2002-02-19 Philip Blundell <philb@gnu.org>
[official-gcc.git] / gcc / cse.c
bloba607b0c46f34987a73eaf2e9298c3201eb812274
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
41 /* The basic idea of common subexpression elimination is to go
42 through the code, keeping a record of expressions that would
43 have the same value at the current scan point, and replacing
44 expressions encountered with the cheapest equivalent expression.
46 It is too complicated to keep track of the different possibilities
47 when control paths merge in this code; so, at each label, we forget all
48 that is known and start fresh. This can be described as processing each
49 extended basic block separately. We have a separate pass to perform
50 global CSE.
52 Note CSE can turn a conditional or computed jump into a nop or
53 an unconditional jump. When this occurs we arrange to run the jump
54 optimizer after CSE to delete the unreachable code.
56 We use two data structures to record the equivalent expressions:
57 a hash table for most expressions, and a vector of "quantity
58 numbers" to record equivalent (pseudo) registers.
60 The use of the special data structure for registers is desirable
61 because it is faster. It is possible because registers references
62 contain a fairly small number, the register number, taken from
63 a contiguously allocated series, and two register references are
64 identical if they have the same number. General expressions
65 do not have any such thing, so the only way to retrieve the
66 information recorded on an expression other than a register
67 is to keep it in a hash table.
69 Registers and "quantity numbers":
71 At the start of each basic block, all of the (hardware and pseudo)
72 registers used in the function are given distinct quantity
73 numbers to indicate their contents. During scan, when the code
74 copies one register into another, we copy the quantity number.
75 When a register is loaded in any other way, we allocate a new
76 quantity number to describe the value generated by this operation.
77 `reg_qty' records what quantity a register is currently thought
78 of as containing.
80 All real quantity numbers are greater than or equal to `max_reg'.
81 If register N has not been assigned a quantity, reg_qty[N] will equal N.
83 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
84 entries should be referenced with an index below `max_reg'.
86 We also maintain a bidirectional chain of registers for each
87 quantity number. The `qty_table` members `first_reg' and `last_reg',
88 and `reg_eqv_table' members `next' and `prev' hold these chains.
90 The first register in a chain is the one whose lifespan is least local.
91 Among equals, it is the one that was seen first.
92 We replace any equivalent register with that one.
94 If two registers have the same quantity number, it must be true that
95 REG expressions with qty_table `mode' must be in the hash table for both
96 registers and must be in the same class.
98 The converse is not true. Since hard registers may be referenced in
99 any mode, two REG expressions might be equivalent in the hash table
100 but not have the same quantity number if the quantity number of one
101 of the registers is not the same mode as those expressions.
103 Constants and quantity numbers
105 When a quantity has a known constant value, that value is stored
106 in the appropriate qty_table `const_rtx'. This is in addition to
107 putting the constant in the hash table as is usual for non-regs.
109 Whether a reg or a constant is preferred is determined by the configuration
110 macro CONST_COSTS and will often depend on the constant value. In any
111 event, expressions containing constants can be simplified, by fold_rtx.
113 When a quantity has a known nearly constant value (such as an address
114 of a stack slot), that value is stored in the appropriate qty_table
115 `const_rtx'.
117 Integer constants don't have a machine mode. However, cse
118 determines the intended machine mode from the destination
119 of the instruction that moves the constant. The machine mode
120 is recorded in the hash table along with the actual RTL
121 constant expression so that different modes are kept separate.
123 Other expressions:
125 To record known equivalences among expressions in general
126 we use a hash table called `table'. It has a fixed number of buckets
127 that contain chains of `struct table_elt' elements for expressions.
128 These chains connect the elements whose expressions have the same
129 hash codes.
131 Other chains through the same elements connect the elements which
132 currently have equivalent values.
134 Register references in an expression are canonicalized before hashing
135 the expression. This is done using `reg_qty' and qty_table `first_reg'.
136 The hash code of a register reference is computed using the quantity
137 number, not the register number.
139 When the value of an expression changes, it is necessary to remove from the
140 hash table not just that expression but all expressions whose values
141 could be different as a result.
143 1. If the value changing is in memory, except in special cases
144 ANYTHING referring to memory could be changed. That is because
145 nobody knows where a pointer does not point.
146 The function `invalidate_memory' removes what is necessary.
148 The special cases are when the address is constant or is
149 a constant plus a fixed register such as the frame pointer
150 or a static chain pointer. When such addresses are stored in,
151 we can tell exactly which other such addresses must be invalidated
152 due to overlap. `invalidate' does this.
153 All expressions that refer to non-constant
154 memory addresses are also invalidated. `invalidate_memory' does this.
156 2. If the value changing is a register, all expressions
157 containing references to that register, and only those,
158 must be removed.
160 Because searching the entire hash table for expressions that contain
161 a register is very slow, we try to figure out when it isn't necessary.
162 Precisely, this is necessary only when expressions have been
163 entered in the hash table using this register, and then the value has
164 changed, and then another expression wants to be added to refer to
165 the register's new value. This sequence of circumstances is rare
166 within any one basic block.
168 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
169 reg_tick[i] is incremented whenever a value is stored in register i.
170 reg_in_table[i] holds -1 if no references to register i have been
171 entered in the table; otherwise, it contains the value reg_tick[i] had
172 when the references were entered. If we want to enter a reference
173 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
174 Until we want to enter a new entry, the mere fact that the two vectors
175 don't match makes the entries be ignored if anyone tries to match them.
177 Registers themselves are entered in the hash table as well as in
178 the equivalent-register chains. However, the vectors `reg_tick'
179 and `reg_in_table' do not apply to expressions which are simple
180 register references. These expressions are removed from the table
181 immediately when they become invalid, and this can be done even if
182 we do not immediately search for all the expressions that refer to
183 the register.
185 A CLOBBER rtx in an instruction invalidates its operand for further
186 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
187 invalidates everything that resides in memory.
189 Related expressions:
191 Constant expressions that differ only by an additive integer
192 are called related. When a constant expression is put in
193 the table, the related expression with no constant term
194 is also entered. These are made to point at each other
195 so that it is possible to find out if there exists any
196 register equivalent to an expression related to a given expression. */
198 /* One plus largest register number used in this function. */
200 static int max_reg;
202 /* One plus largest instruction UID used in this function at time of
203 cse_main call. */
205 static int max_insn_uid;
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
210 static int max_qty;
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
215 static int next_qty;
217 /* Per-qty information tracking.
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
222 `mode' contains the machine mode of this quantity.
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
242 struct qty_table_elem
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 enum machine_mode mode;
250 enum rtx_code comparison_code;
253 /* The table of all qtys, indexed by qty number. */
254 static struct qty_table_elem *qty_table;
256 #ifdef HAVE_cc0
257 /* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
261 Instead, we store below the value last assigned to CC0. If it should
262 happen to be a constant, it is stored in preference to the actual
263 assigned value. In case it is a constant, we store the mode in which
264 the constant should be interpreted. */
266 static rtx prev_insn_cc0;
267 static enum machine_mode prev_insn_cc0_mode;
268 #endif
270 /* Previous actual insn. 0 if at first insn of basic block. */
272 static rtx prev_insn;
274 /* Insn being scanned. */
276 static rtx this_insn;
278 /* Index by register number, gives the number of the next (or
279 previous) register in the chain of registers sharing the same
280 value.
282 Or -1 if this register is at the end of the chain.
284 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
286 /* Per-register equivalence chain. */
287 struct reg_eqv_elem
289 int next, prev;
292 /* The table of all register equivalence chains. */
293 static struct reg_eqv_elem *reg_eqv_table;
295 struct cse_reg_info
297 /* Next in hash chain. */
298 struct cse_reg_info *hash_next;
300 /* The next cse_reg_info structure in the free or used list. */
301 struct cse_reg_info *next;
303 /* Search key */
304 unsigned int regno;
306 /* The quantity number of the register's current contents. */
307 int reg_qty;
309 /* The number of times the register has been altered in the current
310 basic block. */
311 int reg_tick;
313 /* The REG_TICK value at which rtx's containing this register are
314 valid in the hash table. If this does not equal the current
315 reg_tick value, such expressions existing in the hash table are
316 invalid. */
317 int reg_in_table;
320 /* A free list of cse_reg_info entries. */
321 static struct cse_reg_info *cse_reg_info_free_list;
323 /* A used list of cse_reg_info entries. */
324 static struct cse_reg_info *cse_reg_info_used_list;
325 static struct cse_reg_info *cse_reg_info_used_list_end;
327 /* A mapping from registers to cse_reg_info data structures. */
328 #define REGHASH_SHIFT 7
329 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
330 #define REGHASH_MASK (REGHASH_SIZE - 1)
331 static struct cse_reg_info *reg_hash[REGHASH_SIZE];
333 #define REGHASH_FN(REGNO) \
334 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
336 /* The last lookup we did into the cse_reg_info_tree. This allows us
337 to cache repeated lookups. */
338 static unsigned int cached_regno;
339 static struct cse_reg_info *cached_cse_reg_info;
341 /* A HARD_REG_SET containing all the hard registers for which there is
342 currently a REG expression in the hash table. Note the difference
343 from the above variables, which indicate if the REG is mentioned in some
344 expression in the table. */
346 static HARD_REG_SET hard_regs_in_table;
348 /* CUID of insn that starts the basic block currently being cse-processed. */
350 static int cse_basic_block_start;
352 /* CUID of insn that ends the basic block currently being cse-processed. */
354 static int cse_basic_block_end;
356 /* Vector mapping INSN_UIDs to cuids.
357 The cuids are like uids but increase monotonically always.
358 We use them to see whether a reg is used outside a given basic block. */
360 static int *uid_cuid;
362 /* Highest UID in UID_CUID. */
363 static int max_uid;
365 /* Get the cuid of an insn. */
367 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
369 /* Nonzero if this pass has made changes, and therefore it's
370 worthwhile to run the garbage collector. */
372 static int cse_altered;
374 /* Nonzero if cse has altered conditional jump insns
375 in such a way that jump optimization should be redone. */
377 static int cse_jumps_altered;
379 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
380 REG_LABEL, we have to rerun jump after CSE to put in the note. */
381 static int recorded_label_ref;
383 /* canon_hash stores 1 in do_not_record
384 if it notices a reference to CC0, PC, or some other volatile
385 subexpression. */
387 static int do_not_record;
389 #ifdef LOAD_EXTEND_OP
391 /* Scratch rtl used when looking for load-extended copy of a MEM. */
392 static rtx memory_extend_rtx;
393 #endif
395 /* canon_hash stores 1 in hash_arg_in_memory
396 if it notices a reference to memory within the expression being hashed. */
398 static int hash_arg_in_memory;
400 /* The hash table contains buckets which are chains of `struct table_elt's,
401 each recording one expression's information.
402 That expression is in the `exp' field.
404 The canon_exp field contains a canonical (from the point of view of
405 alias analysis) version of the `exp' field.
407 Those elements with the same hash code are chained in both directions
408 through the `next_same_hash' and `prev_same_hash' fields.
410 Each set of expressions with equivalent values
411 are on a two-way chain through the `next_same_value'
412 and `prev_same_value' fields, and all point with
413 the `first_same_value' field at the first element in
414 that chain. The chain is in order of increasing cost.
415 Each element's cost value is in its `cost' field.
417 The `in_memory' field is nonzero for elements that
418 involve any reference to memory. These elements are removed
419 whenever a write is done to an unidentified location in memory.
420 To be safe, we assume that a memory address is unidentified unless
421 the address is either a symbol constant or a constant plus
422 the frame pointer or argument pointer.
424 The `related_value' field is used to connect related expressions
425 (that differ by adding an integer).
426 The related expressions are chained in a circular fashion.
427 `related_value' is zero for expressions for which this
428 chain is not useful.
430 The `cost' field stores the cost of this element's expression.
431 The `regcost' field stores the value returned by approx_reg_cost for
432 this element's expression.
434 The `is_const' flag is set if the element is a constant (including
435 a fixed address).
437 The `flag' field is used as a temporary during some search routines.
439 The `mode' field is usually the same as GET_MODE (`exp'), but
440 if `exp' is a CONST_INT and has no machine mode then the `mode'
441 field is the mode it was being used as. Each constant is
442 recorded separately for each mode it is used with. */
444 struct table_elt
446 rtx exp;
447 rtx canon_exp;
448 struct table_elt *next_same_hash;
449 struct table_elt *prev_same_hash;
450 struct table_elt *next_same_value;
451 struct table_elt *prev_same_value;
452 struct table_elt *first_same_value;
453 struct table_elt *related_value;
454 int cost;
455 int regcost;
456 enum machine_mode mode;
457 char in_memory;
458 char is_const;
459 char flag;
462 /* We don't want a lot of buckets, because we rarely have very many
463 things stored in the hash table, and a lot of buckets slows
464 down a lot of loops that happen frequently. */
465 #define HASH_SHIFT 5
466 #define HASH_SIZE (1 << HASH_SHIFT)
467 #define HASH_MASK (HASH_SIZE - 1)
469 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
470 register (hard registers may require `do_not_record' to be set). */
472 #define HASH(X, M) \
473 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
474 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
475 : canon_hash (X, M)) & HASH_MASK)
477 /* Determine whether register number N is considered a fixed register for the
478 purpose of approximating register costs.
479 It is desirable to replace other regs with fixed regs, to reduce need for
480 non-fixed hard regs.
481 A reg wins if it is either the frame pointer or designated as fixed. */
482 #define FIXED_REGNO_P(N) \
483 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
484 || fixed_regs[N] || global_regs[N])
486 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
487 hard registers and pointers into the frame are the cheapest with a cost
488 of 0. Next come pseudos with a cost of one and other hard registers with
489 a cost of 2. Aside from these special cases, call `rtx_cost'. */
491 #define CHEAP_REGNO(N) \
492 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
493 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
494 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
495 || ((N) < FIRST_PSEUDO_REGISTER \
496 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
498 #define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
499 #define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
501 /* Get the info associated with register N. */
503 #define GET_CSE_REG_INFO(N) \
504 (((N) == cached_regno && cached_cse_reg_info) \
505 ? cached_cse_reg_info : get_cse_reg_info ((N)))
507 /* Get the number of times this register has been updated in this
508 basic block. */
510 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
512 /* Get the point at which REG was recorded in the table. */
514 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
516 /* Get the quantity number for REG. */
518 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
520 /* Determine if the quantity number for register X represents a valid index
521 into the qty_table. */
523 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
525 static struct table_elt *table[HASH_SIZE];
527 /* Chain of `struct table_elt's made so far for this function
528 but currently removed from the table. */
530 static struct table_elt *free_element_chain;
532 /* Number of `struct table_elt' structures made so far for this function. */
534 static int n_elements_made;
536 /* Maximum value `n_elements_made' has had so far in this compilation
537 for functions previously processed. */
539 static int max_elements_made;
541 /* Surviving equivalence class when two equivalence classes are merged
542 by recording the effects of a jump in the last insn. Zero if the
543 last insn was not a conditional jump. */
545 static struct table_elt *last_jump_equiv_class;
547 /* Set to the cost of a constant pool reference if one was found for a
548 symbolic constant. If this was found, it means we should try to
549 convert constants into constant pool entries if they don't fit in
550 the insn. */
552 static int constant_pool_entries_cost;
554 /* Define maximum length of a branch path. */
556 #define PATHLENGTH 10
558 /* This data describes a block that will be processed by cse_basic_block. */
560 struct cse_basic_block_data
562 /* Lowest CUID value of insns in block. */
563 int low_cuid;
564 /* Highest CUID value of insns in block. */
565 int high_cuid;
566 /* Total number of SETs in block. */
567 int nsets;
568 /* Last insn in the block. */
569 rtx last;
570 /* Size of current branch path, if any. */
571 int path_size;
572 /* Current branch path, indicating which branches will be taken. */
573 struct branch_path
575 /* The branch insn. */
576 rtx branch;
577 /* Whether it should be taken or not. AROUND is the same as taken
578 except that it is used when the destination label is not preceded
579 by a BARRIER. */
580 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
581 } path[PATHLENGTH];
584 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
585 virtual regs here because the simplify_*_operation routines are called
586 by integrate.c, which is called before virtual register instantiation.
588 ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
589 a header file so that their definitions can be shared with the
590 simplification routines in simplify-rtx.c. Until then, do not
591 change these macros without also changing the copy in simplify-rtx.c. */
593 #define FIXED_BASE_PLUS_P(X) \
594 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
595 || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
596 || (X) == virtual_stack_vars_rtx \
597 || (X) == virtual_incoming_args_rtx \
598 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
599 && (XEXP (X, 0) == frame_pointer_rtx \
600 || XEXP (X, 0) == hard_frame_pointer_rtx \
601 || ((X) == arg_pointer_rtx \
602 && fixed_regs[ARG_POINTER_REGNUM]) \
603 || XEXP (X, 0) == virtual_stack_vars_rtx \
604 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
605 || GET_CODE (X) == ADDRESSOF)
607 /* Similar, but also allows reference to the stack pointer.
609 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
610 arg_pointer_rtx by itself is nonzero, because on at least one machine,
611 the i960, the arg pointer is zero when it is unused. */
613 #define NONZERO_BASE_PLUS_P(X) \
614 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
615 || (X) == virtual_stack_vars_rtx \
616 || (X) == virtual_incoming_args_rtx \
617 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
618 && (XEXP (X, 0) == frame_pointer_rtx \
619 || XEXP (X, 0) == hard_frame_pointer_rtx \
620 || ((X) == arg_pointer_rtx \
621 && fixed_regs[ARG_POINTER_REGNUM]) \
622 || XEXP (X, 0) == virtual_stack_vars_rtx \
623 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
624 || (X) == stack_pointer_rtx \
625 || (X) == virtual_stack_dynamic_rtx \
626 || (X) == virtual_outgoing_args_rtx \
627 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
628 && (XEXP (X, 0) == stack_pointer_rtx \
629 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
630 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
631 || GET_CODE (X) == ADDRESSOF)
633 static int notreg_cost PARAMS ((rtx, enum rtx_code));
634 static int approx_reg_cost_1 PARAMS ((rtx *, void *));
635 static int approx_reg_cost PARAMS ((rtx));
636 static int preferrable PARAMS ((int, int, int, int));
637 static void new_basic_block PARAMS ((void));
638 static void make_new_qty PARAMS ((unsigned int, enum machine_mode));
639 static void make_regs_eqv PARAMS ((unsigned int, unsigned int));
640 static void delete_reg_equiv PARAMS ((unsigned int));
641 static int mention_regs PARAMS ((rtx));
642 static int insert_regs PARAMS ((rtx, struct table_elt *, int));
643 static void remove_from_table PARAMS ((struct table_elt *, unsigned));
644 static struct table_elt *lookup PARAMS ((rtx, unsigned, enum machine_mode)),
645 *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
646 static rtx lookup_as_function PARAMS ((rtx, enum rtx_code));
647 static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
648 enum machine_mode));
649 static void merge_equiv_classes PARAMS ((struct table_elt *,
650 struct table_elt *));
651 static void invalidate PARAMS ((rtx, enum machine_mode));
652 static int cse_rtx_varies_p PARAMS ((rtx, int));
653 static void remove_invalid_refs PARAMS ((unsigned int));
654 static void remove_invalid_subreg_refs PARAMS ((unsigned int, unsigned int,
655 enum machine_mode));
656 static void rehash_using_reg PARAMS ((rtx));
657 static void invalidate_memory PARAMS ((void));
658 static void invalidate_for_call PARAMS ((void));
659 static rtx use_related_value PARAMS ((rtx, struct table_elt *));
660 static unsigned canon_hash PARAMS ((rtx, enum machine_mode));
661 static unsigned canon_hash_string PARAMS ((const char *));
662 static unsigned safe_hash PARAMS ((rtx, enum machine_mode));
663 static int exp_equiv_p PARAMS ((rtx, rtx, int, int));
664 static rtx canon_reg PARAMS ((rtx, rtx));
665 static void find_best_addr PARAMS ((rtx, rtx *, enum machine_mode));
666 static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
667 enum machine_mode *,
668 enum machine_mode *));
669 static rtx fold_rtx PARAMS ((rtx, rtx));
670 static rtx equiv_constant PARAMS ((rtx));
671 static void record_jump_equiv PARAMS ((rtx, int));
672 static void record_jump_cond PARAMS ((enum rtx_code, enum machine_mode,
673 rtx, rtx, int));
674 static void cse_insn PARAMS ((rtx, rtx));
675 static int addr_affects_sp_p PARAMS ((rtx));
676 static void invalidate_from_clobbers PARAMS ((rtx));
677 static rtx cse_process_notes PARAMS ((rtx, rtx));
678 static void cse_around_loop PARAMS ((rtx));
679 static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
680 static void invalidate_skipped_block PARAMS ((rtx));
681 static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
682 static void cse_set_around_loop PARAMS ((rtx, rtx, rtx));
683 static rtx cse_basic_block PARAMS ((rtx, rtx, struct branch_path *, int));
684 static void count_reg_usage PARAMS ((rtx, int *, rtx, int));
685 static int check_for_label_ref PARAMS ((rtx *, void *));
686 extern void dump_class PARAMS ((struct table_elt*));
687 static struct cse_reg_info * get_cse_reg_info PARAMS ((unsigned int));
688 static int check_dependence PARAMS ((rtx *, void *));
690 static void flush_hash_table PARAMS ((void));
691 static bool insn_live_p PARAMS ((rtx, int *));
692 static bool set_live_p PARAMS ((rtx, rtx, int *));
693 static bool dead_libcall_p PARAMS ((rtx));
695 /* Dump the expressions in the equivalence class indicated by CLASSP.
696 This function is used only for debugging. */
697 void
698 dump_class (classp)
699 struct table_elt *classp;
701 struct table_elt *elt;
703 fprintf (stderr, "Equivalence chain for ");
704 print_rtl (stderr, classp->exp);
705 fprintf (stderr, ": \n");
707 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
709 print_rtl (stderr, elt->exp);
710 fprintf (stderr, "\n");
714 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
716 static int
717 approx_reg_cost_1 (xp, data)
718 rtx *xp;
719 void *data;
721 rtx x = *xp;
722 regset set = (regset) data;
724 if (x && GET_CODE (x) == REG)
725 SET_REGNO_REG_SET (set, REGNO (x));
726 return 0;
729 /* Return an estimate of the cost of the registers used in an rtx.
730 This is mostly the number of different REG expressions in the rtx;
731 however for some exceptions like fixed registers we use a cost of
732 0. If any other hard register reference occurs, return MAX_COST. */
734 static int
735 approx_reg_cost (x)
736 rtx x;
738 regset_head set;
739 int i;
740 int cost = 0;
741 int hardregs = 0;
743 INIT_REG_SET (&set);
744 for_each_rtx (&x, approx_reg_cost_1, (void *)&set);
746 EXECUTE_IF_SET_IN_REG_SET
747 (&set, 0, i,
749 if (! CHEAP_REGNO (i))
751 if (i < FIRST_PSEUDO_REGISTER)
752 hardregs++;
754 cost += i < FIRST_PSEUDO_REGISTER ? 2 : 1;
758 CLEAR_REG_SET (&set);
759 return hardregs && SMALL_REGISTER_CLASSES ? MAX_COST : cost;
762 /* Return a negative value if an rtx A, whose costs are given by COST_A
763 and REGCOST_A, is more desirable than an rtx B.
764 Return a positive value if A is less desirable, or 0 if the two are
765 equally good. */
766 static int
767 preferrable (cost_a, regcost_a, cost_b, regcost_b)
768 int cost_a, regcost_a, cost_b, regcost_b;
770 /* First, get rid of a cases involving expressions that are entirely
771 unwanted. */
772 if (cost_a != cost_b)
774 if (cost_a == MAX_COST)
775 return 1;
776 if (cost_b == MAX_COST)
777 return -1;
780 /* Avoid extending lifetimes of hardregs. */
781 if (regcost_a != regcost_b)
783 if (regcost_a == MAX_COST)
784 return 1;
785 if (regcost_b == MAX_COST)
786 return -1;
789 /* Normal operation costs take precedence. */
790 if (cost_a != cost_b)
791 return cost_a - cost_b;
792 /* Only if these are identical consider effects on register pressure. */
793 if (regcost_a != regcost_b)
794 return regcost_a - regcost_b;
795 return 0;
798 /* Internal function, to compute cost when X is not a register; called
799 from COST macro to keep it simple. */
801 static int
802 notreg_cost (x, outer)
803 rtx x;
804 enum rtx_code outer;
806 return ((GET_CODE (x) == SUBREG
807 && GET_CODE (SUBREG_REG (x)) == REG
808 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
809 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
810 && (GET_MODE_SIZE (GET_MODE (x))
811 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
812 && subreg_lowpart_p (x)
813 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
814 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
816 : rtx_cost (x, outer) * 2);
819 /* Return an estimate of the cost of computing rtx X.
820 One use is in cse, to decide which expression to keep in the hash table.
821 Another is in rtl generation, to pick the cheapest way to multiply.
822 Other uses like the latter are expected in the future. */
825 rtx_cost (x, outer_code)
826 rtx x;
827 enum rtx_code outer_code ATTRIBUTE_UNUSED;
829 int i, j;
830 enum rtx_code code;
831 const char *fmt;
832 int total;
834 if (x == 0)
835 return 0;
837 /* Compute the default costs of certain things.
838 Note that RTX_COSTS can override the defaults. */
840 code = GET_CODE (x);
841 switch (code)
843 case MULT:
844 /* Count multiplication by 2**n as a shift,
845 because if we are considering it, we would output it as a shift. */
846 if (GET_CODE (XEXP (x, 1)) == CONST_INT
847 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
848 total = 2;
849 else
850 total = COSTS_N_INSNS (5);
851 break;
852 case DIV:
853 case UDIV:
854 case MOD:
855 case UMOD:
856 total = COSTS_N_INSNS (7);
857 break;
858 case USE:
859 /* Used in loop.c and combine.c as a marker. */
860 total = 0;
861 break;
862 default:
863 total = COSTS_N_INSNS (1);
866 switch (code)
868 case REG:
869 return 0;
871 case SUBREG:
872 /* If we can't tie these modes, make this expensive. The larger
873 the mode, the more expensive it is. */
874 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
875 return COSTS_N_INSNS (2
876 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
877 break;
879 #ifdef RTX_COSTS
880 RTX_COSTS (x, code, outer_code);
881 #endif
882 #ifdef CONST_COSTS
883 CONST_COSTS (x, code, outer_code);
884 #endif
886 default:
887 #ifdef DEFAULT_RTX_COSTS
888 DEFAULT_RTX_COSTS (x, code, outer_code);
889 #endif
890 break;
893 /* Sum the costs of the sub-rtx's, plus cost of this operation,
894 which is already in total. */
896 fmt = GET_RTX_FORMAT (code);
897 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
898 if (fmt[i] == 'e')
899 total += rtx_cost (XEXP (x, i), code);
900 else if (fmt[i] == 'E')
901 for (j = 0; j < XVECLEN (x, i); j++)
902 total += rtx_cost (XVECEXP (x, i, j), code);
904 return total;
907 /* Return cost of address expression X.
908 Expect that X is properly formed address reference. */
911 address_cost (x, mode)
912 rtx x;
913 enum machine_mode mode;
915 /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
916 during CSE, such nodes are present. Using an ADDRESSOF node which
917 refers to the address of a REG is a good thing because we can then
918 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
920 if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
921 return -1;
923 /* We may be asked for cost of various unusual addresses, such as operands
924 of push instruction. It is not worthwhile to complicate writing
925 of ADDRESS_COST macro by such cases. */
927 if (!memory_address_p (mode, x))
928 return 1000;
929 #ifdef ADDRESS_COST
930 return ADDRESS_COST (x);
931 #else
932 return rtx_cost (x, MEM);
933 #endif
937 static struct cse_reg_info *
938 get_cse_reg_info (regno)
939 unsigned int regno;
941 struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
942 struct cse_reg_info *p;
944 for (p = *hash_head; p != NULL; p = p->hash_next)
945 if (p->regno == regno)
946 break;
948 if (p == NULL)
950 /* Get a new cse_reg_info structure. */
951 if (cse_reg_info_free_list)
953 p = cse_reg_info_free_list;
954 cse_reg_info_free_list = p->next;
956 else
957 p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));
959 /* Insert into hash table. */
960 p->hash_next = *hash_head;
961 *hash_head = p;
963 /* Initialize it. */
964 p->reg_tick = 1;
965 p->reg_in_table = -1;
966 p->reg_qty = regno;
967 p->regno = regno;
968 p->next = cse_reg_info_used_list;
969 cse_reg_info_used_list = p;
970 if (!cse_reg_info_used_list_end)
971 cse_reg_info_used_list_end = p;
974 /* Cache this lookup; we tend to be looking up information about the
975 same register several times in a row. */
976 cached_regno = regno;
977 cached_cse_reg_info = p;
979 return p;
982 /* Clear the hash table and initialize each register with its own quantity,
983 for a new basic block. */
985 static void
986 new_basic_block ()
988 int i;
990 next_qty = max_reg;
992 /* Clear out hash table state for this pass. */
994 memset ((char *) reg_hash, 0, sizeof reg_hash);
996 if (cse_reg_info_used_list)
998 cse_reg_info_used_list_end->next = cse_reg_info_free_list;
999 cse_reg_info_free_list = cse_reg_info_used_list;
1000 cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
1002 cached_cse_reg_info = 0;
1004 CLEAR_HARD_REG_SET (hard_regs_in_table);
1006 /* The per-quantity values used to be initialized here, but it is
1007 much faster to initialize each as it is made in `make_new_qty'. */
1009 for (i = 0; i < HASH_SIZE; i++)
1011 struct table_elt *first;
1013 first = table[i];
1014 if (first != NULL)
1016 struct table_elt *last = first;
1018 table[i] = NULL;
1020 while (last->next_same_hash != NULL)
1021 last = last->next_same_hash;
1023 /* Now relink this hash entire chain into
1024 the free element list. */
1026 last->next_same_hash = free_element_chain;
1027 free_element_chain = first;
1031 prev_insn = 0;
1033 #ifdef HAVE_cc0
1034 prev_insn_cc0 = 0;
1035 #endif
1038 /* Say that register REG contains a quantity in mode MODE not in any
1039 register before and initialize that quantity. */
1041 static void
1042 make_new_qty (reg, mode)
1043 unsigned int reg;
1044 enum machine_mode mode;
1046 int q;
1047 struct qty_table_elem *ent;
1048 struct reg_eqv_elem *eqv;
1050 if (next_qty >= max_qty)
1051 abort ();
1053 q = REG_QTY (reg) = next_qty++;
1054 ent = &qty_table[q];
1055 ent->first_reg = reg;
1056 ent->last_reg = reg;
1057 ent->mode = mode;
1058 ent->const_rtx = ent->const_insn = NULL_RTX;
1059 ent->comparison_code = UNKNOWN;
1061 eqv = &reg_eqv_table[reg];
1062 eqv->next = eqv->prev = -1;
1065 /* Make reg NEW equivalent to reg OLD.
1066 OLD is not changing; NEW is. */
1068 static void
1069 make_regs_eqv (new, old)
1070 unsigned int new, old;
1072 unsigned int lastr, firstr;
1073 int q = REG_QTY (old);
1074 struct qty_table_elem *ent;
1076 ent = &qty_table[q];
1078 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1079 if (! REGNO_QTY_VALID_P (old))
1080 abort ();
1082 REG_QTY (new) = q;
1083 firstr = ent->first_reg;
1084 lastr = ent->last_reg;
1086 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1087 hard regs. Among pseudos, if NEW will live longer than any other reg
1088 of the same qty, and that is beyond the current basic block,
1089 make it the new canonical replacement for this qty. */
1090 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1091 /* Certain fixed registers might be of the class NO_REGS. This means
1092 that not only can they not be allocated by the compiler, but
1093 they cannot be used in substitutions or canonicalizations
1094 either. */
1095 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1096 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1097 || (new >= FIRST_PSEUDO_REGISTER
1098 && (firstr < FIRST_PSEUDO_REGISTER
1099 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1100 || (uid_cuid[REGNO_FIRST_UID (new)]
1101 < cse_basic_block_start))
1102 && (uid_cuid[REGNO_LAST_UID (new)]
1103 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1105 reg_eqv_table[firstr].prev = new;
1106 reg_eqv_table[new].next = firstr;
1107 reg_eqv_table[new].prev = -1;
1108 ent->first_reg = new;
1110 else
1112 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1113 Otherwise, insert before any non-fixed hard regs that are at the
1114 end. Registers of class NO_REGS cannot be used as an
1115 equivalent for anything. */
1116 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1117 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1118 && new >= FIRST_PSEUDO_REGISTER)
1119 lastr = reg_eqv_table[lastr].prev;
1120 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1121 if (reg_eqv_table[lastr].next >= 0)
1122 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1123 else
1124 qty_table[q].last_reg = new;
1125 reg_eqv_table[lastr].next = new;
1126 reg_eqv_table[new].prev = lastr;
1130 /* Remove REG from its equivalence class. */
1132 static void
1133 delete_reg_equiv (reg)
1134 unsigned int reg;
1136 struct qty_table_elem *ent;
1137 int q = REG_QTY (reg);
1138 int p, n;
1140 /* If invalid, do nothing. */
1141 if (q == (int) reg)
1142 return;
1144 ent = &qty_table[q];
1146 p = reg_eqv_table[reg].prev;
1147 n = reg_eqv_table[reg].next;
1149 if (n != -1)
1150 reg_eqv_table[n].prev = p;
1151 else
1152 ent->last_reg = p;
1153 if (p != -1)
1154 reg_eqv_table[p].next = n;
1155 else
1156 ent->first_reg = n;
1158 REG_QTY (reg) = reg;
1161 /* Remove any invalid expressions from the hash table
1162 that refer to any of the registers contained in expression X.
1164 Make sure that newly inserted references to those registers
1165 as subexpressions will be considered valid.
1167 mention_regs is not called when a register itself
1168 is being stored in the table.
1170 Return 1 if we have done something that may have changed the hash code
1171 of X. */
1173 static int
1174 mention_regs (x)
1175 rtx x;
1177 enum rtx_code code;
1178 int i, j;
1179 const char *fmt;
1180 int changed = 0;
1182 if (x == 0)
1183 return 0;
1185 code = GET_CODE (x);
1186 if (code == REG)
1188 unsigned int regno = REGNO (x);
1189 unsigned int endregno
1190 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1191 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1192 unsigned int i;
1194 for (i = regno; i < endregno; i++)
1196 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1197 remove_invalid_refs (i);
1199 REG_IN_TABLE (i) = REG_TICK (i);
1202 return 0;
1205 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1206 pseudo if they don't use overlapping words. We handle only pseudos
1207 here for simplicity. */
1208 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1209 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1211 unsigned int i = REGNO (SUBREG_REG (x));
1213 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1215 /* If reg_tick has been incremented more than once since
1216 reg_in_table was last set, that means that the entire
1217 register has been set before, so discard anything memorized
1218 for the entire register, including all SUBREG expressions. */
1219 if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1220 remove_invalid_refs (i);
1221 else
1222 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1225 REG_IN_TABLE (i) = REG_TICK (i);
1226 return 0;
1229 /* If X is a comparison or a COMPARE and either operand is a register
1230 that does not have a quantity, give it one. This is so that a later
1231 call to record_jump_equiv won't cause X to be assigned a different
1232 hash code and not found in the table after that call.
1234 It is not necessary to do this here, since rehash_using_reg can
1235 fix up the table later, but doing this here eliminates the need to
1236 call that expensive function in the most common case where the only
1237 use of the register is in the comparison. */
1239 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
1241 if (GET_CODE (XEXP (x, 0)) == REG
1242 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1243 if (insert_regs (XEXP (x, 0), NULL, 0))
1245 rehash_using_reg (XEXP (x, 0));
1246 changed = 1;
1249 if (GET_CODE (XEXP (x, 1)) == REG
1250 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1251 if (insert_regs (XEXP (x, 1), NULL, 0))
1253 rehash_using_reg (XEXP (x, 1));
1254 changed = 1;
1258 fmt = GET_RTX_FORMAT (code);
1259 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1260 if (fmt[i] == 'e')
1261 changed |= mention_regs (XEXP (x, i));
1262 else if (fmt[i] == 'E')
1263 for (j = 0; j < XVECLEN (x, i); j++)
1264 changed |= mention_regs (XVECEXP (x, i, j));
1266 return changed;
1269 /* Update the register quantities for inserting X into the hash table
1270 with a value equivalent to CLASSP.
1271 (If the class does not contain a REG, it is irrelevant.)
1272 If MODIFIED is nonzero, X is a destination; it is being modified.
1273 Note that delete_reg_equiv should be called on a register
1274 before insert_regs is done on that register with MODIFIED != 0.
1276 Nonzero value means that elements of reg_qty have changed
1277 so X's hash code may be different. */
1279 static int
1280 insert_regs (x, classp, modified)
1281 rtx x;
1282 struct table_elt *classp;
1283 int modified;
1285 if (GET_CODE (x) == REG)
1287 unsigned int regno = REGNO (x);
1288 int qty_valid;
1290 /* If REGNO is in the equivalence table already but is of the
1291 wrong mode for that equivalence, don't do anything here. */
1293 qty_valid = REGNO_QTY_VALID_P (regno);
1294 if (qty_valid)
1296 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1298 if (ent->mode != GET_MODE (x))
1299 return 0;
1302 if (modified || ! qty_valid)
1304 if (classp)
1305 for (classp = classp->first_same_value;
1306 classp != 0;
1307 classp = classp->next_same_value)
1308 if (GET_CODE (classp->exp) == REG
1309 && GET_MODE (classp->exp) == GET_MODE (x))
1311 make_regs_eqv (regno, REGNO (classp->exp));
1312 return 1;
1315 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1316 than REG_IN_TABLE to find out if there was only a single preceding
1317 invalidation - for the SUBREG - or another one, which would be
1318 for the full register. However, if we find here that REG_TICK
1319 indicates that the register is invalid, it means that it has
1320 been invalidated in a separate operation. The SUBREG might be used
1321 now (then this is a recursive call), or we might use the full REG
1322 now and a SUBREG of it later. So bump up REG_TICK so that
1323 mention_regs will do the right thing. */
1324 if (! modified
1325 && REG_IN_TABLE (regno) >= 0
1326 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1327 REG_TICK (regno)++;
1328 make_new_qty (regno, GET_MODE (x));
1329 return 1;
1332 return 0;
1335 /* If X is a SUBREG, we will likely be inserting the inner register in the
1336 table. If that register doesn't have an assigned quantity number at
1337 this point but does later, the insertion that we will be doing now will
1338 not be accessible because its hash code will have changed. So assign
1339 a quantity number now. */
1341 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1342 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1344 insert_regs (SUBREG_REG (x), NULL, 0);
1345 mention_regs (x);
1346 return 1;
1348 else
1349 return mention_regs (x);
1352 /* Look in or update the hash table. */
1354 /* Remove table element ELT from use in the table.
1355 HASH is its hash code, made using the HASH macro.
1356 It's an argument because often that is known in advance
1357 and we save much time not recomputing it. */
1359 static void
1360 remove_from_table (elt, hash)
1361 struct table_elt *elt;
1362 unsigned hash;
1364 if (elt == 0)
1365 return;
1367 /* Mark this element as removed. See cse_insn. */
1368 elt->first_same_value = 0;
1370 /* Remove the table element from its equivalence class. */
1373 struct table_elt *prev = elt->prev_same_value;
1374 struct table_elt *next = elt->next_same_value;
1376 if (next)
1377 next->prev_same_value = prev;
1379 if (prev)
1380 prev->next_same_value = next;
1381 else
1383 struct table_elt *newfirst = next;
1384 while (next)
1386 next->first_same_value = newfirst;
1387 next = next->next_same_value;
1392 /* Remove the table element from its hash bucket. */
1395 struct table_elt *prev = elt->prev_same_hash;
1396 struct table_elt *next = elt->next_same_hash;
1398 if (next)
1399 next->prev_same_hash = prev;
1401 if (prev)
1402 prev->next_same_hash = next;
1403 else if (table[hash] == elt)
1404 table[hash] = next;
1405 else
1407 /* This entry is not in the proper hash bucket. This can happen
1408 when two classes were merged by `merge_equiv_classes'. Search
1409 for the hash bucket that it heads. This happens only very
1410 rarely, so the cost is acceptable. */
1411 for (hash = 0; hash < HASH_SIZE; hash++)
1412 if (table[hash] == elt)
1413 table[hash] = next;
1417 /* Remove the table element from its related-value circular chain. */
1419 if (elt->related_value != 0 && elt->related_value != elt)
1421 struct table_elt *p = elt->related_value;
1423 while (p->related_value != elt)
1424 p = p->related_value;
1425 p->related_value = elt->related_value;
1426 if (p->related_value == p)
1427 p->related_value = 0;
1430 /* Now add it to the free element chain. */
1431 elt->next_same_hash = free_element_chain;
1432 free_element_chain = elt;
1435 /* Look up X in the hash table and return its table element,
1436 or 0 if X is not in the table.
1438 MODE is the machine-mode of X, or if X is an integer constant
1439 with VOIDmode then MODE is the mode with which X will be used.
1441 Here we are satisfied to find an expression whose tree structure
1442 looks like X. */
1444 static struct table_elt *
1445 lookup (x, hash, mode)
1446 rtx x;
1447 unsigned hash;
1448 enum machine_mode mode;
1450 struct table_elt *p;
1452 for (p = table[hash]; p; p = p->next_same_hash)
1453 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1454 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1455 return p;
1457 return 0;
1460 /* Like `lookup' but don't care whether the table element uses invalid regs.
1461 Also ignore discrepancies in the machine mode of a register. */
1463 static struct table_elt *
1464 lookup_for_remove (x, hash, mode)
1465 rtx x;
1466 unsigned hash;
1467 enum machine_mode mode;
1469 struct table_elt *p;
1471 if (GET_CODE (x) == REG)
1473 unsigned int regno = REGNO (x);
1475 /* Don't check the machine mode when comparing registers;
1476 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1477 for (p = table[hash]; p; p = p->next_same_hash)
1478 if (GET_CODE (p->exp) == REG
1479 && REGNO (p->exp) == regno)
1480 return p;
1482 else
1484 for (p = table[hash]; p; p = p->next_same_hash)
1485 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1486 return p;
1489 return 0;
1492 /* Look for an expression equivalent to X and with code CODE.
1493 If one is found, return that expression. */
1495 static rtx
1496 lookup_as_function (x, code)
1497 rtx x;
1498 enum rtx_code code;
1500 struct table_elt *p
1501 = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));
1503 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1504 long as we are narrowing. So if we looked in vain for a mode narrower
1505 than word_mode before, look for word_mode now. */
1506 if (p == 0 && code == CONST_INT
1507 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1509 x = copy_rtx (x);
1510 PUT_MODE (x, word_mode);
1511 p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1514 if (p == 0)
1515 return 0;
1517 for (p = p->first_same_value; p; p = p->next_same_value)
1518 if (GET_CODE (p->exp) == code
1519 /* Make sure this is a valid entry in the table. */
1520 && exp_equiv_p (p->exp, p->exp, 1, 0))
1521 return p->exp;
1523 return 0;
1526 /* Insert X in the hash table, assuming HASH is its hash code
1527 and CLASSP is an element of the class it should go in
1528 (or 0 if a new class should be made).
1529 It is inserted at the proper position to keep the class in
1530 the order cheapest first.
1532 MODE is the machine-mode of X, or if X is an integer constant
1533 with VOIDmode then MODE is the mode with which X will be used.
1535 For elements of equal cheapness, the most recent one
1536 goes in front, except that the first element in the list
1537 remains first unless a cheaper element is added. The order of
1538 pseudo-registers does not matter, as canon_reg will be called to
1539 find the cheapest when a register is retrieved from the table.
1541 The in_memory field in the hash table element is set to 0.
1542 The caller must set it nonzero if appropriate.
1544 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1545 and if insert_regs returns a nonzero value
1546 you must then recompute its hash code before calling here.
1548 If necessary, update table showing constant values of quantities. */
1550 #define CHEAPER(X, Y) \
1551 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1553 static struct table_elt *
1554 insert (x, classp, hash, mode)
1555 rtx x;
1556 struct table_elt *classp;
1557 unsigned hash;
1558 enum machine_mode mode;
1560 struct table_elt *elt;
1562 /* If X is a register and we haven't made a quantity for it,
1563 something is wrong. */
1564 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1565 abort ();
1567 /* If X is a hard register, show it is being put in the table. */
1568 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1570 unsigned int regno = REGNO (x);
1571 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1572 unsigned int i;
1574 for (i = regno; i < endregno; i++)
1575 SET_HARD_REG_BIT (hard_regs_in_table, i);
1578 /* Put an element for X into the right hash bucket. */
1580 elt = free_element_chain;
1581 if (elt)
1582 free_element_chain = elt->next_same_hash;
1583 else
1585 n_elements_made++;
1586 elt = (struct table_elt *) xmalloc (sizeof (struct table_elt));
1589 elt->exp = x;
1590 elt->canon_exp = NULL_RTX;
1591 elt->cost = COST (x);
1592 elt->regcost = approx_reg_cost (x);
1593 elt->next_same_value = 0;
1594 elt->prev_same_value = 0;
1595 elt->next_same_hash = table[hash];
1596 elt->prev_same_hash = 0;
1597 elt->related_value = 0;
1598 elt->in_memory = 0;
1599 elt->mode = mode;
1600 elt->is_const = (CONSTANT_P (x)
1601 /* GNU C++ takes advantage of this for `this'
1602 (and other const values). */
1603 || (RTX_UNCHANGING_P (x)
1604 && GET_CODE (x) == REG
1605 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1606 || FIXED_BASE_PLUS_P (x));
1608 if (table[hash])
1609 table[hash]->prev_same_hash = elt;
1610 table[hash] = elt;
1612 /* Put it into the proper value-class. */
1613 if (classp)
1615 classp = classp->first_same_value;
1616 if (CHEAPER (elt, classp))
1617 /* Insert at the head of the class */
1619 struct table_elt *p;
1620 elt->next_same_value = classp;
1621 classp->prev_same_value = elt;
1622 elt->first_same_value = elt;
1624 for (p = classp; p; p = p->next_same_value)
1625 p->first_same_value = elt;
1627 else
1629 /* Insert not at head of the class. */
1630 /* Put it after the last element cheaper than X. */
1631 struct table_elt *p, *next;
1633 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1634 p = next);
1636 /* Put it after P and before NEXT. */
1637 elt->next_same_value = next;
1638 if (next)
1639 next->prev_same_value = elt;
1641 elt->prev_same_value = p;
1642 p->next_same_value = elt;
1643 elt->first_same_value = classp;
1646 else
1647 elt->first_same_value = elt;
1649 /* If this is a constant being set equivalent to a register or a register
1650 being set equivalent to a constant, note the constant equivalence.
1652 If this is a constant, it cannot be equivalent to a different constant,
1653 and a constant is the only thing that can be cheaper than a register. So
1654 we know the register is the head of the class (before the constant was
1655 inserted).
1657 If this is a register that is not already known equivalent to a
1658 constant, we must check the entire class.
1660 If this is a register that is already known equivalent to an insn,
1661 update the qtys `const_insn' to show that `this_insn' is the latest
1662 insn making that quantity equivalent to the constant. */
1664 if (elt->is_const && classp && GET_CODE (classp->exp) == REG
1665 && GET_CODE (x) != REG)
1667 int exp_q = REG_QTY (REGNO (classp->exp));
1668 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1670 exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
1671 exp_ent->const_insn = this_insn;
1674 else if (GET_CODE (x) == REG
1675 && classp
1676 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1677 && ! elt->is_const)
1679 struct table_elt *p;
1681 for (p = classp; p != 0; p = p->next_same_value)
1683 if (p->is_const && GET_CODE (p->exp) != REG)
1685 int x_q = REG_QTY (REGNO (x));
1686 struct qty_table_elem *x_ent = &qty_table[x_q];
1688 x_ent->const_rtx
1689 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1690 x_ent->const_insn = this_insn;
1691 break;
1696 else if (GET_CODE (x) == REG
1697 && qty_table[REG_QTY (REGNO (x))].const_rtx
1698 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1699 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1701 /* If this is a constant with symbolic value,
1702 and it has a term with an explicit integer value,
1703 link it up with related expressions. */
1704 if (GET_CODE (x) == CONST)
1706 rtx subexp = get_related_value (x);
1707 unsigned subhash;
1708 struct table_elt *subelt, *subelt_prev;
1710 if (subexp != 0)
1712 /* Get the integer-free subexpression in the hash table. */
1713 subhash = safe_hash (subexp, mode) & HASH_MASK;
1714 subelt = lookup (subexp, subhash, mode);
1715 if (subelt == 0)
1716 subelt = insert (subexp, NULL, subhash, mode);
1717 /* Initialize SUBELT's circular chain if it has none. */
1718 if (subelt->related_value == 0)
1719 subelt->related_value = subelt;
1720 /* Find the element in the circular chain that precedes SUBELT. */
1721 subelt_prev = subelt;
1722 while (subelt_prev->related_value != subelt)
1723 subelt_prev = subelt_prev->related_value;
1724 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1725 This way the element that follows SUBELT is the oldest one. */
1726 elt->related_value = subelt_prev->related_value;
1727 subelt_prev->related_value = elt;
1731 return elt;
1734 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1735 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1736 the two classes equivalent.
1738 CLASS1 will be the surviving class; CLASS2 should not be used after this
1739 call.
1741 Any invalid entries in CLASS2 will not be copied. */
1743 static void
1744 merge_equiv_classes (class1, class2)
1745 struct table_elt *class1, *class2;
1747 struct table_elt *elt, *next, *new;
1749 /* Ensure we start with the head of the classes. */
1750 class1 = class1->first_same_value;
1751 class2 = class2->first_same_value;
1753 /* If they were already equal, forget it. */
1754 if (class1 == class2)
1755 return;
1757 for (elt = class2; elt; elt = next)
1759 unsigned int hash;
1760 rtx exp = elt->exp;
1761 enum machine_mode mode = elt->mode;
1763 next = elt->next_same_value;
1765 /* Remove old entry, make a new one in CLASS1's class.
1766 Don't do this for invalid entries as we cannot find their
1767 hash code (it also isn't necessary). */
1768 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1770 hash_arg_in_memory = 0;
1771 hash = HASH (exp, mode);
1773 if (GET_CODE (exp) == REG)
1774 delete_reg_equiv (REGNO (exp));
1776 remove_from_table (elt, hash);
1778 if (insert_regs (exp, class1, 0))
1780 rehash_using_reg (exp);
1781 hash = HASH (exp, mode);
1783 new = insert (exp, class1, hash, mode);
1784 new->in_memory = hash_arg_in_memory;
1789 /* Flush the entire hash table. */
1791 static void
1792 flush_hash_table ()
1794 int i;
1795 struct table_elt *p;
1797 for (i = 0; i < HASH_SIZE; i++)
1798 for (p = table[i]; p; p = table[i])
1800 /* Note that invalidate can remove elements
1801 after P in the current hash chain. */
1802 if (GET_CODE (p->exp) == REG)
1803 invalidate (p->exp, p->mode);
1804 else
1805 remove_from_table (p, i);
1809 /* Function called for each rtx to check whether true dependence exist. */
1810 struct check_dependence_data
1812 enum machine_mode mode;
1813 rtx exp;
1816 static int
1817 check_dependence (x, data)
1818 rtx *x;
1819 void *data;
1821 struct check_dependence_data *d = (struct check_dependence_data *) data;
1822 if (*x && GET_CODE (*x) == MEM)
1823 return true_dependence (d->exp, d->mode, *x, cse_rtx_varies_p);
1824 else
1825 return 0;
1828 /* Remove from the hash table, or mark as invalid, all expressions whose
1829 values could be altered by storing in X. X is a register, a subreg, or
1830 a memory reference with nonvarying address (because, when a memory
1831 reference with a varying address is stored in, all memory references are
1832 removed by invalidate_memory so specific invalidation is superfluous).
1833 FULL_MODE, if not VOIDmode, indicates that this much should be
1834 invalidated instead of just the amount indicated by the mode of X. This
1835 is only used for bitfield stores into memory.
1837 A nonvarying address may be just a register or just a symbol reference,
1838 or it may be either of those plus a numeric offset. */
1840 static void
1841 invalidate (x, full_mode)
1842 rtx x;
1843 enum machine_mode full_mode;
1845 int i;
1846 struct table_elt *p;
1848 switch (GET_CODE (x))
1850 case REG:
1852 /* If X is a register, dependencies on its contents are recorded
1853 through the qty number mechanism. Just change the qty number of
1854 the register, mark it as invalid for expressions that refer to it,
1855 and remove it itself. */
1856 unsigned int regno = REGNO (x);
1857 unsigned int hash = HASH (x, GET_MODE (x));
1859 /* Remove REGNO from any quantity list it might be on and indicate
1860 that its value might have changed. If it is a pseudo, remove its
1861 entry from the hash table.
1863 For a hard register, we do the first two actions above for any
1864 additional hard registers corresponding to X. Then, if any of these
1865 registers are in the table, we must remove any REG entries that
1866 overlap these registers. */
1868 delete_reg_equiv (regno);
1869 REG_TICK (regno)++;
1871 if (regno >= FIRST_PSEUDO_REGISTER)
1873 /* Because a register can be referenced in more than one mode,
1874 we might have to remove more than one table entry. */
1875 struct table_elt *elt;
1877 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1878 remove_from_table (elt, hash);
1880 else
1882 HOST_WIDE_INT in_table
1883 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1884 unsigned int endregno
1885 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1886 unsigned int tregno, tendregno, rn;
1887 struct table_elt *p, *next;
1889 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1891 for (rn = regno + 1; rn < endregno; rn++)
1893 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1894 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1895 delete_reg_equiv (rn);
1896 REG_TICK (rn)++;
1899 if (in_table)
1900 for (hash = 0; hash < HASH_SIZE; hash++)
1901 for (p = table[hash]; p; p = next)
1903 next = p->next_same_hash;
1905 if (GET_CODE (p->exp) != REG
1906 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1907 continue;
1909 tregno = REGNO (p->exp);
1910 tendregno
1911 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1912 if (tendregno > regno && tregno < endregno)
1913 remove_from_table (p, hash);
1917 return;
1919 case SUBREG:
1920 invalidate (SUBREG_REG (x), VOIDmode);
1921 return;
1923 case PARALLEL:
1924 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1925 invalidate (XVECEXP (x, 0, i), VOIDmode);
1926 return;
1928 case EXPR_LIST:
1929 /* This is part of a disjoint return value; extract the location in
1930 question ignoring the offset. */
1931 invalidate (XEXP (x, 0), VOIDmode);
1932 return;
1934 case MEM:
1935 /* Calculate the canonical version of X here so that
1936 true_dependence doesn't generate new RTL for X on each call. */
1937 x = canon_rtx (x);
1939 /* Remove all hash table elements that refer to overlapping pieces of
1940 memory. */
1941 if (full_mode == VOIDmode)
1942 full_mode = GET_MODE (x);
1944 for (i = 0; i < HASH_SIZE; i++)
1946 struct table_elt *next;
1948 for (p = table[i]; p; p = next)
1950 next = p->next_same_hash;
1951 if (p->in_memory)
1953 struct check_dependence_data d;
1955 /* Just canonicalize the expression once;
1956 otherwise each time we call invalidate
1957 true_dependence will canonicalize the
1958 expression again. */
1959 if (!p->canon_exp)
1960 p->canon_exp = canon_rtx (p->exp);
1961 d.exp = x;
1962 d.mode = full_mode;
1963 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1964 remove_from_table (p, i);
1968 return;
1970 default:
1971 abort ();
1975 /* Remove all expressions that refer to register REGNO,
1976 since they are already invalid, and we are about to
1977 mark that register valid again and don't want the old
1978 expressions to reappear as valid. */
1980 static void
1981 remove_invalid_refs (regno)
1982 unsigned int regno;
1984 unsigned int i;
1985 struct table_elt *p, *next;
1987 for (i = 0; i < HASH_SIZE; i++)
1988 for (p = table[i]; p; p = next)
1990 next = p->next_same_hash;
1991 if (GET_CODE (p->exp) != REG
1992 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx*) 0))
1993 remove_from_table (p, i);
1997 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1998 and mode MODE. */
1999 static void
2000 remove_invalid_subreg_refs (regno, offset, mode)
2001 unsigned int regno;
2002 unsigned int offset;
2003 enum machine_mode mode;
2005 unsigned int i;
2006 struct table_elt *p, *next;
2007 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2009 for (i = 0; i < HASH_SIZE; i++)
2010 for (p = table[i]; p; p = next)
2012 rtx exp = p->exp;
2013 next = p->next_same_hash;
2015 if (GET_CODE (exp) != REG
2016 && (GET_CODE (exp) != SUBREG
2017 || GET_CODE (SUBREG_REG (exp)) != REG
2018 || REGNO (SUBREG_REG (exp)) != regno
2019 || (((SUBREG_BYTE (exp)
2020 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2021 && SUBREG_BYTE (exp) <= end))
2022 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx*) 0))
2023 remove_from_table (p, i);
2027 /* Recompute the hash codes of any valid entries in the hash table that
2028 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2030 This is called when we make a jump equivalence. */
2032 static void
2033 rehash_using_reg (x)
2034 rtx x;
2036 unsigned int i;
2037 struct table_elt *p, *next;
2038 unsigned hash;
2040 if (GET_CODE (x) == SUBREG)
2041 x = SUBREG_REG (x);
2043 /* If X is not a register or if the register is known not to be in any
2044 valid entries in the table, we have no work to do. */
2046 if (GET_CODE (x) != REG
2047 || REG_IN_TABLE (REGNO (x)) < 0
2048 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2049 return;
2051 /* Scan all hash chains looking for valid entries that mention X.
2052 If we find one and it is in the wrong hash chain, move it. We can skip
2053 objects that are registers, since they are handled specially. */
2055 for (i = 0; i < HASH_SIZE; i++)
2056 for (p = table[i]; p; p = next)
2058 next = p->next_same_hash;
2059 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
2060 && exp_equiv_p (p->exp, p->exp, 1, 0)
2061 && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
2063 if (p->next_same_hash)
2064 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2066 if (p->prev_same_hash)
2067 p->prev_same_hash->next_same_hash = p->next_same_hash;
2068 else
2069 table[i] = p->next_same_hash;
2071 p->next_same_hash = table[hash];
2072 p->prev_same_hash = 0;
2073 if (table[hash])
2074 table[hash]->prev_same_hash = p;
2075 table[hash] = p;
2080 /* Remove from the hash table any expression that is a call-clobbered
2081 register. Also update their TICK values. */
2083 static void
2084 invalidate_for_call ()
2086 unsigned int regno, endregno;
2087 unsigned int i;
2088 unsigned hash;
2089 struct table_elt *p, *next;
2090 int in_table = 0;
2092 /* Go through all the hard registers. For each that is clobbered in
2093 a CALL_INSN, remove the register from quantity chains and update
2094 reg_tick if defined. Also see if any of these registers is currently
2095 in the table. */
2097 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2098 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2100 delete_reg_equiv (regno);
2101 if (REG_TICK (regno) >= 0)
2102 REG_TICK (regno)++;
2104 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2107 /* In the case where we have no call-clobbered hard registers in the
2108 table, we are done. Otherwise, scan the table and remove any
2109 entry that overlaps a call-clobbered register. */
2111 if (in_table)
2112 for (hash = 0; hash < HASH_SIZE; hash++)
2113 for (p = table[hash]; p; p = next)
2115 next = p->next_same_hash;
2117 if (GET_CODE (p->exp) != REG
2118 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2119 continue;
2121 regno = REGNO (p->exp);
2122 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
2124 for (i = regno; i < endregno; i++)
2125 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2127 remove_from_table (p, hash);
2128 break;
2133 /* Given an expression X of type CONST,
2134 and ELT which is its table entry (or 0 if it
2135 is not in the hash table),
2136 return an alternate expression for X as a register plus integer.
2137 If none can be found, return 0. */
2139 static rtx
2140 use_related_value (x, elt)
2141 rtx x;
2142 struct table_elt *elt;
2144 struct table_elt *relt = 0;
2145 struct table_elt *p, *q;
2146 HOST_WIDE_INT offset;
2148 /* First, is there anything related known?
2149 If we have a table element, we can tell from that.
2150 Otherwise, must look it up. */
2152 if (elt != 0 && elt->related_value != 0)
2153 relt = elt;
2154 else if (elt == 0 && GET_CODE (x) == CONST)
2156 rtx subexp = get_related_value (x);
2157 if (subexp != 0)
2158 relt = lookup (subexp,
2159 safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
2160 GET_MODE (subexp));
2163 if (relt == 0)
2164 return 0;
2166 /* Search all related table entries for one that has an
2167 equivalent register. */
2169 p = relt;
2170 while (1)
2172 /* This loop is strange in that it is executed in two different cases.
2173 The first is when X is already in the table. Then it is searching
2174 the RELATED_VALUE list of X's class (RELT). The second case is when
2175 X is not in the table. Then RELT points to a class for the related
2176 value.
2178 Ensure that, whatever case we are in, that we ignore classes that have
2179 the same value as X. */
2181 if (rtx_equal_p (x, p->exp))
2182 q = 0;
2183 else
2184 for (q = p->first_same_value; q; q = q->next_same_value)
2185 if (GET_CODE (q->exp) == REG)
2186 break;
2188 if (q)
2189 break;
2191 p = p->related_value;
2193 /* We went all the way around, so there is nothing to be found.
2194 Alternatively, perhaps RELT was in the table for some other reason
2195 and it has no related values recorded. */
2196 if (p == relt || p == 0)
2197 break;
2200 if (q == 0)
2201 return 0;
2203 offset = (get_integer_term (x) - get_integer_term (p->exp));
2204 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2205 return plus_constant (q->exp, offset);
2208 /* Hash a string. Just add its bytes up. */
2209 static inline unsigned
2210 canon_hash_string (ps)
2211 const char *ps;
2213 unsigned hash = 0;
2214 const unsigned char *p = (const unsigned char *)ps;
2216 if (p)
2217 while (*p)
2218 hash += *p++;
2220 return hash;
2223 /* Hash an rtx. We are careful to make sure the value is never negative.
2224 Equivalent registers hash identically.
2225 MODE is used in hashing for CONST_INTs only;
2226 otherwise the mode of X is used.
2228 Store 1 in do_not_record if any subexpression is volatile.
2230 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2231 which does not have the RTX_UNCHANGING_P bit set.
2233 Note that cse_insn knows that the hash code of a MEM expression
2234 is just (int) MEM plus the hash code of the address. */
2236 static unsigned
2237 canon_hash (x, mode)
2238 rtx x;
2239 enum machine_mode mode;
2241 int i, j;
2242 unsigned hash = 0;
2243 enum rtx_code code;
2244 const char *fmt;
2246 /* repeat is used to turn tail-recursion into iteration. */
2247 repeat:
2248 if (x == 0)
2249 return hash;
2251 code = GET_CODE (x);
2252 switch (code)
2254 case REG:
2256 unsigned int regno = REGNO (x);
2258 /* On some machines, we can't record any non-fixed hard register,
2259 because extending its life will cause reload problems. We
2260 consider ap, fp, and sp to be fixed for this purpose.
2262 We also consider CCmode registers to be fixed for this purpose;
2263 failure to do so leads to failure to simplify 0<100 type of
2264 conditionals.
2266 On all machines, we can't record any global registers.
2267 Nor should we record any register that is in a small
2268 class, as defined by CLASS_LIKELY_SPILLED_P. */
2270 if (regno < FIRST_PSEUDO_REGISTER
2271 && (global_regs[regno]
2272 || CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno))
2273 || (SMALL_REGISTER_CLASSES
2274 && ! fixed_regs[regno]
2275 && x != frame_pointer_rtx
2276 && x != hard_frame_pointer_rtx
2277 && x != arg_pointer_rtx
2278 && x != stack_pointer_rtx
2279 && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
2281 do_not_record = 1;
2282 return 0;
2285 hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
2286 return hash;
2289 /* We handle SUBREG of a REG specially because the underlying
2290 reg changes its hash value with every value change; we don't
2291 want to have to forget unrelated subregs when one subreg changes. */
2292 case SUBREG:
2294 if (GET_CODE (SUBREG_REG (x)) == REG)
2296 hash += (((unsigned) SUBREG << 7)
2297 + REGNO (SUBREG_REG (x))
2298 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2299 return hash;
2301 break;
2304 case CONST_INT:
2306 unsigned HOST_WIDE_INT tem = INTVAL (x);
2307 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
2308 return hash;
2311 case CONST_DOUBLE:
2312 /* This is like the general case, except that it only counts
2313 the integers representing the constant. */
2314 hash += (unsigned) code + (unsigned) GET_MODE (x);
2315 if (GET_MODE (x) != VOIDmode)
2316 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
2318 unsigned HOST_WIDE_INT tem = XWINT (x, i);
2319 hash += tem;
2321 else
2322 hash += ((unsigned) CONST_DOUBLE_LOW (x)
2323 + (unsigned) CONST_DOUBLE_HIGH (x));
2324 return hash;
2326 case CONST_VECTOR:
2328 int units;
2329 rtx elt;
2331 units = CONST_VECTOR_NUNITS (x);
2333 for (i = 0; i < units; ++i)
2335 elt = CONST_VECTOR_ELT (x, i);
2336 hash += canon_hash (elt, GET_MODE (elt));
2339 return hash;
2342 /* Assume there is only one rtx object for any given label. */
2343 case LABEL_REF:
2344 hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
2345 return hash;
2347 case SYMBOL_REF:
2348 hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
2349 return hash;
2351 case MEM:
2352 /* We don't record if marked volatile or if BLKmode since we don't
2353 know the size of the move. */
2354 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2356 do_not_record = 1;
2357 return 0;
2359 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2361 hash_arg_in_memory = 1;
2363 /* Now that we have already found this special case,
2364 might as well speed it up as much as possible. */
2365 hash += (unsigned) MEM;
2366 x = XEXP (x, 0);
2367 goto repeat;
2369 case USE:
2370 /* A USE that mentions non-volatile memory needs special
2371 handling since the MEM may be BLKmode which normally
2372 prevents an entry from being made. Pure calls are
2373 marked by a USE which mentions BLKmode memory. */
2374 if (GET_CODE (XEXP (x, 0)) == MEM
2375 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2377 hash += (unsigned)USE;
2378 x = XEXP (x, 0);
2380 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2381 hash_arg_in_memory = 1;
2383 /* Now that we have already found this special case,
2384 might as well speed it up as much as possible. */
2385 hash += (unsigned) MEM;
2386 x = XEXP (x, 0);
2387 goto repeat;
2389 break;
2391 case PRE_DEC:
2392 case PRE_INC:
2393 case POST_DEC:
2394 case POST_INC:
2395 case PRE_MODIFY:
2396 case POST_MODIFY:
2397 case PC:
2398 case CC0:
2399 case CALL:
2400 case UNSPEC_VOLATILE:
2401 do_not_record = 1;
2402 return 0;
2404 case ASM_OPERANDS:
2405 if (MEM_VOLATILE_P (x))
2407 do_not_record = 1;
2408 return 0;
2410 else
2412 /* We don't want to take the filename and line into account. */
2413 hash += (unsigned) code + (unsigned) GET_MODE (x)
2414 + canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
2415 + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2416 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2418 if (ASM_OPERANDS_INPUT_LENGTH (x))
2420 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2422 hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
2423 GET_MODE (ASM_OPERANDS_INPUT (x, i)))
2424 + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
2425 (x, i)));
2428 hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2429 x = ASM_OPERANDS_INPUT (x, 0);
2430 mode = GET_MODE (x);
2431 goto repeat;
2434 return hash;
2436 break;
2438 default:
2439 break;
2442 i = GET_RTX_LENGTH (code) - 1;
2443 hash += (unsigned) code + (unsigned) GET_MODE (x);
2444 fmt = GET_RTX_FORMAT (code);
2445 for (; i >= 0; i--)
2447 if (fmt[i] == 'e')
2449 rtx tem = XEXP (x, i);
2451 /* If we are about to do the last recursive call
2452 needed at this level, change it into iteration.
2453 This function is called enough to be worth it. */
2454 if (i == 0)
2456 x = tem;
2457 goto repeat;
2459 hash += canon_hash (tem, 0);
2461 else if (fmt[i] == 'E')
2462 for (j = 0; j < XVECLEN (x, i); j++)
2463 hash += canon_hash (XVECEXP (x, i, j), 0);
2464 else if (fmt[i] == 's')
2465 hash += canon_hash_string (XSTR (x, i));
2466 else if (fmt[i] == 'i')
2468 unsigned tem = XINT (x, i);
2469 hash += tem;
2471 else if (fmt[i] == '0' || fmt[i] == 't')
2472 /* Unused. */
2474 else
2475 abort ();
2477 return hash;
2480 /* Like canon_hash but with no side effects. */
2482 static unsigned
2483 safe_hash (x, mode)
2484 rtx x;
2485 enum machine_mode mode;
2487 int save_do_not_record = do_not_record;
2488 int save_hash_arg_in_memory = hash_arg_in_memory;
2489 unsigned hash = canon_hash (x, mode);
2490 hash_arg_in_memory = save_hash_arg_in_memory;
2491 do_not_record = save_do_not_record;
2492 return hash;
2495 /* Return 1 iff X and Y would canonicalize into the same thing,
2496 without actually constructing the canonicalization of either one.
2497 If VALIDATE is nonzero,
2498 we assume X is an expression being processed from the rtl
2499 and Y was found in the hash table. We check register refs
2500 in Y for being marked as valid.
2502 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2503 that is known to be in the register. Ordinarily, we don't allow them
2504 to match, because letting them match would cause unpredictable results
2505 in all the places that search a hash table chain for an equivalent
2506 for a given value. A possible equivalent that has different structure
2507 has its hash code computed from different data. Whether the hash code
2508 is the same as that of the given value is pure luck. */
2510 static int
2511 exp_equiv_p (x, y, validate, equal_values)
2512 rtx x, y;
2513 int validate;
2514 int equal_values;
2516 int i, j;
2517 enum rtx_code code;
2518 const char *fmt;
2520 /* Note: it is incorrect to assume an expression is equivalent to itself
2521 if VALIDATE is nonzero. */
2522 if (x == y && !validate)
2523 return 1;
2524 if (x == 0 || y == 0)
2525 return x == y;
2527 code = GET_CODE (x);
2528 if (code != GET_CODE (y))
2530 if (!equal_values)
2531 return 0;
2533 /* If X is a constant and Y is a register or vice versa, they may be
2534 equivalent. We only have to validate if Y is a register. */
2535 if (CONSTANT_P (x) && GET_CODE (y) == REG
2536 && REGNO_QTY_VALID_P (REGNO (y)))
2538 int y_q = REG_QTY (REGNO (y));
2539 struct qty_table_elem *y_ent = &qty_table[y_q];
2541 if (GET_MODE (y) == y_ent->mode
2542 && rtx_equal_p (x, y_ent->const_rtx)
2543 && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
2544 return 1;
2547 if (CONSTANT_P (y) && code == REG
2548 && REGNO_QTY_VALID_P (REGNO (x)))
2550 int x_q = REG_QTY (REGNO (x));
2551 struct qty_table_elem *x_ent = &qty_table[x_q];
2553 if (GET_MODE (x) == x_ent->mode
2554 && rtx_equal_p (y, x_ent->const_rtx))
2555 return 1;
2558 return 0;
2561 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2562 if (GET_MODE (x) != GET_MODE (y))
2563 return 0;
2565 switch (code)
2567 case PC:
2568 case CC0:
2569 case CONST_INT:
2570 return x == y;
2572 case LABEL_REF:
2573 return XEXP (x, 0) == XEXP (y, 0);
2575 case SYMBOL_REF:
2576 return XSTR (x, 0) == XSTR (y, 0);
2578 case REG:
2580 unsigned int regno = REGNO (y);
2581 unsigned int endregno
2582 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2583 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2584 unsigned int i;
2586 /* If the quantities are not the same, the expressions are not
2587 equivalent. If there are and we are not to validate, they
2588 are equivalent. Otherwise, ensure all regs are up-to-date. */
2590 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2591 return 0;
2593 if (! validate)
2594 return 1;
2596 for (i = regno; i < endregno; i++)
2597 if (REG_IN_TABLE (i) != REG_TICK (i))
2598 return 0;
2600 return 1;
2603 /* For commutative operations, check both orders. */
2604 case PLUS:
2605 case MULT:
2606 case AND:
2607 case IOR:
2608 case XOR:
2609 case NE:
2610 case EQ:
2611 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2612 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2613 validate, equal_values))
2614 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2615 validate, equal_values)
2616 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2617 validate, equal_values)));
2619 case ASM_OPERANDS:
2620 /* We don't use the generic code below because we want to
2621 disregard filename and line numbers. */
2623 /* A volatile asm isn't equivalent to any other. */
2624 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2625 return 0;
2627 if (GET_MODE (x) != GET_MODE (y)
2628 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2629 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2630 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2631 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2632 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2633 return 0;
2635 if (ASM_OPERANDS_INPUT_LENGTH (x))
2637 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2638 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2639 ASM_OPERANDS_INPUT (y, i),
2640 validate, equal_values)
2641 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2642 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2643 return 0;
2646 return 1;
2648 default:
2649 break;
2652 /* Compare the elements. If any pair of corresponding elements
2653 fail to match, return 0 for the whole things. */
2655 fmt = GET_RTX_FORMAT (code);
2656 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2658 switch (fmt[i])
2660 case 'e':
2661 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2662 return 0;
2663 break;
2665 case 'E':
2666 if (XVECLEN (x, i) != XVECLEN (y, i))
2667 return 0;
2668 for (j = 0; j < XVECLEN (x, i); j++)
2669 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2670 validate, equal_values))
2671 return 0;
2672 break;
2674 case 's':
2675 if (strcmp (XSTR (x, i), XSTR (y, i)))
2676 return 0;
2677 break;
2679 case 'i':
2680 if (XINT (x, i) != XINT (y, i))
2681 return 0;
2682 break;
2684 case 'w':
2685 if (XWINT (x, i) != XWINT (y, i))
2686 return 0;
2687 break;
2689 case '0':
2690 case 't':
2691 break;
2693 default:
2694 abort ();
2698 return 1;
2701 /* Return 1 if X has a value that can vary even between two
2702 executions of the program. 0 means X can be compared reliably
2703 against certain constants or near-constants. */
2705 static int
2706 cse_rtx_varies_p (x, from_alias)
2707 rtx x;
2708 int from_alias;
2710 /* We need not check for X and the equivalence class being of the same
2711 mode because if X is equivalent to a constant in some mode, it
2712 doesn't vary in any mode. */
2714 if (GET_CODE (x) == REG
2715 && REGNO_QTY_VALID_P (REGNO (x)))
2717 int x_q = REG_QTY (REGNO (x));
2718 struct qty_table_elem *x_ent = &qty_table[x_q];
2720 if (GET_MODE (x) == x_ent->mode
2721 && x_ent->const_rtx != NULL_RTX)
2722 return 0;
2725 if (GET_CODE (x) == PLUS
2726 && GET_CODE (XEXP (x, 1)) == CONST_INT
2727 && GET_CODE (XEXP (x, 0)) == REG
2728 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2730 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2731 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2733 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2734 && x0_ent->const_rtx != NULL_RTX)
2735 return 0;
2738 /* This can happen as the result of virtual register instantiation, if
2739 the initial constant is too large to be a valid address. This gives
2740 us a three instruction sequence, load large offset into a register,
2741 load fp minus a constant into a register, then a MEM which is the
2742 sum of the two `constant' registers. */
2743 if (GET_CODE (x) == PLUS
2744 && GET_CODE (XEXP (x, 0)) == REG
2745 && GET_CODE (XEXP (x, 1)) == REG
2746 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2747 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2749 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2750 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2751 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2752 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2754 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2755 && x0_ent->const_rtx != NULL_RTX
2756 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2757 && x1_ent->const_rtx != NULL_RTX)
2758 return 0;
2761 return rtx_varies_p (x, from_alias);
2764 /* Canonicalize an expression:
2765 replace each register reference inside it
2766 with the "oldest" equivalent register.
2768 If INSN is non-zero and we are replacing a pseudo with a hard register
2769 or vice versa, validate_change is used to ensure that INSN remains valid
2770 after we make our substitution. The calls are made with IN_GROUP non-zero
2771 so apply_change_group must be called upon the outermost return from this
2772 function (unless INSN is zero). The result of apply_change_group can
2773 generally be discarded since the changes we are making are optional. */
2775 static rtx
2776 canon_reg (x, insn)
2777 rtx x;
2778 rtx insn;
2780 int i;
2781 enum rtx_code code;
2782 const char *fmt;
2784 if (x == 0)
2785 return x;
2787 code = GET_CODE (x);
2788 switch (code)
2790 case PC:
2791 case CC0:
2792 case CONST:
2793 case CONST_INT:
2794 case CONST_DOUBLE:
2795 case CONST_VECTOR:
2796 case SYMBOL_REF:
2797 case LABEL_REF:
2798 case ADDR_VEC:
2799 case ADDR_DIFF_VEC:
2800 return x;
2802 case REG:
2804 int first;
2805 int q;
2806 struct qty_table_elem *ent;
2808 /* Never replace a hard reg, because hard regs can appear
2809 in more than one machine mode, and we must preserve the mode
2810 of each occurrence. Also, some hard regs appear in
2811 MEMs that are shared and mustn't be altered. Don't try to
2812 replace any reg that maps to a reg of class NO_REGS. */
2813 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2814 || ! REGNO_QTY_VALID_P (REGNO (x)))
2815 return x;
2817 q = REG_QTY (REGNO (x));
2818 ent = &qty_table[q];
2819 first = ent->first_reg;
2820 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2821 : REGNO_REG_CLASS (first) == NO_REGS ? x
2822 : gen_rtx_REG (ent->mode, first));
2825 default:
2826 break;
2829 fmt = GET_RTX_FORMAT (code);
2830 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2832 int j;
2834 if (fmt[i] == 'e')
2836 rtx new = canon_reg (XEXP (x, i), insn);
2837 int insn_code;
2839 /* If replacing pseudo with hard reg or vice versa, ensure the
2840 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2841 if (insn != 0 && new != 0
2842 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2843 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2844 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2845 || (insn_code = recog_memoized (insn)) < 0
2846 || insn_data[insn_code].n_dups > 0))
2847 validate_change (insn, &XEXP (x, i), new, 1);
2848 else
2849 XEXP (x, i) = new;
2851 else if (fmt[i] == 'E')
2852 for (j = 0; j < XVECLEN (x, i); j++)
2853 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2856 return x;
2859 /* LOC is a location within INSN that is an operand address (the contents of
2860 a MEM). Find the best equivalent address to use that is valid for this
2861 insn.
2863 On most CISC machines, complicated address modes are costly, and rtx_cost
2864 is a good approximation for that cost. However, most RISC machines have
2865 only a few (usually only one) memory reference formats. If an address is
2866 valid at all, it is often just as cheap as any other address. Hence, for
2867 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2868 costs of various addresses. For two addresses of equal cost, choose the one
2869 with the highest `rtx_cost' value as that has the potential of eliminating
2870 the most insns. For equal costs, we choose the first in the equivalence
2871 class. Note that we ignore the fact that pseudo registers are cheaper
2872 than hard registers here because we would also prefer the pseudo registers.
2875 static void
2876 find_best_addr (insn, loc, mode)
2877 rtx insn;
2878 rtx *loc;
2879 enum machine_mode mode;
2881 struct table_elt *elt;
2882 rtx addr = *loc;
2883 #ifdef ADDRESS_COST
2884 struct table_elt *p;
2885 int found_better = 1;
2886 #endif
2887 int save_do_not_record = do_not_record;
2888 int save_hash_arg_in_memory = hash_arg_in_memory;
2889 int addr_volatile;
2890 int regno;
2891 unsigned hash;
2893 /* Do not try to replace constant addresses or addresses of local and
2894 argument slots. These MEM expressions are made only once and inserted
2895 in many instructions, as well as being used to control symbol table
2896 output. It is not safe to clobber them.
2898 There are some uncommon cases where the address is already in a register
2899 for some reason, but we cannot take advantage of that because we have
2900 no easy way to unshare the MEM. In addition, looking up all stack
2901 addresses is costly. */
2902 if ((GET_CODE (addr) == PLUS
2903 && GET_CODE (XEXP (addr, 0)) == REG
2904 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2905 && (regno = REGNO (XEXP (addr, 0)),
2906 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2907 || regno == ARG_POINTER_REGNUM))
2908 || (GET_CODE (addr) == REG
2909 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2910 || regno == HARD_FRAME_POINTER_REGNUM
2911 || regno == ARG_POINTER_REGNUM))
2912 || GET_CODE (addr) == ADDRESSOF
2913 || CONSTANT_ADDRESS_P (addr))
2914 return;
2916 /* If this address is not simply a register, try to fold it. This will
2917 sometimes simplify the expression. Many simplifications
2918 will not be valid, but some, usually applying the associative rule, will
2919 be valid and produce better code. */
2920 if (GET_CODE (addr) != REG)
2922 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2923 int addr_folded_cost = address_cost (folded, mode);
2924 int addr_cost = address_cost (addr, mode);
2926 if ((addr_folded_cost < addr_cost
2927 || (addr_folded_cost == addr_cost
2928 /* ??? The rtx_cost comparison is left over from an older
2929 version of this code. It is probably no longer helpful. */
2930 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2931 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2932 && validate_change (insn, loc, folded, 0))
2933 addr = folded;
2936 /* If this address is not in the hash table, we can't look for equivalences
2937 of the whole address. Also, ignore if volatile. */
2939 do_not_record = 0;
2940 hash = HASH (addr, Pmode);
2941 addr_volatile = do_not_record;
2942 do_not_record = save_do_not_record;
2943 hash_arg_in_memory = save_hash_arg_in_memory;
2945 if (addr_volatile)
2946 return;
2948 elt = lookup (addr, hash, Pmode);
2950 #ifndef ADDRESS_COST
2951 if (elt)
2953 int our_cost = elt->cost;
2955 /* Find the lowest cost below ours that works. */
2956 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2957 if (elt->cost < our_cost
2958 && (GET_CODE (elt->exp) == REG
2959 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2960 && validate_change (insn, loc,
2961 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2962 return;
2964 #else
2966 if (elt)
2968 /* We need to find the best (under the criteria documented above) entry
2969 in the class that is valid. We use the `flag' field to indicate
2970 choices that were invalid and iterate until we can't find a better
2971 one that hasn't already been tried. */
2973 for (p = elt->first_same_value; p; p = p->next_same_value)
2974 p->flag = 0;
2976 while (found_better)
2978 int best_addr_cost = address_cost (*loc, mode);
2979 int best_rtx_cost = (elt->cost + 1) >> 1;
2980 int exp_cost;
2981 struct table_elt *best_elt = elt;
2983 found_better = 0;
2984 for (p = elt->first_same_value; p; p = p->next_same_value)
2985 if (! p->flag)
2987 if ((GET_CODE (p->exp) == REG
2988 || exp_equiv_p (p->exp, p->exp, 1, 0))
2989 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2990 || (exp_cost == best_addr_cost
2991 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2993 found_better = 1;
2994 best_addr_cost = exp_cost;
2995 best_rtx_cost = (p->cost + 1) >> 1;
2996 best_elt = p;
3000 if (found_better)
3002 if (validate_change (insn, loc,
3003 canon_reg (copy_rtx (best_elt->exp),
3004 NULL_RTX), 0))
3005 return;
3006 else
3007 best_elt->flag = 1;
3012 /* If the address is a binary operation with the first operand a register
3013 and the second a constant, do the same as above, but looking for
3014 equivalences of the register. Then try to simplify before checking for
3015 the best address to use. This catches a few cases: First is when we
3016 have REG+const and the register is another REG+const. We can often merge
3017 the constants and eliminate one insn and one register. It may also be
3018 that a machine has a cheap REG+REG+const. Finally, this improves the
3019 code on the Alpha for unaligned byte stores. */
3021 if (flag_expensive_optimizations
3022 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
3023 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
3024 && GET_CODE (XEXP (*loc, 0)) == REG
3025 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
3027 rtx c = XEXP (*loc, 1);
3029 do_not_record = 0;
3030 hash = HASH (XEXP (*loc, 0), Pmode);
3031 do_not_record = save_do_not_record;
3032 hash_arg_in_memory = save_hash_arg_in_memory;
3034 elt = lookup (XEXP (*loc, 0), hash, Pmode);
3035 if (elt == 0)
3036 return;
3038 /* We need to find the best (under the criteria documented above) entry
3039 in the class that is valid. We use the `flag' field to indicate
3040 choices that were invalid and iterate until we can't find a better
3041 one that hasn't already been tried. */
3043 for (p = elt->first_same_value; p; p = p->next_same_value)
3044 p->flag = 0;
3046 while (found_better)
3048 int best_addr_cost = address_cost (*loc, mode);
3049 int best_rtx_cost = (COST (*loc) + 1) >> 1;
3050 struct table_elt *best_elt = elt;
3051 rtx best_rtx = *loc;
3052 int count;
3054 /* This is at worst case an O(n^2) algorithm, so limit our search
3055 to the first 32 elements on the list. This avoids trouble
3056 compiling code with very long basic blocks that can easily
3057 call simplify_gen_binary so many times that we run out of
3058 memory. */
3060 found_better = 0;
3061 for (p = elt->first_same_value, count = 0;
3062 p && count < 32;
3063 p = p->next_same_value, count++)
3064 if (! p->flag
3065 && (GET_CODE (p->exp) == REG
3066 || exp_equiv_p (p->exp, p->exp, 1, 0)))
3068 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3069 p->exp, c);
3070 int new_cost;
3071 new_cost = address_cost (new, mode);
3073 if (new_cost < best_addr_cost
3074 || (new_cost == best_addr_cost
3075 && (COST (new) + 1) >> 1 > best_rtx_cost))
3077 found_better = 1;
3078 best_addr_cost = new_cost;
3079 best_rtx_cost = (COST (new) + 1) >> 1;
3080 best_elt = p;
3081 best_rtx = new;
3085 if (found_better)
3087 if (validate_change (insn, loc,
3088 canon_reg (copy_rtx (best_rtx),
3089 NULL_RTX), 0))
3090 return;
3091 else
3092 best_elt->flag = 1;
3096 #endif
3099 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3100 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3101 what values are being compared.
3103 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3104 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3105 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3106 compared to produce cc0.
3108 The return value is the comparison operator and is either the code of
3109 A or the code corresponding to the inverse of the comparison. */
3111 static enum rtx_code
3112 find_comparison_args (code, parg1, parg2, pmode1, pmode2)
3113 enum rtx_code code;
3114 rtx *parg1, *parg2;
3115 enum machine_mode *pmode1, *pmode2;
3117 rtx arg1, arg2;
3119 arg1 = *parg1, arg2 = *parg2;
3121 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3123 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3125 /* Set non-zero when we find something of interest. */
3126 rtx x = 0;
3127 int reverse_code = 0;
3128 struct table_elt *p = 0;
3130 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3131 On machines with CC0, this is the only case that can occur, since
3132 fold_rtx will return the COMPARE or item being compared with zero
3133 when given CC0. */
3135 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3136 x = arg1;
3138 /* If ARG1 is a comparison operator and CODE is testing for
3139 STORE_FLAG_VALUE, get the inner arguments. */
3141 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
3143 if (code == NE
3144 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3145 && code == LT && STORE_FLAG_VALUE == -1)
3146 #ifdef FLOAT_STORE_FLAG_VALUE
3147 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3148 && (REAL_VALUE_NEGATIVE
3149 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3150 #endif
3152 x = arg1;
3153 else if (code == EQ
3154 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3155 && code == GE && STORE_FLAG_VALUE == -1)
3156 #ifdef FLOAT_STORE_FLAG_VALUE
3157 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3158 && (REAL_VALUE_NEGATIVE
3159 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3160 #endif
3162 x = arg1, reverse_code = 1;
3165 /* ??? We could also check for
3167 (ne (and (eq (...) (const_int 1))) (const_int 0))
3169 and related forms, but let's wait until we see them occurring. */
3171 if (x == 0)
3172 /* Look up ARG1 in the hash table and see if it has an equivalence
3173 that lets us see what is being compared. */
3174 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
3175 GET_MODE (arg1));
3176 if (p)
3178 p = p->first_same_value;
3180 /* If what we compare is already known to be constant, that is as
3181 good as it gets.
3182 We need to break the loop in this case, because otherwise we
3183 can have an infinite loop when looking at a reg that is known
3184 to be a constant which is the same as a comparison of a reg
3185 against zero which appears later in the insn stream, which in
3186 turn is constant and the same as the comparison of the first reg
3187 against zero... */
3188 if (p->is_const)
3189 break;
3192 for (; p; p = p->next_same_value)
3194 enum machine_mode inner_mode = GET_MODE (p->exp);
3196 /* If the entry isn't valid, skip it. */
3197 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
3198 continue;
3200 if (GET_CODE (p->exp) == COMPARE
3201 /* Another possibility is that this machine has a compare insn
3202 that includes the comparison code. In that case, ARG1 would
3203 be equivalent to a comparison operation that would set ARG1 to
3204 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3205 ORIG_CODE is the actual comparison being done; if it is an EQ,
3206 we must reverse ORIG_CODE. On machine with a negative value
3207 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3208 || ((code == NE
3209 || (code == LT
3210 && GET_MODE_CLASS (inner_mode) == MODE_INT
3211 && (GET_MODE_BITSIZE (inner_mode)
3212 <= HOST_BITS_PER_WIDE_INT)
3213 && (STORE_FLAG_VALUE
3214 & ((HOST_WIDE_INT) 1
3215 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3216 #ifdef FLOAT_STORE_FLAG_VALUE
3217 || (code == LT
3218 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3219 && (REAL_VALUE_NEGATIVE
3220 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3221 #endif
3223 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
3225 x = p->exp;
3226 break;
3228 else if ((code == EQ
3229 || (code == GE
3230 && GET_MODE_CLASS (inner_mode) == MODE_INT
3231 && (GET_MODE_BITSIZE (inner_mode)
3232 <= HOST_BITS_PER_WIDE_INT)
3233 && (STORE_FLAG_VALUE
3234 & ((HOST_WIDE_INT) 1
3235 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3236 #ifdef FLOAT_STORE_FLAG_VALUE
3237 || (code == GE
3238 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3239 && (REAL_VALUE_NEGATIVE
3240 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3241 #endif
3243 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
3245 reverse_code = 1;
3246 x = p->exp;
3247 break;
3250 /* If this is fp + constant, the equivalent is a better operand since
3251 it may let us predict the value of the comparison. */
3252 else if (NONZERO_BASE_PLUS_P (p->exp))
3254 arg1 = p->exp;
3255 continue;
3259 /* If we didn't find a useful equivalence for ARG1, we are done.
3260 Otherwise, set up for the next iteration. */
3261 if (x == 0)
3262 break;
3264 /* If we need to reverse the comparison, make sure that that is
3265 possible -- we can't necessarily infer the value of GE from LT
3266 with floating-point operands. */
3267 if (reverse_code)
3269 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3270 if (reversed == UNKNOWN)
3271 break;
3272 else code = reversed;
3274 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3275 code = GET_CODE (x);
3276 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3279 /* Return our results. Return the modes from before fold_rtx
3280 because fold_rtx might produce const_int, and then it's too late. */
3281 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3282 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3284 return code;
3287 /* If X is a nontrivial arithmetic operation on an argument
3288 for which a constant value can be determined, return
3289 the result of operating on that value, as a constant.
3290 Otherwise, return X, possibly with one or more operands
3291 modified by recursive calls to this function.
3293 If X is a register whose contents are known, we do NOT
3294 return those contents here. equiv_constant is called to
3295 perform that task.
3297 INSN is the insn that we may be modifying. If it is 0, make a copy
3298 of X before modifying it. */
3300 static rtx
3301 fold_rtx (x, insn)
3302 rtx x;
3303 rtx insn;
3305 enum rtx_code code;
3306 enum machine_mode mode;
3307 const char *fmt;
3308 int i;
3309 rtx new = 0;
3310 int copied = 0;
3311 int must_swap = 0;
3313 /* Folded equivalents of first two operands of X. */
3314 rtx folded_arg0;
3315 rtx folded_arg1;
3317 /* Constant equivalents of first three operands of X;
3318 0 when no such equivalent is known. */
3319 rtx const_arg0;
3320 rtx const_arg1;
3321 rtx const_arg2;
3323 /* The mode of the first operand of X. We need this for sign and zero
3324 extends. */
3325 enum machine_mode mode_arg0;
3327 if (x == 0)
3328 return x;
3330 mode = GET_MODE (x);
3331 code = GET_CODE (x);
3332 switch (code)
3334 case CONST:
3335 case CONST_INT:
3336 case CONST_DOUBLE:
3337 case CONST_VECTOR:
3338 case SYMBOL_REF:
3339 case LABEL_REF:
3340 case REG:
3341 /* No use simplifying an EXPR_LIST
3342 since they are used only for lists of args
3343 in a function call's REG_EQUAL note. */
3344 case EXPR_LIST:
3345 /* Changing anything inside an ADDRESSOF is incorrect; we don't
3346 want to (e.g.,) make (addressof (const_int 0)) just because
3347 the location is known to be zero. */
3348 case ADDRESSOF:
3349 return x;
3351 #ifdef HAVE_cc0
3352 case CC0:
3353 return prev_insn_cc0;
3354 #endif
3356 case PC:
3357 /* If the next insn is a CODE_LABEL followed by a jump table,
3358 PC's value is a LABEL_REF pointing to that label. That
3359 lets us fold switch statements on the VAX. */
3360 if (insn && GET_CODE (insn) == JUMP_INSN)
3362 rtx next = next_nonnote_insn (insn);
3364 if (next && GET_CODE (next) == CODE_LABEL
3365 && NEXT_INSN (next) != 0
3366 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
3367 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
3368 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3369 return gen_rtx_LABEL_REF (Pmode, next);
3371 break;
3373 case SUBREG:
3374 /* See if we previously assigned a constant value to this SUBREG. */
3375 if ((new = lookup_as_function (x, CONST_INT)) != 0
3376 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3377 return new;
3379 /* If this is a paradoxical SUBREG, we have no idea what value the
3380 extra bits would have. However, if the operand is equivalent
3381 to a SUBREG whose operand is the same as our mode, and all the
3382 modes are within a word, we can just use the inner operand
3383 because these SUBREGs just say how to treat the register.
3385 Similarly if we find an integer constant. */
3387 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3389 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3390 struct table_elt *elt;
3392 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3393 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3394 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3395 imode)) != 0)
3396 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3398 if (CONSTANT_P (elt->exp)
3399 && GET_MODE (elt->exp) == VOIDmode)
3400 return elt->exp;
3402 if (GET_CODE (elt->exp) == SUBREG
3403 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3404 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3405 return copy_rtx (SUBREG_REG (elt->exp));
3408 return x;
3411 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3412 We might be able to if the SUBREG is extracting a single word in an
3413 integral mode or extracting the low part. */
3415 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3416 const_arg0 = equiv_constant (folded_arg0);
3417 if (const_arg0)
3418 folded_arg0 = const_arg0;
3420 if (folded_arg0 != SUBREG_REG (x))
3422 new = simplify_subreg (mode, folded_arg0,
3423 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3424 if (new)
3425 return new;
3428 /* If this is a narrowing SUBREG and our operand is a REG, see if
3429 we can find an equivalence for REG that is an arithmetic operation
3430 in a wider mode where both operands are paradoxical SUBREGs
3431 from objects of our result mode. In that case, we couldn't report
3432 an equivalent value for that operation, since we don't know what the
3433 extra bits will be. But we can find an equivalence for this SUBREG
3434 by folding that operation is the narrow mode. This allows us to
3435 fold arithmetic in narrow modes when the machine only supports
3436 word-sized arithmetic.
3438 Also look for a case where we have a SUBREG whose operand is the
3439 same as our result. If both modes are smaller than a word, we
3440 are simply interpreting a register in different modes and we
3441 can use the inner value. */
3443 if (GET_CODE (folded_arg0) == REG
3444 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
3445 && subreg_lowpart_p (x))
3447 struct table_elt *elt;
3449 /* We can use HASH here since we know that canon_hash won't be
3450 called. */
3451 elt = lookup (folded_arg0,
3452 HASH (folded_arg0, GET_MODE (folded_arg0)),
3453 GET_MODE (folded_arg0));
3455 if (elt)
3456 elt = elt->first_same_value;
3458 for (; elt; elt = elt->next_same_value)
3460 enum rtx_code eltcode = GET_CODE (elt->exp);
3462 /* Just check for unary and binary operations. */
3463 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
3464 && GET_CODE (elt->exp) != SIGN_EXTEND
3465 && GET_CODE (elt->exp) != ZERO_EXTEND
3466 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3467 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
3469 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3471 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3472 op0 = fold_rtx (op0, NULL_RTX);
3474 op0 = equiv_constant (op0);
3475 if (op0)
3476 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3477 op0, mode);
3479 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
3480 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3481 && eltcode != DIV && eltcode != MOD
3482 && eltcode != UDIV && eltcode != UMOD
3483 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3484 && eltcode != ROTATE && eltcode != ROTATERT
3485 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3486 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3487 == mode))
3488 || CONSTANT_P (XEXP (elt->exp, 0)))
3489 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3490 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3491 == mode))
3492 || CONSTANT_P (XEXP (elt->exp, 1))))
3494 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3495 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3497 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3498 op0 = fold_rtx (op0, NULL_RTX);
3500 if (op0)
3501 op0 = equiv_constant (op0);
3503 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3504 op1 = fold_rtx (op1, NULL_RTX);
3506 if (op1)
3507 op1 = equiv_constant (op1);
3509 /* If we are looking for the low SImode part of
3510 (ashift:DI c (const_int 32)), it doesn't work
3511 to compute that in SImode, because a 32-bit shift
3512 in SImode is unpredictable. We know the value is 0. */
3513 if (op0 && op1
3514 && GET_CODE (elt->exp) == ASHIFT
3515 && GET_CODE (op1) == CONST_INT
3516 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3518 if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3520 /* If the count fits in the inner mode's width,
3521 but exceeds the outer mode's width,
3522 the value will get truncated to 0
3523 by the subreg. */
3524 new = const0_rtx;
3525 else
3526 /* If the count exceeds even the inner mode's width,
3527 don't fold this expression. */
3528 new = 0;
3530 else if (op0 && op1)
3531 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
3532 op0, op1);
3535 else if (GET_CODE (elt->exp) == SUBREG
3536 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3537 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3538 <= UNITS_PER_WORD)
3539 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3540 new = copy_rtx (SUBREG_REG (elt->exp));
3542 if (new)
3543 return new;
3547 return x;
3549 case NOT:
3550 case NEG:
3551 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3552 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3553 new = lookup_as_function (XEXP (x, 0), code);
3554 if (new)
3555 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3556 break;
3558 case MEM:
3559 /* If we are not actually processing an insn, don't try to find the
3560 best address. Not only don't we care, but we could modify the
3561 MEM in an invalid way since we have no insn to validate against. */
3562 if (insn != 0)
3563 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3566 /* Even if we don't fold in the insn itself,
3567 we can safely do so here, in hopes of getting a constant. */
3568 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3569 rtx base = 0;
3570 HOST_WIDE_INT offset = 0;
3572 if (GET_CODE (addr) == REG
3573 && REGNO_QTY_VALID_P (REGNO (addr)))
3575 int addr_q = REG_QTY (REGNO (addr));
3576 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3578 if (GET_MODE (addr) == addr_ent->mode
3579 && addr_ent->const_rtx != NULL_RTX)
3580 addr = addr_ent->const_rtx;
3583 /* If address is constant, split it into a base and integer offset. */
3584 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3585 base = addr;
3586 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3587 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3589 base = XEXP (XEXP (addr, 0), 0);
3590 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3592 else if (GET_CODE (addr) == LO_SUM
3593 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3594 base = XEXP (addr, 1);
3595 else if (GET_CODE (addr) == ADDRESSOF)
3596 return change_address (x, VOIDmode, addr);
3598 /* If this is a constant pool reference, we can fold it into its
3599 constant to allow better value tracking. */
3600 if (base && GET_CODE (base) == SYMBOL_REF
3601 && CONSTANT_POOL_ADDRESS_P (base))
3603 rtx constant = get_pool_constant (base);
3604 enum machine_mode const_mode = get_pool_mode (base);
3605 rtx new;
3607 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3608 constant_pool_entries_cost = COST (constant);
3610 /* If we are loading the full constant, we have an equivalence. */
3611 if (offset == 0 && mode == const_mode)
3612 return constant;
3614 /* If this actually isn't a constant (weird!), we can't do
3615 anything. Otherwise, handle the two most common cases:
3616 extracting a word from a multi-word constant, and extracting
3617 the low-order bits. Other cases don't seem common enough to
3618 worry about. */
3619 if (! CONSTANT_P (constant))
3620 return x;
3622 if (GET_MODE_CLASS (mode) == MODE_INT
3623 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3624 && offset % UNITS_PER_WORD == 0
3625 && (new = operand_subword (constant,
3626 offset / UNITS_PER_WORD,
3627 0, const_mode)) != 0)
3628 return new;
3630 if (((BYTES_BIG_ENDIAN
3631 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3632 || (! BYTES_BIG_ENDIAN && offset == 0))
3633 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
3634 return new;
3637 /* If this is a reference to a label at a known position in a jump
3638 table, we also know its value. */
3639 if (base && GET_CODE (base) == LABEL_REF)
3641 rtx label = XEXP (base, 0);
3642 rtx table_insn = NEXT_INSN (label);
3644 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3645 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3647 rtx table = PATTERN (table_insn);
3649 if (offset >= 0
3650 && (offset / GET_MODE_SIZE (GET_MODE (table))
3651 < XVECLEN (table, 0)))
3652 return XVECEXP (table, 0,
3653 offset / GET_MODE_SIZE (GET_MODE (table)));
3655 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3656 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3658 rtx table = PATTERN (table_insn);
3660 if (offset >= 0
3661 && (offset / GET_MODE_SIZE (GET_MODE (table))
3662 < XVECLEN (table, 1)))
3664 offset /= GET_MODE_SIZE (GET_MODE (table));
3665 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3666 XEXP (table, 0));
3668 if (GET_MODE (table) != Pmode)
3669 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3671 /* Indicate this is a constant. This isn't a
3672 valid form of CONST, but it will only be used
3673 to fold the next insns and then discarded, so
3674 it should be safe.
3676 Note this expression must be explicitly discarded,
3677 by cse_insn, else it may end up in a REG_EQUAL note
3678 and "escape" to cause problems elsewhere. */
3679 return gen_rtx_CONST (GET_MODE (new), new);
3684 return x;
3687 #ifdef NO_FUNCTION_CSE
3688 case CALL:
3689 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3690 return x;
3691 break;
3692 #endif
3694 case ASM_OPERANDS:
3695 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3696 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3697 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3698 break;
3700 default:
3701 break;
3704 const_arg0 = 0;
3705 const_arg1 = 0;
3706 const_arg2 = 0;
3707 mode_arg0 = VOIDmode;
3709 /* Try folding our operands.
3710 Then see which ones have constant values known. */
3712 fmt = GET_RTX_FORMAT (code);
3713 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3714 if (fmt[i] == 'e')
3716 rtx arg = XEXP (x, i);
3717 rtx folded_arg = arg, const_arg = 0;
3718 enum machine_mode mode_arg = GET_MODE (arg);
3719 rtx cheap_arg, expensive_arg;
3720 rtx replacements[2];
3721 int j;
3723 /* Most arguments are cheap, so handle them specially. */
3724 switch (GET_CODE (arg))
3726 case REG:
3727 /* This is the same as calling equiv_constant; it is duplicated
3728 here for speed. */
3729 if (REGNO_QTY_VALID_P (REGNO (arg)))
3731 int arg_q = REG_QTY (REGNO (arg));
3732 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3734 if (arg_ent->const_rtx != NULL_RTX
3735 && GET_CODE (arg_ent->const_rtx) != REG
3736 && GET_CODE (arg_ent->const_rtx) != PLUS)
3737 const_arg
3738 = gen_lowpart_if_possible (GET_MODE (arg),
3739 arg_ent->const_rtx);
3741 break;
3743 case CONST:
3744 case CONST_INT:
3745 case SYMBOL_REF:
3746 case LABEL_REF:
3747 case CONST_DOUBLE:
3748 case CONST_VECTOR:
3749 const_arg = arg;
3750 break;
3752 #ifdef HAVE_cc0
3753 case CC0:
3754 folded_arg = prev_insn_cc0;
3755 mode_arg = prev_insn_cc0_mode;
3756 const_arg = equiv_constant (folded_arg);
3757 break;
3758 #endif
3760 default:
3761 folded_arg = fold_rtx (arg, insn);
3762 const_arg = equiv_constant (folded_arg);
3765 /* For the first three operands, see if the operand
3766 is constant or equivalent to a constant. */
3767 switch (i)
3769 case 0:
3770 folded_arg0 = folded_arg;
3771 const_arg0 = const_arg;
3772 mode_arg0 = mode_arg;
3773 break;
3774 case 1:
3775 folded_arg1 = folded_arg;
3776 const_arg1 = const_arg;
3777 break;
3778 case 2:
3779 const_arg2 = const_arg;
3780 break;
3783 /* Pick the least expensive of the folded argument and an
3784 equivalent constant argument. */
3785 if (const_arg == 0 || const_arg == folded_arg
3786 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3787 cheap_arg = folded_arg, expensive_arg = const_arg;
3788 else
3789 cheap_arg = const_arg, expensive_arg = folded_arg;
3791 /* Try to replace the operand with the cheapest of the two
3792 possibilities. If it doesn't work and this is either of the first
3793 two operands of a commutative operation, try swapping them.
3794 If THAT fails, try the more expensive, provided it is cheaper
3795 than what is already there. */
3797 if (cheap_arg == XEXP (x, i))
3798 continue;
3800 if (insn == 0 && ! copied)
3802 x = copy_rtx (x);
3803 copied = 1;
3806 /* Order the replacements from cheapest to most expensive. */
3807 replacements[0] = cheap_arg;
3808 replacements[1] = expensive_arg;
3810 for (j = 0; j < 2 && replacements[j]; j++)
3812 int old_cost = COST_IN (XEXP (x, i), code);
3813 int new_cost = COST_IN (replacements[j], code);
3815 /* Stop if what existed before was cheaper. Prefer constants
3816 in the case of a tie. */
3817 if (new_cost > old_cost
3818 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3819 break;
3821 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3822 break;
3824 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c'
3825 || code == LTGT || code == UNEQ || code == ORDERED
3826 || code == UNORDERED)
3828 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3829 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3831 if (apply_change_group ())
3833 /* Swap them back to be invalid so that this loop can
3834 continue and flag them to be swapped back later. */
3835 rtx tem;
3837 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3838 XEXP (x, 1) = tem;
3839 must_swap = 1;
3840 break;
3846 else
3848 if (fmt[i] == 'E')
3849 /* Don't try to fold inside of a vector of expressions.
3850 Doing nothing is harmless. */
3854 /* If a commutative operation, place a constant integer as the second
3855 operand unless the first operand is also a constant integer. Otherwise,
3856 place any constant second unless the first operand is also a constant. */
3858 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c'
3859 || code == LTGT || code == UNEQ || code == ORDERED
3860 || code == UNORDERED)
3862 if (must_swap || (const_arg0
3863 && (const_arg1 == 0
3864 || (GET_CODE (const_arg0) == CONST_INT
3865 && GET_CODE (const_arg1) != CONST_INT))))
3867 rtx tem = XEXP (x, 0);
3869 if (insn == 0 && ! copied)
3871 x = copy_rtx (x);
3872 copied = 1;
3875 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3876 validate_change (insn, &XEXP (x, 1), tem, 1);
3877 if (apply_change_group ())
3879 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3880 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3885 /* If X is an arithmetic operation, see if we can simplify it. */
3887 switch (GET_RTX_CLASS (code))
3889 case '1':
3891 int is_const = 0;
3893 /* We can't simplify extension ops unless we know the
3894 original mode. */
3895 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3896 && mode_arg0 == VOIDmode)
3897 break;
3899 /* If we had a CONST, strip it off and put it back later if we
3900 fold. */
3901 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3902 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3904 new = simplify_unary_operation (code, mode,
3905 const_arg0 ? const_arg0 : folded_arg0,
3906 mode_arg0);
3907 if (new != 0 && is_const)
3908 new = gen_rtx_CONST (mode, new);
3910 break;
3912 case '<':
3913 /* See what items are actually being compared and set FOLDED_ARG[01]
3914 to those values and CODE to the actual comparison code. If any are
3915 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3916 do anything if both operands are already known to be constant. */
3918 if (const_arg0 == 0 || const_arg1 == 0)
3920 struct table_elt *p0, *p1;
3921 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3922 enum machine_mode mode_arg1;
3924 #ifdef FLOAT_STORE_FLAG_VALUE
3925 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3927 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3928 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3929 false_rtx = CONST0_RTX (mode);
3931 #endif
3933 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3934 &mode_arg0, &mode_arg1);
3935 const_arg0 = equiv_constant (folded_arg0);
3936 const_arg1 = equiv_constant (folded_arg1);
3938 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3939 what kinds of things are being compared, so we can't do
3940 anything with this comparison. */
3942 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3943 break;
3945 /* If we do not now have two constants being compared, see
3946 if we can nevertheless deduce some things about the
3947 comparison. */
3948 if (const_arg0 == 0 || const_arg1 == 0)
3950 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
3951 non-explicit constant? These aren't zero, but we
3952 don't know their sign. */
3953 if (const_arg1 == const0_rtx
3954 && (NONZERO_BASE_PLUS_P (folded_arg0)
3955 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
3956 come out as 0. */
3957 || GET_CODE (folded_arg0) == SYMBOL_REF
3958 #endif
3959 || GET_CODE (folded_arg0) == LABEL_REF
3960 || GET_CODE (folded_arg0) == CONST))
3962 if (code == EQ)
3963 return false_rtx;
3964 else if (code == NE)
3965 return true_rtx;
3968 /* See if the two operands are the same. */
3970 if (folded_arg0 == folded_arg1
3971 || (GET_CODE (folded_arg0) == REG
3972 && GET_CODE (folded_arg1) == REG
3973 && (REG_QTY (REGNO (folded_arg0))
3974 == REG_QTY (REGNO (folded_arg1))))
3975 || ((p0 = lookup (folded_arg0,
3976 (safe_hash (folded_arg0, mode_arg0)
3977 & HASH_MASK), mode_arg0))
3978 && (p1 = lookup (folded_arg1,
3979 (safe_hash (folded_arg1, mode_arg0)
3980 & HASH_MASK), mode_arg0))
3981 && p0->first_same_value == p1->first_same_value))
3983 /* Sadly two equal NaNs are not equivalent. */
3984 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3985 || ! FLOAT_MODE_P (mode_arg0)
3986 || flag_unsafe_math_optimizations)
3987 return ((code == EQ || code == LE || code == GE
3988 || code == LEU || code == GEU || code == UNEQ
3989 || code == UNLE || code == UNGE || code == ORDERED)
3990 ? true_rtx : false_rtx);
3991 /* Take care for the FP compares we can resolve. */
3992 if (code == UNEQ || code == UNLE || code == UNGE)
3993 return true_rtx;
3994 if (code == LTGT || code == LT || code == GT)
3995 return false_rtx;
3998 /* If FOLDED_ARG0 is a register, see if the comparison we are
3999 doing now is either the same as we did before or the reverse
4000 (we only check the reverse if not floating-point). */
4001 else if (GET_CODE (folded_arg0) == REG)
4003 int qty = REG_QTY (REGNO (folded_arg0));
4005 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4007 struct qty_table_elem *ent = &qty_table[qty];
4009 if ((comparison_dominates_p (ent->comparison_code, code)
4010 || (! FLOAT_MODE_P (mode_arg0)
4011 && comparison_dominates_p (ent->comparison_code,
4012 reverse_condition (code))))
4013 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4014 || (const_arg1
4015 && rtx_equal_p (ent->comparison_const,
4016 const_arg1))
4017 || (GET_CODE (folded_arg1) == REG
4018 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4019 return (comparison_dominates_p (ent->comparison_code, code)
4020 ? true_rtx : false_rtx);
4026 /* If we are comparing against zero, see if the first operand is
4027 equivalent to an IOR with a constant. If so, we may be able to
4028 determine the result of this comparison. */
4030 if (const_arg1 == const0_rtx)
4032 rtx y = lookup_as_function (folded_arg0, IOR);
4033 rtx inner_const;
4035 if (y != 0
4036 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4037 && GET_CODE (inner_const) == CONST_INT
4038 && INTVAL (inner_const) != 0)
4040 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4041 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4042 && (INTVAL (inner_const)
4043 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4044 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4046 #ifdef FLOAT_STORE_FLAG_VALUE
4047 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4049 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4050 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4051 false_rtx = CONST0_RTX (mode);
4053 #endif
4055 switch (code)
4057 case EQ:
4058 return false_rtx;
4059 case NE:
4060 return true_rtx;
4061 case LT: case LE:
4062 if (has_sign)
4063 return true_rtx;
4064 break;
4065 case GT: case GE:
4066 if (has_sign)
4067 return false_rtx;
4068 break;
4069 default:
4070 break;
4075 new = simplify_relational_operation (code,
4076 (mode_arg0 != VOIDmode
4077 ? mode_arg0
4078 : (GET_MODE (const_arg0
4079 ? const_arg0
4080 : folded_arg0)
4081 != VOIDmode)
4082 ? GET_MODE (const_arg0
4083 ? const_arg0
4084 : folded_arg0)
4085 : GET_MODE (const_arg1
4086 ? const_arg1
4087 : folded_arg1)),
4088 const_arg0 ? const_arg0 : folded_arg0,
4089 const_arg1 ? const_arg1 : folded_arg1);
4090 #ifdef FLOAT_STORE_FLAG_VALUE
4091 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4093 if (new == const0_rtx)
4094 new = CONST0_RTX (mode);
4095 else
4096 new = (CONST_DOUBLE_FROM_REAL_VALUE
4097 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4099 #endif
4100 break;
4102 case '2':
4103 case 'c':
4104 switch (code)
4106 case PLUS:
4107 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4108 with that LABEL_REF as its second operand. If so, the result is
4109 the first operand of that MINUS. This handles switches with an
4110 ADDR_DIFF_VEC table. */
4111 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4113 rtx y
4114 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4115 : lookup_as_function (folded_arg0, MINUS);
4117 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4118 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4119 return XEXP (y, 0);
4121 /* Now try for a CONST of a MINUS like the above. */
4122 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4123 : lookup_as_function (folded_arg0, CONST))) != 0
4124 && GET_CODE (XEXP (y, 0)) == MINUS
4125 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4126 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4127 return XEXP (XEXP (y, 0), 0);
4130 /* Likewise if the operands are in the other order. */
4131 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4133 rtx y
4134 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4135 : lookup_as_function (folded_arg1, MINUS);
4137 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4138 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4139 return XEXP (y, 0);
4141 /* Now try for a CONST of a MINUS like the above. */
4142 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4143 : lookup_as_function (folded_arg1, CONST))) != 0
4144 && GET_CODE (XEXP (y, 0)) == MINUS
4145 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4146 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4147 return XEXP (XEXP (y, 0), 0);
4150 /* If second operand is a register equivalent to a negative
4151 CONST_INT, see if we can find a register equivalent to the
4152 positive constant. Make a MINUS if so. Don't do this for
4153 a non-negative constant since we might then alternate between
4154 choosing positive and negative constants. Having the positive
4155 constant previously-used is the more common case. Be sure
4156 the resulting constant is non-negative; if const_arg1 were
4157 the smallest negative number this would overflow: depending
4158 on the mode, this would either just be the same value (and
4159 hence not save anything) or be incorrect. */
4160 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4161 && INTVAL (const_arg1) < 0
4162 /* This used to test
4164 -INTVAL (const_arg1) >= 0
4166 But The Sun V5.0 compilers mis-compiled that test. So
4167 instead we test for the problematic value in a more direct
4168 manner and hope the Sun compilers get it correct. */
4169 && INTVAL (const_arg1) !=
4170 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4171 && GET_CODE (folded_arg1) == REG)
4173 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4174 struct table_elt *p
4175 = lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
4176 mode);
4178 if (p)
4179 for (p = p->first_same_value; p; p = p->next_same_value)
4180 if (GET_CODE (p->exp) == REG)
4181 return simplify_gen_binary (MINUS, mode, folded_arg0,
4182 canon_reg (p->exp, NULL_RTX));
4184 goto from_plus;
4186 case MINUS:
4187 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4188 If so, produce (PLUS Z C2-C). */
4189 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4191 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4192 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4193 return fold_rtx (plus_constant (copy_rtx (y),
4194 -INTVAL (const_arg1)),
4195 NULL_RTX);
4198 /* Fall through. */
4200 from_plus:
4201 case SMIN: case SMAX: case UMIN: case UMAX:
4202 case IOR: case AND: case XOR:
4203 case MULT: case DIV: case UDIV:
4204 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4205 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4206 is known to be of similar form, we may be able to replace the
4207 operation with a combined operation. This may eliminate the
4208 intermediate operation if every use is simplified in this way.
4209 Note that the similar optimization done by combine.c only works
4210 if the intermediate operation's result has only one reference. */
4212 if (GET_CODE (folded_arg0) == REG
4213 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4215 int is_shift
4216 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4217 rtx y = lookup_as_function (folded_arg0, code);
4218 rtx inner_const;
4219 enum rtx_code associate_code;
4220 rtx new_const;
4222 if (y == 0
4223 || 0 == (inner_const
4224 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4225 || GET_CODE (inner_const) != CONST_INT
4226 /* If we have compiled a statement like
4227 "if (x == (x & mask1))", and now are looking at
4228 "x & mask2", we will have a case where the first operand
4229 of Y is the same as our first operand. Unless we detect
4230 this case, an infinite loop will result. */
4231 || XEXP (y, 0) == folded_arg0)
4232 break;
4234 /* Don't associate these operations if they are a PLUS with the
4235 same constant and it is a power of two. These might be doable
4236 with a pre- or post-increment. Similarly for two subtracts of
4237 identical powers of two with post decrement. */
4239 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
4240 && ((HAVE_PRE_INCREMENT
4241 && exact_log2 (INTVAL (const_arg1)) >= 0)
4242 || (HAVE_POST_INCREMENT
4243 && exact_log2 (INTVAL (const_arg1)) >= 0)
4244 || (HAVE_PRE_DECREMENT
4245 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4246 || (HAVE_POST_DECREMENT
4247 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4248 break;
4250 /* Compute the code used to compose the constants. For example,
4251 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
4253 associate_code
4254 = (code == MULT || code == DIV || code == UDIV ? MULT
4255 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
4257 new_const = simplify_binary_operation (associate_code, mode,
4258 const_arg1, inner_const);
4260 if (new_const == 0)
4261 break;
4263 /* If we are associating shift operations, don't let this
4264 produce a shift of the size of the object or larger.
4265 This could occur when we follow a sign-extend by a right
4266 shift on a machine that does a sign-extend as a pair
4267 of shifts. */
4269 if (is_shift && GET_CODE (new_const) == CONST_INT
4270 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4272 /* As an exception, we can turn an ASHIFTRT of this
4273 form into a shift of the number of bits - 1. */
4274 if (code == ASHIFTRT)
4275 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4276 else
4277 break;
4280 y = copy_rtx (XEXP (y, 0));
4282 /* If Y contains our first operand (the most common way this
4283 can happen is if Y is a MEM), we would do into an infinite
4284 loop if we tried to fold it. So don't in that case. */
4286 if (! reg_mentioned_p (folded_arg0, y))
4287 y = fold_rtx (y, insn);
4289 return simplify_gen_binary (code, mode, y, new_const);
4291 break;
4293 default:
4294 break;
4297 new = simplify_binary_operation (code, mode,
4298 const_arg0 ? const_arg0 : folded_arg0,
4299 const_arg1 ? const_arg1 : folded_arg1);
4300 break;
4302 case 'o':
4303 /* (lo_sum (high X) X) is simply X. */
4304 if (code == LO_SUM && const_arg0 != 0
4305 && GET_CODE (const_arg0) == HIGH
4306 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4307 return const_arg1;
4308 break;
4310 case '3':
4311 case 'b':
4312 new = simplify_ternary_operation (code, mode, mode_arg0,
4313 const_arg0 ? const_arg0 : folded_arg0,
4314 const_arg1 ? const_arg1 : folded_arg1,
4315 const_arg2 ? const_arg2 : XEXP (x, 2));
4316 break;
4318 case 'x':
4319 /* Always eliminate CONSTANT_P_RTX at this stage. */
4320 if (code == CONSTANT_P_RTX)
4321 return (const_arg0 ? const1_rtx : const0_rtx);
4322 break;
4325 return new ? new : x;
4328 /* Return a constant value currently equivalent to X.
4329 Return 0 if we don't know one. */
4331 static rtx
4332 equiv_constant (x)
4333 rtx x;
4335 if (GET_CODE (x) == REG
4336 && REGNO_QTY_VALID_P (REGNO (x)))
4338 int x_q = REG_QTY (REGNO (x));
4339 struct qty_table_elem *x_ent = &qty_table[x_q];
4341 if (x_ent->const_rtx)
4342 x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
4345 if (x == 0 || CONSTANT_P (x))
4346 return x;
4348 /* If X is a MEM, try to fold it outside the context of any insn to see if
4349 it might be equivalent to a constant. That handles the case where it
4350 is a constant-pool reference. Then try to look it up in the hash table
4351 in case it is something whose value we have seen before. */
4353 if (GET_CODE (x) == MEM)
4355 struct table_elt *elt;
4357 x = fold_rtx (x, NULL_RTX);
4358 if (CONSTANT_P (x))
4359 return x;
4361 elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4362 if (elt == 0)
4363 return 0;
4365 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4366 if (elt->is_const && CONSTANT_P (elt->exp))
4367 return elt->exp;
4370 return 0;
4373 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4374 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4375 least-significant part of X.
4376 MODE specifies how big a part of X to return.
4378 If the requested operation cannot be done, 0 is returned.
4380 This is similar to gen_lowpart in emit-rtl.c. */
4383 gen_lowpart_if_possible (mode, x)
4384 enum machine_mode mode;
4385 rtx x;
4387 rtx result = gen_lowpart_common (mode, x);
4389 if (result)
4390 return result;
4391 else if (GET_CODE (x) == MEM)
4393 /* This is the only other case we handle. */
4394 int offset = 0;
4395 rtx new;
4397 if (WORDS_BIG_ENDIAN)
4398 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4399 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4400 if (BYTES_BIG_ENDIAN)
4401 /* Adjust the address so that the address-after-the-data is
4402 unchanged. */
4403 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4404 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4406 new = adjust_address_nv (x, mode, offset);
4407 if (! memory_address_p (mode, XEXP (new, 0)))
4408 return 0;
4410 return new;
4412 else
4413 return 0;
4416 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
4417 branch. It will be zero if not.
4419 In certain cases, this can cause us to add an equivalence. For example,
4420 if we are following the taken case of
4421 if (i == 2)
4422 we can add the fact that `i' and '2' are now equivalent.
4424 In any case, we can record that this comparison was passed. If the same
4425 comparison is seen later, we will know its value. */
4427 static void
4428 record_jump_equiv (insn, taken)
4429 rtx insn;
4430 int taken;
4432 int cond_known_true;
4433 rtx op0, op1;
4434 rtx set;
4435 enum machine_mode mode, mode0, mode1;
4436 int reversed_nonequality = 0;
4437 enum rtx_code code;
4439 /* Ensure this is the right kind of insn. */
4440 if (! any_condjump_p (insn))
4441 return;
4442 set = pc_set (insn);
4444 /* See if this jump condition is known true or false. */
4445 if (taken)
4446 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4447 else
4448 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4450 /* Get the type of comparison being done and the operands being compared.
4451 If we had to reverse a non-equality condition, record that fact so we
4452 know that it isn't valid for floating-point. */
4453 code = GET_CODE (XEXP (SET_SRC (set), 0));
4454 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4455 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4457 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4458 if (! cond_known_true)
4460 code = reversed_comparison_code_parts (code, op0, op1, insn);
4462 /* Don't remember if we can't find the inverse. */
4463 if (code == UNKNOWN)
4464 return;
4467 /* The mode is the mode of the non-constant. */
4468 mode = mode0;
4469 if (mode1 != VOIDmode)
4470 mode = mode1;
4472 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4475 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4476 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4477 Make any useful entries we can with that information. Called from
4478 above function and called recursively. */
4480 static void
4481 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
4482 enum rtx_code code;
4483 enum machine_mode mode;
4484 rtx op0, op1;
4485 int reversed_nonequality;
4487 unsigned op0_hash, op1_hash;
4488 int op0_in_memory, op1_in_memory;
4489 struct table_elt *op0_elt, *op1_elt;
4491 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4492 we know that they are also equal in the smaller mode (this is also
4493 true for all smaller modes whether or not there is a SUBREG, but
4494 is not worth testing for with no SUBREG). */
4496 /* Note that GET_MODE (op0) may not equal MODE. */
4497 if (code == EQ && GET_CODE (op0) == SUBREG
4498 && (GET_MODE_SIZE (GET_MODE (op0))
4499 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4501 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4502 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4504 record_jump_cond (code, mode, SUBREG_REG (op0),
4505 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4506 reversed_nonequality);
4509 if (code == EQ && GET_CODE (op1) == SUBREG
4510 && (GET_MODE_SIZE (GET_MODE (op1))
4511 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4513 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4514 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4516 record_jump_cond (code, mode, SUBREG_REG (op1),
4517 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4518 reversed_nonequality);
4521 /* Similarly, if this is an NE comparison, and either is a SUBREG
4522 making a smaller mode, we know the whole thing is also NE. */
4524 /* Note that GET_MODE (op0) may not equal MODE;
4525 if we test MODE instead, we can get an infinite recursion
4526 alternating between two modes each wider than MODE. */
4528 if (code == NE && GET_CODE (op0) == SUBREG
4529 && subreg_lowpart_p (op0)
4530 && (GET_MODE_SIZE (GET_MODE (op0))
4531 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4533 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4534 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4536 record_jump_cond (code, mode, SUBREG_REG (op0),
4537 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4538 reversed_nonequality);
4541 if (code == NE && GET_CODE (op1) == SUBREG
4542 && subreg_lowpart_p (op1)
4543 && (GET_MODE_SIZE (GET_MODE (op1))
4544 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4546 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4547 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4549 record_jump_cond (code, mode, SUBREG_REG (op1),
4550 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4551 reversed_nonequality);
4554 /* Hash both operands. */
4556 do_not_record = 0;
4557 hash_arg_in_memory = 0;
4558 op0_hash = HASH (op0, mode);
4559 op0_in_memory = hash_arg_in_memory;
4561 if (do_not_record)
4562 return;
4564 do_not_record = 0;
4565 hash_arg_in_memory = 0;
4566 op1_hash = HASH (op1, mode);
4567 op1_in_memory = hash_arg_in_memory;
4569 if (do_not_record)
4570 return;
4572 /* Look up both operands. */
4573 op0_elt = lookup (op0, op0_hash, mode);
4574 op1_elt = lookup (op1, op1_hash, mode);
4576 /* If both operands are already equivalent or if they are not in the
4577 table but are identical, do nothing. */
4578 if ((op0_elt != 0 && op1_elt != 0
4579 && op0_elt->first_same_value == op1_elt->first_same_value)
4580 || op0 == op1 || rtx_equal_p (op0, op1))
4581 return;
4583 /* If we aren't setting two things equal all we can do is save this
4584 comparison. Similarly if this is floating-point. In the latter
4585 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4586 If we record the equality, we might inadvertently delete code
4587 whose intent was to change -0 to +0. */
4589 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4591 struct qty_table_elem *ent;
4592 int qty;
4594 /* If we reversed a floating-point comparison, if OP0 is not a
4595 register, or if OP1 is neither a register or constant, we can't
4596 do anything. */
4598 if (GET_CODE (op1) != REG)
4599 op1 = equiv_constant (op1);
4601 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4602 || GET_CODE (op0) != REG || op1 == 0)
4603 return;
4605 /* Put OP0 in the hash table if it isn't already. This gives it a
4606 new quantity number. */
4607 if (op0_elt == 0)
4609 if (insert_regs (op0, NULL, 0))
4611 rehash_using_reg (op0);
4612 op0_hash = HASH (op0, mode);
4614 /* If OP0 is contained in OP1, this changes its hash code
4615 as well. Faster to rehash than to check, except
4616 for the simple case of a constant. */
4617 if (! CONSTANT_P (op1))
4618 op1_hash = HASH (op1,mode);
4621 op0_elt = insert (op0, NULL, op0_hash, mode);
4622 op0_elt->in_memory = op0_in_memory;
4625 qty = REG_QTY (REGNO (op0));
4626 ent = &qty_table[qty];
4628 ent->comparison_code = code;
4629 if (GET_CODE (op1) == REG)
4631 /* Look it up again--in case op0 and op1 are the same. */
4632 op1_elt = lookup (op1, op1_hash, mode);
4634 /* Put OP1 in the hash table so it gets a new quantity number. */
4635 if (op1_elt == 0)
4637 if (insert_regs (op1, NULL, 0))
4639 rehash_using_reg (op1);
4640 op1_hash = HASH (op1, mode);
4643 op1_elt = insert (op1, NULL, op1_hash, mode);
4644 op1_elt->in_memory = op1_in_memory;
4647 ent->comparison_const = NULL_RTX;
4648 ent->comparison_qty = REG_QTY (REGNO (op1));
4650 else
4652 ent->comparison_const = op1;
4653 ent->comparison_qty = -1;
4656 return;
4659 /* If either side is still missing an equivalence, make it now,
4660 then merge the equivalences. */
4662 if (op0_elt == 0)
4664 if (insert_regs (op0, NULL, 0))
4666 rehash_using_reg (op0);
4667 op0_hash = HASH (op0, mode);
4670 op0_elt = insert (op0, NULL, op0_hash, mode);
4671 op0_elt->in_memory = op0_in_memory;
4674 if (op1_elt == 0)
4676 if (insert_regs (op1, NULL, 0))
4678 rehash_using_reg (op1);
4679 op1_hash = HASH (op1, mode);
4682 op1_elt = insert (op1, NULL, op1_hash, mode);
4683 op1_elt->in_memory = op1_in_memory;
4686 merge_equiv_classes (op0_elt, op1_elt);
4687 last_jump_equiv_class = op0_elt;
4690 /* CSE processing for one instruction.
4691 First simplify sources and addresses of all assignments
4692 in the instruction, using previously-computed equivalents values.
4693 Then install the new sources and destinations in the table
4694 of available values.
4696 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4697 the insn. It means that INSN is inside libcall block. In this
4698 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4700 /* Data on one SET contained in the instruction. */
4702 struct set
4704 /* The SET rtx itself. */
4705 rtx rtl;
4706 /* The SET_SRC of the rtx (the original value, if it is changing). */
4707 rtx src;
4708 /* The hash-table element for the SET_SRC of the SET. */
4709 struct table_elt *src_elt;
4710 /* Hash value for the SET_SRC. */
4711 unsigned src_hash;
4712 /* Hash value for the SET_DEST. */
4713 unsigned dest_hash;
4714 /* The SET_DEST, with SUBREG, etc., stripped. */
4715 rtx inner_dest;
4716 /* Nonzero if the SET_SRC is in memory. */
4717 char src_in_memory;
4718 /* Nonzero if the SET_SRC contains something
4719 whose value cannot be predicted and understood. */
4720 char src_volatile;
4721 /* Original machine mode, in case it becomes a CONST_INT. */
4722 enum machine_mode mode;
4723 /* A constant equivalent for SET_SRC, if any. */
4724 rtx src_const;
4725 /* Original SET_SRC value used for libcall notes. */
4726 rtx orig_src;
4727 /* Hash value of constant equivalent for SET_SRC. */
4728 unsigned src_const_hash;
4729 /* Table entry for constant equivalent for SET_SRC, if any. */
4730 struct table_elt *src_const_elt;
4733 static void
4734 cse_insn (insn, libcall_insn)
4735 rtx insn;
4736 rtx libcall_insn;
4738 rtx x = PATTERN (insn);
4739 int i;
4740 rtx tem;
4741 int n_sets = 0;
4743 #ifdef HAVE_cc0
4744 /* Records what this insn does to set CC0. */
4745 rtx this_insn_cc0 = 0;
4746 enum machine_mode this_insn_cc0_mode = VOIDmode;
4747 #endif
4749 rtx src_eqv = 0;
4750 struct table_elt *src_eqv_elt = 0;
4751 int src_eqv_volatile = 0;
4752 int src_eqv_in_memory = 0;
4753 unsigned src_eqv_hash = 0;
4755 struct set *sets = (struct set *) 0;
4757 this_insn = insn;
4759 /* Find all the SETs and CLOBBERs in this instruction.
4760 Record all the SETs in the array `set' and count them.
4761 Also determine whether there is a CLOBBER that invalidates
4762 all memory references, or all references at varying addresses. */
4764 if (GET_CODE (insn) == CALL_INSN)
4766 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4768 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4769 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4770 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4774 if (GET_CODE (x) == SET)
4776 sets = (struct set *) alloca (sizeof (struct set));
4777 sets[0].rtl = x;
4779 /* Ignore SETs that are unconditional jumps.
4780 They never need cse processing, so this does not hurt.
4781 The reason is not efficiency but rather
4782 so that we can test at the end for instructions
4783 that have been simplified to unconditional jumps
4784 and not be misled by unchanged instructions
4785 that were unconditional jumps to begin with. */
4786 if (SET_DEST (x) == pc_rtx
4787 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4790 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4791 The hard function value register is used only once, to copy to
4792 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4793 Ensure we invalidate the destination register. On the 80386 no
4794 other code would invalidate it since it is a fixed_reg.
4795 We need not check the return of apply_change_group; see canon_reg. */
4797 else if (GET_CODE (SET_SRC (x)) == CALL)
4799 canon_reg (SET_SRC (x), insn);
4800 apply_change_group ();
4801 fold_rtx (SET_SRC (x), insn);
4802 invalidate (SET_DEST (x), VOIDmode);
4804 else
4805 n_sets = 1;
4807 else if (GET_CODE (x) == PARALLEL)
4809 int lim = XVECLEN (x, 0);
4811 sets = (struct set *) alloca (lim * sizeof (struct set));
4813 /* Find all regs explicitly clobbered in this insn,
4814 and ensure they are not replaced with any other regs
4815 elsewhere in this insn.
4816 When a reg that is clobbered is also used for input,
4817 we should presume that that is for a reason,
4818 and we should not substitute some other register
4819 which is not supposed to be clobbered.
4820 Therefore, this loop cannot be merged into the one below
4821 because a CALL may precede a CLOBBER and refer to the
4822 value clobbered. We must not let a canonicalization do
4823 anything in that case. */
4824 for (i = 0; i < lim; i++)
4826 rtx y = XVECEXP (x, 0, i);
4827 if (GET_CODE (y) == CLOBBER)
4829 rtx clobbered = XEXP (y, 0);
4831 if (GET_CODE (clobbered) == REG
4832 || GET_CODE (clobbered) == SUBREG)
4833 invalidate (clobbered, VOIDmode);
4834 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4835 || GET_CODE (clobbered) == ZERO_EXTRACT)
4836 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4840 for (i = 0; i < lim; i++)
4842 rtx y = XVECEXP (x, 0, i);
4843 if (GET_CODE (y) == SET)
4845 /* As above, we ignore unconditional jumps and call-insns and
4846 ignore the result of apply_change_group. */
4847 if (GET_CODE (SET_SRC (y)) == CALL)
4849 canon_reg (SET_SRC (y), insn);
4850 apply_change_group ();
4851 fold_rtx (SET_SRC (y), insn);
4852 invalidate (SET_DEST (y), VOIDmode);
4854 else if (SET_DEST (y) == pc_rtx
4855 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4857 else
4858 sets[n_sets++].rtl = y;
4860 else if (GET_CODE (y) == CLOBBER)
4862 /* If we clobber memory, canon the address.
4863 This does nothing when a register is clobbered
4864 because we have already invalidated the reg. */
4865 if (GET_CODE (XEXP (y, 0)) == MEM)
4866 canon_reg (XEXP (y, 0), NULL_RTX);
4868 else if (GET_CODE (y) == USE
4869 && ! (GET_CODE (XEXP (y, 0)) == REG
4870 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4871 canon_reg (y, NULL_RTX);
4872 else if (GET_CODE (y) == CALL)
4874 /* The result of apply_change_group can be ignored; see
4875 canon_reg. */
4876 canon_reg (y, insn);
4877 apply_change_group ();
4878 fold_rtx (y, insn);
4882 else if (GET_CODE (x) == CLOBBER)
4884 if (GET_CODE (XEXP (x, 0)) == MEM)
4885 canon_reg (XEXP (x, 0), NULL_RTX);
4888 /* Canonicalize a USE of a pseudo register or memory location. */
4889 else if (GET_CODE (x) == USE
4890 && ! (GET_CODE (XEXP (x, 0)) == REG
4891 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4892 canon_reg (XEXP (x, 0), NULL_RTX);
4893 else if (GET_CODE (x) == CALL)
4895 /* The result of apply_change_group can be ignored; see canon_reg. */
4896 canon_reg (x, insn);
4897 apply_change_group ();
4898 fold_rtx (x, insn);
4901 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4902 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4903 is handled specially for this case, and if it isn't set, then there will
4904 be no equivalence for the destination. */
4905 if (n_sets == 1 && REG_NOTES (insn) != 0
4906 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4907 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4908 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4909 src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
4911 /* Canonicalize sources and addresses of destinations.
4912 We do this in a separate pass to avoid problems when a MATCH_DUP is
4913 present in the insn pattern. In that case, we want to ensure that
4914 we don't break the duplicate nature of the pattern. So we will replace
4915 both operands at the same time. Otherwise, we would fail to find an
4916 equivalent substitution in the loop calling validate_change below.
4918 We used to suppress canonicalization of DEST if it appears in SRC,
4919 but we don't do this any more. */
4921 for (i = 0; i < n_sets; i++)
4923 rtx dest = SET_DEST (sets[i].rtl);
4924 rtx src = SET_SRC (sets[i].rtl);
4925 rtx new = canon_reg (src, insn);
4926 int insn_code;
4928 sets[i].orig_src = src;
4929 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
4930 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4931 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4932 || (insn_code = recog_memoized (insn)) < 0
4933 || insn_data[insn_code].n_dups > 0)
4934 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4935 else
4936 SET_SRC (sets[i].rtl) = new;
4938 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
4940 validate_change (insn, &XEXP (dest, 1),
4941 canon_reg (XEXP (dest, 1), insn), 1);
4942 validate_change (insn, &XEXP (dest, 2),
4943 canon_reg (XEXP (dest, 2), insn), 1);
4946 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
4947 || GET_CODE (dest) == ZERO_EXTRACT
4948 || GET_CODE (dest) == SIGN_EXTRACT)
4949 dest = XEXP (dest, 0);
4951 if (GET_CODE (dest) == MEM)
4952 canon_reg (dest, insn);
4955 /* Now that we have done all the replacements, we can apply the change
4956 group and see if they all work. Note that this will cause some
4957 canonicalizations that would have worked individually not to be applied
4958 because some other canonicalization didn't work, but this should not
4959 occur often.
4961 The result of apply_change_group can be ignored; see canon_reg. */
4963 apply_change_group ();
4965 /* Set sets[i].src_elt to the class each source belongs to.
4966 Detect assignments from or to volatile things
4967 and set set[i] to zero so they will be ignored
4968 in the rest of this function.
4970 Nothing in this loop changes the hash table or the register chains. */
4972 for (i = 0; i < n_sets; i++)
4974 rtx src, dest;
4975 rtx src_folded;
4976 struct table_elt *elt = 0, *p;
4977 enum machine_mode mode;
4978 rtx src_eqv_here;
4979 rtx src_const = 0;
4980 rtx src_related = 0;
4981 struct table_elt *src_const_elt = 0;
4982 int src_cost = MAX_COST;
4983 int src_eqv_cost = MAX_COST;
4984 int src_folded_cost = MAX_COST;
4985 int src_related_cost = MAX_COST;
4986 int src_elt_cost = MAX_COST;
4987 int src_regcost = MAX_COST;
4988 int src_eqv_regcost = MAX_COST;
4989 int src_folded_regcost = MAX_COST;
4990 int src_related_regcost = MAX_COST;
4991 int src_elt_regcost = MAX_COST;
4992 /* Set non-zero if we need to call force_const_mem on with the
4993 contents of src_folded before using it. */
4994 int src_folded_force_flag = 0;
4996 dest = SET_DEST (sets[i].rtl);
4997 src = SET_SRC (sets[i].rtl);
4999 /* If SRC is a constant that has no machine mode,
5000 hash it with the destination's machine mode.
5001 This way we can keep different modes separate. */
5003 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5004 sets[i].mode = mode;
5006 if (src_eqv)
5008 enum machine_mode eqvmode = mode;
5009 if (GET_CODE (dest) == STRICT_LOW_PART)
5010 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5011 do_not_record = 0;
5012 hash_arg_in_memory = 0;
5013 src_eqv = fold_rtx (src_eqv, insn);
5014 src_eqv_hash = HASH (src_eqv, eqvmode);
5016 /* Find the equivalence class for the equivalent expression. */
5018 if (!do_not_record)
5019 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
5021 src_eqv_volatile = do_not_record;
5022 src_eqv_in_memory = hash_arg_in_memory;
5025 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5026 value of the INNER register, not the destination. So it is not
5027 a valid substitution for the source. But save it for later. */
5028 if (GET_CODE (dest) == STRICT_LOW_PART)
5029 src_eqv_here = 0;
5030 else
5031 src_eqv_here = src_eqv;
5033 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5034 simplified result, which may not necessarily be valid. */
5035 src_folded = fold_rtx (src, insn);
5037 #if 0
5038 /* ??? This caused bad code to be generated for the m68k port with -O2.
5039 Suppose src is (CONST_INT -1), and that after truncation src_folded
5040 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5041 At the end we will add src and src_const to the same equivalence
5042 class. We now have 3 and -1 on the same equivalence class. This
5043 causes later instructions to be mis-optimized. */
5044 /* If storing a constant in a bitfield, pre-truncate the constant
5045 so we will be able to record it later. */
5046 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5047 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5049 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5051 if (GET_CODE (src) == CONST_INT
5052 && GET_CODE (width) == CONST_INT
5053 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5054 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5055 src_folded
5056 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5057 << INTVAL (width)) - 1));
5059 #endif
5061 /* Compute SRC's hash code, and also notice if it
5062 should not be recorded at all. In that case,
5063 prevent any further processing of this assignment. */
5064 do_not_record = 0;
5065 hash_arg_in_memory = 0;
5067 sets[i].src = src;
5068 sets[i].src_hash = HASH (src, mode);
5069 sets[i].src_volatile = do_not_record;
5070 sets[i].src_in_memory = hash_arg_in_memory;
5072 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5073 a pseudo, do not record SRC. Using SRC as a replacement for
5074 anything else will be incorrect in that situation. Note that
5075 this usually occurs only for stack slots, in which case all the
5076 RTL would be referring to SRC, so we don't lose any optimization
5077 opportunities by not having SRC in the hash table. */
5079 if (GET_CODE (src) == MEM
5080 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5081 && GET_CODE (dest) == REG
5082 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5083 sets[i].src_volatile = 1;
5085 #if 0
5086 /* It is no longer clear why we used to do this, but it doesn't
5087 appear to still be needed. So let's try without it since this
5088 code hurts cse'ing widened ops. */
5089 /* If source is a perverse subreg (such as QI treated as an SI),
5090 treat it as volatile. It may do the work of an SI in one context
5091 where the extra bits are not being used, but cannot replace an SI
5092 in general. */
5093 if (GET_CODE (src) == SUBREG
5094 && (GET_MODE_SIZE (GET_MODE (src))
5095 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5096 sets[i].src_volatile = 1;
5097 #endif
5099 /* Locate all possible equivalent forms for SRC. Try to replace
5100 SRC in the insn with each cheaper equivalent.
5102 We have the following types of equivalents: SRC itself, a folded
5103 version, a value given in a REG_EQUAL note, or a value related
5104 to a constant.
5106 Each of these equivalents may be part of an additional class
5107 of equivalents (if more than one is in the table, they must be in
5108 the same class; we check for this).
5110 If the source is volatile, we don't do any table lookups.
5112 We note any constant equivalent for possible later use in a
5113 REG_NOTE. */
5115 if (!sets[i].src_volatile)
5116 elt = lookup (src, sets[i].src_hash, mode);
5118 sets[i].src_elt = elt;
5120 if (elt && src_eqv_here && src_eqv_elt)
5122 if (elt->first_same_value != src_eqv_elt->first_same_value)
5124 /* The REG_EQUAL is indicating that two formerly distinct
5125 classes are now equivalent. So merge them. */
5126 merge_equiv_classes (elt, src_eqv_elt);
5127 src_eqv_hash = HASH (src_eqv, elt->mode);
5128 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5131 src_eqv_here = 0;
5134 else if (src_eqv_elt)
5135 elt = src_eqv_elt;
5137 /* Try to find a constant somewhere and record it in `src_const'.
5138 Record its table element, if any, in `src_const_elt'. Look in
5139 any known equivalences first. (If the constant is not in the
5140 table, also set `sets[i].src_const_hash'). */
5141 if (elt)
5142 for (p = elt->first_same_value; p; p = p->next_same_value)
5143 if (p->is_const)
5145 src_const = p->exp;
5146 src_const_elt = elt;
5147 break;
5150 if (src_const == 0
5151 && (CONSTANT_P (src_folded)
5152 /* Consider (minus (label_ref L1) (label_ref L2)) as
5153 "constant" here so we will record it. This allows us
5154 to fold switch statements when an ADDR_DIFF_VEC is used. */
5155 || (GET_CODE (src_folded) == MINUS
5156 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5157 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5158 src_const = src_folded, src_const_elt = elt;
5159 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5160 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5162 /* If we don't know if the constant is in the table, get its
5163 hash code and look it up. */
5164 if (src_const && src_const_elt == 0)
5166 sets[i].src_const_hash = HASH (src_const, mode);
5167 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5170 sets[i].src_const = src_const;
5171 sets[i].src_const_elt = src_const_elt;
5173 /* If the constant and our source are both in the table, mark them as
5174 equivalent. Otherwise, if a constant is in the table but the source
5175 isn't, set ELT to it. */
5176 if (src_const_elt && elt
5177 && src_const_elt->first_same_value != elt->first_same_value)
5178 merge_equiv_classes (elt, src_const_elt);
5179 else if (src_const_elt && elt == 0)
5180 elt = src_const_elt;
5182 /* See if there is a register linearly related to a constant
5183 equivalent of SRC. */
5184 if (src_const
5185 && (GET_CODE (src_const) == CONST
5186 || (src_const_elt && src_const_elt->related_value != 0)))
5188 src_related = use_related_value (src_const, src_const_elt);
5189 if (src_related)
5191 struct table_elt *src_related_elt
5192 = lookup (src_related, HASH (src_related, mode), mode);
5193 if (src_related_elt && elt)
5195 if (elt->first_same_value
5196 != src_related_elt->first_same_value)
5197 /* This can occur when we previously saw a CONST
5198 involving a SYMBOL_REF and then see the SYMBOL_REF
5199 twice. Merge the involved classes. */
5200 merge_equiv_classes (elt, src_related_elt);
5202 src_related = 0;
5203 src_related_elt = 0;
5205 else if (src_related_elt && elt == 0)
5206 elt = src_related_elt;
5210 /* See if we have a CONST_INT that is already in a register in a
5211 wider mode. */
5213 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5214 && GET_MODE_CLASS (mode) == MODE_INT
5215 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5217 enum machine_mode wider_mode;
5219 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5220 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5221 && src_related == 0;
5222 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5224 struct table_elt *const_elt
5225 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5227 if (const_elt == 0)
5228 continue;
5230 for (const_elt = const_elt->first_same_value;
5231 const_elt; const_elt = const_elt->next_same_value)
5232 if (GET_CODE (const_elt->exp) == REG)
5234 src_related = gen_lowpart_if_possible (mode,
5235 const_elt->exp);
5236 break;
5241 /* Another possibility is that we have an AND with a constant in
5242 a mode narrower than a word. If so, it might have been generated
5243 as part of an "if" which would narrow the AND. If we already
5244 have done the AND in a wider mode, we can use a SUBREG of that
5245 value. */
5247 if (flag_expensive_optimizations && ! src_related
5248 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5249 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5251 enum machine_mode tmode;
5252 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5254 for (tmode = GET_MODE_WIDER_MODE (mode);
5255 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5256 tmode = GET_MODE_WIDER_MODE (tmode))
5258 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
5259 struct table_elt *larger_elt;
5261 if (inner)
5263 PUT_MODE (new_and, tmode);
5264 XEXP (new_and, 0) = inner;
5265 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5266 if (larger_elt == 0)
5267 continue;
5269 for (larger_elt = larger_elt->first_same_value;
5270 larger_elt; larger_elt = larger_elt->next_same_value)
5271 if (GET_CODE (larger_elt->exp) == REG)
5273 src_related
5274 = gen_lowpart_if_possible (mode, larger_elt->exp);
5275 break;
5278 if (src_related)
5279 break;
5284 #ifdef LOAD_EXTEND_OP
5285 /* See if a MEM has already been loaded with a widening operation;
5286 if it has, we can use a subreg of that. Many CISC machines
5287 also have such operations, but this is only likely to be
5288 beneficial these machines. */
5290 if (flag_expensive_optimizations && src_related == 0
5291 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5292 && GET_MODE_CLASS (mode) == MODE_INT
5293 && GET_CODE (src) == MEM && ! do_not_record
5294 && LOAD_EXTEND_OP (mode) != NIL)
5296 enum machine_mode tmode;
5298 /* Set what we are trying to extend and the operation it might
5299 have been extended with. */
5300 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5301 XEXP (memory_extend_rtx, 0) = src;
5303 for (tmode = GET_MODE_WIDER_MODE (mode);
5304 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5305 tmode = GET_MODE_WIDER_MODE (tmode))
5307 struct table_elt *larger_elt;
5309 PUT_MODE (memory_extend_rtx, tmode);
5310 larger_elt = lookup (memory_extend_rtx,
5311 HASH (memory_extend_rtx, tmode), tmode);
5312 if (larger_elt == 0)
5313 continue;
5315 for (larger_elt = larger_elt->first_same_value;
5316 larger_elt; larger_elt = larger_elt->next_same_value)
5317 if (GET_CODE (larger_elt->exp) == REG)
5319 src_related = gen_lowpart_if_possible (mode,
5320 larger_elt->exp);
5321 break;
5324 if (src_related)
5325 break;
5328 #endif /* LOAD_EXTEND_OP */
5330 if (src == src_folded)
5331 src_folded = 0;
5333 /* At this point, ELT, if non-zero, points to a class of expressions
5334 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5335 and SRC_RELATED, if non-zero, each contain additional equivalent
5336 expressions. Prune these latter expressions by deleting expressions
5337 already in the equivalence class.
5339 Check for an equivalent identical to the destination. If found,
5340 this is the preferred equivalent since it will likely lead to
5341 elimination of the insn. Indicate this by placing it in
5342 `src_related'. */
5344 if (elt)
5345 elt = elt->first_same_value;
5346 for (p = elt; p; p = p->next_same_value)
5348 enum rtx_code code = GET_CODE (p->exp);
5350 /* If the expression is not valid, ignore it. Then we do not
5351 have to check for validity below. In most cases, we can use
5352 `rtx_equal_p', since canonicalization has already been done. */
5353 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
5354 continue;
5356 /* Also skip paradoxical subregs, unless that's what we're
5357 looking for. */
5358 if (code == SUBREG
5359 && (GET_MODE_SIZE (GET_MODE (p->exp))
5360 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5361 && ! (src != 0
5362 && GET_CODE (src) == SUBREG
5363 && GET_MODE (src) == GET_MODE (p->exp)
5364 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5365 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5366 continue;
5368 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5369 src = 0;
5370 else if (src_folded && GET_CODE (src_folded) == code
5371 && rtx_equal_p (src_folded, p->exp))
5372 src_folded = 0;
5373 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5374 && rtx_equal_p (src_eqv_here, p->exp))
5375 src_eqv_here = 0;
5376 else if (src_related && GET_CODE (src_related) == code
5377 && rtx_equal_p (src_related, p->exp))
5378 src_related = 0;
5380 /* This is the same as the destination of the insns, we want
5381 to prefer it. Copy it to src_related. The code below will
5382 then give it a negative cost. */
5383 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5384 src_related = dest;
5387 /* Find the cheapest valid equivalent, trying all the available
5388 possibilities. Prefer items not in the hash table to ones
5389 that are when they are equal cost. Note that we can never
5390 worsen an insn as the current contents will also succeed.
5391 If we find an equivalent identical to the destination, use it as best,
5392 since this insn will probably be eliminated in that case. */
5393 if (src)
5395 if (rtx_equal_p (src, dest))
5396 src_cost = src_regcost = -1;
5397 else
5399 src_cost = COST (src);
5400 src_regcost = approx_reg_cost (src);
5404 if (src_eqv_here)
5406 if (rtx_equal_p (src_eqv_here, dest))
5407 src_eqv_cost = src_eqv_regcost = -1;
5408 else
5410 src_eqv_cost = COST (src_eqv_here);
5411 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5415 if (src_folded)
5417 if (rtx_equal_p (src_folded, dest))
5418 src_folded_cost = src_folded_regcost = -1;
5419 else
5421 src_folded_cost = COST (src_folded);
5422 src_folded_regcost = approx_reg_cost (src_folded);
5426 if (src_related)
5428 if (rtx_equal_p (src_related, dest))
5429 src_related_cost = src_related_regcost = -1;
5430 else
5432 src_related_cost = COST (src_related);
5433 src_related_regcost = approx_reg_cost (src_related);
5437 /* If this was an indirect jump insn, a known label will really be
5438 cheaper even though it looks more expensive. */
5439 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5440 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5442 /* Terminate loop when replacement made. This must terminate since
5443 the current contents will be tested and will always be valid. */
5444 while (1)
5446 rtx trial;
5448 /* Skip invalid entries. */
5449 while (elt && GET_CODE (elt->exp) != REG
5450 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
5451 elt = elt->next_same_value;
5453 /* A paradoxical subreg would be bad here: it'll be the right
5454 size, but later may be adjusted so that the upper bits aren't
5455 what we want. So reject it. */
5456 if (elt != 0
5457 && GET_CODE (elt->exp) == SUBREG
5458 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5459 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5460 /* It is okay, though, if the rtx we're trying to match
5461 will ignore any of the bits we can't predict. */
5462 && ! (src != 0
5463 && GET_CODE (src) == SUBREG
5464 && GET_MODE (src) == GET_MODE (elt->exp)
5465 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5466 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5468 elt = elt->next_same_value;
5469 continue;
5472 if (elt)
5474 src_elt_cost = elt->cost;
5475 src_elt_regcost = elt->regcost;
5478 /* Find cheapest and skip it for the next time. For items
5479 of equal cost, use this order:
5480 src_folded, src, src_eqv, src_related and hash table entry. */
5481 if (src_folded
5482 && preferrable (src_folded_cost, src_folded_regcost,
5483 src_cost, src_regcost) <= 0
5484 && preferrable (src_folded_cost, src_folded_regcost,
5485 src_eqv_cost, src_eqv_regcost) <= 0
5486 && preferrable (src_folded_cost, src_folded_regcost,
5487 src_related_cost, src_related_regcost) <= 0
5488 && preferrable (src_folded_cost, src_folded_regcost,
5489 src_elt_cost, src_elt_regcost) <= 0)
5491 trial = src_folded, src_folded_cost = MAX_COST;
5492 if (src_folded_force_flag)
5493 trial = force_const_mem (mode, trial);
5495 else if (src
5496 && preferrable (src_cost, src_regcost,
5497 src_eqv_cost, src_eqv_regcost) <= 0
5498 && preferrable (src_cost, src_regcost,
5499 src_related_cost, src_related_regcost) <= 0
5500 && preferrable (src_cost, src_regcost,
5501 src_elt_cost, src_elt_regcost) <= 0)
5502 trial = src, src_cost = MAX_COST;
5503 else if (src_eqv_here
5504 && preferrable (src_eqv_cost, src_eqv_regcost,
5505 src_related_cost, src_related_regcost) <= 0
5506 && preferrable (src_eqv_cost, src_eqv_regcost,
5507 src_elt_cost, src_elt_regcost) <= 0)
5508 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5509 else if (src_related
5510 && preferrable (src_related_cost, src_related_regcost,
5511 src_elt_cost, src_elt_regcost) <= 0)
5512 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5513 else
5515 trial = copy_rtx (elt->exp);
5516 elt = elt->next_same_value;
5517 src_elt_cost = MAX_COST;
5520 /* We don't normally have an insn matching (set (pc) (pc)), so
5521 check for this separately here. We will delete such an
5522 insn below.
5524 For other cases such as a table jump or conditional jump
5525 where we know the ultimate target, go ahead and replace the
5526 operand. While that may not make a valid insn, we will
5527 reemit the jump below (and also insert any necessary
5528 barriers). */
5529 if (n_sets == 1 && dest == pc_rtx
5530 && (trial == pc_rtx
5531 || (GET_CODE (trial) == LABEL_REF
5532 && ! condjump_p (insn))))
5534 SET_SRC (sets[i].rtl) = trial;
5535 cse_jumps_altered = 1;
5536 break;
5539 /* Look for a substitution that makes a valid insn. */
5540 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5542 /* If we just made a substitution inside a libcall, then we
5543 need to make the same substitution in any notes attached
5544 to the RETVAL insn. */
5545 if (libcall_insn
5546 && (GET_CODE (sets[i].orig_src) == REG
5547 || GET_CODE (sets[i].orig_src) == SUBREG
5548 || GET_CODE (sets[i].orig_src) == MEM))
5549 replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5550 canon_reg (SET_SRC (sets[i].rtl), insn));
5552 /* The result of apply_change_group can be ignored; see
5553 canon_reg. */
5555 validate_change (insn, &SET_SRC (sets[i].rtl),
5556 canon_reg (SET_SRC (sets[i].rtl), insn),
5558 apply_change_group ();
5559 break;
5562 /* If we previously found constant pool entries for
5563 constants and this is a constant, try making a
5564 pool entry. Put it in src_folded unless we already have done
5565 this since that is where it likely came from. */
5567 else if (constant_pool_entries_cost
5568 && CONSTANT_P (trial)
5569 /* Reject cases that will abort in decode_rtx_const.
5570 On the alpha when simplifying a switch, we get
5571 (const (truncate (minus (label_ref) (label_ref)))). */
5572 && ! (GET_CODE (trial) == CONST
5573 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5574 /* Likewise on IA-64, except without the truncate. */
5575 && ! (GET_CODE (trial) == CONST
5576 && GET_CODE (XEXP (trial, 0)) == MINUS
5577 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5578 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5579 && (src_folded == 0
5580 || (GET_CODE (src_folded) != MEM
5581 && ! src_folded_force_flag))
5582 && GET_MODE_CLASS (mode) != MODE_CC
5583 && mode != VOIDmode)
5585 src_folded_force_flag = 1;
5586 src_folded = trial;
5587 src_folded_cost = constant_pool_entries_cost;
5591 src = SET_SRC (sets[i].rtl);
5593 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5594 However, there is an important exception: If both are registers
5595 that are not the head of their equivalence class, replace SET_SRC
5596 with the head of the class. If we do not do this, we will have
5597 both registers live over a portion of the basic block. This way,
5598 their lifetimes will likely abut instead of overlapping. */
5599 if (GET_CODE (dest) == REG
5600 && REGNO_QTY_VALID_P (REGNO (dest)))
5602 int dest_q = REG_QTY (REGNO (dest));
5603 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5605 if (dest_ent->mode == GET_MODE (dest)
5606 && dest_ent->first_reg != REGNO (dest)
5607 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
5608 /* Don't do this if the original insn had a hard reg as
5609 SET_SRC or SET_DEST. */
5610 && (GET_CODE (sets[i].src) != REG
5611 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5612 && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5613 /* We can't call canon_reg here because it won't do anything if
5614 SRC is a hard register. */
5616 int src_q = REG_QTY (REGNO (src));
5617 struct qty_table_elem *src_ent = &qty_table[src_q];
5618 int first = src_ent->first_reg;
5619 rtx new_src
5620 = (first >= FIRST_PSEUDO_REGISTER
5621 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5623 /* We must use validate-change even for this, because this
5624 might be a special no-op instruction, suitable only to
5625 tag notes onto. */
5626 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5628 src = new_src;
5629 /* If we had a constant that is cheaper than what we are now
5630 setting SRC to, use that constant. We ignored it when we
5631 thought we could make this into a no-op. */
5632 if (src_const && COST (src_const) < COST (src)
5633 && validate_change (insn, &SET_SRC (sets[i].rtl),
5634 src_const, 0))
5635 src = src_const;
5640 /* If we made a change, recompute SRC values. */
5641 if (src != sets[i].src)
5643 cse_altered = 1;
5644 do_not_record = 0;
5645 hash_arg_in_memory = 0;
5646 sets[i].src = src;
5647 sets[i].src_hash = HASH (src, mode);
5648 sets[i].src_volatile = do_not_record;
5649 sets[i].src_in_memory = hash_arg_in_memory;
5650 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5653 /* If this is a single SET, we are setting a register, and we have an
5654 equivalent constant, we want to add a REG_NOTE. We don't want
5655 to write a REG_EQUAL note for a constant pseudo since verifying that
5656 that pseudo hasn't been eliminated is a pain. Such a note also
5657 won't help anything.
5659 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5660 which can be created for a reference to a compile time computable
5661 entry in a jump table. */
5663 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5664 && GET_CODE (src_const) != REG
5665 && ! (GET_CODE (src_const) == CONST
5666 && GET_CODE (XEXP (src_const, 0)) == MINUS
5667 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5668 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5670 /* Make sure that the rtx is not shared with any other insn. */
5671 src_const = copy_rtx (src_const);
5673 /* Record the actual constant value in a REG_EQUAL note, making
5674 a new one if one does not already exist. */
5675 set_unique_reg_note (insn, REG_EQUAL, src_const);
5677 /* If storing a constant value in a register that
5678 previously held the constant value 0,
5679 record this fact with a REG_WAS_0 note on this insn.
5681 Note that the *register* is required to have previously held 0,
5682 not just any register in the quantity and we must point to the
5683 insn that set that register to zero.
5685 Rather than track each register individually, we just see if
5686 the last set for this quantity was for this register. */
5688 if (REGNO_QTY_VALID_P (REGNO (dest)))
5690 int dest_q = REG_QTY (REGNO (dest));
5691 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5693 if (dest_ent->const_rtx == const0_rtx)
5695 /* See if we previously had a REG_WAS_0 note. */
5696 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
5697 rtx const_insn = dest_ent->const_insn;
5699 if ((tem = single_set (const_insn)) != 0
5700 && rtx_equal_p (SET_DEST (tem), dest))
5702 if (note)
5703 XEXP (note, 0) = const_insn;
5704 else
5705 REG_NOTES (insn)
5706 = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
5707 REG_NOTES (insn));
5713 /* Now deal with the destination. */
5714 do_not_record = 0;
5716 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5717 to the MEM or REG within it. */
5718 while (GET_CODE (dest) == SIGN_EXTRACT
5719 || GET_CODE (dest) == ZERO_EXTRACT
5720 || GET_CODE (dest) == SUBREG
5721 || GET_CODE (dest) == STRICT_LOW_PART)
5722 dest = XEXP (dest, 0);
5724 sets[i].inner_dest = dest;
5726 if (GET_CODE (dest) == MEM)
5728 #ifdef PUSH_ROUNDING
5729 /* Stack pushes invalidate the stack pointer. */
5730 rtx addr = XEXP (dest, 0);
5731 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
5732 && XEXP (addr, 0) == stack_pointer_rtx)
5733 invalidate (stack_pointer_rtx, Pmode);
5734 #endif
5735 dest = fold_rtx (dest, insn);
5738 /* Compute the hash code of the destination now,
5739 before the effects of this instruction are recorded,
5740 since the register values used in the address computation
5741 are those before this instruction. */
5742 sets[i].dest_hash = HASH (dest, mode);
5744 /* Don't enter a bit-field in the hash table
5745 because the value in it after the store
5746 may not equal what was stored, due to truncation. */
5748 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5749 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5751 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5753 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5754 && GET_CODE (width) == CONST_INT
5755 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5756 && ! (INTVAL (src_const)
5757 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5758 /* Exception: if the value is constant,
5759 and it won't be truncated, record it. */
5761 else
5763 /* This is chosen so that the destination will be invalidated
5764 but no new value will be recorded.
5765 We must invalidate because sometimes constant
5766 values can be recorded for bitfields. */
5767 sets[i].src_elt = 0;
5768 sets[i].src_volatile = 1;
5769 src_eqv = 0;
5770 src_eqv_elt = 0;
5774 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5775 the insn. */
5776 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5778 /* One less use of the label this insn used to jump to. */
5779 delete_insn (insn);
5780 cse_jumps_altered = 1;
5781 /* No more processing for this set. */
5782 sets[i].rtl = 0;
5785 /* If this SET is now setting PC to a label, we know it used to
5786 be a conditional or computed branch. */
5787 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
5789 /* Now emit a BARRIER after the unconditional jump. */
5790 if (NEXT_INSN (insn) == 0
5791 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5792 emit_barrier_after (insn);
5794 /* We reemit the jump in as many cases as possible just in
5795 case the form of an unconditional jump is significantly
5796 different than a computed jump or conditional jump.
5798 If this insn has multiple sets, then reemitting the
5799 jump is nontrivial. So instead we just force rerecognition
5800 and hope for the best. */
5801 if (n_sets == 1)
5803 rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5805 JUMP_LABEL (new) = XEXP (src, 0);
5806 LABEL_NUSES (XEXP (src, 0))++;
5807 insn = new;
5809 /* Now emit a BARRIER after the unconditional jump. */
5810 if (NEXT_INSN (insn) == 0
5811 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5812 emit_barrier_after (insn);
5814 else
5815 INSN_CODE (insn) = -1;
5817 never_reached_warning (insn, NULL);
5819 /* Do not bother deleting any unreachable code,
5820 let jump/flow do that. */
5822 cse_jumps_altered = 1;
5823 sets[i].rtl = 0;
5826 /* If destination is volatile, invalidate it and then do no further
5827 processing for this assignment. */
5829 else if (do_not_record)
5831 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5832 invalidate (dest, VOIDmode);
5833 else if (GET_CODE (dest) == MEM)
5835 /* Outgoing arguments for a libcall don't
5836 affect any recorded expressions. */
5837 if (! libcall_insn || insn == libcall_insn)
5838 invalidate (dest, VOIDmode);
5840 else if (GET_CODE (dest) == STRICT_LOW_PART
5841 || GET_CODE (dest) == ZERO_EXTRACT)
5842 invalidate (XEXP (dest, 0), GET_MODE (dest));
5843 sets[i].rtl = 0;
5846 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5847 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5849 #ifdef HAVE_cc0
5850 /* If setting CC0, record what it was set to, or a constant, if it
5851 is equivalent to a constant. If it is being set to a floating-point
5852 value, make a COMPARE with the appropriate constant of 0. If we
5853 don't do this, later code can interpret this as a test against
5854 const0_rtx, which can cause problems if we try to put it into an
5855 insn as a floating-point operand. */
5856 if (dest == cc0_rtx)
5858 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5859 this_insn_cc0_mode = mode;
5860 if (FLOAT_MODE_P (mode))
5861 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5862 CONST0_RTX (mode));
5864 #endif
5867 /* Now enter all non-volatile source expressions in the hash table
5868 if they are not already present.
5869 Record their equivalence classes in src_elt.
5870 This way we can insert the corresponding destinations into
5871 the same classes even if the actual sources are no longer in them
5872 (having been invalidated). */
5874 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5875 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5877 struct table_elt *elt;
5878 struct table_elt *classp = sets[0].src_elt;
5879 rtx dest = SET_DEST (sets[0].rtl);
5880 enum machine_mode eqvmode = GET_MODE (dest);
5882 if (GET_CODE (dest) == STRICT_LOW_PART)
5884 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5885 classp = 0;
5887 if (insert_regs (src_eqv, classp, 0))
5889 rehash_using_reg (src_eqv);
5890 src_eqv_hash = HASH (src_eqv, eqvmode);
5892 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5893 elt->in_memory = src_eqv_in_memory;
5894 src_eqv_elt = elt;
5896 /* Check to see if src_eqv_elt is the same as a set source which
5897 does not yet have an elt, and if so set the elt of the set source
5898 to src_eqv_elt. */
5899 for (i = 0; i < n_sets; i++)
5900 if (sets[i].rtl && sets[i].src_elt == 0
5901 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5902 sets[i].src_elt = src_eqv_elt;
5905 for (i = 0; i < n_sets; i++)
5906 if (sets[i].rtl && ! sets[i].src_volatile
5907 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5909 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5911 /* REG_EQUAL in setting a STRICT_LOW_PART
5912 gives an equivalent for the entire destination register,
5913 not just for the subreg being stored in now.
5914 This is a more interesting equivalence, so we arrange later
5915 to treat the entire reg as the destination. */
5916 sets[i].src_elt = src_eqv_elt;
5917 sets[i].src_hash = src_eqv_hash;
5919 else
5921 /* Insert source and constant equivalent into hash table, if not
5922 already present. */
5923 struct table_elt *classp = src_eqv_elt;
5924 rtx src = sets[i].src;
5925 rtx dest = SET_DEST (sets[i].rtl);
5926 enum machine_mode mode
5927 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5929 if (sets[i].src_elt == 0)
5931 /* Don't put a hard register source into the table if this is
5932 the last insn of a libcall. In this case, we only need
5933 to put src_eqv_elt in src_elt. */
5934 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5936 struct table_elt *elt;
5938 /* Note that these insert_regs calls cannot remove
5939 any of the src_elt's, because they would have failed to
5940 match if not still valid. */
5941 if (insert_regs (src, classp, 0))
5943 rehash_using_reg (src);
5944 sets[i].src_hash = HASH (src, mode);
5946 elt = insert (src, classp, sets[i].src_hash, mode);
5947 elt->in_memory = sets[i].src_in_memory;
5948 sets[i].src_elt = classp = elt;
5950 else
5951 sets[i].src_elt = classp;
5953 if (sets[i].src_const && sets[i].src_const_elt == 0
5954 && src != sets[i].src_const
5955 && ! rtx_equal_p (sets[i].src_const, src))
5956 sets[i].src_elt = insert (sets[i].src_const, classp,
5957 sets[i].src_const_hash, mode);
5960 else if (sets[i].src_elt == 0)
5961 /* If we did not insert the source into the hash table (e.g., it was
5962 volatile), note the equivalence class for the REG_EQUAL value, if any,
5963 so that the destination goes into that class. */
5964 sets[i].src_elt = src_eqv_elt;
5966 invalidate_from_clobbers (x);
5968 /* Some registers are invalidated by subroutine calls. Memory is
5969 invalidated by non-constant calls. */
5971 if (GET_CODE (insn) == CALL_INSN)
5973 if (! CONST_OR_PURE_CALL_P (insn))
5974 invalidate_memory ();
5975 invalidate_for_call ();
5978 /* Now invalidate everything set by this instruction.
5979 If a SUBREG or other funny destination is being set,
5980 sets[i].rtl is still nonzero, so here we invalidate the reg
5981 a part of which is being set. */
5983 for (i = 0; i < n_sets; i++)
5984 if (sets[i].rtl)
5986 /* We can't use the inner dest, because the mode associated with
5987 a ZERO_EXTRACT is significant. */
5988 rtx dest = SET_DEST (sets[i].rtl);
5990 /* Needed for registers to remove the register from its
5991 previous quantity's chain.
5992 Needed for memory if this is a nonvarying address, unless
5993 we have just done an invalidate_memory that covers even those. */
5994 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5995 invalidate (dest, VOIDmode);
5996 else if (GET_CODE (dest) == MEM)
5998 /* Outgoing arguments for a libcall don't
5999 affect any recorded expressions. */
6000 if (! libcall_insn || insn == libcall_insn)
6001 invalidate (dest, VOIDmode);
6003 else if (GET_CODE (dest) == STRICT_LOW_PART
6004 || GET_CODE (dest) == ZERO_EXTRACT)
6005 invalidate (XEXP (dest, 0), GET_MODE (dest));
6008 /* A volatile ASM invalidates everything. */
6009 if (GET_CODE (insn) == INSN
6010 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
6011 && MEM_VOLATILE_P (PATTERN (insn)))
6012 flush_hash_table ();
6014 /* Make sure registers mentioned in destinations
6015 are safe for use in an expression to be inserted.
6016 This removes from the hash table
6017 any invalid entry that refers to one of these registers.
6019 We don't care about the return value from mention_regs because
6020 we are going to hash the SET_DEST values unconditionally. */
6022 for (i = 0; i < n_sets; i++)
6024 if (sets[i].rtl)
6026 rtx x = SET_DEST (sets[i].rtl);
6028 if (GET_CODE (x) != REG)
6029 mention_regs (x);
6030 else
6032 /* We used to rely on all references to a register becoming
6033 inaccessible when a register changes to a new quantity,
6034 since that changes the hash code. However, that is not
6035 safe, since after HASH_SIZE new quantities we get a
6036 hash 'collision' of a register with its own invalid
6037 entries. And since SUBREGs have been changed not to
6038 change their hash code with the hash code of the register,
6039 it wouldn't work any longer at all. So we have to check
6040 for any invalid references lying around now.
6041 This code is similar to the REG case in mention_regs,
6042 but it knows that reg_tick has been incremented, and
6043 it leaves reg_in_table as -1 . */
6044 unsigned int regno = REGNO (x);
6045 unsigned int endregno
6046 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6047 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
6048 unsigned int i;
6050 for (i = regno; i < endregno; i++)
6052 if (REG_IN_TABLE (i) >= 0)
6054 remove_invalid_refs (i);
6055 REG_IN_TABLE (i) = -1;
6062 /* We may have just removed some of the src_elt's from the hash table.
6063 So replace each one with the current head of the same class. */
6065 for (i = 0; i < n_sets; i++)
6066 if (sets[i].rtl)
6068 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6069 /* If elt was removed, find current head of same class,
6070 or 0 if nothing remains of that class. */
6072 struct table_elt *elt = sets[i].src_elt;
6074 while (elt && elt->prev_same_value)
6075 elt = elt->prev_same_value;
6077 while (elt && elt->first_same_value == 0)
6078 elt = elt->next_same_value;
6079 sets[i].src_elt = elt ? elt->first_same_value : 0;
6083 /* Now insert the destinations into their equivalence classes. */
6085 for (i = 0; i < n_sets; i++)
6086 if (sets[i].rtl)
6088 rtx dest = SET_DEST (sets[i].rtl);
6089 rtx inner_dest = sets[i].inner_dest;
6090 struct table_elt *elt;
6092 /* Don't record value if we are not supposed to risk allocating
6093 floating-point values in registers that might be wider than
6094 memory. */
6095 if ((flag_float_store
6096 && GET_CODE (dest) == MEM
6097 && FLOAT_MODE_P (GET_MODE (dest)))
6098 /* Don't record BLKmode values, because we don't know the
6099 size of it, and can't be sure that other BLKmode values
6100 have the same or smaller size. */
6101 || GET_MODE (dest) == BLKmode
6102 /* Don't record values of destinations set inside a libcall block
6103 since we might delete the libcall. Things should have been set
6104 up so we won't want to reuse such a value, but we play it safe
6105 here. */
6106 || libcall_insn
6107 /* If we didn't put a REG_EQUAL value or a source into the hash
6108 table, there is no point is recording DEST. */
6109 || sets[i].src_elt == 0
6110 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6111 or SIGN_EXTEND, don't record DEST since it can cause
6112 some tracking to be wrong.
6114 ??? Think about this more later. */
6115 || (GET_CODE (dest) == SUBREG
6116 && (GET_MODE_SIZE (GET_MODE (dest))
6117 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6118 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6119 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6120 continue;
6122 /* STRICT_LOW_PART isn't part of the value BEING set,
6123 and neither is the SUBREG inside it.
6124 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6125 if (GET_CODE (dest) == STRICT_LOW_PART)
6126 dest = SUBREG_REG (XEXP (dest, 0));
6128 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6129 /* Registers must also be inserted into chains for quantities. */
6130 if (insert_regs (dest, sets[i].src_elt, 1))
6132 /* If `insert_regs' changes something, the hash code must be
6133 recalculated. */
6134 rehash_using_reg (dest);
6135 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6138 if (GET_CODE (inner_dest) == MEM
6139 && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
6140 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6141 that (MEM (ADDRESSOF (X))) is equivalent to Y.
6142 Consider the case in which the address of the MEM is
6143 passed to a function, which alters the MEM. Then, if we
6144 later use Y instead of the MEM we'll miss the update. */
6145 elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
6146 else
6147 elt = insert (dest, sets[i].src_elt,
6148 sets[i].dest_hash, GET_MODE (dest));
6150 elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
6151 && (! RTX_UNCHANGING_P (sets[i].inner_dest)
6152 || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
6153 0))));
6155 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6156 narrower than M2, and both M1 and M2 are the same number of words,
6157 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6158 make that equivalence as well.
6160 However, BAR may have equivalences for which gen_lowpart_if_possible
6161 will produce a simpler value than gen_lowpart_if_possible applied to
6162 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6163 BAR's equivalences. If we don't get a simplified form, make
6164 the SUBREG. It will not be used in an equivalence, but will
6165 cause two similar assignments to be detected.
6167 Note the loop below will find SUBREG_REG (DEST) since we have
6168 already entered SRC and DEST of the SET in the table. */
6170 if (GET_CODE (dest) == SUBREG
6171 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6172 / UNITS_PER_WORD)
6173 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6174 && (GET_MODE_SIZE (GET_MODE (dest))
6175 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6176 && sets[i].src_elt != 0)
6178 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6179 struct table_elt *elt, *classp = 0;
6181 for (elt = sets[i].src_elt->first_same_value; elt;
6182 elt = elt->next_same_value)
6184 rtx new_src = 0;
6185 unsigned src_hash;
6186 struct table_elt *src_elt;
6188 /* Ignore invalid entries. */
6189 if (GET_CODE (elt->exp) != REG
6190 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6191 continue;
6193 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
6194 if (new_src == 0)
6195 new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
6197 src_hash = HASH (new_src, new_mode);
6198 src_elt = lookup (new_src, src_hash, new_mode);
6200 /* Put the new source in the hash table is if isn't
6201 already. */
6202 if (src_elt == 0)
6204 if (insert_regs (new_src, classp, 0))
6206 rehash_using_reg (new_src);
6207 src_hash = HASH (new_src, new_mode);
6209 src_elt = insert (new_src, classp, src_hash, new_mode);
6210 src_elt->in_memory = elt->in_memory;
6212 else if (classp && classp != src_elt->first_same_value)
6213 /* Show that two things that we've seen before are
6214 actually the same. */
6215 merge_equiv_classes (src_elt, classp);
6217 classp = src_elt->first_same_value;
6218 /* Ignore invalid entries. */
6219 while (classp
6220 && GET_CODE (classp->exp) != REG
6221 && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
6222 classp = classp->next_same_value;
6227 /* Special handling for (set REG0 REG1) where REG0 is the
6228 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6229 be used in the sequel, so (if easily done) change this insn to
6230 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6231 that computed their value. Then REG1 will become a dead store
6232 and won't cloud the situation for later optimizations.
6234 Do not make this change if REG1 is a hard register, because it will
6235 then be used in the sequel and we may be changing a two-operand insn
6236 into a three-operand insn.
6238 Also do not do this if we are operating on a copy of INSN.
6240 Also don't do this if INSN ends a libcall; this would cause an unrelated
6241 register to be set in the middle of a libcall, and we then get bad code
6242 if the libcall is deleted. */
6244 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
6245 && NEXT_INSN (PREV_INSN (insn)) == insn
6246 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
6247 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6248 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6250 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6251 struct qty_table_elem *src_ent = &qty_table[src_q];
6253 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6254 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6256 rtx prev = prev_nonnote_insn (insn);
6258 /* Do not swap the registers around if the previous instruction
6259 attaches a REG_EQUIV note to REG1.
6261 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6262 from the pseudo that originally shadowed an incoming argument
6263 to another register. Some uses of REG_EQUIV might rely on it
6264 being attached to REG1 rather than REG2.
6266 This section previously turned the REG_EQUIV into a REG_EQUAL
6267 note. We cannot do that because REG_EQUIV may provide an
6268 uninitialised stack slot when REG_PARM_STACK_SPACE is used. */
6270 if (prev != 0 && GET_CODE (prev) == INSN
6271 && GET_CODE (PATTERN (prev)) == SET
6272 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6273 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6275 rtx dest = SET_DEST (sets[0].rtl);
6276 rtx src = SET_SRC (sets[0].rtl);
6277 rtx note;
6279 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6280 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6281 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6282 apply_change_group ();
6284 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6285 any REG_WAS_0 note on INSN to PREV. */
6286 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
6287 if (note)
6288 remove_note (prev, note);
6290 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6291 if (note)
6293 remove_note (insn, note);
6294 XEXP (note, 1) = REG_NOTES (prev);
6295 REG_NOTES (prev) = note;
6298 /* If INSN has a REG_EQUAL note, and this note mentions
6299 REG0, then we must delete it, because the value in
6300 REG0 has changed. If the note's value is REG1, we must
6301 also delete it because that is now this insn's dest. */
6302 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6303 if (note != 0
6304 && (reg_mentioned_p (dest, XEXP (note, 0))
6305 || rtx_equal_p (src, XEXP (note, 0))))
6306 remove_note (insn, note);
6311 /* If this is a conditional jump insn, record any known equivalences due to
6312 the condition being tested. */
6314 last_jump_equiv_class = 0;
6315 if (GET_CODE (insn) == JUMP_INSN
6316 && n_sets == 1 && GET_CODE (x) == SET
6317 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6318 record_jump_equiv (insn, 0);
6320 #ifdef HAVE_cc0
6321 /* If the previous insn set CC0 and this insn no longer references CC0,
6322 delete the previous insn. Here we use the fact that nothing expects CC0
6323 to be valid over an insn, which is true until the final pass. */
6324 if (prev_insn && GET_CODE (prev_insn) == INSN
6325 && (tem = single_set (prev_insn)) != 0
6326 && SET_DEST (tem) == cc0_rtx
6327 && ! reg_mentioned_p (cc0_rtx, x))
6328 delete_insn (prev_insn);
6330 prev_insn_cc0 = this_insn_cc0;
6331 prev_insn_cc0_mode = this_insn_cc0_mode;
6332 #endif
6334 prev_insn = insn;
6337 /* Remove from the hash table all expressions that reference memory. */
6339 static void
6340 invalidate_memory ()
6342 int i;
6343 struct table_elt *p, *next;
6345 for (i = 0; i < HASH_SIZE; i++)
6346 for (p = table[i]; p; p = next)
6348 next = p->next_same_hash;
6349 if (p->in_memory)
6350 remove_from_table (p, i);
6354 /* If ADDR is an address that implicitly affects the stack pointer, return
6355 1 and update the register tables to show the effect. Else, return 0. */
6357 static int
6358 addr_affects_sp_p (addr)
6359 rtx addr;
6361 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
6362 && GET_CODE (XEXP (addr, 0)) == REG
6363 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6365 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6366 REG_TICK (STACK_POINTER_REGNUM)++;
6368 /* This should be *very* rare. */
6369 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6370 invalidate (stack_pointer_rtx, VOIDmode);
6372 return 1;
6375 return 0;
6378 /* Perform invalidation on the basis of everything about an insn
6379 except for invalidating the actual places that are SET in it.
6380 This includes the places CLOBBERed, and anything that might
6381 alias with something that is SET or CLOBBERed.
6383 X is the pattern of the insn. */
6385 static void
6386 invalidate_from_clobbers (x)
6387 rtx x;
6389 if (GET_CODE (x) == CLOBBER)
6391 rtx ref = XEXP (x, 0);
6392 if (ref)
6394 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6395 || GET_CODE (ref) == MEM)
6396 invalidate (ref, VOIDmode);
6397 else if (GET_CODE (ref) == STRICT_LOW_PART
6398 || GET_CODE (ref) == ZERO_EXTRACT)
6399 invalidate (XEXP (ref, 0), GET_MODE (ref));
6402 else if (GET_CODE (x) == PARALLEL)
6404 int i;
6405 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6407 rtx y = XVECEXP (x, 0, i);
6408 if (GET_CODE (y) == CLOBBER)
6410 rtx ref = XEXP (y, 0);
6411 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6412 || GET_CODE (ref) == MEM)
6413 invalidate (ref, VOIDmode);
6414 else if (GET_CODE (ref) == STRICT_LOW_PART
6415 || GET_CODE (ref) == ZERO_EXTRACT)
6416 invalidate (XEXP (ref, 0), GET_MODE (ref));
6422 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6423 and replace any registers in them with either an equivalent constant
6424 or the canonical form of the register. If we are inside an address,
6425 only do this if the address remains valid.
6427 OBJECT is 0 except when within a MEM in which case it is the MEM.
6429 Return the replacement for X. */
6431 static rtx
6432 cse_process_notes (x, object)
6433 rtx x;
6434 rtx object;
6436 enum rtx_code code = GET_CODE (x);
6437 const char *fmt = GET_RTX_FORMAT (code);
6438 int i;
6440 switch (code)
6442 case CONST_INT:
6443 case CONST:
6444 case SYMBOL_REF:
6445 case LABEL_REF:
6446 case CONST_DOUBLE:
6447 case CONST_VECTOR:
6448 case PC:
6449 case CC0:
6450 case LO_SUM:
6451 return x;
6453 case MEM:
6454 validate_change (x, &XEXP (x, 0),
6455 cse_process_notes (XEXP (x, 0), x), 0);
6456 return x;
6458 case EXPR_LIST:
6459 case INSN_LIST:
6460 if (REG_NOTE_KIND (x) == REG_EQUAL)
6461 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6462 if (XEXP (x, 1))
6463 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6464 return x;
6466 case SIGN_EXTEND:
6467 case ZERO_EXTEND:
6468 case SUBREG:
6470 rtx new = cse_process_notes (XEXP (x, 0), object);
6471 /* We don't substitute VOIDmode constants into these rtx,
6472 since they would impede folding. */
6473 if (GET_MODE (new) != VOIDmode)
6474 validate_change (object, &XEXP (x, 0), new, 0);
6475 return x;
6478 case REG:
6479 i = REG_QTY (REGNO (x));
6481 /* Return a constant or a constant register. */
6482 if (REGNO_QTY_VALID_P (REGNO (x)))
6484 struct qty_table_elem *ent = &qty_table[i];
6486 if (ent->const_rtx != NULL_RTX
6487 && (CONSTANT_P (ent->const_rtx)
6488 || GET_CODE (ent->const_rtx) == REG))
6490 rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
6491 if (new)
6492 return new;
6496 /* Otherwise, canonicalize this register. */
6497 return canon_reg (x, NULL_RTX);
6499 default:
6500 break;
6503 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6504 if (fmt[i] == 'e')
6505 validate_change (object, &XEXP (x, i),
6506 cse_process_notes (XEXP (x, i), object), 0);
6508 return x;
6511 /* Find common subexpressions between the end test of a loop and the beginning
6512 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6514 Often we have a loop where an expression in the exit test is used
6515 in the body of the loop. For example "while (*p) *q++ = *p++;".
6516 Because of the way we duplicate the loop exit test in front of the loop,
6517 however, we don't detect that common subexpression. This will be caught
6518 when global cse is implemented, but this is a quite common case.
6520 This function handles the most common cases of these common expressions.
6521 It is called after we have processed the basic block ending with the
6522 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
6523 jumps to a label used only once. */
6525 static void
6526 cse_around_loop (loop_start)
6527 rtx loop_start;
6529 rtx insn;
6530 int i;
6531 struct table_elt *p;
6533 /* If the jump at the end of the loop doesn't go to the start, we don't
6534 do anything. */
6535 for (insn = PREV_INSN (loop_start);
6536 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
6537 insn = PREV_INSN (insn))
6540 if (insn == 0
6541 || GET_CODE (insn) != NOTE
6542 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
6543 return;
6545 /* If the last insn of the loop (the end test) was an NE comparison,
6546 we will interpret it as an EQ comparison, since we fell through
6547 the loop. Any equivalences resulting from that comparison are
6548 therefore not valid and must be invalidated. */
6549 if (last_jump_equiv_class)
6550 for (p = last_jump_equiv_class->first_same_value; p;
6551 p = p->next_same_value)
6553 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
6554 || (GET_CODE (p->exp) == SUBREG
6555 && GET_CODE (SUBREG_REG (p->exp)) == REG))
6556 invalidate (p->exp, VOIDmode);
6557 else if (GET_CODE (p->exp) == STRICT_LOW_PART
6558 || GET_CODE (p->exp) == ZERO_EXTRACT)
6559 invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
6562 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
6563 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
6565 The only thing we do with SET_DEST is invalidate entries, so we
6566 can safely process each SET in order. It is slightly less efficient
6567 to do so, but we only want to handle the most common cases.
6569 The gen_move_insn call in cse_set_around_loop may create new pseudos.
6570 These pseudos won't have valid entries in any of the tables indexed
6571 by register number, such as reg_qty. We avoid out-of-range array
6572 accesses by not processing any instructions created after cse started. */
6574 for (insn = NEXT_INSN (loop_start);
6575 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6576 && INSN_UID (insn) < max_insn_uid
6577 && ! (GET_CODE (insn) == NOTE
6578 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
6579 insn = NEXT_INSN (insn))
6581 if (INSN_P (insn)
6582 && (GET_CODE (PATTERN (insn)) == SET
6583 || GET_CODE (PATTERN (insn)) == CLOBBER))
6584 cse_set_around_loop (PATTERN (insn), insn, loop_start);
6585 else if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == PARALLEL)
6586 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6587 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
6588 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
6589 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
6590 loop_start);
6594 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6595 since they are done elsewhere. This function is called via note_stores. */
6597 static void
6598 invalidate_skipped_set (dest, set, data)
6599 rtx set;
6600 rtx dest;
6601 void *data ATTRIBUTE_UNUSED;
6603 enum rtx_code code = GET_CODE (dest);
6605 if (code == MEM
6606 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6607 /* There are times when an address can appear varying and be a PLUS
6608 during this scan when it would be a fixed address were we to know
6609 the proper equivalences. So invalidate all memory if there is
6610 a BLKmode or nonscalar memory reference or a reference to a
6611 variable address. */
6612 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6613 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6615 invalidate_memory ();
6616 return;
6619 if (GET_CODE (set) == CLOBBER
6620 #ifdef HAVE_cc0
6621 || dest == cc0_rtx
6622 #endif
6623 || dest == pc_rtx)
6624 return;
6626 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6627 invalidate (XEXP (dest, 0), GET_MODE (dest));
6628 else if (code == REG || code == SUBREG || code == MEM)
6629 invalidate (dest, VOIDmode);
6632 /* Invalidate all insns from START up to the end of the function or the
6633 next label. This called when we wish to CSE around a block that is
6634 conditionally executed. */
6636 static void
6637 invalidate_skipped_block (start)
6638 rtx start;
6640 rtx insn;
6642 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
6643 insn = NEXT_INSN (insn))
6645 if (! INSN_P (insn))
6646 continue;
6648 if (GET_CODE (insn) == CALL_INSN)
6650 if (! CONST_OR_PURE_CALL_P (insn))
6651 invalidate_memory ();
6652 invalidate_for_call ();
6655 invalidate_from_clobbers (PATTERN (insn));
6656 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6660 /* If modifying X will modify the value in *DATA (which is really an
6661 `rtx *'), indicate that fact by setting the pointed to value to
6662 NULL_RTX. */
6664 static void
6665 cse_check_loop_start (x, set, data)
6666 rtx x;
6667 rtx set ATTRIBUTE_UNUSED;
6668 void *data;
6670 rtx *cse_check_loop_start_value = (rtx *) data;
6672 if (*cse_check_loop_start_value == NULL_RTX
6673 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
6674 return;
6676 if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
6677 || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
6678 *cse_check_loop_start_value = NULL_RTX;
6681 /* X is a SET or CLOBBER contained in INSN that was found near the start of
6682 a loop that starts with the label at LOOP_START.
6684 If X is a SET, we see if its SET_SRC is currently in our hash table.
6685 If so, we see if it has a value equal to some register used only in the
6686 loop exit code (as marked by jump.c).
6688 If those two conditions are true, we search backwards from the start of
6689 the loop to see if that same value was loaded into a register that still
6690 retains its value at the start of the loop.
6692 If so, we insert an insn after the load to copy the destination of that
6693 load into the equivalent register and (try to) replace our SET_SRC with that
6694 register.
6696 In any event, we invalidate whatever this SET or CLOBBER modifies. */
6698 static void
6699 cse_set_around_loop (x, insn, loop_start)
6700 rtx x;
6701 rtx insn;
6702 rtx loop_start;
6704 struct table_elt *src_elt;
6706 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
6707 are setting PC or CC0 or whose SET_SRC is already a register. */
6708 if (GET_CODE (x) == SET
6709 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
6710 && GET_CODE (SET_SRC (x)) != REG)
6712 src_elt = lookup (SET_SRC (x),
6713 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
6714 GET_MODE (SET_DEST (x)));
6716 if (src_elt)
6717 for (src_elt = src_elt->first_same_value; src_elt;
6718 src_elt = src_elt->next_same_value)
6719 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
6720 && COST (src_elt->exp) < COST (SET_SRC (x)))
6722 rtx p, set;
6724 /* Look for an insn in front of LOOP_START that sets
6725 something in the desired mode to SET_SRC (x) before we hit
6726 a label or CALL_INSN. */
6728 for (p = prev_nonnote_insn (loop_start);
6729 p && GET_CODE (p) != CALL_INSN
6730 && GET_CODE (p) != CODE_LABEL;
6731 p = prev_nonnote_insn (p))
6732 if ((set = single_set (p)) != 0
6733 && GET_CODE (SET_DEST (set)) == REG
6734 && GET_MODE (SET_DEST (set)) == src_elt->mode
6735 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
6737 /* We now have to ensure that nothing between P
6738 and LOOP_START modified anything referenced in
6739 SET_SRC (x). We know that nothing within the loop
6740 can modify it, or we would have invalidated it in
6741 the hash table. */
6742 rtx q;
6743 rtx cse_check_loop_start_value = SET_SRC (x);
6744 for (q = p; q != loop_start; q = NEXT_INSN (q))
6745 if (INSN_P (q))
6746 note_stores (PATTERN (q),
6747 cse_check_loop_start,
6748 &cse_check_loop_start_value);
6750 /* If nothing was changed and we can replace our
6751 SET_SRC, add an insn after P to copy its destination
6752 to what we will be replacing SET_SRC with. */
6753 if (cse_check_loop_start_value
6754 && validate_change (insn, &SET_SRC (x),
6755 src_elt->exp, 0))
6757 /* If this creates new pseudos, this is unsafe,
6758 because the regno of new pseudo is unsuitable
6759 to index into reg_qty when cse_insn processes
6760 the new insn. Therefore, if a new pseudo was
6761 created, discard this optimization. */
6762 int nregs = max_reg_num ();
6763 rtx move
6764 = gen_move_insn (src_elt->exp, SET_DEST (set));
6765 if (nregs != max_reg_num ())
6767 if (! validate_change (insn, &SET_SRC (x),
6768 SET_SRC (set), 0))
6769 abort ();
6771 else
6772 emit_insn_after (move, p);
6774 break;
6779 /* Deal with the destination of X affecting the stack pointer. */
6780 addr_affects_sp_p (SET_DEST (x));
6782 /* See comment on similar code in cse_insn for explanation of these
6783 tests. */
6784 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6785 || GET_CODE (SET_DEST (x)) == MEM)
6786 invalidate (SET_DEST (x), VOIDmode);
6787 else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6788 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6789 invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
6792 /* Find the end of INSN's basic block and return its range,
6793 the total number of SETs in all the insns of the block, the last insn of the
6794 block, and the branch path.
6796 The branch path indicates which branches should be followed. If a non-zero
6797 path size is specified, the block should be rescanned and a different set
6798 of branches will be taken. The branch path is only used if
6799 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
6801 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6802 used to describe the block. It is filled in with the information about
6803 the current block. The incoming structure's branch path, if any, is used
6804 to construct the output branch path. */
6806 void
6807 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
6808 rtx insn;
6809 struct cse_basic_block_data *data;
6810 int follow_jumps;
6811 int after_loop;
6812 int skip_blocks;
6814 rtx p = insn, q;
6815 int nsets = 0;
6816 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6817 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6818 int path_size = data->path_size;
6819 int path_entry = 0;
6820 int i;
6822 /* Update the previous branch path, if any. If the last branch was
6823 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
6824 shorten the path by one and look at the previous branch. We know that
6825 at least one branch must have been taken if PATH_SIZE is non-zero. */
6826 while (path_size > 0)
6828 if (data->path[path_size - 1].status != NOT_TAKEN)
6830 data->path[path_size - 1].status = NOT_TAKEN;
6831 break;
6833 else
6834 path_size--;
6837 /* If the first instruction is marked with QImode, that means we've
6838 already processed this block. Our caller will look at DATA->LAST
6839 to figure out where to go next. We want to return the next block
6840 in the instruction stream, not some branched-to block somewhere
6841 else. We accomplish this by pretending our called forbid us to
6842 follow jumps, or skip blocks. */
6843 if (GET_MODE (insn) == QImode)
6844 follow_jumps = skip_blocks = 0;
6846 /* Scan to end of this basic block. */
6847 while (p && GET_CODE (p) != CODE_LABEL)
6849 /* Don't cse out the end of a loop. This makes a difference
6850 only for the unusual loops that always execute at least once;
6851 all other loops have labels there so we will stop in any case.
6852 Cse'ing out the end of the loop is dangerous because it
6853 might cause an invariant expression inside the loop
6854 to be reused after the end of the loop. This would make it
6855 hard to move the expression out of the loop in loop.c,
6856 especially if it is one of several equivalent expressions
6857 and loop.c would like to eliminate it.
6859 If we are running after loop.c has finished, we can ignore
6860 the NOTE_INSN_LOOP_END. */
6862 if (! after_loop && GET_CODE (p) == NOTE
6863 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
6864 break;
6866 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6867 the regs restored by the longjmp come from
6868 a later time than the setjmp. */
6869 if (PREV_INSN (p) && GET_CODE (PREV_INSN (p)) == CALL_INSN
6870 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6871 break;
6873 /* A PARALLEL can have lots of SETs in it,
6874 especially if it is really an ASM_OPERANDS. */
6875 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6876 nsets += XVECLEN (PATTERN (p), 0);
6877 else if (GET_CODE (p) != NOTE)
6878 nsets += 1;
6880 /* Ignore insns made by CSE; they cannot affect the boundaries of
6881 the basic block. */
6883 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6884 high_cuid = INSN_CUID (p);
6885 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6886 low_cuid = INSN_CUID (p);
6888 /* See if this insn is in our branch path. If it is and we are to
6889 take it, do so. */
6890 if (path_entry < path_size && data->path[path_entry].branch == p)
6892 if (data->path[path_entry].status != NOT_TAKEN)
6893 p = JUMP_LABEL (p);
6895 /* Point to next entry in path, if any. */
6896 path_entry++;
6899 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6900 was specified, we haven't reached our maximum path length, there are
6901 insns following the target of the jump, this is the only use of the
6902 jump label, and the target label is preceded by a BARRIER.
6904 Alternatively, we can follow the jump if it branches around a
6905 block of code and there are no other branches into the block.
6906 In this case invalidate_skipped_block will be called to invalidate any
6907 registers set in the block when following the jump. */
6909 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
6910 && GET_CODE (p) == JUMP_INSN
6911 && GET_CODE (PATTERN (p)) == SET
6912 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6913 && JUMP_LABEL (p) != 0
6914 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6915 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6917 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6918 if ((GET_CODE (q) != NOTE
6919 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6920 || (PREV_INSN (q) && GET_CODE (PREV_INSN (q)) == CALL_INSN
6921 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6922 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
6923 break;
6925 /* If we ran into a BARRIER, this code is an extension of the
6926 basic block when the branch is taken. */
6927 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
6929 /* Don't allow ourself to keep walking around an
6930 always-executed loop. */
6931 if (next_real_insn (q) == next)
6933 p = NEXT_INSN (p);
6934 continue;
6937 /* Similarly, don't put a branch in our path more than once. */
6938 for (i = 0; i < path_entry; i++)
6939 if (data->path[i].branch == p)
6940 break;
6942 if (i != path_entry)
6943 break;
6945 data->path[path_entry].branch = p;
6946 data->path[path_entry++].status = TAKEN;
6948 /* This branch now ends our path. It was possible that we
6949 didn't see this branch the last time around (when the
6950 insn in front of the target was a JUMP_INSN that was
6951 turned into a no-op). */
6952 path_size = path_entry;
6954 p = JUMP_LABEL (p);
6955 /* Mark block so we won't scan it again later. */
6956 PUT_MODE (NEXT_INSN (p), QImode);
6958 /* Detect a branch around a block of code. */
6959 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
6961 rtx tmp;
6963 if (next_real_insn (q) == next)
6965 p = NEXT_INSN (p);
6966 continue;
6969 for (i = 0; i < path_entry; i++)
6970 if (data->path[i].branch == p)
6971 break;
6973 if (i != path_entry)
6974 break;
6976 /* This is no_labels_between_p (p, q) with an added check for
6977 reaching the end of a function (in case Q precedes P). */
6978 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6979 if (GET_CODE (tmp) == CODE_LABEL)
6980 break;
6982 if (tmp == q)
6984 data->path[path_entry].branch = p;
6985 data->path[path_entry++].status = AROUND;
6987 path_size = path_entry;
6989 p = JUMP_LABEL (p);
6990 /* Mark block so we won't scan it again later. */
6991 PUT_MODE (NEXT_INSN (p), QImode);
6995 p = NEXT_INSN (p);
6998 data->low_cuid = low_cuid;
6999 data->high_cuid = high_cuid;
7000 data->nsets = nsets;
7001 data->last = p;
7003 /* If all jumps in the path are not taken, set our path length to zero
7004 so a rescan won't be done. */
7005 for (i = path_size - 1; i >= 0; i--)
7006 if (data->path[i].status != NOT_TAKEN)
7007 break;
7009 if (i == -1)
7010 data->path_size = 0;
7011 else
7012 data->path_size = path_size;
7014 /* End the current branch path. */
7015 data->path[path_size].branch = 0;
7018 /* Perform cse on the instructions of a function.
7019 F is the first instruction.
7020 NREGS is one plus the highest pseudo-reg number used in the instruction.
7022 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7023 (only if -frerun-cse-after-loop).
7025 Returns 1 if jump_optimize should be redone due to simplifications
7026 in conditional jump instructions. */
7029 cse_main (f, nregs, after_loop, file)
7030 rtx f;
7031 int nregs;
7032 int after_loop;
7033 FILE *file;
7035 struct cse_basic_block_data val;
7036 rtx insn = f;
7037 int i;
7039 cse_jumps_altered = 0;
7040 recorded_label_ref = 0;
7041 constant_pool_entries_cost = 0;
7042 val.path_size = 0;
7044 init_recog ();
7045 init_alias_analysis ();
7047 max_reg = nregs;
7049 max_insn_uid = get_max_uid ();
7051 reg_eqv_table = (struct reg_eqv_elem *)
7052 xmalloc (nregs * sizeof (struct reg_eqv_elem));
7054 #ifdef LOAD_EXTEND_OP
7056 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
7057 and change the code and mode as appropriate. */
7058 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7059 #endif
7061 /* Reset the counter indicating how many elements have been made
7062 thus far. */
7063 n_elements_made = 0;
7065 /* Find the largest uid. */
7067 max_uid = get_max_uid ();
7068 uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
7070 /* Compute the mapping from uids to cuids.
7071 CUIDs are numbers assigned to insns, like uids,
7072 except that cuids increase monotonically through the code.
7073 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7074 between two insns is not affected by -g. */
7076 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
7078 if (GET_CODE (insn) != NOTE
7079 || NOTE_LINE_NUMBER (insn) < 0)
7080 INSN_CUID (insn) = ++i;
7081 else
7082 /* Give a line number note the same cuid as preceding insn. */
7083 INSN_CUID (insn) = i;
7086 ggc_push_context ();
7088 /* Loop over basic blocks.
7089 Compute the maximum number of qty's needed for each basic block
7090 (which is 2 for each SET). */
7091 insn = f;
7092 while (insn)
7094 cse_altered = 0;
7095 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
7096 flag_cse_skip_blocks);
7098 /* If this basic block was already processed or has no sets, skip it. */
7099 if (val.nsets == 0 || GET_MODE (insn) == QImode)
7101 PUT_MODE (insn, VOIDmode);
7102 insn = (val.last ? NEXT_INSN (val.last) : 0);
7103 val.path_size = 0;
7104 continue;
7107 cse_basic_block_start = val.low_cuid;
7108 cse_basic_block_end = val.high_cuid;
7109 max_qty = val.nsets * 2;
7111 if (file)
7112 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7113 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
7114 val.nsets);
7116 /* Make MAX_QTY bigger to give us room to optimize
7117 past the end of this basic block, if that should prove useful. */
7118 if (max_qty < 500)
7119 max_qty = 500;
7121 max_qty += max_reg;
7123 /* If this basic block is being extended by following certain jumps,
7124 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7125 Otherwise, we start after this basic block. */
7126 if (val.path_size > 0)
7127 cse_basic_block (insn, val.last, val.path, 0);
7128 else
7130 int old_cse_jumps_altered = cse_jumps_altered;
7131 rtx temp;
7133 /* When cse changes a conditional jump to an unconditional
7134 jump, we want to reprocess the block, since it will give
7135 us a new branch path to investigate. */
7136 cse_jumps_altered = 0;
7137 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7138 if (cse_jumps_altered == 0
7139 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7140 insn = temp;
7142 cse_jumps_altered |= old_cse_jumps_altered;
7145 if (cse_altered)
7146 ggc_collect ();
7148 #ifdef USE_C_ALLOCA
7149 alloca (0);
7150 #endif
7153 ggc_pop_context ();
7155 if (max_elements_made < n_elements_made)
7156 max_elements_made = n_elements_made;
7158 /* Clean up. */
7159 end_alias_analysis ();
7160 free (uid_cuid);
7161 free (reg_eqv_table);
7163 return cse_jumps_altered || recorded_label_ref;
7166 /* Process a single basic block. FROM and TO and the limits of the basic
7167 block. NEXT_BRANCH points to the branch path when following jumps or
7168 a null path when not following jumps.
7170 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7171 loop. This is true when we are being called for the last time on a
7172 block and this CSE pass is before loop.c. */
7174 static rtx
7175 cse_basic_block (from, to, next_branch, around_loop)
7176 rtx from, to;
7177 struct branch_path *next_branch;
7178 int around_loop;
7180 rtx insn;
7181 int to_usage = 0;
7182 rtx libcall_insn = NULL_RTX;
7183 int num_insns = 0;
7185 /* This array is undefined before max_reg, so only allocate
7186 the space actually needed and adjust the start. */
7188 qty_table
7189 = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
7190 * sizeof (struct qty_table_elem));
7191 qty_table -= max_reg;
7193 new_basic_block ();
7195 /* TO might be a label. If so, protect it from being deleted. */
7196 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7197 ++LABEL_NUSES (to);
7199 for (insn = from; insn != to; insn = NEXT_INSN (insn))
7201 enum rtx_code code = GET_CODE (insn);
7203 /* If we have processed 1,000 insns, flush the hash table to
7204 avoid extreme quadratic behavior. We must not include NOTEs
7205 in the count since there may be more of them when generating
7206 debugging information. If we clear the table at different
7207 times, code generated with -g -O might be different than code
7208 generated with -O but not -g.
7210 ??? This is a real kludge and needs to be done some other way.
7211 Perhaps for 2.9. */
7212 if (code != NOTE && num_insns++ > 1000)
7214 flush_hash_table ();
7215 num_insns = 0;
7218 /* See if this is a branch that is part of the path. If so, and it is
7219 to be taken, do so. */
7220 if (next_branch->branch == insn)
7222 enum taken status = next_branch++->status;
7223 if (status != NOT_TAKEN)
7225 if (status == TAKEN)
7226 record_jump_equiv (insn, 1);
7227 else
7228 invalidate_skipped_block (NEXT_INSN (insn));
7230 /* Set the last insn as the jump insn; it doesn't affect cc0.
7231 Then follow this branch. */
7232 #ifdef HAVE_cc0
7233 prev_insn_cc0 = 0;
7234 #endif
7235 prev_insn = insn;
7236 insn = JUMP_LABEL (insn);
7237 continue;
7241 if (GET_MODE (insn) == QImode)
7242 PUT_MODE (insn, VOIDmode);
7244 if (GET_RTX_CLASS (code) == 'i')
7246 rtx p;
7248 /* Process notes first so we have all notes in canonical forms when
7249 looking for duplicate operations. */
7251 if (REG_NOTES (insn))
7252 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7254 /* Track when we are inside in LIBCALL block. Inside such a block,
7255 we do not want to record destinations. The last insn of a
7256 LIBCALL block is not considered to be part of the block, since
7257 its destination is the result of the block and hence should be
7258 recorded. */
7260 if (REG_NOTES (insn) != 0)
7262 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
7263 libcall_insn = XEXP (p, 0);
7264 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7265 libcall_insn = 0;
7268 cse_insn (insn, libcall_insn);
7270 /* If we haven't already found an insn where we added a LABEL_REF,
7271 check this one. */
7272 if (GET_CODE (insn) == INSN && ! recorded_label_ref
7273 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
7274 (void *) insn))
7275 recorded_label_ref = 1;
7278 /* If INSN is now an unconditional jump, skip to the end of our
7279 basic block by pretending that we just did the last insn in the
7280 basic block. If we are jumping to the end of our block, show
7281 that we can have one usage of TO. */
7283 if (any_uncondjump_p (insn))
7285 if (to == 0)
7287 free (qty_table + max_reg);
7288 return 0;
7291 if (JUMP_LABEL (insn) == to)
7292 to_usage = 1;
7294 /* Maybe TO was deleted because the jump is unconditional.
7295 If so, there is nothing left in this basic block. */
7296 /* ??? Perhaps it would be smarter to set TO
7297 to whatever follows this insn,
7298 and pretend the basic block had always ended here. */
7299 if (INSN_DELETED_P (to))
7300 break;
7302 insn = PREV_INSN (to);
7305 /* See if it is ok to keep on going past the label
7306 which used to end our basic block. Remember that we incremented
7307 the count of that label, so we decrement it here. If we made
7308 a jump unconditional, TO_USAGE will be one; in that case, we don't
7309 want to count the use in that jump. */
7311 if (to != 0 && NEXT_INSN (insn) == to
7312 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
7314 struct cse_basic_block_data val;
7315 rtx prev;
7317 insn = NEXT_INSN (to);
7319 /* If TO was the last insn in the function, we are done. */
7320 if (insn == 0)
7322 free (qty_table + max_reg);
7323 return 0;
7326 /* If TO was preceded by a BARRIER we are done with this block
7327 because it has no continuation. */
7328 prev = prev_nonnote_insn (to);
7329 if (prev && GET_CODE (prev) == BARRIER)
7331 free (qty_table + max_reg);
7332 return insn;
7335 /* Find the end of the following block. Note that we won't be
7336 following branches in this case. */
7337 to_usage = 0;
7338 val.path_size = 0;
7339 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7341 /* If the tables we allocated have enough space left
7342 to handle all the SETs in the next basic block,
7343 continue through it. Otherwise, return,
7344 and that block will be scanned individually. */
7345 if (val.nsets * 2 + next_qty > max_qty)
7346 break;
7348 cse_basic_block_start = val.low_cuid;
7349 cse_basic_block_end = val.high_cuid;
7350 to = val.last;
7352 /* Prevent TO from being deleted if it is a label. */
7353 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7354 ++LABEL_NUSES (to);
7356 /* Back up so we process the first insn in the extension. */
7357 insn = PREV_INSN (insn);
7361 if (next_qty > max_qty)
7362 abort ();
7364 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7365 the previous insn is the only insn that branches to the head of a loop,
7366 we can cse into the loop. Don't do this if we changed the jump
7367 structure of a loop unless we aren't going to be following jumps. */
7369 insn = prev_nonnote_insn(to);
7370 if ((cse_jumps_altered == 0
7371 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7372 && around_loop && to != 0
7373 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7374 && GET_CODE (insn) == JUMP_INSN
7375 && JUMP_LABEL (insn) != 0
7376 && LABEL_NUSES (JUMP_LABEL (insn)) == 1)
7377 cse_around_loop (JUMP_LABEL (insn));
7379 free (qty_table + max_reg);
7381 return to ? NEXT_INSN (to) : 0;
7384 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7385 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7387 static int
7388 check_for_label_ref (rtl, data)
7389 rtx *rtl;
7390 void *data;
7392 rtx insn = (rtx) data;
7394 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7395 we must rerun jump since it needs to place the note. If this is a
7396 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7397 since no REG_LABEL will be added. */
7398 return (GET_CODE (*rtl) == LABEL_REF
7399 && ! LABEL_REF_NONLOCAL_P (*rtl)
7400 && LABEL_P (XEXP (*rtl, 0))
7401 && INSN_UID (XEXP (*rtl, 0)) != 0
7402 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7405 /* Count the number of times registers are used (not set) in X.
7406 COUNTS is an array in which we accumulate the count, INCR is how much
7407 we count each register usage.
7409 Don't count a usage of DEST, which is the SET_DEST of a SET which
7410 contains X in its SET_SRC. This is because such a SET does not
7411 modify the liveness of DEST. */
7413 static void
7414 count_reg_usage (x, counts, dest, incr)
7415 rtx x;
7416 int *counts;
7417 rtx dest;
7418 int incr;
7420 enum rtx_code code;
7421 const char *fmt;
7422 int i, j;
7424 if (x == 0)
7425 return;
7427 switch (code = GET_CODE (x))
7429 case REG:
7430 if (x != dest)
7431 counts[REGNO (x)] += incr;
7432 return;
7434 case PC:
7435 case CC0:
7436 case CONST:
7437 case CONST_INT:
7438 case CONST_DOUBLE:
7439 case CONST_VECTOR:
7440 case SYMBOL_REF:
7441 case LABEL_REF:
7442 return;
7444 case CLOBBER:
7445 /* If we are clobbering a MEM, mark any registers inside the address
7446 as being used. */
7447 if (GET_CODE (XEXP (x, 0)) == MEM)
7448 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7449 return;
7451 case SET:
7452 /* Unless we are setting a REG, count everything in SET_DEST. */
7453 if (GET_CODE (SET_DEST (x)) != REG)
7454 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7456 /* If SRC has side-effects, then we can't delete this insn, so the
7457 usage of SET_DEST inside SRC counts.
7459 ??? Strictly-speaking, we might be preserving this insn
7460 because some other SET has side-effects, but that's hard
7461 to do and can't happen now. */
7462 count_reg_usage (SET_SRC (x), counts,
7463 side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
7464 incr);
7465 return;
7467 case CALL_INSN:
7468 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
7469 /* Fall through. */
7471 case INSN:
7472 case JUMP_INSN:
7473 count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
7475 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7476 use them. */
7478 count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
7479 return;
7481 case EXPR_LIST:
7482 case INSN_LIST:
7483 if (REG_NOTE_KIND (x) == REG_EQUAL
7484 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7485 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7486 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7487 return;
7489 default:
7490 break;
7493 fmt = GET_RTX_FORMAT (code);
7494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7496 if (fmt[i] == 'e')
7497 count_reg_usage (XEXP (x, i), counts, dest, incr);
7498 else if (fmt[i] == 'E')
7499 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7500 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7504 /* Return true if set is live. */
7505 static bool
7506 set_live_p (set, insn, counts)
7507 rtx set;
7508 rtx insn ATTRIBUTE_UNUSED; /* Only used with HAVE_cc0. */
7509 int *counts;
7511 #ifdef HAVE_cc0
7512 rtx tem;
7513 #endif
7515 if (set_noop_p (set))
7518 #ifdef HAVE_cc0
7519 else if (GET_CODE (SET_DEST (set)) == CC0
7520 && !side_effects_p (SET_SRC (set))
7521 && ((tem = next_nonnote_insn (insn)) == 0
7522 || !INSN_P (tem)
7523 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7524 return false;
7525 #endif
7526 else if (GET_CODE (SET_DEST (set)) != REG
7527 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7528 || counts[REGNO (SET_DEST (set))] != 0
7529 || side_effects_p (SET_SRC (set))
7530 /* An ADDRESSOF expression can turn into a use of the
7531 internal arg pointer, so always consider the
7532 internal arg pointer live. If it is truly dead,
7533 flow will delete the initializing insn. */
7534 || (SET_DEST (set) == current_function_internal_arg_pointer))
7535 return true;
7536 return false;
7539 /* Return true if insn is live. */
7541 static bool
7542 insn_live_p (insn, counts)
7543 rtx insn;
7544 int *counts;
7546 int i;
7547 if (GET_CODE (PATTERN (insn)) == SET)
7548 return set_live_p (PATTERN (insn), insn, counts);
7549 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7551 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7553 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7555 if (GET_CODE (elt) == SET)
7557 if (set_live_p (elt, insn, counts))
7558 return true;
7560 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7561 return true;
7563 return false;
7565 else
7566 return true;
7569 /* Return true if libcall is dead as a whole. */
7571 static bool
7572 dead_libcall_p (insn)
7573 rtx insn;
7575 rtx note;
7576 /* See if there's a REG_EQUAL note on this insn and try to
7577 replace the source with the REG_EQUAL expression.
7579 We assume that insns with REG_RETVALs can only be reg->reg
7580 copies at this point. */
7581 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7582 if (note)
7584 rtx set = single_set (insn);
7585 rtx new = simplify_rtx (XEXP (note, 0));
7587 if (!new)
7588 new = XEXP (note, 0);
7590 if (set && validate_change (insn, &SET_SRC (set), new, 0))
7592 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7593 return true;
7596 return false;
7599 /* Scan all the insns and delete any that are dead; i.e., they store a register
7600 that is never used or they copy a register to itself.
7602 This is used to remove insns made obviously dead by cse, loop or other
7603 optimizations. It improves the heuristics in loop since it won't try to
7604 move dead invariants out of loops or make givs for dead quantities. The
7605 remaining passes of the compilation are also sped up. */
7607 void
7608 delete_trivially_dead_insns (insns, nreg, preserve_basic_blocks)
7609 rtx insns;
7610 int nreg;
7611 int preserve_basic_blocks;
7613 int *counts;
7614 rtx insn, prev;
7615 int i;
7616 int in_libcall = 0, dead_libcall = 0;
7617 basic_block bb;
7619 /* First count the number of times each register is used. */
7620 counts = (int *) xcalloc (nreg, sizeof (int));
7621 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7622 count_reg_usage (insn, counts, NULL_RTX, 1);
7624 /* Go from the last insn to the first and delete insns that only set unused
7625 registers or copy a register to itself. As we delete an insn, remove
7626 usage counts for registers it uses.
7628 The first jump optimization pass may leave a real insn as the last
7629 insn in the function. We must not skip that insn or we may end
7630 up deleting code that is not really dead. */
7631 insn = get_last_insn ();
7632 if (! INSN_P (insn))
7633 insn = prev_real_insn (insn);
7635 if (!preserve_basic_blocks)
7636 for (; insn; insn = prev)
7638 int live_insn = 0;
7640 prev = prev_real_insn (insn);
7642 /* Don't delete any insns that are part of a libcall block unless
7643 we can delete the whole libcall block.
7645 Flow or loop might get confused if we did that. Remember
7646 that we are scanning backwards. */
7647 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7649 in_libcall = 1;
7650 live_insn = 1;
7651 dead_libcall = dead_libcall_p (insn);
7653 else if (in_libcall)
7654 live_insn = ! dead_libcall;
7655 else
7656 live_insn = insn_live_p (insn, counts);
7658 /* If this is a dead insn, delete it and show registers in it aren't
7659 being used. */
7661 if (! live_insn)
7663 count_reg_usage (insn, counts, NULL_RTX, -1);
7664 delete_related_insns (insn);
7667 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7669 in_libcall = 0;
7670 dead_libcall = 0;
7673 else
7674 for (i = 0; i < n_basic_blocks; i++)
7675 for (bb = BASIC_BLOCK (i), insn = bb->end; insn != bb->head; insn = prev)
7677 int live_insn = 0;
7679 prev = PREV_INSN (insn);
7680 if (!INSN_P (insn))
7681 continue;
7683 /* Don't delete any insns that are part of a libcall block unless
7684 we can delete the whole libcall block.
7686 Flow or loop might get confused if we did that. Remember
7687 that we are scanning backwards. */
7688 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7690 in_libcall = 1;
7691 live_insn = 1;
7692 dead_libcall = dead_libcall_p (insn);
7694 else if (in_libcall)
7695 live_insn = ! dead_libcall;
7696 else
7697 live_insn = insn_live_p (insn, counts);
7699 /* If this is a dead insn, delete it and show registers in it aren't
7700 being used. */
7702 if (! live_insn)
7704 count_reg_usage (insn, counts, NULL_RTX, -1);
7705 delete_insn (insn);
7708 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7710 in_libcall = 0;
7711 dead_libcall = 0;
7715 /* Clean up. */
7716 free (counts);