1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity
= 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t
*edge_to_cases
;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs
;
81 long num_merged_labels
;
84 static struct cfg_stats_d cfg_stats
;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto
;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus
;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq
);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block
);
104 static void make_gimple_switch_edges (basic_block
);
105 static void make_goto_expr_edges (basic_block
);
106 static void make_gimple_asm_edges (basic_block
);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t
, basic_block
);
110 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
111 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple
, gimple
);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge
);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple
first_non_label_stmt (basic_block
);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block
, basic_block
);
123 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
124 static void remove_bb (basic_block
);
125 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
126 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
127 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
128 static tree
find_case_label_for_value (gimple
, tree
);
129 static void group_case_labels_stmt (gimple
);
132 init_empty_tree_cfg_for_function (struct function
*fn
)
134 /* Initialize the basic block array. */
136 profile_status_for_function (fn
) = PROFILE_ABSENT
;
137 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
138 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
139 basic_block_info_for_function (fn
)
140 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
141 VEC_safe_grow_cleared (basic_block
, gc
,
142 basic_block_info_for_function (fn
),
143 initial_cfg_capacity
);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn
)
147 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
148 VEC_safe_grow_cleared (basic_block
, gc
,
149 label_to_block_map_for_function (fn
),
150 initial_cfg_capacity
);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun
);
169 /*---------------------------------------------------------------------------
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
177 build_gimple_cfg (gimple_seq seq
)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
184 init_empty_tree_cfg ();
186 found_computed_goto
= 0;
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto
)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
199 create_empty_bb (ENTRY_BLOCK_PTR
);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
203 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus
);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags
;
225 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
228 gimple_cfg2vcg (vcg_file
);
229 dump_end (TDI_vcg
, vcg_file
);
235 execute_build_cfg (void)
237 gimple_seq body
= gimple_body (current_function_decl
);
239 build_gimple_cfg (body
);
240 gimple_set_body (current_function_decl
, NULL
);
241 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
243 fprintf (dump_file
, "Scope blocks:\n");
244 dump_scope_blocks (dump_file
, dump_flags
);
249 struct gimple_opt_pass pass_build_cfg
=
255 execute_build_cfg
, /* execute */
258 0, /* static_pass_number */
259 TV_TREE_CFG
, /* tv_id */
260 PROP_gimple_leh
, /* properties_required */
261 PROP_cfg
, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts
| TODO_cleanup_cfg
265 | TODO_dump_func
/* todo_flags_finish */
270 /* Return true if T is a computed goto. */
273 computed_goto_p (gimple t
)
275 return (gimple_code (t
) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
286 factor_computed_gotos (void)
289 tree factored_label_decl
= NULL
;
291 gimple factored_computed_goto_label
= NULL
;
292 gimple factored_computed_goto
= NULL
;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
300 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
306 last
= gsi_stmt (gsi
);
308 /* Ignore the computed goto we create when we factor the original
310 if (last
== factored_computed_goto
)
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last
))
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto
)
323 basic_block new_bb
= create_empty_bb (bb
);
324 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
330 var
= create_tmp_var (ptr_type_node
, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl
);
337 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
340 /* Build our new computed goto. */
341 factored_computed_goto
= gimple_build_goto (var
);
342 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
347 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last
, factored_label_decl
);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
359 make_blocks (gimple_seq seq
)
361 gimple_stmt_iterator i
= gsi_start (seq
);
363 bool start_new_block
= true;
364 bool first_stmt_of_seq
= true;
365 basic_block bb
= ENTRY_BLOCK_PTR
;
367 while (!gsi_end_p (i
))
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
377 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
379 if (!first_stmt_of_seq
)
380 seq
= gsi_split_seq_before (&i
);
381 bb
= create_basic_block (seq
, NULL
, bb
);
382 start_new_block
= false;
385 /* Now add STMT to BB and create the subgraphs for special statement
387 gimple_set_bb (stmt
, bb
);
389 if (computed_goto_p (stmt
))
390 found_computed_goto
= true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 if (stmt_ends_bb_p (stmt
))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
401 if (gimple_has_lhs (stmt
)
402 && stmt_can_make_abnormal_goto (stmt
)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
405 tree lhs
= gimple_get_lhs (stmt
);
406 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
407 gimple s
= gimple_build_assign (lhs
, tmp
);
408 gimple_set_location (s
, gimple_location (stmt
));
409 gimple_set_block (s
, gimple_block (stmt
));
410 gimple_set_lhs (stmt
, tmp
);
411 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
413 DECL_GIMPLE_REG_P (tmp
) = 1;
414 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
416 start_new_block
= true;
420 first_stmt_of_seq
= false;
425 /* Create and return a new empty basic block after bb AFTER. */
428 create_bb (void *h
, void *e
, basic_block after
)
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
439 bb
->index
= last_basic_block
;
441 bb
->il
.gimple
= ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb
, after
);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
450 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
451 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block
, bb
);
464 /*---------------------------------------------------------------------------
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 fold_cond_expr_cond (void)
477 gimple stmt
= last_stmt (bb
);
479 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
481 location_t loc
= gimple_location (stmt
);
485 fold_defer_overflow_warnings ();
486 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
487 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
490 zerop
= integer_zerop (cond
);
491 onep
= integer_onep (cond
);
494 zerop
= onep
= false;
496 fold_undefer_overflow_warnings (zerop
|| onep
,
498 WARN_STRICT_OVERFLOW_CONDITIONAL
);
500 gimple_cond_make_false (stmt
);
502 gimple_cond_make_true (stmt
);
507 /* Join all the blocks in the flowgraph. */
513 struct omp_region
*cur_region
= NULL
;
515 /* Create an edge from entry to the first block with executable
517 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
519 /* Traverse the basic block array placing edges. */
522 gimple last
= last_stmt (bb
);
527 enum gimple_code code
= gimple_code (last
);
531 make_goto_expr_edges (bb
);
535 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
539 make_cond_expr_edges (bb
);
543 make_gimple_switch_edges (bb
);
547 make_eh_edges (last
);
550 case GIMPLE_EH_DISPATCH
:
551 fallthru
= make_eh_dispatch_edges (last
);
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
558 if (stmt_can_make_abnormal_goto (last
))
559 make_abnormal_goto_edges (bb
, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last
);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
567 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
568 /* Some calls are known not to return. */
570 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 if (is_ctrl_altering_stmt (last
))
577 make_eh_edges (last
);
582 make_gimple_asm_edges (bb
);
586 case GIMPLE_OMP_PARALLEL
:
587 case GIMPLE_OMP_TASK
:
589 case GIMPLE_OMP_SINGLE
:
590 case GIMPLE_OMP_MASTER
:
591 case GIMPLE_OMP_ORDERED
:
592 case GIMPLE_OMP_CRITICAL
:
593 case GIMPLE_OMP_SECTION
:
594 cur_region
= new_omp_region (bb
, code
, cur_region
);
598 case GIMPLE_OMP_SECTIONS
:
599 cur_region
= new_omp_region (bb
, code
, cur_region
);
603 case GIMPLE_OMP_SECTIONS_SWITCH
:
607 case GIMPLE_OMP_ATOMIC_LOAD
:
608 case GIMPLE_OMP_ATOMIC_STORE
:
612 case GIMPLE_OMP_RETURN
:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
616 cur_region
->exit
= bb
;
617 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
618 cur_region
= cur_region
->outer
;
621 case GIMPLE_OMP_CONTINUE
:
622 cur_region
->cont
= bb
;
623 switch (cur_region
->type
)
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
629 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
630 /* Make the loopback edge. */
631 make_edge (bb
, single_succ (cur_region
->entry
),
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
638 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
642 case GIMPLE_OMP_SECTIONS
:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb
= single_succ (cur_region
->entry
);
647 struct omp_region
*i
;
648 for (i
= cur_region
->inner
; i
; i
= i
->next
)
650 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
651 make_edge (switch_bb
, i
->entry
, 0);
652 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb
, switch_bb
, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb
, bb
->next_bb
, 0);
671 gcc_assert (!stmt_ends_bb_p (last
));
680 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
682 assign_discriminator (gimple_location (last
), bb
->next_bb
);
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
697 locus_map_hash (const void *item
)
699 return ((const struct locus_discrim_map
*) item
)->locus
;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
706 locus_map_eq (const void *va
, const void *vb
)
708 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
709 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
710 return a
->locus
== b
->locus
;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
719 next_discriminator_for_locus (location_t locus
)
721 struct locus_discrim_map item
;
722 struct locus_discrim_map
**slot
;
725 item
.discriminator
= 0;
726 slot
= (struct locus_discrim_map
**)
727 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
728 (hashval_t
) locus
, INSERT
);
730 if (*slot
== HTAB_EMPTY_ENTRY
)
732 *slot
= XNEW (struct locus_discrim_map
);
734 (*slot
)->locus
= locus
;
735 (*slot
)->discriminator
= 0;
737 (*slot
)->discriminator
++;
738 return (*slot
)->discriminator
;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 same_line_p (location_t locus1
, location_t locus2
)
746 expanded_location from
, to
;
748 if (locus1
== locus2
)
751 from
= expand_location (locus1
);
752 to
= expand_location (locus2
);
754 if (from
.line
!= to
.line
)
756 if (from
.file
== to
.file
)
758 return (from
.file
!= NULL
760 && strcmp (from
.file
, to
.file
) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
767 assign_discriminator (location_t locus
, basic_block bb
)
769 gimple first_in_to_bb
, last_in_to_bb
;
771 if (locus
== 0 || bb
->discriminator
!= 0)
774 first_in_to_bb
= first_non_label_stmt (bb
);
775 last_in_to_bb
= last_stmt (bb
);
776 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
777 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
778 bb
->discriminator
= next_discriminator_for_locus (locus
);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 make_cond_expr_edges (basic_block bb
)
786 gimple entry
= last_stmt (bb
);
787 gimple then_stmt
, else_stmt
;
788 basic_block then_bb
, else_bb
;
789 tree then_label
, else_label
;
791 location_t entry_locus
;
794 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
796 entry_locus
= gimple_location (entry
);
798 /* Entry basic blocks for each component. */
799 then_label
= gimple_cond_true_label (entry
);
800 else_label
= gimple_cond_false_label (entry
);
801 then_bb
= label_to_block (then_label
);
802 else_bb
= label_to_block (else_label
);
803 then_stmt
= first_stmt (then_bb
);
804 else_stmt
= first_stmt (else_bb
);
806 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
807 assign_discriminator (entry_locus
, then_bb
);
808 e
->goto_locus
= gimple_location (then_stmt
);
810 e
->goto_block
= gimple_block (then_stmt
);
811 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
814 assign_discriminator (entry_locus
, else_bb
);
815 e
->goto_locus
= gimple_location (else_stmt
);
817 e
->goto_block
= gimple_block (else_stmt
);
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry
, NULL_TREE
);
822 gimple_cond_set_false_label (entry
, NULL_TREE
);
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
835 void *data ATTRIBUTE_UNUSED
)
839 for (t
= (tree
) *value
; t
; t
= next
)
841 next
= TREE_CHAIN (t
);
842 TREE_CHAIN (t
) = NULL
;
849 /* Start recording information mapping edges to case labels. */
852 start_recording_case_labels (void)
854 gcc_assert (edge_to_cases
== NULL
);
855 edge_to_cases
= pointer_map_create ();
856 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
859 /* Return nonzero if we are recording information for case labels. */
862 recording_case_labels_p (void)
864 return (edge_to_cases
!= NULL
);
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
870 end_recording_case_labels (void)
874 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
875 pointer_map_destroy (edge_to_cases
);
876 edge_to_cases
= NULL
;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
879 basic_block bb
= BASIC_BLOCK (i
);
882 gimple stmt
= last_stmt (bb
);
883 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
884 group_case_labels_stmt (stmt
);
887 BITMAP_FREE (touched_switch_bbs
);
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
893 Otherwise return NULL. */
896 get_cases_for_edge (edge e
, gimple t
)
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
906 slot
= pointer_map_contains (edge_to_cases
, e
);
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
914 n
= gimple_switch_num_labels (t
);
915 for (i
= 0; i
< n
; i
++)
917 tree elt
= gimple_switch_label (t
, i
);
918 tree lab
= CASE_LABEL (elt
);
919 basic_block label_bb
= label_to_block (lab
);
920 edge this_edge
= find_edge (e
->src
, label_bb
);
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
925 TREE_CHAIN (elt
) = (tree
) *slot
;
929 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 make_gimple_switch_edges (basic_block bb
)
937 gimple entry
= last_stmt (bb
);
938 location_t entry_locus
;
941 entry_locus
= gimple_location (entry
);
943 n
= gimple_switch_num_labels (entry
);
945 for (i
= 0; i
< n
; ++i
)
947 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
948 basic_block label_bb
= label_to_block (lab
);
949 make_edge (bb
, label_bb
, 0);
950 assign_discriminator (entry_locus
, label_bb
);
955 /* Return the basic block holding label DEST. */
958 label_to_block_fn (struct function
*ifun
, tree dest
)
960 int uid
= LABEL_DECL_UID (dest
);
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid
< 0)
967 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
970 stmt
= gimple_build_label (dest
);
971 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
972 uid
= LABEL_DECL_UID (dest
);
974 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
975 <= (unsigned int) uid
)
977 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
986 basic_block target_bb
;
987 gimple_stmt_iterator gsi
;
989 FOR_EACH_BB (target_bb
)
990 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
992 gimple label_stmt
= gsi_stmt (gsi
);
995 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
998 target
= gimple_label_label (label_stmt
);
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target
) && !for_call
)
1003 || (DECL_NONLOCAL (target
) && for_call
))
1005 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1011 /* Create edges for a goto statement at block BB. */
1014 make_goto_expr_edges (basic_block bb
)
1016 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1017 gimple goto_t
= gsi_stmt (last
);
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t
))
1022 tree dest
= gimple_goto_dest (goto_t
);
1023 basic_block label_bb
= label_to_block (dest
);
1024 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1025 e
->goto_locus
= gimple_location (goto_t
);
1026 assign_discriminator (e
->goto_locus
, label_bb
);
1028 e
->goto_block
= gimple_block (goto_t
);
1029 gsi_remove (&last
, true);
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb
, false);
1037 /* Create edges for an asm statement with labels at block BB. */
1040 make_gimple_asm_edges (basic_block bb
)
1042 gimple stmt
= last_stmt (bb
);
1043 location_t stmt_loc
= gimple_location (stmt
);
1044 int i
, n
= gimple_asm_nlabels (stmt
);
1046 for (i
= 0; i
< n
; ++i
)
1048 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1049 basic_block label_bb
= label_to_block (label
);
1050 make_edge (bb
, label_bb
, 0);
1051 assign_discriminator (stmt_loc
, label_bb
);
1055 /*---------------------------------------------------------------------------
1057 ---------------------------------------------------------------------------*/
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1073 /* True if the label is referenced from somewhere. */
1077 /* Given LABEL return the first label in the same basic block. */
1080 main_block_label (tree label
)
1082 basic_block bb
= label_to_block (label
);
1083 tree main_label
= label_for_bb
[bb
->index
].label
;
1085 /* label_to_block possibly inserted undefined label into the chain. */
1088 label_for_bb
[bb
->index
].label
= label
;
1092 label_for_bb
[bb
->index
].used
= true;
1096 /* Clean up redundant labels within the exception tree. */
1099 cleanup_dead_labels_eh (void)
1106 if (cfun
->eh
== NULL
)
1109 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
1110 if (lp
&& lp
->post_landing_pad
)
1112 lab
= main_block_label (lp
->post_landing_pad
);
1113 if (lab
!= lp
->post_landing_pad
)
1115 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1116 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1120 FOR_ALL_EH_REGION (r
)
1124 case ERT_MUST_NOT_THROW
:
1130 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1134 c
->label
= main_block_label (lab
);
1139 case ERT_ALLOWED_EXCEPTIONS
:
1140 lab
= r
->u
.allowed
.label
;
1142 r
->u
.allowed
.label
= main_block_label (lab
);
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1154 cleanup_dead_labels (void)
1157 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1163 gimple_stmt_iterator i
;
1165 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1168 gimple stmt
= gsi_stmt (i
);
1170 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1173 label
= gimple_label_label (stmt
);
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb
[bb
->index
].label
)
1179 label_for_bb
[bb
->index
].label
= label
;
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label
)
1187 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1189 label_for_bb
[bb
->index
].label
= label
;
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1199 gimple stmt
= last_stmt (bb
);
1203 switch (gimple_code (stmt
))
1207 tree true_label
= gimple_cond_true_label (stmt
);
1208 tree false_label
= gimple_cond_false_label (stmt
);
1211 gimple_cond_set_true_label (stmt
, main_block_label (true_label
));
1213 gimple_cond_set_false_label (stmt
, main_block_label (false_label
));
1219 size_t i
, n
= gimple_switch_num_labels (stmt
);
1221 /* Replace all destination labels. */
1222 for (i
= 0; i
< n
; ++i
)
1224 tree case_label
= gimple_switch_label (stmt
, i
);
1225 tree label
= main_block_label (CASE_LABEL (case_label
));
1226 CASE_LABEL (case_label
) = label
;
1233 int i
, n
= gimple_asm_nlabels (stmt
);
1235 for (i
= 0; i
< n
; ++i
)
1237 tree cons
= gimple_asm_label_op (stmt
, i
);
1238 tree label
= main_block_label (TREE_VALUE (cons
));
1239 TREE_VALUE (cons
) = label
;
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1247 if (!computed_goto_p (stmt
))
1249 tree new_dest
= main_block_label (gimple_goto_dest (stmt
));
1250 gimple_goto_set_dest (stmt
, new_dest
);
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1267 gimple_stmt_iterator i
;
1268 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1270 if (!label_for_this_bb
)
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb
[bb
->index
].used
)
1275 label_for_this_bb
= NULL
;
1277 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1280 gimple stmt
= gsi_stmt (i
);
1282 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1285 label
= gimple_label_label (stmt
);
1287 if (label
== label_for_this_bb
1288 || !DECL_ARTIFICIAL (label
)
1289 || DECL_NONLOCAL (label
)
1290 || FORCED_LABEL (label
))
1293 gsi_remove (&i
, true);
1297 free (label_for_bb
);
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 group_case_labels_stmt (gimple stmt
)
1307 int old_size
= gimple_switch_num_labels (stmt
);
1308 int i
, j
, new_size
= old_size
;
1309 tree default_case
= NULL_TREE
;
1310 tree default_label
= NULL_TREE
;
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1316 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1319 default_case
= gimple_switch_default_label (stmt
);
1320 default_label
= CASE_LABEL (default_case
);
1324 has_default
= false;
1326 /* Look for possible opportunities to merge cases. */
1331 while (i
< old_size
)
1333 tree base_case
, base_label
, base_high
;
1334 base_case
= gimple_switch_label (stmt
, i
);
1336 gcc_assert (base_case
);
1337 base_label
= CASE_LABEL (base_case
);
1339 /* Discard cases that have the same destination as the
1341 if (base_label
== default_label
)
1343 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1349 base_high
= CASE_HIGH (base_case
)
1350 ? CASE_HIGH (base_case
)
1351 : CASE_LOW (base_case
);
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i
< old_size
)
1359 tree merge_case
= gimple_switch_label (stmt
, i
);
1360 tree merge_label
= CASE_LABEL (merge_case
);
1361 tree t
= int_const_binop (PLUS_EXPR
, base_high
,
1362 integer_one_node
, 1);
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label
== base_label
1367 && tree_int_cst_equal (CASE_LOW (merge_case
), t
))
1369 base_high
= CASE_HIGH (merge_case
) ?
1370 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1371 CASE_HIGH (base_case
) = base_high
;
1372 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i
= 0, j
= 0; i
< new_size
; i
++)
1385 while (! gimple_switch_label (stmt
, j
))
1387 gimple_switch_set_label (stmt
, i
,
1388 gimple_switch_label (stmt
, j
++));
1391 gcc_assert (new_size
<= old_size
);
1392 gimple_switch_set_num_labels (stmt
, new_size
);
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1400 group_case_labels (void)
1406 gimple stmt
= last_stmt (bb
);
1407 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1408 group_case_labels_stmt (stmt
);
1412 /* Checks whether we can merge block B into block A. */
1415 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1418 gimple_stmt_iterator gsi
;
1421 if (!single_succ_p (a
))
1424 if (single_succ_edge (a
)->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
1427 if (single_succ (a
) != b
)
1430 if (!single_pred_p (b
))
1433 if (b
== EXIT_BLOCK_PTR
)
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt
= last_stmt (a
);
1439 if (stmt
&& stmt_ends_bb_p (stmt
))
1442 /* Do not allow a block with only a non-local label to be merged. */
1444 && gimple_code (stmt
) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1452 stmt
= gsi_stmt (gsi
);
1453 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1455 lab
= gimple_label_label (stmt
);
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab
))
1462 /* Protect the loop latches. */
1463 if (current_loops
&& b
->loop_father
->latch
== b
)
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis
= phi_nodes (b
);
1470 if (!gimple_seq_empty_p (phis
)
1471 && name_mappings_registered_p ())
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1478 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1479 gimple_stmt_iterator prev
, next
;
1480 prev
= gsi_last_nondebug_bb (a
);
1481 next
= gsi_after_labels (b
);
1482 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1483 gsi_next_nondebug (&next
);
1484 if ((gsi_end_p (prev
)
1485 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1486 && (gsi_end_p (next
)
1487 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1494 /* Return true if the var whose chain of uses starts at PTR has no
1497 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1499 const ssa_use_operand_t
*ptr
;
1501 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1502 if (!is_gimple_debug (USE_STMT (ptr
)))
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1512 single_imm_use_1 (const ssa_use_operand_t
*head
,
1513 use_operand_p
*use_p
, gimple
*stmt
)
1515 ssa_use_operand_t
*ptr
, *single_use
= 0;
1517 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1518 if (!is_gimple_debug (USE_STMT (ptr
)))
1529 *use_p
= single_use
;
1532 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1534 return !!single_use
;
1537 /* Replaces all uses of NAME by VAL. */
1540 replace_uses_by (tree name
, tree val
)
1542 imm_use_iterator imm_iter
;
1547 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1549 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1551 replace_exp (use
, val
);
1553 if (gimple_code (stmt
) == GIMPLE_PHI
)
1555 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1556 if (e
->flags
& EDGE_ABNORMAL
)
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name
));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1567 if (gimple_code (stmt
) != GIMPLE_PHI
)
1571 fold_stmt_inplace (stmt
);
1572 if (cfgcleanup_altered_bbs
&& !is_gimple_debug (stmt
))
1573 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1575 /* FIXME. This should go in update_stmt. */
1576 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1578 tree op
= gimple_op (stmt
, i
);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1583 recompute_tree_invariant_for_addr_expr (op
);
1586 maybe_clean_or_replace_eh_stmt (stmt
, stmt
);
1591 gcc_assert (has_zero_uses (name
));
1593 /* Also update the trees stored in loop structures. */
1599 FOR_EACH_LOOP (li
, loop
, 0)
1601 substitute_in_loop_info (loop
, name
, val
);
1606 /* Merge block B into block A. */
1609 gimple_merge_blocks (basic_block a
, basic_block b
)
1611 gimple_stmt_iterator last
, gsi
, psi
;
1612 gimple_seq phis
= phi_nodes (b
);
1615 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi
= gsi_last_bb (a
);
1620 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1622 gimple phi
= gsi_stmt (psi
);
1623 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1625 bool may_replace_uses
= !is_gimple_reg (def
)
1626 || may_propagate_copy (def
, use
);
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1632 && is_gimple_reg (def
)
1633 && TREE_CODE (use
) == SSA_NAME
1634 && a
->loop_father
!= b
->loop_father
)
1635 may_replace_uses
= false;
1637 if (!may_replace_uses
)
1639 gcc_assert (is_gimple_reg (def
));
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy
= gimple_build_assign (def
, use
);
1646 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1647 remove_phi_node (&psi
, false);
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1654 if (!is_gimple_reg (def
))
1656 imm_use_iterator iter
;
1657 use_operand_p use_p
;
1660 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1662 SET_USE (use_p
, use
);
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1668 replace_uses_by (def
, use
);
1670 remove_phi_node (&psi
, true);
1674 /* Ensure that B follows A. */
1675 move_block_after (b
, a
);
1677 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1678 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1683 gimple stmt
= gsi_stmt (gsi
);
1684 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1686 tree label
= gimple_label_label (stmt
);
1689 gsi_remove (&gsi
, false);
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label
))
1699 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1700 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1703 lp_nr
= EH_LANDING_PAD_NR (label
);
1706 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1707 lp
->post_landing_pad
= NULL
;
1712 gimple_set_bb (stmt
, a
);
1717 /* Merge the sequences. */
1718 last
= gsi_last_bb (a
);
1719 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1720 set_bb_seq (b
, NULL
);
1722 if (cfgcleanup_altered_bbs
)
1723 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1733 single_noncomplex_succ (basic_block bb
)
1736 if (EDGE_COUNT (bb
->succs
) != 2)
1739 e0
= EDGE_SUCC (bb
, 0);
1740 e1
= EDGE_SUCC (bb
, 1);
1741 if (e0
->flags
& EDGE_COMPLEX
)
1743 if (e1
->flags
& EDGE_COMPLEX
)
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 notice_special_calls (gimple call
)
1754 int flags
= gimple_call_flags (call
);
1756 if (flags
& ECF_MAY_BE_ALLOCA
)
1757 cfun
->calls_alloca
= true;
1758 if (flags
& ECF_RETURNS_TWICE
)
1759 cfun
->calls_setjmp
= true;
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1767 clear_special_calls (void)
1769 cfun
->calls_alloca
= false;
1770 cfun
->calls_setjmp
= false;
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb
);
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb
->succs
) > 0)
1784 remove_edge (EDGE_SUCC (bb
, 0));
1788 /* Remove statements of basic block BB. */
1791 remove_bb (basic_block bb
)
1793 gimple_stmt_iterator i
;
1797 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1798 if (dump_flags
& TDF_DETAILS
)
1800 dump_bb (bb
, dump_file
, 0);
1801 fprintf (dump_file
, "\n");
1807 struct loop
*loop
= bb
->loop_father
;
1809 /* If a loop gets removed, clean up the information associated
1811 if (loop
->latch
== bb
1812 || loop
->header
== bb
)
1813 free_numbers_of_iterations_estimates_loop (loop
);
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb
) != NULL
)
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1825 gimple stmt
= gsi_stmt (i
);
1826 if (gimple_code (stmt
) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt
))
1828 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1831 gimple_stmt_iterator new_gsi
;
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1836 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1838 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1842 new_bb
= bb
->prev_bb
;
1843 new_gsi
= gsi_start_bb (new_bb
);
1844 gsi_remove (&i
, false);
1845 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun
))
1854 release_defs (stmt
);
1856 gsi_remove (&i
, true);
1860 i
= gsi_last_bb (bb
);
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1867 bb
->il
.gimple
= NULL
;
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1876 find_taken_edge (basic_block bb
, tree val
)
1880 stmt
= last_stmt (bb
);
1883 gcc_assert (is_ctrl_stmt (stmt
));
1888 if (!is_gimple_min_invariant (val
))
1891 if (gimple_code (stmt
) == GIMPLE_COND
)
1892 return find_taken_edge_cond_expr (bb
, val
);
1894 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1895 return find_taken_edge_switch_expr (bb
, val
);
1897 if (computed_goto_p (stmt
))
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1906 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1907 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1919 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1924 dest
= label_to_block (val
);
1927 e
= find_edge (bb
, dest
);
1928 gcc_assert (e
!= NULL
);
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1939 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1941 edge true_edge
, false_edge
;
1943 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1945 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1946 return (integer_zerop (val
) ? false_edge
: true_edge
);
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1954 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1956 basic_block dest_bb
;
1961 switch_stmt
= last_stmt (bb
);
1962 taken_case
= find_case_label_for_value (switch_stmt
, val
);
1963 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
1965 e
= find_edge (bb
, dest_bb
);
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1976 find_case_label_for_value (gimple switch_stmt
, tree val
)
1978 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
1979 tree default_case
= gimple_switch_default_label (switch_stmt
);
1981 for (low
= 0, high
= n
; high
- low
> 1; )
1983 size_t i
= (high
+ low
) / 2;
1984 tree t
= gimple_switch_label (switch_stmt
, i
);
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
1995 if (CASE_HIGH (t
) == NULL
)
1997 /* A singe-valued case label. */
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2009 return default_case
;
2013 /* Dump a basic block on stderr. */
2016 gimple_debug_bb (basic_block bb
)
2018 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2022 /* Dump basic block with index N on stderr. */
2025 gimple_debug_bb_n (int n
)
2027 gimple_debug_bb (BASIC_BLOCK (n
));
2028 return BASIC_BLOCK (n
);
2032 /* Dump the CFG on stderr.
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2038 gimple_debug_cfg (int flags
)
2040 gimple_dump_cfg (stderr
, flags
);
2044 /* Dump the program showing basic block boundaries on the given FILE.
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2050 gimple_dump_cfg (FILE *file
, int flags
)
2052 if (flags
& TDF_DETAILS
)
2054 const char *funcname
2055 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2058 fprintf (file
, ";; Function %s\n\n", funcname
);
2059 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2060 n_basic_blocks
, n_edges
, last_basic_block
);
2062 brief_dump_cfg (file
);
2063 fprintf (file
, "\n");
2066 if (flags
& TDF_STATS
)
2067 dump_cfg_stats (file
);
2069 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2073 /* Dump CFG statistics on FILE. */
2076 dump_cfg_stats (FILE *file
)
2078 static long max_num_merged_labels
= 0;
2079 unsigned long size
, total
= 0;
2082 const char * const fmt_str
= "%-30s%-13s%12s\n";
2083 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2084 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2085 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2086 const char *funcname
2087 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2090 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2092 fprintf (file
, "---------------------------------------------------------\n");
2093 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2094 fprintf (file
, fmt_str
, "", " instances ", "used ");
2095 fprintf (file
, "---------------------------------------------------------\n");
2097 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2099 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2100 SCALE (size
), LABEL (size
));
2104 num_edges
+= EDGE_COUNT (bb
->succs
);
2105 size
= num_edges
* sizeof (struct edge_def
);
2107 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2109 fprintf (file
, "---------------------------------------------------------\n");
2110 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2112 fprintf (file
, "---------------------------------------------------------\n");
2113 fprintf (file
, "\n");
2115 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2116 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2118 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2119 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2121 fprintf (file
, "\n");
2125 /* Dump CFG statistics on stderr. Keep extern so that it's always
2126 linked in the final executable. */
2129 debug_cfg_stats (void)
2131 dump_cfg_stats (stderr
);
2135 /* Dump the flowgraph to a .vcg FILE. */
2138 gimple_cfg2vcg (FILE *file
)
2143 const char *funcname
2144 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2146 /* Write the file header. */
2147 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2148 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2149 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151 /* Write blocks and edges. */
2152 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2154 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2157 if (e
->flags
& EDGE_FAKE
)
2158 fprintf (file
, " linestyle: dotted priority: 10");
2160 fprintf (file
, " linestyle: solid priority: 100");
2162 fprintf (file
, " }\n");
2168 enum gimple_code head_code
, end_code
;
2169 const char *head_name
, *end_name
;
2172 gimple first
= first_stmt (bb
);
2173 gimple last
= last_stmt (bb
);
2177 head_code
= gimple_code (first
);
2178 head_name
= gimple_code_name
[head_code
];
2179 head_line
= get_lineno (first
);
2182 head_name
= "no-statement";
2186 end_code
= gimple_code (last
);
2187 end_name
= gimple_code_name
[end_code
];
2188 end_line
= get_lineno (last
);
2191 end_name
= "no-statement";
2193 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2194 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2197 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2199 if (e
->dest
== EXIT_BLOCK_PTR
)
2200 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2202 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2204 if (e
->flags
& EDGE_FAKE
)
2205 fprintf (file
, " priority: 10 linestyle: dotted");
2207 fprintf (file
, " priority: 100 linestyle: solid");
2209 fprintf (file
, " }\n");
2212 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2216 fputs ("}\n\n", file
);
2221 /*---------------------------------------------------------------------------
2222 Miscellaneous helpers
2223 ---------------------------------------------------------------------------*/
2225 /* Return true if T represents a stmt that always transfers control. */
2228 is_ctrl_stmt (gimple t
)
2230 switch (gimple_code (t
))
2244 /* Return true if T is a statement that may alter the flow of control
2245 (e.g., a call to a non-returning function). */
2248 is_ctrl_altering_stmt (gimple t
)
2252 switch (gimple_code (t
))
2256 int flags
= gimple_call_flags (t
);
2258 /* A non-pure/const call alters flow control if the current
2259 function has nonlocal labels. */
2260 if (!(flags
& (ECF_CONST
| ECF_PURE
| ECF_LEAF
))
2261 && cfun
->has_nonlocal_label
)
2264 /* A call also alters control flow if it does not return. */
2265 if (flags
& ECF_NORETURN
)
2268 /* BUILT_IN_RETURN call is same as return statement. */
2269 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2274 case GIMPLE_EH_DISPATCH
:
2275 /* EH_DISPATCH branches to the individual catch handlers at
2276 this level of a try or allowed-exceptions region. It can
2277 fallthru to the next statement as well. */
2281 if (gimple_asm_nlabels (t
) > 0)
2286 /* OpenMP directives alter control flow. */
2293 /* If a statement can throw, it alters control flow. */
2294 return stmt_can_throw_internal (t
);
2298 /* Return true if T is a simple local goto. */
2301 simple_goto_p (gimple t
)
2303 return (gimple_code (t
) == GIMPLE_GOTO
2304 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2312 stmt_can_make_abnormal_goto (gimple t
)
2314 if (computed_goto_p (t
))
2316 if (is_gimple_call (t
))
2317 return (gimple_has_side_effects (t
) && cfun
->has_nonlocal_label
2318 && !(gimple_call_flags (t
) & ECF_LEAF
));
2323 /* Return true if STMT should start a new basic block. PREV_STMT is
2324 the statement preceding STMT. It is used when STMT is a label or a
2325 case label. Labels should only start a new basic block if their
2326 previous statement wasn't a label. Otherwise, sequence of labels
2327 would generate unnecessary basic blocks that only contain a single
2331 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2336 /* Labels start a new basic block only if the preceding statement
2337 wasn't a label of the same type. This prevents the creation of
2338 consecutive blocks that have nothing but a single label. */
2339 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2341 /* Nonlocal and computed GOTO targets always start a new block. */
2342 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2343 || FORCED_LABEL (gimple_label_label (stmt
)))
2346 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2348 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2351 cfg_stats
.num_merged_labels
++;
2362 /* Return true if T should end a basic block. */
2365 stmt_ends_bb_p (gimple t
)
2367 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2370 /* Remove block annotations and other data structures. */
2373 delete_tree_cfg_annotations (void)
2375 label_to_block_map
= NULL
;
2379 /* Return the first statement in basic block BB. */
2382 first_stmt (basic_block bb
)
2384 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2387 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2395 /* Return the first non-label statement in basic block BB. */
2398 first_non_label_stmt (basic_block bb
)
2400 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2401 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2403 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2406 /* Return the last statement in basic block BB. */
2409 last_stmt (basic_block bb
)
2411 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2414 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2422 /* Return the last statement of an otherwise empty block. Return NULL
2423 if the block is totally empty, or if it contains more than one
2427 last_and_only_stmt (basic_block bb
)
2429 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2435 last
= gsi_stmt (i
);
2436 gsi_prev_nondebug (&i
);
2440 /* Empty statements should no longer appear in the instruction stream.
2441 Everything that might have appeared before should be deleted by
2442 remove_useless_stmts, and the optimizers should just gsi_remove
2443 instead of smashing with build_empty_stmt.
2445 Thus the only thing that should appear here in a block containing
2446 one executable statement is a label. */
2447 prev
= gsi_stmt (i
);
2448 if (gimple_code (prev
) == GIMPLE_LABEL
)
2454 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 reinstall_phi_args (edge new_edge
, edge old_edge
)
2459 edge_var_map_vector v
;
2462 gimple_stmt_iterator phis
;
2464 v
= redirect_edge_var_map_vector (old_edge
);
2468 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2469 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2470 i
++, gsi_next (&phis
))
2472 gimple phi
= gsi_stmt (phis
);
2473 tree result
= redirect_edge_var_map_result (vm
);
2474 tree arg
= redirect_edge_var_map_def (vm
);
2476 gcc_assert (result
== gimple_phi_result (phi
));
2478 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2481 redirect_edge_var_map_clear (old_edge
);
2484 /* Returns the basic block after which the new basic block created
2485 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2486 near its "logical" location. This is of most help to humans looking
2487 at debugging dumps. */
2490 split_edge_bb_loc (edge edge_in
)
2492 basic_block dest
= edge_in
->dest
;
2493 basic_block dest_prev
= dest
->prev_bb
;
2497 edge e
= find_edge (dest_prev
, dest
);
2498 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2499 return edge_in
->src
;
2504 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2505 Abort on abnormal edges. */
2508 gimple_split_edge (edge edge_in
)
2510 basic_block new_bb
, after_bb
, dest
;
2513 /* Abnormal edges cannot be split. */
2514 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2516 dest
= edge_in
->dest
;
2518 after_bb
= split_edge_bb_loc (edge_in
);
2520 new_bb
= create_empty_bb (after_bb
);
2521 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2522 new_bb
->count
= edge_in
->count
;
2523 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2524 new_edge
->probability
= REG_BR_PROB_BASE
;
2525 new_edge
->count
= edge_in
->count
;
2527 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2528 gcc_assert (e
== edge_in
);
2529 reinstall_phi_args (new_edge
, e
);
2535 /* Verify properties of the address expression T with base object BASE. */
2538 verify_address (tree t
, tree base
)
2541 bool old_side_effects
;
2543 bool new_side_effects
;
2545 old_constant
= TREE_CONSTANT (t
);
2546 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2548 recompute_tree_invariant_for_addr_expr (t
);
2549 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2550 new_constant
= TREE_CONSTANT (t
);
2552 if (old_constant
!= new_constant
)
2554 error ("constant not recomputed when ADDR_EXPR changed");
2557 if (old_side_effects
!= new_side_effects
)
2559 error ("side effects not recomputed when ADDR_EXPR changed");
2563 if (!(TREE_CODE (base
) == VAR_DECL
2564 || TREE_CODE (base
) == PARM_DECL
2565 || TREE_CODE (base
) == RESULT_DECL
))
2568 if (DECL_GIMPLE_REG_P (base
))
2570 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2577 /* Callback for walk_tree, check that all elements with address taken are
2578 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2579 inside a PHI node. */
2582 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2589 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2590 #define CHECK_OP(N, MSG) \
2591 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2592 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594 switch (TREE_CODE (t
))
2597 if (SSA_NAME_IN_FREE_LIST (t
))
2599 error ("SSA name in freelist but still referenced");
2605 error ("INDIRECT_REF in gimple IL");
2609 x
= TREE_OPERAND (t
, 0);
2610 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2611 || !is_gimple_mem_ref_addr (x
))
2613 error ("invalid first operand of MEM_REF");
2616 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2617 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2619 error ("invalid offset operand of MEM_REF");
2620 return TREE_OPERAND (t
, 1);
2622 if (TREE_CODE (x
) == ADDR_EXPR
2623 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2629 x
= fold (ASSERT_EXPR_COND (t
));
2630 if (x
== boolean_false_node
)
2632 error ("ASSERT_EXPR with an always-false condition");
2638 error ("MODIFY_EXPR not expected while having tuples");
2645 gcc_assert (is_gimple_address (t
));
2647 /* Skip any references (they will be checked when we recurse down the
2648 tree) and ensure that any variable used as a prefix is marked
2650 for (x
= TREE_OPERAND (t
, 0);
2651 handled_component_p (x
);
2652 x
= TREE_OPERAND (x
, 0))
2655 if ((tem
= verify_address (t
, x
)))
2658 if (!(TREE_CODE (x
) == VAR_DECL
2659 || TREE_CODE (x
) == PARM_DECL
2660 || TREE_CODE (x
) == RESULT_DECL
))
2663 if (!TREE_ADDRESSABLE (x
))
2665 error ("address taken, but ADDRESSABLE bit not set");
2673 x
= COND_EXPR_COND (t
);
2674 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2676 error ("non-integral used in condition");
2679 if (!is_gimple_condexpr (x
))
2681 error ("invalid conditional operand");
2686 case NON_LVALUE_EXPR
:
2690 case FIX_TRUNC_EXPR
:
2695 case TRUTH_NOT_EXPR
:
2696 CHECK_OP (0, "invalid operand to unary operator");
2703 case ARRAY_RANGE_REF
:
2705 case VIEW_CONVERT_EXPR
:
2706 /* We have a nest of references. Verify that each of the operands
2707 that determine where to reference is either a constant or a variable,
2708 verify that the base is valid, and then show we've already checked
2710 while (handled_component_p (t
))
2712 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2713 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2714 else if (TREE_CODE (t
) == ARRAY_REF
2715 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2717 CHECK_OP (1, "invalid array index");
2718 if (TREE_OPERAND (t
, 2))
2719 CHECK_OP (2, "invalid array lower bound");
2720 if (TREE_OPERAND (t
, 3))
2721 CHECK_OP (3, "invalid array stride");
2723 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2725 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2726 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2728 error ("invalid position or size operand to BIT_FIELD_REF");
2731 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2732 && (TYPE_PRECISION (TREE_TYPE (t
))
2733 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2735 error ("integral result type precision does not match "
2736 "field size of BIT_FIELD_REF");
2739 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2740 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2741 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2743 error ("mode precision of non-integral result does not "
2744 "match field size of BIT_FIELD_REF");
2749 t
= TREE_OPERAND (t
, 0);
2752 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2754 error ("invalid reference prefix");
2761 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2762 POINTER_PLUS_EXPR. */
2763 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2765 error ("invalid operand to plus/minus, type is a pointer");
2768 CHECK_OP (0, "invalid operand to binary operator");
2769 CHECK_OP (1, "invalid operand to binary operator");
2772 case POINTER_PLUS_EXPR
:
2773 /* Check to make sure the first operand is a pointer or reference type. */
2774 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2776 error ("invalid operand to pointer plus, first operand is not a pointer");
2779 /* Check to make sure the second operand is an integer with type of
2781 if (!useless_type_conversion_p (sizetype
,
2782 TREE_TYPE (TREE_OPERAND (t
, 1))))
2784 error ("invalid operand to pointer plus, second operand is not an "
2785 "integer with type of sizetype");
2795 case UNORDERED_EXPR
:
2804 case TRUNC_DIV_EXPR
:
2806 case FLOOR_DIV_EXPR
:
2807 case ROUND_DIV_EXPR
:
2808 case TRUNC_MOD_EXPR
:
2810 case FLOOR_MOD_EXPR
:
2811 case ROUND_MOD_EXPR
:
2813 case EXACT_DIV_EXPR
:
2823 CHECK_OP (0, "invalid operand to binary operator");
2824 CHECK_OP (1, "invalid operand to binary operator");
2828 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2841 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2842 Returns true if there is an error, otherwise false. */
2845 verify_types_in_gimple_min_lval (tree expr
)
2849 if (is_gimple_id (expr
))
2852 if (TREE_CODE (expr
) != TARGET_MEM_REF
2853 && TREE_CODE (expr
) != MEM_REF
)
2855 error ("invalid expression for min lvalue");
2859 /* TARGET_MEM_REFs are strange beasts. */
2860 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2863 op
= TREE_OPERAND (expr
, 0);
2864 if (!is_gimple_val (op
))
2866 error ("invalid operand in indirect reference");
2867 debug_generic_stmt (op
);
2870 /* Memory references now generally can involve a value conversion. */
2875 /* Verify if EXPR is a valid GIMPLE reference expression. If
2876 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2877 if there is an error, otherwise false. */
2880 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2882 while (handled_component_p (expr
))
2884 tree op
= TREE_OPERAND (expr
, 0);
2886 if (TREE_CODE (expr
) == ARRAY_REF
2887 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2889 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2890 || (TREE_OPERAND (expr
, 2)
2891 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2892 || (TREE_OPERAND (expr
, 3)
2893 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2895 error ("invalid operands to array reference");
2896 debug_generic_stmt (expr
);
2901 /* Verify if the reference array element types are compatible. */
2902 if (TREE_CODE (expr
) == ARRAY_REF
2903 && !useless_type_conversion_p (TREE_TYPE (expr
),
2904 TREE_TYPE (TREE_TYPE (op
))))
2906 error ("type mismatch in array reference");
2907 debug_generic_stmt (TREE_TYPE (expr
));
2908 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2911 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2912 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2913 TREE_TYPE (TREE_TYPE (op
))))
2915 error ("type mismatch in array range reference");
2916 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2921 if ((TREE_CODE (expr
) == REALPART_EXPR
2922 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2923 && !useless_type_conversion_p (TREE_TYPE (expr
),
2924 TREE_TYPE (TREE_TYPE (op
))))
2926 error ("type mismatch in real/imagpart reference");
2927 debug_generic_stmt (TREE_TYPE (expr
));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2932 if (TREE_CODE (expr
) == COMPONENT_REF
2933 && !useless_type_conversion_p (TREE_TYPE (expr
),
2934 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2936 error ("type mismatch in component reference");
2937 debug_generic_stmt (TREE_TYPE (expr
));
2938 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2942 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2944 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2945 that their operand is not an SSA name or an invariant when
2946 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2947 bug). Otherwise there is nothing to verify, gross mismatches at
2948 most invoke undefined behavior. */
2950 && (TREE_CODE (op
) == SSA_NAME
2951 || is_gimple_min_invariant (op
)))
2953 error ("conversion of an SSA_NAME on the left hand side");
2954 debug_generic_stmt (expr
);
2957 else if (TREE_CODE (op
) == SSA_NAME
2958 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
2960 error ("conversion of register to a different size");
2961 debug_generic_stmt (expr
);
2964 else if (!handled_component_p (op
))
2971 if (TREE_CODE (expr
) == MEM_REF
)
2973 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
2975 error ("invalid address operand in MEM_REF");
2976 debug_generic_stmt (expr
);
2979 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
2980 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
2982 error ("invalid offset operand in MEM_REF");
2983 debug_generic_stmt (expr
);
2987 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2989 if (!TMR_BASE (expr
)
2990 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
2992 error ("invalid address operand in in TARGET_MEM_REF");
2995 if (!TMR_OFFSET (expr
)
2996 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
2997 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
2999 error ("invalid offset operand in TARGET_MEM_REF");
3000 debug_generic_stmt (expr
);
3005 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3006 && verify_types_in_gimple_min_lval (expr
));
3009 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3010 list of pointer-to types that is trivially convertible to DEST. */
3013 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3017 if (!TYPE_POINTER_TO (src_obj
))
3020 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3021 if (useless_type_conversion_p (dest
, src
))
3027 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3028 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031 valid_fixed_convert_types_p (tree type1
, tree type2
)
3033 return (FIXED_POINT_TYPE_P (type1
)
3034 && (INTEGRAL_TYPE_P (type2
)
3035 || SCALAR_FLOAT_TYPE_P (type2
)
3036 || FIXED_POINT_TYPE_P (type2
)));
3039 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3040 is a problem, otherwise false. */
3043 verify_gimple_call (gimple stmt
)
3045 tree fn
= gimple_call_fn (stmt
);
3049 if (TREE_CODE (fn
) != OBJ_TYPE_REF
3050 && !is_gimple_val (fn
))
3052 error ("invalid function in gimple call");
3053 debug_generic_stmt (fn
);
3057 if (!POINTER_TYPE_P (TREE_TYPE (fn
))
3058 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3059 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
))
3061 error ("non-function in gimple call");
3065 if (gimple_call_lhs (stmt
)
3066 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3067 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3069 error ("invalid LHS in gimple call");
3073 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3075 error ("LHS in noreturn call");
3079 fntype
= TREE_TYPE (TREE_TYPE (fn
));
3080 if (gimple_call_lhs (stmt
)
3081 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3083 /* ??? At least C++ misses conversions at assignments from
3084 void * call results.
3085 ??? Java is completely off. Especially with functions
3086 returning java.lang.Object.
3087 For now simply allow arbitrary pointer type conversions. */
3088 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3089 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3091 error ("invalid conversion in gimple call");
3092 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3093 debug_generic_stmt (TREE_TYPE (fntype
));
3097 if (gimple_call_chain (stmt
)
3098 && !is_gimple_val (gimple_call_chain (stmt
)))
3100 error ("invalid static chain in gimple call");
3101 debug_generic_stmt (gimple_call_chain (stmt
));
3105 /* If there is a static chain argument, this should not be an indirect
3106 call, and the decl should have DECL_STATIC_CHAIN set. */
3107 if (gimple_call_chain (stmt
))
3109 if (!gimple_call_fndecl (stmt
))
3111 error ("static chain in indirect gimple call");
3114 fn
= TREE_OPERAND (fn
, 0);
3116 if (!DECL_STATIC_CHAIN (fn
))
3118 error ("static chain with function that doesn%'t use one");
3123 /* ??? The C frontend passes unpromoted arguments in case it
3124 didn't see a function declaration before the call. So for now
3125 leave the call arguments mostly unverified. Once we gimplify
3126 unit-at-a-time we have a chance to fix this. */
3128 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3130 tree arg
= gimple_call_arg (stmt
, i
);
3131 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3132 && !is_gimple_val (arg
))
3133 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3134 && !is_gimple_lvalue (arg
)))
3136 error ("invalid argument to gimple call");
3137 debug_generic_expr (arg
);
3144 /* Verifies the gimple comparison with the result type TYPE and
3145 the operands OP0 and OP1. */
3148 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3150 tree op0_type
= TREE_TYPE (op0
);
3151 tree op1_type
= TREE_TYPE (op1
);
3153 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3155 error ("invalid operands in gimple comparison");
3159 /* For comparisons we do not have the operations type as the
3160 effective type the comparison is carried out in. Instead
3161 we require that either the first operand is trivially
3162 convertible into the second, or the other way around.
3163 The resulting type of a comparison may be any integral type.
3164 Because we special-case pointers to void we allow
3165 comparisons of pointers with the same mode as well. */
3166 if ((!useless_type_conversion_p (op0_type
, op1_type
)
3167 && !useless_type_conversion_p (op1_type
, op0_type
)
3168 && (!POINTER_TYPE_P (op0_type
)
3169 || !POINTER_TYPE_P (op1_type
)
3170 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3171 || !INTEGRAL_TYPE_P (type
))
3173 error ("type mismatch in comparison expression");
3174 debug_generic_expr (type
);
3175 debug_generic_expr (op0_type
);
3176 debug_generic_expr (op1_type
);
3183 /* Verify a gimple assignment statement STMT with an unary rhs.
3184 Returns true if anything is wrong. */
3187 verify_gimple_assign_unary (gimple stmt
)
3189 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3190 tree lhs
= gimple_assign_lhs (stmt
);
3191 tree lhs_type
= TREE_TYPE (lhs
);
3192 tree rhs1
= gimple_assign_rhs1 (stmt
);
3193 tree rhs1_type
= TREE_TYPE (rhs1
);
3195 if (!is_gimple_reg (lhs
)
3197 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3199 error ("non-register as LHS of unary operation");
3203 if (!is_gimple_val (rhs1
))
3205 error ("invalid operand in unary operation");
3209 /* First handle conversions. */
3214 /* Allow conversions between integral types and pointers only if
3215 there is no sign or zero extension involved.
3216 For targets were the precision of sizetype doesn't match that
3217 of pointers we need to allow arbitrary conversions from and
3219 if ((POINTER_TYPE_P (lhs_type
)
3220 && INTEGRAL_TYPE_P (rhs1_type
)
3221 && (TYPE_PRECISION (lhs_type
) >= TYPE_PRECISION (rhs1_type
)
3222 || rhs1_type
== sizetype
))
3223 || (POINTER_TYPE_P (rhs1_type
)
3224 && INTEGRAL_TYPE_P (lhs_type
)
3225 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3226 || lhs_type
== sizetype
)))
3229 /* Allow conversion from integer to offset type and vice versa. */
3230 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3231 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3232 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3233 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3236 /* Otherwise assert we are converting between types of the
3238 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3240 error ("invalid types in nop conversion");
3241 debug_generic_expr (lhs_type
);
3242 debug_generic_expr (rhs1_type
);
3249 case ADDR_SPACE_CONVERT_EXPR
:
3251 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3252 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3253 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3255 error ("invalid types in address space conversion");
3256 debug_generic_expr (lhs_type
);
3257 debug_generic_expr (rhs1_type
);
3264 case FIXED_CONVERT_EXPR
:
3266 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3267 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3269 error ("invalid types in fixed-point conversion");
3270 debug_generic_expr (lhs_type
);
3271 debug_generic_expr (rhs1_type
);
3280 if (!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3282 error ("invalid types in conversion to floating point");
3283 debug_generic_expr (lhs_type
);
3284 debug_generic_expr (rhs1_type
);
3291 case FIX_TRUNC_EXPR
:
3293 if (!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3295 error ("invalid types in conversion to integer");
3296 debug_generic_expr (lhs_type
);
3297 debug_generic_expr (rhs1_type
);
3304 case VEC_UNPACK_HI_EXPR
:
3305 case VEC_UNPACK_LO_EXPR
:
3306 case REDUC_MAX_EXPR
:
3307 case REDUC_MIN_EXPR
:
3308 case REDUC_PLUS_EXPR
:
3309 case VEC_UNPACK_FLOAT_HI_EXPR
:
3310 case VEC_UNPACK_FLOAT_LO_EXPR
:
3314 case TRUTH_NOT_EXPR
:
3319 case NON_LVALUE_EXPR
:
3327 /* For the remaining codes assert there is no conversion involved. */
3328 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3330 error ("non-trivial conversion in unary operation");
3331 debug_generic_expr (lhs_type
);
3332 debug_generic_expr (rhs1_type
);
3339 /* Verify a gimple assignment statement STMT with a binary rhs.
3340 Returns true if anything is wrong. */
3343 verify_gimple_assign_binary (gimple stmt
)
3345 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3346 tree lhs
= gimple_assign_lhs (stmt
);
3347 tree lhs_type
= TREE_TYPE (lhs
);
3348 tree rhs1
= gimple_assign_rhs1 (stmt
);
3349 tree rhs1_type
= TREE_TYPE (rhs1
);
3350 tree rhs2
= gimple_assign_rhs2 (stmt
);
3351 tree rhs2_type
= TREE_TYPE (rhs2
);
3353 if (!is_gimple_reg (lhs
)
3355 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3357 error ("non-register as LHS of binary operation");
3361 if (!is_gimple_val (rhs1
)
3362 || !is_gimple_val (rhs2
))
3364 error ("invalid operands in binary operation");
3368 /* First handle operations that involve different types. */
3373 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3374 || !(INTEGRAL_TYPE_P (rhs1_type
)
3375 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3376 || !(INTEGRAL_TYPE_P (rhs2_type
)
3377 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3379 error ("type mismatch in complex expression");
3380 debug_generic_expr (lhs_type
);
3381 debug_generic_expr (rhs1_type
);
3382 debug_generic_expr (rhs2_type
);
3394 /* Shifts and rotates are ok on integral types, fixed point
3395 types and integer vector types. */
3396 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3397 && !FIXED_POINT_TYPE_P (rhs1_type
)
3398 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3399 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3400 || (!INTEGRAL_TYPE_P (rhs2_type
)
3401 /* Vector shifts of vectors are also ok. */
3402 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3403 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3404 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3405 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3406 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3408 error ("type mismatch in shift expression");
3409 debug_generic_expr (lhs_type
);
3410 debug_generic_expr (rhs1_type
);
3411 debug_generic_expr (rhs2_type
);
3418 case VEC_LSHIFT_EXPR
:
3419 case VEC_RSHIFT_EXPR
:
3421 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3422 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3423 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3424 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3425 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3426 || (!INTEGRAL_TYPE_P (rhs2_type
)
3427 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3428 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3429 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3431 error ("type mismatch in vector shift expression");
3432 debug_generic_expr (lhs_type
);
3433 debug_generic_expr (rhs1_type
);
3434 debug_generic_expr (rhs2_type
);
3437 /* For shifting a vector of non-integral components we
3438 only allow shifting by a constant multiple of the element size. */
3439 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3440 && (TREE_CODE (rhs2
) != INTEGER_CST
3441 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3442 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3444 error ("non-element sized vector shift of floating point vector");
3454 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3455 ??? This just makes the checker happy and may not be what is
3457 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3458 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3460 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3461 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3463 error ("invalid non-vector operands to vector valued plus");
3466 lhs_type
= TREE_TYPE (lhs_type
);
3467 rhs1_type
= TREE_TYPE (rhs1_type
);
3468 rhs2_type
= TREE_TYPE (rhs2_type
);
3469 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3470 the pointer to 2nd place. */
3471 if (POINTER_TYPE_P (rhs2_type
))
3473 tree tem
= rhs1_type
;
3474 rhs1_type
= rhs2_type
;
3477 goto do_pointer_plus_expr_check
;
3479 if (POINTER_TYPE_P (lhs_type
)
3480 || POINTER_TYPE_P (rhs1_type
)
3481 || POINTER_TYPE_P (rhs2_type
))
3483 error ("invalid (pointer) operands to plus/minus");
3487 /* Continue with generic binary expression handling. */
3491 case POINTER_PLUS_EXPR
:
3493 do_pointer_plus_expr_check
:
3494 if (!POINTER_TYPE_P (rhs1_type
)
3495 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3496 || !useless_type_conversion_p (sizetype
, rhs2_type
))
3498 error ("type mismatch in pointer plus expression");
3499 debug_generic_stmt (lhs_type
);
3500 debug_generic_stmt (rhs1_type
);
3501 debug_generic_stmt (rhs2_type
);
3508 case TRUTH_ANDIF_EXPR
:
3509 case TRUTH_ORIF_EXPR
:
3512 case TRUTH_AND_EXPR
:
3514 case TRUTH_XOR_EXPR
:
3516 /* We allow any kind of integral typed argument and result. */
3517 if (!INTEGRAL_TYPE_P (rhs1_type
)
3518 || !INTEGRAL_TYPE_P (rhs2_type
)
3519 || !INTEGRAL_TYPE_P (lhs_type
))
3521 error ("type mismatch in binary truth expression");
3522 debug_generic_expr (lhs_type
);
3523 debug_generic_expr (rhs1_type
);
3524 debug_generic_expr (rhs2_type
);
3537 case UNORDERED_EXPR
:
3545 /* Comparisons are also binary, but the result type is not
3546 connected to the operand types. */
3547 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3549 case WIDEN_MULT_EXPR
:
3550 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3552 return ((2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
))
3553 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3555 case WIDEN_SUM_EXPR
:
3556 case VEC_WIDEN_MULT_HI_EXPR
:
3557 case VEC_WIDEN_MULT_LO_EXPR
:
3558 case VEC_PACK_TRUNC_EXPR
:
3559 case VEC_PACK_SAT_EXPR
:
3560 case VEC_PACK_FIX_TRUNC_EXPR
:
3561 case VEC_EXTRACT_EVEN_EXPR
:
3562 case VEC_EXTRACT_ODD_EXPR
:
3563 case VEC_INTERLEAVE_HIGH_EXPR
:
3564 case VEC_INTERLEAVE_LOW_EXPR
:
3569 case TRUNC_DIV_EXPR
:
3571 case FLOOR_DIV_EXPR
:
3572 case ROUND_DIV_EXPR
:
3573 case TRUNC_MOD_EXPR
:
3575 case FLOOR_MOD_EXPR
:
3576 case ROUND_MOD_EXPR
:
3578 case EXACT_DIV_EXPR
:
3584 /* Continue with generic binary expression handling. */
3591 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3592 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3594 error ("type mismatch in binary expression");
3595 debug_generic_stmt (lhs_type
);
3596 debug_generic_stmt (rhs1_type
);
3597 debug_generic_stmt (rhs2_type
);
3604 /* Verify a gimple assignment statement STMT with a ternary rhs.
3605 Returns true if anything is wrong. */
3608 verify_gimple_assign_ternary (gimple stmt
)
3610 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3611 tree lhs
= gimple_assign_lhs (stmt
);
3612 tree lhs_type
= TREE_TYPE (lhs
);
3613 tree rhs1
= gimple_assign_rhs1 (stmt
);
3614 tree rhs1_type
= TREE_TYPE (rhs1
);
3615 tree rhs2
= gimple_assign_rhs2 (stmt
);
3616 tree rhs2_type
= TREE_TYPE (rhs2
);
3617 tree rhs3
= gimple_assign_rhs3 (stmt
);
3618 tree rhs3_type
= TREE_TYPE (rhs3
);
3620 if (!is_gimple_reg (lhs
)
3622 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3624 error ("non-register as LHS of ternary operation");
3628 if (!is_gimple_val (rhs1
)
3629 || !is_gimple_val (rhs2
)
3630 || !is_gimple_val (rhs3
))
3632 error ("invalid operands in ternary operation");
3636 /* First handle operations that involve different types. */
3639 case WIDEN_MULT_PLUS_EXPR
:
3640 case WIDEN_MULT_MINUS_EXPR
:
3641 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3642 && !FIXED_POINT_TYPE_P (rhs1_type
))
3643 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3644 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3645 || 2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
)
3646 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3648 error ("type mismatch in widening multiply-accumulate expression");
3649 debug_generic_expr (lhs_type
);
3650 debug_generic_expr (rhs1_type
);
3651 debug_generic_expr (rhs2_type
);
3652 debug_generic_expr (rhs3_type
);
3658 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3659 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3660 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3662 error ("type mismatch in fused multiply-add expression");
3663 debug_generic_expr (lhs_type
);
3664 debug_generic_expr (rhs1_type
);
3665 debug_generic_expr (rhs2_type
);
3666 debug_generic_expr (rhs3_type
);
3677 /* Verify a gimple assignment statement STMT with a single rhs.
3678 Returns true if anything is wrong. */
3681 verify_gimple_assign_single (gimple stmt
)
3683 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3684 tree lhs
= gimple_assign_lhs (stmt
);
3685 tree lhs_type
= TREE_TYPE (lhs
);
3686 tree rhs1
= gimple_assign_rhs1 (stmt
);
3687 tree rhs1_type
= TREE_TYPE (rhs1
);
3690 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3692 error ("non-trivial conversion at assignment");
3693 debug_generic_expr (lhs_type
);
3694 debug_generic_expr (rhs1_type
);
3698 if (handled_component_p (lhs
))
3699 res
|= verify_types_in_gimple_reference (lhs
, true);
3701 /* Special codes we cannot handle via their class. */
3706 tree op
= TREE_OPERAND (rhs1
, 0);
3707 if (!is_gimple_addressable (op
))
3709 error ("invalid operand in unary expression");
3713 /* Technically there is no longer a need for matching types, but
3714 gimple hygiene asks for this check. In LTO we can end up
3715 combining incompatible units and thus end up with addresses
3716 of globals that change their type to a common one. */
3718 && !types_compatible_p (TREE_TYPE (op
),
3719 TREE_TYPE (TREE_TYPE (rhs1
)))
3720 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3723 error ("type mismatch in address expression");
3724 debug_generic_stmt (TREE_TYPE (rhs1
));
3725 debug_generic_stmt (TREE_TYPE (op
));
3729 return verify_types_in_gimple_reference (op
, true);
3734 error ("INDIRECT_REF in gimple IL");
3740 case ARRAY_RANGE_REF
:
3741 case VIEW_CONVERT_EXPR
:
3744 case TARGET_MEM_REF
:
3746 if (!is_gimple_reg (lhs
)
3747 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3749 error ("invalid rhs for gimple memory store");
3750 debug_generic_stmt (lhs
);
3751 debug_generic_stmt (rhs1
);
3754 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3766 /* tcc_declaration */
3771 if (!is_gimple_reg (lhs
)
3772 && !is_gimple_reg (rhs1
)
3773 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3775 error ("invalid rhs for gimple memory store");
3776 debug_generic_stmt (lhs
);
3777 debug_generic_stmt (rhs1
);
3783 if (!is_gimple_reg (lhs
)
3784 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 0))
3785 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1
, 0)))
3786 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 1))
3787 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 1)))
3788 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 2))
3789 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 2))))
3791 error ("invalid COND_EXPR in gimple assignment");
3792 debug_generic_stmt (rhs1
);
3800 case WITH_SIZE_EXPR
:
3801 case POLYNOMIAL_CHREC
:
3804 case REALIGN_LOAD_EXPR
:
3814 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3815 is a problem, otherwise false. */
3818 verify_gimple_assign (gimple stmt
)
3820 switch (gimple_assign_rhs_class (stmt
))
3822 case GIMPLE_SINGLE_RHS
:
3823 return verify_gimple_assign_single (stmt
);
3825 case GIMPLE_UNARY_RHS
:
3826 return verify_gimple_assign_unary (stmt
);
3828 case GIMPLE_BINARY_RHS
:
3829 return verify_gimple_assign_binary (stmt
);
3831 case GIMPLE_TERNARY_RHS
:
3832 return verify_gimple_assign_ternary (stmt
);
3839 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3840 is a problem, otherwise false. */
3843 verify_gimple_return (gimple stmt
)
3845 tree op
= gimple_return_retval (stmt
);
3846 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
3848 /* We cannot test for present return values as we do not fix up missing
3849 return values from the original source. */
3853 if (!is_gimple_val (op
)
3854 && TREE_CODE (op
) != RESULT_DECL
)
3856 error ("invalid operand in return statement");
3857 debug_generic_stmt (op
);
3861 if ((TREE_CODE (op
) == RESULT_DECL
3862 && DECL_BY_REFERENCE (op
))
3863 || (TREE_CODE (op
) == SSA_NAME
3864 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
3865 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
3866 op
= TREE_TYPE (op
);
3868 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
3870 error ("invalid conversion in return statement");
3871 debug_generic_stmt (restype
);
3872 debug_generic_stmt (TREE_TYPE (op
));
3880 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3881 is a problem, otherwise false. */
3884 verify_gimple_goto (gimple stmt
)
3886 tree dest
= gimple_goto_dest (stmt
);
3888 /* ??? We have two canonical forms of direct goto destinations, a
3889 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3890 if (TREE_CODE (dest
) != LABEL_DECL
3891 && (!is_gimple_val (dest
)
3892 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
3894 error ("goto destination is neither a label nor a pointer");
3901 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3902 is a problem, otherwise false. */
3905 verify_gimple_switch (gimple stmt
)
3907 if (!is_gimple_val (gimple_switch_index (stmt
)))
3909 error ("invalid operand to switch statement");
3910 debug_generic_stmt (gimple_switch_index (stmt
));
3918 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3919 and false otherwise. */
3922 verify_gimple_phi (gimple stmt
)
3924 tree type
= TREE_TYPE (gimple_phi_result (stmt
));
3927 if (TREE_CODE (gimple_phi_result (stmt
)) != SSA_NAME
)
3929 error ("invalid PHI result");
3933 for (i
= 0; i
< gimple_phi_num_args (stmt
); i
++)
3935 tree arg
= gimple_phi_arg_def (stmt
, i
);
3936 if ((is_gimple_reg (gimple_phi_result (stmt
))
3937 && !is_gimple_val (arg
))
3938 || (!is_gimple_reg (gimple_phi_result (stmt
))
3939 && !is_gimple_addressable (arg
)))
3941 error ("invalid PHI argument");
3942 debug_generic_stmt (arg
);
3945 if (!useless_type_conversion_p (type
, TREE_TYPE (arg
)))
3947 error ("incompatible types in PHI argument %u", i
);
3948 debug_generic_stmt (type
);
3949 debug_generic_stmt (TREE_TYPE (arg
));
3958 /* Verify a gimple debug statement STMT.
3959 Returns true if anything is wrong. */
3962 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
3964 /* There isn't much that could be wrong in a gimple debug stmt. A
3965 gimple debug bind stmt, for example, maps a tree, that's usually
3966 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3967 component or member of an aggregate type, to another tree, that
3968 can be an arbitrary expression. These stmts expand into debug
3969 insns, and are converted to debug notes by var-tracking.c. */
3974 /* Verify the GIMPLE statement STMT. Returns true if there is an
3975 error, otherwise false. */
3978 verify_types_in_gimple_stmt (gimple stmt
)
3980 switch (gimple_code (stmt
))
3983 return verify_gimple_assign (stmt
);
3986 return TREE_CODE (gimple_label_label (stmt
)) != LABEL_DECL
;
3989 return verify_gimple_call (stmt
);
3992 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
3994 error ("invalid comparison code in gimple cond");
3997 if (!(!gimple_cond_true_label (stmt
)
3998 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
3999 || !(!gimple_cond_false_label (stmt
)
4000 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4002 error ("invalid labels in gimple cond");
4006 return verify_gimple_comparison (boolean_type_node
,
4007 gimple_cond_lhs (stmt
),
4008 gimple_cond_rhs (stmt
));
4011 return verify_gimple_goto (stmt
);
4014 return verify_gimple_switch (stmt
);
4017 return verify_gimple_return (stmt
);
4023 return verify_gimple_phi (stmt
);
4025 /* Tuples that do not have tree operands. */
4027 case GIMPLE_PREDICT
:
4029 case GIMPLE_EH_DISPATCH
:
4030 case GIMPLE_EH_MUST_NOT_THROW
:
4034 /* OpenMP directives are validated by the FE and never operated
4035 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4036 non-gimple expressions when the main index variable has had
4037 its address taken. This does not affect the loop itself
4038 because the header of an GIMPLE_OMP_FOR is merely used to determine
4039 how to setup the parallel iteration. */
4043 return verify_gimple_debug (stmt
);
4050 /* Verify the GIMPLE statements inside the sequence STMTS. */
4053 verify_types_in_gimple_seq_2 (gimple_seq stmts
)
4055 gimple_stmt_iterator ittr
;
4058 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4060 gimple stmt
= gsi_stmt (ittr
);
4062 switch (gimple_code (stmt
))
4065 err
|= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt
));
4069 err
|= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt
));
4070 err
|= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt
));
4073 case GIMPLE_EH_FILTER
:
4074 err
|= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt
));
4078 err
|= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt
));
4083 bool err2
= verify_types_in_gimple_stmt (stmt
);
4085 debug_gimple_stmt (stmt
);
4095 /* Verify the GIMPLE statements inside the statement list STMTS. */
4098 verify_types_in_gimple_seq (gimple_seq stmts
)
4100 if (verify_types_in_gimple_seq_2 (stmts
))
4101 internal_error ("verify_gimple failed");
4105 /* Verify STMT, return true if STMT is not in GIMPLE form.
4106 TODO: Implement type checking. */
4109 verify_stmt (gimple_stmt_iterator
*gsi
)
4112 struct walk_stmt_info wi
;
4113 bool last_in_block
= gsi_one_before_end_p (*gsi
);
4114 gimple stmt
= gsi_stmt (*gsi
);
4117 if (is_gimple_omp (stmt
))
4119 /* OpenMP directives are validated by the FE and never operated
4120 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4121 non-gimple expressions when the main index variable has had
4122 its address taken. This does not affect the loop itself
4123 because the header of an GIMPLE_OMP_FOR is merely used to determine
4124 how to setup the parallel iteration. */
4128 /* FIXME. The C frontend passes unpromoted arguments in case it
4129 didn't see a function declaration before the call. */
4130 if (is_gimple_call (stmt
))
4134 if (!is_gimple_call_addr (gimple_call_fn (stmt
)))
4136 error ("invalid function in call statement");
4140 decl
= gimple_call_fndecl (stmt
);
4142 && TREE_CODE (decl
) == FUNCTION_DECL
4143 && DECL_LOOPING_CONST_OR_PURE_P (decl
)
4144 && (!DECL_PURE_P (decl
))
4145 && (!TREE_READONLY (decl
)))
4147 error ("invalid pure const state for function");
4152 if (is_gimple_debug (stmt
))
4155 memset (&wi
, 0, sizeof (wi
));
4156 addr
= walk_gimple_op (gsi_stmt (*gsi
), verify_expr
, &wi
);
4159 debug_generic_expr (addr
);
4160 inform (gimple_location (gsi_stmt (*gsi
)), "in statement");
4161 debug_gimple_stmt (stmt
);
4165 /* If the statement is marked as part of an EH region, then it is
4166 expected that the statement could throw. Verify that when we
4167 have optimizations that simplify statements such that we prove
4168 that they cannot throw, that we update other data structures
4170 lp_nr
= lookup_stmt_eh_lp (stmt
);
4173 if (!stmt_could_throw_p (stmt
))
4175 error ("statement marked for throw, but doesn%'t");
4178 else if (lp_nr
> 0 && !last_in_block
&& stmt_can_throw_internal (stmt
))
4180 error ("statement marked for throw in middle of block");
4188 debug_gimple_stmt (stmt
);
4193 /* Return true when the T can be shared. */
4196 tree_node_can_be_shared (tree t
)
4198 if (IS_TYPE_OR_DECL_P (t
)
4199 || is_gimple_min_invariant (t
)
4200 || TREE_CODE (t
) == SSA_NAME
4201 || t
== error_mark_node
4202 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4205 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4208 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4209 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4210 || TREE_CODE (t
) == COMPONENT_REF
4211 || TREE_CODE (t
) == REALPART_EXPR
4212 || TREE_CODE (t
) == IMAGPART_EXPR
)
4213 t
= TREE_OPERAND (t
, 0);
4222 /* Called via walk_gimple_stmt. Verify tree sharing. */
4225 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4227 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4228 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4230 if (tree_node_can_be_shared (*tp
))
4232 *walk_subtrees
= false;
4236 if (pointer_set_insert (visited
, *tp
))
4243 static bool eh_error_found
;
4245 verify_eh_throw_stmt_node (void **slot
, void *data
)
4247 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4248 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4250 if (!pointer_set_contains (visited
, node
->stmt
))
4252 error ("dead STMT in EH table");
4253 debug_gimple_stmt (node
->stmt
);
4254 eh_error_found
= true;
4260 /* Verify the GIMPLE statements in every basic block. */
4266 gimple_stmt_iterator gsi
;
4268 struct pointer_set_t
*visited
, *visited_stmts
;
4270 struct walk_stmt_info wi
;
4272 timevar_push (TV_TREE_STMT_VERIFY
);
4273 visited
= pointer_set_create ();
4274 visited_stmts
= pointer_set_create ();
4276 memset (&wi
, 0, sizeof (wi
));
4277 wi
.info
= (void *) visited
;
4284 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4286 phi
= gsi_stmt (gsi
);
4287 pointer_set_insert (visited_stmts
, phi
);
4288 if (gimple_bb (phi
) != bb
)
4290 error ("gimple_bb (phi) is set to a wrong basic block");
4294 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4296 tree t
= gimple_phi_arg_def (phi
, i
);
4301 error ("missing PHI def");
4302 debug_gimple_stmt (phi
);
4306 /* Addressable variables do have SSA_NAMEs but they
4307 are not considered gimple values. */
4308 else if (TREE_CODE (t
) != SSA_NAME
4309 && TREE_CODE (t
) != FUNCTION_DECL
4310 && !is_gimple_min_invariant (t
))
4312 error ("PHI argument is not a GIMPLE value");
4313 debug_gimple_stmt (phi
);
4314 debug_generic_expr (t
);
4318 addr
= walk_tree (&t
, verify_node_sharing
, visited
, NULL
);
4321 error ("incorrect sharing of tree nodes");
4322 debug_gimple_stmt (phi
);
4323 debug_generic_expr (addr
);
4328 #ifdef ENABLE_TYPES_CHECKING
4329 if (verify_gimple_phi (phi
))
4331 debug_gimple_stmt (phi
);
4337 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); )
4339 gimple stmt
= gsi_stmt (gsi
);
4341 if (gimple_code (stmt
) == GIMPLE_WITH_CLEANUP_EXPR
4342 || gimple_code (stmt
) == GIMPLE_BIND
)
4344 error ("invalid GIMPLE statement");
4345 debug_gimple_stmt (stmt
);
4349 pointer_set_insert (visited_stmts
, stmt
);
4351 if (gimple_bb (stmt
) != bb
)
4353 error ("gimple_bb (stmt) is set to a wrong basic block");
4354 debug_gimple_stmt (stmt
);
4358 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4360 tree decl
= gimple_label_label (stmt
);
4361 int uid
= LABEL_DECL_UID (decl
);
4364 || VEC_index (basic_block
, label_to_block_map
, uid
) != bb
)
4366 error ("incorrect entry in label_to_block_map");
4370 uid
= EH_LANDING_PAD_NR (decl
);
4373 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4374 if (decl
!= lp
->post_landing_pad
)
4376 error ("incorrect setting of landing pad number");
4382 err
|= verify_stmt (&gsi
);
4384 #ifdef ENABLE_TYPES_CHECKING
4385 if (verify_types_in_gimple_stmt (gsi_stmt (gsi
)))
4387 debug_gimple_stmt (stmt
);
4391 addr
= walk_gimple_op (gsi_stmt (gsi
), verify_node_sharing
, &wi
);
4394 error ("incorrect sharing of tree nodes");
4395 debug_gimple_stmt (stmt
);
4396 debug_generic_expr (addr
);
4403 eh_error_found
= false;
4404 if (get_eh_throw_stmt_table (cfun
))
4405 htab_traverse (get_eh_throw_stmt_table (cfun
),
4406 verify_eh_throw_stmt_node
,
4409 if (err
| eh_error_found
)
4410 internal_error ("verify_stmts failed");
4412 pointer_set_destroy (visited
);
4413 pointer_set_destroy (visited_stmts
);
4414 verify_histograms ();
4415 timevar_pop (TV_TREE_STMT_VERIFY
);
4419 /* Verifies that the flow information is OK. */
4422 gimple_verify_flow_info (void)
4426 gimple_stmt_iterator gsi
;
4431 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4433 error ("ENTRY_BLOCK has IL associated with it");
4437 if (EXIT_BLOCK_PTR
->il
.gimple
)
4439 error ("EXIT_BLOCK has IL associated with it");
4443 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4444 if (e
->flags
& EDGE_FALLTHRU
)
4446 error ("fallthru to exit from bb %d", e
->src
->index
);
4452 bool found_ctrl_stmt
= false;
4456 /* Skip labels on the start of basic block. */
4457 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4460 gimple prev_stmt
= stmt
;
4462 stmt
= gsi_stmt (gsi
);
4464 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4467 label
= gimple_label_label (stmt
);
4468 if (prev_stmt
&& DECL_NONLOCAL (label
))
4470 error ("nonlocal label ");
4471 print_generic_expr (stderr
, label
, 0);
4472 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4477 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4479 error ("EH landing pad label ");
4480 print_generic_expr (stderr
, label
, 0);
4481 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4486 if (label_to_block (label
) != bb
)
4489 print_generic_expr (stderr
, label
, 0);
4490 fprintf (stderr
, " to block does not match in bb %d",
4495 if (decl_function_context (label
) != current_function_decl
)
4498 print_generic_expr (stderr
, label
, 0);
4499 fprintf (stderr
, " has incorrect context in bb %d",
4505 /* Verify that body of basic block BB is free of control flow. */
4506 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4508 gimple stmt
= gsi_stmt (gsi
);
4510 if (found_ctrl_stmt
)
4512 error ("control flow in the middle of basic block %d",
4517 if (stmt_ends_bb_p (stmt
))
4518 found_ctrl_stmt
= true;
4520 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4523 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4524 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4529 gsi
= gsi_last_bb (bb
);
4530 if (gsi_end_p (gsi
))
4533 stmt
= gsi_stmt (gsi
);
4535 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4538 err
|= verify_eh_edges (stmt
);
4540 if (is_ctrl_stmt (stmt
))
4542 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4543 if (e
->flags
& EDGE_FALLTHRU
)
4545 error ("fallthru edge after a control statement in bb %d",
4551 if (gimple_code (stmt
) != GIMPLE_COND
)
4553 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4554 after anything else but if statement. */
4555 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4556 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4558 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4564 switch (gimple_code (stmt
))
4571 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4575 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4576 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4577 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4578 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4579 || EDGE_COUNT (bb
->succs
) >= 3)
4581 error ("wrong outgoing edge flags at end of bb %d",
4589 if (simple_goto_p (stmt
))
4591 error ("explicit goto at end of bb %d", bb
->index
);
4596 /* FIXME. We should double check that the labels in the
4597 destination blocks have their address taken. */
4598 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4599 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4600 | EDGE_FALSE_VALUE
))
4601 || !(e
->flags
& EDGE_ABNORMAL
))
4603 error ("wrong outgoing edge flags at end of bb %d",
4611 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4613 /* ... fallthru ... */
4615 if (!single_succ_p (bb
)
4616 || (single_succ_edge (bb
)->flags
4617 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4618 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4620 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4623 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4625 error ("return edge does not point to exit in bb %d",
4637 n
= gimple_switch_num_labels (stmt
);
4639 /* Mark all the destination basic blocks. */
4640 for (i
= 0; i
< n
; ++i
)
4642 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4643 basic_block label_bb
= label_to_block (lab
);
4644 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4645 label_bb
->aux
= (void *)1;
4648 /* Verify that the case labels are sorted. */
4649 prev
= gimple_switch_label (stmt
, 0);
4650 for (i
= 1; i
< n
; ++i
)
4652 tree c
= gimple_switch_label (stmt
, i
);
4655 error ("found default case not at the start of "
4661 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4663 error ("case labels not sorted: ");
4664 print_generic_expr (stderr
, prev
, 0);
4665 fprintf (stderr
," is greater than ");
4666 print_generic_expr (stderr
, c
, 0);
4667 fprintf (stderr
," but comes before it.\n");
4672 /* VRP will remove the default case if it can prove it will
4673 never be executed. So do not verify there always exists
4674 a default case here. */
4676 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4680 error ("extra outgoing edge %d->%d",
4681 bb
->index
, e
->dest
->index
);
4685 e
->dest
->aux
= (void *)2;
4686 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4687 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4689 error ("wrong outgoing edge flags at end of bb %d",
4695 /* Check that we have all of them. */
4696 for (i
= 0; i
< n
; ++i
)
4698 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4699 basic_block label_bb
= label_to_block (lab
);
4701 if (label_bb
->aux
!= (void *)2)
4703 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4708 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4709 e
->dest
->aux
= (void *)0;
4713 case GIMPLE_EH_DISPATCH
:
4714 err
|= verify_eh_dispatch_edge (stmt
);
4722 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4723 verify_dominators (CDI_DOMINATORS
);
4729 /* Updates phi nodes after creating a forwarder block joined
4730 by edge FALLTHRU. */
4733 gimple_make_forwarder_block (edge fallthru
)
4737 basic_block dummy
, bb
;
4739 gimple_stmt_iterator gsi
;
4741 dummy
= fallthru
->src
;
4742 bb
= fallthru
->dest
;
4744 if (single_pred_p (bb
))
4747 /* If we redirected a branch we must create new PHI nodes at the
4749 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4751 gimple phi
, new_phi
;
4753 phi
= gsi_stmt (gsi
);
4754 var
= gimple_phi_result (phi
);
4755 new_phi
= create_phi_node (var
, bb
);
4756 SSA_NAME_DEF_STMT (var
) = new_phi
;
4757 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4758 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
4762 /* Add the arguments we have stored on edges. */
4763 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4768 flush_pending_stmts (e
);
4773 /* Return a non-special label in the head of basic block BLOCK.
4774 Create one if it doesn't exist. */
4777 gimple_block_label (basic_block bb
)
4779 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4784 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4786 stmt
= gsi_stmt (i
);
4787 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4789 label
= gimple_label_label (stmt
);
4790 if (!DECL_NONLOCAL (label
))
4793 gsi_move_before (&i
, &s
);
4798 label
= create_artificial_label (UNKNOWN_LOCATION
);
4799 stmt
= gimple_build_label (label
);
4800 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4805 /* Attempt to perform edge redirection by replacing a possibly complex
4806 jump instruction by a goto or by removing the jump completely.
4807 This can apply only if all edges now point to the same block. The
4808 parameters and return values are equivalent to
4809 redirect_edge_and_branch. */
4812 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4814 basic_block src
= e
->src
;
4815 gimple_stmt_iterator i
;
4818 /* We can replace or remove a complex jump only when we have exactly
4820 if (EDGE_COUNT (src
->succs
) != 2
4821 /* Verify that all targets will be TARGET. Specifically, the
4822 edge that is not E must also go to TARGET. */
4823 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
4826 i
= gsi_last_bb (src
);
4830 stmt
= gsi_stmt (i
);
4832 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
4834 gsi_remove (&i
, true);
4835 e
= ssa_redirect_edge (e
, target
);
4836 e
->flags
= EDGE_FALLTHRU
;
4844 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4845 edge representing the redirected branch. */
4848 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
4850 basic_block bb
= e
->src
;
4851 gimple_stmt_iterator gsi
;
4855 if (e
->flags
& EDGE_ABNORMAL
)
4858 if (e
->dest
== dest
)
4861 if (e
->flags
& EDGE_EH
)
4862 return redirect_eh_edge (e
, dest
);
4864 if (e
->src
!= ENTRY_BLOCK_PTR
)
4866 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
4871 gsi
= gsi_last_bb (bb
);
4872 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
4874 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
4877 /* For COND_EXPR, we only need to redirect the edge. */
4881 /* No non-abnormal edges should lead from a non-simple goto, and
4882 simple ones should be represented implicitly. */
4887 tree label
= gimple_block_label (dest
);
4888 tree cases
= get_cases_for_edge (e
, stmt
);
4890 /* If we have a list of cases associated with E, then use it
4891 as it's a lot faster than walking the entire case vector. */
4894 edge e2
= find_edge (e
->src
, dest
);
4901 CASE_LABEL (cases
) = label
;
4902 cases
= TREE_CHAIN (cases
);
4905 /* If there was already an edge in the CFG, then we need
4906 to move all the cases associated with E to E2. */
4909 tree cases2
= get_cases_for_edge (e2
, stmt
);
4911 TREE_CHAIN (last
) = TREE_CHAIN (cases2
);
4912 TREE_CHAIN (cases2
) = first
;
4914 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
4918 size_t i
, n
= gimple_switch_num_labels (stmt
);
4920 for (i
= 0; i
< n
; i
++)
4922 tree elt
= gimple_switch_label (stmt
, i
);
4923 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
4924 CASE_LABEL (elt
) = label
;
4932 int i
, n
= gimple_asm_nlabels (stmt
);
4935 for (i
= 0; i
< n
; ++i
)
4937 tree cons
= gimple_asm_label_op (stmt
, i
);
4938 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
4941 label
= gimple_block_label (dest
);
4942 TREE_VALUE (cons
) = label
;
4946 /* If we didn't find any label matching the former edge in the
4947 asm labels, we must be redirecting the fallthrough
4949 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
4954 gsi_remove (&gsi
, true);
4955 e
->flags
|= EDGE_FALLTHRU
;
4958 case GIMPLE_OMP_RETURN
:
4959 case GIMPLE_OMP_CONTINUE
:
4960 case GIMPLE_OMP_SECTIONS_SWITCH
:
4961 case GIMPLE_OMP_FOR
:
4962 /* The edges from OMP constructs can be simply redirected. */
4965 case GIMPLE_EH_DISPATCH
:
4966 if (!(e
->flags
& EDGE_FALLTHRU
))
4967 redirect_eh_dispatch_edge (stmt
, e
, dest
);
4971 /* Otherwise it must be a fallthru edge, and we don't need to
4972 do anything besides redirecting it. */
4973 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
4977 /* Update/insert PHI nodes as necessary. */
4979 /* Now update the edges in the CFG. */
4980 e
= ssa_redirect_edge (e
, dest
);
4985 /* Returns true if it is possible to remove edge E by redirecting
4986 it to the destination of the other edge from E->src. */
4989 gimple_can_remove_branch_p (const_edge e
)
4991 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
4997 /* Simple wrapper, as we can always redirect fallthru edges. */
5000 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5002 e
= gimple_redirect_edge_and_branch (e
, dest
);
5009 /* Splits basic block BB after statement STMT (but at least after the
5010 labels). If STMT is NULL, BB is split just after the labels. */
5013 gimple_split_block (basic_block bb
, void *stmt
)
5015 gimple_stmt_iterator gsi
;
5016 gimple_stmt_iterator gsi_tgt
;
5023 new_bb
= create_empty_bb (bb
);
5025 /* Redirect the outgoing edges. */
5026 new_bb
->succs
= bb
->succs
;
5028 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5031 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5034 /* Move everything from GSI to the new basic block. */
5035 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5037 act
= gsi_stmt (gsi
);
5038 if (gimple_code (act
) == GIMPLE_LABEL
)
5051 if (gsi_end_p (gsi
))
5054 /* Split the statement list - avoid re-creating new containers as this
5055 brings ugly quadratic memory consumption in the inliner.
5056 (We are still quadratic since we need to update stmt BB pointers,
5058 list
= gsi_split_seq_before (&gsi
);
5059 set_bb_seq (new_bb
, list
);
5060 for (gsi_tgt
= gsi_start (list
);
5061 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5062 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5068 /* Moves basic block BB after block AFTER. */
5071 gimple_move_block_after (basic_block bb
, basic_block after
)
5073 if (bb
->prev_bb
== after
)
5077 link_block (bb
, after
);
5083 /* Return true if basic_block can be duplicated. */
5086 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5091 /* Create a duplicate of the basic block BB. NOTE: This does not
5092 preserve SSA form. */
5095 gimple_duplicate_bb (basic_block bb
)
5098 gimple_stmt_iterator gsi
, gsi_tgt
;
5099 gimple_seq phis
= phi_nodes (bb
);
5100 gimple phi
, stmt
, copy
;
5102 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5104 /* Copy the PHI nodes. We ignore PHI node arguments here because
5105 the incoming edges have not been setup yet. */
5106 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5108 phi
= gsi_stmt (gsi
);
5109 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
5110 create_new_def_for (gimple_phi_result (copy
), copy
,
5111 gimple_phi_result_ptr (copy
));
5114 gsi_tgt
= gsi_start_bb (new_bb
);
5115 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5117 def_operand_p def_p
;
5118 ssa_op_iter op_iter
;
5120 stmt
= gsi_stmt (gsi
);
5121 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5124 /* Create a new copy of STMT and duplicate STMT's virtual
5126 copy
= gimple_copy (stmt
);
5127 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5129 maybe_duplicate_eh_stmt (copy
, stmt
);
5130 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5132 /* Create new names for all the definitions created by COPY and
5133 add replacement mappings for each new name. */
5134 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5135 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5141 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5144 add_phi_args_after_copy_edge (edge e_copy
)
5146 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5149 gimple phi
, phi_copy
;
5151 gimple_stmt_iterator psi
, psi_copy
;
5153 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5156 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5158 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5159 dest
= get_bb_original (e_copy
->dest
);
5161 dest
= e_copy
->dest
;
5163 e
= find_edge (bb
, dest
);
5166 /* During loop unrolling the target of the latch edge is copied.
5167 In this case we are not looking for edge to dest, but to
5168 duplicated block whose original was dest. */
5169 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5171 if ((e
->dest
->flags
& BB_DUPLICATED
)
5172 && get_bb_original (e
->dest
) == dest
)
5176 gcc_assert (e
!= NULL
);
5179 for (psi
= gsi_start_phis (e
->dest
),
5180 psi_copy
= gsi_start_phis (e_copy
->dest
);
5182 gsi_next (&psi
), gsi_next (&psi_copy
))
5184 phi
= gsi_stmt (psi
);
5185 phi_copy
= gsi_stmt (psi_copy
);
5186 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5187 add_phi_arg (phi_copy
, def
, e_copy
,
5188 gimple_phi_arg_location_from_edge (phi
, e
));
5193 /* Basic block BB_COPY was created by code duplication. Add phi node
5194 arguments for edges going out of BB_COPY. The blocks that were
5195 duplicated have BB_DUPLICATED set. */
5198 add_phi_args_after_copy_bb (basic_block bb_copy
)
5203 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5205 add_phi_args_after_copy_edge (e_copy
);
5209 /* Blocks in REGION_COPY array of length N_REGION were created by
5210 duplication of basic blocks. Add phi node arguments for edges
5211 going from these blocks. If E_COPY is not NULL, also add
5212 phi node arguments for its destination.*/
5215 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5220 for (i
= 0; i
< n_region
; i
++)
5221 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5223 for (i
= 0; i
< n_region
; i
++)
5224 add_phi_args_after_copy_bb (region_copy
[i
]);
5226 add_phi_args_after_copy_edge (e_copy
);
5228 for (i
= 0; i
< n_region
; i
++)
5229 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5232 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5233 important exit edge EXIT. By important we mean that no SSA name defined
5234 inside region is live over the other exit edges of the region. All entry
5235 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5236 to the duplicate of the region. SSA form, dominance and loop information
5237 is updated. The new basic blocks are stored to REGION_COPY in the same
5238 order as they had in REGION, provided that REGION_COPY is not NULL.
5239 The function returns false if it is unable to copy the region,
5243 gimple_duplicate_sese_region (edge entry
, edge exit
,
5244 basic_block
*region
, unsigned n_region
,
5245 basic_block
*region_copy
)
5248 bool free_region_copy
= false, copying_header
= false;
5249 struct loop
*loop
= entry
->dest
->loop_father
;
5251 VEC (basic_block
, heap
) *doms
;
5253 int total_freq
= 0, entry_freq
= 0;
5254 gcov_type total_count
= 0, entry_count
= 0;
5256 if (!can_copy_bbs_p (region
, n_region
))
5259 /* Some sanity checking. Note that we do not check for all possible
5260 missuses of the functions. I.e. if you ask to copy something weird,
5261 it will work, but the state of structures probably will not be
5263 for (i
= 0; i
< n_region
; i
++)
5265 /* We do not handle subloops, i.e. all the blocks must belong to the
5267 if (region
[i
]->loop_father
!= loop
)
5270 if (region
[i
] != entry
->dest
5271 && region
[i
] == loop
->header
)
5275 set_loop_copy (loop
, loop
);
5277 /* In case the function is used for loop header copying (which is the primary
5278 use), ensure that EXIT and its copy will be new latch and entry edges. */
5279 if (loop
->header
== entry
->dest
)
5281 copying_header
= true;
5282 set_loop_copy (loop
, loop_outer (loop
));
5284 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5287 for (i
= 0; i
< n_region
; i
++)
5288 if (region
[i
] != exit
->src
5289 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5295 region_copy
= XNEWVEC (basic_block
, n_region
);
5296 free_region_copy
= true;
5299 gcc_assert (!need_ssa_update_p (cfun
));
5301 /* Record blocks outside the region that are dominated by something
5304 initialize_original_copy_tables ();
5306 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5308 if (entry
->dest
->count
)
5310 total_count
= entry
->dest
->count
;
5311 entry_count
= entry
->count
;
5312 /* Fix up corner cases, to avoid division by zero or creation of negative
5314 if (entry_count
> total_count
)
5315 entry_count
= total_count
;
5319 total_freq
= entry
->dest
->frequency
;
5320 entry_freq
= EDGE_FREQUENCY (entry
);
5321 /* Fix up corner cases, to avoid division by zero or creation of negative
5323 if (total_freq
== 0)
5325 else if (entry_freq
> total_freq
)
5326 entry_freq
= total_freq
;
5329 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5330 split_edge_bb_loc (entry
));
5333 scale_bbs_frequencies_gcov_type (region
, n_region
,
5334 total_count
- entry_count
,
5336 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5341 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5343 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5348 loop
->header
= exit
->dest
;
5349 loop
->latch
= exit
->src
;
5352 /* Redirect the entry and add the phi node arguments. */
5353 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5354 gcc_assert (redirected
!= NULL
);
5355 flush_pending_stmts (entry
);
5357 /* Concerning updating of dominators: We must recount dominators
5358 for entry block and its copy. Anything that is outside of the
5359 region, but was dominated by something inside needs recounting as
5361 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5362 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5363 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5364 VEC_free (basic_block
, heap
, doms
);
5366 /* Add the other PHI node arguments. */
5367 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5369 /* Update the SSA web. */
5370 update_ssa (TODO_update_ssa
);
5372 if (free_region_copy
)
5375 free_original_copy_tables ();
5379 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5380 are stored to REGION_COPY in the same order in that they appear
5381 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5382 the region, EXIT an exit from it. The condition guarding EXIT
5383 is moved to ENTRY. Returns true if duplication succeeds, false
5409 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5410 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5411 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5414 bool free_region_copy
= false;
5415 struct loop
*loop
= exit
->dest
->loop_father
;
5416 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5417 basic_block switch_bb
, entry_bb
, nentry_bb
;
5418 VEC (basic_block
, heap
) *doms
;
5419 int total_freq
= 0, exit_freq
= 0;
5420 gcov_type total_count
= 0, exit_count
= 0;
5421 edge exits
[2], nexits
[2], e
;
5422 gimple_stmt_iterator gsi
,gsi1
;
5425 basic_block exit_bb
;
5426 basic_block iters_bb
;
5428 gimple_stmt_iterator psi
;
5432 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5434 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5436 if (!can_copy_bbs_p (region
, n_region
))
5439 initialize_original_copy_tables ();
5440 set_loop_copy (orig_loop
, loop
);
5441 duplicate_subloops (orig_loop
, loop
);
5445 region_copy
= XNEWVEC (basic_block
, n_region
);
5446 free_region_copy
= true;
5449 gcc_assert (!need_ssa_update_p (cfun
));
5451 /* Record blocks outside the region that are dominated by something
5453 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5455 if (exit
->src
->count
)
5457 total_count
= exit
->src
->count
;
5458 exit_count
= exit
->count
;
5459 /* Fix up corner cases, to avoid division by zero or creation of negative
5461 if (exit_count
> total_count
)
5462 exit_count
= total_count
;
5466 total_freq
= exit
->src
->frequency
;
5467 exit_freq
= EDGE_FREQUENCY (exit
);
5468 /* Fix up corner cases, to avoid division by zero or creation of negative
5470 if (total_freq
== 0)
5472 if (exit_freq
> total_freq
)
5473 exit_freq
= total_freq
;
5476 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5477 split_edge_bb_loc (exit
));
5480 scale_bbs_frequencies_gcov_type (region
, n_region
,
5481 total_count
- exit_count
,
5483 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5488 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5490 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5493 /* Create the switch block, and put the exit condition to it. */
5494 entry_bb
= entry
->dest
;
5495 nentry_bb
= get_bb_copy (entry_bb
);
5496 if (!last_stmt (entry
->src
)
5497 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5498 switch_bb
= entry
->src
;
5500 switch_bb
= split_edge (entry
);
5501 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5503 gsi
= gsi_last_bb (switch_bb
);
5504 cond_stmt
= last_stmt (exit
->src
);
5505 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5506 cond_stmt
= gimple_copy (cond_stmt
);
5508 /* If the block consisting of the exit condition has the latch as
5509 successor, then the body of the loop is executed before
5510 the exit condition is tested. In such case, moving the
5511 condition to the entry, causes that the loop will iterate
5512 one less iteration (which is the wanted outcome, since we
5513 peel out the last iteration). If the body is executed after
5514 the condition, moving the condition to the entry requires
5515 decrementing one iteration. */
5516 if (exits
[1]->dest
== orig_loop
->latch
)
5517 new_rhs
= gimple_cond_rhs (cond_stmt
);
5520 new_rhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (gimple_cond_rhs (cond_stmt
)),
5521 gimple_cond_rhs (cond_stmt
),
5522 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt
)), 1));
5524 if (TREE_CODE (gimple_cond_rhs (cond_stmt
)) == SSA_NAME
)
5526 iters_bb
= gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)));
5527 for (gsi1
= gsi_start_bb (iters_bb
); !gsi_end_p (gsi1
); gsi_next (&gsi1
))
5528 if (gsi_stmt (gsi1
) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)))
5531 new_rhs
= force_gimple_operand_gsi (&gsi1
, new_rhs
, true,
5532 NULL_TREE
,false,GSI_CONTINUE_LINKING
);
5535 gimple_cond_set_rhs (cond_stmt
, unshare_expr (new_rhs
));
5536 gimple_cond_set_lhs (cond_stmt
, unshare_expr (gimple_cond_lhs (cond_stmt
)));
5537 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5539 sorig
= single_succ_edge (switch_bb
);
5540 sorig
->flags
= exits
[1]->flags
;
5541 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5543 /* Register the new edge from SWITCH_BB in loop exit lists. */
5544 rescan_loop_exit (snew
, true, false);
5546 /* Add the PHI node arguments. */
5547 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5549 /* Get rid of now superfluous conditions and associated edges (and phi node
5551 exit_bb
= exit
->dest
;
5553 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5554 PENDING_STMT (e
) = NULL
;
5556 /* The latch of ORIG_LOOP was copied, and so was the backedge
5557 to the original header. We redirect this backedge to EXIT_BB. */
5558 for (i
= 0; i
< n_region
; i
++)
5559 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
5561 gcc_assert (single_succ_edge (region_copy
[i
]));
5562 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
5563 PENDING_STMT (e
) = NULL
;
5564 for (psi
= gsi_start_phis (exit_bb
);
5568 phi
= gsi_stmt (psi
);
5569 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
5570 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
5573 e
= redirect_edge_and_branch (nexits
[0], nexits
[1]->dest
);
5574 PENDING_STMT (e
) = NULL
;
5576 /* Anything that is outside of the region, but was dominated by something
5577 inside needs to update dominance info. */
5578 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5579 VEC_free (basic_block
, heap
, doms
);
5580 /* Update the SSA web. */
5581 update_ssa (TODO_update_ssa
);
5583 if (free_region_copy
)
5586 free_original_copy_tables ();
5590 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5591 adding blocks when the dominator traversal reaches EXIT. This
5592 function silently assumes that ENTRY strictly dominates EXIT. */
5595 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5596 VEC(basic_block
,heap
) **bbs_p
)
5600 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5602 son
= next_dom_son (CDI_DOMINATORS
, son
))
5604 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5606 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5610 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5611 The duplicates are recorded in VARS_MAP. */
5614 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5617 tree t
= *tp
, new_t
;
5618 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5621 if (DECL_CONTEXT (t
) == to_context
)
5624 loc
= pointer_map_contains (vars_map
, t
);
5628 loc
= pointer_map_insert (vars_map
, t
);
5632 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5633 add_local_decl (f
, new_t
);
5637 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5638 new_t
= copy_node (t
);
5640 DECL_CONTEXT (new_t
) = to_context
;
5645 new_t
= (tree
) *loc
;
5651 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5652 VARS_MAP maps old ssa names and var_decls to the new ones. */
5655 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5659 tree new_name
, decl
= SSA_NAME_VAR (name
);
5661 gcc_assert (is_gimple_reg (name
));
5663 loc
= pointer_map_contains (vars_map
, name
);
5667 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5669 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5670 if (gimple_in_ssa_p (cfun
))
5671 add_referenced_var (decl
);
5673 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5674 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5675 set_default_def (decl
, new_name
);
5678 loc
= pointer_map_insert (vars_map
, name
);
5682 new_name
= (tree
) *loc
;
5693 struct pointer_map_t
*vars_map
;
5694 htab_t new_label_map
;
5695 struct pointer_map_t
*eh_map
;
5699 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5700 contained in *TP if it has been ORIG_BLOCK previously and change the
5701 DECL_CONTEXT of every local variable referenced in *TP. */
5704 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5706 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5707 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5711 /* We should never have TREE_BLOCK set on non-statements. */
5712 gcc_assert (!TREE_BLOCK (t
));
5714 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5716 if (TREE_CODE (t
) == SSA_NAME
)
5717 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5718 else if (TREE_CODE (t
) == LABEL_DECL
)
5720 if (p
->new_label_map
)
5722 struct tree_map in
, *out
;
5724 out
= (struct tree_map
*)
5725 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5730 DECL_CONTEXT (t
) = p
->to_context
;
5732 else if (p
->remap_decls_p
)
5734 /* Replace T with its duplicate. T should no longer appear in the
5735 parent function, so this looks wasteful; however, it may appear
5736 in referenced_vars, and more importantly, as virtual operands of
5737 statements, and in alias lists of other variables. It would be
5738 quite difficult to expunge it from all those places. ??? It might
5739 suffice to do this for addressable variables. */
5740 if ((TREE_CODE (t
) == VAR_DECL
5741 && !is_global_var (t
))
5742 || TREE_CODE (t
) == CONST_DECL
)
5743 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5746 && gimple_in_ssa_p (cfun
))
5748 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5749 add_referenced_var (*tp
);
5755 else if (TYPE_P (t
))
5761 /* Helper for move_stmt_r. Given an EH region number for the source
5762 function, map that to the duplicate EH regio number in the dest. */
5765 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
5767 eh_region old_r
, new_r
;
5770 old_r
= get_eh_region_from_number (old_nr
);
5771 slot
= pointer_map_contains (p
->eh_map
, old_r
);
5772 new_r
= (eh_region
) *slot
;
5774 return new_r
->index
;
5777 /* Similar, but operate on INTEGER_CSTs. */
5780 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
5784 old_nr
= tree_low_cst (old_t_nr
, 0);
5785 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
5787 return build_int_cst (NULL
, new_nr
);
5790 /* Like move_stmt_op, but for gimple statements.
5792 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5793 contained in the current statement in *GSI_P and change the
5794 DECL_CONTEXT of every local variable referenced in the current
5798 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5799 struct walk_stmt_info
*wi
)
5801 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5802 gimple stmt
= gsi_stmt (*gsi_p
);
5803 tree block
= gimple_block (stmt
);
5805 if (p
->orig_block
== NULL_TREE
5806 || block
== p
->orig_block
5807 || block
== NULL_TREE
)
5808 gimple_set_block (stmt
, p
->new_block
);
5809 #ifdef ENABLE_CHECKING
5810 else if (block
!= p
->new_block
)
5812 while (block
&& block
!= p
->orig_block
)
5813 block
= BLOCK_SUPERCONTEXT (block
);
5818 switch (gimple_code (stmt
))
5821 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5823 tree r
, fndecl
= gimple_call_fndecl (stmt
);
5824 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
5825 switch (DECL_FUNCTION_CODE (fndecl
))
5827 case BUILT_IN_EH_COPY_VALUES
:
5828 r
= gimple_call_arg (stmt
, 1);
5829 r
= move_stmt_eh_region_tree_nr (r
, p
);
5830 gimple_call_set_arg (stmt
, 1, r
);
5833 case BUILT_IN_EH_POINTER
:
5834 case BUILT_IN_EH_FILTER
:
5835 r
= gimple_call_arg (stmt
, 0);
5836 r
= move_stmt_eh_region_tree_nr (r
, p
);
5837 gimple_call_set_arg (stmt
, 0, r
);
5848 int r
= gimple_resx_region (stmt
);
5849 r
= move_stmt_eh_region_nr (r
, p
);
5850 gimple_resx_set_region (stmt
, r
);
5854 case GIMPLE_EH_DISPATCH
:
5856 int r
= gimple_eh_dispatch_region (stmt
);
5857 r
= move_stmt_eh_region_nr (r
, p
);
5858 gimple_eh_dispatch_set_region (stmt
, r
);
5862 case GIMPLE_OMP_RETURN
:
5863 case GIMPLE_OMP_CONTINUE
:
5866 if (is_gimple_omp (stmt
))
5868 /* Do not remap variables inside OMP directives. Variables
5869 referenced in clauses and directive header belong to the
5870 parent function and should not be moved into the child
5872 bool save_remap_decls_p
= p
->remap_decls_p
;
5873 p
->remap_decls_p
= false;
5874 *handled_ops_p
= true;
5876 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
,
5879 p
->remap_decls_p
= save_remap_decls_p
;
5887 /* Move basic block BB from function CFUN to function DEST_FN. The
5888 block is moved out of the original linked list and placed after
5889 block AFTER in the new list. Also, the block is removed from the
5890 original array of blocks and placed in DEST_FN's array of blocks.
5891 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5892 updated to reflect the moved edges.
5894 The local variables are remapped to new instances, VARS_MAP is used
5895 to record the mapping. */
5898 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
5899 basic_block after
, bool update_edge_count_p
,
5900 struct move_stmt_d
*d
)
5902 struct control_flow_graph
*cfg
;
5905 gimple_stmt_iterator si
;
5906 unsigned old_len
, new_len
;
5908 /* Remove BB from dominance structures. */
5909 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
5911 remove_bb_from_loops (bb
);
5913 /* Link BB to the new linked list. */
5914 move_block_after (bb
, after
);
5916 /* Update the edge count in the corresponding flowgraphs. */
5917 if (update_edge_count_p
)
5918 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5920 cfun
->cfg
->x_n_edges
--;
5921 dest_cfun
->cfg
->x_n_edges
++;
5924 /* Remove BB from the original basic block array. */
5925 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
5926 cfun
->cfg
->x_n_basic_blocks
--;
5928 /* Grow DEST_CFUN's basic block array if needed. */
5929 cfg
= dest_cfun
->cfg
;
5930 cfg
->x_n_basic_blocks
++;
5931 if (bb
->index
>= cfg
->x_last_basic_block
)
5932 cfg
->x_last_basic_block
= bb
->index
+ 1;
5934 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
5935 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
5937 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
5938 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
5942 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
5945 /* Remap the variables in phi nodes. */
5946 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
5948 gimple phi
= gsi_stmt (si
);
5950 tree op
= PHI_RESULT (phi
);
5953 if (!is_gimple_reg (op
))
5955 /* Remove the phi nodes for virtual operands (alias analysis will be
5956 run for the new function, anyway). */
5957 remove_phi_node (&si
, true);
5961 SET_PHI_RESULT (phi
,
5962 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5963 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
5965 op
= USE_FROM_PTR (use
);
5966 if (TREE_CODE (op
) == SSA_NAME
)
5967 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5973 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5975 gimple stmt
= gsi_stmt (si
);
5976 struct walk_stmt_info wi
;
5978 memset (&wi
, 0, sizeof (wi
));
5980 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
5982 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5984 tree label
= gimple_label_label (stmt
);
5985 int uid
= LABEL_DECL_UID (label
);
5987 gcc_assert (uid
> -1);
5989 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
5990 if (old_len
<= (unsigned) uid
)
5992 new_len
= 3 * uid
/ 2 + 1;
5993 VEC_safe_grow_cleared (basic_block
, gc
,
5994 cfg
->x_label_to_block_map
, new_len
);
5997 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
5998 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
6000 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6002 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6003 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6006 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6007 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6009 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6010 gimple_remove_stmt_histograms (cfun
, stmt
);
6012 /* We cannot leave any operands allocated from the operand caches of
6013 the current function. */
6014 free_stmt_operands (stmt
);
6015 push_cfun (dest_cfun
);
6020 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6023 tree block
= e
->goto_block
;
6024 if (d
->orig_block
== NULL_TREE
6025 || block
== d
->orig_block
)
6026 e
->goto_block
= d
->new_block
;
6027 #ifdef ENABLE_CHECKING
6028 else if (block
!= d
->new_block
)
6030 while (block
&& block
!= d
->orig_block
)
6031 block
= BLOCK_SUPERCONTEXT (block
);
6038 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6039 the outermost EH region. Use REGION as the incoming base EH region. */
6042 find_outermost_region_in_block (struct function
*src_cfun
,
6043 basic_block bb
, eh_region region
)
6045 gimple_stmt_iterator si
;
6047 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6049 gimple stmt
= gsi_stmt (si
);
6050 eh_region stmt_region
;
6053 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6054 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6058 region
= stmt_region
;
6059 else if (stmt_region
!= region
)
6061 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6062 gcc_assert (region
!= NULL
);
6071 new_label_mapper (tree decl
, void *data
)
6073 htab_t hash
= (htab_t
) data
;
6077 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6079 m
= XNEW (struct tree_map
);
6080 m
->hash
= DECL_UID (decl
);
6081 m
->base
.from
= decl
;
6082 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6083 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6084 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6085 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6087 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6088 gcc_assert (*slot
== NULL
);
6095 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6099 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6104 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6107 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6109 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6112 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6114 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6115 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6117 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6122 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6123 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6126 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6127 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6128 single basic block in the original CFG and the new basic block is
6129 returned. DEST_CFUN must not have a CFG yet.
6131 Note that the region need not be a pure SESE region. Blocks inside
6132 the region may contain calls to abort/exit. The only restriction
6133 is that ENTRY_BB should be the only entry point and it must
6136 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6137 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6138 to the new function.
6140 All local variables referenced in the region are assumed to be in
6141 the corresponding BLOCK_VARS and unexpanded variable lists
6142 associated with DEST_CFUN. */
6145 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6146 basic_block exit_bb
, tree orig_block
)
6148 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
6149 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6150 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6151 struct function
*saved_cfun
= cfun
;
6152 int *entry_flag
, *exit_flag
;
6153 unsigned *entry_prob
, *exit_prob
;
6154 unsigned i
, num_entry_edges
, num_exit_edges
;
6157 htab_t new_label_map
;
6158 struct pointer_map_t
*vars_map
, *eh_map
;
6159 struct loop
*loop
= entry_bb
->loop_father
;
6160 struct move_stmt_d d
;
6162 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6164 gcc_assert (entry_bb
!= exit_bb
6166 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6168 /* Collect all the blocks in the region. Manually add ENTRY_BB
6169 because it won't be added by dfs_enumerate_from. */
6171 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
6172 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6174 /* The blocks that used to be dominated by something in BBS will now be
6175 dominated by the new block. */
6176 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6177 VEC_address (basic_block
, bbs
),
6178 VEC_length (basic_block
, bbs
));
6180 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6181 the predecessor edges to ENTRY_BB and the successor edges to
6182 EXIT_BB so that we can re-attach them to the new basic block that
6183 will replace the region. */
6184 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6185 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
6186 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
6187 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6189 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6191 entry_prob
[i
] = e
->probability
;
6192 entry_flag
[i
] = e
->flags
;
6193 entry_pred
[i
++] = e
->src
;
6199 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6200 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
6201 sizeof (basic_block
));
6202 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
6203 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6205 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6207 exit_prob
[i
] = e
->probability
;
6208 exit_flag
[i
] = e
->flags
;
6209 exit_succ
[i
++] = e
->dest
;
6221 /* Switch context to the child function to initialize DEST_FN's CFG. */
6222 gcc_assert (dest_cfun
->cfg
== NULL
);
6223 push_cfun (dest_cfun
);
6225 init_empty_tree_cfg ();
6227 /* Initialize EH information for the new function. */
6229 new_label_map
= NULL
;
6232 eh_region region
= NULL
;
6234 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6235 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6237 init_eh_for_function ();
6240 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6241 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6242 new_label_mapper
, new_label_map
);
6248 /* Move blocks from BBS into DEST_CFUN. */
6249 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
6250 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6251 vars_map
= pointer_map_create ();
6253 memset (&d
, 0, sizeof (d
));
6254 d
.orig_block
= orig_block
;
6255 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6256 d
.from_context
= cfun
->decl
;
6257 d
.to_context
= dest_cfun
->decl
;
6258 d
.vars_map
= vars_map
;
6259 d
.new_label_map
= new_label_map
;
6261 d
.remap_decls_p
= true;
6263 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6265 /* No need to update edge counts on the last block. It has
6266 already been updated earlier when we detached the region from
6267 the original CFG. */
6268 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6272 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6276 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6278 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6279 = BLOCK_SUBBLOCKS (orig_block
);
6280 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6281 block
; block
= BLOCK_CHAIN (block
))
6282 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6283 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6286 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6287 vars_map
, dest_cfun
->decl
);
6290 htab_delete (new_label_map
);
6292 pointer_map_destroy (eh_map
);
6293 pointer_map_destroy (vars_map
);
6295 /* Rewire the entry and exit blocks. The successor to the entry
6296 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6297 the child function. Similarly, the predecessor of DEST_FN's
6298 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6299 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6300 various CFG manipulation function get to the right CFG.
6302 FIXME, this is silly. The CFG ought to become a parameter to
6304 push_cfun (dest_cfun
);
6305 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6307 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6310 /* Back in the original function, the SESE region has disappeared,
6311 create a new basic block in its place. */
6312 bb
= create_empty_bb (entry_pred
[0]);
6314 add_bb_to_loop (bb
, loop
);
6315 for (i
= 0; i
< num_entry_edges
; i
++)
6317 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6318 e
->probability
= entry_prob
[i
];
6321 for (i
= 0; i
< num_exit_edges
; i
++)
6323 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6324 e
->probability
= exit_prob
[i
];
6327 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6328 FOR_EACH_VEC_ELT (basic_block
, dom_bbs
, i
, abb
)
6329 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6330 VEC_free (basic_block
, heap
, dom_bbs
);
6341 VEC_free (basic_block
, heap
, bbs
);
6347 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6351 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6354 struct function
*dsf
;
6355 bool ignore_topmost_bind
= false, any_var
= false;
6359 fprintf (file
, "%s (", lang_hooks
.decl_printable_name (fn
, 2));
6361 arg
= DECL_ARGUMENTS (fn
);
6364 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6365 fprintf (file
, " ");
6366 print_generic_expr (file
, arg
, dump_flags
);
6367 if (flags
& TDF_VERBOSE
)
6368 print_node (file
, "", arg
, 4);
6369 if (DECL_CHAIN (arg
))
6370 fprintf (file
, ", ");
6371 arg
= DECL_CHAIN (arg
);
6373 fprintf (file
, ")\n");
6375 if (flags
& TDF_VERBOSE
)
6376 print_node (file
, "", fn
, 2);
6378 dsf
= DECL_STRUCT_FUNCTION (fn
);
6379 if (dsf
&& (flags
& TDF_EH
))
6380 dump_eh_tree (file
, dsf
);
6382 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6384 dump_node (fn
, TDF_SLIM
| flags
, file
);
6388 /* Switch CFUN to point to FN. */
6389 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6391 /* When GIMPLE is lowered, the variables are no longer available in
6392 BIND_EXPRs, so display them separately. */
6393 if (cfun
&& cfun
->decl
== fn
&& !VEC_empty (tree
, cfun
->local_decls
))
6396 ignore_topmost_bind
= true;
6398 fprintf (file
, "{\n");
6399 FOR_EACH_LOCAL_DECL (cfun
, ix
, var
)
6401 print_generic_decl (file
, var
, flags
);
6402 if (flags
& TDF_VERBOSE
)
6403 print_node (file
, "", var
, 4);
6404 fprintf (file
, "\n");
6410 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6412 /* If the CFG has been built, emit a CFG-based dump. */
6413 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6414 if (!ignore_topmost_bind
)
6415 fprintf (file
, "{\n");
6417 if (any_var
&& n_basic_blocks
)
6418 fprintf (file
, "\n");
6421 gimple_dump_bb (bb
, file
, 2, flags
);
6423 fprintf (file
, "}\n");
6424 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6426 else if (DECL_SAVED_TREE (fn
) == NULL
)
6428 /* The function is now in GIMPLE form but the CFG has not been
6429 built yet. Emit the single sequence of GIMPLE statements
6430 that make up its body. */
6431 gimple_seq body
= gimple_body (fn
);
6433 if (gimple_seq_first_stmt (body
)
6434 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6435 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6436 print_gimple_seq (file
, body
, 0, flags
);
6439 if (!ignore_topmost_bind
)
6440 fprintf (file
, "{\n");
6443 fprintf (file
, "\n");
6445 print_gimple_seq (file
, body
, 2, flags
);
6446 fprintf (file
, "}\n");
6453 /* Make a tree based dump. */
6454 chain
= DECL_SAVED_TREE (fn
);
6456 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6458 if (ignore_topmost_bind
)
6460 chain
= BIND_EXPR_BODY (chain
);
6468 if (!ignore_topmost_bind
)
6469 fprintf (file
, "{\n");
6474 fprintf (file
, "\n");
6476 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6477 if (ignore_topmost_bind
)
6478 fprintf (file
, "}\n");
6481 if (flags
& TDF_ENUMERATE_LOCALS
)
6482 dump_enumerated_decls (file
, flags
);
6483 fprintf (file
, "\n\n");
6490 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6493 debug_function (tree fn
, int flags
)
6495 dump_function_to_file (fn
, stderr
, flags
);
6499 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6502 print_pred_bbs (FILE *file
, basic_block bb
)
6507 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6508 fprintf (file
, "bb_%d ", e
->src
->index
);
6512 /* Print on FILE the indexes for the successors of basic_block BB. */
6515 print_succ_bbs (FILE *file
, basic_block bb
)
6520 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6521 fprintf (file
, "bb_%d ", e
->dest
->index
);
6524 /* Print to FILE the basic block BB following the VERBOSITY level. */
6527 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6529 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6530 memset ((void *) s_indent
, ' ', (size_t) indent
);
6531 s_indent
[indent
] = '\0';
6533 /* Print basic_block's header. */
6536 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6537 print_pred_bbs (file
, bb
);
6538 fprintf (file
, "}, succs = {");
6539 print_succ_bbs (file
, bb
);
6540 fprintf (file
, "})\n");
6543 /* Print basic_block's body. */
6546 fprintf (file
, "%s {\n", s_indent
);
6547 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6548 fprintf (file
, "%s }\n", s_indent
);
6552 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6554 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6555 VERBOSITY level this outputs the contents of the loop, or just its
6559 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6567 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6568 memset ((void *) s_indent
, ' ', (size_t) indent
);
6569 s_indent
[indent
] = '\0';
6571 /* Print loop's header. */
6572 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6573 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6574 fprintf (file
, ", niter = ");
6575 print_generic_expr (file
, loop
->nb_iterations
, 0);
6577 if (loop
->any_upper_bound
)
6579 fprintf (file
, ", upper_bound = ");
6580 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6583 if (loop
->any_estimate
)
6585 fprintf (file
, ", estimate = ");
6586 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6588 fprintf (file
, ")\n");
6590 /* Print loop's body. */
6593 fprintf (file
, "%s{\n", s_indent
);
6595 if (bb
->loop_father
== loop
)
6596 print_loops_bb (file
, bb
, indent
, verbosity
);
6598 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6599 fprintf (file
, "%s}\n", s_indent
);
6603 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6604 spaces. Following VERBOSITY level this outputs the contents of the
6605 loop, or just its structure. */
6608 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6613 print_loop (file
, loop
, indent
, verbosity
);
6614 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6617 /* Follow a CFG edge from the entry point of the program, and on entry
6618 of a loop, pretty print the loop structure on FILE. */
6621 print_loops (FILE *file
, int verbosity
)
6625 bb
= ENTRY_BLOCK_PTR
;
6626 if (bb
&& bb
->loop_father
)
6627 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6631 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6634 debug_loops (int verbosity
)
6636 print_loops (stderr
, verbosity
);
6639 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6642 debug_loop (struct loop
*loop
, int verbosity
)
6644 print_loop (stderr
, loop
, 0, verbosity
);
6647 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6651 debug_loop_num (unsigned num
, int verbosity
)
6653 debug_loop (get_loop (num
), verbosity
);
6656 /* Return true if BB ends with a call, possibly followed by some
6657 instructions that must stay with the call. Return false,
6661 gimple_block_ends_with_call_p (basic_block bb
)
6663 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6664 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
6668 /* Return true if BB ends with a conditional branch. Return false,
6672 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6674 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6675 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6679 /* Return true if we need to add fake edge to exit at statement T.
6680 Helper function for gimple_flow_call_edges_add. */
6683 need_fake_edge_p (gimple t
)
6685 tree fndecl
= NULL_TREE
;
6688 /* NORETURN and LONGJMP calls already have an edge to exit.
6689 CONST and PURE calls do not need one.
6690 We don't currently check for CONST and PURE here, although
6691 it would be a good idea, because those attributes are
6692 figured out from the RTL in mark_constant_function, and
6693 the counter incrementation code from -fprofile-arcs
6694 leads to different results from -fbranch-probabilities. */
6695 if (is_gimple_call (t
))
6697 fndecl
= gimple_call_fndecl (t
);
6698 call_flags
= gimple_call_flags (t
);
6701 if (is_gimple_call (t
)
6703 && DECL_BUILT_IN (fndecl
)
6704 && (call_flags
& ECF_NOTHROW
)
6705 && !(call_flags
& ECF_RETURNS_TWICE
)
6706 /* fork() doesn't really return twice, but the effect of
6707 wrapping it in __gcov_fork() which calls __gcov_flush()
6708 and clears the counters before forking has the same
6709 effect as returning twice. Force a fake edge. */
6710 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6711 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6714 if (is_gimple_call (t
)
6715 && !(call_flags
& ECF_NORETURN
))
6718 if (gimple_code (t
) == GIMPLE_ASM
6719 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6726 /* Add fake edges to the function exit for any non constant and non
6727 noreturn calls, volatile inline assembly in the bitmap of blocks
6728 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6729 the number of blocks that were split.
6731 The goal is to expose cases in which entering a basic block does
6732 not imply that all subsequent instructions must be executed. */
6735 gimple_flow_call_edges_add (sbitmap blocks
)
6738 int blocks_split
= 0;
6739 int last_bb
= last_basic_block
;
6740 bool check_last_block
= false;
6742 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6746 check_last_block
= true;
6748 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6750 /* In the last basic block, before epilogue generation, there will be
6751 a fallthru edge to EXIT. Special care is required if the last insn
6752 of the last basic block is a call because make_edge folds duplicate
6753 edges, which would result in the fallthru edge also being marked
6754 fake, which would result in the fallthru edge being removed by
6755 remove_fake_edges, which would result in an invalid CFG.
6757 Moreover, we can't elide the outgoing fake edge, since the block
6758 profiler needs to take this into account in order to solve the minimal
6759 spanning tree in the case that the call doesn't return.
6761 Handle this by adding a dummy instruction in a new last basic block. */
6762 if (check_last_block
)
6764 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6765 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6768 if (!gsi_end_p (gsi
))
6771 if (t
&& need_fake_edge_p (t
))
6775 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6778 gsi_insert_on_edge (e
, gimple_build_nop ());
6779 gsi_commit_edge_inserts ();
6784 /* Now add fake edges to the function exit for any non constant
6785 calls since there is no way that we can determine if they will
6787 for (i
= 0; i
< last_bb
; i
++)
6789 basic_block bb
= BASIC_BLOCK (i
);
6790 gimple_stmt_iterator gsi
;
6791 gimple stmt
, last_stmt
;
6796 if (blocks
&& !TEST_BIT (blocks
, i
))
6799 gsi
= gsi_last_nondebug_bb (bb
);
6800 if (!gsi_end_p (gsi
))
6802 last_stmt
= gsi_stmt (gsi
);
6805 stmt
= gsi_stmt (gsi
);
6806 if (need_fake_edge_p (stmt
))
6810 /* The handling above of the final block before the
6811 epilogue should be enough to verify that there is
6812 no edge to the exit block in CFG already.
6813 Calling make_edge in such case would cause us to
6814 mark that edge as fake and remove it later. */
6815 #ifdef ENABLE_CHECKING
6816 if (stmt
== last_stmt
)
6818 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6819 gcc_assert (e
== NULL
);
6823 /* Note that the following may create a new basic block
6824 and renumber the existing basic blocks. */
6825 if (stmt
!= last_stmt
)
6827 e
= split_block (bb
, stmt
);
6831 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
6835 while (!gsi_end_p (gsi
));
6840 verify_flow_info ();
6842 return blocks_split
;
6845 /* Removes edge E and all the blocks dominated by it, and updates dominance
6846 information. The IL in E->src needs to be updated separately.
6847 If dominance info is not available, only the edge E is removed.*/
6850 remove_edge_and_dominated_blocks (edge e
)
6852 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
6853 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
6857 bool none_removed
= false;
6859 basic_block bb
, dbb
;
6862 if (!dom_info_available_p (CDI_DOMINATORS
))
6868 /* No updating is needed for edges to exit. */
6869 if (e
->dest
== EXIT_BLOCK_PTR
)
6871 if (cfgcleanup_altered_bbs
)
6872 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6877 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6878 that is not dominated by E->dest, then this set is empty. Otherwise,
6879 all the basic blocks dominated by E->dest are removed.
6881 Also, to DF_IDOM we store the immediate dominators of the blocks in
6882 the dominance frontier of E (i.e., of the successors of the
6883 removed blocks, if there are any, and of E->dest otherwise). */
6884 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
6889 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
6891 none_removed
= true;
6896 df
= BITMAP_ALLOC (NULL
);
6897 df_idom
= BITMAP_ALLOC (NULL
);
6900 bitmap_set_bit (df_idom
,
6901 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
6904 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
6905 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6907 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
6909 if (f
->dest
!= EXIT_BLOCK_PTR
)
6910 bitmap_set_bit (df
, f
->dest
->index
);
6913 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6914 bitmap_clear_bit (df
, bb
->index
);
6916 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
6918 bb
= BASIC_BLOCK (i
);
6919 bitmap_set_bit (df_idom
,
6920 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
6924 if (cfgcleanup_altered_bbs
)
6926 /* Record the set of the altered basic blocks. */
6927 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6928 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
6931 /* Remove E and the cancelled blocks. */
6936 /* Walk backwards so as to get a chance to substitute all
6937 released DEFs into debug stmts. See
6938 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6940 for (i
= VEC_length (basic_block
, bbs_to_remove
); i
-- > 0; )
6941 delete_basic_block (VEC_index (basic_block
, bbs_to_remove
, i
));
6944 /* Update the dominance information. The immediate dominator may change only
6945 for blocks whose immediate dominator belongs to DF_IDOM:
6947 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6948 removal. Let Z the arbitrary block such that idom(Z) = Y and
6949 Z dominates X after the removal. Before removal, there exists a path P
6950 from Y to X that avoids Z. Let F be the last edge on P that is
6951 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6952 dominates W, and because of P, Z does not dominate W), and W belongs to
6953 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6954 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
6956 bb
= BASIC_BLOCK (i
);
6957 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
6959 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
6960 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
6963 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
6966 BITMAP_FREE (df_idom
);
6967 VEC_free (basic_block
, heap
, bbs_to_remove
);
6968 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
6971 /* Purge dead EH edges from basic block BB. */
6974 gimple_purge_dead_eh_edges (basic_block bb
)
6976 bool changed
= false;
6979 gimple stmt
= last_stmt (bb
);
6981 if (stmt
&& stmt_can_throw_internal (stmt
))
6984 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6986 if (e
->flags
& EDGE_EH
)
6988 remove_edge_and_dominated_blocks (e
);
6998 /* Purge dead EH edges from basic block listed in BLOCKS. */
7001 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7003 bool changed
= false;
7007 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7009 basic_block bb
= BASIC_BLOCK (i
);
7011 /* Earlier gimple_purge_dead_eh_edges could have removed
7012 this basic block already. */
7013 gcc_assert (bb
|| changed
);
7015 changed
|= gimple_purge_dead_eh_edges (bb
);
7021 /* Purge dead abnormal call edges from basic block BB. */
7024 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7026 bool changed
= false;
7029 gimple stmt
= last_stmt (bb
);
7031 if (!cfun
->has_nonlocal_label
)
7034 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7037 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7039 if (e
->flags
& EDGE_ABNORMAL
)
7041 remove_edge_and_dominated_blocks (e
);
7051 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7054 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7056 bool changed
= false;
7060 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7062 basic_block bb
= BASIC_BLOCK (i
);
7064 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7065 this basic block already. */
7066 gcc_assert (bb
|| changed
);
7068 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7074 /* This function is called whenever a new edge is created or
7078 gimple_execute_on_growing_pred (edge e
)
7080 basic_block bb
= e
->dest
;
7082 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7083 reserve_phi_args_for_new_edge (bb
);
7086 /* This function is called immediately before edge E is removed from
7087 the edge vector E->dest->preds. */
7090 gimple_execute_on_shrinking_pred (edge e
)
7092 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7093 remove_phi_args (e
);
7096 /*---------------------------------------------------------------------------
7097 Helper functions for Loop versioning
7098 ---------------------------------------------------------------------------*/
7100 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7101 of 'first'. Both of them are dominated by 'new_head' basic block. When
7102 'new_head' was created by 'second's incoming edge it received phi arguments
7103 on the edge by split_edge(). Later, additional edge 'e' was created to
7104 connect 'new_head' and 'first'. Now this routine adds phi args on this
7105 additional edge 'e' that new_head to second edge received as part of edge
7109 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7110 basic_block new_head
, edge e
)
7113 gimple_stmt_iterator psi1
, psi2
;
7115 edge e2
= find_edge (new_head
, second
);
7117 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7118 edge, we should always have an edge from NEW_HEAD to SECOND. */
7119 gcc_assert (e2
!= NULL
);
7121 /* Browse all 'second' basic block phi nodes and add phi args to
7122 edge 'e' for 'first' head. PHI args are always in correct order. */
7124 for (psi2
= gsi_start_phis (second
),
7125 psi1
= gsi_start_phis (first
);
7126 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7127 gsi_next (&psi2
), gsi_next (&psi1
))
7129 phi1
= gsi_stmt (psi1
);
7130 phi2
= gsi_stmt (psi2
);
7131 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7132 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7137 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7138 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7139 the destination of the ELSE part. */
7142 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7143 basic_block second_head ATTRIBUTE_UNUSED
,
7144 basic_block cond_bb
, void *cond_e
)
7146 gimple_stmt_iterator gsi
;
7147 gimple new_cond_expr
;
7148 tree cond_expr
= (tree
) cond_e
;
7151 /* Build new conditional expr */
7152 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7153 NULL_TREE
, NULL_TREE
);
7155 /* Add new cond in cond_bb. */
7156 gsi
= gsi_last_bb (cond_bb
);
7157 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7159 /* Adjust edges appropriately to connect new head with first head
7160 as well as second head. */
7161 e0
= single_succ_edge (cond_bb
);
7162 e0
->flags
&= ~EDGE_FALLTHRU
;
7163 e0
->flags
|= EDGE_FALSE_VALUE
;
7166 struct cfg_hooks gimple_cfg_hooks
= {
7168 gimple_verify_flow_info
,
7169 gimple_dump_bb
, /* dump_bb */
7170 create_bb
, /* create_basic_block */
7171 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7172 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7173 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7174 remove_bb
, /* delete_basic_block */
7175 gimple_split_block
, /* split_block */
7176 gimple_move_block_after
, /* move_block_after */
7177 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7178 gimple_merge_blocks
, /* merge_blocks */
7179 gimple_predict_edge
, /* predict_edge */
7180 gimple_predicted_by_p
, /* predicted_by_p */
7181 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7182 gimple_duplicate_bb
, /* duplicate_block */
7183 gimple_split_edge
, /* split_edge */
7184 gimple_make_forwarder_block
, /* make_forward_block */
7185 NULL
, /* tidy_fallthru_edge */
7186 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7187 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7188 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7189 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7190 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7191 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7192 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7193 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7194 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7195 flush_pending_stmts
/* flush_pending_stmts */
7199 /* Split all critical edges. */
7202 split_critical_edges (void)
7208 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7209 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7210 mappings around the calls to split_edge. */
7211 start_recording_case_labels ();
7214 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7216 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7218 /* PRE inserts statements to edges and expects that
7219 since split_critical_edges was done beforehand, committing edge
7220 insertions will not split more edges. In addition to critical
7221 edges we must split edges that have multiple successors and
7222 end by control flow statements, such as RESX.
7223 Go ahead and split them too. This matches the logic in
7224 gimple_find_edge_insert_loc. */
7225 else if ((!single_pred_p (e
->dest
)
7226 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7227 || e
->dest
== EXIT_BLOCK_PTR
)
7228 && e
->src
!= ENTRY_BLOCK_PTR
7229 && !(e
->flags
& EDGE_ABNORMAL
))
7231 gimple_stmt_iterator gsi
;
7233 gsi
= gsi_last_bb (e
->src
);
7234 if (!gsi_end_p (gsi
)
7235 && stmt_ends_bb_p (gsi_stmt (gsi
))
7236 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7237 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7243 end_recording_case_labels ();
7247 struct gimple_opt_pass pass_split_crit_edges
=
7251 "crited", /* name */
7253 split_critical_edges
, /* execute */
7256 0, /* static_pass_number */
7257 TV_TREE_SPLIT_EDGES
, /* tv_id */
7258 PROP_cfg
, /* properties required */
7259 PROP_no_crit_edges
, /* properties_provided */
7260 0, /* properties_destroyed */
7261 0, /* todo_flags_start */
7262 TODO_dump_func
| TODO_verify_flow
/* todo_flags_finish */
7267 /* Build a ternary operation and gimplify it. Emit code before GSI.
7268 Return the gimple_val holding the result. */
7271 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7272 tree type
, tree a
, tree b
, tree c
)
7275 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7277 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7280 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7284 /* Build a binary operation and gimplify it. Emit code before GSI.
7285 Return the gimple_val holding the result. */
7288 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7289 tree type
, tree a
, tree b
)
7293 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7296 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7300 /* Build a unary operation and gimplify it. Emit code before GSI.
7301 Return the gimple_val holding the result. */
7304 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7309 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7312 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7318 /* Emit return warnings. */
7321 execute_warn_function_return (void)
7323 source_location location
;
7328 /* If we have a path to EXIT, then we do return. */
7329 if (TREE_THIS_VOLATILE (cfun
->decl
)
7330 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7332 location
= UNKNOWN_LOCATION
;
7333 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7335 last
= last_stmt (e
->src
);
7336 if ((gimple_code (last
) == GIMPLE_RETURN
7337 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7338 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7341 if (location
== UNKNOWN_LOCATION
)
7342 location
= cfun
->function_end_locus
;
7343 warning_at (location
, 0, "%<noreturn%> function does return");
7346 /* If we see "return;" in some basic block, then we do reach the end
7347 without returning a value. */
7348 else if (warn_return_type
7349 && !TREE_NO_WARNING (cfun
->decl
)
7350 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7351 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7353 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7355 gimple last
= last_stmt (e
->src
);
7356 if (gimple_code (last
) == GIMPLE_RETURN
7357 && gimple_return_retval (last
) == NULL
7358 && !gimple_no_warning_p (last
))
7360 location
= gimple_location (last
);
7361 if (location
== UNKNOWN_LOCATION
)
7362 location
= cfun
->function_end_locus
;
7363 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7364 TREE_NO_WARNING (cfun
->decl
) = 1;
7373 /* Given a basic block B which ends with a conditional and has
7374 precisely two successors, determine which of the edges is taken if
7375 the conditional is true and which is taken if the conditional is
7376 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7379 extract_true_false_edges_from_block (basic_block b
,
7383 edge e
= EDGE_SUCC (b
, 0);
7385 if (e
->flags
& EDGE_TRUE_VALUE
)
7388 *false_edge
= EDGE_SUCC (b
, 1);
7393 *true_edge
= EDGE_SUCC (b
, 1);
7397 struct gimple_opt_pass pass_warn_function_return
=
7401 "*warn_function_return", /* name */
7403 execute_warn_function_return
, /* execute */
7406 0, /* static_pass_number */
7407 TV_NONE
, /* tv_id */
7408 PROP_cfg
, /* properties_required */
7409 0, /* properties_provided */
7410 0, /* properties_destroyed */
7411 0, /* todo_flags_start */
7412 0 /* todo_flags_finish */
7416 /* Emit noreturn warnings. */
7419 execute_warn_function_noreturn (void)
7421 if (!TREE_THIS_VOLATILE (current_function_decl
)
7422 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
7423 warn_function_noreturn (current_function_decl
);
7428 gate_warn_function_noreturn (void)
7430 return warn_suggest_attribute_noreturn
;
7433 struct gimple_opt_pass pass_warn_function_noreturn
=
7437 "*warn_function_noreturn", /* name */
7438 gate_warn_function_noreturn
, /* gate */
7439 execute_warn_function_noreturn
, /* execute */
7442 0, /* static_pass_number */
7443 TV_NONE
, /* tv_id */
7444 PROP_cfg
, /* properties_required */
7445 0, /* properties_provided */
7446 0, /* properties_destroyed */
7447 0, /* todo_flags_start */
7448 0 /* todo_flags_finish */
7453 /* Walk a gimplified function and warn for functions whose return value is
7454 ignored and attribute((warn_unused_result)) is set. This is done before
7455 inlining, so we don't have to worry about that. */
7458 do_warn_unused_result (gimple_seq seq
)
7461 gimple_stmt_iterator i
;
7463 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7465 gimple g
= gsi_stmt (i
);
7467 switch (gimple_code (g
))
7470 do_warn_unused_result (gimple_bind_body (g
));
7473 do_warn_unused_result (gimple_try_eval (g
));
7474 do_warn_unused_result (gimple_try_cleanup (g
));
7477 do_warn_unused_result (gimple_catch_handler (g
));
7479 case GIMPLE_EH_FILTER
:
7480 do_warn_unused_result (gimple_eh_filter_failure (g
));
7484 if (gimple_call_lhs (g
))
7487 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7488 LHS. All calls whose value is ignored should be
7489 represented like this. Look for the attribute. */
7490 fdecl
= gimple_call_fndecl (g
);
7491 ftype
= TREE_TYPE (TREE_TYPE (gimple_call_fn (g
)));
7493 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7495 location_t loc
= gimple_location (g
);
7498 warning_at (loc
, OPT_Wunused_result
,
7499 "ignoring return value of %qD, "
7500 "declared with attribute warn_unused_result",
7503 warning_at (loc
, OPT_Wunused_result
,
7504 "ignoring return value of function "
7505 "declared with attribute warn_unused_result");
7510 /* Not a container, not a call, or a call whose value is used. */
7517 run_warn_unused_result (void)
7519 do_warn_unused_result (gimple_body (current_function_decl
));
7524 gate_warn_unused_result (void)
7526 return flag_warn_unused_result
;
7529 struct gimple_opt_pass pass_warn_unused_result
=
7533 "*warn_unused_result", /* name */
7534 gate_warn_unused_result
, /* gate */
7535 run_warn_unused_result
, /* execute */
7538 0, /* static_pass_number */
7539 TV_NONE
, /* tv_id */
7540 PROP_gimple_any
, /* properties_required */
7541 0, /* properties_provided */
7542 0, /* properties_destroyed */
7543 0, /* todo_flags_start */
7544 0, /* todo_flags_finish */