131 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1132 REG_NOTES (equiv_insn) = 0;
1134 /* Make sure this insn is recognized before reload begins,
1135 otherwise eliminate_regs_in_insn will abort. */
1136 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1138 delete_insn (equiv_insn);
1140 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1142 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1143 REG_N_CALLS_CROSSED (regno) = 0;
1144 REG_LIVE_LENGTH (regno) = 2;
1146 if (block >= 0 && insn == BLOCK_HEAD (block))
1147 BLOCK_HEAD (block) = PREV_INSN (insn);
1149 /* Remember to clear REGNO from all basic block's live
1150 info. */
1151 SET_REGNO_REG_SET (&cleared_regs, regno);
1152 clear_regnos++;
1159 /* Clear all dead REGNOs from all basic block's live info. */
1160 if (clear_regnos)
1162 int j, l;
1163 if (clear_regnos > 8)
1165 for (l = 0; l < n_basic_blocks; l++)
1167 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1168 &cleared_regs);
1169 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1170 &cleared_regs);
1173 else
1174 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1176 for (l = 0; l < n_basic_blocks; l++)
1178 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1179 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1184 /* Clean up. */
1185 end_alias_analysis ();
1186 CLEAR_REG_SET (&cleared_regs);
1187 free (reg_equiv);
1190 /* Mark REG as having no known equivalence.
1191 Some instructions might have been proceessed before and furnished
1192 with REG_EQUIV notes for this register; these notes will have to be
1193 removed.
1194 STORE is the piece of RTL that does the non-constant / conflicting
1195 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1196 but needs to be there because this function is called from note_stores. */
1197 static void
1198 no_equiv (reg, store, data)
1199 rtx reg, store ATTRIBUTE_UNUSED;
1200 void *data ATTRIBUTE_UNUSED;
1202 int regno;
1203 rtx list;
1205 if (GET_CODE (reg) != REG)
1206 return;
1207 regno = REGNO (reg);
1208 list = reg_equiv[regno].init_insns;
1209 if (list == const0_rtx)
1210 return;
1211 for (; list; list = XEXP (list, 1))
1213 rtx insn = XEXP (list, 0);
1214 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1216 reg_equiv[regno].init_insns = const0_rtx;
1217 reg_equiv[regno].replacement = NULL_RTX;
1220 /* Allocate hard regs to the pseudo regs used only within block number B.
1221 Only the pseudos that die but once can be handled. */
1223 static void
1224 block_alloc (b)
1225 int b;
1227 int i, q;
1228 rtx insn;
1229 rtx note, hard_reg;
1230 int insn_number = 0;
1231 int insn_count = 0;
1232 int max_uid = get_max_uid ();
1233 int *qty_order;
1234 int no_conflict_combined_regno = -1;
1236 /* Count the instructions in the basic block. */
1238 insn = BLOCK_END (b);
1239 while (1)
1241 if (GET_CODE (insn) != NOTE)
1242 if (++insn_count > max_uid)
1243 abort ();
1244 if (insn == BLOCK_HEAD (b))
1245 break;
1246 insn = PREV_INSN (insn);
1249 /* +2 to leave room for a post_mark_life at the last insn and for
1250 the birth of a CLOBBER in the first insn. */
1251 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1252 sizeof (HARD_REG_SET));
1254 /* Initialize table of hardware registers currently live. */
1256 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1258 /* This loop scans the instructions of the basic block
1259 and assigns quantities to registers.
1260 It computes which registers to tie. */
1262 insn = BLOCK_HEAD (b);
1263 while (1)
1265 if (GET_CODE (insn) != NOTE)
1266 insn_number++;
1268 if (INSN_P (insn))
1270 rtx link, set;
1271 int win = 0;
1272 rtx r0, r1 = NULL_RTX;
1273 int combined_regno = -1;
1274 int i;
1276 this_insn_number = insn_number;
1277 this_insn = insn;
1279 extract_insn (insn);
1280 which_alternative = -1;
1282 /* Is this insn suitable for tying two registers?
1283 If so, try doing that.
1284 Suitable insns are those with at least two operands and where
1285 operand 0 is an output that is a register that is not
1286 earlyclobber.
1288 We can tie operand 0 with some operand that dies in this insn.
1289 First look for operands that are required to be in the same
1290 register as operand 0. If we find such, only try tying that
1291 operand or one that can be put into that operand if the
1292 operation is commutative. If we don't find an operand
1293 that is required to be in the same register as operand 0,
1294 we can tie with any operand.
1296 Subregs in place of regs are also ok.
1298 If tying is done, WIN is set nonzero. */
1300 if (optimize
1301 && recog_data.n_operands > 1
1302 && recog_data.constraints[0][0] == '='
1303 && recog_data.constraints[0][1] != '&')
1305 /* If non-negative, is an operand that must match operand 0. */
1306 int must_match_0 = -1;
1307 /* Counts number of alternatives that require a match with
1308 operand 0. */
1309 int n_matching_alts = 0;
1311 for (i = 1; i < recog_data.n_operands; i++)
1313 const char *p = recog_data.constraints[i];
1314 int this_match = requires_inout (p);
1316 n_matching_alts += this_match;
1317 if (this_match == recog_data.n_alternatives)
1318 must_match_0 = i;
1321 r0 = recog_data.operand[0];
1322 for (i = 1; i < recog_data.n_operands; i++)
1324 /* Skip this operand if we found an operand that
1325 must match operand 0 and this operand isn't it
1326 and can't be made to be it by commutativity. */
1328 if (must_match_0 >= 0 && i != must_match_0
1329 && ! (i == must_match_0 + 1
1330 && recog_data.constraints[i-1][0] == '%')
1331 && ! (i == must_match_0 - 1
1332 && recog_data.constraints[i][0] == '%'))
1333 continue;
1335 /* Likewise if each alternative has some operand that
1336 must match operand zero. In that case, skip any
1337 operand that doesn't list operand 0 since we know that
1338 the operand always conflicts with operand 0. We
1339 ignore commutatity in this case to keep things simple. */
1340 if (n_matching_alts == recog_data.n_alternatives
1341 && 0 == requires_inout (recog_data.constraints[i]))
1342 continue;
1344 r1 = recog_data.operand[i];
1346 /* If the operand is an address, find a register in it.
1347 There may be more than one register, but we only try one
1348 of them. */
1349 if (recog_data.constraints[i][0] == 'p')
1350 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1351 r1 = XEXP (r1, 0);
1353 /* Avoid making a call-saved register unnecessarily
1354 clobbered. */
1355 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1356 if (hard_reg != NULL_RTX)
1358 if (GET_CODE (hard_reg) == REG
1359 && IN_RANGE (REGNO (hard_reg),
1360 0, FIRST_PSEUDO_REGISTER - 1)
1361 && ! call_used_regs[REGNO (hard_reg)])
1362 continue;
1365 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1367 /* We have two priorities for hard register preferences.
1368 If we have a move insn or an insn whose first input
1369 can only be in the same register as the output, give
1370 priority to an equivalence found from that insn. */
1371 int may_save_copy
1372 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1374 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1375 win = combine_regs (r1, r0, may_save_copy,
1376 insn_number, insn, 0);
1378 if (win)
1379 break;
1383 /* Recognize an insn sequence with an ultimate result
1384 which can safely overlap one of the inputs.
1385 The sequence begins with a CLOBBER of its result,
1386 and ends with an insn that copies the result to itself
1387 and has a REG_EQUAL note for an equivalent formula.
1388 That note indicates what the inputs are.
1389 The result and the input can overlap if each insn in
1390 the sequence either doesn't mention the input
1391 or has a REG_NO_CONFLICT note to inhibit the conflict.
1393 We do the combining test at the CLOBBER so that the
1394 destination register won't have had a quantity number
1395 assigned, since that would prevent combining. */
1397 if (optimize
1398 && GET_CODE (PATTERN (insn)) == CLOBBER
1399 && (r0 = XEXP (PATTERN (insn), 0),
1400 GET_CODE (r0) == REG)
1401 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1402 && XEXP (link, 0) != 0
1403 && GET_CODE (XEXP (link, 0)) == INSN
1404 && (set = single_set (XEXP (link, 0))) != 0
1405 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1406 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1407 NULL_RTX)) != 0)
1409 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1410 /* Check that we have such a sequence. */
1411 && no_conflict_p (insn, r0, r1))
1412 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1413 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1414 && (r1 = XEXP (XEXP (note, 0), 0),
1415 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1416 && no_conflict_p (insn, r0, r1))
1417 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1419 /* Here we care if the operation to be computed is
1420 commutative. */
1421 else if ((GET_CODE (XEXP (note, 0)) == EQ
1422 || GET_CODE (XEXP (note, 0)) == NE
1423 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1424 && (r1 = XEXP (XEXP (note, 0), 1),
1425 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1426 && no_conflict_p (insn, r0, r1))
1427 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1429 /* If we did combine something, show the register number
1430 in question so that we know to ignore its death. */
1431 if (win)
1432 no_conflict_combined_regno = REGNO (r1);
1435 /* If registers were just tied, set COMBINED_REGNO
1436 to the number of the register used in this insn
1437 that was tied to the register set in this insn.
1438 This register's qty should not be "killed". */
1440 if (win)
1442 while (GET_CODE (r1) == SUBREG)
1443 r1 = SUBREG_REG (r1);
1444 combined_regno = REGNO (r1);
1447 /* Mark the death of everything that dies in this instruction,
1448 except for anything that was just combined. */
1450 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1451 if (REG_NOTE_KIND (link) == REG_DEAD
1452 && GET_CODE (XEXP (link, 0)) == REG
1453 && combined_regno != (int) REGNO (XEXP (link, 0))
1454 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1455 || ! find_reg_note (insn, REG_NO_CONFLICT,
1456 XEXP (link, 0))))
1457 wipe_dead_reg (XEXP (link, 0), 0);
1459 /* Allocate qty numbers for all registers local to this block
1460 that are born (set) in this instruction.
1461 A pseudo that already has a qty is not changed. */
1463 note_stores (PATTERN (insn), reg_is_set, NULL);
1465 /* If anything is set in this insn and then unused, mark it as dying
1466 after this insn, so it will conflict with our outputs. This
1467 can't match with something that combined, and it doesn't matter
1468 if it did. Do this after the calls to reg_is_set since these
1469 die after, not during, the current insn. */
1471 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1472 if (REG_NOTE_KIND (link) == REG_UNUSED
1473 && GET_CODE (XEXP (link, 0)) == REG)
1474 wipe_dead_reg (XEXP (link, 0), 1);
1476 /* If this is an insn that has a REG_RETVAL note pointing at a
1477 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1478 block, so clear any register number that combined within it. */
1479 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1480 && GET_CODE (XEXP (note, 0)) == INSN
1481 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1482 no_conflict_combined_regno = -1;
1485 /* Set the registers live after INSN_NUMBER. Note that we never
1486 record the registers live before the block's first insn, since no
1487 pseudos we care about are live before that insn. */
1489 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1490 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1492 if (insn == BLOCK_END (b))
1493 break;
1495 insn = NEXT_INSN (insn);
1498 /* Now every register that is local to this basic block
1499 should have been given a quantity, or else -1 meaning ignore it.
1500 Every quantity should have a known birth and death.
1502 Order the qtys so we assign them registers in order of the
1503 number of suggested registers they need so we allocate those with
1504 the most restrictive needs first. */
1506 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1507 for (i = 0; i < next_qty; i++)
1508 qty_order[i] = i;
1510 #define EXCHANGE(I1, I2) \
1511 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1513 switch (next_qty)
1515 case 3:
1516 /* Make qty_order[2] be the one to allocate last. */
1517 if (qty_sugg_compare (0, 1) > 0)
1518 EXCHANGE (0, 1);
1519 if (qty_sugg_compare (1, 2) > 0)
1520 EXCHANGE (2, 1);
1522 /* ... Fall through ... */
1523 case 2:
1524 /* Put the best one to allocate in qty_order[0]. */
1525 if (qty_sugg_compare (0, 1) > 0)
1526 EXCHANGE (0, 1);
1528 /* ... Fall through ... */
1530 case 1:
1531 case 0:
1532 /* Nothing to do here. */
1533 break;
1535 default:
1536 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1539 /* Try to put each quantity in a suggested physical register, if it has one.
1540 This may cause registers to be allocated that otherwise wouldn't be, but
1541 this seems acceptable in local allocation (unlike global allocation). */
1542 for (i = 0; i < next_qty; i++)
1544 q = qty_order[i];
1545 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1546 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1547 0, 1, qty[q].birth, qty[q].death);
1548 else
1549 qty[q].phys_reg = -1;
1552 /* Order the qtys so we assign them registers in order of
1553 decreasing length of life. Normally call qsort, but if we
1554 have only a very small number of quantities, sort them ourselves. */
1556 for (i = 0; i < next_qty; i++)
1557 qty_order[i] = i;
1559 #define EXCHANGE(I1, I2) \
1560 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1562 switch (next_qty)
1564 case 3:
1565 /* Make qty_order[2] be the one to allocate last. */
1566 if (qty_compare (0, 1) > 0)
1567 EXCHANGE (0, 1);
1568 if (qty_compare (1, 2) > 0)
1569 EXCHANGE (2, 1);
1571 /* ... Fall through ... */
1572 case 2:
1573 /* Put the best one to allocate in qty_order[0]. */
1574 if (qty_compare (0, 1) > 0)
1575 EXCHANGE (0, 1);
1577 /* ... Fall through ... */
1579 case 1:
1580 case 0:
1581 /* Nothing to do here. */
1582 break;
1584 default:
1585 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1588 /* Now for each qty that is not a hardware register,
1589 look for a hardware register to put it in.
1590 First try the register class that is cheapest for this qty,
1591 if there is more than one class. */
1593 for (i = 0; i < next_qty; i++)
1595 q = qty_order[i];
1596 if (qty[q].phys_reg < 0)
1598 #ifdef INSN_SCHEDULING
1599 /* These values represent the adjusted lifetime of a qty so
1600 that it conflicts with qtys which appear near the start/end
1601 of this qty's lifetime.
1603 The purpose behind extending the lifetime of this qty is to
1604 discourage the register allocator from creating false
1605 dependencies.
1607 The adjustment value is chosen to indicate that this qty
1608 conflicts with all the qtys in the instructions immediately
1609 before and after the lifetime of this qty.
1611 Experiments have shown that higher values tend to hurt
1612 overall code performance.
1614 If allocation using the extended lifetime fails we will try
1615 again with the qty's unadjusted lifetime. */
1616 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1617 int fake_death = MIN (insn_number * 2 + 1,
1618 qty[q].death + 2 - qty[q].death % 2);
1619 #endif
1621 if (N_REG_CLASSES > 1)
1623 #ifdef INSN_SCHEDULING
1624 /* We try to avoid using hard registers allocated to qtys which
1625 are born immediately after this qty or die immediately before
1626 this qty.
1628 This optimization is only appropriate when we will run
1629 a scheduling pass after reload and we are not optimizing
1630 for code size. */
1631 if (flag_schedule_insns_after_reload
1632 && !optimize_size
1633 && !SMALL_REGISTER_CLASSES)
1635 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1636 qty[q].mode, q, 0, 0,
1637 fake_birth, fake_death);
1638 if (qty[q].phys_reg >= 0)
1639 continue;
1641 #endif
1642 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1643 qty[q].mode, q, 0, 0,
1644 qty[q].birth, qty[q].death);
1645 if (qty[q].phys_reg >= 0)
1646 continue;
1649 #ifdef INSN_SCHEDULING
1650 /* Similarly, avoid false dependencies. */
1651 if (flag_schedule_insns_after_reload
1652 && !optimize_size
1653 && !SMALL_REGISTER_CLASSES
1654 && qty[q].alternate_class != NO_REGS)
1655 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1656 qty[q].mode, q, 0, 0,
1657 fake_birth, fake_death);
1658 #endif
1659 if (qty[q].alternate_class != NO_REGS)
1660 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1661 qty[q].mode, q, 0, 0,
1662 qty[q].birth, qty[q].death);
1666 /* Now propagate the register assignments
1667 to the pseudo regs belonging to the qtys. */
1669 for (q = 0; q < next_qty; q++)
1670 if (qty[q].phys_reg >= 0)
1672 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1673 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1676 /* Clean up. */
1677 free (regs_live_at);
1678 free (qty_order);
1681 /* Compare two quantities' priority for getting real registers.
1682 We give shorter-lived quantities higher priority.
1683 Quantities with more references are also preferred, as are quantities that
1684 require multiple registers. This is the identical prioritization as
1685 done by global-alloc.
1687 We used to give preference to registers with *longer* lives, but using
1688 the same algorithm in both local- and global-alloc can speed up execution
1689 of some programs by as much as a factor of three! */
1691 /* Note that the quotient will never be bigger than
1692 the value of floor_log2 times the maximum number of
1693 times a register can occur in one insn (surely less than 100)
1694 weighted by frequency (max REG_FREQ_MAX).
1695 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1696 QTY_CMP_PRI is also used by qty_sugg_compare. */
1698 #define QTY_CMP_PRI(q) \
1699 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1700 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1702 static int
1703 qty_compare (q1, q2)
1704 int q1, q2;
1706 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1709 static int
1710 qty_compare_1 (q1p, q2p)
1711 const PTR q1p;
1712 const PTR q2p;
1714 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1715 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1717 if (tem != 0)
1718 return tem;
1720 /* If qtys are equally good, sort by qty number,
1721 so that the results of qsort leave nothing to chance. */
1722 return q1 - q2;
1725 /* Compare two quantities' priority for getting real registers. This version
1726 is called for quantities that have suggested hard registers. First priority
1727 goes to quantities that have copy preferences, then to those that have
1728 normal preferences. Within those groups, quantities with the lower
1729 number of preferences have the highest priority. Of those, we use the same
1730 algorithm as above. */
1732 #define QTY_CMP_SUGG(q) \
1733 (qty_phys_num_copy_sugg[q] \
1734 ? qty_phys_num_copy_sugg[q] \
1735 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1737 static int
1738 qty_sugg_compare (q1, q2)
1739 int q1, q2;
1741 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1743 if (tem != 0)
1744 return tem;
1746 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1749 static int
1750 qty_sugg_compare_1 (q1p, q2p)
1751 const PTR q1p;
1752 const PTR q2p;
1754 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1755 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1757 if (tem != 0)
1758 return tem;
1760 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1761 if (tem != 0)
1762 return tem;
1764 /* If qtys are equally good, sort by qty number,
1765 so that the results of qsort leave nothing to chance. */
1766 return q1 - q2;
1769 #undef QTY_CMP_SUGG
1770 #undef QTY_CMP_PRI
1772 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1773 Returns 1 if have done so, or 0 if cannot.
1775 Combining registers means marking them as having the same quantity
1776 and adjusting the offsets within the quantity if either of
1777 them is a SUBREG).
1779 We don't actually combine a hard reg with a pseudo; instead
1780 we just record the hard reg as the suggestion for the pseudo's quantity.
1781 If we really combined them, we could lose if the pseudo lives
1782 across an insn that clobbers the hard reg (eg, movstr).
1784 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1785 there is no REG_DEAD note on INSN. This occurs during the processing
1786 of REG_NO_CONFLICT blocks.
1788 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1789 SETREG or if the input and output must share a register.
1790 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1792 There are elaborate checks for the validity of combining. */
1794 static int
1795 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1796 rtx usedreg, setreg;
1797 int may_save_copy;
1798 int insn_number;
1799 rtx insn;
1800 int already_dead;
1802 int ureg, sreg;
1803 int offset = 0;
1804 int usize, ssize;
1805 int sqty;
1807 /* Determine the numbers and sizes of registers being used. If a subreg
1808 is present that does not change the entire register, don't consider
1809 this a copy insn. */
1811 while (GET_CODE (usedreg) == SUBREG)
1813 rtx subreg = SUBREG_REG (usedreg);
1815 if (GET_CODE (subreg) == REG)
1817 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1818 may_save_copy = 0;
1820 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1821 offset += subreg_regno_offset (REGNO (subreg),
1822 GET_MODE (subreg),
1823 SUBREG_BYTE (usedreg),
1824 GET_MODE (usedreg));
1825 else
1826 offset += (SUBREG_BYTE (usedreg)
1827 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1830 usedreg = subreg;
1833 if (GET_CODE (usedreg) != REG)
1834 return 0;
1836 ureg = REGNO (usedreg);
1837 if (ureg < FIRST_PSEUDO_REGISTER)
1838 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1839 else
1840 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1841 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1842 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1844 while (GET_CODE (setreg) == SUBREG)
1846 rtx subreg = SUBREG_REG (setreg);
1848 if (GET_CODE (subreg) == REG)
1850 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1851 may_save_copy = 0;
1853 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1854 offset -= subreg_regno_offset (REGNO (subreg),
1855 GET_MODE (subreg),
1856 SUBREG_BYTE (setreg),
1857 GET_MODE (setreg));
1858 else
1859 offset -= (SUBREG_BYTE (setreg)
1860 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1863 setreg = subreg;
1866 if (GET_CODE (setreg) != REG)
1867 return 0;
1869 sreg = REGNO (setreg);
1870 if (sreg < FIRST_PSEUDO_REGISTER)
1871 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1872 else
1873 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1874 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1875 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1877 /* If UREG is a pseudo-register that hasn't already been assigned a
1878 quantity number, it means that it is not local to this block or dies
1879 more than once. In either event, we can't do anything with it. */
1880 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1881 /* Do not combine registers unless one fits within the other. */
1882 || (offset > 0 && usize + offset > ssize)
1883 || (offset < 0 && usize + offset < ssize)
1884 /* Do not combine with a smaller already-assigned object
1885 if that smaller object is already combined with something bigger. */
1886 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1887 && usize < qty[reg_qty[ureg]].size)
1888 /* Can't combine if SREG is not a register we can allocate. */
1889 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1890 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1891 These have already been taken care of. This probably wouldn't
1892 combine anyway, but don't take any chances. */
1893 || (ureg >= FIRST_PSEUDO_REGISTER
1894 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1895 /* Don't tie something to itself. In most cases it would make no
1896 difference, but it would screw up if the reg being tied to itself
1897 also dies in this insn. */
1898 || ureg == sreg
1899 /* Don't try to connect two different hardware registers. */
1900 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1901 /* Don't connect two different machine modes if they have different
1902 implications as to which registers may be used. */
1903 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1904 return 0;
1906 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1907 qty_phys_sugg for the pseudo instead of tying them.
1909 Return "failure" so that the lifespan of UREG is terminated here;
1910 that way the two lifespans will be disjoint and nothing will prevent
1911 the pseudo reg from being given this hard reg. */
1913 if (ureg < FIRST_PSEUDO_REGISTER)
1915 /* Allocate a quantity number so we have a place to put our
1916 suggestions. */
1917 if (reg_qty[sreg] == -2)
1918 reg_is_born (setreg, 2 * insn_number);
1920 if (reg_qty[sreg] >= 0)
1922 if (may_save_copy
1923 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1925 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1926 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1928 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1930 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1931 qty_phys_num_sugg[reg_qty[sreg]]++;
1934 return 0;
1937 /* Similarly for SREG a hard register and UREG a pseudo register. */
1939 if (sreg < FIRST_PSEUDO_REGISTER)
1941 if (may_save_copy
1942 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1944 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1945 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1947 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1949 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1950 qty_phys_num_sugg[reg_qty[ureg]]++;
1952 return 0;
1955 /* At this point we know that SREG and UREG are both pseudos.
1956 Do nothing if SREG already has a quantity or is a register that we
1957 don't allocate. */
1958 if (reg_qty[sreg] >= -1
1959 /* If we are not going to let any regs live across calls,
1960 don't tie a call-crossing reg to a non-call-crossing reg. */
1961 || (current_function_has_nonlocal_label
1962 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1963 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1964 return 0;
1966 /* We don't already know about SREG, so tie it to UREG
1967 if this is the last use of UREG, provided the classes they want
1968 are compatible. */
1970 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1971 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1973 /* Add SREG to UREG's quantity. */
1974 sqty = reg_qty[ureg];
1975 reg_qty[sreg] = sqty;
1976 reg_offset[sreg] = reg_offset[ureg] + offset;
1977 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1978 qty[sqty].first_reg = sreg;
1980 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1981 update_qty_class (sqty, sreg);
1983 /* Update info about quantity SQTY. */
1984 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1985 qty[sqty].n_refs += REG_N_REFS (sreg);
1986 qty[sqty].freq += REG_FREQ (sreg);
1987 if (usize < ssize)
1989 int i;
1991 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1992 reg_offset[i] -= offset;
1994 qty[sqty].size = ssize;
1995 qty[sqty].mode = GET_MODE (setreg);
1998 else
1999 return 0;
2001 return 1;
2004 /* Return 1 if the preferred class of REG allows it to be tied
2005 to a quantity or register whose class is CLASS.
2006 True if REG's reg class either contains or is contained in CLASS. */
2008 static int
2009 reg_meets_class_p (reg, class)
2010 int reg;
2011 enum reg_class class;
2013 enum reg_class rclass = reg_preferred_class (reg);
2014 return (reg_class_subset_p (rclass, class)
2015 || reg_class_subset_p (class, rclass));
2018 /* Update the class of QTYNO assuming that REG is being tied to it. */
2020 static void
2021 update_qty_class (qtyno, reg)
2022 int qtyno;
2023 int reg;
2025 enum reg_class rclass = reg_preferred_class (reg);
2026 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2027 qty[qtyno].min_class = rclass;
2029 rclass = reg_alternate_class (reg);
2030 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2031 qty[qtyno].alternate_class = rclass;
2033 if (REG_CHANGES_MODE (reg))
2034 qty[qtyno].changes_mode = 1;
2037 /* Handle something which alters the value of an rtx REG.
2039 REG is whatever is set or clobbered. SETTER is the rtx that
2040 is modifying the register.
2042 If it is not really a register, we do nothing.
2043 The file-global variables `this_insn' and `this_insn_number'
2044 carry info from `block_alloc'. */
2046 static void
2047 reg_is_set (reg, setter, data)
2048 rtx reg;
2049 rtx setter;
2050 void *data ATTRIBUTE_UNUSED;
2052 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2053 a hard register. These may actually not exist any more. */
2055 if (GET_CODE (reg) != SUBREG
2056 && GET_CODE (reg) != REG)
2057 return;
2059 /* Mark this register as being born. If it is used in a CLOBBER, mark
2060 it as being born halfway between the previous insn and this insn so that
2061 it conflicts with our inputs but not the outputs of the previous insn. */
2063 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2066 /* Handle beginning of the life of register REG.
2067 BIRTH is the index at which this is happening. */
2069 static void
2070 reg_is_born (reg, birth)
2071 rtx reg;
2072 int birth;
2074 int regno;
2076 if (GET_CODE (reg) == SUBREG)
2078 regno = REGNO (SUBREG_REG (reg));
2079 if (regno < FIRST_PSEUDO_REGISTER)
2080 regno = subreg_hard_regno (reg, 1);
2082 else
2083 regno = REGNO (reg);
2085 if (regno < FIRST_PSEUDO_REGISTER)
2087 mark_life (regno, GET_MODE (reg), 1);
2089 /* If the register was to have been born earlier that the present
2090 insn, mark it as live where it is actually born. */
2091 if (birth < 2 * this_insn_number)
2092 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2094 else
2096 if (reg_qty[regno] == -2)
2097 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2099 /* If this register has a quantity number, show that it isn't dead. */
2100 if (reg_qty[regno] >= 0)
2101 qty[reg_qty[regno]].death = -1;
2105 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2106 REG is an output that is dying (i.e., it is never used), otherwise it
2107 is an input (the normal case).
2108 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2110 static void
2111 wipe_dead_reg (reg, output_p)
2112 rtx reg;
2113 int output_p;
2115 int regno = REGNO (reg);
2117 /* If this insn has multiple results,
2118 and the dead reg is used in one of the results,
2119 extend its life to after this insn,
2120 so it won't get allocated together with any other result of this insn.
2122 It is unsafe to use !single_set here since it will ignore an unused
2123 output. Just because an output is unused does not mean the compiler
2124 can assume the side effect will not occur. Consider if REG appears
2125 in the address of an output and we reload the output. If we allocate
2126 REG to the same hard register as an unused output we could set the hard
2127 register before the output reload insn. */
2128 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2129 && multiple_sets (this_insn))
2131 int i;
2132 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2134 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2135 if (GET_CODE (set) == SET
2136 && GET_CODE (SET_DEST (set)) != REG
2137 && !rtx_equal_p (reg, SET_DEST (set))
2138 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2139 output_p = 1;
2143 /* If this register is used in an auto-increment address, then extend its
2144 life to after this insn, so that it won't get allocated together with
2145 the result of this insn. */
2146 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2147 output_p = 1;
2149 if (regno < FIRST_PSEUDO_REGISTER)
2151 mark_life (regno, GET_MODE (reg), 0);
2153 /* If a hard register is dying as an output, mark it as in use at
2154 the beginning of this insn (the above statement would cause this
2155 not to happen). */
2156 if (output_p)
2157 post_mark_life (regno, GET_MODE (reg), 1,
2158 2 * this_insn_number, 2 * this_insn_number + 1);
2161 else if (reg_qty[regno] >= 0)
2162 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2165 /* Find a block of SIZE words of hard regs in reg_class CLASS
2166 that can hold something of machine-mode MODE
2167 (but actually we test only the first of the block for holding MODE)
2168 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2169 and return the number of the first of them.
2170 Return -1 if such a block cannot be found.
2171 If QTYNO crosses calls, insist on a register preserved by calls,
2172 unless ACCEPT_CALL_CLOBBERED is nonzero.
2174 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2175 register is available. If not, return -1. */
2177 static int
2178 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2179 born_index, dead_index)
2180 enum reg_class class;
2181 enum machine_mode mode;
2182 int qtyno;
2183 int accept_call_clobbered;
2184 int just_try_suggested;
2185 int born_index, dead_index;
2187 int i, ins;
2188 #ifdef HARD_REG_SET
2189 /* Declare it register if it's a scalar. */
2190 register
2191 #endif
2192 HARD_REG_SET used, first_used;
2193 #ifdef ELIMINABLE_REGS
2194 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2195 #endif
2197 /* Validate our parameters. */
2198 if (born_index < 0 || born_index > dead_index)
2199 abort ();
2201 /* Don't let a pseudo live in a reg across a function call
2202 if we might get a nonlocal goto. */
2203 if (current_function_has_nonlocal_label
2204 && qty[qtyno].n_calls_crossed > 0)
2205 return -1;
2207 if (accept_call_clobbered)
2208 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2209 else if (qty[qtyno].n_calls_crossed == 0)
2210 COPY_HARD_REG_SET (used, fixed_reg_set);
2211 else
2212 COPY_HARD_REG_SET (used, call_used_reg_set);
2214 if (accept_call_clobbered)
2215 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2217 for (ins = born_index; ins < dead_index; ins++)
2218 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2220 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2222 /* Don't use the frame pointer reg in local-alloc even if
2223 we may omit the frame pointer, because if we do that and then we
2224 need a frame pointer, reload won't know how to move the pseudo
2225 to another hard reg. It can move only regs made by global-alloc.
2227 This is true of any register that can be eliminated. */
2228 #ifdef ELIMINABLE_REGS
2229 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2230 SET_HARD_REG_BIT (used, eliminables[i].from);
2231 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2232 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2233 that it might be eliminated into. */
2234 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2235 #endif
2236 #else
2237 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2238 #endif
2240 #ifdef CLASS_CANNOT_CHANGE_MODE
2241 if (qty[qtyno].changes_mode)
2242 IOR_HARD_REG_SET (used,
2243 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2244 #endif
2246 /* Normally, the registers that can be used for the first register in
2247 a multi-register quantity are the same as those that can be used for
2248 subsequent registers. However, if just trying suggested registers,
2249 restrict our consideration to them. If there are copy-suggested
2250 register, try them. Otherwise, try the arithmetic-suggested
2251 registers. */
2252 COPY_HARD_REG_SET (first_used, used);
2254 if (just_try_suggested)
2256 if (qty_phys_num_copy_sugg[qtyno] != 0)
2257 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2258 else
2259 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2262 /* If all registers are excluded, we can't do anything. */
2263 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2265 /* If at least one would be suitable, test each hard reg. */
2267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2269 #ifdef REG_ALLOC_ORDER
2270 int regno = reg_alloc_order[i];
2271 #else
2272 int regno = i;
2273 #endif
2274 if (! TEST_HARD_REG_BIT (first_used, regno)
2275 && HARD_REGNO_MODE_OK (regno, mode)
2276 && (qty[qtyno].n_calls_crossed == 0
2277 || accept_call_clobbered
2278 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2280 int j;
2281 int size1 = HARD_REGNO_NREGS (regno, mode);
2282 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2283 if (j == size1)
2285 /* Mark that this register is in use between its birth and death
2286 insns. */
2287 post_mark_life (regno, mode, 1, born_index, dead_index);
2288 return regno;
2290 #ifndef REG_ALLOC_ORDER
2291 /* Skip starting points we know will lose. */
2292 i += j;
2293 #endif
2297 fail:
2298 /* If we are just trying suggested register, we have just tried copy-
2299 suggested registers, and there are arithmetic-suggested registers,
2300 try them. */
2302 /* If it would be profitable to allocate a call-clobbered register
2303 and save and restore it around calls, do that. */
2304 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2305 && qty_phys_num_sugg[qtyno] != 0)
2307 /* Don't try the copy-suggested regs again. */
2308 qty_phys_num_copy_sugg[qtyno] = 0;
2309 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2310 born_index, dead_index);
2313 /* We need not check to see if the current function has nonlocal
2314 labels because we don't put any pseudos that are live over calls in
2315 registers in that case. */
2317 if (! accept_call_clobbered
2318 && flag_caller_saves
2319 && ! just_try_suggested
2320 && qty[qtyno].n_calls_crossed != 0
2321 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2322 qty[qtyno].n_calls_crossed))
2324 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2325 if (i >= 0)
2326 caller_save_needed = 1;
2327 return i;
2329 return -1;
2332 /* Mark that REGNO with machine-mode MODE is live starting from the current
2333 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2334 is zero). */
2336 static void
2337 mark_life (regno, mode, life)
2338 int regno;
2339 enum machine_mode mode;
2340 int life;
2342 int j = HARD_REGNO_NREGS (regno, mode);
2343 if (life)
2344 while (--j >= 0)
2345 SET_HARD_REG_BIT (regs_live, regno + j);
2346 else
2347 while (--j >= 0)
2348 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2351 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2352 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2353 to insn number DEATH (exclusive). */
2355 static void
2356 post_mark_life (regno, mode, life, birth, death)
2357 int regno;
2358 enum machine_mode mode;
2359 int life, birth, death;
2361 int j = HARD_REGNO_NREGS (regno, mode);
2362 #ifdef HARD_REG_SET
2363 /* Declare it register if it's a scalar. */
2364 register
2365 #endif
2366 HARD_REG_SET this_reg;
2368 CLEAR_HARD_REG_SET (this_reg);
2369 while (--j >= 0)
2370 SET_HARD_REG_BIT (this_reg, regno + j);
2372 if (life)
2373 while (birth < death)
2375 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2376 birth++;
2378 else
2379 while (birth < death)
2381 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2382 birth++;
2386 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2387 is the register being clobbered, and R1 is a register being used in
2388 the equivalent expression.
2390 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2391 in which it is used, return 1.
2393 Otherwise, return 0. */
2395 static int
2396 no_conflict_p (insn, r0, r1)
2397 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2399 int ok = 0;
2400 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2401 rtx p, last;
2403 /* If R1 is a hard register, return 0 since we handle this case
2404 when we scan the insns that actually use it. */
2406 if (note == 0
2407 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2408 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2409 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2410 return 0;
2412 last = XEXP (note, 0);
2414 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2415 if (INSN_P (p))
2417 if (find_reg_note (p, REG_DEAD, r1))
2418 ok = 1;
2420 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2421 some earlier optimization pass has inserted instructions into
2422 the sequence, and it is not safe to perform this optimization.
2423 Note that emit_no_conflict_block always ensures that this is
2424 true when these sequences are created. */
2425 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2426 return 0;
2429 return ok;
2432 /* Return the number of alternatives for which the constraint string P
2433 indicates that the operand must be equal to operand 0 and that no register
2434 is acceptable. */
2436 static int
2437 requires_inout (p)
2438 const char *p;
2440 char c;
2441 int found_zero = 0;
2442 int reg_allowed = 0;
2443 int num_matching_alts = 0;
2445 while ((c = *p++))
2446 switch (c)
2448 case '=': case '+': case '?':
2449 case '#': case '&': case '!':
2450 case '*': case '%':
2451 case 'm': case '<': case '>': case 'V': case 'o':
2452 case 'E': case 'F': case 'G': case 'H':
2453 case 's': case 'i': case 'n':
2454 case 'I': case 'J': case 'K': case 'L':
2455 case 'M': case 'N': case 'O': case 'P':
2456 case 'X':
2457 /* These don't say anything we care about. */
2458 break;
2460 case ',':
2461 if (found_zero && ! reg_allowed)
2462 num_matching_alts++;
2464 found_zero = reg_allowed = 0;
2465 break;
2467 case '0':
2468 found_zero = 1;
2469 break;
2471 case '1': case '2': case '3': case '4': case '5':
2472 case '6': case '7': case '8': case '9':
2473 /* Skip the balance of the matching constraint. */
2474 while (ISDIGIT (*p))
2475 p++;
2476 break;
2478 default:
2479 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2480 break;
2481 /* FALLTHRU */
2482 case 'p':
2483 case 'g': case 'r':
2484 reg_allowed = 1;
2485 break;
2488 if (found_zero && ! reg_allowed)
2489 num_matching_alts++;
2491 return num_matching_alts;
2494 void
2495 dump_local_alloc (file)
2496 FILE *file;
2498 int i;
2499 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2500 if (reg_renumber[i] != -1)
2501 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);