SUBREG_PROMOTED_VAR_P handling in expand_direct_optab_fn
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob4f719e9b81c4578b3baa6deadf23de4f9c9de8d7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Inline; use Inline;
45 with Itypes; use Itypes;
46 with Lib.Xref; use Lib.Xref;
47 with Layout; use Layout;
48 with Namet; use Namet;
49 with Lib; use Lib;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Output; use Output;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch4; use Sem_Ch4;
62 with Sem_Ch5; use Sem_Ch5;
63 with Sem_Ch8; use Sem_Ch8;
64 with Sem_Ch9; use Sem_Ch9;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 -- Set the SPARK mode from the current context (may be overwritten later
230 -- with explicit pragma).
232 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
233 Set_SPARK_Pragma_Inherited (Subp_Id);
235 -- Preserve relevant elaboration-related attributes of the context which
236 -- are no longer available or very expensive to recompute once analysis,
237 -- resolution, and expansion are over.
239 Mark_Elaboration_Attributes
240 (N_Id => Subp_Id,
241 Checks => True);
243 Set_Is_Abstract_Subprogram (Subp_Id);
244 New_Overloaded_Entity (Subp_Id);
245 Check_Delayed_Subprogram (Subp_Id);
247 Set_Categorization_From_Scope (Subp_Id, Scop);
249 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
250 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
252 -- Issue a warning if the abstract subprogram is neither a dispatching
253 -- operation nor an operation that overrides an inherited subprogram or
254 -- predefined operator, since this most likely indicates a mistake.
256 elsif Warn_On_Redundant_Constructs
257 and then not Is_Dispatching_Operation (Subp_Id)
258 and then not Present (Overridden_Operation (Subp_Id))
259 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
260 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
261 then
262 Error_Msg_N
263 ("abstract subprogram is not dispatching or overriding?r?", N);
264 end if;
266 Generate_Reference_To_Formals (Subp_Id);
267 Check_Eliminated (Subp_Id);
269 if Has_Aspects (N) then
270 Analyze_Aspect_Specifications (N, Subp_Id);
271 end if;
272 end Analyze_Abstract_Subprogram_Declaration;
274 ---------------------------------
275 -- Analyze_Expression_Function --
276 ---------------------------------
278 procedure Analyze_Expression_Function (N : Node_Id) is
279 Expr : constant Node_Id := Expression (N);
280 Loc : constant Source_Ptr := Sloc (N);
281 LocX : constant Source_Ptr := Sloc (Expr);
282 Spec : constant Node_Id := Specification (N);
284 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
285 -- N is an expression function that is a completion and Def_Id its
286 -- defining entity. Freeze before N all the types referenced by the
287 -- expression of the function.
289 -----------------------
290 -- Freeze_Expr_Types --
291 -----------------------
293 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
294 function Cloned_Expression return Node_Id;
295 -- Build a duplicate of the expression of the return statement that
296 -- has no defining entities shared with the original expression.
298 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
299 -- Freeze all types referenced in the subtree rooted at Node
301 -----------------------
302 -- Cloned_Expression --
303 -----------------------
305 function Cloned_Expression return Node_Id is
306 function Clone_Id (Node : Node_Id) return Traverse_Result;
307 -- Tree traversal routine that clones the defining identifier of
308 -- iterator and loop parameter specification nodes.
310 ----------------
311 -- Check_Node --
312 ----------------
314 function Clone_Id (Node : Node_Id) return Traverse_Result is
315 begin
316 if Nkind_In (Node, N_Iterator_Specification,
317 N_Loop_Parameter_Specification)
318 then
319 Set_Defining_Identifier (Node,
320 New_Copy (Defining_Identifier (Node)));
321 end if;
323 return OK;
324 end Clone_Id;
326 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
328 -- Local variable
330 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
332 -- Start of processing for Cloned_Expression
334 begin
335 -- We must duplicate the expression with semantic information to
336 -- inherit the decoration of global entities in generic instances.
337 -- Set the parent of the new node to be the parent of the original
338 -- to get the proper context, which is needed for complete error
339 -- reporting and for semantic analysis.
341 Set_Parent (Dup_Expr, Parent (Expr));
343 -- Replace the defining identifier of iterators and loop param
344 -- specifications by a clone to ensure that the cloned expression
345 -- and the original expression don't have shared identifiers;
346 -- otherwise, as part of the preanalysis of the expression, these
347 -- shared identifiers may be left decorated with itypes which
348 -- will not be available in the tree passed to the backend.
350 Clone_Def_Ids (Dup_Expr);
352 return Dup_Expr;
353 end Cloned_Expression;
355 ----------------------
356 -- Freeze_Type_Refs --
357 ----------------------
359 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
360 procedure Check_And_Freeze_Type (Typ : Entity_Id);
361 -- Check that Typ is fully declared and freeze it if so
363 ---------------------------
364 -- Check_And_Freeze_Type --
365 ---------------------------
367 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
368 begin
369 -- Skip Itypes created by the preanalysis
371 if Is_Itype (Typ)
372 and then Scope_Within_Or_Same (Scope (Typ), Def_Id)
373 then
374 return;
375 end if;
377 -- This provides a better error message than generating
378 -- primitives whose compilation fails much later. Refine
379 -- the error message if possible.
381 Check_Fully_Declared (Typ, Node);
383 if Error_Posted (Node) then
384 if Has_Private_Component (Typ)
385 and then not Is_Private_Type (Typ)
386 then
387 Error_Msg_NE ("\type& has private component", Node, Typ);
388 end if;
390 else
391 Freeze_Before (N, Typ);
392 end if;
393 end Check_And_Freeze_Type;
395 -- Start of processing for Freeze_Type_Refs
397 begin
398 -- Check that a type referenced by an entity can be frozen
400 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
401 Check_And_Freeze_Type (Etype (Entity (Node)));
403 -- Check that the enclosing record type can be frozen
405 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
406 Check_And_Freeze_Type (Scope (Entity (Node)));
407 end if;
409 -- Freezing an access type does not freeze the designated type,
410 -- but freezing conversions between access to interfaces requires
411 -- that the interface types themselves be frozen, so that dispatch
412 -- table entities are properly created.
414 -- Unclear whether a more general rule is needed ???
416 elsif Nkind (Node) = N_Type_Conversion
417 and then Is_Access_Type (Etype (Node))
418 and then Is_Interface (Designated_Type (Etype (Node)))
419 then
420 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
421 end if;
423 -- No point in posting several errors on the same expression
425 if Serious_Errors_Detected > 0 then
426 return Abandon;
427 else
428 return OK;
429 end if;
430 end Freeze_Type_Refs;
432 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
434 -- Local variables
436 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
437 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
438 Dup_Expr : constant Node_Id := Cloned_Expression;
440 -- Start of processing for Freeze_Expr_Types
442 begin
443 -- Preanalyze a duplicate of the expression to have available the
444 -- minimum decoration needed to locate referenced unfrozen types
445 -- without adding any decoration to the function expression.
447 Push_Scope (Def_Id);
448 Install_Formals (Def_Id);
450 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
451 End_Scope;
453 -- Restore certain attributes of Def_Id since the preanalysis may
454 -- have introduced itypes to this scope, thus modifying attributes
455 -- First_Entity and Last_Entity.
457 Set_First_Entity (Def_Id, Saved_First_Entity);
458 Set_Last_Entity (Def_Id, Saved_Last_Entity);
460 if Present (Last_Entity (Def_Id)) then
461 Set_Next_Entity (Last_Entity (Def_Id), Empty);
462 end if;
464 -- Freeze all types referenced in the expression
466 Freeze_References (Dup_Expr);
467 end Freeze_Expr_Types;
469 -- Local variables
471 Asp : Node_Id;
472 New_Body : Node_Id;
473 New_Spec : Node_Id;
474 Orig_N : Node_Id;
475 Ret : Node_Id;
477 Def_Id : Entity_Id := Empty;
478 Prev : Entity_Id;
479 -- If the expression is a completion, Prev is the entity whose
480 -- declaration is completed. Def_Id is needed to analyze the spec.
482 -- Start of processing for Analyze_Expression_Function
484 begin
485 -- This is one of the occasions on which we transform the tree during
486 -- semantic analysis. If this is a completion, transform the expression
487 -- function into an equivalent subprogram body, and analyze it.
489 -- Expression functions are inlined unconditionally. The back-end will
490 -- determine whether this is possible.
492 Inline_Processing_Required := True;
494 -- Create a specification for the generated body. This must be done
495 -- prior to the analysis of the initial declaration.
497 New_Spec := Copy_Subprogram_Spec (Spec);
498 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
500 -- If there are previous overloadable entities with the same name,
501 -- check whether any of them is completed by the expression function.
502 -- In a generic context a formal subprogram has no completion.
504 if Present (Prev)
505 and then Is_Overloadable (Prev)
506 and then not Is_Formal_Subprogram (Prev)
507 then
508 Def_Id := Analyze_Subprogram_Specification (Spec);
509 Prev := Find_Corresponding_Spec (N);
511 -- The previous entity may be an expression function as well, in
512 -- which case the redeclaration is illegal.
514 if Present (Prev)
515 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
516 N_Expression_Function
517 then
518 Error_Msg_Sloc := Sloc (Prev);
519 Error_Msg_N ("& conflicts with declaration#", Def_Id);
520 return;
521 end if;
522 end if;
524 Ret := Make_Simple_Return_Statement (LocX, Expr);
526 New_Body :=
527 Make_Subprogram_Body (Loc,
528 Specification => New_Spec,
529 Declarations => Empty_List,
530 Handled_Statement_Sequence =>
531 Make_Handled_Sequence_Of_Statements (LocX,
532 Statements => New_List (Ret)));
533 Set_Was_Expression_Function (New_Body);
535 -- If the expression completes a generic subprogram, we must create a
536 -- separate node for the body, because at instantiation the original
537 -- node of the generic copy must be a generic subprogram body, and
538 -- cannot be a expression function. Otherwise we just rewrite the
539 -- expression with the non-generic body.
541 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
542 Insert_After (N, New_Body);
544 -- Propagate any aspects or pragmas that apply to the expression
545 -- function to the proper body when the expression function acts
546 -- as a completion.
548 if Has_Aspects (N) then
549 Move_Aspects (N, To => New_Body);
550 end if;
552 Relocate_Pragmas_To_Body (New_Body);
554 Rewrite (N, Make_Null_Statement (Loc));
555 Set_Has_Completion (Prev, False);
556 Analyze (N);
557 Analyze (New_Body);
558 Set_Is_Inlined (Prev);
560 -- If the expression function is a completion, the previous declaration
561 -- must come from source. We know already that it appears in the current
562 -- scope. The entity itself may be internally created if within a body
563 -- to be inlined.
565 elsif Present (Prev)
566 and then Is_Overloadable (Prev)
567 and then not Is_Formal_Subprogram (Prev)
568 and then Comes_From_Source (Parent (Prev))
569 then
570 Set_Has_Completion (Prev, False);
571 Set_Is_Inlined (Prev);
573 -- AI12-0103: Expression functions that are a completion freeze their
574 -- expression but don't freeze anything else (unlike regular bodies).
576 -- Note that we cannot defer this freezing to the analysis of the
577 -- expression itself, because a freeze node might appear in a nested
578 -- scope, leading to an elaboration order issue in gigi.
579 -- As elsewhere, we do not emit freeze nodes within a generic unit.
581 if not Inside_A_Generic then
582 Freeze_Expr_Types (Def_Id);
583 end if;
585 -- For navigation purposes, indicate that the function is a body
587 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
588 Rewrite (N, New_Body);
590 -- Remove any existing aspects from the original node because the act
591 -- of rewriting causes the list to be shared between the two nodes.
593 Orig_N := Original_Node (N);
594 Remove_Aspects (Orig_N);
596 -- Propagate any pragmas that apply to expression function to the
597 -- proper body when the expression function acts as a completion.
598 -- Aspects are automatically transfered because of node rewriting.
600 Relocate_Pragmas_To_Body (N);
601 Analyze (N);
603 -- Once the aspects of the generated body have been analyzed, create
604 -- a copy for ASIS purposes and associate it with the original node.
606 if Has_Aspects (N) then
607 Set_Aspect_Specifications (Orig_N,
608 New_Copy_List_Tree (Aspect_Specifications (N)));
609 end if;
611 -- Prev is the previous entity with the same name, but it is can
612 -- be an unrelated spec that is not completed by the expression
613 -- function. In that case the relevant entity is the one in the body.
614 -- Not clear that the backend can inline it in this case ???
616 if Has_Completion (Prev) then
618 -- The formals of the expression function are body formals,
619 -- and do not appear in the ali file, which will only contain
620 -- references to the formals of the original subprogram spec.
622 declare
623 F1 : Entity_Id;
624 F2 : Entity_Id;
626 begin
627 F1 := First_Formal (Def_Id);
628 F2 := First_Formal (Prev);
630 while Present (F1) loop
631 Set_Spec_Entity (F1, F2);
632 Next_Formal (F1);
633 Next_Formal (F2);
634 end loop;
635 end;
637 else
638 Set_Is_Inlined (Defining_Entity (New_Body));
639 end if;
641 -- If this is not a completion, create both a declaration and a body, so
642 -- that the expression can be inlined whenever possible.
644 else
645 -- An expression function that is not a completion is not a
646 -- subprogram declaration, and thus cannot appear in a protected
647 -- definition.
649 if Nkind (Parent (N)) = N_Protected_Definition then
650 Error_Msg_N
651 ("an expression function is not a legal protected operation", N);
652 end if;
654 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
656 -- Remove any existing aspects from the original node because the act
657 -- of rewriting causes the list to be shared between the two nodes.
659 Orig_N := Original_Node (N);
660 Remove_Aspects (Orig_N);
662 Analyze (N);
664 -- Once the aspects of the generated spec have been analyzed, create
665 -- a copy for ASIS purposes and associate it with the original node.
667 if Has_Aspects (N) then
668 Set_Aspect_Specifications (Orig_N,
669 New_Copy_List_Tree (Aspect_Specifications (N)));
670 end if;
672 -- If aspect SPARK_Mode was specified on the body, it needs to be
673 -- repeated both on the generated spec and the body.
675 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
677 if Present (Asp) then
678 Asp := New_Copy_Tree (Asp);
679 Set_Analyzed (Asp, False);
680 Set_Aspect_Specifications (New_Body, New_List (Asp));
681 end if;
683 Def_Id := Defining_Entity (N);
684 Set_Is_Inlined (Def_Id);
686 -- Establish the linkages between the spec and the body. These are
687 -- used when the expression function acts as the prefix of attribute
688 -- 'Access in order to freeze the original expression which has been
689 -- moved to the generated body.
691 Set_Corresponding_Body (N, Defining_Entity (New_Body));
692 Set_Corresponding_Spec (New_Body, Def_Id);
694 -- Within a generic pre-analyze the original expression for name
695 -- capture. The body is also generated but plays no role in
696 -- this because it is not part of the original source.
698 if Inside_A_Generic then
699 Set_Has_Completion (Def_Id);
700 Push_Scope (Def_Id);
701 Install_Formals (Def_Id);
702 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
703 End_Scope;
704 end if;
706 -- To prevent premature freeze action, insert the new body at the end
707 -- of the current declarations, or at the end of the package spec.
708 -- However, resolve usage names now, to prevent spurious visibility
709 -- on later entities. Note that the function can now be called in
710 -- the current declarative part, which will appear to be prior to
711 -- the presence of the body in the code. There are nevertheless no
712 -- order of elaboration issues because all name resolution has taken
713 -- place at the point of declaration.
715 declare
716 Decls : List_Id := List_Containing (N);
717 Expr : constant Node_Id := Expression (Ret);
718 Par : constant Node_Id := Parent (Decls);
719 Typ : constant Entity_Id := Etype (Def_Id);
721 begin
722 -- If this is a wrapper created for in an instance for a formal
723 -- subprogram, insert body after declaration, to be analyzed when
724 -- the enclosing instance is analyzed.
726 if GNATprove_Mode
727 and then Is_Generic_Actual_Subprogram (Def_Id)
728 then
729 Insert_After (N, New_Body);
731 else
732 if Nkind (Par) = N_Package_Specification
733 and then Decls = Visible_Declarations (Par)
734 and then Present (Private_Declarations (Par))
735 and then not Is_Empty_List (Private_Declarations (Par))
736 then
737 Decls := Private_Declarations (Par);
738 end if;
740 Insert_After (Last (Decls), New_Body);
742 -- Preanalyze the expression if not already done above
744 if not Inside_A_Generic then
745 Push_Scope (Def_Id);
746 Install_Formals (Def_Id);
747 Preanalyze_Spec_Expression (Expr, Typ);
748 Check_Limited_Return (Original_Node (N), Expr, Typ);
749 End_Scope;
750 end if;
751 end if;
752 end;
753 end if;
755 -- Check incorrect use of dynamically tagged expression. This doesn't
756 -- fall out automatically when analyzing the generated function body,
757 -- because Check_Dynamically_Tagged_Expression deliberately ignores
758 -- nodes that don't come from source.
760 if Present (Def_Id)
761 and then Nkind (Def_Id) in N_Has_Etype
762 and then Is_Tagged_Type (Etype (Def_Id))
763 then
764 Check_Dynamically_Tagged_Expression
765 (Expr => Expr,
766 Typ => Etype (Def_Id),
767 Related_Nod => Original_Node (N));
768 end if;
770 -- If the return expression is a static constant, we suppress warning
771 -- messages on unused formals, which in most cases will be noise.
773 Set_Is_Trivial_Subprogram
774 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
775 end Analyze_Expression_Function;
777 ----------------------------------------
778 -- Analyze_Extended_Return_Statement --
779 ----------------------------------------
781 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
782 begin
783 Check_Compiler_Unit ("extended return statement", N);
784 Analyze_Return_Statement (N);
785 end Analyze_Extended_Return_Statement;
787 ----------------------------
788 -- Analyze_Function_Call --
789 ----------------------------
791 procedure Analyze_Function_Call (N : Node_Id) is
792 Actuals : constant List_Id := Parameter_Associations (N);
793 Func_Nam : constant Node_Id := Name (N);
794 Actual : Node_Id;
796 begin
797 Analyze (Func_Nam);
799 -- A call of the form A.B (X) may be an Ada 2005 call, which is
800 -- rewritten as B (A, X). If the rewriting is successful, the call
801 -- has been analyzed and we just return.
803 if Nkind (Func_Nam) = N_Selected_Component
804 and then Name (N) /= Func_Nam
805 and then Is_Rewrite_Substitution (N)
806 and then Present (Etype (N))
807 then
808 return;
809 end if;
811 -- If error analyzing name, then set Any_Type as result type and return
813 if Etype (Func_Nam) = Any_Type then
814 Set_Etype (N, Any_Type);
815 return;
816 end if;
818 -- Otherwise analyze the parameters
820 if Present (Actuals) then
821 Actual := First (Actuals);
822 while Present (Actual) loop
823 Analyze (Actual);
824 Check_Parameterless_Call (Actual);
825 Next (Actual);
826 end loop;
827 end if;
829 Analyze_Call (N);
830 end Analyze_Function_Call;
832 -----------------------------
833 -- Analyze_Function_Return --
834 -----------------------------
836 procedure Analyze_Function_Return (N : Node_Id) is
837 Loc : constant Source_Ptr := Sloc (N);
838 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
839 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
841 R_Type : constant Entity_Id := Etype (Scope_Id);
842 -- Function result subtype
844 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
845 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
846 -- aggregate in a return statement.
848 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
849 -- Check that the return_subtype_indication properly matches the result
850 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
852 -----------------------------------
853 -- Check_Aggregate_Accessibility --
854 -----------------------------------
856 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
857 Typ : constant Entity_Id := Etype (Aggr);
858 Assoc : Node_Id;
859 Discr : Entity_Id;
860 Expr : Node_Id;
861 Obj : Node_Id;
863 begin
864 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
865 Discr := First_Discriminant (Typ);
866 Assoc := First (Component_Associations (Aggr));
867 while Present (Discr) loop
868 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
869 Expr := Expression (Assoc);
871 if Nkind (Expr) = N_Attribute_Reference
872 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
873 then
874 Obj := Prefix (Expr);
875 while Nkind_In (Obj, N_Indexed_Component,
876 N_Selected_Component)
877 loop
878 Obj := Prefix (Obj);
879 end loop;
881 -- Do not check aliased formals or function calls. A
882 -- run-time check may still be needed ???
884 if Is_Entity_Name (Obj)
885 and then Comes_From_Source (Obj)
886 then
887 if Is_Formal (Entity (Obj))
888 and then Is_Aliased (Entity (Obj))
889 then
890 null;
892 elsif Object_Access_Level (Obj) >
893 Scope_Depth (Scope (Scope_Id))
894 then
895 Error_Msg_N
896 ("access discriminant in return aggregate would "
897 & "be a dangling reference", Obj);
898 end if;
899 end if;
900 end if;
901 end if;
903 Next_Discriminant (Discr);
904 end loop;
905 end if;
906 end Check_Aggregate_Accessibility;
908 -------------------------------------
909 -- Check_Return_Subtype_Indication --
910 -------------------------------------
912 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
913 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
915 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
916 -- Subtype given in the extended return statement (must match R_Type)
918 Subtype_Ind : constant Node_Id :=
919 Object_Definition (Original_Node (Obj_Decl));
921 procedure Error_No_Match (N : Node_Id);
922 -- Output error messages for case where types do not statically
923 -- match. N is the location for the messages.
925 --------------------
926 -- Error_No_Match --
927 --------------------
929 procedure Error_No_Match (N : Node_Id) is
930 begin
931 Error_Msg_N
932 ("subtype must statically match function result subtype", N);
934 if not Predicates_Match (R_Stm_Type, R_Type) then
935 Error_Msg_Node_2 := R_Type;
936 Error_Msg_NE
937 ("\predicate of& does not match predicate of&",
938 N, R_Stm_Type);
939 end if;
940 end Error_No_Match;
942 -- Start of processing for Check_Return_Subtype_Indication
944 begin
945 -- First, avoid cascaded errors
947 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
948 return;
949 end if;
951 -- "return access T" case; check that the return statement also has
952 -- "access T", and that the subtypes statically match:
953 -- if this is an access to subprogram the signatures must match.
955 if Is_Anonymous_Access_Type (R_Type) then
956 if Is_Anonymous_Access_Type (R_Stm_Type) then
957 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
958 then
959 if Base_Type (Designated_Type (R_Stm_Type)) /=
960 Base_Type (Designated_Type (R_Type))
961 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
962 then
963 Error_No_Match (Subtype_Mark (Subtype_Ind));
964 end if;
966 else
967 -- For two anonymous access to subprogram types, the types
968 -- themselves must be type conformant.
970 if not Conforming_Types
971 (R_Stm_Type, R_Type, Fully_Conformant)
972 then
973 Error_No_Match (Subtype_Ind);
974 end if;
975 end if;
977 else
978 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
979 end if;
981 -- If the return object is of an anonymous access type, then report
982 -- an error if the function's result type is not also anonymous.
984 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
985 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
986 Error_Msg_N
987 ("anonymous access not allowed for function with named access "
988 & "result", Subtype_Ind);
990 -- Subtype indication case: check that the return object's type is
991 -- covered by the result type, and that the subtypes statically match
992 -- when the result subtype is constrained. Also handle record types
993 -- with unknown discriminants for which we have built the underlying
994 -- record view. Coverage is needed to allow specific-type return
995 -- objects when the result type is class-wide (see AI05-32).
997 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
998 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
999 and then
1000 Covers
1001 (Base_Type (R_Type),
1002 Underlying_Record_View (Base_Type (R_Stm_Type))))
1003 then
1004 -- A null exclusion may be present on the return type, on the
1005 -- function specification, on the object declaration or on the
1006 -- subtype itself.
1008 if Is_Access_Type (R_Type)
1009 and then
1010 (Can_Never_Be_Null (R_Type)
1011 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1012 Can_Never_Be_Null (R_Stm_Type)
1013 then
1014 Error_No_Match (Subtype_Ind);
1015 end if;
1017 -- AI05-103: for elementary types, subtypes must statically match
1019 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1020 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1021 Error_No_Match (Subtype_Ind);
1022 end if;
1023 end if;
1025 -- All remaining cases are illegal
1027 -- Note: previous versions of this subprogram allowed the return
1028 -- value to be the ancestor of the return type if the return type
1029 -- was a null extension. This was plainly incorrect.
1031 else
1032 Error_Msg_N
1033 ("wrong type for return_subtype_indication", Subtype_Ind);
1034 end if;
1035 end Check_Return_Subtype_Indication;
1037 ---------------------
1038 -- Local Variables --
1039 ---------------------
1041 Expr : Node_Id;
1042 Obj_Decl : Node_Id;
1044 -- Start of processing for Analyze_Function_Return
1046 begin
1047 Set_Return_Present (Scope_Id);
1049 if Nkind (N) = N_Simple_Return_Statement then
1050 Expr := Expression (N);
1052 -- Guard against a malformed expression. The parser may have tried to
1053 -- recover but the node is not analyzable.
1055 if Nkind (Expr) = N_Error then
1056 Set_Etype (Expr, Any_Type);
1057 Expander_Mode_Save_And_Set (False);
1058 return;
1060 else
1061 -- The resolution of a controlled [extension] aggregate associated
1062 -- with a return statement creates a temporary which needs to be
1063 -- finalized on function exit. Wrap the return statement inside a
1064 -- block so that the finalization machinery can detect this case.
1065 -- This early expansion is done only when the return statement is
1066 -- not part of a handled sequence of statements.
1068 if Nkind_In (Expr, N_Aggregate,
1069 N_Extension_Aggregate)
1070 and then Needs_Finalization (R_Type)
1071 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1072 then
1073 Rewrite (N,
1074 Make_Block_Statement (Loc,
1075 Handled_Statement_Sequence =>
1076 Make_Handled_Sequence_Of_Statements (Loc,
1077 Statements => New_List (Relocate_Node (N)))));
1079 Analyze (N);
1080 return;
1081 end if;
1083 Analyze (Expr);
1085 -- Ada 2005 (AI-251): If the type of the returned object is
1086 -- an access to an interface type then we add an implicit type
1087 -- conversion to force the displacement of the "this" pointer to
1088 -- reference the secondary dispatch table. We cannot delay the
1089 -- generation of this implicit conversion until the expansion
1090 -- because in this case the type resolution changes the decoration
1091 -- of the expression node to match R_Type; by contrast, if the
1092 -- returned object is a class-wide interface type then it is too
1093 -- early to generate here the implicit conversion since the return
1094 -- statement may be rewritten by the expander into an extended
1095 -- return statement whose expansion takes care of adding the
1096 -- implicit type conversion to displace the pointer to the object.
1098 if Expander_Active
1099 and then Serious_Errors_Detected = 0
1100 and then Is_Access_Type (R_Type)
1101 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1102 and then Is_Interface (Designated_Type (R_Type))
1103 and then Is_Progenitor (Designated_Type (R_Type),
1104 Designated_Type (Etype (Expr)))
1105 then
1106 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1107 Analyze (Expr);
1108 end if;
1110 Resolve (Expr, R_Type);
1111 Check_Limited_Return (N, Expr, R_Type);
1113 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1114 Check_Aggregate_Accessibility (Expr);
1115 end if;
1116 end if;
1118 -- RETURN only allowed in SPARK as the last statement in function
1120 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1121 and then
1122 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1123 or else Present (Next (N)))
1124 then
1125 Check_SPARK_05_Restriction
1126 ("RETURN should be the last statement in function", N);
1127 end if;
1129 else
1130 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1131 Obj_Decl := Last (Return_Object_Declarations (N));
1133 -- Analyze parts specific to extended_return_statement:
1135 declare
1136 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1137 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1139 begin
1140 Expr := Expression (Obj_Decl);
1142 -- Note: The check for OK_For_Limited_Init will happen in
1143 -- Analyze_Object_Declaration; we treat it as a normal
1144 -- object declaration.
1146 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1147 Analyze (Obj_Decl);
1149 Check_Return_Subtype_Indication (Obj_Decl);
1151 if Present (HSS) then
1152 Analyze (HSS);
1154 if Present (Exception_Handlers (HSS)) then
1156 -- ???Has_Nested_Block_With_Handler needs to be set.
1157 -- Probably by creating an actual N_Block_Statement.
1158 -- Probably in Expand.
1160 null;
1161 end if;
1162 end if;
1164 -- Mark the return object as referenced, since the return is an
1165 -- implicit reference of the object.
1167 Set_Referenced (Defining_Identifier (Obj_Decl));
1169 Check_References (Stm_Entity);
1171 -- Check RM 6.5 (5.9/3)
1173 if Has_Aliased then
1174 if Ada_Version < Ada_2012 then
1176 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1177 -- Can it really happen (extended return???)
1179 Error_Msg_N
1180 ("aliased only allowed for limited return objects "
1181 & "in Ada 2012??", N);
1183 elsif not Is_Limited_View (R_Type) then
1184 Error_Msg_N
1185 ("aliased only allowed for limited return objects", N);
1186 end if;
1187 end if;
1188 end;
1189 end if;
1191 -- Case of Expr present
1193 if Present (Expr)
1195 -- Defend against previous errors
1197 and then Nkind (Expr) /= N_Empty
1198 and then Present (Etype (Expr))
1199 then
1200 -- Apply constraint check. Note that this is done before the implicit
1201 -- conversion of the expression done for anonymous access types to
1202 -- ensure correct generation of the null-excluding check associated
1203 -- with null-excluding expressions found in return statements.
1205 Apply_Constraint_Check (Expr, R_Type);
1207 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1208 -- type, apply an implicit conversion of the expression to that type
1209 -- to force appropriate static and run-time accessibility checks.
1211 if Ada_Version >= Ada_2005
1212 and then Ekind (R_Type) = E_Anonymous_Access_Type
1213 then
1214 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1215 Analyze_And_Resolve (Expr, R_Type);
1217 -- If this is a local anonymous access to subprogram, the
1218 -- accessibility check can be applied statically. The return is
1219 -- illegal if the access type of the return expression is declared
1220 -- inside of the subprogram (except if it is the subtype indication
1221 -- of an extended return statement).
1223 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1224 if not Comes_From_Source (Current_Scope)
1225 or else Ekind (Current_Scope) = E_Return_Statement
1226 then
1227 null;
1229 elsif
1230 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1231 then
1232 Error_Msg_N ("cannot return local access to subprogram", N);
1233 end if;
1235 -- The expression cannot be of a formal incomplete type
1237 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1238 and then Is_Generic_Type (Etype (Expr))
1239 then
1240 Error_Msg_N
1241 ("cannot return expression of a formal incomplete type", N);
1242 end if;
1244 -- If the result type is class-wide, then check that the return
1245 -- expression's type is not declared at a deeper level than the
1246 -- function (RM05-6.5(5.6/2)).
1248 if Ada_Version >= Ada_2005
1249 and then Is_Class_Wide_Type (R_Type)
1250 then
1251 if Type_Access_Level (Etype (Expr)) >
1252 Subprogram_Access_Level (Scope_Id)
1253 then
1254 Error_Msg_N
1255 ("level of return expression type is deeper than "
1256 & "class-wide function!", Expr);
1257 end if;
1258 end if;
1260 -- Check incorrect use of dynamically tagged expression
1262 if Is_Tagged_Type (R_Type) then
1263 Check_Dynamically_Tagged_Expression
1264 (Expr => Expr,
1265 Typ => R_Type,
1266 Related_Nod => N);
1267 end if;
1269 -- ??? A real run-time accessibility check is needed in cases
1270 -- involving dereferences of access parameters. For now we just
1271 -- check the static cases.
1273 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1274 and then Is_Limited_View (Etype (Scope_Id))
1275 and then Object_Access_Level (Expr) >
1276 Subprogram_Access_Level (Scope_Id)
1277 then
1278 -- Suppress the message in a generic, where the rewriting
1279 -- is irrelevant.
1281 if Inside_A_Generic then
1282 null;
1284 else
1285 Rewrite (N,
1286 Make_Raise_Program_Error (Loc,
1287 Reason => PE_Accessibility_Check_Failed));
1288 Analyze (N);
1290 Error_Msg_Warn := SPARK_Mode /= On;
1291 Error_Msg_N ("cannot return a local value by reference<<", N);
1292 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1293 end if;
1294 end if;
1296 if Known_Null (Expr)
1297 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1298 and then Null_Exclusion_Present (Parent (Scope_Id))
1299 then
1300 Apply_Compile_Time_Constraint_Error
1301 (N => Expr,
1302 Msg => "(Ada 2005) null not allowed for "
1303 & "null-excluding return??",
1304 Reason => CE_Null_Not_Allowed);
1305 end if;
1307 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1308 -- has no initializing expression.
1310 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1311 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1312 Subprogram_Access_Level (Scope_Id)
1313 then
1314 Error_Msg_N
1315 ("level of return expression type is deeper than "
1316 & "class-wide function!", Obj_Decl);
1317 end if;
1318 end if;
1319 end Analyze_Function_Return;
1321 -------------------------------------
1322 -- Analyze_Generic_Subprogram_Body --
1323 -------------------------------------
1325 procedure Analyze_Generic_Subprogram_Body
1326 (N : Node_Id;
1327 Gen_Id : Entity_Id)
1329 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1330 Kind : constant Entity_Kind := Ekind (Gen_Id);
1331 Body_Id : Entity_Id;
1332 New_N : Node_Id;
1333 Spec : Node_Id;
1335 begin
1336 -- Copy body and disable expansion while analyzing the generic For a
1337 -- stub, do not copy the stub (which would load the proper body), this
1338 -- will be done when the proper body is analyzed.
1340 if Nkind (N) /= N_Subprogram_Body_Stub then
1341 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1342 Rewrite (N, New_N);
1344 -- Once the contents of the generic copy and the template are
1345 -- swapped, do the same for their respective aspect specifications.
1347 Exchange_Aspects (N, New_N);
1349 -- Collect all contract-related source pragmas found within the
1350 -- template and attach them to the contract of the subprogram body.
1351 -- This contract is used in the capture of global references within
1352 -- annotations.
1354 Create_Generic_Contract (N);
1356 Start_Generic;
1357 end if;
1359 Spec := Specification (N);
1361 -- Within the body of the generic, the subprogram is callable, and
1362 -- behaves like the corresponding non-generic unit.
1364 Body_Id := Defining_Entity (Spec);
1366 if Kind = E_Generic_Procedure
1367 and then Nkind (Spec) /= N_Procedure_Specification
1368 then
1369 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1370 return;
1372 elsif Kind = E_Generic_Function
1373 and then Nkind (Spec) /= N_Function_Specification
1374 then
1375 Error_Msg_N ("invalid body for generic function ", Body_Id);
1376 return;
1377 end if;
1379 Set_Corresponding_Body (Gen_Decl, Body_Id);
1381 if Has_Completion (Gen_Id)
1382 and then Nkind (Parent (N)) /= N_Subunit
1383 then
1384 Error_Msg_N ("duplicate generic body", N);
1385 return;
1386 else
1387 Set_Has_Completion (Gen_Id);
1388 end if;
1390 if Nkind (N) = N_Subprogram_Body_Stub then
1391 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1392 else
1393 Set_Corresponding_Spec (N, Gen_Id);
1394 end if;
1396 if Nkind (Parent (N)) = N_Compilation_Unit then
1397 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1398 end if;
1400 -- Make generic parameters immediately visible in the body. They are
1401 -- needed to process the formals declarations. Then make the formals
1402 -- visible in a separate step.
1404 Push_Scope (Gen_Id);
1406 declare
1407 E : Entity_Id;
1408 First_Ent : Entity_Id;
1410 begin
1411 First_Ent := First_Entity (Gen_Id);
1413 E := First_Ent;
1414 while Present (E) and then not Is_Formal (E) loop
1415 Install_Entity (E);
1416 Next_Entity (E);
1417 end loop;
1419 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1421 -- Now generic formals are visible, and the specification can be
1422 -- analyzed, for subsequent conformance check.
1424 Body_Id := Analyze_Subprogram_Specification (Spec);
1426 -- Make formal parameters visible
1428 if Present (E) then
1430 -- E is the first formal parameter, we loop through the formals
1431 -- installing them so that they will be visible.
1433 Set_First_Entity (Gen_Id, E);
1434 while Present (E) loop
1435 Install_Entity (E);
1436 Next_Formal (E);
1437 end loop;
1438 end if;
1440 -- Visible generic entity is callable within its own body
1442 Set_Ekind (Gen_Id, Ekind (Body_Id));
1443 Set_Ekind (Body_Id, E_Subprogram_Body);
1444 Set_Convention (Body_Id, Convention (Gen_Id));
1445 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1446 Set_Scope (Body_Id, Scope (Gen_Id));
1448 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1450 if Nkind (N) = N_Subprogram_Body_Stub then
1452 -- No body to analyze, so restore state of generic unit
1454 Set_Ekind (Gen_Id, Kind);
1455 Set_Ekind (Body_Id, Kind);
1457 if Present (First_Ent) then
1458 Set_First_Entity (Gen_Id, First_Ent);
1459 end if;
1461 End_Scope;
1462 return;
1463 end if;
1465 -- If this is a compilation unit, it must be made visible explicitly,
1466 -- because the compilation of the declaration, unlike other library
1467 -- unit declarations, does not. If it is not a unit, the following
1468 -- is redundant but harmless.
1470 Set_Is_Immediately_Visible (Gen_Id);
1471 Reference_Body_Formals (Gen_Id, Body_Id);
1473 if Is_Child_Unit (Gen_Id) then
1474 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1475 end if;
1477 Set_Actual_Subtypes (N, Current_Scope);
1479 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1480 Set_SPARK_Pragma_Inherited (Body_Id);
1482 -- Analyze any aspect specifications that appear on the generic
1483 -- subprogram body.
1485 if Has_Aspects (N) then
1486 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1487 end if;
1489 Analyze_Declarations (Declarations (N));
1490 Check_Completion;
1492 -- Process the contract of the subprogram body after all declarations
1493 -- have been analyzed. This ensures that any contract-related pragmas
1494 -- are available through the N_Contract node of the body.
1496 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1498 Analyze (Handled_Statement_Sequence (N));
1499 Save_Global_References (Original_Node (N));
1501 -- Prior to exiting the scope, include generic formals again (if any
1502 -- are present) in the set of local entities.
1504 if Present (First_Ent) then
1505 Set_First_Entity (Gen_Id, First_Ent);
1506 end if;
1508 Check_References (Gen_Id);
1509 end;
1511 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1512 Update_Use_Clause_Chain;
1513 End_Scope;
1514 Check_Subprogram_Order (N);
1516 -- Outside of its body, unit is generic again
1518 Set_Ekind (Gen_Id, Kind);
1519 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1521 if Style_Check then
1522 Style.Check_Identifier (Body_Id, Gen_Id);
1523 end if;
1525 End_Generic;
1526 end Analyze_Generic_Subprogram_Body;
1528 ----------------------------
1529 -- Analyze_Null_Procedure --
1530 ----------------------------
1532 procedure Analyze_Null_Procedure
1533 (N : Node_Id;
1534 Is_Completion : out Boolean)
1536 Loc : constant Source_Ptr := Sloc (N);
1537 Spec : constant Node_Id := Specification (N);
1538 Designator : Entity_Id;
1539 Form : Node_Id;
1540 Null_Body : Node_Id := Empty;
1541 Null_Stmt : Node_Id := Null_Statement (Spec);
1542 Prev : Entity_Id;
1544 begin
1545 -- Capture the profile of the null procedure before analysis, for
1546 -- expansion at the freeze point and at each point of call. The body is
1547 -- used if the procedure has preconditions, or if it is a completion. In
1548 -- the first case the body is analyzed at the freeze point, in the other
1549 -- it replaces the null procedure declaration.
1551 -- For a null procedure that comes from source, a NULL statement is
1552 -- provided by the parser, which carries the source location of the
1553 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1554 -- from expansion, create one now.
1556 if No (Null_Stmt) then
1557 Null_Stmt := Make_Null_Statement (Loc);
1558 end if;
1560 Null_Body :=
1561 Make_Subprogram_Body (Loc,
1562 Specification => New_Copy_Tree (Spec),
1563 Declarations => New_List,
1564 Handled_Statement_Sequence =>
1565 Make_Handled_Sequence_Of_Statements (Loc,
1566 Statements => New_List (Null_Stmt)));
1568 -- Create new entities for body and formals
1570 Set_Defining_Unit_Name (Specification (Null_Body),
1571 Make_Defining_Identifier
1572 (Sloc (Defining_Entity (N)),
1573 Chars (Defining_Entity (N))));
1575 Form := First (Parameter_Specifications (Specification (Null_Body)));
1576 while Present (Form) loop
1577 Set_Defining_Identifier (Form,
1578 Make_Defining_Identifier
1579 (Sloc (Defining_Identifier (Form)),
1580 Chars (Defining_Identifier (Form))));
1581 Next (Form);
1582 end loop;
1584 -- Determine whether the null procedure may be a completion of a generic
1585 -- suprogram, in which case we use the new null body as the completion
1586 -- and set minimal semantic information on the original declaration,
1587 -- which is rewritten as a null statement.
1589 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1591 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1592 Insert_Before (N, Null_Body);
1593 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1595 Rewrite (N, Make_Null_Statement (Loc));
1596 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1597 Is_Completion := True;
1598 return;
1600 else
1601 -- Resolve the types of the formals now, because the freeze point may
1602 -- appear in a different context, e.g. an instantiation.
1604 Form := First (Parameter_Specifications (Specification (Null_Body)));
1605 while Present (Form) loop
1606 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1607 Find_Type (Parameter_Type (Form));
1609 elsif No (Access_To_Subprogram_Definition
1610 (Parameter_Type (Form)))
1611 then
1612 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1614 -- The case of a null procedure with a formal that is an
1615 -- access-to-subprogram type, and that is used as an actual
1616 -- in an instantiation is left to the enthusiastic reader.
1618 else
1619 null;
1620 end if;
1622 Next (Form);
1623 end loop;
1624 end if;
1626 -- If there are previous overloadable entities with the same name, check
1627 -- whether any of them is completed by the null procedure.
1629 if Present (Prev) and then Is_Overloadable (Prev) then
1630 Designator := Analyze_Subprogram_Specification (Spec);
1631 Prev := Find_Corresponding_Spec (N);
1632 end if;
1634 if No (Prev) or else not Comes_From_Source (Prev) then
1635 Designator := Analyze_Subprogram_Specification (Spec);
1636 Set_Has_Completion (Designator);
1638 -- Signal to caller that this is a procedure declaration
1640 Is_Completion := False;
1642 -- Null procedures are always inlined, but generic formal subprograms
1643 -- which appear as such in the internal instance of formal packages,
1644 -- need no completion and are not marked Inline.
1646 if Expander_Active
1647 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1648 then
1649 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1650 Set_Body_To_Inline (N, Null_Body);
1651 Set_Is_Inlined (Designator);
1652 end if;
1654 else
1655 -- The null procedure is a completion. We unconditionally rewrite
1656 -- this as a null body (even if expansion is not active), because
1657 -- there are various error checks that are applied on this body
1658 -- when it is analyzed (e.g. correct aspect placement).
1660 if Has_Completion (Prev) then
1661 Error_Msg_Sloc := Sloc (Prev);
1662 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1663 end if;
1665 Check_Previous_Null_Procedure (N, Prev);
1667 Is_Completion := True;
1668 Rewrite (N, Null_Body);
1669 Analyze (N);
1670 end if;
1671 end Analyze_Null_Procedure;
1673 -----------------------------
1674 -- Analyze_Operator_Symbol --
1675 -----------------------------
1677 -- An operator symbol such as "+" or "and" may appear in context where the
1678 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1679 -- is just a string, as in (conjunction = "or"). In these cases the parser
1680 -- generates this node, and the semantics does the disambiguation. Other
1681 -- such case are actuals in an instantiation, the generic unit in an
1682 -- instantiation, and pragma arguments.
1684 procedure Analyze_Operator_Symbol (N : Node_Id) is
1685 Par : constant Node_Id := Parent (N);
1687 begin
1688 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1689 or else Nkind (Par) = N_Function_Instantiation
1690 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1691 or else (Nkind (Par) = N_Pragma_Argument_Association
1692 and then not Is_Pragma_String_Literal (Par))
1693 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1694 or else (Nkind (Par) = N_Attribute_Reference
1695 and then Attribute_Name (Par) /= Name_Value)
1696 then
1697 Find_Direct_Name (N);
1699 else
1700 Change_Operator_Symbol_To_String_Literal (N);
1701 Analyze (N);
1702 end if;
1703 end Analyze_Operator_Symbol;
1705 -----------------------------------
1706 -- Analyze_Parameter_Association --
1707 -----------------------------------
1709 procedure Analyze_Parameter_Association (N : Node_Id) is
1710 begin
1711 Analyze (Explicit_Actual_Parameter (N));
1712 end Analyze_Parameter_Association;
1714 ----------------------------
1715 -- Analyze_Procedure_Call --
1716 ----------------------------
1718 -- WARNING: This routine manages Ghost regions. Return statements must be
1719 -- replaced by gotos which jump to the end of the routine and restore the
1720 -- Ghost mode.
1722 procedure Analyze_Procedure_Call (N : Node_Id) is
1723 procedure Analyze_Call_And_Resolve;
1724 -- Do Analyze and Resolve calls for procedure call. At the end, check
1725 -- for illegal order dependence.
1726 -- ??? where is the check for illegal order dependencies?
1728 ------------------------------
1729 -- Analyze_Call_And_Resolve --
1730 ------------------------------
1732 procedure Analyze_Call_And_Resolve is
1733 begin
1734 if Nkind (N) = N_Procedure_Call_Statement then
1735 Analyze_Call (N);
1736 Resolve (N, Standard_Void_Type);
1737 else
1738 Analyze (N);
1739 end if;
1740 end Analyze_Call_And_Resolve;
1742 -- Local variables
1744 Actuals : constant List_Id := Parameter_Associations (N);
1745 Loc : constant Source_Ptr := Sloc (N);
1746 P : constant Node_Id := Name (N);
1748 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1749 -- Save the Ghost mode to restore on exit
1751 Actual : Node_Id;
1752 New_N : Node_Id;
1754 -- Start of processing for Analyze_Procedure_Call
1756 begin
1757 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1758 -- a procedure call or an entry call. The prefix may denote an access
1759 -- to subprogram type, in which case an implicit dereference applies.
1760 -- If the prefix is an indexed component (without implicit dereference)
1761 -- then the construct denotes a call to a member of an entire family.
1762 -- If the prefix is a simple name, it may still denote a call to a
1763 -- parameterless member of an entry family. Resolution of these various
1764 -- interpretations is delicate.
1766 -- Do not analyze machine code statements to avoid rejecting them in
1767 -- CodePeer mode.
1769 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1770 Set_Etype (P, Standard_Void_Type);
1771 else
1772 Analyze (P);
1773 end if;
1775 -- If this is a call of the form Obj.Op, the call may have been analyzed
1776 -- and possibly rewritten into a block, in which case we are done.
1778 if Analyzed (N) then
1779 return;
1781 -- If there is an error analyzing the name (which may have been
1782 -- rewritten if the original call was in prefix notation) then error
1783 -- has been emitted already, mark node and return.
1785 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1786 Set_Etype (N, Any_Type);
1787 return;
1788 end if;
1790 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1791 -- Set the mode now to ensure that any nodes generated during analysis
1792 -- and expansion are properly marked as Ghost.
1794 Mark_And_Set_Ghost_Procedure_Call (N);
1796 -- Otherwise analyze the parameters
1798 if Present (Actuals) then
1799 Actual := First (Actuals);
1801 while Present (Actual) loop
1802 Analyze (Actual);
1803 Check_Parameterless_Call (Actual);
1804 Next (Actual);
1805 end loop;
1806 end if;
1808 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1810 if Nkind (P) = N_Attribute_Reference
1811 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1812 Name_Elab_Body,
1813 Name_Elab_Subp_Body)
1814 then
1815 if Present (Actuals) then
1816 Error_Msg_N
1817 ("no parameters allowed for this call", First (Actuals));
1818 goto Leave;
1819 end if;
1821 Set_Etype (N, Standard_Void_Type);
1822 Set_Analyzed (N);
1824 elsif Is_Entity_Name (P)
1825 and then Is_Record_Type (Etype (Entity (P)))
1826 and then Remote_AST_I_Dereference (P)
1827 then
1828 goto Leave;
1830 elsif Is_Entity_Name (P)
1831 and then Ekind (Entity (P)) /= E_Entry_Family
1832 then
1833 if Is_Access_Type (Etype (P))
1834 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1835 and then No (Actuals)
1836 and then Comes_From_Source (N)
1837 then
1838 Error_Msg_N ("missing explicit dereference in call", N);
1839 end if;
1841 Analyze_Call_And_Resolve;
1843 -- If the prefix is the simple name of an entry family, this is a
1844 -- parameterless call from within the task body itself.
1846 elsif Is_Entity_Name (P)
1847 and then Nkind (P) = N_Identifier
1848 and then Ekind (Entity (P)) = E_Entry_Family
1849 and then Present (Actuals)
1850 and then No (Next (First (Actuals)))
1851 then
1852 -- Can be call to parameterless entry family. What appears to be the
1853 -- sole argument is in fact the entry index. Rewrite prefix of node
1854 -- accordingly. Source representation is unchanged by this
1855 -- transformation.
1857 New_N :=
1858 Make_Indexed_Component (Loc,
1859 Prefix =>
1860 Make_Selected_Component (Loc,
1861 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1862 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1863 Expressions => Actuals);
1864 Set_Name (N, New_N);
1865 Set_Etype (New_N, Standard_Void_Type);
1866 Set_Parameter_Associations (N, No_List);
1867 Analyze_Call_And_Resolve;
1869 elsif Nkind (P) = N_Explicit_Dereference then
1870 if Ekind (Etype (P)) = E_Subprogram_Type then
1871 Analyze_Call_And_Resolve;
1872 else
1873 Error_Msg_N ("expect access to procedure in call", P);
1874 end if;
1876 -- The name can be a selected component or an indexed component that
1877 -- yields an access to subprogram. Such a prefix is legal if the call
1878 -- has parameter associations.
1880 elsif Is_Access_Type (Etype (P))
1881 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1882 then
1883 if Present (Actuals) then
1884 Analyze_Call_And_Resolve;
1885 else
1886 Error_Msg_N ("missing explicit dereference in call ", N);
1887 end if;
1889 -- If not an access to subprogram, then the prefix must resolve to the
1890 -- name of an entry, entry family, or protected operation.
1892 -- For the case of a simple entry call, P is a selected component where
1893 -- the prefix is the task and the selector name is the entry. A call to
1894 -- a protected procedure will have the same syntax. If the protected
1895 -- object contains overloaded operations, the entity may appear as a
1896 -- function, the context will select the operation whose type is Void.
1898 elsif Nkind (P) = N_Selected_Component
1899 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1900 E_Function,
1901 E_Procedure)
1902 then
1903 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1904 -- in prefix notation may still be missing its controlling argument,
1905 -- so perform the transformation now.
1907 if SPARK_Mode = On and then In_Inlined_Body then
1908 declare
1909 Subp : constant Entity_Id := Entity (Selector_Name (P));
1910 Typ : constant Entity_Id := Etype (Prefix (P));
1912 begin
1913 if Is_Tagged_Type (Typ)
1914 and then Present (First_Formal (Subp))
1915 and then Etype (First_Formal (Subp)) = Typ
1916 and then Try_Object_Operation (P)
1917 then
1918 return;
1920 else
1921 Analyze_Call_And_Resolve;
1922 end if;
1923 end;
1925 else
1926 Analyze_Call_And_Resolve;
1927 end if;
1929 elsif Nkind (P) = N_Selected_Component
1930 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1931 and then Present (Actuals)
1932 and then No (Next (First (Actuals)))
1933 then
1934 -- Can be call to parameterless entry family. What appears to be the
1935 -- sole argument is in fact the entry index. Rewrite prefix of node
1936 -- accordingly. Source representation is unchanged by this
1937 -- transformation.
1939 New_N :=
1940 Make_Indexed_Component (Loc,
1941 Prefix => New_Copy (P),
1942 Expressions => Actuals);
1943 Set_Name (N, New_N);
1944 Set_Etype (New_N, Standard_Void_Type);
1945 Set_Parameter_Associations (N, No_List);
1946 Analyze_Call_And_Resolve;
1948 -- For the case of a reference to an element of an entry family, P is
1949 -- an indexed component whose prefix is a selected component (task and
1950 -- entry family), and whose index is the entry family index.
1952 elsif Nkind (P) = N_Indexed_Component
1953 and then Nkind (Prefix (P)) = N_Selected_Component
1954 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1955 then
1956 Analyze_Call_And_Resolve;
1958 -- If the prefix is the name of an entry family, it is a call from
1959 -- within the task body itself.
1961 elsif Nkind (P) = N_Indexed_Component
1962 and then Nkind (Prefix (P)) = N_Identifier
1963 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1964 then
1965 New_N :=
1966 Make_Selected_Component (Loc,
1967 Prefix =>
1968 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1969 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1970 Rewrite (Prefix (P), New_N);
1971 Analyze (P);
1972 Analyze_Call_And_Resolve;
1974 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1975 -- procedure name, so the construct can only be a qualified expression.
1977 elsif Nkind (P) = N_Qualified_Expression
1978 and then Ada_Version >= Ada_2012
1979 then
1980 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1981 Analyze (N);
1983 -- Anything else is an error
1985 else
1986 Error_Msg_N ("invalid procedure or entry call", N);
1987 end if;
1989 <<Leave>>
1990 Restore_Ghost_Mode (Saved_GM);
1991 end Analyze_Procedure_Call;
1993 ------------------------------
1994 -- Analyze_Return_Statement --
1995 ------------------------------
1997 procedure Analyze_Return_Statement (N : Node_Id) is
1998 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1999 N_Simple_Return_Statement));
2001 Returns_Object : constant Boolean :=
2002 Nkind (N) = N_Extended_Return_Statement
2003 or else
2004 (Nkind (N) = N_Simple_Return_Statement
2005 and then Present (Expression (N)));
2006 -- True if we're returning something; that is, "return <expression>;"
2007 -- or "return Result : T [:= ...]". False for "return;". Used for error
2008 -- checking: If Returns_Object is True, N should apply to a function
2009 -- body; otherwise N should apply to a procedure body, entry body,
2010 -- accept statement, or extended return statement.
2012 function Find_What_It_Applies_To return Entity_Id;
2013 -- Find the entity representing the innermost enclosing body, accept
2014 -- statement, or extended return statement. If the result is a callable
2015 -- construct or extended return statement, then this will be the value
2016 -- of the Return_Applies_To attribute. Otherwise, the program is
2017 -- illegal. See RM-6.5(4/2).
2019 -----------------------------
2020 -- Find_What_It_Applies_To --
2021 -----------------------------
2023 function Find_What_It_Applies_To return Entity_Id is
2024 Result : Entity_Id := Empty;
2026 begin
2027 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2028 -- and postconditions.
2030 for J in reverse 0 .. Scope_Stack.Last loop
2031 Result := Scope_Stack.Table (J).Entity;
2032 exit when not Ekind_In (Result, E_Block, E_Loop)
2033 and then Chars (Result) /= Name_uPostconditions;
2034 end loop;
2036 pragma Assert (Present (Result));
2037 return Result;
2038 end Find_What_It_Applies_To;
2040 -- Local declarations
2042 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2043 Kind : constant Entity_Kind := Ekind (Scope_Id);
2044 Loc : constant Source_Ptr := Sloc (N);
2045 Stm_Entity : constant Entity_Id :=
2046 New_Internal_Entity
2047 (E_Return_Statement, Current_Scope, Loc, 'R');
2049 -- Start of processing for Analyze_Return_Statement
2051 begin
2052 Set_Return_Statement_Entity (N, Stm_Entity);
2054 Set_Etype (Stm_Entity, Standard_Void_Type);
2055 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2057 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2058 -- (4/2): an inner return statement will apply to this extended return.
2060 if Nkind (N) = N_Extended_Return_Statement then
2061 Push_Scope (Stm_Entity);
2062 end if;
2064 -- Check that pragma No_Return is obeyed. Don't complain about the
2065 -- implicitly-generated return that is placed at the end.
2067 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2068 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2069 end if;
2071 -- Warn on any unassigned OUT parameters if in procedure
2073 if Ekind (Scope_Id) = E_Procedure then
2074 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2075 end if;
2077 -- Check that functions return objects, and other things do not
2079 if Kind = E_Function or else Kind = E_Generic_Function then
2080 if not Returns_Object then
2081 Error_Msg_N ("missing expression in return from function", N);
2082 end if;
2084 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2085 if Returns_Object then
2086 Error_Msg_N ("procedure cannot return value (use function)", N);
2087 end if;
2089 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2090 if Returns_Object then
2091 if Is_Protected_Type (Scope (Scope_Id)) then
2092 Error_Msg_N ("entry body cannot return value", N);
2093 else
2094 Error_Msg_N ("accept statement cannot return value", N);
2095 end if;
2096 end if;
2098 elsif Kind = E_Return_Statement then
2100 -- We are nested within another return statement, which must be an
2101 -- extended_return_statement.
2103 if Returns_Object then
2104 if Nkind (N) = N_Extended_Return_Statement then
2105 Error_Msg_N
2106 ("extended return statement cannot be nested (use `RETURN;`)",
2109 -- Case of a simple return statement with a value inside extended
2110 -- return statement.
2112 else
2113 Error_Msg_N
2114 ("return nested in extended return statement cannot return "
2115 & "value (use `RETURN;`)", N);
2116 end if;
2117 end if;
2119 else
2120 Error_Msg_N ("illegal context for return statement", N);
2121 end if;
2123 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2124 Analyze_Function_Return (N);
2126 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2127 Set_Return_Present (Scope_Id);
2128 end if;
2130 if Nkind (N) = N_Extended_Return_Statement then
2131 End_Scope;
2132 end if;
2134 Kill_Current_Values (Last_Assignment_Only => True);
2135 Check_Unreachable_Code (N);
2137 Analyze_Dimension (N);
2138 end Analyze_Return_Statement;
2140 -------------------------------------
2141 -- Analyze_Simple_Return_Statement --
2142 -------------------------------------
2144 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2145 begin
2146 if Present (Expression (N)) then
2147 Mark_Coextensions (N, Expression (N));
2148 end if;
2150 Analyze_Return_Statement (N);
2151 end Analyze_Simple_Return_Statement;
2153 -------------------------
2154 -- Analyze_Return_Type --
2155 -------------------------
2157 procedure Analyze_Return_Type (N : Node_Id) is
2158 Designator : constant Entity_Id := Defining_Entity (N);
2159 Typ : Entity_Id := Empty;
2161 begin
2162 -- Normal case where result definition does not indicate an error
2164 if Result_Definition (N) /= Error then
2165 if Nkind (Result_Definition (N)) = N_Access_Definition then
2166 Check_SPARK_05_Restriction
2167 ("access result is not allowed", Result_Definition (N));
2169 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2171 declare
2172 AD : constant Node_Id :=
2173 Access_To_Subprogram_Definition (Result_Definition (N));
2174 begin
2175 if Present (AD) and then Protected_Present (AD) then
2176 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2177 else
2178 Typ := Access_Definition (N, Result_Definition (N));
2179 end if;
2180 end;
2182 Set_Parent (Typ, Result_Definition (N));
2183 Set_Is_Local_Anonymous_Access (Typ);
2184 Set_Etype (Designator, Typ);
2186 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2188 Null_Exclusion_Static_Checks (N);
2190 -- Subtype_Mark case
2192 else
2193 Find_Type (Result_Definition (N));
2194 Typ := Entity (Result_Definition (N));
2195 Set_Etype (Designator, Typ);
2197 -- Unconstrained array as result is not allowed in SPARK
2199 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2200 Check_SPARK_05_Restriction
2201 ("returning an unconstrained array is not allowed",
2202 Result_Definition (N));
2203 end if;
2205 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2207 Null_Exclusion_Static_Checks (N);
2209 -- If a null exclusion is imposed on the result type, then create
2210 -- a null-excluding itype (an access subtype) and use it as the
2211 -- function's Etype. Note that the null exclusion checks are done
2212 -- right before this, because they don't get applied to types that
2213 -- do not come from source.
2215 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2216 Set_Etype (Designator,
2217 Create_Null_Excluding_Itype
2218 (T => Typ,
2219 Related_Nod => N,
2220 Scope_Id => Scope (Current_Scope)));
2222 -- The new subtype must be elaborated before use because
2223 -- it is visible outside of the function. However its base
2224 -- type may not be frozen yet, so the reference that will
2225 -- force elaboration must be attached to the freezing of
2226 -- the base type.
2228 -- If the return specification appears on a proper body,
2229 -- the subtype will have been created already on the spec.
2231 if Is_Frozen (Typ) then
2232 if Nkind (Parent (N)) = N_Subprogram_Body
2233 and then Nkind (Parent (Parent (N))) = N_Subunit
2234 then
2235 null;
2236 else
2237 Build_Itype_Reference (Etype (Designator), Parent (N));
2238 end if;
2240 else
2241 Ensure_Freeze_Node (Typ);
2243 declare
2244 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2245 begin
2246 Set_Itype (IR, Etype (Designator));
2247 Append_Freeze_Actions (Typ, New_List (IR));
2248 end;
2249 end if;
2251 else
2252 Set_Etype (Designator, Typ);
2253 end if;
2255 if Ekind (Typ) = E_Incomplete_Type
2256 or else (Is_Class_Wide_Type (Typ)
2257 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2258 then
2259 -- AI05-0151: Tagged incomplete types are allowed in all formal
2260 -- parts. Untagged incomplete types are not allowed in bodies.
2261 -- As a consequence, limited views cannot appear in a basic
2262 -- declaration that is itself within a body, because there is
2263 -- no point at which the non-limited view will become visible.
2265 if Ada_Version >= Ada_2012 then
2266 if From_Limited_With (Typ) and then In_Package_Body then
2267 Error_Msg_NE
2268 ("invalid use of incomplete type&",
2269 Result_Definition (N), Typ);
2271 -- The return type of a subprogram body cannot be of a
2272 -- formal incomplete type.
2274 elsif Is_Generic_Type (Typ)
2275 and then Nkind (Parent (N)) = N_Subprogram_Body
2276 then
2277 Error_Msg_N
2278 ("return type cannot be a formal incomplete type",
2279 Result_Definition (N));
2281 elsif Is_Class_Wide_Type (Typ)
2282 and then Is_Generic_Type (Root_Type (Typ))
2283 and then Nkind (Parent (N)) = N_Subprogram_Body
2284 then
2285 Error_Msg_N
2286 ("return type cannot be a formal incomplete type",
2287 Result_Definition (N));
2289 elsif Is_Tagged_Type (Typ) then
2290 null;
2292 -- Use is legal in a thunk generated for an operation
2293 -- inherited from a progenitor.
2295 elsif Is_Thunk (Designator)
2296 and then Present (Non_Limited_View (Typ))
2297 then
2298 null;
2300 elsif Nkind (Parent (N)) = N_Subprogram_Body
2301 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2302 N_Entry_Body)
2303 then
2304 Error_Msg_NE
2305 ("invalid use of untagged incomplete type&",
2306 Designator, Typ);
2307 end if;
2309 -- The type must be completed in the current package. This
2310 -- is checked at the end of the package declaration when
2311 -- Taft-amendment types are identified. If the return type
2312 -- is class-wide, there is no required check, the type can
2313 -- be a bona fide TAT.
2315 if Ekind (Scope (Current_Scope)) = E_Package
2316 and then In_Private_Part (Scope (Current_Scope))
2317 and then not Is_Class_Wide_Type (Typ)
2318 then
2319 Append_Elmt (Designator, Private_Dependents (Typ));
2320 end if;
2322 else
2323 Error_Msg_NE
2324 ("invalid use of incomplete type&", Designator, Typ);
2325 end if;
2326 end if;
2327 end if;
2329 -- Case where result definition does indicate an error
2331 else
2332 Set_Etype (Designator, Any_Type);
2333 end if;
2334 end Analyze_Return_Type;
2336 -----------------------------
2337 -- Analyze_Subprogram_Body --
2338 -----------------------------
2340 procedure Analyze_Subprogram_Body (N : Node_Id) is
2341 Loc : constant Source_Ptr := Sloc (N);
2342 Body_Spec : constant Node_Id := Specification (N);
2343 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2345 begin
2346 if Debug_Flag_C then
2347 Write_Str ("==> subprogram body ");
2348 Write_Name (Chars (Body_Id));
2349 Write_Str (" from ");
2350 Write_Location (Loc);
2351 Write_Eol;
2352 Indent;
2353 end if;
2355 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2357 -- The real work is split out into the helper, so it can do "return;"
2358 -- without skipping the debug output:
2360 Analyze_Subprogram_Body_Helper (N);
2362 if Debug_Flag_C then
2363 Outdent;
2364 Write_Str ("<== subprogram body ");
2365 Write_Name (Chars (Body_Id));
2366 Write_Str (" from ");
2367 Write_Location (Loc);
2368 Write_Eol;
2369 end if;
2370 end Analyze_Subprogram_Body;
2372 ------------------------------------
2373 -- Analyze_Subprogram_Body_Helper --
2374 ------------------------------------
2376 -- This procedure is called for regular subprogram bodies, generic bodies,
2377 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2378 -- specification matters, and is used to create a proper declaration for
2379 -- the subprogram, or to perform conformance checks.
2381 -- WARNING: This routine manages Ghost regions. Return statements must be
2382 -- replaced by gotos which jump to the end of the routine and restore the
2383 -- Ghost mode.
2385 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2386 Body_Spec : Node_Id := Specification (N);
2387 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2388 Loc : constant Source_Ptr := Sloc (N);
2389 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2391 Conformant : Boolean;
2392 Desig_View : Entity_Id := Empty;
2393 Exch_Views : Elist_Id := No_Elist;
2394 HSS : Node_Id;
2395 Mask_Types : Elist_Id := No_Elist;
2396 Prot_Typ : Entity_Id := Empty;
2397 Spec_Decl : Node_Id := Empty;
2398 Spec_Id : Entity_Id;
2400 Last_Real_Spec_Entity : Entity_Id := Empty;
2401 -- When we analyze a separate spec, the entity chain ends up containing
2402 -- the formals, as well as any itypes generated during analysis of the
2403 -- default expressions for parameters, or the arguments of associated
2404 -- precondition/postcondition pragmas (which are analyzed in the context
2405 -- of the spec since they have visibility on formals).
2407 -- These entities belong with the spec and not the body. However we do
2408 -- the analysis of the body in the context of the spec (again to obtain
2409 -- visibility to the formals), and all the entities generated during
2410 -- this analysis end up also chained to the entity chain of the spec.
2411 -- But they really belong to the body, and there is circuitry to move
2412 -- them from the spec to the body.
2414 -- However, when we do this move, we don't want to move the real spec
2415 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2416 -- variable points to the last real spec entity, so we only move those
2417 -- chained beyond that point. It is initialized to Empty to deal with
2418 -- the case where there is no separate spec.
2420 function Body_Has_Contract return Boolean;
2421 -- Check whether unanalyzed body has an aspect or pragma that may
2422 -- generate a SPARK contract.
2424 function Body_Has_SPARK_Mode_On return Boolean;
2425 -- Check whether SPARK_Mode On applies to the subprogram body, either
2426 -- because it is specified directly on the body, or because it is
2427 -- inherited from the enclosing subprogram or package.
2429 procedure Build_Subprogram_Declaration;
2430 -- Create a matching subprogram declaration for subprogram body N
2432 procedure Check_Anonymous_Return;
2433 -- Ada 2005: if a function returns an access type that denotes a task,
2434 -- or a type that contains tasks, we must create a master entity for
2435 -- the anonymous type, which typically will be used in an allocator
2436 -- in the body of the function.
2438 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2439 -- Look ahead to recognize a pragma that may appear after the body.
2440 -- If there is a previous spec, check that it appears in the same
2441 -- declarative part. If the pragma is Inline_Always, perform inlining
2442 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2443 -- If the body acts as a spec, and inlining is required, we create a
2444 -- subprogram declaration for it, in order to attach the body to inline.
2445 -- If pragma does not appear after the body, check whether there is
2446 -- an inline pragma before any local declarations.
2448 procedure Check_Missing_Return;
2449 -- Checks for a function with a no return statements, and also performs
2450 -- the warning checks implemented by Check_Returns. In formal mode, also
2451 -- verify that a function ends with a RETURN and that a procedure does
2452 -- not contain any RETURN.
2454 function Disambiguate_Spec return Entity_Id;
2455 -- When a primitive is declared between the private view and the full
2456 -- view of a concurrent type which implements an interface, a special
2457 -- mechanism is used to find the corresponding spec of the primitive
2458 -- body.
2460 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2461 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2462 -- incomplete types coming from a limited context and replace their
2463 -- limited views with the non-limited ones. Return the list of changes
2464 -- to be used to undo the transformation.
2466 function Is_Private_Concurrent_Primitive
2467 (Subp_Id : Entity_Id) return Boolean;
2468 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2469 -- type that implements an interface and has a private view.
2471 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2472 -- N is the body generated for an expression function that is not a
2473 -- completion and Spec_Id the defining entity of its spec. Mark all
2474 -- the not-yet-frozen types referenced by the simple return statement
2475 -- of the function as formally frozen.
2477 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2478 -- Undo the transformation done by Exchange_Limited_Views.
2480 procedure Set_Trivial_Subprogram (N : Node_Id);
2481 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2482 -- subprogram whose body is being analyzed. N is the statement node
2483 -- causing the flag to be set, if the following statement is a return
2484 -- of an entity, we mark the entity as set in source to suppress any
2485 -- warning on the stylized use of function stubs with a dummy return.
2487 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2488 -- Undo the transformation done by Mask_Unfrozen_Types
2490 procedure Verify_Overriding_Indicator;
2491 -- If there was a previous spec, the entity has been entered in the
2492 -- current scope previously. If the body itself carries an overriding
2493 -- indicator, check that it is consistent with the known status of the
2494 -- entity.
2496 -----------------------
2497 -- Body_Has_Contract --
2498 -----------------------
2500 function Body_Has_Contract return Boolean is
2501 Decls : constant List_Id := Declarations (N);
2502 Item : Node_Id;
2504 begin
2505 -- Check for aspects that may generate a contract
2507 if Present (Aspect_Specifications (N)) then
2508 Item := First (Aspect_Specifications (N));
2509 while Present (Item) loop
2510 if Is_Subprogram_Contract_Annotation (Item) then
2511 return True;
2512 end if;
2514 Next (Item);
2515 end loop;
2516 end if;
2518 -- Check for pragmas that may generate a contract
2520 if Present (Decls) then
2521 Item := First (Decls);
2522 while Present (Item) loop
2523 if Nkind (Item) = N_Pragma
2524 and then Is_Subprogram_Contract_Annotation (Item)
2525 then
2526 return True;
2527 end if;
2529 Next (Item);
2530 end loop;
2531 end if;
2533 return False;
2534 end Body_Has_Contract;
2536 ----------------------------
2537 -- Body_Has_SPARK_Mode_On --
2538 ----------------------------
2540 function Body_Has_SPARK_Mode_On return Boolean is
2541 Decls : constant List_Id := Declarations (N);
2542 Item : Node_Id;
2544 begin
2545 -- Check for SPARK_Mode aspect
2547 if Present (Aspect_Specifications (N)) then
2548 Item := First (Aspect_Specifications (N));
2549 while Present (Item) loop
2550 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2551 return Get_SPARK_Mode_From_Annotation (Item) = On;
2552 end if;
2554 Next (Item);
2555 end loop;
2556 end if;
2558 -- Check for SPARK_Mode pragma
2560 if Present (Decls) then
2561 Item := First (Decls);
2562 while Present (Item) loop
2564 -- Pragmas that apply to a subprogram body are usually grouped
2565 -- together. Look for a potential pragma SPARK_Mode among them.
2567 if Nkind (Item) = N_Pragma then
2568 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2569 return Get_SPARK_Mode_From_Annotation (Item) = On;
2570 end if;
2572 -- Otherwise the first non-pragma declarative item terminates
2573 -- the region where pragma SPARK_Mode may appear.
2575 else
2576 exit;
2577 end if;
2579 Next (Item);
2580 end loop;
2581 end if;
2583 -- Otherwise, the applicable SPARK_Mode is inherited from the
2584 -- enclosing subprogram or package.
2586 return SPARK_Mode = On;
2587 end Body_Has_SPARK_Mode_On;
2589 ----------------------------------
2590 -- Build_Subprogram_Declaration --
2591 ----------------------------------
2593 procedure Build_Subprogram_Declaration is
2594 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2595 -- Relocate certain categorization pragmas from the declarative list
2596 -- of subprogram body From and insert them after node To. The pragmas
2597 -- in question are:
2598 -- Ghost
2599 -- Volatile_Function
2600 -- Also copy pragma SPARK_Mode if present in the declarative list
2601 -- of subprogram body From and insert it after node To. This pragma
2602 -- should not be moved, as it applies to the body too.
2604 ------------------
2605 -- Move_Pragmas --
2606 ------------------
2608 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2609 Decl : Node_Id;
2610 Next_Decl : Node_Id;
2612 begin
2613 pragma Assert (Nkind (From) = N_Subprogram_Body);
2615 -- The destination node must be part of a list, as the pragmas are
2616 -- inserted after it.
2618 pragma Assert (Is_List_Member (To));
2620 -- Inspect the declarations of the subprogram body looking for
2621 -- specific pragmas.
2623 Decl := First (Declarations (N));
2624 while Present (Decl) loop
2625 Next_Decl := Next (Decl);
2627 if Nkind (Decl) = N_Pragma then
2628 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2629 Insert_After (To, New_Copy_Tree (Decl));
2631 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2632 Name_Ghost,
2633 Name_Volatile_Function)
2634 then
2635 Remove (Decl);
2636 Insert_After (To, Decl);
2637 end if;
2638 end if;
2640 Decl := Next_Decl;
2641 end loop;
2642 end Move_Pragmas;
2644 -- Local variables
2646 Decl : Node_Id;
2647 Subp_Decl : Node_Id;
2649 -- Start of processing for Build_Subprogram_Declaration
2651 begin
2652 -- Create a matching subprogram spec using the profile of the body.
2653 -- The structure of the tree is identical, but has new entities for
2654 -- the defining unit name and formal parameters.
2656 Subp_Decl :=
2657 Make_Subprogram_Declaration (Loc,
2658 Specification => Copy_Subprogram_Spec (Body_Spec));
2659 Set_Comes_From_Source (Subp_Decl, True);
2661 -- Relocate the aspects and relevant pragmas from the subprogram body
2662 -- to the generated spec because it acts as the initial declaration.
2664 Insert_Before (N, Subp_Decl);
2665 Move_Aspects (N, To => Subp_Decl);
2666 Move_Pragmas (N, To => Subp_Decl);
2668 -- Ensure that the generated corresponding spec and original body
2669 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2670 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2671 -- correctly set for local subprograms.
2673 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2675 Analyze (Subp_Decl);
2677 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2678 -- the body since the expander may generate calls using that entity.
2679 -- Required to ensure that Expand_Call rewrites calls to this
2680 -- function by calls to the built procedure.
2682 if Modify_Tree_For_C
2683 and then Nkind (Body_Spec) = N_Function_Specification
2684 and then
2685 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2686 then
2687 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2688 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2689 Corresponding_Procedure
2690 (Defining_Entity (Specification (Subp_Decl))));
2691 end if;
2693 -- Analyze any relocated source pragmas or pragmas created for aspect
2694 -- specifications.
2696 Decl := Next (Subp_Decl);
2697 while Present (Decl) loop
2699 -- Stop the search for pragmas once the body has been reached as
2700 -- this terminates the region where pragmas may appear.
2702 if Decl = N then
2703 exit;
2705 elsif Nkind (Decl) = N_Pragma then
2706 Analyze (Decl);
2707 end if;
2709 Next (Decl);
2710 end loop;
2712 Spec_Id := Defining_Entity (Subp_Decl);
2713 Set_Corresponding_Spec (N, Spec_Id);
2715 -- Mark the generated spec as a source construct to ensure that all
2716 -- calls to it are properly registered in ALI files for GNATprove.
2718 Set_Comes_From_Source (Spec_Id, True);
2720 -- Ensure that the specs of the subprogram declaration and its body
2721 -- are identical, otherwise they will appear non-conformant due to
2722 -- rewritings in the default values of formal parameters.
2724 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2725 Set_Specification (N, Body_Spec);
2726 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2727 end Build_Subprogram_Declaration;
2729 ----------------------------
2730 -- Check_Anonymous_Return --
2731 ----------------------------
2733 procedure Check_Anonymous_Return is
2734 Decl : Node_Id;
2735 Par : Node_Id;
2736 Scop : Entity_Id;
2738 begin
2739 if Present (Spec_Id) then
2740 Scop := Spec_Id;
2741 else
2742 Scop := Body_Id;
2743 end if;
2745 if Ekind (Scop) = E_Function
2746 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2747 and then not Is_Thunk (Scop)
2749 -- Skip internally built functions which handle the case of
2750 -- a null access (see Expand_Interface_Conversion)
2752 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2753 and then not Comes_From_Source (Parent (Scop)))
2755 and then (Has_Task (Designated_Type (Etype (Scop)))
2756 or else
2757 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2758 and then
2759 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2760 and then Expander_Active
2762 -- Avoid cases with no tasking support
2764 and then RTE_Available (RE_Current_Master)
2765 and then not Restriction_Active (No_Task_Hierarchy)
2766 then
2767 Decl :=
2768 Make_Object_Declaration (Loc,
2769 Defining_Identifier =>
2770 Make_Defining_Identifier (Loc, Name_uMaster),
2771 Constant_Present => True,
2772 Object_Definition =>
2773 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2774 Expression =>
2775 Make_Explicit_Dereference (Loc,
2776 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2778 if Present (Declarations (N)) then
2779 Prepend (Decl, Declarations (N));
2780 else
2781 Set_Declarations (N, New_List (Decl));
2782 end if;
2784 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2785 Set_Has_Master_Entity (Scop);
2787 -- Now mark the containing scope as a task master
2789 Par := N;
2790 while Nkind (Par) /= N_Compilation_Unit loop
2791 Par := Parent (Par);
2792 pragma Assert (Present (Par));
2794 -- If we fall off the top, we are at the outer level, and
2795 -- the environment task is our effective master, so nothing
2796 -- to mark.
2798 if Nkind_In
2799 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2800 then
2801 Set_Is_Task_Master (Par, True);
2802 exit;
2803 end if;
2804 end loop;
2805 end if;
2806 end Check_Anonymous_Return;
2808 -------------------------
2809 -- Check_Inline_Pragma --
2810 -------------------------
2812 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2813 Prag : Node_Id;
2814 Plist : List_Id;
2816 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2817 -- True when N is a pragma Inline or Inline_Always that applies
2818 -- to this subprogram.
2820 -----------------------
2821 -- Is_Inline_Pragma --
2822 -----------------------
2824 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2825 begin
2826 if Nkind (N) = N_Pragma
2827 and then
2828 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2829 or else (Pragma_Name_Unmapped (N) = Name_Inline
2830 and then
2831 (Front_End_Inlining or else Optimization_Level > 0)))
2832 and then Present (Pragma_Argument_Associations (N))
2833 then
2834 declare
2835 Pragma_Arg : Node_Id :=
2836 Expression (First (Pragma_Argument_Associations (N)));
2837 begin
2838 if Nkind (Pragma_Arg) = N_Selected_Component then
2839 Pragma_Arg := Selector_Name (Pragma_Arg);
2840 end if;
2842 return Chars (Pragma_Arg) = Chars (Body_Id);
2843 end;
2845 else
2846 return False;
2847 end if;
2848 end Is_Inline_Pragma;
2850 -- Start of processing for Check_Inline_Pragma
2852 begin
2853 if not Expander_Active then
2854 return;
2855 end if;
2857 if Is_List_Member (N)
2858 and then Present (Next (N))
2859 and then Is_Inline_Pragma (Next (N))
2860 then
2861 Prag := Next (N);
2863 elsif Nkind (N) /= N_Subprogram_Body_Stub
2864 and then Present (Declarations (N))
2865 and then Is_Inline_Pragma (First (Declarations (N)))
2866 then
2867 Prag := First (Declarations (N));
2869 else
2870 Prag := Empty;
2871 end if;
2873 if Present (Prag) then
2874 if Present (Spec_Id) then
2875 if Is_List_Member (N)
2876 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2877 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2878 then
2879 Analyze (Prag);
2880 end if;
2882 else
2883 -- Create a subprogram declaration, to make treatment uniform.
2884 -- Make the sloc of the subprogram name that of the entity in
2885 -- the body, so that style checks find identical strings.
2887 declare
2888 Subp : constant Entity_Id :=
2889 Make_Defining_Identifier
2890 (Sloc (Body_Id), Chars (Body_Id));
2891 Decl : constant Node_Id :=
2892 Make_Subprogram_Declaration (Loc,
2893 Specification =>
2894 New_Copy_Tree (Specification (N)));
2896 begin
2897 -- Link the body and the generated spec
2899 Set_Corresponding_Body (Decl, Body_Id);
2900 Set_Corresponding_Spec (N, Subp);
2902 Set_Defining_Unit_Name (Specification (Decl), Subp);
2904 -- To ensure proper coverage when body is inlined, indicate
2905 -- whether the subprogram comes from source.
2907 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2909 if Present (First_Formal (Body_Id)) then
2910 Plist := Copy_Parameter_List (Body_Id);
2911 Set_Parameter_Specifications
2912 (Specification (Decl), Plist);
2913 end if;
2915 -- Move aspects to the new spec
2917 if Has_Aspects (N) then
2918 Move_Aspects (N, To => Decl);
2919 end if;
2921 Insert_Before (N, Decl);
2922 Analyze (Decl);
2923 Analyze (Prag);
2924 Set_Has_Pragma_Inline (Subp);
2926 if Pragma_Name (Prag) = Name_Inline_Always then
2927 Set_Is_Inlined (Subp);
2928 Set_Has_Pragma_Inline_Always (Subp);
2929 end if;
2931 -- Prior to copying the subprogram body to create a template
2932 -- for it for subsequent inlining, remove the pragma from
2933 -- the current body so that the copy that will produce the
2934 -- new body will start from a completely unanalyzed tree.
2936 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2937 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2938 end if;
2940 Spec := Subp;
2941 end;
2942 end if;
2943 end if;
2944 end Check_Inline_Pragma;
2946 --------------------------
2947 -- Check_Missing_Return --
2948 --------------------------
2950 procedure Check_Missing_Return is
2951 Id : Entity_Id;
2952 Missing_Ret : Boolean;
2954 begin
2955 if Nkind (Body_Spec) = N_Function_Specification then
2956 if Present (Spec_Id) then
2957 Id := Spec_Id;
2958 else
2959 Id := Body_Id;
2960 end if;
2962 if Return_Present (Id) then
2963 Check_Returns (HSS, 'F', Missing_Ret);
2965 if Missing_Ret then
2966 Set_Has_Missing_Return (Id);
2967 end if;
2969 -- Within a premature instantiation of a package with no body, we
2970 -- build completions of the functions therein, with a Raise
2971 -- statement. No point in complaining about a missing return in
2972 -- this case.
2974 elsif Ekind (Id) = E_Function
2975 and then In_Instance
2976 and then Present (Statements (HSS))
2977 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2978 then
2979 null;
2981 elsif Is_Generic_Subprogram (Id)
2982 or else not Is_Machine_Code_Subprogram (Id)
2983 then
2984 Error_Msg_N ("missing RETURN statement in function body", N);
2985 end if;
2987 -- If procedure with No_Return, check returns
2989 elsif Nkind (Body_Spec) = N_Procedure_Specification
2990 and then Present (Spec_Id)
2991 and then No_Return (Spec_Id)
2992 then
2993 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2994 end if;
2996 -- Special checks in SPARK mode
2998 if Nkind (Body_Spec) = N_Function_Specification then
3000 -- In SPARK mode, last statement of a function should be a return
3002 declare
3003 Stat : constant Node_Id := Last_Source_Statement (HSS);
3004 begin
3005 if Present (Stat)
3006 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3007 N_Extended_Return_Statement)
3008 then
3009 Check_SPARK_05_Restriction
3010 ("last statement in function should be RETURN", Stat);
3011 end if;
3012 end;
3014 -- In SPARK mode, verify that a procedure has no return
3016 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3017 if Present (Spec_Id) then
3018 Id := Spec_Id;
3019 else
3020 Id := Body_Id;
3021 end if;
3023 -- Would be nice to point to return statement here, can we
3024 -- borrow the Check_Returns procedure here ???
3026 if Return_Present (Id) then
3027 Check_SPARK_05_Restriction
3028 ("procedure should not have RETURN", N);
3029 end if;
3030 end if;
3031 end Check_Missing_Return;
3033 -----------------------
3034 -- Disambiguate_Spec --
3035 -----------------------
3037 function Disambiguate_Spec return Entity_Id is
3038 Priv_Spec : Entity_Id;
3039 Spec_N : Entity_Id;
3041 procedure Replace_Types (To_Corresponding : Boolean);
3042 -- Depending on the flag, replace the type of formal parameters of
3043 -- Body_Id if it is a concurrent type implementing interfaces with
3044 -- the corresponding record type or the other way around.
3046 procedure Replace_Types (To_Corresponding : Boolean) is
3047 Formal : Entity_Id;
3048 Formal_Typ : Entity_Id;
3050 begin
3051 Formal := First_Formal (Body_Id);
3052 while Present (Formal) loop
3053 Formal_Typ := Etype (Formal);
3055 if Is_Class_Wide_Type (Formal_Typ) then
3056 Formal_Typ := Root_Type (Formal_Typ);
3057 end if;
3059 -- From concurrent type to corresponding record
3061 if To_Corresponding then
3062 if Is_Concurrent_Type (Formal_Typ)
3063 and then Present (Corresponding_Record_Type (Formal_Typ))
3064 and then
3065 Present (Interfaces
3066 (Corresponding_Record_Type (Formal_Typ)))
3067 then
3068 Set_Etype (Formal,
3069 Corresponding_Record_Type (Formal_Typ));
3070 end if;
3072 -- From corresponding record to concurrent type
3074 else
3075 if Is_Concurrent_Record_Type (Formal_Typ)
3076 and then Present (Interfaces (Formal_Typ))
3077 then
3078 Set_Etype (Formal,
3079 Corresponding_Concurrent_Type (Formal_Typ));
3080 end if;
3081 end if;
3083 Next_Formal (Formal);
3084 end loop;
3085 end Replace_Types;
3087 -- Start of processing for Disambiguate_Spec
3089 begin
3090 -- Try to retrieve the specification of the body as is. All error
3091 -- messages are suppressed because the body may not have a spec in
3092 -- its current state.
3094 Spec_N := Find_Corresponding_Spec (N, False);
3096 -- It is possible that this is the body of a primitive declared
3097 -- between a private and a full view of a concurrent type. The
3098 -- controlling parameter of the spec carries the concurrent type,
3099 -- not the corresponding record type as transformed by Analyze_
3100 -- Subprogram_Specification. In such cases, we undo the change
3101 -- made by the analysis of the specification and try to find the
3102 -- spec again.
3104 -- Note that wrappers already have their corresponding specs and
3105 -- bodies set during their creation, so if the candidate spec is
3106 -- a wrapper, then we definitely need to swap all types to their
3107 -- original concurrent status.
3109 if No (Spec_N)
3110 or else Is_Primitive_Wrapper (Spec_N)
3111 then
3112 -- Restore all references of corresponding record types to the
3113 -- original concurrent types.
3115 Replace_Types (To_Corresponding => False);
3116 Priv_Spec := Find_Corresponding_Spec (N, False);
3118 -- The current body truly belongs to a primitive declared between
3119 -- a private and a full view. We leave the modified body as is,
3120 -- and return the true spec.
3122 if Present (Priv_Spec)
3123 and then Is_Private_Primitive (Priv_Spec)
3124 then
3125 return Priv_Spec;
3126 end if;
3128 -- In case that this is some sort of error, restore the original
3129 -- state of the body.
3131 Replace_Types (To_Corresponding => True);
3132 end if;
3134 return Spec_N;
3135 end Disambiguate_Spec;
3137 ----------------------------
3138 -- Exchange_Limited_Views --
3139 ----------------------------
3141 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3142 Result : Elist_Id := No_Elist;
3144 procedure Detect_And_Exchange (Id : Entity_Id);
3145 -- Determine whether Id's type denotes an incomplete type associated
3146 -- with a limited with clause and exchange the limited view with the
3147 -- non-limited one when available. Note that the non-limited view
3148 -- may exist because of a with_clause in another unit in the context,
3149 -- but cannot be used because the current view of the enclosing unit
3150 -- is still a limited view.
3152 -------------------------
3153 -- Detect_And_Exchange --
3154 -------------------------
3156 procedure Detect_And_Exchange (Id : Entity_Id) is
3157 Typ : constant Entity_Id := Etype (Id);
3158 begin
3159 if From_Limited_With (Typ)
3160 and then Has_Non_Limited_View (Typ)
3161 and then not From_Limited_With (Scope (Typ))
3162 then
3163 if No (Result) then
3164 Result := New_Elmt_List;
3165 end if;
3167 Prepend_Elmt (Typ, Result);
3168 Prepend_Elmt (Id, Result);
3169 Set_Etype (Id, Non_Limited_View (Typ));
3170 end if;
3171 end Detect_And_Exchange;
3173 -- Local variables
3175 Formal : Entity_Id;
3177 -- Start of processing for Exchange_Limited_Views
3179 begin
3180 -- Do not process subprogram bodies as they already use the non-
3181 -- limited view of types.
3183 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3184 return No_Elist;
3185 end if;
3187 -- Examine all formals and swap views when applicable
3189 Formal := First_Formal (Subp_Id);
3190 while Present (Formal) loop
3191 Detect_And_Exchange (Formal);
3193 Next_Formal (Formal);
3194 end loop;
3196 -- Process the return type of a function
3198 if Ekind (Subp_Id) = E_Function then
3199 Detect_And_Exchange (Subp_Id);
3200 end if;
3202 return Result;
3203 end Exchange_Limited_Views;
3205 -------------------------------------
3206 -- Is_Private_Concurrent_Primitive --
3207 -------------------------------------
3209 function Is_Private_Concurrent_Primitive
3210 (Subp_Id : Entity_Id) return Boolean
3212 Formal_Typ : Entity_Id;
3214 begin
3215 if Present (First_Formal (Subp_Id)) then
3216 Formal_Typ := Etype (First_Formal (Subp_Id));
3218 if Is_Concurrent_Record_Type (Formal_Typ) then
3219 if Is_Class_Wide_Type (Formal_Typ) then
3220 Formal_Typ := Root_Type (Formal_Typ);
3221 end if;
3223 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3224 end if;
3226 -- The type of the first formal is a concurrent tagged type with
3227 -- a private view.
3229 return
3230 Is_Concurrent_Type (Formal_Typ)
3231 and then Is_Tagged_Type (Formal_Typ)
3232 and then Has_Private_Declaration (Formal_Typ);
3233 end if;
3235 return False;
3236 end Is_Private_Concurrent_Primitive;
3238 -------------------------
3239 -- Mask_Unfrozen_Types --
3240 -------------------------
3242 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3243 Result : Elist_Id := No_Elist;
3245 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3246 -- Mask all types referenced in the subtree rooted at Node
3248 --------------------
3249 -- Mask_Type_Refs --
3250 --------------------
3252 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3253 procedure Mask_Type (Typ : Entity_Id);
3254 -- ??? what does this do?
3256 ---------------
3257 -- Mask_Type --
3258 ---------------
3260 procedure Mask_Type (Typ : Entity_Id) is
3261 begin
3262 -- Skip Itypes created by the preanalysis
3264 if Is_Itype (Typ)
3265 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3266 then
3267 return;
3268 end if;
3270 if not Is_Frozen (Typ) then
3271 Set_Is_Frozen (Typ);
3272 Append_New_Elmt (Typ, Result);
3273 end if;
3274 end Mask_Type;
3276 -- Start of processing for Mask_Type_Refs
3278 begin
3279 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3280 Mask_Type (Etype (Entity (Node)));
3282 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3283 Mask_Type (Scope (Entity (Node)));
3284 end if;
3286 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3287 and then Present (Etype (Node))
3288 then
3289 Mask_Type (Etype (Node));
3290 end if;
3292 return OK;
3293 end Mask_Type_Refs;
3295 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3297 -- Local variables
3299 Return_Stmt : constant Node_Id :=
3300 First (Statements (Handled_Statement_Sequence (N)));
3302 -- Start of processing for Mask_Unfrozen_Types
3304 begin
3305 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3307 Mask_References (Expression (Return_Stmt));
3309 return Result;
3310 end Mask_Unfrozen_Types;
3312 ---------------------------
3313 -- Restore_Limited_Views --
3314 ---------------------------
3316 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3317 Elmt : Elmt_Id := First_Elmt (Restore_List);
3318 Id : Entity_Id;
3320 begin
3321 while Present (Elmt) loop
3322 Id := Node (Elmt);
3323 Next_Elmt (Elmt);
3324 Set_Etype (Id, Node (Elmt));
3325 Next_Elmt (Elmt);
3326 end loop;
3327 end Restore_Limited_Views;
3329 ----------------------------
3330 -- Set_Trivial_Subprogram --
3331 ----------------------------
3333 procedure Set_Trivial_Subprogram (N : Node_Id) is
3334 Nxt : constant Node_Id := Next (N);
3336 begin
3337 Set_Is_Trivial_Subprogram (Body_Id);
3339 if Present (Spec_Id) then
3340 Set_Is_Trivial_Subprogram (Spec_Id);
3341 end if;
3343 if Present (Nxt)
3344 and then Nkind (Nxt) = N_Simple_Return_Statement
3345 and then No (Next (Nxt))
3346 and then Present (Expression (Nxt))
3347 and then Is_Entity_Name (Expression (Nxt))
3348 then
3349 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3350 end if;
3351 end Set_Trivial_Subprogram;
3353 ---------------------------
3354 -- Unmask_Unfrozen_Types --
3355 ---------------------------
3357 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3358 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3360 begin
3361 while Present (Elmt) loop
3362 Set_Is_Frozen (Node (Elmt), False);
3363 Next_Elmt (Elmt);
3364 end loop;
3365 end Unmask_Unfrozen_Types;
3367 ---------------------------------
3368 -- Verify_Overriding_Indicator --
3369 ---------------------------------
3371 procedure Verify_Overriding_Indicator is
3372 begin
3373 if Must_Override (Body_Spec) then
3374 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3375 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3376 then
3377 null;
3379 elsif not Present (Overridden_Operation (Spec_Id)) then
3380 Error_Msg_NE
3381 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3383 -- Overriding indicators aren't allowed for protected subprogram
3384 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3385 -- this to a warning if -gnatd.E is enabled.
3387 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3388 Error_Msg_Warn := Error_To_Warning;
3389 Error_Msg_N
3390 ("<<overriding indicator not allowed for protected "
3391 & "subprogram body", Body_Spec);
3392 end if;
3394 elsif Must_Not_Override (Body_Spec) then
3395 if Present (Overridden_Operation (Spec_Id)) then
3396 Error_Msg_NE
3397 ("subprogram& overrides inherited operation",
3398 Body_Spec, Spec_Id);
3400 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3401 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3402 then
3403 Error_Msg_NE
3404 ("subprogram& overrides predefined operator ",
3405 Body_Spec, Spec_Id);
3407 -- Overriding indicators aren't allowed for protected subprogram
3408 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3409 -- this to a warning if -gnatd.E is enabled.
3411 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3412 Error_Msg_Warn := Error_To_Warning;
3414 Error_Msg_N
3415 ("<<overriding indicator not allowed "
3416 & "for protected subprogram body", Body_Spec);
3418 -- If this is not a primitive operation, then the overriding
3419 -- indicator is altogether illegal.
3421 elsif not Is_Primitive (Spec_Id) then
3422 Error_Msg_N
3423 ("overriding indicator only allowed "
3424 & "if subprogram is primitive", Body_Spec);
3425 end if;
3427 -- If checking the style rule and the operation overrides, then
3428 -- issue a warning about a missing overriding_indicator. Protected
3429 -- subprogram bodies are excluded from this style checking, since
3430 -- they aren't primitives (even though their declarations can
3431 -- override) and aren't allowed to have an overriding_indicator.
3433 elsif Style_Check
3434 and then Present (Overridden_Operation (Spec_Id))
3435 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3436 then
3437 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3438 Style.Missing_Overriding (N, Body_Id);
3440 elsif Style_Check
3441 and then Can_Override_Operator (Spec_Id)
3442 and then not In_Predefined_Unit (Spec_Id)
3443 then
3444 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3445 Style.Missing_Overriding (N, Body_Id);
3446 end if;
3447 end Verify_Overriding_Indicator;
3449 -- Local variables
3451 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3452 Saved_ISMP : constant Boolean :=
3453 Ignore_SPARK_Mode_Pragmas_In_Instance;
3454 -- Save the Ghost and SPARK mode-related data to restore on exit
3456 -- Start of processing for Analyze_Subprogram_Body_Helper
3458 begin
3459 -- A [generic] subprogram body "freezes" the contract of the nearest
3460 -- enclosing package body and all other contracts encountered in the
3461 -- same declarative part up to and excluding the subprogram body:
3463 -- package body Nearest_Enclosing_Package
3464 -- with Refined_State => (State => Constit)
3465 -- is
3466 -- Constit : ...;
3468 -- procedure Freezes_Enclosing_Package_Body
3469 -- with Refined_Depends => (Input => Constit) ...
3471 -- This ensures that any annotations referenced by the contract of the
3472 -- [generic] subprogram body are available. This form of "freezing" is
3473 -- decoupled from the usual Freeze_xxx mechanism because it must also
3474 -- work in the context of generics where normal freezing is disabled.
3476 -- Only bodies coming from source should cause this type of "freezing".
3477 -- Expression functions that act as bodies and complete an initial
3478 -- declaration must be included in this category, hence the use of
3479 -- Original_Node.
3481 if Comes_From_Source (Original_Node (N)) then
3482 Analyze_Previous_Contracts (N);
3483 end if;
3485 -- Generic subprograms are handled separately. They always have a
3486 -- generic specification. Determine whether current scope has a
3487 -- previous declaration.
3489 -- If the subprogram body is defined within an instance of the same
3490 -- name, the instance appears as a package renaming, and will be hidden
3491 -- within the subprogram.
3493 if Present (Prev_Id)
3494 and then not Is_Overloadable (Prev_Id)
3495 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3496 or else Comes_From_Source (Prev_Id))
3497 then
3498 if Is_Generic_Subprogram (Prev_Id) then
3499 Spec_Id := Prev_Id;
3501 -- A subprogram body is Ghost when it is stand alone and subject
3502 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3503 -- the mode now to ensure that any nodes generated during analysis
3504 -- and expansion are properly marked as Ghost.
3506 Mark_And_Set_Ghost_Body (N, Spec_Id);
3508 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3509 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3511 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3513 if Nkind (N) = N_Subprogram_Body then
3514 HSS := Handled_Statement_Sequence (N);
3515 Check_Missing_Return;
3516 end if;
3518 goto Leave;
3520 -- Otherwise a previous entity conflicts with the subprogram name.
3521 -- Attempting to enter name will post error.
3523 else
3524 Enter_Name (Body_Id);
3525 goto Leave;
3526 end if;
3528 -- Non-generic case, find the subprogram declaration, if one was seen,
3529 -- or enter new overloaded entity in the current scope. If the
3530 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3531 -- part of the context of one of its subunits. No need to redo the
3532 -- analysis.
3534 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3535 goto Leave;
3537 else
3538 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3540 if Nkind (N) = N_Subprogram_Body_Stub
3541 or else No (Corresponding_Spec (N))
3542 then
3543 if Is_Private_Concurrent_Primitive (Body_Id) then
3544 Spec_Id := Disambiguate_Spec;
3546 -- A subprogram body is Ghost when it is stand alone and
3547 -- subject to pragma Ghost or when the corresponding spec is
3548 -- Ghost. Set the mode now to ensure that any nodes generated
3549 -- during analysis and expansion are properly marked as Ghost.
3551 Mark_And_Set_Ghost_Body (N, Spec_Id);
3553 else
3554 Spec_Id := Find_Corresponding_Spec (N);
3556 -- A subprogram body is Ghost when it is stand alone and
3557 -- subject to pragma Ghost or when the corresponding spec is
3558 -- Ghost. Set the mode now to ensure that any nodes generated
3559 -- during analysis and expansion are properly marked as Ghost.
3561 Mark_And_Set_Ghost_Body (N, Spec_Id);
3563 -- In GNATprove mode, if the body has no previous spec, create
3564 -- one so that the inlining machinery can operate properly.
3565 -- Transfer aspects, if any, to the new spec, so that they
3566 -- are legal and can be processed ahead of the body.
3567 -- We make two copies of the given spec, one for the new
3568 -- declaration, and one for the body.
3570 if No (Spec_Id) and then GNATprove_Mode
3572 -- Inlining does not apply during pre-analysis of code
3574 and then Full_Analysis
3576 -- Inlining only applies to full bodies, not stubs
3578 and then Nkind (N) /= N_Subprogram_Body_Stub
3580 -- Inlining only applies to bodies in the source code, not to
3581 -- those generated by the compiler. In particular, expression
3582 -- functions, whose body is generated by the compiler, are
3583 -- treated specially by GNATprove.
3585 and then Comes_From_Source (Body_Id)
3587 -- This cannot be done for a compilation unit, which is not
3588 -- in a context where we can insert a new spec.
3590 and then Is_List_Member (N)
3592 -- Inlining only applies to subprograms without contracts,
3593 -- as a contract is a sign that GNATprove should perform a
3594 -- modular analysis of the subprogram instead of a contextual
3595 -- analysis at each call site. The same test is performed in
3596 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3597 -- here in another form (because the contract has not been
3598 -- attached to the body) to avoid front-end errors in case
3599 -- pragmas are used instead of aspects, because the
3600 -- corresponding pragmas in the body would not be transferred
3601 -- to the spec, leading to legality errors.
3603 and then not Body_Has_Contract
3604 and then not Inside_A_Generic
3605 then
3606 Build_Subprogram_Declaration;
3608 -- If this is a function that returns a constrained array, and
3609 -- we are generating SPARK_For_C, create subprogram declaration
3610 -- to simplify subsequent C generation.
3612 elsif No (Spec_Id)
3613 and then Modify_Tree_For_C
3614 and then Nkind (Body_Spec) = N_Function_Specification
3615 and then Is_Array_Type (Etype (Body_Id))
3616 and then Is_Constrained (Etype (Body_Id))
3617 then
3618 Build_Subprogram_Declaration;
3619 end if;
3620 end if;
3622 -- If this is a duplicate body, no point in analyzing it
3624 if Error_Posted (N) then
3625 goto Leave;
3626 end if;
3628 -- A subprogram body should cause freezing of its own declaration,
3629 -- but if there was no previous explicit declaration, then the
3630 -- subprogram will get frozen too late (there may be code within
3631 -- the body that depends on the subprogram having been frozen,
3632 -- such as uses of extra formals), so we force it to be frozen
3633 -- here. Same holds if the body and spec are compilation units.
3634 -- Finally, if the return type is an anonymous access to protected
3635 -- subprogram, it must be frozen before the body because its
3636 -- expansion has generated an equivalent type that is used when
3637 -- elaborating the body.
3639 -- An exception in the case of Ada 2012, AI05-177: The bodies
3640 -- created for expression functions do not freeze.
3642 if No (Spec_Id)
3643 and then Nkind (Original_Node (N)) /= N_Expression_Function
3644 then
3645 Freeze_Before (N, Body_Id);
3647 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3648 Freeze_Before (N, Spec_Id);
3650 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3651 Freeze_Before (N, Etype (Body_Id));
3652 end if;
3654 else
3655 Spec_Id := Corresponding_Spec (N);
3657 -- A subprogram body is Ghost when it is stand alone and subject
3658 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3659 -- the mode now to ensure that any nodes generated during analysis
3660 -- and expansion are properly marked as Ghost.
3662 Mark_And_Set_Ghost_Body (N, Spec_Id);
3663 end if;
3664 end if;
3666 -- Previously we scanned the body to look for nested subprograms, and
3667 -- rejected an inline directive if nested subprograms were present,
3668 -- because the back-end would generate conflicting symbols for the
3669 -- nested bodies. This is now unnecessary.
3671 -- Look ahead to recognize a pragma Inline that appears after the body
3673 Check_Inline_Pragma (Spec_Id);
3675 -- Deal with special case of a fully private operation in the body of
3676 -- the protected type. We must create a declaration for the subprogram,
3677 -- in order to attach the protected subprogram that will be used in
3678 -- internal calls. We exclude compiler generated bodies from the
3679 -- expander since the issue does not arise for those cases.
3681 if No (Spec_Id)
3682 and then Comes_From_Source (N)
3683 and then Is_Protected_Type (Current_Scope)
3684 then
3685 Spec_Id := Build_Private_Protected_Declaration (N);
3686 end if;
3688 -- If we are generating C and this is a function returning a constrained
3689 -- array type for which we must create a procedure with an extra out
3690 -- parameter, build and analyze the body now. The procedure declaration
3691 -- has already been created. We reuse the source body of the function,
3692 -- because in an instance it may contain global references that cannot
3693 -- be reanalyzed. The source function itself is not used any further,
3694 -- so we mark it as having a completion. If the subprogram is a stub the
3695 -- transformation is done later, when the proper body is analyzed.
3697 if Expander_Active
3698 and then Modify_Tree_For_C
3699 and then Present (Spec_Id)
3700 and then Ekind (Spec_Id) = E_Function
3701 and then Nkind (N) /= N_Subprogram_Body_Stub
3702 and then Rewritten_For_C (Spec_Id)
3703 then
3704 Set_Has_Completion (Spec_Id);
3706 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3707 Analyze (N);
3709 -- The entity for the created procedure must remain invisible, so it
3710 -- does not participate in resolution of subsequent references to the
3711 -- function.
3713 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3714 goto Leave;
3715 end if;
3717 -- If a separate spec is present, then deal with freezing issues
3719 if Present (Spec_Id) then
3720 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3721 Verify_Overriding_Indicator;
3723 -- In general, the spec will be frozen when we start analyzing the
3724 -- body. However, for internally generated operations, such as
3725 -- wrapper functions for inherited operations with controlling
3726 -- results, the spec may not have been frozen by the time we expand
3727 -- the freeze actions that include the bodies. In particular, extra
3728 -- formals for accessibility or for return-in-place may need to be
3729 -- generated. Freeze nodes, if any, are inserted before the current
3730 -- body. These freeze actions are also needed in ASIS mode and in
3731 -- Compile_Only mode to enable the proper back-end type annotations.
3732 -- They are necessary in any case to insure order of elaboration
3733 -- in gigi.
3735 if not Is_Frozen (Spec_Id)
3736 and then (Expander_Active
3737 or else ASIS_Mode
3738 or else (Operating_Mode = Check_Semantics
3739 and then Serious_Errors_Detected = 0))
3740 then
3741 -- The body generated for an expression function that is not a
3742 -- completion is a freeze point neither for the profile nor for
3743 -- anything else. That's why, in order to prevent any freezing
3744 -- during analysis, we need to mask types declared outside the
3745 -- expression that are not yet frozen.
3747 if Nkind (N) = N_Subprogram_Body
3748 and then Was_Expression_Function (N)
3749 and then not Has_Completion (Spec_Id)
3750 then
3751 Set_Is_Frozen (Spec_Id);
3752 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3753 else
3754 Set_Has_Delayed_Freeze (Spec_Id);
3755 Freeze_Before (N, Spec_Id);
3756 end if;
3757 end if;
3758 end if;
3760 -- If the subprogram has a class-wide clone, build its body as a copy
3761 -- of the original body, and rewrite body of original subprogram as a
3762 -- wrapper that calls the clone.
3764 if Present (Spec_Id)
3765 and then Present (Class_Wide_Clone (Spec_Id))
3766 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3767 then
3768 Build_Class_Wide_Clone_Body (Spec_Id, N);
3770 -- This is the new body for the existing primitive operation
3772 Rewrite (N, Build_Class_Wide_Clone_Call
3773 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3774 Set_Has_Completion (Spec_Id, False);
3775 Analyze (N);
3776 return;
3777 end if;
3779 -- Place subprogram on scope stack, and make formals visible. If there
3780 -- is a spec, the visible entity remains that of the spec.
3782 if Present (Spec_Id) then
3783 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3785 if Is_Child_Unit (Spec_Id) then
3786 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3787 end if;
3789 if Style_Check then
3790 Style.Check_Identifier (Body_Id, Spec_Id);
3791 end if;
3793 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3794 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3796 if Is_Abstract_Subprogram (Spec_Id) then
3797 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3798 goto Leave;
3800 else
3801 Set_Convention (Body_Id, Convention (Spec_Id));
3802 Set_Has_Completion (Spec_Id);
3804 if Is_Protected_Type (Scope (Spec_Id)) then
3805 Prot_Typ := Scope (Spec_Id);
3806 end if;
3808 -- If this is a body generated for a renaming, do not check for
3809 -- full conformance. The check is redundant, because the spec of
3810 -- the body is a copy of the spec in the renaming declaration,
3811 -- and the test can lead to spurious errors on nested defaults.
3813 if Present (Spec_Decl)
3814 and then not Comes_From_Source (N)
3815 and then
3816 (Nkind (Original_Node (Spec_Decl)) =
3817 N_Subprogram_Renaming_Declaration
3818 or else (Present (Corresponding_Body (Spec_Decl))
3819 and then
3820 Nkind (Unit_Declaration_Node
3821 (Corresponding_Body (Spec_Decl))) =
3822 N_Subprogram_Renaming_Declaration))
3823 then
3824 Conformant := True;
3826 -- Conversely, the spec may have been generated for specless body
3827 -- with an inline pragma. The entity comes from source, which is
3828 -- both semantically correct and necessary for proper inlining.
3829 -- The subprogram declaration itself is not in the source.
3831 elsif Comes_From_Source (N)
3832 and then Present (Spec_Decl)
3833 and then not Comes_From_Source (Spec_Decl)
3834 and then Has_Pragma_Inline (Spec_Id)
3835 then
3836 Conformant := True;
3838 else
3839 Check_Conformance
3840 (Body_Id, Spec_Id,
3841 Fully_Conformant, True, Conformant, Body_Id);
3842 end if;
3844 -- If the body is not fully conformant, we have to decide if we
3845 -- should analyze it or not. If it has a really messed up profile
3846 -- then we probably should not analyze it, since we will get too
3847 -- many bogus messages.
3849 -- Our decision is to go ahead in the non-fully conformant case
3850 -- only if it is at least mode conformant with the spec. Note
3851 -- that the call to Check_Fully_Conformant has issued the proper
3852 -- error messages to complain about the lack of conformance.
3854 if not Conformant
3855 and then not Mode_Conformant (Body_Id, Spec_Id)
3856 then
3857 goto Leave;
3858 end if;
3859 end if;
3861 if Spec_Id /= Body_Id then
3862 Reference_Body_Formals (Spec_Id, Body_Id);
3863 end if;
3865 Set_Ekind (Body_Id, E_Subprogram_Body);
3867 if Nkind (N) = N_Subprogram_Body_Stub then
3868 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3870 -- Regular body
3872 else
3873 Set_Corresponding_Spec (N, Spec_Id);
3875 -- Ada 2005 (AI-345): If the operation is a primitive operation
3876 -- of a concurrent type, the type of the first parameter has been
3877 -- replaced with the corresponding record, which is the proper
3878 -- run-time structure to use. However, within the body there may
3879 -- be uses of the formals that depend on primitive operations
3880 -- of the type (in particular calls in prefixed form) for which
3881 -- we need the original concurrent type. The operation may have
3882 -- several controlling formals, so the replacement must be done
3883 -- for all of them.
3885 if Comes_From_Source (Spec_Id)
3886 and then Present (First_Entity (Spec_Id))
3887 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3888 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3889 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3890 and then Present (Corresponding_Concurrent_Type
3891 (Etype (First_Entity (Spec_Id))))
3892 then
3893 declare
3894 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3895 Form : Entity_Id;
3897 begin
3898 Form := First_Formal (Spec_Id);
3899 while Present (Form) loop
3900 if Etype (Form) = Typ then
3901 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3902 end if;
3904 Next_Formal (Form);
3905 end loop;
3906 end;
3907 end if;
3909 -- Make the formals visible, and place subprogram on scope stack.
3910 -- This is also the point at which we set Last_Real_Spec_Entity
3911 -- to mark the entities which will not be moved to the body.
3913 Install_Formals (Spec_Id);
3914 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3916 -- Within an instance, add local renaming declarations so that
3917 -- gdb can retrieve the values of actuals more easily. This is
3918 -- only relevant if generating code (and indeed we definitely
3919 -- do not want these definitions -gnatc mode, because that would
3920 -- confuse ASIS).
3922 if Is_Generic_Instance (Spec_Id)
3923 and then Is_Wrapper_Package (Current_Scope)
3924 and then Expander_Active
3925 then
3926 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3927 end if;
3929 Push_Scope (Spec_Id);
3931 -- Make sure that the subprogram is immediately visible. For
3932 -- child units that have no separate spec this is indispensable.
3933 -- Otherwise it is safe albeit redundant.
3935 Set_Is_Immediately_Visible (Spec_Id);
3936 end if;
3938 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3939 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3940 Set_Scope (Body_Id, Scope (Spec_Id));
3942 -- Case of subprogram body with no previous spec
3944 else
3945 -- Check for style warning required
3947 if Style_Check
3949 -- Only apply check for source level subprograms for which checks
3950 -- have not been suppressed.
3952 and then Comes_From_Source (Body_Id)
3953 and then not Suppress_Style_Checks (Body_Id)
3955 -- No warnings within an instance
3957 and then not In_Instance
3959 -- No warnings for expression functions
3961 and then Nkind (Original_Node (N)) /= N_Expression_Function
3962 then
3963 Style.Body_With_No_Spec (N);
3964 end if;
3966 New_Overloaded_Entity (Body_Id);
3968 if Nkind (N) /= N_Subprogram_Body_Stub then
3969 Set_Acts_As_Spec (N);
3970 Generate_Definition (Body_Id);
3971 Generate_Reference
3972 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3974 -- If the body is an entry wrapper created for an entry with
3975 -- preconditions, it must be compiled in the context of the
3976 -- enclosing synchronized object, because it may mention other
3977 -- operations of the type.
3979 if Is_Entry_Wrapper (Body_Id) then
3980 declare
3981 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3982 begin
3983 Push_Scope (Prot);
3984 Install_Declarations (Prot);
3985 end;
3986 end if;
3988 Install_Formals (Body_Id);
3990 Push_Scope (Body_Id);
3991 end if;
3993 -- For stubs and bodies with no previous spec, generate references to
3994 -- formals.
3996 Generate_Reference_To_Formals (Body_Id);
3997 end if;
3999 -- Entry barrier functions are generated outside the protected type and
4000 -- should not carry the SPARK_Mode of the enclosing context.
4002 if Nkind (N) = N_Subprogram_Body
4003 and then Is_Entry_Barrier_Function (N)
4004 then
4005 null;
4007 -- The body is generated as part of expression function expansion. When
4008 -- the expression function appears in the visible declarations of a
4009 -- package, the body is added to the private declarations. Since both
4010 -- declarative lists may be subject to a different SPARK_Mode, inherit
4011 -- the mode of the spec.
4013 -- package P with SPARK_Mode is
4014 -- function Expr_Func ... is (...); -- original
4015 -- [function Expr_Func ...;] -- generated spec
4016 -- -- mode is ON
4017 -- private
4018 -- pragma SPARK_Mode (Off);
4019 -- [function Expr_Func ... is return ...;] -- generated body
4020 -- end P; -- mode is ON
4022 elsif not Comes_From_Source (N)
4023 and then Present (Spec_Id)
4024 and then Is_Expression_Function (Spec_Id)
4025 then
4026 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4027 Set_SPARK_Pragma_Inherited
4028 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4030 -- Set the SPARK_Mode from the current context (may be overwritten later
4031 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4032 -- initially on a stand-alone subprogram body, but is then relocated to
4033 -- a generated corresponding spec. In this scenario the mode is shared
4034 -- between the spec and body.
4036 elsif No (SPARK_Pragma (Body_Id)) then
4037 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4038 Set_SPARK_Pragma_Inherited (Body_Id);
4039 end if;
4041 -- A subprogram body may be instantiated or inlined at a later pass.
4042 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4043 -- applied to the initial declaration of the body.
4045 if Present (Spec_Id) then
4046 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4047 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4048 end if;
4050 else
4051 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4052 -- case the body is instantiated or inlined later and out of context.
4053 -- The body uses this attribute to restore the value of the global
4054 -- flag.
4056 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4057 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4059 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4060 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4061 end if;
4062 end if;
4064 -- If this is the proper body of a stub, we must verify that the stub
4065 -- conforms to the body, and to the previous spec if one was present.
4066 -- We know already that the body conforms to that spec. This test is
4067 -- only required for subprograms that come from source.
4069 if Nkind (Parent (N)) = N_Subunit
4070 and then Comes_From_Source (N)
4071 and then not Error_Posted (Body_Id)
4072 and then Nkind (Corresponding_Stub (Parent (N))) =
4073 N_Subprogram_Body_Stub
4074 then
4075 declare
4076 Old_Id : constant Entity_Id :=
4077 Defining_Entity
4078 (Specification (Corresponding_Stub (Parent (N))));
4080 Conformant : Boolean := False;
4082 begin
4083 if No (Spec_Id) then
4084 Check_Fully_Conformant (Body_Id, Old_Id);
4086 else
4087 Check_Conformance
4088 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4090 if not Conformant then
4092 -- The stub was taken to be a new declaration. Indicate that
4093 -- it lacks a body.
4095 Set_Has_Completion (Old_Id, False);
4096 end if;
4097 end if;
4098 end;
4099 end if;
4101 Set_Has_Completion (Body_Id);
4102 Check_Eliminated (Body_Id);
4104 -- Analyze any aspect specifications that appear on the subprogram body
4105 -- stub. Stop the analysis now as the stub does not have a declarative
4106 -- or a statement part, and it cannot be inlined.
4108 if Nkind (N) = N_Subprogram_Body_Stub then
4109 if Has_Aspects (N) then
4110 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4111 end if;
4113 goto Leave;
4114 end if;
4116 -- Handle inlining
4118 -- Note: Normally we don't do any inlining if expansion is off, since
4119 -- we won't generate code in any case. An exception arises in GNATprove
4120 -- mode where we want to expand some calls in place, even with expansion
4121 -- disabled, since the inlining eases formal verification.
4123 if not GNATprove_Mode
4124 and then Expander_Active
4125 and then Serious_Errors_Detected = 0
4126 and then Present (Spec_Id)
4127 and then Has_Pragma_Inline (Spec_Id)
4128 then
4129 -- Legacy implementation (relying on front-end inlining)
4131 if not Back_End_Inlining then
4132 if (Has_Pragma_Inline_Always (Spec_Id)
4133 and then not Opt.Disable_FE_Inline_Always)
4134 or else (Front_End_Inlining
4135 and then not Opt.Disable_FE_Inline)
4136 then
4137 Build_Body_To_Inline (N, Spec_Id);
4138 end if;
4140 -- New implementation (relying on back-end inlining)
4142 else
4143 if Has_Pragma_Inline_Always (Spec_Id)
4144 or else Optimization_Level > 0
4145 then
4146 -- Handle function returning an unconstrained type
4148 if Comes_From_Source (Body_Id)
4149 and then Ekind (Spec_Id) = E_Function
4150 and then Returns_Unconstrained_Type (Spec_Id)
4152 -- If function builds in place, i.e. returns a limited type,
4153 -- inlining cannot be done.
4155 and then not Is_Limited_Type (Etype (Spec_Id))
4156 then
4157 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4159 else
4160 declare
4161 Subp_Body : constant Node_Id :=
4162 Unit_Declaration_Node (Body_Id);
4163 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4165 begin
4166 -- Do not pass inlining to the backend if the subprogram
4167 -- has declarations or statements which cannot be inlined
4168 -- by the backend. This check is done here to emit an
4169 -- error instead of the generic warning message reported
4170 -- by the GCC backend (ie. "function might not be
4171 -- inlinable").
4173 if Present (Subp_Decl)
4174 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4175 then
4176 null;
4178 elsif Has_Excluded_Statement
4179 (Spec_Id,
4180 Statements
4181 (Handled_Statement_Sequence (Subp_Body)))
4182 then
4183 null;
4185 -- If the backend inlining is available then at this
4186 -- stage we only have to mark the subprogram as inlined.
4187 -- The expander will take care of registering it in the
4188 -- table of subprograms inlined by the backend a part of
4189 -- processing calls to it (cf. Expand_Call)
4191 else
4192 Set_Is_Inlined (Spec_Id);
4193 end if;
4194 end;
4195 end if;
4196 end if;
4197 end if;
4199 -- In GNATprove mode, inline only when there is a separate subprogram
4200 -- declaration for now, as inlining of subprogram bodies acting as
4201 -- declarations, or subprogram stubs, are not supported by front-end
4202 -- inlining. This inlining should occur after analysis of the body, so
4203 -- that it is known whether the value of SPARK_Mode, which can be
4204 -- defined by a pragma inside the body, is applicable to the body.
4205 -- Inlining can be disabled with switch -gnatdm
4207 elsif GNATprove_Mode
4208 and then Full_Analysis
4209 and then not Inside_A_Generic
4210 and then Present (Spec_Id)
4211 and then
4212 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4213 and then Body_Has_SPARK_Mode_On
4214 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4215 and then not Body_Has_Contract
4216 and then not Debug_Flag_M
4217 then
4218 Build_Body_To_Inline (N, Spec_Id);
4219 end if;
4221 -- When generating code, inherited pre/postconditions are handled when
4222 -- expanding the corresponding contract.
4224 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4225 -- of the specification we have to install the private withed units.
4226 -- This holds for child units as well.
4228 if Is_Compilation_Unit (Body_Id)
4229 or else Nkind (Parent (N)) = N_Compilation_Unit
4230 then
4231 Install_Private_With_Clauses (Body_Id);
4232 end if;
4234 Check_Anonymous_Return;
4236 -- Set the Protected_Formal field of each extra formal of the protected
4237 -- subprogram to reference the corresponding extra formal of the
4238 -- subprogram that implements it. For regular formals this occurs when
4239 -- the protected subprogram's declaration is expanded, but the extra
4240 -- formals don't get created until the subprogram is frozen. We need to
4241 -- do this before analyzing the protected subprogram's body so that any
4242 -- references to the original subprogram's extra formals will be changed
4243 -- refer to the implementing subprogram's formals (see Expand_Formal).
4245 if Present (Spec_Id)
4246 and then Is_Protected_Type (Scope (Spec_Id))
4247 and then Present (Protected_Body_Subprogram (Spec_Id))
4248 then
4249 declare
4250 Impl_Subp : constant Entity_Id :=
4251 Protected_Body_Subprogram (Spec_Id);
4252 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4253 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4255 begin
4256 while Present (Prot_Ext_Formal) loop
4257 pragma Assert (Present (Impl_Ext_Formal));
4258 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4259 Next_Formal_With_Extras (Prot_Ext_Formal);
4260 Next_Formal_With_Extras (Impl_Ext_Formal);
4261 end loop;
4262 end;
4263 end if;
4265 -- Now we can go on to analyze the body
4267 HSS := Handled_Statement_Sequence (N);
4268 Set_Actual_Subtypes (N, Current_Scope);
4270 -- Add a declaration for the Protection object, renaming declarations
4271 -- for discriminals and privals and finally a declaration for the entry
4272 -- family index (if applicable). This form of early expansion is done
4273 -- when the Expander is active because Install_Private_Data_Declarations
4274 -- references entities which were created during regular expansion. The
4275 -- subprogram entity must come from source, and not be an internally
4276 -- generated subprogram.
4278 if Expander_Active
4279 and then Present (Prot_Typ)
4280 and then Present (Spec_Id)
4281 and then Comes_From_Source (Spec_Id)
4282 and then not Is_Eliminated (Spec_Id)
4283 then
4284 Install_Private_Data_Declarations
4285 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4286 end if;
4288 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4289 -- may now appear in parameter and result profiles. Since the analysis
4290 -- of a subprogram body may use the parameter and result profile of the
4291 -- spec, swap any limited views with their non-limited counterpart.
4293 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4294 Exch_Views := Exchange_Limited_Views (Spec_Id);
4295 end if;
4297 -- If the return type is an anonymous access type whose designated type
4298 -- is the limited view of a class-wide type and the non-limited view is
4299 -- available, update the return type accordingly.
4301 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4302 declare
4303 Etyp : Entity_Id;
4304 Rtyp : Entity_Id;
4306 begin
4307 Rtyp := Etype (Spec_Id);
4309 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4310 Etyp := Directly_Designated_Type (Rtyp);
4312 if Is_Class_Wide_Type (Etyp)
4313 and then From_Limited_With (Etyp)
4314 then
4315 Desig_View := Etyp;
4316 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4317 end if;
4318 end if;
4319 end;
4320 end if;
4322 -- Analyze any aspect specifications that appear on the subprogram body
4324 if Has_Aspects (N) then
4325 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4326 end if;
4328 Analyze_Declarations (Declarations (N));
4330 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4332 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4333 if Present (SPARK_Pragma (Spec_Id)) then
4334 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4335 and then
4336 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4337 then
4338 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4339 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4340 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4341 Error_Msg_NE
4342 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4343 end if;
4345 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4346 null;
4348 else
4349 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4350 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4351 Error_Msg_Sloc := Sloc (Spec_Id);
4352 Error_Msg_NE
4353 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4354 end if;
4355 end if;
4357 -- A subprogram body "freezes" its own contract. Analyze the contract
4358 -- after the declarations of the body have been processed as pragmas
4359 -- are now chained on the contract of the subprogram body.
4361 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4363 -- Check completion, and analyze the statements
4365 Check_Completion;
4366 Inspect_Deferred_Constant_Completion (Declarations (N));
4367 Analyze (HSS);
4369 -- Deal with end of scope processing for the body
4371 Process_End_Label (HSS, 't', Current_Scope);
4372 Update_Use_Clause_Chain;
4373 End_Scope;
4375 -- If we are compiling an entry wrapper, remove the enclosing
4376 -- synchronized object from the stack.
4378 if Is_Entry_Wrapper (Body_Id) then
4379 End_Scope;
4380 end if;
4382 Check_Subprogram_Order (N);
4383 Set_Analyzed (Body_Id);
4385 -- If we have a separate spec, then the analysis of the declarations
4386 -- caused the entities in the body to be chained to the spec id, but
4387 -- we want them chained to the body id. Only the formal parameters
4388 -- end up chained to the spec id in this case.
4390 if Present (Spec_Id) then
4392 -- We must conform to the categorization of our spec
4394 Validate_Categorization_Dependency (N, Spec_Id);
4396 -- And if this is a child unit, the parent units must conform
4398 if Is_Child_Unit (Spec_Id) then
4399 Validate_Categorization_Dependency
4400 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4401 end if;
4403 -- Here is where we move entities from the spec to the body
4405 -- Case where there are entities that stay with the spec
4407 if Present (Last_Real_Spec_Entity) then
4409 -- No body entities (happens when the only real spec entities come
4410 -- from precondition and postcondition pragmas).
4412 if No (Last_Entity (Body_Id)) then
4413 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4415 -- Body entities present (formals), so chain stuff past them
4417 else
4418 Set_Next_Entity
4419 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4420 end if;
4422 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4423 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4424 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4426 -- Case where there are no spec entities, in this case there can be
4427 -- no body entities either, so just move everything.
4429 -- If the body is generated for an expression function, it may have
4430 -- been preanalyzed already, if 'access was applied to it.
4432 else
4433 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4434 N_Expression_Function
4435 then
4436 pragma Assert (No (Last_Entity (Body_Id)));
4437 null;
4438 end if;
4440 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4441 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4442 Set_First_Entity (Spec_Id, Empty);
4443 Set_Last_Entity (Spec_Id, Empty);
4444 end if;
4445 end if;
4447 Check_Missing_Return;
4449 -- Now we are going to check for variables that are never modified in
4450 -- the body of the procedure. But first we deal with a special case
4451 -- where we want to modify this check. If the body of the subprogram
4452 -- starts with a raise statement or its equivalent, or if the body
4453 -- consists entirely of a null statement, then it is pretty obvious that
4454 -- it is OK to not reference the parameters. For example, this might be
4455 -- the following common idiom for a stubbed function: statement of the
4456 -- procedure raises an exception. In particular this deals with the
4457 -- common idiom of a stubbed function, which appears something like:
4459 -- function F (A : Integer) return Some_Type;
4460 -- X : Some_Type;
4461 -- begin
4462 -- raise Program_Error;
4463 -- return X;
4464 -- end F;
4466 -- Here the purpose of X is simply to satisfy the annoying requirement
4467 -- in Ada that there be at least one return, and we certainly do not
4468 -- want to go posting warnings on X that it is not initialized. On
4469 -- the other hand, if X is entirely unreferenced that should still
4470 -- get a warning.
4472 -- What we do is to detect these cases, and if we find them, flag the
4473 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4474 -- suppress unwanted warnings. For the case of the function stub above
4475 -- we have a special test to set X as apparently assigned to suppress
4476 -- the warning.
4478 declare
4479 Stm : Node_Id;
4481 begin
4482 -- Skip call markers installed by the ABE mechanism, labels, and
4483 -- Push_xxx_Error_Label to find the first real statement.
4485 Stm := First (Statements (HSS));
4486 while Nkind_In (Stm, N_Call_Marker, N_Label)
4487 or else Nkind (Stm) in N_Push_xxx_Label
4488 loop
4489 Next (Stm);
4490 end loop;
4492 -- Do the test on the original statement before expansion
4494 declare
4495 Ostm : constant Node_Id := Original_Node (Stm);
4497 begin
4498 -- If explicit raise statement, turn on flag
4500 if Nkind (Ostm) = N_Raise_Statement then
4501 Set_Trivial_Subprogram (Stm);
4503 -- If null statement, and no following statements, turn on flag
4505 elsif Nkind (Stm) = N_Null_Statement
4506 and then Comes_From_Source (Stm)
4507 and then No (Next (Stm))
4508 then
4509 Set_Trivial_Subprogram (Stm);
4511 -- Check for explicit call cases which likely raise an exception
4513 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4514 if Is_Entity_Name (Name (Ostm)) then
4515 declare
4516 Ent : constant Entity_Id := Entity (Name (Ostm));
4518 begin
4519 -- If the procedure is marked No_Return, then likely it
4520 -- raises an exception, but in any case it is not coming
4521 -- back here, so turn on the flag.
4523 if Present (Ent)
4524 and then Ekind (Ent) = E_Procedure
4525 and then No_Return (Ent)
4526 then
4527 Set_Trivial_Subprogram (Stm);
4528 end if;
4529 end;
4530 end if;
4531 end if;
4532 end;
4533 end;
4535 -- Check for variables that are never modified
4537 declare
4538 E1 : Entity_Id;
4539 E2 : Entity_Id;
4541 begin
4542 -- If there is a separate spec, then transfer Never_Set_In_Source
4543 -- flags from out parameters to the corresponding entities in the
4544 -- body. The reason we do that is we want to post error flags on
4545 -- the body entities, not the spec entities.
4547 if Present (Spec_Id) then
4548 E1 := First_Entity (Spec_Id);
4549 while Present (E1) loop
4550 if Ekind (E1) = E_Out_Parameter then
4551 E2 := First_Entity (Body_Id);
4552 while Present (E2) loop
4553 exit when Chars (E1) = Chars (E2);
4554 Next_Entity (E2);
4555 end loop;
4557 if Present (E2) then
4558 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4559 end if;
4560 end if;
4562 Next_Entity (E1);
4563 end loop;
4564 end if;
4566 -- Check references in body
4568 Check_References (Body_Id);
4569 end;
4571 -- Check for nested subprogram, and mark outer level subprogram if so
4573 declare
4574 Ent : Entity_Id;
4576 begin
4577 if Present (Spec_Id) then
4578 Ent := Spec_Id;
4579 else
4580 Ent := Body_Id;
4581 end if;
4583 loop
4584 Ent := Enclosing_Subprogram (Ent);
4585 exit when No (Ent) or else Is_Subprogram (Ent);
4586 end loop;
4588 if Present (Ent) then
4589 Set_Has_Nested_Subprogram (Ent);
4590 end if;
4591 end;
4593 -- Restore the limited views in the spec, if any, to let the back end
4594 -- process it without running into circularities.
4596 if Exch_Views /= No_Elist then
4597 Restore_Limited_Views (Exch_Views);
4598 end if;
4600 if Mask_Types /= No_Elist then
4601 Unmask_Unfrozen_Types (Mask_Types);
4602 end if;
4604 if Present (Desig_View) then
4605 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4606 end if;
4608 <<Leave>>
4609 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4610 Restore_Ghost_Mode (Saved_GM);
4611 end Analyze_Subprogram_Body_Helper;
4613 ------------------------------------
4614 -- Analyze_Subprogram_Declaration --
4615 ------------------------------------
4617 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4618 Scop : constant Entity_Id := Current_Scope;
4619 Designator : Entity_Id;
4621 Is_Completion : Boolean;
4622 -- Indicates whether a null procedure declaration is a completion
4624 begin
4625 -- Null procedures are not allowed in SPARK
4627 if Nkind (Specification (N)) = N_Procedure_Specification
4628 and then Null_Present (Specification (N))
4629 then
4630 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4632 -- Null procedures are allowed in protected types, following the
4633 -- recent AI12-0147.
4635 if Is_Protected_Type (Current_Scope)
4636 and then Ada_Version < Ada_2012
4637 then
4638 Error_Msg_N ("protected operation cannot be a null procedure", N);
4639 end if;
4641 Analyze_Null_Procedure (N, Is_Completion);
4643 -- The null procedure acts as a body, nothing further is needed
4645 if Is_Completion then
4646 return;
4647 end if;
4648 end if;
4650 Designator := Analyze_Subprogram_Specification (Specification (N));
4652 -- A reference may already have been generated for the unit name, in
4653 -- which case the following call is redundant. However it is needed for
4654 -- declarations that are the rewriting of an expression function.
4656 Generate_Definition (Designator);
4658 -- Set the SPARK mode from the current context (may be overwritten later
4659 -- with explicit pragma). This is not done for entry barrier functions
4660 -- because they are generated outside the protected type and should not
4661 -- carry the mode of the enclosing context.
4663 if Nkind (N) = N_Subprogram_Declaration
4664 and then Is_Entry_Barrier_Function (N)
4665 then
4666 null;
4668 else
4669 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4670 Set_SPARK_Pragma_Inherited (Designator);
4671 end if;
4673 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4674 -- the body of this subprogram is instantiated or inlined later and out
4675 -- of context. The body uses this attribute to restore the value of the
4676 -- global flag.
4678 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4679 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4680 end if;
4682 -- Preserve relevant elaboration-related attributes of the context which
4683 -- are no longer available or very expensive to recompute once analysis,
4684 -- resolution, and expansion are over.
4686 Mark_Elaboration_Attributes
4687 (N_Id => Designator,
4688 Checks => True);
4690 if Debug_Flag_C then
4691 Write_Str ("==> subprogram spec ");
4692 Write_Name (Chars (Designator));
4693 Write_Str (" from ");
4694 Write_Location (Sloc (N));
4695 Write_Eol;
4696 Indent;
4697 end if;
4699 Validate_RCI_Subprogram_Declaration (N);
4700 New_Overloaded_Entity (Designator);
4701 Check_Delayed_Subprogram (Designator);
4703 -- If the type of the first formal of the current subprogram is a non-
4704 -- generic tagged private type, mark the subprogram as being a private
4705 -- primitive. Ditto if this is a function with controlling result, and
4706 -- the return type is currently private. In both cases, the type of the
4707 -- controlling argument or result must be in the current scope for the
4708 -- operation to be primitive.
4710 if Has_Controlling_Result (Designator)
4711 and then Is_Private_Type (Etype (Designator))
4712 and then Scope (Etype (Designator)) = Current_Scope
4713 and then not Is_Generic_Actual_Type (Etype (Designator))
4714 then
4715 Set_Is_Private_Primitive (Designator);
4717 elsif Present (First_Formal (Designator)) then
4718 declare
4719 Formal_Typ : constant Entity_Id :=
4720 Etype (First_Formal (Designator));
4721 begin
4722 Set_Is_Private_Primitive (Designator,
4723 Is_Tagged_Type (Formal_Typ)
4724 and then Scope (Formal_Typ) = Current_Scope
4725 and then Is_Private_Type (Formal_Typ)
4726 and then not Is_Generic_Actual_Type (Formal_Typ));
4727 end;
4728 end if;
4730 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4731 -- or null.
4733 if Ada_Version >= Ada_2005
4734 and then Comes_From_Source (N)
4735 and then Is_Dispatching_Operation (Designator)
4736 then
4737 declare
4738 E : Entity_Id;
4739 Etyp : Entity_Id;
4741 begin
4742 if Has_Controlling_Result (Designator) then
4743 Etyp := Etype (Designator);
4745 else
4746 E := First_Entity (Designator);
4747 while Present (E)
4748 and then Is_Formal (E)
4749 and then not Is_Controlling_Formal (E)
4750 loop
4751 Next_Entity (E);
4752 end loop;
4754 Etyp := Etype (E);
4755 end if;
4757 if Is_Access_Type (Etyp) then
4758 Etyp := Directly_Designated_Type (Etyp);
4759 end if;
4761 if Is_Interface (Etyp)
4762 and then not Is_Abstract_Subprogram (Designator)
4763 and then not (Ekind (Designator) = E_Procedure
4764 and then Null_Present (Specification (N)))
4765 then
4766 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4768 -- Specialize error message based on procedures vs. functions,
4769 -- since functions can't be null subprograms.
4771 if Ekind (Designator) = E_Procedure then
4772 Error_Msg_N
4773 ("interface procedure % must be abstract or null", N);
4774 else
4775 Error_Msg_N
4776 ("interface function % must be abstract", N);
4777 end if;
4778 end if;
4779 end;
4780 end if;
4782 -- What is the following code for, it used to be
4784 -- ??? Set_Suppress_Elaboration_Checks
4785 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4787 -- The following seems equivalent, but a bit dubious
4789 if Elaboration_Checks_Suppressed (Designator) then
4790 Set_Kill_Elaboration_Checks (Designator);
4791 end if;
4793 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4794 Set_Categorization_From_Scope (Designator, Scop);
4796 else
4797 -- For a compilation unit, check for library-unit pragmas
4799 Push_Scope (Designator);
4800 Set_Categorization_From_Pragmas (N);
4801 Validate_Categorization_Dependency (N, Designator);
4802 Pop_Scope;
4803 end if;
4805 -- For a compilation unit, set body required. This flag will only be
4806 -- reset if a valid Import or Interface pragma is processed later on.
4808 if Nkind (Parent (N)) = N_Compilation_Unit then
4809 Set_Body_Required (Parent (N), True);
4811 if Ada_Version >= Ada_2005
4812 and then Nkind (Specification (N)) = N_Procedure_Specification
4813 and then Null_Present (Specification (N))
4814 then
4815 Error_Msg_N
4816 ("null procedure cannot be declared at library level", N);
4817 end if;
4818 end if;
4820 Generate_Reference_To_Formals (Designator);
4821 Check_Eliminated (Designator);
4823 if Debug_Flag_C then
4824 Outdent;
4825 Write_Str ("<== subprogram spec ");
4826 Write_Name (Chars (Designator));
4827 Write_Str (" from ");
4828 Write_Location (Sloc (N));
4829 Write_Eol;
4830 end if;
4832 if Is_Protected_Type (Current_Scope) then
4834 -- Indicate that this is a protected operation, because it may be
4835 -- used in subsequent declarations within the protected type.
4837 Set_Convention (Designator, Convention_Protected);
4838 end if;
4840 List_Inherited_Pre_Post_Aspects (Designator);
4842 if Has_Aspects (N) then
4843 Analyze_Aspect_Specifications (N, Designator);
4844 end if;
4845 end Analyze_Subprogram_Declaration;
4847 --------------------------------------
4848 -- Analyze_Subprogram_Specification --
4849 --------------------------------------
4851 -- Reminder: N here really is a subprogram specification (not a subprogram
4852 -- declaration). This procedure is called to analyze the specification in
4853 -- both subprogram bodies and subprogram declarations (specs).
4855 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4856 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4857 -- Determine whether entity E denotes the spec or body of an invariant
4858 -- procedure.
4860 ------------------------------------
4861 -- Is_Invariant_Procedure_Or_Body --
4862 ------------------------------------
4864 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4865 Decl : constant Node_Id := Unit_Declaration_Node (E);
4866 Spec : Entity_Id;
4868 begin
4869 if Nkind (Decl) = N_Subprogram_Body then
4870 Spec := Corresponding_Spec (Decl);
4871 else
4872 Spec := E;
4873 end if;
4875 return
4876 Present (Spec)
4877 and then Ekind (Spec) = E_Procedure
4878 and then (Is_Partial_Invariant_Procedure (Spec)
4879 or else Is_Invariant_Procedure (Spec));
4880 end Is_Invariant_Procedure_Or_Body;
4882 -- Local variables
4884 Designator : constant Entity_Id := Defining_Entity (N);
4885 Formals : constant List_Id := Parameter_Specifications (N);
4887 -- Start of processing for Analyze_Subprogram_Specification
4889 begin
4890 -- User-defined operator is not allowed in SPARK, except as a renaming
4892 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4893 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4894 then
4895 Check_SPARK_05_Restriction
4896 ("user-defined operator is not allowed", N);
4897 end if;
4899 -- Proceed with analysis. Do not emit a cross-reference entry if the
4900 -- specification comes from an expression function, because it may be
4901 -- the completion of a previous declaration. It is not, the cross-
4902 -- reference entry will be emitted for the new subprogram declaration.
4904 if Nkind (Parent (N)) /= N_Expression_Function then
4905 Generate_Definition (Designator);
4906 end if;
4908 if Nkind (N) = N_Function_Specification then
4909 Set_Ekind (Designator, E_Function);
4910 Set_Mechanism (Designator, Default_Mechanism);
4911 else
4912 Set_Ekind (Designator, E_Procedure);
4913 Set_Etype (Designator, Standard_Void_Type);
4914 end if;
4916 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4917 -- those subprograms which could be inlined in GNATprove mode (because
4918 -- Body_To_Inline is non-Empty) but should not be inlined.
4920 if GNATprove_Mode then
4921 Set_Is_Inlined_Always (Designator);
4922 end if;
4924 -- Introduce new scope for analysis of the formals and the return type
4926 Set_Scope (Designator, Current_Scope);
4928 if Present (Formals) then
4929 Push_Scope (Designator);
4930 Process_Formals (Formals, N);
4932 -- Check dimensions in N for formals with default expression
4934 Analyze_Dimension_Formals (N, Formals);
4936 -- Ada 2005 (AI-345): If this is an overriding operation of an
4937 -- inherited interface operation, and the controlling type is
4938 -- a synchronized type, replace the type with its corresponding
4939 -- record, to match the proper signature of an overriding operation.
4940 -- Same processing for an access parameter whose designated type is
4941 -- derived from a synchronized interface.
4943 -- This modification is not done for invariant procedures because
4944 -- the corresponding record may not necessarely be visible when the
4945 -- concurrent type acts as the full view of a private type.
4947 -- package Pack is
4948 -- type Prot is private with Type_Invariant => ...;
4949 -- procedure ConcInvariant (Obj : Prot);
4950 -- private
4951 -- protected type Prot is ...;
4952 -- type Concurrent_Record_Prot is record ...;
4953 -- procedure ConcInvariant (Obj : Prot) is
4954 -- ...
4955 -- end ConcInvariant;
4956 -- end Pack;
4958 -- In the example above, both the spec and body of the invariant
4959 -- procedure must utilize the private type as the controlling type.
4961 if Ada_Version >= Ada_2005
4962 and then not Is_Invariant_Procedure_Or_Body (Designator)
4963 then
4964 declare
4965 Formal : Entity_Id;
4966 Formal_Typ : Entity_Id;
4967 Rec_Typ : Entity_Id;
4968 Desig_Typ : Entity_Id;
4970 begin
4971 Formal := First_Formal (Designator);
4972 while Present (Formal) loop
4973 Formal_Typ := Etype (Formal);
4975 if Is_Concurrent_Type (Formal_Typ)
4976 and then Present (Corresponding_Record_Type (Formal_Typ))
4977 then
4978 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4980 if Present (Interfaces (Rec_Typ)) then
4981 Set_Etype (Formal, Rec_Typ);
4982 end if;
4984 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4985 Desig_Typ := Designated_Type (Formal_Typ);
4987 if Is_Concurrent_Type (Desig_Typ)
4988 and then Present (Corresponding_Record_Type (Desig_Typ))
4989 then
4990 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4992 if Present (Interfaces (Rec_Typ)) then
4993 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4994 end if;
4995 end if;
4996 end if;
4998 Next_Formal (Formal);
4999 end loop;
5000 end;
5001 end if;
5003 End_Scope;
5005 -- The subprogram scope is pushed and popped around the processing of
5006 -- the return type for consistency with call above to Process_Formals
5007 -- (which itself can call Analyze_Return_Type), and to ensure that any
5008 -- itype created for the return type will be associated with the proper
5009 -- scope.
5011 elsif Nkind (N) = N_Function_Specification then
5012 Push_Scope (Designator);
5013 Analyze_Return_Type (N);
5014 End_Scope;
5015 end if;
5017 -- Function case
5019 if Nkind (N) = N_Function_Specification then
5021 -- Deal with operator symbol case
5023 if Nkind (Designator) = N_Defining_Operator_Symbol then
5024 Valid_Operator_Definition (Designator);
5025 end if;
5027 May_Need_Actuals (Designator);
5029 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5030 -- the subprogram is abstract also. This does not apply to renaming
5031 -- declarations, where abstractness is inherited, and to subprogram
5032 -- bodies generated for stream operations, which become renamings as
5033 -- bodies.
5035 -- In case of primitives associated with abstract interface types
5036 -- the check is applied later (see Analyze_Subprogram_Declaration).
5038 if not Nkind_In (Original_Node (Parent (N)),
5039 N_Abstract_Subprogram_Declaration,
5040 N_Formal_Abstract_Subprogram_Declaration,
5041 N_Subprogram_Renaming_Declaration)
5042 then
5043 if Is_Abstract_Type (Etype (Designator))
5044 and then not Is_Interface (Etype (Designator))
5045 then
5046 Error_Msg_N
5047 ("function that returns abstract type must be abstract", N);
5049 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5050 -- access result whose designated type is abstract.
5052 elsif Ada_Version >= Ada_2012
5053 and then Nkind (Result_Definition (N)) = N_Access_Definition
5054 and then
5055 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5056 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5057 then
5058 Error_Msg_N
5059 ("function whose access result designates abstract type "
5060 & "must be abstract", N);
5061 end if;
5062 end if;
5063 end if;
5065 return Designator;
5066 end Analyze_Subprogram_Specification;
5068 -----------------------
5069 -- Check_Conformance --
5070 -----------------------
5072 procedure Check_Conformance
5073 (New_Id : Entity_Id;
5074 Old_Id : Entity_Id;
5075 Ctype : Conformance_Type;
5076 Errmsg : Boolean;
5077 Conforms : out Boolean;
5078 Err_Loc : Node_Id := Empty;
5079 Get_Inst : Boolean := False;
5080 Skip_Controlling_Formals : Boolean := False)
5082 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5083 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5084 -- If Errmsg is True, then processing continues to post an error message
5085 -- for conformance error on given node. Two messages are output. The
5086 -- first message points to the previous declaration with a general "no
5087 -- conformance" message. The second is the detailed reason, supplied as
5088 -- Msg. The parameter N provide information for a possible & insertion
5089 -- in the message, and also provides the location for posting the
5090 -- message in the absence of a specified Err_Loc location.
5092 function Conventions_Match
5093 (Id1 : Entity_Id;
5094 Id2 : Entity_Id) return Boolean;
5095 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5096 -- match.
5098 -----------------------
5099 -- Conformance_Error --
5100 -----------------------
5102 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5103 Enode : Node_Id;
5105 begin
5106 Conforms := False;
5108 if Errmsg then
5109 if No (Err_Loc) then
5110 Enode := N;
5111 else
5112 Enode := Err_Loc;
5113 end if;
5115 Error_Msg_Sloc := Sloc (Old_Id);
5117 case Ctype is
5118 when Type_Conformant =>
5119 Error_Msg_N -- CODEFIX
5120 ("not type conformant with declaration#!", Enode);
5122 when Mode_Conformant =>
5123 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5124 Error_Msg_N
5125 ("not mode conformant with operation inherited#!",
5126 Enode);
5127 else
5128 Error_Msg_N
5129 ("not mode conformant with declaration#!", Enode);
5130 end if;
5132 when Subtype_Conformant =>
5133 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5134 Error_Msg_N
5135 ("not subtype conformant with operation inherited#!",
5136 Enode);
5137 else
5138 Error_Msg_N
5139 ("not subtype conformant with declaration#!", Enode);
5140 end if;
5142 when Fully_Conformant =>
5143 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5144 Error_Msg_N -- CODEFIX
5145 ("not fully conformant with operation inherited#!",
5146 Enode);
5147 else
5148 Error_Msg_N -- CODEFIX
5149 ("not fully conformant with declaration#!", Enode);
5150 end if;
5151 end case;
5153 Error_Msg_NE (Msg, Enode, N);
5154 end if;
5155 end Conformance_Error;
5157 -----------------------
5158 -- Conventions_Match --
5159 -----------------------
5161 function Conventions_Match
5162 (Id1 : Entity_Id;
5163 Id2 : Entity_Id) return Boolean
5165 begin
5166 -- Ignore the conventions of anonymous access-to-subprogram types
5167 -- and subprogram types because these are internally generated and
5168 -- the only way these may receive a convention is if they inherit
5169 -- the convention of a related subprogram.
5171 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5172 E_Subprogram_Type)
5173 or else
5174 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5175 E_Subprogram_Type)
5176 then
5177 return True;
5179 -- Otherwise compare the conventions directly
5181 else
5182 return Convention (Id1) = Convention (Id2);
5183 end if;
5184 end Conventions_Match;
5186 -- Local Variables
5188 Old_Type : constant Entity_Id := Etype (Old_Id);
5189 New_Type : constant Entity_Id := Etype (New_Id);
5190 Old_Formal : Entity_Id;
5191 New_Formal : Entity_Id;
5192 Access_Types_Match : Boolean;
5193 Old_Formal_Base : Entity_Id;
5194 New_Formal_Base : Entity_Id;
5196 -- Start of processing for Check_Conformance
5198 begin
5199 Conforms := True;
5201 -- We need a special case for operators, since they don't appear
5202 -- explicitly.
5204 if Ctype = Type_Conformant then
5205 if Ekind (New_Id) = E_Operator
5206 and then Operator_Matches_Spec (New_Id, Old_Id)
5207 then
5208 return;
5209 end if;
5210 end if;
5212 -- If both are functions/operators, check return types conform
5214 if Old_Type /= Standard_Void_Type
5215 and then
5216 New_Type /= Standard_Void_Type
5217 then
5218 -- If we are checking interface conformance we omit controlling
5219 -- arguments and result, because we are only checking the conformance
5220 -- of the remaining parameters.
5222 if Has_Controlling_Result (Old_Id)
5223 and then Has_Controlling_Result (New_Id)
5224 and then Skip_Controlling_Formals
5225 then
5226 null;
5228 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5229 if Ctype >= Subtype_Conformant
5230 and then not Predicates_Match (Old_Type, New_Type)
5231 then
5232 Conformance_Error
5233 ("\predicate of return type does not match!", New_Id);
5234 else
5235 Conformance_Error
5236 ("\return type does not match!", New_Id);
5237 end if;
5239 return;
5240 end if;
5242 -- Ada 2005 (AI-231): In case of anonymous access types check the
5243 -- null-exclusion and access-to-constant attributes match.
5245 if Ada_Version >= Ada_2005
5246 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5247 and then
5248 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5249 or else Is_Access_Constant (Etype (Old_Type)) /=
5250 Is_Access_Constant (Etype (New_Type)))
5251 then
5252 Conformance_Error ("\return type does not match!", New_Id);
5253 return;
5254 end if;
5256 -- If either is a function/operator and the other isn't, error
5258 elsif Old_Type /= Standard_Void_Type
5259 or else New_Type /= Standard_Void_Type
5260 then
5261 Conformance_Error ("\functions can only match functions!", New_Id);
5262 return;
5263 end if;
5265 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5266 -- If this is a renaming as body, refine error message to indicate that
5267 -- the conflict is with the original declaration. If the entity is not
5268 -- frozen, the conventions don't have to match, the one of the renamed
5269 -- entity is inherited.
5271 if Ctype >= Subtype_Conformant then
5272 if not Conventions_Match (Old_Id, New_Id) then
5273 if not Is_Frozen (New_Id) then
5274 null;
5276 elsif Present (Err_Loc)
5277 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5278 and then Present (Corresponding_Spec (Err_Loc))
5279 then
5280 Error_Msg_Name_1 := Chars (New_Id);
5281 Error_Msg_Name_2 :=
5282 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5283 Conformance_Error ("\prior declaration for% has convention %!");
5285 else
5286 Conformance_Error ("\calling conventions do not match!");
5287 end if;
5289 return;
5291 elsif Is_Formal_Subprogram (Old_Id)
5292 or else Is_Formal_Subprogram (New_Id)
5293 then
5294 Conformance_Error ("\formal subprograms not allowed!");
5295 return;
5296 end if;
5297 end if;
5299 -- Deal with parameters
5301 -- Note: we use the entity information, rather than going directly
5302 -- to the specification in the tree. This is not only simpler, but
5303 -- absolutely necessary for some cases of conformance tests between
5304 -- operators, where the declaration tree simply does not exist.
5306 Old_Formal := First_Formal (Old_Id);
5307 New_Formal := First_Formal (New_Id);
5308 while Present (Old_Formal) and then Present (New_Formal) loop
5309 if Is_Controlling_Formal (Old_Formal)
5310 and then Is_Controlling_Formal (New_Formal)
5311 and then Skip_Controlling_Formals
5312 then
5313 -- The controlling formals will have different types when
5314 -- comparing an interface operation with its match, but both
5315 -- or neither must be access parameters.
5317 if Is_Access_Type (Etype (Old_Formal))
5319 Is_Access_Type (Etype (New_Formal))
5320 then
5321 goto Skip_Controlling_Formal;
5322 else
5323 Conformance_Error
5324 ("\access parameter does not match!", New_Formal);
5325 end if;
5326 end if;
5328 -- Ada 2012: Mode conformance also requires that formal parameters
5329 -- be both aliased, or neither.
5331 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5332 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5333 Conformance_Error
5334 ("\aliased parameter mismatch!", New_Formal);
5335 end if;
5336 end if;
5338 if Ctype = Fully_Conformant then
5340 -- Names must match. Error message is more accurate if we do
5341 -- this before checking that the types of the formals match.
5343 if Chars (Old_Formal) /= Chars (New_Formal) then
5344 Conformance_Error ("\name& does not match!", New_Formal);
5346 -- Set error posted flag on new formal as well to stop
5347 -- junk cascaded messages in some cases.
5349 Set_Error_Posted (New_Formal);
5350 return;
5351 end if;
5353 -- Null exclusion must match
5355 if Null_Exclusion_Present (Parent (Old_Formal))
5357 Null_Exclusion_Present (Parent (New_Formal))
5358 then
5359 -- Only give error if both come from source. This should be
5360 -- investigated some time, since it should not be needed ???
5362 if Comes_From_Source (Old_Formal)
5363 and then
5364 Comes_From_Source (New_Formal)
5365 then
5366 Conformance_Error
5367 ("\null exclusion for& does not match", New_Formal);
5369 -- Mark error posted on the new formal to avoid duplicated
5370 -- complaint about types not matching.
5372 Set_Error_Posted (New_Formal);
5373 end if;
5374 end if;
5375 end if;
5377 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5378 -- case occurs whenever a subprogram is being renamed and one of its
5379 -- parameters imposes a null exclusion. For example:
5381 -- type T is null record;
5382 -- type Acc_T is access T;
5383 -- subtype Acc_T_Sub is Acc_T;
5385 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5386 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5387 -- renames P;
5389 Old_Formal_Base := Etype (Old_Formal);
5390 New_Formal_Base := Etype (New_Formal);
5392 if Get_Inst then
5393 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5394 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5395 end if;
5397 Access_Types_Match := Ada_Version >= Ada_2005
5399 -- Ensure that this rule is only applied when New_Id is a
5400 -- renaming of Old_Id.
5402 and then Nkind (Parent (Parent (New_Id))) =
5403 N_Subprogram_Renaming_Declaration
5404 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5405 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5406 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5408 -- Now handle the allowed access-type case
5410 and then Is_Access_Type (Old_Formal_Base)
5411 and then Is_Access_Type (New_Formal_Base)
5413 -- The type kinds must match. The only exception occurs with
5414 -- multiple generics of the form:
5416 -- generic generic
5417 -- type F is private; type A is private;
5418 -- type F_Ptr is access F; type A_Ptr is access A;
5419 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5420 -- package F_Pack is ... package A_Pack is
5421 -- package F_Inst is
5422 -- new F_Pack (A, A_Ptr, A_P);
5424 -- When checking for conformance between the parameters of A_P
5425 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5426 -- because the compiler has transformed A_Ptr into a subtype of
5427 -- F_Ptr. We catch this case in the code below.
5429 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5430 or else
5431 (Is_Generic_Type (Old_Formal_Base)
5432 and then Is_Generic_Type (New_Formal_Base)
5433 and then Is_Internal (New_Formal_Base)
5434 and then Etype (Etype (New_Formal_Base)) =
5435 Old_Formal_Base))
5436 and then Directly_Designated_Type (Old_Formal_Base) =
5437 Directly_Designated_Type (New_Formal_Base)
5438 and then ((Is_Itype (Old_Formal_Base)
5439 and then Can_Never_Be_Null (Old_Formal_Base))
5440 or else
5441 (Is_Itype (New_Formal_Base)
5442 and then Can_Never_Be_Null (New_Formal_Base)));
5444 -- Types must always match. In the visible part of an instance,
5445 -- usual overloading rules for dispatching operations apply, and
5446 -- we check base types (not the actual subtypes).
5448 if In_Instance_Visible_Part
5449 and then Is_Dispatching_Operation (New_Id)
5450 then
5451 if not Conforming_Types
5452 (T1 => Base_Type (Etype (Old_Formal)),
5453 T2 => Base_Type (Etype (New_Formal)),
5454 Ctype => Ctype,
5455 Get_Inst => Get_Inst)
5456 and then not Access_Types_Match
5457 then
5458 Conformance_Error ("\type of & does not match!", New_Formal);
5459 return;
5460 end if;
5462 elsif not Conforming_Types
5463 (T1 => Old_Formal_Base,
5464 T2 => New_Formal_Base,
5465 Ctype => Ctype,
5466 Get_Inst => Get_Inst)
5467 and then not Access_Types_Match
5468 then
5469 -- Don't give error message if old type is Any_Type. This test
5470 -- avoids some cascaded errors, e.g. in case of a bad spec.
5472 if Errmsg and then Old_Formal_Base = Any_Type then
5473 Conforms := False;
5474 else
5475 if Ctype >= Subtype_Conformant
5476 and then
5477 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5478 then
5479 Conformance_Error
5480 ("\predicate of & does not match!", New_Formal);
5481 else
5482 Conformance_Error
5483 ("\type of & does not match!", New_Formal);
5485 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5486 then
5487 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5488 end if;
5489 end if;
5490 end if;
5492 return;
5493 end if;
5495 -- For mode conformance, mode must match
5497 if Ctype >= Mode_Conformant then
5498 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5499 if not Ekind_In (New_Id, E_Function, E_Procedure)
5500 or else not Is_Primitive_Wrapper (New_Id)
5501 then
5502 Conformance_Error ("\mode of & does not match!", New_Formal);
5504 else
5505 declare
5506 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5507 begin
5508 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5509 then
5510 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5511 else
5512 Conformance_Error
5513 ("\mode of & does not match!", New_Formal);
5514 end if;
5515 end;
5516 end if;
5518 return;
5520 -- Part of mode conformance for access types is having the same
5521 -- constant modifier.
5523 elsif Access_Types_Match
5524 and then Is_Access_Constant (Old_Formal_Base) /=
5525 Is_Access_Constant (New_Formal_Base)
5526 then
5527 Conformance_Error
5528 ("\constant modifier does not match!", New_Formal);
5529 return;
5530 end if;
5531 end if;
5533 if Ctype >= Subtype_Conformant then
5535 -- Ada 2005 (AI-231): In case of anonymous access types check
5536 -- the null-exclusion and access-to-constant attributes must
5537 -- match. For null exclusion, we test the types rather than the
5538 -- formals themselves, since the attribute is only set reliably
5539 -- on the formals in the Ada 95 case, and we exclude the case
5540 -- where Old_Formal is marked as controlling, to avoid errors
5541 -- when matching completing bodies with dispatching declarations
5542 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5544 if Ada_Version >= Ada_2005
5545 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5546 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5547 and then
5548 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5549 Can_Never_Be_Null (Etype (New_Formal))
5550 and then
5551 not Is_Controlling_Formal (Old_Formal))
5552 or else
5553 Is_Access_Constant (Etype (Old_Formal)) /=
5554 Is_Access_Constant (Etype (New_Formal)))
5556 -- Do not complain if error already posted on New_Formal. This
5557 -- avoids some redundant error messages.
5559 and then not Error_Posted (New_Formal)
5560 then
5561 -- It is allowed to omit the null-exclusion in case of stream
5562 -- attribute subprograms. We recognize stream subprograms
5563 -- through their TSS-generated suffix.
5565 declare
5566 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5568 begin
5569 if TSS_Name /= TSS_Stream_Read
5570 and then TSS_Name /= TSS_Stream_Write
5571 and then TSS_Name /= TSS_Stream_Input
5572 and then TSS_Name /= TSS_Stream_Output
5573 then
5574 -- Here we have a definite conformance error. It is worth
5575 -- special casing the error message for the case of a
5576 -- controlling formal (which excludes null).
5578 if Is_Controlling_Formal (New_Formal) then
5579 Error_Msg_Node_2 := Scope (New_Formal);
5580 Conformance_Error
5581 ("\controlling formal & of & excludes null, "
5582 & "declaration must exclude null as well",
5583 New_Formal);
5585 -- Normal case (couldn't we give more detail here???)
5587 else
5588 Conformance_Error
5589 ("\type of & does not match!", New_Formal);
5590 end if;
5592 return;
5593 end if;
5594 end;
5595 end if;
5596 end if;
5598 -- Full conformance checks
5600 if Ctype = Fully_Conformant then
5602 -- We have checked already that names match
5604 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5606 -- Check default expressions for in parameters
5608 declare
5609 NewD : constant Boolean :=
5610 Present (Default_Value (New_Formal));
5611 OldD : constant Boolean :=
5612 Present (Default_Value (Old_Formal));
5613 begin
5614 if NewD or OldD then
5616 -- The old default value has been analyzed because the
5617 -- current full declaration will have frozen everything
5618 -- before. The new default value has not been analyzed,
5619 -- so analyze it now before we check for conformance.
5621 if NewD then
5622 Push_Scope (New_Id);
5623 Preanalyze_Spec_Expression
5624 (Default_Value (New_Formal), Etype (New_Formal));
5625 End_Scope;
5626 end if;
5628 if not (NewD and OldD)
5629 or else not Fully_Conformant_Expressions
5630 (Default_Value (Old_Formal),
5631 Default_Value (New_Formal))
5632 then
5633 Conformance_Error
5634 ("\default expression for & does not match!",
5635 New_Formal);
5636 return;
5637 end if;
5638 end if;
5639 end;
5640 end if;
5641 end if;
5643 -- A couple of special checks for Ada 83 mode. These checks are
5644 -- skipped if either entity is an operator in package Standard,
5645 -- or if either old or new instance is not from the source program.
5647 if Ada_Version = Ada_83
5648 and then Sloc (Old_Id) > Standard_Location
5649 and then Sloc (New_Id) > Standard_Location
5650 and then Comes_From_Source (Old_Id)
5651 and then Comes_From_Source (New_Id)
5652 then
5653 declare
5654 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5655 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5657 begin
5658 -- Explicit IN must be present or absent in both cases. This
5659 -- test is required only in the full conformance case.
5661 if In_Present (Old_Param) /= In_Present (New_Param)
5662 and then Ctype = Fully_Conformant
5663 then
5664 Conformance_Error
5665 ("\(Ada 83) IN must appear in both declarations",
5666 New_Formal);
5667 return;
5668 end if;
5670 -- Grouping (use of comma in param lists) must be the same
5671 -- This is where we catch a misconformance like:
5673 -- A, B : Integer
5674 -- A : Integer; B : Integer
5676 -- which are represented identically in the tree except
5677 -- for the setting of the flags More_Ids and Prev_Ids.
5679 if More_Ids (Old_Param) /= More_Ids (New_Param)
5680 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5681 then
5682 Conformance_Error
5683 ("\grouping of & does not match!", New_Formal);
5684 return;
5685 end if;
5686 end;
5687 end if;
5689 -- This label is required when skipping controlling formals
5691 <<Skip_Controlling_Formal>>
5693 Next_Formal (Old_Formal);
5694 Next_Formal (New_Formal);
5695 end loop;
5697 if Present (Old_Formal) then
5698 Conformance_Error ("\too few parameters!");
5699 return;
5701 elsif Present (New_Formal) then
5702 Conformance_Error ("\too many parameters!", New_Formal);
5703 return;
5704 end if;
5705 end Check_Conformance;
5707 -----------------------
5708 -- Check_Conventions --
5709 -----------------------
5711 procedure Check_Conventions (Typ : Entity_Id) is
5712 Ifaces_List : Elist_Id;
5714 procedure Check_Convention (Op : Entity_Id);
5715 -- Verify that the convention of inherited dispatching operation Op is
5716 -- consistent among all subprograms it overrides. In order to minimize
5717 -- the search, Search_From is utilized to designate a specific point in
5718 -- the list rather than iterating over the whole list once more.
5720 ----------------------
5721 -- Check_Convention --
5722 ----------------------
5724 procedure Check_Convention (Op : Entity_Id) is
5725 Op_Conv : constant Convention_Id := Convention (Op);
5726 Iface_Conv : Convention_Id;
5727 Iface_Elmt : Elmt_Id;
5728 Iface_Prim_Elmt : Elmt_Id;
5729 Iface_Prim : Entity_Id;
5731 begin
5732 Iface_Elmt := First_Elmt (Ifaces_List);
5733 while Present (Iface_Elmt) loop
5734 Iface_Prim_Elmt :=
5735 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5736 while Present (Iface_Prim_Elmt) loop
5737 Iface_Prim := Node (Iface_Prim_Elmt);
5738 Iface_Conv := Convention (Iface_Prim);
5740 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5741 and then Iface_Conv /= Op_Conv
5742 then
5743 Error_Msg_N
5744 ("inconsistent conventions in primitive operations", Typ);
5746 Error_Msg_Name_1 := Chars (Op);
5747 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5748 Error_Msg_Sloc := Sloc (Op);
5750 if Comes_From_Source (Op) or else No (Alias (Op)) then
5751 if not Present (Overridden_Operation (Op)) then
5752 Error_Msg_N ("\\primitive % defined #", Typ);
5753 else
5754 Error_Msg_N
5755 ("\\overriding operation % with "
5756 & "convention % defined #", Typ);
5757 end if;
5759 else pragma Assert (Present (Alias (Op)));
5760 Error_Msg_Sloc := Sloc (Alias (Op));
5761 Error_Msg_N ("\\inherited operation % with "
5762 & "convention % defined #", Typ);
5763 end if;
5765 Error_Msg_Name_1 := Chars (Op);
5766 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5767 Error_Msg_Sloc := Sloc (Iface_Prim);
5768 Error_Msg_N ("\\overridden operation % with "
5769 & "convention % defined #", Typ);
5771 -- Avoid cascading errors
5773 return;
5774 end if;
5776 Next_Elmt (Iface_Prim_Elmt);
5777 end loop;
5779 Next_Elmt (Iface_Elmt);
5780 end loop;
5781 end Check_Convention;
5783 -- Local variables
5785 Prim_Op : Entity_Id;
5786 Prim_Op_Elmt : Elmt_Id;
5788 -- Start of processing for Check_Conventions
5790 begin
5791 if not Has_Interfaces (Typ) then
5792 return;
5793 end if;
5795 Collect_Interfaces (Typ, Ifaces_List);
5797 -- The algorithm checks every overriding dispatching operation against
5798 -- all the corresponding overridden dispatching operations, detecting
5799 -- differences in conventions.
5801 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5802 while Present (Prim_Op_Elmt) loop
5803 Prim_Op := Node (Prim_Op_Elmt);
5805 -- A small optimization: skip the predefined dispatching operations
5806 -- since they always have the same convention.
5808 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5809 Check_Convention (Prim_Op);
5810 end if;
5812 Next_Elmt (Prim_Op_Elmt);
5813 end loop;
5814 end Check_Conventions;
5816 ------------------------------
5817 -- Check_Delayed_Subprogram --
5818 ------------------------------
5820 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5821 F : Entity_Id;
5823 procedure Possible_Freeze (T : Entity_Id);
5824 -- T is the type of either a formal parameter or of the return type.
5825 -- If T is not yet frozen and needs a delayed freeze, then the
5826 -- subprogram itself must be delayed.
5828 ---------------------
5829 -- Possible_Freeze --
5830 ---------------------
5832 procedure Possible_Freeze (T : Entity_Id) is
5833 begin
5834 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5835 Set_Has_Delayed_Freeze (Designator);
5837 elsif Is_Access_Type (T)
5838 and then Has_Delayed_Freeze (Designated_Type (T))
5839 and then not Is_Frozen (Designated_Type (T))
5840 then
5841 Set_Has_Delayed_Freeze (Designator);
5842 end if;
5844 end Possible_Freeze;
5846 -- Start of processing for Check_Delayed_Subprogram
5848 begin
5849 -- All subprograms, including abstract subprograms, may need a freeze
5850 -- node if some formal type or the return type needs one.
5852 Possible_Freeze (Etype (Designator));
5853 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5855 -- Need delayed freeze if any of the formal types themselves need
5856 -- a delayed freeze and are not yet frozen.
5858 F := First_Formal (Designator);
5859 while Present (F) loop
5860 Possible_Freeze (Etype (F));
5861 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5862 Next_Formal (F);
5863 end loop;
5865 -- Mark functions that return by reference. Note that it cannot be
5866 -- done for delayed_freeze subprograms because the underlying
5867 -- returned type may not be known yet (for private types)
5869 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5870 declare
5871 Typ : constant Entity_Id := Etype (Designator);
5872 Utyp : constant Entity_Id := Underlying_Type (Typ);
5873 begin
5874 if Is_Limited_View (Typ) then
5875 Set_Returns_By_Ref (Designator);
5876 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5877 Set_Returns_By_Ref (Designator);
5878 end if;
5879 end;
5880 end if;
5881 end Check_Delayed_Subprogram;
5883 ------------------------------------
5884 -- Check_Discriminant_Conformance --
5885 ------------------------------------
5887 procedure Check_Discriminant_Conformance
5888 (N : Node_Id;
5889 Prev : Entity_Id;
5890 Prev_Loc : Node_Id)
5892 Old_Discr : Entity_Id := First_Discriminant (Prev);
5893 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5894 New_Discr_Id : Entity_Id;
5895 New_Discr_Type : Entity_Id;
5897 procedure Conformance_Error (Msg : String; N : Node_Id);
5898 -- Post error message for conformance error on given node. Two messages
5899 -- are output. The first points to the previous declaration with a
5900 -- general "no conformance" message. The second is the detailed reason,
5901 -- supplied as Msg. The parameter N provide information for a possible
5902 -- & insertion in the message.
5904 -----------------------
5905 -- Conformance_Error --
5906 -----------------------
5908 procedure Conformance_Error (Msg : String; N : Node_Id) is
5909 begin
5910 Error_Msg_Sloc := Sloc (Prev_Loc);
5911 Error_Msg_N -- CODEFIX
5912 ("not fully conformant with declaration#!", N);
5913 Error_Msg_NE (Msg, N, N);
5914 end Conformance_Error;
5916 -- Start of processing for Check_Discriminant_Conformance
5918 begin
5919 while Present (Old_Discr) and then Present (New_Discr) loop
5920 New_Discr_Id := Defining_Identifier (New_Discr);
5922 -- The subtype mark of the discriminant on the full type has not
5923 -- been analyzed so we do it here. For an access discriminant a new
5924 -- type is created.
5926 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5927 New_Discr_Type :=
5928 Access_Definition (N, Discriminant_Type (New_Discr));
5930 else
5931 Analyze (Discriminant_Type (New_Discr));
5932 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5934 -- Ada 2005: if the discriminant definition carries a null
5935 -- exclusion, create an itype to check properly for consistency
5936 -- with partial declaration.
5938 if Is_Access_Type (New_Discr_Type)
5939 and then Null_Exclusion_Present (New_Discr)
5940 then
5941 New_Discr_Type :=
5942 Create_Null_Excluding_Itype
5943 (T => New_Discr_Type,
5944 Related_Nod => New_Discr,
5945 Scope_Id => Current_Scope);
5946 end if;
5947 end if;
5949 if not Conforming_Types
5950 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5951 then
5952 Conformance_Error ("type of & does not match!", New_Discr_Id);
5953 return;
5954 else
5955 -- Treat the new discriminant as an occurrence of the old one,
5956 -- for navigation purposes, and fill in some semantic
5957 -- information, for completeness.
5959 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5960 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5961 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5962 end if;
5964 -- Names must match
5966 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5967 Conformance_Error ("name & does not match!", New_Discr_Id);
5968 return;
5969 end if;
5971 -- Default expressions must match
5973 declare
5974 NewD : constant Boolean :=
5975 Present (Expression (New_Discr));
5976 OldD : constant Boolean :=
5977 Present (Expression (Parent (Old_Discr)));
5979 begin
5980 if NewD or OldD then
5982 -- The old default value has been analyzed and expanded,
5983 -- because the current full declaration will have frozen
5984 -- everything before. The new default values have not been
5985 -- expanded, so expand now to check conformance.
5987 if NewD then
5988 Preanalyze_Spec_Expression
5989 (Expression (New_Discr), New_Discr_Type);
5990 end if;
5992 if not (NewD and OldD)
5993 or else not Fully_Conformant_Expressions
5994 (Expression (Parent (Old_Discr)),
5995 Expression (New_Discr))
5997 then
5998 Conformance_Error
5999 ("default expression for & does not match!",
6000 New_Discr_Id);
6001 return;
6002 end if;
6003 end if;
6004 end;
6006 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6008 if Ada_Version = Ada_83 then
6009 declare
6010 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6012 begin
6013 -- Grouping (use of comma in param lists) must be the same
6014 -- This is where we catch a misconformance like:
6016 -- A, B : Integer
6017 -- A : Integer; B : Integer
6019 -- which are represented identically in the tree except
6020 -- for the setting of the flags More_Ids and Prev_Ids.
6022 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6023 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6024 then
6025 Conformance_Error
6026 ("grouping of & does not match!", New_Discr_Id);
6027 return;
6028 end if;
6029 end;
6030 end if;
6032 Next_Discriminant (Old_Discr);
6033 Next (New_Discr);
6034 end loop;
6036 if Present (Old_Discr) then
6037 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6038 return;
6040 elsif Present (New_Discr) then
6041 Conformance_Error
6042 ("too many discriminants!", Defining_Identifier (New_Discr));
6043 return;
6044 end if;
6045 end Check_Discriminant_Conformance;
6047 ----------------------------
6048 -- Check_Fully_Conformant --
6049 ----------------------------
6051 procedure Check_Fully_Conformant
6052 (New_Id : Entity_Id;
6053 Old_Id : Entity_Id;
6054 Err_Loc : Node_Id := Empty)
6056 Result : Boolean;
6057 pragma Warnings (Off, Result);
6058 begin
6059 Check_Conformance
6060 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6061 end Check_Fully_Conformant;
6063 --------------------------
6064 -- Check_Limited_Return --
6065 --------------------------
6067 procedure Check_Limited_Return
6068 (N : Node_Id;
6069 Expr : Node_Id;
6070 R_Type : Entity_Id)
6072 begin
6073 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6074 -- replaced by anonymous access results. This is an incompatibility with
6075 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6076 -- controllable with special switch. ???
6078 -- A limited interface that is not immutably limited is OK
6080 if Is_Limited_Interface (R_Type)
6081 and then
6082 not (Is_Task_Interface (R_Type)
6083 or else Is_Protected_Interface (R_Type)
6084 or else Is_Synchronized_Interface (R_Type))
6085 then
6086 null;
6088 elsif Is_Limited_Type (R_Type)
6089 and then not Is_Interface (R_Type)
6090 and then Comes_From_Source (N)
6091 and then not In_Instance_Body
6092 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6093 then
6094 -- Error in Ada 2005
6096 if Ada_Version >= Ada_2005
6097 and then not Debug_Flag_Dot_L
6098 and then not GNAT_Mode
6099 then
6100 Error_Msg_N
6101 ("(Ada 2005) cannot copy object of a limited type "
6102 & "(RM-2005 6.5(5.5/2))", Expr);
6104 if Is_Limited_View (R_Type) then
6105 Error_Msg_N
6106 ("\return by reference not permitted in Ada 2005", Expr);
6107 end if;
6109 -- Warn in Ada 95 mode, to give folks a heads up about this
6110 -- incompatibility.
6112 -- In GNAT mode, this is just a warning, to allow it to be evilly
6113 -- turned off. Otherwise it is a real error.
6115 -- In a generic context, simplify the warning because it makes no
6116 -- sense to discuss pass-by-reference or copy.
6118 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6119 if Inside_A_Generic then
6120 Error_Msg_N
6121 ("return of limited object not permitted in Ada 2005 "
6122 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6124 elsif Is_Limited_View (R_Type) then
6125 Error_Msg_N
6126 ("return by reference not permitted in Ada 2005 "
6127 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6128 else
6129 Error_Msg_N
6130 ("cannot copy object of a limited type in Ada 2005 "
6131 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6132 end if;
6134 -- Ada 95 mode, and compatibility warnings disabled
6136 else
6137 pragma Assert (Ada_Version <= Ada_95);
6138 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6139 return; -- skip continuation messages below
6140 end if;
6142 if not Inside_A_Generic then
6143 Error_Msg_N
6144 ("\consider switching to return of access type", Expr);
6145 Explain_Limited_Type (R_Type, Expr);
6146 end if;
6147 end if;
6148 end Check_Limited_Return;
6150 ---------------------------
6151 -- Check_Mode_Conformant --
6152 ---------------------------
6154 procedure Check_Mode_Conformant
6155 (New_Id : Entity_Id;
6156 Old_Id : Entity_Id;
6157 Err_Loc : Node_Id := Empty;
6158 Get_Inst : Boolean := False)
6160 Result : Boolean;
6161 pragma Warnings (Off, Result);
6162 begin
6163 Check_Conformance
6164 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6165 end Check_Mode_Conformant;
6167 --------------------------------
6168 -- Check_Overriding_Indicator --
6169 --------------------------------
6171 procedure Check_Overriding_Indicator
6172 (Subp : Entity_Id;
6173 Overridden_Subp : Entity_Id;
6174 Is_Primitive : Boolean)
6176 Decl : Node_Id;
6177 Spec : Node_Id;
6179 begin
6180 -- No overriding indicator for literals
6182 if Ekind (Subp) = E_Enumeration_Literal then
6183 return;
6185 elsif Ekind (Subp) = E_Entry then
6186 Decl := Parent (Subp);
6188 -- No point in analyzing a malformed operator
6190 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6191 and then Error_Posted (Subp)
6192 then
6193 return;
6195 else
6196 Decl := Unit_Declaration_Node (Subp);
6197 end if;
6199 if Nkind_In (Decl, N_Subprogram_Body,
6200 N_Subprogram_Body_Stub,
6201 N_Subprogram_Declaration,
6202 N_Abstract_Subprogram_Declaration,
6203 N_Subprogram_Renaming_Declaration)
6204 then
6205 Spec := Specification (Decl);
6207 elsif Nkind (Decl) = N_Entry_Declaration then
6208 Spec := Decl;
6210 else
6211 return;
6212 end if;
6214 -- The overriding operation is type conformant with the overridden one,
6215 -- but the names of the formals are not required to match. If the names
6216 -- appear permuted in the overriding operation, this is a possible
6217 -- source of confusion that is worth diagnosing. Controlling formals
6218 -- often carry names that reflect the type, and it is not worthwhile
6219 -- requiring that their names match.
6221 if Present (Overridden_Subp)
6222 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6223 then
6224 declare
6225 Form1 : Entity_Id;
6226 Form2 : Entity_Id;
6228 begin
6229 Form1 := First_Formal (Subp);
6230 Form2 := First_Formal (Overridden_Subp);
6232 -- If the overriding operation is a synchronized operation, skip
6233 -- the first parameter of the overridden operation, which is
6234 -- implicit in the new one. If the operation is declared in the
6235 -- body it is not primitive and all formals must match.
6237 if Is_Concurrent_Type (Scope (Subp))
6238 and then Is_Tagged_Type (Scope (Subp))
6239 and then not Has_Completion (Scope (Subp))
6240 then
6241 Form2 := Next_Formal (Form2);
6242 end if;
6244 if Present (Form1) then
6245 Form1 := Next_Formal (Form1);
6246 Form2 := Next_Formal (Form2);
6247 end if;
6249 while Present (Form1) loop
6250 if not Is_Controlling_Formal (Form1)
6251 and then Present (Next_Formal (Form2))
6252 and then Chars (Form1) = Chars (Next_Formal (Form2))
6253 then
6254 Error_Msg_Node_2 := Alias (Overridden_Subp);
6255 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6256 Error_Msg_NE
6257 ("& does not match corresponding formal of&#",
6258 Form1, Form1);
6259 exit;
6260 end if;
6262 Next_Formal (Form1);
6263 Next_Formal (Form2);
6264 end loop;
6265 end;
6266 end if;
6268 -- If there is an overridden subprogram, then check that there is no
6269 -- "not overriding" indicator, and mark the subprogram as overriding.
6270 -- This is not done if the overridden subprogram is marked as hidden,
6271 -- which can occur for the case of inherited controlled operations
6272 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6273 -- subprogram is not itself hidden. (Note: This condition could probably
6274 -- be simplified, leaving out the testing for the specific controlled
6275 -- cases, but it seems safer and clearer this way, and echoes similar
6276 -- special-case tests of this kind in other places.)
6278 if Present (Overridden_Subp)
6279 and then (not Is_Hidden (Overridden_Subp)
6280 or else
6281 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6282 Name_Adjust,
6283 Name_Finalize)
6284 and then Present (Alias (Overridden_Subp))
6285 and then not Is_Hidden (Alias (Overridden_Subp))))
6286 then
6287 if Must_Not_Override (Spec) then
6288 Error_Msg_Sloc := Sloc (Overridden_Subp);
6290 if Ekind (Subp) = E_Entry then
6291 Error_Msg_NE
6292 ("entry & overrides inherited operation #", Spec, Subp);
6293 else
6294 Error_Msg_NE
6295 ("subprogram & overrides inherited operation #", Spec, Subp);
6296 end if;
6298 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6299 -- as an extension of Root_Controlled, and thus has a useless Adjust
6300 -- operation. This operation should not be inherited by other limited
6301 -- controlled types. An explicit Adjust for them is not overriding.
6303 elsif Must_Override (Spec)
6304 and then Chars (Overridden_Subp) = Name_Adjust
6305 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6306 and then Present (Alias (Overridden_Subp))
6307 and then In_Predefined_Unit (Alias (Overridden_Subp))
6308 then
6309 Get_Name_String
6310 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6311 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6313 elsif Is_Subprogram (Subp) then
6314 if Is_Init_Proc (Subp) then
6315 null;
6317 elsif No (Overridden_Operation (Subp)) then
6319 -- For entities generated by Derive_Subprograms the overridden
6320 -- operation is the inherited primitive (which is available
6321 -- through the attribute alias)
6323 if (Is_Dispatching_Operation (Subp)
6324 or else Is_Dispatching_Operation (Overridden_Subp))
6325 and then not Comes_From_Source (Overridden_Subp)
6326 and then Find_Dispatching_Type (Overridden_Subp) =
6327 Find_Dispatching_Type (Subp)
6328 and then Present (Alias (Overridden_Subp))
6329 and then Comes_From_Source (Alias (Overridden_Subp))
6330 then
6331 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6332 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6334 else
6335 Set_Overridden_Operation (Subp, Overridden_Subp);
6336 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6337 end if;
6338 end if;
6339 end if;
6341 -- If primitive flag is set or this is a protected operation, then
6342 -- the operation is overriding at the point of its declaration, so
6343 -- warn if necessary. Otherwise it may have been declared before the
6344 -- operation it overrides and no check is required.
6346 if Style_Check
6347 and then not Must_Override (Spec)
6348 and then (Is_Primitive
6349 or else Ekind (Scope (Subp)) = E_Protected_Type)
6350 then
6351 Style.Missing_Overriding (Decl, Subp);
6352 end if;
6354 -- If Subp is an operator, it may override a predefined operation, if
6355 -- it is defined in the same scope as the type to which it applies.
6356 -- In that case Overridden_Subp is empty because of our implicit
6357 -- representation for predefined operators. We have to check whether the
6358 -- signature of Subp matches that of a predefined operator. Note that
6359 -- first argument provides the name of the operator, and the second
6360 -- argument the signature that may match that of a standard operation.
6361 -- If the indicator is overriding, then the operator must match a
6362 -- predefined signature, because we know already that there is no
6363 -- explicit overridden operation.
6365 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6366 if Must_Not_Override (Spec) then
6368 -- If this is not a primitive or a protected subprogram, then
6369 -- "not overriding" is illegal.
6371 if not Is_Primitive
6372 and then Ekind (Scope (Subp)) /= E_Protected_Type
6373 then
6374 Error_Msg_N ("overriding indicator only allowed "
6375 & "if subprogram is primitive", Subp);
6377 elsif Can_Override_Operator (Subp) then
6378 Error_Msg_NE
6379 ("subprogram& overrides predefined operator ", Spec, Subp);
6380 end if;
6382 elsif Must_Override (Spec) then
6383 if No (Overridden_Operation (Subp))
6384 and then not Can_Override_Operator (Subp)
6385 then
6386 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6387 end if;
6389 elsif not Error_Posted (Subp)
6390 and then Style_Check
6391 and then Can_Override_Operator (Subp)
6392 and then not In_Predefined_Unit (Subp)
6393 then
6394 -- If style checks are enabled, indicate that the indicator is
6395 -- missing. However, at the point of declaration, the type of
6396 -- which this is a primitive operation may be private, in which
6397 -- case the indicator would be premature.
6399 if Has_Private_Declaration (Etype (Subp))
6400 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6401 then
6402 null;
6403 else
6404 Style.Missing_Overriding (Decl, Subp);
6405 end if;
6406 end if;
6408 elsif Must_Override (Spec) then
6409 if Ekind (Subp) = E_Entry then
6410 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6411 else
6412 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6413 end if;
6415 -- If the operation is marked "not overriding" and it's not primitive
6416 -- then an error is issued, unless this is an operation of a task or
6417 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6418 -- has been specified have already been checked above.
6420 elsif Must_Not_Override (Spec)
6421 and then not Is_Primitive
6422 and then Ekind (Subp) /= E_Entry
6423 and then Ekind (Scope (Subp)) /= E_Protected_Type
6424 then
6425 Error_Msg_N
6426 ("overriding indicator only allowed if subprogram is primitive",
6427 Subp);
6428 return;
6429 end if;
6430 end Check_Overriding_Indicator;
6432 -------------------
6433 -- Check_Returns --
6434 -------------------
6436 -- Note: this procedure needs to know far too much about how the expander
6437 -- messes with exceptions. The use of the flag Exception_Junk and the
6438 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6439 -- works, but is not very clean. It would be better if the expansion
6440 -- routines would leave Original_Node working nicely, and we could use
6441 -- Original_Node here to ignore all the peculiar expander messing ???
6443 procedure Check_Returns
6444 (HSS : Node_Id;
6445 Mode : Character;
6446 Err : out Boolean;
6447 Proc : Entity_Id := Empty)
6449 Handler : Node_Id;
6451 procedure Check_Statement_Sequence (L : List_Id);
6452 -- Internal recursive procedure to check a list of statements for proper
6453 -- termination by a return statement (or a transfer of control or a
6454 -- compound statement that is itself internally properly terminated).
6456 ------------------------------
6457 -- Check_Statement_Sequence --
6458 ------------------------------
6460 procedure Check_Statement_Sequence (L : List_Id) is
6461 Last_Stm : Node_Id;
6462 Stm : Node_Id;
6463 Kind : Node_Kind;
6465 function Assert_False return Boolean;
6466 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6467 -- rewritten as a null statement when assertions are off. The assert
6468 -- is not active, but it is still enough to kill the warning.
6470 ------------------
6471 -- Assert_False --
6472 ------------------
6474 function Assert_False return Boolean is
6475 Orig : constant Node_Id := Original_Node (Last_Stm);
6477 begin
6478 if Nkind (Orig) = N_Pragma
6479 and then Pragma_Name (Orig) = Name_Assert
6480 and then not Error_Posted (Orig)
6481 then
6482 declare
6483 Arg : constant Node_Id :=
6484 First (Pragma_Argument_Associations (Orig));
6485 Exp : constant Node_Id := Expression (Arg);
6486 begin
6487 return Nkind (Exp) = N_Identifier
6488 and then Chars (Exp) = Name_False;
6489 end;
6491 else
6492 return False;
6493 end if;
6494 end Assert_False;
6496 -- Local variables
6498 Raise_Exception_Call : Boolean;
6499 -- Set True if statement sequence terminated by Raise_Exception call
6500 -- or a Reraise_Occurrence call.
6502 -- Start of processing for Check_Statement_Sequence
6504 begin
6505 Raise_Exception_Call := False;
6507 -- Get last real statement
6509 Last_Stm := Last (L);
6511 -- Deal with digging out exception handler statement sequences that
6512 -- have been transformed by the local raise to goto optimization.
6513 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6514 -- optimization has occurred, we are looking at something like:
6516 -- begin
6517 -- original stmts in block
6519 -- exception \
6520 -- when excep1 => |
6521 -- goto L1; | omitted if No_Exception_Propagation
6522 -- when excep2 => |
6523 -- goto L2; /
6524 -- end;
6526 -- goto L3; -- skip handler when exception not raised
6528 -- <<L1>> -- target label for local exception
6529 -- begin
6530 -- estmts1
6531 -- end;
6533 -- goto L3;
6535 -- <<L2>>
6536 -- begin
6537 -- estmts2
6538 -- end;
6540 -- <<L3>>
6542 -- and what we have to do is to dig out the estmts1 and estmts2
6543 -- sequences (which were the original sequences of statements in
6544 -- the exception handlers) and check them.
6546 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6547 Stm := Last_Stm;
6548 loop
6549 Prev (Stm);
6550 exit when No (Stm);
6551 exit when Nkind (Stm) /= N_Block_Statement;
6552 exit when not Exception_Junk (Stm);
6553 Prev (Stm);
6554 exit when No (Stm);
6555 exit when Nkind (Stm) /= N_Label;
6556 exit when not Exception_Junk (Stm);
6557 Check_Statement_Sequence
6558 (Statements (Handled_Statement_Sequence (Next (Stm))));
6560 Prev (Stm);
6561 Last_Stm := Stm;
6562 exit when No (Stm);
6563 exit when Nkind (Stm) /= N_Goto_Statement;
6564 exit when not Exception_Junk (Stm);
6565 end loop;
6566 end if;
6568 -- Don't count pragmas
6570 while Nkind (Last_Stm) = N_Pragma
6572 -- Don't count call to SS_Release (can happen after Raise_Exception)
6574 or else
6575 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6576 and then
6577 Nkind (Name (Last_Stm)) = N_Identifier
6578 and then
6579 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6581 -- Don't count exception junk
6583 or else
6584 (Nkind_In (Last_Stm, N_Goto_Statement,
6585 N_Label,
6586 N_Object_Declaration)
6587 and then Exception_Junk (Last_Stm))
6588 or else Nkind (Last_Stm) in N_Push_xxx_Label
6589 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6591 -- Inserted code, such as finalization calls, is irrelevant: we only
6592 -- need to check original source.
6594 or else Is_Rewrite_Insertion (Last_Stm)
6595 loop
6596 Prev (Last_Stm);
6597 end loop;
6599 -- Here we have the "real" last statement
6601 Kind := Nkind (Last_Stm);
6603 -- Transfer of control, OK. Note that in the No_Return procedure
6604 -- case, we already diagnosed any explicit return statements, so
6605 -- we can treat them as OK in this context.
6607 if Is_Transfer (Last_Stm) then
6608 return;
6610 -- Check cases of explicit non-indirect procedure calls
6612 elsif Kind = N_Procedure_Call_Statement
6613 and then Is_Entity_Name (Name (Last_Stm))
6614 then
6615 -- Check call to Raise_Exception procedure which is treated
6616 -- specially, as is a call to Reraise_Occurrence.
6618 -- We suppress the warning in these cases since it is likely that
6619 -- the programmer really does not expect to deal with the case
6620 -- of Null_Occurrence, and thus would find a warning about a
6621 -- missing return curious, and raising Program_Error does not
6622 -- seem such a bad behavior if this does occur.
6624 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6625 -- behavior will be to raise Constraint_Error (see AI-329).
6627 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6628 or else
6629 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6630 then
6631 Raise_Exception_Call := True;
6633 -- For Raise_Exception call, test first argument, if it is
6634 -- an attribute reference for a 'Identity call, then we know
6635 -- that the call cannot possibly return.
6637 declare
6638 Arg : constant Node_Id :=
6639 Original_Node (First_Actual (Last_Stm));
6640 begin
6641 if Nkind (Arg) = N_Attribute_Reference
6642 and then Attribute_Name (Arg) = Name_Identity
6643 then
6644 return;
6645 end if;
6646 end;
6647 end if;
6649 -- If statement, need to look inside if there is an else and check
6650 -- each constituent statement sequence for proper termination.
6652 elsif Kind = N_If_Statement
6653 and then Present (Else_Statements (Last_Stm))
6654 then
6655 Check_Statement_Sequence (Then_Statements (Last_Stm));
6656 Check_Statement_Sequence (Else_Statements (Last_Stm));
6658 if Present (Elsif_Parts (Last_Stm)) then
6659 declare
6660 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6662 begin
6663 while Present (Elsif_Part) loop
6664 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6665 Next (Elsif_Part);
6666 end loop;
6667 end;
6668 end if;
6670 return;
6672 -- Case statement, check each case for proper termination
6674 elsif Kind = N_Case_Statement then
6675 declare
6676 Case_Alt : Node_Id;
6677 begin
6678 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6679 while Present (Case_Alt) loop
6680 Check_Statement_Sequence (Statements (Case_Alt));
6681 Next_Non_Pragma (Case_Alt);
6682 end loop;
6683 end;
6685 return;
6687 -- Block statement, check its handled sequence of statements
6689 elsif Kind = N_Block_Statement then
6690 declare
6691 Err1 : Boolean;
6693 begin
6694 Check_Returns
6695 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6697 if Err1 then
6698 Err := True;
6699 end if;
6701 return;
6702 end;
6704 -- Loop statement. If there is an iteration scheme, we can definitely
6705 -- fall out of the loop. Similarly if there is an exit statement, we
6706 -- can fall out. In either case we need a following return.
6708 elsif Kind = N_Loop_Statement then
6709 if Present (Iteration_Scheme (Last_Stm))
6710 or else Has_Exit (Entity (Identifier (Last_Stm)))
6711 then
6712 null;
6714 -- A loop with no exit statement or iteration scheme is either
6715 -- an infinite loop, or it has some other exit (raise/return).
6716 -- In either case, no warning is required.
6718 else
6719 return;
6720 end if;
6722 -- Timed entry call, check entry call and delay alternatives
6724 -- Note: in expanded code, the timed entry call has been converted
6725 -- to a set of expanded statements on which the check will work
6726 -- correctly in any case.
6728 elsif Kind = N_Timed_Entry_Call then
6729 declare
6730 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6731 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6733 begin
6734 -- If statement sequence of entry call alternative is missing,
6735 -- then we can definitely fall through, and we post the error
6736 -- message on the entry call alternative itself.
6738 if No (Statements (ECA)) then
6739 Last_Stm := ECA;
6741 -- If statement sequence of delay alternative is missing, then
6742 -- we can definitely fall through, and we post the error
6743 -- message on the delay alternative itself.
6745 -- Note: if both ECA and DCA are missing the return, then we
6746 -- post only one message, should be enough to fix the bugs.
6747 -- If not we will get a message next time on the DCA when the
6748 -- ECA is fixed.
6750 elsif No (Statements (DCA)) then
6751 Last_Stm := DCA;
6753 -- Else check both statement sequences
6755 else
6756 Check_Statement_Sequence (Statements (ECA));
6757 Check_Statement_Sequence (Statements (DCA));
6758 return;
6759 end if;
6760 end;
6762 -- Conditional entry call, check entry call and else part
6764 -- Note: in expanded code, the conditional entry call has been
6765 -- converted to a set of expanded statements on which the check
6766 -- will work correctly in any case.
6768 elsif Kind = N_Conditional_Entry_Call then
6769 declare
6770 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6772 begin
6773 -- If statement sequence of entry call alternative is missing,
6774 -- then we can definitely fall through, and we post the error
6775 -- message on the entry call alternative itself.
6777 if No (Statements (ECA)) then
6778 Last_Stm := ECA;
6780 -- Else check statement sequence and else part
6782 else
6783 Check_Statement_Sequence (Statements (ECA));
6784 Check_Statement_Sequence (Else_Statements (Last_Stm));
6785 return;
6786 end if;
6787 end;
6788 end if;
6790 -- If we fall through, issue appropriate message
6792 if Mode = 'F' then
6794 -- Kill warning if last statement is a raise exception call,
6795 -- or a pragma Assert (False). Note that with assertions enabled,
6796 -- such a pragma has been converted into a raise exception call
6797 -- already, so the Assert_False is for the assertions off case.
6799 if not Raise_Exception_Call and then not Assert_False then
6801 -- In GNATprove mode, it is an error to have a missing return
6803 Error_Msg_Warn := SPARK_Mode /= On;
6805 -- Issue error message or warning
6807 Error_Msg_N
6808 ("RETURN statement missing following this statement<<!",
6809 Last_Stm);
6810 Error_Msg_N
6811 ("\Program_Error ]<<!", Last_Stm);
6812 end if;
6814 -- Note: we set Err even though we have not issued a warning
6815 -- because we still have a case of a missing return. This is
6816 -- an extremely marginal case, probably will never be noticed
6817 -- but we might as well get it right.
6819 Err := True;
6821 -- Otherwise we have the case of a procedure marked No_Return
6823 else
6824 if not Raise_Exception_Call then
6825 if GNATprove_Mode then
6826 Error_Msg_N
6827 ("implied return after this statement would have raised "
6828 & "Program_Error", Last_Stm);
6830 -- In normal compilation mode, do not warn on a generated call
6831 -- (e.g. in the body of a renaming as completion).
6833 elsif Comes_From_Source (Last_Stm) then
6834 Error_Msg_N
6835 ("implied return after this statement will raise "
6836 & "Program_Error??", Last_Stm);
6837 end if;
6839 Error_Msg_Warn := SPARK_Mode /= On;
6840 Error_Msg_NE
6841 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6842 end if;
6844 declare
6845 RE : constant Node_Id :=
6846 Make_Raise_Program_Error (Sloc (Last_Stm),
6847 Reason => PE_Implicit_Return);
6848 begin
6849 Insert_After (Last_Stm, RE);
6850 Analyze (RE);
6851 end;
6852 end if;
6853 end Check_Statement_Sequence;
6855 -- Start of processing for Check_Returns
6857 begin
6858 Err := False;
6859 Check_Statement_Sequence (Statements (HSS));
6861 if Present (Exception_Handlers (HSS)) then
6862 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6863 while Present (Handler) loop
6864 Check_Statement_Sequence (Statements (Handler));
6865 Next_Non_Pragma (Handler);
6866 end loop;
6867 end if;
6868 end Check_Returns;
6870 ----------------------------
6871 -- Check_Subprogram_Order --
6872 ----------------------------
6874 procedure Check_Subprogram_Order (N : Node_Id) is
6876 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6877 -- This is used to check if S1 > S2 in the sense required by this test,
6878 -- for example nameab < namec, but name2 < name10.
6880 -----------------------------
6881 -- Subprogram_Name_Greater --
6882 -----------------------------
6884 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6885 L1, L2 : Positive;
6886 N1, N2 : Natural;
6888 begin
6889 -- Deal with special case where names are identical except for a
6890 -- numerical suffix. These are handled specially, taking the numeric
6891 -- ordering from the suffix into account.
6893 L1 := S1'Last;
6894 while S1 (L1) in '0' .. '9' loop
6895 L1 := L1 - 1;
6896 end loop;
6898 L2 := S2'Last;
6899 while S2 (L2) in '0' .. '9' loop
6900 L2 := L2 - 1;
6901 end loop;
6903 -- If non-numeric parts non-equal, do straight compare
6905 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6906 return S1 > S2;
6908 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6909 -- that a missing suffix is treated as numeric zero in this test.
6911 else
6912 N1 := 0;
6913 while L1 < S1'Last loop
6914 L1 := L1 + 1;
6915 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6916 end loop;
6918 N2 := 0;
6919 while L2 < S2'Last loop
6920 L2 := L2 + 1;
6921 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6922 end loop;
6924 return N1 > N2;
6925 end if;
6926 end Subprogram_Name_Greater;
6928 -- Start of processing for Check_Subprogram_Order
6930 begin
6931 -- Check body in alpha order if this is option
6933 if Style_Check
6934 and then Style_Check_Order_Subprograms
6935 and then Nkind (N) = N_Subprogram_Body
6936 and then Comes_From_Source (N)
6937 and then In_Extended_Main_Source_Unit (N)
6938 then
6939 declare
6940 LSN : String_Ptr
6941 renames Scope_Stack.Table
6942 (Scope_Stack.Last).Last_Subprogram_Name;
6944 Body_Id : constant Entity_Id :=
6945 Defining_Entity (Specification (N));
6947 begin
6948 Get_Decoded_Name_String (Chars (Body_Id));
6950 if LSN /= null then
6951 if Subprogram_Name_Greater
6952 (LSN.all, Name_Buffer (1 .. Name_Len))
6953 then
6954 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6955 end if;
6957 Free (LSN);
6958 end if;
6960 LSN := new String'(Name_Buffer (1 .. Name_Len));
6961 end;
6962 end if;
6963 end Check_Subprogram_Order;
6965 ------------------------------
6966 -- Check_Subtype_Conformant --
6967 ------------------------------
6969 procedure Check_Subtype_Conformant
6970 (New_Id : Entity_Id;
6971 Old_Id : Entity_Id;
6972 Err_Loc : Node_Id := Empty;
6973 Skip_Controlling_Formals : Boolean := False;
6974 Get_Inst : Boolean := False)
6976 Result : Boolean;
6977 pragma Warnings (Off, Result);
6978 begin
6979 Check_Conformance
6980 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6981 Skip_Controlling_Formals => Skip_Controlling_Formals,
6982 Get_Inst => Get_Inst);
6983 end Check_Subtype_Conformant;
6985 -----------------------------------
6986 -- Check_Synchronized_Overriding --
6987 -----------------------------------
6989 procedure Check_Synchronized_Overriding
6990 (Def_Id : Entity_Id;
6991 Overridden_Subp : out Entity_Id)
6993 Ifaces_List : Elist_Id;
6994 In_Scope : Boolean;
6995 Typ : Entity_Id;
6997 function Matches_Prefixed_View_Profile
6998 (Prim_Params : List_Id;
6999 Iface_Params : List_Id) return Boolean;
7000 -- Determine whether a subprogram's parameter profile Prim_Params
7001 -- matches that of a potentially overridden interface subprogram
7002 -- Iface_Params. Also determine if the type of first parameter of
7003 -- Iface_Params is an implemented interface.
7005 -----------------------------------
7006 -- Matches_Prefixed_View_Profile --
7007 -----------------------------------
7009 function Matches_Prefixed_View_Profile
7010 (Prim_Params : List_Id;
7011 Iface_Params : List_Id) return Boolean
7013 function Is_Implemented
7014 (Ifaces_List : Elist_Id;
7015 Iface : Entity_Id) return Boolean;
7016 -- Determine if Iface is implemented by the current task or
7017 -- protected type.
7019 --------------------
7020 -- Is_Implemented --
7021 --------------------
7023 function Is_Implemented
7024 (Ifaces_List : Elist_Id;
7025 Iface : Entity_Id) return Boolean
7027 Iface_Elmt : Elmt_Id;
7029 begin
7030 Iface_Elmt := First_Elmt (Ifaces_List);
7031 while Present (Iface_Elmt) loop
7032 if Node (Iface_Elmt) = Iface then
7033 return True;
7034 end if;
7036 Next_Elmt (Iface_Elmt);
7037 end loop;
7039 return False;
7040 end Is_Implemented;
7042 -- Local variables
7044 Iface_Id : Entity_Id;
7045 Iface_Param : Node_Id;
7046 Iface_Typ : Entity_Id;
7047 Prim_Id : Entity_Id;
7048 Prim_Param : Node_Id;
7049 Prim_Typ : Entity_Id;
7051 -- Start of processing for Matches_Prefixed_View_Profile
7053 begin
7054 Iface_Param := First (Iface_Params);
7055 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7057 if Is_Access_Type (Iface_Typ) then
7058 Iface_Typ := Designated_Type (Iface_Typ);
7059 end if;
7061 Prim_Param := First (Prim_Params);
7063 -- The first parameter of the potentially overridden subprogram must
7064 -- be an interface implemented by Prim.
7066 if not Is_Interface (Iface_Typ)
7067 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7068 then
7069 return False;
7070 end if;
7072 -- The checks on the object parameters are done, so move on to the
7073 -- rest of the parameters.
7075 if not In_Scope then
7076 Prim_Param := Next (Prim_Param);
7077 end if;
7079 Iface_Param := Next (Iface_Param);
7080 while Present (Iface_Param) and then Present (Prim_Param) loop
7081 Iface_Id := Defining_Identifier (Iface_Param);
7082 Iface_Typ := Find_Parameter_Type (Iface_Param);
7084 Prim_Id := Defining_Identifier (Prim_Param);
7085 Prim_Typ := Find_Parameter_Type (Prim_Param);
7087 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7088 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7089 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7090 then
7091 Iface_Typ := Designated_Type (Iface_Typ);
7092 Prim_Typ := Designated_Type (Prim_Typ);
7093 end if;
7095 -- Case of multiple interface types inside a parameter profile
7097 -- (Obj_Param : in out Iface; ...; Param : Iface)
7099 -- If the interface type is implemented, then the matching type in
7100 -- the primitive should be the implementing record type.
7102 if Ekind (Iface_Typ) = E_Record_Type
7103 and then Is_Interface (Iface_Typ)
7104 and then Is_Implemented (Ifaces_List, Iface_Typ)
7105 then
7106 if Prim_Typ /= Typ then
7107 return False;
7108 end if;
7110 -- The two parameters must be both mode and subtype conformant
7112 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7113 or else not
7114 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7115 then
7116 return False;
7117 end if;
7119 Next (Iface_Param);
7120 Next (Prim_Param);
7121 end loop;
7123 -- One of the two lists contains more parameters than the other
7125 if Present (Iface_Param) or else Present (Prim_Param) then
7126 return False;
7127 end if;
7129 return True;
7130 end Matches_Prefixed_View_Profile;
7132 -- Start of processing for Check_Synchronized_Overriding
7134 begin
7135 Overridden_Subp := Empty;
7137 -- Def_Id must be an entry or a subprogram. We should skip predefined
7138 -- primitives internally generated by the front end; however at this
7139 -- stage predefined primitives are still not fully decorated. As a
7140 -- minor optimization we skip here internally generated subprograms.
7142 if (Ekind (Def_Id) /= E_Entry
7143 and then Ekind (Def_Id) /= E_Function
7144 and then Ekind (Def_Id) /= E_Procedure)
7145 or else not Comes_From_Source (Def_Id)
7146 then
7147 return;
7148 end if;
7150 -- Search for the concurrent declaration since it contains the list of
7151 -- all implemented interfaces. In this case, the subprogram is declared
7152 -- within the scope of a protected or a task type.
7154 if Present (Scope (Def_Id))
7155 and then Is_Concurrent_Type (Scope (Def_Id))
7156 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7157 then
7158 Typ := Scope (Def_Id);
7159 In_Scope := True;
7161 -- The enclosing scope is not a synchronized type and the subprogram
7162 -- has no formals.
7164 elsif No (First_Formal (Def_Id)) then
7165 return;
7167 -- The subprogram has formals and hence it may be a primitive of a
7168 -- concurrent type.
7170 else
7171 Typ := Etype (First_Formal (Def_Id));
7173 if Is_Access_Type (Typ) then
7174 Typ := Directly_Designated_Type (Typ);
7175 end if;
7177 if Is_Concurrent_Type (Typ)
7178 and then not Is_Generic_Actual_Type (Typ)
7179 then
7180 In_Scope := False;
7182 -- This case occurs when the concurrent type is declared within a
7183 -- generic unit. As a result the corresponding record has been built
7184 -- and used as the type of the first formal, we just have to retrieve
7185 -- the corresponding concurrent type.
7187 elsif Is_Concurrent_Record_Type (Typ)
7188 and then not Is_Class_Wide_Type (Typ)
7189 and then Present (Corresponding_Concurrent_Type (Typ))
7190 then
7191 Typ := Corresponding_Concurrent_Type (Typ);
7192 In_Scope := False;
7194 else
7195 return;
7196 end if;
7197 end if;
7199 -- There is no overriding to check if this is an inherited operation in
7200 -- a type derivation for a generic actual.
7202 Collect_Interfaces (Typ, Ifaces_List);
7204 if Is_Empty_Elmt_List (Ifaces_List) then
7205 return;
7206 end if;
7208 -- Determine whether entry or subprogram Def_Id overrides a primitive
7209 -- operation that belongs to one of the interfaces in Ifaces_List.
7211 declare
7212 Candidate : Entity_Id := Empty;
7213 Hom : Entity_Id := Empty;
7214 Subp : Entity_Id := Empty;
7216 begin
7217 -- Traverse the homonym chain, looking for a potentially overridden
7218 -- subprogram that belongs to an implemented interface.
7220 Hom := Current_Entity_In_Scope (Def_Id);
7221 while Present (Hom) loop
7222 Subp := Hom;
7224 if Subp = Def_Id
7225 or else not Is_Overloadable (Subp)
7226 or else not Is_Primitive (Subp)
7227 or else not Is_Dispatching_Operation (Subp)
7228 or else not Present (Find_Dispatching_Type (Subp))
7229 or else not Is_Interface (Find_Dispatching_Type (Subp))
7230 then
7231 null;
7233 -- Entries and procedures can override abstract or null interface
7234 -- procedures.
7236 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7237 and then Ekind (Subp) = E_Procedure
7238 and then Matches_Prefixed_View_Profile
7239 (Parameter_Specifications (Parent (Def_Id)),
7240 Parameter_Specifications (Parent (Subp)))
7241 then
7242 Candidate := Subp;
7244 -- For an overridden subprogram Subp, check whether the mode
7245 -- of its first parameter is correct depending on the kind of
7246 -- synchronized type.
7248 declare
7249 Formal : constant Node_Id := First_Formal (Candidate);
7251 begin
7252 -- In order for an entry or a protected procedure to
7253 -- override, the first parameter of the overridden routine
7254 -- must be of mode "out", "in out", or access-to-variable.
7256 if Ekind_In (Candidate, E_Entry, E_Procedure)
7257 and then Is_Protected_Type (Typ)
7258 and then Ekind (Formal) /= E_In_Out_Parameter
7259 and then Ekind (Formal) /= E_Out_Parameter
7260 and then Nkind (Parameter_Type (Parent (Formal))) /=
7261 N_Access_Definition
7262 then
7263 null;
7265 -- All other cases are OK since a task entry or routine does
7266 -- not have a restriction on the mode of the first parameter
7267 -- of the overridden interface routine.
7269 else
7270 Overridden_Subp := Candidate;
7271 return;
7272 end if;
7273 end;
7275 -- Functions can override abstract interface functions
7277 elsif Ekind (Def_Id) = E_Function
7278 and then Ekind (Subp) = E_Function
7279 and then Matches_Prefixed_View_Profile
7280 (Parameter_Specifications (Parent (Def_Id)),
7281 Parameter_Specifications (Parent (Subp)))
7282 and then Etype (Def_Id) = Etype (Subp)
7283 then
7284 Candidate := Subp;
7286 -- If an inherited subprogram is implemented by a protected
7287 -- function, then the first parameter of the inherited
7288 -- subprogram shall be of mode in, but not an access-to-
7289 -- variable parameter (RM 9.4(11/9)).
7291 if Present (First_Formal (Subp))
7292 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7293 and then
7294 (not Is_Access_Type (Etype (First_Formal (Subp)))
7295 or else
7296 Is_Access_Constant (Etype (First_Formal (Subp))))
7297 then
7298 Overridden_Subp := Subp;
7299 return;
7300 end if;
7301 end if;
7303 Hom := Homonym (Hom);
7304 end loop;
7306 -- After examining all candidates for overriding, we are left with
7307 -- the best match, which is a mode-incompatible interface routine.
7309 if In_Scope and then Present (Candidate) then
7310 Error_Msg_PT (Def_Id, Candidate);
7311 end if;
7313 Overridden_Subp := Candidate;
7314 return;
7315 end;
7316 end Check_Synchronized_Overriding;
7318 ---------------------------
7319 -- Check_Type_Conformant --
7320 ---------------------------
7322 procedure Check_Type_Conformant
7323 (New_Id : Entity_Id;
7324 Old_Id : Entity_Id;
7325 Err_Loc : Node_Id := Empty)
7327 Result : Boolean;
7328 pragma Warnings (Off, Result);
7329 begin
7330 Check_Conformance
7331 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7332 end Check_Type_Conformant;
7334 ---------------------------
7335 -- Can_Override_Operator --
7336 ---------------------------
7338 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7339 Typ : Entity_Id;
7341 begin
7342 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7343 return False;
7345 else
7346 Typ := Base_Type (Etype (First_Formal (Subp)));
7348 -- Check explicitly that the operation is a primitive of the type
7350 return Operator_Matches_Spec (Subp, Subp)
7351 and then not Is_Generic_Type (Typ)
7352 and then Scope (Subp) = Scope (Typ)
7353 and then not Is_Class_Wide_Type (Typ);
7354 end if;
7355 end Can_Override_Operator;
7357 ----------------------
7358 -- Conforming_Types --
7359 ----------------------
7361 function Conforming_Types
7362 (T1 : Entity_Id;
7363 T2 : Entity_Id;
7364 Ctype : Conformance_Type;
7365 Get_Inst : Boolean := False) return Boolean
7367 function Base_Types_Match
7368 (Typ_1 : Entity_Id;
7369 Typ_2 : Entity_Id) return Boolean;
7370 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7371 -- in different scopes (e.g. parent and child instances), then verify
7372 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7373 -- the same subtype chain. The whole purpose of this procedure is to
7374 -- prevent spurious ambiguities in an instantiation that may arise if
7375 -- two distinct generic types are instantiated with the same actual.
7377 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7378 -- An access parameter can designate an incomplete type. If the
7379 -- incomplete type is the limited view of a type from a limited_
7380 -- with_clause, check whether the non-limited view is available.
7381 -- If it is a (non-limited) incomplete type, get the full view.
7383 function Matches_Limited_With_View
7384 (Typ_1 : Entity_Id;
7385 Typ_2 : Entity_Id) return Boolean;
7386 -- Returns True if and only if either Typ_1 denotes a limited view of
7387 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7388 -- the limited with view of a type is used in a subprogram declaration
7389 -- and the subprogram body is in the scope of a regular with clause for
7390 -- the same unit. In such a case, the two type entities are considered
7391 -- identical for purposes of conformance checking.
7393 ----------------------
7394 -- Base_Types_Match --
7395 ----------------------
7397 function Base_Types_Match
7398 (Typ_1 : Entity_Id;
7399 Typ_2 : Entity_Id) return Boolean
7401 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7402 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7404 begin
7405 if Typ_1 = Typ_2 then
7406 return True;
7408 elsif Base_1 = Base_2 then
7410 -- The following is too permissive. A more precise test should
7411 -- check that the generic actual is an ancestor subtype of the
7412 -- other ???.
7414 -- See code in Find_Corresponding_Spec that applies an additional
7415 -- filter to handle accidental amiguities in instances.
7417 return
7418 not Is_Generic_Actual_Type (Typ_1)
7419 or else not Is_Generic_Actual_Type (Typ_2)
7420 or else Scope (Typ_1) /= Scope (Typ_2);
7422 -- If Typ_2 is a generic actual type it is declared as the subtype of
7423 -- the actual. If that actual is itself a subtype we need to use its
7424 -- own base type to check for compatibility.
7426 elsif Ekind (Base_2) = Ekind (Typ_2)
7427 and then Base_1 = Base_Type (Base_2)
7428 then
7429 return True;
7431 elsif Ekind (Base_1) = Ekind (Typ_1)
7432 and then Base_2 = Base_Type (Base_1)
7433 then
7434 return True;
7436 else
7437 return False;
7438 end if;
7439 end Base_Types_Match;
7441 --------------------------
7442 -- Find_Designated_Type --
7443 --------------------------
7445 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7446 Desig : Entity_Id;
7448 begin
7449 Desig := Directly_Designated_Type (Typ);
7451 if Ekind (Desig) = E_Incomplete_Type then
7453 -- If regular incomplete type, get full view if available
7455 if Present (Full_View (Desig)) then
7456 Desig := Full_View (Desig);
7458 -- If limited view of a type, get non-limited view if available,
7459 -- and check again for a regular incomplete type.
7461 elsif Present (Non_Limited_View (Desig)) then
7462 Desig := Get_Full_View (Non_Limited_View (Desig));
7463 end if;
7464 end if;
7466 return Desig;
7467 end Find_Designated_Type;
7469 -------------------------------
7470 -- Matches_Limited_With_View --
7471 -------------------------------
7473 function Matches_Limited_With_View
7474 (Typ_1 : Entity_Id;
7475 Typ_2 : Entity_Id) return Boolean
7477 function Is_Matching_Limited_View
7478 (Typ : Entity_Id;
7479 View : Entity_Id) return Boolean;
7480 -- Determine whether non-limited view View denotes type Typ in some
7481 -- conformant fashion.
7483 ------------------------------
7484 -- Is_Matching_Limited_View --
7485 ------------------------------
7487 function Is_Matching_Limited_View
7488 (Typ : Entity_Id;
7489 View : Entity_Id) return Boolean
7491 Root_Typ : Entity_Id;
7492 Root_View : Entity_Id;
7494 begin
7495 -- The non-limited view directly denotes the type
7497 if Typ = View then
7498 return True;
7500 -- The type is a subtype of the non-limited view
7502 elsif Is_Subtype_Of (Typ, View) then
7503 return True;
7505 -- Both the non-limited view and the type denote class-wide types
7507 elsif Is_Class_Wide_Type (Typ)
7508 and then Is_Class_Wide_Type (View)
7509 then
7510 Root_Typ := Root_Type (Typ);
7511 Root_View := Root_Type (View);
7513 if Root_Typ = Root_View then
7514 return True;
7516 -- An incomplete tagged type and its full view may receive two
7517 -- distinct class-wide types when the related package has not
7518 -- been analyzed yet.
7520 -- package Pack is
7521 -- type T is tagged; -- CW_1
7522 -- type T is tagged null record; -- CW_2
7523 -- end Pack;
7525 -- This is because the package lacks any semantic information
7526 -- that may eventually link both views of T. As a consequence,
7527 -- a client of the limited view of Pack will see CW_2 while a
7528 -- client of the non-limited view of Pack will see CW_1.
7530 elsif Is_Incomplete_Type (Root_Typ)
7531 and then Present (Full_View (Root_Typ))
7532 and then Full_View (Root_Typ) = Root_View
7533 then
7534 return True;
7536 elsif Is_Incomplete_Type (Root_View)
7537 and then Present (Full_View (Root_View))
7538 and then Full_View (Root_View) = Root_Typ
7539 then
7540 return True;
7541 end if;
7542 end if;
7544 return False;
7545 end Is_Matching_Limited_View;
7547 -- Start of processing for Matches_Limited_With_View
7549 begin
7550 -- In some cases a type imported through a limited_with clause, and
7551 -- its non-limited view are both visible, for example in an anonymous
7552 -- access-to-class-wide type in a formal, or when building the body
7553 -- for a subprogram renaming after the subprogram has been frozen.
7554 -- In these cases both entities designate the same type. In addition,
7555 -- if one of them is an actual in an instance, it may be a subtype of
7556 -- the non-limited view of the other.
7558 if From_Limited_With (Typ_1)
7559 and then From_Limited_With (Typ_2)
7560 and then Available_View (Typ_1) = Available_View (Typ_2)
7561 then
7562 return True;
7564 elsif From_Limited_With (Typ_1) then
7565 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7567 elsif From_Limited_With (Typ_2) then
7568 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7570 else
7571 return False;
7572 end if;
7573 end Matches_Limited_With_View;
7575 -- Local variables
7577 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7579 Type_1 : Entity_Id := T1;
7580 Type_2 : Entity_Id := T2;
7582 -- Start of processing for Conforming_Types
7584 begin
7585 -- The context is an instance association for a formal access-to-
7586 -- subprogram type; the formal parameter types require mapping because
7587 -- they may denote other formal parameters of the generic unit.
7589 if Get_Inst then
7590 Type_1 := Get_Instance_Of (T1);
7591 Type_2 := Get_Instance_Of (T2);
7592 end if;
7594 -- If one of the types is a view of the other introduced by a limited
7595 -- with clause, treat these as conforming for all purposes.
7597 if Matches_Limited_With_View (T1, T2) then
7598 return True;
7600 elsif Base_Types_Match (Type_1, Type_2) then
7601 if Ctype <= Mode_Conformant then
7602 return True;
7604 else
7605 return
7606 Subtypes_Statically_Match (Type_1, Type_2)
7607 and then Dimensions_Match (Type_1, Type_2);
7608 end if;
7610 elsif Is_Incomplete_Or_Private_Type (Type_1)
7611 and then Present (Full_View (Type_1))
7612 and then Base_Types_Match (Full_View (Type_1), Type_2)
7613 then
7614 return
7615 Ctype <= Mode_Conformant
7616 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7618 elsif Ekind (Type_2) = E_Incomplete_Type
7619 and then Present (Full_View (Type_2))
7620 and then Base_Types_Match (Type_1, Full_View (Type_2))
7621 then
7622 return
7623 Ctype <= Mode_Conformant
7624 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7626 elsif Is_Private_Type (Type_2)
7627 and then In_Instance
7628 and then Present (Full_View (Type_2))
7629 and then Base_Types_Match (Type_1, Full_View (Type_2))
7630 then
7631 return
7632 Ctype <= Mode_Conformant
7633 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7635 -- Another confusion between views in a nested instance with an
7636 -- actual private type whose full view is not in scope.
7638 elsif Ekind (Type_2) = E_Private_Subtype
7639 and then In_Instance
7640 and then Etype (Type_2) = Type_1
7641 then
7642 return True;
7644 -- In Ada 2012, incomplete types (including limited views) can appear
7645 -- as actuals in instantiations.
7647 elsif Is_Incomplete_Type (Type_1)
7648 and then Is_Incomplete_Type (Type_2)
7649 and then (Used_As_Generic_Actual (Type_1)
7650 or else Used_As_Generic_Actual (Type_2))
7651 then
7652 return True;
7653 end if;
7655 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7656 -- treated recursively because they carry a signature. As far as
7657 -- conformance is concerned, convention plays no role, and either
7658 -- or both could be access to protected subprograms.
7660 Are_Anonymous_Access_To_Subprogram_Types :=
7661 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7662 E_Anonymous_Access_Protected_Subprogram_Type)
7663 and then
7664 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7665 E_Anonymous_Access_Protected_Subprogram_Type);
7667 -- Test anonymous access type case. For this case, static subtype
7668 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7669 -- the base types because we may have built internal subtype entities
7670 -- to handle null-excluding types (see Process_Formals).
7672 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7673 and then
7674 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7676 -- Ada 2005 (AI-254)
7678 or else Are_Anonymous_Access_To_Subprogram_Types
7679 then
7680 declare
7681 Desig_1 : Entity_Id;
7682 Desig_2 : Entity_Id;
7684 begin
7685 -- In Ada 2005, access constant indicators must match for
7686 -- subtype conformance.
7688 if Ada_Version >= Ada_2005
7689 and then Ctype >= Subtype_Conformant
7690 and then
7691 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7692 then
7693 return False;
7694 end if;
7696 Desig_1 := Find_Designated_Type (Type_1);
7697 Desig_2 := Find_Designated_Type (Type_2);
7699 -- If the context is an instance association for a formal
7700 -- access-to-subprogram type; formal access parameter designated
7701 -- types require mapping because they may denote other formal
7702 -- parameters of the generic unit.
7704 if Get_Inst then
7705 Desig_1 := Get_Instance_Of (Desig_1);
7706 Desig_2 := Get_Instance_Of (Desig_2);
7707 end if;
7709 -- It is possible for a Class_Wide_Type to be introduced for an
7710 -- incomplete type, in which case there is a separate class_ wide
7711 -- type for the full view. The types conform if their Etypes
7712 -- conform, i.e. one may be the full view of the other. This can
7713 -- only happen in the context of an access parameter, other uses
7714 -- of an incomplete Class_Wide_Type are illegal.
7716 if Is_Class_Wide_Type (Desig_1)
7717 and then
7718 Is_Class_Wide_Type (Desig_2)
7719 then
7720 return
7721 Conforming_Types
7722 (Etype (Base_Type (Desig_1)),
7723 Etype (Base_Type (Desig_2)), Ctype);
7725 elsif Are_Anonymous_Access_To_Subprogram_Types then
7726 if Ada_Version < Ada_2005 then
7727 return
7728 Ctype = Type_Conformant
7729 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7731 -- We must check the conformance of the signatures themselves
7733 else
7734 declare
7735 Conformant : Boolean;
7736 begin
7737 Check_Conformance
7738 (Desig_1, Desig_2, Ctype, False, Conformant);
7739 return Conformant;
7740 end;
7741 end if;
7743 -- A limited view of an actual matches the corresponding
7744 -- incomplete formal.
7746 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7747 and then From_Limited_With (Desig_2)
7748 and then Used_As_Generic_Actual (Etype (Desig_2))
7749 then
7750 return True;
7752 else
7753 return Base_Type (Desig_1) = Base_Type (Desig_2)
7754 and then (Ctype = Type_Conformant
7755 or else
7756 Subtypes_Statically_Match (Desig_1, Desig_2));
7757 end if;
7758 end;
7760 -- Otherwise definitely no match
7762 else
7763 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7764 and then Is_Access_Type (Type_2))
7765 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7766 and then Is_Access_Type (Type_1)))
7767 and then
7768 Conforming_Types
7769 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7770 then
7771 May_Hide_Profile := True;
7772 end if;
7774 return False;
7775 end if;
7776 end Conforming_Types;
7778 --------------------------
7779 -- Create_Extra_Formals --
7780 --------------------------
7782 procedure Create_Extra_Formals (E : Entity_Id) is
7783 First_Extra : Entity_Id := Empty;
7784 Formal : Entity_Id;
7785 Last_Extra : Entity_Id := Empty;
7787 function Add_Extra_Formal
7788 (Assoc_Entity : Entity_Id;
7789 Typ : Entity_Id;
7790 Scope : Entity_Id;
7791 Suffix : String) return Entity_Id;
7792 -- Add an extra formal to the current list of formals and extra formals.
7793 -- The extra formal is added to the end of the list of extra formals,
7794 -- and also returned as the result. These formals are always of mode IN.
7795 -- The new formal has the type Typ, is declared in Scope, and its name
7796 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7797 -- The following suffixes are currently used. They should not be changed
7798 -- without coordinating with CodePeer, which makes use of these to
7799 -- provide better messages.
7801 -- O denotes the Constrained bit.
7802 -- L denotes the accessibility level.
7803 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7804 -- the full list in exp_ch6.BIP_Formal_Kind.
7806 ----------------------
7807 -- Add_Extra_Formal --
7808 ----------------------
7810 function Add_Extra_Formal
7811 (Assoc_Entity : Entity_Id;
7812 Typ : Entity_Id;
7813 Scope : Entity_Id;
7814 Suffix : String) return Entity_Id
7816 EF : constant Entity_Id :=
7817 Make_Defining_Identifier (Sloc (Assoc_Entity),
7818 Chars => New_External_Name (Chars (Assoc_Entity),
7819 Suffix => Suffix));
7821 begin
7822 -- A little optimization. Never generate an extra formal for the
7823 -- _init operand of an initialization procedure, since it could
7824 -- never be used.
7826 if Chars (Formal) = Name_uInit then
7827 return Empty;
7828 end if;
7830 Set_Ekind (EF, E_In_Parameter);
7831 Set_Actual_Subtype (EF, Typ);
7832 Set_Etype (EF, Typ);
7833 Set_Scope (EF, Scope);
7834 Set_Mechanism (EF, Default_Mechanism);
7835 Set_Formal_Validity (EF);
7837 if No (First_Extra) then
7838 First_Extra := EF;
7839 Set_Extra_Formals (Scope, First_Extra);
7840 end if;
7842 if Present (Last_Extra) then
7843 Set_Extra_Formal (Last_Extra, EF);
7844 end if;
7846 Last_Extra := EF;
7848 return EF;
7849 end Add_Extra_Formal;
7851 -- Local variables
7853 Formal_Type : Entity_Id;
7854 P_Formal : Entity_Id := Empty;
7856 -- Start of processing for Create_Extra_Formals
7858 begin
7859 -- We never generate extra formals if expansion is not active because we
7860 -- don't need them unless we are generating code.
7862 if not Expander_Active then
7863 return;
7864 end if;
7866 -- No need to generate extra formals in interface thunks whose target
7867 -- primitive has no extra formals.
7869 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7870 return;
7871 end if;
7873 -- If this is a derived subprogram then the subtypes of the parent
7874 -- subprogram's formal parameters will be used to determine the need
7875 -- for extra formals.
7877 if Is_Overloadable (E) and then Present (Alias (E)) then
7878 P_Formal := First_Formal (Alias (E));
7879 end if;
7881 Formal := First_Formal (E);
7882 while Present (Formal) loop
7883 Last_Extra := Formal;
7884 Next_Formal (Formal);
7885 end loop;
7887 -- If Extra_Formals were already created, don't do it again. This
7888 -- situation may arise for subprogram types created as part of
7889 -- dispatching calls (see Expand_Dispatching_Call)
7891 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7892 return;
7893 end if;
7895 -- If the subprogram is a predefined dispatching subprogram then don't
7896 -- generate any extra constrained or accessibility level formals. In
7897 -- general we suppress these for internal subprograms (by not calling
7898 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7899 -- generated stream attributes do get passed through because extra
7900 -- build-in-place formals are needed in some cases (limited 'Input).
7902 if Is_Predefined_Internal_Operation (E) then
7903 goto Test_For_Func_Result_Extras;
7904 end if;
7906 Formal := First_Formal (E);
7907 while Present (Formal) loop
7909 -- Create extra formal for supporting the attribute 'Constrained.
7910 -- The case of a private type view without discriminants also
7911 -- requires the extra formal if the underlying type has defaulted
7912 -- discriminants.
7914 if Ekind (Formal) /= E_In_Parameter then
7915 if Present (P_Formal) then
7916 Formal_Type := Etype (P_Formal);
7917 else
7918 Formal_Type := Etype (Formal);
7919 end if;
7921 -- Do not produce extra formals for Unchecked_Union parameters.
7922 -- Jump directly to the end of the loop.
7924 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7925 goto Skip_Extra_Formal_Generation;
7926 end if;
7928 if not Has_Discriminants (Formal_Type)
7929 and then Ekind (Formal_Type) in Private_Kind
7930 and then Present (Underlying_Type (Formal_Type))
7931 then
7932 Formal_Type := Underlying_Type (Formal_Type);
7933 end if;
7935 -- Suppress the extra formal if formal's subtype is constrained or
7936 -- indefinite, or we're compiling for Ada 2012 and the underlying
7937 -- type is tagged and limited. In Ada 2012, a limited tagged type
7938 -- can have defaulted discriminants, but 'Constrained is required
7939 -- to return True, so the formal is never needed (see AI05-0214).
7940 -- Note that this ensures consistency of calling sequences for
7941 -- dispatching operations when some types in a class have defaults
7942 -- on discriminants and others do not (and requiring the extra
7943 -- formal would introduce distributed overhead).
7945 -- If the type does not have a completion yet, treat as prior to
7946 -- Ada 2012 for consistency.
7948 if Has_Discriminants (Formal_Type)
7949 and then not Is_Constrained (Formal_Type)
7950 and then Is_Definite_Subtype (Formal_Type)
7951 and then (Ada_Version < Ada_2012
7952 or else No (Underlying_Type (Formal_Type))
7953 or else not
7954 (Is_Limited_Type (Formal_Type)
7955 and then
7956 (Is_Tagged_Type
7957 (Underlying_Type (Formal_Type)))))
7958 then
7959 Set_Extra_Constrained
7960 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7961 end if;
7962 end if;
7964 -- Create extra formal for supporting accessibility checking. This
7965 -- is done for both anonymous access formals and formals of named
7966 -- access types that are marked as controlling formals. The latter
7967 -- case can occur when Expand_Dispatching_Call creates a subprogram
7968 -- type and substitutes the types of access-to-class-wide actuals
7969 -- for the anonymous access-to-specific-type of controlling formals.
7970 -- Base_Type is applied because in cases where there is a null
7971 -- exclusion the formal may have an access subtype.
7973 -- This is suppressed if we specifically suppress accessibility
7974 -- checks at the package level for either the subprogram, or the
7975 -- package in which it resides. However, we do not suppress it
7976 -- simply if the scope has accessibility checks suppressed, since
7977 -- this could cause trouble when clients are compiled with a
7978 -- different suppression setting. The explicit checks at the
7979 -- package level are safe from this point of view.
7981 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
7982 or else (Is_Controlling_Formal (Formal)
7983 and then Is_Access_Type (Base_Type (Etype (Formal)))))
7984 and then not
7985 (Explicit_Suppress (E, Accessibility_Check)
7986 or else
7987 Explicit_Suppress (Scope (E), Accessibility_Check))
7988 and then
7989 (No (P_Formal)
7990 or else Present (Extra_Accessibility (P_Formal)))
7991 then
7992 Set_Extra_Accessibility
7993 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
7994 end if;
7996 -- This label is required when skipping extra formal generation for
7997 -- Unchecked_Union parameters.
7999 <<Skip_Extra_Formal_Generation>>
8001 if Present (P_Formal) then
8002 Next_Formal (P_Formal);
8003 end if;
8005 Next_Formal (Formal);
8006 end loop;
8008 <<Test_For_Func_Result_Extras>>
8010 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8011 -- function call is ... determined by the point of call ...".
8013 if Needs_Result_Accessibility_Level (E) then
8014 Set_Extra_Accessibility_Of_Result
8015 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8016 end if;
8018 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8019 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8021 if Is_Build_In_Place_Function (E) then
8022 declare
8023 Result_Subt : constant Entity_Id := Etype (E);
8024 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8025 Formal_Typ : Entity_Id;
8026 Subp_Decl : Node_Id;
8028 Discard : Entity_Id;
8029 pragma Warnings (Off, Discard);
8031 begin
8032 -- In the case of functions with unconstrained result subtypes,
8033 -- add a 4-state formal indicating whether the return object is
8034 -- allocated by the caller (1), or should be allocated by the
8035 -- callee on the secondary stack (2), in the global heap (3), or
8036 -- in a user-defined storage pool (4). For the moment we just use
8037 -- Natural for the type of this formal. Note that this formal
8038 -- isn't usually needed in the case where the result subtype is
8039 -- constrained, but it is needed when the function has a tagged
8040 -- result, because generally such functions can be called in a
8041 -- dispatching context and such calls must be handled like calls
8042 -- to a class-wide function.
8044 if Needs_BIP_Alloc_Form (E) then
8045 Discard :=
8046 Add_Extra_Formal
8047 (E, Standard_Natural,
8048 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8050 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8051 -- use a user-defined pool. This formal is not added on
8052 -- ZFP as those targets do not support pools.
8054 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8055 Discard :=
8056 Add_Extra_Formal
8057 (E, RTE (RE_Root_Storage_Pool_Ptr),
8058 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8059 end if;
8060 end if;
8062 -- In the case of functions whose result type needs finalization,
8063 -- add an extra formal which represents the finalization master.
8065 if Needs_BIP_Finalization_Master (E) then
8066 Discard :=
8067 Add_Extra_Formal
8068 (E, RTE (RE_Finalization_Master_Ptr),
8069 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8070 end if;
8072 -- When the result type contains tasks, add two extra formals: the
8073 -- master of the tasks to be created, and the caller's activation
8074 -- chain.
8076 if Has_Task (Full_Subt) then
8077 Discard :=
8078 Add_Extra_Formal
8079 (E, RTE (RE_Master_Id),
8080 E, BIP_Formal_Suffix (BIP_Task_Master));
8081 Discard :=
8082 Add_Extra_Formal
8083 (E, RTE (RE_Activation_Chain_Access),
8084 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8085 end if;
8087 -- All build-in-place functions get an extra formal that will be
8088 -- passed the address of the return object within the caller.
8090 Formal_Typ :=
8091 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8093 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
8094 Set_Etype (Formal_Typ, Formal_Typ);
8095 Set_Depends_On_Private
8096 (Formal_Typ, Has_Private_Component (Formal_Typ));
8097 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8098 Set_Is_Access_Constant (Formal_Typ, False);
8100 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8101 -- the designated type comes from the limited view (for back-end
8102 -- purposes).
8104 Set_From_Limited_With
8105 (Formal_Typ, From_Limited_With (Result_Subt));
8107 Layout_Type (Formal_Typ);
8109 -- Force the definition of the Itype in case of internal function
8110 -- calls within the same or nested scope.
8112 if Is_Subprogram_Or_Generic_Subprogram (E) then
8113 Subp_Decl := Parent (E);
8115 -- The insertion point for an Itype reference should be after
8116 -- the unit declaration node of the subprogram. An exception
8117 -- to this are inherited operations from a parent type in which
8118 -- case the derived type acts as their parent.
8120 if Nkind_In (Subp_Decl, N_Function_Specification,
8121 N_Procedure_Specification)
8122 then
8123 Subp_Decl := Parent (Subp_Decl);
8124 end if;
8126 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8127 end if;
8129 Discard :=
8130 Add_Extra_Formal
8131 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8132 end;
8133 end if;
8134 end Create_Extra_Formals;
8136 -----------------------------
8137 -- Enter_Overloaded_Entity --
8138 -----------------------------
8140 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8141 function Matches_Predefined_Op return Boolean;
8142 -- This returns an approximation of whether S matches a predefined
8143 -- operator, based on the operator symbol, and the parameter and result
8144 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8146 ---------------------------
8147 -- Matches_Predefined_Op --
8148 ---------------------------
8150 function Matches_Predefined_Op return Boolean is
8151 Formal_1 : constant Entity_Id := First_Formal (S);
8152 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8153 Op : constant Name_Id := Chars (S);
8154 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8155 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8157 begin
8158 -- Binary operator
8160 if Present (Formal_2) then
8161 declare
8162 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8164 begin
8165 -- All but "&" and "**" have same-types parameters
8167 case Op is
8168 when Name_Op_Concat
8169 | Name_Op_Expon
8171 null;
8173 when others =>
8174 if Type_1 /= Type_2 then
8175 return False;
8176 end if;
8177 end case;
8179 -- Check parameter and result types
8181 case Op is
8182 when Name_Op_And
8183 | Name_Op_Or
8184 | Name_Op_Xor
8186 return
8187 Is_Boolean_Type (Result_Type)
8188 and then Result_Type = Type_1;
8190 when Name_Op_Mod
8191 | Name_Op_Rem
8193 return
8194 Is_Integer_Type (Result_Type)
8195 and then Result_Type = Type_1;
8197 when Name_Op_Add
8198 | Name_Op_Divide
8199 | Name_Op_Multiply
8200 | Name_Op_Subtract
8202 return
8203 Is_Numeric_Type (Result_Type)
8204 and then Result_Type = Type_1;
8206 when Name_Op_Eq
8207 | Name_Op_Ne
8209 return
8210 Is_Boolean_Type (Result_Type)
8211 and then not Is_Limited_Type (Type_1);
8213 when Name_Op_Ge
8214 | Name_Op_Gt
8215 | Name_Op_Le
8216 | Name_Op_Lt
8218 return
8219 Is_Boolean_Type (Result_Type)
8220 and then (Is_Array_Type (Type_1)
8221 or else Is_Scalar_Type (Type_1));
8223 when Name_Op_Concat =>
8224 return Is_Array_Type (Result_Type);
8226 when Name_Op_Expon =>
8227 return
8228 (Is_Integer_Type (Result_Type)
8229 or else Is_Floating_Point_Type (Result_Type))
8230 and then Result_Type = Type_1
8231 and then Type_2 = Standard_Integer;
8233 when others =>
8234 raise Program_Error;
8235 end case;
8236 end;
8238 -- Unary operator
8240 else
8241 case Op is
8242 when Name_Op_Abs
8243 | Name_Op_Add
8244 | Name_Op_Subtract
8246 return
8247 Is_Numeric_Type (Result_Type)
8248 and then Result_Type = Type_1;
8250 when Name_Op_Not =>
8251 return
8252 Is_Boolean_Type (Result_Type)
8253 and then Result_Type = Type_1;
8255 when others =>
8256 raise Program_Error;
8257 end case;
8258 end if;
8259 end Matches_Predefined_Op;
8261 -- Local variables
8263 E : Entity_Id := Current_Entity_In_Scope (S);
8264 C_E : Entity_Id := Current_Entity (S);
8266 -- Start of processing for Enter_Overloaded_Entity
8268 begin
8269 if Present (E) then
8270 Set_Has_Homonym (E);
8271 Set_Has_Homonym (S);
8272 end if;
8274 Set_Is_Immediately_Visible (S);
8275 Set_Scope (S, Current_Scope);
8277 -- Chain new entity if front of homonym in current scope, so that
8278 -- homonyms are contiguous.
8280 if Present (E) and then E /= C_E then
8281 while Homonym (C_E) /= E loop
8282 C_E := Homonym (C_E);
8283 end loop;
8285 Set_Homonym (C_E, S);
8287 else
8288 E := C_E;
8289 Set_Current_Entity (S);
8290 end if;
8292 Set_Homonym (S, E);
8294 if Is_Inherited_Operation (S) then
8295 Append_Inherited_Subprogram (S);
8296 else
8297 Append_Entity (S, Current_Scope);
8298 end if;
8300 Set_Public_Status (S);
8302 if Debug_Flag_E then
8303 Write_Str ("New overloaded entity chain: ");
8304 Write_Name (Chars (S));
8306 E := S;
8307 while Present (E) loop
8308 Write_Str (" "); Write_Int (Int (E));
8309 E := Homonym (E);
8310 end loop;
8312 Write_Eol;
8313 end if;
8315 -- Generate warning for hiding
8317 if Warn_On_Hiding
8318 and then Comes_From_Source (S)
8319 and then In_Extended_Main_Source_Unit (S)
8320 then
8321 E := S;
8322 loop
8323 E := Homonym (E);
8324 exit when No (E);
8326 -- Warn unless genuine overloading. Do not emit warning on
8327 -- hiding predefined operators in Standard (these are either an
8328 -- (artifact of our implicit declarations, or simple noise) but
8329 -- keep warning on a operator defined on a local subtype, because
8330 -- of the real danger that different operators may be applied in
8331 -- various parts of the program.
8333 -- Note that if E and S have the same scope, there is never any
8334 -- hiding. Either the two conflict, and the program is illegal,
8335 -- or S is overriding an implicit inherited subprogram.
8337 if Scope (E) /= Scope (S)
8338 and then (not Is_Overloadable (E)
8339 or else Subtype_Conformant (E, S))
8340 and then (Is_Immediately_Visible (E)
8341 or else Is_Potentially_Use_Visible (S))
8342 then
8343 if Scope (E) = Standard_Standard then
8344 if Nkind (S) = N_Defining_Operator_Symbol
8345 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8346 Scope (S)
8347 and then Matches_Predefined_Op
8348 then
8349 Error_Msg_N
8350 ("declaration of & hides predefined operator?h?", S);
8351 end if;
8353 -- E not immediately within Standard
8355 else
8356 Error_Msg_Sloc := Sloc (E);
8357 Error_Msg_N ("declaration of & hides one #?h?", S);
8358 end if;
8359 end if;
8360 end loop;
8361 end if;
8362 end Enter_Overloaded_Entity;
8364 -----------------------------
8365 -- Check_Untagged_Equality --
8366 -----------------------------
8368 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8369 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8370 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8371 Obj_Decl : Node_Id;
8373 begin
8374 -- This check applies only if we have a subprogram declaration with an
8375 -- untagged record type.
8377 if Nkind (Decl) /= N_Subprogram_Declaration
8378 or else not Is_Record_Type (Typ)
8379 or else Is_Tagged_Type (Typ)
8380 then
8381 return;
8382 end if;
8384 -- In Ada 2012 case, we will output errors or warnings depending on
8385 -- the setting of debug flag -gnatd.E.
8387 if Ada_Version >= Ada_2012 then
8388 Error_Msg_Warn := Debug_Flag_Dot_EE;
8390 -- In earlier versions of Ada, nothing to do unless we are warning on
8391 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8393 else
8394 if not Warn_On_Ada_2012_Compatibility then
8395 return;
8396 end if;
8397 end if;
8399 -- Cases where the type has already been frozen
8401 if Is_Frozen (Typ) then
8403 -- If the type is not declared in a package, or if we are in the body
8404 -- of the package or in some other scope, the new operation is not
8405 -- primitive, and therefore legal, though suspicious. Should we
8406 -- generate a warning in this case ???
8408 if Ekind (Scope (Typ)) /= E_Package
8409 or else Scope (Typ) /= Current_Scope
8410 then
8411 return;
8413 -- If the type is a generic actual (sub)type, the operation is not
8414 -- primitive either because the base type is declared elsewhere.
8416 elsif Is_Generic_Actual_Type (Typ) then
8417 return;
8419 -- Here we have a definite error of declaration after freezing
8421 else
8422 if Ada_Version >= Ada_2012 then
8423 Error_Msg_NE
8424 ("equality operator must be declared before type & is "
8425 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8427 -- In Ada 2012 mode with error turned to warning, output one
8428 -- more warning to warn that the equality operation may not
8429 -- compose. This is the consequence of ignoring the error.
8431 if Error_Msg_Warn then
8432 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8433 end if;
8435 else
8436 Error_Msg_NE
8437 ("equality operator must be declared before type& is "
8438 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8439 end if;
8441 -- If we are in the package body, we could just move the
8442 -- declaration to the package spec, so add a message saying that.
8444 if In_Package_Body (Scope (Typ)) then
8445 if Ada_Version >= Ada_2012 then
8446 Error_Msg_N
8447 ("\move declaration to package spec<<", Eq_Op);
8448 else
8449 Error_Msg_N
8450 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8451 end if;
8453 -- Otherwise try to find the freezing point
8455 else
8456 Obj_Decl := Next (Parent (Typ));
8457 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8458 if Nkind (Obj_Decl) = N_Object_Declaration
8459 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8460 then
8461 -- Freezing point, output warnings
8463 if Ada_Version >= Ada_2012 then
8464 Error_Msg_NE
8465 ("type& is frozen by declaration??", Obj_Decl, Typ);
8466 Error_Msg_N
8467 ("\an equality operator cannot be declared after "
8468 & "this point??",
8469 Obj_Decl);
8470 else
8471 Error_Msg_NE
8472 ("type& is frozen by declaration (Ada 2012)?y?",
8473 Obj_Decl, Typ);
8474 Error_Msg_N
8475 ("\an equality operator cannot be declared after "
8476 & "this point (Ada 2012)?y?",
8477 Obj_Decl);
8478 end if;
8480 exit;
8481 end if;
8483 Next (Obj_Decl);
8484 end loop;
8485 end if;
8486 end if;
8488 -- Here if type is not frozen yet. It is illegal to have a primitive
8489 -- equality declared in the private part if the type is visible.
8491 elsif not In_Same_List (Parent (Typ), Decl)
8492 and then not Is_Limited_Type (Typ)
8493 then
8494 -- Shouldn't we give an RM reference here???
8496 if Ada_Version >= Ada_2012 then
8497 Error_Msg_N
8498 ("equality operator appears too late<<", Eq_Op);
8499 else
8500 Error_Msg_N
8501 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8502 end if;
8504 -- No error detected
8506 else
8507 return;
8508 end if;
8509 end Check_Untagged_Equality;
8511 -----------------------------
8512 -- Find_Corresponding_Spec --
8513 -----------------------------
8515 function Find_Corresponding_Spec
8516 (N : Node_Id;
8517 Post_Error : Boolean := True) return Entity_Id
8519 Spec : constant Node_Id := Specification (N);
8520 Designator : constant Entity_Id := Defining_Entity (Spec);
8522 E : Entity_Id;
8524 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8525 -- Even if fully conformant, a body may depend on a generic actual when
8526 -- the spec does not, or vice versa, in which case they were distinct
8527 -- entities in the generic.
8529 -------------------------------
8530 -- Different_Generic_Profile --
8531 -------------------------------
8533 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8534 F1, F2 : Entity_Id;
8536 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8537 -- Check that the types of corresponding formals have the same
8538 -- generic actual if any. We have to account for subtypes of a
8539 -- generic formal, declared between a spec and a body, which may
8540 -- appear distinct in an instance but matched in the generic, and
8541 -- the subtype may be used either in the spec or the body of the
8542 -- subprogram being checked.
8544 -------------------------
8545 -- Same_Generic_Actual --
8546 -------------------------
8548 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8550 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8551 -- Predicate to check whether S1 is a subtype of S2 in the source
8552 -- of the instance.
8554 -------------------------
8555 -- Is_Declared_Subtype --
8556 -------------------------
8558 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8559 begin
8560 return Comes_From_Source (Parent (S1))
8561 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8562 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8563 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8564 end Is_Declared_Subtype;
8566 -- Start of processing for Same_Generic_Actual
8568 begin
8569 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8570 or else Is_Declared_Subtype (T1, T2)
8571 or else Is_Declared_Subtype (T2, T1);
8572 end Same_Generic_Actual;
8574 -- Start of processing for Different_Generic_Profile
8576 begin
8577 if not In_Instance then
8578 return False;
8580 elsif Ekind (E) = E_Function
8581 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8582 then
8583 return True;
8584 end if;
8586 F1 := First_Formal (Designator);
8587 F2 := First_Formal (E);
8588 while Present (F1) loop
8589 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8590 return True;
8591 end if;
8593 Next_Formal (F1);
8594 Next_Formal (F2);
8595 end loop;
8597 return False;
8598 end Different_Generic_Profile;
8600 -- Start of processing for Find_Corresponding_Spec
8602 begin
8603 E := Current_Entity (Designator);
8604 while Present (E) loop
8606 -- We are looking for a matching spec. It must have the same scope,
8607 -- and the same name, and either be type conformant, or be the case
8608 -- of a library procedure spec and its body (which belong to one
8609 -- another regardless of whether they are type conformant or not).
8611 if Scope (E) = Current_Scope then
8612 if Current_Scope = Standard_Standard
8613 or else (Ekind (E) = Ekind (Designator)
8614 and then Type_Conformant (E, Designator))
8615 then
8616 -- Within an instantiation, we know that spec and body are
8617 -- subtype conformant, because they were subtype conformant in
8618 -- the generic. We choose the subtype-conformant entity here as
8619 -- well, to resolve spurious ambiguities in the instance that
8620 -- were not present in the generic (i.e. when two different
8621 -- types are given the same actual). If we are looking for a
8622 -- spec to match a body, full conformance is expected.
8624 if In_Instance then
8626 -- Inherit the convention and "ghostness" of the matching
8627 -- spec to ensure proper full and subtype conformance.
8629 Set_Convention (Designator, Convention (E));
8631 -- Skip past subprogram bodies and subprogram renamings that
8632 -- may appear to have a matching spec, but that aren't fully
8633 -- conformant with it. That can occur in cases where an
8634 -- actual type causes unrelated homographs in the instance.
8636 if Nkind_In (N, N_Subprogram_Body,
8637 N_Subprogram_Renaming_Declaration)
8638 and then Present (Homonym (E))
8639 and then not Fully_Conformant (Designator, E)
8640 then
8641 goto Next_Entity;
8643 elsif not Subtype_Conformant (Designator, E) then
8644 goto Next_Entity;
8646 elsif Different_Generic_Profile (E) then
8647 goto Next_Entity;
8648 end if;
8649 end if;
8651 -- Ada 2012 (AI05-0165): For internally generated bodies of
8652 -- null procedures locate the internally generated spec. We
8653 -- enforce mode conformance since a tagged type may inherit
8654 -- from interfaces several null primitives which differ only
8655 -- in the mode of the formals.
8657 if not (Comes_From_Source (E))
8658 and then Is_Null_Procedure (E)
8659 and then not Mode_Conformant (Designator, E)
8660 then
8661 null;
8663 -- For null procedures coming from source that are completions,
8664 -- analysis of the generated body will establish the link.
8666 elsif Comes_From_Source (E)
8667 and then Nkind (Spec) = N_Procedure_Specification
8668 and then Null_Present (Spec)
8669 then
8670 return E;
8672 -- Expression functions can be completions, but cannot be
8673 -- completed by an explicit body.
8675 elsif Comes_From_Source (E)
8676 and then Comes_From_Source (N)
8677 and then Nkind (N) = N_Subprogram_Body
8678 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8679 N_Expression_Function
8680 then
8681 Error_Msg_Sloc := Sloc (E);
8682 Error_Msg_N ("body conflicts with expression function#", N);
8683 return Empty;
8685 elsif not Has_Completion (E) then
8686 if Nkind (N) /= N_Subprogram_Body_Stub then
8687 Set_Corresponding_Spec (N, E);
8688 end if;
8690 Set_Has_Completion (E);
8691 return E;
8693 elsif Nkind (Parent (N)) = N_Subunit then
8695 -- If this is the proper body of a subunit, the completion
8696 -- flag is set when analyzing the stub.
8698 return E;
8700 -- If E is an internal function with a controlling result that
8701 -- was created for an operation inherited by a null extension,
8702 -- it may be overridden by a body without a previous spec (one
8703 -- more reason why these should be shunned). In that case we
8704 -- remove the generated body if present, because the current
8705 -- one is the explicit overriding.
8707 elsif Ekind (E) = E_Function
8708 and then Ada_Version >= Ada_2005
8709 and then not Comes_From_Source (E)
8710 and then Has_Controlling_Result (E)
8711 and then Is_Null_Extension (Etype (E))
8712 and then Comes_From_Source (Spec)
8713 then
8714 Set_Has_Completion (E, False);
8716 if Expander_Active
8717 and then Nkind (Parent (E)) = N_Function_Specification
8718 then
8719 Remove
8720 (Unit_Declaration_Node
8721 (Corresponding_Body (Unit_Declaration_Node (E))));
8723 return E;
8725 -- If expansion is disabled, or if the wrapper function has
8726 -- not been generated yet, this a late body overriding an
8727 -- inherited operation, or it is an overriding by some other
8728 -- declaration before the controlling result is frozen. In
8729 -- either case this is a declaration of a new entity.
8731 else
8732 return Empty;
8733 end if;
8735 -- If the body already exists, then this is an error unless
8736 -- the previous declaration is the implicit declaration of a
8737 -- derived subprogram. It is also legal for an instance to
8738 -- contain type conformant overloadable declarations (but the
8739 -- generic declaration may not), per 8.3(26/2).
8741 elsif No (Alias (E))
8742 and then not Is_Intrinsic_Subprogram (E)
8743 and then not In_Instance
8744 and then Post_Error
8745 then
8746 Error_Msg_Sloc := Sloc (E);
8748 if Is_Imported (E) then
8749 Error_Msg_NE
8750 ("body not allowed for imported subprogram & declared#",
8751 N, E);
8752 else
8753 Error_Msg_NE ("duplicate body for & declared#", N, E);
8754 end if;
8755 end if;
8757 -- Child units cannot be overloaded, so a conformance mismatch
8758 -- between body and a previous spec is an error.
8760 elsif Is_Child_Unit (E)
8761 and then
8762 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8763 and then
8764 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8765 N_Compilation_Unit
8766 and then Post_Error
8767 then
8768 Error_Msg_N
8769 ("body of child unit does not match previous declaration", N);
8770 end if;
8771 end if;
8773 <<Next_Entity>>
8774 E := Homonym (E);
8775 end loop;
8777 -- On exit, we know that no previous declaration of subprogram exists
8779 return Empty;
8780 end Find_Corresponding_Spec;
8782 ----------------------
8783 -- Fully_Conformant --
8784 ----------------------
8786 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8787 Result : Boolean;
8788 begin
8789 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8790 return Result;
8791 end Fully_Conformant;
8793 ----------------------------------
8794 -- Fully_Conformant_Expressions --
8795 ----------------------------------
8797 function Fully_Conformant_Expressions
8798 (Given_E1 : Node_Id;
8799 Given_E2 : Node_Id) return Boolean
8801 E1 : constant Node_Id := Original_Node (Given_E1);
8802 E2 : constant Node_Id := Original_Node (Given_E2);
8803 -- We always test conformance on original nodes, since it is possible
8804 -- for analysis and/or expansion to make things look as though they
8805 -- conform when they do not, e.g. by converting 1+2 into 3.
8807 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8808 renames Fully_Conformant_Expressions;
8810 function FCL (L1, L2 : List_Id) return Boolean;
8811 -- Compare elements of two lists for conformance. Elements have to be
8812 -- conformant, and actuals inserted as default parameters do not match
8813 -- explicit actuals with the same value.
8815 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8816 -- Compare an operator node with a function call
8818 ---------
8819 -- FCL --
8820 ---------
8822 function FCL (L1, L2 : List_Id) return Boolean is
8823 N1, N2 : Node_Id;
8825 begin
8826 if L1 = No_List then
8827 N1 := Empty;
8828 else
8829 N1 := First (L1);
8830 end if;
8832 if L2 = No_List then
8833 N2 := Empty;
8834 else
8835 N2 := First (L2);
8836 end if;
8838 -- Compare two lists, skipping rewrite insertions (we want to compare
8839 -- the original trees, not the expanded versions).
8841 loop
8842 if Is_Rewrite_Insertion (N1) then
8843 Next (N1);
8844 elsif Is_Rewrite_Insertion (N2) then
8845 Next (N2);
8846 elsif No (N1) then
8847 return No (N2);
8848 elsif No (N2) then
8849 return False;
8850 elsif not FCE (N1, N2) then
8851 return False;
8852 else
8853 Next (N1);
8854 Next (N2);
8855 end if;
8856 end loop;
8857 end FCL;
8859 ---------
8860 -- FCO --
8861 ---------
8863 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8864 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8865 Act : Node_Id;
8867 begin
8868 if No (Actuals)
8869 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8870 then
8871 return False;
8873 else
8874 Act := First (Actuals);
8876 if Nkind (Op_Node) in N_Binary_Op then
8877 if not FCE (Left_Opnd (Op_Node), Act) then
8878 return False;
8879 end if;
8881 Next (Act);
8882 end if;
8884 return Present (Act)
8885 and then FCE (Right_Opnd (Op_Node), Act)
8886 and then No (Next (Act));
8887 end if;
8888 end FCO;
8890 -- Start of processing for Fully_Conformant_Expressions
8892 begin
8893 -- Nonconformant if paren count does not match. Note: if some idiot
8894 -- complains that we don't do this right for more than 3 levels of
8895 -- parentheses, they will be treated with the respect they deserve.
8897 if Paren_Count (E1) /= Paren_Count (E2) then
8898 return False;
8900 -- If same entities are referenced, then they are conformant even if
8901 -- they have different forms (RM 8.3.1(19-20)).
8903 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8904 if Present (Entity (E1)) then
8905 return Entity (E1) = Entity (E2)
8907 -- One may be a discriminant that has been replaced by the
8908 -- corresponding discriminal.
8910 or else
8911 (Chars (Entity (E1)) = Chars (Entity (E2))
8912 and then Ekind (Entity (E1)) = E_Discriminant
8913 and then Ekind (Entity (E2)) = E_In_Parameter)
8915 -- The discriminant of a protected type is transformed into
8916 -- a local constant and then into a parameter of a protected
8917 -- operation.
8919 or else
8920 (Ekind (Entity (E1)) = E_Constant
8921 and then Ekind (Entity (E2)) = E_In_Parameter
8922 and then Present (Discriminal_Link (Entity (E1)))
8923 and then Discriminal_Link (Entity (E1)) =
8924 Discriminal_Link (Entity (E2)))
8926 -- AI12-050: The loop variables of quantified expressions
8927 -- match if they have the same identifier, even though they
8928 -- are different entities.
8930 or else
8931 (Chars (Entity (E1)) = Chars (Entity (E2))
8932 and then Ekind (Entity (E1)) = E_Loop_Parameter
8933 and then Ekind (Entity (E2)) = E_Loop_Parameter);
8935 elsif Nkind (E1) = N_Expanded_Name
8936 and then Nkind (E2) = N_Expanded_Name
8937 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8938 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8939 then
8940 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8942 else
8943 -- Identifiers in component associations don't always have
8944 -- entities, but their names must conform.
8946 return Nkind (E1) = N_Identifier
8947 and then Nkind (E2) = N_Identifier
8948 and then Chars (E1) = Chars (E2);
8949 end if;
8951 elsif Nkind (E1) = N_Character_Literal
8952 and then Nkind (E2) = N_Expanded_Name
8953 then
8954 return Nkind (Selector_Name (E2)) = N_Character_Literal
8955 and then Chars (E1) = Chars (Selector_Name (E2));
8957 elsif Nkind (E2) = N_Character_Literal
8958 and then Nkind (E1) = N_Expanded_Name
8959 then
8960 return Nkind (Selector_Name (E1)) = N_Character_Literal
8961 and then Chars (E2) = Chars (Selector_Name (E1));
8963 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8964 return FCO (E1, E2);
8966 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8967 return FCO (E2, E1);
8969 -- Otherwise we must have the same syntactic entity
8971 elsif Nkind (E1) /= Nkind (E2) then
8972 return False;
8974 -- At this point, we specialize by node type
8976 else
8977 case Nkind (E1) is
8978 when N_Aggregate =>
8979 return
8980 FCL (Expressions (E1), Expressions (E2))
8981 and then
8982 FCL (Component_Associations (E1),
8983 Component_Associations (E2));
8985 when N_Allocator =>
8986 if Nkind (Expression (E1)) = N_Qualified_Expression
8987 or else
8988 Nkind (Expression (E2)) = N_Qualified_Expression
8989 then
8990 return FCE (Expression (E1), Expression (E2));
8992 -- Check that the subtype marks and any constraints
8993 -- are conformant
8995 else
8996 declare
8997 Indic1 : constant Node_Id := Expression (E1);
8998 Indic2 : constant Node_Id := Expression (E2);
8999 Elt1 : Node_Id;
9000 Elt2 : Node_Id;
9002 begin
9003 if Nkind (Indic1) /= N_Subtype_Indication then
9004 return
9005 Nkind (Indic2) /= N_Subtype_Indication
9006 and then Entity (Indic1) = Entity (Indic2);
9008 elsif Nkind (Indic2) /= N_Subtype_Indication then
9009 return
9010 Nkind (Indic1) /= N_Subtype_Indication
9011 and then Entity (Indic1) = Entity (Indic2);
9013 else
9014 if Entity (Subtype_Mark (Indic1)) /=
9015 Entity (Subtype_Mark (Indic2))
9016 then
9017 return False;
9018 end if;
9020 Elt1 := First (Constraints (Constraint (Indic1)));
9021 Elt2 := First (Constraints (Constraint (Indic2)));
9022 while Present (Elt1) and then Present (Elt2) loop
9023 if not FCE (Elt1, Elt2) then
9024 return False;
9025 end if;
9027 Next (Elt1);
9028 Next (Elt2);
9029 end loop;
9031 return True;
9032 end if;
9033 end;
9034 end if;
9036 when N_Attribute_Reference =>
9037 return
9038 Attribute_Name (E1) = Attribute_Name (E2)
9039 and then FCL (Expressions (E1), Expressions (E2));
9041 when N_Binary_Op =>
9042 return
9043 Entity (E1) = Entity (E2)
9044 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9045 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9047 when N_Membership_Test
9048 | N_Short_Circuit
9050 return
9051 FCE (Left_Opnd (E1), Left_Opnd (E2))
9052 and then
9053 FCE (Right_Opnd (E1), Right_Opnd (E2));
9055 when N_Case_Expression =>
9056 declare
9057 Alt1 : Node_Id;
9058 Alt2 : Node_Id;
9060 begin
9061 if not FCE (Expression (E1), Expression (E2)) then
9062 return False;
9064 else
9065 Alt1 := First (Alternatives (E1));
9066 Alt2 := First (Alternatives (E2));
9067 loop
9068 if Present (Alt1) /= Present (Alt2) then
9069 return False;
9070 elsif No (Alt1) then
9071 return True;
9072 end if;
9074 if not FCE (Expression (Alt1), Expression (Alt2))
9075 or else not FCL (Discrete_Choices (Alt1),
9076 Discrete_Choices (Alt2))
9077 then
9078 return False;
9079 end if;
9081 Next (Alt1);
9082 Next (Alt2);
9083 end loop;
9084 end if;
9085 end;
9087 when N_Character_Literal =>
9088 return
9089 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9091 when N_Component_Association =>
9092 return
9093 FCL (Choices (E1), Choices (E2))
9094 and then
9095 FCE (Expression (E1), Expression (E2));
9097 when N_Explicit_Dereference =>
9098 return
9099 FCE (Prefix (E1), Prefix (E2));
9101 when N_Extension_Aggregate =>
9102 return
9103 FCL (Expressions (E1), Expressions (E2))
9104 and then Null_Record_Present (E1) =
9105 Null_Record_Present (E2)
9106 and then FCL (Component_Associations (E1),
9107 Component_Associations (E2));
9109 when N_Function_Call =>
9110 return
9111 FCE (Name (E1), Name (E2))
9112 and then
9113 FCL (Parameter_Associations (E1),
9114 Parameter_Associations (E2));
9116 when N_If_Expression =>
9117 return
9118 FCL (Expressions (E1), Expressions (E2));
9120 when N_Indexed_Component =>
9121 return
9122 FCE (Prefix (E1), Prefix (E2))
9123 and then
9124 FCL (Expressions (E1), Expressions (E2));
9126 when N_Integer_Literal =>
9127 return (Intval (E1) = Intval (E2));
9129 when N_Null =>
9130 return True;
9132 when N_Operator_Symbol =>
9133 return
9134 Chars (E1) = Chars (E2);
9136 when N_Others_Choice =>
9137 return True;
9139 when N_Parameter_Association =>
9140 return
9141 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9142 and then FCE (Explicit_Actual_Parameter (E1),
9143 Explicit_Actual_Parameter (E2));
9145 when N_Qualified_Expression
9146 | N_Type_Conversion
9147 | N_Unchecked_Type_Conversion
9149 return
9150 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9151 and then
9152 FCE (Expression (E1), Expression (E2));
9154 when N_Quantified_Expression =>
9155 if not FCE (Condition (E1), Condition (E2)) then
9156 return False;
9157 end if;
9159 if Present (Loop_Parameter_Specification (E1))
9160 and then Present (Loop_Parameter_Specification (E2))
9161 then
9162 declare
9163 L1 : constant Node_Id :=
9164 Loop_Parameter_Specification (E1);
9165 L2 : constant Node_Id :=
9166 Loop_Parameter_Specification (E2);
9168 begin
9169 return
9170 Reverse_Present (L1) = Reverse_Present (L2)
9171 and then
9172 FCE (Defining_Identifier (L1),
9173 Defining_Identifier (L2))
9174 and then
9175 FCE (Discrete_Subtype_Definition (L1),
9176 Discrete_Subtype_Definition (L2));
9177 end;
9179 elsif Present (Iterator_Specification (E1))
9180 and then Present (Iterator_Specification (E2))
9181 then
9182 declare
9183 I1 : constant Node_Id := Iterator_Specification (E1);
9184 I2 : constant Node_Id := Iterator_Specification (E2);
9186 begin
9187 return
9188 FCE (Defining_Identifier (I1),
9189 Defining_Identifier (I2))
9190 and then
9191 Of_Present (I1) = Of_Present (I2)
9192 and then
9193 Reverse_Present (I1) = Reverse_Present (I2)
9194 and then FCE (Name (I1), Name (I2))
9195 and then FCE (Subtype_Indication (I1),
9196 Subtype_Indication (I2));
9197 end;
9199 -- The quantified expressions used different specifications to
9200 -- walk their respective ranges.
9202 else
9203 return False;
9204 end if;
9206 when N_Range =>
9207 return
9208 FCE (Low_Bound (E1), Low_Bound (E2))
9209 and then
9210 FCE (High_Bound (E1), High_Bound (E2));
9212 when N_Real_Literal =>
9213 return (Realval (E1) = Realval (E2));
9215 when N_Selected_Component =>
9216 return
9217 FCE (Prefix (E1), Prefix (E2))
9218 and then
9219 FCE (Selector_Name (E1), Selector_Name (E2));
9221 when N_Slice =>
9222 return
9223 FCE (Prefix (E1), Prefix (E2))
9224 and then
9225 FCE (Discrete_Range (E1), Discrete_Range (E2));
9227 when N_String_Literal =>
9228 declare
9229 S1 : constant String_Id := Strval (E1);
9230 S2 : constant String_Id := Strval (E2);
9231 L1 : constant Nat := String_Length (S1);
9232 L2 : constant Nat := String_Length (S2);
9234 begin
9235 if L1 /= L2 then
9236 return False;
9238 else
9239 for J in 1 .. L1 loop
9240 if Get_String_Char (S1, J) /=
9241 Get_String_Char (S2, J)
9242 then
9243 return False;
9244 end if;
9245 end loop;
9247 return True;
9248 end if;
9249 end;
9251 when N_Unary_Op =>
9252 return
9253 Entity (E1) = Entity (E2)
9254 and then
9255 FCE (Right_Opnd (E1), Right_Opnd (E2));
9257 -- All other node types cannot appear in this context. Strictly
9258 -- we should raise a fatal internal error. Instead we just ignore
9259 -- the nodes. This means that if anyone makes a mistake in the
9260 -- expander and mucks an expression tree irretrievably, the result
9261 -- will be a failure to detect a (probably very obscure) case
9262 -- of non-conformance, which is better than bombing on some
9263 -- case where two expressions do in fact conform.
9265 when others =>
9266 return True;
9267 end case;
9268 end if;
9269 end Fully_Conformant_Expressions;
9271 ----------------------------------------
9272 -- Fully_Conformant_Discrete_Subtypes --
9273 ----------------------------------------
9275 function Fully_Conformant_Discrete_Subtypes
9276 (Given_S1 : Node_Id;
9277 Given_S2 : Node_Id) return Boolean
9279 S1 : constant Node_Id := Original_Node (Given_S1);
9280 S2 : constant Node_Id := Original_Node (Given_S2);
9282 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9283 -- Special-case for a bound given by a discriminant, which in the body
9284 -- is replaced with the discriminal of the enclosing type.
9286 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9287 -- Check both bounds
9289 -----------------------
9290 -- Conforming_Bounds --
9291 -----------------------
9293 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9294 begin
9295 if Is_Entity_Name (B1)
9296 and then Is_Entity_Name (B2)
9297 and then Ekind (Entity (B1)) = E_Discriminant
9298 then
9299 return Chars (B1) = Chars (B2);
9301 else
9302 return Fully_Conformant_Expressions (B1, B2);
9303 end if;
9304 end Conforming_Bounds;
9306 -----------------------
9307 -- Conforming_Ranges --
9308 -----------------------
9310 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9311 begin
9312 return
9313 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9314 and then
9315 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9316 end Conforming_Ranges;
9318 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9320 begin
9321 if Nkind (S1) /= Nkind (S2) then
9322 return False;
9324 elsif Is_Entity_Name (S1) then
9325 return Entity (S1) = Entity (S2);
9327 elsif Nkind (S1) = N_Range then
9328 return Conforming_Ranges (S1, S2);
9330 elsif Nkind (S1) = N_Subtype_Indication then
9331 return
9332 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9333 and then
9334 Conforming_Ranges
9335 (Range_Expression (Constraint (S1)),
9336 Range_Expression (Constraint (S2)));
9337 else
9338 return True;
9339 end if;
9340 end Fully_Conformant_Discrete_Subtypes;
9342 --------------------
9343 -- Install_Entity --
9344 --------------------
9346 procedure Install_Entity (E : Entity_Id) is
9347 Prev : constant Entity_Id := Current_Entity (E);
9348 begin
9349 Set_Is_Immediately_Visible (E);
9350 Set_Current_Entity (E);
9351 Set_Homonym (E, Prev);
9352 end Install_Entity;
9354 ---------------------
9355 -- Install_Formals --
9356 ---------------------
9358 procedure Install_Formals (Id : Entity_Id) is
9359 F : Entity_Id;
9360 begin
9361 F := First_Formal (Id);
9362 while Present (F) loop
9363 Install_Entity (F);
9364 Next_Formal (F);
9365 end loop;
9366 end Install_Formals;
9368 -----------------------------
9369 -- Is_Interface_Conformant --
9370 -----------------------------
9372 function Is_Interface_Conformant
9373 (Tagged_Type : Entity_Id;
9374 Iface_Prim : Entity_Id;
9375 Prim : Entity_Id) return Boolean
9377 -- The operation may in fact be an inherited (implicit) operation
9378 -- rather than the original interface primitive, so retrieve the
9379 -- ultimate ancestor.
9381 Iface : constant Entity_Id :=
9382 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9383 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9385 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9386 -- Return the controlling formal of Prim
9388 ------------------------
9389 -- Controlling_Formal --
9390 ------------------------
9392 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9393 E : Entity_Id;
9395 begin
9396 E := First_Entity (Prim);
9397 while Present (E) loop
9398 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9399 return E;
9400 end if;
9402 Next_Entity (E);
9403 end loop;
9405 return Empty;
9406 end Controlling_Formal;
9408 -- Local variables
9410 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9411 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9413 -- Start of processing for Is_Interface_Conformant
9415 begin
9416 pragma Assert (Is_Subprogram (Iface_Prim)
9417 and then Is_Subprogram (Prim)
9418 and then Is_Dispatching_Operation (Iface_Prim)
9419 and then Is_Dispatching_Operation (Prim));
9421 pragma Assert (Is_Interface (Iface)
9422 or else (Present (Alias (Iface_Prim))
9423 and then
9424 Is_Interface
9425 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9427 if Prim = Iface_Prim
9428 or else not Is_Subprogram (Prim)
9429 or else Ekind (Prim) /= Ekind (Iface_Prim)
9430 or else not Is_Dispatching_Operation (Prim)
9431 or else Scope (Prim) /= Scope (Tagged_Type)
9432 or else No (Typ)
9433 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9434 or else not Primitive_Names_Match (Iface_Prim, Prim)
9435 then
9436 return False;
9438 -- The mode of the controlling formals must match
9440 elsif Present (Iface_Ctrl_F)
9441 and then Present (Prim_Ctrl_F)
9442 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9443 then
9444 return False;
9446 -- Case of a procedure, or a function whose result type matches the
9447 -- result type of the interface primitive, or a function that has no
9448 -- controlling result (I or access I).
9450 elsif Ekind (Iface_Prim) = E_Procedure
9451 or else Etype (Prim) = Etype (Iface_Prim)
9452 or else not Has_Controlling_Result (Prim)
9453 then
9454 return Type_Conformant
9455 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9457 -- Case of a function returning an interface, or an access to one. Check
9458 -- that the return types correspond.
9460 elsif Implements_Interface (Typ, Iface) then
9461 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9463 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9464 then
9465 return False;
9466 else
9467 return
9468 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9469 Skip_Controlling_Formals => True);
9470 end if;
9472 else
9473 return False;
9474 end if;
9475 end Is_Interface_Conformant;
9477 ---------------------------------
9478 -- Is_Non_Overriding_Operation --
9479 ---------------------------------
9481 function Is_Non_Overriding_Operation
9482 (Prev_E : Entity_Id;
9483 New_E : Entity_Id) return Boolean
9485 Formal : Entity_Id;
9486 F_Typ : Entity_Id;
9487 G_Typ : Entity_Id := Empty;
9489 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9490 -- If F_Type is a derived type associated with a generic actual subtype,
9491 -- then return its Generic_Parent_Type attribute, else return Empty.
9493 function Types_Correspond
9494 (P_Type : Entity_Id;
9495 N_Type : Entity_Id) return Boolean;
9496 -- Returns true if and only if the types (or designated types in the
9497 -- case of anonymous access types) are the same or N_Type is derived
9498 -- directly or indirectly from P_Type.
9500 -----------------------------
9501 -- Get_Generic_Parent_Type --
9502 -----------------------------
9504 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9505 G_Typ : Entity_Id;
9506 Defn : Node_Id;
9507 Indic : Node_Id;
9509 begin
9510 if Is_Derived_Type (F_Typ)
9511 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9512 then
9513 -- The tree must be traversed to determine the parent subtype in
9514 -- the generic unit, which unfortunately isn't always available
9515 -- via semantic attributes. ??? (Note: The use of Original_Node
9516 -- is needed for cases where a full derived type has been
9517 -- rewritten.)
9519 -- If the parent type is a scalar type, the derivation creates
9520 -- an anonymous base type for it, and the source type is its
9521 -- first subtype.
9523 if Is_Scalar_Type (F_Typ)
9524 and then not Comes_From_Source (F_Typ)
9525 then
9526 Defn :=
9527 Type_Definition
9528 (Original_Node (Parent (First_Subtype (F_Typ))));
9529 else
9530 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9531 end if;
9532 if Nkind (Defn) = N_Derived_Type_Definition then
9533 Indic := Subtype_Indication (Defn);
9535 if Nkind (Indic) = N_Subtype_Indication then
9536 G_Typ := Entity (Subtype_Mark (Indic));
9537 else
9538 G_Typ := Entity (Indic);
9539 end if;
9541 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9542 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9543 then
9544 return Generic_Parent_Type (Parent (G_Typ));
9545 end if;
9546 end if;
9547 end if;
9549 return Empty;
9550 end Get_Generic_Parent_Type;
9552 ----------------------
9553 -- Types_Correspond --
9554 ----------------------
9556 function Types_Correspond
9557 (P_Type : Entity_Id;
9558 N_Type : Entity_Id) return Boolean
9560 Prev_Type : Entity_Id := Base_Type (P_Type);
9561 New_Type : Entity_Id := Base_Type (N_Type);
9563 begin
9564 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9565 Prev_Type := Designated_Type (Prev_Type);
9566 end if;
9568 if Ekind (New_Type) = E_Anonymous_Access_Type then
9569 New_Type := Designated_Type (New_Type);
9570 end if;
9572 if Prev_Type = New_Type then
9573 return True;
9575 elsif not Is_Class_Wide_Type (New_Type) then
9576 while Etype (New_Type) /= New_Type loop
9577 New_Type := Etype (New_Type);
9579 if New_Type = Prev_Type then
9580 return True;
9581 end if;
9582 end loop;
9583 end if;
9584 return False;
9585 end Types_Correspond;
9587 -- Start of processing for Is_Non_Overriding_Operation
9589 begin
9590 -- In the case where both operations are implicit derived subprograms
9591 -- then neither overrides the other. This can only occur in certain
9592 -- obscure cases (e.g., derivation from homographs created in a generic
9593 -- instantiation).
9595 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9596 return True;
9598 elsif Ekind (Current_Scope) = E_Package
9599 and then Is_Generic_Instance (Current_Scope)
9600 and then In_Private_Part (Current_Scope)
9601 and then Comes_From_Source (New_E)
9602 then
9603 -- We examine the formals and result type of the inherited operation,
9604 -- to determine whether their type is derived from (the instance of)
9605 -- a generic type. The first such formal or result type is the one
9606 -- tested.
9608 Formal := First_Formal (Prev_E);
9609 F_Typ := Empty;
9610 while Present (Formal) loop
9611 F_Typ := Base_Type (Etype (Formal));
9613 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9614 F_Typ := Designated_Type (F_Typ);
9615 end if;
9617 G_Typ := Get_Generic_Parent_Type (F_Typ);
9618 exit when Present (G_Typ);
9620 Next_Formal (Formal);
9621 end loop;
9623 -- If the function dispatches on result check the result type
9625 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9626 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9627 end if;
9629 if No (G_Typ) then
9630 return False;
9631 end if;
9633 -- If the generic type is a private type, then the original operation
9634 -- was not overriding in the generic, because there was no primitive
9635 -- operation to override.
9637 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9638 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9639 N_Formal_Private_Type_Definition
9640 then
9641 return True;
9643 -- The generic parent type is the ancestor of a formal derived
9644 -- type declaration. We need to check whether it has a primitive
9645 -- operation that should be overridden by New_E in the generic.
9647 else
9648 declare
9649 P_Formal : Entity_Id;
9650 N_Formal : Entity_Id;
9651 P_Typ : Entity_Id;
9652 N_Typ : Entity_Id;
9653 P_Prim : Entity_Id;
9654 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9656 begin
9657 while Present (Prim_Elt) loop
9658 P_Prim := Node (Prim_Elt);
9660 if Chars (P_Prim) = Chars (New_E)
9661 and then Ekind (P_Prim) = Ekind (New_E)
9662 then
9663 P_Formal := First_Formal (P_Prim);
9664 N_Formal := First_Formal (New_E);
9665 while Present (P_Formal) and then Present (N_Formal) loop
9666 P_Typ := Etype (P_Formal);
9667 N_Typ := Etype (N_Formal);
9669 if not Types_Correspond (P_Typ, N_Typ) then
9670 exit;
9671 end if;
9673 Next_Entity (P_Formal);
9674 Next_Entity (N_Formal);
9675 end loop;
9677 -- Found a matching primitive operation belonging to the
9678 -- formal ancestor type, so the new subprogram is
9679 -- overriding.
9681 if No (P_Formal)
9682 and then No (N_Formal)
9683 and then (Ekind (New_E) /= E_Function
9684 or else
9685 Types_Correspond
9686 (Etype (P_Prim), Etype (New_E)))
9687 then
9688 return False;
9689 end if;
9690 end if;
9692 Next_Elmt (Prim_Elt);
9693 end loop;
9695 -- If no match found, then the new subprogram does not override
9696 -- in the generic (nor in the instance).
9698 -- If the type in question is not abstract, and the subprogram
9699 -- is, this will be an error if the new operation is in the
9700 -- private part of the instance. Emit a warning now, which will
9701 -- make the subsequent error message easier to understand.
9703 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9704 and then Is_Abstract_Subprogram (Prev_E)
9705 and then In_Private_Part (Current_Scope)
9706 then
9707 Error_Msg_Node_2 := F_Typ;
9708 Error_Msg_NE
9709 ("private operation& in generic unit does not override "
9710 & "any primitive operation of& (RM 12.3 (18))??",
9711 New_E, New_E);
9712 end if;
9714 return True;
9715 end;
9716 end if;
9717 else
9718 return False;
9719 end if;
9720 end Is_Non_Overriding_Operation;
9722 -------------------------------------
9723 -- List_Inherited_Pre_Post_Aspects --
9724 -------------------------------------
9726 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9727 begin
9728 if Opt.List_Inherited_Aspects
9729 and then Is_Subprogram_Or_Generic_Subprogram (E)
9730 then
9731 declare
9732 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9733 Items : Node_Id;
9734 Prag : Node_Id;
9736 begin
9737 for Index in Subps'Range loop
9738 Items := Contract (Subps (Index));
9740 if Present (Items) then
9741 Prag := Pre_Post_Conditions (Items);
9742 while Present (Prag) loop
9743 Error_Msg_Sloc := Sloc (Prag);
9745 if Class_Present (Prag)
9746 and then not Split_PPC (Prag)
9747 then
9748 if Pragma_Name (Prag) = Name_Precondition then
9749 Error_Msg_N
9750 ("info: & inherits `Pre''Class` aspect from "
9751 & "#?L?", E);
9752 else
9753 Error_Msg_N
9754 ("info: & inherits `Post''Class` aspect from "
9755 & "#?L?", E);
9756 end if;
9757 end if;
9759 Prag := Next_Pragma (Prag);
9760 end loop;
9761 end if;
9762 end loop;
9763 end;
9764 end if;
9765 end List_Inherited_Pre_Post_Aspects;
9767 ------------------------------
9768 -- Make_Inequality_Operator --
9769 ------------------------------
9771 -- S is the defining identifier of an equality operator. We build a
9772 -- subprogram declaration with the right signature. This operation is
9773 -- intrinsic, because it is always expanded as the negation of the
9774 -- call to the equality function.
9776 procedure Make_Inequality_Operator (S : Entity_Id) is
9777 Loc : constant Source_Ptr := Sloc (S);
9778 Decl : Node_Id;
9779 Formals : List_Id;
9780 Op_Name : Entity_Id;
9782 FF : constant Entity_Id := First_Formal (S);
9783 NF : constant Entity_Id := Next_Formal (FF);
9785 begin
9786 -- Check that equality was properly defined, ignore call if not
9788 if No (NF) then
9789 return;
9790 end if;
9792 declare
9793 A : constant Entity_Id :=
9794 Make_Defining_Identifier (Sloc (FF),
9795 Chars => Chars (FF));
9797 B : constant Entity_Id :=
9798 Make_Defining_Identifier (Sloc (NF),
9799 Chars => Chars (NF));
9801 begin
9802 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9804 Formals := New_List (
9805 Make_Parameter_Specification (Loc,
9806 Defining_Identifier => A,
9807 Parameter_Type =>
9808 New_Occurrence_Of (Etype (First_Formal (S)),
9809 Sloc (Etype (First_Formal (S))))),
9811 Make_Parameter_Specification (Loc,
9812 Defining_Identifier => B,
9813 Parameter_Type =>
9814 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9815 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9817 Decl :=
9818 Make_Subprogram_Declaration (Loc,
9819 Specification =>
9820 Make_Function_Specification (Loc,
9821 Defining_Unit_Name => Op_Name,
9822 Parameter_Specifications => Formals,
9823 Result_Definition =>
9824 New_Occurrence_Of (Standard_Boolean, Loc)));
9826 -- Insert inequality right after equality if it is explicit or after
9827 -- the derived type when implicit. These entities are created only
9828 -- for visibility purposes, and eventually replaced in the course
9829 -- of expansion, so they do not need to be attached to the tree and
9830 -- seen by the back-end. Keeping them internal also avoids spurious
9831 -- freezing problems. The declaration is inserted in the tree for
9832 -- analysis, and removed afterwards. If the equality operator comes
9833 -- from an explicit declaration, attach the inequality immediately
9834 -- after. Else the equality is inherited from a derived type
9835 -- declaration, so insert inequality after that declaration.
9837 if No (Alias (S)) then
9838 Insert_After (Unit_Declaration_Node (S), Decl);
9839 elsif Is_List_Member (Parent (S)) then
9840 Insert_After (Parent (S), Decl);
9841 else
9842 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9843 end if;
9845 Mark_Rewrite_Insertion (Decl);
9846 Set_Is_Intrinsic_Subprogram (Op_Name);
9847 Analyze (Decl);
9848 Remove (Decl);
9849 Set_Has_Completion (Op_Name);
9850 Set_Corresponding_Equality (Op_Name, S);
9851 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9852 end;
9853 end Make_Inequality_Operator;
9855 ----------------------
9856 -- May_Need_Actuals --
9857 ----------------------
9859 procedure May_Need_Actuals (Fun : Entity_Id) is
9860 F : Entity_Id;
9861 B : Boolean;
9863 begin
9864 F := First_Formal (Fun);
9865 B := True;
9866 while Present (F) loop
9867 if No (Default_Value (F)) then
9868 B := False;
9869 exit;
9870 end if;
9872 Next_Formal (F);
9873 end loop;
9875 Set_Needs_No_Actuals (Fun, B);
9876 end May_Need_Actuals;
9878 ---------------------
9879 -- Mode_Conformant --
9880 ---------------------
9882 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9883 Result : Boolean;
9884 begin
9885 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9886 return Result;
9887 end Mode_Conformant;
9889 ---------------------------
9890 -- New_Overloaded_Entity --
9891 ---------------------------
9893 procedure New_Overloaded_Entity
9894 (S : Entity_Id;
9895 Derived_Type : Entity_Id := Empty)
9897 Overridden_Subp : Entity_Id := Empty;
9898 -- Set if the current scope has an operation that is type-conformant
9899 -- with S, and becomes hidden by S.
9901 Is_Primitive_Subp : Boolean;
9902 -- Set to True if the new subprogram is primitive
9904 E : Entity_Id;
9905 -- Entity that S overrides
9907 Prev_Vis : Entity_Id := Empty;
9908 -- Predecessor of E in Homonym chain
9910 procedure Check_For_Primitive_Subprogram
9911 (Is_Primitive : out Boolean;
9912 Is_Overriding : Boolean := False);
9913 -- If the subprogram being analyzed is a primitive operation of the type
9914 -- of a formal or result, set the Has_Primitive_Operations flag on the
9915 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9916 -- corresponding flag on the entity itself for later use.
9918 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9919 -- True if a) E is a subprogram whose first formal is a concurrent type
9920 -- defined in the scope of E that has some entry or subprogram whose
9921 -- profile matches E, or b) E is an internally built dispatching
9922 -- subprogram of a protected type and there is a matching subprogram
9923 -- defined in the enclosing scope of the protected type, or c) E is
9924 -- an entry of a synchronized type and a matching procedure has been
9925 -- previously defined in the enclosing scope of the synchronized type.
9927 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9928 -- Check that E is declared in the private part of the current package,
9929 -- or in the package body, where it may hide a previous declaration.
9930 -- We can't use In_Private_Part by itself because this flag is also
9931 -- set when freezing entities, so we must examine the place of the
9932 -- declaration in the tree, and recognize wrapper packages as well.
9934 function Is_Overriding_Alias
9935 (Old_E : Entity_Id;
9936 New_E : Entity_Id) return Boolean;
9937 -- Check whether new subprogram and old subprogram are both inherited
9938 -- from subprograms that have distinct dispatch table entries. This can
9939 -- occur with derivations from instances with accidental homonyms. The
9940 -- function is conservative given that the converse is only true within
9941 -- instances that contain accidental overloadings.
9943 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
9944 -- Report conflict between entities S and E
9946 ------------------------------------
9947 -- Check_For_Primitive_Subprogram --
9948 ------------------------------------
9950 procedure Check_For_Primitive_Subprogram
9951 (Is_Primitive : out Boolean;
9952 Is_Overriding : Boolean := False)
9954 Formal : Entity_Id;
9955 F_Typ : Entity_Id;
9956 B_Typ : Entity_Id;
9958 function Visible_Part_Type (T : Entity_Id) return Boolean;
9959 -- Returns true if T is declared in the visible part of the current
9960 -- package scope; otherwise returns false. Assumes that T is declared
9961 -- in a package.
9963 procedure Check_Private_Overriding (T : Entity_Id);
9964 -- Checks that if a primitive abstract subprogram of a visible
9965 -- abstract type is declared in a private part, then it must override
9966 -- an abstract subprogram declared in the visible part. Also checks
9967 -- that if a primitive function with a controlling result is declared
9968 -- in a private part, then it must override a function declared in
9969 -- the visible part.
9971 ------------------------------
9972 -- Check_Private_Overriding --
9973 ------------------------------
9975 procedure Check_Private_Overriding (T : Entity_Id) is
9976 function Overrides_Private_Part_Op return Boolean;
9977 -- This detects the special case where the overriding subprogram
9978 -- is overriding a subprogram that was declared in the same
9979 -- private part. That case is illegal by 3.9.3(10).
9981 function Overrides_Visible_Function
9982 (Partial_View : Entity_Id) return Boolean;
9983 -- True if S overrides a function in the visible part. The
9984 -- overridden function could be explicitly or implicitly declared.
9986 -------------------------------
9987 -- Overrides_Private_Part_Op --
9988 -------------------------------
9990 function Overrides_Private_Part_Op return Boolean is
9991 Over_Decl : constant Node_Id :=
9992 Unit_Declaration_Node (Overridden_Operation (S));
9993 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
9995 begin
9996 pragma Assert (Is_Overriding);
9997 pragma Assert
9998 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
9999 pragma Assert
10000 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10002 return In_Same_List (Over_Decl, Subp_Decl);
10003 end Overrides_Private_Part_Op;
10005 --------------------------------
10006 -- Overrides_Visible_Function --
10007 --------------------------------
10009 function Overrides_Visible_Function
10010 (Partial_View : Entity_Id) return Boolean
10012 begin
10013 if not Is_Overriding or else not Has_Homonym (S) then
10014 return False;
10015 end if;
10017 if not Present (Partial_View) then
10018 return True;
10019 end if;
10021 -- Search through all the homonyms H of S in the current
10022 -- package spec, and return True if we find one that matches.
10023 -- Note that Parent (H) will be the declaration of the
10024 -- partial view of T for a match.
10026 declare
10027 H : Entity_Id := S;
10028 begin
10029 loop
10030 H := Homonym (H);
10031 exit when not Present (H) or else Scope (H) /= Scope (S);
10033 if Nkind_In
10034 (Parent (H),
10035 N_Private_Extension_Declaration,
10036 N_Private_Type_Declaration)
10037 and then Defining_Identifier (Parent (H)) = Partial_View
10038 then
10039 return True;
10040 end if;
10041 end loop;
10042 end;
10044 return False;
10045 end Overrides_Visible_Function;
10047 -- Start of processing for Check_Private_Overriding
10049 begin
10050 if Is_Package_Or_Generic_Package (Current_Scope)
10051 and then In_Private_Part (Current_Scope)
10052 and then Visible_Part_Type (T)
10053 and then not In_Instance
10054 then
10055 if Is_Abstract_Type (T)
10056 and then Is_Abstract_Subprogram (S)
10057 and then (not Is_Overriding
10058 or else not Is_Abstract_Subprogram (E)
10059 or else Overrides_Private_Part_Op)
10060 then
10061 Error_Msg_N
10062 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10065 elsif Ekind (S) = E_Function then
10066 declare
10067 Partial_View : constant Entity_Id :=
10068 Incomplete_Or_Partial_View (T);
10070 begin
10071 if not Overrides_Visible_Function (Partial_View) then
10073 -- Here, S is "function ... return T;" declared in
10074 -- the private part, not overriding some visible
10075 -- operation. That's illegal in the tagged case
10076 -- (but not if the private type is untagged).
10078 if ((Present (Partial_View)
10079 and then Is_Tagged_Type (Partial_View))
10080 or else (not Present (Partial_View)
10081 and then Is_Tagged_Type (T)))
10082 and then T = Base_Type (Etype (S))
10083 then
10084 Error_Msg_N
10085 ("private function with tagged result must"
10086 & " override visible-part function", S);
10087 Error_Msg_N
10088 ("\move subprogram to the visible part"
10089 & " (RM 3.9.3(10))", S);
10091 -- AI05-0073: extend this test to the case of a
10092 -- function with a controlling access result.
10094 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10095 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10096 and then
10097 not Is_Class_Wide_Type
10098 (Designated_Type (Etype (S)))
10099 and then Ada_Version >= Ada_2012
10100 then
10101 Error_Msg_N
10102 ("private function with controlling access "
10103 & "result must override visible-part function",
10105 Error_Msg_N
10106 ("\move subprogram to the visible part"
10107 & " (RM 3.9.3(10))", S);
10108 end if;
10109 end if;
10110 end;
10111 end if;
10112 end if;
10113 end Check_Private_Overriding;
10115 -----------------------
10116 -- Visible_Part_Type --
10117 -----------------------
10119 function Visible_Part_Type (T : Entity_Id) return Boolean is
10120 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10121 N : Node_Id;
10123 begin
10124 -- If the entity is a private type, then it must be declared in a
10125 -- visible part.
10127 if Ekind (T) in Private_Kind then
10128 return True;
10129 end if;
10131 -- Otherwise, we traverse the visible part looking for its
10132 -- corresponding declaration. We cannot use the declaration
10133 -- node directly because in the private part the entity of a
10134 -- private type is the one in the full view, which does not
10135 -- indicate that it is the completion of something visible.
10137 N := First (Visible_Declarations (Specification (P)));
10138 while Present (N) loop
10139 if Nkind (N) = N_Full_Type_Declaration
10140 and then Present (Defining_Identifier (N))
10141 and then T = Defining_Identifier (N)
10142 then
10143 return True;
10145 elsif Nkind_In (N, N_Private_Type_Declaration,
10146 N_Private_Extension_Declaration)
10147 and then Present (Defining_Identifier (N))
10148 and then T = Full_View (Defining_Identifier (N))
10149 then
10150 return True;
10151 end if;
10153 Next (N);
10154 end loop;
10156 return False;
10157 end Visible_Part_Type;
10159 -- Start of processing for Check_For_Primitive_Subprogram
10161 begin
10162 Is_Primitive := False;
10164 if not Comes_From_Source (S) then
10165 null;
10167 -- If subprogram is at library level, it is not primitive operation
10169 elsif Current_Scope = Standard_Standard then
10170 null;
10172 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10173 and then not In_Package_Body (Current_Scope))
10174 or else Is_Overriding
10175 then
10176 -- For function, check return type
10178 if Ekind (S) = E_Function then
10179 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10180 F_Typ := Designated_Type (Etype (S));
10181 else
10182 F_Typ := Etype (S);
10183 end if;
10185 B_Typ := Base_Type (F_Typ);
10187 if Scope (B_Typ) = Current_Scope
10188 and then not Is_Class_Wide_Type (B_Typ)
10189 and then not Is_Generic_Type (B_Typ)
10190 then
10191 Is_Primitive := True;
10192 Set_Has_Primitive_Operations (B_Typ);
10193 Set_Is_Primitive (S);
10194 Check_Private_Overriding (B_Typ);
10196 -- The Ghost policy in effect at the point of declaration
10197 -- or a tagged type and a primitive operation must match
10198 -- (SPARK RM 6.9(16)).
10200 Check_Ghost_Primitive (S, B_Typ);
10201 end if;
10202 end if;
10204 -- For all subprograms, check formals
10206 Formal := First_Formal (S);
10207 while Present (Formal) loop
10208 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10209 F_Typ := Designated_Type (Etype (Formal));
10210 else
10211 F_Typ := Etype (Formal);
10212 end if;
10214 B_Typ := Base_Type (F_Typ);
10216 if Ekind (B_Typ) = E_Access_Subtype then
10217 B_Typ := Base_Type (B_Typ);
10218 end if;
10220 if Scope (B_Typ) = Current_Scope
10221 and then not Is_Class_Wide_Type (B_Typ)
10222 and then not Is_Generic_Type (B_Typ)
10223 then
10224 Is_Primitive := True;
10225 Set_Is_Primitive (S);
10226 Set_Has_Primitive_Operations (B_Typ);
10227 Check_Private_Overriding (B_Typ);
10229 -- The Ghost policy in effect at the point of declaration
10230 -- of a tagged type and a primitive operation must match
10231 -- (SPARK RM 6.9(16)).
10233 Check_Ghost_Primitive (S, B_Typ);
10234 end if;
10236 Next_Formal (Formal);
10237 end loop;
10239 -- Special case: An equality function can be redefined for a type
10240 -- occurring in a declarative part, and won't otherwise be treated as
10241 -- a primitive because it doesn't occur in a package spec and doesn't
10242 -- override an inherited subprogram. It's important that we mark it
10243 -- primitive so it can be returned by Collect_Primitive_Operations
10244 -- and be used in composing the equality operation of later types
10245 -- that have a component of the type.
10247 elsif Chars (S) = Name_Op_Eq
10248 and then Etype (S) = Standard_Boolean
10249 then
10250 B_Typ := Base_Type (Etype (First_Formal (S)));
10252 if Scope (B_Typ) = Current_Scope
10253 and then
10254 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10255 and then not Is_Limited_Type (B_Typ)
10256 then
10257 Is_Primitive := True;
10258 Set_Is_Primitive (S);
10259 Set_Has_Primitive_Operations (B_Typ);
10260 Check_Private_Overriding (B_Typ);
10262 -- The Ghost policy in effect at the point of declaration of a
10263 -- tagged type and a primitive operation must match
10264 -- (SPARK RM 6.9(16)).
10266 Check_Ghost_Primitive (S, B_Typ);
10267 end if;
10268 end if;
10269 end Check_For_Primitive_Subprogram;
10271 --------------------------------------
10272 -- Has_Matching_Entry_Or_Subprogram --
10273 --------------------------------------
10275 function Has_Matching_Entry_Or_Subprogram
10276 (E : Entity_Id) return Boolean
10278 function Check_Conforming_Parameters
10279 (E1_Param : Node_Id;
10280 E2_Param : Node_Id) return Boolean;
10281 -- Starting from the given parameters, check that all the parameters
10282 -- of two entries or subprograms are subtype conformant. Used to skip
10283 -- the check on the controlling argument.
10285 function Matching_Entry_Or_Subprogram
10286 (Conc_Typ : Entity_Id;
10287 Subp : Entity_Id) return Entity_Id;
10288 -- Return the first entry or subprogram of the given concurrent type
10289 -- whose name matches the name of Subp and has a profile conformant
10290 -- with Subp; return Empty if not found.
10292 function Matching_Dispatching_Subprogram
10293 (Conc_Typ : Entity_Id;
10294 Ent : Entity_Id) return Entity_Id;
10295 -- Return the first dispatching primitive of Conc_Type defined in the
10296 -- enclosing scope of Conc_Type (i.e. before the full definition of
10297 -- this concurrent type) whose name matches the entry Ent and has a
10298 -- profile conformant with the profile of the corresponding (not yet
10299 -- built) dispatching primitive of Ent; return Empty if not found.
10301 function Matching_Original_Protected_Subprogram
10302 (Prot_Typ : Entity_Id;
10303 Subp : Entity_Id) return Entity_Id;
10304 -- Return the first subprogram defined in the enclosing scope of
10305 -- Prot_Typ (before the full definition of this protected type)
10306 -- whose name matches the original name of Subp and has a profile
10307 -- conformant with the profile of Subp; return Empty if not found.
10309 ---------------------------------
10310 -- Check_Confirming_Parameters --
10311 ---------------------------------
10313 function Check_Conforming_Parameters
10314 (E1_Param : Node_Id;
10315 E2_Param : Node_Id) return Boolean
10317 Param_E1 : Node_Id := E1_Param;
10318 Param_E2 : Node_Id := E2_Param;
10320 begin
10321 while Present (Param_E1) and then Present (Param_E2) loop
10322 if Ekind (Defining_Identifier (Param_E1)) /=
10323 Ekind (Defining_Identifier (Param_E2))
10324 or else not
10325 Conforming_Types
10326 (Find_Parameter_Type (Param_E1),
10327 Find_Parameter_Type (Param_E2),
10328 Subtype_Conformant)
10329 then
10330 return False;
10331 end if;
10333 Next (Param_E1);
10334 Next (Param_E2);
10335 end loop;
10337 -- The candidate is not valid if one of the two lists contains
10338 -- more parameters than the other
10340 return No (Param_E1) and then No (Param_E2);
10341 end Check_Conforming_Parameters;
10343 ----------------------------------
10344 -- Matching_Entry_Or_Subprogram --
10345 ----------------------------------
10347 function Matching_Entry_Or_Subprogram
10348 (Conc_Typ : Entity_Id;
10349 Subp : Entity_Id) return Entity_Id
10351 E : Entity_Id;
10353 begin
10354 E := First_Entity (Conc_Typ);
10355 while Present (E) loop
10356 if Chars (Subp) = Chars (E)
10357 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10358 and then
10359 Check_Conforming_Parameters
10360 (First (Parameter_Specifications (Parent (E))),
10361 Next (First (Parameter_Specifications (Parent (Subp)))))
10362 then
10363 return E;
10364 end if;
10366 Next_Entity (E);
10367 end loop;
10369 return Empty;
10370 end Matching_Entry_Or_Subprogram;
10372 -------------------------------------
10373 -- Matching_Dispatching_Subprogram --
10374 -------------------------------------
10376 function Matching_Dispatching_Subprogram
10377 (Conc_Typ : Entity_Id;
10378 Ent : Entity_Id) return Entity_Id
10380 E : Entity_Id;
10382 begin
10383 -- Search for entities in the enclosing scope of this synchonized
10384 -- type.
10386 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10387 Push_Scope (Scope (Conc_Typ));
10388 E := Current_Entity_In_Scope (Ent);
10389 Pop_Scope;
10391 while Present (E) loop
10392 if Scope (E) = Scope (Conc_Typ)
10393 and then Comes_From_Source (E)
10394 and then Ekind (E) = E_Procedure
10395 and then Present (First_Entity (E))
10396 and then Is_Controlling_Formal (First_Entity (E))
10397 and then Etype (First_Entity (E)) = Conc_Typ
10398 and then
10399 Check_Conforming_Parameters
10400 (First (Parameter_Specifications (Parent (Ent))),
10401 Next (First (Parameter_Specifications (Parent (E)))))
10402 then
10403 return E;
10404 end if;
10406 E := Homonym (E);
10407 end loop;
10409 return Empty;
10410 end Matching_Dispatching_Subprogram;
10412 --------------------------------------------
10413 -- Matching_Original_Protected_Subprogram --
10414 --------------------------------------------
10416 function Matching_Original_Protected_Subprogram
10417 (Prot_Typ : Entity_Id;
10418 Subp : Entity_Id) return Entity_Id
10420 ICF : constant Boolean :=
10421 Is_Controlling_Formal (First_Entity (Subp));
10422 E : Entity_Id;
10424 begin
10425 -- Temporarily decorate the first parameter of Subp as controlling
10426 -- formal, required to invoke Subtype_Conformant.
10428 Set_Is_Controlling_Formal (First_Entity (Subp));
10430 E :=
10431 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10433 while Present (E) loop
10434 if Scope (E) = Scope (Prot_Typ)
10435 and then Comes_From_Source (E)
10436 and then Ekind (Subp) = Ekind (E)
10437 and then Present (First_Entity (E))
10438 and then Is_Controlling_Formal (First_Entity (E))
10439 and then Etype (First_Entity (E)) = Prot_Typ
10440 and then Subtype_Conformant (Subp, E,
10441 Skip_Controlling_Formals => True)
10442 then
10443 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10444 return E;
10445 end if;
10447 E := Homonym (E);
10448 end loop;
10450 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10452 return Empty;
10453 end Matching_Original_Protected_Subprogram;
10455 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10457 begin
10458 -- Case 1: E is a subprogram whose first formal is a concurrent type
10459 -- defined in the scope of E that has an entry or subprogram whose
10460 -- profile matches E.
10462 if Comes_From_Source (E)
10463 and then Is_Subprogram (E)
10464 and then Present (First_Entity (E))
10465 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10466 then
10467 if Scope (E) =
10468 Scope (Corresponding_Concurrent_Type
10469 (Etype (First_Entity (E))))
10470 and then
10471 Present
10472 (Matching_Entry_Or_Subprogram
10473 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10474 Subp => E))
10475 then
10476 Report_Conflict (E,
10477 Matching_Entry_Or_Subprogram
10478 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10479 Subp => E));
10480 return True;
10481 end if;
10483 -- Case 2: E is an internally built dispatching subprogram of a
10484 -- protected type and there is a subprogram defined in the enclosing
10485 -- scope of the protected type that has the original name of E and
10486 -- its profile is conformant with the profile of E. We check the
10487 -- name of the original protected subprogram associated with E since
10488 -- the expander builds dispatching primitives of protected functions
10489 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10491 elsif not Comes_From_Source (E)
10492 and then Is_Subprogram (E)
10493 and then Present (First_Entity (E))
10494 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10495 and then Present (Original_Protected_Subprogram (E))
10496 and then
10497 Present
10498 (Matching_Original_Protected_Subprogram
10499 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10500 Subp => E))
10501 then
10502 Report_Conflict (E,
10503 Matching_Original_Protected_Subprogram
10504 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10505 Subp => E));
10506 return True;
10508 -- Case 3: E is an entry of a synchronized type and a matching
10509 -- procedure has been previously defined in the enclosing scope
10510 -- of the synchronized type.
10512 elsif Comes_From_Source (E)
10513 and then Ekind (E) = E_Entry
10514 and then
10515 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10516 then
10517 Report_Conflict (E,
10518 Matching_Dispatching_Subprogram (Current_Scope, E));
10519 return True;
10520 end if;
10522 return False;
10523 end Has_Matching_Entry_Or_Subprogram;
10525 ----------------------------
10526 -- Is_Private_Declaration --
10527 ----------------------------
10529 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10530 Decl : constant Node_Id := Unit_Declaration_Node (E);
10531 Priv_Decls : List_Id;
10533 begin
10534 if Is_Package_Or_Generic_Package (Current_Scope)
10535 and then In_Private_Part (Current_Scope)
10536 then
10537 Priv_Decls :=
10538 Private_Declarations (Package_Specification (Current_Scope));
10540 return In_Package_Body (Current_Scope)
10541 or else
10542 (Is_List_Member (Decl)
10543 and then List_Containing (Decl) = Priv_Decls)
10544 or else (Nkind (Parent (Decl)) = N_Package_Specification
10545 and then not
10546 Is_Compilation_Unit
10547 (Defining_Entity (Parent (Decl)))
10548 and then List_Containing (Parent (Parent (Decl))) =
10549 Priv_Decls);
10550 else
10551 return False;
10552 end if;
10553 end Is_Private_Declaration;
10555 --------------------------
10556 -- Is_Overriding_Alias --
10557 --------------------------
10559 function Is_Overriding_Alias
10560 (Old_E : Entity_Id;
10561 New_E : Entity_Id) return Boolean
10563 AO : constant Entity_Id := Alias (Old_E);
10564 AN : constant Entity_Id := Alias (New_E);
10566 begin
10567 return Scope (AO) /= Scope (AN)
10568 or else No (DTC_Entity (AO))
10569 or else No (DTC_Entity (AN))
10570 or else DT_Position (AO) = DT_Position (AN);
10571 end Is_Overriding_Alias;
10573 ---------------------
10574 -- Report_Conflict --
10575 ---------------------
10577 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10578 begin
10579 Error_Msg_Sloc := Sloc (E);
10581 -- Generate message, with useful additional warning if in generic
10583 if Is_Generic_Unit (E) then
10584 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10585 Error_Msg_N ("\& conflicts with declaration#", S);
10586 else
10587 Error_Msg_N ("& conflicts with declaration#", S);
10588 end if;
10589 end Report_Conflict;
10591 -- Start of processing for New_Overloaded_Entity
10593 begin
10594 -- We need to look for an entity that S may override. This must be a
10595 -- homonym in the current scope, so we look for the first homonym of
10596 -- S in the current scope as the starting point for the search.
10598 E := Current_Entity_In_Scope (S);
10600 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10601 -- They are directly added to the list of primitive operations of
10602 -- Derived_Type, unless this is a rederivation in the private part
10603 -- of an operation that was already derived in the visible part of
10604 -- the current package.
10606 if Ada_Version >= Ada_2005
10607 and then Present (Derived_Type)
10608 and then Present (Alias (S))
10609 and then Is_Dispatching_Operation (Alias (S))
10610 and then Present (Find_Dispatching_Type (Alias (S)))
10611 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10612 then
10613 -- For private types, when the full-view is processed we propagate to
10614 -- the full view the non-overridden entities whose attribute "alias"
10615 -- references an interface primitive. These entities were added by
10616 -- Derive_Subprograms to ensure that interface primitives are
10617 -- covered.
10619 -- Inside_Freeze_Actions is non zero when S corresponds with an
10620 -- internal entity that links an interface primitive with its
10621 -- covering primitive through attribute Interface_Alias (see
10622 -- Add_Internal_Interface_Entities).
10624 if Inside_Freezing_Actions = 0
10625 and then Is_Package_Or_Generic_Package (Current_Scope)
10626 and then In_Private_Part (Current_Scope)
10627 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10628 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10629 and then Full_View (Defining_Identifier (Parent (E)))
10630 = Defining_Identifier (Parent (S))
10631 and then Alias (E) = Alias (S)
10632 then
10633 Check_Operation_From_Private_View (S, E);
10634 Set_Is_Dispatching_Operation (S);
10636 -- Common case
10638 else
10639 Enter_Overloaded_Entity (S);
10640 Check_Dispatching_Operation (S, Empty);
10641 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10642 end if;
10644 return;
10645 end if;
10647 -- For synchronized types check conflicts of this entity with previously
10648 -- defined entities.
10650 if Ada_Version >= Ada_2005
10651 and then Has_Matching_Entry_Or_Subprogram (S)
10652 then
10653 return;
10654 end if;
10656 -- If there is no homonym then this is definitely not overriding
10658 if No (E) then
10659 Enter_Overloaded_Entity (S);
10660 Check_Dispatching_Operation (S, Empty);
10661 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10663 -- If subprogram has an explicit declaration, check whether it has an
10664 -- overriding indicator.
10666 if Comes_From_Source (S) then
10667 Check_Synchronized_Overriding (S, Overridden_Subp);
10669 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10670 -- it may have overridden some hidden inherited primitive. Update
10671 -- Overridden_Subp to avoid spurious errors when checking the
10672 -- overriding indicator.
10674 if Ada_Version >= Ada_2012
10675 and then No (Overridden_Subp)
10676 and then Is_Dispatching_Operation (S)
10677 and then Present (Overridden_Operation (S))
10678 then
10679 Overridden_Subp := Overridden_Operation (S);
10680 end if;
10682 Check_Overriding_Indicator
10683 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10685 -- The Ghost policy in effect at the point of declaration of a
10686 -- parent subprogram and an overriding subprogram must match
10687 -- (SPARK RM 6.9(17)).
10689 Check_Ghost_Overriding (S, Overridden_Subp);
10690 end if;
10692 -- If there is a homonym that is not overloadable, then we have an
10693 -- error, except for the special cases checked explicitly below.
10695 elsif not Is_Overloadable (E) then
10697 -- Check for spurious conflict produced by a subprogram that has the
10698 -- same name as that of the enclosing generic package. The conflict
10699 -- occurs within an instance, between the subprogram and the renaming
10700 -- declaration for the package. After the subprogram, the package
10701 -- renaming declaration becomes hidden.
10703 if Ekind (E) = E_Package
10704 and then Present (Renamed_Object (E))
10705 and then Renamed_Object (E) = Current_Scope
10706 and then Nkind (Parent (Renamed_Object (E))) =
10707 N_Package_Specification
10708 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10709 then
10710 Set_Is_Hidden (E);
10711 Set_Is_Immediately_Visible (E, False);
10712 Enter_Overloaded_Entity (S);
10713 Set_Homonym (S, Homonym (E));
10714 Check_Dispatching_Operation (S, Empty);
10715 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10717 -- If the subprogram is implicit it is hidden by the previous
10718 -- declaration. However if it is dispatching, it must appear in the
10719 -- dispatch table anyway, because it can be dispatched to even if it
10720 -- cannot be called directly.
10722 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10723 Set_Scope (S, Current_Scope);
10725 if Is_Dispatching_Operation (Alias (S)) then
10726 Check_Dispatching_Operation (S, Empty);
10727 end if;
10729 return;
10731 else
10732 Report_Conflict (S, E);
10733 return;
10734 end if;
10736 -- E exists and is overloadable
10738 else
10739 Check_Synchronized_Overriding (S, Overridden_Subp);
10741 -- Loop through E and its homonyms to determine if any of them is
10742 -- the candidate for overriding by S.
10744 while Present (E) loop
10746 -- Definitely not interesting if not in the current scope
10748 if Scope (E) /= Current_Scope then
10749 null;
10751 -- A function can overload the name of an abstract state. The
10752 -- state can be viewed as a function with a profile that cannot
10753 -- be matched by anything.
10755 elsif Ekind (S) = E_Function
10756 and then Ekind (E) = E_Abstract_State
10757 then
10758 Enter_Overloaded_Entity (S);
10759 return;
10761 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10762 -- procedures locate the internally generated spec. We enforce
10763 -- mode conformance since a tagged type may inherit from
10764 -- interfaces several null primitives which differ only in
10765 -- the mode of the formals.
10767 elsif not Comes_From_Source (S)
10768 and then Is_Null_Procedure (S)
10769 and then not Mode_Conformant (E, S)
10770 then
10771 null;
10773 -- Check if we have type conformance
10775 elsif Type_Conformant (E, S) then
10777 -- If the old and new entities have the same profile and one
10778 -- is not the body of the other, then this is an error, unless
10779 -- one of them is implicitly declared.
10781 -- There are some cases when both can be implicit, for example
10782 -- when both a literal and a function that overrides it are
10783 -- inherited in a derivation, or when an inherited operation
10784 -- of a tagged full type overrides the inherited operation of
10785 -- a private extension. Ada 83 had a special rule for the
10786 -- literal case. In Ada 95, the later implicit operation hides
10787 -- the former, and the literal is always the former. In the
10788 -- odd case where both are derived operations declared at the
10789 -- same point, both operations should be declared, and in that
10790 -- case we bypass the following test and proceed to the next
10791 -- part. This can only occur for certain obscure cases in
10792 -- instances, when an operation on a type derived from a formal
10793 -- private type does not override a homograph inherited from
10794 -- the actual. In subsequent derivations of such a type, the
10795 -- DT positions of these operations remain distinct, if they
10796 -- have been set.
10798 if Present (Alias (S))
10799 and then (No (Alias (E))
10800 or else Comes_From_Source (E)
10801 or else Is_Abstract_Subprogram (S)
10802 or else
10803 (Is_Dispatching_Operation (E)
10804 and then Is_Overriding_Alias (E, S)))
10805 and then Ekind (E) /= E_Enumeration_Literal
10806 then
10807 -- When an derived operation is overloaded it may be due to
10808 -- the fact that the full view of a private extension
10809 -- re-inherits. It has to be dealt with.
10811 if Is_Package_Or_Generic_Package (Current_Scope)
10812 and then In_Private_Part (Current_Scope)
10813 then
10814 Check_Operation_From_Private_View (S, E);
10815 end if;
10817 -- In any case the implicit operation remains hidden by the
10818 -- existing declaration, which is overriding. Indicate that
10819 -- E overrides the operation from which S is inherited.
10821 if Present (Alias (S)) then
10822 Set_Overridden_Operation (E, Alias (S));
10823 Inherit_Subprogram_Contract (E, Alias (S));
10825 else
10826 Set_Overridden_Operation (E, S);
10827 Inherit_Subprogram_Contract (E, S);
10828 end if;
10830 if Comes_From_Source (E) then
10831 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10833 -- The Ghost policy in effect at the point of declaration
10834 -- of a parent subprogram and an overriding subprogram
10835 -- must match (SPARK RM 6.9(17)).
10837 Check_Ghost_Overriding (E, S);
10838 end if;
10840 return;
10842 -- Within an instance, the renaming declarations for actual
10843 -- subprograms may become ambiguous, but they do not hide each
10844 -- other.
10846 elsif Ekind (E) /= E_Entry
10847 and then not Comes_From_Source (E)
10848 and then not Is_Generic_Instance (E)
10849 and then (Present (Alias (E))
10850 or else Is_Intrinsic_Subprogram (E))
10851 and then (not In_Instance
10852 or else No (Parent (E))
10853 or else Nkind (Unit_Declaration_Node (E)) /=
10854 N_Subprogram_Renaming_Declaration)
10855 then
10856 -- A subprogram child unit is not allowed to override an
10857 -- inherited subprogram (10.1.1(20)).
10859 if Is_Child_Unit (S) then
10860 Error_Msg_N
10861 ("child unit overrides inherited subprogram in parent",
10863 return;
10864 end if;
10866 if Is_Non_Overriding_Operation (E, S) then
10867 Enter_Overloaded_Entity (S);
10869 if No (Derived_Type)
10870 or else Is_Tagged_Type (Derived_Type)
10871 then
10872 Check_Dispatching_Operation (S, Empty);
10873 end if;
10875 return;
10876 end if;
10878 -- E is a derived operation or an internal operator which
10879 -- is being overridden. Remove E from further visibility.
10880 -- Furthermore, if E is a dispatching operation, it must be
10881 -- replaced in the list of primitive operations of its type
10882 -- (see Override_Dispatching_Operation).
10884 Overridden_Subp := E;
10886 declare
10887 Prev : Entity_Id;
10889 begin
10890 Prev := First_Entity (Current_Scope);
10891 while Present (Prev) and then Next_Entity (Prev) /= E loop
10892 Next_Entity (Prev);
10893 end loop;
10895 -- It is possible for E to be in the current scope and
10896 -- yet not in the entity chain. This can only occur in a
10897 -- generic context where E is an implicit concatenation
10898 -- in the formal part, because in a generic body the
10899 -- entity chain starts with the formals.
10901 -- In GNATprove mode, a wrapper for an operation with
10902 -- axiomatization may be a homonym of another declaration
10903 -- for an actual subprogram (needs refinement ???).
10905 if No (Prev) then
10906 if In_Instance
10907 and then GNATprove_Mode
10908 and then
10909 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10910 N_Subprogram_Renaming_Declaration
10911 then
10912 return;
10913 else
10914 pragma Assert (Chars (E) = Name_Op_Concat);
10915 null;
10916 end if;
10917 end if;
10919 -- E must be removed both from the entity_list of the
10920 -- current scope, and from the visibility chain.
10922 if Debug_Flag_E then
10923 Write_Str ("Override implicit operation ");
10924 Write_Int (Int (E));
10925 Write_Eol;
10926 end if;
10928 -- If E is a predefined concatenation, it stands for four
10929 -- different operations. As a result, a single explicit
10930 -- declaration does not hide it. In a possible ambiguous
10931 -- situation, Disambiguate chooses the user-defined op,
10932 -- so it is correct to retain the previous internal one.
10934 if Chars (E) /= Name_Op_Concat
10935 or else Ekind (E) /= E_Operator
10936 then
10937 -- For nondispatching derived operations that are
10938 -- overridden by a subprogram declared in the private
10939 -- part of a package, we retain the derived subprogram
10940 -- but mark it as not immediately visible. If the
10941 -- derived operation was declared in the visible part
10942 -- then this ensures that it will still be visible
10943 -- outside the package with the proper signature
10944 -- (calls from outside must also be directed to this
10945 -- version rather than the overriding one, unlike the
10946 -- dispatching case). Calls from inside the package
10947 -- will still resolve to the overriding subprogram
10948 -- since the derived one is marked as not visible
10949 -- within the package.
10951 -- If the private operation is dispatching, we achieve
10952 -- the overriding by keeping the implicit operation
10953 -- but setting its alias to be the overriding one. In
10954 -- this fashion the proper body is executed in all
10955 -- cases, but the original signature is used outside
10956 -- of the package.
10958 -- If the overriding is not in the private part, we
10959 -- remove the implicit operation altogether.
10961 if Is_Private_Declaration (S) then
10962 if not Is_Dispatching_Operation (E) then
10963 Set_Is_Immediately_Visible (E, False);
10964 else
10965 -- Work done in Override_Dispatching_Operation,
10966 -- so nothing else needs to be done here.
10968 null;
10969 end if;
10971 else
10972 -- Find predecessor of E in Homonym chain
10974 if E = Current_Entity (E) then
10975 Prev_Vis := Empty;
10976 else
10977 Prev_Vis := Current_Entity (E);
10978 while Homonym (Prev_Vis) /= E loop
10979 Prev_Vis := Homonym (Prev_Vis);
10980 end loop;
10981 end if;
10983 if Prev_Vis /= Empty then
10985 -- Skip E in the visibility chain
10987 Set_Homonym (Prev_Vis, Homonym (E));
10989 else
10990 Set_Name_Entity_Id (Chars (E), Homonym (E));
10991 end if;
10993 Set_Next_Entity (Prev, Next_Entity (E));
10995 if No (Next_Entity (Prev)) then
10996 Set_Last_Entity (Current_Scope, Prev);
10997 end if;
10998 end if;
10999 end if;
11001 Enter_Overloaded_Entity (S);
11003 -- For entities generated by Derive_Subprograms the
11004 -- overridden operation is the inherited primitive
11005 -- (which is available through the attribute alias).
11007 if not (Comes_From_Source (E))
11008 and then Is_Dispatching_Operation (E)
11009 and then Find_Dispatching_Type (E) =
11010 Find_Dispatching_Type (S)
11011 and then Present (Alias (E))
11012 and then Comes_From_Source (Alias (E))
11013 then
11014 Set_Overridden_Operation (S, Alias (E));
11015 Inherit_Subprogram_Contract (S, Alias (E));
11017 -- Normal case of setting entity as overridden
11019 -- Note: Static_Initialization and Overridden_Operation
11020 -- attributes use the same field in subprogram entities.
11021 -- Static_Initialization is only defined for internal
11022 -- initialization procedures, where Overridden_Operation
11023 -- is irrelevant. Therefore the setting of this attribute
11024 -- must check whether the target is an init_proc.
11026 elsif not Is_Init_Proc (S) then
11027 Set_Overridden_Operation (S, E);
11028 Inherit_Subprogram_Contract (S, E);
11029 end if;
11031 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11033 -- The Ghost policy in effect at the point of declaration
11034 -- of a parent subprogram and an overriding subprogram
11035 -- must match (SPARK RM 6.9(17)).
11037 Check_Ghost_Overriding (S, E);
11039 -- If S is a user-defined subprogram or a null procedure
11040 -- expanded to override an inherited null procedure, or a
11041 -- predefined dispatching primitive then indicate that E
11042 -- overrides the operation from which S is inherited.
11044 if Comes_From_Source (S)
11045 or else
11046 (Present (Parent (S))
11047 and then
11048 Nkind (Parent (S)) = N_Procedure_Specification
11049 and then
11050 Null_Present (Parent (S)))
11051 or else
11052 (Present (Alias (E))
11053 and then
11054 Is_Predefined_Dispatching_Operation (Alias (E)))
11055 then
11056 if Present (Alias (E)) then
11057 Set_Overridden_Operation (S, Alias (E));
11058 Inherit_Subprogram_Contract (S, Alias (E));
11059 end if;
11060 end if;
11062 if Is_Dispatching_Operation (E) then
11064 -- An overriding dispatching subprogram inherits the
11065 -- convention of the overridden subprogram (AI-117).
11067 Set_Convention (S, Convention (E));
11068 Check_Dispatching_Operation (S, E);
11070 else
11071 Check_Dispatching_Operation (S, Empty);
11072 end if;
11074 Check_For_Primitive_Subprogram
11075 (Is_Primitive_Subp, Is_Overriding => True);
11076 goto Check_Inequality;
11077 end;
11079 -- Apparent redeclarations in instances can occur when two
11080 -- formal types get the same actual type. The subprograms in
11081 -- in the instance are legal, even if not callable from the
11082 -- outside. Calls from within are disambiguated elsewhere.
11083 -- For dispatching operations in the visible part, the usual
11084 -- rules apply, and operations with the same profile are not
11085 -- legal (B830001).
11087 elsif (In_Instance_Visible_Part
11088 and then not Is_Dispatching_Operation (E))
11089 or else In_Instance_Not_Visible
11090 then
11091 null;
11093 -- Here we have a real error (identical profile)
11095 else
11096 Error_Msg_Sloc := Sloc (E);
11098 -- Avoid cascaded errors if the entity appears in
11099 -- subsequent calls.
11101 Set_Scope (S, Current_Scope);
11103 -- Generate error, with extra useful warning for the case
11104 -- of a generic instance with no completion.
11106 if Is_Generic_Instance (S)
11107 and then not Has_Completion (E)
11108 then
11109 Error_Msg_N
11110 ("instantiation cannot provide body for&", S);
11111 Error_Msg_N ("\& conflicts with declaration#", S);
11112 else
11113 Error_Msg_N ("& conflicts with declaration#", S);
11114 end if;
11116 return;
11117 end if;
11119 else
11120 -- If one subprogram has an access parameter and the other
11121 -- a parameter of an access type, calls to either might be
11122 -- ambiguous. Verify that parameters match except for the
11123 -- access parameter.
11125 if May_Hide_Profile then
11126 declare
11127 F1 : Entity_Id;
11128 F2 : Entity_Id;
11130 begin
11131 F1 := First_Formal (S);
11132 F2 := First_Formal (E);
11133 while Present (F1) and then Present (F2) loop
11134 if Is_Access_Type (Etype (F1)) then
11135 if not Is_Access_Type (Etype (F2))
11136 or else not Conforming_Types
11137 (Designated_Type (Etype (F1)),
11138 Designated_Type (Etype (F2)),
11139 Type_Conformant)
11140 then
11141 May_Hide_Profile := False;
11142 end if;
11144 elsif
11145 not Conforming_Types
11146 (Etype (F1), Etype (F2), Type_Conformant)
11147 then
11148 May_Hide_Profile := False;
11149 end if;
11151 Next_Formal (F1);
11152 Next_Formal (F2);
11153 end loop;
11155 if May_Hide_Profile
11156 and then No (F1)
11157 and then No (F2)
11158 then
11159 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11160 end if;
11161 end;
11162 end if;
11163 end if;
11165 E := Homonym (E);
11166 end loop;
11168 -- On exit, we know that S is a new entity
11170 Enter_Overloaded_Entity (S);
11171 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11172 Check_Overriding_Indicator
11173 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11175 -- The Ghost policy in effect at the point of declaration of a parent
11176 -- subprogram and an overriding subprogram must match
11177 -- (SPARK RM 6.9(17)).
11179 Check_Ghost_Overriding (S, Overridden_Subp);
11181 -- Overloading is not allowed in SPARK, except for operators
11183 if Nkind (S) /= N_Defining_Operator_Symbol then
11184 Error_Msg_Sloc := Sloc (Homonym (S));
11185 Check_SPARK_05_Restriction
11186 ("overloading not allowed with entity#", S);
11187 end if;
11189 -- If S is a derived operation for an untagged type then by
11190 -- definition it's not a dispatching operation (even if the parent
11191 -- operation was dispatching), so Check_Dispatching_Operation is not
11192 -- called in that case.
11194 if No (Derived_Type)
11195 or else Is_Tagged_Type (Derived_Type)
11196 then
11197 Check_Dispatching_Operation (S, Empty);
11198 end if;
11199 end if;
11201 -- If this is a user-defined equality operator that is not a derived
11202 -- subprogram, create the corresponding inequality. If the operation is
11203 -- dispatching, the expansion is done elsewhere, and we do not create
11204 -- an explicit inequality operation.
11206 <<Check_Inequality>>
11207 if Chars (S) = Name_Op_Eq
11208 and then Etype (S) = Standard_Boolean
11209 and then Present (Parent (S))
11210 and then not Is_Dispatching_Operation (S)
11211 then
11212 Make_Inequality_Operator (S);
11213 Check_Untagged_Equality (S);
11214 end if;
11215 end New_Overloaded_Entity;
11217 ---------------------
11218 -- Process_Formals --
11219 ---------------------
11221 procedure Process_Formals
11222 (T : List_Id;
11223 Related_Nod : Node_Id)
11225 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11226 -- Determine whether an access type designates a type coming from a
11227 -- limited view.
11229 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11230 -- Check whether the default has a class-wide type. After analysis the
11231 -- default has the type of the formal, so we must also check explicitly
11232 -- for an access attribute.
11234 ----------------------------------
11235 -- Designates_From_Limited_With --
11236 ----------------------------------
11238 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11239 Desig : Entity_Id := Typ;
11241 begin
11242 if Is_Access_Type (Desig) then
11243 Desig := Directly_Designated_Type (Desig);
11244 end if;
11246 if Is_Class_Wide_Type (Desig) then
11247 Desig := Root_Type (Desig);
11248 end if;
11250 return
11251 Ekind (Desig) = E_Incomplete_Type
11252 and then From_Limited_With (Desig);
11253 end Designates_From_Limited_With;
11255 ---------------------------
11256 -- Is_Class_Wide_Default --
11257 ---------------------------
11259 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11260 begin
11261 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11262 or else (Nkind (D) = N_Attribute_Reference
11263 and then Attribute_Name (D) = Name_Access
11264 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11265 end Is_Class_Wide_Default;
11267 -- Local variables
11269 Context : constant Node_Id := Parent (Parent (T));
11270 Default : Node_Id;
11271 Formal : Entity_Id;
11272 Formal_Type : Entity_Id;
11273 Param_Spec : Node_Id;
11274 Ptype : Entity_Id;
11276 Num_Out_Params : Nat := 0;
11277 First_Out_Param : Entity_Id := Empty;
11278 -- Used for setting Is_Only_Out_Parameter
11280 -- Start of processing for Process_Formals
11282 begin
11283 -- In order to prevent premature use of the formals in the same formal
11284 -- part, the Ekind is left undefined until all default expressions are
11285 -- analyzed. The Ekind is established in a separate loop at the end.
11287 Param_Spec := First (T);
11288 while Present (Param_Spec) loop
11289 Formal := Defining_Identifier (Param_Spec);
11290 Set_Never_Set_In_Source (Formal, True);
11291 Enter_Name (Formal);
11293 -- Case of ordinary parameters
11295 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11296 Find_Type (Parameter_Type (Param_Spec));
11297 Ptype := Parameter_Type (Param_Spec);
11299 if Ptype = Error then
11300 goto Continue;
11301 end if;
11303 Formal_Type := Entity (Ptype);
11305 if Is_Incomplete_Type (Formal_Type)
11306 or else
11307 (Is_Class_Wide_Type (Formal_Type)
11308 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11309 then
11310 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11311 -- primitive operations, as long as their completion is
11312 -- in the same declarative part. If in the private part
11313 -- this means that the type cannot be a Taft-amendment type.
11314 -- Check is done on package exit. For access to subprograms,
11315 -- the use is legal for Taft-amendment types.
11317 -- Ada 2012: tagged incomplete types are allowed as generic
11318 -- formal types. They do not introduce dependencies and the
11319 -- corresponding generic subprogram does not have a delayed
11320 -- freeze, because it does not need a freeze node. However,
11321 -- it is still the case that untagged incomplete types cannot
11322 -- be Taft-amendment types and must be completed in private
11323 -- part, so the subprogram must appear in the list of private
11324 -- dependents of the type.
11326 if Is_Tagged_Type (Formal_Type)
11327 or else (Ada_Version >= Ada_2012
11328 and then not From_Limited_With (Formal_Type)
11329 and then not Is_Generic_Type (Formal_Type))
11330 then
11331 if Ekind (Scope (Current_Scope)) = E_Package
11332 and then not Is_Generic_Type (Formal_Type)
11333 and then not Is_Class_Wide_Type (Formal_Type)
11334 then
11335 if not Nkind_In
11336 (Parent (T), N_Access_Function_Definition,
11337 N_Access_Procedure_Definition)
11338 then
11339 Append_Elmt (Current_Scope,
11340 Private_Dependents (Base_Type (Formal_Type)));
11342 -- Freezing is delayed to ensure that Register_Prim
11343 -- will get called for this operation, which is needed
11344 -- in cases where static dispatch tables aren't built.
11345 -- (Note that the same is done for controlling access
11346 -- parameter cases in function Access_Definition.)
11348 if not Is_Thunk (Current_Scope) then
11349 Set_Has_Delayed_Freeze (Current_Scope);
11350 end if;
11351 end if;
11352 end if;
11354 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11355 N_Access_Procedure_Definition)
11356 then
11357 -- AI05-0151: Tagged incomplete types are allowed in all
11358 -- formal parts. Untagged incomplete types are not allowed
11359 -- in bodies. Limited views of either kind are not allowed
11360 -- if there is no place at which the non-limited view can
11361 -- become available.
11363 -- Incomplete formal untagged types are not allowed in
11364 -- subprogram bodies (but are legal in their declarations).
11365 -- This excludes bodies created for null procedures, which
11366 -- are basic declarations.
11368 if Is_Generic_Type (Formal_Type)
11369 and then not Is_Tagged_Type (Formal_Type)
11370 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11371 then
11372 Error_Msg_N
11373 ("invalid use of formal incomplete type", Param_Spec);
11375 elsif Ada_Version >= Ada_2012 then
11376 if Is_Tagged_Type (Formal_Type)
11377 and then (not From_Limited_With (Formal_Type)
11378 or else not In_Package_Body)
11379 then
11380 null;
11382 elsif Nkind_In (Context, N_Accept_Statement,
11383 N_Accept_Alternative,
11384 N_Entry_Body)
11385 or else (Nkind (Context) = N_Subprogram_Body
11386 and then Comes_From_Source (Context))
11387 then
11388 Error_Msg_NE
11389 ("invalid use of untagged incomplete type &",
11390 Ptype, Formal_Type);
11391 end if;
11393 else
11394 Error_Msg_NE
11395 ("invalid use of incomplete type&",
11396 Param_Spec, Formal_Type);
11398 -- Further checks on the legality of incomplete types
11399 -- in formal parts are delayed until the freeze point
11400 -- of the enclosing subprogram or access to subprogram.
11401 end if;
11402 end if;
11404 elsif Ekind (Formal_Type) = E_Void then
11405 Error_Msg_NE
11406 ("premature use of&",
11407 Parameter_Type (Param_Spec), Formal_Type);
11408 end if;
11410 -- Ada 2012 (AI-142): Handle aliased parameters
11412 if Ada_Version >= Ada_2012
11413 and then Aliased_Present (Param_Spec)
11414 then
11415 Set_Is_Aliased (Formal);
11416 end if;
11418 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11419 -- declaration corresponding to the null-excluding type of the
11420 -- formal in the enclosing scope. Finally, replace the parameter
11421 -- type of the formal with the internal subtype.
11423 if Ada_Version >= Ada_2005
11424 and then Null_Exclusion_Present (Param_Spec)
11425 then
11426 if not Is_Access_Type (Formal_Type) then
11427 Error_Msg_N
11428 ("`NOT NULL` allowed only for an access type", Param_Spec);
11430 else
11431 if Can_Never_Be_Null (Formal_Type)
11432 and then Comes_From_Source (Related_Nod)
11433 then
11434 Error_Msg_NE
11435 ("`NOT NULL` not allowed (& already excludes null)",
11436 Param_Spec, Formal_Type);
11437 end if;
11439 Formal_Type :=
11440 Create_Null_Excluding_Itype
11441 (T => Formal_Type,
11442 Related_Nod => Related_Nod,
11443 Scope_Id => Scope (Current_Scope));
11445 -- If the designated type of the itype is an itype that is
11446 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11447 -- on the access subtype, to prevent order-of-elaboration
11448 -- issues in the backend.
11450 -- Example:
11451 -- type T is access procedure;
11452 -- procedure Op (O : not null T);
11454 if Is_Itype (Directly_Designated_Type (Formal_Type))
11455 and then
11456 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11457 then
11458 Set_Has_Delayed_Freeze (Formal_Type);
11459 end if;
11460 end if;
11461 end if;
11463 -- An access formal type
11465 else
11466 Formal_Type :=
11467 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11469 -- No need to continue if we already notified errors
11471 if not Present (Formal_Type) then
11472 return;
11473 end if;
11475 -- Ada 2005 (AI-254)
11477 declare
11478 AD : constant Node_Id :=
11479 Access_To_Subprogram_Definition
11480 (Parameter_Type (Param_Spec));
11481 begin
11482 if Present (AD) and then Protected_Present (AD) then
11483 Formal_Type :=
11484 Replace_Anonymous_Access_To_Protected_Subprogram
11485 (Param_Spec);
11486 end if;
11487 end;
11488 end if;
11490 Set_Etype (Formal, Formal_Type);
11492 -- Deal with default expression if present
11494 Default := Expression (Param_Spec);
11496 if Present (Default) then
11497 Check_SPARK_05_Restriction
11498 ("default expression is not allowed", Default);
11500 if Out_Present (Param_Spec) then
11501 Error_Msg_N
11502 ("default initialization only allowed for IN parameters",
11503 Param_Spec);
11504 end if;
11506 -- Do the special preanalysis of the expression (see section on
11507 -- "Handling of Default Expressions" in the spec of package Sem).
11509 Preanalyze_Spec_Expression (Default, Formal_Type);
11511 -- An access to constant cannot be the default for
11512 -- an access parameter that is an access to variable.
11514 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11515 and then not Is_Access_Constant (Formal_Type)
11516 and then Is_Access_Type (Etype (Default))
11517 and then Is_Access_Constant (Etype (Default))
11518 then
11519 Error_Msg_N
11520 ("formal that is access to variable cannot be initialized "
11521 & "with an access-to-constant expression", Default);
11522 end if;
11524 -- Check that the designated type of an access parameter's default
11525 -- is not a class-wide type unless the parameter's designated type
11526 -- is also class-wide.
11528 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11529 and then not Designates_From_Limited_With (Formal_Type)
11530 and then Is_Class_Wide_Default (Default)
11531 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11532 then
11533 Error_Msg_N
11534 ("access to class-wide expression not allowed here", Default);
11535 end if;
11537 -- Check incorrect use of dynamically tagged expressions
11539 if Is_Tagged_Type (Formal_Type) then
11540 Check_Dynamically_Tagged_Expression
11541 (Expr => Default,
11542 Typ => Formal_Type,
11543 Related_Nod => Default);
11544 end if;
11545 end if;
11547 -- Ada 2005 (AI-231): Static checks
11549 if Ada_Version >= Ada_2005
11550 and then Is_Access_Type (Etype (Formal))
11551 and then Can_Never_Be_Null (Etype (Formal))
11552 then
11553 Null_Exclusion_Static_Checks (Param_Spec);
11554 end if;
11556 -- The following checks are relevant only when SPARK_Mode is on as
11557 -- these are not standard Ada legality rules.
11559 if SPARK_Mode = On then
11560 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11562 -- A function cannot have a parameter of mode IN OUT or OUT
11563 -- (SPARK RM 6.1).
11565 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11566 Error_Msg_N
11567 ("function cannot have parameter of mode `OUT` or "
11568 & "`IN OUT`", Formal);
11569 end if;
11571 -- A procedure cannot have an effectively volatile formal
11572 -- parameter of mode IN because it behaves as a constant
11573 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11575 elsif Ekind (Scope (Formal)) = E_Procedure
11576 and then Ekind (Formal) = E_In_Parameter
11577 and then Is_Effectively_Volatile (Formal)
11578 then
11579 Error_Msg_N
11580 ("formal parameter of mode `IN` cannot be volatile", Formal);
11581 end if;
11582 end if;
11584 <<Continue>>
11585 Next (Param_Spec);
11586 end loop;
11588 -- If this is the formal part of a function specification, analyze the
11589 -- subtype mark in the context where the formals are visible but not
11590 -- yet usable, and may hide outer homographs.
11592 if Nkind (Related_Nod) = N_Function_Specification then
11593 Analyze_Return_Type (Related_Nod);
11594 end if;
11596 -- Now set the kind (mode) of each formal
11598 Param_Spec := First (T);
11599 while Present (Param_Spec) loop
11600 Formal := Defining_Identifier (Param_Spec);
11601 Set_Formal_Mode (Formal);
11603 if Ekind (Formal) = E_In_Parameter then
11604 Set_Default_Value (Formal, Expression (Param_Spec));
11606 if Present (Expression (Param_Spec)) then
11607 Default := Expression (Param_Spec);
11609 if Is_Scalar_Type (Etype (Default)) then
11610 if Nkind (Parameter_Type (Param_Spec)) /=
11611 N_Access_Definition
11612 then
11613 Formal_Type := Entity (Parameter_Type (Param_Spec));
11614 else
11615 Formal_Type :=
11616 Access_Definition
11617 (Related_Nod, Parameter_Type (Param_Spec));
11618 end if;
11620 Apply_Scalar_Range_Check (Default, Formal_Type);
11621 end if;
11622 end if;
11624 elsif Ekind (Formal) = E_Out_Parameter then
11625 Num_Out_Params := Num_Out_Params + 1;
11627 if Num_Out_Params = 1 then
11628 First_Out_Param := Formal;
11629 end if;
11631 elsif Ekind (Formal) = E_In_Out_Parameter then
11632 Num_Out_Params := Num_Out_Params + 1;
11633 end if;
11635 -- Skip remaining processing if formal type was in error
11637 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11638 goto Next_Parameter;
11639 end if;
11641 -- Force call by reference if aliased
11643 declare
11644 Conv : constant Convention_Id := Convention (Etype (Formal));
11645 begin
11646 if Is_Aliased (Formal) then
11647 Set_Mechanism (Formal, By_Reference);
11649 -- Warn if user asked this to be passed by copy
11651 if Conv = Convention_Ada_Pass_By_Copy then
11652 Error_Msg_N
11653 ("cannot pass aliased parameter & by copy??", Formal);
11654 end if;
11656 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11658 elsif Conv = Convention_Ada_Pass_By_Copy then
11659 Set_Mechanism (Formal, By_Copy);
11661 elsif Conv = Convention_Ada_Pass_By_Reference then
11662 Set_Mechanism (Formal, By_Reference);
11663 end if;
11664 end;
11666 <<Next_Parameter>>
11667 Next (Param_Spec);
11668 end loop;
11670 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11671 Set_Is_Only_Out_Parameter (First_Out_Param);
11672 end if;
11673 end Process_Formals;
11675 ----------------------------
11676 -- Reference_Body_Formals --
11677 ----------------------------
11679 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11680 Fs : Entity_Id;
11681 Fb : Entity_Id;
11683 begin
11684 if Error_Posted (Spec) then
11685 return;
11686 end if;
11688 -- Iterate over both lists. They may be of different lengths if the two
11689 -- specs are not conformant.
11691 Fs := First_Formal (Spec);
11692 Fb := First_Formal (Bod);
11693 while Present (Fs) and then Present (Fb) loop
11694 Generate_Reference (Fs, Fb, 'b');
11696 if Style_Check then
11697 Style.Check_Identifier (Fb, Fs);
11698 end if;
11700 Set_Spec_Entity (Fb, Fs);
11701 Set_Referenced (Fs, False);
11702 Next_Formal (Fs);
11703 Next_Formal (Fb);
11704 end loop;
11705 end Reference_Body_Formals;
11707 -------------------------
11708 -- Set_Actual_Subtypes --
11709 -------------------------
11711 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11712 Decl : Node_Id;
11713 Formal : Entity_Id;
11714 T : Entity_Id;
11715 First_Stmt : Node_Id := Empty;
11716 AS_Needed : Boolean;
11718 begin
11719 -- If this is an empty initialization procedure, no need to create
11720 -- actual subtypes (small optimization).
11722 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11723 return;
11725 -- Within a predicate function we do not want to generate local
11726 -- subtypes that may generate nested predicate functions.
11728 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11729 return;
11730 end if;
11732 -- The subtype declarations may freeze the formals. The body generated
11733 -- for an expression function is not a freeze point, so do not emit
11734 -- these declarations (small loss of efficiency in rare cases).
11736 if Nkind (N) = N_Subprogram_Body
11737 and then Was_Expression_Function (N)
11738 then
11739 return;
11740 end if;
11742 Formal := First_Formal (Subp);
11743 while Present (Formal) loop
11744 T := Etype (Formal);
11746 -- We never need an actual subtype for a constrained formal
11748 if Is_Constrained (T) then
11749 AS_Needed := False;
11751 -- If we have unknown discriminants, then we do not need an actual
11752 -- subtype, or more accurately we cannot figure it out. Note that
11753 -- all class-wide types have unknown discriminants.
11755 elsif Has_Unknown_Discriminants (T) then
11756 AS_Needed := False;
11758 -- At this stage we have an unconstrained type that may need an
11759 -- actual subtype. For sure the actual subtype is needed if we have
11760 -- an unconstrained array type. However, in an instance, the type
11761 -- may appear as a subtype of the full view, while the actual is
11762 -- in fact private (in which case no actual subtype is needed) so
11763 -- check the kind of the base type.
11765 elsif Is_Array_Type (Base_Type (T)) then
11766 AS_Needed := True;
11768 -- The only other case needing an actual subtype is an unconstrained
11769 -- record type which is an IN parameter (we cannot generate actual
11770 -- subtypes for the OUT or IN OUT case, since an assignment can
11771 -- change the discriminant values. However we exclude the case of
11772 -- initialization procedures, since discriminants are handled very
11773 -- specially in this context, see the section entitled "Handling of
11774 -- Discriminants" in Einfo.
11776 -- We also exclude the case of Discrim_SO_Functions (functions used
11777 -- in front-end layout mode for size/offset values), since in such
11778 -- functions only discriminants are referenced, and not only are such
11779 -- subtypes not needed, but they cannot always be generated, because
11780 -- of order of elaboration issues.
11782 elsif Is_Record_Type (T)
11783 and then Ekind (Formal) = E_In_Parameter
11784 and then Chars (Formal) /= Name_uInit
11785 and then not Is_Unchecked_Union (T)
11786 and then not Is_Discrim_SO_Function (Subp)
11787 then
11788 AS_Needed := True;
11790 -- All other cases do not need an actual subtype
11792 else
11793 AS_Needed := False;
11794 end if;
11796 -- Generate actual subtypes for unconstrained arrays and
11797 -- unconstrained discriminated records.
11799 if AS_Needed then
11800 if Nkind (N) = N_Accept_Statement then
11802 -- If expansion is active, the formal is replaced by a local
11803 -- variable that renames the corresponding entry of the
11804 -- parameter block, and it is this local variable that may
11805 -- require an actual subtype.
11807 if Expander_Active then
11808 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11809 else
11810 Decl := Build_Actual_Subtype (T, Formal);
11811 end if;
11813 if Present (Handled_Statement_Sequence (N)) then
11814 First_Stmt :=
11815 First (Statements (Handled_Statement_Sequence (N)));
11816 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11817 Mark_Rewrite_Insertion (Decl);
11818 else
11819 -- If the accept statement has no body, there will be no
11820 -- reference to the actuals, so no need to compute actual
11821 -- subtypes.
11823 return;
11824 end if;
11826 else
11827 Decl := Build_Actual_Subtype (T, Formal);
11828 Prepend (Decl, Declarations (N));
11829 Mark_Rewrite_Insertion (Decl);
11830 end if;
11832 -- The declaration uses the bounds of an existing object, and
11833 -- therefore needs no constraint checks.
11835 Analyze (Decl, Suppress => All_Checks);
11836 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11838 -- We need to freeze manually the generated type when it is
11839 -- inserted anywhere else than in a declarative part.
11841 if Present (First_Stmt) then
11842 Insert_List_Before_And_Analyze (First_Stmt,
11843 Freeze_Entity (Defining_Identifier (Decl), N));
11845 -- Ditto if the type has a dynamic predicate, because the
11846 -- generated function will mention the actual subtype. The
11847 -- predicate may come from an explicit aspect of be inherited.
11849 elsif Has_Predicates (T) then
11850 Insert_List_Before_And_Analyze (Decl,
11851 Freeze_Entity (Defining_Identifier (Decl), N));
11852 end if;
11854 if Nkind (N) = N_Accept_Statement
11855 and then Expander_Active
11856 then
11857 Set_Actual_Subtype (Renamed_Object (Formal),
11858 Defining_Identifier (Decl));
11859 else
11860 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11861 end if;
11862 end if;
11864 Next_Formal (Formal);
11865 end loop;
11866 end Set_Actual_Subtypes;
11868 ---------------------
11869 -- Set_Formal_Mode --
11870 ---------------------
11872 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11873 Spec : constant Node_Id := Parent (Formal_Id);
11874 Id : constant Entity_Id := Scope (Formal_Id);
11876 begin
11877 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11878 -- since we ensure that corresponding actuals are always valid at the
11879 -- point of the call.
11881 if Out_Present (Spec) then
11882 if Ekind_In (Id, E_Entry, E_Entry_Family)
11883 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11884 then
11885 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11886 end if;
11888 if Ekind_In (Id, E_Function, E_Generic_Function) then
11890 -- [IN] OUT parameters allowed for functions in Ada 2012
11892 if Ada_Version >= Ada_2012 then
11894 -- Even in Ada 2012 operators can only have IN parameters
11896 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11897 Error_Msg_N ("operators can only have IN parameters", Spec);
11898 end if;
11900 if In_Present (Spec) then
11901 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11902 else
11903 Set_Ekind (Formal_Id, E_Out_Parameter);
11904 end if;
11906 -- But not in earlier versions of Ada
11908 else
11909 Error_Msg_N ("functions can only have IN parameters", Spec);
11910 Set_Ekind (Formal_Id, E_In_Parameter);
11911 end if;
11913 elsif In_Present (Spec) then
11914 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11916 else
11917 Set_Ekind (Formal_Id, E_Out_Parameter);
11918 Set_Never_Set_In_Source (Formal_Id, True);
11919 Set_Is_True_Constant (Formal_Id, False);
11920 Set_Current_Value (Formal_Id, Empty);
11921 end if;
11923 else
11924 Set_Ekind (Formal_Id, E_In_Parameter);
11925 end if;
11927 -- Set Is_Known_Non_Null for access parameters since the language
11928 -- guarantees that access parameters are always non-null. We also set
11929 -- Can_Never_Be_Null, since there is no way to change the value.
11931 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11933 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11934 -- null; In Ada 2005, only if then null_exclusion is explicit.
11936 if Ada_Version < Ada_2005
11937 or else Can_Never_Be_Null (Etype (Formal_Id))
11938 then
11939 Set_Is_Known_Non_Null (Formal_Id);
11940 Set_Can_Never_Be_Null (Formal_Id);
11941 end if;
11943 -- Ada 2005 (AI-231): Null-exclusion access subtype
11945 elsif Is_Access_Type (Etype (Formal_Id))
11946 and then Can_Never_Be_Null (Etype (Formal_Id))
11947 then
11948 Set_Is_Known_Non_Null (Formal_Id);
11950 -- We can also set Can_Never_Be_Null (thus preventing some junk
11951 -- access checks) for the case of an IN parameter, which cannot
11952 -- be changed, or for an IN OUT parameter, which can be changed but
11953 -- not to a null value. But for an OUT parameter, the initial value
11954 -- passed in can be null, so we can't set this flag in that case.
11956 if Ekind (Formal_Id) /= E_Out_Parameter then
11957 Set_Can_Never_Be_Null (Formal_Id);
11958 end if;
11959 end if;
11961 Set_Mechanism (Formal_Id, Default_Mechanism);
11962 Set_Formal_Validity (Formal_Id);
11963 end Set_Formal_Mode;
11965 -------------------------
11966 -- Set_Formal_Validity --
11967 -------------------------
11969 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11970 begin
11971 -- If no validity checking, then we cannot assume anything about the
11972 -- validity of parameters, since we do not know there is any checking
11973 -- of the validity on the call side.
11975 if not Validity_Checks_On then
11976 return;
11978 -- If validity checking for parameters is enabled, this means we are
11979 -- not supposed to make any assumptions about argument values.
11981 elsif Validity_Check_Parameters then
11982 return;
11984 -- If we are checking in parameters, we will assume that the caller is
11985 -- also checking parameters, so we can assume the parameter is valid.
11987 elsif Ekind (Formal_Id) = E_In_Parameter
11988 and then Validity_Check_In_Params
11989 then
11990 Set_Is_Known_Valid (Formal_Id, True);
11992 -- Similar treatment for IN OUT parameters
11994 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11995 and then Validity_Check_In_Out_Params
11996 then
11997 Set_Is_Known_Valid (Formal_Id, True);
11998 end if;
11999 end Set_Formal_Validity;
12001 ------------------------
12002 -- Subtype_Conformant --
12003 ------------------------
12005 function Subtype_Conformant
12006 (New_Id : Entity_Id;
12007 Old_Id : Entity_Id;
12008 Skip_Controlling_Formals : Boolean := False) return Boolean
12010 Result : Boolean;
12011 begin
12012 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12013 Skip_Controlling_Formals => Skip_Controlling_Formals);
12014 return Result;
12015 end Subtype_Conformant;
12017 ---------------------
12018 -- Type_Conformant --
12019 ---------------------
12021 function Type_Conformant
12022 (New_Id : Entity_Id;
12023 Old_Id : Entity_Id;
12024 Skip_Controlling_Formals : Boolean := False) return Boolean
12026 Result : Boolean;
12027 begin
12028 May_Hide_Profile := False;
12029 Check_Conformance
12030 (New_Id, Old_Id, Type_Conformant, False, Result,
12031 Skip_Controlling_Formals => Skip_Controlling_Formals);
12032 return Result;
12033 end Type_Conformant;
12035 -------------------------------
12036 -- Valid_Operator_Definition --
12037 -------------------------------
12039 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12040 N : Integer := 0;
12041 F : Entity_Id;
12042 Id : constant Name_Id := Chars (Designator);
12043 N_OK : Boolean;
12045 begin
12046 F := First_Formal (Designator);
12047 while Present (F) loop
12048 N := N + 1;
12050 if Present (Default_Value (F)) then
12051 Error_Msg_N
12052 ("default values not allowed for operator parameters",
12053 Parent (F));
12055 -- For function instantiations that are operators, we must check
12056 -- separately that the corresponding generic only has in-parameters.
12057 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12058 -- an error could not arise in earlier versions of the language.
12060 elsif Ekind (F) /= E_In_Parameter then
12061 Error_Msg_N ("operators can only have IN parameters", F);
12062 end if;
12064 Next_Formal (F);
12065 end loop;
12067 -- Verify that user-defined operators have proper number of arguments
12068 -- First case of operators which can only be unary
12070 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12071 N_OK := (N = 1);
12073 -- Case of operators which can be unary or binary
12075 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12076 N_OK := (N in 1 .. 2);
12078 -- All other operators can only be binary
12080 else
12081 N_OK := (N = 2);
12082 end if;
12084 if not N_OK then
12085 Error_Msg_N
12086 ("incorrect number of arguments for operator", Designator);
12087 end if;
12089 if Id = Name_Op_Ne
12090 and then Base_Type (Etype (Designator)) = Standard_Boolean
12091 and then not Is_Intrinsic_Subprogram (Designator)
12092 then
12093 Error_Msg_N
12094 ("explicit definition of inequality not allowed", Designator);
12095 end if;
12096 end Valid_Operator_Definition;
12098 end Sem_Ch6;