compiler, runtime: replace hashmap code with Go 1.7 hashmap
[official-gcc.git] / gcc / go / gofrontend / gogo.cc
bloba3afdcb7b9ad3eaf184dd47441b00a6e4a3a1bc7
1 // gogo.cc -- Go frontend parsed representation.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 #include "go-system.h"
9 #include <fstream>
11 #include "filenames.h"
13 #include "go-c.h"
14 #include "go-dump.h"
15 #include "go-optimize.h"
16 #include "lex.h"
17 #include "types.h"
18 #include "statements.h"
19 #include "expressions.h"
20 #include "runtime.h"
21 #include "import.h"
22 #include "export.h"
23 #include "backend.h"
24 #include "gogo.h"
26 // Class Gogo.
28 Gogo::Gogo(Backend* backend, Linemap* linemap, int, int pointer_size)
29 : backend_(backend),
30 linemap_(linemap),
31 package_(NULL),
32 functions_(),
33 globals_(new Bindings(NULL)),
34 file_block_names_(),
35 imports_(),
36 imported_unsafe_(false),
37 current_file_imported_unsafe_(false),
38 packages_(),
39 init_functions_(),
40 var_deps_(),
41 need_init_fn_(false),
42 init_fn_name_(),
43 imported_init_fns_(),
44 pkgpath_(),
45 pkgpath_symbol_(),
46 prefix_(),
47 pkgpath_set_(false),
48 pkgpath_from_option_(false),
49 prefix_from_option_(false),
50 relative_import_path_(),
51 verify_types_(),
52 interface_types_(),
53 specific_type_functions_(),
54 specific_type_functions_are_written_(false),
55 named_types_are_converted_(false)
57 const Location loc = Linemap::predeclared_location();
59 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
60 RUNTIME_TYPE_KIND_UINT8);
61 this->add_named_type(uint8_type);
62 this->add_named_type(Type::make_integer_type("uint16", true, 16,
63 RUNTIME_TYPE_KIND_UINT16));
64 this->add_named_type(Type::make_integer_type("uint32", true, 32,
65 RUNTIME_TYPE_KIND_UINT32));
66 this->add_named_type(Type::make_integer_type("uint64", true, 64,
67 RUNTIME_TYPE_KIND_UINT64));
69 this->add_named_type(Type::make_integer_type("int8", false, 8,
70 RUNTIME_TYPE_KIND_INT8));
71 this->add_named_type(Type::make_integer_type("int16", false, 16,
72 RUNTIME_TYPE_KIND_INT16));
73 Named_type* int32_type = Type::make_integer_type("int32", false, 32,
74 RUNTIME_TYPE_KIND_INT32);
75 this->add_named_type(int32_type);
76 this->add_named_type(Type::make_integer_type("int64", false, 64,
77 RUNTIME_TYPE_KIND_INT64));
79 this->add_named_type(Type::make_float_type("float32", 32,
80 RUNTIME_TYPE_KIND_FLOAT32));
81 this->add_named_type(Type::make_float_type("float64", 64,
82 RUNTIME_TYPE_KIND_FLOAT64));
84 this->add_named_type(Type::make_complex_type("complex64", 64,
85 RUNTIME_TYPE_KIND_COMPLEX64));
86 this->add_named_type(Type::make_complex_type("complex128", 128,
87 RUNTIME_TYPE_KIND_COMPLEX128));
89 int int_type_size = pointer_size;
90 if (int_type_size < 32)
91 int_type_size = 32;
92 this->add_named_type(Type::make_integer_type("uint", true,
93 int_type_size,
94 RUNTIME_TYPE_KIND_UINT));
95 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
96 RUNTIME_TYPE_KIND_INT);
97 this->add_named_type(int_type);
99 this->add_named_type(Type::make_integer_type("uintptr", true,
100 pointer_size,
101 RUNTIME_TYPE_KIND_UINTPTR));
103 // "byte" is an alias for "uint8".
104 uint8_type->integer_type()->set_is_byte();
105 Named_object* byte_type = Named_object::make_type("byte", NULL, uint8_type,
106 loc);
107 this->add_named_type(byte_type->type_value());
109 // "rune" is an alias for "int32".
110 int32_type->integer_type()->set_is_rune();
111 Named_object* rune_type = Named_object::make_type("rune", NULL, int32_type,
112 loc);
113 this->add_named_type(rune_type->type_value());
115 this->add_named_type(Type::make_named_bool_type());
117 this->add_named_type(Type::make_named_string_type());
119 // "error" is interface { Error() string }.
121 Typed_identifier_list *methods = new Typed_identifier_list;
122 Typed_identifier_list *results = new Typed_identifier_list;
123 results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
124 Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
125 methods->push_back(Typed_identifier("Error", method_type, loc));
126 Interface_type *error_iface = Type::make_interface_type(methods, loc);
127 error_iface->finalize_methods();
128 Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
129 this->add_named_type(error_type);
132 this->globals_->add_constant(Typed_identifier("true",
133 Type::make_boolean_type(),
134 loc),
135 NULL,
136 Expression::make_boolean(true, loc),
138 this->globals_->add_constant(Typed_identifier("false",
139 Type::make_boolean_type(),
140 loc),
141 NULL,
142 Expression::make_boolean(false, loc),
145 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
146 loc),
147 NULL,
148 Expression::make_nil(loc),
151 Type* abstract_int_type = Type::make_abstract_integer_type();
152 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
153 loc),
154 NULL,
155 Expression::make_iota(),
158 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
159 new_type->set_is_varargs();
160 new_type->set_is_builtin();
161 this->globals_->add_function_declaration("new", NULL, new_type, loc);
163 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
164 make_type->set_is_varargs();
165 make_type->set_is_builtin();
166 this->globals_->add_function_declaration("make", NULL, make_type, loc);
168 Typed_identifier_list* len_result = new Typed_identifier_list();
169 len_result->push_back(Typed_identifier("", int_type, loc));
170 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
171 loc);
172 len_type->set_is_builtin();
173 this->globals_->add_function_declaration("len", NULL, len_type, loc);
175 Typed_identifier_list* cap_result = new Typed_identifier_list();
176 cap_result->push_back(Typed_identifier("", int_type, loc));
177 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
178 loc);
179 cap_type->set_is_builtin();
180 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
182 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
183 print_type->set_is_varargs();
184 print_type->set_is_builtin();
185 this->globals_->add_function_declaration("print", NULL, print_type, loc);
187 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
188 print_type->set_is_varargs();
189 print_type->set_is_builtin();
190 this->globals_->add_function_declaration("println", NULL, print_type, loc);
192 Type *empty = Type::make_empty_interface_type(loc);
193 Typed_identifier_list* panic_parms = new Typed_identifier_list();
194 panic_parms->push_back(Typed_identifier("e", empty, loc));
195 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
196 NULL, loc);
197 panic_type->set_is_builtin();
198 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
200 Typed_identifier_list* recover_result = new Typed_identifier_list();
201 recover_result->push_back(Typed_identifier("", empty, loc));
202 Function_type* recover_type = Type::make_function_type(NULL, NULL,
203 recover_result,
204 loc);
205 recover_type->set_is_builtin();
206 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
208 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
209 close_type->set_is_varargs();
210 close_type->set_is_builtin();
211 this->globals_->add_function_declaration("close", NULL, close_type, loc);
213 Typed_identifier_list* copy_result = new Typed_identifier_list();
214 copy_result->push_back(Typed_identifier("", int_type, loc));
215 Function_type* copy_type = Type::make_function_type(NULL, NULL,
216 copy_result, loc);
217 copy_type->set_is_varargs();
218 copy_type->set_is_builtin();
219 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
221 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
222 append_type->set_is_varargs();
223 append_type->set_is_builtin();
224 this->globals_->add_function_declaration("append", NULL, append_type, loc);
226 Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
227 complex_type->set_is_varargs();
228 complex_type->set_is_builtin();
229 this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
231 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
232 real_type->set_is_varargs();
233 real_type->set_is_builtin();
234 this->globals_->add_function_declaration("real", NULL, real_type, loc);
236 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
237 imag_type->set_is_varargs();
238 imag_type->set_is_builtin();
239 this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
241 Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
242 delete_type->set_is_varargs();
243 delete_type->set_is_builtin();
244 this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
247 // Convert a pkgpath into a string suitable for a symbol. Note that
248 // this transformation is convenient but imperfect. A -fgo-pkgpath
249 // option of a/b_c will conflict with a -fgo-pkgpath option of a_b/c,
250 // possibly leading to link time errors.
252 std::string
253 Gogo::pkgpath_for_symbol(const std::string& pkgpath)
255 std::string s = pkgpath;
256 for (size_t i = 0; i < s.length(); ++i)
258 char c = s[i];
259 if ((c >= 'a' && c <= 'z')
260 || (c >= 'A' && c <= 'Z')
261 || (c >= '0' && c <= '9'))
263 else
264 s[i] = '_';
266 return s;
269 // Get the package path to use for type reflection data. This should
270 // ideally be unique across the entire link.
272 const std::string&
273 Gogo::pkgpath() const
275 go_assert(this->pkgpath_set_);
276 return this->pkgpath_;
279 // Set the package path from the -fgo-pkgpath command line option.
281 void
282 Gogo::set_pkgpath(const std::string& arg)
284 go_assert(!this->pkgpath_set_);
285 this->pkgpath_ = arg;
286 this->pkgpath_set_ = true;
287 this->pkgpath_from_option_ = true;
290 // Get the package path to use for symbol names.
292 const std::string&
293 Gogo::pkgpath_symbol() const
295 go_assert(this->pkgpath_set_);
296 return this->pkgpath_symbol_;
299 // Set the unique prefix to use to determine the package path, from
300 // the -fgo-prefix command line option.
302 void
303 Gogo::set_prefix(const std::string& arg)
305 go_assert(!this->prefix_from_option_);
306 this->prefix_ = arg;
307 this->prefix_from_option_ = true;
310 // Munge name for use in an error message.
312 std::string
313 Gogo::message_name(const std::string& name)
315 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
318 // Get the package name.
320 const std::string&
321 Gogo::package_name() const
323 go_assert(this->package_ != NULL);
324 return this->package_->package_name();
327 // Set the package name.
329 void
330 Gogo::set_package_name(const std::string& package_name,
331 Location location)
333 if (this->package_ != NULL)
335 if (this->package_->package_name() != package_name)
336 error_at(location, "expected package %<%s%>",
337 Gogo::message_name(this->package_->package_name()).c_str());
338 return;
341 // Now that we know the name of the package we are compiling, set
342 // the package path to use for reflect.Type.PkgPath and global
343 // symbol names.
344 if (this->pkgpath_set_)
345 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(this->pkgpath_);
346 else
348 if (!this->prefix_from_option_ && package_name == "main")
350 this->pkgpath_ = package_name;
351 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(package_name);
353 else
355 if (!this->prefix_from_option_)
356 this->prefix_ = "go";
357 this->pkgpath_ = this->prefix_ + '.' + package_name;
358 this->pkgpath_symbol_ = (Gogo::pkgpath_for_symbol(this->prefix_) + '.'
359 + Gogo::pkgpath_for_symbol(package_name));
361 this->pkgpath_set_ = true;
364 this->package_ = this->register_package(this->pkgpath_,
365 this->pkgpath_symbol_, location);
366 this->package_->set_package_name(package_name, location);
368 if (this->is_main_package())
370 // Declare "main" as a function which takes no parameters and
371 // returns no value.
372 Location uloc = Linemap::unknown_location();
373 this->declare_function(Gogo::pack_hidden_name("main", false),
374 Type::make_function_type (NULL, NULL, NULL, uloc),
375 uloc);
379 // Return whether this is the "main" package. This is not true if
380 // -fgo-pkgpath or -fgo-prefix was used.
382 bool
383 Gogo::is_main_package() const
385 return (this->package_name() == "main"
386 && !this->pkgpath_from_option_
387 && !this->prefix_from_option_);
390 // Import a package.
392 void
393 Gogo::import_package(const std::string& filename,
394 const std::string& local_name,
395 bool is_local_name_exported,
396 Location location)
398 if (filename.empty())
400 error_at(location, "import path is empty");
401 return;
404 const char *pf = filename.data();
405 const char *pend = pf + filename.length();
406 while (pf < pend)
408 unsigned int c;
409 int adv = Lex::fetch_char(pf, &c);
410 if (adv == 0)
412 error_at(location, "import path contains invalid UTF-8 sequence");
413 return;
415 if (c == '\0')
417 error_at(location, "import path contains NUL");
418 return;
420 if (c < 0x20 || c == 0x7f)
422 error_at(location, "import path contains control character");
423 return;
425 if (c == '\\')
427 error_at(location, "import path contains backslash; use slash");
428 return;
430 if (Lex::is_unicode_space(c))
432 error_at(location, "import path contains space character");
433 return;
435 if (c < 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c) != NULL)
437 error_at(location, "import path contains invalid character '%c'", c);
438 return;
440 pf += adv;
443 if (IS_ABSOLUTE_PATH(filename.c_str()))
445 error_at(location, "import path cannot be absolute path");
446 return;
449 if (local_name == "init")
450 error_at(location, "cannot import package as init");
452 if (filename == "unsafe")
454 this->import_unsafe(local_name, is_local_name_exported, location);
455 this->current_file_imported_unsafe_ = true;
456 return;
459 Imports::const_iterator p = this->imports_.find(filename);
460 if (p != this->imports_.end())
462 Package* package = p->second;
463 package->set_location(location);
464 std::string ln = local_name;
465 bool is_ln_exported = is_local_name_exported;
466 if (ln.empty())
468 ln = package->package_name();
469 go_assert(!ln.empty());
470 is_ln_exported = Lex::is_exported_name(ln);
472 if (ln == "_")
474 else if (ln == ".")
476 Bindings* bindings = package->bindings();
477 for (Bindings::const_declarations_iterator p =
478 bindings->begin_declarations();
479 p != bindings->end_declarations();
480 ++p)
481 this->add_dot_import_object(p->second);
482 std::string dot_alias = "." + package->package_name();
483 package->add_alias(dot_alias, location);
485 else
487 package->add_alias(ln, location);
488 ln = this->pack_hidden_name(ln, is_ln_exported);
489 this->package_->bindings()->add_package(ln, package);
491 return;
494 Import::Stream* stream = Import::open_package(filename, location,
495 this->relative_import_path_);
496 if (stream == NULL)
498 error_at(location, "import file %qs not found", filename.c_str());
499 return;
502 Import imp(stream, location);
503 imp.register_builtin_types(this);
504 Package* package = imp.import(this, local_name, is_local_name_exported);
505 if (package != NULL)
507 if (package->pkgpath() == this->pkgpath())
508 error_at(location,
509 ("imported package uses same package path as package "
510 "being compiled (see -fgo-pkgpath option)"));
512 this->imports_.insert(std::make_pair(filename, package));
515 delete stream;
518 Import_init *
519 Gogo::lookup_init(const std::string& init_name)
521 Import_init tmp("", init_name, -1);
522 Import_init_set::iterator it = this->imported_init_fns_.find(&tmp);
523 return (it != this->imported_init_fns_.end()) ? *it : NULL;
526 // Add an import control function for an imported package to the list.
528 void
529 Gogo::add_import_init_fn(const std::string& package_name,
530 const std::string& init_name, int prio)
532 for (Import_init_set::iterator p =
533 this->imported_init_fns_.begin();
534 p != this->imported_init_fns_.end();
535 ++p)
537 Import_init *ii = (*p);
538 if (ii->init_name() == init_name)
540 // If a test of package P1, built as part of package P1,
541 // imports package P2, and P2 imports P1 (perhaps
542 // indirectly), then we will see the same import name with
543 // different import priorities. That is OK, so don't give
544 // an error about it.
545 if (ii->package_name() != package_name)
547 error("duplicate package initialization name %qs",
548 Gogo::message_name(init_name).c_str());
549 inform(UNKNOWN_LOCATION, "used by package %qs",
550 Gogo::message_name(ii->package_name()).c_str());
551 inform(UNKNOWN_LOCATION, " and by package %qs",
552 Gogo::message_name(package_name).c_str());
554 ii->set_priority(prio);
555 return;
559 Import_init* nii = new Import_init(package_name, init_name, prio);
560 this->imported_init_fns_.insert(nii);
563 // Return whether we are at the global binding level.
565 bool
566 Gogo::in_global_scope() const
568 return this->functions_.empty();
571 // Return the current binding contour.
573 Bindings*
574 Gogo::current_bindings()
576 if (!this->functions_.empty())
577 return this->functions_.back().blocks.back()->bindings();
578 else if (this->package_ != NULL)
579 return this->package_->bindings();
580 else
581 return this->globals_;
584 const Bindings*
585 Gogo::current_bindings() const
587 if (!this->functions_.empty())
588 return this->functions_.back().blocks.back()->bindings();
589 else if (this->package_ != NULL)
590 return this->package_->bindings();
591 else
592 return this->globals_;
595 void
596 Gogo::update_init_priority(Import_init* ii,
597 std::set<const Import_init *>* visited)
599 visited->insert(ii);
600 int succ_prior = -1;
602 for (std::set<std::string>::const_iterator pci =
603 ii->precursors().begin();
604 pci != ii->precursors().end();
605 ++pci)
607 Import_init* succ = this->lookup_init(*pci);
608 if (visited->find(succ) == visited->end())
609 update_init_priority(succ, visited);
610 succ_prior = std::max(succ_prior, succ->priority());
612 if (ii->priority() <= succ_prior)
613 ii->set_priority(succ_prior + 1);
616 void
617 Gogo::recompute_init_priorities()
619 std::set<Import_init *> nonroots;
621 for (Import_init_set::const_iterator p =
622 this->imported_init_fns_.begin();
623 p != this->imported_init_fns_.end();
624 ++p)
626 const Import_init *ii = *p;
627 for (std::set<std::string>::const_iterator pci =
628 ii->precursors().begin();
629 pci != ii->precursors().end();
630 ++pci)
632 Import_init* ii = this->lookup_init(*pci);
633 nonroots.insert(ii);
637 // Recursively update priorities starting at roots.
638 std::set<const Import_init*> visited;
639 for (Import_init_set::iterator p =
640 this->imported_init_fns_.begin();
641 p != this->imported_init_fns_.end();
642 ++p)
644 Import_init* ii = *p;
645 if (nonroots.find(ii) != nonroots.end())
646 continue;
647 update_init_priority(ii, &visited);
651 // Add statements to INIT_STMTS which run the initialization
652 // functions for imported packages. This is only used for the "main"
653 // package.
655 void
656 Gogo::init_imports(std::vector<Bstatement*>& init_stmts)
658 go_assert(this->is_main_package());
660 if (this->imported_init_fns_.empty())
661 return;
663 Location unknown_loc = Linemap::unknown_location();
664 Function_type* func_type =
665 Type::make_function_type(NULL, NULL, NULL, unknown_loc);
666 Btype* fntype = func_type->get_backend_fntype(this);
668 // Recompute init priorities based on a walk of the init graph.
669 recompute_init_priorities();
671 // We must call them in increasing priority order.
672 std::vector<const Import_init*> v;
673 for (Import_init_set::const_iterator p =
674 this->imported_init_fns_.begin();
675 p != this->imported_init_fns_.end();
676 ++p)
677 v.push_back(*p);
678 std::sort(v.begin(), v.end(), priority_compare);
680 // We build calls to the init functions, which take no arguments.
681 std::vector<Bexpression*> empty_args;
682 for (std::vector<const Import_init*>::const_iterator p = v.begin();
683 p != v.end();
684 ++p)
686 const Import_init* ii = *p;
687 std::string user_name = ii->package_name() + ".init";
688 const std::string& init_name(ii->init_name());
690 Bfunction* pfunc = this->backend()->function(fntype, user_name, init_name,
691 true, true, true, false,
692 false, unknown_loc);
693 Bexpression* pfunc_code =
694 this->backend()->function_code_expression(pfunc, unknown_loc);
695 Bexpression* pfunc_call =
696 this->backend()->call_expression(pfunc_code, empty_args,
697 NULL, unknown_loc);
698 init_stmts.push_back(this->backend()->expression_statement(pfunc_call));
702 // Register global variables with the garbage collector. We need to
703 // register all variables which can hold a pointer value. They become
704 // roots during the mark phase. We build a struct that is easy to
705 // hook into a list of roots.
707 // struct __go_gc_root_list
708 // {
709 // struct __go_gc_root_list* __next;
710 // struct __go_gc_root
711 // {
712 // void* __decl;
713 // size_t __size;
714 // } __roots[];
715 // };
717 // The last entry in the roots array has a NULL decl field.
719 void
720 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
721 std::vector<Bstatement*>& init_stmts)
723 if (var_gc.empty())
724 return;
726 Type* pvt = Type::make_pointer_type(Type::make_void_type());
727 Type* uint_type = Type::lookup_integer_type("uint");
728 Struct_type* root_type = Type::make_builtin_struct_type(2,
729 "__decl", pvt,
730 "__size", uint_type);
732 Location builtin_loc = Linemap::predeclared_location();
733 Expression* length = Expression::make_integer_ul(var_gc.size(), NULL,
734 builtin_loc);
736 Array_type* root_array_type = Type::make_array_type(root_type, length);
737 Type* ptdt = Type::make_type_descriptor_ptr_type();
738 Struct_type* root_list_type =
739 Type::make_builtin_struct_type(2,
740 "__next", ptdt,
741 "__roots", root_array_type);
743 // Build an initializer for the __roots array.
745 Expression_list* roots_init = new Expression_list();
747 size_t i = 0;
748 for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
749 p != var_gc.end();
750 ++p, ++i)
752 Expression_list* init = new Expression_list();
754 Location no_loc = (*p)->location();
755 Expression* decl = Expression::make_var_reference(*p, no_loc);
756 Expression* decl_addr =
757 Expression::make_unary(OPERATOR_AND, decl, no_loc);
758 init->push_back(decl_addr);
760 Expression* decl_size =
761 Expression::make_type_info(decl->type(), Expression::TYPE_INFO_SIZE);
762 init->push_back(decl_size);
764 Expression* root_ctor =
765 Expression::make_struct_composite_literal(root_type, init, no_loc);
766 roots_init->push_back(root_ctor);
769 // The list ends with a NULL entry.
771 Expression_list* null_init = new Expression_list();
772 Expression* nil = Expression::make_nil(builtin_loc);
773 null_init->push_back(nil);
775 Expression *zero = Expression::make_integer_ul(0, NULL, builtin_loc);
776 null_init->push_back(zero);
778 Expression* null_root_ctor =
779 Expression::make_struct_composite_literal(root_type, null_init,
780 builtin_loc);
781 roots_init->push_back(null_root_ctor);
783 // Build a constructor for the struct.
785 Expression_list* root_list_init = new Expression_list();
786 root_list_init->push_back(nil);
788 Expression* roots_ctor =
789 Expression::make_array_composite_literal(root_array_type, roots_init,
790 builtin_loc);
791 root_list_init->push_back(roots_ctor);
793 Expression* root_list_ctor =
794 Expression::make_struct_composite_literal(root_list_type, root_list_init,
795 builtin_loc);
797 Expression* root_addr = Expression::make_unary(OPERATOR_AND, root_list_ctor,
798 builtin_loc);
799 root_addr->unary_expression()->set_is_gc_root();
800 Expression* register_roots = Runtime::make_call(Runtime::REGISTER_GC_ROOTS,
801 builtin_loc, 1, root_addr);
803 Translate_context context(this, NULL, NULL, NULL);
804 Bexpression* bcall = register_roots->get_backend(&context);
805 init_stmts.push_back(this->backend()->expression_statement(bcall));
808 // Get the name to use for the import control function. If there is a
809 // global function or variable, then we know that that name must be
810 // unique in the link, and we use it as the basis for our name.
812 const std::string&
813 Gogo::get_init_fn_name()
815 if (this->init_fn_name_.empty())
817 go_assert(this->package_ != NULL);
818 if (this->is_main_package())
820 // Use a name which the runtime knows.
821 this->init_fn_name_ = "__go_init_main";
823 else
825 std::string s = this->pkgpath_symbol();
826 s.append("..import");
827 this->init_fn_name_ = s;
831 return this->init_fn_name_;
834 // Build the decl for the initialization function.
836 Named_object*
837 Gogo::initialization_function_decl()
839 std::string name = this->get_init_fn_name();
840 Location loc = this->package_->location();
842 Function_type* fntype = Type::make_function_type(NULL, NULL, NULL, loc);
843 Function* initfn = new Function(fntype, NULL, NULL, loc);
844 return Named_object::make_function(name, NULL, initfn);
847 // Create the magic initialization function. CODE_STMT is the
848 // code that it needs to run.
850 Named_object*
851 Gogo::create_initialization_function(Named_object* initfn,
852 Bstatement* code_stmt)
854 // Make sure that we thought we needed an initialization function,
855 // as otherwise we will not have reported it in the export data.
856 go_assert(this->is_main_package() || this->need_init_fn_);
858 if (initfn == NULL)
859 initfn = this->initialization_function_decl();
861 // Bind the initialization function code to a block.
862 Bfunction* fndecl = initfn->func_value()->get_or_make_decl(this, initfn);
863 Location pkg_loc = this->package_->location();
864 std::vector<Bvariable*> vars;
865 this->backend()->block(fndecl, NULL, vars, pkg_loc, pkg_loc);
867 if (!this->backend()->function_set_body(fndecl, code_stmt))
869 go_assert(saw_errors());
870 return NULL;
872 return initfn;
875 // Search for references to VAR in any statements or called functions.
877 class Find_var : public Traverse
879 public:
880 // A hash table we use to avoid looping. The index is the name of a
881 // named object. We only look through objects defined in this
882 // package.
883 typedef Unordered_set(const void*) Seen_objects;
885 Find_var(Named_object* var, Seen_objects* seen_objects)
886 : Traverse(traverse_expressions),
887 var_(var), seen_objects_(seen_objects), found_(false)
890 // Whether the variable was found.
891 bool
892 found() const
893 { return this->found_; }
896 expression(Expression**);
898 private:
899 // The variable we are looking for.
900 Named_object* var_;
901 // Names of objects we have already seen.
902 Seen_objects* seen_objects_;
903 // True if the variable was found.
904 bool found_;
907 // See if EXPR refers to VAR, looking through function calls and
908 // variable initializations.
911 Find_var::expression(Expression** pexpr)
913 Expression* e = *pexpr;
915 Var_expression* ve = e->var_expression();
916 if (ve != NULL)
918 Named_object* v = ve->named_object();
919 if (v == this->var_)
921 this->found_ = true;
922 return TRAVERSE_EXIT;
925 if (v->is_variable() && v->package() == NULL)
927 Expression* init = v->var_value()->init();
928 if (init != NULL)
930 std::pair<Seen_objects::iterator, bool> ins =
931 this->seen_objects_->insert(v);
932 if (ins.second)
934 // This is the first time we have seen this name.
935 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
936 return TRAVERSE_EXIT;
942 // We traverse the code of any function or bound method we see. Note that
943 // this means that we will traverse the code of a function or bound method
944 // whose address is taken even if it is not called.
945 Func_expression* fe = e->func_expression();
946 Bound_method_expression* bme = e->bound_method_expression();
947 if (fe != NULL || bme != NULL)
949 const Named_object* f = fe != NULL ? fe->named_object() : bme->function();
950 if (f->is_function() && f->package() == NULL)
952 std::pair<Seen_objects::iterator, bool> ins =
953 this->seen_objects_->insert(f);
954 if (ins.second)
956 // This is the first time we have seen this name.
957 if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
958 return TRAVERSE_EXIT;
963 Temporary_reference_expression* tre = e->temporary_reference_expression();
964 if (tre != NULL)
966 Temporary_statement* ts = tre->statement();
967 Expression* init = ts->init();
968 if (init != NULL)
970 std::pair<Seen_objects::iterator, bool> ins =
971 this->seen_objects_->insert(ts);
972 if (ins.second)
974 // This is the first time we have seen this temporary
975 // statement.
976 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
977 return TRAVERSE_EXIT;
982 return TRAVERSE_CONTINUE;
985 // Return true if EXPR, PREINIT, or DEP refers to VAR.
987 static bool
988 expression_requires(Expression* expr, Block* preinit, Named_object* dep,
989 Named_object* var)
991 Find_var::Seen_objects seen_objects;
992 Find_var find_var(var, &seen_objects);
993 if (expr != NULL)
994 Expression::traverse(&expr, &find_var);
995 if (preinit != NULL)
996 preinit->traverse(&find_var);
997 if (dep != NULL)
999 Expression* init = dep->var_value()->init();
1000 if (init != NULL)
1001 Expression::traverse(&init, &find_var);
1002 if (dep->var_value()->has_pre_init())
1003 dep->var_value()->preinit()->traverse(&find_var);
1006 return find_var.found();
1009 // Sort variable initializations. If the initialization expression
1010 // for variable A refers directly or indirectly to the initialization
1011 // expression for variable B, then we must initialize B before A.
1013 class Var_init
1015 public:
1016 Var_init()
1017 : var_(NULL), init_(NULL), dep_count_(0)
1020 Var_init(Named_object* var, Bstatement* init)
1021 : var_(var), init_(init), dep_count_(0)
1024 // Return the variable.
1025 Named_object*
1026 var() const
1027 { return this->var_; }
1029 // Return the initialization expression.
1030 Bstatement*
1031 init() const
1032 { return this->init_; }
1034 // Return the number of remaining dependencies.
1035 size_t
1036 dep_count() const
1037 { return this->dep_count_; }
1039 // Increment the number of dependencies.
1040 void
1041 add_dependency()
1042 { ++this->dep_count_; }
1044 // Decrement the number of dependencies.
1045 void
1046 remove_dependency()
1047 { --this->dep_count_; }
1049 private:
1050 // The variable being initialized.
1051 Named_object* var_;
1052 // The initialization statement.
1053 Bstatement* init_;
1054 // The number of initializations this is dependent on. A variable
1055 // initialization should not be emitted if any of its dependencies
1056 // have not yet been resolved.
1057 size_t dep_count_;
1060 // For comparing Var_init keys in a map.
1062 inline bool
1063 operator<(const Var_init& v1, const Var_init& v2)
1064 { return v1.var()->name() < v2.var()->name(); }
1066 typedef std::list<Var_init> Var_inits;
1068 // Sort the variable initializations. The rule we follow is that we
1069 // emit them in the order they appear in the array, except that if the
1070 // initialization expression for a variable V1 depends upon another
1071 // variable V2 then we initialize V1 after V2.
1073 static void
1074 sort_var_inits(Gogo* gogo, Var_inits* var_inits)
1076 if (var_inits->empty())
1077 return;
1079 typedef std::pair<Named_object*, Named_object*> No_no;
1080 typedef std::map<No_no, bool> Cache;
1081 Cache cache;
1083 // A mapping from a variable initialization to a set of
1084 // variable initializations that depend on it.
1085 typedef std::map<Var_init, std::set<Var_init*> > Init_deps;
1086 Init_deps init_deps;
1087 bool init_loop = false;
1088 for (Var_inits::iterator p1 = var_inits->begin();
1089 p1 != var_inits->end();
1090 ++p1)
1092 Named_object* var = p1->var();
1093 Expression* init = var->var_value()->init();
1094 Block* preinit = var->var_value()->preinit();
1095 Named_object* dep = gogo->var_depends_on(var->var_value());
1097 // Start walking through the list to see which variables VAR
1098 // needs to wait for.
1099 for (Var_inits::iterator p2 = var_inits->begin();
1100 p2 != var_inits->end();
1101 ++p2)
1103 if (var == p2->var())
1104 continue;
1106 Named_object* p2var = p2->var();
1107 No_no key(var, p2var);
1108 std::pair<Cache::iterator, bool> ins =
1109 cache.insert(std::make_pair(key, false));
1110 if (ins.second)
1111 ins.first->second = expression_requires(init, preinit, dep, p2var);
1112 if (ins.first->second)
1114 // VAR depends on P2VAR.
1115 init_deps[*p2].insert(&(*p1));
1116 p1->add_dependency();
1118 // Check for cycles.
1119 key = std::make_pair(p2var, var);
1120 ins = cache.insert(std::make_pair(key, false));
1121 if (ins.second)
1122 ins.first->second =
1123 expression_requires(p2var->var_value()->init(),
1124 p2var->var_value()->preinit(),
1125 gogo->var_depends_on(p2var->var_value()),
1126 var);
1127 if (ins.first->second)
1129 error_at(var->location(),
1130 ("initialization expressions for %qs and "
1131 "%qs depend upon each other"),
1132 var->message_name().c_str(),
1133 p2var->message_name().c_str());
1134 inform(p2->var()->location(), "%qs defined here",
1135 p2var->message_name().c_str());
1136 init_loop = true;
1137 break;
1143 // If there are no dependencies then the declaration order is sorted.
1144 if (!init_deps.empty() && !init_loop)
1146 // Otherwise, sort variable initializations by emitting all variables with
1147 // no dependencies in declaration order. VAR_INITS is already in
1148 // declaration order.
1149 Var_inits ready;
1150 while (!var_inits->empty())
1152 Var_inits::iterator v1;;
1153 for (v1 = var_inits->begin(); v1 != var_inits->end(); ++v1)
1155 if (v1->dep_count() == 0)
1156 break;
1158 go_assert(v1 != var_inits->end());
1160 // V1 either has no dependencies or its dependencies have already
1161 // been emitted, add it to READY next. When V1 is emitted, remove
1162 // a dependency from each V that depends on V1.
1163 ready.splice(ready.end(), *var_inits, v1);
1165 Init_deps::iterator p1 = init_deps.find(*v1);
1166 if (p1 != init_deps.end())
1168 std::set<Var_init*> resolved = p1->second;
1169 for (std::set<Var_init*>::iterator pv = resolved.begin();
1170 pv != resolved.end();
1171 ++pv)
1172 (*pv)->remove_dependency();
1173 init_deps.erase(p1);
1176 var_inits->swap(ready);
1177 go_assert(init_deps.empty());
1180 // VAR_INITS is in the correct order. For each VAR in VAR_INITS,
1181 // check for a loop of VAR on itself. We only do this if
1182 // INIT is not NULL and there is no dependency; when INIT is
1183 // NULL, it means that PREINIT sets VAR, which we will
1184 // interpret as a loop.
1185 for (Var_inits::const_iterator p = var_inits->begin();
1186 p != var_inits->end();
1187 ++p)
1189 Named_object* var = p->var();
1190 Expression* init = var->var_value()->init();
1191 Block* preinit = var->var_value()->preinit();
1192 Named_object* dep = gogo->var_depends_on(var->var_value());
1193 if (init != NULL && dep == NULL
1194 && expression_requires(init, preinit, NULL, var))
1195 error_at(var->location(),
1196 "initialization expression for %qs depends upon itself",
1197 var->message_name().c_str());
1201 // Write out the global definitions.
1203 void
1204 Gogo::write_globals()
1206 this->build_interface_method_tables();
1208 Bindings* bindings = this->current_bindings();
1210 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
1211 p != bindings->end_declarations();
1212 ++p)
1214 // If any function declarations needed a descriptor, make sure
1215 // we build it.
1216 Named_object* no = p->second;
1217 if (no->is_function_declaration())
1218 no->func_declaration_value()->build_backend_descriptor(this);
1221 // Lists of globally declared types, variables, constants, and functions
1222 // that must be defined.
1223 std::vector<Btype*> type_decls;
1224 std::vector<Bvariable*> var_decls;
1225 std::vector<Bexpression*> const_decls;
1226 std::vector<Bfunction*> func_decls;
1228 // The init function declaration, if necessary.
1229 Named_object* init_fndecl = NULL;
1231 std::vector<Bstatement*> init_stmts;
1232 std::vector<Bstatement*> var_init_stmts;
1234 if (this->is_main_package())
1235 this->init_imports(init_stmts);
1237 // A list of variable initializations.
1238 Var_inits var_inits;
1240 // A list of variables which need to be registered with the garbage
1241 // collector.
1242 size_t count_definitions = bindings->size_definitions();
1243 std::vector<Named_object*> var_gc;
1244 var_gc.reserve(count_definitions);
1246 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1247 p != bindings->end_definitions();
1248 ++p)
1250 Named_object* no = *p;
1251 go_assert(!no->is_type_declaration() && !no->is_function_declaration());
1253 // There is nothing to do for a package.
1254 if (no->is_package())
1255 continue;
1257 // There is nothing to do for an object which was imported from
1258 // a different package into the global scope.
1259 if (no->package() != NULL)
1260 continue;
1262 // Skip blank named functions and constants.
1263 if ((no->is_function() && no->func_value()->is_sink())
1264 || (no->is_const() && no->const_value()->is_sink()))
1265 continue;
1267 // There is nothing useful we can output for constants which
1268 // have ideal or non-integral type.
1269 if (no->is_const())
1271 Type* type = no->const_value()->type();
1272 if (type == NULL)
1273 type = no->const_value()->expr()->type();
1274 if (type->is_abstract() || !type->is_numeric_type())
1275 continue;
1278 if (!no->is_variable())
1279 no->get_backend(this, const_decls, type_decls, func_decls);
1280 else
1282 Variable* var = no->var_value();
1283 Bvariable* bvar = no->get_backend_variable(this, NULL);
1284 var_decls.push_back(bvar);
1286 // Check for a sink variable, which may be used to run an
1287 // initializer purely for its side effects.
1288 bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
1290 Bstatement* var_init_stmt = NULL;
1291 if (!var->has_pre_init())
1293 // If the backend representation of the variable initializer is
1294 // constant, we can just set the initial value using
1295 // global_var_set_init instead of during the init() function.
1296 // The initializer is constant if it is the zero-value of the
1297 // variable's type or if the initial value is an immutable value
1298 // that is not copied to the heap.
1299 bool is_constant_initializer = false;
1300 if (var->init() == NULL)
1301 is_constant_initializer = true;
1302 else
1304 Type* var_type = var->type();
1305 Expression* init = var->init();
1306 Expression* init_cast =
1307 Expression::make_cast(var_type, init, var->location());
1308 is_constant_initializer =
1309 init_cast->is_immutable() && !var_type->has_pointer();
1312 // Non-constant variable initializations might need to create
1313 // temporary variables, which will need the initialization
1314 // function as context.
1315 if (!is_constant_initializer && init_fndecl == NULL)
1316 init_fndecl = this->initialization_function_decl();
1317 Bexpression* var_binit = var->get_init(this, init_fndecl);
1319 if (var_binit == NULL)
1321 else if (is_constant_initializer)
1323 if (expression_requires(var->init(), NULL,
1324 this->var_depends_on(var), no))
1325 error_at(no->location(),
1326 "initialization expression for %qs depends "
1327 "upon itself",
1328 no->message_name().c_str());
1329 this->backend()->global_variable_set_init(bvar, var_binit);
1331 else if (is_sink)
1332 var_init_stmt =
1333 this->backend()->expression_statement(var_binit);
1334 else
1336 Location loc = var->location();
1337 Bexpression* var_expr =
1338 this->backend()->var_expression(bvar, loc);
1339 var_init_stmt =
1340 this->backend()->assignment_statement(var_expr, var_binit,
1341 loc);
1344 else
1346 // We are going to create temporary variables which
1347 // means that we need an fndecl.
1348 if (init_fndecl == NULL)
1349 init_fndecl = this->initialization_function_decl();
1351 Bvariable* var_decl = is_sink ? NULL : bvar;
1352 var_init_stmt = var->get_init_block(this, init_fndecl, var_decl);
1355 if (var_init_stmt != NULL)
1357 if (var->init() == NULL && !var->has_pre_init())
1358 var_init_stmts.push_back(var_init_stmt);
1359 else
1360 var_inits.push_back(Var_init(no, var_init_stmt));
1362 else if (this->var_depends_on(var) != NULL)
1364 // This variable is initialized from something that is
1365 // not in its init or preinit. This variable needs to
1366 // participate in dependency analysis sorting, in case
1367 // some other variable depends on this one.
1368 Btype* btype = no->var_value()->type()->get_backend(this);
1369 Bexpression* zero = this->backend()->zero_expression(btype);
1370 Bstatement* zero_stmt =
1371 this->backend()->expression_statement(zero);
1372 var_inits.push_back(Var_init(no, zero_stmt));
1375 if (!is_sink && var->type()->has_pointer())
1376 var_gc.push_back(no);
1380 // Register global variables with the garbage collector.
1381 this->register_gc_vars(var_gc, init_stmts);
1383 // Simple variable initializations, after all variables are
1384 // registered.
1385 init_stmts.push_back(this->backend()->statement_list(var_init_stmts));
1387 // Complete variable initializations, first sorting them into a
1388 // workable order.
1389 if (!var_inits.empty())
1391 sort_var_inits(this, &var_inits);
1392 for (Var_inits::const_iterator p = var_inits.begin();
1393 p != var_inits.end();
1394 ++p)
1395 init_stmts.push_back(p->init());
1398 // After all the variables are initialized, call the init
1399 // functions if there are any. Init functions take no arguments, so
1400 // we pass in EMPTY_ARGS to call them.
1401 std::vector<Bexpression*> empty_args;
1402 for (std::vector<Named_object*>::const_iterator p =
1403 this->init_functions_.begin();
1404 p != this->init_functions_.end();
1405 ++p)
1407 Location func_loc = (*p)->location();
1408 Function* func = (*p)->func_value();
1409 Bfunction* initfn = func->get_or_make_decl(this, *p);
1410 Bexpression* func_code =
1411 this->backend()->function_code_expression(initfn, func_loc);
1412 Bexpression* call = this->backend()->call_expression(func_code,
1413 empty_args,
1414 NULL, func_loc);
1415 init_stmts.push_back(this->backend()->expression_statement(call));
1418 // Set up a magic function to do all the initialization actions.
1419 // This will be called if this package is imported.
1420 Bstatement* init_fncode = this->backend()->statement_list(init_stmts);
1421 if (this->need_init_fn_ || this->is_main_package())
1423 init_fndecl =
1424 this->create_initialization_function(init_fndecl, init_fncode);
1425 if (init_fndecl != NULL)
1426 func_decls.push_back(init_fndecl->func_value()->get_decl());
1429 // We should not have seen any new bindings created during the conversion.
1430 go_assert(count_definitions == this->current_bindings()->size_definitions());
1432 // Define all globally declared values.
1433 if (!saw_errors())
1434 this->backend()->write_global_definitions(type_decls, const_decls,
1435 func_decls, var_decls);
1438 // Return the current block.
1440 Block*
1441 Gogo::current_block()
1443 if (this->functions_.empty())
1444 return NULL;
1445 else
1446 return this->functions_.back().blocks.back();
1449 // Look up a name in the current binding contour. If PFUNCTION is not
1450 // NULL, set it to the function in which the name is defined, or NULL
1451 // if the name is defined in global scope.
1453 Named_object*
1454 Gogo::lookup(const std::string& name, Named_object** pfunction) const
1456 if (pfunction != NULL)
1457 *pfunction = NULL;
1459 if (Gogo::is_sink_name(name))
1460 return Named_object::make_sink();
1462 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
1463 p != this->functions_.rend();
1464 ++p)
1466 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
1467 if (ret != NULL)
1469 if (pfunction != NULL)
1470 *pfunction = p->function;
1471 return ret;
1475 if (this->package_ != NULL)
1477 Named_object* ret = this->package_->bindings()->lookup(name);
1478 if (ret != NULL)
1480 if (ret->package() != NULL)
1482 std::string dot_alias = "." + ret->package()->package_name();
1483 ret->package()->note_usage(dot_alias);
1485 return ret;
1489 // We do not look in the global namespace. If we did, the global
1490 // namespace would effectively hide names which were defined in
1491 // package scope which we have not yet seen. Instead,
1492 // define_global_names is called after parsing is over to connect
1493 // undefined names at package scope with names defined at global
1494 // scope.
1496 return NULL;
1499 // Look up a name in the current block, without searching enclosing
1500 // blocks.
1502 Named_object*
1503 Gogo::lookup_in_block(const std::string& name) const
1505 go_assert(!this->functions_.empty());
1506 go_assert(!this->functions_.back().blocks.empty());
1507 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
1510 // Look up a name in the global namespace.
1512 Named_object*
1513 Gogo::lookup_global(const char* name) const
1515 return this->globals_->lookup(name);
1518 // Add an imported package.
1520 Package*
1521 Gogo::add_imported_package(const std::string& real_name,
1522 const std::string& alias_arg,
1523 bool is_alias_exported,
1524 const std::string& pkgpath,
1525 const std::string& pkgpath_symbol,
1526 Location location,
1527 bool* padd_to_globals)
1529 Package* ret = this->register_package(pkgpath, pkgpath_symbol, location);
1530 ret->set_package_name(real_name, location);
1532 *padd_to_globals = false;
1534 if (alias_arg == "_")
1536 else if (alias_arg == ".")
1538 *padd_to_globals = true;
1539 std::string dot_alias = "." + real_name;
1540 ret->add_alias(dot_alias, location);
1542 else
1544 std::string alias = alias_arg;
1545 if (alias.empty())
1547 alias = real_name;
1548 is_alias_exported = Lex::is_exported_name(alias);
1550 ret->add_alias(alias, location);
1551 alias = this->pack_hidden_name(alias, is_alias_exported);
1552 Named_object* no = this->package_->bindings()->add_package(alias, ret);
1553 if (!no->is_package())
1554 return NULL;
1557 return ret;
1560 // Register a package. This package may or may not be imported. This
1561 // returns the Package structure for the package, creating if it
1562 // necessary. LOCATION is the location of the import statement that
1563 // led us to see this package. PKGPATH_SYMBOL is the symbol to use
1564 // for names in the package; it may be the empty string, in which case
1565 // we either get it later or make a guess when we need it.
1567 Package*
1568 Gogo::register_package(const std::string& pkgpath,
1569 const std::string& pkgpath_symbol, Location location)
1571 Package* package = NULL;
1572 std::pair<Packages::iterator, bool> ins =
1573 this->packages_.insert(std::make_pair(pkgpath, package));
1574 if (!ins.second)
1576 // We have seen this package name before.
1577 package = ins.first->second;
1578 go_assert(package != NULL && package->pkgpath() == pkgpath);
1579 if (!pkgpath_symbol.empty())
1580 package->set_pkgpath_symbol(pkgpath_symbol);
1581 if (Linemap::is_unknown_location(package->location()))
1582 package->set_location(location);
1584 else
1586 // First time we have seen this package name.
1587 package = new Package(pkgpath, pkgpath_symbol, location);
1588 go_assert(ins.first->second == NULL);
1589 ins.first->second = package;
1592 return package;
1595 // Start compiling a function.
1597 Named_object*
1598 Gogo::start_function(const std::string& name, Function_type* type,
1599 bool add_method_to_type, Location location)
1601 bool at_top_level = this->functions_.empty();
1603 Block* block = new Block(NULL, location);
1605 Named_object* enclosing = (at_top_level
1606 ? NULL
1607 : this->functions_.back().function);
1609 Function* function = new Function(type, enclosing, block, location);
1611 if (type->is_method())
1613 const Typed_identifier* receiver = type->receiver();
1614 Variable* this_param = new Variable(receiver->type(), NULL, false,
1615 true, true, location);
1616 std::string rname = receiver->name();
1617 if (rname.empty() || Gogo::is_sink_name(rname))
1619 // We need to give receivers a name since they wind up in
1620 // DECL_ARGUMENTS. FIXME.
1621 static unsigned int count;
1622 char buf[50];
1623 snprintf(buf, sizeof buf, "r.%u", count);
1624 ++count;
1625 rname = buf;
1627 block->bindings()->add_variable(rname, NULL, this_param);
1630 const Typed_identifier_list* parameters = type->parameters();
1631 bool is_varargs = type->is_varargs();
1632 if (parameters != NULL)
1634 for (Typed_identifier_list::const_iterator p = parameters->begin();
1635 p != parameters->end();
1636 ++p)
1638 Variable* param = new Variable(p->type(), NULL, false, true, false,
1639 p->location());
1640 if (is_varargs && p + 1 == parameters->end())
1641 param->set_is_varargs_parameter();
1643 std::string pname = p->name();
1644 if (pname.empty() || Gogo::is_sink_name(pname))
1646 // We need to give parameters a name since they wind up
1647 // in DECL_ARGUMENTS. FIXME.
1648 static unsigned int count;
1649 char buf[50];
1650 snprintf(buf, sizeof buf, "p.%u", count);
1651 ++count;
1652 pname = buf;
1654 block->bindings()->add_variable(pname, NULL, param);
1658 function->create_result_variables(this);
1660 const std::string* pname;
1661 std::string nested_name;
1662 bool is_init = false;
1663 if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
1665 if ((type->parameters() != NULL && !type->parameters()->empty())
1666 || (type->results() != NULL && !type->results()->empty()))
1667 error_at(location,
1668 "func init must have no arguments and no return values");
1669 // There can be multiple "init" functions, so give them each a
1670 // different name.
1671 static int init_count;
1672 char buf[30];
1673 snprintf(buf, sizeof buf, ".$init%d", init_count);
1674 ++init_count;
1675 nested_name = buf;
1676 pname = &nested_name;
1677 is_init = true;
1679 else if (!name.empty())
1680 pname = &name;
1681 else
1683 // Invent a name for a nested function.
1684 static int nested_count;
1685 char buf[30];
1686 snprintf(buf, sizeof buf, ".$nested%d", nested_count);
1687 ++nested_count;
1688 nested_name = buf;
1689 pname = &nested_name;
1692 Named_object* ret;
1693 if (Gogo::is_sink_name(*pname))
1695 static int sink_count;
1696 char buf[30];
1697 snprintf(buf, sizeof buf, ".$sink%d", sink_count);
1698 ++sink_count;
1699 ret = this->package_->bindings()->add_function(buf, NULL, function);
1700 ret->func_value()->set_is_sink();
1702 else if (!type->is_method())
1704 ret = this->package_->bindings()->add_function(*pname, NULL, function);
1705 if (!ret->is_function() || ret->func_value() != function)
1707 // Redefinition error. Invent a name to avoid knockon
1708 // errors.
1709 static int redefinition_count;
1710 char buf[30];
1711 snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
1712 ++redefinition_count;
1713 ret = this->package_->bindings()->add_function(buf, NULL, function);
1716 else
1718 if (!add_method_to_type)
1719 ret = Named_object::make_function(name, NULL, function);
1720 else
1722 go_assert(at_top_level);
1723 Type* rtype = type->receiver()->type();
1725 // We want to look through the pointer created by the
1726 // parser, without getting an error if the type is not yet
1727 // defined.
1728 if (rtype->classification() == Type::TYPE_POINTER)
1729 rtype = rtype->points_to();
1731 if (rtype->is_error_type())
1732 ret = Named_object::make_function(name, NULL, function);
1733 else if (rtype->named_type() != NULL)
1735 ret = rtype->named_type()->add_method(name, function);
1736 if (!ret->is_function())
1738 // Redefinition error.
1739 ret = Named_object::make_function(name, NULL, function);
1742 else if (rtype->forward_declaration_type() != NULL)
1744 Named_object* type_no =
1745 rtype->forward_declaration_type()->named_object();
1746 if (type_no->is_unknown())
1748 // If we are seeing methods it really must be a
1749 // type. Declare it as such. An alternative would
1750 // be to support lists of methods for unknown
1751 // expressions. Either way the error messages if
1752 // this is not a type are going to get confusing.
1753 Named_object* declared =
1754 this->declare_package_type(type_no->name(),
1755 type_no->location());
1756 go_assert(declared
1757 == type_no->unknown_value()->real_named_object());
1759 ret = rtype->forward_declaration_type()->add_method(name,
1760 function);
1762 else
1764 error_at(type->receiver()->location(),
1765 "invalid receiver type (receiver must be a named type)");
1766 ret = Named_object::make_function(name, NULL, function);
1769 this->package_->bindings()->add_method(ret);
1772 this->functions_.resize(this->functions_.size() + 1);
1773 Open_function& of(this->functions_.back());
1774 of.function = ret;
1775 of.blocks.push_back(block);
1777 if (is_init)
1779 this->init_functions_.push_back(ret);
1780 this->need_init_fn_ = true;
1783 return ret;
1786 // Finish compiling a function.
1788 void
1789 Gogo::finish_function(Location location)
1791 this->finish_block(location);
1792 go_assert(this->functions_.back().blocks.empty());
1793 this->functions_.pop_back();
1796 // Return the current function.
1798 Named_object*
1799 Gogo::current_function() const
1801 go_assert(!this->functions_.empty());
1802 return this->functions_.back().function;
1805 // Start a new block.
1807 void
1808 Gogo::start_block(Location location)
1810 go_assert(!this->functions_.empty());
1811 Block* block = new Block(this->current_block(), location);
1812 this->functions_.back().blocks.push_back(block);
1815 // Finish a block.
1817 Block*
1818 Gogo::finish_block(Location location)
1820 go_assert(!this->functions_.empty());
1821 go_assert(!this->functions_.back().blocks.empty());
1822 Block* block = this->functions_.back().blocks.back();
1823 this->functions_.back().blocks.pop_back();
1824 block->set_end_location(location);
1825 return block;
1828 // Add an erroneous name.
1830 Named_object*
1831 Gogo::add_erroneous_name(const std::string& name)
1833 return this->package_->bindings()->add_erroneous_name(name);
1836 // Add an unknown name.
1838 Named_object*
1839 Gogo::add_unknown_name(const std::string& name, Location location)
1841 return this->package_->bindings()->add_unknown_name(name, location);
1844 // Declare a function.
1846 Named_object*
1847 Gogo::declare_function(const std::string& name, Function_type* type,
1848 Location location)
1850 if (!type->is_method())
1851 return this->current_bindings()->add_function_declaration(name, NULL, type,
1852 location);
1853 else
1855 // We don't bother to add this to the list of global
1856 // declarations.
1857 Type* rtype = type->receiver()->type();
1859 // We want to look through the pointer created by the
1860 // parser, without getting an error if the type is not yet
1861 // defined.
1862 if (rtype->classification() == Type::TYPE_POINTER)
1863 rtype = rtype->points_to();
1865 if (rtype->is_error_type())
1866 return NULL;
1867 else if (rtype->named_type() != NULL)
1868 return rtype->named_type()->add_method_declaration(name, NULL, type,
1869 location);
1870 else if (rtype->forward_declaration_type() != NULL)
1872 Forward_declaration_type* ftype = rtype->forward_declaration_type();
1873 return ftype->add_method_declaration(name, NULL, type, location);
1875 else
1877 error_at(type->receiver()->location(),
1878 "invalid receiver type (receiver must be a named type)");
1879 return Named_object::make_erroneous_name(name);
1884 // Add a label definition.
1886 Label*
1887 Gogo::add_label_definition(const std::string& label_name,
1888 Location location)
1890 go_assert(!this->functions_.empty());
1891 Function* func = this->functions_.back().function->func_value();
1892 Label* label = func->add_label_definition(this, label_name, location);
1893 this->add_statement(Statement::make_label_statement(label, location));
1894 return label;
1897 // Add a label reference.
1899 Label*
1900 Gogo::add_label_reference(const std::string& label_name,
1901 Location location, bool issue_goto_errors)
1903 go_assert(!this->functions_.empty());
1904 Function* func = this->functions_.back().function->func_value();
1905 return func->add_label_reference(this, label_name, location,
1906 issue_goto_errors);
1909 // Return the current binding state.
1911 Bindings_snapshot*
1912 Gogo::bindings_snapshot(Location location)
1914 return new Bindings_snapshot(this->current_block(), location);
1917 // Add a statement.
1919 void
1920 Gogo::add_statement(Statement* statement)
1922 go_assert(!this->functions_.empty()
1923 && !this->functions_.back().blocks.empty());
1924 this->functions_.back().blocks.back()->add_statement(statement);
1927 // Add a block.
1929 void
1930 Gogo::add_block(Block* block, Location location)
1932 go_assert(!this->functions_.empty()
1933 && !this->functions_.back().blocks.empty());
1934 Statement* statement = Statement::make_block_statement(block, location);
1935 this->functions_.back().blocks.back()->add_statement(statement);
1938 // Add a constant.
1940 Named_object*
1941 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
1942 int iota_value)
1944 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
1947 // Add a type.
1949 void
1950 Gogo::add_type(const std::string& name, Type* type, Location location)
1952 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
1953 location);
1954 if (!this->in_global_scope() && no->is_type())
1956 Named_object* f = this->functions_.back().function;
1957 unsigned int index;
1958 if (f->is_function())
1959 index = f->func_value()->new_local_type_index();
1960 else
1961 index = 0;
1962 no->type_value()->set_in_function(f, index);
1966 // Add a named type.
1968 void
1969 Gogo::add_named_type(Named_type* type)
1971 go_assert(this->in_global_scope());
1972 this->current_bindings()->add_named_type(type);
1975 // Declare a type.
1977 Named_object*
1978 Gogo::declare_type(const std::string& name, Location location)
1980 Bindings* bindings = this->current_bindings();
1981 Named_object* no = bindings->add_type_declaration(name, NULL, location);
1982 if (!this->in_global_scope() && no->is_type_declaration())
1984 Named_object* f = this->functions_.back().function;
1985 unsigned int index;
1986 if (f->is_function())
1987 index = f->func_value()->new_local_type_index();
1988 else
1989 index = 0;
1990 no->type_declaration_value()->set_in_function(f, index);
1992 return no;
1995 // Declare a type at the package level.
1997 Named_object*
1998 Gogo::declare_package_type(const std::string& name, Location location)
2000 return this->package_->bindings()->add_type_declaration(name, NULL, location);
2003 // Declare a function at the package level.
2005 Named_object*
2006 Gogo::declare_package_function(const std::string& name, Function_type* type,
2007 Location location)
2009 return this->package_->bindings()->add_function_declaration(name, NULL, type,
2010 location);
2013 // Define a type which was already declared.
2015 void
2016 Gogo::define_type(Named_object* no, Named_type* type)
2018 this->current_bindings()->define_type(no, type);
2021 // Add a variable.
2023 Named_object*
2024 Gogo::add_variable(const std::string& name, Variable* variable)
2026 Named_object* no = this->current_bindings()->add_variable(name, NULL,
2027 variable);
2029 // In a function the middle-end wants to see a DECL_EXPR node.
2030 if (no != NULL
2031 && no->is_variable()
2032 && !no->var_value()->is_parameter()
2033 && !this->functions_.empty())
2034 this->add_statement(Statement::make_variable_declaration(no));
2036 return no;
2039 // Add a sink--a reference to the blank identifier _.
2041 Named_object*
2042 Gogo::add_sink()
2044 return Named_object::make_sink();
2047 // Add a named object for a dot import.
2049 void
2050 Gogo::add_dot_import_object(Named_object* no)
2052 // If the name already exists, then it was defined in some file seen
2053 // earlier. If the earlier name is just a declaration, don't add
2054 // this name, because that will cause the previous declaration to
2055 // merge to this imported name, which should not happen. Just add
2056 // this name to the list of file block names to get appropriate
2057 // errors if we see a later definition.
2058 Named_object* e = this->package_->bindings()->lookup(no->name());
2059 if (e != NULL && e->package() == NULL)
2061 if (e->is_unknown())
2062 e = e->resolve();
2063 if (e->package() == NULL
2064 && (e->is_type_declaration()
2065 || e->is_function_declaration()
2066 || e->is_unknown()))
2068 this->add_file_block_name(no->name(), no->location());
2069 return;
2073 this->current_bindings()->add_named_object(no);
2076 // Add a linkname. This implements the go:linkname compiler directive.
2077 // We only support this for functions and function declarations.
2079 void
2080 Gogo::add_linkname(const std::string& go_name, bool is_exported,
2081 const std::string& ext_name, Location loc)
2083 Named_object* no =
2084 this->package_->bindings()->lookup(this->pack_hidden_name(go_name,
2085 is_exported));
2086 if (no == NULL)
2087 error_at(loc, "%s is not defined", go_name.c_str());
2088 else if (no->is_function())
2089 no->func_value()->set_asm_name(ext_name);
2090 else if (no->is_function_declaration())
2091 no->func_declaration_value()->set_asm_name(ext_name);
2092 else
2093 error_at(loc,
2094 ("%s is not a function; "
2095 "//go:linkname is only supported for functions"),
2096 go_name.c_str());
2099 // Mark all local variables used. This is used when some types of
2100 // parse error occur.
2102 void
2103 Gogo::mark_locals_used()
2105 for (Open_functions::iterator pf = this->functions_.begin();
2106 pf != this->functions_.end();
2107 ++pf)
2109 for (std::vector<Block*>::iterator pb = pf->blocks.begin();
2110 pb != pf->blocks.end();
2111 ++pb)
2112 (*pb)->bindings()->mark_locals_used();
2116 // Record that we've seen an interface type.
2118 void
2119 Gogo::record_interface_type(Interface_type* itype)
2121 this->interface_types_.push_back(itype);
2124 // Return an erroneous name that indicates that an error has already
2125 // been reported.
2127 std::string
2128 Gogo::erroneous_name()
2130 static int erroneous_count;
2131 char name[50];
2132 snprintf(name, sizeof name, "$erroneous%d", erroneous_count);
2133 ++erroneous_count;
2134 return name;
2137 // Return whether a name is an erroneous name.
2139 bool
2140 Gogo::is_erroneous_name(const std::string& name)
2142 return name.compare(0, 10, "$erroneous") == 0;
2145 // Return a name for a thunk object.
2147 std::string
2148 Gogo::thunk_name()
2150 static int thunk_count;
2151 char thunk_name[50];
2152 snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
2153 ++thunk_count;
2154 return thunk_name;
2157 // Return whether a function is a thunk.
2159 bool
2160 Gogo::is_thunk(const Named_object* no)
2162 return no->name().compare(0, 6, "$thunk") == 0;
2165 // Define the global names. We do this only after parsing all the
2166 // input files, because the program might define the global names
2167 // itself.
2169 void
2170 Gogo::define_global_names()
2172 for (Bindings::const_declarations_iterator p =
2173 this->globals_->begin_declarations();
2174 p != this->globals_->end_declarations();
2175 ++p)
2177 Named_object* global_no = p->second;
2178 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
2179 Named_object* no = this->package_->bindings()->lookup(name);
2180 if (no == NULL)
2181 continue;
2182 no = no->resolve();
2183 if (no->is_type_declaration())
2185 if (global_no->is_type())
2187 if (no->type_declaration_value()->has_methods())
2188 error_at(no->location(),
2189 "may not define methods for global type");
2190 no->set_type_value(global_no->type_value());
2192 else
2194 error_at(no->location(), "expected type");
2195 Type* errtype = Type::make_error_type();
2196 Named_object* err =
2197 Named_object::make_type("erroneous_type", NULL, errtype,
2198 Linemap::predeclared_location());
2199 no->set_type_value(err->type_value());
2202 else if (no->is_unknown())
2203 no->unknown_value()->set_real_named_object(global_no);
2206 // Give an error if any name is defined in both the package block
2207 // and the file block. For example, this can happen if one file
2208 // imports "fmt" and another file defines a global variable fmt.
2209 for (Bindings::const_declarations_iterator p =
2210 this->package_->bindings()->begin_declarations();
2211 p != this->package_->bindings()->end_declarations();
2212 ++p)
2214 if (p->second->is_unknown()
2215 && p->second->unknown_value()->real_named_object() == NULL)
2217 // No point in warning about an undefined name, as we will
2218 // get other errors later anyhow.
2219 continue;
2221 File_block_names::const_iterator pf =
2222 this->file_block_names_.find(p->second->name());
2223 if (pf != this->file_block_names_.end())
2225 std::string n = p->second->message_name();
2226 error_at(p->second->location(),
2227 "%qs defined as both imported name and global name",
2228 n.c_str());
2229 inform(pf->second, "%qs imported here", n.c_str());
2232 // No package scope identifier may be named "init".
2233 if (!p->second->is_function()
2234 && Gogo::unpack_hidden_name(p->second->name()) == "init")
2236 error_at(p->second->location(),
2237 "cannot declare init - must be func");
2242 // Clear out names in file scope.
2244 void
2245 Gogo::clear_file_scope()
2247 this->package_->bindings()->clear_file_scope(this);
2249 // Warn about packages which were imported but not used.
2250 bool quiet = saw_errors();
2251 for (Packages::iterator p = this->packages_.begin();
2252 p != this->packages_.end();
2253 ++p)
2255 Package* package = p->second;
2256 if (package != this->package_ && !quiet)
2258 for (Package::Aliases::const_iterator p1 = package->aliases().begin();
2259 p1 != package->aliases().end();
2260 ++p1)
2262 if (!p1->second->used())
2264 // Give a more refined error message if the alias name is known.
2265 std::string pkg_name = package->package_name();
2266 if (p1->first != pkg_name && p1->first[0] != '.')
2268 error_at(p1->second->location(),
2269 "imported and not used: %s as %s",
2270 Gogo::message_name(pkg_name).c_str(),
2271 Gogo::message_name(p1->first).c_str());
2273 else
2274 error_at(p1->second->location(),
2275 "imported and not used: %s",
2276 Gogo::message_name(pkg_name).c_str());
2280 package->clear_used();
2283 this->current_file_imported_unsafe_ = false;
2286 // Queue up a type specific function for later writing. These are
2287 // written out in write_specific_type_functions, called after the
2288 // parse tree is lowered.
2290 void
2291 Gogo::queue_specific_type_function(Type* type, Named_type* name,
2292 const std::string& hash_name,
2293 Function_type* hash_fntype,
2294 const std::string& equal_name,
2295 Function_type* equal_fntype)
2297 go_assert(!this->specific_type_functions_are_written_);
2298 go_assert(!this->in_global_scope());
2299 Specific_type_function* tsf = new Specific_type_function(type, name,
2300 hash_name,
2301 hash_fntype,
2302 equal_name,
2303 equal_fntype);
2304 this->specific_type_functions_.push_back(tsf);
2307 // Look for types which need specific hash or equality functions.
2309 class Specific_type_functions : public Traverse
2311 public:
2312 Specific_type_functions(Gogo* gogo)
2313 : Traverse(traverse_types),
2314 gogo_(gogo)
2318 type(Type*);
2320 private:
2321 Gogo* gogo_;
2325 Specific_type_functions::type(Type* t)
2327 Named_object* hash_fn;
2328 Named_object* equal_fn;
2329 switch (t->classification())
2331 case Type::TYPE_NAMED:
2333 Named_type* nt = t->named_type();
2334 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
2335 t->type_functions(this->gogo_, nt, NULL, NULL, &hash_fn, &equal_fn);
2337 // If this is a struct type, we don't want to make functions
2338 // for the unnamed struct.
2339 Type* rt = nt->real_type();
2340 if (rt->struct_type() == NULL)
2342 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2343 return TRAVERSE_EXIT;
2345 else
2347 // If this type is defined in another package, then we don't
2348 // need to worry about the unexported fields.
2349 bool is_defined_elsewhere = nt->named_object()->package() != NULL;
2350 const Struct_field_list* fields = rt->struct_type()->fields();
2351 for (Struct_field_list::const_iterator p = fields->begin();
2352 p != fields->end();
2353 ++p)
2355 if (is_defined_elsewhere
2356 && Gogo::is_hidden_name(p->field_name()))
2357 continue;
2358 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
2359 return TRAVERSE_EXIT;
2363 return TRAVERSE_SKIP_COMPONENTS;
2366 case Type::TYPE_STRUCT:
2367 case Type::TYPE_ARRAY:
2368 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
2369 t->type_functions(this->gogo_, NULL, NULL, NULL, &hash_fn, &equal_fn);
2370 break;
2372 default:
2373 break;
2376 return TRAVERSE_CONTINUE;
2379 // Write out type specific functions.
2381 void
2382 Gogo::write_specific_type_functions()
2384 Specific_type_functions stf(this);
2385 this->traverse(&stf);
2387 while (!this->specific_type_functions_.empty())
2389 Specific_type_function* tsf = this->specific_type_functions_.back();
2390 this->specific_type_functions_.pop_back();
2391 tsf->type->write_specific_type_functions(this, tsf->name,
2392 tsf->hash_name,
2393 tsf->hash_fntype,
2394 tsf->equal_name,
2395 tsf->equal_fntype);
2396 delete tsf;
2398 this->specific_type_functions_are_written_ = true;
2401 // Traverse the tree.
2403 void
2404 Gogo::traverse(Traverse* traverse)
2406 // Traverse the current package first for consistency. The other
2407 // packages will only contain imported types, constants, and
2408 // declarations.
2409 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2410 return;
2411 for (Packages::const_iterator p = this->packages_.begin();
2412 p != this->packages_.end();
2413 ++p)
2415 if (p->second != this->package_)
2417 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2418 break;
2423 // Add a type to verify. This is used for types of sink variables, in
2424 // order to give appropriate error messages.
2426 void
2427 Gogo::add_type_to_verify(Type* type)
2429 this->verify_types_.push_back(type);
2432 // Traversal class used to verify types.
2434 class Verify_types : public Traverse
2436 public:
2437 Verify_types()
2438 : Traverse(traverse_types)
2442 type(Type*);
2445 // Verify that a type is correct.
2448 Verify_types::type(Type* t)
2450 if (!t->verify())
2451 return TRAVERSE_SKIP_COMPONENTS;
2452 return TRAVERSE_CONTINUE;
2455 // Verify that all types are correct.
2457 void
2458 Gogo::verify_types()
2460 Verify_types traverse;
2461 this->traverse(&traverse);
2463 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
2464 p != this->verify_types_.end();
2465 ++p)
2466 (*p)->verify();
2467 this->verify_types_.clear();
2470 // Traversal class used to lower parse tree.
2472 class Lower_parse_tree : public Traverse
2474 public:
2475 Lower_parse_tree(Gogo* gogo, Named_object* function)
2476 : Traverse(traverse_variables
2477 | traverse_constants
2478 | traverse_functions
2479 | traverse_statements
2480 | traverse_expressions),
2481 gogo_(gogo), function_(function), iota_value_(-1), inserter_()
2484 void
2485 set_inserter(const Statement_inserter* inserter)
2486 { this->inserter_ = *inserter; }
2489 variable(Named_object*);
2492 constant(Named_object*, bool);
2495 function(Named_object*);
2498 statement(Block*, size_t* pindex, Statement*);
2501 expression(Expression**);
2503 private:
2504 // General IR.
2505 Gogo* gogo_;
2506 // The function we are traversing.
2507 Named_object* function_;
2508 // Value to use for the predeclared constant iota.
2509 int iota_value_;
2510 // Current statement inserter for use by expressions.
2511 Statement_inserter inserter_;
2514 // Lower variables.
2517 Lower_parse_tree::variable(Named_object* no)
2519 if (!no->is_variable())
2520 return TRAVERSE_CONTINUE;
2522 if (no->is_variable() && no->var_value()->is_global())
2524 // Global variables can have loops in their initialization
2525 // expressions. This is handled in lower_init_expression.
2526 no->var_value()->lower_init_expression(this->gogo_, this->function_,
2527 &this->inserter_);
2528 return TRAVERSE_CONTINUE;
2531 // This is a local variable. We are going to return
2532 // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
2533 // initialization expression when we reach the variable declaration
2534 // statement. However, that means that we need to traverse the type
2535 // ourselves.
2536 if (no->var_value()->has_type())
2538 Type* type = no->var_value()->type();
2539 if (type != NULL)
2541 if (Type::traverse(type, this) == TRAVERSE_EXIT)
2542 return TRAVERSE_EXIT;
2545 go_assert(!no->var_value()->has_pre_init());
2547 return TRAVERSE_SKIP_COMPONENTS;
2550 // Lower constants. We handle constants specially so that we can set
2551 // the right value for the predeclared constant iota. This works in
2552 // conjunction with the way we lower Const_expression objects.
2555 Lower_parse_tree::constant(Named_object* no, bool)
2557 Named_constant* nc = no->const_value();
2559 // Don't get into trouble if the constant's initializer expression
2560 // refers to the constant itself.
2561 if (nc->lowering())
2562 return TRAVERSE_CONTINUE;
2563 nc->set_lowering();
2565 go_assert(this->iota_value_ == -1);
2566 this->iota_value_ = nc->iota_value();
2567 nc->traverse_expression(this);
2568 this->iota_value_ = -1;
2570 nc->clear_lowering();
2572 // We will traverse the expression a second time, but that will be
2573 // fast.
2575 return TRAVERSE_CONTINUE;
2578 // Lower the body of a function, and set the closure type. Record the
2579 // function while lowering it, so that we can pass it down when
2580 // lowering an expression.
2583 Lower_parse_tree::function(Named_object* no)
2585 no->func_value()->set_closure_type();
2587 go_assert(this->function_ == NULL);
2588 this->function_ = no;
2589 int t = no->func_value()->traverse(this);
2590 this->function_ = NULL;
2592 if (t == TRAVERSE_EXIT)
2593 return t;
2594 return TRAVERSE_SKIP_COMPONENTS;
2597 // Lower statement parse trees.
2600 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
2602 // Because we explicitly traverse the statement's contents
2603 // ourselves, we want to skip block statements here. There is
2604 // nothing to lower in a block statement.
2605 if (sorig->is_block_statement())
2606 return TRAVERSE_CONTINUE;
2608 Statement_inserter hold_inserter(this->inserter_);
2609 this->inserter_ = Statement_inserter(block, pindex);
2611 // Lower the expressions first.
2612 int t = sorig->traverse_contents(this);
2613 if (t == TRAVERSE_EXIT)
2615 this->inserter_ = hold_inserter;
2616 return t;
2619 // Keep lowering until nothing changes.
2620 Statement* s = sorig;
2621 while (true)
2623 Statement* snew = s->lower(this->gogo_, this->function_, block,
2624 &this->inserter_);
2625 if (snew == s)
2626 break;
2627 s = snew;
2628 t = s->traverse_contents(this);
2629 if (t == TRAVERSE_EXIT)
2631 this->inserter_ = hold_inserter;
2632 return t;
2636 if (s != sorig)
2637 block->replace_statement(*pindex, s);
2639 this->inserter_ = hold_inserter;
2640 return TRAVERSE_SKIP_COMPONENTS;
2643 // Lower expression parse trees.
2646 Lower_parse_tree::expression(Expression** pexpr)
2648 // We have to lower all subexpressions first, so that we can get
2649 // their type if necessary. This is awkward, because we don't have
2650 // a postorder traversal pass.
2651 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
2652 return TRAVERSE_EXIT;
2653 // Keep lowering until nothing changes.
2654 while (true)
2656 Expression* e = *pexpr;
2657 Expression* enew = e->lower(this->gogo_, this->function_,
2658 &this->inserter_, this->iota_value_);
2659 if (enew == e)
2660 break;
2661 if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
2662 return TRAVERSE_EXIT;
2663 *pexpr = enew;
2665 return TRAVERSE_SKIP_COMPONENTS;
2668 // Lower the parse tree. This is called after the parse is complete,
2669 // when all names should be resolved.
2671 void
2672 Gogo::lower_parse_tree()
2674 Lower_parse_tree lower_parse_tree(this, NULL);
2675 this->traverse(&lower_parse_tree);
2677 // There might be type definitions that involve expressions such as the
2678 // array length. Make sure to lower these expressions as well. Otherwise,
2679 // errors hidden within a type can introduce unexpected errors into later
2680 // passes.
2681 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
2682 p != this->verify_types_.end();
2683 ++p)
2684 Type::traverse(*p, &lower_parse_tree);
2687 // Lower a block.
2689 void
2690 Gogo::lower_block(Named_object* function, Block* block)
2692 Lower_parse_tree lower_parse_tree(this, function);
2693 block->traverse(&lower_parse_tree);
2696 // Lower an expression. INSERTER may be NULL, in which case the
2697 // expression had better not need to create any temporaries.
2699 void
2700 Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
2701 Expression** pexpr)
2703 Lower_parse_tree lower_parse_tree(this, function);
2704 if (inserter != NULL)
2705 lower_parse_tree.set_inserter(inserter);
2706 lower_parse_tree.expression(pexpr);
2709 // Lower a constant. This is called when lowering a reference to a
2710 // constant. We have to make sure that the constant has already been
2711 // lowered.
2713 void
2714 Gogo::lower_constant(Named_object* no)
2716 go_assert(no->is_const());
2717 Lower_parse_tree lower(this, NULL);
2718 lower.constant(no, false);
2721 // Traverse the tree to create function descriptors as needed.
2723 class Create_function_descriptors : public Traverse
2725 public:
2726 Create_function_descriptors(Gogo* gogo)
2727 : Traverse(traverse_functions | traverse_expressions),
2728 gogo_(gogo)
2732 function(Named_object*);
2735 expression(Expression**);
2737 private:
2738 Gogo* gogo_;
2741 // Create a descriptor for every top-level exported function.
2744 Create_function_descriptors::function(Named_object* no)
2746 if (no->is_function()
2747 && no->func_value()->enclosing() == NULL
2748 && !no->func_value()->is_method()
2749 && !Gogo::is_hidden_name(no->name())
2750 && !Gogo::is_thunk(no))
2751 no->func_value()->descriptor(this->gogo_, no);
2753 return TRAVERSE_CONTINUE;
2756 // If we see a function referenced in any way other than calling it,
2757 // create a descriptor for it.
2760 Create_function_descriptors::expression(Expression** pexpr)
2762 Expression* expr = *pexpr;
2764 Func_expression* fe = expr->func_expression();
2765 if (fe != NULL)
2767 // We would not get here for a call to this function, so this is
2768 // a reference to a function other than calling it. We need a
2769 // descriptor.
2770 if (fe->closure() != NULL)
2771 return TRAVERSE_CONTINUE;
2772 Named_object* no = fe->named_object();
2773 if (no->is_function() && !no->func_value()->is_method())
2774 no->func_value()->descriptor(this->gogo_, no);
2775 else if (no->is_function_declaration()
2776 && !no->func_declaration_value()->type()->is_method()
2777 && !Linemap::is_predeclared_location(no->location()))
2778 no->func_declaration_value()->descriptor(this->gogo_, no);
2779 return TRAVERSE_CONTINUE;
2782 Bound_method_expression* bme = expr->bound_method_expression();
2783 if (bme != NULL)
2785 // We would not get here for a call to this method, so this is a
2786 // method value. We need to create a thunk.
2787 Bound_method_expression::create_thunk(this->gogo_, bme->method(),
2788 bme->function());
2789 return TRAVERSE_CONTINUE;
2792 Interface_field_reference_expression* ifre =
2793 expr->interface_field_reference_expression();
2794 if (ifre != NULL)
2796 // We would not get here for a call to this interface method, so
2797 // this is a method value. We need to create a thunk.
2798 Interface_type* type = ifre->expr()->type()->interface_type();
2799 if (type != NULL)
2800 Interface_field_reference_expression::create_thunk(this->gogo_, type,
2801 ifre->name());
2802 return TRAVERSE_CONTINUE;
2805 Call_expression* ce = expr->call_expression();
2806 if (ce != NULL)
2808 Expression* fn = ce->fn();
2809 if (fn->func_expression() != NULL
2810 || fn->bound_method_expression() != NULL
2811 || fn->interface_field_reference_expression() != NULL)
2813 // Traverse the arguments but not the function.
2814 Expression_list* args = ce->args();
2815 if (args != NULL)
2817 if (args->traverse(this) == TRAVERSE_EXIT)
2818 return TRAVERSE_EXIT;
2820 return TRAVERSE_SKIP_COMPONENTS;
2824 return TRAVERSE_CONTINUE;
2827 // Create function descriptors as needed. We need a function
2828 // descriptor for all exported functions and for all functions that
2829 // are referenced without being called.
2831 void
2832 Gogo::create_function_descriptors()
2834 // Create a function descriptor for any exported function that is
2835 // declared in this package. This is so that we have a descriptor
2836 // for functions written in assembly. Gather the descriptors first
2837 // so that we don't add declarations while looping over them.
2838 std::vector<Named_object*> fndecls;
2839 Bindings* b = this->package_->bindings();
2840 for (Bindings::const_declarations_iterator p = b->begin_declarations();
2841 p != b->end_declarations();
2842 ++p)
2844 Named_object* no = p->second;
2845 if (no->is_function_declaration()
2846 && !no->func_declaration_value()->type()->is_method()
2847 && !Linemap::is_predeclared_location(no->location())
2848 && !Gogo::is_hidden_name(no->name()))
2849 fndecls.push_back(no);
2851 for (std::vector<Named_object*>::const_iterator p = fndecls.begin();
2852 p != fndecls.end();
2853 ++p)
2854 (*p)->func_declaration_value()->descriptor(this, *p);
2855 fndecls.clear();
2857 Create_function_descriptors cfd(this);
2858 this->traverse(&cfd);
2861 // Look for interface types to finalize methods of inherited
2862 // interfaces.
2864 class Finalize_methods : public Traverse
2866 public:
2867 Finalize_methods(Gogo* gogo)
2868 : Traverse(traverse_types),
2869 gogo_(gogo)
2873 type(Type*);
2875 private:
2876 Gogo* gogo_;
2879 // Finalize the methods of an interface type.
2882 Finalize_methods::type(Type* t)
2884 // Check the classification so that we don't finalize the methods
2885 // twice for a named interface type.
2886 switch (t->classification())
2888 case Type::TYPE_INTERFACE:
2889 t->interface_type()->finalize_methods();
2890 break;
2892 case Type::TYPE_NAMED:
2894 // We have to finalize the methods of the real type first.
2895 // But if the real type is a struct type, then we only want to
2896 // finalize the methods of the field types, not of the struct
2897 // type itself. We don't want to add methods to the struct,
2898 // since it has a name.
2899 Named_type* nt = t->named_type();
2900 Type* rt = nt->real_type();
2901 if (rt->classification() != Type::TYPE_STRUCT)
2903 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2904 return TRAVERSE_EXIT;
2906 else
2908 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
2909 return TRAVERSE_EXIT;
2912 nt->finalize_methods(this->gogo_);
2914 // If this type is defined in a different package, then finalize the
2915 // types of all the methods, since we won't see them otherwise.
2916 if (nt->named_object()->package() != NULL && nt->has_any_methods())
2918 const Methods* methods = nt->methods();
2919 for (Methods::const_iterator p = methods->begin();
2920 p != methods->end();
2921 ++p)
2923 if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
2924 return TRAVERSE_EXIT;
2928 // Finalize the types of all methods that are declared but not
2929 // defined, since we won't see the declarations otherwise.
2930 if (nt->named_object()->package() == NULL
2931 && nt->local_methods() != NULL)
2933 const Bindings* methods = nt->local_methods();
2934 for (Bindings::const_declarations_iterator p =
2935 methods->begin_declarations();
2936 p != methods->end_declarations();
2937 p++)
2939 if (p->second->is_function_declaration())
2941 Type* mt = p->second->func_declaration_value()->type();
2942 if (Type::traverse(mt, this) == TRAVERSE_EXIT)
2943 return TRAVERSE_EXIT;
2948 return TRAVERSE_SKIP_COMPONENTS;
2951 case Type::TYPE_STRUCT:
2952 // Traverse the field types first in case there is an embedded
2953 // field with methods that the struct should inherit.
2954 if (t->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
2955 return TRAVERSE_EXIT;
2956 t->struct_type()->finalize_methods(this->gogo_);
2957 return TRAVERSE_SKIP_COMPONENTS;
2959 default:
2960 break;
2963 return TRAVERSE_CONTINUE;
2966 // Finalize method lists and build stub methods for types.
2968 void
2969 Gogo::finalize_methods()
2971 Finalize_methods finalize(this);
2972 this->traverse(&finalize);
2975 // Set types for unspecified variables and constants.
2977 void
2978 Gogo::determine_types()
2980 Bindings* bindings = this->current_bindings();
2981 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
2982 p != bindings->end_definitions();
2983 ++p)
2985 if ((*p)->is_function())
2986 (*p)->func_value()->determine_types();
2987 else if ((*p)->is_variable())
2988 (*p)->var_value()->determine_type();
2989 else if ((*p)->is_const())
2990 (*p)->const_value()->determine_type();
2992 // See if a variable requires us to build an initialization
2993 // function. We know that we will see all global variables
2994 // here.
2995 if (!this->need_init_fn_ && (*p)->is_variable())
2997 Variable* variable = (*p)->var_value();
2999 // If this is a global variable which requires runtime
3000 // initialization, we need an initialization function.
3001 if (!variable->is_global())
3003 else if (variable->init() == NULL)
3005 else if (variable->type()->interface_type() != NULL)
3006 this->need_init_fn_ = true;
3007 else if (variable->init()->is_constant())
3009 else if (!variable->init()->is_composite_literal())
3010 this->need_init_fn_ = true;
3011 else if (variable->init()->is_nonconstant_composite_literal())
3012 this->need_init_fn_ = true;
3014 // If this is a global variable which holds a pointer value,
3015 // then we need an initialization function to register it as a
3016 // GC root.
3017 if (variable->is_global() && variable->type()->has_pointer())
3018 this->need_init_fn_ = true;
3022 // Determine the types of constants in packages.
3023 for (Packages::const_iterator p = this->packages_.begin();
3024 p != this->packages_.end();
3025 ++p)
3026 p->second->determine_types();
3029 // Traversal class used for type checking.
3031 class Check_types_traverse : public Traverse
3033 public:
3034 Check_types_traverse(Gogo* gogo)
3035 : Traverse(traverse_variables
3036 | traverse_constants
3037 | traverse_functions
3038 | traverse_statements
3039 | traverse_expressions),
3040 gogo_(gogo)
3044 variable(Named_object*);
3047 constant(Named_object*, bool);
3050 function(Named_object*);
3053 statement(Block*, size_t* pindex, Statement*);
3056 expression(Expression**);
3058 private:
3059 // General IR.
3060 Gogo* gogo_;
3063 // Check that a variable initializer has the right type.
3066 Check_types_traverse::variable(Named_object* named_object)
3068 if (named_object->is_variable())
3070 Variable* var = named_object->var_value();
3072 // Give error if variable type is not defined.
3073 var->type()->base();
3075 Expression* init = var->init();
3076 std::string reason;
3077 if (init != NULL
3078 && !Type::are_assignable(var->type(), init->type(), &reason))
3080 if (reason.empty())
3081 error_at(var->location(), "incompatible type in initialization");
3082 else
3083 error_at(var->location(),
3084 "incompatible type in initialization (%s)",
3085 reason.c_str());
3086 init = Expression::make_error(named_object->location());
3087 var->clear_init();
3089 else if (init != NULL
3090 && init->func_expression() != NULL)
3092 Named_object* no = init->func_expression()->named_object();
3093 Function_type* fntype;
3094 if (no->is_function())
3095 fntype = no->func_value()->type();
3096 else if (no->is_function_declaration())
3097 fntype = no->func_declaration_value()->type();
3098 else
3099 go_unreachable();
3101 // Builtin functions cannot be used as function values for variable
3102 // initialization.
3103 if (fntype->is_builtin())
3105 error_at(init->location(),
3106 "invalid use of special builtin function %qs; "
3107 "must be called",
3108 no->message_name().c_str());
3111 if (!var->is_used()
3112 && !var->is_global()
3113 && !var->is_parameter()
3114 && !var->is_receiver()
3115 && !var->type()->is_error()
3116 && (init == NULL || !init->is_error_expression())
3117 && !Lex::is_invalid_identifier(named_object->name()))
3118 error_at(var->location(), "%qs declared and not used",
3119 named_object->message_name().c_str());
3121 return TRAVERSE_CONTINUE;
3124 // Check that a constant initializer has the right type.
3127 Check_types_traverse::constant(Named_object* named_object, bool)
3129 Named_constant* constant = named_object->const_value();
3130 Type* ctype = constant->type();
3131 if (ctype->integer_type() == NULL
3132 && ctype->float_type() == NULL
3133 && ctype->complex_type() == NULL
3134 && !ctype->is_boolean_type()
3135 && !ctype->is_string_type())
3137 if (ctype->is_nil_type())
3138 error_at(constant->location(), "const initializer cannot be nil");
3139 else if (!ctype->is_error())
3140 error_at(constant->location(), "invalid constant type");
3141 constant->set_error();
3143 else if (!constant->expr()->is_constant())
3145 error_at(constant->expr()->location(), "expression is not constant");
3146 constant->set_error();
3148 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
3149 NULL))
3151 error_at(constant->location(),
3152 "initialization expression has wrong type");
3153 constant->set_error();
3155 return TRAVERSE_CONTINUE;
3158 // There are no types to check in a function, but this is where we
3159 // issue warnings about labels which are defined but not referenced.
3162 Check_types_traverse::function(Named_object* no)
3164 no->func_value()->check_labels();
3165 return TRAVERSE_CONTINUE;
3168 // Check that types are valid in a statement.
3171 Check_types_traverse::statement(Block*, size_t*, Statement* s)
3173 s->check_types(this->gogo_);
3174 return TRAVERSE_CONTINUE;
3177 // Check that types are valid in an expression.
3180 Check_types_traverse::expression(Expression** expr)
3182 (*expr)->check_types(this->gogo_);
3183 return TRAVERSE_CONTINUE;
3186 // Check that types are valid.
3188 void
3189 Gogo::check_types()
3191 Check_types_traverse traverse(this);
3192 this->traverse(&traverse);
3194 Bindings* bindings = this->current_bindings();
3195 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
3196 p != bindings->end_declarations();
3197 ++p)
3199 // Also check the types in a function declaration's signature.
3200 Named_object* no = p->second;
3201 if (no->is_function_declaration())
3202 no->func_declaration_value()->check_types();
3206 // Check the types in a single block.
3208 void
3209 Gogo::check_types_in_block(Block* block)
3211 Check_types_traverse traverse(this);
3212 block->traverse(&traverse);
3215 // A traversal class used to find a single shortcut operator within an
3216 // expression.
3218 class Find_shortcut : public Traverse
3220 public:
3221 Find_shortcut()
3222 : Traverse(traverse_blocks
3223 | traverse_statements
3224 | traverse_expressions),
3225 found_(NULL)
3228 // A pointer to the expression which was found, or NULL if none was
3229 // found.
3230 Expression**
3231 found() const
3232 { return this->found_; }
3234 protected:
3236 block(Block*)
3237 { return TRAVERSE_SKIP_COMPONENTS; }
3240 statement(Block*, size_t*, Statement*)
3241 { return TRAVERSE_SKIP_COMPONENTS; }
3244 expression(Expression**);
3246 private:
3247 Expression** found_;
3250 // Find a shortcut expression.
3253 Find_shortcut::expression(Expression** pexpr)
3255 Expression* expr = *pexpr;
3256 Binary_expression* be = expr->binary_expression();
3257 if (be == NULL)
3258 return TRAVERSE_CONTINUE;
3259 Operator op = be->op();
3260 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
3261 return TRAVERSE_CONTINUE;
3262 go_assert(this->found_ == NULL);
3263 this->found_ = pexpr;
3264 return TRAVERSE_EXIT;
3267 // A traversal class used to turn shortcut operators into explicit if
3268 // statements.
3270 class Shortcuts : public Traverse
3272 public:
3273 Shortcuts(Gogo* gogo)
3274 : Traverse(traverse_variables
3275 | traverse_statements),
3276 gogo_(gogo)
3279 protected:
3281 variable(Named_object*);
3284 statement(Block*, size_t*, Statement*);
3286 private:
3287 // Convert a shortcut operator.
3288 Statement*
3289 convert_shortcut(Block* enclosing, Expression** pshortcut);
3291 // The IR.
3292 Gogo* gogo_;
3295 // Remove shortcut operators in a single statement.
3298 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
3300 // FIXME: This approach doesn't work for switch statements, because
3301 // we add the new statements before the whole switch when we need to
3302 // instead add them just before the switch expression. The right
3303 // fix is probably to lower switch statements with nonconstant cases
3304 // to a series of conditionals.
3305 if (s->switch_statement() != NULL)
3306 return TRAVERSE_CONTINUE;
3308 while (true)
3310 Find_shortcut find_shortcut;
3312 // If S is a variable declaration, then ordinary traversal won't
3313 // do anything. We want to explicitly traverse the
3314 // initialization expression if there is one.
3315 Variable_declaration_statement* vds = s->variable_declaration_statement();
3316 Expression* init = NULL;
3317 if (vds == NULL)
3318 s->traverse_contents(&find_shortcut);
3319 else
3321 init = vds->var()->var_value()->init();
3322 if (init == NULL)
3323 return TRAVERSE_CONTINUE;
3324 init->traverse(&init, &find_shortcut);
3326 Expression** pshortcut = find_shortcut.found();
3327 if (pshortcut == NULL)
3328 return TRAVERSE_CONTINUE;
3330 Statement* snew = this->convert_shortcut(block, pshortcut);
3331 block->insert_statement_before(*pindex, snew);
3332 ++*pindex;
3334 if (pshortcut == &init)
3335 vds->var()->var_value()->set_init(init);
3339 // Remove shortcut operators in the initializer of a global variable.
3342 Shortcuts::variable(Named_object* no)
3344 if (no->is_result_variable())
3345 return TRAVERSE_CONTINUE;
3346 Variable* var = no->var_value();
3347 Expression* init = var->init();
3348 if (!var->is_global() || init == NULL)
3349 return TRAVERSE_CONTINUE;
3351 while (true)
3353 Find_shortcut find_shortcut;
3354 init->traverse(&init, &find_shortcut);
3355 Expression** pshortcut = find_shortcut.found();
3356 if (pshortcut == NULL)
3357 return TRAVERSE_CONTINUE;
3359 Statement* snew = this->convert_shortcut(NULL, pshortcut);
3360 var->add_preinit_statement(this->gogo_, snew);
3361 if (pshortcut == &init)
3362 var->set_init(init);
3366 // Given an expression which uses a shortcut operator, return a
3367 // statement which implements it, and update *PSHORTCUT accordingly.
3369 Statement*
3370 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
3372 Binary_expression* shortcut = (*pshortcut)->binary_expression();
3373 Expression* left = shortcut->left();
3374 Expression* right = shortcut->right();
3375 Location loc = shortcut->location();
3377 Block* retblock = new Block(enclosing, loc);
3378 retblock->set_end_location(loc);
3380 Temporary_statement* ts = Statement::make_temporary(shortcut->type(),
3381 left, loc);
3382 retblock->add_statement(ts);
3384 Block* block = new Block(retblock, loc);
3385 block->set_end_location(loc);
3386 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
3387 Statement* assign = Statement::make_assignment(tmpref, right, loc);
3388 block->add_statement(assign);
3390 Expression* cond = Expression::make_temporary_reference(ts, loc);
3391 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
3392 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
3394 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
3395 loc);
3396 retblock->add_statement(if_statement);
3398 *pshortcut = Expression::make_temporary_reference(ts, loc);
3400 delete shortcut;
3402 // Now convert any shortcut operators in LEFT and RIGHT.
3403 Shortcuts shortcuts(this->gogo_);
3404 retblock->traverse(&shortcuts);
3406 return Statement::make_block_statement(retblock, loc);
3409 // Turn shortcut operators into explicit if statements. Doing this
3410 // considerably simplifies the order of evaluation rules.
3412 void
3413 Gogo::remove_shortcuts()
3415 Shortcuts shortcuts(this);
3416 this->traverse(&shortcuts);
3419 // A traversal class which finds all the expressions which must be
3420 // evaluated in order within a statement or larger expression. This
3421 // is used to implement the rules about order of evaluation.
3423 class Find_eval_ordering : public Traverse
3425 private:
3426 typedef std::vector<Expression**> Expression_pointers;
3428 public:
3429 Find_eval_ordering()
3430 : Traverse(traverse_blocks
3431 | traverse_statements
3432 | traverse_expressions),
3433 exprs_()
3436 size_t
3437 size() const
3438 { return this->exprs_.size(); }
3440 typedef Expression_pointers::const_iterator const_iterator;
3442 const_iterator
3443 begin() const
3444 { return this->exprs_.begin(); }
3446 const_iterator
3447 end() const
3448 { return this->exprs_.end(); }
3450 protected:
3452 block(Block*)
3453 { return TRAVERSE_SKIP_COMPONENTS; }
3456 statement(Block*, size_t*, Statement*)
3457 { return TRAVERSE_SKIP_COMPONENTS; }
3460 expression(Expression**);
3462 private:
3463 // A list of pointers to expressions with side-effects.
3464 Expression_pointers exprs_;
3467 // If an expression must be evaluated in order, put it on the list.
3470 Find_eval_ordering::expression(Expression** expression_pointer)
3472 // We have to look at subexpressions before this one.
3473 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
3474 return TRAVERSE_EXIT;
3475 if ((*expression_pointer)->must_eval_in_order())
3476 this->exprs_.push_back(expression_pointer);
3477 return TRAVERSE_SKIP_COMPONENTS;
3480 // A traversal class for ordering evaluations.
3482 class Order_eval : public Traverse
3484 public:
3485 Order_eval(Gogo* gogo)
3486 : Traverse(traverse_variables
3487 | traverse_statements),
3488 gogo_(gogo)
3492 variable(Named_object*);
3495 statement(Block*, size_t*, Statement*);
3497 private:
3498 // The IR.
3499 Gogo* gogo_;
3502 // Implement the order of evaluation rules for a statement.
3505 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
3507 // FIXME: This approach doesn't work for switch statements, because
3508 // we add the new statements before the whole switch when we need to
3509 // instead add them just before the switch expression. The right
3510 // fix is probably to lower switch statements with nonconstant cases
3511 // to a series of conditionals.
3512 if (s->switch_statement() != NULL)
3513 return TRAVERSE_CONTINUE;
3515 Find_eval_ordering find_eval_ordering;
3517 // If S is a variable declaration, then ordinary traversal won't do
3518 // anything. We want to explicitly traverse the initialization
3519 // expression if there is one.
3520 Variable_declaration_statement* vds = s->variable_declaration_statement();
3521 Expression* init = NULL;
3522 Expression* orig_init = NULL;
3523 if (vds == NULL)
3524 s->traverse_contents(&find_eval_ordering);
3525 else
3527 init = vds->var()->var_value()->init();
3528 if (init == NULL)
3529 return TRAVERSE_CONTINUE;
3530 orig_init = init;
3532 // It might seem that this could be
3533 // init->traverse_subexpressions. Unfortunately that can fail
3534 // in a case like
3535 // var err os.Error
3536 // newvar, err := call(arg())
3537 // Here newvar will have an init of call result 0 of
3538 // call(arg()). If we only traverse subexpressions, we will
3539 // only find arg(), and we won't bother to move anything out.
3540 // Then we get to the assignment to err, we will traverse the
3541 // whole statement, and this time we will find both call() and
3542 // arg(), and so we will move them out. This will cause them to
3543 // be put into temporary variables before the assignment to err
3544 // but after the declaration of newvar. To avoid that problem,
3545 // we traverse the entire expression here.
3546 Expression::traverse(&init, &find_eval_ordering);
3549 size_t c = find_eval_ordering.size();
3550 if (c == 0)
3551 return TRAVERSE_CONTINUE;
3553 // If there is only one expression with a side-effect, we can
3554 // usually leave it in place.
3555 if (c == 1)
3557 switch (s->classification())
3559 case Statement::STATEMENT_ASSIGNMENT:
3560 // For an assignment statement, we need to evaluate an
3561 // expression on the right hand side before we evaluate any
3562 // index expression on the left hand side, so for that case
3563 // we always move the expression. Otherwise we mishandle
3564 // m[0] = len(m) where m is a map.
3565 break;
3567 case Statement::STATEMENT_EXPRESSION:
3569 // If this is a call statement that doesn't return any
3570 // values, it will not have been counted as a value to
3571 // move. We need to move any subexpressions in case they
3572 // are themselves call statements that require passing a
3573 // closure.
3574 Expression* expr = s->expression_statement()->expr();
3575 if (expr->call_expression() != NULL
3576 && expr->call_expression()->result_count() == 0)
3577 break;
3578 return TRAVERSE_CONTINUE;
3581 default:
3582 // We can leave the expression in place.
3583 return TRAVERSE_CONTINUE;
3587 bool is_thunk = s->thunk_statement() != NULL;
3588 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
3589 p != find_eval_ordering.end();
3590 ++p)
3592 Expression** pexpr = *p;
3594 // The last expression in a thunk will be the call passed to go
3595 // or defer, which we must not evaluate early.
3596 if (is_thunk && p + 1 == find_eval_ordering.end())
3597 break;
3599 Location loc = (*pexpr)->location();
3600 Statement* s;
3601 if ((*pexpr)->call_expression() == NULL
3602 || (*pexpr)->call_expression()->result_count() < 2)
3604 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
3605 loc);
3606 s = ts;
3607 *pexpr = Expression::make_temporary_reference(ts, loc);
3609 else
3611 // A call expression which returns multiple results needs to
3612 // be handled specially. We can't create a temporary
3613 // because there is no type to give it. Any actual uses of
3614 // the values will be done via Call_result_expressions.
3615 s = Statement::make_statement(*pexpr, true);
3618 block->insert_statement_before(*pindex, s);
3619 ++*pindex;
3622 if (init != orig_init)
3623 vds->var()->var_value()->set_init(init);
3625 return TRAVERSE_CONTINUE;
3628 // Implement the order of evaluation rules for the initializer of a
3629 // global variable.
3632 Order_eval::variable(Named_object* no)
3634 if (no->is_result_variable())
3635 return TRAVERSE_CONTINUE;
3636 Variable* var = no->var_value();
3637 Expression* init = var->init();
3638 if (!var->is_global() || init == NULL)
3639 return TRAVERSE_CONTINUE;
3641 Find_eval_ordering find_eval_ordering;
3642 Expression::traverse(&init, &find_eval_ordering);
3644 if (find_eval_ordering.size() <= 1)
3646 // If there is only one expression with a side-effect, we can
3647 // leave it in place.
3648 return TRAVERSE_SKIP_COMPONENTS;
3651 Expression* orig_init = init;
3653 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
3654 p != find_eval_ordering.end();
3655 ++p)
3657 Expression** pexpr = *p;
3658 Location loc = (*pexpr)->location();
3659 Statement* s;
3660 if ((*pexpr)->call_expression() == NULL
3661 || (*pexpr)->call_expression()->result_count() < 2)
3663 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
3664 loc);
3665 s = ts;
3666 *pexpr = Expression::make_temporary_reference(ts, loc);
3668 else
3670 // A call expression which returns multiple results needs to
3671 // be handled specially.
3672 s = Statement::make_statement(*pexpr, true);
3674 var->add_preinit_statement(this->gogo_, s);
3677 if (init != orig_init)
3678 var->set_init(init);
3680 return TRAVERSE_SKIP_COMPONENTS;
3683 // Use temporary variables to implement the order of evaluation rules.
3685 void
3686 Gogo::order_evaluations()
3688 Order_eval order_eval(this);
3689 this->traverse(&order_eval);
3692 // Traversal to flatten parse tree after order of evaluation rules are applied.
3694 class Flatten : public Traverse
3696 public:
3697 Flatten(Gogo* gogo, Named_object* function)
3698 : Traverse(traverse_variables
3699 | traverse_functions
3700 | traverse_statements
3701 | traverse_expressions),
3702 gogo_(gogo), function_(function), inserter_()
3705 void
3706 set_inserter(const Statement_inserter* inserter)
3707 { this->inserter_ = *inserter; }
3710 variable(Named_object*);
3713 function(Named_object*);
3716 statement(Block*, size_t* pindex, Statement*);
3719 expression(Expression**);
3721 private:
3722 // General IR.
3723 Gogo* gogo_;
3724 // The function we are traversing.
3725 Named_object* function_;
3726 // Current statement inserter for use by expressions.
3727 Statement_inserter inserter_;
3730 // Flatten variables.
3733 Flatten::variable(Named_object* no)
3735 if (!no->is_variable())
3736 return TRAVERSE_CONTINUE;
3738 if (no->is_variable() && no->var_value()->is_global())
3740 // Global variables can have loops in their initialization
3741 // expressions. This is handled in flatten_init_expression.
3742 no->var_value()->flatten_init_expression(this->gogo_, this->function_,
3743 &this->inserter_);
3744 return TRAVERSE_CONTINUE;
3747 go_assert(!no->var_value()->has_pre_init());
3749 return TRAVERSE_SKIP_COMPONENTS;
3752 // Flatten the body of a function. Record the function while flattening it,
3753 // so that we can pass it down when flattening an expression.
3756 Flatten::function(Named_object* no)
3758 go_assert(this->function_ == NULL);
3759 this->function_ = no;
3760 int t = no->func_value()->traverse(this);
3761 this->function_ = NULL;
3763 if (t == TRAVERSE_EXIT)
3764 return t;
3765 return TRAVERSE_SKIP_COMPONENTS;
3768 // Flatten statement parse trees.
3771 Flatten::statement(Block* block, size_t* pindex, Statement* sorig)
3773 // Because we explicitly traverse the statement's contents
3774 // ourselves, we want to skip block statements here. There is
3775 // nothing to flatten in a block statement.
3776 if (sorig->is_block_statement())
3777 return TRAVERSE_CONTINUE;
3779 Statement_inserter hold_inserter(this->inserter_);
3780 this->inserter_ = Statement_inserter(block, pindex);
3782 // Flatten the expressions first.
3783 int t = sorig->traverse_contents(this);
3784 if (t == TRAVERSE_EXIT)
3786 this->inserter_ = hold_inserter;
3787 return t;
3790 // Keep flattening until nothing changes.
3791 Statement* s = sorig;
3792 while (true)
3794 Statement* snew = s->flatten(this->gogo_, this->function_, block,
3795 &this->inserter_);
3796 if (snew == s)
3797 break;
3798 s = snew;
3799 t = s->traverse_contents(this);
3800 if (t == TRAVERSE_EXIT)
3802 this->inserter_ = hold_inserter;
3803 return t;
3807 if (s != sorig)
3808 block->replace_statement(*pindex, s);
3810 this->inserter_ = hold_inserter;
3811 return TRAVERSE_SKIP_COMPONENTS;
3814 // Flatten expression parse trees.
3817 Flatten::expression(Expression** pexpr)
3819 // Keep flattening until nothing changes.
3820 while (true)
3822 Expression* e = *pexpr;
3823 if (e->traverse_subexpressions(this) == TRAVERSE_EXIT)
3824 return TRAVERSE_EXIT;
3826 Expression* enew = e->flatten(this->gogo_, this->function_,
3827 &this->inserter_);
3828 if (enew == e)
3829 break;
3830 *pexpr = enew;
3832 return TRAVERSE_SKIP_COMPONENTS;
3835 // Flatten a block.
3837 void
3838 Gogo::flatten_block(Named_object* function, Block* block)
3840 Flatten flatten(this, function);
3841 block->traverse(&flatten);
3844 // Flatten an expression. INSERTER may be NULL, in which case the
3845 // expression had better not need to create any temporaries.
3847 void
3848 Gogo::flatten_expression(Named_object* function, Statement_inserter* inserter,
3849 Expression** pexpr)
3851 Flatten flatten(this, function);
3852 if (inserter != NULL)
3853 flatten.set_inserter(inserter);
3854 flatten.expression(pexpr);
3857 void
3858 Gogo::flatten()
3860 Flatten flatten(this, NULL);
3861 this->traverse(&flatten);
3864 // Traversal to convert calls to the predeclared recover function to
3865 // pass in an argument indicating whether it can recover from a panic
3866 // or not.
3868 class Convert_recover : public Traverse
3870 public:
3871 Convert_recover(Named_object* arg)
3872 : Traverse(traverse_expressions),
3873 arg_(arg)
3876 protected:
3878 expression(Expression**);
3880 private:
3881 // The argument to pass to the function.
3882 Named_object* arg_;
3885 // Convert calls to recover.
3888 Convert_recover::expression(Expression** pp)
3890 Call_expression* ce = (*pp)->call_expression();
3891 if (ce != NULL && ce->is_recover_call())
3892 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
3893 ce->location()));
3894 return TRAVERSE_CONTINUE;
3897 // Traversal for build_recover_thunks.
3899 class Build_recover_thunks : public Traverse
3901 public:
3902 Build_recover_thunks(Gogo* gogo)
3903 : Traverse(traverse_functions),
3904 gogo_(gogo)
3908 function(Named_object*);
3910 private:
3911 Expression*
3912 can_recover_arg(Location);
3914 // General IR.
3915 Gogo* gogo_;
3918 // If this function calls recover, turn it into a thunk.
3921 Build_recover_thunks::function(Named_object* orig_no)
3923 Function* orig_func = orig_no->func_value();
3924 if (!orig_func->calls_recover()
3925 || orig_func->is_recover_thunk()
3926 || orig_func->has_recover_thunk())
3927 return TRAVERSE_CONTINUE;
3929 Gogo* gogo = this->gogo_;
3930 Location location = orig_func->location();
3932 static int count;
3933 char buf[50];
3935 Function_type* orig_fntype = orig_func->type();
3936 Typed_identifier_list* new_params = new Typed_identifier_list();
3937 std::string receiver_name;
3938 if (orig_fntype->is_method())
3940 const Typed_identifier* receiver = orig_fntype->receiver();
3941 snprintf(buf, sizeof buf, "rt.%u", count);
3942 ++count;
3943 receiver_name = buf;
3944 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
3945 receiver->location()));
3947 const Typed_identifier_list* orig_params = orig_fntype->parameters();
3948 if (orig_params != NULL && !orig_params->empty())
3950 for (Typed_identifier_list::const_iterator p = orig_params->begin();
3951 p != orig_params->end();
3952 ++p)
3954 snprintf(buf, sizeof buf, "pt.%u", count);
3955 ++count;
3956 new_params->push_back(Typed_identifier(buf, p->type(),
3957 p->location()));
3960 snprintf(buf, sizeof buf, "pr.%u", count);
3961 ++count;
3962 std::string can_recover_name = buf;
3963 new_params->push_back(Typed_identifier(can_recover_name,
3964 Type::lookup_bool_type(),
3965 orig_fntype->location()));
3967 const Typed_identifier_list* orig_results = orig_fntype->results();
3968 Typed_identifier_list* new_results;
3969 if (orig_results == NULL || orig_results->empty())
3970 new_results = NULL;
3971 else
3973 new_results = new Typed_identifier_list();
3974 for (Typed_identifier_list::const_iterator p = orig_results->begin();
3975 p != orig_results->end();
3976 ++p)
3977 new_results->push_back(Typed_identifier("", p->type(), p->location()));
3980 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
3981 new_results,
3982 orig_fntype->location());
3983 if (orig_fntype->is_varargs())
3984 new_fntype->set_is_varargs();
3986 std::string name = orig_no->name();
3987 if (orig_fntype->is_method())
3988 name += "$" + orig_fntype->receiver()->type()->mangled_name(gogo);
3989 name += "$recover";
3990 Named_object *new_no = gogo->start_function(name, new_fntype, false,
3991 location);
3992 Function *new_func = new_no->func_value();
3993 if (orig_func->enclosing() != NULL)
3994 new_func->set_enclosing(orig_func->enclosing());
3996 // We build the code for the original function attached to the new
3997 // function, and then swap the original and new function bodies.
3998 // This means that existing references to the original function will
3999 // then refer to the new function. That makes this code a little
4000 // confusing, in that the reference to NEW_NO really refers to the
4001 // other function, not the one we are building.
4003 Expression* closure = NULL;
4004 if (orig_func->needs_closure())
4006 // For the new function we are creating, declare a new parameter
4007 // variable NEW_CLOSURE_NO and set it to be the closure variable
4008 // of the function. This will be set to the closure value
4009 // passed in by the caller. Then pass a reference to this
4010 // variable as the closure value when calling the original
4011 // function. In other words, simply pass the closure value
4012 // through the thunk we are creating.
4013 Named_object* orig_closure_no = orig_func->closure_var();
4014 Variable* orig_closure_var = orig_closure_no->var_value();
4015 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
4016 false, false, location);
4017 new_var->set_is_closure();
4018 snprintf(buf, sizeof buf, "closure.%u", count);
4019 ++count;
4020 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
4021 new_var);
4022 new_func->set_closure_var(new_closure_no);
4023 closure = Expression::make_var_reference(new_closure_no, location);
4026 Expression* fn = Expression::make_func_reference(new_no, closure, location);
4028 Expression_list* args = new Expression_list();
4029 if (new_params != NULL)
4031 // Note that we skip the last parameter, which is the boolean
4032 // indicating whether recover can succed.
4033 for (Typed_identifier_list::const_iterator p = new_params->begin();
4034 p + 1 != new_params->end();
4035 ++p)
4037 Named_object* p_no = gogo->lookup(p->name(), NULL);
4038 go_assert(p_no != NULL
4039 && p_no->is_variable()
4040 && p_no->var_value()->is_parameter());
4041 args->push_back(Expression::make_var_reference(p_no, location));
4044 args->push_back(this->can_recover_arg(location));
4046 gogo->start_block(location);
4048 Call_expression* call = Expression::make_call(fn, args, false, location);
4050 // Any varargs call has already been lowered.
4051 call->set_varargs_are_lowered();
4053 Statement* s = Statement::make_return_from_call(call, location);
4054 s->determine_types();
4055 gogo->add_statement(s);
4057 Block* b = gogo->finish_block(location);
4059 gogo->add_block(b, location);
4061 // Lower the call in case it returns multiple results.
4062 gogo->lower_block(new_no, b);
4064 gogo->finish_function(location);
4066 // Swap the function bodies and types.
4067 new_func->swap_for_recover(orig_func);
4068 orig_func->set_is_recover_thunk();
4069 new_func->set_calls_recover();
4070 new_func->set_has_recover_thunk();
4072 Bindings* orig_bindings = orig_func->block()->bindings();
4073 Bindings* new_bindings = new_func->block()->bindings();
4074 if (orig_fntype->is_method())
4076 // We changed the receiver to be a regular parameter. We have
4077 // to update the binding accordingly in both functions.
4078 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
4079 go_assert(orig_rec_no != NULL
4080 && orig_rec_no->is_variable()
4081 && !orig_rec_no->var_value()->is_receiver());
4082 orig_rec_no->var_value()->set_is_receiver();
4084 std::string new_receiver_name(orig_fntype->receiver()->name());
4085 if (new_receiver_name.empty())
4087 // Find the receiver. It was named "r.NNN" in
4088 // Gogo::start_function.
4089 for (Bindings::const_definitions_iterator p =
4090 new_bindings->begin_definitions();
4091 p != new_bindings->end_definitions();
4092 ++p)
4094 const std::string& pname((*p)->name());
4095 if (pname[0] == 'r' && pname[1] == '.')
4097 new_receiver_name = pname;
4098 break;
4101 go_assert(!new_receiver_name.empty());
4103 Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
4104 if (new_rec_no == NULL)
4105 go_assert(saw_errors());
4106 else
4108 go_assert(new_rec_no->is_variable()
4109 && new_rec_no->var_value()->is_receiver());
4110 new_rec_no->var_value()->set_is_not_receiver();
4114 // Because we flipped blocks but not types, the can_recover
4115 // parameter appears in the (now) old bindings as a parameter.
4116 // Change it to a local variable, whereupon it will be discarded.
4117 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
4118 go_assert(can_recover_no != NULL
4119 && can_recover_no->is_variable()
4120 && can_recover_no->var_value()->is_parameter());
4121 orig_bindings->remove_binding(can_recover_no);
4123 // Add the can_recover argument to the (now) new bindings, and
4124 // attach it to any recover statements.
4125 Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
4126 false, true, false, location);
4127 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
4128 can_recover_var);
4129 Convert_recover convert_recover(can_recover_no);
4130 new_func->traverse(&convert_recover);
4132 // Update the function pointers in any named results.
4133 new_func->update_result_variables();
4134 orig_func->update_result_variables();
4136 return TRAVERSE_CONTINUE;
4139 // Return the expression to pass for the .can_recover parameter to the
4140 // new function. This indicates whether a call to recover may return
4141 // non-nil. The expression is
4142 // __go_can_recover(__builtin_return_address()).
4144 Expression*
4145 Build_recover_thunks::can_recover_arg(Location location)
4147 static Named_object* builtin_return_address;
4148 if (builtin_return_address == NULL)
4150 const Location bloc = Linemap::predeclared_location();
4152 Typed_identifier_list* param_types = new Typed_identifier_list();
4153 Type* uint_type = Type::lookup_integer_type("uint");
4154 param_types->push_back(Typed_identifier("l", uint_type, bloc));
4156 Typed_identifier_list* return_types = new Typed_identifier_list();
4157 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4158 return_types->push_back(Typed_identifier("", voidptr_type, bloc));
4160 Function_type* fntype = Type::make_function_type(NULL, param_types,
4161 return_types, bloc);
4162 builtin_return_address =
4163 Named_object::make_function_declaration("__builtin_return_address",
4164 NULL, fntype, bloc);
4165 const char* n = "__builtin_return_address";
4166 builtin_return_address->func_declaration_value()->set_asm_name(n);
4169 static Named_object* can_recover;
4170 if (can_recover == NULL)
4172 const Location bloc = Linemap::predeclared_location();
4173 Typed_identifier_list* param_types = new Typed_identifier_list();
4174 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4175 param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
4176 Type* boolean_type = Type::lookup_bool_type();
4177 Typed_identifier_list* results = new Typed_identifier_list();
4178 results->push_back(Typed_identifier("", boolean_type, bloc));
4179 Function_type* fntype = Type::make_function_type(NULL, param_types,
4180 results, bloc);
4181 can_recover = Named_object::make_function_declaration("__go_can_recover",
4182 NULL, fntype,
4183 bloc);
4184 can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
4187 Expression* fn = Expression::make_func_reference(builtin_return_address,
4188 NULL, location);
4190 Expression* zexpr = Expression::make_integer_ul(0, NULL, location);
4191 Expression_list *args = new Expression_list();
4192 args->push_back(zexpr);
4194 Expression* call = Expression::make_call(fn, args, false, location);
4196 args = new Expression_list();
4197 args->push_back(call);
4199 fn = Expression::make_func_reference(can_recover, NULL, location);
4200 return Expression::make_call(fn, args, false, location);
4203 // Build thunks for functions which call recover. We build a new
4204 // function with an extra parameter, which is whether a call to
4205 // recover can succeed. We then move the body of this function to
4206 // that one. We then turn this function into a thunk which calls the
4207 // new one, passing the value of
4208 // __go_can_recover(__builtin_return_address()). The function will be
4209 // marked as not splitting the stack. This will cooperate with the
4210 // implementation of defer to make recover do the right thing.
4212 void
4213 Gogo::build_recover_thunks()
4215 Build_recover_thunks build_recover_thunks(this);
4216 this->traverse(&build_recover_thunks);
4219 // Build a call to the runtime error function.
4221 Expression*
4222 Gogo::runtime_error(int code, Location location)
4224 Type* int32_type = Type::lookup_integer_type("int32");
4225 Expression* code_expr = Expression::make_integer_ul(code, int32_type,
4226 location);
4227 return Runtime::make_call(Runtime::RUNTIME_ERROR, location, 1, code_expr);
4230 // Look for named types to see whether we need to create an interface
4231 // method table.
4233 class Build_method_tables : public Traverse
4235 public:
4236 Build_method_tables(Gogo* gogo,
4237 const std::vector<Interface_type*>& interfaces)
4238 : Traverse(traverse_types),
4239 gogo_(gogo), interfaces_(interfaces)
4243 type(Type*);
4245 private:
4246 // The IR.
4247 Gogo* gogo_;
4248 // A list of locally defined interfaces which have hidden methods.
4249 const std::vector<Interface_type*>& interfaces_;
4252 // Build all required interface method tables for types. We need to
4253 // ensure that we have an interface method table for every interface
4254 // which has a hidden method, for every named type which implements
4255 // that interface. Normally we can just build interface method tables
4256 // as we need them. However, in some cases we can require an
4257 // interface method table for an interface defined in a different
4258 // package for a type defined in that package. If that interface and
4259 // type both use a hidden method, that is OK. However, we will not be
4260 // able to build that interface method table when we need it, because
4261 // the type's hidden method will be static. So we have to build it
4262 // here, and just refer it from other packages as needed.
4264 void
4265 Gogo::build_interface_method_tables()
4267 if (saw_errors())
4268 return;
4270 std::vector<Interface_type*> hidden_interfaces;
4271 hidden_interfaces.reserve(this->interface_types_.size());
4272 for (std::vector<Interface_type*>::const_iterator pi =
4273 this->interface_types_.begin();
4274 pi != this->interface_types_.end();
4275 ++pi)
4277 const Typed_identifier_list* methods = (*pi)->methods();
4278 if (methods == NULL)
4279 continue;
4280 for (Typed_identifier_list::const_iterator pm = methods->begin();
4281 pm != methods->end();
4282 ++pm)
4284 if (Gogo::is_hidden_name(pm->name()))
4286 hidden_interfaces.push_back(*pi);
4287 break;
4292 if (!hidden_interfaces.empty())
4294 // Now traverse the tree looking for all named types.
4295 Build_method_tables bmt(this, hidden_interfaces);
4296 this->traverse(&bmt);
4299 // We no longer need the list of interfaces.
4301 this->interface_types_.clear();
4304 // This is called for each type. For a named type, for each of the
4305 // interfaces with hidden methods that it implements, create the
4306 // method table.
4309 Build_method_tables::type(Type* type)
4311 Named_type* nt = type->named_type();
4312 Struct_type* st = type->struct_type();
4313 if (nt != NULL || st != NULL)
4315 Translate_context context(this->gogo_, NULL, NULL, NULL);
4316 for (std::vector<Interface_type*>::const_iterator p =
4317 this->interfaces_.begin();
4318 p != this->interfaces_.end();
4319 ++p)
4321 // We ask whether a pointer to the named type implements the
4322 // interface, because a pointer can implement more methods
4323 // than a value.
4324 if (nt != NULL)
4326 if ((*p)->implements_interface(Type::make_pointer_type(nt),
4327 NULL))
4329 nt->interface_method_table(*p, false)->get_backend(&context);
4330 nt->interface_method_table(*p, true)->get_backend(&context);
4333 else
4335 if ((*p)->implements_interface(Type::make_pointer_type(st),
4336 NULL))
4338 st->interface_method_table(*p, false)->get_backend(&context);
4339 st->interface_method_table(*p, true)->get_backend(&context);
4344 return TRAVERSE_CONTINUE;
4347 // Return an expression which allocates memory to hold values of type TYPE.
4349 Expression*
4350 Gogo::allocate_memory(Type* type, Location location)
4352 Expression* td = Expression::make_type_descriptor(type, location);
4353 Expression* size =
4354 Expression::make_type_info(type, Expression::TYPE_INFO_SIZE);
4355 return Runtime::make_call(Runtime::NEW, location, 2, td, size);
4358 // Traversal class used to check for return statements.
4360 class Check_return_statements_traverse : public Traverse
4362 public:
4363 Check_return_statements_traverse()
4364 : Traverse(traverse_functions)
4368 function(Named_object*);
4371 // Check that a function has a return statement if it needs one.
4374 Check_return_statements_traverse::function(Named_object* no)
4376 Function* func = no->func_value();
4377 const Function_type* fntype = func->type();
4378 const Typed_identifier_list* results = fntype->results();
4380 // We only need a return statement if there is a return value.
4381 if (results == NULL || results->empty())
4382 return TRAVERSE_CONTINUE;
4384 if (func->block()->may_fall_through())
4385 error_at(func->block()->end_location(),
4386 "missing return at end of function");
4388 return TRAVERSE_CONTINUE;
4391 // Check return statements.
4393 void
4394 Gogo::check_return_statements()
4396 Check_return_statements_traverse traverse;
4397 this->traverse(&traverse);
4400 // Export identifiers as requested.
4402 void
4403 Gogo::do_exports()
4405 // For now we always stream to a section. Later we may want to
4406 // support streaming to a separate file.
4407 Stream_to_section stream;
4409 // Write out either the prefix or pkgpath depending on how we were
4410 // invoked.
4411 std::string prefix;
4412 std::string pkgpath;
4413 if (this->pkgpath_from_option_)
4414 pkgpath = this->pkgpath_;
4415 else if (this->prefix_from_option_)
4416 prefix = this->prefix_;
4417 else if (this->is_main_package())
4418 pkgpath = "main";
4419 else
4420 prefix = "go";
4422 Export exp(&stream);
4423 exp.register_builtin_types(this);
4424 exp.export_globals(this->package_name(),
4425 prefix,
4426 pkgpath,
4427 this->packages_,
4428 this->imports_,
4429 (this->need_init_fn_ && !this->is_main_package()
4430 ? this->get_init_fn_name()
4431 : ""),
4432 this->imported_init_fns_,
4433 this->package_->bindings());
4435 if (!this->c_header_.empty() && !saw_errors())
4436 this->write_c_header();
4439 // Write the top level named struct types in C format to a C header
4440 // file. This is used when building the runtime package, to share
4441 // struct definitions between C and Go.
4443 void
4444 Gogo::write_c_header()
4446 std::ofstream out;
4447 out.open(this->c_header_.c_str());
4448 if (out.fail())
4450 error("cannot open %s: %m", this->c_header_.c_str());
4451 return;
4454 std::list<Named_object*> types;
4455 Bindings* top = this->package_->bindings();
4456 for (Bindings::const_definitions_iterator p = top->begin_definitions();
4457 p != top->end_definitions();
4458 ++p)
4460 Named_object* no = *p;
4461 if (no->is_type() && no->type_value()->struct_type() != NULL)
4462 types.push_back(no);
4463 if (no->is_const() && no->const_value()->type()->integer_type() != NULL)
4465 Numeric_constant nc;
4466 unsigned long val;
4467 if (no->const_value()->expr()->numeric_constant_value(&nc)
4468 && nc.to_unsigned_long(&val) == Numeric_constant::NC_UL_VALID)
4470 out << "#define " << no->message_name() << ' ' << val
4471 << std::endl;
4476 std::vector<const Named_object*> written;
4477 int loop = 0;
4478 while (!types.empty())
4480 Named_object* no = types.front();
4481 types.pop_front();
4483 std::vector<const Named_object*> requires;
4484 std::vector<const Named_object*> declare;
4485 if (!no->type_value()->struct_type()->can_write_to_c_header(&requires,
4486 &declare))
4487 continue;
4489 bool ok = true;
4490 for (std::vector<const Named_object*>::const_iterator pr
4491 = requires.begin();
4492 pr != requires.end() && ok;
4493 ++pr)
4495 for (std::list<Named_object*>::const_iterator pt = types.begin();
4496 pt != types.end() && ok;
4497 ++pt)
4498 if (*pr == *pt)
4499 ok = false;
4501 if (!ok)
4503 ++loop;
4504 if (loop > 10000)
4506 // This should be impossible since the code parsed and
4507 // type checked.
4508 go_unreachable();
4511 types.push_back(no);
4512 continue;
4515 for (std::vector<const Named_object*>::const_iterator pd
4516 = declare.begin();
4517 pd != declare.end();
4518 ++pd)
4520 if (*pd == no)
4521 continue;
4523 std::vector<const Named_object*> drequires;
4524 std::vector<const Named_object*> ddeclare;
4525 if (!(*pd)->type_value()->struct_type()->
4526 can_write_to_c_header(&drequires, &ddeclare))
4527 continue;
4529 bool done = false;
4530 for (std::vector<const Named_object*>::const_iterator pw
4531 = written.begin();
4532 pw != written.end();
4533 ++pw)
4535 if (*pw == *pd)
4537 done = true;
4538 break;
4541 if (!done)
4543 out << std::endl;
4544 out << "struct " << (*pd)->message_name() << ";" << std::endl;
4545 written.push_back(*pd);
4549 out << std::endl;
4550 out << "struct " << no->message_name() << " {" << std::endl;
4551 no->type_value()->struct_type()->write_to_c_header(out);
4552 out << "};" << std::endl;
4553 written.push_back(no);
4556 out.close();
4557 if (out.fail())
4558 error("error writing to %s: %m", this->c_header_.c_str());
4561 // Find the blocks in order to convert named types defined in blocks.
4563 class Convert_named_types : public Traverse
4565 public:
4566 Convert_named_types(Gogo* gogo)
4567 : Traverse(traverse_blocks),
4568 gogo_(gogo)
4571 protected:
4573 block(Block* block);
4575 private:
4576 Gogo* gogo_;
4580 Convert_named_types::block(Block* block)
4582 this->gogo_->convert_named_types_in_bindings(block->bindings());
4583 return TRAVERSE_CONTINUE;
4586 // Convert all named types to the backend representation. Since named
4587 // types can refer to other types, this needs to be done in the right
4588 // sequence, which is handled by Named_type::convert. Here we arrange
4589 // to call that for each named type.
4591 void
4592 Gogo::convert_named_types()
4594 this->convert_named_types_in_bindings(this->globals_);
4595 for (Packages::iterator p = this->packages_.begin();
4596 p != this->packages_.end();
4597 ++p)
4599 Package* package = p->second;
4600 this->convert_named_types_in_bindings(package->bindings());
4603 Convert_named_types cnt(this);
4604 this->traverse(&cnt);
4606 // Make all the builtin named types used for type descriptors, and
4607 // then convert them. They will only be written out if they are
4608 // needed.
4609 Type::make_type_descriptor_type();
4610 Type::make_type_descriptor_ptr_type();
4611 Function_type::make_function_type_descriptor_type();
4612 Pointer_type::make_pointer_type_descriptor_type();
4613 Struct_type::make_struct_type_descriptor_type();
4614 Array_type::make_array_type_descriptor_type();
4615 Array_type::make_slice_type_descriptor_type();
4616 Map_type::make_map_type_descriptor_type();
4617 Channel_type::make_chan_type_descriptor_type();
4618 Interface_type::make_interface_type_descriptor_type();
4619 Expression::make_func_descriptor_type();
4620 Type::convert_builtin_named_types(this);
4622 Runtime::convert_types(this);
4624 this->named_types_are_converted_ = true;
4627 // Convert all names types in a set of bindings.
4629 void
4630 Gogo::convert_named_types_in_bindings(Bindings* bindings)
4632 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
4633 p != bindings->end_definitions();
4634 ++p)
4636 if ((*p)->is_type())
4637 (*p)->type_value()->convert(this);
4641 // Class Function.
4643 Function::Function(Function_type* type, Named_object* enclosing, Block* block,
4644 Location location)
4645 : type_(type), enclosing_(enclosing), results_(NULL),
4646 closure_var_(NULL), block_(block), location_(location), labels_(),
4647 local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL),
4648 pragmas_(0), is_sink_(false), results_are_named_(false),
4649 is_unnamed_type_stub_method_(false), calls_recover_(false),
4650 is_recover_thunk_(false), has_recover_thunk_(false),
4651 calls_defer_retaddr_(false), is_type_specific_function_(false),
4652 in_unique_section_(false)
4656 // Create the named result variables.
4658 void
4659 Function::create_result_variables(Gogo* gogo)
4661 const Typed_identifier_list* results = this->type_->results();
4662 if (results == NULL || results->empty())
4663 return;
4665 if (!results->front().name().empty())
4666 this->results_are_named_ = true;
4668 this->results_ = new Results();
4669 this->results_->reserve(results->size());
4671 Block* block = this->block_;
4672 int index = 0;
4673 for (Typed_identifier_list::const_iterator p = results->begin();
4674 p != results->end();
4675 ++p, ++index)
4677 std::string name = p->name();
4678 if (name.empty() || Gogo::is_sink_name(name))
4680 static int result_counter;
4681 char buf[100];
4682 snprintf(buf, sizeof buf, "$ret%d", result_counter);
4683 ++result_counter;
4684 name = gogo->pack_hidden_name(buf, false);
4686 Result_variable* result = new Result_variable(p->type(), this, index,
4687 p->location());
4688 Named_object* no = block->bindings()->add_result_variable(name, result);
4689 if (no->is_result_variable())
4690 this->results_->push_back(no);
4691 else
4693 static int dummy_result_count;
4694 char buf[100];
4695 snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
4696 ++dummy_result_count;
4697 name = gogo->pack_hidden_name(buf, false);
4698 no = block->bindings()->add_result_variable(name, result);
4699 go_assert(no->is_result_variable());
4700 this->results_->push_back(no);
4705 // Update the named result variables when cloning a function which
4706 // calls recover.
4708 void
4709 Function::update_result_variables()
4711 if (this->results_ == NULL)
4712 return;
4714 for (Results::iterator p = this->results_->begin();
4715 p != this->results_->end();
4716 ++p)
4717 (*p)->result_var_value()->set_function(this);
4720 // Whether this method should not be included in the type descriptor.
4722 bool
4723 Function::nointerface() const
4725 go_assert(this->is_method());
4726 return (this->pragmas_ & GOPRAGMA_NOINTERFACE) != 0;
4729 // Record that this method should not be included in the type
4730 // descriptor.
4732 void
4733 Function::set_nointerface()
4735 this->pragmas_ |= GOPRAGMA_NOINTERFACE;
4738 // Return the closure variable, creating it if necessary.
4740 Named_object*
4741 Function::closure_var()
4743 if (this->closure_var_ == NULL)
4745 go_assert(this->descriptor_ == NULL);
4746 // We don't know the type of the variable yet. We add fields as
4747 // we find them.
4748 Location loc = this->type_->location();
4749 Struct_field_list* sfl = new Struct_field_list;
4750 Type* struct_type = Type::make_struct_type(sfl, loc);
4751 Variable* var = new Variable(Type::make_pointer_type(struct_type),
4752 NULL, false, false, false, loc);
4753 var->set_is_used();
4754 var->set_is_closure();
4755 this->closure_var_ = Named_object::make_variable("$closure", NULL, var);
4756 // Note that the new variable is not in any binding contour.
4758 return this->closure_var_;
4761 // Set the type of the closure variable.
4763 void
4764 Function::set_closure_type()
4766 if (this->closure_var_ == NULL)
4767 return;
4768 Named_object* closure = this->closure_var_;
4769 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
4771 // The first field of a closure is always a pointer to the function
4772 // code.
4773 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4774 st->push_field(Struct_field(Typed_identifier(".$f", voidptr_type,
4775 this->location_)));
4777 unsigned int index = 1;
4778 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
4779 p != this->closure_fields_.end();
4780 ++p, ++index)
4782 Named_object* no = p->first;
4783 char buf[20];
4784 snprintf(buf, sizeof buf, "%u", index);
4785 std::string n = no->name() + buf;
4786 Type* var_type;
4787 if (no->is_variable())
4788 var_type = no->var_value()->type();
4789 else
4790 var_type = no->result_var_value()->type();
4791 Type* field_type = Type::make_pointer_type(var_type);
4792 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
4796 // Return whether this function is a method.
4798 bool
4799 Function::is_method() const
4801 return this->type_->is_method();
4804 // Add a label definition.
4806 Label*
4807 Function::add_label_definition(Gogo* gogo, const std::string& label_name,
4808 Location location)
4810 Label* lnull = NULL;
4811 std::pair<Labels::iterator, bool> ins =
4812 this->labels_.insert(std::make_pair(label_name, lnull));
4813 Label* label;
4814 if (label_name == "_")
4816 label = Label::create_dummy_label();
4817 if (ins.second)
4818 ins.first->second = label;
4820 else if (ins.second)
4822 // This is a new label.
4823 label = new Label(label_name);
4824 ins.first->second = label;
4826 else
4828 // The label was already in the hash table.
4829 label = ins.first->second;
4830 if (label->is_defined())
4832 error_at(location, "label %qs already defined",
4833 Gogo::message_name(label_name).c_str());
4834 inform(label->location(), "previous definition of %qs was here",
4835 Gogo::message_name(label_name).c_str());
4836 return new Label(label_name);
4840 label->define(location, gogo->bindings_snapshot(location));
4842 // Issue any errors appropriate for any previous goto's to this
4843 // label.
4844 const std::vector<Bindings_snapshot*>& refs(label->refs());
4845 for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
4846 p != refs.end();
4847 ++p)
4848 (*p)->check_goto_to(gogo->current_block());
4849 label->clear_refs();
4851 return label;
4854 // Add a reference to a label.
4856 Label*
4857 Function::add_label_reference(Gogo* gogo, const std::string& label_name,
4858 Location location, bool issue_goto_errors)
4860 Label* lnull = NULL;
4861 std::pair<Labels::iterator, bool> ins =
4862 this->labels_.insert(std::make_pair(label_name, lnull));
4863 Label* label;
4864 if (!ins.second)
4866 // The label was already in the hash table.
4867 label = ins.first->second;
4869 else
4871 go_assert(ins.first->second == NULL);
4872 label = new Label(label_name);
4873 ins.first->second = label;
4876 label->set_is_used();
4878 if (issue_goto_errors)
4880 Bindings_snapshot* snapshot = label->snapshot();
4881 if (snapshot != NULL)
4882 snapshot->check_goto_from(gogo->current_block(), location);
4883 else
4884 label->add_snapshot_ref(gogo->bindings_snapshot(location));
4887 return label;
4890 // Warn about labels that are defined but not used.
4892 void
4893 Function::check_labels() const
4895 for (Labels::const_iterator p = this->labels_.begin();
4896 p != this->labels_.end();
4897 p++)
4899 Label* label = p->second;
4900 if (!label->is_used())
4901 error_at(label->location(), "label %qs defined and not used",
4902 Gogo::message_name(label->name()).c_str());
4906 // Swap one function with another. This is used when building the
4907 // thunk we use to call a function which calls recover. It may not
4908 // work for any other case.
4910 void
4911 Function::swap_for_recover(Function *x)
4913 go_assert(this->enclosing_ == x->enclosing_);
4914 std::swap(this->results_, x->results_);
4915 std::swap(this->closure_var_, x->closure_var_);
4916 std::swap(this->block_, x->block_);
4917 go_assert(this->location_ == x->location_);
4918 go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
4919 go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
4922 // Traverse the tree.
4925 Function::traverse(Traverse* traverse)
4927 unsigned int traverse_mask = traverse->traverse_mask();
4929 if ((traverse_mask
4930 & (Traverse::traverse_types | Traverse::traverse_expressions))
4931 != 0)
4933 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
4934 return TRAVERSE_EXIT;
4937 // FIXME: We should check traverse_functions here if nested
4938 // functions are stored in block bindings.
4939 if (this->block_ != NULL
4940 && (traverse_mask
4941 & (Traverse::traverse_variables
4942 | Traverse::traverse_constants
4943 | Traverse::traverse_blocks
4944 | Traverse::traverse_statements
4945 | Traverse::traverse_expressions
4946 | Traverse::traverse_types)) != 0)
4948 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
4949 return TRAVERSE_EXIT;
4952 return TRAVERSE_CONTINUE;
4955 // Work out types for unspecified variables and constants.
4957 void
4958 Function::determine_types()
4960 if (this->block_ != NULL)
4961 this->block_->determine_types();
4964 // Return the function descriptor, the value you get when you refer to
4965 // the function in Go code without calling it.
4967 Expression*
4968 Function::descriptor(Gogo*, Named_object* no)
4970 go_assert(!this->is_method());
4971 go_assert(this->closure_var_ == NULL);
4972 if (this->descriptor_ == NULL)
4973 this->descriptor_ = Expression::make_func_descriptor(no);
4974 return this->descriptor_;
4977 // Get a pointer to the variable representing the defer stack for this
4978 // function, making it if necessary. The value of the variable is set
4979 // by the runtime routines to true if the function is returning,
4980 // rather than panicing through. A pointer to this variable is used
4981 // as a marker for the functions on the defer stack associated with
4982 // this function. A function-specific variable permits inlining a
4983 // function which uses defer.
4985 Expression*
4986 Function::defer_stack(Location location)
4988 if (this->defer_stack_ == NULL)
4990 Type* t = Type::lookup_bool_type();
4991 Expression* n = Expression::make_boolean(false, location);
4992 this->defer_stack_ = Statement::make_temporary(t, n, location);
4993 this->defer_stack_->set_is_address_taken();
4995 Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
4996 location);
4997 return Expression::make_unary(OPERATOR_AND, ref, location);
5000 // Export the function.
5002 void
5003 Function::export_func(Export* exp, const std::string& name) const
5005 Function::export_func_with_type(exp, name, this->type_);
5008 // Export a function with a type.
5010 void
5011 Function::export_func_with_type(Export* exp, const std::string& name,
5012 const Function_type* fntype)
5014 exp->write_c_string("func ");
5016 if (fntype->is_method())
5018 exp->write_c_string("(");
5019 const Typed_identifier* receiver = fntype->receiver();
5020 exp->write_name(receiver->name());
5021 exp->write_escape(receiver->note());
5022 exp->write_c_string(" ");
5023 exp->write_type(receiver->type());
5024 exp->write_c_string(") ");
5027 exp->write_string(name);
5029 exp->write_c_string(" (");
5030 const Typed_identifier_list* parameters = fntype->parameters();
5031 if (parameters != NULL)
5033 size_t i = 0;
5034 bool is_varargs = fntype->is_varargs();
5035 bool first = true;
5036 for (Typed_identifier_list::const_iterator p = parameters->begin();
5037 p != parameters->end();
5038 ++p, ++i)
5040 if (first)
5041 first = false;
5042 else
5043 exp->write_c_string(", ");
5044 exp->write_name(p->name());
5045 exp->write_escape(p->note());
5046 exp->write_c_string(" ");
5047 if (!is_varargs || p + 1 != parameters->end())
5048 exp->write_type(p->type());
5049 else
5051 exp->write_c_string("...");
5052 exp->write_type(p->type()->array_type()->element_type());
5056 exp->write_c_string(")");
5058 const Typed_identifier_list* results = fntype->results();
5059 if (results != NULL)
5061 if (results->size() == 1 && results->begin()->name().empty())
5063 exp->write_c_string(" ");
5064 exp->write_type(results->begin()->type());
5066 else
5068 exp->write_c_string(" (");
5069 bool first = true;
5070 for (Typed_identifier_list::const_iterator p = results->begin();
5071 p != results->end();
5072 ++p)
5074 if (first)
5075 first = false;
5076 else
5077 exp->write_c_string(", ");
5078 exp->write_name(p->name());
5079 exp->write_escape(p->note());
5080 exp->write_c_string(" ");
5081 exp->write_type(p->type());
5083 exp->write_c_string(")");
5086 exp->write_c_string(";\n");
5089 // Import a function.
5091 void
5092 Function::import_func(Import* imp, std::string* pname,
5093 Typed_identifier** preceiver,
5094 Typed_identifier_list** pparameters,
5095 Typed_identifier_list** presults,
5096 bool* is_varargs)
5098 imp->require_c_string("func ");
5100 *preceiver = NULL;
5101 if (imp->peek_char() == '(')
5103 imp->require_c_string("(");
5104 std::string name = imp->read_name();
5105 std::string escape_note = imp->read_escape();
5106 imp->require_c_string(" ");
5107 Type* rtype = imp->read_type();
5108 *preceiver = new Typed_identifier(name, rtype, imp->location());
5109 (*preceiver)->set_note(escape_note);
5110 imp->require_c_string(") ");
5113 *pname = imp->read_identifier();
5115 Typed_identifier_list* parameters;
5116 *is_varargs = false;
5117 imp->require_c_string(" (");
5118 if (imp->peek_char() == ')')
5119 parameters = NULL;
5120 else
5122 parameters = new Typed_identifier_list();
5123 while (true)
5125 std::string name = imp->read_name();
5126 std::string escape_note = imp->read_escape();
5127 imp->require_c_string(" ");
5129 if (imp->match_c_string("..."))
5131 imp->advance(3);
5132 *is_varargs = true;
5135 Type* ptype = imp->read_type();
5136 if (*is_varargs)
5137 ptype = Type::make_array_type(ptype, NULL);
5138 Typed_identifier t = Typed_identifier(name, ptype, imp->location());
5139 t.set_note(escape_note);
5140 parameters->push_back(t);
5141 if (imp->peek_char() != ',')
5142 break;
5143 go_assert(!*is_varargs);
5144 imp->require_c_string(", ");
5147 imp->require_c_string(")");
5148 *pparameters = parameters;
5150 Typed_identifier_list* results;
5151 if (imp->peek_char() != ' ')
5152 results = NULL;
5153 else
5155 results = new Typed_identifier_list();
5156 imp->require_c_string(" ");
5157 if (imp->peek_char() != '(')
5159 Type* rtype = imp->read_type();
5160 results->push_back(Typed_identifier("", rtype, imp->location()));
5162 else
5164 imp->require_c_string("(");
5165 while (true)
5167 std::string name = imp->read_name();
5168 std::string note = imp->read_escape();
5169 imp->require_c_string(" ");
5170 Type* rtype = imp->read_type();
5171 Typed_identifier t = Typed_identifier(name, rtype,
5172 imp->location());
5173 t.set_note(note);
5174 results->push_back(t);
5175 if (imp->peek_char() != ',')
5176 break;
5177 imp->require_c_string(", ");
5179 imp->require_c_string(")");
5182 imp->require_c_string(";\n");
5183 *presults = results;
5186 // Get the backend representation.
5188 Bfunction*
5189 Function::get_or_make_decl(Gogo* gogo, Named_object* no)
5191 if (this->fndecl_ == NULL)
5193 std::string asm_name;
5194 bool is_visible = false;
5195 if (no->package() != NULL)
5197 else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
5199 else if (Gogo::unpack_hidden_name(no->name()) == "init"
5200 && !this->type_->is_method())
5202 else if (no->name() == gogo->get_init_fn_name())
5204 is_visible = true;
5205 asm_name = no->name();
5207 else if (Gogo::unpack_hidden_name(no->name()) == "main"
5208 && gogo->is_main_package())
5209 is_visible = true;
5210 // Methods have to be public even if they are hidden because
5211 // they can be pulled into type descriptors when using
5212 // anonymous fields.
5213 else if (!Gogo::is_hidden_name(no->name())
5214 || this->type_->is_method())
5216 if (!this->is_unnamed_type_stub_method_)
5217 is_visible = true;
5218 std::string pkgpath = gogo->pkgpath_symbol();
5219 if (this->type_->is_method()
5220 && Gogo::is_hidden_name(no->name())
5221 && Gogo::hidden_name_pkgpath(no->name()) != gogo->pkgpath())
5223 // This is a method we created for an unexported
5224 // method of an imported embedded type. We need to
5225 // use the pkgpath of the imported package to avoid
5226 // a possible name collision. See bug478 for a test
5227 // case.
5228 pkgpath = Gogo::hidden_name_pkgpath(no->name());
5229 pkgpath = Gogo::pkgpath_for_symbol(pkgpath);
5232 asm_name = pkgpath;
5233 asm_name.append(1, '.');
5234 asm_name.append(Gogo::unpack_hidden_name(no->name()));
5235 if (this->type_->is_method())
5237 asm_name.append(1, '.');
5238 Type* rtype = this->type_->receiver()->type();
5239 asm_name.append(rtype->mangled_name(gogo));
5243 if (!this->asm_name_.empty())
5245 asm_name = this->asm_name_;
5246 is_visible = true;
5249 // If a function calls the predeclared recover function, we
5250 // can't inline it, because recover behaves differently in a
5251 // function passed directly to defer. If this is a recover
5252 // thunk that we built to test whether a function can be
5253 // recovered, we can't inline it, because that will mess up
5254 // our return address comparison.
5255 bool is_inlinable = !(this->calls_recover_ || this->is_recover_thunk_);
5257 // If a function calls __go_set_defer_retaddr, then mark it as
5258 // uninlinable. This prevents the GCC backend from splitting
5259 // the function; splitting the function is a bad idea because we
5260 // want the return address label to be in the same function as
5261 // the call.
5262 if (this->calls_defer_retaddr_)
5263 is_inlinable = false;
5265 // Check the //go:noinline compiler directive.
5266 if ((this->pragmas_ & GOPRAGMA_NOINLINE) != 0)
5267 is_inlinable = false;
5269 // If this is a thunk created to call a function which calls
5270 // the predeclared recover function, we need to disable
5271 // stack splitting for the thunk.
5272 bool disable_split_stack = this->is_recover_thunk_;
5274 // Check the //go:nosplit compiler directive.
5275 if ((this->pragmas_ & GOPRAGMA_NOSPLIT) != 0)
5276 disable_split_stack = true;
5278 // This should go into a unique section if that has been
5279 // requested elsewhere, or if this is a nointerface function.
5280 // We want to put a nointerface function into a unique section
5281 // because there is a good chance that the linker garbage
5282 // collection can discard it.
5283 bool in_unique_section = (this->in_unique_section_
5284 || (this->is_method() && this->nointerface()));
5286 Btype* functype = this->type_->get_backend_fntype(gogo);
5287 this->fndecl_ =
5288 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
5289 is_visible, false, is_inlinable,
5290 disable_split_stack, in_unique_section,
5291 this->location());
5293 return this->fndecl_;
5296 // Get the backend representation.
5298 Bfunction*
5299 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no)
5301 if (this->fndecl_ == NULL)
5303 // Let Go code use an asm declaration to pick up a builtin
5304 // function.
5305 if (!this->asm_name_.empty())
5307 Bfunction* builtin_decl =
5308 gogo->backend()->lookup_builtin(this->asm_name_);
5309 if (builtin_decl != NULL)
5311 this->fndecl_ = builtin_decl;
5312 return this->fndecl_;
5316 std::string asm_name;
5317 if (this->asm_name_.empty())
5319 asm_name = (no->package() == NULL
5320 ? gogo->pkgpath_symbol()
5321 : no->package()->pkgpath_symbol());
5322 asm_name.append(1, '.');
5323 asm_name.append(Gogo::unpack_hidden_name(no->name()));
5324 if (this->fntype_->is_method())
5326 asm_name.append(1, '.');
5327 Type* rtype = this->fntype_->receiver()->type();
5328 asm_name.append(rtype->mangled_name(gogo));
5332 Btype* functype = this->fntype_->get_backend_fntype(gogo);
5333 this->fndecl_ =
5334 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
5335 true, true, true, false, false,
5336 this->location());
5339 return this->fndecl_;
5342 // Build the descriptor for a function declaration. This won't
5343 // necessarily happen if the package has just a declaration for the
5344 // function and no other reference to it, but we may still need the
5345 // descriptor for references from other packages.
5346 void
5347 Function_declaration::build_backend_descriptor(Gogo* gogo)
5349 if (this->descriptor_ != NULL)
5351 Translate_context context(gogo, NULL, NULL, NULL);
5352 this->descriptor_->get_backend(&context);
5356 // Check that the types used in this declaration's signature are defined.
5357 // Reports errors for any undefined type.
5359 void
5360 Function_declaration::check_types() const
5362 // Calling Type::base will give errors for any undefined types.
5363 Function_type* fntype = this->type();
5364 if (fntype->receiver() != NULL)
5365 fntype->receiver()->type()->base();
5366 if (fntype->parameters() != NULL)
5368 const Typed_identifier_list* params = fntype->parameters();
5369 for (Typed_identifier_list::const_iterator p = params->begin();
5370 p != params->end();
5371 ++p)
5372 p->type()->base();
5376 // Return the function's decl after it has been built.
5378 Bfunction*
5379 Function::get_decl() const
5381 go_assert(this->fndecl_ != NULL);
5382 return this->fndecl_;
5385 // Build the backend representation for the function code.
5387 void
5388 Function::build(Gogo* gogo, Named_object* named_function)
5390 Translate_context context(gogo, named_function, NULL, NULL);
5392 // A list of parameter variables for this function.
5393 std::vector<Bvariable*> param_vars;
5395 // Variables that need to be declared for this function and their
5396 // initial values.
5397 std::vector<Bvariable*> vars;
5398 std::vector<Bexpression*> var_inits;
5399 for (Bindings::const_definitions_iterator p =
5400 this->block_->bindings()->begin_definitions();
5401 p != this->block_->bindings()->end_definitions();
5402 ++p)
5404 Location loc = (*p)->location();
5405 if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
5407 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
5408 Bvariable* parm_bvar = bvar;
5410 // We always pass the receiver to a method as a pointer. If
5411 // the receiver is declared as a non-pointer type, then we
5412 // copy the value into a local variable.
5413 if ((*p)->var_value()->is_receiver()
5414 && (*p)->var_value()->type()->points_to() == NULL)
5416 std::string name = (*p)->name() + ".pointer";
5417 Type* var_type = (*p)->var_value()->type();
5418 Variable* parm_var =
5419 new Variable(Type::make_pointer_type(var_type), NULL, false,
5420 true, false, loc);
5421 Named_object* parm_no =
5422 Named_object::make_variable(name, NULL, parm_var);
5423 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
5425 vars.push_back(bvar);
5426 Expression* parm_ref =
5427 Expression::make_var_reference(parm_no, loc);
5428 parm_ref = Expression::make_unary(OPERATOR_MULT, parm_ref, loc);
5429 if ((*p)->var_value()->is_in_heap())
5430 parm_ref = Expression::make_heap_expression(parm_ref, loc);
5431 var_inits.push_back(parm_ref->get_backend(&context));
5433 else if ((*p)->var_value()->is_in_heap())
5435 // If we take the address of a parameter, then we need
5436 // to copy it into the heap.
5437 std::string parm_name = (*p)->name() + ".param";
5438 Variable* parm_var = new Variable((*p)->var_value()->type(), NULL,
5439 false, true, false, loc);
5440 Named_object* parm_no =
5441 Named_object::make_variable(parm_name, NULL, parm_var);
5442 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
5444 vars.push_back(bvar);
5445 Expression* var_ref =
5446 Expression::make_var_reference(parm_no, loc);
5447 var_ref = Expression::make_heap_expression(var_ref, loc);
5448 var_inits.push_back(var_ref->get_backend(&context));
5450 param_vars.push_back(parm_bvar);
5452 else if ((*p)->is_result_variable())
5454 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
5456 Type* type = (*p)->result_var_value()->type();
5457 Bexpression* init;
5458 if (!(*p)->result_var_value()->is_in_heap())
5460 Btype* btype = type->get_backend(gogo);
5461 init = gogo->backend()->zero_expression(btype);
5463 else
5464 init = Expression::make_allocation(type,
5465 loc)->get_backend(&context);
5467 vars.push_back(bvar);
5468 var_inits.push_back(init);
5471 if (!gogo->backend()->function_set_parameters(this->fndecl_, param_vars))
5473 go_assert(saw_errors());
5474 return;
5477 // If we need a closure variable, make sure to create it.
5478 // It gets installed in the function as a side effect of creation.
5479 if (this->closure_var_ != NULL)
5481 go_assert(this->closure_var_->var_value()->is_closure());
5482 this->closure_var_->get_backend_variable(gogo, named_function);
5485 if (this->block_ != NULL)
5487 // Declare variables if necessary.
5488 Bblock* var_decls = NULL;
5490 Bstatement* defer_init = NULL;
5491 if (!vars.empty() || this->defer_stack_ != NULL)
5493 var_decls =
5494 gogo->backend()->block(this->fndecl_, NULL, vars,
5495 this->block_->start_location(),
5496 this->block_->end_location());
5498 if (this->defer_stack_ != NULL)
5500 Translate_context dcontext(gogo, named_function, this->block_,
5501 var_decls);
5502 defer_init = this->defer_stack_->get_backend(&dcontext);
5506 // Build the backend representation for all the statements in the
5507 // function.
5508 Translate_context context(gogo, named_function, NULL, NULL);
5509 Bblock* code_block = this->block_->get_backend(&context);
5511 // Initialize variables if necessary.
5512 std::vector<Bstatement*> init;
5513 go_assert(vars.size() == var_inits.size());
5514 for (size_t i = 0; i < vars.size(); ++i)
5516 Bstatement* init_stmt =
5517 gogo->backend()->init_statement(vars[i], var_inits[i]);
5518 init.push_back(init_stmt);
5520 if (defer_init != NULL)
5521 init.push_back(defer_init);
5522 Bstatement* var_init = gogo->backend()->statement_list(init);
5524 // Initialize all variables before executing this code block.
5525 Bstatement* code_stmt = gogo->backend()->block_statement(code_block);
5526 code_stmt = gogo->backend()->compound_statement(var_init, code_stmt);
5528 // If we have a defer stack, initialize it at the start of a
5529 // function.
5530 Bstatement* except = NULL;
5531 Bstatement* fini = NULL;
5532 if (defer_init != NULL)
5534 // Clean up the defer stack when we leave the function.
5535 this->build_defer_wrapper(gogo, named_function, &except, &fini);
5537 // Wrap the code for this function in an exception handler to handle
5538 // defer calls.
5539 code_stmt =
5540 gogo->backend()->exception_handler_statement(code_stmt,
5541 except, fini,
5542 this->location_);
5545 // Stick the code into the block we built for the receiver, if
5546 // we built one.
5547 if (var_decls != NULL)
5549 std::vector<Bstatement*> code_stmt_list(1, code_stmt);
5550 gogo->backend()->block_add_statements(var_decls, code_stmt_list);
5551 code_stmt = gogo->backend()->block_statement(var_decls);
5554 if (!gogo->backend()->function_set_body(this->fndecl_, code_stmt))
5556 go_assert(saw_errors());
5557 return;
5561 // If we created a descriptor for the function, make sure we emit it.
5562 if (this->descriptor_ != NULL)
5564 Translate_context context(gogo, NULL, NULL, NULL);
5565 this->descriptor_->get_backend(&context);
5569 // Build the wrappers around function code needed if the function has
5570 // any defer statements. This sets *EXCEPT to an exception handler
5571 // and *FINI to a finally handler.
5573 void
5574 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
5575 Bstatement** except, Bstatement** fini)
5577 Location end_loc = this->block_->end_location();
5579 // Add an exception handler. This is used if a panic occurs. Its
5580 // purpose is to stop the stack unwinding if a deferred function
5581 // calls recover. There are more details in
5582 // libgo/runtime/go-unwind.c.
5584 std::vector<Bstatement*> stmts;
5585 Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
5586 this->defer_stack(end_loc));
5587 Translate_context context(gogo, named_function, NULL, NULL);
5588 Bexpression* defer = call->get_backend(&context);
5589 stmts.push_back(gogo->backend()->expression_statement(defer));
5591 Bstatement* ret_bstmt = this->return_value(gogo, named_function, end_loc);
5592 if (ret_bstmt != NULL)
5593 stmts.push_back(ret_bstmt);
5595 go_assert(*except == NULL);
5596 *except = gogo->backend()->statement_list(stmts);
5598 call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
5599 this->defer_stack(end_loc));
5600 defer = call->get_backend(&context);
5602 call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
5603 this->defer_stack(end_loc));
5604 Bexpression* undefer = call->get_backend(&context);
5605 Bstatement* function_defer =
5606 gogo->backend()->function_defer_statement(this->fndecl_, undefer, defer,
5607 end_loc);
5608 stmts = std::vector<Bstatement*>(1, function_defer);
5609 if (this->type_->results() != NULL
5610 && !this->type_->results()->empty()
5611 && !this->type_->results()->front().name().empty())
5613 // If the result variables are named, and we are returning from
5614 // this function rather than panicing through it, we need to
5615 // return them again, because they might have been changed by a
5616 // defer function. The runtime routines set the defer_stack
5617 // variable to true if we are returning from this function.
5619 ret_bstmt = this->return_value(gogo, named_function, end_loc);
5620 Bexpression* nil = Expression::make_nil(end_loc)->get_backend(&context);
5621 Bexpression* ret =
5622 gogo->backend()->compound_expression(ret_bstmt, nil, end_loc);
5623 Expression* ref =
5624 Expression::make_temporary_reference(this->defer_stack_, end_loc);
5625 Bexpression* bref = ref->get_backend(&context);
5626 ret = gogo->backend()->conditional_expression(NULL, bref, ret, NULL,
5627 end_loc);
5628 stmts.push_back(gogo->backend()->expression_statement(ret));
5631 go_assert(*fini == NULL);
5632 *fini = gogo->backend()->statement_list(stmts);
5635 // Return the statement that assigns values to this function's result struct.
5637 Bstatement*
5638 Function::return_value(Gogo* gogo, Named_object* named_function,
5639 Location location) const
5641 const Typed_identifier_list* results = this->type_->results();
5642 if (results == NULL || results->empty())
5643 return NULL;
5645 go_assert(this->results_ != NULL);
5646 if (this->results_->size() != results->size())
5648 go_assert(saw_errors());
5649 return gogo->backend()->error_statement();
5652 std::vector<Bexpression*> vals(results->size());
5653 for (size_t i = 0; i < vals.size(); ++i)
5655 Named_object* no = (*this->results_)[i];
5656 Bvariable* bvar = no->get_backend_variable(gogo, named_function);
5657 Bexpression* val = gogo->backend()->var_expression(bvar, location);
5658 if (no->result_var_value()->is_in_heap())
5660 Btype* bt = no->result_var_value()->type()->get_backend(gogo);
5661 val = gogo->backend()->indirect_expression(bt, val, true, location);
5663 vals[i] = val;
5665 return gogo->backend()->return_statement(this->fndecl_, vals, location);
5668 // Class Block.
5670 Block::Block(Block* enclosing, Location location)
5671 : enclosing_(enclosing), statements_(),
5672 bindings_(new Bindings(enclosing == NULL
5673 ? NULL
5674 : enclosing->bindings())),
5675 start_location_(location),
5676 end_location_(UNKNOWN_LOCATION)
5680 // Add a statement to a block.
5682 void
5683 Block::add_statement(Statement* statement)
5685 this->statements_.push_back(statement);
5688 // Add a statement to the front of a block. This is slow but is only
5689 // used for reference counts of parameters.
5691 void
5692 Block::add_statement_at_front(Statement* statement)
5694 this->statements_.insert(this->statements_.begin(), statement);
5697 // Replace a statement in a block.
5699 void
5700 Block::replace_statement(size_t index, Statement* s)
5702 go_assert(index < this->statements_.size());
5703 this->statements_[index] = s;
5706 // Add a statement before another statement.
5708 void
5709 Block::insert_statement_before(size_t index, Statement* s)
5711 go_assert(index < this->statements_.size());
5712 this->statements_.insert(this->statements_.begin() + index, s);
5715 // Add a statement after another statement.
5717 void
5718 Block::insert_statement_after(size_t index, Statement* s)
5720 go_assert(index < this->statements_.size());
5721 this->statements_.insert(this->statements_.begin() + index + 1, s);
5724 // Traverse the tree.
5727 Block::traverse(Traverse* traverse)
5729 unsigned int traverse_mask = traverse->traverse_mask();
5731 if ((traverse_mask & Traverse::traverse_blocks) != 0)
5733 int t = traverse->block(this);
5734 if (t == TRAVERSE_EXIT)
5735 return TRAVERSE_EXIT;
5736 else if (t == TRAVERSE_SKIP_COMPONENTS)
5737 return TRAVERSE_CONTINUE;
5740 if ((traverse_mask
5741 & (Traverse::traverse_variables
5742 | Traverse::traverse_constants
5743 | Traverse::traverse_expressions
5744 | Traverse::traverse_types)) != 0)
5746 const unsigned int e_or_t = (Traverse::traverse_expressions
5747 | Traverse::traverse_types);
5748 const unsigned int e_or_t_or_s = (e_or_t
5749 | Traverse::traverse_statements);
5750 for (Bindings::const_definitions_iterator pb =
5751 this->bindings_->begin_definitions();
5752 pb != this->bindings_->end_definitions();
5753 ++pb)
5755 int t = TRAVERSE_CONTINUE;
5756 switch ((*pb)->classification())
5758 case Named_object::NAMED_OBJECT_CONST:
5759 if ((traverse_mask & Traverse::traverse_constants) != 0)
5760 t = traverse->constant(*pb, false);
5761 if (t == TRAVERSE_CONTINUE
5762 && (traverse_mask & e_or_t) != 0)
5764 Type* tc = (*pb)->const_value()->type();
5765 if (tc != NULL
5766 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
5767 return TRAVERSE_EXIT;
5768 t = (*pb)->const_value()->traverse_expression(traverse);
5770 break;
5772 case Named_object::NAMED_OBJECT_VAR:
5773 case Named_object::NAMED_OBJECT_RESULT_VAR:
5774 if ((traverse_mask & Traverse::traverse_variables) != 0)
5775 t = traverse->variable(*pb);
5776 if (t == TRAVERSE_CONTINUE
5777 && (traverse_mask & e_or_t) != 0)
5779 if ((*pb)->is_result_variable()
5780 || (*pb)->var_value()->has_type())
5782 Type* tv = ((*pb)->is_variable()
5783 ? (*pb)->var_value()->type()
5784 : (*pb)->result_var_value()->type());
5785 if (tv != NULL
5786 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
5787 return TRAVERSE_EXIT;
5790 if (t == TRAVERSE_CONTINUE
5791 && (traverse_mask & e_or_t_or_s) != 0
5792 && (*pb)->is_variable())
5793 t = (*pb)->var_value()->traverse_expression(traverse,
5794 traverse_mask);
5795 break;
5797 case Named_object::NAMED_OBJECT_FUNC:
5798 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
5799 go_unreachable();
5801 case Named_object::NAMED_OBJECT_TYPE:
5802 if ((traverse_mask & e_or_t) != 0)
5803 t = Type::traverse((*pb)->type_value(), traverse);
5804 break;
5806 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
5807 case Named_object::NAMED_OBJECT_UNKNOWN:
5808 case Named_object::NAMED_OBJECT_ERRONEOUS:
5809 break;
5811 case Named_object::NAMED_OBJECT_PACKAGE:
5812 case Named_object::NAMED_OBJECT_SINK:
5813 go_unreachable();
5815 default:
5816 go_unreachable();
5819 if (t == TRAVERSE_EXIT)
5820 return TRAVERSE_EXIT;
5824 // No point in checking traverse_mask here--if we got here we always
5825 // want to walk the statements. The traversal can insert new
5826 // statements before or after the current statement. Inserting
5827 // statements before the current statement requires updating I via
5828 // the pointer; those statements will not be traversed. Any new
5829 // statements inserted after the current statement will be traversed
5830 // in their turn.
5831 for (size_t i = 0; i < this->statements_.size(); ++i)
5833 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
5834 return TRAVERSE_EXIT;
5837 return TRAVERSE_CONTINUE;
5840 // Work out types for unspecified variables and constants.
5842 void
5843 Block::determine_types()
5845 for (Bindings::const_definitions_iterator pb =
5846 this->bindings_->begin_definitions();
5847 pb != this->bindings_->end_definitions();
5848 ++pb)
5850 if ((*pb)->is_variable())
5851 (*pb)->var_value()->determine_type();
5852 else if ((*pb)->is_const())
5853 (*pb)->const_value()->determine_type();
5856 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
5857 ps != this->statements_.end();
5858 ++ps)
5859 (*ps)->determine_types();
5862 // Return true if the statements in this block may fall through.
5864 bool
5865 Block::may_fall_through() const
5867 if (this->statements_.empty())
5868 return true;
5869 return this->statements_.back()->may_fall_through();
5872 // Convert a block to the backend representation.
5874 Bblock*
5875 Block::get_backend(Translate_context* context)
5877 Gogo* gogo = context->gogo();
5878 Named_object* function = context->function();
5879 std::vector<Bvariable*> vars;
5880 vars.reserve(this->bindings_->size_definitions());
5881 for (Bindings::const_definitions_iterator pv =
5882 this->bindings_->begin_definitions();
5883 pv != this->bindings_->end_definitions();
5884 ++pv)
5886 if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
5887 vars.push_back((*pv)->get_backend_variable(gogo, function));
5890 go_assert(function != NULL);
5891 Bfunction* bfunction =
5892 function->func_value()->get_or_make_decl(gogo, function);
5893 Bblock* ret = context->backend()->block(bfunction, context->bblock(),
5894 vars, this->start_location_,
5895 this->end_location_);
5897 Translate_context subcontext(gogo, function, this, ret);
5898 std::vector<Bstatement*> bstatements;
5899 bstatements.reserve(this->statements_.size());
5900 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
5901 p != this->statements_.end();
5902 ++p)
5903 bstatements.push_back((*p)->get_backend(&subcontext));
5905 context->backend()->block_add_statements(ret, bstatements);
5907 return ret;
5910 // Class Bindings_snapshot.
5912 Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
5913 : block_(b), counts_(), location_(location)
5915 while (b != NULL)
5917 this->counts_.push_back(b->bindings()->size_definitions());
5918 b = b->enclosing();
5922 // Report errors appropriate for a goto from B to this.
5924 void
5925 Bindings_snapshot::check_goto_from(const Block* b, Location loc)
5927 size_t dummy;
5928 if (!this->check_goto_block(loc, b, this->block_, &dummy))
5929 return;
5930 this->check_goto_defs(loc, this->block_,
5931 this->block_->bindings()->size_definitions(),
5932 this->counts_[0]);
5935 // Report errors appropriate for a goto from this to B.
5937 void
5938 Bindings_snapshot::check_goto_to(const Block* b)
5940 size_t index;
5941 if (!this->check_goto_block(this->location_, this->block_, b, &index))
5942 return;
5943 this->check_goto_defs(this->location_, b, this->counts_[index],
5944 b->bindings()->size_definitions());
5947 // Report errors appropriate for a goto at LOC from BFROM to BTO.
5948 // Return true if all is well, false if we reported an error. If this
5949 // returns true, it sets *PINDEX to the number of blocks BTO is above
5950 // BFROM.
5952 bool
5953 Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
5954 const Block* bto, size_t* pindex)
5956 // It is an error if BTO is not either BFROM or above BFROM.
5957 size_t index = 0;
5958 for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
5960 if (pb == NULL)
5962 error_at(loc, "goto jumps into block");
5963 inform(bto->start_location(), "goto target block starts here");
5964 return false;
5967 *pindex = index;
5968 return true;
5971 // Report errors appropriate for a goto at LOC ending at BLOCK, where
5972 // CFROM is the number of names defined at the point of the goto and
5973 // CTO is the number of names defined at the point of the label.
5975 void
5976 Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
5977 size_t cfrom, size_t cto)
5979 if (cfrom < cto)
5981 Bindings::const_definitions_iterator p =
5982 block->bindings()->begin_definitions();
5983 for (size_t i = 0; i < cfrom; ++i)
5985 go_assert(p != block->bindings()->end_definitions());
5986 ++p;
5988 go_assert(p != block->bindings()->end_definitions());
5990 std::string n = (*p)->message_name();
5991 error_at(loc, "goto jumps over declaration of %qs", n.c_str());
5992 inform((*p)->location(), "%qs defined here", n.c_str());
5996 // Class Function_declaration.
5998 // Return the function descriptor.
6000 Expression*
6001 Function_declaration::descriptor(Gogo*, Named_object* no)
6003 go_assert(!this->fntype_->is_method());
6004 if (this->descriptor_ == NULL)
6005 this->descriptor_ = Expression::make_func_descriptor(no);
6006 return this->descriptor_;
6009 // Class Variable.
6011 Variable::Variable(Type* type, Expression* init, bool is_global,
6012 bool is_parameter, bool is_receiver,
6013 Location location)
6014 : type_(type), init_(init), preinit_(NULL), location_(location),
6015 backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
6016 is_closure_(false), is_receiver_(is_receiver),
6017 is_varargs_parameter_(false), is_used_(false),
6018 is_address_taken_(false), is_non_escaping_address_taken_(false),
6019 seen_(false), init_is_lowered_(false), init_is_flattened_(false),
6020 type_from_init_tuple_(false), type_from_range_index_(false),
6021 type_from_range_value_(false), type_from_chan_element_(false),
6022 is_type_switch_var_(false), determined_type_(false),
6023 in_unique_section_(false), escapes_(true)
6025 go_assert(type != NULL || init != NULL);
6026 go_assert(!is_parameter || init == NULL);
6029 // Traverse the initializer expression.
6032 Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
6034 if (this->preinit_ != NULL)
6036 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
6037 return TRAVERSE_EXIT;
6039 if (this->init_ != NULL
6040 && ((traverse_mask
6041 & (Traverse::traverse_expressions | Traverse::traverse_types))
6042 != 0))
6044 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
6045 return TRAVERSE_EXIT;
6047 return TRAVERSE_CONTINUE;
6050 // Lower the initialization expression after parsing is complete.
6052 void
6053 Variable::lower_init_expression(Gogo* gogo, Named_object* function,
6054 Statement_inserter* inserter)
6056 Named_object* dep = gogo->var_depends_on(this);
6057 if (dep != NULL && dep->is_variable())
6058 dep->var_value()->lower_init_expression(gogo, function, inserter);
6060 if (this->init_ != NULL && !this->init_is_lowered_)
6062 if (this->seen_)
6064 // We will give an error elsewhere, this is just to prevent
6065 // an infinite loop.
6066 return;
6068 this->seen_ = true;
6070 Statement_inserter global_inserter;
6071 if (this->is_global_)
6073 global_inserter = Statement_inserter(gogo, this);
6074 inserter = &global_inserter;
6077 gogo->lower_expression(function, inserter, &this->init_);
6079 this->seen_ = false;
6081 this->init_is_lowered_ = true;
6085 // Flatten the initialization expression after ordering evaluations.
6087 void
6088 Variable::flatten_init_expression(Gogo* gogo, Named_object* function,
6089 Statement_inserter* inserter)
6091 Named_object* dep = gogo->var_depends_on(this);
6092 if (dep != NULL && dep->is_variable())
6093 dep->var_value()->flatten_init_expression(gogo, function, inserter);
6095 if (this->init_ != NULL && !this->init_is_flattened_)
6097 if (this->seen_)
6099 // We will give an error elsewhere, this is just to prevent
6100 // an infinite loop.
6101 return;
6103 this->seen_ = true;
6105 Statement_inserter global_inserter;
6106 if (this->is_global_)
6108 global_inserter = Statement_inserter(gogo, this);
6109 inserter = &global_inserter;
6112 gogo->flatten_expression(function, inserter, &this->init_);
6114 // If an interface conversion is needed, we need a temporary
6115 // variable.
6116 if (this->type_ != NULL
6117 && !Type::are_identical(this->type_, this->init_->type(), false,
6118 NULL)
6119 && this->init_->type()->interface_type() != NULL
6120 && !this->init_->is_variable())
6122 Temporary_statement* temp =
6123 Statement::make_temporary(NULL, this->init_, this->location_);
6124 inserter->insert(temp);
6125 this->init_ = Expression::make_temporary_reference(temp,
6126 this->location_);
6129 this->seen_ = false;
6130 this->init_is_flattened_ = true;
6134 // Get the preinit block.
6136 Block*
6137 Variable::preinit_block(Gogo* gogo)
6139 go_assert(this->is_global_);
6140 if (this->preinit_ == NULL)
6141 this->preinit_ = new Block(NULL, this->location());
6143 // If a global variable has a preinitialization statement, then we
6144 // need to have an initialization function.
6145 gogo->set_need_init_fn();
6147 return this->preinit_;
6150 // Add a statement to be run before the initialization expression.
6152 void
6153 Variable::add_preinit_statement(Gogo* gogo, Statement* s)
6155 Block* b = this->preinit_block(gogo);
6156 b->add_statement(s);
6157 b->set_end_location(s->location());
6160 // Whether this variable has a type.
6162 bool
6163 Variable::has_type() const
6165 if (this->type_ == NULL)
6166 return false;
6168 // A variable created in a type switch case nil does not actually
6169 // have a type yet. It will be changed to use the initializer's
6170 // type in determine_type.
6171 if (this->is_type_switch_var_
6172 && this->type_->is_nil_constant_as_type())
6173 return false;
6175 return true;
6178 // In an assignment which sets a variable to a tuple of EXPR, return
6179 // the type of the first element of the tuple.
6181 Type*
6182 Variable::type_from_tuple(Expression* expr, bool report_error) const
6184 if (expr->map_index_expression() != NULL)
6186 Map_type* mt = expr->map_index_expression()->get_map_type();
6187 if (mt == NULL)
6188 return Type::make_error_type();
6189 return mt->val_type();
6191 else if (expr->receive_expression() != NULL)
6193 Expression* channel = expr->receive_expression()->channel();
6194 Type* channel_type = channel->type();
6195 if (channel_type->channel_type() == NULL)
6196 return Type::make_error_type();
6197 return channel_type->channel_type()->element_type();
6199 else
6201 if (report_error)
6202 error_at(this->location(), "invalid tuple definition");
6203 return Type::make_error_type();
6207 // Given EXPR used in a range clause, return either the index type or
6208 // the value type of the range, depending upon GET_INDEX_TYPE.
6210 Type*
6211 Variable::type_from_range(Expression* expr, bool get_index_type,
6212 bool report_error) const
6214 Type* t = expr->type();
6215 if (t->array_type() != NULL
6216 || (t->points_to() != NULL
6217 && t->points_to()->array_type() != NULL
6218 && !t->points_to()->is_slice_type()))
6220 if (get_index_type)
6221 return Type::lookup_integer_type("int");
6222 else
6223 return t->deref()->array_type()->element_type();
6225 else if (t->is_string_type())
6227 if (get_index_type)
6228 return Type::lookup_integer_type("int");
6229 else
6230 return Type::lookup_integer_type("int32");
6232 else if (t->map_type() != NULL)
6234 if (get_index_type)
6235 return t->map_type()->key_type();
6236 else
6237 return t->map_type()->val_type();
6239 else if (t->channel_type() != NULL)
6241 if (get_index_type)
6242 return t->channel_type()->element_type();
6243 else
6245 if (report_error)
6246 error_at(this->location(),
6247 "invalid definition of value variable for channel range");
6248 return Type::make_error_type();
6251 else
6253 if (report_error)
6254 error_at(this->location(), "invalid type for range clause");
6255 return Type::make_error_type();
6259 // EXPR should be a channel. Return the channel's element type.
6261 Type*
6262 Variable::type_from_chan_element(Expression* expr, bool report_error) const
6264 Type* t = expr->type();
6265 if (t->channel_type() != NULL)
6266 return t->channel_type()->element_type();
6267 else
6269 if (report_error)
6270 error_at(this->location(), "expected channel");
6271 return Type::make_error_type();
6275 // Return the type of the Variable. This may be called before
6276 // Variable::determine_type is called, which means that we may need to
6277 // get the type from the initializer. FIXME: If we combine lowering
6278 // with type determination, then this should be unnecessary.
6280 Type*
6281 Variable::type()
6283 // A variable in a type switch with a nil case will have the wrong
6284 // type here. This gets fixed up in determine_type, below.
6285 Type* type = this->type_;
6286 Expression* init = this->init_;
6287 if (this->is_type_switch_var_
6288 && type != NULL
6289 && this->type_->is_nil_constant_as_type())
6291 Type_guard_expression* tge = this->init_->type_guard_expression();
6292 go_assert(tge != NULL);
6293 init = tge->expr();
6294 type = NULL;
6297 if (this->seen_)
6299 if (this->type_ == NULL || !this->type_->is_error_type())
6301 error_at(this->location_, "variable initializer refers to itself");
6302 this->type_ = Type::make_error_type();
6304 return this->type_;
6307 this->seen_ = true;
6309 if (type != NULL)
6311 else if (this->type_from_init_tuple_)
6312 type = this->type_from_tuple(init, false);
6313 else if (this->type_from_range_index_ || this->type_from_range_value_)
6314 type = this->type_from_range(init, this->type_from_range_index_, false);
6315 else if (this->type_from_chan_element_)
6316 type = this->type_from_chan_element(init, false);
6317 else
6319 go_assert(init != NULL);
6320 type = init->type();
6321 go_assert(type != NULL);
6323 // Variables should not have abstract types.
6324 if (type->is_abstract())
6325 type = type->make_non_abstract_type();
6327 if (type->is_void_type())
6328 type = Type::make_error_type();
6331 this->seen_ = false;
6333 return type;
6336 // Fetch the type from a const pointer, in which case it should have
6337 // been set already.
6339 Type*
6340 Variable::type() const
6342 go_assert(this->type_ != NULL);
6343 return this->type_;
6346 // Set the type if necessary.
6348 void
6349 Variable::determine_type()
6351 if (this->determined_type_)
6352 return;
6353 this->determined_type_ = true;
6355 if (this->preinit_ != NULL)
6356 this->preinit_->determine_types();
6358 // A variable in a type switch with a nil case will have the wrong
6359 // type here. It will have an initializer which is a type guard.
6360 // We want to initialize it to the value without the type guard, and
6361 // use the type of that value as well.
6362 if (this->is_type_switch_var_
6363 && this->type_ != NULL
6364 && this->type_->is_nil_constant_as_type())
6366 Type_guard_expression* tge = this->init_->type_guard_expression();
6367 go_assert(tge != NULL);
6368 this->type_ = NULL;
6369 this->init_ = tge->expr();
6372 if (this->init_ == NULL)
6373 go_assert(this->type_ != NULL && !this->type_->is_abstract());
6374 else if (this->type_from_init_tuple_)
6376 Expression *init = this->init_;
6377 init->determine_type_no_context();
6378 this->type_ = this->type_from_tuple(init, true);
6379 this->init_ = NULL;
6381 else if (this->type_from_range_index_ || this->type_from_range_value_)
6383 Expression* init = this->init_;
6384 init->determine_type_no_context();
6385 this->type_ = this->type_from_range(init, this->type_from_range_index_,
6386 true);
6387 this->init_ = NULL;
6389 else if (this->type_from_chan_element_)
6391 Expression* init = this->init_;
6392 init->determine_type_no_context();
6393 this->type_ = this->type_from_chan_element(init, true);
6394 this->init_ = NULL;
6396 else
6398 Type_context context(this->type_, false);
6399 this->init_->determine_type(&context);
6400 if (this->type_ == NULL)
6402 Type* type = this->init_->type();
6403 go_assert(type != NULL);
6404 if (type->is_abstract())
6405 type = type->make_non_abstract_type();
6407 if (type->is_void_type())
6409 error_at(this->location_, "variable has no type");
6410 type = Type::make_error_type();
6412 else if (type->is_nil_type())
6414 error_at(this->location_, "variable defined to nil type");
6415 type = Type::make_error_type();
6417 else if (type->is_call_multiple_result_type())
6419 error_at(this->location_,
6420 "single variable set to multiple-value function call");
6421 type = Type::make_error_type();
6424 this->type_ = type;
6429 // Get the initial value of a variable. This does not
6430 // consider whether the variable is in the heap--it returns the
6431 // initial value as though it were always stored in the stack.
6433 Bexpression*
6434 Variable::get_init(Gogo* gogo, Named_object* function)
6436 go_assert(this->preinit_ == NULL);
6437 Location loc = this->location();
6438 if (this->init_ == NULL)
6440 go_assert(!this->is_parameter_);
6441 if (this->is_global_ || this->is_in_heap())
6442 return NULL;
6443 Btype* btype = this->type()->get_backend(gogo);
6444 return gogo->backend()->zero_expression(btype);
6446 else
6448 Translate_context context(gogo, function, NULL, NULL);
6449 Expression* init = Expression::make_cast(this->type(), this->init_, loc);
6450 return init->get_backend(&context);
6454 // Get the initial value of a variable when a block is required.
6455 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
6457 Bstatement*
6458 Variable::get_init_block(Gogo* gogo, Named_object* function,
6459 Bvariable* var_decl)
6461 go_assert(this->preinit_ != NULL);
6463 // We want to add the variable assignment to the end of the preinit
6464 // block.
6466 Translate_context context(gogo, function, NULL, NULL);
6467 Bblock* bblock = this->preinit_->get_backend(&context);
6469 // It's possible to have pre-init statements without an initializer
6470 // if the pre-init statements set the variable.
6471 Bstatement* decl_init = NULL;
6472 if (this->init_ != NULL)
6474 if (var_decl == NULL)
6476 Bexpression* init_bexpr = this->init_->get_backend(&context);
6477 decl_init = gogo->backend()->expression_statement(init_bexpr);
6479 else
6481 Location loc = this->location();
6482 Expression* val_expr =
6483 Expression::make_cast(this->type(), this->init_, loc);
6484 Bexpression* val = val_expr->get_backend(&context);
6485 Bexpression* var_ref = gogo->backend()->var_expression(var_decl, loc);
6486 decl_init = gogo->backend()->assignment_statement(var_ref, val, loc);
6489 Bstatement* block_stmt = gogo->backend()->block_statement(bblock);
6490 if (decl_init != NULL)
6491 block_stmt = gogo->backend()->compound_statement(block_stmt, decl_init);
6492 return block_stmt;
6495 // Export the variable
6497 void
6498 Variable::export_var(Export* exp, const std::string& name) const
6500 go_assert(this->is_global_);
6501 exp->write_c_string("var ");
6502 exp->write_string(name);
6503 exp->write_c_string(" ");
6504 exp->write_type(this->type());
6505 exp->write_c_string(";\n");
6508 // Import a variable.
6510 void
6511 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
6513 imp->require_c_string("var ");
6514 *pname = imp->read_identifier();
6515 imp->require_c_string(" ");
6516 *ptype = imp->read_type();
6517 imp->require_c_string(";\n");
6520 // Convert a variable to the backend representation.
6522 Bvariable*
6523 Variable::get_backend_variable(Gogo* gogo, Named_object* function,
6524 const Package* package, const std::string& name)
6526 if (this->backend_ == NULL)
6528 Backend* backend = gogo->backend();
6529 Type* type = this->type_;
6530 if (type->is_error_type()
6531 || (type->is_undefined()
6532 && (!this->is_global_ || package == NULL)))
6533 this->backend_ = backend->error_variable();
6534 else
6536 bool is_parameter = this->is_parameter_;
6537 if (this->is_receiver_ && type->points_to() == NULL)
6538 is_parameter = false;
6539 if (this->is_in_heap())
6541 is_parameter = false;
6542 type = Type::make_pointer_type(type);
6545 std::string n = Gogo::unpack_hidden_name(name);
6546 Btype* btype = type->get_backend(gogo);
6548 Bvariable* bvar;
6549 if (Map_type::is_zero_value(this))
6550 bvar = Map_type::backend_zero_value(gogo);
6551 else if (this->is_global_)
6552 bvar = backend->global_variable((package == NULL
6553 ? gogo->package_name()
6554 : package->package_name()),
6555 (package == NULL
6556 ? gogo->pkgpath_symbol()
6557 : package->pkgpath_symbol()),
6559 btype,
6560 package != NULL,
6561 Gogo::is_hidden_name(name),
6562 this->in_unique_section_,
6563 this->location_);
6564 else if (function == NULL)
6566 go_assert(saw_errors());
6567 bvar = backend->error_variable();
6569 else
6571 Bfunction* bfunction = function->func_value()->get_decl();
6572 bool is_address_taken = (this->is_non_escaping_address_taken_
6573 && !this->is_in_heap());
6574 if (this->is_closure())
6575 bvar = backend->static_chain_variable(bfunction, n, btype,
6576 this->location_);
6577 else if (is_parameter)
6578 bvar = backend->parameter_variable(bfunction, n, btype,
6579 is_address_taken,
6580 this->location_);
6581 else
6582 bvar = backend->local_variable(bfunction, n, btype,
6583 is_address_taken,
6584 this->location_);
6586 this->backend_ = bvar;
6589 return this->backend_;
6592 // Class Result_variable.
6594 // Convert a result variable to the backend representation.
6596 Bvariable*
6597 Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
6598 const std::string& name)
6600 if (this->backend_ == NULL)
6602 Backend* backend = gogo->backend();
6603 Type* type = this->type_;
6604 if (type->is_error())
6605 this->backend_ = backend->error_variable();
6606 else
6608 if (this->is_in_heap())
6609 type = Type::make_pointer_type(type);
6610 Btype* btype = type->get_backend(gogo);
6611 Bfunction* bfunction = function->func_value()->get_decl();
6612 std::string n = Gogo::unpack_hidden_name(name);
6613 bool is_address_taken = (this->is_non_escaping_address_taken_
6614 && !this->is_in_heap());
6615 this->backend_ = backend->local_variable(bfunction, n, btype,
6616 is_address_taken,
6617 this->location_);
6620 return this->backend_;
6623 // Class Named_constant.
6625 // Traverse the initializer expression.
6628 Named_constant::traverse_expression(Traverse* traverse)
6630 return Expression::traverse(&this->expr_, traverse);
6633 // Determine the type of the constant.
6635 void
6636 Named_constant::determine_type()
6638 if (this->type_ != NULL)
6640 Type_context context(this->type_, false);
6641 this->expr_->determine_type(&context);
6643 else
6645 // A constant may have an abstract type.
6646 Type_context context(NULL, true);
6647 this->expr_->determine_type(&context);
6648 this->type_ = this->expr_->type();
6649 go_assert(this->type_ != NULL);
6653 // Indicate that we found and reported an error for this constant.
6655 void
6656 Named_constant::set_error()
6658 this->type_ = Type::make_error_type();
6659 this->expr_ = Expression::make_error(this->location_);
6662 // Export a constant.
6664 void
6665 Named_constant::export_const(Export* exp, const std::string& name) const
6667 exp->write_c_string("const ");
6668 exp->write_string(name);
6669 exp->write_c_string(" ");
6670 if (!this->type_->is_abstract())
6672 exp->write_type(this->type_);
6673 exp->write_c_string(" ");
6675 exp->write_c_string("= ");
6676 this->expr()->export_expression(exp);
6677 exp->write_c_string(";\n");
6680 // Import a constant.
6682 void
6683 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
6684 Expression** pexpr)
6686 imp->require_c_string("const ");
6687 *pname = imp->read_identifier();
6688 imp->require_c_string(" ");
6689 if (imp->peek_char() == '=')
6690 *ptype = NULL;
6691 else
6693 *ptype = imp->read_type();
6694 imp->require_c_string(" ");
6696 imp->require_c_string("= ");
6697 *pexpr = Expression::import_expression(imp);
6698 imp->require_c_string(";\n");
6701 // Get the backend representation.
6703 Bexpression*
6704 Named_constant::get_backend(Gogo* gogo, Named_object* const_no)
6706 if (this->bconst_ == NULL)
6708 Translate_context subcontext(gogo, NULL, NULL, NULL);
6709 Type* type = this->type();
6710 Location loc = this->location();
6712 Expression* const_ref = Expression::make_const_reference(const_no, loc);
6713 Bexpression* const_decl = const_ref->get_backend(&subcontext);
6714 if (type != NULL && type->is_numeric_type())
6716 Btype* btype = type->get_backend(gogo);
6717 std::string name = const_no->get_id(gogo);
6718 const_decl =
6719 gogo->backend()->named_constant_expression(btype, name,
6720 const_decl, loc);
6722 this->bconst_ = const_decl;
6724 return this->bconst_;
6727 // Add a method.
6729 Named_object*
6730 Type_declaration::add_method(const std::string& name, Function* function)
6732 Named_object* ret = Named_object::make_function(name, NULL, function);
6733 this->methods_.push_back(ret);
6734 return ret;
6737 // Add a method declaration.
6739 Named_object*
6740 Type_declaration::add_method_declaration(const std::string& name,
6741 Package* package,
6742 Function_type* type,
6743 Location location)
6745 Named_object* ret = Named_object::make_function_declaration(name, package,
6746 type, location);
6747 this->methods_.push_back(ret);
6748 return ret;
6751 // Return whether any methods ere defined.
6753 bool
6754 Type_declaration::has_methods() const
6756 return !this->methods_.empty();
6759 // Define methods for the real type.
6761 void
6762 Type_declaration::define_methods(Named_type* nt)
6764 for (std::vector<Named_object*>::const_iterator p = this->methods_.begin();
6765 p != this->methods_.end();
6766 ++p)
6767 nt->add_existing_method(*p);
6770 // We are using the type. Return true if we should issue a warning.
6772 bool
6773 Type_declaration::using_type()
6775 bool ret = !this->issued_warning_;
6776 this->issued_warning_ = true;
6777 return ret;
6780 // Class Unknown_name.
6782 // Set the real named object.
6784 void
6785 Unknown_name::set_real_named_object(Named_object* no)
6787 go_assert(this->real_named_object_ == NULL);
6788 go_assert(!no->is_unknown());
6789 this->real_named_object_ = no;
6792 // Class Named_object.
6794 Named_object::Named_object(const std::string& name,
6795 const Package* package,
6796 Classification classification)
6797 : name_(name), package_(package), classification_(classification),
6798 is_redefinition_(false)
6800 if (Gogo::is_sink_name(name))
6801 go_assert(classification == NAMED_OBJECT_SINK);
6804 // Make an unknown name. This is used by the parser. The name must
6805 // be resolved later. Unknown names are only added in the current
6806 // package.
6808 Named_object*
6809 Named_object::make_unknown_name(const std::string& name,
6810 Location location)
6812 Named_object* named_object = new Named_object(name, NULL,
6813 NAMED_OBJECT_UNKNOWN);
6814 Unknown_name* value = new Unknown_name(location);
6815 named_object->u_.unknown_value = value;
6816 return named_object;
6819 // Make a constant.
6821 Named_object*
6822 Named_object::make_constant(const Typed_identifier& tid,
6823 const Package* package, Expression* expr,
6824 int iota_value)
6826 Named_object* named_object = new Named_object(tid.name(), package,
6827 NAMED_OBJECT_CONST);
6828 Named_constant* named_constant = new Named_constant(tid.type(), expr,
6829 iota_value,
6830 tid.location());
6831 named_object->u_.const_value = named_constant;
6832 return named_object;
6835 // Make a named type.
6837 Named_object*
6838 Named_object::make_type(const std::string& name, const Package* package,
6839 Type* type, Location location)
6841 Named_object* named_object = new Named_object(name, package,
6842 NAMED_OBJECT_TYPE);
6843 Named_type* named_type = Type::make_named_type(named_object, type, location);
6844 named_object->u_.type_value = named_type;
6845 return named_object;
6848 // Make a type declaration.
6850 Named_object*
6851 Named_object::make_type_declaration(const std::string& name,
6852 const Package* package,
6853 Location location)
6855 Named_object* named_object = new Named_object(name, package,
6856 NAMED_OBJECT_TYPE_DECLARATION);
6857 Type_declaration* type_declaration = new Type_declaration(location);
6858 named_object->u_.type_declaration = type_declaration;
6859 return named_object;
6862 // Make a variable.
6864 Named_object*
6865 Named_object::make_variable(const std::string& name, const Package* package,
6866 Variable* variable)
6868 Named_object* named_object = new Named_object(name, package,
6869 NAMED_OBJECT_VAR);
6870 named_object->u_.var_value = variable;
6871 return named_object;
6874 // Make a result variable.
6876 Named_object*
6877 Named_object::make_result_variable(const std::string& name,
6878 Result_variable* result)
6880 Named_object* named_object = new Named_object(name, NULL,
6881 NAMED_OBJECT_RESULT_VAR);
6882 named_object->u_.result_var_value = result;
6883 return named_object;
6886 // Make a sink. This is used for the special blank identifier _.
6888 Named_object*
6889 Named_object::make_sink()
6891 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
6894 // Make a named function.
6896 Named_object*
6897 Named_object::make_function(const std::string& name, const Package* package,
6898 Function* function)
6900 Named_object* named_object = new Named_object(name, package,
6901 NAMED_OBJECT_FUNC);
6902 named_object->u_.func_value = function;
6903 return named_object;
6906 // Make a function declaration.
6908 Named_object*
6909 Named_object::make_function_declaration(const std::string& name,
6910 const Package* package,
6911 Function_type* fntype,
6912 Location location)
6914 Named_object* named_object = new Named_object(name, package,
6915 NAMED_OBJECT_FUNC_DECLARATION);
6916 Function_declaration *func_decl = new Function_declaration(fntype, location);
6917 named_object->u_.func_declaration_value = func_decl;
6918 return named_object;
6921 // Make a package.
6923 Named_object*
6924 Named_object::make_package(const std::string& alias, Package* package)
6926 Named_object* named_object = new Named_object(alias, NULL,
6927 NAMED_OBJECT_PACKAGE);
6928 named_object->u_.package_value = package;
6929 return named_object;
6932 // Return the name to use in an error message.
6934 std::string
6935 Named_object::message_name() const
6937 if (this->package_ == NULL)
6938 return Gogo::message_name(this->name_);
6939 std::string ret;
6940 if (this->package_->has_package_name())
6941 ret = this->package_->package_name();
6942 else
6943 ret = this->package_->pkgpath();
6944 ret = Gogo::message_name(ret);
6945 ret += '.';
6946 ret += Gogo::message_name(this->name_);
6947 return ret;
6950 // Set the type when a declaration is defined.
6952 void
6953 Named_object::set_type_value(Named_type* named_type)
6955 go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
6956 Type_declaration* td = this->u_.type_declaration;
6957 td->define_methods(named_type);
6958 unsigned int index;
6959 Named_object* in_function = td->in_function(&index);
6960 if (in_function != NULL)
6961 named_type->set_in_function(in_function, index);
6962 delete td;
6963 this->classification_ = NAMED_OBJECT_TYPE;
6964 this->u_.type_value = named_type;
6967 // Define a function which was previously declared.
6969 void
6970 Named_object::set_function_value(Function* function)
6972 go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
6973 if (this->func_declaration_value()->has_descriptor())
6975 Expression* descriptor =
6976 this->func_declaration_value()->descriptor(NULL, NULL);
6977 function->set_descriptor(descriptor);
6979 this->classification_ = NAMED_OBJECT_FUNC;
6980 // FIXME: We should free the old value.
6981 this->u_.func_value = function;
6984 // Declare an unknown object as a type declaration.
6986 void
6987 Named_object::declare_as_type()
6989 go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
6990 Unknown_name* unk = this->u_.unknown_value;
6991 this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
6992 this->u_.type_declaration = new Type_declaration(unk->location());
6993 delete unk;
6996 // Return the location of a named object.
6998 Location
6999 Named_object::location() const
7001 switch (this->classification_)
7003 default:
7004 case NAMED_OBJECT_UNINITIALIZED:
7005 go_unreachable();
7007 case NAMED_OBJECT_ERRONEOUS:
7008 return Linemap::unknown_location();
7010 case NAMED_OBJECT_UNKNOWN:
7011 return this->unknown_value()->location();
7013 case NAMED_OBJECT_CONST:
7014 return this->const_value()->location();
7016 case NAMED_OBJECT_TYPE:
7017 return this->type_value()->location();
7019 case NAMED_OBJECT_TYPE_DECLARATION:
7020 return this->type_declaration_value()->location();
7022 case NAMED_OBJECT_VAR:
7023 return this->var_value()->location();
7025 case NAMED_OBJECT_RESULT_VAR:
7026 return this->result_var_value()->location();
7028 case NAMED_OBJECT_SINK:
7029 go_unreachable();
7031 case NAMED_OBJECT_FUNC:
7032 return this->func_value()->location();
7034 case NAMED_OBJECT_FUNC_DECLARATION:
7035 return this->func_declaration_value()->location();
7037 case NAMED_OBJECT_PACKAGE:
7038 return this->package_value()->location();
7042 // Export a named object.
7044 void
7045 Named_object::export_named_object(Export* exp) const
7047 switch (this->classification_)
7049 default:
7050 case NAMED_OBJECT_UNINITIALIZED:
7051 case NAMED_OBJECT_UNKNOWN:
7052 go_unreachable();
7054 case NAMED_OBJECT_ERRONEOUS:
7055 break;
7057 case NAMED_OBJECT_CONST:
7058 this->const_value()->export_const(exp, this->name_);
7059 break;
7061 case NAMED_OBJECT_TYPE:
7062 this->type_value()->export_named_type(exp, this->name_);
7063 break;
7065 case NAMED_OBJECT_TYPE_DECLARATION:
7066 error_at(this->type_declaration_value()->location(),
7067 "attempt to export %<%s%> which was declared but not defined",
7068 this->message_name().c_str());
7069 break;
7071 case NAMED_OBJECT_FUNC_DECLARATION:
7072 this->func_declaration_value()->export_func(exp, this->name_);
7073 break;
7075 case NAMED_OBJECT_VAR:
7076 this->var_value()->export_var(exp, this->name_);
7077 break;
7079 case NAMED_OBJECT_RESULT_VAR:
7080 case NAMED_OBJECT_SINK:
7081 go_unreachable();
7083 case NAMED_OBJECT_FUNC:
7084 this->func_value()->export_func(exp, this->name_);
7085 break;
7089 // Convert a variable to the backend representation.
7091 Bvariable*
7092 Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
7094 if (this->classification_ == NAMED_OBJECT_VAR)
7095 return this->var_value()->get_backend_variable(gogo, function,
7096 this->package_, this->name_);
7097 else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
7098 return this->result_var_value()->get_backend_variable(gogo, function,
7099 this->name_);
7100 else
7101 go_unreachable();
7105 // Return the external identifier for this object.
7107 std::string
7108 Named_object::get_id(Gogo* gogo)
7110 go_assert(!this->is_variable() && !this->is_result_variable());
7111 std::string decl_name;
7112 if (this->is_function_declaration()
7113 && !this->func_declaration_value()->asm_name().empty())
7114 decl_name = this->func_declaration_value()->asm_name();
7115 else if (this->is_type()
7116 && Linemap::is_predeclared_location(this->type_value()->location()))
7118 // We don't need the package name for builtin types.
7119 decl_name = Gogo::unpack_hidden_name(this->name_);
7121 else
7123 std::string package_name;
7124 if (this->package_ == NULL)
7125 package_name = gogo->package_name();
7126 else
7127 package_name = this->package_->package_name();
7129 // Note that this will be misleading if this is an unexported
7130 // method generated for an embedded imported type. In that case
7131 // the unexported method should have the package name of the
7132 // package from which it is imported, but we are going to give
7133 // it our package name. Fixing this would require knowing the
7134 // package name, but we only know the package path. It might be
7135 // better to use package paths here anyhow. This doesn't affect
7136 // the assembler code, because we always set that name in
7137 // Function::get_or_make_decl anyhow. FIXME.
7139 decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
7141 Function_type* fntype;
7142 if (this->is_function())
7143 fntype = this->func_value()->type();
7144 else if (this->is_function_declaration())
7145 fntype = this->func_declaration_value()->type();
7146 else
7147 fntype = NULL;
7148 if (fntype != NULL && fntype->is_method())
7150 decl_name.push_back('.');
7151 decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
7154 if (this->is_type())
7156 unsigned int index;
7157 const Named_object* in_function = this->type_value()->in_function(&index);
7158 if (in_function != NULL)
7160 decl_name += '$' + Gogo::unpack_hidden_name(in_function->name());
7161 if (index > 0)
7163 char buf[30];
7164 snprintf(buf, sizeof buf, "%u", index);
7165 decl_name += '$';
7166 decl_name += buf;
7170 return decl_name;
7173 // Get the backend representation for this named object.
7175 void
7176 Named_object::get_backend(Gogo* gogo, std::vector<Bexpression*>& const_decls,
7177 std::vector<Btype*>& type_decls,
7178 std::vector<Bfunction*>& func_decls)
7180 switch (this->classification_)
7182 case NAMED_OBJECT_CONST:
7183 if (!Gogo::is_erroneous_name(this->name_))
7184 const_decls.push_back(this->u_.const_value->get_backend(gogo, this));
7185 break;
7187 case NAMED_OBJECT_TYPE:
7189 Named_type* named_type = this->u_.type_value;
7190 if (!Gogo::is_erroneous_name(this->name_))
7191 type_decls.push_back(named_type->get_backend(gogo));
7193 // We need to produce a type descriptor for every named
7194 // type, and for a pointer to every named type, since
7195 // other files or packages might refer to them. We need
7196 // to do this even for hidden types, because they might
7197 // still be returned by some function. Simply calling the
7198 // type_descriptor method is enough to create the type
7199 // descriptor, even though we don't do anything with it.
7200 if (this->package_ == NULL && !saw_errors())
7202 named_type->
7203 type_descriptor_pointer(gogo, Linemap::predeclared_location());
7204 named_type->gc_symbol_pointer(gogo);
7205 Type* pn = Type::make_pointer_type(named_type);
7206 pn->type_descriptor_pointer(gogo, Linemap::predeclared_location());
7207 pn->gc_symbol_pointer(gogo);
7210 break;
7212 case NAMED_OBJECT_TYPE_DECLARATION:
7213 error("reference to undefined type %qs",
7214 this->message_name().c_str());
7215 return;
7217 case NAMED_OBJECT_VAR:
7218 case NAMED_OBJECT_RESULT_VAR:
7219 case NAMED_OBJECT_SINK:
7220 go_unreachable();
7222 case NAMED_OBJECT_FUNC:
7224 Function* func = this->u_.func_value;
7225 if (!Gogo::is_erroneous_name(this->name_))
7226 func_decls.push_back(func->get_or_make_decl(gogo, this));
7228 if (func->block() != NULL)
7229 func->build(gogo, this);
7231 break;
7233 case NAMED_OBJECT_ERRONEOUS:
7234 break;
7236 default:
7237 go_unreachable();
7241 // Class Bindings.
7243 Bindings::Bindings(Bindings* enclosing)
7244 : enclosing_(enclosing), named_objects_(), bindings_()
7248 // Clear imports.
7250 void
7251 Bindings::clear_file_scope(Gogo* gogo)
7253 Contour::iterator p = this->bindings_.begin();
7254 while (p != this->bindings_.end())
7256 bool keep;
7257 if (p->second->package() != NULL)
7258 keep = false;
7259 else if (p->second->is_package())
7260 keep = false;
7261 else if (p->second->is_function()
7262 && !p->second->func_value()->type()->is_method()
7263 && Gogo::unpack_hidden_name(p->second->name()) == "init")
7264 keep = false;
7265 else
7266 keep = true;
7268 if (keep)
7269 ++p;
7270 else
7272 gogo->add_file_block_name(p->second->name(), p->second->location());
7273 p = this->bindings_.erase(p);
7278 // Look up a symbol.
7280 Named_object*
7281 Bindings::lookup(const std::string& name) const
7283 Contour::const_iterator p = this->bindings_.find(name);
7284 if (p != this->bindings_.end())
7285 return p->second->resolve();
7286 else if (this->enclosing_ != NULL)
7287 return this->enclosing_->lookup(name);
7288 else
7289 return NULL;
7292 // Look up a symbol locally.
7294 Named_object*
7295 Bindings::lookup_local(const std::string& name) const
7297 Contour::const_iterator p = this->bindings_.find(name);
7298 if (p == this->bindings_.end())
7299 return NULL;
7300 return p->second;
7303 // Remove an object from a set of bindings. This is used for a
7304 // special case in thunks for functions which call recover.
7306 void
7307 Bindings::remove_binding(Named_object* no)
7309 Contour::iterator pb = this->bindings_.find(no->name());
7310 go_assert(pb != this->bindings_.end());
7311 this->bindings_.erase(pb);
7312 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
7313 pn != this->named_objects_.end();
7314 ++pn)
7316 if (*pn == no)
7318 this->named_objects_.erase(pn);
7319 return;
7322 go_unreachable();
7325 // Add a method to the list of objects. This is not added to the
7326 // lookup table. This is so that we have a single list of objects
7327 // declared at the top level, which we walk through when it's time to
7328 // convert to trees.
7330 void
7331 Bindings::add_method(Named_object* method)
7333 this->named_objects_.push_back(method);
7336 // Add a generic Named_object to a Contour.
7338 Named_object*
7339 Bindings::add_named_object_to_contour(Contour* contour,
7340 Named_object* named_object)
7342 go_assert(named_object == named_object->resolve());
7343 const std::string& name(named_object->name());
7344 go_assert(!Gogo::is_sink_name(name));
7346 std::pair<Contour::iterator, bool> ins =
7347 contour->insert(std::make_pair(name, named_object));
7348 if (!ins.second)
7350 // The name was already there.
7351 if (named_object->package() != NULL
7352 && ins.first->second->package() == named_object->package()
7353 && (ins.first->second->classification()
7354 == named_object->classification()))
7356 // This is a second import of the same object.
7357 return ins.first->second;
7359 ins.first->second = this->new_definition(ins.first->second,
7360 named_object);
7361 return ins.first->second;
7363 else
7365 // Don't push declarations on the list. We push them on when
7366 // and if we find the definitions. That way we genericize the
7367 // functions in order.
7368 if (!named_object->is_type_declaration()
7369 && !named_object->is_function_declaration()
7370 && !named_object->is_unknown())
7371 this->named_objects_.push_back(named_object);
7372 return named_object;
7376 // We had an existing named object OLD_OBJECT, and we've seen a new
7377 // one NEW_OBJECT with the same name. FIXME: This does not free the
7378 // new object when we don't need it.
7380 Named_object*
7381 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
7383 if (new_object->is_erroneous() && !old_object->is_erroneous())
7384 return new_object;
7386 std::string reason;
7387 switch (old_object->classification())
7389 default:
7390 case Named_object::NAMED_OBJECT_UNINITIALIZED:
7391 go_unreachable();
7393 case Named_object::NAMED_OBJECT_ERRONEOUS:
7394 return old_object;
7396 case Named_object::NAMED_OBJECT_UNKNOWN:
7398 Named_object* real = old_object->unknown_value()->real_named_object();
7399 if (real != NULL)
7400 return this->new_definition(real, new_object);
7401 go_assert(!new_object->is_unknown());
7402 old_object->unknown_value()->set_real_named_object(new_object);
7403 if (!new_object->is_type_declaration()
7404 && !new_object->is_function_declaration())
7405 this->named_objects_.push_back(new_object);
7406 return new_object;
7409 case Named_object::NAMED_OBJECT_CONST:
7410 break;
7412 case Named_object::NAMED_OBJECT_TYPE:
7413 if (new_object->is_type_declaration())
7414 return old_object;
7415 break;
7417 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
7418 if (new_object->is_type_declaration())
7419 return old_object;
7420 if (new_object->is_type())
7422 old_object->set_type_value(new_object->type_value());
7423 new_object->type_value()->set_named_object(old_object);
7424 this->named_objects_.push_back(old_object);
7425 return old_object;
7427 break;
7429 case Named_object::NAMED_OBJECT_VAR:
7430 case Named_object::NAMED_OBJECT_RESULT_VAR:
7431 // We have already given an error in the parser for cases where
7432 // one parameter or result variable redeclares another one.
7433 if ((new_object->is_variable()
7434 && new_object->var_value()->is_parameter())
7435 || new_object->is_result_variable())
7436 return old_object;
7437 break;
7439 case Named_object::NAMED_OBJECT_SINK:
7440 go_unreachable();
7442 case Named_object::NAMED_OBJECT_FUNC:
7443 if (new_object->is_function_declaration())
7445 if (!new_object->func_declaration_value()->asm_name().empty())
7446 sorry("__asm__ for function definitions");
7447 Function_type* old_type = old_object->func_value()->type();
7448 Function_type* new_type =
7449 new_object->func_declaration_value()->type();
7450 if (old_type->is_valid_redeclaration(new_type, &reason))
7451 return old_object;
7453 break;
7455 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
7457 if (new_object->is_function())
7459 Function_type* old_type =
7460 old_object->func_declaration_value()->type();
7461 Function_type* new_type = new_object->func_value()->type();
7462 if (old_type->is_valid_redeclaration(new_type, &reason))
7464 if (!old_object->func_declaration_value()->asm_name().empty())
7465 sorry("__asm__ for function definitions");
7466 old_object->set_function_value(new_object->func_value());
7467 this->named_objects_.push_back(old_object);
7468 return old_object;
7472 break;
7474 case Named_object::NAMED_OBJECT_PACKAGE:
7475 break;
7478 std::string n = old_object->message_name();
7479 if (reason.empty())
7480 error_at(new_object->location(), "redefinition of %qs", n.c_str());
7481 else
7482 error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
7483 reason.c_str());
7484 old_object->set_is_redefinition();
7485 new_object->set_is_redefinition();
7487 inform(old_object->location(), "previous definition of %qs was here",
7488 n.c_str());
7490 return old_object;
7493 // Add a named type.
7495 Named_object*
7496 Bindings::add_named_type(Named_type* named_type)
7498 return this->add_named_object(named_type->named_object());
7501 // Add a function.
7503 Named_object*
7504 Bindings::add_function(const std::string& name, const Package* package,
7505 Function* function)
7507 return this->add_named_object(Named_object::make_function(name, package,
7508 function));
7511 // Add a function declaration.
7513 Named_object*
7514 Bindings::add_function_declaration(const std::string& name,
7515 const Package* package,
7516 Function_type* type,
7517 Location location)
7519 Named_object* no = Named_object::make_function_declaration(name, package,
7520 type, location);
7521 return this->add_named_object(no);
7524 // Define a type which was previously declared.
7526 void
7527 Bindings::define_type(Named_object* no, Named_type* type)
7529 no->set_type_value(type);
7530 this->named_objects_.push_back(no);
7533 // Mark all local variables as used. This is used for some types of
7534 // parse error.
7536 void
7537 Bindings::mark_locals_used()
7539 for (std::vector<Named_object*>::iterator p = this->named_objects_.begin();
7540 p != this->named_objects_.end();
7541 ++p)
7542 if ((*p)->is_variable())
7543 (*p)->var_value()->set_is_used();
7546 // Traverse bindings.
7549 Bindings::traverse(Traverse* traverse, bool is_global)
7551 unsigned int traverse_mask = traverse->traverse_mask();
7553 // We don't use an iterator because we permit the traversal to add
7554 // new global objects.
7555 const unsigned int e_or_t = (Traverse::traverse_expressions
7556 | Traverse::traverse_types);
7557 const unsigned int e_or_t_or_s = (e_or_t
7558 | Traverse::traverse_statements);
7559 for (size_t i = 0; i < this->named_objects_.size(); ++i)
7561 Named_object* p = this->named_objects_[i];
7562 int t = TRAVERSE_CONTINUE;
7563 switch (p->classification())
7565 case Named_object::NAMED_OBJECT_CONST:
7566 if ((traverse_mask & Traverse::traverse_constants) != 0)
7567 t = traverse->constant(p, is_global);
7568 if (t == TRAVERSE_CONTINUE
7569 && (traverse_mask & e_or_t) != 0)
7571 Type* tc = p->const_value()->type();
7572 if (tc != NULL
7573 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
7574 return TRAVERSE_EXIT;
7575 t = p->const_value()->traverse_expression(traverse);
7577 break;
7579 case Named_object::NAMED_OBJECT_VAR:
7580 case Named_object::NAMED_OBJECT_RESULT_VAR:
7581 if ((traverse_mask & Traverse::traverse_variables) != 0)
7582 t = traverse->variable(p);
7583 if (t == TRAVERSE_CONTINUE
7584 && (traverse_mask & e_or_t) != 0)
7586 if (p->is_result_variable()
7587 || p->var_value()->has_type())
7589 Type* tv = (p->is_variable()
7590 ? p->var_value()->type()
7591 : p->result_var_value()->type());
7592 if (tv != NULL
7593 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
7594 return TRAVERSE_EXIT;
7597 if (t == TRAVERSE_CONTINUE
7598 && (traverse_mask & e_or_t_or_s) != 0
7599 && p->is_variable())
7600 t = p->var_value()->traverse_expression(traverse, traverse_mask);
7601 break;
7603 case Named_object::NAMED_OBJECT_FUNC:
7604 if ((traverse_mask & Traverse::traverse_functions) != 0)
7605 t = traverse->function(p);
7607 if (t == TRAVERSE_CONTINUE
7608 && (traverse_mask
7609 & (Traverse::traverse_variables
7610 | Traverse::traverse_constants
7611 | Traverse::traverse_functions
7612 | Traverse::traverse_blocks
7613 | Traverse::traverse_statements
7614 | Traverse::traverse_expressions
7615 | Traverse::traverse_types)) != 0)
7616 t = p->func_value()->traverse(traverse);
7617 break;
7619 case Named_object::NAMED_OBJECT_PACKAGE:
7620 // These are traversed in Gogo::traverse.
7621 go_assert(is_global);
7622 break;
7624 case Named_object::NAMED_OBJECT_TYPE:
7625 if ((traverse_mask & e_or_t) != 0)
7626 t = Type::traverse(p->type_value(), traverse);
7627 break;
7629 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
7630 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
7631 case Named_object::NAMED_OBJECT_UNKNOWN:
7632 case Named_object::NAMED_OBJECT_ERRONEOUS:
7633 break;
7635 case Named_object::NAMED_OBJECT_SINK:
7636 default:
7637 go_unreachable();
7640 if (t == TRAVERSE_EXIT)
7641 return TRAVERSE_EXIT;
7644 // If we need to traverse types, check the function declarations,
7645 // which have types. Also check any methods of a type declaration.
7646 if ((traverse_mask & e_or_t) != 0)
7648 for (Bindings::const_declarations_iterator p =
7649 this->begin_declarations();
7650 p != this->end_declarations();
7651 ++p)
7653 if (p->second->is_function_declaration())
7655 if (Type::traverse(p->second->func_declaration_value()->type(),
7656 traverse)
7657 == TRAVERSE_EXIT)
7658 return TRAVERSE_EXIT;
7660 else if (p->second->is_type_declaration())
7662 const std::vector<Named_object*>* methods =
7663 p->second->type_declaration_value()->methods();
7664 for (std::vector<Named_object*>::const_iterator pm =
7665 methods->begin();
7666 pm != methods->end();
7667 pm++)
7669 Named_object* no = *pm;
7670 Type *t;
7671 if (no->is_function())
7672 t = no->func_value()->type();
7673 else if (no->is_function_declaration())
7674 t = no->func_declaration_value()->type();
7675 else
7676 continue;
7677 if (Type::traverse(t, traverse) == TRAVERSE_EXIT)
7678 return TRAVERSE_EXIT;
7684 return TRAVERSE_CONTINUE;
7687 // Class Label.
7689 // Clear any references to this label.
7691 void
7692 Label::clear_refs()
7694 for (std::vector<Bindings_snapshot*>::iterator p = this->refs_.begin();
7695 p != this->refs_.end();
7696 ++p)
7697 delete *p;
7698 this->refs_.clear();
7701 // Get the backend representation for a label.
7703 Blabel*
7704 Label::get_backend_label(Translate_context* context)
7706 if (this->blabel_ == NULL)
7708 Function* function = context->function()->func_value();
7709 Bfunction* bfunction = function->get_decl();
7710 this->blabel_ = context->backend()->label(bfunction, this->name_,
7711 this->location_);
7713 return this->blabel_;
7716 // Return an expression for the address of this label.
7718 Bexpression*
7719 Label::get_addr(Translate_context* context, Location location)
7721 Blabel* label = this->get_backend_label(context);
7722 return context->backend()->label_address(label, location);
7725 // Return the dummy label that represents any instance of the blank label.
7727 Label*
7728 Label::create_dummy_label()
7730 static Label* dummy_label;
7731 if (dummy_label == NULL)
7733 dummy_label = new Label("_");
7734 dummy_label->set_is_used();
7736 return dummy_label;
7739 // Class Unnamed_label.
7741 // Get the backend representation for an unnamed label.
7743 Blabel*
7744 Unnamed_label::get_blabel(Translate_context* context)
7746 if (this->blabel_ == NULL)
7748 Function* function = context->function()->func_value();
7749 Bfunction* bfunction = function->get_decl();
7750 this->blabel_ = context->backend()->label(bfunction, "",
7751 this->location_);
7753 return this->blabel_;
7756 // Return a statement which defines this unnamed label.
7758 Bstatement*
7759 Unnamed_label::get_definition(Translate_context* context)
7761 Blabel* blabel = this->get_blabel(context);
7762 return context->backend()->label_definition_statement(blabel);
7765 // Return a goto statement to this unnamed label.
7767 Bstatement*
7768 Unnamed_label::get_goto(Translate_context* context, Location location)
7770 Blabel* blabel = this->get_blabel(context);
7771 return context->backend()->goto_statement(blabel, location);
7774 // Class Package.
7776 Package::Package(const std::string& pkgpath,
7777 const std::string& pkgpath_symbol, Location location)
7778 : pkgpath_(pkgpath), pkgpath_symbol_(pkgpath_symbol),
7779 package_name_(), bindings_(new Bindings(NULL)),
7780 location_(location)
7782 go_assert(!pkgpath.empty());
7785 // Set the package name.
7787 void
7788 Package::set_package_name(const std::string& package_name, Location location)
7790 go_assert(!package_name.empty());
7791 if (this->package_name_.empty())
7792 this->package_name_ = package_name;
7793 else if (this->package_name_ != package_name)
7794 error_at(location,
7795 "saw two different packages with the same package path %s: %s, %s",
7796 this->pkgpath_.c_str(), this->package_name_.c_str(),
7797 package_name.c_str());
7800 // Return the pkgpath symbol, which is a prefix for symbols defined in
7801 // this package.
7803 std::string
7804 Package::pkgpath_symbol() const
7806 if (this->pkgpath_symbol_.empty())
7807 return Gogo::pkgpath_for_symbol(this->pkgpath_);
7808 return this->pkgpath_symbol_;
7811 // Set the package path symbol.
7813 void
7814 Package::set_pkgpath_symbol(const std::string& pkgpath_symbol)
7816 go_assert(!pkgpath_symbol.empty());
7817 if (this->pkgpath_symbol_.empty())
7818 this->pkgpath_symbol_ = pkgpath_symbol;
7819 else
7820 go_assert(this->pkgpath_symbol_ == pkgpath_symbol);
7823 // Note that symbol from this package was and qualified by ALIAS.
7825 void
7826 Package::note_usage(const std::string& alias) const
7828 Aliases::const_iterator p = this->aliases_.find(alias);
7829 go_assert(p != this->aliases_.end());
7830 p->second->note_usage();
7833 // Forget a given usage. If forgetting this usage means this package becomes
7834 // unused, report that error.
7836 void
7837 Package::forget_usage(Expression* usage) const
7839 if (this->fake_uses_.empty())
7840 return;
7842 std::set<Expression*>::iterator p = this->fake_uses_.find(usage);
7843 go_assert(p != this->fake_uses_.end());
7844 this->fake_uses_.erase(p);
7846 if (this->fake_uses_.empty())
7847 error_at(this->location(), "imported and not used: %s",
7848 Gogo::message_name(this->package_name()).c_str());
7851 // Clear the used field for the next file. If the only usages of this package
7852 // are possibly fake, keep the fake usages for lowering.
7854 void
7855 Package::clear_used()
7857 std::string dot_alias = "." + this->package_name();
7858 Aliases::const_iterator p = this->aliases_.find(dot_alias);
7859 if (p != this->aliases_.end() && p->second->used() > this->fake_uses_.size())
7860 this->fake_uses_.clear();
7862 this->aliases_.clear();
7865 Package_alias*
7866 Package::add_alias(const std::string& alias, Location location)
7868 Aliases::const_iterator p = this->aliases_.find(alias);
7869 if (p == this->aliases_.end())
7871 std::pair<Aliases::iterator, bool> ret;
7872 ret = this->aliases_.insert(std::make_pair(alias,
7873 new Package_alias(location)));
7874 p = ret.first;
7876 return p->second;
7879 // Determine types of constants. Everything else in a package
7880 // (variables, function declarations) should already have a fixed
7881 // type. Constants may have abstract types.
7883 void
7884 Package::determine_types()
7886 Bindings* bindings = this->bindings_;
7887 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
7888 p != bindings->end_definitions();
7889 ++p)
7891 if ((*p)->is_const())
7892 (*p)->const_value()->determine_type();
7896 // Class Traverse.
7898 // Destructor.
7900 Traverse::~Traverse()
7902 if (this->types_seen_ != NULL)
7903 delete this->types_seen_;
7904 if (this->expressions_seen_ != NULL)
7905 delete this->expressions_seen_;
7908 // Record that we are looking at a type, and return true if we have
7909 // already seen it.
7911 bool
7912 Traverse::remember_type(const Type* type)
7914 if (type->is_error_type())
7915 return true;
7916 go_assert((this->traverse_mask() & traverse_types) != 0
7917 || (this->traverse_mask() & traverse_expressions) != 0);
7918 // We mostly only have to remember named types. But it turns out
7919 // that an interface type can refer to itself without using a name
7920 // by relying on interface inheritance, as in
7921 // type I interface { F() interface{I} }
7922 if (type->classification() != Type::TYPE_NAMED
7923 && type->classification() != Type::TYPE_INTERFACE)
7924 return false;
7925 if (this->types_seen_ == NULL)
7926 this->types_seen_ = new Types_seen();
7927 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
7928 return !ins.second;
7931 // Record that we are looking at an expression, and return true if we
7932 // have already seen it.
7934 bool
7935 Traverse::remember_expression(const Expression* expression)
7937 go_assert((this->traverse_mask() & traverse_types) != 0
7938 || (this->traverse_mask() & traverse_expressions) != 0);
7939 if (this->expressions_seen_ == NULL)
7940 this->expressions_seen_ = new Expressions_seen();
7941 std::pair<Expressions_seen::iterator, bool> ins =
7942 this->expressions_seen_->insert(expression);
7943 return !ins.second;
7946 // The default versions of these functions should never be called: the
7947 // traversal mask indicates which functions may be called.
7950 Traverse::variable(Named_object*)
7952 go_unreachable();
7956 Traverse::constant(Named_object*, bool)
7958 go_unreachable();
7962 Traverse::function(Named_object*)
7964 go_unreachable();
7968 Traverse::block(Block*)
7970 go_unreachable();
7974 Traverse::statement(Block*, size_t*, Statement*)
7976 go_unreachable();
7980 Traverse::expression(Expression**)
7982 go_unreachable();
7986 Traverse::type(Type*)
7988 go_unreachable();
7991 // Class Statement_inserter.
7993 void
7994 Statement_inserter::insert(Statement* s)
7996 if (this->block_ != NULL)
7998 go_assert(this->pindex_ != NULL);
7999 this->block_->insert_statement_before(*this->pindex_, s);
8000 ++*this->pindex_;
8002 else if (this->var_ != NULL)
8003 this->var_->add_preinit_statement(this->gogo_, s);
8004 else
8005 go_assert(saw_errors());