2002-02-19 Philip Blundell <philb@gnu.org>
[official-gcc.git] / gcc / emit-rtl.c
blob82dd61a5f64fcaca9d4e63351533a41180de0890
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
60 /* Commonly used modes. */
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
71 static int label_num = 1;
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
77 static int last_label_num;
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
82 static int base_label_num;
84 /* Nonzero means do not generate NOTEs for source line numbers. */
86 static int no_line_numbers;
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these except perhaps the floating-point CONST_DOUBLEs
91 are unique; no other rtx-object will be equal to any of these. */
93 rtx global_rtl[GR_MAX];
95 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
99 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
101 rtx const_true_rtx;
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
108 /* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
119 should be used if it is being set, and frame_pointer_rtx otherwise. After
120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
122 same.
124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
126 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
146 static htab_t const_int_htab;
148 /* A hash table storing memory attribute structures. */
149 static htab_t mem_attrs_htab;
151 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
152 shortly thrown away. We use two mechanisms to prevent this waste:
154 For sizes up to 5 elements, we keep a SEQUENCE and its associated
155 rtvec for use by gen_sequence. One entry for each size is
156 sufficient because most cases are calls to gen_sequence followed by
157 immediately emitting the SEQUENCE. Reuse is safe since emitting a
158 sequence is destructive on the insn in it anyway and hence can't be
159 redone.
161 We do not bother to save this cached data over nested function calls.
162 Instead, we just reinitialize them. */
164 #define SEQUENCE_RESULT_SIZE 5
166 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
168 /* During RTL generation, we also keep a list of free INSN rtl codes. */
169 static rtx free_insn;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_linenum (cfun->emit->x_last_linenum)
175 #define last_filename (cfun->emit->x_last_filename)
176 #define first_label_num (cfun->emit->x_first_label_num)
178 static rtx make_jump_insn_raw PARAMS ((rtx));
179 static rtx make_call_insn_raw PARAMS ((rtx));
180 static rtx find_line_note PARAMS ((rtx));
181 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
182 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
183 int));
184 static void unshare_all_rtl_1 PARAMS ((rtx));
185 static void unshare_all_decls PARAMS ((tree));
186 static void reset_used_decls PARAMS ((tree));
187 static void mark_label_nuses PARAMS ((rtx));
188 static hashval_t const_int_htab_hash PARAMS ((const void *));
189 static int const_int_htab_eq PARAMS ((const void *,
190 const void *));
191 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
192 static int mem_attrs_htab_eq PARAMS ((const void *,
193 const void *));
194 static void mem_attrs_mark PARAMS ((const void *));
195 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
196 rtx, unsigned int,
197 enum machine_mode));
198 static tree component_ref_for_mem_expr PARAMS ((tree));
199 static rtx gen_const_vector_0 PARAMS ((enum mode_class, enum machine_mode));
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
205 /* Returns a hash code for X (which is a really a CONST_INT). */
207 static hashval_t
208 const_int_htab_hash (x)
209 const void *x;
211 return (hashval_t) INTVAL ((const struct rtx_def *) x);
214 /* Returns non-zero if the value represented by X (which is really a
215 CONST_INT) is the same as that given by Y (which is really a
216 HOST_WIDE_INT *). */
218 static int
219 const_int_htab_eq (x, y)
220 const void *x;
221 const void *y;
223 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
226 /* Returns a hash code for X (which is a really a mem_attrs *). */
228 static hashval_t
229 mem_attrs_htab_hash (x)
230 const void *x;
232 mem_attrs *p = (mem_attrs *) x;
234 return (p->alias ^ (p->align * 1000)
235 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
236 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
237 ^ (size_t) p->expr);
240 /* Returns non-zero if the value represented by X (which is really a
241 mem_attrs *) is the same as that given by Y (which is also really a
242 mem_attrs *). */
244 static int
245 mem_attrs_htab_eq (x, y)
246 const void *x;
247 const void *y;
249 mem_attrs *p = (mem_attrs *) x;
250 mem_attrs *q = (mem_attrs *) y;
252 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
253 && p->size == q->size && p->align == q->align);
256 /* This routine is called when we determine that we need a mem_attrs entry.
257 It marks the associated decl and RTL as being used, if present. */
259 static void
260 mem_attrs_mark (x)
261 const void *x;
263 mem_attrs *p = (mem_attrs *) x;
265 if (p->expr)
266 ggc_mark_tree (p->expr);
268 if (p->offset)
269 ggc_mark_rtx (p->offset);
271 if (p->size)
272 ggc_mark_rtx (p->size);
275 /* Allocate a new mem_attrs structure and insert it into the hash table if
276 one identical to it is not already in the table. We are doing this for
277 MEM of mode MODE. */
279 static mem_attrs *
280 get_mem_attrs (alias, expr, offset, size, align, mode)
281 HOST_WIDE_INT alias;
282 tree expr;
283 rtx offset;
284 rtx size;
285 unsigned int align;
286 enum machine_mode mode;
288 mem_attrs attrs;
289 void **slot;
291 /* If everything is the default, we can just return zero. */
292 if (alias == 0 && expr == 0 && offset == 0
293 && (size == 0
294 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
295 && (align == BITS_PER_UNIT
296 || (STRICT_ALIGNMENT
297 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
298 return 0;
300 attrs.alias = alias;
301 attrs.expr = expr;
302 attrs.offset = offset;
303 attrs.size = size;
304 attrs.align = align;
306 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
307 if (*slot == 0)
309 *slot = ggc_alloc (sizeof (mem_attrs));
310 memcpy (*slot, &attrs, sizeof (mem_attrs));
313 return *slot;
316 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
317 don't attempt to share with the various global pieces of rtl (such as
318 frame_pointer_rtx). */
321 gen_raw_REG (mode, regno)
322 enum machine_mode mode;
323 int regno;
325 rtx x = gen_rtx_raw_REG (mode, regno);
326 ORIGINAL_REGNO (x) = regno;
327 return x;
330 /* There are some RTL codes that require special attention; the generation
331 functions do the raw handling. If you add to this list, modify
332 special_rtx in gengenrtl.c as well. */
335 gen_rtx_CONST_INT (mode, arg)
336 enum machine_mode mode ATTRIBUTE_UNUSED;
337 HOST_WIDE_INT arg;
339 void **slot;
341 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
342 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
344 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
345 if (const_true_rtx && arg == STORE_FLAG_VALUE)
346 return const_true_rtx;
347 #endif
349 /* Look up the CONST_INT in the hash table. */
350 slot = htab_find_slot_with_hash (const_int_htab, &arg,
351 (hashval_t) arg, INSERT);
352 if (*slot == 0)
353 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
355 return (rtx) *slot;
358 /* CONST_DOUBLEs needs special handling because their length is known
359 only at run-time. */
362 gen_rtx_CONST_DOUBLE (mode, arg0, arg1)
363 enum machine_mode mode;
364 HOST_WIDE_INT arg0, arg1;
366 rtx r = rtx_alloc (CONST_DOUBLE);
367 int i;
369 PUT_MODE (r, mode);
370 X0EXP (r, 0) = NULL_RTX;
371 XWINT (r, 1) = arg0;
372 XWINT (r, 2) = arg1;
374 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 2; --i)
375 XWINT (r, i) = 0;
377 return r;
381 gen_rtx_REG (mode, regno)
382 enum machine_mode mode;
383 int regno;
385 /* In case the MD file explicitly references the frame pointer, have
386 all such references point to the same frame pointer. This is
387 used during frame pointer elimination to distinguish the explicit
388 references to these registers from pseudos that happened to be
389 assigned to them.
391 If we have eliminated the frame pointer or arg pointer, we will
392 be using it as a normal register, for example as a spill
393 register. In such cases, we might be accessing it in a mode that
394 is not Pmode and therefore cannot use the pre-allocated rtx.
396 Also don't do this when we are making new REGs in reload, since
397 we don't want to get confused with the real pointers. */
399 if (mode == Pmode && !reload_in_progress)
401 if (regno == FRAME_POINTER_REGNUM)
402 return frame_pointer_rtx;
403 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
404 if (regno == HARD_FRAME_POINTER_REGNUM)
405 return hard_frame_pointer_rtx;
406 #endif
407 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
408 if (regno == ARG_POINTER_REGNUM)
409 return arg_pointer_rtx;
410 #endif
411 #ifdef RETURN_ADDRESS_POINTER_REGNUM
412 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
413 return return_address_pointer_rtx;
414 #endif
415 if (regno == PIC_OFFSET_TABLE_REGNUM
416 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
417 return pic_offset_table_rtx;
418 if (regno == STACK_POINTER_REGNUM)
419 return stack_pointer_rtx;
422 return gen_raw_REG (mode, regno);
426 gen_rtx_MEM (mode, addr)
427 enum machine_mode mode;
428 rtx addr;
430 rtx rt = gen_rtx_raw_MEM (mode, addr);
432 /* This field is not cleared by the mere allocation of the rtx, so
433 we clear it here. */
434 MEM_ATTRS (rt) = 0;
436 return rt;
440 gen_rtx_SUBREG (mode, reg, offset)
441 enum machine_mode mode;
442 rtx reg;
443 int offset;
445 /* This is the most common failure type.
446 Catch it early so we can see who does it. */
447 if ((offset % GET_MODE_SIZE (mode)) != 0)
448 abort ();
450 /* This check isn't usable right now because combine will
451 throw arbitrary crap like a CALL into a SUBREG in
452 gen_lowpart_for_combine so we must just eat it. */
453 #if 0
454 /* Check for this too. */
455 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
456 abort ();
457 #endif
458 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
461 /* Generate a SUBREG representing the least-significant part of REG if MODE
462 is smaller than mode of REG, otherwise paradoxical SUBREG. */
465 gen_lowpart_SUBREG (mode, reg)
466 enum machine_mode mode;
467 rtx reg;
469 enum machine_mode inmode;
471 inmode = GET_MODE (reg);
472 if (inmode == VOIDmode)
473 inmode = mode;
474 return gen_rtx_SUBREG (mode, reg,
475 subreg_lowpart_offset (mode, inmode));
478 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
480 ** This routine generates an RTX of the size specified by
481 ** <code>, which is an RTX code. The RTX structure is initialized
482 ** from the arguments <element1> through <elementn>, which are
483 ** interpreted according to the specific RTX type's format. The
484 ** special machine mode associated with the rtx (if any) is specified
485 ** in <mode>.
487 ** gen_rtx can be invoked in a way which resembles the lisp-like
488 ** rtx it will generate. For example, the following rtx structure:
490 ** (plus:QI (mem:QI (reg:SI 1))
491 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
493 ** ...would be generated by the following C code:
495 ** gen_rtx (PLUS, QImode,
496 ** gen_rtx (MEM, QImode,
497 ** gen_rtx (REG, SImode, 1)),
498 ** gen_rtx (MEM, QImode,
499 ** gen_rtx (PLUS, SImode,
500 ** gen_rtx (REG, SImode, 2),
501 ** gen_rtx (REG, SImode, 3)))),
504 /*VARARGS2*/
506 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
508 int i; /* Array indices... */
509 const char *fmt; /* Current rtx's format... */
510 rtx rt_val; /* RTX to return to caller... */
512 VA_OPEN (p, mode);
513 VA_FIXEDARG (p, enum rtx_code, code);
514 VA_FIXEDARG (p, enum machine_mode, mode);
516 switch (code)
518 case CONST_INT:
519 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
520 break;
522 case CONST_DOUBLE:
524 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
525 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
527 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1);
529 break;
531 case REG:
532 rt_val = gen_rtx_REG (mode, va_arg (p, int));
533 break;
535 case MEM:
536 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
537 break;
539 default:
540 rt_val = rtx_alloc (code); /* Allocate the storage space. */
541 rt_val->mode = mode; /* Store the machine mode... */
543 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
544 for (i = 0; i < GET_RTX_LENGTH (code); i++)
546 switch (*fmt++)
548 case '0': /* Unused field. */
549 break;
551 case 'i': /* An integer? */
552 XINT (rt_val, i) = va_arg (p, int);
553 break;
555 case 'w': /* A wide integer? */
556 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
557 break;
559 case 's': /* A string? */
560 XSTR (rt_val, i) = va_arg (p, char *);
561 break;
563 case 'e': /* An expression? */
564 case 'u': /* An insn? Same except when printing. */
565 XEXP (rt_val, i) = va_arg (p, rtx);
566 break;
568 case 'E': /* An RTX vector? */
569 XVEC (rt_val, i) = va_arg (p, rtvec);
570 break;
572 case 'b': /* A bitmap? */
573 XBITMAP (rt_val, i) = va_arg (p, bitmap);
574 break;
576 case 't': /* A tree? */
577 XTREE (rt_val, i) = va_arg (p, tree);
578 break;
580 default:
581 abort ();
584 break;
587 VA_CLOSE (p);
588 return rt_val;
591 /* gen_rtvec (n, [rt1, ..., rtn])
593 ** This routine creates an rtvec and stores within it the
594 ** pointers to rtx's which are its arguments.
597 /*VARARGS1*/
598 rtvec
599 gen_rtvec VPARAMS ((int n, ...))
601 int i, save_n;
602 rtx *vector;
604 VA_OPEN (p, n);
605 VA_FIXEDARG (p, int, n);
607 if (n == 0)
608 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
610 vector = (rtx *) alloca (n * sizeof (rtx));
612 for (i = 0; i < n; i++)
613 vector[i] = va_arg (p, rtx);
615 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
616 save_n = n;
617 VA_CLOSE (p);
619 return gen_rtvec_v (save_n, vector);
622 rtvec
623 gen_rtvec_v (n, argp)
624 int n;
625 rtx *argp;
627 int i;
628 rtvec rt_val;
630 if (n == 0)
631 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
633 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
635 for (i = 0; i < n; i++)
636 rt_val->elem[i] = *argp++;
638 return rt_val;
641 /* Generate a REG rtx for a new pseudo register of mode MODE.
642 This pseudo is assigned the next sequential register number. */
645 gen_reg_rtx (mode)
646 enum machine_mode mode;
648 struct function *f = cfun;
649 rtx val;
651 /* Don't let anything called after initial flow analysis create new
652 registers. */
653 if (no_new_pseudos)
654 abort ();
656 if (generating_concat_p
657 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
658 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
660 /* For complex modes, don't make a single pseudo.
661 Instead, make a CONCAT of two pseudos.
662 This allows noncontiguous allocation of the real and imaginary parts,
663 which makes much better code. Besides, allocating DCmode
664 pseudos overstrains reload on some machines like the 386. */
665 rtx realpart, imagpart;
666 int size = GET_MODE_UNIT_SIZE (mode);
667 enum machine_mode partmode
668 = mode_for_size (size * BITS_PER_UNIT,
669 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
670 ? MODE_FLOAT : MODE_INT),
673 realpart = gen_reg_rtx (partmode);
674 imagpart = gen_reg_rtx (partmode);
675 return gen_rtx_CONCAT (mode, realpart, imagpart);
678 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
679 enough to have an element for this pseudo reg number. */
681 if (reg_rtx_no == f->emit->regno_pointer_align_length)
683 int old_size = f->emit->regno_pointer_align_length;
684 char *new;
685 rtx *new1;
686 tree *new2;
688 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
689 memset (new + old_size, 0, old_size);
690 f->emit->regno_pointer_align = (unsigned char *) new;
692 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
693 old_size * 2 * sizeof (rtx));
694 memset (new1 + old_size, 0, old_size * sizeof (rtx));
695 regno_reg_rtx = new1;
697 new2 = (tree *) xrealloc (f->emit->regno_decl,
698 old_size * 2 * sizeof (tree));
699 memset (new2 + old_size, 0, old_size * sizeof (tree));
700 f->emit->regno_decl = new2;
702 f->emit->regno_pointer_align_length = old_size * 2;
705 val = gen_raw_REG (mode, reg_rtx_no);
706 regno_reg_rtx[reg_rtx_no++] = val;
707 return val;
710 /* Identify REG (which may be a CONCAT) as a user register. */
712 void
713 mark_user_reg (reg)
714 rtx reg;
716 if (GET_CODE (reg) == CONCAT)
718 REG_USERVAR_P (XEXP (reg, 0)) = 1;
719 REG_USERVAR_P (XEXP (reg, 1)) = 1;
721 else if (GET_CODE (reg) == REG)
722 REG_USERVAR_P (reg) = 1;
723 else
724 abort ();
727 /* Identify REG as a probable pointer register and show its alignment
728 as ALIGN, if nonzero. */
730 void
731 mark_reg_pointer (reg, align)
732 rtx reg;
733 int align;
735 if (! REG_POINTER (reg))
737 REG_POINTER (reg) = 1;
739 if (align)
740 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
742 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
743 /* We can no-longer be sure just how aligned this pointer is */
744 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
747 /* Return 1 plus largest pseudo reg number used in the current function. */
750 max_reg_num ()
752 return reg_rtx_no;
755 /* Return 1 + the largest label number used so far in the current function. */
758 max_label_num ()
760 if (last_label_num && label_num == base_label_num)
761 return last_label_num;
762 return label_num;
765 /* Return first label number used in this function (if any were used). */
768 get_first_label_num ()
770 return first_label_num;
773 /* Return the final regno of X, which is a SUBREG of a hard
774 register. */
776 subreg_hard_regno (x, check_mode)
777 rtx x;
778 int check_mode;
780 enum machine_mode mode = GET_MODE (x);
781 unsigned int byte_offset, base_regno, final_regno;
782 rtx reg = SUBREG_REG (x);
784 /* This is where we attempt to catch illegal subregs
785 created by the compiler. */
786 if (GET_CODE (x) != SUBREG
787 || GET_CODE (reg) != REG)
788 abort ();
789 base_regno = REGNO (reg);
790 if (base_regno >= FIRST_PSEUDO_REGISTER)
791 abort ();
792 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
793 abort ();
795 /* Catch non-congruent offsets too. */
796 byte_offset = SUBREG_BYTE (x);
797 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
798 abort ();
800 final_regno = subreg_regno (x);
802 return final_regno;
805 /* Return a value representing some low-order bits of X, where the number
806 of low-order bits is given by MODE. Note that no conversion is done
807 between floating-point and fixed-point values, rather, the bit
808 representation is returned.
810 This function handles the cases in common between gen_lowpart, below,
811 and two variants in cse.c and combine.c. These are the cases that can
812 be safely handled at all points in the compilation.
814 If this is not a case we can handle, return 0. */
817 gen_lowpart_common (mode, x)
818 enum machine_mode mode;
819 rtx x;
821 int msize = GET_MODE_SIZE (mode);
822 int xsize = GET_MODE_SIZE (GET_MODE (x));
823 int offset = 0;
825 if (GET_MODE (x) == mode)
826 return x;
828 /* MODE must occupy no more words than the mode of X. */
829 if (GET_MODE (x) != VOIDmode
830 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
831 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
832 return 0;
834 offset = subreg_lowpart_offset (mode, GET_MODE (x));
836 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
837 && (GET_MODE_CLASS (mode) == MODE_INT
838 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
840 /* If we are getting the low-order part of something that has been
841 sign- or zero-extended, we can either just use the object being
842 extended or make a narrower extension. If we want an even smaller
843 piece than the size of the object being extended, call ourselves
844 recursively.
846 This case is used mostly by combine and cse. */
848 if (GET_MODE (XEXP (x, 0)) == mode)
849 return XEXP (x, 0);
850 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
851 return gen_lowpart_common (mode, XEXP (x, 0));
852 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
853 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
855 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
856 || GET_CODE (x) == CONCAT)
857 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
858 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
859 from the low-order part of the constant. */
860 else if ((GET_MODE_CLASS (mode) == MODE_INT
861 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
862 && GET_MODE (x) == VOIDmode
863 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
865 /* If MODE is twice the host word size, X is already the desired
866 representation. Otherwise, if MODE is wider than a word, we can't
867 do this. If MODE is exactly a word, return just one CONST_INT. */
869 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
870 return x;
871 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
872 return 0;
873 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
874 return (GET_CODE (x) == CONST_INT ? x
875 : GEN_INT (CONST_DOUBLE_LOW (x)));
876 else
878 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
879 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
880 : CONST_DOUBLE_LOW (x));
882 /* Sign extend to HOST_WIDE_INT. */
883 val = trunc_int_for_mode (val, mode);
885 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
886 : GEN_INT (val));
890 #ifndef REAL_ARITHMETIC
891 /* If X is an integral constant but we want it in floating-point, it
892 must be the case that we have a union of an integer and a floating-point
893 value. If the machine-parameters allow it, simulate that union here
894 and return the result. The two-word and single-word cases are
895 different. */
897 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
898 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
899 || flag_pretend_float)
900 && GET_MODE_CLASS (mode) == MODE_FLOAT
901 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
902 && GET_CODE (x) == CONST_INT
903 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
905 union {HOST_WIDE_INT i; float d; } u;
907 u.i = INTVAL (x);
908 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
910 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
911 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
912 || flag_pretend_float)
913 && GET_MODE_CLASS (mode) == MODE_FLOAT
914 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
915 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
916 && GET_MODE (x) == VOIDmode
917 && (sizeof (double) * HOST_BITS_PER_CHAR
918 == 2 * HOST_BITS_PER_WIDE_INT))
920 union {HOST_WIDE_INT i[2]; double d; } u;
921 HOST_WIDE_INT low, high;
923 if (GET_CODE (x) == CONST_INT)
924 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
925 else
926 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
927 #ifdef HOST_WORDS_BIG_ENDIAN
928 u.i[0] = high, u.i[1] = low;
929 #else
930 u.i[0] = low, u.i[1] = high;
931 #endif
932 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
935 /* Similarly, if this is converting a floating-point value into a
936 single-word integer. Only do this is the host and target parameters are
937 compatible. */
939 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
940 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
941 || flag_pretend_float)
942 && (GET_MODE_CLASS (mode) == MODE_INT
943 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
944 && GET_CODE (x) == CONST_DOUBLE
945 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
946 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
947 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
949 /* Similarly, if this is converting a floating-point value into a
950 two-word integer, we can do this one word at a time and make an
951 integer. Only do this is the host and target parameters are
952 compatible. */
954 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
955 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
956 || flag_pretend_float)
957 && (GET_MODE_CLASS (mode) == MODE_INT
958 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
959 && GET_CODE (x) == CONST_DOUBLE
960 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
961 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
963 rtx lowpart, highpart;
965 lowpart = constant_subword (x,
966 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
967 GET_MODE (x));
968 highpart = constant_subword (x,
969 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
970 GET_MODE (x));
971 if (lowpart && GET_CODE (lowpart) == CONST_INT
972 && highpart && GET_CODE (highpart) == CONST_INT)
973 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
975 #else /* ifndef REAL_ARITHMETIC */
977 /* When we have a FP emulator, we can handle all conversions between
978 FP and integer operands. This simplifies reload because it
979 doesn't have to deal with constructs like (subreg:DI
980 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
981 /* Single-precision floats are always 32-bits and double-precision
982 floats are always 64-bits. */
984 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
985 && GET_MODE_BITSIZE (mode) == 32
986 && GET_CODE (x) == CONST_INT)
988 REAL_VALUE_TYPE r;
989 HOST_WIDE_INT i;
991 i = INTVAL (x);
992 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
993 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
995 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
996 && GET_MODE_BITSIZE (mode) == 64
997 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
998 && GET_MODE (x) == VOIDmode)
1000 REAL_VALUE_TYPE r;
1001 HOST_WIDE_INT i[2];
1002 HOST_WIDE_INT low, high;
1004 if (GET_CODE (x) == CONST_INT)
1006 low = INTVAL (x);
1007 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1009 else
1011 low = CONST_DOUBLE_LOW (x);
1012 high = CONST_DOUBLE_HIGH (x);
1015 #if HOST_BITS_PER_WIDE_INT == 32
1016 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1017 target machine. */
1018 if (WORDS_BIG_ENDIAN)
1019 i[0] = high, i[1] = low;
1020 else
1021 i[0] = low, i[1] = high;
1022 #else
1023 i[0] = low;
1024 #endif
1026 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1027 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1029 else if ((GET_MODE_CLASS (mode) == MODE_INT
1030 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1031 && GET_CODE (x) == CONST_DOUBLE
1032 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1034 REAL_VALUE_TYPE r;
1035 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1036 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1038 /* Convert 'r' into an array of four 32-bit words in target word
1039 order. */
1040 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1041 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1043 case 32:
1044 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1045 i[1] = 0;
1046 i[2] = 0;
1047 i[3 - 3 * endian] = 0;
1048 break;
1049 case 64:
1050 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1051 i[2 - 2 * endian] = 0;
1052 i[3 - 2 * endian] = 0;
1053 break;
1054 case 96:
1055 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1056 i[3 - 3 * endian] = 0;
1057 break;
1058 case 128:
1059 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1060 break;
1061 default:
1062 abort ();
1064 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1065 and return it. */
1066 #if HOST_BITS_PER_WIDE_INT == 32
1067 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1068 #else
1069 if (HOST_BITS_PER_WIDE_INT != 64)
1070 abort ();
1072 return immed_double_const ((((unsigned long) i[3 * endian])
1073 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1074 (((unsigned long) i[2 - endian])
1075 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1076 mode);
1077 #endif
1079 #endif /* ifndef REAL_ARITHMETIC */
1081 /* Otherwise, we can't do this. */
1082 return 0;
1085 /* Return the real part (which has mode MODE) of a complex value X.
1086 This always comes at the low address in memory. */
1089 gen_realpart (mode, x)
1090 enum machine_mode mode;
1091 rtx x;
1093 if (WORDS_BIG_ENDIAN
1094 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1095 && REG_P (x)
1096 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1097 internal_error
1098 ("can't access real part of complex value in hard register");
1099 else if (WORDS_BIG_ENDIAN)
1100 return gen_highpart (mode, x);
1101 else
1102 return gen_lowpart (mode, x);
1105 /* Return the imaginary part (which has mode MODE) of a complex value X.
1106 This always comes at the high address in memory. */
1109 gen_imagpart (mode, x)
1110 enum machine_mode mode;
1111 rtx x;
1113 if (WORDS_BIG_ENDIAN)
1114 return gen_lowpart (mode, x);
1115 else if (! WORDS_BIG_ENDIAN
1116 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1117 && REG_P (x)
1118 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1119 internal_error
1120 ("can't access imaginary part of complex value in hard register");
1121 else
1122 return gen_highpart (mode, x);
1125 /* Return 1 iff X, assumed to be a SUBREG,
1126 refers to the real part of the complex value in its containing reg.
1127 Complex values are always stored with the real part in the first word,
1128 regardless of WORDS_BIG_ENDIAN. */
1131 subreg_realpart_p (x)
1132 rtx x;
1134 if (GET_CODE (x) != SUBREG)
1135 abort ();
1137 return ((unsigned int) SUBREG_BYTE (x)
1138 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1141 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1142 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1143 least-significant part of X.
1144 MODE specifies how big a part of X to return;
1145 it usually should not be larger than a word.
1146 If X is a MEM whose address is a QUEUED, the value may be so also. */
1149 gen_lowpart (mode, x)
1150 enum machine_mode mode;
1151 rtx x;
1153 rtx result = gen_lowpart_common (mode, x);
1155 if (result)
1156 return result;
1157 else if (GET_CODE (x) == REG)
1159 /* Must be a hard reg that's not valid in MODE. */
1160 result = gen_lowpart_common (mode, copy_to_reg (x));
1161 if (result == 0)
1162 abort ();
1163 return result;
1165 else if (GET_CODE (x) == MEM)
1167 /* The only additional case we can do is MEM. */
1168 int offset = 0;
1169 if (WORDS_BIG_ENDIAN)
1170 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1171 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1173 if (BYTES_BIG_ENDIAN)
1174 /* Adjust the address so that the address-after-the-data
1175 is unchanged. */
1176 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1177 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1179 return adjust_address (x, mode, offset);
1181 else if (GET_CODE (x) == ADDRESSOF)
1182 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1183 else
1184 abort ();
1187 /* Like `gen_lowpart', but refer to the most significant part.
1188 This is used to access the imaginary part of a complex number. */
1191 gen_highpart (mode, x)
1192 enum machine_mode mode;
1193 rtx x;
1195 unsigned int msize = GET_MODE_SIZE (mode);
1196 rtx result;
1198 /* This case loses if X is a subreg. To catch bugs early,
1199 complain if an invalid MODE is used even in other cases. */
1200 if (msize > UNITS_PER_WORD
1201 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1202 abort ();
1204 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1205 subreg_highpart_offset (mode, GET_MODE (x)));
1207 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1208 the target if we have a MEM. gen_highpart must return a valid operand,
1209 emitting code if necessary to do so. */
1210 if (result != NULL_RTX && GET_CODE (result) == MEM)
1211 result = validize_mem (result);
1213 if (!result)
1214 abort ();
1215 return result;
1218 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1219 be VOIDmode constant. */
1221 gen_highpart_mode (outermode, innermode, exp)
1222 enum machine_mode outermode, innermode;
1223 rtx exp;
1225 if (GET_MODE (exp) != VOIDmode)
1227 if (GET_MODE (exp) != innermode)
1228 abort ();
1229 return gen_highpart (outermode, exp);
1231 return simplify_gen_subreg (outermode, exp, innermode,
1232 subreg_highpart_offset (outermode, innermode));
1234 /* Return offset in bytes to get OUTERMODE low part
1235 of the value in mode INNERMODE stored in memory in target format. */
1237 unsigned int
1238 subreg_lowpart_offset (outermode, innermode)
1239 enum machine_mode outermode, innermode;
1241 unsigned int offset = 0;
1242 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1244 if (difference > 0)
1246 if (WORDS_BIG_ENDIAN)
1247 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1248 if (BYTES_BIG_ENDIAN)
1249 offset += difference % UNITS_PER_WORD;
1252 return offset;
1255 /* Return offset in bytes to get OUTERMODE high part
1256 of the value in mode INNERMODE stored in memory in target format. */
1257 unsigned int
1258 subreg_highpart_offset (outermode, innermode)
1259 enum machine_mode outermode, innermode;
1261 unsigned int offset = 0;
1262 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1264 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1265 abort ();
1267 if (difference > 0)
1269 if (! WORDS_BIG_ENDIAN)
1270 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1271 if (! BYTES_BIG_ENDIAN)
1272 offset += difference % UNITS_PER_WORD;
1275 return offset;
1278 /* Return 1 iff X, assumed to be a SUBREG,
1279 refers to the least significant part of its containing reg.
1280 If X is not a SUBREG, always return 1 (it is its own low part!). */
1283 subreg_lowpart_p (x)
1284 rtx x;
1286 if (GET_CODE (x) != SUBREG)
1287 return 1;
1288 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1289 return 0;
1291 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1292 == SUBREG_BYTE (x));
1296 /* Helper routine for all the constant cases of operand_subword.
1297 Some places invoke this directly. */
1300 constant_subword (op, offset, mode)
1301 rtx op;
1302 int offset;
1303 enum machine_mode mode;
1305 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1306 HOST_WIDE_INT val;
1308 /* If OP is already an integer word, return it. */
1309 if (GET_MODE_CLASS (mode) == MODE_INT
1310 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1311 return op;
1313 #ifdef REAL_ARITHMETIC
1314 /* The output is some bits, the width of the target machine's word.
1315 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1316 host can't. */
1317 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1318 && GET_MODE_CLASS (mode) == MODE_FLOAT
1319 && GET_MODE_BITSIZE (mode) == 64
1320 && GET_CODE (op) == CONST_DOUBLE)
1322 long k[2];
1323 REAL_VALUE_TYPE rv;
1325 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1326 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1328 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1329 which the words are written depends on the word endianness.
1330 ??? This is a potential portability problem and should
1331 be fixed at some point.
1333 We must exercise caution with the sign bit. By definition there
1334 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1335 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1336 So we explicitly mask and sign-extend as necessary. */
1337 if (BITS_PER_WORD == 32)
1339 val = k[offset];
1340 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1341 return GEN_INT (val);
1343 #if HOST_BITS_PER_WIDE_INT >= 64
1344 else if (BITS_PER_WORD >= 64 && offset == 0)
1346 val = k[! WORDS_BIG_ENDIAN];
1347 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1348 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1349 return GEN_INT (val);
1351 #endif
1352 else if (BITS_PER_WORD == 16)
1354 val = k[offset >> 1];
1355 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1356 val >>= 16;
1357 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1358 return GEN_INT (val);
1360 else
1361 abort ();
1363 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1364 && GET_MODE_CLASS (mode) == MODE_FLOAT
1365 && GET_MODE_BITSIZE (mode) > 64
1366 && GET_CODE (op) == CONST_DOUBLE)
1368 long k[4];
1369 REAL_VALUE_TYPE rv;
1371 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1372 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1374 if (BITS_PER_WORD == 32)
1376 val = k[offset];
1377 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1378 return GEN_INT (val);
1380 #if HOST_BITS_PER_WIDE_INT >= 64
1381 else if (BITS_PER_WORD >= 64 && offset <= 1)
1383 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1384 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1385 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1386 return GEN_INT (val);
1388 #endif
1389 else
1390 abort ();
1392 #else /* no REAL_ARITHMETIC */
1393 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1394 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1395 || flag_pretend_float)
1396 && GET_MODE_CLASS (mode) == MODE_FLOAT
1397 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1398 && GET_CODE (op) == CONST_DOUBLE)
1400 /* The constant is stored in the host's word-ordering,
1401 but we want to access it in the target's word-ordering. Some
1402 compilers don't like a conditional inside macro args, so we have two
1403 copies of the return. */
1404 #ifdef HOST_WORDS_BIG_ENDIAN
1405 return GEN_INT (offset == WORDS_BIG_ENDIAN
1406 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1407 #else
1408 return GEN_INT (offset != WORDS_BIG_ENDIAN
1409 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1410 #endif
1412 #endif /* no REAL_ARITHMETIC */
1414 /* Single word float is a little harder, since single- and double-word
1415 values often do not have the same high-order bits. We have already
1416 verified that we want the only defined word of the single-word value. */
1417 #ifdef REAL_ARITHMETIC
1418 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1419 && GET_MODE_BITSIZE (mode) == 32
1420 && GET_CODE (op) == CONST_DOUBLE)
1422 long l;
1423 REAL_VALUE_TYPE rv;
1425 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1426 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1428 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1429 val = l;
1430 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1432 if (BITS_PER_WORD == 16)
1434 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1435 val >>= 16;
1436 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1439 return GEN_INT (val);
1441 #else
1442 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1443 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1444 || flag_pretend_float)
1445 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1446 && GET_MODE_CLASS (mode) == MODE_FLOAT
1447 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1448 && GET_CODE (op) == CONST_DOUBLE)
1450 double d;
1451 union {float f; HOST_WIDE_INT i; } u;
1453 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1455 u.f = d;
1456 return GEN_INT (u.i);
1458 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1459 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1460 || flag_pretend_float)
1461 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1462 && GET_MODE_CLASS (mode) == MODE_FLOAT
1463 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1464 && GET_CODE (op) == CONST_DOUBLE)
1466 double d;
1467 union {double d; HOST_WIDE_INT i; } u;
1469 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1471 u.d = d;
1472 return GEN_INT (u.i);
1474 #endif /* no REAL_ARITHMETIC */
1476 /* The only remaining cases that we can handle are integers.
1477 Convert to proper endianness now since these cases need it.
1478 At this point, offset == 0 means the low-order word.
1480 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1481 in general. However, if OP is (const_int 0), we can just return
1482 it for any word. */
1484 if (op == const0_rtx)
1485 return op;
1487 if (GET_MODE_CLASS (mode) != MODE_INT
1488 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1489 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1490 return 0;
1492 if (WORDS_BIG_ENDIAN)
1493 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1495 /* Find out which word on the host machine this value is in and get
1496 it from the constant. */
1497 val = (offset / size_ratio == 0
1498 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1499 : (GET_CODE (op) == CONST_INT
1500 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1502 /* Get the value we want into the low bits of val. */
1503 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1504 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1506 val = trunc_int_for_mode (val, word_mode);
1508 return GEN_INT (val);
1511 /* Return subword OFFSET of operand OP.
1512 The word number, OFFSET, is interpreted as the word number starting
1513 at the low-order address. OFFSET 0 is the low-order word if not
1514 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1516 If we cannot extract the required word, we return zero. Otherwise,
1517 an rtx corresponding to the requested word will be returned.
1519 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1520 reload has completed, a valid address will always be returned. After
1521 reload, if a valid address cannot be returned, we return zero.
1523 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1524 it is the responsibility of the caller.
1526 MODE is the mode of OP in case it is a CONST_INT.
1528 ??? This is still rather broken for some cases. The problem for the
1529 moment is that all callers of this thing provide no 'goal mode' to
1530 tell us to work with. This exists because all callers were written
1531 in a word based SUBREG world.
1532 Now use of this function can be deprecated by simplify_subreg in most
1533 cases.
1537 operand_subword (op, offset, validate_address, mode)
1538 rtx op;
1539 unsigned int offset;
1540 int validate_address;
1541 enum machine_mode mode;
1543 if (mode == VOIDmode)
1544 mode = GET_MODE (op);
1546 if (mode == VOIDmode)
1547 abort ();
1549 /* If OP is narrower than a word, fail. */
1550 if (mode != BLKmode
1551 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1552 return 0;
1554 /* If we want a word outside OP, return zero. */
1555 if (mode != BLKmode
1556 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1557 return const0_rtx;
1559 /* Form a new MEM at the requested address. */
1560 if (GET_CODE (op) == MEM)
1562 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1564 if (! validate_address)
1565 return new;
1567 else if (reload_completed)
1569 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1570 return 0;
1572 else
1573 return replace_equiv_address (new, XEXP (new, 0));
1576 /* Rest can be handled by simplify_subreg. */
1577 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1580 /* Similar to `operand_subword', but never return 0. If we can't extract
1581 the required subword, put OP into a register and try again. If that fails,
1582 abort. We always validate the address in this case.
1584 MODE is the mode of OP, in case it is CONST_INT. */
1587 operand_subword_force (op, offset, mode)
1588 rtx op;
1589 unsigned int offset;
1590 enum machine_mode mode;
1592 rtx result = operand_subword (op, offset, 1, mode);
1594 if (result)
1595 return result;
1597 if (mode != BLKmode && mode != VOIDmode)
1599 /* If this is a register which can not be accessed by words, copy it
1600 to a pseudo register. */
1601 if (GET_CODE (op) == REG)
1602 op = copy_to_reg (op);
1603 else
1604 op = force_reg (mode, op);
1607 result = operand_subword (op, offset, 1, mode);
1608 if (result == 0)
1609 abort ();
1611 return result;
1614 /* Given a compare instruction, swap the operands.
1615 A test instruction is changed into a compare of 0 against the operand. */
1617 void
1618 reverse_comparison (insn)
1619 rtx insn;
1621 rtx body = PATTERN (insn);
1622 rtx comp;
1624 if (GET_CODE (body) == SET)
1625 comp = SET_SRC (body);
1626 else
1627 comp = SET_SRC (XVECEXP (body, 0, 0));
1629 if (GET_CODE (comp) == COMPARE)
1631 rtx op0 = XEXP (comp, 0);
1632 rtx op1 = XEXP (comp, 1);
1633 XEXP (comp, 0) = op1;
1634 XEXP (comp, 1) = op0;
1636 else
1638 rtx new = gen_rtx_COMPARE (VOIDmode,
1639 CONST0_RTX (GET_MODE (comp)), comp);
1640 if (GET_CODE (body) == SET)
1641 SET_SRC (body) = new;
1642 else
1643 SET_SRC (XVECEXP (body, 0, 0)) = new;
1647 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1648 or (2) a component ref of something variable. Represent the later with
1649 a NULL expression. */
1651 static tree
1652 component_ref_for_mem_expr (ref)
1653 tree ref;
1655 tree inner = TREE_OPERAND (ref, 0);
1657 if (TREE_CODE (inner) == COMPONENT_REF)
1658 inner = component_ref_for_mem_expr (inner);
1659 else
1661 tree placeholder_ptr = 0;
1663 /* Now remove any conversions: they don't change what the underlying
1664 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1665 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1666 || TREE_CODE (inner) == NON_LVALUE_EXPR
1667 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1668 || TREE_CODE (inner) == SAVE_EXPR
1669 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1670 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1671 inner = find_placeholder (inner, &placeholder_ptr);
1672 else
1673 inner = TREE_OPERAND (inner, 0);
1675 if (! DECL_P (inner))
1676 inner = NULL_TREE;
1679 if (inner == TREE_OPERAND (ref, 0))
1680 return ref;
1681 else
1682 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1683 TREE_OPERAND (ref, 1));
1686 /* Given REF, a MEM, and T, either the type of X or the expression
1687 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1688 if we are making a new object of this type. */
1690 void
1691 set_mem_attributes (ref, t, objectp)
1692 rtx ref;
1693 tree t;
1694 int objectp;
1696 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1697 tree expr = MEM_EXPR (ref);
1698 rtx offset = MEM_OFFSET (ref);
1699 rtx size = MEM_SIZE (ref);
1700 unsigned int align = MEM_ALIGN (ref);
1701 tree type;
1703 /* It can happen that type_for_mode was given a mode for which there
1704 is no language-level type. In which case it returns NULL, which
1705 we can see here. */
1706 if (t == NULL_TREE)
1707 return;
1709 type = TYPE_P (t) ? t : TREE_TYPE (t);
1711 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1712 wrong answer, as it assumes that DECL_RTL already has the right alias
1713 info. Callers should not set DECL_RTL until after the call to
1714 set_mem_attributes. */
1715 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1716 abort ();
1718 /* Get the alias set from the expression or type (perhaps using a
1719 front-end routine) and use it. */
1720 alias = get_alias_set (t);
1722 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1723 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1724 RTX_UNCHANGING_P (ref)
1725 |= ((lang_hooks.honor_readonly
1726 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1727 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1729 /* If we are making an object of this type, or if this is a DECL, we know
1730 that it is a scalar if the type is not an aggregate. */
1731 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1732 MEM_SCALAR_P (ref) = 1;
1734 /* We can set the alignment from the type if we are making an object,
1735 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1736 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1737 align = MAX (align, TYPE_ALIGN (type));
1739 /* If the size is known, we can set that. */
1740 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1741 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1743 /* If T is not a type, we may be able to deduce some more information about
1744 the expression. */
1745 if (! TYPE_P (t))
1747 maybe_set_unchanging (ref, t);
1748 if (TREE_THIS_VOLATILE (t))
1749 MEM_VOLATILE_P (ref) = 1;
1751 /* Now remove any conversions: they don't change what the underlying
1752 object is. Likewise for SAVE_EXPR. */
1753 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1754 || TREE_CODE (t) == NON_LVALUE_EXPR
1755 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1756 || TREE_CODE (t) == SAVE_EXPR)
1757 t = TREE_OPERAND (t, 0);
1759 /* If this expression can't be addressed (e.g., it contains a reference
1760 to a non-addressable field), show we don't change its alias set. */
1761 if (! can_address_p (t))
1762 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1764 /* If this is a decl, set the attributes of the MEM from it. */
1765 if (DECL_P (t))
1767 expr = t;
1768 offset = const0_rtx;
1769 size = (DECL_SIZE_UNIT (t)
1770 && host_integerp (DECL_SIZE_UNIT (t), 1)
1771 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1772 align = DECL_ALIGN (t);
1775 /* If this is a constant, we know the alignment. */
1776 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1778 align = TYPE_ALIGN (type);
1779 #ifdef CONSTANT_ALIGNMENT
1780 align = CONSTANT_ALIGNMENT (t, align);
1781 #endif
1784 /* If this is a field reference and not a bit-field, record it. */
1785 /* ??? There is some information that can be gleened from bit-fields,
1786 such as the word offset in the structure that might be modified.
1787 But skip it for now. */
1788 else if (TREE_CODE (t) == COMPONENT_REF
1789 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1791 expr = component_ref_for_mem_expr (t);
1792 offset = const0_rtx;
1793 /* ??? Any reason the field size would be different than
1794 the size we got from the type? */
1797 /* If this is an array reference, look for an outer field reference. */
1798 else if (TREE_CODE (t) == ARRAY_REF)
1800 tree off_tree = size_zero_node;
1804 off_tree
1805 = fold (build (PLUS_EXPR, sizetype,
1806 fold (build (MULT_EXPR, sizetype,
1807 TREE_OPERAND (t, 1),
1808 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1809 off_tree));
1810 t = TREE_OPERAND (t, 0);
1812 while (TREE_CODE (t) == ARRAY_REF);
1814 if (TREE_CODE (t) == COMPONENT_REF)
1816 expr = component_ref_for_mem_expr (t);
1817 if (host_integerp (off_tree, 1))
1818 offset = GEN_INT (tree_low_cst (off_tree, 1));
1819 /* ??? Any reason the field size would be different than
1820 the size we got from the type? */
1825 /* Now set the attributes we computed above. */
1826 MEM_ATTRS (ref)
1827 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1829 /* If this is already known to be a scalar or aggregate, we are done. */
1830 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1831 return;
1833 /* If it is a reference into an aggregate, this is part of an aggregate.
1834 Otherwise we don't know. */
1835 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1836 || TREE_CODE (t) == ARRAY_RANGE_REF
1837 || TREE_CODE (t) == BIT_FIELD_REF)
1838 MEM_IN_STRUCT_P (ref) = 1;
1841 /* Set the alias set of MEM to SET. */
1843 void
1844 set_mem_alias_set (mem, set)
1845 rtx mem;
1846 HOST_WIDE_INT set;
1848 #ifdef ENABLE_CHECKING
1849 /* If the new and old alias sets don't conflict, something is wrong. */
1850 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1851 abort ();
1852 #endif
1854 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1855 MEM_SIZE (mem), MEM_ALIGN (mem),
1856 GET_MODE (mem));
1859 /* Set the alignment of MEM to ALIGN bits. */
1861 void
1862 set_mem_align (mem, align)
1863 rtx mem;
1864 unsigned int align;
1866 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1867 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1868 GET_MODE (mem));
1871 /* Set the expr for MEM to EXPR. */
1873 void
1874 set_mem_expr (mem, expr)
1875 rtx mem;
1876 tree expr;
1878 MEM_ATTRS (mem)
1879 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1880 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1883 /* Set the offset of MEM to OFFSET. */
1885 void
1886 set_mem_offset (mem, offset)
1887 rtx mem, offset;
1889 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1890 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1891 GET_MODE (mem));
1894 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1895 and its address changed to ADDR. (VOIDmode means don't change the mode.
1896 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1897 returned memory location is required to be valid. The memory
1898 attributes are not changed. */
1900 static rtx
1901 change_address_1 (memref, mode, addr, validate)
1902 rtx memref;
1903 enum machine_mode mode;
1904 rtx addr;
1905 int validate;
1907 rtx new;
1909 if (GET_CODE (memref) != MEM)
1910 abort ();
1911 if (mode == VOIDmode)
1912 mode = GET_MODE (memref);
1913 if (addr == 0)
1914 addr = XEXP (memref, 0);
1916 if (validate)
1918 if (reload_in_progress || reload_completed)
1920 if (! memory_address_p (mode, addr))
1921 abort ();
1923 else
1924 addr = memory_address (mode, addr);
1927 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1928 return memref;
1930 new = gen_rtx_MEM (mode, addr);
1931 MEM_COPY_ATTRIBUTES (new, memref);
1932 return new;
1935 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1936 way we are changing MEMREF, so we only preserve the alias set. */
1939 change_address (memref, mode, addr)
1940 rtx memref;
1941 enum machine_mode mode;
1942 rtx addr;
1944 rtx new = change_address_1 (memref, mode, addr, 1);
1945 enum machine_mode mmode = GET_MODE (new);
1947 MEM_ATTRS (new)
1948 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1949 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1950 (mmode == BLKmode ? BITS_PER_UNIT
1951 : GET_MODE_ALIGNMENT (mmode)),
1952 mmode);
1954 return new;
1957 /* Return a memory reference like MEMREF, but with its mode changed
1958 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1959 nonzero, the memory address is forced to be valid.
1960 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1961 and caller is responsible for adjusting MEMREF base register. */
1964 adjust_address_1 (memref, mode, offset, validate, adjust)
1965 rtx memref;
1966 enum machine_mode mode;
1967 HOST_WIDE_INT offset;
1968 int validate, adjust;
1970 rtx addr = XEXP (memref, 0);
1971 rtx new;
1972 rtx memoffset = MEM_OFFSET (memref);
1973 rtx size = 0;
1974 unsigned int memalign = MEM_ALIGN (memref);
1976 /* ??? Prefer to create garbage instead of creating shared rtl.
1977 This may happen even if offset is non-zero -- consider
1978 (plus (plus reg reg) const_int) -- so do this always. */
1979 addr = copy_rtx (addr);
1981 if (adjust)
1983 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1984 object, we can merge it into the LO_SUM. */
1985 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1986 && offset >= 0
1987 && (unsigned HOST_WIDE_INT) offset
1988 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1989 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1990 plus_constant (XEXP (addr, 1), offset));
1991 else
1992 addr = plus_constant (addr, offset);
1995 new = change_address_1 (memref, mode, addr, validate);
1997 /* Compute the new values of the memory attributes due to this adjustment.
1998 We add the offsets and update the alignment. */
1999 if (memoffset)
2000 memoffset = GEN_INT (offset + INTVAL (memoffset));
2002 /* Compute the new alignment by taking the MIN of the alignment and the
2003 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2004 if zero. */
2005 if (offset != 0)
2006 memalign = MIN (memalign,
2007 (unsigned int) (offset & -offset) * BITS_PER_UNIT);
2009 /* We can compute the size in a number of ways. */
2010 if (GET_MODE (new) != BLKmode)
2011 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2012 else if (MEM_SIZE (memref))
2013 size = plus_constant (MEM_SIZE (memref), -offset);
2015 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2016 memoffset, size, memalign, GET_MODE (new));
2018 /* At some point, we should validate that this offset is within the object,
2019 if all the appropriate values are known. */
2020 return new;
2023 /* Return a memory reference like MEMREF, but with its mode changed
2024 to MODE and its address changed to ADDR, which is assumed to be
2025 MEMREF offseted by OFFSET bytes. If VALIDATE is
2026 nonzero, the memory address is forced to be valid. */
2029 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2030 rtx memref;
2031 enum machine_mode mode;
2032 rtx addr;
2033 HOST_WIDE_INT offset;
2034 int validate;
2036 memref = change_address_1 (memref, VOIDmode, addr, validate);
2037 return adjust_address_1 (memref, mode, offset, validate, 0);
2040 /* Return a memory reference like MEMREF, but whose address is changed by
2041 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2042 known to be in OFFSET (possibly 1). */
2045 offset_address (memref, offset, pow2)
2046 rtx memref;
2047 rtx offset;
2048 HOST_WIDE_INT pow2;
2050 rtx new = change_address_1 (memref, VOIDmode,
2051 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
2052 force_reg (Pmode, offset)), 1);
2054 /* Update the alignment to reflect the offset. Reset the offset, which
2055 we don't know. */
2056 MEM_ATTRS (new)
2057 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2058 MIN (MEM_ALIGN (memref),
2059 (unsigned int) pow2 * BITS_PER_UNIT),
2060 GET_MODE (new));
2061 return new;
2064 /* Return a memory reference like MEMREF, but with its address changed to
2065 ADDR. The caller is asserting that the actual piece of memory pointed
2066 to is the same, just the form of the address is being changed, such as
2067 by putting something into a register. */
2070 replace_equiv_address (memref, addr)
2071 rtx memref;
2072 rtx addr;
2074 /* change_address_1 copies the memory attribute structure without change
2075 and that's exactly what we want here. */
2076 update_temp_slot_address (XEXP (memref, 0), addr);
2077 return change_address_1 (memref, VOIDmode, addr, 1);
2080 /* Likewise, but the reference is not required to be valid. */
2083 replace_equiv_address_nv (memref, addr)
2084 rtx memref;
2085 rtx addr;
2087 return change_address_1 (memref, VOIDmode, addr, 0);
2090 /* Return a memory reference like MEMREF, but with its mode widened to
2091 MODE and offset by OFFSET. This would be used by targets that e.g.
2092 cannot issue QImode memory operations and have to use SImode memory
2093 operations plus masking logic. */
2096 widen_memory_access (memref, mode, offset)
2097 rtx memref;
2098 enum machine_mode mode;
2099 HOST_WIDE_INT offset;
2101 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2102 tree expr = MEM_EXPR (new);
2103 rtx memoffset = MEM_OFFSET (new);
2104 unsigned int size = GET_MODE_SIZE (mode);
2106 /* If we don't know what offset we were at within the expression, then
2107 we can't know if we've overstepped the bounds. */
2108 if (! memoffset && offset != 0)
2109 expr = NULL_TREE;
2111 while (expr)
2113 if (TREE_CODE (expr) == COMPONENT_REF)
2115 tree field = TREE_OPERAND (expr, 1);
2117 if (! DECL_SIZE_UNIT (field))
2119 expr = NULL_TREE;
2120 break;
2123 /* Is the field at least as large as the access? If so, ok,
2124 otherwise strip back to the containing structure. */
2125 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2126 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2127 && INTVAL (memoffset) >= 0)
2128 break;
2130 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2132 expr = NULL_TREE;
2133 break;
2136 expr = TREE_OPERAND (expr, 0);
2137 memoffset = (GEN_INT (INTVAL (memoffset)
2138 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2139 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2140 / BITS_PER_UNIT)));
2142 /* Similarly for the decl. */
2143 else if (DECL_P (expr)
2144 && DECL_SIZE_UNIT (expr)
2145 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2146 && (! memoffset || INTVAL (memoffset) >= 0))
2147 break;
2148 else
2150 /* The widened memory access overflows the expression, which means
2151 that it could alias another expression. Zap it. */
2152 expr = NULL_TREE;
2153 break;
2157 if (! expr)
2158 memoffset = NULL_RTX;
2160 /* The widened memory may alias other stuff, so zap the alias set. */
2161 /* ??? Maybe use get_alias_set on any remaining expression. */
2163 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2164 MEM_ALIGN (new), mode);
2166 return new;
2169 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2172 gen_label_rtx ()
2174 rtx label;
2176 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
2177 NULL_RTX, label_num++, NULL, NULL);
2179 LABEL_NUSES (label) = 0;
2180 LABEL_ALTERNATE_NAME (label) = NULL;
2181 return label;
2184 /* For procedure integration. */
2186 /* Install new pointers to the first and last insns in the chain.
2187 Also, set cur_insn_uid to one higher than the last in use.
2188 Used for an inline-procedure after copying the insn chain. */
2190 void
2191 set_new_first_and_last_insn (first, last)
2192 rtx first, last;
2194 rtx insn;
2196 first_insn = first;
2197 last_insn = last;
2198 cur_insn_uid = 0;
2200 for (insn = first; insn; insn = NEXT_INSN (insn))
2201 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2203 cur_insn_uid++;
2206 /* Set the range of label numbers found in the current function.
2207 This is used when belatedly compiling an inline function. */
2209 void
2210 set_new_first_and_last_label_num (first, last)
2211 int first, last;
2213 base_label_num = label_num;
2214 first_label_num = first;
2215 last_label_num = last;
2218 /* Set the last label number found in the current function.
2219 This is used when belatedly compiling an inline function. */
2221 void
2222 set_new_last_label_num (last)
2223 int last;
2225 base_label_num = label_num;
2226 last_label_num = last;
2229 /* Restore all variables describing the current status from the structure *P.
2230 This is used after a nested function. */
2232 void
2233 restore_emit_status (p)
2234 struct function *p ATTRIBUTE_UNUSED;
2236 last_label_num = 0;
2237 clear_emit_caches ();
2240 /* Clear out all parts of the state in F that can safely be discarded
2241 after the function has been compiled, to let garbage collection
2242 reclaim the memory. */
2244 void
2245 free_emit_status (f)
2246 struct function *f;
2248 free (f->emit->x_regno_reg_rtx);
2249 free (f->emit->regno_pointer_align);
2250 free (f->emit->regno_decl);
2251 free (f->emit);
2252 f->emit = NULL;
2255 /* Go through all the RTL insn bodies and copy any invalid shared
2256 structure. This routine should only be called once. */
2258 void
2259 unshare_all_rtl (fndecl, insn)
2260 tree fndecl;
2261 rtx insn;
2263 tree decl;
2265 /* Make sure that virtual parameters are not shared. */
2266 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2267 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2269 /* Make sure that virtual stack slots are not shared. */
2270 unshare_all_decls (DECL_INITIAL (fndecl));
2272 /* Unshare just about everything else. */
2273 unshare_all_rtl_1 (insn);
2275 /* Make sure the addresses of stack slots found outside the insn chain
2276 (such as, in DECL_RTL of a variable) are not shared
2277 with the insn chain.
2279 This special care is necessary when the stack slot MEM does not
2280 actually appear in the insn chain. If it does appear, its address
2281 is unshared from all else at that point. */
2282 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2285 /* Go through all the RTL insn bodies and copy any invalid shared
2286 structure, again. This is a fairly expensive thing to do so it
2287 should be done sparingly. */
2289 void
2290 unshare_all_rtl_again (insn)
2291 rtx insn;
2293 rtx p;
2294 tree decl;
2296 for (p = insn; p; p = NEXT_INSN (p))
2297 if (INSN_P (p))
2299 reset_used_flags (PATTERN (p));
2300 reset_used_flags (REG_NOTES (p));
2301 reset_used_flags (LOG_LINKS (p));
2304 /* Make sure that virtual stack slots are not shared. */
2305 reset_used_decls (DECL_INITIAL (cfun->decl));
2307 /* Make sure that virtual parameters are not shared. */
2308 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2309 reset_used_flags (DECL_RTL (decl));
2311 reset_used_flags (stack_slot_list);
2313 unshare_all_rtl (cfun->decl, insn);
2316 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2317 Assumes the mark bits are cleared at entry. */
2319 static void
2320 unshare_all_rtl_1 (insn)
2321 rtx insn;
2323 for (; insn; insn = NEXT_INSN (insn))
2324 if (INSN_P (insn))
2326 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2327 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2328 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2332 /* Go through all virtual stack slots of a function and copy any
2333 shared structure. */
2334 static void
2335 unshare_all_decls (blk)
2336 tree blk;
2338 tree t;
2340 /* Copy shared decls. */
2341 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2342 if (DECL_RTL_SET_P (t))
2343 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2345 /* Now process sub-blocks. */
2346 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2347 unshare_all_decls (t);
2350 /* Go through all virtual stack slots of a function and mark them as
2351 not shared. */
2352 static void
2353 reset_used_decls (blk)
2354 tree blk;
2356 tree t;
2358 /* Mark decls. */
2359 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2360 if (DECL_RTL_SET_P (t))
2361 reset_used_flags (DECL_RTL (t));
2363 /* Now process sub-blocks. */
2364 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2365 reset_used_decls (t);
2368 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2369 Recursively does the same for subexpressions. */
2372 copy_rtx_if_shared (orig)
2373 rtx orig;
2375 rtx x = orig;
2376 int i;
2377 enum rtx_code code;
2378 const char *format_ptr;
2379 int copied = 0;
2381 if (x == 0)
2382 return 0;
2384 code = GET_CODE (x);
2386 /* These types may be freely shared. */
2388 switch (code)
2390 case REG:
2391 case QUEUED:
2392 case CONST_INT:
2393 case CONST_DOUBLE:
2394 case CONST_VECTOR:
2395 case SYMBOL_REF:
2396 case CODE_LABEL:
2397 case PC:
2398 case CC0:
2399 case SCRATCH:
2400 /* SCRATCH must be shared because they represent distinct values. */
2401 return x;
2403 case CONST:
2404 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2405 a LABEL_REF, it isn't sharable. */
2406 if (GET_CODE (XEXP (x, 0)) == PLUS
2407 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2408 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2409 return x;
2410 break;
2412 case INSN:
2413 case JUMP_INSN:
2414 case CALL_INSN:
2415 case NOTE:
2416 case BARRIER:
2417 /* The chain of insns is not being copied. */
2418 return x;
2420 case MEM:
2421 /* A MEM is allowed to be shared if its address is constant.
2423 We used to allow sharing of MEMs which referenced
2424 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2425 that can lose. instantiate_virtual_regs will not unshare
2426 the MEMs, and combine may change the structure of the address
2427 because it looks safe and profitable in one context, but
2428 in some other context it creates unrecognizable RTL. */
2429 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2430 return x;
2432 break;
2434 default:
2435 break;
2438 /* This rtx may not be shared. If it has already been seen,
2439 replace it with a copy of itself. */
2441 if (x->used)
2443 rtx copy;
2445 copy = rtx_alloc (code);
2446 memcpy (copy, x,
2447 (sizeof (*copy) - sizeof (copy->fld)
2448 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2449 x = copy;
2450 copied = 1;
2452 x->used = 1;
2454 /* Now scan the subexpressions recursively.
2455 We can store any replaced subexpressions directly into X
2456 since we know X is not shared! Any vectors in X
2457 must be copied if X was copied. */
2459 format_ptr = GET_RTX_FORMAT (code);
2461 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2463 switch (*format_ptr++)
2465 case 'e':
2466 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2467 break;
2469 case 'E':
2470 if (XVEC (x, i) != NULL)
2472 int j;
2473 int len = XVECLEN (x, i);
2475 if (copied && len > 0)
2476 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2477 for (j = 0; j < len; j++)
2478 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2480 break;
2483 return x;
2486 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2487 to look for shared sub-parts. */
2489 void
2490 reset_used_flags (x)
2491 rtx x;
2493 int i, j;
2494 enum rtx_code code;
2495 const char *format_ptr;
2497 if (x == 0)
2498 return;
2500 code = GET_CODE (x);
2502 /* These types may be freely shared so we needn't do any resetting
2503 for them. */
2505 switch (code)
2507 case REG:
2508 case QUEUED:
2509 case CONST_INT:
2510 case CONST_DOUBLE:
2511 case CONST_VECTOR:
2512 case SYMBOL_REF:
2513 case CODE_LABEL:
2514 case PC:
2515 case CC0:
2516 return;
2518 case INSN:
2519 case JUMP_INSN:
2520 case CALL_INSN:
2521 case NOTE:
2522 case LABEL_REF:
2523 case BARRIER:
2524 /* The chain of insns is not being copied. */
2525 return;
2527 default:
2528 break;
2531 x->used = 0;
2533 format_ptr = GET_RTX_FORMAT (code);
2534 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2536 switch (*format_ptr++)
2538 case 'e':
2539 reset_used_flags (XEXP (x, i));
2540 break;
2542 case 'E':
2543 for (j = 0; j < XVECLEN (x, i); j++)
2544 reset_used_flags (XVECEXP (x, i, j));
2545 break;
2550 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2551 Return X or the rtx for the pseudo reg the value of X was copied into.
2552 OTHER must be valid as a SET_DEST. */
2555 make_safe_from (x, other)
2556 rtx x, other;
2558 while (1)
2559 switch (GET_CODE (other))
2561 case SUBREG:
2562 other = SUBREG_REG (other);
2563 break;
2564 case STRICT_LOW_PART:
2565 case SIGN_EXTEND:
2566 case ZERO_EXTEND:
2567 other = XEXP (other, 0);
2568 break;
2569 default:
2570 goto done;
2572 done:
2573 if ((GET_CODE (other) == MEM
2574 && ! CONSTANT_P (x)
2575 && GET_CODE (x) != REG
2576 && GET_CODE (x) != SUBREG)
2577 || (GET_CODE (other) == REG
2578 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2579 || reg_mentioned_p (other, x))))
2581 rtx temp = gen_reg_rtx (GET_MODE (x));
2582 emit_move_insn (temp, x);
2583 return temp;
2585 return x;
2588 /* Emission of insns (adding them to the doubly-linked list). */
2590 /* Return the first insn of the current sequence or current function. */
2593 get_insns ()
2595 return first_insn;
2598 /* Return the last insn emitted in current sequence or current function. */
2601 get_last_insn ()
2603 return last_insn;
2606 /* Specify a new insn as the last in the chain. */
2608 void
2609 set_last_insn (insn)
2610 rtx insn;
2612 if (NEXT_INSN (insn) != 0)
2613 abort ();
2614 last_insn = insn;
2617 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2620 get_last_insn_anywhere ()
2622 struct sequence_stack *stack;
2623 if (last_insn)
2624 return last_insn;
2625 for (stack = seq_stack; stack; stack = stack->next)
2626 if (stack->last != 0)
2627 return stack->last;
2628 return 0;
2631 /* Return a number larger than any instruction's uid in this function. */
2634 get_max_uid ()
2636 return cur_insn_uid;
2639 /* Renumber instructions so that no instruction UIDs are wasted. */
2641 void
2642 renumber_insns (stream)
2643 FILE *stream;
2645 rtx insn;
2647 /* If we're not supposed to renumber instructions, don't. */
2648 if (!flag_renumber_insns)
2649 return;
2651 /* If there aren't that many instructions, then it's not really
2652 worth renumbering them. */
2653 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2654 return;
2656 cur_insn_uid = 1;
2658 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2660 if (stream)
2661 fprintf (stream, "Renumbering insn %d to %d\n",
2662 INSN_UID (insn), cur_insn_uid);
2663 INSN_UID (insn) = cur_insn_uid++;
2667 /* Return the next insn. If it is a SEQUENCE, return the first insn
2668 of the sequence. */
2671 next_insn (insn)
2672 rtx insn;
2674 if (insn)
2676 insn = NEXT_INSN (insn);
2677 if (insn && GET_CODE (insn) == INSN
2678 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2679 insn = XVECEXP (PATTERN (insn), 0, 0);
2682 return insn;
2685 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2686 of the sequence. */
2689 previous_insn (insn)
2690 rtx insn;
2692 if (insn)
2694 insn = PREV_INSN (insn);
2695 if (insn && GET_CODE (insn) == INSN
2696 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2697 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2700 return insn;
2703 /* Return the next insn after INSN that is not a NOTE. This routine does not
2704 look inside SEQUENCEs. */
2707 next_nonnote_insn (insn)
2708 rtx insn;
2710 while (insn)
2712 insn = NEXT_INSN (insn);
2713 if (insn == 0 || GET_CODE (insn) != NOTE)
2714 break;
2717 return insn;
2720 /* Return the previous insn before INSN that is not a NOTE. This routine does
2721 not look inside SEQUENCEs. */
2724 prev_nonnote_insn (insn)
2725 rtx insn;
2727 while (insn)
2729 insn = PREV_INSN (insn);
2730 if (insn == 0 || GET_CODE (insn) != NOTE)
2731 break;
2734 return insn;
2737 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2738 or 0, if there is none. This routine does not look inside
2739 SEQUENCEs. */
2742 next_real_insn (insn)
2743 rtx insn;
2745 while (insn)
2747 insn = NEXT_INSN (insn);
2748 if (insn == 0 || GET_CODE (insn) == INSN
2749 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2750 break;
2753 return insn;
2756 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2757 or 0, if there is none. This routine does not look inside
2758 SEQUENCEs. */
2761 prev_real_insn (insn)
2762 rtx insn;
2764 while (insn)
2766 insn = PREV_INSN (insn);
2767 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2768 || GET_CODE (insn) == JUMP_INSN)
2769 break;
2772 return insn;
2775 /* Find the next insn after INSN that really does something. This routine
2776 does not look inside SEQUENCEs. Until reload has completed, this is the
2777 same as next_real_insn. */
2780 active_insn_p (insn)
2781 rtx insn;
2783 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2784 || (GET_CODE (insn) == INSN
2785 && (! reload_completed
2786 || (GET_CODE (PATTERN (insn)) != USE
2787 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2791 next_active_insn (insn)
2792 rtx insn;
2794 while (insn)
2796 insn = NEXT_INSN (insn);
2797 if (insn == 0 || active_insn_p (insn))
2798 break;
2801 return insn;
2804 /* Find the last insn before INSN that really does something. This routine
2805 does not look inside SEQUENCEs. Until reload has completed, this is the
2806 same as prev_real_insn. */
2809 prev_active_insn (insn)
2810 rtx insn;
2812 while (insn)
2814 insn = PREV_INSN (insn);
2815 if (insn == 0 || active_insn_p (insn))
2816 break;
2819 return insn;
2822 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2825 next_label (insn)
2826 rtx insn;
2828 while (insn)
2830 insn = NEXT_INSN (insn);
2831 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2832 break;
2835 return insn;
2838 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2841 prev_label (insn)
2842 rtx insn;
2844 while (insn)
2846 insn = PREV_INSN (insn);
2847 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2848 break;
2851 return insn;
2854 #ifdef HAVE_cc0
2855 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2856 and REG_CC_USER notes so we can find it. */
2858 void
2859 link_cc0_insns (insn)
2860 rtx insn;
2862 rtx user = next_nonnote_insn (insn);
2864 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2865 user = XVECEXP (PATTERN (user), 0, 0);
2867 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2868 REG_NOTES (user));
2869 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2872 /* Return the next insn that uses CC0 after INSN, which is assumed to
2873 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2874 applied to the result of this function should yield INSN).
2876 Normally, this is simply the next insn. However, if a REG_CC_USER note
2877 is present, it contains the insn that uses CC0.
2879 Return 0 if we can't find the insn. */
2882 next_cc0_user (insn)
2883 rtx insn;
2885 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2887 if (note)
2888 return XEXP (note, 0);
2890 insn = next_nonnote_insn (insn);
2891 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2892 insn = XVECEXP (PATTERN (insn), 0, 0);
2894 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2895 return insn;
2897 return 0;
2900 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2901 note, it is the previous insn. */
2904 prev_cc0_setter (insn)
2905 rtx insn;
2907 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2909 if (note)
2910 return XEXP (note, 0);
2912 insn = prev_nonnote_insn (insn);
2913 if (! sets_cc0_p (PATTERN (insn)))
2914 abort ();
2916 return insn;
2918 #endif
2920 /* Increment the label uses for all labels present in rtx. */
2922 static void
2923 mark_label_nuses(x)
2924 rtx x;
2926 enum rtx_code code;
2927 int i, j;
2928 const char *fmt;
2930 code = GET_CODE (x);
2931 if (code == LABEL_REF)
2932 LABEL_NUSES (XEXP (x, 0))++;
2934 fmt = GET_RTX_FORMAT (code);
2935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2937 if (fmt[i] == 'e')
2938 mark_label_nuses (XEXP (x, i));
2939 else if (fmt[i] == 'E')
2940 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2941 mark_label_nuses (XVECEXP (x, i, j));
2946 /* Try splitting insns that can be split for better scheduling.
2947 PAT is the pattern which might split.
2948 TRIAL is the insn providing PAT.
2949 LAST is non-zero if we should return the last insn of the sequence produced.
2951 If this routine succeeds in splitting, it returns the first or last
2952 replacement insn depending on the value of LAST. Otherwise, it
2953 returns TRIAL. If the insn to be returned can be split, it will be. */
2956 try_split (pat, trial, last)
2957 rtx pat, trial;
2958 int last;
2960 rtx before = PREV_INSN (trial);
2961 rtx after = NEXT_INSN (trial);
2962 int has_barrier = 0;
2963 rtx tem;
2964 rtx note, seq;
2965 int probability;
2967 if (any_condjump_p (trial)
2968 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2969 split_branch_probability = INTVAL (XEXP (note, 0));
2970 probability = split_branch_probability;
2972 seq = split_insns (pat, trial);
2974 split_branch_probability = -1;
2976 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2977 We may need to handle this specially. */
2978 if (after && GET_CODE (after) == BARRIER)
2980 has_barrier = 1;
2981 after = NEXT_INSN (after);
2984 if (seq)
2986 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2987 The latter case will normally arise only when being done so that
2988 it, in turn, will be split (SFmode on the 29k is an example). */
2989 if (GET_CODE (seq) == SEQUENCE)
2991 int i, njumps = 0;
2993 /* Avoid infinite loop if any insn of the result matches
2994 the original pattern. */
2995 for (i = 0; i < XVECLEN (seq, 0); i++)
2996 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2997 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2998 return trial;
3000 /* Mark labels. */
3001 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3002 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
3004 rtx insn = XVECEXP (seq, 0, i);
3005 mark_jump_label (PATTERN (insn),
3006 XVECEXP (seq, 0, i), 0);
3007 njumps++;
3008 if (probability != -1
3009 && any_condjump_p (insn)
3010 && !find_reg_note (insn, REG_BR_PROB, 0))
3012 /* We can preserve the REG_BR_PROB notes only if exactly
3013 one jump is created, otherwise the machine description
3014 is responsible for this step using
3015 split_branch_probability variable. */
3016 if (njumps != 1)
3017 abort ();
3018 REG_NOTES (insn)
3019 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3020 GEN_INT (probability),
3021 REG_NOTES (insn));
3025 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3026 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3027 if (GET_CODE (trial) == CALL_INSN)
3028 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3029 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
3030 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
3031 = CALL_INSN_FUNCTION_USAGE (trial);
3033 /* Copy notes, particularly those related to the CFG. */
3034 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
3036 switch (REG_NOTE_KIND (note))
3038 case REG_EH_REGION:
3039 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3041 rtx insn = XVECEXP (seq, 0, i);
3042 if (GET_CODE (insn) == CALL_INSN
3043 || (flag_non_call_exceptions
3044 && may_trap_p (PATTERN (insn))))
3045 REG_NOTES (insn)
3046 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3047 XEXP (note, 0),
3048 REG_NOTES (insn));
3050 break;
3052 case REG_NORETURN:
3053 case REG_SETJMP:
3054 case REG_ALWAYS_RETURN:
3055 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3057 rtx insn = XVECEXP (seq, 0, i);
3058 if (GET_CODE (insn) == CALL_INSN)
3059 REG_NOTES (insn)
3060 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3061 XEXP (note, 0),
3062 REG_NOTES (insn));
3064 break;
3066 case REG_NON_LOCAL_GOTO:
3067 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3069 rtx insn = XVECEXP (seq, 0, i);
3070 if (GET_CODE (insn) == JUMP_INSN)
3071 REG_NOTES (insn)
3072 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3073 XEXP (note, 0),
3074 REG_NOTES (insn));
3076 break;
3078 default:
3079 break;
3083 /* If there are LABELS inside the split insns increment the
3084 usage count so we don't delete the label. */
3085 if (GET_CODE (trial) == INSN)
3086 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3087 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
3088 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
3090 tem = emit_insn_after (seq, trial);
3092 delete_related_insns (trial);
3093 if (has_barrier)
3094 emit_barrier_after (tem);
3096 /* Recursively call try_split for each new insn created; by the
3097 time control returns here that insn will be fully split, so
3098 set LAST and continue from the insn after the one returned.
3099 We can't use next_active_insn here since AFTER may be a note.
3100 Ignore deleted insns, which can be occur if not optimizing. */
3101 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3102 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3103 tem = try_split (PATTERN (tem), tem, 1);
3105 /* Avoid infinite loop if the result matches the original pattern. */
3106 else if (rtx_equal_p (seq, pat))
3107 return trial;
3108 else
3110 PATTERN (trial) = seq;
3111 INSN_CODE (trial) = -1;
3112 try_split (seq, trial, last);
3115 /* Return either the first or the last insn, depending on which was
3116 requested. */
3117 return last
3118 ? (after ? PREV_INSN (after) : last_insn)
3119 : NEXT_INSN (before);
3122 return trial;
3125 /* Make and return an INSN rtx, initializing all its slots.
3126 Store PATTERN in the pattern slots. */
3129 make_insn_raw (pattern)
3130 rtx pattern;
3132 rtx insn;
3134 insn = rtx_alloc (INSN);
3136 INSN_UID (insn) = cur_insn_uid++;
3137 PATTERN (insn) = pattern;
3138 INSN_CODE (insn) = -1;
3139 LOG_LINKS (insn) = NULL;
3140 REG_NOTES (insn) = NULL;
3142 #ifdef ENABLE_RTL_CHECKING
3143 if (insn
3144 && INSN_P (insn)
3145 && (returnjump_p (insn)
3146 || (GET_CODE (insn) == SET
3147 && SET_DEST (insn) == pc_rtx)))
3149 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3150 debug_rtx (insn);
3152 #endif
3154 return insn;
3157 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
3159 static rtx
3160 make_jump_insn_raw (pattern)
3161 rtx pattern;
3163 rtx insn;
3165 insn = rtx_alloc (JUMP_INSN);
3166 INSN_UID (insn) = cur_insn_uid++;
3168 PATTERN (insn) = pattern;
3169 INSN_CODE (insn) = -1;
3170 LOG_LINKS (insn) = NULL;
3171 REG_NOTES (insn) = NULL;
3172 JUMP_LABEL (insn) = NULL;
3174 return insn;
3177 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
3179 static rtx
3180 make_call_insn_raw (pattern)
3181 rtx pattern;
3183 rtx insn;
3185 insn = rtx_alloc (CALL_INSN);
3186 INSN_UID (insn) = cur_insn_uid++;
3188 PATTERN (insn) = pattern;
3189 INSN_CODE (insn) = -1;
3190 LOG_LINKS (insn) = NULL;
3191 REG_NOTES (insn) = NULL;
3192 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3194 return insn;
3197 /* Add INSN to the end of the doubly-linked list.
3198 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3200 void
3201 add_insn (insn)
3202 rtx insn;
3204 PREV_INSN (insn) = last_insn;
3205 NEXT_INSN (insn) = 0;
3207 if (NULL != last_insn)
3208 NEXT_INSN (last_insn) = insn;
3210 if (NULL == first_insn)
3211 first_insn = insn;
3213 last_insn = insn;
3216 /* Add INSN into the doubly-linked list after insn AFTER. This and
3217 the next should be the only functions called to insert an insn once
3218 delay slots have been filled since only they know how to update a
3219 SEQUENCE. */
3221 void
3222 add_insn_after (insn, after)
3223 rtx insn, after;
3225 rtx next = NEXT_INSN (after);
3226 basic_block bb;
3228 if (optimize && INSN_DELETED_P (after))
3229 abort ();
3231 NEXT_INSN (insn) = next;
3232 PREV_INSN (insn) = after;
3234 if (next)
3236 PREV_INSN (next) = insn;
3237 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3238 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3240 else if (last_insn == after)
3241 last_insn = insn;
3242 else
3244 struct sequence_stack *stack = seq_stack;
3245 /* Scan all pending sequences too. */
3246 for (; stack; stack = stack->next)
3247 if (after == stack->last)
3249 stack->last = insn;
3250 break;
3253 if (stack == 0)
3254 abort ();
3257 if (basic_block_for_insn
3258 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3259 && (bb = BLOCK_FOR_INSN (after)))
3261 set_block_for_insn (insn, bb);
3262 /* Should not happen as first in the BB is always
3263 either NOTE or LABEL. */
3264 if (bb->end == after
3265 /* Avoid clobbering of structure when creating new BB. */
3266 && GET_CODE (insn) != BARRIER
3267 && (GET_CODE (insn) != NOTE
3268 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3269 bb->end = insn;
3272 NEXT_INSN (after) = insn;
3273 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3275 rtx sequence = PATTERN (after);
3276 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3280 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3281 the previous should be the only functions called to insert an insn once
3282 delay slots have been filled since only they know how to update a
3283 SEQUENCE. */
3285 void
3286 add_insn_before (insn, before)
3287 rtx insn, before;
3289 rtx prev = PREV_INSN (before);
3290 basic_block bb;
3292 if (optimize && INSN_DELETED_P (before))
3293 abort ();
3295 PREV_INSN (insn) = prev;
3296 NEXT_INSN (insn) = before;
3298 if (prev)
3300 NEXT_INSN (prev) = insn;
3301 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3303 rtx sequence = PATTERN (prev);
3304 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3307 else if (first_insn == before)
3308 first_insn = insn;
3309 else
3311 struct sequence_stack *stack = seq_stack;
3312 /* Scan all pending sequences too. */
3313 for (; stack; stack = stack->next)
3314 if (before == stack->first)
3316 stack->first = insn;
3317 break;
3320 if (stack == 0)
3321 abort ();
3324 if (basic_block_for_insn
3325 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3326 && (bb = BLOCK_FOR_INSN (before)))
3328 set_block_for_insn (insn, bb);
3329 /* Should not happen as first in the BB is always
3330 either NOTE or LABEl. */
3331 if (bb->head == insn
3332 /* Avoid clobbering of structure when creating new BB. */
3333 && GET_CODE (insn) != BARRIER
3334 && (GET_CODE (insn) != NOTE
3335 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3336 abort ();
3339 PREV_INSN (before) = insn;
3340 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3341 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3344 /* Remove an insn from its doubly-linked list. This function knows how
3345 to handle sequences. */
3346 void
3347 remove_insn (insn)
3348 rtx insn;
3350 rtx next = NEXT_INSN (insn);
3351 rtx prev = PREV_INSN (insn);
3352 basic_block bb;
3354 if (prev)
3356 NEXT_INSN (prev) = next;
3357 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3359 rtx sequence = PATTERN (prev);
3360 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3363 else if (first_insn == insn)
3364 first_insn = next;
3365 else
3367 struct sequence_stack *stack = seq_stack;
3368 /* Scan all pending sequences too. */
3369 for (; stack; stack = stack->next)
3370 if (insn == stack->first)
3372 stack->first = next;
3373 break;
3376 if (stack == 0)
3377 abort ();
3380 if (next)
3382 PREV_INSN (next) = prev;
3383 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3384 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3386 else if (last_insn == insn)
3387 last_insn = prev;
3388 else
3390 struct sequence_stack *stack = seq_stack;
3391 /* Scan all pending sequences too. */
3392 for (; stack; stack = stack->next)
3393 if (insn == stack->last)
3395 stack->last = prev;
3396 break;
3399 if (stack == 0)
3400 abort ();
3402 if (basic_block_for_insn
3403 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3404 && (bb = BLOCK_FOR_INSN (insn)))
3406 if (bb->head == insn)
3408 /* Never ever delete the basic block note without deleting whole basic
3409 block. */
3410 if (GET_CODE (insn) == NOTE)
3411 abort ();
3412 bb->head = next;
3414 if (bb->end == insn)
3415 bb->end = prev;
3419 /* Delete all insns made since FROM.
3420 FROM becomes the new last instruction. */
3422 void
3423 delete_insns_since (from)
3424 rtx from;
3426 if (from == 0)
3427 first_insn = 0;
3428 else
3429 NEXT_INSN (from) = 0;
3430 last_insn = from;
3433 /* This function is deprecated, please use sequences instead.
3435 Move a consecutive bunch of insns to a different place in the chain.
3436 The insns to be moved are those between FROM and TO.
3437 They are moved to a new position after the insn AFTER.
3438 AFTER must not be FROM or TO or any insn in between.
3440 This function does not know about SEQUENCEs and hence should not be
3441 called after delay-slot filling has been done. */
3443 void
3444 reorder_insns_nobb (from, to, after)
3445 rtx from, to, after;
3447 /* Splice this bunch out of where it is now. */
3448 if (PREV_INSN (from))
3449 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3450 if (NEXT_INSN (to))
3451 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3452 if (last_insn == to)
3453 last_insn = PREV_INSN (from);
3454 if (first_insn == from)
3455 first_insn = NEXT_INSN (to);
3457 /* Make the new neighbors point to it and it to them. */
3458 if (NEXT_INSN (after))
3459 PREV_INSN (NEXT_INSN (after)) = to;
3461 NEXT_INSN (to) = NEXT_INSN (after);
3462 PREV_INSN (from) = after;
3463 NEXT_INSN (after) = from;
3464 if (after == last_insn)
3465 last_insn = to;
3468 /* Same as function above, but take care to update BB boundaries. */
3469 void
3470 reorder_insns (from, to, after)
3471 rtx from, to, after;
3473 rtx prev = PREV_INSN (from);
3474 basic_block bb, bb2;
3476 reorder_insns_nobb (from, to, after);
3478 if (basic_block_for_insn
3479 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3480 && (bb = BLOCK_FOR_INSN (after)))
3482 rtx x;
3484 if (basic_block_for_insn
3485 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3486 && (bb2 = BLOCK_FOR_INSN (from)))
3488 if (bb2->end == to)
3489 bb2->end = prev;
3492 if (bb->end == after)
3493 bb->end = to;
3495 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3496 set_block_for_insn (x, bb);
3500 /* Return the line note insn preceding INSN. */
3502 static rtx
3503 find_line_note (insn)
3504 rtx insn;
3506 if (no_line_numbers)
3507 return 0;
3509 for (; insn; insn = PREV_INSN (insn))
3510 if (GET_CODE (insn) == NOTE
3511 && NOTE_LINE_NUMBER (insn) >= 0)
3512 break;
3514 return insn;
3517 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3518 of the moved insns when debugging. This may insert a note between AFTER
3519 and FROM, and another one after TO. */
3521 void
3522 reorder_insns_with_line_notes (from, to, after)
3523 rtx from, to, after;
3525 rtx from_line = find_line_note (from);
3526 rtx after_line = find_line_note (after);
3528 reorder_insns (from, to, after);
3530 if (from_line == after_line)
3531 return;
3533 if (from_line)
3534 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3535 NOTE_LINE_NUMBER (from_line),
3536 after);
3537 if (after_line)
3538 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3539 NOTE_LINE_NUMBER (after_line),
3540 to);
3543 /* Remove unnecessary notes from the instruction stream. */
3545 void
3546 remove_unnecessary_notes ()
3548 rtx block_stack = NULL_RTX;
3549 rtx eh_stack = NULL_RTX;
3550 rtx insn;
3551 rtx next;
3552 rtx tmp;
3554 /* We must not remove the first instruction in the function because
3555 the compiler depends on the first instruction being a note. */
3556 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3558 /* Remember what's next. */
3559 next = NEXT_INSN (insn);
3561 /* We're only interested in notes. */
3562 if (GET_CODE (insn) != NOTE)
3563 continue;
3565 switch (NOTE_LINE_NUMBER (insn))
3567 case NOTE_INSN_DELETED:
3568 case NOTE_INSN_LOOP_END_TOP_COND:
3569 remove_insn (insn);
3570 break;
3572 case NOTE_INSN_EH_REGION_BEG:
3573 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3574 break;
3576 case NOTE_INSN_EH_REGION_END:
3577 /* Too many end notes. */
3578 if (eh_stack == NULL_RTX)
3579 abort ();
3580 /* Mismatched nesting. */
3581 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3582 abort ();
3583 tmp = eh_stack;
3584 eh_stack = XEXP (eh_stack, 1);
3585 free_INSN_LIST_node (tmp);
3586 break;
3588 case NOTE_INSN_BLOCK_BEG:
3589 /* By now, all notes indicating lexical blocks should have
3590 NOTE_BLOCK filled in. */
3591 if (NOTE_BLOCK (insn) == NULL_TREE)
3592 abort ();
3593 block_stack = alloc_INSN_LIST (insn, block_stack);
3594 break;
3596 case NOTE_INSN_BLOCK_END:
3597 /* Too many end notes. */
3598 if (block_stack == NULL_RTX)
3599 abort ();
3600 /* Mismatched nesting. */
3601 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3602 abort ();
3603 tmp = block_stack;
3604 block_stack = XEXP (block_stack, 1);
3605 free_INSN_LIST_node (tmp);
3607 /* Scan back to see if there are any non-note instructions
3608 between INSN and the beginning of this block. If not,
3609 then there is no PC range in the generated code that will
3610 actually be in this block, so there's no point in
3611 remembering the existence of the block. */
3612 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3614 /* This block contains a real instruction. Note that we
3615 don't include labels; if the only thing in the block
3616 is a label, then there are still no PC values that
3617 lie within the block. */
3618 if (INSN_P (tmp))
3619 break;
3621 /* We're only interested in NOTEs. */
3622 if (GET_CODE (tmp) != NOTE)
3623 continue;
3625 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3627 /* We just verified that this BLOCK matches us with
3628 the block_stack check above. Never delete the
3629 BLOCK for the outermost scope of the function; we
3630 can refer to names from that scope even if the
3631 block notes are messed up. */
3632 if (! is_body_block (NOTE_BLOCK (insn))
3633 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3635 remove_insn (tmp);
3636 remove_insn (insn);
3638 break;
3640 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3641 /* There's a nested block. We need to leave the
3642 current block in place since otherwise the debugger
3643 wouldn't be able to show symbols from our block in
3644 the nested block. */
3645 break;
3650 /* Too many begin notes. */
3651 if (block_stack || eh_stack)
3652 abort ();
3656 /* Emit an insn of given code and pattern
3657 at a specified place within the doubly-linked list. */
3659 /* Make an instruction with body PATTERN
3660 and output it before the instruction BEFORE. */
3663 emit_insn_before (pattern, before)
3664 rtx pattern, before;
3666 rtx insn = before;
3668 if (GET_CODE (pattern) == SEQUENCE)
3670 int i;
3672 for (i = 0; i < XVECLEN (pattern, 0); i++)
3674 insn = XVECEXP (pattern, 0, i);
3675 add_insn_before (insn, before);
3678 else
3680 insn = make_insn_raw (pattern);
3681 add_insn_before (insn, before);
3684 return insn;
3687 /* Make an instruction with body PATTERN and code JUMP_INSN
3688 and output it before the instruction BEFORE. */
3691 emit_jump_insn_before (pattern, before)
3692 rtx pattern, before;
3694 rtx insn;
3696 if (GET_CODE (pattern) == SEQUENCE)
3697 insn = emit_insn_before (pattern, before);
3698 else
3700 insn = make_jump_insn_raw (pattern);
3701 add_insn_before (insn, before);
3704 return insn;
3707 /* Make an instruction with body PATTERN and code CALL_INSN
3708 and output it before the instruction BEFORE. */
3711 emit_call_insn_before (pattern, before)
3712 rtx pattern, before;
3714 rtx insn;
3716 if (GET_CODE (pattern) == SEQUENCE)
3717 insn = emit_insn_before (pattern, before);
3718 else
3720 insn = make_call_insn_raw (pattern);
3721 add_insn_before (insn, before);
3722 PUT_CODE (insn, CALL_INSN);
3725 return insn;
3728 /* Make an insn of code BARRIER
3729 and output it before the insn BEFORE. */
3732 emit_barrier_before (before)
3733 rtx before;
3735 rtx insn = rtx_alloc (BARRIER);
3737 INSN_UID (insn) = cur_insn_uid++;
3739 add_insn_before (insn, before);
3740 return insn;
3743 /* Emit the label LABEL before the insn BEFORE. */
3746 emit_label_before (label, before)
3747 rtx label, before;
3749 /* This can be called twice for the same label as a result of the
3750 confusion that follows a syntax error! So make it harmless. */
3751 if (INSN_UID (label) == 0)
3753 INSN_UID (label) = cur_insn_uid++;
3754 add_insn_before (label, before);
3757 return label;
3760 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3763 emit_note_before (subtype, before)
3764 int subtype;
3765 rtx before;
3767 rtx note = rtx_alloc (NOTE);
3768 INSN_UID (note) = cur_insn_uid++;
3769 NOTE_SOURCE_FILE (note) = 0;
3770 NOTE_LINE_NUMBER (note) = subtype;
3772 add_insn_before (note, before);
3773 return note;
3776 /* Make an insn of code INSN with body PATTERN
3777 and output it after the insn AFTER. */
3780 emit_insn_after (pattern, after)
3781 rtx pattern, after;
3783 rtx insn = after;
3785 if (GET_CODE (pattern) == SEQUENCE)
3787 int i;
3789 for (i = 0; i < XVECLEN (pattern, 0); i++)
3791 insn = XVECEXP (pattern, 0, i);
3792 add_insn_after (insn, after);
3793 after = insn;
3796 else
3798 insn = make_insn_raw (pattern);
3799 add_insn_after (insn, after);
3802 return insn;
3805 /* Similar to emit_insn_after, except that line notes are to be inserted so
3806 as to act as if this insn were at FROM. */
3808 void
3809 emit_insn_after_with_line_notes (pattern, after, from)
3810 rtx pattern, after, from;
3812 rtx from_line = find_line_note (from);
3813 rtx after_line = find_line_note (after);
3814 rtx insn = emit_insn_after (pattern, after);
3816 if (from_line)
3817 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3818 NOTE_LINE_NUMBER (from_line),
3819 after);
3821 if (after_line)
3822 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3823 NOTE_LINE_NUMBER (after_line),
3824 insn);
3827 /* Make an insn of code JUMP_INSN with body PATTERN
3828 and output it after the insn AFTER. */
3831 emit_jump_insn_after (pattern, after)
3832 rtx pattern, after;
3834 rtx insn;
3836 if (GET_CODE (pattern) == SEQUENCE)
3837 insn = emit_insn_after (pattern, after);
3838 else
3840 insn = make_jump_insn_raw (pattern);
3841 add_insn_after (insn, after);
3844 return insn;
3847 /* Make an insn of code BARRIER
3848 and output it after the insn AFTER. */
3851 emit_barrier_after (after)
3852 rtx after;
3854 rtx insn = rtx_alloc (BARRIER);
3856 INSN_UID (insn) = cur_insn_uid++;
3858 add_insn_after (insn, after);
3859 return insn;
3862 /* Emit the label LABEL after the insn AFTER. */
3865 emit_label_after (label, after)
3866 rtx label, after;
3868 /* This can be called twice for the same label
3869 as a result of the confusion that follows a syntax error!
3870 So make it harmless. */
3871 if (INSN_UID (label) == 0)
3873 INSN_UID (label) = cur_insn_uid++;
3874 add_insn_after (label, after);
3877 return label;
3880 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3883 emit_note_after (subtype, after)
3884 int subtype;
3885 rtx after;
3887 rtx note = rtx_alloc (NOTE);
3888 INSN_UID (note) = cur_insn_uid++;
3889 NOTE_SOURCE_FILE (note) = 0;
3890 NOTE_LINE_NUMBER (note) = subtype;
3891 add_insn_after (note, after);
3892 return note;
3895 /* Emit a line note for FILE and LINE after the insn AFTER. */
3898 emit_line_note_after (file, line, after)
3899 const char *file;
3900 int line;
3901 rtx after;
3903 rtx note;
3905 if (no_line_numbers && line > 0)
3907 cur_insn_uid++;
3908 return 0;
3911 note = rtx_alloc (NOTE);
3912 INSN_UID (note) = cur_insn_uid++;
3913 NOTE_SOURCE_FILE (note) = file;
3914 NOTE_LINE_NUMBER (note) = line;
3915 add_insn_after (note, after);
3916 return note;
3919 /* Make an insn of code INSN with pattern PATTERN
3920 and add it to the end of the doubly-linked list.
3921 If PATTERN is a SEQUENCE, take the elements of it
3922 and emit an insn for each element.
3924 Returns the last insn emitted. */
3927 emit_insn (pattern)
3928 rtx pattern;
3930 rtx insn = last_insn;
3932 if (GET_CODE (pattern) == SEQUENCE)
3934 int i;
3936 for (i = 0; i < XVECLEN (pattern, 0); i++)
3938 insn = XVECEXP (pattern, 0, i);
3939 add_insn (insn);
3942 else
3944 insn = make_insn_raw (pattern);
3945 add_insn (insn);
3948 return insn;
3951 /* Emit the insns in a chain starting with INSN.
3952 Return the last insn emitted. */
3955 emit_insns (insn)
3956 rtx insn;
3958 rtx last = 0;
3960 while (insn)
3962 rtx next = NEXT_INSN (insn);
3963 add_insn (insn);
3964 last = insn;
3965 insn = next;
3968 return last;
3971 /* Emit the insns in a chain starting with INSN and place them in front of
3972 the insn BEFORE. Return the last insn emitted. */
3975 emit_insns_before (insn, before)
3976 rtx insn;
3977 rtx before;
3979 rtx last = 0;
3981 while (insn)
3983 rtx next = NEXT_INSN (insn);
3984 add_insn_before (insn, before);
3985 last = insn;
3986 insn = next;
3989 return last;
3992 /* Emit the insns in a chain starting with FIRST and place them in back of
3993 the insn AFTER. Return the last insn emitted. */
3996 emit_insns_after (first, after)
3997 rtx first;
3998 rtx after;
4000 rtx last;
4001 rtx after_after;
4002 basic_block bb;
4004 if (!after)
4005 abort ();
4007 if (!first)
4008 return after;
4010 if (basic_block_for_insn
4011 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
4012 && (bb = BLOCK_FOR_INSN (after)))
4014 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4015 set_block_for_insn (last, bb);
4016 set_block_for_insn (last, bb);
4017 if (bb->end == after)
4018 bb->end = last;
4020 else
4021 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4022 continue;
4024 after_after = NEXT_INSN (after);
4026 NEXT_INSN (after) = first;
4027 PREV_INSN (first) = after;
4028 NEXT_INSN (last) = after_after;
4029 if (after_after)
4030 PREV_INSN (after_after) = last;
4032 if (after == last_insn)
4033 last_insn = last;
4034 return last;
4037 /* Make an insn of code JUMP_INSN with pattern PATTERN
4038 and add it to the end of the doubly-linked list. */
4041 emit_jump_insn (pattern)
4042 rtx pattern;
4044 if (GET_CODE (pattern) == SEQUENCE)
4045 return emit_insn (pattern);
4046 else
4048 rtx insn = make_jump_insn_raw (pattern);
4049 add_insn (insn);
4050 return insn;
4054 /* Make an insn of code CALL_INSN with pattern PATTERN
4055 and add it to the end of the doubly-linked list. */
4058 emit_call_insn (pattern)
4059 rtx pattern;
4061 if (GET_CODE (pattern) == SEQUENCE)
4062 return emit_insn (pattern);
4063 else
4065 rtx insn = make_call_insn_raw (pattern);
4066 add_insn (insn);
4067 PUT_CODE (insn, CALL_INSN);
4068 return insn;
4072 /* Add the label LABEL to the end of the doubly-linked list. */
4075 emit_label (label)
4076 rtx label;
4078 /* This can be called twice for the same label
4079 as a result of the confusion that follows a syntax error!
4080 So make it harmless. */
4081 if (INSN_UID (label) == 0)
4083 INSN_UID (label) = cur_insn_uid++;
4084 add_insn (label);
4086 return label;
4089 /* Make an insn of code BARRIER
4090 and add it to the end of the doubly-linked list. */
4093 emit_barrier ()
4095 rtx barrier = rtx_alloc (BARRIER);
4096 INSN_UID (barrier) = cur_insn_uid++;
4097 add_insn (barrier);
4098 return barrier;
4101 /* Make an insn of code NOTE
4102 with data-fields specified by FILE and LINE
4103 and add it to the end of the doubly-linked list,
4104 but only if line-numbers are desired for debugging info. */
4107 emit_line_note (file, line)
4108 const char *file;
4109 int line;
4111 set_file_and_line_for_stmt (file, line);
4113 #if 0
4114 if (no_line_numbers)
4115 return 0;
4116 #endif
4118 return emit_note (file, line);
4121 /* Make an insn of code NOTE
4122 with data-fields specified by FILE and LINE
4123 and add it to the end of the doubly-linked list.
4124 If it is a line-number NOTE, omit it if it matches the previous one. */
4127 emit_note (file, line)
4128 const char *file;
4129 int line;
4131 rtx note;
4133 if (line > 0)
4135 if (file && last_filename && !strcmp (file, last_filename)
4136 && line == last_linenum)
4137 return 0;
4138 last_filename = file;
4139 last_linenum = line;
4142 if (no_line_numbers && line > 0)
4144 cur_insn_uid++;
4145 return 0;
4148 note = rtx_alloc (NOTE);
4149 INSN_UID (note) = cur_insn_uid++;
4150 NOTE_SOURCE_FILE (note) = file;
4151 NOTE_LINE_NUMBER (note) = line;
4152 add_insn (note);
4153 return note;
4156 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4159 emit_line_note_force (file, line)
4160 const char *file;
4161 int line;
4163 last_linenum = -1;
4164 return emit_line_note (file, line);
4167 /* Cause next statement to emit a line note even if the line number
4168 has not changed. This is used at the beginning of a function. */
4170 void
4171 force_next_line_note ()
4173 last_linenum = -1;
4176 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4177 note of this type already exists, remove it first. */
4180 set_unique_reg_note (insn, kind, datum)
4181 rtx insn;
4182 enum reg_note kind;
4183 rtx datum;
4185 rtx note = find_reg_note (insn, kind, NULL_RTX);
4187 switch (kind)
4189 case REG_EQUAL:
4190 case REG_EQUIV:
4191 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4192 has multiple sets (some callers assume single_set
4193 means the insn only has one set, when in fact it
4194 means the insn only has one * useful * set). */
4195 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4197 if (note)
4198 abort ();
4199 return NULL_RTX;
4202 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4203 It serves no useful purpose and breaks eliminate_regs. */
4204 if (GET_CODE (datum) == ASM_OPERANDS)
4205 return NULL_RTX;
4206 break;
4208 default:
4209 break;
4212 if (note)
4214 XEXP (note, 0) = datum;
4215 return note;
4218 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4219 return REG_NOTES (insn);
4222 /* Return an indication of which type of insn should have X as a body.
4223 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4225 enum rtx_code
4226 classify_insn (x)
4227 rtx x;
4229 if (GET_CODE (x) == CODE_LABEL)
4230 return CODE_LABEL;
4231 if (GET_CODE (x) == CALL)
4232 return CALL_INSN;
4233 if (GET_CODE (x) == RETURN)
4234 return JUMP_INSN;
4235 if (GET_CODE (x) == SET)
4237 if (SET_DEST (x) == pc_rtx)
4238 return JUMP_INSN;
4239 else if (GET_CODE (SET_SRC (x)) == CALL)
4240 return CALL_INSN;
4241 else
4242 return INSN;
4244 if (GET_CODE (x) == PARALLEL)
4246 int j;
4247 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4248 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4249 return CALL_INSN;
4250 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4251 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4252 return JUMP_INSN;
4253 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4254 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4255 return CALL_INSN;
4257 return INSN;
4260 /* Emit the rtl pattern X as an appropriate kind of insn.
4261 If X is a label, it is simply added into the insn chain. */
4264 emit (x)
4265 rtx x;
4267 enum rtx_code code = classify_insn (x);
4269 if (code == CODE_LABEL)
4270 return emit_label (x);
4271 else if (code == INSN)
4272 return emit_insn (x);
4273 else if (code == JUMP_INSN)
4275 rtx insn = emit_jump_insn (x);
4276 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4277 return emit_barrier ();
4278 return insn;
4280 else if (code == CALL_INSN)
4281 return emit_call_insn (x);
4282 else
4283 abort ();
4286 /* Begin emitting insns to a sequence which can be packaged in an
4287 RTL_EXPR. If this sequence will contain something that might cause
4288 the compiler to pop arguments to function calls (because those
4289 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4290 details), use do_pending_stack_adjust before calling this function.
4291 That will ensure that the deferred pops are not accidentally
4292 emitted in the middle of this sequence. */
4294 void
4295 start_sequence ()
4297 struct sequence_stack *tem;
4299 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
4301 tem->next = seq_stack;
4302 tem->first = first_insn;
4303 tem->last = last_insn;
4304 tem->sequence_rtl_expr = seq_rtl_expr;
4306 seq_stack = tem;
4308 first_insn = 0;
4309 last_insn = 0;
4312 /* Similarly, but indicate that this sequence will be placed in T, an
4313 RTL_EXPR. See the documentation for start_sequence for more
4314 information about how to use this function. */
4316 void
4317 start_sequence_for_rtl_expr (t)
4318 tree t;
4320 start_sequence ();
4322 seq_rtl_expr = t;
4325 /* Set up the insn chain starting with FIRST as the current sequence,
4326 saving the previously current one. See the documentation for
4327 start_sequence for more information about how to use this function. */
4329 void
4330 push_to_sequence (first)
4331 rtx first;
4333 rtx last;
4335 start_sequence ();
4337 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4339 first_insn = first;
4340 last_insn = last;
4343 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4345 void
4346 push_to_full_sequence (first, last)
4347 rtx first, last;
4349 start_sequence ();
4350 first_insn = first;
4351 last_insn = last;
4352 /* We really should have the end of the insn chain here. */
4353 if (last && NEXT_INSN (last))
4354 abort ();
4357 /* Set up the outer-level insn chain
4358 as the current sequence, saving the previously current one. */
4360 void
4361 push_topmost_sequence ()
4363 struct sequence_stack *stack, *top = NULL;
4365 start_sequence ();
4367 for (stack = seq_stack; stack; stack = stack->next)
4368 top = stack;
4370 first_insn = top->first;
4371 last_insn = top->last;
4372 seq_rtl_expr = top->sequence_rtl_expr;
4375 /* After emitting to the outer-level insn chain, update the outer-level
4376 insn chain, and restore the previous saved state. */
4378 void
4379 pop_topmost_sequence ()
4381 struct sequence_stack *stack, *top = NULL;
4383 for (stack = seq_stack; stack; stack = stack->next)
4384 top = stack;
4386 top->first = first_insn;
4387 top->last = last_insn;
4388 /* ??? Why don't we save seq_rtl_expr here? */
4390 end_sequence ();
4393 /* After emitting to a sequence, restore previous saved state.
4395 To get the contents of the sequence just made, you must call
4396 `gen_sequence' *before* calling here.
4398 If the compiler might have deferred popping arguments while
4399 generating this sequence, and this sequence will not be immediately
4400 inserted into the instruction stream, use do_pending_stack_adjust
4401 before calling gen_sequence. That will ensure that the deferred
4402 pops are inserted into this sequence, and not into some random
4403 location in the instruction stream. See INHIBIT_DEFER_POP for more
4404 information about deferred popping of arguments. */
4406 void
4407 end_sequence ()
4409 struct sequence_stack *tem = seq_stack;
4411 first_insn = tem->first;
4412 last_insn = tem->last;
4413 seq_rtl_expr = tem->sequence_rtl_expr;
4414 seq_stack = tem->next;
4416 free (tem);
4419 /* This works like end_sequence, but records the old sequence in FIRST
4420 and LAST. */
4422 void
4423 end_full_sequence (first, last)
4424 rtx *first, *last;
4426 *first = first_insn;
4427 *last = last_insn;
4428 end_sequence();
4431 /* Return 1 if currently emitting into a sequence. */
4434 in_sequence_p ()
4436 return seq_stack != 0;
4439 /* Generate a SEQUENCE rtx containing the insns already emitted
4440 to the current sequence.
4442 This is how the gen_... function from a DEFINE_EXPAND
4443 constructs the SEQUENCE that it returns. */
4446 gen_sequence ()
4448 rtx result;
4449 rtx tem;
4450 int i;
4451 int len;
4453 /* Count the insns in the chain. */
4454 len = 0;
4455 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4456 len++;
4458 /* If only one insn, return it rather than a SEQUENCE.
4459 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
4460 the case of an empty list.)
4461 We only return the pattern of an insn if its code is INSN and it
4462 has no notes. This ensures that no information gets lost. */
4463 if (len == 1
4464 && ! RTX_FRAME_RELATED_P (first_insn)
4465 && GET_CODE (first_insn) == INSN
4466 /* Don't throw away any reg notes. */
4467 && REG_NOTES (first_insn) == 0)
4468 return PATTERN (first_insn);
4470 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
4472 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4473 XVECEXP (result, 0, i) = tem;
4475 return result;
4478 /* Put the various virtual registers into REGNO_REG_RTX. */
4480 void
4481 init_virtual_regs (es)
4482 struct emit_status *es;
4484 rtx *ptr = es->x_regno_reg_rtx;
4485 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4486 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4487 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4488 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4489 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4492 void
4493 clear_emit_caches ()
4495 int i;
4497 /* Clear the start_sequence/gen_sequence cache. */
4498 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4499 sequence_result[i] = 0;
4500 free_insn = 0;
4503 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4504 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4505 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4506 static int copy_insn_n_scratches;
4508 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4509 copied an ASM_OPERANDS.
4510 In that case, it is the original input-operand vector. */
4511 static rtvec orig_asm_operands_vector;
4513 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4514 copied an ASM_OPERANDS.
4515 In that case, it is the copied input-operand vector. */
4516 static rtvec copy_asm_operands_vector;
4518 /* Likewise for the constraints vector. */
4519 static rtvec orig_asm_constraints_vector;
4520 static rtvec copy_asm_constraints_vector;
4522 /* Recursively create a new copy of an rtx for copy_insn.
4523 This function differs from copy_rtx in that it handles SCRATCHes and
4524 ASM_OPERANDs properly.
4525 Normally, this function is not used directly; use copy_insn as front end.
4526 However, you could first copy an insn pattern with copy_insn and then use
4527 this function afterwards to properly copy any REG_NOTEs containing
4528 SCRATCHes. */
4531 copy_insn_1 (orig)
4532 rtx orig;
4534 rtx copy;
4535 int i, j;
4536 RTX_CODE code;
4537 const char *format_ptr;
4539 code = GET_CODE (orig);
4541 switch (code)
4543 case REG:
4544 case QUEUED:
4545 case CONST_INT:
4546 case CONST_DOUBLE:
4547 case CONST_VECTOR:
4548 case SYMBOL_REF:
4549 case CODE_LABEL:
4550 case PC:
4551 case CC0:
4552 case ADDRESSOF:
4553 return orig;
4555 case SCRATCH:
4556 for (i = 0; i < copy_insn_n_scratches; i++)
4557 if (copy_insn_scratch_in[i] == orig)
4558 return copy_insn_scratch_out[i];
4559 break;
4561 case CONST:
4562 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4563 a LABEL_REF, it isn't sharable. */
4564 if (GET_CODE (XEXP (orig, 0)) == PLUS
4565 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4566 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4567 return orig;
4568 break;
4570 /* A MEM with a constant address is not sharable. The problem is that
4571 the constant address may need to be reloaded. If the mem is shared,
4572 then reloading one copy of this mem will cause all copies to appear
4573 to have been reloaded. */
4575 default:
4576 break;
4579 copy = rtx_alloc (code);
4581 /* Copy the various flags, and other information. We assume that
4582 all fields need copying, and then clear the fields that should
4583 not be copied. That is the sensible default behavior, and forces
4584 us to explicitly document why we are *not* copying a flag. */
4585 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4587 /* We do not copy the USED flag, which is used as a mark bit during
4588 walks over the RTL. */
4589 copy->used = 0;
4591 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4592 if (GET_RTX_CLASS (code) == 'i')
4594 copy->jump = 0;
4595 copy->call = 0;
4596 copy->frame_related = 0;
4599 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4601 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4603 copy->fld[i] = orig->fld[i];
4604 switch (*format_ptr++)
4606 case 'e':
4607 if (XEXP (orig, i) != NULL)
4608 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4609 break;
4611 case 'E':
4612 case 'V':
4613 if (XVEC (orig, i) == orig_asm_constraints_vector)
4614 XVEC (copy, i) = copy_asm_constraints_vector;
4615 else if (XVEC (orig, i) == orig_asm_operands_vector)
4616 XVEC (copy, i) = copy_asm_operands_vector;
4617 else if (XVEC (orig, i) != NULL)
4619 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4620 for (j = 0; j < XVECLEN (copy, i); j++)
4621 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4623 break;
4625 case 't':
4626 case 'w':
4627 case 'i':
4628 case 's':
4629 case 'S':
4630 case 'u':
4631 case '0':
4632 /* These are left unchanged. */
4633 break;
4635 default:
4636 abort ();
4640 if (code == SCRATCH)
4642 i = copy_insn_n_scratches++;
4643 if (i >= MAX_RECOG_OPERANDS)
4644 abort ();
4645 copy_insn_scratch_in[i] = orig;
4646 copy_insn_scratch_out[i] = copy;
4648 else if (code == ASM_OPERANDS)
4650 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4651 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4652 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4653 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4656 return copy;
4659 /* Create a new copy of an rtx.
4660 This function differs from copy_rtx in that it handles SCRATCHes and
4661 ASM_OPERANDs properly.
4662 INSN doesn't really have to be a full INSN; it could be just the
4663 pattern. */
4665 copy_insn (insn)
4666 rtx insn;
4668 copy_insn_n_scratches = 0;
4669 orig_asm_operands_vector = 0;
4670 orig_asm_constraints_vector = 0;
4671 copy_asm_operands_vector = 0;
4672 copy_asm_constraints_vector = 0;
4673 return copy_insn_1 (insn);
4676 /* Initialize data structures and variables in this file
4677 before generating rtl for each function. */
4679 void
4680 init_emit ()
4682 struct function *f = cfun;
4684 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4685 first_insn = NULL;
4686 last_insn = NULL;
4687 seq_rtl_expr = NULL;
4688 cur_insn_uid = 1;
4689 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4690 last_linenum = 0;
4691 last_filename = 0;
4692 first_label_num = label_num;
4693 last_label_num = 0;
4694 seq_stack = NULL;
4696 clear_emit_caches ();
4698 /* Init the tables that describe all the pseudo regs. */
4700 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4702 f->emit->regno_pointer_align
4703 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4704 sizeof (unsigned char));
4706 regno_reg_rtx
4707 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4709 f->emit->regno_decl
4710 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
4712 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4713 init_virtual_regs (f->emit);
4715 /* Indicate that the virtual registers and stack locations are
4716 all pointers. */
4717 REG_POINTER (stack_pointer_rtx) = 1;
4718 REG_POINTER (frame_pointer_rtx) = 1;
4719 REG_POINTER (hard_frame_pointer_rtx) = 1;
4720 REG_POINTER (arg_pointer_rtx) = 1;
4722 REG_POINTER (virtual_incoming_args_rtx) = 1;
4723 REG_POINTER (virtual_stack_vars_rtx) = 1;
4724 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4725 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4726 REG_POINTER (virtual_cfa_rtx) = 1;
4728 #ifdef STACK_BOUNDARY
4729 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4730 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4731 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4732 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4734 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4735 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4736 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4737 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4738 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4739 #endif
4741 #ifdef INIT_EXPANDERS
4742 INIT_EXPANDERS;
4743 #endif
4746 /* Mark SS for GC. */
4748 static void
4749 mark_sequence_stack (ss)
4750 struct sequence_stack *ss;
4752 while (ss)
4754 ggc_mark_rtx (ss->first);
4755 ggc_mark_tree (ss->sequence_rtl_expr);
4756 ss = ss->next;
4760 /* Mark ES for GC. */
4762 void
4763 mark_emit_status (es)
4764 struct emit_status *es;
4766 rtx *r;
4767 tree *t;
4768 int i;
4770 if (es == 0)
4771 return;
4773 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4774 t = es->regno_decl;
4775 i > 0; --i, ++r, ++t)
4777 ggc_mark_rtx (*r);
4778 ggc_mark_tree (*t);
4781 mark_sequence_stack (es->sequence_stack);
4782 ggc_mark_tree (es->sequence_rtl_expr);
4783 ggc_mark_rtx (es->x_first_insn);
4786 /* Generate the constant 0. The first argument is MODE_VECTOR_INT for
4787 integers or MODE_VECTOR_FLOAT for floats. */
4789 static rtx
4790 gen_const_vector_0 (type, mode)
4791 enum mode_class type;
4792 enum machine_mode mode;
4794 rtx tem;
4795 rtvec v;
4796 int units, i;
4797 enum machine_mode inner;
4799 units = GET_MODE_NUNITS (mode);
4800 inner = GET_MODE_INNER (mode);
4802 v = rtvec_alloc (units);
4804 /* We need to call this function after we to set CONST0_RTX first. */
4805 if (!CONST0_RTX (inner))
4806 abort ();
4808 for (i = 0; i < units; ++i)
4809 RTVEC_ELT (v, i) = CONST0_RTX (inner);
4811 tem = gen_rtx_CONST_VECTOR (mode, v);
4812 return tem;
4815 /* Create some permanent unique rtl objects shared between all functions.
4816 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4818 void
4819 init_emit_once (line_numbers)
4820 int line_numbers;
4822 int i;
4823 enum machine_mode mode;
4824 enum machine_mode double_mode;
4826 /* Initialize the CONST_INT and memory attribute hash tables. */
4827 const_int_htab = htab_create (37, const_int_htab_hash,
4828 const_int_htab_eq, NULL);
4829 ggc_add_deletable_htab (const_int_htab, 0, 0);
4831 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4832 mem_attrs_htab_eq, NULL);
4833 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
4835 no_line_numbers = ! line_numbers;
4837 /* Compute the word and byte modes. */
4839 byte_mode = VOIDmode;
4840 word_mode = VOIDmode;
4841 double_mode = VOIDmode;
4843 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4844 mode = GET_MODE_WIDER_MODE (mode))
4846 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4847 && byte_mode == VOIDmode)
4848 byte_mode = mode;
4850 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4851 && word_mode == VOIDmode)
4852 word_mode = mode;
4855 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4856 mode = GET_MODE_WIDER_MODE (mode))
4858 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4859 && double_mode == VOIDmode)
4860 double_mode = mode;
4863 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4865 /* Assign register numbers to the globally defined register rtx.
4866 This must be done at runtime because the register number field
4867 is in a union and some compilers can't initialize unions. */
4869 pc_rtx = gen_rtx (PC, VOIDmode);
4870 cc0_rtx = gen_rtx (CC0, VOIDmode);
4871 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4872 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4873 if (hard_frame_pointer_rtx == 0)
4874 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4875 HARD_FRAME_POINTER_REGNUM);
4876 if (arg_pointer_rtx == 0)
4877 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4878 virtual_incoming_args_rtx =
4879 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4880 virtual_stack_vars_rtx =
4881 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4882 virtual_stack_dynamic_rtx =
4883 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4884 virtual_outgoing_args_rtx =
4885 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4886 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4888 /* These rtx must be roots if GC is enabled. */
4889 ggc_add_rtx_root (global_rtl, GR_MAX);
4891 #ifdef INIT_EXPANDERS
4892 /* This is to initialize {init|mark|free}_machine_status before the first
4893 call to push_function_context_to. This is needed by the Chill front
4894 end which calls push_function_context_to before the first call to
4895 init_function_start. */
4896 INIT_EXPANDERS;
4897 #endif
4899 /* Create the unique rtx's for certain rtx codes and operand values. */
4901 /* Don't use gen_rtx here since gen_rtx in this case
4902 tries to use these variables. */
4903 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4904 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4905 gen_rtx_raw_CONST_INT (VOIDmode, i);
4906 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4908 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4909 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4910 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4911 else
4912 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4914 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4915 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4916 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4917 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4919 for (i = 0; i <= 2; i++)
4921 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4922 mode = GET_MODE_WIDER_MODE (mode))
4924 rtx tem = rtx_alloc (CONST_DOUBLE);
4925 union real_extract u;
4927 /* Zero any holes in a structure. */
4928 memset ((char *) &u, 0, sizeof u);
4929 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4931 /* Avoid trailing garbage in the rtx. */
4932 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4933 CONST_DOUBLE_LOW (tem) = 0;
4934 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4935 CONST_DOUBLE_HIGH (tem) = 0;
4937 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4938 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4939 PUT_MODE (tem, mode);
4941 const_tiny_rtx[i][(int) mode] = tem;
4944 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4946 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4947 mode = GET_MODE_WIDER_MODE (mode))
4948 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4950 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4951 mode != VOIDmode;
4952 mode = GET_MODE_WIDER_MODE (mode))
4953 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4956 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
4957 mode != VOIDmode;
4958 mode = GET_MODE_WIDER_MODE (mode))
4959 const_tiny_rtx[0][(int) mode]
4960 = gen_const_vector_0 (MODE_VECTOR_INT, mode);
4962 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
4963 mode != VOIDmode;
4964 mode = GET_MODE_WIDER_MODE (mode))
4965 const_tiny_rtx[0][(int) mode]
4966 = gen_const_vector_0 (MODE_VECTOR_FLOAT, mode);
4968 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4969 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4970 const_tiny_rtx[0][i] = const0_rtx;
4972 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4973 if (STORE_FLAG_VALUE == 1)
4974 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4976 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4977 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4978 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4979 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4980 ggc_add_rtx_root (&const_true_rtx, 1);
4982 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4983 return_address_pointer_rtx
4984 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4985 #endif
4987 #ifdef STRUCT_VALUE
4988 struct_value_rtx = STRUCT_VALUE;
4989 #else
4990 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4991 #endif
4993 #ifdef STRUCT_VALUE_INCOMING
4994 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4995 #else
4996 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4997 struct_value_incoming_rtx
4998 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4999 #else
5000 struct_value_incoming_rtx = struct_value_rtx;
5001 #endif
5002 #endif
5004 #ifdef STATIC_CHAIN_REGNUM
5005 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5007 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5008 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5009 static_chain_incoming_rtx
5010 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5011 else
5012 #endif
5013 static_chain_incoming_rtx = static_chain_rtx;
5014 #endif
5016 #ifdef STATIC_CHAIN
5017 static_chain_rtx = STATIC_CHAIN;
5019 #ifdef STATIC_CHAIN_INCOMING
5020 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5021 #else
5022 static_chain_incoming_rtx = static_chain_rtx;
5023 #endif
5024 #endif
5026 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5027 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5029 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
5030 ggc_add_rtx_root (&struct_value_rtx, 1);
5031 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
5032 ggc_add_rtx_root (&static_chain_rtx, 1);
5033 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
5034 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
5037 /* Query and clear/ restore no_line_numbers. This is used by the
5038 switch / case handling in stmt.c to give proper line numbers in
5039 warnings about unreachable code. */
5042 force_line_numbers ()
5044 int old = no_line_numbers;
5046 no_line_numbers = 0;
5047 if (old)
5048 force_next_line_note ();
5049 return old;
5052 void
5053 restore_line_number_status (old_value)
5054 int old_value;
5056 no_line_numbers = old_value;