libsanitizer merge from upstream r173241
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
blob367a266407b883b34a9d8b2ff286164a3eaa17fc
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2013 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 SWITCHES
181 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
183 #include "config.h"
184 #include "system.h"
185 #include "coretypes.h"
186 #include "tm.h"
187 #include "tree.h"
188 #include "tm_p.h"
189 #include "basic-block.h"
190 #include "flags.h"
191 #include "function.h"
192 #include "tree-flow.h"
193 #include "bitmap.h"
194 #include "tree-ssa-alias.h"
195 #include "params.h"
196 #include "hash-table.h"
197 #include "gimple-pretty-print.h"
198 #include "tree-ssa-sccvn.h"
199 #include "tree-dump.h"
201 /* ??? This currently runs as part of tree-ssa-pre. Why is this not
202 a stand-alone GIMPLE pass? */
203 #include "tree-pass.h"
205 /* Describes a group of bbs with the same successors. The successor bbs are
206 cached in succs, and the successor edge flags are cached in succ_flags.
207 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
208 it's marked in inverse.
209 Additionally, the hash value for the struct is cached in hashval, and
210 in_worklist indicates whether it's currently part of worklist. */
212 struct same_succ_def
214 /* The bbs that have the same successor bbs. */
215 bitmap bbs;
216 /* The successor bbs. */
217 bitmap succs;
218 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
219 bb. */
220 bitmap inverse;
221 /* The edge flags for each of the successor bbs. */
222 vec<int> succ_flags;
223 /* Indicates whether the struct is currently in the worklist. */
224 bool in_worklist;
225 /* The hash value of the struct. */
226 hashval_t hashval;
228 /* hash_table support. */
229 typedef same_succ_def value_type;
230 typedef same_succ_def compare_type;
231 static inline hashval_t hash (const value_type *);
232 static int equal (const value_type *, const compare_type *);
233 static void remove (value_type *);
235 typedef struct same_succ_def *same_succ;
236 typedef const struct same_succ_def *const_same_succ;
238 /* hash routine for hash_table support, returns hashval of E. */
240 inline hashval_t
241 same_succ_def::hash (const value_type *e)
243 return e->hashval;
246 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
248 struct bb_cluster_def
250 /* The bbs in the cluster. */
251 bitmap bbs;
252 /* The preds of the bbs in the cluster. */
253 bitmap preds;
254 /* Index in all_clusters vector. */
255 int index;
256 /* The bb to replace the cluster with. */
257 basic_block rep_bb;
259 typedef struct bb_cluster_def *bb_cluster;
260 typedef const struct bb_cluster_def *const_bb_cluster;
262 /* Per bb-info. */
264 struct aux_bb_info
266 /* The number of non-debug statements in the bb. */
267 int size;
268 /* The same_succ that this bb is a member of. */
269 same_succ bb_same_succ;
270 /* The cluster that this bb is a member of. */
271 bb_cluster cluster;
272 /* The vop state at the exit of a bb. This is shortlived data, used to
273 communicate data between update_block_by and update_vuses. */
274 tree vop_at_exit;
275 /* The bb that either contains or is dominated by the dependencies of the
276 bb. */
277 basic_block dep_bb;
280 /* Macros to access the fields of struct aux_bb_info. */
282 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
283 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
284 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
285 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
286 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
288 /* Returns true if the only effect a statement STMT has, is to define locally
289 used SSA_NAMEs. */
291 static bool
292 stmt_local_def (gimple stmt)
294 basic_block bb, def_bb;
295 imm_use_iterator iter;
296 use_operand_p use_p;
297 tree val;
298 def_operand_p def_p;
300 if (gimple_has_side_effects (stmt))
301 return false;
303 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
304 if (def_p == NULL)
305 return false;
307 val = DEF_FROM_PTR (def_p);
308 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
309 return false;
311 def_bb = gimple_bb (stmt);
313 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
315 if (is_gimple_debug (USE_STMT (use_p)))
316 continue;
317 bb = gimple_bb (USE_STMT (use_p));
318 if (bb == def_bb)
319 continue;
321 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
322 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
323 continue;
325 return false;
328 return true;
331 /* Let GSI skip forwards over local defs. */
333 static void
334 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
336 gimple stmt;
338 while (true)
340 if (gsi_end_p (*gsi))
341 return;
342 stmt = gsi_stmt (*gsi);
343 if (!stmt_local_def (stmt))
344 return;
345 gsi_next_nondebug (gsi);
349 /* VAL1 and VAL2 are either:
350 - uses in BB1 and BB2, or
351 - phi alternatives for BB1 and BB2.
352 Return true if the uses have the same gvn value. */
354 static bool
355 gvn_uses_equal (tree val1, tree val2)
357 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
359 if (val1 == val2)
360 return true;
362 if (vn_valueize (val1) != vn_valueize (val2))
363 return false;
365 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
366 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
369 /* Prints E to FILE. */
371 static void
372 same_succ_print (FILE *file, const same_succ e)
374 unsigned int i;
375 bitmap_print (file, e->bbs, "bbs:", "\n");
376 bitmap_print (file, e->succs, "succs:", "\n");
377 bitmap_print (file, e->inverse, "inverse:", "\n");
378 fprintf (file, "flags:");
379 for (i = 0; i < e->succ_flags.length (); ++i)
380 fprintf (file, " %x", e->succ_flags[i]);
381 fprintf (file, "\n");
384 /* Prints same_succ VE to VFILE. */
386 inline int
387 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
389 const same_succ e = *pe;
390 same_succ_print (file, e);
391 return 1;
394 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
396 static void
397 update_dep_bb (basic_block use_bb, tree val)
399 basic_block dep_bb;
401 /* Not a dep. */
402 if (TREE_CODE (val) != SSA_NAME)
403 return;
405 /* Skip use of global def. */
406 if (SSA_NAME_IS_DEFAULT_DEF (val))
407 return;
409 /* Skip use of local def. */
410 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
411 if (dep_bb == use_bb)
412 return;
414 if (BB_DEP_BB (use_bb) == NULL
415 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
416 BB_DEP_BB (use_bb) = dep_bb;
419 /* Update BB_DEP_BB, given the dependencies in STMT. */
421 static void
422 stmt_update_dep_bb (gimple stmt)
424 ssa_op_iter iter;
425 use_operand_p use;
427 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
428 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
431 /* Calculates hash value for same_succ VE. */
433 static hashval_t
434 same_succ_hash (const_same_succ e)
436 hashval_t hashval = bitmap_hash (e->succs);
437 int flags;
438 unsigned int i;
439 unsigned int first = bitmap_first_set_bit (e->bbs);
440 basic_block bb = BASIC_BLOCK (first);
441 int size = 0;
442 gimple_stmt_iterator gsi;
443 gimple stmt;
444 tree arg;
445 unsigned int s;
446 bitmap_iterator bs;
448 for (gsi = gsi_start_nondebug_bb (bb);
449 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
451 stmt = gsi_stmt (gsi);
452 stmt_update_dep_bb (stmt);
453 if (stmt_local_def (stmt))
454 continue;
455 size++;
457 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
458 if (is_gimple_assign (stmt))
459 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
460 hashval);
461 if (!is_gimple_call (stmt))
462 continue;
463 if (gimple_call_internal_p (stmt))
464 hashval = iterative_hash_hashval_t
465 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
466 else
467 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
468 for (i = 0; i < gimple_call_num_args (stmt); i++)
470 arg = gimple_call_arg (stmt, i);
471 arg = vn_valueize (arg);
472 hashval = iterative_hash_expr (arg, hashval);
476 hashval = iterative_hash_hashval_t (size, hashval);
477 BB_SIZE (bb) = size;
479 for (i = 0; i < e->succ_flags.length (); ++i)
481 flags = e->succ_flags[i];
482 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
483 hashval = iterative_hash_hashval_t (flags, hashval);
486 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
488 int n = find_edge (bb, BASIC_BLOCK (s))->dest_idx;
489 for (gsi = gsi_start_phis (BASIC_BLOCK (s)); !gsi_end_p (gsi);
490 gsi_next (&gsi))
492 gimple phi = gsi_stmt (gsi);
493 tree lhs = gimple_phi_result (phi);
494 tree val = gimple_phi_arg_def (phi, n);
496 if (virtual_operand_p (lhs))
497 continue;
498 update_dep_bb (bb, val);
502 return hashval;
505 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
506 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
507 the other edge flags. */
509 static bool
510 inverse_flags (const_same_succ e1, const_same_succ e2)
512 int f1a, f1b, f2a, f2b;
513 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
515 if (e1->succ_flags.length () != 2)
516 return false;
518 f1a = e1->succ_flags[0];
519 f1b = e1->succ_flags[1];
520 f2a = e2->succ_flags[0];
521 f2b = e2->succ_flags[1];
523 if (f1a == f2a && f1b == f2b)
524 return false;
526 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
529 /* Compares SAME_SUCCs E1 and E2. */
532 same_succ_def::equal (const value_type *e1, const compare_type *e2)
534 unsigned int i, first1, first2;
535 gimple_stmt_iterator gsi1, gsi2;
536 gimple s1, s2;
537 basic_block bb1, bb2;
539 if (e1->hashval != e2->hashval)
540 return 0;
542 if (e1->succ_flags.length () != e2->succ_flags.length ())
543 return 0;
545 if (!bitmap_equal_p (e1->succs, e2->succs))
546 return 0;
548 if (!inverse_flags (e1, e2))
550 for (i = 0; i < e1->succ_flags.length (); ++i)
551 if (e1->succ_flags[i] != e1->succ_flags[i])
552 return 0;
555 first1 = bitmap_first_set_bit (e1->bbs);
556 first2 = bitmap_first_set_bit (e2->bbs);
558 bb1 = BASIC_BLOCK (first1);
559 bb2 = BASIC_BLOCK (first2);
561 if (BB_SIZE (bb1) != BB_SIZE (bb2))
562 return 0;
564 gsi1 = gsi_start_nondebug_bb (bb1);
565 gsi2 = gsi_start_nondebug_bb (bb2);
566 gsi_advance_fw_nondebug_nonlocal (&gsi1);
567 gsi_advance_fw_nondebug_nonlocal (&gsi2);
568 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
570 s1 = gsi_stmt (gsi1);
571 s2 = gsi_stmt (gsi2);
572 if (gimple_code (s1) != gimple_code (s2))
573 return 0;
574 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
575 return 0;
576 gsi_next_nondebug (&gsi1);
577 gsi_next_nondebug (&gsi2);
578 gsi_advance_fw_nondebug_nonlocal (&gsi1);
579 gsi_advance_fw_nondebug_nonlocal (&gsi2);
582 return 1;
585 /* Alloc and init a new SAME_SUCC. */
587 static same_succ
588 same_succ_alloc (void)
590 same_succ same = XNEW (struct same_succ_def);
592 same->bbs = BITMAP_ALLOC (NULL);
593 same->succs = BITMAP_ALLOC (NULL);
594 same->inverse = BITMAP_ALLOC (NULL);
595 same->succ_flags.create (10);
596 same->in_worklist = false;
598 return same;
601 /* Delete same_succ E. */
603 void
604 same_succ_def::remove (same_succ e)
606 BITMAP_FREE (e->bbs);
607 BITMAP_FREE (e->succs);
608 BITMAP_FREE (e->inverse);
609 e->succ_flags.release ();
611 XDELETE (e);
614 /* Reset same_succ SAME. */
616 static void
617 same_succ_reset (same_succ same)
619 bitmap_clear (same->bbs);
620 bitmap_clear (same->succs);
621 bitmap_clear (same->inverse);
622 same->succ_flags.truncate (0);
625 static hash_table <same_succ_def> same_succ_htab;
627 /* Array that is used to store the edge flags for a successor. */
629 static int *same_succ_edge_flags;
631 /* Bitmap that is used to mark bbs that are recently deleted. */
633 static bitmap deleted_bbs;
635 /* Bitmap that is used to mark predecessors of bbs that are
636 deleted. */
638 static bitmap deleted_bb_preds;
640 /* Prints same_succ_htab to stderr. */
642 extern void debug_same_succ (void);
643 DEBUG_FUNCTION void
644 debug_same_succ ( void)
646 same_succ_htab.traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
650 /* Vector of bbs to process. */
652 static vec<same_succ> worklist;
654 /* Prints worklist to FILE. */
656 static void
657 print_worklist (FILE *file)
659 unsigned int i;
660 for (i = 0; i < worklist.length (); ++i)
661 same_succ_print (file, worklist[i]);
664 /* Adds SAME to worklist. */
666 static void
667 add_to_worklist (same_succ same)
669 if (same->in_worklist)
670 return;
672 if (bitmap_count_bits (same->bbs) < 2)
673 return;
675 same->in_worklist = true;
676 worklist.safe_push (same);
679 /* Add BB to same_succ_htab. */
681 static void
682 find_same_succ_bb (basic_block bb, same_succ *same_p)
684 unsigned int j;
685 bitmap_iterator bj;
686 same_succ same = *same_p;
687 same_succ *slot;
688 edge_iterator ei;
689 edge e;
691 if (bb == NULL)
692 return;
693 bitmap_set_bit (same->bbs, bb->index);
694 FOR_EACH_EDGE (e, ei, bb->succs)
696 int index = e->dest->index;
697 bitmap_set_bit (same->succs, index);
698 same_succ_edge_flags[index] = e->flags;
700 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
701 same->succ_flags.safe_push (same_succ_edge_flags[j]);
703 same->hashval = same_succ_hash (same);
705 slot = same_succ_htab.find_slot_with_hash (same, same->hashval, INSERT);
706 if (*slot == NULL)
708 *slot = same;
709 BB_SAME_SUCC (bb) = same;
710 add_to_worklist (same);
711 *same_p = NULL;
713 else
715 bitmap_set_bit ((*slot)->bbs, bb->index);
716 BB_SAME_SUCC (bb) = *slot;
717 add_to_worklist (*slot);
718 if (inverse_flags (same, *slot))
719 bitmap_set_bit ((*slot)->inverse, bb->index);
720 same_succ_reset (same);
724 /* Find bbs with same successors. */
726 static void
727 find_same_succ (void)
729 same_succ same = same_succ_alloc ();
730 basic_block bb;
732 FOR_EACH_BB (bb)
734 find_same_succ_bb (bb, &same);
735 if (same == NULL)
736 same = same_succ_alloc ();
739 same_succ_def::remove (same);
742 /* Initializes worklist administration. */
744 static void
745 init_worklist (void)
747 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
748 same_succ_htab.create (n_basic_blocks);
749 same_succ_edge_flags = XCNEWVEC (int, last_basic_block);
750 deleted_bbs = BITMAP_ALLOC (NULL);
751 deleted_bb_preds = BITMAP_ALLOC (NULL);
752 worklist.create (n_basic_blocks);
753 find_same_succ ();
755 if (dump_file && (dump_flags & TDF_DETAILS))
757 fprintf (dump_file, "initial worklist:\n");
758 print_worklist (dump_file);
762 /* Deletes worklist administration. */
764 static void
765 delete_worklist (void)
767 free_aux_for_blocks ();
768 same_succ_htab.dispose ();
769 XDELETEVEC (same_succ_edge_flags);
770 same_succ_edge_flags = NULL;
771 BITMAP_FREE (deleted_bbs);
772 BITMAP_FREE (deleted_bb_preds);
773 worklist.release ();
776 /* Mark BB as deleted, and mark its predecessors. */
778 static void
779 mark_basic_block_deleted (basic_block bb)
781 edge e;
782 edge_iterator ei;
784 bitmap_set_bit (deleted_bbs, bb->index);
786 FOR_EACH_EDGE (e, ei, bb->preds)
787 bitmap_set_bit (deleted_bb_preds, e->src->index);
790 /* Removes BB from its corresponding same_succ. */
792 static void
793 same_succ_flush_bb (basic_block bb)
795 same_succ same = BB_SAME_SUCC (bb);
796 BB_SAME_SUCC (bb) = NULL;
797 if (bitmap_single_bit_set_p (same->bbs))
798 same_succ_htab.remove_elt_with_hash (same, same->hashval);
799 else
800 bitmap_clear_bit (same->bbs, bb->index);
803 /* Removes all bbs in BBS from their corresponding same_succ. */
805 static void
806 same_succ_flush_bbs (bitmap bbs)
808 unsigned int i;
809 bitmap_iterator bi;
811 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
812 same_succ_flush_bb (BASIC_BLOCK (i));
815 /* Release the last vdef in BB, either normal or phi result. */
817 static void
818 release_last_vdef (basic_block bb)
820 gimple_stmt_iterator i;
822 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
824 gimple stmt = gsi_stmt (i);
825 if (gimple_vdef (stmt) == NULL_TREE)
826 continue;
828 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
829 return;
832 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
834 gimple phi = gsi_stmt (i);
835 tree res = gimple_phi_result (phi);
837 if (!virtual_operand_p (res))
838 continue;
840 mark_virtual_phi_result_for_renaming (phi);
841 return;
846 /* For deleted_bb_preds, find bbs with same successors. */
848 static void
849 update_worklist (void)
851 unsigned int i;
852 bitmap_iterator bi;
853 basic_block bb;
854 same_succ same;
856 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
857 bitmap_clear (deleted_bbs);
859 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
860 same_succ_flush_bbs (deleted_bb_preds);
862 same = same_succ_alloc ();
863 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
865 bb = BASIC_BLOCK (i);
866 gcc_assert (bb != NULL);
867 find_same_succ_bb (bb, &same);
868 if (same == NULL)
869 same = same_succ_alloc ();
871 same_succ_def::remove (same);
872 bitmap_clear (deleted_bb_preds);
875 /* Prints cluster C to FILE. */
877 static void
878 print_cluster (FILE *file, bb_cluster c)
880 if (c == NULL)
881 return;
882 bitmap_print (file, c->bbs, "bbs:", "\n");
883 bitmap_print (file, c->preds, "preds:", "\n");
886 /* Prints cluster C to stderr. */
888 extern void debug_cluster (bb_cluster);
889 DEBUG_FUNCTION void
890 debug_cluster (bb_cluster c)
892 print_cluster (stderr, c);
895 /* Update C->rep_bb, given that BB is added to the cluster. */
897 static void
898 update_rep_bb (bb_cluster c, basic_block bb)
900 /* Initial. */
901 if (c->rep_bb == NULL)
903 c->rep_bb = bb;
904 return;
907 /* Current needs no deps, keep it. */
908 if (BB_DEP_BB (c->rep_bb) == NULL)
909 return;
911 /* Bb needs no deps, change rep_bb. */
912 if (BB_DEP_BB (bb) == NULL)
914 c->rep_bb = bb;
915 return;
918 /* Bb needs last deps earlier than current, change rep_bb. A potential
919 problem with this, is that the first deps might also be earlier, which
920 would mean we prefer longer lifetimes for the deps. To be able to check
921 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
922 BB_DEP_BB, which is really BB_LAST_DEP_BB.
923 The benefit of choosing the bb with last deps earlier, is that it can
924 potentially be used as replacement for more bbs. */
925 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
926 c->rep_bb = bb;
929 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
931 static void
932 add_bb_to_cluster (bb_cluster c, basic_block bb)
934 edge e;
935 edge_iterator ei;
937 bitmap_set_bit (c->bbs, bb->index);
939 FOR_EACH_EDGE (e, ei, bb->preds)
940 bitmap_set_bit (c->preds, e->src->index);
942 update_rep_bb (c, bb);
945 /* Allocate and init new cluster. */
947 static bb_cluster
948 new_cluster (void)
950 bb_cluster c;
951 c = XCNEW (struct bb_cluster_def);
952 c->bbs = BITMAP_ALLOC (NULL);
953 c->preds = BITMAP_ALLOC (NULL);
954 c->rep_bb = NULL;
955 return c;
958 /* Delete clusters. */
960 static void
961 delete_cluster (bb_cluster c)
963 if (c == NULL)
964 return;
965 BITMAP_FREE (c->bbs);
966 BITMAP_FREE (c->preds);
967 XDELETE (c);
971 /* Array that contains all clusters. */
973 static vec<bb_cluster> all_clusters;
975 /* Allocate all cluster vectors. */
977 static void
978 alloc_cluster_vectors (void)
980 all_clusters.create (n_basic_blocks);
983 /* Reset all cluster vectors. */
985 static void
986 reset_cluster_vectors (void)
988 unsigned int i;
989 basic_block bb;
990 for (i = 0; i < all_clusters.length (); ++i)
991 delete_cluster (all_clusters[i]);
992 all_clusters.truncate (0);
993 FOR_EACH_BB (bb)
994 BB_CLUSTER (bb) = NULL;
997 /* Delete all cluster vectors. */
999 static void
1000 delete_cluster_vectors (void)
1002 unsigned int i;
1003 for (i = 0; i < all_clusters.length (); ++i)
1004 delete_cluster (all_clusters[i]);
1005 all_clusters.release ();
1008 /* Merge cluster C2 into C1. */
1010 static void
1011 merge_clusters (bb_cluster c1, bb_cluster c2)
1013 bitmap_ior_into (c1->bbs, c2->bbs);
1014 bitmap_ior_into (c1->preds, c2->preds);
1017 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1018 all_clusters, or merge c with existing cluster. */
1020 static void
1021 set_cluster (basic_block bb1, basic_block bb2)
1023 basic_block merge_bb, other_bb;
1024 bb_cluster merge, old, c;
1026 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1028 c = new_cluster ();
1029 add_bb_to_cluster (c, bb1);
1030 add_bb_to_cluster (c, bb2);
1031 BB_CLUSTER (bb1) = c;
1032 BB_CLUSTER (bb2) = c;
1033 c->index = all_clusters.length ();
1034 all_clusters.safe_push (c);
1036 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1038 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1039 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1040 merge = BB_CLUSTER (merge_bb);
1041 add_bb_to_cluster (merge, other_bb);
1042 BB_CLUSTER (other_bb) = merge;
1044 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1046 unsigned int i;
1047 bitmap_iterator bi;
1049 old = BB_CLUSTER (bb2);
1050 merge = BB_CLUSTER (bb1);
1051 merge_clusters (merge, old);
1052 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1053 BB_CLUSTER (BASIC_BLOCK (i)) = merge;
1054 all_clusters[old->index] = NULL;
1055 update_rep_bb (merge, old->rep_bb);
1056 delete_cluster (old);
1058 else
1059 gcc_unreachable ();
1062 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1063 gimple_bb (s2) are members of SAME_SUCC. */
1065 static bool
1066 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1068 unsigned int i;
1069 tree lhs1, lhs2;
1070 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1071 tree t1, t2;
1072 bool equal, inv_cond;
1073 enum tree_code code1, code2;
1075 if (gimple_code (s1) != gimple_code (s2))
1076 return false;
1078 switch (gimple_code (s1))
1080 case GIMPLE_CALL:
1081 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1082 return false;
1083 if (!gimple_call_same_target_p (s1, s2))
1084 return false;
1086 /* Eventually, we'll significantly complicate the CFG by adding
1087 back edges to properly model the effects of transaction restart.
1088 For the bulk of optimization this does not matter, but what we
1089 cannot recover from is tail merging blocks between two separate
1090 transactions. Avoid that by making commit not match. */
1091 if (gimple_call_builtin_p (s1, BUILT_IN_TM_COMMIT))
1092 return false;
1094 equal = true;
1095 for (i = 0; i < gimple_call_num_args (s1); ++i)
1097 t1 = gimple_call_arg (s1, i);
1098 t2 = gimple_call_arg (s2, i);
1099 if (operand_equal_p (t1, t2, 0))
1100 continue;
1101 if (gvn_uses_equal (t1, t2))
1102 continue;
1103 equal = false;
1104 break;
1106 if (!equal)
1107 return false;
1109 lhs1 = gimple_get_lhs (s1);
1110 lhs2 = gimple_get_lhs (s2);
1111 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1112 return true;
1113 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1114 return false;
1115 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1116 return vn_valueize (lhs1) == vn_valueize (lhs2);
1117 return operand_equal_p (lhs1, lhs2, 0);
1119 case GIMPLE_ASSIGN:
1120 lhs1 = gimple_get_lhs (s1);
1121 lhs2 = gimple_get_lhs (s2);
1122 if (gimple_vdef (s1))
1124 if (vn_valueize (gimple_vdef (s1)) != vn_valueize (gimple_vdef (s2)))
1125 return false;
1126 if (TREE_CODE (lhs1) != SSA_NAME
1127 && TREE_CODE (lhs2) != SSA_NAME)
1128 return true;
1130 return (TREE_CODE (lhs1) == SSA_NAME
1131 && TREE_CODE (lhs2) == SSA_NAME
1132 && vn_valueize (lhs1) == vn_valueize (lhs2));
1134 case GIMPLE_COND:
1135 t1 = gimple_cond_lhs (s1);
1136 t2 = gimple_cond_lhs (s2);
1137 if (!operand_equal_p (t1, t2, 0)
1138 && !gvn_uses_equal (t1, t2))
1139 return false;
1141 t1 = gimple_cond_rhs (s1);
1142 t2 = gimple_cond_rhs (s2);
1143 if (!operand_equal_p (t1, t2, 0)
1144 && !gvn_uses_equal (t1, t2))
1145 return false;
1147 code1 = gimple_expr_code (s1);
1148 code2 = gimple_expr_code (s2);
1149 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1150 != bitmap_bit_p (same_succ->inverse, bb2->index));
1151 if (inv_cond)
1153 bool honor_nans
1154 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1155 code2 = invert_tree_comparison (code2, honor_nans);
1157 return code1 == code2;
1159 default:
1160 return false;
1164 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1165 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1166 processed statements. */
1168 static void
1169 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1170 bool *vuse_escaped)
1172 gimple stmt;
1173 tree lvuse;
1175 while (true)
1177 if (gsi_end_p (*gsi))
1178 return;
1179 stmt = gsi_stmt (*gsi);
1181 lvuse = gimple_vuse (stmt);
1182 if (lvuse != NULL_TREE)
1184 *vuse = lvuse;
1185 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1186 *vuse_escaped = true;
1189 if (!stmt_local_def (stmt))
1190 return;
1191 gsi_prev_nondebug (gsi);
1195 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1196 clusters them. */
1198 static void
1199 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1201 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1202 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1203 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1204 bool vuse_escaped = false;
1206 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1207 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1209 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1211 gimple stmt1 = gsi_stmt (gsi1);
1212 gimple stmt2 = gsi_stmt (gsi2);
1214 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1215 return;
1217 // We cannot tail-merge the builtins that end transactions.
1218 // ??? The alternative being unsharing of BBs in the tm_init pass.
1219 if (flag_tm
1220 && is_gimple_call (stmt1)
1221 && (gimple_call_flags (stmt1) & ECF_TM_BUILTIN)
1222 && is_tm_ending_fndecl (gimple_call_fndecl (stmt1)))
1223 return;
1225 gsi_prev_nondebug (&gsi1);
1226 gsi_prev_nondebug (&gsi2);
1227 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1228 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1231 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1232 return;
1234 /* If the incoming vuses are not the same, and the vuse escaped into an
1235 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1236 which potentially means the semantics of one of the blocks will be changed.
1237 TODO: make this check more precise. */
1238 if (vuse_escaped && vuse1 != vuse2)
1239 return;
1241 if (dump_file)
1242 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1243 bb1->index, bb2->index);
1245 set_cluster (bb1, bb2);
1248 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1249 E2 are equal. */
1251 static bool
1252 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1254 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1255 gimple_stmt_iterator gsi;
1257 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1259 gimple phi = gsi_stmt (gsi);
1260 tree lhs = gimple_phi_result (phi);
1261 tree val1 = gimple_phi_arg_def (phi, n1);
1262 tree val2 = gimple_phi_arg_def (phi, n2);
1264 if (virtual_operand_p (lhs))
1265 continue;
1267 if (operand_equal_for_phi_arg_p (val1, val2))
1268 continue;
1269 if (gvn_uses_equal (val1, val2))
1270 continue;
1272 return false;
1275 return true;
1278 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1279 phi alternatives for BB1 and BB2 are equal. */
1281 static bool
1282 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1284 unsigned int s;
1285 bitmap_iterator bs;
1286 edge e1, e2;
1287 basic_block succ;
1289 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1291 succ = BASIC_BLOCK (s);
1292 e1 = find_edge (bb1, succ);
1293 e2 = find_edge (bb2, succ);
1294 if (e1->flags & EDGE_COMPLEX
1295 || e2->flags & EDGE_COMPLEX)
1296 return false;
1298 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1299 the same value. */
1300 if (!same_phi_alternatives_1 (succ, e1, e2))
1301 return false;
1304 return true;
1307 /* Return true if BB has non-vop phis. */
1309 static bool
1310 bb_has_non_vop_phi (basic_block bb)
1312 gimple_seq phis = phi_nodes (bb);
1313 gimple phi;
1315 if (phis == NULL)
1316 return false;
1318 if (!gimple_seq_singleton_p (phis))
1319 return true;
1321 phi = gimple_seq_first_stmt (phis);
1322 return !virtual_operand_p (gimple_phi_result (phi));
1325 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1326 invariant that uses in FROM are dominates by their defs. */
1328 static bool
1329 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1331 basic_block cd, dep_bb = BB_DEP_BB (to);
1332 edge_iterator ei;
1333 edge e;
1334 bitmap from_preds = BITMAP_ALLOC (NULL);
1336 if (dep_bb == NULL)
1337 return true;
1339 FOR_EACH_EDGE (e, ei, from->preds)
1340 bitmap_set_bit (from_preds, e->src->index);
1341 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1342 BITMAP_FREE (from_preds);
1344 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1347 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1348 replacement bb) and vice versa maintains the invariant that uses in the
1349 replacement are dominates by their defs. */
1351 static bool
1352 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1354 if (BB_CLUSTER (bb1) != NULL)
1355 bb1 = BB_CLUSTER (bb1)->rep_bb;
1357 if (BB_CLUSTER (bb2) != NULL)
1358 bb2 = BB_CLUSTER (bb2)->rep_bb;
1360 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1361 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1364 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1366 static void
1367 find_clusters_1 (same_succ same_succ)
1369 basic_block bb1, bb2;
1370 unsigned int i, j;
1371 bitmap_iterator bi, bj;
1372 int nr_comparisons;
1373 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1375 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1377 bb1 = BASIC_BLOCK (i);
1379 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1380 phi-nodes in bb1 and bb2, with the same alternatives for the same
1381 preds. */
1382 if (bb_has_non_vop_phi (bb1))
1383 continue;
1385 nr_comparisons = 0;
1386 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1388 bb2 = BASIC_BLOCK (j);
1390 if (bb_has_non_vop_phi (bb2))
1391 continue;
1393 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1394 continue;
1396 /* Limit quadratic behaviour. */
1397 nr_comparisons++;
1398 if (nr_comparisons > max_comparisons)
1399 break;
1401 /* This is a conservative dependency check. We could test more
1402 precise for allowed replacement direction. */
1403 if (!deps_ok_for_redirect (bb1, bb2))
1404 continue;
1406 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1407 continue;
1409 find_duplicate (same_succ, bb1, bb2);
1414 /* Find clusters of bbs which can be merged. */
1416 static void
1417 find_clusters (void)
1419 same_succ same;
1421 while (!worklist.is_empty ())
1423 same = worklist.pop ();
1424 same->in_worklist = false;
1425 if (dump_file && (dump_flags & TDF_DETAILS))
1427 fprintf (dump_file, "processing worklist entry\n");
1428 same_succ_print (dump_file, same);
1430 find_clusters_1 (same);
1434 /* Returns the vop phi of BB, if any. */
1436 static gimple
1437 vop_phi (basic_block bb)
1439 gimple stmt;
1440 gimple_stmt_iterator gsi;
1441 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1443 stmt = gsi_stmt (gsi);
1444 if (! virtual_operand_p (gimple_phi_result (stmt)))
1445 continue;
1446 return stmt;
1448 return NULL;
1451 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1453 static void
1454 replace_block_by (basic_block bb1, basic_block bb2)
1456 edge pred_edge;
1457 unsigned int i;
1458 gimple bb2_phi;
1460 bb2_phi = vop_phi (bb2);
1462 /* Mark the basic block as deleted. */
1463 mark_basic_block_deleted (bb1);
1465 /* Redirect the incoming edges of bb1 to bb2. */
1466 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1468 pred_edge = EDGE_PRED (bb1, i - 1);
1469 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1470 gcc_assert (pred_edge != NULL);
1472 if (bb2_phi == NULL)
1473 continue;
1475 /* The phi might have run out of capacity when the redirect added an
1476 argument, which means it could have been replaced. Refresh it. */
1477 bb2_phi = vop_phi (bb2);
1479 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1480 pred_edge, UNKNOWN_LOCATION);
1483 bb2->frequency += bb1->frequency;
1484 if (bb2->frequency > BB_FREQ_MAX)
1485 bb2->frequency = BB_FREQ_MAX;
1487 bb2->count += bb1->count;
1489 /* Do updates that use bb1, before deleting bb1. */
1490 release_last_vdef (bb1);
1491 same_succ_flush_bb (bb1);
1493 delete_basic_block (bb1);
1496 /* Bbs for which update_debug_stmt need to be called. */
1498 static bitmap update_bbs;
1500 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1501 number of bbs removed. */
1503 static int
1504 apply_clusters (void)
1506 basic_block bb1, bb2;
1507 bb_cluster c;
1508 unsigned int i, j;
1509 bitmap_iterator bj;
1510 int nr_bbs_removed = 0;
1512 for (i = 0; i < all_clusters.length (); ++i)
1514 c = all_clusters[i];
1515 if (c == NULL)
1516 continue;
1518 bb2 = c->rep_bb;
1519 bitmap_set_bit (update_bbs, bb2->index);
1521 bitmap_clear_bit (c->bbs, bb2->index);
1522 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1524 bb1 = BASIC_BLOCK (j);
1525 bitmap_clear_bit (update_bbs, bb1->index);
1527 replace_block_by (bb1, bb2);
1528 nr_bbs_removed++;
1532 return nr_bbs_removed;
1535 /* Resets debug statement STMT if it has uses that are not dominated by their
1536 defs. */
1538 static void
1539 update_debug_stmt (gimple stmt)
1541 use_operand_p use_p;
1542 ssa_op_iter oi;
1543 basic_block bbdef, bbuse;
1544 gimple def_stmt;
1545 tree name;
1547 if (!gimple_debug_bind_p (stmt))
1548 return;
1550 bbuse = gimple_bb (stmt);
1551 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1553 name = USE_FROM_PTR (use_p);
1554 gcc_assert (TREE_CODE (name) == SSA_NAME);
1556 def_stmt = SSA_NAME_DEF_STMT (name);
1557 gcc_assert (def_stmt != NULL);
1559 bbdef = gimple_bb (def_stmt);
1560 if (bbdef == NULL || bbuse == bbdef
1561 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1562 continue;
1564 gimple_debug_bind_reset_value (stmt);
1565 update_stmt (stmt);
1569 /* Resets all debug statements that have uses that are not
1570 dominated by their defs. */
1572 static void
1573 update_debug_stmts (void)
1575 basic_block bb;
1576 bitmap_iterator bi;
1577 unsigned int i;
1579 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1581 gimple stmt;
1582 gimple_stmt_iterator gsi;
1584 bb = BASIC_BLOCK (i);
1585 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1587 stmt = gsi_stmt (gsi);
1588 if (!is_gimple_debug (stmt))
1589 continue;
1590 update_debug_stmt (stmt);
1595 /* Runs tail merge optimization. */
1597 unsigned int
1598 tail_merge_optimize (unsigned int todo)
1600 int nr_bbs_removed_total = 0;
1601 int nr_bbs_removed;
1602 bool loop_entered = false;
1603 int iteration_nr = 0;
1604 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1606 if (!flag_tree_tail_merge || max_iterations == 0)
1607 return 0;
1609 timevar_push (TV_TREE_TAIL_MERGE);
1611 if (!dom_info_available_p (CDI_DOMINATORS))
1613 /* PRE can leave us with unreachable blocks, remove them now. */
1614 delete_unreachable_blocks ();
1615 calculate_dominance_info (CDI_DOMINATORS);
1617 init_worklist ();
1619 while (!worklist.is_empty ())
1621 if (!loop_entered)
1623 loop_entered = true;
1624 alloc_cluster_vectors ();
1625 update_bbs = BITMAP_ALLOC (NULL);
1627 else
1628 reset_cluster_vectors ();
1630 iteration_nr++;
1631 if (dump_file && (dump_flags & TDF_DETAILS))
1632 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1634 find_clusters ();
1635 gcc_assert (worklist.is_empty ());
1636 if (all_clusters.is_empty ())
1637 break;
1639 nr_bbs_removed = apply_clusters ();
1640 nr_bbs_removed_total += nr_bbs_removed;
1641 if (nr_bbs_removed == 0)
1642 break;
1644 free_dominance_info (CDI_DOMINATORS);
1646 if (iteration_nr == max_iterations)
1647 break;
1649 calculate_dominance_info (CDI_DOMINATORS);
1650 update_worklist ();
1653 if (dump_file && (dump_flags & TDF_DETAILS))
1654 fprintf (dump_file, "htab collision / search: %f\n",
1655 same_succ_htab.collisions ());
1657 if (nr_bbs_removed_total > 0)
1659 if (MAY_HAVE_DEBUG_STMTS)
1661 calculate_dominance_info (CDI_DOMINATORS);
1662 update_debug_stmts ();
1665 if (dump_file && (dump_flags & TDF_DETAILS))
1667 fprintf (dump_file, "Before TODOs.\n");
1668 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1671 todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow);
1672 mark_virtual_operands_for_renaming (cfun);
1675 delete_worklist ();
1676 if (loop_entered)
1678 delete_cluster_vectors ();
1679 BITMAP_FREE (update_bbs);
1682 timevar_pop (TV_TREE_TAIL_MERGE);
1684 return todo;