2002-02-19 Philip Blundell <philb@gnu.org>
[official-gcc.git] / gcc / alias.c
blob5d017eb73c953f19a45915cc665e76855ffb7675
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "expr.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "cselib.h"
36 #include "splay-tree.h"
37 #include "ggc.h"
38 #include "langhooks.h"
40 /* The alias sets assigned to MEMs assist the back-end in determining
41 which MEMs can alias which other MEMs. In general, two MEMs in
42 different alias sets cannot alias each other, with one important
43 exception. Consider something like:
45 struct S {int i; double d; };
47 a store to an `S' can alias something of either type `int' or type
48 `double'. (However, a store to an `int' cannot alias a `double'
49 and vice versa.) We indicate this via a tree structure that looks
50 like:
51 struct S
52 / \
53 / \
54 |/_ _\|
55 int double
57 (The arrows are directed and point downwards.)
58 In this situation we say the alias set for `struct S' is the
59 `superset' and that those for `int' and `double' are `subsets'.
61 To see whether two alias sets can point to the same memory, we must
62 see if either alias set is a subset of the other. We need not trace
63 past immediate descendents, however, since we propagate all
64 grandchildren up one level.
66 Alias set zero is implicitly a superset of all other alias sets.
67 However, this is no actual entry for alias set zero. It is an
68 error to attempt to explicitly construct a subset of zero. */
70 typedef struct alias_set_entry
72 /* The alias set number, as stored in MEM_ALIAS_SET. */
73 HOST_WIDE_INT alias_set;
75 /* The children of the alias set. These are not just the immediate
76 children, but, in fact, all descendents. So, if we have:
78 struct T { struct S s; float f; }
80 continuing our example above, the children here will be all of
81 `int', `double', `float', and `struct S'. */
82 splay_tree children;
84 /* Nonzero if would have a child of zero: this effectively makes this
85 alias set the same as alias set zero. */
86 int has_zero_child;
87 } *alias_set_entry;
89 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
90 static rtx find_symbolic_term PARAMS ((rtx));
91 rtx get_addr PARAMS ((rtx));
92 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
93 HOST_WIDE_INT));
94 static void record_set PARAMS ((rtx, rtx, void *));
95 static rtx find_base_term PARAMS ((rtx));
96 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
97 enum machine_mode));
98 static rtx find_base_value PARAMS ((rtx));
99 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
100 static int insert_subset_children PARAMS ((splay_tree_node, void*));
101 static tree find_base_decl PARAMS ((tree));
102 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
103 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
104 int (*) (rtx, int)));
105 static int aliases_everything_p PARAMS ((rtx));
106 static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
107 static tree decl_for_component_ref PARAMS ((tree));
108 static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
109 static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
110 static int write_dependence_p PARAMS ((rtx, rtx, int));
111 static int nonlocal_mentioned_p PARAMS ((rtx));
113 /* Set up all info needed to perform alias analysis on memory references. */
115 /* Returns the size in bytes of the mode of X. */
116 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
118 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
119 different alias sets. We ignore alias sets in functions making use
120 of variable arguments because the va_arg macros on some systems are
121 not legal ANSI C. */
122 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
123 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
125 /* Cap the number of passes we make over the insns propagating alias
126 information through set chains. 10 is a completely arbitrary choice. */
127 #define MAX_ALIAS_LOOP_PASSES 10
129 /* reg_base_value[N] gives an address to which register N is related.
130 If all sets after the first add or subtract to the current value
131 or otherwise modify it so it does not point to a different top level
132 object, reg_base_value[N] is equal to the address part of the source
133 of the first set.
135 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
136 expressions represent certain special values: function arguments and
137 the stack, frame, and argument pointers.
139 The contents of an ADDRESS is not normally used, the mode of the
140 ADDRESS determines whether the ADDRESS is a function argument or some
141 other special value. Pointer equality, not rtx_equal_p, determines whether
142 two ADDRESS expressions refer to the same base address.
144 The only use of the contents of an ADDRESS is for determining if the
145 current function performs nonlocal memory memory references for the
146 purposes of marking the function as a constant function. */
148 static rtx *reg_base_value;
149 static rtx *new_reg_base_value;
150 static unsigned int reg_base_value_size; /* size of reg_base_value array */
152 #define REG_BASE_VALUE(X) \
153 (REGNO (X) < reg_base_value_size \
154 ? reg_base_value[REGNO (X)] : 0)
156 /* Vector of known invariant relationships between registers. Set in
157 loop unrolling. Indexed by register number, if nonzero the value
158 is an expression describing this register in terms of another.
160 The length of this array is REG_BASE_VALUE_SIZE.
162 Because this array contains only pseudo registers it has no effect
163 after reload. */
164 static rtx *alias_invariant;
166 /* Vector indexed by N giving the initial (unchanging) value known for
167 pseudo-register N. This array is initialized in
168 init_alias_analysis, and does not change until end_alias_analysis
169 is called. */
170 rtx *reg_known_value;
172 /* Indicates number of valid entries in reg_known_value. */
173 static unsigned int reg_known_value_size;
175 /* Vector recording for each reg_known_value whether it is due to a
176 REG_EQUIV note. Future passes (viz., reload) may replace the
177 pseudo with the equivalent expression and so we account for the
178 dependences that would be introduced if that happens.
180 The REG_EQUIV notes created in assign_parms may mention the arg
181 pointer, and there are explicit insns in the RTL that modify the
182 arg pointer. Thus we must ensure that such insns don't get
183 scheduled across each other because that would invalidate the
184 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
185 wrong, but solving the problem in the scheduler will likely give
186 better code, so we do it here. */
187 char *reg_known_equiv_p;
189 /* True when scanning insns from the start of the rtl to the
190 NOTE_INSN_FUNCTION_BEG note. */
191 static int copying_arguments;
193 /* The splay-tree used to store the various alias set entries. */
194 static splay_tree alias_sets;
196 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
197 such an entry, or NULL otherwise. */
199 static alias_set_entry
200 get_alias_set_entry (alias_set)
201 HOST_WIDE_INT alias_set;
203 splay_tree_node sn
204 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
206 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
209 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
210 the two MEMs cannot alias each other. */
212 static int
213 mems_in_disjoint_alias_sets_p (mem1, mem2)
214 rtx mem1;
215 rtx mem2;
217 #ifdef ENABLE_CHECKING
218 /* Perform a basic sanity check. Namely, that there are no alias sets
219 if we're not using strict aliasing. This helps to catch bugs
220 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
221 where a MEM is allocated in some way other than by the use of
222 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
223 use alias sets to indicate that spilled registers cannot alias each
224 other, we might need to remove this check. */
225 if (! flag_strict_aliasing
226 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
227 abort ();
228 #endif
230 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
233 /* Insert the NODE into the splay tree given by DATA. Used by
234 record_alias_subset via splay_tree_foreach. */
236 static int
237 insert_subset_children (node, data)
238 splay_tree_node node;
239 void *data;
241 splay_tree_insert ((splay_tree) data, node->key, node->value);
243 return 0;
246 /* Return 1 if the two specified alias sets may conflict. */
249 alias_sets_conflict_p (set1, set2)
250 HOST_WIDE_INT set1, set2;
252 alias_set_entry ase;
254 /* If have no alias set information for one of the operands, we have
255 to assume it can alias anything. */
256 if (set1 == 0 || set2 == 0
257 /* If the two alias sets are the same, they may alias. */
258 || set1 == set2)
259 return 1;
261 /* See if the first alias set is a subset of the second. */
262 ase = get_alias_set_entry (set1);
263 if (ase != 0
264 && (ase->has_zero_child
265 || splay_tree_lookup (ase->children,
266 (splay_tree_key) set2)))
267 return 1;
269 /* Now do the same, but with the alias sets reversed. */
270 ase = get_alias_set_entry (set2);
271 if (ase != 0
272 && (ase->has_zero_child
273 || splay_tree_lookup (ase->children,
274 (splay_tree_key) set1)))
275 return 1;
277 /* The two alias sets are distinct and neither one is the
278 child of the other. Therefore, they cannot alias. */
279 return 0;
282 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
283 has any readonly fields. If any of the fields have types that
284 contain readonly fields, return true as well. */
287 readonly_fields_p (type)
288 tree type;
290 tree field;
292 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
293 && TREE_CODE (type) != QUAL_UNION_TYPE)
294 return 0;
296 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
297 if (TREE_CODE (field) == FIELD_DECL
298 && (TREE_READONLY (field)
299 || readonly_fields_p (TREE_TYPE (field))))
300 return 1;
302 return 0;
305 /* Return 1 if any MEM object of type T1 will always conflict (using the
306 dependency routines in this file) with any MEM object of type T2.
307 This is used when allocating temporary storage. If T1 and/or T2 are
308 NULL_TREE, it means we know nothing about the storage. */
311 objects_must_conflict_p (t1, t2)
312 tree t1, t2;
314 /* If neither has a type specified, we don't know if they'll conflict
315 because we may be using them to store objects of various types, for
316 example the argument and local variables areas of inlined functions. */
317 if (t1 == 0 && t2 == 0)
318 return 0;
320 /* If one or the other has readonly fields or is readonly,
321 then they may not conflict. */
322 if ((t1 != 0 && readonly_fields_p (t1))
323 || (t2 != 0 && readonly_fields_p (t2))
324 || (t1 != 0 && TYPE_READONLY (t1))
325 || (t2 != 0 && TYPE_READONLY (t2)))
326 return 0;
328 /* If they are the same type, they must conflict. */
329 if (t1 == t2
330 /* Likewise if both are volatile. */
331 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
332 return 1;
334 /* If one is aggregate and the other is scalar then they may not
335 conflict. */
336 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
337 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
338 return 0;
340 /* Otherwise they conflict only if the alias sets conflict. */
341 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
342 t2 ? get_alias_set (t2) : 0);
345 /* T is an expression with pointer type. Find the DECL on which this
346 expression is based. (For example, in `a[i]' this would be `a'.)
347 If there is no such DECL, or a unique decl cannot be determined,
348 NULL_TREE is returned. */
350 static tree
351 find_base_decl (t)
352 tree t;
354 tree d0, d1, d2;
356 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
357 return 0;
359 /* If this is a declaration, return it. */
360 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
361 return t;
363 /* Handle general expressions. It would be nice to deal with
364 COMPONENT_REFs here. If we could tell that `a' and `b' were the
365 same, then `a->f' and `b->f' are also the same. */
366 switch (TREE_CODE_CLASS (TREE_CODE (t)))
368 case '1':
369 return find_base_decl (TREE_OPERAND (t, 0));
371 case '2':
372 /* Return 0 if found in neither or both are the same. */
373 d0 = find_base_decl (TREE_OPERAND (t, 0));
374 d1 = find_base_decl (TREE_OPERAND (t, 1));
375 if (d0 == d1)
376 return d0;
377 else if (d0 == 0)
378 return d1;
379 else if (d1 == 0)
380 return d0;
381 else
382 return 0;
384 case '3':
385 d0 = find_base_decl (TREE_OPERAND (t, 0));
386 d1 = find_base_decl (TREE_OPERAND (t, 1));
387 d2 = find_base_decl (TREE_OPERAND (t, 2));
389 /* Set any nonzero values from the last, then from the first. */
390 if (d1 == 0) d1 = d2;
391 if (d0 == 0) d0 = d1;
392 if (d1 == 0) d1 = d0;
393 if (d2 == 0) d2 = d1;
395 /* At this point all are nonzero or all are zero. If all three are the
396 same, return it. Otherwise, return zero. */
397 return (d0 == d1 && d1 == d2) ? d0 : 0;
399 default:
400 return 0;
404 /* Return 1 if all the nested component references handled by
405 get_inner_reference in T are such that we can address the object in T. */
408 can_address_p (t)
409 tree t;
411 /* If we're at the end, it is vacuously addressable. */
412 if (! handled_component_p (t))
413 return 1;
415 /* Bitfields are never addressable. */
416 else if (TREE_CODE (t) == BIT_FIELD_REF)
417 return 0;
419 /* Fields are addressable unless they are marked as nonaddressable or
420 the containing type has alias set 0. */
421 else if (TREE_CODE (t) == COMPONENT_REF
422 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
423 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
424 && can_address_p (TREE_OPERAND (t, 0)))
425 return 1;
427 /* Likewise for arrays. */
428 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
429 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
430 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
431 && can_address_p (TREE_OPERAND (t, 0)))
432 return 1;
434 return 0;
437 /* Return the alias set for T, which may be either a type or an
438 expression. Call language-specific routine for help, if needed. */
440 HOST_WIDE_INT
441 get_alias_set (t)
442 tree t;
444 HOST_WIDE_INT set;
446 /* If we're not doing any alias analysis, just assume everything
447 aliases everything else. Also return 0 if this or its type is
448 an error. */
449 if (! flag_strict_aliasing || t == error_mark_node
450 || (! TYPE_P (t)
451 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
452 return 0;
454 /* We can be passed either an expression or a type. This and the
455 language-specific routine may make mutually-recursive calls to each other
456 to figure out what to do. At each juncture, we see if this is a tree
457 that the language may need to handle specially. First handle things that
458 aren't types. */
459 if (! TYPE_P (t))
461 tree inner = t;
462 tree placeholder_ptr = 0;
464 /* Remove any nops, then give the language a chance to do
465 something with this tree before we look at it. */
466 STRIP_NOPS (t);
467 set = (*lang_hooks.get_alias_set) (t);
468 if (set != -1)
469 return set;
471 /* First see if the actual object referenced is an INDIRECT_REF from a
472 restrict-qualified pointer or a "void *". Replace
473 PLACEHOLDER_EXPRs. */
474 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
475 || handled_component_p (inner))
477 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
478 inner = find_placeholder (inner, &placeholder_ptr);
479 else
480 inner = TREE_OPERAND (inner, 0);
482 STRIP_NOPS (inner);
485 /* Check for accesses through restrict-qualified pointers. */
486 if (TREE_CODE (inner) == INDIRECT_REF)
488 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
490 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
492 /* If we haven't computed the actual alias set, do it now. */
493 if (DECL_POINTER_ALIAS_SET (decl) == -2)
495 /* No two restricted pointers can point at the same thing.
496 However, a restricted pointer can point at the same thing
497 as an unrestricted pointer, if that unrestricted pointer
498 is based on the restricted pointer. So, we make the
499 alias set for the restricted pointer a subset of the
500 alias set for the type pointed to by the type of the
501 decl. */
502 HOST_WIDE_INT pointed_to_alias_set
503 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
505 if (pointed_to_alias_set == 0)
506 /* It's not legal to make a subset of alias set zero. */
508 else
510 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
511 record_alias_subset (pointed_to_alias_set,
512 DECL_POINTER_ALIAS_SET (decl));
516 /* We use the alias set indicated in the declaration. */
517 return DECL_POINTER_ALIAS_SET (decl);
520 /* If we have an INDIRECT_REF via a void pointer, we don't
521 know anything about what that might alias. */
522 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
523 return 0;
526 /* Otherwise, pick up the outermost object that we could have a pointer
527 to, processing conversion and PLACEHOLDER_EXPR as above. */
528 placeholder_ptr = 0;
529 while (TREE_CODE (t) == PLACEHOLDER_EXPR
530 || (handled_component_p (t) && ! can_address_p (t)))
532 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
533 t = find_placeholder (t, &placeholder_ptr);
534 else
535 t = TREE_OPERAND (t, 0);
537 STRIP_NOPS (t);
540 /* If we've already determined the alias set for a decl, just return
541 it. This is necessary for C++ anonymous unions, whose component
542 variables don't look like union members (boo!). */
543 if (TREE_CODE (t) == VAR_DECL
544 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
545 return MEM_ALIAS_SET (DECL_RTL (t));
547 /* Now all we care about is the type. */
548 t = TREE_TYPE (t);
551 /* Variant qualifiers don't affect the alias set, so get the main
552 variant. If this is a type with a known alias set, return it. */
553 t = TYPE_MAIN_VARIANT (t);
554 if (TYPE_ALIAS_SET_KNOWN_P (t))
555 return TYPE_ALIAS_SET (t);
557 /* See if the language has special handling for this type. */
558 set = (*lang_hooks.get_alias_set) (t);
559 if (set != -1)
560 return set;
562 /* There are no objects of FUNCTION_TYPE, so there's no point in
563 using up an alias set for them. (There are, of course, pointers
564 and references to functions, but that's different.) */
565 else if (TREE_CODE (t) == FUNCTION_TYPE)
566 set = 0;
567 else
568 /* Otherwise make a new alias set for this type. */
569 set = new_alias_set ();
571 TYPE_ALIAS_SET (t) = set;
573 /* If this is an aggregate type, we must record any component aliasing
574 information. */
575 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
576 record_component_aliases (t);
578 return set;
581 /* Return a brand-new alias set. */
583 HOST_WIDE_INT
584 new_alias_set ()
586 static HOST_WIDE_INT last_alias_set;
588 if (flag_strict_aliasing)
589 return ++last_alias_set;
590 else
591 return 0;
594 /* Indicate that things in SUBSET can alias things in SUPERSET, but
595 not vice versa. For example, in C, a store to an `int' can alias a
596 structure containing an `int', but not vice versa. Here, the
597 structure would be the SUPERSET and `int' the SUBSET. This
598 function should be called only once per SUPERSET/SUBSET pair.
600 It is illegal for SUPERSET to be zero; everything is implicitly a
601 subset of alias set zero. */
603 void
604 record_alias_subset (superset, subset)
605 HOST_WIDE_INT superset;
606 HOST_WIDE_INT subset;
608 alias_set_entry superset_entry;
609 alias_set_entry subset_entry;
611 /* It is possible in complex type situations for both sets to be the same,
612 in which case we can ignore this operation. */
613 if (superset == subset)
614 return;
616 if (superset == 0)
617 abort ();
619 superset_entry = get_alias_set_entry (superset);
620 if (superset_entry == 0)
622 /* Create an entry for the SUPERSET, so that we have a place to
623 attach the SUBSET. */
624 superset_entry
625 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
626 superset_entry->alias_set = superset;
627 superset_entry->children
628 = splay_tree_new (splay_tree_compare_ints, 0, 0);
629 superset_entry->has_zero_child = 0;
630 splay_tree_insert (alias_sets, (splay_tree_key) superset,
631 (splay_tree_value) superset_entry);
634 if (subset == 0)
635 superset_entry->has_zero_child = 1;
636 else
638 subset_entry = get_alias_set_entry (subset);
639 /* If there is an entry for the subset, enter all of its children
640 (if they are not already present) as children of the SUPERSET. */
641 if (subset_entry)
643 if (subset_entry->has_zero_child)
644 superset_entry->has_zero_child = 1;
646 splay_tree_foreach (subset_entry->children, insert_subset_children,
647 superset_entry->children);
650 /* Enter the SUBSET itself as a child of the SUPERSET. */
651 splay_tree_insert (superset_entry->children,
652 (splay_tree_key) subset, 0);
656 /* Record that component types of TYPE, if any, are part of that type for
657 aliasing purposes. For record types, we only record component types
658 for fields that are marked addressable. For array types, we always
659 record the component types, so the front end should not call this
660 function if the individual component aren't addressable. */
662 void
663 record_component_aliases (type)
664 tree type;
666 HOST_WIDE_INT superset = get_alias_set (type);
667 tree field;
669 if (superset == 0)
670 return;
672 switch (TREE_CODE (type))
674 case ARRAY_TYPE:
675 if (! TYPE_NONALIASED_COMPONENT (type))
676 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
677 break;
679 case RECORD_TYPE:
680 case UNION_TYPE:
681 case QUAL_UNION_TYPE:
682 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
683 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
684 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
685 break;
687 case COMPLEX_TYPE:
688 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
689 break;
691 default:
692 break;
696 /* Allocate an alias set for use in storing and reading from the varargs
697 spill area. */
699 HOST_WIDE_INT
700 get_varargs_alias_set ()
702 static HOST_WIDE_INT set = -1;
704 if (set == -1)
705 set = new_alias_set ();
707 return set;
710 /* Likewise, but used for the fixed portions of the frame, e.g., register
711 save areas. */
713 HOST_WIDE_INT
714 get_frame_alias_set ()
716 static HOST_WIDE_INT set = -1;
718 if (set == -1)
719 set = new_alias_set ();
721 return set;
724 /* Inside SRC, the source of a SET, find a base address. */
726 static rtx
727 find_base_value (src)
728 rtx src;
730 unsigned int regno;
732 switch (GET_CODE (src))
734 case SYMBOL_REF:
735 case LABEL_REF:
736 return src;
738 case REG:
739 regno = REGNO (src);
740 /* At the start of a function, argument registers have known base
741 values which may be lost later. Returning an ADDRESS
742 expression here allows optimization based on argument values
743 even when the argument registers are used for other purposes. */
744 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
745 return new_reg_base_value[regno];
747 /* If a pseudo has a known base value, return it. Do not do this
748 for non-fixed hard regs since it can result in a circular
749 dependency chain for registers which have values at function entry.
751 The test above is not sufficient because the scheduler may move
752 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
753 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
754 && regno < reg_base_value_size
755 && reg_base_value[regno])
756 return reg_base_value[regno];
758 return src;
760 case MEM:
761 /* Check for an argument passed in memory. Only record in the
762 copying-arguments block; it is too hard to track changes
763 otherwise. */
764 if (copying_arguments
765 && (XEXP (src, 0) == arg_pointer_rtx
766 || (GET_CODE (XEXP (src, 0)) == PLUS
767 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
768 return gen_rtx_ADDRESS (VOIDmode, src);
769 return 0;
771 case CONST:
772 src = XEXP (src, 0);
773 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
774 break;
776 /* ... fall through ... */
778 case PLUS:
779 case MINUS:
781 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
783 /* If either operand is a REG that is a known pointer, then it
784 is the base. */
785 if (REG_P (src_0) && REG_POINTER (src_0))
786 return find_base_value (src_0);
787 if (REG_P (src_1) && REG_POINTER (src_1))
788 return find_base_value (src_1);
790 /* If either operand is a REG, then see if we already have
791 a known value for it. */
792 if (REG_P (src_0))
794 temp = find_base_value (src_0);
795 if (temp != 0)
796 src_0 = temp;
799 if (REG_P (src_1))
801 temp = find_base_value (src_1);
802 if (temp!= 0)
803 src_1 = temp;
806 /* If either base is named object or a special address
807 (like an argument or stack reference), then use it for the
808 base term. */
809 if (src_0 != 0
810 && (GET_CODE (src_0) == SYMBOL_REF
811 || GET_CODE (src_0) == LABEL_REF
812 || (GET_CODE (src_0) == ADDRESS
813 && GET_MODE (src_0) != VOIDmode)))
814 return src_0;
816 if (src_1 != 0
817 && (GET_CODE (src_1) == SYMBOL_REF
818 || GET_CODE (src_1) == LABEL_REF
819 || (GET_CODE (src_1) == ADDRESS
820 && GET_MODE (src_1) != VOIDmode)))
821 return src_1;
823 /* Guess which operand is the base address:
824 If either operand is a symbol, then it is the base. If
825 either operand is a CONST_INT, then the other is the base. */
826 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
827 return find_base_value (src_0);
828 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
829 return find_base_value (src_1);
831 return 0;
834 case LO_SUM:
835 /* The standard form is (lo_sum reg sym) so look only at the
836 second operand. */
837 return find_base_value (XEXP (src, 1));
839 case AND:
840 /* If the second operand is constant set the base
841 address to the first operand. */
842 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
843 return find_base_value (XEXP (src, 0));
844 return 0;
846 case TRUNCATE:
847 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
848 break;
849 /* Fall through. */
850 case HIGH:
851 case PRE_INC:
852 case PRE_DEC:
853 case POST_INC:
854 case POST_DEC:
855 case PRE_MODIFY:
856 case POST_MODIFY:
857 return find_base_value (XEXP (src, 0));
859 case ZERO_EXTEND:
860 case SIGN_EXTEND: /* used for NT/Alpha pointers */
862 rtx temp = find_base_value (XEXP (src, 0));
864 #ifdef POINTERS_EXTEND_UNSIGNED
865 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
866 temp = convert_memory_address (Pmode, temp);
867 #endif
869 return temp;
872 default:
873 break;
876 return 0;
879 /* Called from init_alias_analysis indirectly through note_stores. */
881 /* While scanning insns to find base values, reg_seen[N] is nonzero if
882 register N has been set in this function. */
883 static char *reg_seen;
885 /* Addresses which are known not to alias anything else are identified
886 by a unique integer. */
887 static int unique_id;
889 static void
890 record_set (dest, set, data)
891 rtx dest, set;
892 void *data ATTRIBUTE_UNUSED;
894 unsigned regno;
895 rtx src;
897 if (GET_CODE (dest) != REG)
898 return;
900 regno = REGNO (dest);
902 if (regno >= reg_base_value_size)
903 abort ();
905 if (set)
907 /* A CLOBBER wipes out any old value but does not prevent a previously
908 unset register from acquiring a base address (i.e. reg_seen is not
909 set). */
910 if (GET_CODE (set) == CLOBBER)
912 new_reg_base_value[regno] = 0;
913 return;
915 src = SET_SRC (set);
917 else
919 if (reg_seen[regno])
921 new_reg_base_value[regno] = 0;
922 return;
924 reg_seen[regno] = 1;
925 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
926 GEN_INT (unique_id++));
927 return;
930 /* This is not the first set. If the new value is not related to the
931 old value, forget the base value. Note that the following code is
932 not detected:
933 extern int x, y; int *p = &x; p += (&y-&x);
934 ANSI C does not allow computing the difference of addresses
935 of distinct top level objects. */
936 if (new_reg_base_value[regno])
937 switch (GET_CODE (src))
939 case LO_SUM:
940 case MINUS:
941 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
942 new_reg_base_value[regno] = 0;
943 break;
944 case PLUS:
945 /* If the value we add in the PLUS is also a valid base value,
946 this might be the actual base value, and the original value
947 an index. */
949 rtx other = NULL_RTX;
951 if (XEXP (src, 0) == dest)
952 other = XEXP (src, 1);
953 else if (XEXP (src, 1) == dest)
954 other = XEXP (src, 0);
956 if (! other || find_base_value (other))
957 new_reg_base_value[regno] = 0;
958 break;
960 case AND:
961 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
962 new_reg_base_value[regno] = 0;
963 break;
964 default:
965 new_reg_base_value[regno] = 0;
966 break;
968 /* If this is the first set of a register, record the value. */
969 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
970 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
971 new_reg_base_value[regno] = find_base_value (src);
973 reg_seen[regno] = 1;
976 /* Called from loop optimization when a new pseudo-register is
977 created. It indicates that REGNO is being set to VAL. f INVARIANT
978 is true then this value also describes an invariant relationship
979 which can be used to deduce that two registers with unknown values
980 are different. */
982 void
983 record_base_value (regno, val, invariant)
984 unsigned int regno;
985 rtx val;
986 int invariant;
988 if (regno >= reg_base_value_size)
989 return;
991 if (invariant && alias_invariant)
992 alias_invariant[regno] = val;
994 if (GET_CODE (val) == REG)
996 if (REGNO (val) < reg_base_value_size)
997 reg_base_value[regno] = reg_base_value[REGNO (val)];
999 return;
1002 reg_base_value[regno] = find_base_value (val);
1005 /* Clear alias info for a register. This is used if an RTL transformation
1006 changes the value of a register. This is used in flow by AUTO_INC_DEC
1007 optimizations. We don't need to clear reg_base_value, since flow only
1008 changes the offset. */
1010 void
1011 clear_reg_alias_info (reg)
1012 rtx reg;
1014 unsigned int regno = REGNO (reg);
1016 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1017 reg_known_value[regno] = reg;
1020 /* Returns a canonical version of X, from the point of view alias
1021 analysis. (For example, if X is a MEM whose address is a register,
1022 and the register has a known value (say a SYMBOL_REF), then a MEM
1023 whose address is the SYMBOL_REF is returned.) */
1026 canon_rtx (x)
1027 rtx x;
1029 /* Recursively look for equivalences. */
1030 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1031 && REGNO (x) < reg_known_value_size)
1032 return reg_known_value[REGNO (x)] == x
1033 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1034 else if (GET_CODE (x) == PLUS)
1036 rtx x0 = canon_rtx (XEXP (x, 0));
1037 rtx x1 = canon_rtx (XEXP (x, 1));
1039 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1041 if (GET_CODE (x0) == CONST_INT)
1042 return plus_constant (x1, INTVAL (x0));
1043 else if (GET_CODE (x1) == CONST_INT)
1044 return plus_constant (x0, INTVAL (x1));
1045 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1049 /* This gives us much better alias analysis when called from
1050 the loop optimizer. Note we want to leave the original
1051 MEM alone, but need to return the canonicalized MEM with
1052 all the flags with their original values. */
1053 else if (GET_CODE (x) == MEM)
1054 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1056 return x;
1059 /* Return 1 if X and Y are identical-looking rtx's.
1061 We use the data in reg_known_value above to see if two registers with
1062 different numbers are, in fact, equivalent. */
1064 static int
1065 rtx_equal_for_memref_p (x, y)
1066 rtx x, y;
1068 int i;
1069 int j;
1070 enum rtx_code code;
1071 const char *fmt;
1073 if (x == 0 && y == 0)
1074 return 1;
1075 if (x == 0 || y == 0)
1076 return 0;
1078 x = canon_rtx (x);
1079 y = canon_rtx (y);
1081 if (x == y)
1082 return 1;
1084 code = GET_CODE (x);
1085 /* Rtx's of different codes cannot be equal. */
1086 if (code != GET_CODE (y))
1087 return 0;
1089 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1090 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1092 if (GET_MODE (x) != GET_MODE (y))
1093 return 0;
1095 /* Some RTL can be compared without a recursive examination. */
1096 switch (code)
1098 case VALUE:
1099 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1101 case REG:
1102 return REGNO (x) == REGNO (y);
1104 case LABEL_REF:
1105 return XEXP (x, 0) == XEXP (y, 0);
1107 case SYMBOL_REF:
1108 return XSTR (x, 0) == XSTR (y, 0);
1110 case CONST_INT:
1111 case CONST_DOUBLE:
1112 /* There's no need to compare the contents of CONST_DOUBLEs or
1113 CONST_INTs because pointer equality is a good enough
1114 comparison for these nodes. */
1115 return 0;
1117 case ADDRESSOF:
1118 return (XINT (x, 1) == XINT (y, 1)
1119 && rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)));
1121 default:
1122 break;
1125 /* For commutative operations, the RTX match if the operand match in any
1126 order. Also handle the simple binary and unary cases without a loop. */
1127 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1128 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1129 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1130 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1131 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1132 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1133 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1134 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
1135 else if (GET_RTX_CLASS (code) == '1')
1136 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
1138 /* Compare the elements. If any pair of corresponding elements
1139 fail to match, return 0 for the whole things.
1141 Limit cases to types which actually appear in addresses. */
1143 fmt = GET_RTX_FORMAT (code);
1144 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1146 switch (fmt[i])
1148 case 'i':
1149 if (XINT (x, i) != XINT (y, i))
1150 return 0;
1151 break;
1153 case 'E':
1154 /* Two vectors must have the same length. */
1155 if (XVECLEN (x, i) != XVECLEN (y, i))
1156 return 0;
1158 /* And the corresponding elements must match. */
1159 for (j = 0; j < XVECLEN (x, i); j++)
1160 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
1161 XVECEXP (y, i, j)) == 0)
1162 return 0;
1163 break;
1165 case 'e':
1166 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
1167 return 0;
1168 break;
1170 /* This can happen for asm operands. */
1171 case 's':
1172 if (strcmp (XSTR (x, i), XSTR (y, i)))
1173 return 0;
1174 break;
1176 /* This can happen for an asm which clobbers memory. */
1177 case '0':
1178 break;
1180 /* It is believed that rtx's at this level will never
1181 contain anything but integers and other rtx's,
1182 except for within LABEL_REFs and SYMBOL_REFs. */
1183 default:
1184 abort ();
1187 return 1;
1190 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1191 X and return it, or return 0 if none found. */
1193 static rtx
1194 find_symbolic_term (x)
1195 rtx x;
1197 int i;
1198 enum rtx_code code;
1199 const char *fmt;
1201 code = GET_CODE (x);
1202 if (code == SYMBOL_REF || code == LABEL_REF)
1203 return x;
1204 if (GET_RTX_CLASS (code) == 'o')
1205 return 0;
1207 fmt = GET_RTX_FORMAT (code);
1208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1210 rtx t;
1212 if (fmt[i] == 'e')
1214 t = find_symbolic_term (XEXP (x, i));
1215 if (t != 0)
1216 return t;
1218 else if (fmt[i] == 'E')
1219 break;
1221 return 0;
1224 static rtx
1225 find_base_term (x)
1226 rtx x;
1228 cselib_val *val;
1229 struct elt_loc_list *l;
1231 #if defined (FIND_BASE_TERM)
1232 /* Try machine-dependent ways to find the base term. */
1233 x = FIND_BASE_TERM (x);
1234 #endif
1236 switch (GET_CODE (x))
1238 case REG:
1239 return REG_BASE_VALUE (x);
1241 case TRUNCATE:
1242 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1243 return 0;
1244 /* Fall through. */
1245 case HIGH:
1246 case PRE_INC:
1247 case PRE_DEC:
1248 case POST_INC:
1249 case POST_DEC:
1250 case PRE_MODIFY:
1251 case POST_MODIFY:
1252 return find_base_term (XEXP (x, 0));
1254 case ZERO_EXTEND:
1255 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1257 rtx temp = find_base_term (XEXP (x, 0));
1259 #ifdef POINTERS_EXTEND_UNSIGNED
1260 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1261 temp = convert_memory_address (Pmode, temp);
1262 #endif
1264 return temp;
1267 case VALUE:
1268 val = CSELIB_VAL_PTR (x);
1269 for (l = val->locs; l; l = l->next)
1270 if ((x = find_base_term (l->loc)) != 0)
1271 return x;
1272 return 0;
1274 case CONST:
1275 x = XEXP (x, 0);
1276 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1277 return 0;
1278 /* fall through */
1279 case LO_SUM:
1280 case PLUS:
1281 case MINUS:
1283 rtx tmp1 = XEXP (x, 0);
1284 rtx tmp2 = XEXP (x, 1);
1286 /* This is a little bit tricky since we have to determine which of
1287 the two operands represents the real base address. Otherwise this
1288 routine may return the index register instead of the base register.
1290 That may cause us to believe no aliasing was possible, when in
1291 fact aliasing is possible.
1293 We use a few simple tests to guess the base register. Additional
1294 tests can certainly be added. For example, if one of the operands
1295 is a shift or multiply, then it must be the index register and the
1296 other operand is the base register. */
1298 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1299 return find_base_term (tmp2);
1301 /* If either operand is known to be a pointer, then use it
1302 to determine the base term. */
1303 if (REG_P (tmp1) && REG_POINTER (tmp1))
1304 return find_base_term (tmp1);
1306 if (REG_P (tmp2) && REG_POINTER (tmp2))
1307 return find_base_term (tmp2);
1309 /* Neither operand was known to be a pointer. Go ahead and find the
1310 base term for both operands. */
1311 tmp1 = find_base_term (tmp1);
1312 tmp2 = find_base_term (tmp2);
1314 /* If either base term is named object or a special address
1315 (like an argument or stack reference), then use it for the
1316 base term. */
1317 if (tmp1 != 0
1318 && (GET_CODE (tmp1) == SYMBOL_REF
1319 || GET_CODE (tmp1) == LABEL_REF
1320 || (GET_CODE (tmp1) == ADDRESS
1321 && GET_MODE (tmp1) != VOIDmode)))
1322 return tmp1;
1324 if (tmp2 != 0
1325 && (GET_CODE (tmp2) == SYMBOL_REF
1326 || GET_CODE (tmp2) == LABEL_REF
1327 || (GET_CODE (tmp2) == ADDRESS
1328 && GET_MODE (tmp2) != VOIDmode)))
1329 return tmp2;
1331 /* We could not determine which of the two operands was the
1332 base register and which was the index. So we can determine
1333 nothing from the base alias check. */
1334 return 0;
1337 case AND:
1338 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1339 return find_base_term (XEXP (x, 0));
1340 return 0;
1342 case SYMBOL_REF:
1343 case LABEL_REF:
1344 return x;
1346 case ADDRESSOF:
1347 return REG_BASE_VALUE (frame_pointer_rtx);
1349 default:
1350 return 0;
1354 /* Return 0 if the addresses X and Y are known to point to different
1355 objects, 1 if they might be pointers to the same object. */
1357 static int
1358 base_alias_check (x, y, x_mode, y_mode)
1359 rtx x, y;
1360 enum machine_mode x_mode, y_mode;
1362 rtx x_base = find_base_term (x);
1363 rtx y_base = find_base_term (y);
1365 /* If the address itself has no known base see if a known equivalent
1366 value has one. If either address still has no known base, nothing
1367 is known about aliasing. */
1368 if (x_base == 0)
1370 rtx x_c;
1372 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1373 return 1;
1375 x_base = find_base_term (x_c);
1376 if (x_base == 0)
1377 return 1;
1380 if (y_base == 0)
1382 rtx y_c;
1383 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1384 return 1;
1386 y_base = find_base_term (y_c);
1387 if (y_base == 0)
1388 return 1;
1391 /* If the base addresses are equal nothing is known about aliasing. */
1392 if (rtx_equal_p (x_base, y_base))
1393 return 1;
1395 /* The base addresses of the read and write are different expressions.
1396 If they are both symbols and they are not accessed via AND, there is
1397 no conflict. We can bring knowledge of object alignment into play
1398 here. For example, on alpha, "char a, b;" can alias one another,
1399 though "char a; long b;" cannot. */
1400 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1402 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1403 return 1;
1404 if (GET_CODE (x) == AND
1405 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1406 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1407 return 1;
1408 if (GET_CODE (y) == AND
1409 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1410 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1411 return 1;
1412 /* Differing symbols never alias. */
1413 return 0;
1416 /* If one address is a stack reference there can be no alias:
1417 stack references using different base registers do not alias,
1418 a stack reference can not alias a parameter, and a stack reference
1419 can not alias a global. */
1420 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1421 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1422 return 0;
1424 if (! flag_argument_noalias)
1425 return 1;
1427 if (flag_argument_noalias > 1)
1428 return 0;
1430 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1431 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1434 /* Convert the address X into something we can use. This is done by returning
1435 it unchanged unless it is a value; in the latter case we call cselib to get
1436 a more useful rtx. */
1439 get_addr (x)
1440 rtx x;
1442 cselib_val *v;
1443 struct elt_loc_list *l;
1445 if (GET_CODE (x) != VALUE)
1446 return x;
1447 v = CSELIB_VAL_PTR (x);
1448 for (l = v->locs; l; l = l->next)
1449 if (CONSTANT_P (l->loc))
1450 return l->loc;
1451 for (l = v->locs; l; l = l->next)
1452 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1453 return l->loc;
1454 if (v->locs)
1455 return v->locs->loc;
1456 return x;
1459 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1460 where SIZE is the size in bytes of the memory reference. If ADDR
1461 is not modified by the memory reference then ADDR is returned. */
1464 addr_side_effect_eval (addr, size, n_refs)
1465 rtx addr;
1466 int size;
1467 int n_refs;
1469 int offset = 0;
1471 switch (GET_CODE (addr))
1473 case PRE_INC:
1474 offset = (n_refs + 1) * size;
1475 break;
1476 case PRE_DEC:
1477 offset = -(n_refs + 1) * size;
1478 break;
1479 case POST_INC:
1480 offset = n_refs * size;
1481 break;
1482 case POST_DEC:
1483 offset = -n_refs * size;
1484 break;
1486 default:
1487 return addr;
1490 if (offset)
1491 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1492 else
1493 addr = XEXP (addr, 0);
1495 return addr;
1498 /* Return nonzero if X and Y (memory addresses) could reference the
1499 same location in memory. C is an offset accumulator. When
1500 C is nonzero, we are testing aliases between X and Y + C.
1501 XSIZE is the size in bytes of the X reference,
1502 similarly YSIZE is the size in bytes for Y.
1504 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1505 referenced (the reference was BLKmode), so make the most pessimistic
1506 assumptions.
1508 If XSIZE or YSIZE is negative, we may access memory outside the object
1509 being referenced as a side effect. This can happen when using AND to
1510 align memory references, as is done on the Alpha.
1512 Nice to notice that varying addresses cannot conflict with fp if no
1513 local variables had their addresses taken, but that's too hard now. */
1515 static int
1516 memrefs_conflict_p (xsize, x, ysize, y, c)
1517 rtx x, y;
1518 int xsize, ysize;
1519 HOST_WIDE_INT c;
1521 if (GET_CODE (x) == VALUE)
1522 x = get_addr (x);
1523 if (GET_CODE (y) == VALUE)
1524 y = get_addr (y);
1525 if (GET_CODE (x) == HIGH)
1526 x = XEXP (x, 0);
1527 else if (GET_CODE (x) == LO_SUM)
1528 x = XEXP (x, 1);
1529 else
1530 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
1531 if (GET_CODE (y) == HIGH)
1532 y = XEXP (y, 0);
1533 else if (GET_CODE (y) == LO_SUM)
1534 y = XEXP (y, 1);
1535 else
1536 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
1538 if (rtx_equal_for_memref_p (x, y))
1540 if (xsize <= 0 || ysize <= 0)
1541 return 1;
1542 if (c >= 0 && xsize > c)
1543 return 1;
1544 if (c < 0 && ysize+c > 0)
1545 return 1;
1546 return 0;
1549 /* This code used to check for conflicts involving stack references and
1550 globals but the base address alias code now handles these cases. */
1552 if (GET_CODE (x) == PLUS)
1554 /* The fact that X is canonicalized means that this
1555 PLUS rtx is canonicalized. */
1556 rtx x0 = XEXP (x, 0);
1557 rtx x1 = XEXP (x, 1);
1559 if (GET_CODE (y) == PLUS)
1561 /* The fact that Y is canonicalized means that this
1562 PLUS rtx is canonicalized. */
1563 rtx y0 = XEXP (y, 0);
1564 rtx y1 = XEXP (y, 1);
1566 if (rtx_equal_for_memref_p (x1, y1))
1567 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1568 if (rtx_equal_for_memref_p (x0, y0))
1569 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1570 if (GET_CODE (x1) == CONST_INT)
1572 if (GET_CODE (y1) == CONST_INT)
1573 return memrefs_conflict_p (xsize, x0, ysize, y0,
1574 c - INTVAL (x1) + INTVAL (y1));
1575 else
1576 return memrefs_conflict_p (xsize, x0, ysize, y,
1577 c - INTVAL (x1));
1579 else if (GET_CODE (y1) == CONST_INT)
1580 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1582 return 1;
1584 else if (GET_CODE (x1) == CONST_INT)
1585 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1587 else if (GET_CODE (y) == PLUS)
1589 /* The fact that Y is canonicalized means that this
1590 PLUS rtx is canonicalized. */
1591 rtx y0 = XEXP (y, 0);
1592 rtx y1 = XEXP (y, 1);
1594 if (GET_CODE (y1) == CONST_INT)
1595 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1596 else
1597 return 1;
1600 if (GET_CODE (x) == GET_CODE (y))
1601 switch (GET_CODE (x))
1603 case MULT:
1605 /* Handle cases where we expect the second operands to be the
1606 same, and check only whether the first operand would conflict
1607 or not. */
1608 rtx x0, y0;
1609 rtx x1 = canon_rtx (XEXP (x, 1));
1610 rtx y1 = canon_rtx (XEXP (y, 1));
1611 if (! rtx_equal_for_memref_p (x1, y1))
1612 return 1;
1613 x0 = canon_rtx (XEXP (x, 0));
1614 y0 = canon_rtx (XEXP (y, 0));
1615 if (rtx_equal_for_memref_p (x0, y0))
1616 return (xsize == 0 || ysize == 0
1617 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1619 /* Can't properly adjust our sizes. */
1620 if (GET_CODE (x1) != CONST_INT)
1621 return 1;
1622 xsize /= INTVAL (x1);
1623 ysize /= INTVAL (x1);
1624 c /= INTVAL (x1);
1625 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1628 case REG:
1629 /* Are these registers known not to be equal? */
1630 if (alias_invariant)
1632 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1633 rtx i_x, i_y; /* invariant relationships of X and Y */
1635 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1636 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1638 if (i_x == 0 && i_y == 0)
1639 break;
1641 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1642 ysize, i_y ? i_y : y, c))
1643 return 0;
1645 break;
1647 default:
1648 break;
1651 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1652 as an access with indeterminate size. Assume that references
1653 besides AND are aligned, so if the size of the other reference is
1654 at least as large as the alignment, assume no other overlap. */
1655 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1657 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1658 xsize = -1;
1659 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1661 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1663 /* ??? If we are indexing far enough into the array/structure, we
1664 may yet be able to determine that we can not overlap. But we
1665 also need to that we are far enough from the end not to overlap
1666 a following reference, so we do nothing with that for now. */
1667 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1668 ysize = -1;
1669 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1672 if (GET_CODE (x) == ADDRESSOF)
1674 if (y == frame_pointer_rtx
1675 || GET_CODE (y) == ADDRESSOF)
1676 return xsize <= 0 || ysize <= 0;
1678 if (GET_CODE (y) == ADDRESSOF)
1680 if (x == frame_pointer_rtx)
1681 return xsize <= 0 || ysize <= 0;
1684 if (CONSTANT_P (x))
1686 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1688 c += (INTVAL (y) - INTVAL (x));
1689 return (xsize <= 0 || ysize <= 0
1690 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1693 if (GET_CODE (x) == CONST)
1695 if (GET_CODE (y) == CONST)
1696 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1697 ysize, canon_rtx (XEXP (y, 0)), c);
1698 else
1699 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1700 ysize, y, c);
1702 if (GET_CODE (y) == CONST)
1703 return memrefs_conflict_p (xsize, x, ysize,
1704 canon_rtx (XEXP (y, 0)), c);
1706 if (CONSTANT_P (y))
1707 return (xsize <= 0 || ysize <= 0
1708 || (rtx_equal_for_memref_p (x, y)
1709 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1711 return 1;
1713 return 1;
1716 /* Functions to compute memory dependencies.
1718 Since we process the insns in execution order, we can build tables
1719 to keep track of what registers are fixed (and not aliased), what registers
1720 are varying in known ways, and what registers are varying in unknown
1721 ways.
1723 If both memory references are volatile, then there must always be a
1724 dependence between the two references, since their order can not be
1725 changed. A volatile and non-volatile reference can be interchanged
1726 though.
1728 A MEM_IN_STRUCT reference at a non-AND varying address can never
1729 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1730 also must allow AND addresses, because they may generate accesses
1731 outside the object being referenced. This is used to generate
1732 aligned addresses from unaligned addresses, for instance, the alpha
1733 storeqi_unaligned pattern. */
1735 /* Read dependence: X is read after read in MEM takes place. There can
1736 only be a dependence here if both reads are volatile. */
1739 read_dependence (mem, x)
1740 rtx mem;
1741 rtx x;
1743 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1746 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1747 MEM2 is a reference to a structure at a varying address, or returns
1748 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1749 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1750 to decide whether or not an address may vary; it should return
1751 nonzero whenever variation is possible.
1752 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1754 static rtx
1755 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1756 rtx mem1, mem2;
1757 rtx mem1_addr, mem2_addr;
1758 int (*varies_p) PARAMS ((rtx, int));
1760 if (! flag_strict_aliasing)
1761 return NULL_RTX;
1763 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1764 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1765 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1766 varying address. */
1767 return mem1;
1769 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1770 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1771 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1772 varying address. */
1773 return mem2;
1775 return NULL_RTX;
1778 /* Returns nonzero if something about the mode or address format MEM1
1779 indicates that it might well alias *anything*. */
1781 static int
1782 aliases_everything_p (mem)
1783 rtx mem;
1785 if (GET_CODE (XEXP (mem, 0)) == AND)
1786 /* If the address is an AND, its very hard to know at what it is
1787 actually pointing. */
1788 return 1;
1790 return 0;
1793 /* Return true if we can determine that the fields referenced cannot
1794 overlap for any pair of objects. */
1796 static bool
1797 nonoverlapping_component_refs_p (x, y)
1798 tree x, y;
1800 tree fieldx, fieldy, typex, typey, orig_y;
1804 /* The comparison has to be done at a common type, since we don't
1805 know how the inheritance hierarchy works. */
1806 orig_y = y;
1809 fieldx = TREE_OPERAND (x, 1);
1810 typex = DECL_FIELD_CONTEXT (fieldx);
1812 y = orig_y;
1815 fieldy = TREE_OPERAND (y, 1);
1816 typey = DECL_FIELD_CONTEXT (fieldy);
1818 if (typex == typey)
1819 goto found;
1821 y = TREE_OPERAND (y, 0);
1823 while (y && TREE_CODE (y) == COMPONENT_REF);
1825 x = TREE_OPERAND (x, 0);
1827 while (x && TREE_CODE (x) == COMPONENT_REF);
1829 /* Never found a common type. */
1830 return false;
1832 found:
1833 /* If we're left with accessing different fields of a structure,
1834 then no overlap. */
1835 if (TREE_CODE (typex) == RECORD_TYPE
1836 && fieldx != fieldy)
1837 return true;
1839 /* The comparison on the current field failed. If we're accessing
1840 a very nested structure, look at the next outer level. */
1841 x = TREE_OPERAND (x, 0);
1842 y = TREE_OPERAND (y, 0);
1844 while (x && y
1845 && TREE_CODE (x) == COMPONENT_REF
1846 && TREE_CODE (y) == COMPONENT_REF);
1848 return false;
1851 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1853 static tree
1854 decl_for_component_ref (x)
1855 tree x;
1859 x = TREE_OPERAND (x, 0);
1861 while (x && TREE_CODE (x) == COMPONENT_REF);
1863 return x && DECL_P (x) ? x : NULL_TREE;
1866 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1867 offset of the field reference. */
1869 static rtx
1870 adjust_offset_for_component_ref (x, offset)
1871 tree x;
1872 rtx offset;
1874 HOST_WIDE_INT ioffset;
1876 if (! offset)
1877 return NULL_RTX;
1879 ioffset = INTVAL (offset);
1882 tree field = TREE_OPERAND (x, 1);
1884 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1885 return NULL_RTX;
1886 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1887 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1888 / BITS_PER_UNIT));
1890 x = TREE_OPERAND (x, 0);
1892 while (x && TREE_CODE (x) == COMPONENT_REF);
1894 return GEN_INT (ioffset);
1897 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1898 X and Y and they do not overlap. */
1900 static int
1901 nonoverlapping_memrefs_p (x, y)
1902 rtx x, y;
1904 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1905 rtx rtlx, rtly;
1906 rtx basex, basey;
1907 rtx moffsetx, moffsety;
1908 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1910 /* Unless both have exprs, we can't tell anything. */
1911 if (exprx == 0 || expry == 0)
1912 return 0;
1914 /* If both are field references, we may be able to determine something. */
1915 if (TREE_CODE (exprx) == COMPONENT_REF
1916 && TREE_CODE (expry) == COMPONENT_REF
1917 && nonoverlapping_component_refs_p (exprx, expry))
1918 return 1;
1920 /* If the field reference test failed, look at the DECLs involved. */
1921 moffsetx = MEM_OFFSET (x);
1922 if (TREE_CODE (exprx) == COMPONENT_REF)
1924 tree t = decl_for_component_ref (exprx);
1925 if (! t)
1926 return 0;
1927 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1928 exprx = t;
1930 moffsety = MEM_OFFSET (y);
1931 if (TREE_CODE (expry) == COMPONENT_REF)
1933 tree t = decl_for_component_ref (expry);
1934 if (! t)
1935 return 0;
1936 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1937 expry = t;
1940 if (! DECL_P (exprx) || ! DECL_P (expry))
1941 return 0;
1943 rtlx = DECL_RTL (exprx);
1944 rtly = DECL_RTL (expry);
1946 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1947 can't overlap unless they are the same because we never reuse that part
1948 of the stack frame used for locals for spilled pseudos. */
1949 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
1950 && ! rtx_equal_p (rtlx, rtly))
1951 return 1;
1953 /* Get the base and offsets of both decls. If either is a register, we
1954 know both are and are the same, so use that as the base. The only
1955 we can avoid overlap is if we can deduce that they are nonoverlapping
1956 pieces of that decl, which is very rare. */
1957 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
1958 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
1959 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
1961 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
1962 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
1963 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
1965 /* If the bases are different, we know they do not overlap if both
1966 are constants or if one is a constant and the other a pointer into the
1967 stack frame. Otherwise a different base means we can't tell if they
1968 overlap or not. */
1969 if (! rtx_equal_p (basex, basey))
1970 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
1971 || (CONSTANT_P (basex) && REG_P (basey)
1972 && REGNO_PTR_FRAME_P (REGNO (basey)))
1973 || (CONSTANT_P (basey) && REG_P (basex)
1974 && REGNO_PTR_FRAME_P (REGNO (basex))));
1976 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
1977 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
1978 : -1);
1979 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
1980 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
1981 -1);
1983 /* If we have an offset for either memref, it can update the values computed
1984 above. */
1985 if (moffsetx)
1986 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
1987 if (moffsety)
1988 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
1990 /* If a memref has both a size and an offset, we can use the smaller size.
1991 We can't do this if the offset isn't known because we must view this
1992 memref as being anywhere inside the DECL's MEM. */
1993 if (MEM_SIZE (x) && moffsetx)
1994 sizex = INTVAL (MEM_SIZE (x));
1995 if (MEM_SIZE (y) && moffsety)
1996 sizey = INTVAL (MEM_SIZE (y));
1998 /* Put the values of the memref with the lower offset in X's values. */
1999 if (offsetx > offsety)
2001 tem = offsetx, offsetx = offsety, offsety = tem;
2002 tem = sizex, sizex = sizey, sizey = tem;
2005 /* If we don't know the size of the lower-offset value, we can't tell
2006 if they conflict. Otherwise, we do the test. */
2007 return sizex >= 0 && offsety > offsetx + sizex;
2010 /* True dependence: X is read after store in MEM takes place. */
2013 true_dependence (mem, mem_mode, x, varies)
2014 rtx mem;
2015 enum machine_mode mem_mode;
2016 rtx x;
2017 int (*varies) PARAMS ((rtx, int));
2019 rtx x_addr, mem_addr;
2020 rtx base;
2022 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2023 return 1;
2025 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2026 return 0;
2028 /* Unchanging memory can't conflict with non-unchanging memory.
2029 A non-unchanging read can conflict with a non-unchanging write.
2030 An unchanging read can conflict with an unchanging write since
2031 there may be a single store to this address to initialize it.
2032 Note that an unchanging store can conflict with a non-unchanging read
2033 since we have to make conservative assumptions when we have a
2034 record with readonly fields and we are copying the whole thing.
2035 Just fall through to the code below to resolve potential conflicts.
2036 This won't handle all cases optimally, but the possible performance
2037 loss should be negligible. */
2038 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2039 return 0;
2041 if (nonoverlapping_memrefs_p (mem, x))
2042 return 0;
2044 if (mem_mode == VOIDmode)
2045 mem_mode = GET_MODE (mem);
2047 x_addr = get_addr (XEXP (x, 0));
2048 mem_addr = get_addr (XEXP (mem, 0));
2050 base = find_base_term (x_addr);
2051 if (base && (GET_CODE (base) == LABEL_REF
2052 || (GET_CODE (base) == SYMBOL_REF
2053 && CONSTANT_POOL_ADDRESS_P (base))))
2054 return 0;
2056 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2057 return 0;
2059 x_addr = canon_rtx (x_addr);
2060 mem_addr = canon_rtx (mem_addr);
2062 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2063 SIZE_FOR_MODE (x), x_addr, 0))
2064 return 0;
2066 if (aliases_everything_p (x))
2067 return 1;
2069 /* We cannot use aliases_everything_p to test MEM, since we must look
2070 at MEM_MODE, rather than GET_MODE (MEM). */
2071 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2072 return 1;
2074 /* In true_dependence we also allow BLKmode to alias anything. Why
2075 don't we do this in anti_dependence and output_dependence? */
2076 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2077 return 1;
2079 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2080 varies);
2083 /* Canonical true dependence: X is read after store in MEM takes place.
2084 Variant of true_dependence which assumes MEM has already been
2085 canonicalized (hence we no longer do that here).
2086 The mem_addr argument has been added, since true_dependence computed
2087 this value prior to canonicalizing. */
2090 canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2091 rtx mem, mem_addr, x;
2092 enum machine_mode mem_mode;
2093 int (*varies) PARAMS ((rtx, int));
2095 rtx x_addr;
2097 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2098 return 1;
2100 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2101 return 0;
2103 /* If X is an unchanging read, then it can't possibly conflict with any
2104 non-unchanging store. It may conflict with an unchanging write though,
2105 because there may be a single store to this address to initialize it.
2106 Just fall through to the code below to resolve the case where we have
2107 both an unchanging read and an unchanging write. This won't handle all
2108 cases optimally, but the possible performance loss should be
2109 negligible. */
2110 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2111 return 0;
2113 if (nonoverlapping_memrefs_p (x, mem))
2114 return 0;
2116 x_addr = get_addr (XEXP (x, 0));
2118 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2119 return 0;
2121 x_addr = canon_rtx (x_addr);
2122 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2123 SIZE_FOR_MODE (x), x_addr, 0))
2124 return 0;
2126 if (aliases_everything_p (x))
2127 return 1;
2129 /* We cannot use aliases_everything_p to test MEM, since we must look
2130 at MEM_MODE, rather than GET_MODE (MEM). */
2131 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2132 return 1;
2134 /* In true_dependence we also allow BLKmode to alias anything. Why
2135 don't we do this in anti_dependence and output_dependence? */
2136 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2137 return 1;
2139 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2140 varies);
2143 /* Returns non-zero if a write to X might alias a previous read from
2144 (or, if WRITEP is non-zero, a write to) MEM. */
2146 static int
2147 write_dependence_p (mem, x, writep)
2148 rtx mem;
2149 rtx x;
2150 int writep;
2152 rtx x_addr, mem_addr;
2153 rtx fixed_scalar;
2154 rtx base;
2156 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2157 return 1;
2159 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2160 return 0;
2162 /* Unchanging memory can't conflict with non-unchanging memory. */
2163 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2164 return 0;
2166 /* If MEM is an unchanging read, then it can't possibly conflict with
2167 the store to X, because there is at most one store to MEM, and it must
2168 have occurred somewhere before MEM. */
2169 if (! writep && RTX_UNCHANGING_P (mem))
2170 return 0;
2172 if (nonoverlapping_memrefs_p (x, mem))
2173 return 0;
2175 x_addr = get_addr (XEXP (x, 0));
2176 mem_addr = get_addr (XEXP (mem, 0));
2178 if (! writep)
2180 base = find_base_term (mem_addr);
2181 if (base && (GET_CODE (base) == LABEL_REF
2182 || (GET_CODE (base) == SYMBOL_REF
2183 && CONSTANT_POOL_ADDRESS_P (base))))
2184 return 0;
2187 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2188 GET_MODE (mem)))
2189 return 0;
2191 x_addr = canon_rtx (x_addr);
2192 mem_addr = canon_rtx (mem_addr);
2194 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2195 SIZE_FOR_MODE (x), x_addr, 0))
2196 return 0;
2198 fixed_scalar
2199 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2200 rtx_addr_varies_p);
2202 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2203 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2206 /* Anti dependence: X is written after read in MEM takes place. */
2209 anti_dependence (mem, x)
2210 rtx mem;
2211 rtx x;
2213 return write_dependence_p (mem, x, /*writep=*/0);
2216 /* Output dependence: X is written after store in MEM takes place. */
2219 output_dependence (mem, x)
2220 rtx mem;
2221 rtx x;
2223 return write_dependence_p (mem, x, /*writep=*/1);
2226 /* Returns non-zero if X mentions something which is not
2227 local to the function and is not constant. */
2229 static int
2230 nonlocal_mentioned_p (x)
2231 rtx x;
2233 rtx base;
2234 RTX_CODE code;
2235 int regno;
2237 code = GET_CODE (x);
2239 if (GET_RTX_CLASS (code) == 'i')
2241 /* Constant functions can be constant if they don't use
2242 scratch memory used to mark function w/o side effects. */
2243 if (code == CALL_INSN && CONST_OR_PURE_CALL_P (x))
2245 x = CALL_INSN_FUNCTION_USAGE (x);
2246 if (x == 0)
2247 return 0;
2249 else
2250 x = PATTERN (x);
2251 code = GET_CODE (x);
2254 switch (code)
2256 case SUBREG:
2257 if (GET_CODE (SUBREG_REG (x)) == REG)
2259 /* Global registers are not local. */
2260 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2261 && global_regs[subreg_regno (x)])
2262 return 1;
2263 return 0;
2265 break;
2267 case REG:
2268 regno = REGNO (x);
2269 /* Global registers are not local. */
2270 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2271 return 1;
2272 return 0;
2274 case SCRATCH:
2275 case PC:
2276 case CC0:
2277 case CONST_INT:
2278 case CONST_DOUBLE:
2279 case CONST_VECTOR:
2280 case CONST:
2281 case LABEL_REF:
2282 return 0;
2284 case SYMBOL_REF:
2285 /* Constants in the function's constants pool are constant. */
2286 if (CONSTANT_POOL_ADDRESS_P (x))
2287 return 0;
2288 return 1;
2290 case CALL:
2291 /* Non-constant calls and recursion are not local. */
2292 return 1;
2294 case MEM:
2295 /* Be overly conservative and consider any volatile memory
2296 reference as not local. */
2297 if (MEM_VOLATILE_P (x))
2298 return 1;
2299 base = find_base_term (XEXP (x, 0));
2300 if (base)
2302 /* A Pmode ADDRESS could be a reference via the structure value
2303 address or static chain. Such memory references are nonlocal.
2305 Thus, we have to examine the contents of the ADDRESS to find
2306 out if this is a local reference or not. */
2307 if (GET_CODE (base) == ADDRESS
2308 && GET_MODE (base) == Pmode
2309 && (XEXP (base, 0) == stack_pointer_rtx
2310 || XEXP (base, 0) == arg_pointer_rtx
2311 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2312 || XEXP (base, 0) == hard_frame_pointer_rtx
2313 #endif
2314 || XEXP (base, 0) == frame_pointer_rtx))
2315 return 0;
2316 /* Constants in the function's constant pool are constant. */
2317 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2318 return 0;
2320 return 1;
2322 case UNSPEC_VOLATILE:
2323 case ASM_INPUT:
2324 return 1;
2326 case ASM_OPERANDS:
2327 if (MEM_VOLATILE_P (x))
2328 return 1;
2330 /* FALLTHROUGH */
2332 default:
2333 break;
2336 /* Recursively scan the operands of this expression. */
2339 const char *fmt = GET_RTX_FORMAT (code);
2340 int i;
2342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2344 if (fmt[i] == 'e' && XEXP (x, i))
2346 if (nonlocal_mentioned_p (XEXP (x, i)))
2347 return 1;
2349 else if (fmt[i] == 'E')
2351 int j;
2352 for (j = 0; j < XVECLEN (x, i); j++)
2353 if (nonlocal_mentioned_p (XVECEXP (x, i, j)))
2354 return 1;
2359 return 0;
2362 /* Mark the function if it is constant. */
2364 void
2365 mark_constant_function ()
2367 rtx insn;
2368 int nonlocal_mentioned;
2370 if (TREE_PUBLIC (current_function_decl)
2371 || TREE_READONLY (current_function_decl)
2372 || DECL_IS_PURE (current_function_decl)
2373 || TREE_THIS_VOLATILE (current_function_decl)
2374 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode)
2375 return;
2377 /* A loop might not return which counts as a side effect. */
2378 if (mark_dfs_back_edges ())
2379 return;
2381 nonlocal_mentioned = 0;
2383 init_alias_analysis ();
2385 /* Determine if this is a constant function. */
2387 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2388 if (INSN_P (insn) && nonlocal_mentioned_p (insn))
2390 nonlocal_mentioned = 1;
2391 break;
2394 end_alias_analysis ();
2396 /* Mark the function. */
2398 if (! nonlocal_mentioned)
2399 TREE_READONLY (current_function_decl) = 1;
2403 static HARD_REG_SET argument_registers;
2405 void
2406 init_alias_once ()
2408 int i;
2410 #ifndef OUTGOING_REGNO
2411 #define OUTGOING_REGNO(N) N
2412 #endif
2413 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2414 /* Check whether this register can hold an incoming pointer
2415 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2416 numbers, so translate if necessary due to register windows. */
2417 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2418 && HARD_REGNO_MODE_OK (i, Pmode))
2419 SET_HARD_REG_BIT (argument_registers, i);
2421 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2424 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2425 array. */
2427 void
2428 init_alias_analysis ()
2430 int maxreg = max_reg_num ();
2431 int changed, pass;
2432 int i;
2433 unsigned int ui;
2434 rtx insn;
2436 reg_known_value_size = maxreg;
2438 reg_known_value
2439 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2440 - FIRST_PSEUDO_REGISTER;
2441 reg_known_equiv_p
2442 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2443 - FIRST_PSEUDO_REGISTER;
2445 /* Overallocate reg_base_value to allow some growth during loop
2446 optimization. Loop unrolling can create a large number of
2447 registers. */
2448 reg_base_value_size = maxreg * 2;
2449 reg_base_value = (rtx *) xcalloc (reg_base_value_size, sizeof (rtx));
2450 ggc_add_rtx_root (reg_base_value, reg_base_value_size);
2452 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2453 reg_seen = (char *) xmalloc (reg_base_value_size);
2454 if (! reload_completed && flag_unroll_loops)
2456 /* ??? Why are we realloc'ing if we're just going to zero it? */
2457 alias_invariant = (rtx *)xrealloc (alias_invariant,
2458 reg_base_value_size * sizeof (rtx));
2459 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2462 /* The basic idea is that each pass through this loop will use the
2463 "constant" information from the previous pass to propagate alias
2464 information through another level of assignments.
2466 This could get expensive if the assignment chains are long. Maybe
2467 we should throttle the number of iterations, possibly based on
2468 the optimization level or flag_expensive_optimizations.
2470 We could propagate more information in the first pass by making use
2471 of REG_N_SETS to determine immediately that the alias information
2472 for a pseudo is "constant".
2474 A program with an uninitialized variable can cause an infinite loop
2475 here. Instead of doing a full dataflow analysis to detect such problems
2476 we just cap the number of iterations for the loop.
2478 The state of the arrays for the set chain in question does not matter
2479 since the program has undefined behavior. */
2481 pass = 0;
2484 /* Assume nothing will change this iteration of the loop. */
2485 changed = 0;
2487 /* We want to assign the same IDs each iteration of this loop, so
2488 start counting from zero each iteration of the loop. */
2489 unique_id = 0;
2491 /* We're at the start of the function each iteration through the
2492 loop, so we're copying arguments. */
2493 copying_arguments = 1;
2495 /* Wipe the potential alias information clean for this pass. */
2496 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2498 /* Wipe the reg_seen array clean. */
2499 memset ((char *) reg_seen, 0, reg_base_value_size);
2501 /* Mark all hard registers which may contain an address.
2502 The stack, frame and argument pointers may contain an address.
2503 An argument register which can hold a Pmode value may contain
2504 an address even if it is not in BASE_REGS.
2506 The address expression is VOIDmode for an argument and
2507 Pmode for other registers. */
2509 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2510 if (TEST_HARD_REG_BIT (argument_registers, i))
2511 new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
2512 gen_rtx_REG (Pmode, i));
2514 new_reg_base_value[STACK_POINTER_REGNUM]
2515 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2516 new_reg_base_value[ARG_POINTER_REGNUM]
2517 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2518 new_reg_base_value[FRAME_POINTER_REGNUM]
2519 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2520 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2521 new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2522 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2523 #endif
2525 /* Walk the insns adding values to the new_reg_base_value array. */
2526 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2528 if (INSN_P (insn))
2530 rtx note, set;
2532 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2533 /* The prologue/epilogue insns are not threaded onto the
2534 insn chain until after reload has completed. Thus,
2535 there is no sense wasting time checking if INSN is in
2536 the prologue/epilogue until after reload has completed. */
2537 if (reload_completed
2538 && prologue_epilogue_contains (insn))
2539 continue;
2540 #endif
2542 /* If this insn has a noalias note, process it, Otherwise,
2543 scan for sets. A simple set will have no side effects
2544 which could change the base value of any other register. */
2546 if (GET_CODE (PATTERN (insn)) == SET
2547 && REG_NOTES (insn) != 0
2548 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2549 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2550 else
2551 note_stores (PATTERN (insn), record_set, NULL);
2553 set = single_set (insn);
2555 if (set != 0
2556 && GET_CODE (SET_DEST (set)) == REG
2557 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2559 unsigned int regno = REGNO (SET_DEST (set));
2560 rtx src = SET_SRC (set);
2562 if (REG_NOTES (insn) != 0
2563 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2564 && REG_N_SETS (regno) == 1)
2565 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2566 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2567 && ! rtx_varies_p (XEXP (note, 0), 1)
2568 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2570 reg_known_value[regno] = XEXP (note, 0);
2571 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2573 else if (REG_N_SETS (regno) == 1
2574 && GET_CODE (src) == PLUS
2575 && GET_CODE (XEXP (src, 0)) == REG
2576 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2577 && (reg_known_value[REGNO (XEXP (src, 0))])
2578 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2580 rtx op0 = XEXP (src, 0);
2581 op0 = reg_known_value[REGNO (op0)];
2582 reg_known_value[regno]
2583 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2584 reg_known_equiv_p[regno] = 0;
2586 else if (REG_N_SETS (regno) == 1
2587 && ! rtx_varies_p (src, 1))
2589 reg_known_value[regno] = src;
2590 reg_known_equiv_p[regno] = 0;
2594 else if (GET_CODE (insn) == NOTE
2595 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2596 copying_arguments = 0;
2599 /* Now propagate values from new_reg_base_value to reg_base_value. */
2600 for (ui = 0; ui < reg_base_value_size; ui++)
2602 if (new_reg_base_value[ui]
2603 && new_reg_base_value[ui] != reg_base_value[ui]
2604 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2606 reg_base_value[ui] = new_reg_base_value[ui];
2607 changed = 1;
2611 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2613 /* Fill in the remaining entries. */
2614 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2615 if (reg_known_value[i] == 0)
2616 reg_known_value[i] = regno_reg_rtx[i];
2618 /* Simplify the reg_base_value array so that no register refers to
2619 another register, except to special registers indirectly through
2620 ADDRESS expressions.
2622 In theory this loop can take as long as O(registers^2), but unless
2623 there are very long dependency chains it will run in close to linear
2624 time.
2626 This loop may not be needed any longer now that the main loop does
2627 a better job at propagating alias information. */
2628 pass = 0;
2631 changed = 0;
2632 pass++;
2633 for (ui = 0; ui < reg_base_value_size; ui++)
2635 rtx base = reg_base_value[ui];
2636 if (base && GET_CODE (base) == REG)
2638 unsigned int base_regno = REGNO (base);
2639 if (base_regno == ui) /* register set from itself */
2640 reg_base_value[ui] = 0;
2641 else
2642 reg_base_value[ui] = reg_base_value[base_regno];
2643 changed = 1;
2647 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2649 /* Clean up. */
2650 free (new_reg_base_value);
2651 new_reg_base_value = 0;
2652 free (reg_seen);
2653 reg_seen = 0;
2656 void
2657 end_alias_analysis ()
2659 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2660 reg_known_value = 0;
2661 reg_known_value_size = 0;
2662 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2663 reg_known_equiv_p = 0;
2664 if (reg_base_value)
2666 ggc_del_root (reg_base_value);
2667 free (reg_base_value);
2668 reg_base_value = 0;
2670 reg_base_value_size = 0;
2671 if (alias_invariant)
2673 free (alias_invariant);
2674 alias_invariant = 0;