Use int64 on time and clock for x32
[official-gcc.git] / gcc / optabs.c
blobe035af18c612e0a280e4e44e3884de929705808b
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "stringpool.h"
34 #include "varasm.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "function.h"
38 #include "except.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "ggc.h"
45 #include "basic-block.h"
46 #include "target.h"
48 struct target_optabs default_target_optabs;
49 struct target_libfuncs default_target_libfuncs;
50 struct target_optabs *this_fn_optabs = &default_target_optabs;
51 #if SWITCHABLE_TARGET
52 struct target_optabs *this_target_optabs = &default_target_optabs;
53 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
54 #endif
56 #define libfunc_hash \
57 (this_target_libfuncs->x_libfunc_hash)
59 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
60 enum machine_mode *);
61 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
62 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
70 #else
71 #define DECIMAL_PREFIX "dpd_"
72 #endif
74 /* Used for libfunc_hash. */
76 static hashval_t
77 hash_libfunc (const void *p)
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
80 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
83 /* Used for libfunc_hash. */
85 static int
86 eq_libfunc (const void *p, const void *q)
88 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
89 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
90 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
93 /* Return libfunc corresponding operation defined by OPTAB converting
94 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
95 if no libfunc is available. */
96 rtx
97 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
98 enum machine_mode mode2)
100 struct libfunc_entry e;
101 struct libfunc_entry **slot;
103 /* ??? This ought to be an assert, but not all of the places
104 that we expand optabs know about the optabs that got moved
105 to being direct. */
106 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
107 return NULL_RTX;
109 e.op = optab;
110 e.mode1 = mode1;
111 e.mode2 = mode2;
112 slot = (struct libfunc_entry **)
113 htab_find_slot (libfunc_hash, &e, NO_INSERT);
114 if (!slot)
116 const struct convert_optab_libcall_d *d
117 = &convlib_def[optab - FIRST_CONV_OPTAB];
119 if (d->libcall_gen == NULL)
120 return NULL;
122 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
123 slot = (struct libfunc_entry **)
124 htab_find_slot (libfunc_hash, &e, NO_INSERT);
125 if (!slot)
126 return NULL;
128 return (*slot)->libfunc;
131 /* Return libfunc corresponding operation defined by OPTAB in MODE.
132 Trigger lazy initialization if needed, return NULL if no libfunc is
133 available. */
135 optab_libfunc (optab optab, enum machine_mode mode)
137 struct libfunc_entry e;
138 struct libfunc_entry **slot;
140 /* ??? This ought to be an assert, but not all of the places
141 that we expand optabs know about the optabs that got moved
142 to being direct. */
143 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
144 return NULL_RTX;
146 e.op = optab;
147 e.mode1 = mode;
148 e.mode2 = VOIDmode;
149 slot = (struct libfunc_entry **)
150 htab_find_slot (libfunc_hash, &e, NO_INSERT);
151 if (!slot)
153 const struct optab_libcall_d *d
154 = &normlib_def[optab - FIRST_NORM_OPTAB];
156 if (d->libcall_gen == NULL)
157 return NULL;
159 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
160 slot = (struct libfunc_entry **)
161 htab_find_slot (libfunc_hash, &e, NO_INSERT);
162 if (!slot)
163 return NULL;
165 return (*slot)->libfunc;
169 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
171 operation).
173 If the last insn does not set TARGET, don't do anything, but return 1.
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
179 static int
180 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
182 rtx last_insn, set;
183 rtx note;
185 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
187 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
188 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
189 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
190 && GET_RTX_CLASS (code) != RTX_COMPARE
191 && GET_RTX_CLASS (code) != RTX_UNARY)
192 return 1;
194 if (GET_CODE (target) == ZERO_EXTRACT)
195 return 1;
197 for (last_insn = insns;
198 NEXT_INSN (last_insn) != NULL_RTX;
199 last_insn = NEXT_INSN (last_insn))
202 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
203 a value changing in the insn, so the note would be invalid for CSE. */
204 if (reg_overlap_mentioned_p (target, op0)
205 || (op1 && reg_overlap_mentioned_p (target, op1)))
207 if (MEM_P (target)
208 && (rtx_equal_p (target, op0)
209 || (op1 && rtx_equal_p (target, op1))))
211 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
212 over expanding it as temp = MEM op X, MEM = temp. If the target
213 supports MEM = MEM op X instructions, it is sometimes too hard
214 to reconstruct that form later, especially if X is also a memory,
215 and due to multiple occurrences of addresses the address might
216 be forced into register unnecessarily.
217 Note that not emitting the REG_EQUIV note might inhibit
218 CSE in some cases. */
219 set = single_set (last_insn);
220 if (set
221 && GET_CODE (SET_SRC (set)) == code
222 && MEM_P (SET_DEST (set))
223 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
224 || (op1 && rtx_equal_p (SET_DEST (set),
225 XEXP (SET_SRC (set), 1)))))
226 return 1;
228 return 0;
231 set = single_set (last_insn);
232 if (set == NULL_RTX)
233 return 1;
235 if (! rtx_equal_p (SET_DEST (set), target)
236 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
237 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
238 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
239 return 1;
241 if (GET_RTX_CLASS (code) == RTX_UNARY)
242 switch (code)
244 case FFS:
245 case CLZ:
246 case CTZ:
247 case CLRSB:
248 case POPCOUNT:
249 case PARITY:
250 case BSWAP:
251 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
253 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
254 if (GET_MODE_SIZE (GET_MODE (op0))
255 > GET_MODE_SIZE (GET_MODE (target)))
256 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
257 note, GET_MODE (op0));
258 else
259 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
260 note, GET_MODE (op0));
261 break;
263 /* FALLTHRU */
264 default:
265 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
266 break;
268 else
269 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
271 set_unique_reg_note (last_insn, REG_EQUAL, note);
273 return 1;
276 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
277 for a widening operation would be. In most cases this would be OP0, but if
278 that's a constant it'll be VOIDmode, which isn't useful. */
280 static enum machine_mode
281 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
283 enum machine_mode m0 = GET_MODE (op0);
284 enum machine_mode m1 = GET_MODE (op1);
285 enum machine_mode result;
287 if (m0 == VOIDmode && m1 == VOIDmode)
288 return to_mode;
289 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
290 result = m1;
291 else
292 result = m0;
294 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
295 return to_mode;
297 return result;
300 /* Find a widening optab even if it doesn't widen as much as we want.
301 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
302 direct HI->SI insn, then return SI->DI, if that exists.
303 If PERMIT_NON_WIDENING is non-zero then this can be used with
304 non-widening optabs also. */
306 enum insn_code
307 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
308 enum machine_mode from_mode,
309 int permit_non_widening,
310 enum machine_mode *found_mode)
312 for (; (permit_non_widening || from_mode != to_mode)
313 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
314 && from_mode != VOIDmode;
315 from_mode = GET_MODE_WIDER_MODE (from_mode))
317 enum insn_code handler = widening_optab_handler (op, to_mode,
318 from_mode);
320 if (handler != CODE_FOR_nothing)
322 if (found_mode)
323 *found_mode = from_mode;
324 return handler;
328 return CODE_FOR_nothing;
331 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
332 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
333 not actually do a sign-extend or zero-extend, but can leave the
334 higher-order bits of the result rtx undefined, for example, in the case
335 of logical operations, but not right shifts. */
337 static rtx
338 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
339 int unsignedp, int no_extend)
341 rtx result;
343 /* If we don't have to extend and this is a constant, return it. */
344 if (no_extend && GET_MODE (op) == VOIDmode)
345 return op;
347 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
348 extend since it will be more efficient to do so unless the signedness of
349 a promoted object differs from our extension. */
350 if (! no_extend
351 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
352 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
353 return convert_modes (mode, oldmode, op, unsignedp);
355 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
356 SUBREG. */
357 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
358 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
360 /* Otherwise, get an object of MODE, clobber it, and set the low-order
361 part to OP. */
363 result = gen_reg_rtx (mode);
364 emit_clobber (result);
365 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
366 return result;
369 /* Return the optab used for computing the operation given by the tree code,
370 CODE and the tree EXP. This function is not always usable (for example, it
371 cannot give complete results for multiplication or division) but probably
372 ought to be relied on more widely throughout the expander. */
373 optab
374 optab_for_tree_code (enum tree_code code, const_tree type,
375 enum optab_subtype subtype)
377 bool trapv;
378 switch (code)
380 case BIT_AND_EXPR:
381 return and_optab;
383 case BIT_IOR_EXPR:
384 return ior_optab;
386 case BIT_NOT_EXPR:
387 return one_cmpl_optab;
389 case BIT_XOR_EXPR:
390 return xor_optab;
392 case MULT_HIGHPART_EXPR:
393 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
395 case TRUNC_MOD_EXPR:
396 case CEIL_MOD_EXPR:
397 case FLOOR_MOD_EXPR:
398 case ROUND_MOD_EXPR:
399 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
401 case RDIV_EXPR:
402 case TRUNC_DIV_EXPR:
403 case CEIL_DIV_EXPR:
404 case FLOOR_DIV_EXPR:
405 case ROUND_DIV_EXPR:
406 case EXACT_DIV_EXPR:
407 if (TYPE_SATURATING (type))
408 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
409 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
411 case LSHIFT_EXPR:
412 if (TREE_CODE (type) == VECTOR_TYPE)
414 if (subtype == optab_vector)
415 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
417 gcc_assert (subtype == optab_scalar);
419 if (TYPE_SATURATING (type))
420 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
421 return ashl_optab;
423 case RSHIFT_EXPR:
424 if (TREE_CODE (type) == VECTOR_TYPE)
426 if (subtype == optab_vector)
427 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
429 gcc_assert (subtype == optab_scalar);
431 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
433 case LROTATE_EXPR:
434 if (TREE_CODE (type) == VECTOR_TYPE)
436 if (subtype == optab_vector)
437 return vrotl_optab;
439 gcc_assert (subtype == optab_scalar);
441 return rotl_optab;
443 case RROTATE_EXPR:
444 if (TREE_CODE (type) == VECTOR_TYPE)
446 if (subtype == optab_vector)
447 return vrotr_optab;
449 gcc_assert (subtype == optab_scalar);
451 return rotr_optab;
453 case MAX_EXPR:
454 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
456 case MIN_EXPR:
457 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
459 case REALIGN_LOAD_EXPR:
460 return vec_realign_load_optab;
462 case WIDEN_SUM_EXPR:
463 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
465 case DOT_PROD_EXPR:
466 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
468 case WIDEN_MULT_PLUS_EXPR:
469 return (TYPE_UNSIGNED (type)
470 ? (TYPE_SATURATING (type)
471 ? usmadd_widen_optab : umadd_widen_optab)
472 : (TYPE_SATURATING (type)
473 ? ssmadd_widen_optab : smadd_widen_optab));
475 case WIDEN_MULT_MINUS_EXPR:
476 return (TYPE_UNSIGNED (type)
477 ? (TYPE_SATURATING (type)
478 ? usmsub_widen_optab : umsub_widen_optab)
479 : (TYPE_SATURATING (type)
480 ? ssmsub_widen_optab : smsub_widen_optab));
482 case FMA_EXPR:
483 return fma_optab;
485 case REDUC_MAX_EXPR:
486 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
488 case REDUC_MIN_EXPR:
489 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
491 case REDUC_PLUS_EXPR:
492 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
494 case VEC_LSHIFT_EXPR:
495 return vec_shl_optab;
497 case VEC_RSHIFT_EXPR:
498 return vec_shr_optab;
500 case VEC_WIDEN_MULT_HI_EXPR:
501 return TYPE_UNSIGNED (type) ?
502 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
504 case VEC_WIDEN_MULT_LO_EXPR:
505 return TYPE_UNSIGNED (type) ?
506 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
508 case VEC_WIDEN_MULT_EVEN_EXPR:
509 return TYPE_UNSIGNED (type) ?
510 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
512 case VEC_WIDEN_MULT_ODD_EXPR:
513 return TYPE_UNSIGNED (type) ?
514 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
516 case VEC_WIDEN_LSHIFT_HI_EXPR:
517 return TYPE_UNSIGNED (type) ?
518 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
520 case VEC_WIDEN_LSHIFT_LO_EXPR:
521 return TYPE_UNSIGNED (type) ?
522 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
524 case VEC_UNPACK_HI_EXPR:
525 return TYPE_UNSIGNED (type) ?
526 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
528 case VEC_UNPACK_LO_EXPR:
529 return TYPE_UNSIGNED (type) ?
530 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
532 case VEC_UNPACK_FLOAT_HI_EXPR:
533 /* The signedness is determined from input operand. */
534 return TYPE_UNSIGNED (type) ?
535 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
537 case VEC_UNPACK_FLOAT_LO_EXPR:
538 /* The signedness is determined from input operand. */
539 return TYPE_UNSIGNED (type) ?
540 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
542 case VEC_PACK_TRUNC_EXPR:
543 return vec_pack_trunc_optab;
545 case VEC_PACK_SAT_EXPR:
546 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
548 case VEC_PACK_FIX_TRUNC_EXPR:
549 /* The signedness is determined from output operand. */
550 return TYPE_UNSIGNED (type) ?
551 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
553 default:
554 break;
557 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
558 switch (code)
560 case POINTER_PLUS_EXPR:
561 case PLUS_EXPR:
562 if (TYPE_SATURATING (type))
563 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
564 return trapv ? addv_optab : add_optab;
566 case MINUS_EXPR:
567 if (TYPE_SATURATING (type))
568 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
569 return trapv ? subv_optab : sub_optab;
571 case MULT_EXPR:
572 if (TYPE_SATURATING (type))
573 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
574 return trapv ? smulv_optab : smul_optab;
576 case NEGATE_EXPR:
577 if (TYPE_SATURATING (type))
578 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
579 return trapv ? negv_optab : neg_optab;
581 case ABS_EXPR:
582 return trapv ? absv_optab : abs_optab;
584 default:
585 return unknown_optab;
590 /* Expand vector widening operations.
592 There are two different classes of operations handled here:
593 1) Operations whose result is wider than all the arguments to the operation.
594 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
595 In this case OP0 and optionally OP1 would be initialized,
596 but WIDE_OP wouldn't (not relevant for this case).
597 2) Operations whose result is of the same size as the last argument to the
598 operation, but wider than all the other arguments to the operation.
599 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
600 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
602 E.g, when called to expand the following operations, this is how
603 the arguments will be initialized:
604 nops OP0 OP1 WIDE_OP
605 widening-sum 2 oprnd0 - oprnd1
606 widening-dot-product 3 oprnd0 oprnd1 oprnd2
607 widening-mult 2 oprnd0 oprnd1 -
608 type-promotion (vec-unpack) 1 oprnd0 - - */
611 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
612 rtx target, int unsignedp)
614 struct expand_operand eops[4];
615 tree oprnd0, oprnd1, oprnd2;
616 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
617 optab widen_pattern_optab;
618 enum insn_code icode;
619 int nops = TREE_CODE_LENGTH (ops->code);
620 int op;
622 oprnd0 = ops->op0;
623 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
624 widen_pattern_optab =
625 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
626 if (ops->code == WIDEN_MULT_PLUS_EXPR
627 || ops->code == WIDEN_MULT_MINUS_EXPR)
628 icode = find_widening_optab_handler (widen_pattern_optab,
629 TYPE_MODE (TREE_TYPE (ops->op2)),
630 tmode0, 0);
631 else
632 icode = optab_handler (widen_pattern_optab, tmode0);
633 gcc_assert (icode != CODE_FOR_nothing);
635 if (nops >= 2)
637 oprnd1 = ops->op1;
638 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
641 /* The last operand is of a wider mode than the rest of the operands. */
642 if (nops == 2)
643 wmode = tmode1;
644 else if (nops == 3)
646 gcc_assert (tmode1 == tmode0);
647 gcc_assert (op1);
648 oprnd2 = ops->op2;
649 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
652 op = 0;
653 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
654 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
655 if (op1)
656 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
657 if (wide_op)
658 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
659 expand_insn (icode, op, eops);
660 return eops[0].value;
663 /* Generate code to perform an operation specified by TERNARY_OPTAB
664 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
666 UNSIGNEDP is for the case where we have to widen the operands
667 to perform the operation. It says to use zero-extension.
669 If TARGET is nonzero, the value
670 is generated there, if it is convenient to do so.
671 In all cases an rtx is returned for the locus of the value;
672 this may or may not be TARGET. */
675 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
676 rtx op1, rtx op2, rtx target, int unsignedp)
678 struct expand_operand ops[4];
679 enum insn_code icode = optab_handler (ternary_optab, mode);
681 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
683 create_output_operand (&ops[0], target, mode);
684 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
685 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
686 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
687 expand_insn (icode, 4, ops);
688 return ops[0].value;
692 /* Like expand_binop, but return a constant rtx if the result can be
693 calculated at compile time. The arguments and return value are
694 otherwise the same as for expand_binop. */
697 simplify_expand_binop (enum machine_mode mode, optab binoptab,
698 rtx op0, rtx op1, rtx target, int unsignedp,
699 enum optab_methods methods)
701 if (CONSTANT_P (op0) && CONSTANT_P (op1))
703 rtx x = simplify_binary_operation (optab_to_code (binoptab),
704 mode, op0, op1);
705 if (x)
706 return x;
709 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
712 /* Like simplify_expand_binop, but always put the result in TARGET.
713 Return true if the expansion succeeded. */
715 bool
716 force_expand_binop (enum machine_mode mode, optab binoptab,
717 rtx op0, rtx op1, rtx target, int unsignedp,
718 enum optab_methods methods)
720 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
721 target, unsignedp, methods);
722 if (x == 0)
723 return false;
724 if (x != target)
725 emit_move_insn (target, x);
726 return true;
729 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
732 expand_vec_shift_expr (sepops ops, rtx target)
734 struct expand_operand eops[3];
735 enum insn_code icode;
736 rtx rtx_op1, rtx_op2;
737 enum machine_mode mode = TYPE_MODE (ops->type);
738 tree vec_oprnd = ops->op0;
739 tree shift_oprnd = ops->op1;
740 optab shift_optab;
742 switch (ops->code)
744 case VEC_RSHIFT_EXPR:
745 shift_optab = vec_shr_optab;
746 break;
747 case VEC_LSHIFT_EXPR:
748 shift_optab = vec_shl_optab;
749 break;
750 default:
751 gcc_unreachable ();
754 icode = optab_handler (shift_optab, mode);
755 gcc_assert (icode != CODE_FOR_nothing);
757 rtx_op1 = expand_normal (vec_oprnd);
758 rtx_op2 = expand_normal (shift_oprnd);
760 create_output_operand (&eops[0], target, mode);
761 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
762 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
763 expand_insn (icode, 3, eops);
765 return eops[0].value;
768 /* Create a new vector value in VMODE with all elements set to OP. The
769 mode of OP must be the element mode of VMODE. If OP is a constant,
770 then the return value will be a constant. */
772 static rtx
773 expand_vector_broadcast (enum machine_mode vmode, rtx op)
775 enum insn_code icode;
776 rtvec vec;
777 rtx ret;
778 int i, n;
780 gcc_checking_assert (VECTOR_MODE_P (vmode));
782 n = GET_MODE_NUNITS (vmode);
783 vec = rtvec_alloc (n);
784 for (i = 0; i < n; ++i)
785 RTVEC_ELT (vec, i) = op;
787 if (CONSTANT_P (op))
788 return gen_rtx_CONST_VECTOR (vmode, vec);
790 /* ??? If the target doesn't have a vec_init, then we have no easy way
791 of performing this operation. Most of this sort of generic support
792 is hidden away in the vector lowering support in gimple. */
793 icode = optab_handler (vec_init_optab, vmode);
794 if (icode == CODE_FOR_nothing)
795 return NULL;
797 ret = gen_reg_rtx (vmode);
798 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
800 return ret;
803 /* This subroutine of expand_doubleword_shift handles the cases in which
804 the effective shift value is >= BITS_PER_WORD. The arguments and return
805 value are the same as for the parent routine, except that SUPERWORD_OP1
806 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
807 INTO_TARGET may be null if the caller has decided to calculate it. */
809 static bool
810 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
811 rtx outof_target, rtx into_target,
812 int unsignedp, enum optab_methods methods)
814 if (into_target != 0)
815 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
816 into_target, unsignedp, methods))
817 return false;
819 if (outof_target != 0)
821 /* For a signed right shift, we must fill OUTOF_TARGET with copies
822 of the sign bit, otherwise we must fill it with zeros. */
823 if (binoptab != ashr_optab)
824 emit_move_insn (outof_target, CONST0_RTX (word_mode));
825 else
826 if (!force_expand_binop (word_mode, binoptab,
827 outof_input, GEN_INT (BITS_PER_WORD - 1),
828 outof_target, unsignedp, methods))
829 return false;
831 return true;
834 /* This subroutine of expand_doubleword_shift handles the cases in which
835 the effective shift value is < BITS_PER_WORD. The arguments and return
836 value are the same as for the parent routine. */
838 static bool
839 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
840 rtx outof_input, rtx into_input, rtx op1,
841 rtx outof_target, rtx into_target,
842 int unsignedp, enum optab_methods methods,
843 unsigned HOST_WIDE_INT shift_mask)
845 optab reverse_unsigned_shift, unsigned_shift;
846 rtx tmp, carries;
848 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
849 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
851 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
852 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
853 the opposite direction to BINOPTAB. */
854 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
856 carries = outof_input;
857 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
858 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
859 0, true, methods);
861 else
863 /* We must avoid shifting by BITS_PER_WORD bits since that is either
864 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
865 has unknown behavior. Do a single shift first, then shift by the
866 remainder. It's OK to use ~OP1 as the remainder if shift counts
867 are truncated to the mode size. */
868 carries = expand_binop (word_mode, reverse_unsigned_shift,
869 outof_input, const1_rtx, 0, unsignedp, methods);
870 if (shift_mask == BITS_PER_WORD - 1)
872 tmp = immed_double_const (-1, -1, op1_mode);
873 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
874 0, true, methods);
876 else
878 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
879 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
880 0, true, methods);
883 if (tmp == 0 || carries == 0)
884 return false;
885 carries = expand_binop (word_mode, reverse_unsigned_shift,
886 carries, tmp, 0, unsignedp, methods);
887 if (carries == 0)
888 return false;
890 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
891 so the result can go directly into INTO_TARGET if convenient. */
892 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
893 into_target, unsignedp, methods);
894 if (tmp == 0)
895 return false;
897 /* Now OR in the bits carried over from OUTOF_INPUT. */
898 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
899 into_target, unsignedp, methods))
900 return false;
902 /* Use a standard word_mode shift for the out-of half. */
903 if (outof_target != 0)
904 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
905 outof_target, unsignedp, methods))
906 return false;
908 return true;
912 #ifdef HAVE_conditional_move
913 /* Try implementing expand_doubleword_shift using conditional moves.
914 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
915 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
916 are the shift counts to use in the former and latter case. All other
917 arguments are the same as the parent routine. */
919 static bool
920 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
921 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
922 rtx outof_input, rtx into_input,
923 rtx subword_op1, rtx superword_op1,
924 rtx outof_target, rtx into_target,
925 int unsignedp, enum optab_methods methods,
926 unsigned HOST_WIDE_INT shift_mask)
928 rtx outof_superword, into_superword;
930 /* Put the superword version of the output into OUTOF_SUPERWORD and
931 INTO_SUPERWORD. */
932 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
933 if (outof_target != 0 && subword_op1 == superword_op1)
935 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
936 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
937 into_superword = outof_target;
938 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
939 outof_superword, 0, unsignedp, methods))
940 return false;
942 else
944 into_superword = gen_reg_rtx (word_mode);
945 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
946 outof_superword, into_superword,
947 unsignedp, methods))
948 return false;
951 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
952 if (!expand_subword_shift (op1_mode, binoptab,
953 outof_input, into_input, subword_op1,
954 outof_target, into_target,
955 unsignedp, methods, shift_mask))
956 return false;
958 /* Select between them. Do the INTO half first because INTO_SUPERWORD
959 might be the current value of OUTOF_TARGET. */
960 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
961 into_target, into_superword, word_mode, false))
962 return false;
964 if (outof_target != 0)
965 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
966 outof_target, outof_superword,
967 word_mode, false))
968 return false;
970 return true;
972 #endif
974 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
975 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
976 input operand; the shift moves bits in the direction OUTOF_INPUT->
977 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
978 of the target. OP1 is the shift count and OP1_MODE is its mode.
979 If OP1 is constant, it will have been truncated as appropriate
980 and is known to be nonzero.
982 If SHIFT_MASK is zero, the result of word shifts is undefined when the
983 shift count is outside the range [0, BITS_PER_WORD). This routine must
984 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
986 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
987 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
988 fill with zeros or sign bits as appropriate.
990 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
991 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
992 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
993 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
994 are undefined.
996 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
997 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
998 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
999 function wants to calculate it itself.
1001 Return true if the shift could be successfully synthesized. */
1003 static bool
1004 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1005 rtx outof_input, rtx into_input, rtx op1,
1006 rtx outof_target, rtx into_target,
1007 int unsignedp, enum optab_methods methods,
1008 unsigned HOST_WIDE_INT shift_mask)
1010 rtx superword_op1, tmp, cmp1, cmp2;
1011 rtx subword_label, done_label;
1012 enum rtx_code cmp_code;
1014 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1015 fill the result with sign or zero bits as appropriate. If so, the value
1016 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1017 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1018 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1020 This isn't worthwhile for constant shifts since the optimizers will
1021 cope better with in-range shift counts. */
1022 if (shift_mask >= BITS_PER_WORD
1023 && outof_target != 0
1024 && !CONSTANT_P (op1))
1026 if (!expand_doubleword_shift (op1_mode, binoptab,
1027 outof_input, into_input, op1,
1028 0, into_target,
1029 unsignedp, methods, shift_mask))
1030 return false;
1031 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1032 outof_target, unsignedp, methods))
1033 return false;
1034 return true;
1037 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1038 is true when the effective shift value is less than BITS_PER_WORD.
1039 Set SUPERWORD_OP1 to the shift count that should be used to shift
1040 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1041 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1042 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1044 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1045 is a subword shift count. */
1046 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1047 0, true, methods);
1048 cmp2 = CONST0_RTX (op1_mode);
1049 cmp_code = EQ;
1050 superword_op1 = op1;
1052 else
1054 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1055 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1056 0, true, methods);
1057 cmp2 = CONST0_RTX (op1_mode);
1058 cmp_code = LT;
1059 superword_op1 = cmp1;
1061 if (cmp1 == 0)
1062 return false;
1064 /* If we can compute the condition at compile time, pick the
1065 appropriate subroutine. */
1066 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1067 if (tmp != 0 && CONST_INT_P (tmp))
1069 if (tmp == const0_rtx)
1070 return expand_superword_shift (binoptab, outof_input, superword_op1,
1071 outof_target, into_target,
1072 unsignedp, methods);
1073 else
1074 return expand_subword_shift (op1_mode, binoptab,
1075 outof_input, into_input, op1,
1076 outof_target, into_target,
1077 unsignedp, methods, shift_mask);
1080 #ifdef HAVE_conditional_move
1081 /* Try using conditional moves to generate straight-line code. */
1083 rtx start = get_last_insn ();
1084 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1085 cmp_code, cmp1, cmp2,
1086 outof_input, into_input,
1087 op1, superword_op1,
1088 outof_target, into_target,
1089 unsignedp, methods, shift_mask))
1090 return true;
1091 delete_insns_since (start);
1093 #endif
1095 /* As a last resort, use branches to select the correct alternative. */
1096 subword_label = gen_label_rtx ();
1097 done_label = gen_label_rtx ();
1099 NO_DEFER_POP;
1100 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1101 0, 0, subword_label, -1);
1102 OK_DEFER_POP;
1104 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1105 outof_target, into_target,
1106 unsignedp, methods))
1107 return false;
1109 emit_jump_insn (gen_jump (done_label));
1110 emit_barrier ();
1111 emit_label (subword_label);
1113 if (!expand_subword_shift (op1_mode, binoptab,
1114 outof_input, into_input, op1,
1115 outof_target, into_target,
1116 unsignedp, methods, shift_mask))
1117 return false;
1119 emit_label (done_label);
1120 return true;
1123 /* Subroutine of expand_binop. Perform a double word multiplication of
1124 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1125 as the target's word_mode. This function return NULL_RTX if anything
1126 goes wrong, in which case it may have already emitted instructions
1127 which need to be deleted.
1129 If we want to multiply two two-word values and have normal and widening
1130 multiplies of single-word values, we can do this with three smaller
1131 multiplications.
1133 The multiplication proceeds as follows:
1134 _______________________
1135 [__op0_high_|__op0_low__]
1136 _______________________
1137 * [__op1_high_|__op1_low__]
1138 _______________________________________________
1139 _______________________
1140 (1) [__op0_low__*__op1_low__]
1141 _______________________
1142 (2a) [__op0_low__*__op1_high_]
1143 _______________________
1144 (2b) [__op0_high_*__op1_low__]
1145 _______________________
1146 (3) [__op0_high_*__op1_high_]
1149 This gives a 4-word result. Since we are only interested in the
1150 lower 2 words, partial result (3) and the upper words of (2a) and
1151 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1152 calculated using non-widening multiplication.
1154 (1), however, needs to be calculated with an unsigned widening
1155 multiplication. If this operation is not directly supported we
1156 try using a signed widening multiplication and adjust the result.
1157 This adjustment works as follows:
1159 If both operands are positive then no adjustment is needed.
1161 If the operands have different signs, for example op0_low < 0 and
1162 op1_low >= 0, the instruction treats the most significant bit of
1163 op0_low as a sign bit instead of a bit with significance
1164 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1165 with 2**BITS_PER_WORD - op0_low, and two's complements the
1166 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1167 the result.
1169 Similarly, if both operands are negative, we need to add
1170 (op0_low + op1_low) * 2**BITS_PER_WORD.
1172 We use a trick to adjust quickly. We logically shift op0_low right
1173 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1174 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1175 logical shift exists, we do an arithmetic right shift and subtract
1176 the 0 or -1. */
1178 static rtx
1179 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1180 bool umulp, enum optab_methods methods)
1182 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1183 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1184 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1185 rtx product, adjust, product_high, temp;
1187 rtx op0_high = operand_subword_force (op0, high, mode);
1188 rtx op0_low = operand_subword_force (op0, low, mode);
1189 rtx op1_high = operand_subword_force (op1, high, mode);
1190 rtx op1_low = operand_subword_force (op1, low, mode);
1192 /* If we're using an unsigned multiply to directly compute the product
1193 of the low-order words of the operands and perform any required
1194 adjustments of the operands, we begin by trying two more multiplications
1195 and then computing the appropriate sum.
1197 We have checked above that the required addition is provided.
1198 Full-word addition will normally always succeed, especially if
1199 it is provided at all, so we don't worry about its failure. The
1200 multiplication may well fail, however, so we do handle that. */
1202 if (!umulp)
1204 /* ??? This could be done with emit_store_flag where available. */
1205 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1206 NULL_RTX, 1, methods);
1207 if (temp)
1208 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1209 NULL_RTX, 0, OPTAB_DIRECT);
1210 else
1212 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1213 NULL_RTX, 0, methods);
1214 if (!temp)
1215 return NULL_RTX;
1216 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1217 NULL_RTX, 0, OPTAB_DIRECT);
1220 if (!op0_high)
1221 return NULL_RTX;
1224 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1225 NULL_RTX, 0, OPTAB_DIRECT);
1226 if (!adjust)
1227 return NULL_RTX;
1229 /* OP0_HIGH should now be dead. */
1231 if (!umulp)
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1241 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1249 if (!op1_high)
1250 return NULL_RTX;
1253 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!temp)
1256 return NULL_RTX;
1258 /* OP1_HIGH should now be dead. */
1260 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1261 NULL_RTX, 0, OPTAB_DIRECT);
1263 if (target && !REG_P (target))
1264 target = NULL_RTX;
1266 if (umulp)
1267 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1268 target, 1, OPTAB_DIRECT);
1269 else
1270 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1271 target, 1, OPTAB_DIRECT);
1273 if (!product)
1274 return NULL_RTX;
1276 product_high = operand_subword (product, high, 1, mode);
1277 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1278 NULL_RTX, 0, OPTAB_DIRECT);
1279 emit_move_insn (product_high, adjust);
1280 return product;
1283 /* Wrapper around expand_binop which takes an rtx code to specify
1284 the operation to perform, not an optab pointer. All other
1285 arguments are the same. */
1287 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1288 rtx op1, rtx target, int unsignedp,
1289 enum optab_methods methods)
1291 optab binop = code_to_optab (code);
1292 gcc_assert (binop);
1294 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1297 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1298 binop. Order them according to commutative_operand_precedence and, if
1299 possible, try to put TARGET or a pseudo first. */
1300 static bool
1301 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1303 int op0_prec = commutative_operand_precedence (op0);
1304 int op1_prec = commutative_operand_precedence (op1);
1306 if (op0_prec < op1_prec)
1307 return true;
1309 if (op0_prec > op1_prec)
1310 return false;
1312 /* With equal precedence, both orders are ok, but it is better if the
1313 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1314 if (target == 0 || REG_P (target))
1315 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1316 else
1317 return rtx_equal_p (op1, target);
1320 /* Return true if BINOPTAB implements a shift operation. */
1322 static bool
1323 shift_optab_p (optab binoptab)
1325 switch (optab_to_code (binoptab))
1327 case ASHIFT:
1328 case SS_ASHIFT:
1329 case US_ASHIFT:
1330 case ASHIFTRT:
1331 case LSHIFTRT:
1332 case ROTATE:
1333 case ROTATERT:
1334 return true;
1336 default:
1337 return false;
1341 /* Return true if BINOPTAB implements a commutative binary operation. */
1343 static bool
1344 commutative_optab_p (optab binoptab)
1346 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1347 || binoptab == smul_widen_optab
1348 || binoptab == umul_widen_optab
1349 || binoptab == smul_highpart_optab
1350 || binoptab == umul_highpart_optab);
1353 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1354 optimizing, and if the operand is a constant that costs more than
1355 1 instruction, force the constant into a register and return that
1356 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1358 static rtx
1359 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1360 int opn, rtx x, bool unsignedp)
1362 bool speed = optimize_insn_for_speed_p ();
1364 if (mode != VOIDmode
1365 && optimize
1366 && CONSTANT_P (x)
1367 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1368 > set_src_cost (x, speed)))
1370 if (CONST_INT_P (x))
1372 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1373 if (intval != INTVAL (x))
1374 x = GEN_INT (intval);
1376 else
1377 x = convert_modes (mode, VOIDmode, x, unsignedp);
1378 x = force_reg (mode, x);
1380 return x;
1383 /* Helper function for expand_binop: handle the case where there
1384 is an insn that directly implements the indicated operation.
1385 Returns null if this is not possible. */
1386 static rtx
1387 expand_binop_directly (enum machine_mode mode, optab binoptab,
1388 rtx op0, rtx op1,
1389 rtx target, int unsignedp, enum optab_methods methods,
1390 rtx last)
1392 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1393 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1394 from_mode, 1);
1395 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1396 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1397 enum machine_mode mode0, mode1, tmp_mode;
1398 struct expand_operand ops[3];
1399 bool commutative_p;
1400 rtx pat;
1401 rtx xop0 = op0, xop1 = op1;
1402 rtx swap;
1404 /* If it is a commutative operator and the modes would match
1405 if we would swap the operands, we can save the conversions. */
1406 commutative_p = commutative_optab_p (binoptab);
1407 if (commutative_p
1408 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1409 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1411 swap = xop0;
1412 xop0 = xop1;
1413 xop1 = swap;
1416 /* If we are optimizing, force expensive constants into a register. */
1417 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1418 if (!shift_optab_p (binoptab))
1419 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1421 /* In case the insn wants input operands in modes different from
1422 those of the actual operands, convert the operands. It would
1423 seem that we don't need to convert CONST_INTs, but we do, so
1424 that they're properly zero-extended, sign-extended or truncated
1425 for their mode. */
1427 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1428 if (xmode0 != VOIDmode && xmode0 != mode0)
1430 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1431 mode0 = xmode0;
1434 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1435 if (xmode1 != VOIDmode && xmode1 != mode1)
1437 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1438 mode1 = xmode1;
1441 /* If operation is commutative,
1442 try to make the first operand a register.
1443 Even better, try to make it the same as the target.
1444 Also try to make the last operand a constant. */
1445 if (commutative_p
1446 && swap_commutative_operands_with_target (target, xop0, xop1))
1448 swap = xop1;
1449 xop1 = xop0;
1450 xop0 = swap;
1453 /* Now, if insn's predicates don't allow our operands, put them into
1454 pseudo regs. */
1456 if (binoptab == vec_pack_trunc_optab
1457 || binoptab == vec_pack_usat_optab
1458 || binoptab == vec_pack_ssat_optab
1459 || binoptab == vec_pack_ufix_trunc_optab
1460 || binoptab == vec_pack_sfix_trunc_optab)
1462 /* The mode of the result is different then the mode of the
1463 arguments. */
1464 tmp_mode = insn_data[(int) icode].operand[0].mode;
1465 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1467 delete_insns_since (last);
1468 return NULL_RTX;
1471 else
1472 tmp_mode = mode;
1474 create_output_operand (&ops[0], target, tmp_mode);
1475 create_input_operand (&ops[1], xop0, mode0);
1476 create_input_operand (&ops[2], xop1, mode1);
1477 pat = maybe_gen_insn (icode, 3, ops);
1478 if (pat)
1480 /* If PAT is composed of more than one insn, try to add an appropriate
1481 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1482 operand, call expand_binop again, this time without a target. */
1483 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1484 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1485 ops[1].value, ops[2].value))
1487 delete_insns_since (last);
1488 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1489 unsignedp, methods);
1492 emit_insn (pat);
1493 return ops[0].value;
1495 delete_insns_since (last);
1496 return NULL_RTX;
1499 /* Generate code to perform an operation specified by BINOPTAB
1500 on operands OP0 and OP1, with result having machine-mode MODE.
1502 UNSIGNEDP is for the case where we have to widen the operands
1503 to perform the operation. It says to use zero-extension.
1505 If TARGET is nonzero, the value
1506 is generated there, if it is convenient to do so.
1507 In all cases an rtx is returned for the locus of the value;
1508 this may or may not be TARGET. */
1511 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1512 rtx target, int unsignedp, enum optab_methods methods)
1514 enum optab_methods next_methods
1515 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1516 ? OPTAB_WIDEN : methods);
1517 enum mode_class mclass;
1518 enum machine_mode wider_mode;
1519 rtx libfunc;
1520 rtx temp;
1521 rtx entry_last = get_last_insn ();
1522 rtx last;
1524 mclass = GET_MODE_CLASS (mode);
1526 /* If subtracting an integer constant, convert this into an addition of
1527 the negated constant. */
1529 if (binoptab == sub_optab && CONST_INT_P (op1))
1531 op1 = negate_rtx (mode, op1);
1532 binoptab = add_optab;
1535 /* Record where to delete back to if we backtrack. */
1536 last = get_last_insn ();
1538 /* If we can do it with a three-operand insn, do so. */
1540 if (methods != OPTAB_MUST_WIDEN
1541 && find_widening_optab_handler (binoptab, mode,
1542 widened_mode (mode, op0, op1), 1)
1543 != CODE_FOR_nothing)
1545 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1546 unsignedp, methods, last);
1547 if (temp)
1548 return temp;
1551 /* If we were trying to rotate, and that didn't work, try rotating
1552 the other direction before falling back to shifts and bitwise-or. */
1553 if (((binoptab == rotl_optab
1554 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1555 || (binoptab == rotr_optab
1556 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1557 && mclass == MODE_INT)
1559 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1560 rtx newop1;
1561 unsigned int bits = GET_MODE_PRECISION (mode);
1563 if (CONST_INT_P (op1))
1564 newop1 = GEN_INT (bits - INTVAL (op1));
1565 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1566 newop1 = negate_rtx (GET_MODE (op1), op1);
1567 else
1568 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1569 gen_int_mode (bits, GET_MODE (op1)), op1,
1570 NULL_RTX, unsignedp, OPTAB_DIRECT);
1572 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1573 target, unsignedp, methods, last);
1574 if (temp)
1575 return temp;
1578 /* If this is a multiply, see if we can do a widening operation that
1579 takes operands of this mode and makes a wider mode. */
1581 if (binoptab == smul_optab
1582 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1583 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1584 : smul_widen_optab),
1585 GET_MODE_2XWIDER_MODE (mode), mode)
1586 != CODE_FOR_nothing))
1588 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1589 unsignedp ? umul_widen_optab : smul_widen_optab,
1590 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1592 if (temp != 0)
1594 if (GET_MODE_CLASS (mode) == MODE_INT
1595 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1596 return gen_lowpart (mode, temp);
1597 else
1598 return convert_to_mode (mode, temp, unsignedp);
1602 /* If this is a vector shift by a scalar, see if we can do a vector
1603 shift by a vector. If so, broadcast the scalar into a vector. */
1604 if (mclass == MODE_VECTOR_INT)
1606 optab otheroptab = unknown_optab;
1608 if (binoptab == ashl_optab)
1609 otheroptab = vashl_optab;
1610 else if (binoptab == ashr_optab)
1611 otheroptab = vashr_optab;
1612 else if (binoptab == lshr_optab)
1613 otheroptab = vlshr_optab;
1614 else if (binoptab == rotl_optab)
1615 otheroptab = vrotl_optab;
1616 else if (binoptab == rotr_optab)
1617 otheroptab = vrotr_optab;
1619 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1621 rtx vop1 = expand_vector_broadcast (mode, op1);
1622 if (vop1)
1624 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1625 target, unsignedp, methods, last);
1626 if (temp)
1627 return temp;
1632 /* Look for a wider mode of the same class for which we think we
1633 can open-code the operation. Check for a widening multiply at the
1634 wider mode as well. */
1636 if (CLASS_HAS_WIDER_MODES_P (mclass)
1637 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1638 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1639 wider_mode != VOIDmode;
1640 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1642 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1643 || (binoptab == smul_optab
1644 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1645 && (find_widening_optab_handler ((unsignedp
1646 ? umul_widen_optab
1647 : smul_widen_optab),
1648 GET_MODE_WIDER_MODE (wider_mode),
1649 mode, 0)
1650 != CODE_FOR_nothing)))
1652 rtx xop0 = op0, xop1 = op1;
1653 int no_extend = 0;
1655 /* For certain integer operations, we need not actually extend
1656 the narrow operands, as long as we will truncate
1657 the results to the same narrowness. */
1659 if ((binoptab == ior_optab || binoptab == and_optab
1660 || binoptab == xor_optab
1661 || binoptab == add_optab || binoptab == sub_optab
1662 || binoptab == smul_optab || binoptab == ashl_optab)
1663 && mclass == MODE_INT)
1665 no_extend = 1;
1666 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1667 xop0, unsignedp);
1668 if (binoptab != ashl_optab)
1669 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1670 xop1, unsignedp);
1673 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1675 /* The second operand of a shift must always be extended. */
1676 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1677 no_extend && binoptab != ashl_optab);
1679 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1680 unsignedp, OPTAB_DIRECT);
1681 if (temp)
1683 if (mclass != MODE_INT
1684 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1686 if (target == 0)
1687 target = gen_reg_rtx (mode);
1688 convert_move (target, temp, 0);
1689 return target;
1691 else
1692 return gen_lowpart (mode, temp);
1694 else
1695 delete_insns_since (last);
1699 /* If operation is commutative,
1700 try to make the first operand a register.
1701 Even better, try to make it the same as the target.
1702 Also try to make the last operand a constant. */
1703 if (commutative_optab_p (binoptab)
1704 && swap_commutative_operands_with_target (target, op0, op1))
1706 temp = op1;
1707 op1 = op0;
1708 op0 = temp;
1711 /* These can be done a word at a time. */
1712 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1713 && mclass == MODE_INT
1714 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1715 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1717 int i;
1718 rtx insns;
1720 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1721 won't be accurate, so use a new target. */
1722 if (target == 0
1723 || target == op0
1724 || target == op1
1725 || !valid_multiword_target_p (target))
1726 target = gen_reg_rtx (mode);
1728 start_sequence ();
1730 /* Do the actual arithmetic. */
1731 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1733 rtx target_piece = operand_subword (target, i, 1, mode);
1734 rtx x = expand_binop (word_mode, binoptab,
1735 operand_subword_force (op0, i, mode),
1736 operand_subword_force (op1, i, mode),
1737 target_piece, unsignedp, next_methods);
1739 if (x == 0)
1740 break;
1742 if (target_piece != x)
1743 emit_move_insn (target_piece, x);
1746 insns = get_insns ();
1747 end_sequence ();
1749 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1751 emit_insn (insns);
1752 return target;
1756 /* Synthesize double word shifts from single word shifts. */
1757 if ((binoptab == lshr_optab || binoptab == ashl_optab
1758 || binoptab == ashr_optab)
1759 && mclass == MODE_INT
1760 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1761 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1762 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1763 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1765 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1767 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1768 enum machine_mode op1_mode;
1770 double_shift_mask = targetm.shift_truncation_mask (mode);
1771 shift_mask = targetm.shift_truncation_mask (word_mode);
1772 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1774 /* Apply the truncation to constant shifts. */
1775 if (double_shift_mask > 0 && CONST_INT_P (op1))
1776 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1778 if (op1 == CONST0_RTX (op1_mode))
1779 return op0;
1781 /* Make sure that this is a combination that expand_doubleword_shift
1782 can handle. See the comments there for details. */
1783 if (double_shift_mask == 0
1784 || (shift_mask == BITS_PER_WORD - 1
1785 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1787 rtx insns;
1788 rtx into_target, outof_target;
1789 rtx into_input, outof_input;
1790 int left_shift, outof_word;
1792 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1793 won't be accurate, so use a new target. */
1794 if (target == 0
1795 || target == op0
1796 || target == op1
1797 || !valid_multiword_target_p (target))
1798 target = gen_reg_rtx (mode);
1800 start_sequence ();
1802 /* OUTOF_* is the word we are shifting bits away from, and
1803 INTO_* is the word that we are shifting bits towards, thus
1804 they differ depending on the direction of the shift and
1805 WORDS_BIG_ENDIAN. */
1807 left_shift = binoptab == ashl_optab;
1808 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1810 outof_target = operand_subword (target, outof_word, 1, mode);
1811 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1813 outof_input = operand_subword_force (op0, outof_word, mode);
1814 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1816 if (expand_doubleword_shift (op1_mode, binoptab,
1817 outof_input, into_input, op1,
1818 outof_target, into_target,
1819 unsignedp, next_methods, shift_mask))
1821 insns = get_insns ();
1822 end_sequence ();
1824 emit_insn (insns);
1825 return target;
1827 end_sequence ();
1831 /* Synthesize double word rotates from single word shifts. */
1832 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1833 && mclass == MODE_INT
1834 && CONST_INT_P (op1)
1835 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1836 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1837 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1839 rtx insns;
1840 rtx into_target, outof_target;
1841 rtx into_input, outof_input;
1842 rtx inter;
1843 int shift_count, left_shift, outof_word;
1845 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1846 won't be accurate, so use a new target. Do this also if target is not
1847 a REG, first because having a register instead may open optimization
1848 opportunities, and second because if target and op0 happen to be MEMs
1849 designating the same location, we would risk clobbering it too early
1850 in the code sequence we generate below. */
1851 if (target == 0
1852 || target == op0
1853 || target == op1
1854 || !REG_P (target)
1855 || !valid_multiword_target_p (target))
1856 target = gen_reg_rtx (mode);
1858 start_sequence ();
1860 shift_count = INTVAL (op1);
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1876 if (shift_count == BITS_PER_WORD)
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1883 else
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1895 if (shift_count > BITS_PER_WORD)
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1900 else
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1938 insns = get_insns ();
1939 end_sequence ();
1941 if (inter != 0)
1943 emit_insn (insns);
1944 return target;
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1973 xtarget = gen_reg_rtx (mode);
1975 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1976 target = xtarget;
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1998 if (i + 1 < nwords)
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2009 if (i > 0)
2011 rtx newx;
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2019 if (i + 1 < nwords)
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2036 emit_move_insn (target_piece, newx);
2038 else
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2044 carry_in = carry_out;
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2049 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2052 rtx temp = emit_move_insn (target, xtarget);
2054 set_dst_reg_note (temp, REG_EQUAL,
2055 gen_rtx_fmt_ee (optab_to_code (binoptab),
2056 mode, copy_rtx (xop0),
2057 copy_rtx (xop1)),
2058 target);
2060 else
2061 target = xtarget;
2063 return target;
2066 else
2067 delete_insns_since (last);
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2081 rtx product = NULL_RTX;
2082 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2083 != CODE_FOR_nothing)
2085 product = expand_doubleword_mult (mode, op0, op1, target,
2086 true, methods);
2087 if (!product)
2088 delete_insns_since (last);
2091 if (product == NULL_RTX
2092 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2093 != CODE_FOR_nothing)
2095 product = expand_doubleword_mult (mode, op0, op1, target,
2096 false, methods);
2097 if (!product)
2098 delete_insns_since (last);
2101 if (product != NULL_RTX)
2103 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2105 temp = emit_move_insn (target ? target : product, product);
2106 set_dst_reg_note (temp,
2107 REG_EQUAL,
2108 gen_rtx_fmt_ee (MULT, mode,
2109 copy_rtx (op0),
2110 copy_rtx (op1)),
2111 target ? target : product);
2113 return product;
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2129 start_sequence ();
2131 if (shift_optab_p (binoptab))
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2149 insns = get_insns ();
2150 end_sequence ();
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block_1 (insns, target, value,
2154 gen_rtx_fmt_ee (optab_to_code (binoptab),
2155 mode, op0, op1),
2156 trapv_binoptab_p (binoptab));
2158 return target;
2161 delete_insns_since (last);
2163 /* It can't be done in this mode. Can we do it in a wider mode? */
2165 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2166 || methods == OPTAB_MUST_WIDEN))
2168 /* Caller says, don't even try. */
2169 delete_insns_since (entry_last);
2170 return 0;
2173 /* Compute the value of METHODS to pass to recursive calls.
2174 Don't allow widening to be tried recursively. */
2176 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2178 /* Look for a wider mode of the same class for which it appears we can do
2179 the operation. */
2181 if (CLASS_HAS_WIDER_MODES_P (mclass))
2183 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2184 wider_mode != VOIDmode;
2185 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2187 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2188 != CODE_FOR_nothing
2189 || (methods == OPTAB_LIB
2190 && optab_libfunc (binoptab, wider_mode)))
2192 rtx xop0 = op0, xop1 = op1;
2193 int no_extend = 0;
2195 /* For certain integer operations, we need not actually extend
2196 the narrow operands, as long as we will truncate
2197 the results to the same narrowness. */
2199 if ((binoptab == ior_optab || binoptab == and_optab
2200 || binoptab == xor_optab
2201 || binoptab == add_optab || binoptab == sub_optab
2202 || binoptab == smul_optab || binoptab == ashl_optab)
2203 && mclass == MODE_INT)
2204 no_extend = 1;
2206 xop0 = widen_operand (xop0, wider_mode, mode,
2207 unsignedp, no_extend);
2209 /* The second operand of a shift must always be extended. */
2210 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2211 no_extend && binoptab != ashl_optab);
2213 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2214 unsignedp, methods);
2215 if (temp)
2217 if (mclass != MODE_INT
2218 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2220 if (target == 0)
2221 target = gen_reg_rtx (mode);
2222 convert_move (target, temp, 0);
2223 return target;
2225 else
2226 return gen_lowpart (mode, temp);
2228 else
2229 delete_insns_since (last);
2234 delete_insns_since (entry_last);
2235 return 0;
2238 /* Expand a binary operator which has both signed and unsigned forms.
2239 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2240 signed operations.
2242 If we widen unsigned operands, we may use a signed wider operation instead
2243 of an unsigned wider operation, since the result would be the same. */
2246 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2247 rtx op0, rtx op1, rtx target, int unsignedp,
2248 enum optab_methods methods)
2250 rtx temp;
2251 optab direct_optab = unsignedp ? uoptab : soptab;
2252 bool save_enable;
2254 /* Do it without widening, if possible. */
2255 temp = expand_binop (mode, direct_optab, op0, op1, target,
2256 unsignedp, OPTAB_DIRECT);
2257 if (temp || methods == OPTAB_DIRECT)
2258 return temp;
2260 /* Try widening to a signed int. Disable any direct use of any
2261 signed insn in the current mode. */
2262 save_enable = swap_optab_enable (soptab, mode, false);
2264 temp = expand_binop (mode, soptab, op0, op1, target,
2265 unsignedp, OPTAB_WIDEN);
2267 /* For unsigned operands, try widening to an unsigned int. */
2268 if (!temp && unsignedp)
2269 temp = expand_binop (mode, uoptab, op0, op1, target,
2270 unsignedp, OPTAB_WIDEN);
2271 if (temp || methods == OPTAB_WIDEN)
2272 goto egress;
2274 /* Use the right width libcall if that exists. */
2275 temp = expand_binop (mode, direct_optab, op0, op1, target,
2276 unsignedp, OPTAB_LIB);
2277 if (temp || methods == OPTAB_LIB)
2278 goto egress;
2280 /* Must widen and use a libcall, use either signed or unsigned. */
2281 temp = expand_binop (mode, soptab, op0, op1, target,
2282 unsignedp, methods);
2283 if (!temp && unsignedp)
2284 temp = expand_binop (mode, uoptab, op0, op1, target,
2285 unsignedp, methods);
2287 egress:
2288 /* Undo the fiddling above. */
2289 if (save_enable)
2290 swap_optab_enable (soptab, mode, true);
2291 return temp;
2294 /* Generate code to perform an operation specified by UNOPPTAB
2295 on operand OP0, with two results to TARG0 and TARG1.
2296 We assume that the order of the operands for the instruction
2297 is TARG0, TARG1, OP0.
2299 Either TARG0 or TARG1 may be zero, but what that means is that
2300 the result is not actually wanted. We will generate it into
2301 a dummy pseudo-reg and discard it. They may not both be zero.
2303 Returns 1 if this operation can be performed; 0 if not. */
2306 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2307 int unsignedp)
2309 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2310 enum mode_class mclass;
2311 enum machine_mode wider_mode;
2312 rtx entry_last = get_last_insn ();
2313 rtx last;
2315 mclass = GET_MODE_CLASS (mode);
2317 if (!targ0)
2318 targ0 = gen_reg_rtx (mode);
2319 if (!targ1)
2320 targ1 = gen_reg_rtx (mode);
2322 /* Record where to go back to if we fail. */
2323 last = get_last_insn ();
2325 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2327 struct expand_operand ops[3];
2328 enum insn_code icode = optab_handler (unoptab, mode);
2330 create_fixed_operand (&ops[0], targ0);
2331 create_fixed_operand (&ops[1], targ1);
2332 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2333 if (maybe_expand_insn (icode, 3, ops))
2334 return 1;
2337 /* It can't be done in this mode. Can we do it in a wider mode? */
2339 if (CLASS_HAS_WIDER_MODES_P (mclass))
2341 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2342 wider_mode != VOIDmode;
2343 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2345 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2347 rtx t0 = gen_reg_rtx (wider_mode);
2348 rtx t1 = gen_reg_rtx (wider_mode);
2349 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2351 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2353 convert_move (targ0, t0, unsignedp);
2354 convert_move (targ1, t1, unsignedp);
2355 return 1;
2357 else
2358 delete_insns_since (last);
2363 delete_insns_since (entry_last);
2364 return 0;
2367 /* Generate code to perform an operation specified by BINOPTAB
2368 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2369 We assume that the order of the operands for the instruction
2370 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2371 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2373 Either TARG0 or TARG1 may be zero, but what that means is that
2374 the result is not actually wanted. We will generate it into
2375 a dummy pseudo-reg and discard it. They may not both be zero.
2377 Returns 1 if this operation can be performed; 0 if not. */
2380 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2381 int unsignedp)
2383 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2384 enum mode_class mclass;
2385 enum machine_mode wider_mode;
2386 rtx entry_last = get_last_insn ();
2387 rtx last;
2389 mclass = GET_MODE_CLASS (mode);
2391 if (!targ0)
2392 targ0 = gen_reg_rtx (mode);
2393 if (!targ1)
2394 targ1 = gen_reg_rtx (mode);
2396 /* Record where to go back to if we fail. */
2397 last = get_last_insn ();
2399 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2401 struct expand_operand ops[4];
2402 enum insn_code icode = optab_handler (binoptab, mode);
2403 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2404 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2405 rtx xop0 = op0, xop1 = op1;
2407 /* If we are optimizing, force expensive constants into a register. */
2408 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2409 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2411 create_fixed_operand (&ops[0], targ0);
2412 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2413 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2414 create_fixed_operand (&ops[3], targ1);
2415 if (maybe_expand_insn (icode, 4, ops))
2416 return 1;
2417 delete_insns_since (last);
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2422 if (CLASS_HAS_WIDER_MODES_P (mclass))
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2425 wider_mode != VOIDmode;
2426 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2428 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2442 else
2443 delete_insns_since (last);
2448 delete_insns_since (entry_last);
2449 return 0;
2452 /* Expand the two-valued library call indicated by BINOPTAB, but
2453 preserve only one of the values. If TARG0 is non-NULL, the first
2454 value is placed into TARG0; otherwise the second value is placed
2455 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2456 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2457 This routine assumes that the value returned by the library call is
2458 as if the return value was of an integral mode twice as wide as the
2459 mode of OP0. Returns 1 if the call was successful. */
2461 bool
2462 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2463 rtx targ0, rtx targ1, enum rtx_code code)
2465 enum machine_mode mode;
2466 enum machine_mode libval_mode;
2467 rtx libval;
2468 rtx insns;
2469 rtx libfunc;
2471 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2472 gcc_assert (!targ0 != !targ1);
2474 mode = GET_MODE (op0);
2475 libfunc = optab_libfunc (binoptab, mode);
2476 if (!libfunc)
2477 return false;
2479 /* The value returned by the library function will have twice as
2480 many bits as the nominal MODE. */
2481 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2482 MODE_INT);
2483 start_sequence ();
2484 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2485 libval_mode, 2,
2486 op0, mode,
2487 op1, mode);
2488 /* Get the part of VAL containing the value that we want. */
2489 libval = simplify_gen_subreg (mode, libval, libval_mode,
2490 targ0 ? 0 : GET_MODE_SIZE (mode));
2491 insns = get_insns ();
2492 end_sequence ();
2493 /* Move the into the desired location. */
2494 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2495 gen_rtx_fmt_ee (code, mode, op0, op1));
2497 return true;
2501 /* Wrapper around expand_unop which takes an rtx code to specify
2502 the operation to perform, not an optab pointer. All other
2503 arguments are the same. */
2505 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2506 rtx target, int unsignedp)
2508 optab unop = code_to_optab (code);
2509 gcc_assert (unop);
2511 return expand_unop (mode, unop, op0, target, unsignedp);
2514 /* Try calculating
2515 (clz:narrow x)
2517 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2519 A similar operation can be used for clrsb. UNOPTAB says which operation
2520 we are trying to expand. */
2521 static rtx
2522 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2524 enum mode_class mclass = GET_MODE_CLASS (mode);
2525 if (CLASS_HAS_WIDER_MODES_P (mclass))
2527 enum machine_mode wider_mode;
2528 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2529 wider_mode != VOIDmode;
2530 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2532 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2534 rtx xop0, temp, last;
2536 last = get_last_insn ();
2538 if (target == 0)
2539 target = gen_reg_rtx (mode);
2540 xop0 = widen_operand (op0, wider_mode, mode,
2541 unoptab != clrsb_optab, false);
2542 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2543 unoptab != clrsb_optab);
2544 if (temp != 0)
2545 temp = expand_binop
2546 (wider_mode, sub_optab, temp,
2547 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2548 - GET_MODE_PRECISION (mode),
2549 wider_mode),
2550 target, true, OPTAB_DIRECT);
2551 if (temp == 0)
2552 delete_insns_since (last);
2554 return temp;
2558 return 0;
2561 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2562 quantities, choosing which based on whether the high word is nonzero. */
2563 static rtx
2564 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2566 rtx xop0 = force_reg (mode, op0);
2567 rtx subhi = gen_highpart (word_mode, xop0);
2568 rtx sublo = gen_lowpart (word_mode, xop0);
2569 rtx hi0_label = gen_label_rtx ();
2570 rtx after_label = gen_label_rtx ();
2571 rtx seq, temp, result;
2573 /* If we were not given a target, use a word_mode register, not a
2574 'mode' register. The result will fit, and nobody is expecting
2575 anything bigger (the return type of __builtin_clz* is int). */
2576 if (!target)
2577 target = gen_reg_rtx (word_mode);
2579 /* In any case, write to a word_mode scratch in both branches of the
2580 conditional, so we can ensure there is a single move insn setting
2581 'target' to tag a REG_EQUAL note on. */
2582 result = gen_reg_rtx (word_mode);
2584 start_sequence ();
2586 /* If the high word is not equal to zero,
2587 then clz of the full value is clz of the high word. */
2588 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2589 word_mode, true, hi0_label);
2591 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2592 if (!temp)
2593 goto fail;
2595 if (temp != result)
2596 convert_move (result, temp, true);
2598 emit_jump_insn (gen_jump (after_label));
2599 emit_barrier ();
2601 /* Else clz of the full value is clz of the low word plus the number
2602 of bits in the high word. */
2603 emit_label (hi0_label);
2605 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2606 if (!temp)
2607 goto fail;
2608 temp = expand_binop (word_mode, add_optab, temp,
2609 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2610 result, true, OPTAB_DIRECT);
2611 if (!temp)
2612 goto fail;
2613 if (temp != result)
2614 convert_move (result, temp, true);
2616 emit_label (after_label);
2617 convert_move (target, result, true);
2619 seq = get_insns ();
2620 end_sequence ();
2622 add_equal_note (seq, target, CLZ, xop0, 0);
2623 emit_insn (seq);
2624 return target;
2626 fail:
2627 end_sequence ();
2628 return 0;
2631 /* Try calculating
2632 (bswap:narrow x)
2634 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2635 static rtx
2636 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2638 enum mode_class mclass = GET_MODE_CLASS (mode);
2639 enum machine_mode wider_mode;
2640 rtx x, last;
2642 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2643 return NULL_RTX;
2645 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2646 wider_mode != VOIDmode;
2647 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2648 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2649 goto found;
2650 return NULL_RTX;
2652 found:
2653 last = get_last_insn ();
2655 x = widen_operand (op0, wider_mode, mode, true, true);
2656 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2658 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2659 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2660 if (x != 0)
2661 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2662 GET_MODE_BITSIZE (wider_mode)
2663 - GET_MODE_BITSIZE (mode),
2664 NULL_RTX, true);
2666 if (x != 0)
2668 if (target == 0)
2669 target = gen_reg_rtx (mode);
2670 emit_move_insn (target, gen_lowpart (mode, x));
2672 else
2673 delete_insns_since (last);
2675 return target;
2678 /* Try calculating bswap as two bswaps of two word-sized operands. */
2680 static rtx
2681 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2683 rtx t0, t1;
2685 t1 = expand_unop (word_mode, bswap_optab,
2686 operand_subword_force (op, 0, mode), NULL_RTX, true);
2687 t0 = expand_unop (word_mode, bswap_optab,
2688 operand_subword_force (op, 1, mode), NULL_RTX, true);
2690 if (target == 0 || !valid_multiword_target_p (target))
2691 target = gen_reg_rtx (mode);
2692 if (REG_P (target))
2693 emit_clobber (target);
2694 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2695 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2697 return target;
2700 /* Try calculating (parity x) as (and (popcount x) 1), where
2701 popcount can also be done in a wider mode. */
2702 static rtx
2703 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2705 enum mode_class mclass = GET_MODE_CLASS (mode);
2706 if (CLASS_HAS_WIDER_MODES_P (mclass))
2708 enum machine_mode wider_mode;
2709 for (wider_mode = mode; wider_mode != VOIDmode;
2710 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2712 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2714 rtx xop0, temp, last;
2716 last = get_last_insn ();
2718 if (target == 0)
2719 target = gen_reg_rtx (mode);
2720 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2721 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2722 true);
2723 if (temp != 0)
2724 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2725 target, true, OPTAB_DIRECT);
2726 if (temp == 0)
2727 delete_insns_since (last);
2729 return temp;
2733 return 0;
2736 /* Try calculating ctz(x) as K - clz(x & -x) ,
2737 where K is GET_MODE_PRECISION(mode) - 1.
2739 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2740 don't have to worry about what the hardware does in that case. (If
2741 the clz instruction produces the usual value at 0, which is K, the
2742 result of this code sequence will be -1; expand_ffs, below, relies
2743 on this. It might be nice to have it be K instead, for consistency
2744 with the (very few) processors that provide a ctz with a defined
2745 value, but that would take one more instruction, and it would be
2746 less convenient for expand_ffs anyway. */
2748 static rtx
2749 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2751 rtx seq, temp;
2753 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2754 return 0;
2756 start_sequence ();
2758 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2759 if (temp)
2760 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2761 true, OPTAB_DIRECT);
2762 if (temp)
2763 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2764 if (temp)
2765 temp = expand_binop (mode, sub_optab,
2766 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2767 temp, target,
2768 true, OPTAB_DIRECT);
2769 if (temp == 0)
2771 end_sequence ();
2772 return 0;
2775 seq = get_insns ();
2776 end_sequence ();
2778 add_equal_note (seq, temp, CTZ, op0, 0);
2779 emit_insn (seq);
2780 return temp;
2784 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2785 else with the sequence used by expand_clz.
2787 The ffs builtin promises to return zero for a zero value and ctz/clz
2788 may have an undefined value in that case. If they do not give us a
2789 convenient value, we have to generate a test and branch. */
2790 static rtx
2791 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2793 HOST_WIDE_INT val = 0;
2794 bool defined_at_zero = false;
2795 rtx temp, seq;
2797 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2799 start_sequence ();
2801 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2802 if (!temp)
2803 goto fail;
2805 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2807 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2809 start_sequence ();
2810 temp = expand_ctz (mode, op0, 0);
2811 if (!temp)
2812 goto fail;
2814 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2816 defined_at_zero = true;
2817 val = (GET_MODE_PRECISION (mode) - 1) - val;
2820 else
2821 return 0;
2823 if (defined_at_zero && val == -1)
2824 /* No correction needed at zero. */;
2825 else
2827 /* We don't try to do anything clever with the situation found
2828 on some processors (eg Alpha) where ctz(0:mode) ==
2829 bitsize(mode). If someone can think of a way to send N to -1
2830 and leave alone all values in the range 0..N-1 (where N is a
2831 power of two), cheaper than this test-and-branch, please add it.
2833 The test-and-branch is done after the operation itself, in case
2834 the operation sets condition codes that can be recycled for this.
2835 (This is true on i386, for instance.) */
2837 rtx nonzero_label = gen_label_rtx ();
2838 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2839 mode, true, nonzero_label);
2841 convert_move (temp, GEN_INT (-1), false);
2842 emit_label (nonzero_label);
2845 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2846 to produce a value in the range 0..bitsize. */
2847 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2848 target, false, OPTAB_DIRECT);
2849 if (!temp)
2850 goto fail;
2852 seq = get_insns ();
2853 end_sequence ();
2855 add_equal_note (seq, temp, FFS, op0, 0);
2856 emit_insn (seq);
2857 return temp;
2859 fail:
2860 end_sequence ();
2861 return 0;
2864 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2865 conditions, VAL may already be a SUBREG against which we cannot generate
2866 a further SUBREG. In this case, we expect forcing the value into a
2867 register will work around the situation. */
2869 static rtx
2870 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2871 enum machine_mode imode)
2873 rtx ret;
2874 ret = lowpart_subreg (omode, val, imode);
2875 if (ret == NULL)
2877 val = force_reg (imode, val);
2878 ret = lowpart_subreg (omode, val, imode);
2879 gcc_assert (ret != NULL);
2881 return ret;
2884 /* Expand a floating point absolute value or negation operation via a
2885 logical operation on the sign bit. */
2887 static rtx
2888 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2889 rtx op0, rtx target)
2891 const struct real_format *fmt;
2892 int bitpos, word, nwords, i;
2893 enum machine_mode imode;
2894 double_int mask;
2895 rtx temp, insns;
2897 /* The format has to have a simple sign bit. */
2898 fmt = REAL_MODE_FORMAT (mode);
2899 if (fmt == NULL)
2900 return NULL_RTX;
2902 bitpos = fmt->signbit_rw;
2903 if (bitpos < 0)
2904 return NULL_RTX;
2906 /* Don't create negative zeros if the format doesn't support them. */
2907 if (code == NEG && !fmt->has_signed_zero)
2908 return NULL_RTX;
2910 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2912 imode = int_mode_for_mode (mode);
2913 if (imode == BLKmode)
2914 return NULL_RTX;
2915 word = 0;
2916 nwords = 1;
2918 else
2920 imode = word_mode;
2922 if (FLOAT_WORDS_BIG_ENDIAN)
2923 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2924 else
2925 word = bitpos / BITS_PER_WORD;
2926 bitpos = bitpos % BITS_PER_WORD;
2927 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2930 mask = double_int_zero.set_bit (bitpos);
2931 if (code == ABS)
2932 mask = ~mask;
2934 if (target == 0
2935 || target == op0
2936 || (nwords > 1 && !valid_multiword_target_p (target)))
2937 target = gen_reg_rtx (mode);
2939 if (nwords > 1)
2941 start_sequence ();
2943 for (i = 0; i < nwords; ++i)
2945 rtx targ_piece = operand_subword (target, i, 1, mode);
2946 rtx op0_piece = operand_subword_force (op0, i, mode);
2948 if (i == word)
2950 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2951 op0_piece,
2952 immed_double_int_const (mask, imode),
2953 targ_piece, 1, OPTAB_LIB_WIDEN);
2954 if (temp != targ_piece)
2955 emit_move_insn (targ_piece, temp);
2957 else
2958 emit_move_insn (targ_piece, op0_piece);
2961 insns = get_insns ();
2962 end_sequence ();
2964 emit_insn (insns);
2966 else
2968 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2969 gen_lowpart (imode, op0),
2970 immed_double_int_const (mask, imode),
2971 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2972 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2974 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2975 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2976 target);
2979 return target;
2982 /* As expand_unop, but will fail rather than attempt the operation in a
2983 different mode or with a libcall. */
2984 static rtx
2985 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2986 int unsignedp)
2988 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2990 struct expand_operand ops[2];
2991 enum insn_code icode = optab_handler (unoptab, mode);
2992 rtx last = get_last_insn ();
2993 rtx pat;
2995 create_output_operand (&ops[0], target, mode);
2996 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2997 pat = maybe_gen_insn (icode, 2, ops);
2998 if (pat)
3000 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3001 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
3002 ops[1].value, NULL_RTX))
3004 delete_insns_since (last);
3005 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3008 emit_insn (pat);
3010 return ops[0].value;
3013 return 0;
3016 /* Generate code to perform an operation specified by UNOPTAB
3017 on operand OP0, with result having machine-mode MODE.
3019 UNSIGNEDP is for the case where we have to widen the operands
3020 to perform the operation. It says to use zero-extension.
3022 If TARGET is nonzero, the value
3023 is generated there, if it is convenient to do so.
3024 In all cases an rtx is returned for the locus of the value;
3025 this may or may not be TARGET. */
3028 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3029 int unsignedp)
3031 enum mode_class mclass = GET_MODE_CLASS (mode);
3032 enum machine_mode wider_mode;
3033 rtx temp;
3034 rtx libfunc;
3036 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3037 if (temp)
3038 return temp;
3040 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3042 /* Widening (or narrowing) clz needs special treatment. */
3043 if (unoptab == clz_optab)
3045 temp = widen_leading (mode, op0, target, unoptab);
3046 if (temp)
3047 return temp;
3049 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3050 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3052 temp = expand_doubleword_clz (mode, op0, target);
3053 if (temp)
3054 return temp;
3057 goto try_libcall;
3060 if (unoptab == clrsb_optab)
3062 temp = widen_leading (mode, op0, target, unoptab);
3063 if (temp)
3064 return temp;
3065 goto try_libcall;
3068 /* Widening (or narrowing) bswap needs special treatment. */
3069 if (unoptab == bswap_optab)
3071 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3072 or ROTATERT. First try these directly; if this fails, then try the
3073 obvious pair of shifts with allowed widening, as this will probably
3074 be always more efficient than the other fallback methods. */
3075 if (mode == HImode)
3077 rtx last, temp1, temp2;
3079 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3081 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3082 unsignedp, OPTAB_DIRECT);
3083 if (temp)
3084 return temp;
3087 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3089 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3090 unsignedp, OPTAB_DIRECT);
3091 if (temp)
3092 return temp;
3095 last = get_last_insn ();
3097 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3098 unsignedp, OPTAB_WIDEN);
3099 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3100 unsignedp, OPTAB_WIDEN);
3101 if (temp1 && temp2)
3103 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3104 unsignedp, OPTAB_WIDEN);
3105 if (temp)
3106 return temp;
3109 delete_insns_since (last);
3112 temp = widen_bswap (mode, op0, target);
3113 if (temp)
3114 return temp;
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3119 temp = expand_doubleword_bswap (mode, op0, target);
3120 if (temp)
3121 return temp;
3124 goto try_libcall;
3127 if (CLASS_HAS_WIDER_MODES_P (mclass))
3128 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3129 wider_mode != VOIDmode;
3130 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3132 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3134 rtx xop0 = op0;
3135 rtx last = get_last_insn ();
3137 /* For certain operations, we need not actually extend
3138 the narrow operand, as long as we will truncate the
3139 results to the same narrowness. */
3141 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3142 (unoptab == neg_optab
3143 || unoptab == one_cmpl_optab)
3144 && mclass == MODE_INT);
3146 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3147 unsignedp);
3149 if (temp)
3151 if (mclass != MODE_INT
3152 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3154 if (target == 0)
3155 target = gen_reg_rtx (mode);
3156 convert_move (target, temp, 0);
3157 return target;
3159 else
3160 return gen_lowpart (mode, temp);
3162 else
3163 delete_insns_since (last);
3167 /* These can be done a word at a time. */
3168 if (unoptab == one_cmpl_optab
3169 && mclass == MODE_INT
3170 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3171 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3173 int i;
3174 rtx insns;
3176 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3177 target = gen_reg_rtx (mode);
3179 start_sequence ();
3181 /* Do the actual arithmetic. */
3182 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3184 rtx target_piece = operand_subword (target, i, 1, mode);
3185 rtx x = expand_unop (word_mode, unoptab,
3186 operand_subword_force (op0, i, mode),
3187 target_piece, unsignedp);
3189 if (target_piece != x)
3190 emit_move_insn (target_piece, x);
3193 insns = get_insns ();
3194 end_sequence ();
3196 emit_insn (insns);
3197 return target;
3200 if (optab_to_code (unoptab) == NEG)
3202 /* Try negating floating point values by flipping the sign bit. */
3203 if (SCALAR_FLOAT_MODE_P (mode))
3205 temp = expand_absneg_bit (NEG, mode, op0, target);
3206 if (temp)
3207 return temp;
3210 /* If there is no negation pattern, and we have no negative zero,
3211 try subtracting from zero. */
3212 if (!HONOR_SIGNED_ZEROS (mode))
3214 temp = expand_binop (mode, (unoptab == negv_optab
3215 ? subv_optab : sub_optab),
3216 CONST0_RTX (mode), op0, target,
3217 unsignedp, OPTAB_DIRECT);
3218 if (temp)
3219 return temp;
3223 /* Try calculating parity (x) as popcount (x) % 2. */
3224 if (unoptab == parity_optab)
3226 temp = expand_parity (mode, op0, target);
3227 if (temp)
3228 return temp;
3231 /* Try implementing ffs (x) in terms of clz (x). */
3232 if (unoptab == ffs_optab)
3234 temp = expand_ffs (mode, op0, target);
3235 if (temp)
3236 return temp;
3239 /* Try implementing ctz (x) in terms of clz (x). */
3240 if (unoptab == ctz_optab)
3242 temp = expand_ctz (mode, op0, target);
3243 if (temp)
3244 return temp;
3247 try_libcall:
3248 /* Now try a library call in this mode. */
3249 libfunc = optab_libfunc (unoptab, mode);
3250 if (libfunc)
3252 rtx insns;
3253 rtx value;
3254 rtx eq_value;
3255 enum machine_mode outmode = mode;
3257 /* All of these functions return small values. Thus we choose to
3258 have them return something that isn't a double-word. */
3259 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3260 || unoptab == clrsb_optab || unoptab == popcount_optab
3261 || unoptab == parity_optab)
3262 outmode
3263 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3264 optab_libfunc (unoptab, mode)));
3266 start_sequence ();
3268 /* Pass 1 for NO_QUEUE so we don't lose any increments
3269 if the libcall is cse'd or moved. */
3270 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3271 1, op0, mode);
3272 insns = get_insns ();
3273 end_sequence ();
3275 target = gen_reg_rtx (outmode);
3276 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3277 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3278 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3279 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3280 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3281 emit_libcall_block_1 (insns, target, value, eq_value,
3282 trapv_unoptab_p (unoptab));
3284 return target;
3287 /* It can't be done in this mode. Can we do it in a wider mode? */
3289 if (CLASS_HAS_WIDER_MODES_P (mclass))
3291 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3292 wider_mode != VOIDmode;
3293 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3295 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3296 || optab_libfunc (unoptab, wider_mode))
3298 rtx xop0 = op0;
3299 rtx last = get_last_insn ();
3301 /* For certain operations, we need not actually extend
3302 the narrow operand, as long as we will truncate the
3303 results to the same narrowness. */
3304 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3305 (unoptab == neg_optab
3306 || unoptab == one_cmpl_optab
3307 || unoptab == bswap_optab)
3308 && mclass == MODE_INT);
3310 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3311 unsignedp);
3313 /* If we are generating clz using wider mode, adjust the
3314 result. Similarly for clrsb. */
3315 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3316 && temp != 0)
3317 temp = expand_binop
3318 (wider_mode, sub_optab, temp,
3319 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3320 - GET_MODE_PRECISION (mode),
3321 wider_mode),
3322 target, true, OPTAB_DIRECT);
3324 /* Likewise for bswap. */
3325 if (unoptab == bswap_optab && temp != 0)
3327 gcc_assert (GET_MODE_PRECISION (wider_mode)
3328 == GET_MODE_BITSIZE (wider_mode)
3329 && GET_MODE_PRECISION (mode)
3330 == GET_MODE_BITSIZE (mode));
3332 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3333 GET_MODE_BITSIZE (wider_mode)
3334 - GET_MODE_BITSIZE (mode),
3335 NULL_RTX, true);
3338 if (temp)
3340 if (mclass != MODE_INT)
3342 if (target == 0)
3343 target = gen_reg_rtx (mode);
3344 convert_move (target, temp, 0);
3345 return target;
3347 else
3348 return gen_lowpart (mode, temp);
3350 else
3351 delete_insns_since (last);
3356 /* One final attempt at implementing negation via subtraction,
3357 this time allowing widening of the operand. */
3358 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3360 rtx temp;
3361 temp = expand_binop (mode,
3362 unoptab == negv_optab ? subv_optab : sub_optab,
3363 CONST0_RTX (mode), op0,
3364 target, unsignedp, OPTAB_LIB_WIDEN);
3365 if (temp)
3366 return temp;
3369 return 0;
3372 /* Emit code to compute the absolute value of OP0, with result to
3373 TARGET if convenient. (TARGET may be 0.) The return value says
3374 where the result actually is to be found.
3376 MODE is the mode of the operand; the mode of the result is
3377 different but can be deduced from MODE.
3382 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3383 int result_unsignedp)
3385 rtx temp;
3387 if (! flag_trapv)
3388 result_unsignedp = 1;
3390 /* First try to do it with a special abs instruction. */
3391 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3392 op0, target, 0);
3393 if (temp != 0)
3394 return temp;
3396 /* For floating point modes, try clearing the sign bit. */
3397 if (SCALAR_FLOAT_MODE_P (mode))
3399 temp = expand_absneg_bit (ABS, mode, op0, target);
3400 if (temp)
3401 return temp;
3404 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3405 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3406 && !HONOR_SIGNED_ZEROS (mode))
3408 rtx last = get_last_insn ();
3410 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3411 if (temp != 0)
3412 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3413 OPTAB_WIDEN);
3415 if (temp != 0)
3416 return temp;
3418 delete_insns_since (last);
3421 /* If this machine has expensive jumps, we can do integer absolute
3422 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3423 where W is the width of MODE. */
3425 if (GET_MODE_CLASS (mode) == MODE_INT
3426 && BRANCH_COST (optimize_insn_for_speed_p (),
3427 false) >= 2)
3429 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3430 GET_MODE_PRECISION (mode) - 1,
3431 NULL_RTX, 0);
3433 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3434 OPTAB_LIB_WIDEN);
3435 if (temp != 0)
3436 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3437 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3439 if (temp != 0)
3440 return temp;
3443 return NULL_RTX;
3447 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3448 int result_unsignedp, int safe)
3450 rtx temp, op1;
3452 if (! flag_trapv)
3453 result_unsignedp = 1;
3455 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3456 if (temp != 0)
3457 return temp;
3459 /* If that does not win, use conditional jump and negate. */
3461 /* It is safe to use the target if it is the same
3462 as the source if this is also a pseudo register */
3463 if (op0 == target && REG_P (op0)
3464 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3465 safe = 1;
3467 op1 = gen_label_rtx ();
3468 if (target == 0 || ! safe
3469 || GET_MODE (target) != mode
3470 || (MEM_P (target) && MEM_VOLATILE_P (target))
3471 || (REG_P (target)
3472 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3473 target = gen_reg_rtx (mode);
3475 emit_move_insn (target, op0);
3476 NO_DEFER_POP;
3478 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3479 NULL_RTX, NULL_RTX, op1, -1);
3481 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3482 target, target, 0);
3483 if (op0 != target)
3484 emit_move_insn (target, op0);
3485 emit_label (op1);
3486 OK_DEFER_POP;
3487 return target;
3490 /* Emit code to compute the one's complement absolute value of OP0
3491 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3492 (TARGET may be NULL_RTX.) The return value says where the result
3493 actually is to be found.
3495 MODE is the mode of the operand; the mode of the result is
3496 different but can be deduced from MODE. */
3499 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3501 rtx temp;
3503 /* Not applicable for floating point modes. */
3504 if (FLOAT_MODE_P (mode))
3505 return NULL_RTX;
3507 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3508 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3510 rtx last = get_last_insn ();
3512 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3513 if (temp != 0)
3514 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3515 OPTAB_WIDEN);
3517 if (temp != 0)
3518 return temp;
3520 delete_insns_since (last);
3523 /* If this machine has expensive jumps, we can do one's complement
3524 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3526 if (GET_MODE_CLASS (mode) == MODE_INT
3527 && BRANCH_COST (optimize_insn_for_speed_p (),
3528 false) >= 2)
3530 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3531 GET_MODE_PRECISION (mode) - 1,
3532 NULL_RTX, 0);
3534 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3535 OPTAB_LIB_WIDEN);
3537 if (temp != 0)
3538 return temp;
3541 return NULL_RTX;
3544 /* A subroutine of expand_copysign, perform the copysign operation using the
3545 abs and neg primitives advertised to exist on the target. The assumption
3546 is that we have a split register file, and leaving op0 in fp registers,
3547 and not playing with subregs so much, will help the register allocator. */
3549 static rtx
3550 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3551 int bitpos, bool op0_is_abs)
3553 enum machine_mode imode;
3554 enum insn_code icode;
3555 rtx sign, label;
3557 if (target == op1)
3558 target = NULL_RTX;
3560 /* Check if the back end provides an insn that handles signbit for the
3561 argument's mode. */
3562 icode = optab_handler (signbit_optab, mode);
3563 if (icode != CODE_FOR_nothing)
3565 imode = insn_data[(int) icode].operand[0].mode;
3566 sign = gen_reg_rtx (imode);
3567 emit_unop_insn (icode, sign, op1, UNKNOWN);
3569 else
3571 double_int mask;
3573 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3575 imode = int_mode_for_mode (mode);
3576 if (imode == BLKmode)
3577 return NULL_RTX;
3578 op1 = gen_lowpart (imode, op1);
3580 else
3582 int word;
3584 imode = word_mode;
3585 if (FLOAT_WORDS_BIG_ENDIAN)
3586 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3587 else
3588 word = bitpos / BITS_PER_WORD;
3589 bitpos = bitpos % BITS_PER_WORD;
3590 op1 = operand_subword_force (op1, word, mode);
3593 mask = double_int_zero.set_bit (bitpos);
3595 sign = expand_binop (imode, and_optab, op1,
3596 immed_double_int_const (mask, imode),
3597 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3600 if (!op0_is_abs)
3602 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3603 if (op0 == NULL)
3604 return NULL_RTX;
3605 target = op0;
3607 else
3609 if (target == NULL_RTX)
3610 target = copy_to_reg (op0);
3611 else
3612 emit_move_insn (target, op0);
3615 label = gen_label_rtx ();
3616 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3618 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3619 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3620 else
3621 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3622 if (op0 != target)
3623 emit_move_insn (target, op0);
3625 emit_label (label);
3627 return target;
3631 /* A subroutine of expand_copysign, perform the entire copysign operation
3632 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3633 is true if op0 is known to have its sign bit clear. */
3635 static rtx
3636 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3637 int bitpos, bool op0_is_abs)
3639 enum machine_mode imode;
3640 double_int mask;
3641 int word, nwords, i;
3642 rtx temp, insns;
3644 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3646 imode = int_mode_for_mode (mode);
3647 if (imode == BLKmode)
3648 return NULL_RTX;
3649 word = 0;
3650 nwords = 1;
3652 else
3654 imode = word_mode;
3656 if (FLOAT_WORDS_BIG_ENDIAN)
3657 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3658 else
3659 word = bitpos / BITS_PER_WORD;
3660 bitpos = bitpos % BITS_PER_WORD;
3661 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3664 mask = double_int_zero.set_bit (bitpos);
3666 if (target == 0
3667 || target == op0
3668 || target == op1
3669 || (nwords > 1 && !valid_multiword_target_p (target)))
3670 target = gen_reg_rtx (mode);
3672 if (nwords > 1)
3674 start_sequence ();
3676 for (i = 0; i < nwords; ++i)
3678 rtx targ_piece = operand_subword (target, i, 1, mode);
3679 rtx op0_piece = operand_subword_force (op0, i, mode);
3681 if (i == word)
3683 if (!op0_is_abs)
3684 op0_piece
3685 = expand_binop (imode, and_optab, op0_piece,
3686 immed_double_int_const (~mask, imode),
3687 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3689 op1 = expand_binop (imode, and_optab,
3690 operand_subword_force (op1, i, mode),
3691 immed_double_int_const (mask, imode),
3692 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3694 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3695 targ_piece, 1, OPTAB_LIB_WIDEN);
3696 if (temp != targ_piece)
3697 emit_move_insn (targ_piece, temp);
3699 else
3700 emit_move_insn (targ_piece, op0_piece);
3703 insns = get_insns ();
3704 end_sequence ();
3706 emit_insn (insns);
3708 else
3710 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3711 immed_double_int_const (mask, imode),
3712 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3714 op0 = gen_lowpart (imode, op0);
3715 if (!op0_is_abs)
3716 op0 = expand_binop (imode, and_optab, op0,
3717 immed_double_int_const (~mask, imode),
3718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3720 temp = expand_binop (imode, ior_optab, op0, op1,
3721 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3722 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3725 return target;
3728 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3729 scalar floating point mode. Return NULL if we do not know how to
3730 expand the operation inline. */
3733 expand_copysign (rtx op0, rtx op1, rtx target)
3735 enum machine_mode mode = GET_MODE (op0);
3736 const struct real_format *fmt;
3737 bool op0_is_abs;
3738 rtx temp;
3740 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3741 gcc_assert (GET_MODE (op1) == mode);
3743 /* First try to do it with a special instruction. */
3744 temp = expand_binop (mode, copysign_optab, op0, op1,
3745 target, 0, OPTAB_DIRECT);
3746 if (temp)
3747 return temp;
3749 fmt = REAL_MODE_FORMAT (mode);
3750 if (fmt == NULL || !fmt->has_signed_zero)
3751 return NULL_RTX;
3753 op0_is_abs = false;
3754 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3756 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3757 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3758 op0_is_abs = true;
3761 if (fmt->signbit_ro >= 0
3762 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3763 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3764 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3766 temp = expand_copysign_absneg (mode, op0, op1, target,
3767 fmt->signbit_ro, op0_is_abs);
3768 if (temp)
3769 return temp;
3772 if (fmt->signbit_rw < 0)
3773 return NULL_RTX;
3774 return expand_copysign_bit (mode, op0, op1, target,
3775 fmt->signbit_rw, op0_is_abs);
3778 /* Generate an instruction whose insn-code is INSN_CODE,
3779 with two operands: an output TARGET and an input OP0.
3780 TARGET *must* be nonzero, and the output is always stored there.
3781 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3782 the value that is stored into TARGET.
3784 Return false if expansion failed. */
3786 bool
3787 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3788 enum rtx_code code)
3790 struct expand_operand ops[2];
3791 rtx pat;
3793 create_output_operand (&ops[0], target, GET_MODE (target));
3794 create_input_operand (&ops[1], op0, GET_MODE (op0));
3795 pat = maybe_gen_insn (icode, 2, ops);
3796 if (!pat)
3797 return false;
3799 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3800 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3802 emit_insn (pat);
3804 if (ops[0].value != target)
3805 emit_move_insn (target, ops[0].value);
3806 return true;
3808 /* Generate an instruction whose insn-code is INSN_CODE,
3809 with two operands: an output TARGET and an input OP0.
3810 TARGET *must* be nonzero, and the output is always stored there.
3811 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3812 the value that is stored into TARGET. */
3814 void
3815 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3817 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3818 gcc_assert (ok);
3821 struct no_conflict_data
3823 rtx target, first, insn;
3824 bool must_stay;
3827 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3828 the currently examined clobber / store has to stay in the list of
3829 insns that constitute the actual libcall block. */
3830 static void
3831 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3833 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3835 /* If this inns directly contributes to setting the target, it must stay. */
3836 if (reg_overlap_mentioned_p (p->target, dest))
3837 p->must_stay = true;
3838 /* If we haven't committed to keeping any other insns in the list yet,
3839 there is nothing more to check. */
3840 else if (p->insn == p->first)
3841 return;
3842 /* If this insn sets / clobbers a register that feeds one of the insns
3843 already in the list, this insn has to stay too. */
3844 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3845 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3846 || reg_used_between_p (dest, p->first, p->insn)
3847 /* Likewise if this insn depends on a register set by a previous
3848 insn in the list, or if it sets a result (presumably a hard
3849 register) that is set or clobbered by a previous insn.
3850 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3851 SET_DEST perform the former check on the address, and the latter
3852 check on the MEM. */
3853 || (GET_CODE (set) == SET
3854 && (modified_in_p (SET_SRC (set), p->first)
3855 || modified_in_p (SET_DEST (set), p->first)
3856 || modified_between_p (SET_SRC (set), p->first, p->insn)
3857 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3858 p->must_stay = true;
3862 /* Emit code to make a call to a constant function or a library call.
3864 INSNS is a list containing all insns emitted in the call.
3865 These insns leave the result in RESULT. Our block is to copy RESULT
3866 to TARGET, which is logically equivalent to EQUIV.
3868 We first emit any insns that set a pseudo on the assumption that these are
3869 loading constants into registers; doing so allows them to be safely cse'ed
3870 between blocks. Then we emit all the other insns in the block, followed by
3871 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3872 note with an operand of EQUIV. */
3874 static void
3875 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3876 bool equiv_may_trap)
3878 rtx final_dest = target;
3879 rtx next, last, insn;
3881 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3882 into a MEM later. Protect the libcall block from this change. */
3883 if (! REG_P (target) || REG_USERVAR_P (target))
3884 target = gen_reg_rtx (GET_MODE (target));
3886 /* If we're using non-call exceptions, a libcall corresponding to an
3887 operation that may trap may also trap. */
3888 /* ??? See the comment in front of make_reg_eh_region_note. */
3889 if (cfun->can_throw_non_call_exceptions
3890 && (equiv_may_trap || may_trap_p (equiv)))
3892 for (insn = insns; insn; insn = NEXT_INSN (insn))
3893 if (CALL_P (insn))
3895 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3896 if (note)
3898 int lp_nr = INTVAL (XEXP (note, 0));
3899 if (lp_nr == 0 || lp_nr == INT_MIN)
3900 remove_note (insn, note);
3904 else
3906 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3907 reg note to indicate that this call cannot throw or execute a nonlocal
3908 goto (unless there is already a REG_EH_REGION note, in which case
3909 we update it). */
3910 for (insn = insns; insn; insn = NEXT_INSN (insn))
3911 if (CALL_P (insn))
3912 make_reg_eh_region_note_nothrow_nononlocal (insn);
3915 /* First emit all insns that set pseudos. Remove them from the list as
3916 we go. Avoid insns that set pseudos which were referenced in previous
3917 insns. These can be generated by move_by_pieces, for example,
3918 to update an address. Similarly, avoid insns that reference things
3919 set in previous insns. */
3921 for (insn = insns; insn; insn = next)
3923 rtx set = single_set (insn);
3925 next = NEXT_INSN (insn);
3927 if (set != 0 && REG_P (SET_DEST (set))
3928 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3930 struct no_conflict_data data;
3932 data.target = const0_rtx;
3933 data.first = insns;
3934 data.insn = insn;
3935 data.must_stay = 0;
3936 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3937 if (! data.must_stay)
3939 if (PREV_INSN (insn))
3940 NEXT_INSN (PREV_INSN (insn)) = next;
3941 else
3942 insns = next;
3944 if (next)
3945 PREV_INSN (next) = PREV_INSN (insn);
3947 add_insn (insn);
3951 /* Some ports use a loop to copy large arguments onto the stack.
3952 Don't move anything outside such a loop. */
3953 if (LABEL_P (insn))
3954 break;
3957 /* Write the remaining insns followed by the final copy. */
3958 for (insn = insns; insn; insn = next)
3960 next = NEXT_INSN (insn);
3962 add_insn (insn);
3965 last = emit_move_insn (target, result);
3966 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3968 if (final_dest != target)
3969 emit_move_insn (final_dest, target);
3972 void
3973 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3975 emit_libcall_block_1 (insns, target, result, equiv, false);
3978 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3979 PURPOSE describes how this comparison will be used. CODE is the rtx
3980 comparison code we will be using.
3982 ??? Actually, CODE is slightly weaker than that. A target is still
3983 required to implement all of the normal bcc operations, but not
3984 required to implement all (or any) of the unordered bcc operations. */
3987 can_compare_p (enum rtx_code code, enum machine_mode mode,
3988 enum can_compare_purpose purpose)
3990 rtx test;
3991 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3994 enum insn_code icode;
3996 if (purpose == ccp_jump
3997 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3998 && insn_operand_matches (icode, 0, test))
3999 return 1;
4000 if (purpose == ccp_store_flag
4001 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4002 && insn_operand_matches (icode, 1, test))
4003 return 1;
4004 if (purpose == ccp_cmov
4005 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4006 return 1;
4008 mode = GET_MODE_WIDER_MODE (mode);
4009 PUT_MODE (test, mode);
4011 while (mode != VOIDmode);
4013 return 0;
4016 /* This function is called when we are going to emit a compare instruction that
4017 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4019 *PMODE is the mode of the inputs (in case they are const_int).
4020 *PUNSIGNEDP nonzero says that the operands are unsigned;
4021 this matters if they need to be widened (as given by METHODS).
4023 If they have mode BLKmode, then SIZE specifies the size of both operands.
4025 This function performs all the setup necessary so that the caller only has
4026 to emit a single comparison insn. This setup can involve doing a BLKmode
4027 comparison or emitting a library call to perform the comparison if no insn
4028 is available to handle it.
4029 The values which are passed in through pointers can be modified; the caller
4030 should perform the comparison on the modified values. Constant
4031 comparisons must have already been folded. */
4033 static void
4034 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4035 int unsignedp, enum optab_methods methods,
4036 rtx *ptest, enum machine_mode *pmode)
4038 enum machine_mode mode = *pmode;
4039 rtx libfunc, test;
4040 enum machine_mode cmp_mode;
4041 enum mode_class mclass;
4043 /* The other methods are not needed. */
4044 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4045 || methods == OPTAB_LIB_WIDEN);
4047 /* If we are optimizing, force expensive constants into a register. */
4048 if (CONSTANT_P (x) && optimize
4049 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4050 > COSTS_N_INSNS (1)))
4051 x = force_reg (mode, x);
4053 if (CONSTANT_P (y) && optimize
4054 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4055 > COSTS_N_INSNS (1)))
4056 y = force_reg (mode, y);
4058 #ifdef HAVE_cc0
4059 /* Make sure if we have a canonical comparison. The RTL
4060 documentation states that canonical comparisons are required only
4061 for targets which have cc0. */
4062 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4063 #endif
4065 /* Don't let both operands fail to indicate the mode. */
4066 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4067 x = force_reg (mode, x);
4068 if (mode == VOIDmode)
4069 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4071 /* Handle all BLKmode compares. */
4073 if (mode == BLKmode)
4075 enum machine_mode result_mode;
4076 enum insn_code cmp_code;
4077 tree length_type;
4078 rtx libfunc;
4079 rtx result;
4080 rtx opalign
4081 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4083 gcc_assert (size);
4085 /* Try to use a memory block compare insn - either cmpstr
4086 or cmpmem will do. */
4087 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4088 cmp_mode != VOIDmode;
4089 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4091 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4092 if (cmp_code == CODE_FOR_nothing)
4093 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4094 if (cmp_code == CODE_FOR_nothing)
4095 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4096 if (cmp_code == CODE_FOR_nothing)
4097 continue;
4099 /* Must make sure the size fits the insn's mode. */
4100 if ((CONST_INT_P (size)
4101 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4102 || (GET_MODE_BITSIZE (GET_MODE (size))
4103 > GET_MODE_BITSIZE (cmp_mode)))
4104 continue;
4106 result_mode = insn_data[cmp_code].operand[0].mode;
4107 result = gen_reg_rtx (result_mode);
4108 size = convert_to_mode (cmp_mode, size, 1);
4109 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4111 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4112 *pmode = result_mode;
4113 return;
4116 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4117 goto fail;
4119 /* Otherwise call a library function, memcmp. */
4120 libfunc = memcmp_libfunc;
4121 length_type = sizetype;
4122 result_mode = TYPE_MODE (integer_type_node);
4123 cmp_mode = TYPE_MODE (length_type);
4124 size = convert_to_mode (TYPE_MODE (length_type), size,
4125 TYPE_UNSIGNED (length_type));
4127 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4128 result_mode, 3,
4129 XEXP (x, 0), Pmode,
4130 XEXP (y, 0), Pmode,
4131 size, cmp_mode);
4132 x = result;
4133 y = const0_rtx;
4134 mode = result_mode;
4135 methods = OPTAB_LIB_WIDEN;
4136 unsignedp = false;
4139 /* Don't allow operands to the compare to trap, as that can put the
4140 compare and branch in different basic blocks. */
4141 if (cfun->can_throw_non_call_exceptions)
4143 if (may_trap_p (x))
4144 x = force_reg (mode, x);
4145 if (may_trap_p (y))
4146 y = force_reg (mode, y);
4149 if (GET_MODE_CLASS (mode) == MODE_CC)
4151 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4152 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4153 return;
4156 mclass = GET_MODE_CLASS (mode);
4157 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4158 cmp_mode = mode;
4161 enum insn_code icode;
4162 icode = optab_handler (cbranch_optab, cmp_mode);
4163 if (icode != CODE_FOR_nothing
4164 && insn_operand_matches (icode, 0, test))
4166 rtx last = get_last_insn ();
4167 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4168 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4169 if (op0 && op1
4170 && insn_operand_matches (icode, 1, op0)
4171 && insn_operand_matches (icode, 2, op1))
4173 XEXP (test, 0) = op0;
4174 XEXP (test, 1) = op1;
4175 *ptest = test;
4176 *pmode = cmp_mode;
4177 return;
4179 delete_insns_since (last);
4182 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4183 break;
4184 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4186 while (cmp_mode != VOIDmode);
4188 if (methods != OPTAB_LIB_WIDEN)
4189 goto fail;
4191 if (!SCALAR_FLOAT_MODE_P (mode))
4193 rtx result;
4194 enum machine_mode ret_mode;
4196 /* Handle a libcall just for the mode we are using. */
4197 libfunc = optab_libfunc (cmp_optab, mode);
4198 gcc_assert (libfunc);
4200 /* If we want unsigned, and this mode has a distinct unsigned
4201 comparison routine, use that. */
4202 if (unsignedp)
4204 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4205 if (ulibfunc)
4206 libfunc = ulibfunc;
4209 ret_mode = targetm.libgcc_cmp_return_mode ();
4210 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4211 ret_mode, 2, x, mode, y, mode);
4213 /* There are two kinds of comparison routines. Biased routines
4214 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4215 of gcc expect that the comparison operation is equivalent
4216 to the modified comparison. For signed comparisons compare the
4217 result against 1 in the biased case, and zero in the unbiased
4218 case. For unsigned comparisons always compare against 1 after
4219 biasing the unbiased result by adding 1. This gives us a way to
4220 represent LTU.
4221 The comparisons in the fixed-point helper library are always
4222 biased. */
4223 x = result;
4224 y = const1_rtx;
4226 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4228 if (unsignedp)
4229 x = plus_constant (ret_mode, result, 1);
4230 else
4231 y = const0_rtx;
4234 *pmode = word_mode;
4235 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4236 ptest, pmode);
4238 else
4239 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4241 return;
4243 fail:
4244 *ptest = NULL_RTX;
4247 /* Before emitting an insn with code ICODE, make sure that X, which is going
4248 to be used for operand OPNUM of the insn, is converted from mode MODE to
4249 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4250 that it is accepted by the operand predicate. Return the new value. */
4253 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4254 enum machine_mode wider_mode, int unsignedp)
4256 if (mode != wider_mode)
4257 x = convert_modes (wider_mode, mode, x, unsignedp);
4259 if (!insn_operand_matches (icode, opnum, x))
4261 if (reload_completed)
4262 return NULL_RTX;
4263 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4266 return x;
4269 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4270 we can do the branch. */
4272 static void
4273 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4275 enum machine_mode optab_mode;
4276 enum mode_class mclass;
4277 enum insn_code icode;
4278 rtx insn;
4280 mclass = GET_MODE_CLASS (mode);
4281 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4282 icode = optab_handler (cbranch_optab, optab_mode);
4284 gcc_assert (icode != CODE_FOR_nothing);
4285 gcc_assert (insn_operand_matches (icode, 0, test));
4286 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4287 XEXP (test, 1), label));
4288 if (prob != -1
4289 && profile_status != PROFILE_ABSENT
4290 && insn
4291 && JUMP_P (insn)
4292 && any_condjump_p (insn)
4293 && !find_reg_note (insn, REG_BR_PROB, 0))
4294 add_int_reg_note (insn, REG_BR_PROB, prob);
4297 /* Generate code to compare X with Y so that the condition codes are
4298 set and to jump to LABEL if the condition is true. If X is a
4299 constant and Y is not a constant, then the comparison is swapped to
4300 ensure that the comparison RTL has the canonical form.
4302 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4303 need to be widened. UNSIGNEDP is also used to select the proper
4304 branch condition code.
4306 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4308 MODE is the mode of the inputs (in case they are const_int).
4310 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4311 It will be potentially converted into an unsigned variant based on
4312 UNSIGNEDP to select a proper jump instruction.
4314 PROB is the probability of jumping to LABEL. */
4316 void
4317 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4318 enum machine_mode mode, int unsignedp, rtx label,
4319 int prob)
4321 rtx op0 = x, op1 = y;
4322 rtx test;
4324 /* Swap operands and condition to ensure canonical RTL. */
4325 if (swap_commutative_operands_p (x, y)
4326 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4328 op0 = y, op1 = x;
4329 comparison = swap_condition (comparison);
4332 /* If OP0 is still a constant, then both X and Y must be constants
4333 or the opposite comparison is not supported. Force X into a register
4334 to create canonical RTL. */
4335 if (CONSTANT_P (op0))
4336 op0 = force_reg (mode, op0);
4338 if (unsignedp)
4339 comparison = unsigned_condition (comparison);
4341 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4342 &test, &mode);
4343 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4347 /* Emit a library call comparison between floating point X and Y.
4348 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4350 static void
4351 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4352 rtx *ptest, enum machine_mode *pmode)
4354 enum rtx_code swapped = swap_condition (comparison);
4355 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4356 enum machine_mode orig_mode = GET_MODE (x);
4357 enum machine_mode mode, cmp_mode;
4358 rtx true_rtx, false_rtx;
4359 rtx value, target, insns, equiv;
4360 rtx libfunc = 0;
4361 bool reversed_p = false;
4362 cmp_mode = targetm.libgcc_cmp_return_mode ();
4364 for (mode = orig_mode;
4365 mode != VOIDmode;
4366 mode = GET_MODE_WIDER_MODE (mode))
4368 if (code_to_optab (comparison)
4369 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4370 break;
4372 if (code_to_optab (swapped)
4373 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4375 rtx tmp;
4376 tmp = x; x = y; y = tmp;
4377 comparison = swapped;
4378 break;
4381 if (code_to_optab (reversed)
4382 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4384 comparison = reversed;
4385 reversed_p = true;
4386 break;
4390 gcc_assert (mode != VOIDmode);
4392 if (mode != orig_mode)
4394 x = convert_to_mode (mode, x, 0);
4395 y = convert_to_mode (mode, y, 0);
4398 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4399 the RTL. The allows the RTL optimizers to delete the libcall if the
4400 condition can be determined at compile-time. */
4401 if (comparison == UNORDERED
4402 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4404 true_rtx = const_true_rtx;
4405 false_rtx = const0_rtx;
4407 else
4409 switch (comparison)
4411 case EQ:
4412 true_rtx = const0_rtx;
4413 false_rtx = const_true_rtx;
4414 break;
4416 case NE:
4417 true_rtx = const_true_rtx;
4418 false_rtx = const0_rtx;
4419 break;
4421 case GT:
4422 true_rtx = const1_rtx;
4423 false_rtx = const0_rtx;
4424 break;
4426 case GE:
4427 true_rtx = const0_rtx;
4428 false_rtx = constm1_rtx;
4429 break;
4431 case LT:
4432 true_rtx = constm1_rtx;
4433 false_rtx = const0_rtx;
4434 break;
4436 case LE:
4437 true_rtx = const0_rtx;
4438 false_rtx = const1_rtx;
4439 break;
4441 default:
4442 gcc_unreachable ();
4446 if (comparison == UNORDERED)
4448 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4449 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4450 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4451 temp, const_true_rtx, equiv);
4453 else
4455 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4456 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4457 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4458 equiv, true_rtx, false_rtx);
4461 start_sequence ();
4462 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4463 cmp_mode, 2, x, mode, y, mode);
4464 insns = get_insns ();
4465 end_sequence ();
4467 target = gen_reg_rtx (cmp_mode);
4468 emit_libcall_block (insns, target, value, equiv);
4470 if (comparison == UNORDERED
4471 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4472 || reversed_p)
4473 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4474 else
4475 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4477 *pmode = cmp_mode;
4480 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4482 void
4483 emit_indirect_jump (rtx loc)
4485 struct expand_operand ops[1];
4487 create_address_operand (&ops[0], loc);
4488 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4489 emit_barrier ();
4492 #ifdef HAVE_conditional_move
4494 /* Emit a conditional move instruction if the machine supports one for that
4495 condition and machine mode.
4497 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4498 the mode to use should they be constants. If it is VOIDmode, they cannot
4499 both be constants.
4501 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4502 should be stored there. MODE is the mode to use should they be constants.
4503 If it is VOIDmode, they cannot both be constants.
4505 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4506 is not supported. */
4509 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4510 enum machine_mode cmode, rtx op2, rtx op3,
4511 enum machine_mode mode, int unsignedp)
4513 rtx tem, comparison, last;
4514 enum insn_code icode;
4515 enum rtx_code reversed;
4517 /* If one operand is constant, make it the second one. Only do this
4518 if the other operand is not constant as well. */
4520 if (swap_commutative_operands_p (op0, op1))
4522 tem = op0;
4523 op0 = op1;
4524 op1 = tem;
4525 code = swap_condition (code);
4528 /* get_condition will prefer to generate LT and GT even if the old
4529 comparison was against zero, so undo that canonicalization here since
4530 comparisons against zero are cheaper. */
4531 if (code == LT && op1 == const1_rtx)
4532 code = LE, op1 = const0_rtx;
4533 else if (code == GT && op1 == constm1_rtx)
4534 code = GE, op1 = const0_rtx;
4536 if (cmode == VOIDmode)
4537 cmode = GET_MODE (op0);
4539 if (swap_commutative_operands_p (op2, op3)
4540 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4541 != UNKNOWN))
4543 tem = op2;
4544 op2 = op3;
4545 op3 = tem;
4546 code = reversed;
4549 if (mode == VOIDmode)
4550 mode = GET_MODE (op2);
4552 icode = direct_optab_handler (movcc_optab, mode);
4554 if (icode == CODE_FOR_nothing)
4555 return 0;
4557 if (!target)
4558 target = gen_reg_rtx (mode);
4560 code = unsignedp ? unsigned_condition (code) : code;
4561 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4563 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4564 return NULL and let the caller figure out how best to deal with this
4565 situation. */
4566 if (!COMPARISON_P (comparison))
4567 return NULL_RTX;
4569 saved_pending_stack_adjust save;
4570 save_pending_stack_adjust (&save);
4571 last = get_last_insn ();
4572 do_pending_stack_adjust ();
4573 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4574 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4575 &comparison, &cmode);
4576 if (comparison)
4578 struct expand_operand ops[4];
4580 create_output_operand (&ops[0], target, mode);
4581 create_fixed_operand (&ops[1], comparison);
4582 create_input_operand (&ops[2], op2, mode);
4583 create_input_operand (&ops[3], op3, mode);
4584 if (maybe_expand_insn (icode, 4, ops))
4586 if (ops[0].value != target)
4587 convert_move (target, ops[0].value, false);
4588 return target;
4591 delete_insns_since (last);
4592 restore_pending_stack_adjust (&save);
4593 return NULL_RTX;
4596 /* Return nonzero if a conditional move of mode MODE is supported.
4598 This function is for combine so it can tell whether an insn that looks
4599 like a conditional move is actually supported by the hardware. If we
4600 guess wrong we lose a bit on optimization, but that's it. */
4601 /* ??? sparc64 supports conditionally moving integers values based on fp
4602 comparisons, and vice versa. How do we handle them? */
4605 can_conditionally_move_p (enum machine_mode mode)
4607 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4608 return 1;
4610 return 0;
4613 #endif /* HAVE_conditional_move */
4615 /* Emit a conditional addition instruction if the machine supports one for that
4616 condition and machine mode.
4618 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4619 the mode to use should they be constants. If it is VOIDmode, they cannot
4620 both be constants.
4622 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4623 should be stored there. MODE is the mode to use should they be constants.
4624 If it is VOIDmode, they cannot both be constants.
4626 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4627 is not supported. */
4630 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4631 enum machine_mode cmode, rtx op2, rtx op3,
4632 enum machine_mode mode, int unsignedp)
4634 rtx tem, comparison, last;
4635 enum insn_code icode;
4637 /* If one operand is constant, make it the second one. Only do this
4638 if the other operand is not constant as well. */
4640 if (swap_commutative_operands_p (op0, op1))
4642 tem = op0;
4643 op0 = op1;
4644 op1 = tem;
4645 code = swap_condition (code);
4648 /* get_condition will prefer to generate LT and GT even if the old
4649 comparison was against zero, so undo that canonicalization here since
4650 comparisons against zero are cheaper. */
4651 if (code == LT && op1 == const1_rtx)
4652 code = LE, op1 = const0_rtx;
4653 else if (code == GT && op1 == constm1_rtx)
4654 code = GE, op1 = const0_rtx;
4656 if (cmode == VOIDmode)
4657 cmode = GET_MODE (op0);
4659 if (mode == VOIDmode)
4660 mode = GET_MODE (op2);
4662 icode = optab_handler (addcc_optab, mode);
4664 if (icode == CODE_FOR_nothing)
4665 return 0;
4667 if (!target)
4668 target = gen_reg_rtx (mode);
4670 code = unsignedp ? unsigned_condition (code) : code;
4671 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4673 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4674 return NULL and let the caller figure out how best to deal with this
4675 situation. */
4676 if (!COMPARISON_P (comparison))
4677 return NULL_RTX;
4679 do_pending_stack_adjust ();
4680 last = get_last_insn ();
4681 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4682 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4683 &comparison, &cmode);
4684 if (comparison)
4686 struct expand_operand ops[4];
4688 create_output_operand (&ops[0], target, mode);
4689 create_fixed_operand (&ops[1], comparison);
4690 create_input_operand (&ops[2], op2, mode);
4691 create_input_operand (&ops[3], op3, mode);
4692 if (maybe_expand_insn (icode, 4, ops))
4694 if (ops[0].value != target)
4695 convert_move (target, ops[0].value, false);
4696 return target;
4699 delete_insns_since (last);
4700 return NULL_RTX;
4703 /* These functions attempt to generate an insn body, rather than
4704 emitting the insn, but if the gen function already emits them, we
4705 make no attempt to turn them back into naked patterns. */
4707 /* Generate and return an insn body to add Y to X. */
4710 gen_add2_insn (rtx x, rtx y)
4712 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4714 gcc_assert (insn_operand_matches (icode, 0, x));
4715 gcc_assert (insn_operand_matches (icode, 1, x));
4716 gcc_assert (insn_operand_matches (icode, 2, y));
4718 return GEN_FCN (icode) (x, x, y);
4721 /* Generate and return an insn body to add r1 and c,
4722 storing the result in r0. */
4725 gen_add3_insn (rtx r0, rtx r1, rtx c)
4727 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4729 if (icode == CODE_FOR_nothing
4730 || !insn_operand_matches (icode, 0, r0)
4731 || !insn_operand_matches (icode, 1, r1)
4732 || !insn_operand_matches (icode, 2, c))
4733 return NULL_RTX;
4735 return GEN_FCN (icode) (r0, r1, c);
4739 have_add2_insn (rtx x, rtx y)
4741 enum insn_code icode;
4743 gcc_assert (GET_MODE (x) != VOIDmode);
4745 icode = optab_handler (add_optab, GET_MODE (x));
4747 if (icode == CODE_FOR_nothing)
4748 return 0;
4750 if (!insn_operand_matches (icode, 0, x)
4751 || !insn_operand_matches (icode, 1, x)
4752 || !insn_operand_matches (icode, 2, y))
4753 return 0;
4755 return 1;
4758 /* Generate and return an insn body to subtract Y from X. */
4761 gen_sub2_insn (rtx x, rtx y)
4763 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4765 gcc_assert (insn_operand_matches (icode, 0, x));
4766 gcc_assert (insn_operand_matches (icode, 1, x));
4767 gcc_assert (insn_operand_matches (icode, 2, y));
4769 return GEN_FCN (icode) (x, x, y);
4772 /* Generate and return an insn body to subtract r1 and c,
4773 storing the result in r0. */
4776 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4778 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4780 if (icode == CODE_FOR_nothing
4781 || !insn_operand_matches (icode, 0, r0)
4782 || !insn_operand_matches (icode, 1, r1)
4783 || !insn_operand_matches (icode, 2, c))
4784 return NULL_RTX;
4786 return GEN_FCN (icode) (r0, r1, c);
4790 have_sub2_insn (rtx x, rtx y)
4792 enum insn_code icode;
4794 gcc_assert (GET_MODE (x) != VOIDmode);
4796 icode = optab_handler (sub_optab, GET_MODE (x));
4798 if (icode == CODE_FOR_nothing)
4799 return 0;
4801 if (!insn_operand_matches (icode, 0, x)
4802 || !insn_operand_matches (icode, 1, x)
4803 || !insn_operand_matches (icode, 2, y))
4804 return 0;
4806 return 1;
4809 /* Generate the body of an instruction to copy Y into X.
4810 It may be a list of insns, if one insn isn't enough. */
4813 gen_move_insn (rtx x, rtx y)
4815 rtx seq;
4817 start_sequence ();
4818 emit_move_insn_1 (x, y);
4819 seq = get_insns ();
4820 end_sequence ();
4821 return seq;
4824 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4825 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4826 no such operation exists, CODE_FOR_nothing will be returned. */
4828 enum insn_code
4829 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4830 int unsignedp)
4832 convert_optab tab;
4833 #ifdef HAVE_ptr_extend
4834 if (unsignedp < 0)
4835 return CODE_FOR_ptr_extend;
4836 #endif
4838 tab = unsignedp ? zext_optab : sext_optab;
4839 return convert_optab_handler (tab, to_mode, from_mode);
4842 /* Generate the body of an insn to extend Y (with mode MFROM)
4843 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4846 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4847 enum machine_mode mfrom, int unsignedp)
4849 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4850 return GEN_FCN (icode) (x, y);
4853 /* can_fix_p and can_float_p say whether the target machine
4854 can directly convert a given fixed point type to
4855 a given floating point type, or vice versa.
4856 The returned value is the CODE_FOR_... value to use,
4857 or CODE_FOR_nothing if these modes cannot be directly converted.
4859 *TRUNCP_PTR is set to 1 if it is necessary to output
4860 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4862 static enum insn_code
4863 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4864 int unsignedp, int *truncp_ptr)
4866 convert_optab tab;
4867 enum insn_code icode;
4869 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4870 icode = convert_optab_handler (tab, fixmode, fltmode);
4871 if (icode != CODE_FOR_nothing)
4873 *truncp_ptr = 0;
4874 return icode;
4877 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4878 for this to work. We need to rework the fix* and ftrunc* patterns
4879 and documentation. */
4880 tab = unsignedp ? ufix_optab : sfix_optab;
4881 icode = convert_optab_handler (tab, fixmode, fltmode);
4882 if (icode != CODE_FOR_nothing
4883 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4885 *truncp_ptr = 1;
4886 return icode;
4889 *truncp_ptr = 0;
4890 return CODE_FOR_nothing;
4893 enum insn_code
4894 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4895 int unsignedp)
4897 convert_optab tab;
4899 tab = unsignedp ? ufloat_optab : sfloat_optab;
4900 return convert_optab_handler (tab, fltmode, fixmode);
4903 /* Function supportable_convert_operation
4905 Check whether an operation represented by the code CODE is a
4906 convert operation that is supported by the target platform in
4907 vector form (i.e., when operating on arguments of type VECTYPE_IN
4908 producing a result of type VECTYPE_OUT).
4910 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4911 This function checks if these operations are supported
4912 by the target platform either directly (via vector tree-codes), or via
4913 target builtins.
4915 Output:
4916 - CODE1 is code of vector operation to be used when
4917 vectorizing the operation, if available.
4918 - DECL is decl of target builtin functions to be used
4919 when vectorizing the operation, if available. In this case,
4920 CODE1 is CALL_EXPR. */
4922 bool
4923 supportable_convert_operation (enum tree_code code,
4924 tree vectype_out, tree vectype_in,
4925 tree *decl, enum tree_code *code1)
4927 enum machine_mode m1,m2;
4928 int truncp;
4930 m1 = TYPE_MODE (vectype_out);
4931 m2 = TYPE_MODE (vectype_in);
4933 /* First check if we can done conversion directly. */
4934 if ((code == FIX_TRUNC_EXPR
4935 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4936 != CODE_FOR_nothing)
4937 || (code == FLOAT_EXPR
4938 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4939 != CODE_FOR_nothing))
4941 *code1 = code;
4942 return true;
4945 /* Now check for builtin. */
4946 if (targetm.vectorize.builtin_conversion
4947 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4949 *code1 = CALL_EXPR;
4950 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4951 return true;
4953 return false;
4957 /* Generate code to convert FROM to floating point
4958 and store in TO. FROM must be fixed point and not VOIDmode.
4959 UNSIGNEDP nonzero means regard FROM as unsigned.
4960 Normally this is done by correcting the final value
4961 if it is negative. */
4963 void
4964 expand_float (rtx to, rtx from, int unsignedp)
4966 enum insn_code icode;
4967 rtx target = to;
4968 enum machine_mode fmode, imode;
4969 bool can_do_signed = false;
4971 /* Crash now, because we won't be able to decide which mode to use. */
4972 gcc_assert (GET_MODE (from) != VOIDmode);
4974 /* Look for an insn to do the conversion. Do it in the specified
4975 modes if possible; otherwise convert either input, output or both to
4976 wider mode. If the integer mode is wider than the mode of FROM,
4977 we can do the conversion signed even if the input is unsigned. */
4979 for (fmode = GET_MODE (to); fmode != VOIDmode;
4980 fmode = GET_MODE_WIDER_MODE (fmode))
4981 for (imode = GET_MODE (from); imode != VOIDmode;
4982 imode = GET_MODE_WIDER_MODE (imode))
4984 int doing_unsigned = unsignedp;
4986 if (fmode != GET_MODE (to)
4987 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4988 continue;
4990 icode = can_float_p (fmode, imode, unsignedp);
4991 if (icode == CODE_FOR_nothing && unsignedp)
4993 enum insn_code scode = can_float_p (fmode, imode, 0);
4994 if (scode != CODE_FOR_nothing)
4995 can_do_signed = true;
4996 if (imode != GET_MODE (from))
4997 icode = scode, doing_unsigned = 0;
5000 if (icode != CODE_FOR_nothing)
5002 if (imode != GET_MODE (from))
5003 from = convert_to_mode (imode, from, unsignedp);
5005 if (fmode != GET_MODE (to))
5006 target = gen_reg_rtx (fmode);
5008 emit_unop_insn (icode, target, from,
5009 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5011 if (target != to)
5012 convert_move (to, target, 0);
5013 return;
5017 /* Unsigned integer, and no way to convert directly. Convert as signed,
5018 then unconditionally adjust the result. */
5019 if (unsignedp && can_do_signed)
5021 rtx label = gen_label_rtx ();
5022 rtx temp;
5023 REAL_VALUE_TYPE offset;
5025 /* Look for a usable floating mode FMODE wider than the source and at
5026 least as wide as the target. Using FMODE will avoid rounding woes
5027 with unsigned values greater than the signed maximum value. */
5029 for (fmode = GET_MODE (to); fmode != VOIDmode;
5030 fmode = GET_MODE_WIDER_MODE (fmode))
5031 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5032 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5033 break;
5035 if (fmode == VOIDmode)
5037 /* There is no such mode. Pretend the target is wide enough. */
5038 fmode = GET_MODE (to);
5040 /* Avoid double-rounding when TO is narrower than FROM. */
5041 if ((significand_size (fmode) + 1)
5042 < GET_MODE_PRECISION (GET_MODE (from)))
5044 rtx temp1;
5045 rtx neglabel = gen_label_rtx ();
5047 /* Don't use TARGET if it isn't a register, is a hard register,
5048 or is the wrong mode. */
5049 if (!REG_P (target)
5050 || REGNO (target) < FIRST_PSEUDO_REGISTER
5051 || GET_MODE (target) != fmode)
5052 target = gen_reg_rtx (fmode);
5054 imode = GET_MODE (from);
5055 do_pending_stack_adjust ();
5057 /* Test whether the sign bit is set. */
5058 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5059 0, neglabel);
5061 /* The sign bit is not set. Convert as signed. */
5062 expand_float (target, from, 0);
5063 emit_jump_insn (gen_jump (label));
5064 emit_barrier ();
5066 /* The sign bit is set.
5067 Convert to a usable (positive signed) value by shifting right
5068 one bit, while remembering if a nonzero bit was shifted
5069 out; i.e., compute (from & 1) | (from >> 1). */
5071 emit_label (neglabel);
5072 temp = expand_binop (imode, and_optab, from, const1_rtx,
5073 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5074 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5075 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5076 OPTAB_LIB_WIDEN);
5077 expand_float (target, temp, 0);
5079 /* Multiply by 2 to undo the shift above. */
5080 temp = expand_binop (fmode, add_optab, target, target,
5081 target, 0, OPTAB_LIB_WIDEN);
5082 if (temp != target)
5083 emit_move_insn (target, temp);
5085 do_pending_stack_adjust ();
5086 emit_label (label);
5087 goto done;
5091 /* If we are about to do some arithmetic to correct for an
5092 unsigned operand, do it in a pseudo-register. */
5094 if (GET_MODE (to) != fmode
5095 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5096 target = gen_reg_rtx (fmode);
5098 /* Convert as signed integer to floating. */
5099 expand_float (target, from, 0);
5101 /* If FROM is negative (and therefore TO is negative),
5102 correct its value by 2**bitwidth. */
5104 do_pending_stack_adjust ();
5105 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5106 0, label);
5109 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5110 temp = expand_binop (fmode, add_optab, target,
5111 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5112 target, 0, OPTAB_LIB_WIDEN);
5113 if (temp != target)
5114 emit_move_insn (target, temp);
5116 do_pending_stack_adjust ();
5117 emit_label (label);
5118 goto done;
5121 /* No hardware instruction available; call a library routine. */
5123 rtx libfunc;
5124 rtx insns;
5125 rtx value;
5126 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5128 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5129 from = convert_to_mode (SImode, from, unsignedp);
5131 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5132 gcc_assert (libfunc);
5134 start_sequence ();
5136 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5137 GET_MODE (to), 1, from,
5138 GET_MODE (from));
5139 insns = get_insns ();
5140 end_sequence ();
5142 emit_libcall_block (insns, target, value,
5143 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5144 GET_MODE (to), from));
5147 done:
5149 /* Copy result to requested destination
5150 if we have been computing in a temp location. */
5152 if (target != to)
5154 if (GET_MODE (target) == GET_MODE (to))
5155 emit_move_insn (to, target);
5156 else
5157 convert_move (to, target, 0);
5161 /* Generate code to convert FROM to fixed point and store in TO. FROM
5162 must be floating point. */
5164 void
5165 expand_fix (rtx to, rtx from, int unsignedp)
5167 enum insn_code icode;
5168 rtx target = to;
5169 enum machine_mode fmode, imode;
5170 int must_trunc = 0;
5172 /* We first try to find a pair of modes, one real and one integer, at
5173 least as wide as FROM and TO, respectively, in which we can open-code
5174 this conversion. If the integer mode is wider than the mode of TO,
5175 we can do the conversion either signed or unsigned. */
5177 for (fmode = GET_MODE (from); fmode != VOIDmode;
5178 fmode = GET_MODE_WIDER_MODE (fmode))
5179 for (imode = GET_MODE (to); imode != VOIDmode;
5180 imode = GET_MODE_WIDER_MODE (imode))
5182 int doing_unsigned = unsignedp;
5184 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5185 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5186 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5188 if (icode != CODE_FOR_nothing)
5190 rtx last = get_last_insn ();
5191 if (fmode != GET_MODE (from))
5192 from = convert_to_mode (fmode, from, 0);
5194 if (must_trunc)
5196 rtx temp = gen_reg_rtx (GET_MODE (from));
5197 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5198 temp, 0);
5201 if (imode != GET_MODE (to))
5202 target = gen_reg_rtx (imode);
5204 if (maybe_emit_unop_insn (icode, target, from,
5205 doing_unsigned ? UNSIGNED_FIX : FIX))
5207 if (target != to)
5208 convert_move (to, target, unsignedp);
5209 return;
5211 delete_insns_since (last);
5215 /* For an unsigned conversion, there is one more way to do it.
5216 If we have a signed conversion, we generate code that compares
5217 the real value to the largest representable positive number. If if
5218 is smaller, the conversion is done normally. Otherwise, subtract
5219 one plus the highest signed number, convert, and add it back.
5221 We only need to check all real modes, since we know we didn't find
5222 anything with a wider integer mode.
5224 This code used to extend FP value into mode wider than the destination.
5225 This is needed for decimal float modes which cannot accurately
5226 represent one plus the highest signed number of the same size, but
5227 not for binary modes. Consider, for instance conversion from SFmode
5228 into DImode.
5230 The hot path through the code is dealing with inputs smaller than 2^63
5231 and doing just the conversion, so there is no bits to lose.
5233 In the other path we know the value is positive in the range 2^63..2^64-1
5234 inclusive. (as for other input overflow happens and result is undefined)
5235 So we know that the most important bit set in mantissa corresponds to
5236 2^63. The subtraction of 2^63 should not generate any rounding as it
5237 simply clears out that bit. The rest is trivial. */
5239 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5240 for (fmode = GET_MODE (from); fmode != VOIDmode;
5241 fmode = GET_MODE_WIDER_MODE (fmode))
5242 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5243 && (!DECIMAL_FLOAT_MODE_P (fmode)
5244 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5246 int bitsize;
5247 REAL_VALUE_TYPE offset;
5248 rtx limit, lab1, lab2, insn;
5250 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5251 real_2expN (&offset, bitsize - 1, fmode);
5252 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5253 lab1 = gen_label_rtx ();
5254 lab2 = gen_label_rtx ();
5256 if (fmode != GET_MODE (from))
5257 from = convert_to_mode (fmode, from, 0);
5259 /* See if we need to do the subtraction. */
5260 do_pending_stack_adjust ();
5261 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5262 0, lab1);
5264 /* If not, do the signed "fix" and branch around fixup code. */
5265 expand_fix (to, from, 0);
5266 emit_jump_insn (gen_jump (lab2));
5267 emit_barrier ();
5269 /* Otherwise, subtract 2**(N-1), convert to signed number,
5270 then add 2**(N-1). Do the addition using XOR since this
5271 will often generate better code. */
5272 emit_label (lab1);
5273 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5274 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5275 expand_fix (to, target, 0);
5276 target = expand_binop (GET_MODE (to), xor_optab, to,
5277 gen_int_mode
5278 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5279 GET_MODE (to)),
5280 to, 1, OPTAB_LIB_WIDEN);
5282 if (target != to)
5283 emit_move_insn (to, target);
5285 emit_label (lab2);
5287 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5289 /* Make a place for a REG_NOTE and add it. */
5290 insn = emit_move_insn (to, to);
5291 set_dst_reg_note (insn, REG_EQUAL,
5292 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5293 copy_rtx (from)),
5294 to);
5297 return;
5300 /* We can't do it with an insn, so use a library call. But first ensure
5301 that the mode of TO is at least as wide as SImode, since those are the
5302 only library calls we know about. */
5304 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5306 target = gen_reg_rtx (SImode);
5308 expand_fix (target, from, unsignedp);
5310 else
5312 rtx insns;
5313 rtx value;
5314 rtx libfunc;
5316 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5317 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5318 gcc_assert (libfunc);
5320 start_sequence ();
5322 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5323 GET_MODE (to), 1, from,
5324 GET_MODE (from));
5325 insns = get_insns ();
5326 end_sequence ();
5328 emit_libcall_block (insns, target, value,
5329 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5330 GET_MODE (to), from));
5333 if (target != to)
5335 if (GET_MODE (to) == GET_MODE (target))
5336 emit_move_insn (to, target);
5337 else
5338 convert_move (to, target, 0);
5342 /* Generate code to convert FROM or TO a fixed-point.
5343 If UINTP is true, either TO or FROM is an unsigned integer.
5344 If SATP is true, we need to saturate the result. */
5346 void
5347 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5349 enum machine_mode to_mode = GET_MODE (to);
5350 enum machine_mode from_mode = GET_MODE (from);
5351 convert_optab tab;
5352 enum rtx_code this_code;
5353 enum insn_code code;
5354 rtx insns, value;
5355 rtx libfunc;
5357 if (to_mode == from_mode)
5359 emit_move_insn (to, from);
5360 return;
5363 if (uintp)
5365 tab = satp ? satfractuns_optab : fractuns_optab;
5366 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5368 else
5370 tab = satp ? satfract_optab : fract_optab;
5371 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5373 code = convert_optab_handler (tab, to_mode, from_mode);
5374 if (code != CODE_FOR_nothing)
5376 emit_unop_insn (code, to, from, this_code);
5377 return;
5380 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5381 gcc_assert (libfunc);
5383 start_sequence ();
5384 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5385 1, from, from_mode);
5386 insns = get_insns ();
5387 end_sequence ();
5389 emit_libcall_block (insns, to, value,
5390 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5393 /* Generate code to convert FROM to fixed point and store in TO. FROM
5394 must be floating point, TO must be signed. Use the conversion optab
5395 TAB to do the conversion. */
5397 bool
5398 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5400 enum insn_code icode;
5401 rtx target = to;
5402 enum machine_mode fmode, imode;
5404 /* We first try to find a pair of modes, one real and one integer, at
5405 least as wide as FROM and TO, respectively, in which we can open-code
5406 this conversion. If the integer mode is wider than the mode of TO,
5407 we can do the conversion either signed or unsigned. */
5409 for (fmode = GET_MODE (from); fmode != VOIDmode;
5410 fmode = GET_MODE_WIDER_MODE (fmode))
5411 for (imode = GET_MODE (to); imode != VOIDmode;
5412 imode = GET_MODE_WIDER_MODE (imode))
5414 icode = convert_optab_handler (tab, imode, fmode);
5415 if (icode != CODE_FOR_nothing)
5417 rtx last = get_last_insn ();
5418 if (fmode != GET_MODE (from))
5419 from = convert_to_mode (fmode, from, 0);
5421 if (imode != GET_MODE (to))
5422 target = gen_reg_rtx (imode);
5424 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5426 delete_insns_since (last);
5427 continue;
5429 if (target != to)
5430 convert_move (to, target, 0);
5431 return true;
5435 return false;
5438 /* Report whether we have an instruction to perform the operation
5439 specified by CODE on operands of mode MODE. */
5441 have_insn_for (enum rtx_code code, enum machine_mode mode)
5443 return (code_to_optab (code)
5444 && (optab_handler (code_to_optab (code), mode)
5445 != CODE_FOR_nothing));
5448 /* Initialize the libfunc fields of an entire group of entries in some
5449 optab. Each entry is set equal to a string consisting of a leading
5450 pair of underscores followed by a generic operation name followed by
5451 a mode name (downshifted to lowercase) followed by a single character
5452 representing the number of operands for the given operation (which is
5453 usually one of the characters '2', '3', or '4').
5455 OPTABLE is the table in which libfunc fields are to be initialized.
5456 OPNAME is the generic (string) name of the operation.
5457 SUFFIX is the character which specifies the number of operands for
5458 the given generic operation.
5459 MODE is the mode to generate for.
5462 static void
5463 gen_libfunc (optab optable, const char *opname, int suffix,
5464 enum machine_mode mode)
5466 unsigned opname_len = strlen (opname);
5467 const char *mname = GET_MODE_NAME (mode);
5468 unsigned mname_len = strlen (mname);
5469 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5470 int len = prefix_len + opname_len + mname_len + 1 + 1;
5471 char *libfunc_name = XALLOCAVEC (char, len);
5472 char *p;
5473 const char *q;
5475 p = libfunc_name;
5476 *p++ = '_';
5477 *p++ = '_';
5478 if (targetm.libfunc_gnu_prefix)
5480 *p++ = 'g';
5481 *p++ = 'n';
5482 *p++ = 'u';
5483 *p++ = '_';
5485 for (q = opname; *q; )
5486 *p++ = *q++;
5487 for (q = mname; *q; q++)
5488 *p++ = TOLOWER (*q);
5489 *p++ = suffix;
5490 *p = '\0';
5492 set_optab_libfunc (optable, mode,
5493 ggc_alloc_string (libfunc_name, p - libfunc_name));
5496 /* Like gen_libfunc, but verify that integer operation is involved. */
5498 void
5499 gen_int_libfunc (optab optable, const char *opname, char suffix,
5500 enum machine_mode mode)
5502 int maxsize = 2 * BITS_PER_WORD;
5504 if (GET_MODE_CLASS (mode) != MODE_INT)
5505 return;
5506 if (maxsize < LONG_LONG_TYPE_SIZE)
5507 maxsize = LONG_LONG_TYPE_SIZE;
5508 if (GET_MODE_CLASS (mode) != MODE_INT
5509 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5510 return;
5511 gen_libfunc (optable, opname, suffix, mode);
5514 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5516 void
5517 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5518 enum machine_mode mode)
5520 char *dec_opname;
5522 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5523 gen_libfunc (optable, opname, suffix, mode);
5524 if (DECIMAL_FLOAT_MODE_P (mode))
5526 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5527 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5528 depending on the low level floating format used. */
5529 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5530 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5531 gen_libfunc (optable, dec_opname, suffix, mode);
5535 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5537 void
5538 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5539 enum machine_mode mode)
5541 if (!ALL_FIXED_POINT_MODE_P (mode))
5542 return;
5543 gen_libfunc (optable, opname, suffix, mode);
5546 /* Like gen_libfunc, but verify that signed fixed-point operation is
5547 involved. */
5549 void
5550 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5551 enum machine_mode mode)
5553 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5554 return;
5555 gen_libfunc (optable, opname, suffix, mode);
5558 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5559 involved. */
5561 void
5562 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5563 enum machine_mode mode)
5565 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5566 return;
5567 gen_libfunc (optable, opname, suffix, mode);
5570 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5572 void
5573 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5574 enum machine_mode mode)
5576 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5577 gen_fp_libfunc (optable, name, suffix, mode);
5578 if (INTEGRAL_MODE_P (mode))
5579 gen_int_libfunc (optable, name, suffix, mode);
5582 /* Like gen_libfunc, but verify that FP or INT operation is involved
5583 and add 'v' suffix for integer operation. */
5585 void
5586 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5587 enum machine_mode mode)
5589 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5590 gen_fp_libfunc (optable, name, suffix, mode);
5591 if (GET_MODE_CLASS (mode) == MODE_INT)
5593 int len = strlen (name);
5594 char *v_name = XALLOCAVEC (char, len + 2);
5595 strcpy (v_name, name);
5596 v_name[len] = 'v';
5597 v_name[len + 1] = 0;
5598 gen_int_libfunc (optable, v_name, suffix, mode);
5602 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5603 involved. */
5605 void
5606 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5607 enum machine_mode mode)
5609 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5610 gen_fp_libfunc (optable, name, suffix, mode);
5611 if (INTEGRAL_MODE_P (mode))
5612 gen_int_libfunc (optable, name, suffix, mode);
5613 if (ALL_FIXED_POINT_MODE_P (mode))
5614 gen_fixed_libfunc (optable, name, suffix, mode);
5617 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5618 involved. */
5620 void
5621 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5622 enum machine_mode mode)
5624 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5625 gen_fp_libfunc (optable, name, suffix, mode);
5626 if (INTEGRAL_MODE_P (mode))
5627 gen_int_libfunc (optable, name, suffix, mode);
5628 if (SIGNED_FIXED_POINT_MODE_P (mode))
5629 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5632 /* Like gen_libfunc, but verify that INT or FIXED operation is
5633 involved. */
5635 void
5636 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5637 enum machine_mode mode)
5639 if (INTEGRAL_MODE_P (mode))
5640 gen_int_libfunc (optable, name, suffix, mode);
5641 if (ALL_FIXED_POINT_MODE_P (mode))
5642 gen_fixed_libfunc (optable, name, suffix, mode);
5645 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5646 involved. */
5648 void
5649 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5650 enum machine_mode mode)
5652 if (INTEGRAL_MODE_P (mode))
5653 gen_int_libfunc (optable, name, suffix, mode);
5654 if (SIGNED_FIXED_POINT_MODE_P (mode))
5655 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5658 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5659 involved. */
5661 void
5662 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5663 enum machine_mode mode)
5665 if (INTEGRAL_MODE_P (mode))
5666 gen_int_libfunc (optable, name, suffix, mode);
5667 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5668 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5671 /* Initialize the libfunc fields of an entire group of entries of an
5672 inter-mode-class conversion optab. The string formation rules are
5673 similar to the ones for init_libfuncs, above, but instead of having
5674 a mode name and an operand count these functions have two mode names
5675 and no operand count. */
5677 void
5678 gen_interclass_conv_libfunc (convert_optab tab,
5679 const char *opname,
5680 enum machine_mode tmode,
5681 enum machine_mode fmode)
5683 size_t opname_len = strlen (opname);
5684 size_t mname_len = 0;
5686 const char *fname, *tname;
5687 const char *q;
5688 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5689 char *libfunc_name, *suffix;
5690 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5691 char *p;
5693 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5694 depends on which underlying decimal floating point format is used. */
5695 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5697 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5699 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5700 nondec_name[0] = '_';
5701 nondec_name[1] = '_';
5702 if (targetm.libfunc_gnu_prefix)
5704 nondec_name[2] = 'g';
5705 nondec_name[3] = 'n';
5706 nondec_name[4] = 'u';
5707 nondec_name[5] = '_';
5710 memcpy (&nondec_name[prefix_len], opname, opname_len);
5711 nondec_suffix = nondec_name + opname_len + prefix_len;
5713 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5714 dec_name[0] = '_';
5715 dec_name[1] = '_';
5716 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5717 memcpy (&dec_name[2+dec_len], opname, opname_len);
5718 dec_suffix = dec_name + dec_len + opname_len + 2;
5720 fname = GET_MODE_NAME (fmode);
5721 tname = GET_MODE_NAME (tmode);
5723 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5725 libfunc_name = dec_name;
5726 suffix = dec_suffix;
5728 else
5730 libfunc_name = nondec_name;
5731 suffix = nondec_suffix;
5734 p = suffix;
5735 for (q = fname; *q; p++, q++)
5736 *p = TOLOWER (*q);
5737 for (q = tname; *q; p++, q++)
5738 *p = TOLOWER (*q);
5740 *p = '\0';
5742 set_conv_libfunc (tab, tmode, fmode,
5743 ggc_alloc_string (libfunc_name, p - libfunc_name));
5746 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5747 int->fp conversion. */
5749 void
5750 gen_int_to_fp_conv_libfunc (convert_optab tab,
5751 const char *opname,
5752 enum machine_mode tmode,
5753 enum machine_mode fmode)
5755 if (GET_MODE_CLASS (fmode) != MODE_INT)
5756 return;
5757 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5758 return;
5759 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5762 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5763 naming scheme. */
5765 void
5766 gen_ufloat_conv_libfunc (convert_optab tab,
5767 const char *opname ATTRIBUTE_UNUSED,
5768 enum machine_mode tmode,
5769 enum machine_mode fmode)
5771 if (DECIMAL_FLOAT_MODE_P (tmode))
5772 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5773 else
5774 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5777 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5778 fp->int conversion. */
5780 void
5781 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5782 const char *opname,
5783 enum machine_mode tmode,
5784 enum machine_mode fmode)
5786 if (GET_MODE_CLASS (fmode) != MODE_INT)
5787 return;
5788 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5789 return;
5790 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5793 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5794 fp->int conversion with no decimal floating point involved. */
5796 void
5797 gen_fp_to_int_conv_libfunc (convert_optab tab,
5798 const char *opname,
5799 enum machine_mode tmode,
5800 enum machine_mode fmode)
5802 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5803 return;
5804 if (GET_MODE_CLASS (tmode) != MODE_INT)
5805 return;
5806 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5809 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5810 The string formation rules are
5811 similar to the ones for init_libfunc, above. */
5813 void
5814 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5815 enum machine_mode tmode, enum machine_mode fmode)
5817 size_t opname_len = strlen (opname);
5818 size_t mname_len = 0;
5820 const char *fname, *tname;
5821 const char *q;
5822 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5823 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5824 char *libfunc_name, *suffix;
5825 char *p;
5827 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5828 depends on which underlying decimal floating point format is used. */
5829 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5831 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5833 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5834 nondec_name[0] = '_';
5835 nondec_name[1] = '_';
5836 if (targetm.libfunc_gnu_prefix)
5838 nondec_name[2] = 'g';
5839 nondec_name[3] = 'n';
5840 nondec_name[4] = 'u';
5841 nondec_name[5] = '_';
5843 memcpy (&nondec_name[prefix_len], opname, opname_len);
5844 nondec_suffix = nondec_name + opname_len + prefix_len;
5846 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5847 dec_name[0] = '_';
5848 dec_name[1] = '_';
5849 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5850 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5851 dec_suffix = dec_name + dec_len + opname_len + 2;
5853 fname = GET_MODE_NAME (fmode);
5854 tname = GET_MODE_NAME (tmode);
5856 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5858 libfunc_name = dec_name;
5859 suffix = dec_suffix;
5861 else
5863 libfunc_name = nondec_name;
5864 suffix = nondec_suffix;
5867 p = suffix;
5868 for (q = fname; *q; p++, q++)
5869 *p = TOLOWER (*q);
5870 for (q = tname; *q; p++, q++)
5871 *p = TOLOWER (*q);
5873 *p++ = '2';
5874 *p = '\0';
5876 set_conv_libfunc (tab, tmode, fmode,
5877 ggc_alloc_string (libfunc_name, p - libfunc_name));
5880 /* Pick proper libcall for trunc_optab. We need to chose if we do
5881 truncation or extension and interclass or intraclass. */
5883 void
5884 gen_trunc_conv_libfunc (convert_optab tab,
5885 const char *opname,
5886 enum machine_mode tmode,
5887 enum machine_mode fmode)
5889 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5890 return;
5891 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5892 return;
5893 if (tmode == fmode)
5894 return;
5896 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5897 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5898 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5900 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5901 return;
5903 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5904 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5905 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5906 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5909 /* Pick proper libcall for extend_optab. We need to chose if we do
5910 truncation or extension and interclass or intraclass. */
5912 void
5913 gen_extend_conv_libfunc (convert_optab tab,
5914 const char *opname ATTRIBUTE_UNUSED,
5915 enum machine_mode tmode,
5916 enum machine_mode fmode)
5918 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5919 return;
5920 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5921 return;
5922 if (tmode == fmode)
5923 return;
5925 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5926 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5927 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5929 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5930 return;
5932 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5933 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5934 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5935 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5938 /* Pick proper libcall for fract_optab. We need to chose if we do
5939 interclass or intraclass. */
5941 void
5942 gen_fract_conv_libfunc (convert_optab tab,
5943 const char *opname,
5944 enum machine_mode tmode,
5945 enum machine_mode fmode)
5947 if (tmode == fmode)
5948 return;
5949 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5950 return;
5952 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5953 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5954 else
5955 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5958 /* Pick proper libcall for fractuns_optab. */
5960 void
5961 gen_fractuns_conv_libfunc (convert_optab tab,
5962 const char *opname,
5963 enum machine_mode tmode,
5964 enum machine_mode fmode)
5966 if (tmode == fmode)
5967 return;
5968 /* One mode must be a fixed-point mode, and the other must be an integer
5969 mode. */
5970 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5971 || (ALL_FIXED_POINT_MODE_P (fmode)
5972 && GET_MODE_CLASS (tmode) == MODE_INT)))
5973 return;
5975 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5978 /* Pick proper libcall for satfract_optab. We need to chose if we do
5979 interclass or intraclass. */
5981 void
5982 gen_satfract_conv_libfunc (convert_optab tab,
5983 const char *opname,
5984 enum machine_mode tmode,
5985 enum machine_mode fmode)
5987 if (tmode == fmode)
5988 return;
5989 /* TMODE must be a fixed-point mode. */
5990 if (!ALL_FIXED_POINT_MODE_P (tmode))
5991 return;
5993 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5994 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5995 else
5996 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5999 /* Pick proper libcall for satfractuns_optab. */
6001 void
6002 gen_satfractuns_conv_libfunc (convert_optab tab,
6003 const char *opname,
6004 enum machine_mode tmode,
6005 enum machine_mode fmode)
6007 if (tmode == fmode)
6008 return;
6009 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6010 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6011 return;
6013 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6016 /* A table of previously-created libfuncs, hashed by name. */
6017 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6019 /* Hashtable callbacks for libfunc_decls. */
6021 static hashval_t
6022 libfunc_decl_hash (const void *entry)
6024 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6027 static int
6028 libfunc_decl_eq (const void *entry1, const void *entry2)
6030 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6033 /* Build a decl for a libfunc named NAME. */
6035 tree
6036 build_libfunc_function (const char *name)
6038 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6039 get_identifier (name),
6040 build_function_type (integer_type_node, NULL_TREE));
6041 /* ??? We don't have any type information except for this is
6042 a function. Pretend this is "int foo()". */
6043 DECL_ARTIFICIAL (decl) = 1;
6044 DECL_EXTERNAL (decl) = 1;
6045 TREE_PUBLIC (decl) = 1;
6046 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6048 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6049 are the flags assigned by targetm.encode_section_info. */
6050 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6052 return decl;
6056 init_one_libfunc (const char *name)
6058 tree id, decl;
6059 void **slot;
6060 hashval_t hash;
6062 if (libfunc_decls == NULL)
6063 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6064 libfunc_decl_eq, NULL);
6066 /* See if we have already created a libfunc decl for this function. */
6067 id = get_identifier (name);
6068 hash = IDENTIFIER_HASH_VALUE (id);
6069 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6070 decl = (tree) *slot;
6071 if (decl == NULL)
6073 /* Create a new decl, so that it can be passed to
6074 targetm.encode_section_info. */
6075 decl = build_libfunc_function (name);
6076 *slot = decl;
6078 return XEXP (DECL_RTL (decl), 0);
6081 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6084 set_user_assembler_libfunc (const char *name, const char *asmspec)
6086 tree id, decl;
6087 void **slot;
6088 hashval_t hash;
6090 id = get_identifier (name);
6091 hash = IDENTIFIER_HASH_VALUE (id);
6092 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6093 gcc_assert (slot);
6094 decl = (tree) *slot;
6095 set_user_assembler_name (decl, asmspec);
6096 return XEXP (DECL_RTL (decl), 0);
6099 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6100 MODE to NAME, which should be either 0 or a string constant. */
6101 void
6102 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6104 rtx val;
6105 struct libfunc_entry e;
6106 struct libfunc_entry **slot;
6108 e.op = op;
6109 e.mode1 = mode;
6110 e.mode2 = VOIDmode;
6112 if (name)
6113 val = init_one_libfunc (name);
6114 else
6115 val = 0;
6116 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6117 if (*slot == NULL)
6118 *slot = ggc_alloc_libfunc_entry ();
6119 (*slot)->op = op;
6120 (*slot)->mode1 = mode;
6121 (*slot)->mode2 = VOIDmode;
6122 (*slot)->libfunc = val;
6125 /* Call this to reset the function entry for one conversion optab
6126 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6127 either 0 or a string constant. */
6128 void
6129 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6130 enum machine_mode fmode, const char *name)
6132 rtx val;
6133 struct libfunc_entry e;
6134 struct libfunc_entry **slot;
6136 e.op = optab;
6137 e.mode1 = tmode;
6138 e.mode2 = fmode;
6140 if (name)
6141 val = init_one_libfunc (name);
6142 else
6143 val = 0;
6144 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6145 if (*slot == NULL)
6146 *slot = ggc_alloc_libfunc_entry ();
6147 (*slot)->op = optab;
6148 (*slot)->mode1 = tmode;
6149 (*slot)->mode2 = fmode;
6150 (*slot)->libfunc = val;
6153 /* Call this to initialize the contents of the optabs
6154 appropriately for the current target machine. */
6156 void
6157 init_optabs (void)
6159 if (libfunc_hash)
6160 htab_empty (libfunc_hash);
6161 else
6162 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6164 /* Fill in the optabs with the insns we support. */
6165 init_all_optabs (this_fn_optabs);
6167 /* The ffs function operates on `int'. Fall back on it if we do not
6168 have a libgcc2 function for that width. */
6169 if (INT_TYPE_SIZE < BITS_PER_WORD)
6170 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6171 "ffs");
6173 /* Explicitly initialize the bswap libfuncs since we need them to be
6174 valid for things other than word_mode. */
6175 if (targetm.libfunc_gnu_prefix)
6177 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6178 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6180 else
6182 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6183 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6186 /* Use cabs for double complex abs, since systems generally have cabs.
6187 Don't define any libcall for float complex, so that cabs will be used. */
6188 if (complex_double_type_node)
6189 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6190 "cabs");
6192 abort_libfunc = init_one_libfunc ("abort");
6193 memcpy_libfunc = init_one_libfunc ("memcpy");
6194 memmove_libfunc = init_one_libfunc ("memmove");
6195 memcmp_libfunc = init_one_libfunc ("memcmp");
6196 memset_libfunc = init_one_libfunc ("memset");
6197 setbits_libfunc = init_one_libfunc ("__setbits");
6199 #ifndef DONT_USE_BUILTIN_SETJMP
6200 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6201 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6202 #else
6203 setjmp_libfunc = init_one_libfunc ("setjmp");
6204 longjmp_libfunc = init_one_libfunc ("longjmp");
6205 #endif
6206 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6207 unwind_sjlj_unregister_libfunc
6208 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6210 /* For function entry/exit instrumentation. */
6211 profile_function_entry_libfunc
6212 = init_one_libfunc ("__cyg_profile_func_enter");
6213 profile_function_exit_libfunc
6214 = init_one_libfunc ("__cyg_profile_func_exit");
6216 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6218 /* Allow the target to add more libcalls or rename some, etc. */
6219 targetm.init_libfuncs ();
6222 /* Use the current target and options to initialize
6223 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6225 void
6226 init_tree_optimization_optabs (tree optnode)
6228 /* Quick exit if we have already computed optabs for this target. */
6229 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6230 return;
6232 /* Forget any previous information and set up for the current target. */
6233 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6234 struct target_optabs *tmp_optabs = (struct target_optabs *)
6235 TREE_OPTIMIZATION_OPTABS (optnode);
6236 if (tmp_optabs)
6237 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6238 else
6239 tmp_optabs = (struct target_optabs *)
6240 ggc_alloc_atomic (sizeof (struct target_optabs));
6242 /* Generate a new set of optabs into tmp_optabs. */
6243 init_all_optabs (tmp_optabs);
6245 /* If the optabs changed, record it. */
6246 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6247 TREE_OPTIMIZATION_OPTABS (optnode) = (unsigned char *) tmp_optabs;
6248 else
6250 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6251 ggc_free (tmp_optabs);
6255 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6256 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6258 static void
6259 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6261 enum machine_mode mode;
6262 char buf[64];
6263 size_t len = strlen (base);
6264 int i;
6266 gcc_assert (max <= 8);
6267 gcc_assert (len + 3 < sizeof (buf));
6269 memcpy (buf, base, len);
6270 buf[len] = '_';
6271 buf[len + 1] = '0';
6272 buf[len + 2] = '\0';
6274 mode = QImode;
6275 for (i = 1; i <= max; i *= 2)
6277 buf[len + 1] = '0' + i;
6278 set_optab_libfunc (tab, mode, buf);
6279 mode = GET_MODE_2XWIDER_MODE (mode);
6283 void
6284 init_sync_libfuncs (int max)
6286 if (!flag_sync_libcalls)
6287 return;
6289 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6290 "__sync_val_compare_and_swap", max);
6291 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6292 "__sync_lock_test_and_set", max);
6294 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6295 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6296 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6297 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6298 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6299 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6301 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6302 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6303 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6304 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6305 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6306 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6309 /* Print information about the current contents of the optabs on
6310 STDERR. */
6312 DEBUG_FUNCTION void
6313 debug_optab_libfuncs (void)
6315 int i, j, k;
6317 /* Dump the arithmetic optabs. */
6318 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6319 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6321 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6322 if (l)
6324 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6325 fprintf (stderr, "%s\t%s:\t%s\n",
6326 GET_RTX_NAME (optab_to_code ((optab) i)),
6327 GET_MODE_NAME (j),
6328 XSTR (l, 0));
6332 /* Dump the conversion optabs. */
6333 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6334 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6335 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6337 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6338 (enum machine_mode) k);
6339 if (l)
6341 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6342 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6343 GET_RTX_NAME (optab_to_code ((optab) i)),
6344 GET_MODE_NAME (j),
6345 GET_MODE_NAME (k),
6346 XSTR (l, 0));
6352 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6353 CODE. Return 0 on failure. */
6356 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6358 enum machine_mode mode = GET_MODE (op1);
6359 enum insn_code icode;
6360 rtx insn;
6361 rtx trap_rtx;
6363 if (mode == VOIDmode)
6364 return 0;
6366 icode = optab_handler (ctrap_optab, mode);
6367 if (icode == CODE_FOR_nothing)
6368 return 0;
6370 /* Some targets only accept a zero trap code. */
6371 if (!insn_operand_matches (icode, 3, tcode))
6372 return 0;
6374 do_pending_stack_adjust ();
6375 start_sequence ();
6376 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6377 &trap_rtx, &mode);
6378 if (!trap_rtx)
6379 insn = NULL_RTX;
6380 else
6381 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6382 tcode);
6384 /* If that failed, then give up. */
6385 if (insn == 0)
6387 end_sequence ();
6388 return 0;
6391 emit_insn (insn);
6392 insn = get_insns ();
6393 end_sequence ();
6394 return insn;
6397 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6398 or unsigned operation code. */
6400 static enum rtx_code
6401 get_rtx_code (enum tree_code tcode, bool unsignedp)
6403 enum rtx_code code;
6404 switch (tcode)
6406 case EQ_EXPR:
6407 code = EQ;
6408 break;
6409 case NE_EXPR:
6410 code = NE;
6411 break;
6412 case LT_EXPR:
6413 code = unsignedp ? LTU : LT;
6414 break;
6415 case LE_EXPR:
6416 code = unsignedp ? LEU : LE;
6417 break;
6418 case GT_EXPR:
6419 code = unsignedp ? GTU : GT;
6420 break;
6421 case GE_EXPR:
6422 code = unsignedp ? GEU : GE;
6423 break;
6425 case UNORDERED_EXPR:
6426 code = UNORDERED;
6427 break;
6428 case ORDERED_EXPR:
6429 code = ORDERED;
6430 break;
6431 case UNLT_EXPR:
6432 code = UNLT;
6433 break;
6434 case UNLE_EXPR:
6435 code = UNLE;
6436 break;
6437 case UNGT_EXPR:
6438 code = UNGT;
6439 break;
6440 case UNGE_EXPR:
6441 code = UNGE;
6442 break;
6443 case UNEQ_EXPR:
6444 code = UNEQ;
6445 break;
6446 case LTGT_EXPR:
6447 code = LTGT;
6448 break;
6450 default:
6451 gcc_unreachable ();
6453 return code;
6456 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6457 unsigned operators. Do not generate compare instruction. */
6459 static rtx
6460 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6461 bool unsignedp, enum insn_code icode)
6463 struct expand_operand ops[2];
6464 rtx rtx_op0, rtx_op1;
6465 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6467 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6469 /* Expand operands. */
6470 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6471 EXPAND_STACK_PARM);
6472 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6473 EXPAND_STACK_PARM);
6475 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6476 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6477 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6478 gcc_unreachable ();
6479 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6482 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6483 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6485 bool
6486 can_vec_perm_p (enum machine_mode mode, bool variable,
6487 const unsigned char *sel)
6489 enum machine_mode qimode;
6491 /* If the target doesn't implement a vector mode for the vector type,
6492 then no operations are supported. */
6493 if (!VECTOR_MODE_P (mode))
6494 return false;
6496 if (!variable)
6498 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6499 && (sel == NULL
6500 || targetm.vectorize.vec_perm_const_ok == NULL
6501 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6502 return true;
6505 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6506 return true;
6508 /* We allow fallback to a QI vector mode, and adjust the mask. */
6509 if (GET_MODE_INNER (mode) == QImode)
6510 return false;
6511 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6512 if (!VECTOR_MODE_P (qimode))
6513 return false;
6515 /* ??? For completeness, we ought to check the QImode version of
6516 vec_perm_const_optab. But all users of this implicit lowering
6517 feature implement the variable vec_perm_optab. */
6518 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6519 return false;
6521 /* In order to support the lowering of variable permutations,
6522 we need to support shifts and adds. */
6523 if (variable)
6525 if (GET_MODE_UNIT_SIZE (mode) > 2
6526 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6527 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6528 return false;
6529 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6530 return false;
6533 return true;
6536 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6538 static rtx
6539 expand_vec_perm_1 (enum insn_code icode, rtx target,
6540 rtx v0, rtx v1, rtx sel)
6542 enum machine_mode tmode = GET_MODE (target);
6543 enum machine_mode smode = GET_MODE (sel);
6544 struct expand_operand ops[4];
6546 create_output_operand (&ops[0], target, tmode);
6547 create_input_operand (&ops[3], sel, smode);
6549 /* Make an effort to preserve v0 == v1. The target expander is able to
6550 rely on this to determine if we're permuting a single input operand. */
6551 if (rtx_equal_p (v0, v1))
6553 if (!insn_operand_matches (icode, 1, v0))
6554 v0 = force_reg (tmode, v0);
6555 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6556 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6558 create_fixed_operand (&ops[1], v0);
6559 create_fixed_operand (&ops[2], v0);
6561 else
6563 create_input_operand (&ops[1], v0, tmode);
6564 create_input_operand (&ops[2], v1, tmode);
6567 if (maybe_expand_insn (icode, 4, ops))
6568 return ops[0].value;
6569 return NULL_RTX;
6572 /* Generate instructions for vec_perm optab given its mode
6573 and three operands. */
6576 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6578 enum insn_code icode;
6579 enum machine_mode qimode;
6580 unsigned int i, w, e, u;
6581 rtx tmp, sel_qi = NULL;
6582 rtvec vec;
6584 if (!target || GET_MODE (target) != mode)
6585 target = gen_reg_rtx (mode);
6587 w = GET_MODE_SIZE (mode);
6588 e = GET_MODE_NUNITS (mode);
6589 u = GET_MODE_UNIT_SIZE (mode);
6591 /* Set QIMODE to a different vector mode with byte elements.
6592 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6593 qimode = VOIDmode;
6594 if (GET_MODE_INNER (mode) != QImode)
6596 qimode = mode_for_vector (QImode, w);
6597 if (!VECTOR_MODE_P (qimode))
6598 qimode = VOIDmode;
6601 /* If the input is a constant, expand it specially. */
6602 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6603 if (GET_CODE (sel) == CONST_VECTOR)
6605 icode = direct_optab_handler (vec_perm_const_optab, mode);
6606 if (icode != CODE_FOR_nothing)
6608 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6609 if (tmp)
6610 return tmp;
6613 /* Fall back to a constant byte-based permutation. */
6614 if (qimode != VOIDmode)
6616 vec = rtvec_alloc (w);
6617 for (i = 0; i < e; ++i)
6619 unsigned int j, this_e;
6621 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6622 this_e &= 2 * e - 1;
6623 this_e *= u;
6625 for (j = 0; j < u; ++j)
6626 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6628 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6630 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6631 if (icode != CODE_FOR_nothing)
6633 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6634 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6635 gen_lowpart (qimode, v1), sel_qi);
6636 if (tmp)
6637 return gen_lowpart (mode, tmp);
6642 /* Otherwise expand as a fully variable permuation. */
6643 icode = direct_optab_handler (vec_perm_optab, mode);
6644 if (icode != CODE_FOR_nothing)
6646 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6647 if (tmp)
6648 return tmp;
6651 /* As a special case to aid several targets, lower the element-based
6652 permutation to a byte-based permutation and try again. */
6653 if (qimode == VOIDmode)
6654 return NULL_RTX;
6655 icode = direct_optab_handler (vec_perm_optab, qimode);
6656 if (icode == CODE_FOR_nothing)
6657 return NULL_RTX;
6659 if (sel_qi == NULL)
6661 /* Multiply each element by its byte size. */
6662 enum machine_mode selmode = GET_MODE (sel);
6663 if (u == 2)
6664 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6665 sel, 0, OPTAB_DIRECT);
6666 else
6667 sel = expand_simple_binop (selmode, ASHIFT, sel,
6668 GEN_INT (exact_log2 (u)),
6669 sel, 0, OPTAB_DIRECT);
6670 gcc_assert (sel != NULL);
6672 /* Broadcast the low byte each element into each of its bytes. */
6673 vec = rtvec_alloc (w);
6674 for (i = 0; i < w; ++i)
6676 int this_e = i / u * u;
6677 if (BYTES_BIG_ENDIAN)
6678 this_e += u - 1;
6679 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6681 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6682 sel = gen_lowpart (qimode, sel);
6683 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6684 gcc_assert (sel != NULL);
6686 /* Add the byte offset to each byte element. */
6687 /* Note that the definition of the indicies here is memory ordering,
6688 so there should be no difference between big and little endian. */
6689 vec = rtvec_alloc (w);
6690 for (i = 0; i < w; ++i)
6691 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6692 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6693 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6694 sel, 0, OPTAB_DIRECT);
6695 gcc_assert (sel_qi != NULL);
6698 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6699 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6700 gen_lowpart (qimode, v1), sel_qi);
6701 if (tmp)
6702 tmp = gen_lowpart (mode, tmp);
6703 return tmp;
6706 /* Return insn code for a conditional operator with a comparison in
6707 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6709 static inline enum insn_code
6710 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6712 enum insn_code icode = CODE_FOR_nothing;
6713 if (uns)
6714 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6715 else
6716 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6717 return icode;
6720 /* Return TRUE iff, appropriate vector insns are available
6721 for vector cond expr with vector type VALUE_TYPE and a comparison
6722 with operand vector types in CMP_OP_TYPE. */
6724 bool
6725 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6727 enum machine_mode value_mode = TYPE_MODE (value_type);
6728 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6729 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6730 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6731 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6732 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6733 return false;
6734 return true;
6737 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6738 three operands. */
6741 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6742 rtx target)
6744 struct expand_operand ops[6];
6745 enum insn_code icode;
6746 rtx comparison, rtx_op1, rtx_op2;
6747 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6748 enum machine_mode cmp_op_mode;
6749 bool unsignedp;
6750 tree op0a, op0b;
6751 enum tree_code tcode;
6753 if (COMPARISON_CLASS_P (op0))
6755 op0a = TREE_OPERAND (op0, 0);
6756 op0b = TREE_OPERAND (op0, 1);
6757 tcode = TREE_CODE (op0);
6759 else
6761 /* Fake op0 < 0. */
6762 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6763 op0a = op0;
6764 op0b = build_zero_cst (TREE_TYPE (op0));
6765 tcode = LT_EXPR;
6767 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6768 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6771 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6772 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6774 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6775 if (icode == CODE_FOR_nothing)
6776 return 0;
6778 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6779 rtx_op1 = expand_normal (op1);
6780 rtx_op2 = expand_normal (op2);
6782 create_output_operand (&ops[0], target, mode);
6783 create_input_operand (&ops[1], rtx_op1, mode);
6784 create_input_operand (&ops[2], rtx_op2, mode);
6785 create_fixed_operand (&ops[3], comparison);
6786 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6787 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6788 expand_insn (icode, 6, ops);
6789 return ops[0].value;
6792 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6793 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6794 2 for even/odd widening, and 3 for hi/lo widening. */
6797 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6799 optab op;
6800 unsigned char *sel;
6801 unsigned i, nunits;
6803 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6804 if (optab_handler (op, mode) != CODE_FOR_nothing)
6805 return 1;
6807 /* If the mode is an integral vector, synth from widening operations. */
6808 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6809 return 0;
6811 nunits = GET_MODE_NUNITS (mode);
6812 sel = XALLOCAVEC (unsigned char, nunits);
6814 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6815 if (optab_handler (op, mode) != CODE_FOR_nothing)
6817 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6818 if (optab_handler (op, mode) != CODE_FOR_nothing)
6820 for (i = 0; i < nunits; ++i)
6821 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6822 if (can_vec_perm_p (mode, false, sel))
6823 return 2;
6827 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6828 if (optab_handler (op, mode) != CODE_FOR_nothing)
6830 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6831 if (optab_handler (op, mode) != CODE_FOR_nothing)
6833 for (i = 0; i < nunits; ++i)
6834 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6835 if (can_vec_perm_p (mode, false, sel))
6836 return 3;
6840 return 0;
6843 /* Expand a highpart multiply. */
6846 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6847 rtx target, bool uns_p)
6849 struct expand_operand eops[3];
6850 enum insn_code icode;
6851 int method, i, nunits;
6852 enum machine_mode wmode;
6853 rtx m1, m2, perm;
6854 optab tab1, tab2;
6855 rtvec v;
6857 method = can_mult_highpart_p (mode, uns_p);
6858 switch (method)
6860 case 0:
6861 return NULL_RTX;
6862 case 1:
6863 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6864 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6865 OPTAB_LIB_WIDEN);
6866 case 2:
6867 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6868 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6869 break;
6870 case 3:
6871 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6872 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6873 if (BYTES_BIG_ENDIAN)
6875 optab t = tab1;
6876 tab1 = tab2;
6877 tab2 = t;
6879 break;
6880 default:
6881 gcc_unreachable ();
6884 icode = optab_handler (tab1, mode);
6885 nunits = GET_MODE_NUNITS (mode);
6886 wmode = insn_data[icode].operand[0].mode;
6887 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6888 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6890 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6891 create_input_operand (&eops[1], op0, mode);
6892 create_input_operand (&eops[2], op1, mode);
6893 expand_insn (icode, 3, eops);
6894 m1 = gen_lowpart (mode, eops[0].value);
6896 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6897 create_input_operand (&eops[1], op0, mode);
6898 create_input_operand (&eops[2], op1, mode);
6899 expand_insn (optab_handler (tab2, mode), 3, eops);
6900 m2 = gen_lowpart (mode, eops[0].value);
6902 v = rtvec_alloc (nunits);
6903 if (method == 2)
6905 for (i = 0; i < nunits; ++i)
6906 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6907 + ((i & 1) ? nunits : 0));
6909 else
6911 for (i = 0; i < nunits; ++i)
6912 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6914 perm = gen_rtx_CONST_VECTOR (mode, v);
6916 return expand_vec_perm (mode, m1, m2, perm, target);
6919 /* Return true if there is a compare_and_swap pattern. */
6921 bool
6922 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6924 enum insn_code icode;
6926 /* Check for __atomic_compare_and_swap. */
6927 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6928 if (icode != CODE_FOR_nothing)
6929 return true;
6931 /* Check for __sync_compare_and_swap. */
6932 icode = optab_handler (sync_compare_and_swap_optab, mode);
6933 if (icode != CODE_FOR_nothing)
6934 return true;
6935 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6936 return true;
6938 /* No inline compare and swap. */
6939 return false;
6942 /* Return true if an atomic exchange can be performed. */
6944 bool
6945 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6947 enum insn_code icode;
6949 /* Check for __atomic_exchange. */
6950 icode = direct_optab_handler (atomic_exchange_optab, mode);
6951 if (icode != CODE_FOR_nothing)
6952 return true;
6954 /* Don't check __sync_test_and_set, as on some platforms that
6955 has reduced functionality. Targets that really do support
6956 a proper exchange should simply be updated to the __atomics. */
6958 return can_compare_and_swap_p (mode, allow_libcall);
6962 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6963 pattern. */
6965 static void
6966 find_cc_set (rtx x, const_rtx pat, void *data)
6968 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6969 && GET_CODE (pat) == SET)
6971 rtx *p_cc_reg = (rtx *) data;
6972 gcc_assert (!*p_cc_reg);
6973 *p_cc_reg = x;
6977 /* This is a helper function for the other atomic operations. This function
6978 emits a loop that contains SEQ that iterates until a compare-and-swap
6979 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6980 a set of instructions that takes a value from OLD_REG as an input and
6981 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6982 set to the current contents of MEM. After SEQ, a compare-and-swap will
6983 attempt to update MEM with NEW_REG. The function returns true when the
6984 loop was generated successfully. */
6986 static bool
6987 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6989 enum machine_mode mode = GET_MODE (mem);
6990 rtx label, cmp_reg, success, oldval;
6992 /* The loop we want to generate looks like
6994 cmp_reg = mem;
6995 label:
6996 old_reg = cmp_reg;
6997 seq;
6998 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6999 if (success)
7000 goto label;
7002 Note that we only do the plain load from memory once. Subsequent
7003 iterations use the value loaded by the compare-and-swap pattern. */
7005 label = gen_label_rtx ();
7006 cmp_reg = gen_reg_rtx (mode);
7008 emit_move_insn (cmp_reg, mem);
7009 emit_label (label);
7010 emit_move_insn (old_reg, cmp_reg);
7011 if (seq)
7012 emit_insn (seq);
7014 success = NULL_RTX;
7015 oldval = cmp_reg;
7016 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7017 new_reg, false, MEMMODEL_SEQ_CST,
7018 MEMMODEL_RELAXED))
7019 return false;
7021 if (oldval != cmp_reg)
7022 emit_move_insn (cmp_reg, oldval);
7024 /* Mark this jump predicted not taken. */
7025 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7026 GET_MODE (success), 1, label, 0);
7027 return true;
7031 /* This function tries to emit an atomic_exchange intruction. VAL is written
7032 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7033 using TARGET if possible. */
7035 static rtx
7036 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7038 enum machine_mode mode = GET_MODE (mem);
7039 enum insn_code icode;
7041 /* If the target supports the exchange directly, great. */
7042 icode = direct_optab_handler (atomic_exchange_optab, mode);
7043 if (icode != CODE_FOR_nothing)
7045 struct expand_operand ops[4];
7047 create_output_operand (&ops[0], target, mode);
7048 create_fixed_operand (&ops[1], mem);
7049 create_input_operand (&ops[2], val, mode);
7050 create_integer_operand (&ops[3], model);
7051 if (maybe_expand_insn (icode, 4, ops))
7052 return ops[0].value;
7055 return NULL_RTX;
7058 /* This function tries to implement an atomic exchange operation using
7059 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7060 The previous contents of *MEM are returned, using TARGET if possible.
7061 Since this instructionn is an acquire barrier only, stronger memory
7062 models may require additional barriers to be emitted. */
7064 static rtx
7065 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7066 enum memmodel model)
7068 enum machine_mode mode = GET_MODE (mem);
7069 enum insn_code icode;
7070 rtx last_insn = get_last_insn ();
7072 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7074 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7075 exists, and the memory model is stronger than acquire, add a release
7076 barrier before the instruction. */
7078 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7079 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7080 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7081 expand_mem_thread_fence (model);
7083 if (icode != CODE_FOR_nothing)
7085 struct expand_operand ops[3];
7086 create_output_operand (&ops[0], target, mode);
7087 create_fixed_operand (&ops[1], mem);
7088 create_input_operand (&ops[2], val, mode);
7089 if (maybe_expand_insn (icode, 3, ops))
7090 return ops[0].value;
7093 /* If an external test-and-set libcall is provided, use that instead of
7094 any external compare-and-swap that we might get from the compare-and-
7095 swap-loop expansion later. */
7096 if (!can_compare_and_swap_p (mode, false))
7098 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7099 if (libfunc != NULL)
7101 rtx addr;
7103 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7104 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7105 mode, 2, addr, ptr_mode,
7106 val, mode);
7110 /* If the test_and_set can't be emitted, eliminate any barrier that might
7111 have been emitted. */
7112 delete_insns_since (last_insn);
7113 return NULL_RTX;
7116 /* This function tries to implement an atomic exchange operation using a
7117 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7118 *MEM are returned, using TARGET if possible. No memory model is required
7119 since a compare_and_swap loop is seq-cst. */
7121 static rtx
7122 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7124 enum machine_mode mode = GET_MODE (mem);
7126 if (can_compare_and_swap_p (mode, true))
7128 if (!target || !register_operand (target, mode))
7129 target = gen_reg_rtx (mode);
7130 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7131 return target;
7134 return NULL_RTX;
7137 /* This function tries to implement an atomic test-and-set operation
7138 using the atomic_test_and_set instruction pattern. A boolean value
7139 is returned from the operation, using TARGET if possible. */
7141 #ifndef HAVE_atomic_test_and_set
7142 #define HAVE_atomic_test_and_set 0
7143 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7144 #endif
7146 static rtx
7147 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7149 enum machine_mode pat_bool_mode;
7150 struct expand_operand ops[3];
7152 if (!HAVE_atomic_test_and_set)
7153 return NULL_RTX;
7155 /* While we always get QImode from __atomic_test_and_set, we get
7156 other memory modes from __sync_lock_test_and_set. Note that we
7157 use no endian adjustment here. This matches the 4.6 behavior
7158 in the Sparc backend. */
7159 gcc_checking_assert
7160 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7161 if (GET_MODE (mem) != QImode)
7162 mem = adjust_address_nv (mem, QImode, 0);
7164 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7165 create_output_operand (&ops[0], target, pat_bool_mode);
7166 create_fixed_operand (&ops[1], mem);
7167 create_integer_operand (&ops[2], model);
7169 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7170 return ops[0].value;
7171 return NULL_RTX;
7174 /* This function expands the legacy _sync_lock test_and_set operation which is
7175 generally an atomic exchange. Some limited targets only allow the
7176 constant 1 to be stored. This is an ACQUIRE operation.
7178 TARGET is an optional place to stick the return value.
7179 MEM is where VAL is stored. */
7182 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7184 rtx ret;
7186 /* Try an atomic_exchange first. */
7187 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7188 if (ret)
7189 return ret;
7191 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7192 if (ret)
7193 return ret;
7195 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7196 if (ret)
7197 return ret;
7199 /* If there are no other options, try atomic_test_and_set if the value
7200 being stored is 1. */
7201 if (val == const1_rtx)
7202 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7204 return ret;
7207 /* This function expands the atomic test_and_set operation:
7208 atomically store a boolean TRUE into MEM and return the previous value.
7210 MEMMODEL is the memory model variant to use.
7211 TARGET is an optional place to stick the return value. */
7214 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7216 enum machine_mode mode = GET_MODE (mem);
7217 rtx ret, trueval, subtarget;
7219 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7220 if (ret)
7221 return ret;
7223 /* Be binary compatible with non-default settings of trueval, and different
7224 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7225 another only has atomic-exchange. */
7226 if (targetm.atomic_test_and_set_trueval == 1)
7228 trueval = const1_rtx;
7229 subtarget = target ? target : gen_reg_rtx (mode);
7231 else
7233 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7234 subtarget = gen_reg_rtx (mode);
7237 /* Try the atomic-exchange optab... */
7238 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7240 /* ... then an atomic-compare-and-swap loop ... */
7241 if (!ret)
7242 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7244 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7245 if (!ret)
7246 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7248 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7249 things with the value 1. Thus we try again without trueval. */
7250 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7251 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7253 /* Failing all else, assume a single threaded environment and simply
7254 perform the operation. */
7255 if (!ret)
7257 emit_move_insn (subtarget, mem);
7258 emit_move_insn (mem, trueval);
7259 ret = subtarget;
7262 /* Recall that have to return a boolean value; rectify if trueval
7263 is not exactly one. */
7264 if (targetm.atomic_test_and_set_trueval != 1)
7265 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7267 return ret;
7270 /* This function expands the atomic exchange operation:
7271 atomically store VAL in MEM and return the previous value in MEM.
7273 MEMMODEL is the memory model variant to use.
7274 TARGET is an optional place to stick the return value. */
7277 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7279 rtx ret;
7281 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7283 /* Next try a compare-and-swap loop for the exchange. */
7284 if (!ret)
7285 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7287 return ret;
7290 /* This function expands the atomic compare exchange operation:
7292 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7293 *PTARGET_OVAL is an optional place to store the old value from memory.
7294 Both target parameters may be NULL to indicate that we do not care about
7295 that return value. Both target parameters are updated on success to
7296 the actual location of the corresponding result.
7298 MEMMODEL is the memory model variant to use.
7300 The return value of the function is true for success. */
7302 bool
7303 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7304 rtx mem, rtx expected, rtx desired,
7305 bool is_weak, enum memmodel succ_model,
7306 enum memmodel fail_model)
7308 enum machine_mode mode = GET_MODE (mem);
7309 struct expand_operand ops[8];
7310 enum insn_code icode;
7311 rtx target_oval, target_bool = NULL_RTX;
7312 rtx libfunc;
7314 /* Load expected into a register for the compare and swap. */
7315 if (MEM_P (expected))
7316 expected = copy_to_reg (expected);
7318 /* Make sure we always have some place to put the return oldval.
7319 Further, make sure that place is distinct from the input expected,
7320 just in case we need that path down below. */
7321 if (ptarget_oval == NULL
7322 || (target_oval = *ptarget_oval) == NULL
7323 || reg_overlap_mentioned_p (expected, target_oval))
7324 target_oval = gen_reg_rtx (mode);
7326 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7327 if (icode != CODE_FOR_nothing)
7329 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7331 /* Make sure we always have a place for the bool operand. */
7332 if (ptarget_bool == NULL
7333 || (target_bool = *ptarget_bool) == NULL
7334 || GET_MODE (target_bool) != bool_mode)
7335 target_bool = gen_reg_rtx (bool_mode);
7337 /* Emit the compare_and_swap. */
7338 create_output_operand (&ops[0], target_bool, bool_mode);
7339 create_output_operand (&ops[1], target_oval, mode);
7340 create_fixed_operand (&ops[2], mem);
7341 create_input_operand (&ops[3], expected, mode);
7342 create_input_operand (&ops[4], desired, mode);
7343 create_integer_operand (&ops[5], is_weak);
7344 create_integer_operand (&ops[6], succ_model);
7345 create_integer_operand (&ops[7], fail_model);
7346 expand_insn (icode, 8, ops);
7348 /* Return success/failure. */
7349 target_bool = ops[0].value;
7350 target_oval = ops[1].value;
7351 goto success;
7354 /* Otherwise fall back to the original __sync_val_compare_and_swap
7355 which is always seq-cst. */
7356 icode = optab_handler (sync_compare_and_swap_optab, mode);
7357 if (icode != CODE_FOR_nothing)
7359 rtx cc_reg;
7361 create_output_operand (&ops[0], target_oval, mode);
7362 create_fixed_operand (&ops[1], mem);
7363 create_input_operand (&ops[2], expected, mode);
7364 create_input_operand (&ops[3], desired, mode);
7365 if (!maybe_expand_insn (icode, 4, ops))
7366 return false;
7368 target_oval = ops[0].value;
7370 /* If the caller isn't interested in the boolean return value,
7371 skip the computation of it. */
7372 if (ptarget_bool == NULL)
7373 goto success;
7375 /* Otherwise, work out if the compare-and-swap succeeded. */
7376 cc_reg = NULL_RTX;
7377 if (have_insn_for (COMPARE, CCmode))
7378 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7379 if (cc_reg)
7381 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7382 const0_rtx, VOIDmode, 0, 1);
7383 goto success;
7385 goto success_bool_from_val;
7388 /* Also check for library support for __sync_val_compare_and_swap. */
7389 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7390 if (libfunc != NULL)
7392 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7393 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7394 mode, 3, addr, ptr_mode,
7395 expected, mode, desired, mode);
7397 /* Compute the boolean return value only if requested. */
7398 if (ptarget_bool)
7399 goto success_bool_from_val;
7400 else
7401 goto success;
7404 /* Failure. */
7405 return false;
7407 success_bool_from_val:
7408 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7409 expected, VOIDmode, 1, 1);
7410 success:
7411 /* Make sure that the oval output winds up where the caller asked. */
7412 if (ptarget_oval)
7413 *ptarget_oval = target_oval;
7414 if (ptarget_bool)
7415 *ptarget_bool = target_bool;
7416 return true;
7419 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7421 static void
7422 expand_asm_memory_barrier (void)
7424 rtx asm_op, clob;
7426 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7427 rtvec_alloc (0), rtvec_alloc (0),
7428 rtvec_alloc (0), UNKNOWN_LOCATION);
7429 MEM_VOLATILE_P (asm_op) = 1;
7431 clob = gen_rtx_SCRATCH (VOIDmode);
7432 clob = gen_rtx_MEM (BLKmode, clob);
7433 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7435 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7438 /* This routine will either emit the mem_thread_fence pattern or issue a
7439 sync_synchronize to generate a fence for memory model MEMMODEL. */
7441 #ifndef HAVE_mem_thread_fence
7442 # define HAVE_mem_thread_fence 0
7443 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7444 #endif
7445 #ifndef HAVE_memory_barrier
7446 # define HAVE_memory_barrier 0
7447 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7448 #endif
7450 void
7451 expand_mem_thread_fence (enum memmodel model)
7453 if (HAVE_mem_thread_fence)
7454 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7455 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7457 if (HAVE_memory_barrier)
7458 emit_insn (gen_memory_barrier ());
7459 else if (synchronize_libfunc != NULL_RTX)
7460 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7461 else
7462 expand_asm_memory_barrier ();
7466 /* This routine will either emit the mem_signal_fence pattern or issue a
7467 sync_synchronize to generate a fence for memory model MEMMODEL. */
7469 #ifndef HAVE_mem_signal_fence
7470 # define HAVE_mem_signal_fence 0
7471 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7472 #endif
7474 void
7475 expand_mem_signal_fence (enum memmodel model)
7477 if (HAVE_mem_signal_fence)
7478 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7479 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7481 /* By default targets are coherent between a thread and the signal
7482 handler running on the same thread. Thus this really becomes a
7483 compiler barrier, in that stores must not be sunk past
7484 (or raised above) a given point. */
7485 expand_asm_memory_barrier ();
7489 /* This function expands the atomic load operation:
7490 return the atomically loaded value in MEM.
7492 MEMMODEL is the memory model variant to use.
7493 TARGET is an option place to stick the return value. */
7496 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7498 enum machine_mode mode = GET_MODE (mem);
7499 enum insn_code icode;
7501 /* If the target supports the load directly, great. */
7502 icode = direct_optab_handler (atomic_load_optab, mode);
7503 if (icode != CODE_FOR_nothing)
7505 struct expand_operand ops[3];
7507 create_output_operand (&ops[0], target, mode);
7508 create_fixed_operand (&ops[1], mem);
7509 create_integer_operand (&ops[2], model);
7510 if (maybe_expand_insn (icode, 3, ops))
7511 return ops[0].value;
7514 /* If the size of the object is greater than word size on this target,
7515 then we assume that a load will not be atomic. */
7516 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7518 /* Issue val = compare_and_swap (mem, 0, 0).
7519 This may cause the occasional harmless store of 0 when the value is
7520 already 0, but it seems to be OK according to the standards guys. */
7521 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7522 const0_rtx, false, model, model))
7523 return target;
7524 else
7525 /* Otherwise there is no atomic load, leave the library call. */
7526 return NULL_RTX;
7529 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7530 if (!target || target == const0_rtx)
7531 target = gen_reg_rtx (mode);
7533 /* For SEQ_CST, emit a barrier before the load. */
7534 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7535 expand_mem_thread_fence (model);
7537 emit_move_insn (target, mem);
7539 /* Emit the appropriate barrier after the load. */
7540 expand_mem_thread_fence (model);
7542 return target;
7545 /* This function expands the atomic store operation:
7546 Atomically store VAL in MEM.
7547 MEMMODEL is the memory model variant to use.
7548 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7549 function returns const0_rtx if a pattern was emitted. */
7552 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7554 enum machine_mode mode = GET_MODE (mem);
7555 enum insn_code icode;
7556 struct expand_operand ops[3];
7558 /* If the target supports the store directly, great. */
7559 icode = direct_optab_handler (atomic_store_optab, mode);
7560 if (icode != CODE_FOR_nothing)
7562 create_fixed_operand (&ops[0], mem);
7563 create_input_operand (&ops[1], val, mode);
7564 create_integer_operand (&ops[2], model);
7565 if (maybe_expand_insn (icode, 3, ops))
7566 return const0_rtx;
7569 /* If using __sync_lock_release is a viable alternative, try it. */
7570 if (use_release)
7572 icode = direct_optab_handler (sync_lock_release_optab, mode);
7573 if (icode != CODE_FOR_nothing)
7575 create_fixed_operand (&ops[0], mem);
7576 create_input_operand (&ops[1], const0_rtx, mode);
7577 if (maybe_expand_insn (icode, 2, ops))
7579 /* lock_release is only a release barrier. */
7580 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7581 expand_mem_thread_fence (model);
7582 return const0_rtx;
7587 /* If the size of the object is greater than word size on this target,
7588 a default store will not be atomic, Try a mem_exchange and throw away
7589 the result. If that doesn't work, don't do anything. */
7590 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7592 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7593 if (!target)
7594 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7595 if (target)
7596 return const0_rtx;
7597 else
7598 return NULL_RTX;
7601 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7602 expand_mem_thread_fence (model);
7604 emit_move_insn (mem, val);
7606 /* For SEQ_CST, also emit a barrier after the store. */
7607 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7608 expand_mem_thread_fence (model);
7610 return const0_rtx;
7614 /* Structure containing the pointers and values required to process the
7615 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7617 struct atomic_op_functions
7619 direct_optab mem_fetch_before;
7620 direct_optab mem_fetch_after;
7621 direct_optab mem_no_result;
7622 optab fetch_before;
7623 optab fetch_after;
7624 direct_optab no_result;
7625 enum rtx_code reverse_code;
7629 /* Fill in structure pointed to by OP with the various optab entries for an
7630 operation of type CODE. */
7632 static void
7633 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7635 gcc_assert (op!= NULL);
7637 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7638 in the source code during compilation, and the optab entries are not
7639 computable until runtime. Fill in the values at runtime. */
7640 switch (code)
7642 case PLUS:
7643 op->mem_fetch_before = atomic_fetch_add_optab;
7644 op->mem_fetch_after = atomic_add_fetch_optab;
7645 op->mem_no_result = atomic_add_optab;
7646 op->fetch_before = sync_old_add_optab;
7647 op->fetch_after = sync_new_add_optab;
7648 op->no_result = sync_add_optab;
7649 op->reverse_code = MINUS;
7650 break;
7651 case MINUS:
7652 op->mem_fetch_before = atomic_fetch_sub_optab;
7653 op->mem_fetch_after = atomic_sub_fetch_optab;
7654 op->mem_no_result = atomic_sub_optab;
7655 op->fetch_before = sync_old_sub_optab;
7656 op->fetch_after = sync_new_sub_optab;
7657 op->no_result = sync_sub_optab;
7658 op->reverse_code = PLUS;
7659 break;
7660 case XOR:
7661 op->mem_fetch_before = atomic_fetch_xor_optab;
7662 op->mem_fetch_after = atomic_xor_fetch_optab;
7663 op->mem_no_result = atomic_xor_optab;
7664 op->fetch_before = sync_old_xor_optab;
7665 op->fetch_after = sync_new_xor_optab;
7666 op->no_result = sync_xor_optab;
7667 op->reverse_code = XOR;
7668 break;
7669 case AND:
7670 op->mem_fetch_before = atomic_fetch_and_optab;
7671 op->mem_fetch_after = atomic_and_fetch_optab;
7672 op->mem_no_result = atomic_and_optab;
7673 op->fetch_before = sync_old_and_optab;
7674 op->fetch_after = sync_new_and_optab;
7675 op->no_result = sync_and_optab;
7676 op->reverse_code = UNKNOWN;
7677 break;
7678 case IOR:
7679 op->mem_fetch_before = atomic_fetch_or_optab;
7680 op->mem_fetch_after = atomic_or_fetch_optab;
7681 op->mem_no_result = atomic_or_optab;
7682 op->fetch_before = sync_old_ior_optab;
7683 op->fetch_after = sync_new_ior_optab;
7684 op->no_result = sync_ior_optab;
7685 op->reverse_code = UNKNOWN;
7686 break;
7687 case NOT:
7688 op->mem_fetch_before = atomic_fetch_nand_optab;
7689 op->mem_fetch_after = atomic_nand_fetch_optab;
7690 op->mem_no_result = atomic_nand_optab;
7691 op->fetch_before = sync_old_nand_optab;
7692 op->fetch_after = sync_new_nand_optab;
7693 op->no_result = sync_nand_optab;
7694 op->reverse_code = UNKNOWN;
7695 break;
7696 default:
7697 gcc_unreachable ();
7701 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7702 using memory order MODEL. If AFTER is true the operation needs to return
7703 the value of *MEM after the operation, otherwise the previous value.
7704 TARGET is an optional place to place the result. The result is unused if
7705 it is const0_rtx.
7706 Return the result if there is a better sequence, otherwise NULL_RTX. */
7708 static rtx
7709 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7710 enum memmodel model, bool after)
7712 /* If the value is prefetched, or not used, it may be possible to replace
7713 the sequence with a native exchange operation. */
7714 if (!after || target == const0_rtx)
7716 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7717 if (code == AND && val == const0_rtx)
7719 if (target == const0_rtx)
7720 target = gen_reg_rtx (GET_MODE (mem));
7721 return maybe_emit_atomic_exchange (target, mem, val, model);
7724 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7725 if (code == IOR && val == constm1_rtx)
7727 if (target == const0_rtx)
7728 target = gen_reg_rtx (GET_MODE (mem));
7729 return maybe_emit_atomic_exchange (target, mem, val, model);
7733 return NULL_RTX;
7736 /* Try to emit an instruction for a specific operation varaition.
7737 OPTAB contains the OP functions.
7738 TARGET is an optional place to return the result. const0_rtx means unused.
7739 MEM is the memory location to operate on.
7740 VAL is the value to use in the operation.
7741 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7742 MODEL is the memory model, if used.
7743 AFTER is true if the returned result is the value after the operation. */
7745 static rtx
7746 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7747 rtx val, bool use_memmodel, enum memmodel model, bool after)
7749 enum machine_mode mode = GET_MODE (mem);
7750 struct expand_operand ops[4];
7751 enum insn_code icode;
7752 int op_counter = 0;
7753 int num_ops;
7755 /* Check to see if there is a result returned. */
7756 if (target == const0_rtx)
7758 if (use_memmodel)
7760 icode = direct_optab_handler (optab->mem_no_result, mode);
7761 create_integer_operand (&ops[2], model);
7762 num_ops = 3;
7764 else
7766 icode = direct_optab_handler (optab->no_result, mode);
7767 num_ops = 2;
7770 /* Otherwise, we need to generate a result. */
7771 else
7773 if (use_memmodel)
7775 icode = direct_optab_handler (after ? optab->mem_fetch_after
7776 : optab->mem_fetch_before, mode);
7777 create_integer_operand (&ops[3], model);
7778 num_ops = 4;
7780 else
7782 icode = optab_handler (after ? optab->fetch_after
7783 : optab->fetch_before, mode);
7784 num_ops = 3;
7786 create_output_operand (&ops[op_counter++], target, mode);
7788 if (icode == CODE_FOR_nothing)
7789 return NULL_RTX;
7791 create_fixed_operand (&ops[op_counter++], mem);
7792 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7793 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7795 if (maybe_expand_insn (icode, num_ops, ops))
7796 return (target == const0_rtx ? const0_rtx : ops[0].value);
7798 return NULL_RTX;
7802 /* This function expands an atomic fetch_OP or OP_fetch operation:
7803 TARGET is an option place to stick the return value. const0_rtx indicates
7804 the result is unused.
7805 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7806 CODE is the operation being performed (OP)
7807 MEMMODEL is the memory model variant to use.
7808 AFTER is true to return the result of the operation (OP_fetch).
7809 AFTER is false to return the value before the operation (fetch_OP).
7811 This function will *only* generate instructions if there is a direct
7812 optab. No compare and swap loops or libcalls will be generated. */
7814 static rtx
7815 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7816 enum rtx_code code, enum memmodel model,
7817 bool after)
7819 enum machine_mode mode = GET_MODE (mem);
7820 struct atomic_op_functions optab;
7821 rtx result;
7822 bool unused_result = (target == const0_rtx);
7824 get_atomic_op_for_code (&optab, code);
7826 /* Check to see if there are any better instructions. */
7827 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7828 if (result)
7829 return result;
7831 /* Check for the case where the result isn't used and try those patterns. */
7832 if (unused_result)
7834 /* Try the memory model variant first. */
7835 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7836 if (result)
7837 return result;
7839 /* Next try the old style withuot a memory model. */
7840 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7841 if (result)
7842 return result;
7844 /* There is no no-result pattern, so try patterns with a result. */
7845 target = NULL_RTX;
7848 /* Try the __atomic version. */
7849 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7850 if (result)
7851 return result;
7853 /* Try the older __sync version. */
7854 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7855 if (result)
7856 return result;
7858 /* If the fetch value can be calculated from the other variation of fetch,
7859 try that operation. */
7860 if (after || unused_result || optab.reverse_code != UNKNOWN)
7862 /* Try the __atomic version, then the older __sync version. */
7863 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7864 if (!result)
7865 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7867 if (result)
7869 /* If the result isn't used, no need to do compensation code. */
7870 if (unused_result)
7871 return result;
7873 /* Issue compensation code. Fetch_after == fetch_before OP val.
7874 Fetch_before == after REVERSE_OP val. */
7875 if (!after)
7876 code = optab.reverse_code;
7877 if (code == NOT)
7879 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7880 true, OPTAB_LIB_WIDEN);
7881 result = expand_simple_unop (mode, NOT, result, target, true);
7883 else
7884 result = expand_simple_binop (mode, code, result, val, target,
7885 true, OPTAB_LIB_WIDEN);
7886 return result;
7890 /* No direct opcode can be generated. */
7891 return NULL_RTX;
7896 /* This function expands an atomic fetch_OP or OP_fetch operation:
7897 TARGET is an option place to stick the return value. const0_rtx indicates
7898 the result is unused.
7899 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7900 CODE is the operation being performed (OP)
7901 MEMMODEL is the memory model variant to use.
7902 AFTER is true to return the result of the operation (OP_fetch).
7903 AFTER is false to return the value before the operation (fetch_OP). */
7905 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7906 enum memmodel model, bool after)
7908 enum machine_mode mode = GET_MODE (mem);
7909 rtx result;
7910 bool unused_result = (target == const0_rtx);
7912 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7913 after);
7915 if (result)
7916 return result;
7918 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7919 if (code == PLUS || code == MINUS)
7921 rtx tmp;
7922 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7924 start_sequence ();
7925 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7926 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7927 model, after);
7928 if (result)
7930 /* PLUS worked so emit the insns and return. */
7931 tmp = get_insns ();
7932 end_sequence ();
7933 emit_insn (tmp);
7934 return result;
7937 /* PLUS did not work, so throw away the negation code and continue. */
7938 end_sequence ();
7941 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7942 if (!can_compare_and_swap_p (mode, false))
7944 rtx libfunc;
7945 bool fixup = false;
7946 enum rtx_code orig_code = code;
7947 struct atomic_op_functions optab;
7949 get_atomic_op_for_code (&optab, code);
7950 libfunc = optab_libfunc (after ? optab.fetch_after
7951 : optab.fetch_before, mode);
7952 if (libfunc == NULL
7953 && (after || unused_result || optab.reverse_code != UNKNOWN))
7955 fixup = true;
7956 if (!after)
7957 code = optab.reverse_code;
7958 libfunc = optab_libfunc (after ? optab.fetch_before
7959 : optab.fetch_after, mode);
7961 if (libfunc != NULL)
7963 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7964 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7965 2, addr, ptr_mode, val, mode);
7967 if (!unused_result && fixup)
7968 result = expand_simple_binop (mode, code, result, val, target,
7969 true, OPTAB_LIB_WIDEN);
7970 return result;
7973 /* We need the original code for any further attempts. */
7974 code = orig_code;
7977 /* If nothing else has succeeded, default to a compare and swap loop. */
7978 if (can_compare_and_swap_p (mode, true))
7980 rtx insn;
7981 rtx t0 = gen_reg_rtx (mode), t1;
7983 start_sequence ();
7985 /* If the result is used, get a register for it. */
7986 if (!unused_result)
7988 if (!target || !register_operand (target, mode))
7989 target = gen_reg_rtx (mode);
7990 /* If fetch_before, copy the value now. */
7991 if (!after)
7992 emit_move_insn (target, t0);
7994 else
7995 target = const0_rtx;
7997 t1 = t0;
7998 if (code == NOT)
8000 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8001 true, OPTAB_LIB_WIDEN);
8002 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8004 else
8005 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8006 OPTAB_LIB_WIDEN);
8008 /* For after, copy the value now. */
8009 if (!unused_result && after)
8010 emit_move_insn (target, t1);
8011 insn = get_insns ();
8012 end_sequence ();
8014 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8015 return target;
8018 return NULL_RTX;
8021 /* Return true if OPERAND is suitable for operand number OPNO of
8022 instruction ICODE. */
8024 bool
8025 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8027 return (!insn_data[(int) icode].operand[opno].predicate
8028 || (insn_data[(int) icode].operand[opno].predicate
8029 (operand, insn_data[(int) icode].operand[opno].mode)));
8032 /* TARGET is a target of a multiword operation that we are going to
8033 implement as a series of word-mode operations. Return true if
8034 TARGET is suitable for this purpose. */
8036 bool
8037 valid_multiword_target_p (rtx target)
8039 enum machine_mode mode;
8040 int i;
8042 mode = GET_MODE (target);
8043 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8044 if (!validate_subreg (word_mode, mode, target, i))
8045 return false;
8046 return true;
8049 /* Like maybe_legitimize_operand, but do not change the code of the
8050 current rtx value. */
8052 static bool
8053 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8054 struct expand_operand *op)
8056 /* See if the operand matches in its current form. */
8057 if (insn_operand_matches (icode, opno, op->value))
8058 return true;
8060 /* If the operand is a memory whose address has no side effects,
8061 try forcing the address into a non-virtual pseudo register.
8062 The check for side effects is important because copy_to_mode_reg
8063 cannot handle things like auto-modified addresses. */
8064 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8066 rtx addr, mem;
8068 mem = op->value;
8069 addr = XEXP (mem, 0);
8070 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8071 && !side_effects_p (addr))
8073 rtx last;
8074 enum machine_mode mode;
8076 last = get_last_insn ();
8077 mode = get_address_mode (mem);
8078 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8079 if (insn_operand_matches (icode, opno, mem))
8081 op->value = mem;
8082 return true;
8084 delete_insns_since (last);
8088 return false;
8091 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8092 on success, storing the new operand value back in OP. */
8094 static bool
8095 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8096 struct expand_operand *op)
8098 enum machine_mode mode, imode;
8099 bool old_volatile_ok, result;
8101 mode = op->mode;
8102 switch (op->type)
8104 case EXPAND_FIXED:
8105 old_volatile_ok = volatile_ok;
8106 volatile_ok = true;
8107 result = maybe_legitimize_operand_same_code (icode, opno, op);
8108 volatile_ok = old_volatile_ok;
8109 return result;
8111 case EXPAND_OUTPUT:
8112 gcc_assert (mode != VOIDmode);
8113 if (op->value
8114 && op->value != const0_rtx
8115 && GET_MODE (op->value) == mode
8116 && maybe_legitimize_operand_same_code (icode, opno, op))
8117 return true;
8119 op->value = gen_reg_rtx (mode);
8120 break;
8122 case EXPAND_INPUT:
8123 input:
8124 gcc_assert (mode != VOIDmode);
8125 gcc_assert (GET_MODE (op->value) == VOIDmode
8126 || GET_MODE (op->value) == mode);
8127 if (maybe_legitimize_operand_same_code (icode, opno, op))
8128 return true;
8130 op->value = copy_to_mode_reg (mode, op->value);
8131 break;
8133 case EXPAND_CONVERT_TO:
8134 gcc_assert (mode != VOIDmode);
8135 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8136 goto input;
8138 case EXPAND_CONVERT_FROM:
8139 if (GET_MODE (op->value) != VOIDmode)
8140 mode = GET_MODE (op->value);
8141 else
8142 /* The caller must tell us what mode this value has. */
8143 gcc_assert (mode != VOIDmode);
8145 imode = insn_data[(int) icode].operand[opno].mode;
8146 if (imode != VOIDmode && imode != mode)
8148 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8149 mode = imode;
8151 goto input;
8153 case EXPAND_ADDRESS:
8154 gcc_assert (mode != VOIDmode);
8155 op->value = convert_memory_address (mode, op->value);
8156 goto input;
8158 case EXPAND_INTEGER:
8159 mode = insn_data[(int) icode].operand[opno].mode;
8160 if (mode != VOIDmode && const_int_operand (op->value, mode))
8161 goto input;
8162 break;
8164 return insn_operand_matches (icode, opno, op->value);
8167 /* Make OP describe an input operand that should have the same value
8168 as VALUE, after any mode conversion that the target might request.
8169 TYPE is the type of VALUE. */
8171 void
8172 create_convert_operand_from_type (struct expand_operand *op,
8173 rtx value, tree type)
8175 create_convert_operand_from (op, value, TYPE_MODE (type),
8176 TYPE_UNSIGNED (type));
8179 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8180 of instruction ICODE. Return true on success, leaving the new operand
8181 values in the OPS themselves. Emit no code on failure. */
8183 bool
8184 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8185 unsigned int nops, struct expand_operand *ops)
8187 rtx last;
8188 unsigned int i;
8190 last = get_last_insn ();
8191 for (i = 0; i < nops; i++)
8192 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8194 delete_insns_since (last);
8195 return false;
8197 return true;
8200 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8201 as its operands. Return the instruction pattern on success,
8202 and emit any necessary set-up code. Return null and emit no
8203 code on failure. */
8206 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8207 struct expand_operand *ops)
8209 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8210 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8211 return NULL_RTX;
8213 switch (nops)
8215 case 1:
8216 return GEN_FCN (icode) (ops[0].value);
8217 case 2:
8218 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8219 case 3:
8220 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8221 case 4:
8222 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8223 ops[3].value);
8224 case 5:
8225 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8226 ops[3].value, ops[4].value);
8227 case 6:
8228 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8229 ops[3].value, ops[4].value, ops[5].value);
8230 case 7:
8231 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8232 ops[3].value, ops[4].value, ops[5].value,
8233 ops[6].value);
8234 case 8:
8235 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8236 ops[3].value, ops[4].value, ops[5].value,
8237 ops[6].value, ops[7].value);
8238 case 9:
8239 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8240 ops[3].value, ops[4].value, ops[5].value,
8241 ops[6].value, ops[7].value, ops[8].value);
8243 gcc_unreachable ();
8246 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8247 as its operands. Return true on success and emit no code on failure. */
8249 bool
8250 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8251 struct expand_operand *ops)
8253 rtx pat = maybe_gen_insn (icode, nops, ops);
8254 if (pat)
8256 emit_insn (pat);
8257 return true;
8259 return false;
8262 /* Like maybe_expand_insn, but for jumps. */
8264 bool
8265 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8266 struct expand_operand *ops)
8268 rtx pat = maybe_gen_insn (icode, nops, ops);
8269 if (pat)
8271 emit_jump_insn (pat);
8272 return true;
8274 return false;
8277 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8278 as its operands. */
8280 void
8281 expand_insn (enum insn_code icode, unsigned int nops,
8282 struct expand_operand *ops)
8284 if (!maybe_expand_insn (icode, nops, ops))
8285 gcc_unreachable ();
8288 /* Like expand_insn, but for jumps. */
8290 void
8291 expand_jump_insn (enum insn_code icode, unsigned int nops,
8292 struct expand_operand *ops)
8294 if (!maybe_expand_jump_insn (icode, nops, ops))
8295 gcc_unreachable ();
8298 /* Reduce conditional compilation elsewhere. */
8299 #ifndef HAVE_insv
8300 #define HAVE_insv 0
8301 #define CODE_FOR_insv CODE_FOR_nothing
8302 #endif
8303 #ifndef HAVE_extv
8304 #define HAVE_extv 0
8305 #define CODE_FOR_extv CODE_FOR_nothing
8306 #endif
8307 #ifndef HAVE_extzv
8308 #define HAVE_extzv 0
8309 #define CODE_FOR_extzv CODE_FOR_nothing
8310 #endif
8312 /* Enumerates the possible types of structure operand to an
8313 extraction_insn. */
8314 enum extraction_type { ET_unaligned_mem, ET_reg };
8316 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8317 insertion or extraction of type TYPE on a structure of mode MODE.
8318 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8319 operand number of the structure (the first sign_extract or zero_extract
8320 operand) and FIELD_OP is the operand number of the field (the other
8321 side of the set from the sign_extract or zero_extract). */
8323 static bool
8324 get_traditional_extraction_insn (extraction_insn *insn,
8325 enum extraction_type type,
8326 enum machine_mode mode,
8327 enum insn_code icode,
8328 int struct_op, int field_op)
8330 const struct insn_data_d *data = &insn_data[icode];
8332 enum machine_mode struct_mode = data->operand[struct_op].mode;
8333 if (struct_mode == VOIDmode)
8334 struct_mode = word_mode;
8335 if (mode != struct_mode)
8336 return false;
8338 enum machine_mode field_mode = data->operand[field_op].mode;
8339 if (field_mode == VOIDmode)
8340 field_mode = word_mode;
8342 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8343 if (pos_mode == VOIDmode)
8344 pos_mode = word_mode;
8346 insn->icode = icode;
8347 insn->field_mode = field_mode;
8348 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8349 insn->pos_mode = pos_mode;
8350 return true;
8353 /* Return true if an optab exists to perform an insertion or extraction
8354 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8356 REG_OPTAB is the optab to use for register structures and
8357 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8358 POS_OP is the operand number of the bit position. */
8360 static bool
8361 get_optab_extraction_insn (struct extraction_insn *insn,
8362 enum extraction_type type,
8363 enum machine_mode mode, direct_optab reg_optab,
8364 direct_optab misalign_optab, int pos_op)
8366 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8367 enum insn_code icode = direct_optab_handler (optab, mode);
8368 if (icode == CODE_FOR_nothing)
8369 return false;
8371 const struct insn_data_d *data = &insn_data[icode];
8373 insn->icode = icode;
8374 insn->field_mode = mode;
8375 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8376 insn->pos_mode = data->operand[pos_op].mode;
8377 if (insn->pos_mode == VOIDmode)
8378 insn->pos_mode = word_mode;
8379 return true;
8382 /* Return true if an instruction exists to perform an insertion or
8383 extraction (PATTERN says which) of type TYPE in mode MODE.
8384 Describe the instruction in *INSN if so. */
8386 static bool
8387 get_extraction_insn (extraction_insn *insn,
8388 enum extraction_pattern pattern,
8389 enum extraction_type type,
8390 enum machine_mode mode)
8392 switch (pattern)
8394 case EP_insv:
8395 if (HAVE_insv
8396 && get_traditional_extraction_insn (insn, type, mode,
8397 CODE_FOR_insv, 0, 3))
8398 return true;
8399 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8400 insvmisalign_optab, 2);
8402 case EP_extv:
8403 if (HAVE_extv
8404 && get_traditional_extraction_insn (insn, type, mode,
8405 CODE_FOR_extv, 1, 0))
8406 return true;
8407 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8408 extvmisalign_optab, 3);
8410 case EP_extzv:
8411 if (HAVE_extzv
8412 && get_traditional_extraction_insn (insn, type, mode,
8413 CODE_FOR_extzv, 1, 0))
8414 return true;
8415 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8416 extzvmisalign_optab, 3);
8418 default:
8419 gcc_unreachable ();
8423 /* Return true if an instruction exists to access a field of mode
8424 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8425 Describe the "best" such instruction in *INSN if so. PATTERN and
8426 TYPE describe the type of insertion or extraction we want to perform.
8428 For an insertion, the number of significant structure bits includes
8429 all bits of the target. For an extraction, it need only include the
8430 most significant bit of the field. Larger widths are acceptable
8431 in both cases. */
8433 static bool
8434 get_best_extraction_insn (extraction_insn *insn,
8435 enum extraction_pattern pattern,
8436 enum extraction_type type,
8437 unsigned HOST_WIDE_INT struct_bits,
8438 enum machine_mode field_mode)
8440 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8441 while (mode != VOIDmode)
8443 if (get_extraction_insn (insn, pattern, type, mode))
8445 while (mode != VOIDmode
8446 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8447 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8448 field_mode))
8450 get_extraction_insn (insn, pattern, type, mode);
8451 mode = GET_MODE_WIDER_MODE (mode);
8453 return true;
8455 mode = GET_MODE_WIDER_MODE (mode);
8457 return false;
8460 /* Return true if an instruction exists to access a field of mode
8461 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8462 Describe the "best" such instruction in *INSN if so. PATTERN describes
8463 the type of insertion or extraction we want to perform.
8465 For an insertion, the number of significant structure bits includes
8466 all bits of the target. For an extraction, it need only include the
8467 most significant bit of the field. Larger widths are acceptable
8468 in both cases. */
8470 bool
8471 get_best_reg_extraction_insn (extraction_insn *insn,
8472 enum extraction_pattern pattern,
8473 unsigned HOST_WIDE_INT struct_bits,
8474 enum machine_mode field_mode)
8476 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8477 field_mode);
8480 /* Return true if an instruction exists to access a field of BITSIZE
8481 bits starting BITNUM bits into a memory structure. Describe the
8482 "best" such instruction in *INSN if so. PATTERN describes the type
8483 of insertion or extraction we want to perform and FIELDMODE is the
8484 natural mode of the extracted field.
8486 The instructions considered here only access bytes that overlap
8487 the bitfield; they do not touch any surrounding bytes. */
8489 bool
8490 get_best_mem_extraction_insn (extraction_insn *insn,
8491 enum extraction_pattern pattern,
8492 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8493 enum machine_mode field_mode)
8495 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8496 + bitsize
8497 + BITS_PER_UNIT - 1);
8498 struct_bits -= struct_bits % BITS_PER_UNIT;
8499 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8500 struct_bits, field_mode);
8503 #include "gt-optabs.h"