* tree.h (SET_ARRAY_OR_VECTOR_CHECK): Rename to SET_OR_ARRAY_CHECK
[official-gcc.git] / gcc / tree.c
blobe7435a78a3c9d58be2ce0f4c1023b22a352b8fdb
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
75 #endif /* GATHER_STATISTICS */
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
85 struct type_hash GTY(())
87 unsigned long hash;
88 tree type;
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static int type_hash_marked_p (const void *);
110 static unsigned int type_hash_list (tree, hashval_t);
111 static unsigned int attribute_hash_list (tree, hashval_t);
113 tree global_trees[TI_MAX];
114 tree integer_types[itk_none];
116 /* Init tree.c. */
118 void
119 init_ttree (void)
121 /* Initialize the hash table of types. */
122 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
123 type_hash_eq, 0);
127 /* The name of the object as the assembler will see it (but before any
128 translations made by ASM_OUTPUT_LABELREF). Often this is the same
129 as DECL_NAME. It is an IDENTIFIER_NODE. */
130 tree
131 decl_assembler_name (tree decl)
133 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
134 lang_hooks.set_decl_assembler_name (decl);
135 return DECL_CHECK (decl)->decl.assembler_name;
138 /* Compute the number of bytes occupied by 'node'. This routine only
139 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
140 size_t
141 tree_size (tree node)
143 enum tree_code code = TREE_CODE (node);
145 switch (TREE_CODE_CLASS (code))
147 case 'd': /* A decl node */
148 return sizeof (struct tree_decl);
150 case 't': /* a type node */
151 return sizeof (struct tree_type);
153 case 'b': /* a lexical block node */
154 return sizeof (struct tree_block);
156 case 'r': /* a reference */
157 case 'e': /* an expression */
158 case 's': /* an expression with side effects */
159 case '<': /* a comparison expression */
160 case '1': /* a unary arithmetic expression */
161 case '2': /* a binary arithmetic expression */
162 return (sizeof (struct tree_exp)
163 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
165 case 'c': /* a constant */
166 switch (code)
168 case INTEGER_CST: return sizeof (struct tree_int_cst);
169 case REAL_CST: return sizeof (struct tree_real_cst);
170 case COMPLEX_CST: return sizeof (struct tree_complex);
171 case VECTOR_CST: return sizeof (struct tree_vector);
172 case STRING_CST: return sizeof (struct tree_string);
173 default:
174 return lang_hooks.tree_size (code);
177 case 'x': /* something random, like an identifier. */
178 switch (code)
180 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
181 case TREE_LIST: return sizeof (struct tree_list);
182 case TREE_VEC: return (sizeof (struct tree_vec)
183 + TREE_VEC_LENGTH(node) * sizeof(char *)
184 - sizeof (char *));
186 case ERROR_MARK:
187 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
189 default:
190 return lang_hooks.tree_size (code);
193 default:
194 abort ();
198 /* Return a newly allocated node of code CODE.
199 For decl and type nodes, some other fields are initialized.
200 The rest of the node is initialized to zero.
202 Achoo! I got a code in the node. */
204 tree
205 make_node_stat (enum tree_code code MEM_STAT_DECL)
207 tree t;
208 int type = TREE_CODE_CLASS (code);
209 size_t length;
210 #ifdef GATHER_STATISTICS
211 tree_node_kind kind;
212 #endif
213 struct tree_common ttmp;
215 /* We can't allocate a TREE_VEC without knowing how many elements
216 it will have. */
217 if (code == TREE_VEC)
218 abort ();
220 TREE_SET_CODE ((tree)&ttmp, code);
221 length = tree_size ((tree)&ttmp);
223 #ifdef GATHER_STATISTICS
224 switch (type)
226 case 'd': /* A decl node */
227 kind = d_kind;
228 break;
230 case 't': /* a type node */
231 kind = t_kind;
232 break;
234 case 'b': /* a lexical block */
235 kind = b_kind;
236 break;
238 case 's': /* an expression with side effects */
239 kind = s_kind;
240 break;
242 case 'r': /* a reference */
243 kind = r_kind;
244 break;
246 case 'e': /* an expression */
247 case '<': /* a comparison expression */
248 case '1': /* a unary arithmetic expression */
249 case '2': /* a binary arithmetic expression */
250 kind = e_kind;
251 break;
253 case 'c': /* a constant */
254 kind = c_kind;
255 break;
257 case 'x': /* something random, like an identifier. */
258 if (code == IDENTIFIER_NODE)
259 kind = id_kind;
260 else if (code == TREE_VEC)
261 kind = vec_kind;
262 else
263 kind = x_kind;
264 break;
266 default:
267 abort ();
270 tree_node_counts[(int) kind]++;
271 tree_node_sizes[(int) kind] += length;
272 #endif
274 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
276 memset (t, 0, length);
278 TREE_SET_CODE (t, code);
280 switch (type)
282 case 's':
283 TREE_SIDE_EFFECTS (t) = 1;
284 break;
286 case 'd':
287 if (code != FUNCTION_DECL)
288 DECL_ALIGN (t) = 1;
289 DECL_USER_ALIGN (t) = 0;
290 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
291 DECL_SOURCE_LOCATION (t) = input_location;
292 DECL_UID (t) = next_decl_uid++;
294 /* We have not yet computed the alias set for this declaration. */
295 DECL_POINTER_ALIAS_SET (t) = -1;
296 break;
298 case 't':
299 TYPE_UID (t) = next_type_uid++;
300 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
301 TYPE_USER_ALIGN (t) = 0;
302 TYPE_MAIN_VARIANT (t) = t;
304 /* Default to no attributes for type, but let target change that. */
305 TYPE_ATTRIBUTES (t) = NULL_TREE;
306 targetm.set_default_type_attributes (t);
308 /* We have not yet computed the alias set for this type. */
309 TYPE_ALIAS_SET (t) = -1;
310 break;
312 case 'c':
313 TREE_CONSTANT (t) = 1;
314 break;
316 case 'e':
317 switch (code)
319 case INIT_EXPR:
320 case MODIFY_EXPR:
321 case VA_ARG_EXPR:
322 case RTL_EXPR:
323 case PREDECREMENT_EXPR:
324 case PREINCREMENT_EXPR:
325 case POSTDECREMENT_EXPR:
326 case POSTINCREMENT_EXPR:
327 /* All of these have side-effects, no matter what their
328 operands are. */
329 TREE_SIDE_EFFECTS (t) = 1;
330 break;
332 default:
333 break;
335 break;
338 return t;
341 /* Return a new node with the same contents as NODE except that its
342 TREE_CHAIN is zero and it has a fresh uid. */
344 tree
345 copy_node_stat (tree node MEM_STAT_DECL)
347 tree t;
348 enum tree_code code = TREE_CODE (node);
349 size_t length;
351 length = tree_size (node);
352 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
353 memcpy (t, node, length);
355 TREE_CHAIN (t) = 0;
356 TREE_ASM_WRITTEN (t) = 0;
358 if (TREE_CODE_CLASS (code) == 'd')
359 DECL_UID (t) = next_decl_uid++;
360 else if (TREE_CODE_CLASS (code) == 't')
362 TYPE_UID (t) = next_type_uid++;
363 /* The following is so that the debug code for
364 the copy is different from the original type.
365 The two statements usually duplicate each other
366 (because they clear fields of the same union),
367 but the optimizer should catch that. */
368 TYPE_SYMTAB_POINTER (t) = 0;
369 TYPE_SYMTAB_ADDRESS (t) = 0;
372 return t;
375 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
376 For example, this can copy a list made of TREE_LIST nodes. */
378 tree
379 copy_list (tree list)
381 tree head;
382 tree prev, next;
384 if (list == 0)
385 return 0;
387 head = prev = copy_node (list);
388 next = TREE_CHAIN (list);
389 while (next)
391 TREE_CHAIN (prev) = copy_node (next);
392 prev = TREE_CHAIN (prev);
393 next = TREE_CHAIN (next);
395 return head;
399 /* Return a newly constructed INTEGER_CST node whose constant value
400 is specified by the two ints LOW and HI.
401 The TREE_TYPE is set to `int'.
403 This function should be used via the `build_int_2' macro. */
405 tree
406 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
408 tree t = make_node (INTEGER_CST);
410 TREE_INT_CST_LOW (t) = low;
411 TREE_INT_CST_HIGH (t) = hi;
412 TREE_TYPE (t) = integer_type_node;
413 return t;
416 /* Return a new VECTOR_CST node whose type is TYPE and whose values
417 are in a list pointed by VALS. */
419 tree
420 build_vector (tree type, tree vals)
422 tree v = make_node (VECTOR_CST);
423 int over1 = 0, over2 = 0;
424 tree link;
426 TREE_VECTOR_CST_ELTS (v) = vals;
427 TREE_TYPE (v) = type;
429 /* Iterate through elements and check for overflow. */
430 for (link = vals; link; link = TREE_CHAIN (link))
432 tree value = TREE_VALUE (link);
434 over1 |= TREE_OVERFLOW (value);
435 over2 |= TREE_CONSTANT_OVERFLOW (value);
438 TREE_OVERFLOW (v) = over1;
439 TREE_CONSTANT_OVERFLOW (v) = over2;
441 return v;
444 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
445 are in a list pointed to by VALS. */
446 tree
447 build_constructor (tree type, tree vals)
449 tree c = make_node (CONSTRUCTOR);
450 TREE_TYPE (c) = type;
451 CONSTRUCTOR_ELTS (c) = vals;
453 /* ??? May not be necessary. Mirrors what build does. */
454 if (vals)
456 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
457 TREE_READONLY (c) = TREE_READONLY (vals);
458 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
460 else
461 TREE_CONSTANT (c) = 0; /* safe side */
463 return c;
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
468 tree
469 build_real (tree type, REAL_VALUE_TYPE d)
471 tree v;
472 REAL_VALUE_TYPE *dp;
473 int overflow = 0;
475 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
476 Consider doing it via real_convert now. */
478 v = make_node (REAL_CST);
479 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
480 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
482 TREE_TYPE (v) = type;
483 TREE_REAL_CST_PTR (v) = dp;
484 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
485 return v;
488 /* Return a new REAL_CST node whose type is TYPE
489 and whose value is the integer value of the INTEGER_CST node I. */
491 REAL_VALUE_TYPE
492 real_value_from_int_cst (tree type, tree i)
494 REAL_VALUE_TYPE d;
496 /* Clear all bits of the real value type so that we can later do
497 bitwise comparisons to see if two values are the same. */
498 memset (&d, 0, sizeof d);
500 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
501 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
502 TYPE_UNSIGNED (TREE_TYPE (i)));
503 return d;
506 /* Given a tree representing an integer constant I, return a tree
507 representing the same value as a floating-point constant of type TYPE. */
509 tree
510 build_real_from_int_cst (tree type, tree i)
512 tree v;
513 int overflow = TREE_OVERFLOW (i);
515 v = build_real (type, real_value_from_int_cst (type, i));
517 TREE_OVERFLOW (v) |= overflow;
518 TREE_CONSTANT_OVERFLOW (v) |= overflow;
519 return v;
522 /* Return a newly constructed STRING_CST node whose value is
523 the LEN characters at STR.
524 The TREE_TYPE is not initialized. */
526 tree
527 build_string (int len, const char *str)
529 tree s = make_node (STRING_CST);
531 TREE_STRING_LENGTH (s) = len;
532 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
534 return s;
537 /* Return a newly constructed COMPLEX_CST node whose value is
538 specified by the real and imaginary parts REAL and IMAG.
539 Both REAL and IMAG should be constant nodes. TYPE, if specified,
540 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
542 tree
543 build_complex (tree type, tree real, tree imag)
545 tree t = make_node (COMPLEX_CST);
547 TREE_REALPART (t) = real;
548 TREE_IMAGPART (t) = imag;
549 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
550 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
551 TREE_CONSTANT_OVERFLOW (t)
552 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
553 return t;
556 /* Build a newly constructed TREE_VEC node of length LEN. */
558 tree
559 make_tree_vec_stat (int len MEM_STAT_DECL)
561 tree t;
562 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
564 #ifdef GATHER_STATISTICS
565 tree_node_counts[(int) vec_kind]++;
566 tree_node_sizes[(int) vec_kind] += length;
567 #endif
569 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
571 memset (t, 0, length);
573 TREE_SET_CODE (t, TREE_VEC);
574 TREE_VEC_LENGTH (t) = len;
576 return t;
579 /* Return 1 if EXPR is the integer constant zero or a complex constant
580 of zero. */
583 integer_zerop (tree expr)
585 STRIP_NOPS (expr);
587 return ((TREE_CODE (expr) == INTEGER_CST
588 && ! TREE_CONSTANT_OVERFLOW (expr)
589 && TREE_INT_CST_LOW (expr) == 0
590 && TREE_INT_CST_HIGH (expr) == 0)
591 || (TREE_CODE (expr) == COMPLEX_CST
592 && integer_zerop (TREE_REALPART (expr))
593 && integer_zerop (TREE_IMAGPART (expr))));
596 /* Return 1 if EXPR is the integer constant one or the corresponding
597 complex constant. */
600 integer_onep (tree expr)
602 STRIP_NOPS (expr);
604 return ((TREE_CODE (expr) == INTEGER_CST
605 && ! TREE_CONSTANT_OVERFLOW (expr)
606 && TREE_INT_CST_LOW (expr) == 1
607 && TREE_INT_CST_HIGH (expr) == 0)
608 || (TREE_CODE (expr) == COMPLEX_CST
609 && integer_onep (TREE_REALPART (expr))
610 && integer_zerop (TREE_IMAGPART (expr))));
613 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
614 it contains. Likewise for the corresponding complex constant. */
617 integer_all_onesp (tree expr)
619 int prec;
620 int uns;
622 STRIP_NOPS (expr);
624 if (TREE_CODE (expr) == COMPLEX_CST
625 && integer_all_onesp (TREE_REALPART (expr))
626 && integer_zerop (TREE_IMAGPART (expr)))
627 return 1;
629 else if (TREE_CODE (expr) != INTEGER_CST
630 || TREE_CONSTANT_OVERFLOW (expr))
631 return 0;
633 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
634 if (!uns)
635 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
636 && TREE_INT_CST_HIGH (expr) == -1);
638 /* Note that using TYPE_PRECISION here is wrong. We care about the
639 actual bits, not the (arbitrary) range of the type. */
640 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
641 if (prec >= HOST_BITS_PER_WIDE_INT)
643 HOST_WIDE_INT high_value;
644 int shift_amount;
646 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
648 if (shift_amount > HOST_BITS_PER_WIDE_INT)
649 /* Can not handle precisions greater than twice the host int size. */
650 abort ();
651 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
652 /* Shifting by the host word size is undefined according to the ANSI
653 standard, so we must handle this as a special case. */
654 high_value = -1;
655 else
656 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
658 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
659 && TREE_INT_CST_HIGH (expr) == high_value);
661 else
662 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
665 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
666 one bit on). */
669 integer_pow2p (tree expr)
671 int prec;
672 HOST_WIDE_INT high, low;
674 STRIP_NOPS (expr);
676 if (TREE_CODE (expr) == COMPLEX_CST
677 && integer_pow2p (TREE_REALPART (expr))
678 && integer_zerop (TREE_IMAGPART (expr)))
679 return 1;
681 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
682 return 0;
684 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
685 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
686 high = TREE_INT_CST_HIGH (expr);
687 low = TREE_INT_CST_LOW (expr);
689 /* First clear all bits that are beyond the type's precision in case
690 we've been sign extended. */
692 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
694 else if (prec > HOST_BITS_PER_WIDE_INT)
695 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
696 else
698 high = 0;
699 if (prec < HOST_BITS_PER_WIDE_INT)
700 low &= ~((HOST_WIDE_INT) (-1) << prec);
703 if (high == 0 && low == 0)
704 return 0;
706 return ((high == 0 && (low & (low - 1)) == 0)
707 || (low == 0 && (high & (high - 1)) == 0));
710 /* Return 1 if EXPR is an integer constant other than zero or a
711 complex constant other than zero. */
714 integer_nonzerop (tree expr)
716 STRIP_NOPS (expr);
718 return ((TREE_CODE (expr) == INTEGER_CST
719 && ! TREE_CONSTANT_OVERFLOW (expr)
720 && (TREE_INT_CST_LOW (expr) != 0
721 || TREE_INT_CST_HIGH (expr) != 0))
722 || (TREE_CODE (expr) == COMPLEX_CST
723 && (integer_nonzerop (TREE_REALPART (expr))
724 || integer_nonzerop (TREE_IMAGPART (expr)))));
727 /* Return the power of two represented by a tree node known to be a
728 power of two. */
731 tree_log2 (tree expr)
733 int prec;
734 HOST_WIDE_INT high, low;
736 STRIP_NOPS (expr);
738 if (TREE_CODE (expr) == COMPLEX_CST)
739 return tree_log2 (TREE_REALPART (expr));
741 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
742 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
744 high = TREE_INT_CST_HIGH (expr);
745 low = TREE_INT_CST_LOW (expr);
747 /* First clear all bits that are beyond the type's precision in case
748 we've been sign extended. */
750 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
752 else if (prec > HOST_BITS_PER_WIDE_INT)
753 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
754 else
756 high = 0;
757 if (prec < HOST_BITS_PER_WIDE_INT)
758 low &= ~((HOST_WIDE_INT) (-1) << prec);
761 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
762 : exact_log2 (low));
765 /* Similar, but return the largest integer Y such that 2 ** Y is less
766 than or equal to EXPR. */
769 tree_floor_log2 (tree expr)
771 int prec;
772 HOST_WIDE_INT high, low;
774 STRIP_NOPS (expr);
776 if (TREE_CODE (expr) == COMPLEX_CST)
777 return tree_log2 (TREE_REALPART (expr));
779 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
780 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
782 high = TREE_INT_CST_HIGH (expr);
783 low = TREE_INT_CST_LOW (expr);
785 /* First clear all bits that are beyond the type's precision in case
786 we've been sign extended. Ignore if type's precision hasn't been set
787 since what we are doing is setting it. */
789 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
791 else if (prec > HOST_BITS_PER_WIDE_INT)
792 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
793 else
795 high = 0;
796 if (prec < HOST_BITS_PER_WIDE_INT)
797 low &= ~((HOST_WIDE_INT) (-1) << prec);
800 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
801 : floor_log2 (low));
804 /* Return 1 if EXPR is the real constant zero. */
807 real_zerop (tree expr)
809 STRIP_NOPS (expr);
811 return ((TREE_CODE (expr) == REAL_CST
812 && ! TREE_CONSTANT_OVERFLOW (expr)
813 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
814 || (TREE_CODE (expr) == COMPLEX_CST
815 && real_zerop (TREE_REALPART (expr))
816 && real_zerop (TREE_IMAGPART (expr))));
819 /* Return 1 if EXPR is the real constant one in real or complex form. */
822 real_onep (tree expr)
824 STRIP_NOPS (expr);
826 return ((TREE_CODE (expr) == REAL_CST
827 && ! TREE_CONSTANT_OVERFLOW (expr)
828 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
829 || (TREE_CODE (expr) == COMPLEX_CST
830 && real_onep (TREE_REALPART (expr))
831 && real_zerop (TREE_IMAGPART (expr))));
834 /* Return 1 if EXPR is the real constant two. */
837 real_twop (tree expr)
839 STRIP_NOPS (expr);
841 return ((TREE_CODE (expr) == REAL_CST
842 && ! TREE_CONSTANT_OVERFLOW (expr)
843 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
844 || (TREE_CODE (expr) == COMPLEX_CST
845 && real_twop (TREE_REALPART (expr))
846 && real_zerop (TREE_IMAGPART (expr))));
849 /* Return 1 if EXPR is the real constant minus one. */
852 real_minus_onep (tree expr)
854 STRIP_NOPS (expr);
856 return ((TREE_CODE (expr) == REAL_CST
857 && ! TREE_CONSTANT_OVERFLOW (expr)
858 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
859 || (TREE_CODE (expr) == COMPLEX_CST
860 && real_minus_onep (TREE_REALPART (expr))
861 && real_zerop (TREE_IMAGPART (expr))));
864 /* Nonzero if EXP is a constant or a cast of a constant. */
867 really_constant_p (tree exp)
869 /* This is not quite the same as STRIP_NOPS. It does more. */
870 while (TREE_CODE (exp) == NOP_EXPR
871 || TREE_CODE (exp) == CONVERT_EXPR
872 || TREE_CODE (exp) == NON_LVALUE_EXPR)
873 exp = TREE_OPERAND (exp, 0);
874 return TREE_CONSTANT (exp);
877 /* Return first list element whose TREE_VALUE is ELEM.
878 Return 0 if ELEM is not in LIST. */
880 tree
881 value_member (tree elem, tree list)
883 while (list)
885 if (elem == TREE_VALUE (list))
886 return list;
887 list = TREE_CHAIN (list);
889 return NULL_TREE;
892 /* Return first list element whose TREE_PURPOSE is ELEM.
893 Return 0 if ELEM is not in LIST. */
895 tree
896 purpose_member (tree elem, tree list)
898 while (list)
900 if (elem == TREE_PURPOSE (list))
901 return list;
902 list = TREE_CHAIN (list);
904 return NULL_TREE;
907 /* Return first list element whose BINFO_TYPE is ELEM.
908 Return 0 if ELEM is not in LIST. */
910 tree
911 binfo_member (tree elem, tree list)
913 while (list)
915 if (elem == BINFO_TYPE (list))
916 return list;
917 list = TREE_CHAIN (list);
919 return NULL_TREE;
922 /* Return nonzero if ELEM is part of the chain CHAIN. */
925 chain_member (tree elem, tree chain)
927 while (chain)
929 if (elem == chain)
930 return 1;
931 chain = TREE_CHAIN (chain);
934 return 0;
937 /* Return the length of a chain of nodes chained through TREE_CHAIN.
938 We expect a null pointer to mark the end of the chain.
939 This is the Lisp primitive `length'. */
942 list_length (tree t)
944 tree p = t;
945 #ifdef ENABLE_TREE_CHECKING
946 tree q = t;
947 #endif
948 int len = 0;
950 while (p)
952 p = TREE_CHAIN (p);
953 #ifdef ENABLE_TREE_CHECKING
954 if (len % 2)
955 q = TREE_CHAIN (q);
956 if (p == q)
957 abort ();
958 #endif
959 len++;
962 return len;
965 /* Returns the number of FIELD_DECLs in TYPE. */
968 fields_length (tree type)
970 tree t = TYPE_FIELDS (type);
971 int count = 0;
973 for (; t; t = TREE_CHAIN (t))
974 if (TREE_CODE (t) == FIELD_DECL)
975 ++count;
977 return count;
980 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
981 by modifying the last node in chain 1 to point to chain 2.
982 This is the Lisp primitive `nconc'. */
984 tree
985 chainon (tree op1, tree op2)
987 tree t1;
989 if (!op1)
990 return op2;
991 if (!op2)
992 return op1;
994 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
995 continue;
996 TREE_CHAIN (t1) = op2;
998 #ifdef ENABLE_TREE_CHECKING
1000 tree t2;
1001 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1002 if (t2 == t1)
1003 abort (); /* Circularity created. */
1005 #endif
1007 return op1;
1010 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1012 tree
1013 tree_last (tree chain)
1015 tree next;
1016 if (chain)
1017 while ((next = TREE_CHAIN (chain)))
1018 chain = next;
1019 return chain;
1022 /* Reverse the order of elements in the chain T,
1023 and return the new head of the chain (old last element). */
1025 tree
1026 nreverse (tree t)
1028 tree prev = 0, decl, next;
1029 for (decl = t; decl; decl = next)
1031 next = TREE_CHAIN (decl);
1032 TREE_CHAIN (decl) = prev;
1033 prev = decl;
1035 return prev;
1038 /* Return a newly created TREE_LIST node whose
1039 purpose and value fields are PARM and VALUE. */
1041 tree
1042 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1044 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1045 TREE_PURPOSE (t) = parm;
1046 TREE_VALUE (t) = value;
1047 return t;
1050 /* Return a newly created TREE_LIST node whose
1051 purpose and value fields are PURPOSE and VALUE
1052 and whose TREE_CHAIN is CHAIN. */
1054 tree
1055 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1057 tree node;
1059 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1060 tree_zone PASS_MEM_STAT);
1062 memset (node, 0, sizeof (struct tree_common));
1064 #ifdef GATHER_STATISTICS
1065 tree_node_counts[(int) x_kind]++;
1066 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1067 #endif
1069 TREE_SET_CODE (node, TREE_LIST);
1070 TREE_CHAIN (node) = chain;
1071 TREE_PURPOSE (node) = purpose;
1072 TREE_VALUE (node) = value;
1073 return node;
1076 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1078 tree
1079 expr_first (tree expr)
1081 if (expr == NULL_TREE)
1082 return expr;
1083 while (TREE_CODE (expr) == COMPOUND_EXPR)
1084 expr = TREE_OPERAND (expr, 0);
1085 return expr;
1088 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1090 tree
1091 expr_last (tree expr)
1093 if (expr == NULL_TREE)
1094 return expr;
1095 while (TREE_CODE (expr) == COMPOUND_EXPR)
1096 expr = TREE_OPERAND (expr, 1);
1097 return expr;
1100 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1103 expr_length (tree expr)
1105 int len = 0;
1107 if (expr == NULL_TREE)
1108 return 0;
1109 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1110 len += expr_length (TREE_OPERAND (expr, 0));
1111 ++len;
1112 return len;
1115 /* Return the size nominally occupied by an object of type TYPE
1116 when it resides in memory. The value is measured in units of bytes,
1117 and its data type is that normally used for type sizes
1118 (which is the first type created by make_signed_type or
1119 make_unsigned_type). */
1121 tree
1122 size_in_bytes (tree type)
1124 tree t;
1126 if (type == error_mark_node)
1127 return integer_zero_node;
1129 type = TYPE_MAIN_VARIANT (type);
1130 t = TYPE_SIZE_UNIT (type);
1132 if (t == 0)
1134 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1135 return size_zero_node;
1138 if (TREE_CODE (t) == INTEGER_CST)
1139 force_fit_type (t, 0);
1141 return t;
1144 /* Return the size of TYPE (in bytes) as a wide integer
1145 or return -1 if the size can vary or is larger than an integer. */
1147 HOST_WIDE_INT
1148 int_size_in_bytes (tree type)
1150 tree t;
1152 if (type == error_mark_node)
1153 return 0;
1155 type = TYPE_MAIN_VARIANT (type);
1156 t = TYPE_SIZE_UNIT (type);
1157 if (t == 0
1158 || TREE_CODE (t) != INTEGER_CST
1159 || TREE_OVERFLOW (t)
1160 || TREE_INT_CST_HIGH (t) != 0
1161 /* If the result would appear negative, it's too big to represent. */
1162 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1163 return -1;
1165 return TREE_INT_CST_LOW (t);
1168 /* Return the bit position of FIELD, in bits from the start of the record.
1169 This is a tree of type bitsizetype. */
1171 tree
1172 bit_position (tree field)
1174 return bit_from_pos (DECL_FIELD_OFFSET (field),
1175 DECL_FIELD_BIT_OFFSET (field));
1178 /* Likewise, but return as an integer. Abort if it cannot be represented
1179 in that way (since it could be a signed value, we don't have the option
1180 of returning -1 like int_size_in_byte can. */
1182 HOST_WIDE_INT
1183 int_bit_position (tree field)
1185 return tree_low_cst (bit_position (field), 0);
1188 /* Return the byte position of FIELD, in bytes from the start of the record.
1189 This is a tree of type sizetype. */
1191 tree
1192 byte_position (tree field)
1194 return byte_from_pos (DECL_FIELD_OFFSET (field),
1195 DECL_FIELD_BIT_OFFSET (field));
1198 /* Likewise, but return as an integer. Abort if it cannot be represented
1199 in that way (since it could be a signed value, we don't have the option
1200 of returning -1 like int_size_in_byte can. */
1202 HOST_WIDE_INT
1203 int_byte_position (tree field)
1205 return tree_low_cst (byte_position (field), 0);
1208 /* Return the strictest alignment, in bits, that T is known to have. */
1210 unsigned int
1211 expr_align (tree t)
1213 unsigned int align0, align1;
1215 switch (TREE_CODE (t))
1217 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1218 /* If we have conversions, we know that the alignment of the
1219 object must meet each of the alignments of the types. */
1220 align0 = expr_align (TREE_OPERAND (t, 0));
1221 align1 = TYPE_ALIGN (TREE_TYPE (t));
1222 return MAX (align0, align1);
1224 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1225 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1226 case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1227 /* These don't change the alignment of an object. */
1228 return expr_align (TREE_OPERAND (t, 0));
1230 case COND_EXPR:
1231 /* The best we can do is say that the alignment is the least aligned
1232 of the two arms. */
1233 align0 = expr_align (TREE_OPERAND (t, 1));
1234 align1 = expr_align (TREE_OPERAND (t, 2));
1235 return MIN (align0, align1);
1237 case LABEL_DECL: case CONST_DECL:
1238 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1239 if (DECL_ALIGN (t) != 0)
1240 return DECL_ALIGN (t);
1241 break;
1243 case FUNCTION_DECL:
1244 return FUNCTION_BOUNDARY;
1246 default:
1247 break;
1250 /* Otherwise take the alignment from that of the type. */
1251 return TYPE_ALIGN (TREE_TYPE (t));
1254 /* Return, as a tree node, the number of elements for TYPE (which is an
1255 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1257 tree
1258 array_type_nelts (tree type)
1260 tree index_type, min, max;
1262 /* If they did it with unspecified bounds, then we should have already
1263 given an error about it before we got here. */
1264 if (! TYPE_DOMAIN (type))
1265 return error_mark_node;
1267 index_type = TYPE_DOMAIN (type);
1268 min = TYPE_MIN_VALUE (index_type);
1269 max = TYPE_MAX_VALUE (index_type);
1271 return (integer_zerop (min)
1272 ? max
1273 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1276 /* Return nonzero if arg is static -- a reference to an object in
1277 static storage. This is not the same as the C meaning of `static'. */
1280 staticp (tree arg)
1282 switch (TREE_CODE (arg))
1284 case FUNCTION_DECL:
1285 /* Nested functions aren't static, since taking their address
1286 involves a trampoline. */
1287 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1288 && ! DECL_NON_ADDR_CONST_P (arg));
1290 case VAR_DECL:
1291 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1292 && ! DECL_THREAD_LOCAL (arg)
1293 && ! DECL_NON_ADDR_CONST_P (arg));
1295 case CONSTRUCTOR:
1296 return TREE_STATIC (arg);
1298 case LABEL_DECL:
1299 case STRING_CST:
1300 return 1;
1302 /* If we are referencing a bitfield, we can't evaluate an
1303 ADDR_EXPR at compile time and so it isn't a constant. */
1304 case COMPONENT_REF:
1305 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1306 && staticp (TREE_OPERAND (arg, 0)));
1308 case BIT_FIELD_REF:
1309 return 0;
1311 #if 0
1312 /* This case is technically correct, but results in setting
1313 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1314 compile time. */
1315 case INDIRECT_REF:
1316 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1317 #endif
1319 case ARRAY_REF:
1320 case ARRAY_RANGE_REF:
1321 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1322 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1323 return staticp (TREE_OPERAND (arg, 0));
1325 default:
1326 if ((unsigned int) TREE_CODE (arg)
1327 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1328 return lang_hooks.staticp (arg);
1329 else
1330 return 0;
1334 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1335 Do this to any expression which may be used in more than one place,
1336 but must be evaluated only once.
1338 Normally, expand_expr would reevaluate the expression each time.
1339 Calling save_expr produces something that is evaluated and recorded
1340 the first time expand_expr is called on it. Subsequent calls to
1341 expand_expr just reuse the recorded value.
1343 The call to expand_expr that generates code that actually computes
1344 the value is the first call *at compile time*. Subsequent calls
1345 *at compile time* generate code to use the saved value.
1346 This produces correct result provided that *at run time* control
1347 always flows through the insns made by the first expand_expr
1348 before reaching the other places where the save_expr was evaluated.
1349 You, the caller of save_expr, must make sure this is so.
1351 Constants, and certain read-only nodes, are returned with no
1352 SAVE_EXPR because that is safe. Expressions containing placeholders
1353 are not touched; see tree.def for an explanation of what these
1354 are used for. */
1356 tree
1357 save_expr (tree expr)
1359 tree t = fold (expr);
1360 tree inner;
1362 /* If the tree evaluates to a constant, then we don't want to hide that
1363 fact (i.e. this allows further folding, and direct checks for constants).
1364 However, a read-only object that has side effects cannot be bypassed.
1365 Since it is no problem to reevaluate literals, we just return the
1366 literal node. */
1367 inner = skip_simple_arithmetic (t);
1368 if (TREE_CONSTANT (inner)
1369 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1370 || TREE_CODE (inner) == SAVE_EXPR
1371 || TREE_CODE (inner) == ERROR_MARK)
1372 return t;
1374 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1375 it means that the size or offset of some field of an object depends on
1376 the value within another field.
1378 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1379 and some variable since it would then need to be both evaluated once and
1380 evaluated more than once. Front-ends must assure this case cannot
1381 happen by surrounding any such subexpressions in their own SAVE_EXPR
1382 and forcing evaluation at the proper time. */
1383 if (contains_placeholder_p (inner))
1384 return t;
1386 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1388 /* This expression might be placed ahead of a jump to ensure that the
1389 value was computed on both sides of the jump. So make sure it isn't
1390 eliminated as dead. */
1391 TREE_SIDE_EFFECTS (t) = 1;
1392 TREE_READONLY (t) = 1;
1393 return t;
1396 /* Look inside EXPR and into any simple arithmetic operations. Return
1397 the innermost non-arithmetic node. */
1399 tree
1400 skip_simple_arithmetic (tree expr)
1402 tree inner;
1404 /* We don't care about whether this can be used as an lvalue in this
1405 context. */
1406 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1407 expr = TREE_OPERAND (expr, 0);
1409 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1410 a constant, it will be more efficient to not make another SAVE_EXPR since
1411 it will allow better simplification and GCSE will be able to merge the
1412 computations if they actually occur. */
1413 inner = expr;
1414 while (1)
1416 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1417 inner = TREE_OPERAND (inner, 0);
1418 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1420 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1421 inner = TREE_OPERAND (inner, 0);
1422 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1423 inner = TREE_OPERAND (inner, 1);
1424 else
1425 break;
1427 else
1428 break;
1431 return inner;
1434 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1435 SAVE_EXPR. Return FALSE otherwise. */
1437 bool
1438 saved_expr_p (tree expr)
1440 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1443 /* Arrange for an expression to be expanded multiple independent
1444 times. This is useful for cleanup actions, as the backend can
1445 expand them multiple times in different places. */
1447 tree
1448 unsave_expr (tree expr)
1450 tree t;
1452 /* If this is already protected, no sense in protecting it again. */
1453 if (TREE_CODE (expr) == UNSAVE_EXPR)
1454 return expr;
1456 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1457 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1458 return t;
1461 /* Returns the index of the first non-tree operand for CODE, or the number
1462 of operands if all are trees. */
1465 first_rtl_op (enum tree_code code)
1467 switch (code)
1469 case SAVE_EXPR:
1470 return 2;
1471 case GOTO_SUBROUTINE_EXPR:
1472 case RTL_EXPR:
1473 return 0;
1474 case WITH_CLEANUP_EXPR:
1475 return 2;
1476 default:
1477 return TREE_CODE_LENGTH (code);
1481 /* Return which tree structure is used by T. */
1483 enum tree_node_structure_enum
1484 tree_node_structure (tree t)
1486 enum tree_code code = TREE_CODE (t);
1488 switch (TREE_CODE_CLASS (code))
1490 case 'd': return TS_DECL;
1491 case 't': return TS_TYPE;
1492 case 'b': return TS_BLOCK;
1493 case 'r': case '<': case '1': case '2': case 'e': case 's':
1494 return TS_EXP;
1495 default: /* 'c' and 'x' */
1496 break;
1498 switch (code)
1500 /* 'c' cases. */
1501 case INTEGER_CST: return TS_INT_CST;
1502 case REAL_CST: return TS_REAL_CST;
1503 case COMPLEX_CST: return TS_COMPLEX;
1504 case VECTOR_CST: return TS_VECTOR;
1505 case STRING_CST: return TS_STRING;
1506 /* 'x' cases. */
1507 case ERROR_MARK: return TS_COMMON;
1508 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1509 case TREE_LIST: return TS_LIST;
1510 case TREE_VEC: return TS_VEC;
1511 case PLACEHOLDER_EXPR: return TS_COMMON;
1513 default:
1514 abort ();
1518 /* Perform any modifications to EXPR required when it is unsaved. Does
1519 not recurse into EXPR's subtrees. */
1521 void
1522 unsave_expr_1 (tree expr)
1524 switch (TREE_CODE (expr))
1526 case SAVE_EXPR:
1527 if (! SAVE_EXPR_PERSISTENT_P (expr))
1528 SAVE_EXPR_RTL (expr) = 0;
1529 break;
1531 case TARGET_EXPR:
1532 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1533 It's OK for this to happen if it was part of a subtree that
1534 isn't immediately expanded, such as operand 2 of another
1535 TARGET_EXPR. */
1536 if (TREE_OPERAND (expr, 1))
1537 break;
1539 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1540 TREE_OPERAND (expr, 3) = NULL_TREE;
1541 break;
1543 case RTL_EXPR:
1544 /* I don't yet know how to emit a sequence multiple times. */
1545 if (RTL_EXPR_SEQUENCE (expr) != 0)
1546 abort ();
1547 break;
1549 default:
1550 break;
1554 /* Default lang hook for "unsave_expr_now". */
1556 tree
1557 lhd_unsave_expr_now (tree expr)
1559 enum tree_code code;
1561 /* There's nothing to do for NULL_TREE. */
1562 if (expr == 0)
1563 return expr;
1565 unsave_expr_1 (expr);
1567 code = TREE_CODE (expr);
1568 switch (TREE_CODE_CLASS (code))
1570 case 'c': /* a constant */
1571 case 't': /* a type node */
1572 case 'd': /* A decl node */
1573 case 'b': /* A block node */
1574 break;
1576 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1577 if (code == TREE_LIST)
1579 lhd_unsave_expr_now (TREE_VALUE (expr));
1580 lhd_unsave_expr_now (TREE_CHAIN (expr));
1582 break;
1584 case 'e': /* an expression */
1585 case 'r': /* a reference */
1586 case 's': /* an expression with side effects */
1587 case '<': /* a comparison expression */
1588 case '2': /* a binary arithmetic expression */
1589 case '1': /* a unary arithmetic expression */
1591 int i;
1593 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1594 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1596 break;
1598 default:
1599 abort ();
1602 return expr;
1605 /* Return 0 if it is safe to evaluate EXPR multiple times,
1606 return 1 if it is safe if EXPR is unsaved afterward, or
1607 return 2 if it is completely unsafe.
1609 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1610 an expression tree, so that it safe to unsave them and the surrounding
1611 context will be correct.
1613 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1614 occasionally across the whole of a function. It is therefore only
1615 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1616 below the UNSAVE_EXPR.
1618 RTL_EXPRs consume their rtl during evaluation. It is therefore
1619 never possible to unsave them. */
1622 unsafe_for_reeval (tree expr)
1624 int unsafeness = 0;
1625 enum tree_code code;
1626 int i, tmp, tmp2;
1627 tree exp;
1628 int first_rtl;
1630 if (expr == NULL_TREE)
1631 return 1;
1633 code = TREE_CODE (expr);
1634 first_rtl = first_rtl_op (code);
1636 switch (code)
1638 case SAVE_EXPR:
1639 case RTL_EXPR:
1640 return 2;
1642 case TREE_LIST:
1643 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1645 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1646 unsafeness = MAX (tmp, unsafeness);
1649 return unsafeness;
1651 case CALL_EXPR:
1652 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1653 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1654 return MAX (MAX (tmp, 1), tmp2);
1656 case TARGET_EXPR:
1657 unsafeness = 1;
1658 break;
1660 case EXIT_BLOCK_EXPR:
1661 /* EXIT_BLOCK_LABELED_BLOCK, a.k.a. TREE_OPERAND (expr, 0), holds
1662 a reference to an ancestor LABELED_BLOCK, so we need to avoid
1663 unbounded recursion in the 'e' traversal code below. */
1664 exp = EXIT_BLOCK_RETURN (expr);
1665 return exp ? unsafe_for_reeval (exp) : 0;
1667 default:
1668 tmp = lang_hooks.unsafe_for_reeval (expr);
1669 if (tmp >= 0)
1670 return tmp;
1671 break;
1674 switch (TREE_CODE_CLASS (code))
1676 case 'c': /* a constant */
1677 case 't': /* a type node */
1678 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1679 case 'd': /* A decl node */
1680 case 'b': /* A block node */
1681 return 0;
1683 case 'e': /* an expression */
1684 case 'r': /* a reference */
1685 case 's': /* an expression with side effects */
1686 case '<': /* a comparison expression */
1687 case '2': /* a binary arithmetic expression */
1688 case '1': /* a unary arithmetic expression */
1689 for (i = first_rtl - 1; i >= 0; i--)
1691 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1692 unsafeness = MAX (tmp, unsafeness);
1695 return unsafeness;
1697 default:
1698 return 2;
1702 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1703 or offset that depends on a field within a record. */
1705 bool
1706 contains_placeholder_p (tree exp)
1708 enum tree_code code;
1709 int result;
1711 if (!exp)
1712 return 0;
1714 code = TREE_CODE (exp);
1715 if (code == PLACEHOLDER_EXPR)
1716 return 1;
1718 switch (TREE_CODE_CLASS (code))
1720 case 'r':
1721 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1722 position computations since they will be converted into a
1723 WITH_RECORD_EXPR involving the reference, which will assume
1724 here will be valid. */
1725 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1727 case 'x':
1728 if (code == TREE_LIST)
1729 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1730 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1731 break;
1733 case '1':
1734 case '2': case '<':
1735 case 'e':
1736 switch (code)
1738 case COMPOUND_EXPR:
1739 /* Ignoring the first operand isn't quite right, but works best. */
1740 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1742 case COND_EXPR:
1743 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1744 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1745 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1747 case SAVE_EXPR:
1748 /* If we already know this doesn't have a placeholder, don't
1749 check again. */
1750 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1751 return 0;
1753 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1754 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1755 if (result)
1756 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1758 return result;
1760 default:
1761 break;
1764 switch (first_rtl_op (code))
1766 case 1:
1767 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1768 case 2:
1769 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1770 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1771 default:
1772 return 0;
1775 default:
1776 return 0;
1778 return 0;
1781 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1782 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1783 positions. */
1785 bool
1786 type_contains_placeholder_p (tree type)
1788 /* If the size contains a placeholder or the parent type (component type in
1789 the case of arrays) type involves a placeholder, this type does. */
1790 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1791 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1792 || (TREE_TYPE (type) != 0
1793 && type_contains_placeholder_p (TREE_TYPE (type))))
1794 return 1;
1796 /* Now do type-specific checks. Note that the last part of the check above
1797 greatly limits what we have to do below. */
1798 switch (TREE_CODE (type))
1800 case VOID_TYPE:
1801 case COMPLEX_TYPE:
1802 case ENUMERAL_TYPE:
1803 case BOOLEAN_TYPE:
1804 case CHAR_TYPE:
1805 case POINTER_TYPE:
1806 case OFFSET_TYPE:
1807 case REFERENCE_TYPE:
1808 case METHOD_TYPE:
1809 case FILE_TYPE:
1810 case FUNCTION_TYPE:
1811 return 0;
1813 case INTEGER_TYPE:
1814 case REAL_TYPE:
1815 /* Here we just check the bounds. */
1816 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1817 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1819 case ARRAY_TYPE:
1820 case SET_TYPE:
1821 case VECTOR_TYPE:
1822 /* We're already checked the component type (TREE_TYPE), so just check
1823 the index type. */
1824 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1826 case RECORD_TYPE:
1827 case UNION_TYPE:
1828 case QUAL_UNION_TYPE:
1830 static tree seen_types = 0;
1831 tree field;
1832 bool ret = 0;
1834 /* We have to be careful here that we don't end up in infinite
1835 recursions due to a field of a type being a pointer to that type
1836 or to a mutually-recursive type. So we store a list of record
1837 types that we've seen and see if this type is in them. To save
1838 memory, we don't use a list for just one type. Here we check
1839 whether we've seen this type before and store it if not. */
1840 if (seen_types == 0)
1841 seen_types = type;
1842 else if (TREE_CODE (seen_types) != TREE_LIST)
1844 if (seen_types == type)
1845 return 0;
1847 seen_types = tree_cons (NULL_TREE, type,
1848 build_tree_list (NULL_TREE, seen_types));
1850 else
1852 if (value_member (type, seen_types) != 0)
1853 return 0;
1855 seen_types = tree_cons (NULL_TREE, type, seen_types);
1858 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1859 if (TREE_CODE (field) == FIELD_DECL
1860 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1861 || (TREE_CODE (type) == QUAL_UNION_TYPE
1862 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1863 || type_contains_placeholder_p (TREE_TYPE (field))))
1865 ret = true;
1866 break;
1869 /* Now remove us from seen_types and return the result. */
1870 if (seen_types == type)
1871 seen_types = 0;
1872 else
1873 seen_types = TREE_CHAIN (seen_types);
1875 return ret;
1878 default:
1879 abort ();
1883 /* Return 1 if EXP contains any expressions that produce cleanups for an
1884 outer scope to deal with. Used by fold. */
1887 has_cleanups (tree exp)
1889 int i, nops, cmp;
1891 if (! TREE_SIDE_EFFECTS (exp))
1892 return 0;
1894 switch (TREE_CODE (exp))
1896 case TARGET_EXPR:
1897 case GOTO_SUBROUTINE_EXPR:
1898 case WITH_CLEANUP_EXPR:
1899 return 1;
1901 case CLEANUP_POINT_EXPR:
1902 return 0;
1904 case CALL_EXPR:
1905 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1907 cmp = has_cleanups (TREE_VALUE (exp));
1908 if (cmp)
1909 return cmp;
1911 return 0;
1913 default:
1914 break;
1917 /* This general rule works for most tree codes. All exceptions should be
1918 handled above. If this is a language-specific tree code, we can't
1919 trust what might be in the operand, so say we don't know
1920 the situation. */
1921 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1922 return -1;
1924 nops = first_rtl_op (TREE_CODE (exp));
1925 for (i = 0; i < nops; i++)
1926 if (TREE_OPERAND (exp, i) != 0)
1928 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1929 if (type == 'e' || type == '<' || type == '1' || type == '2'
1930 || type == 'r' || type == 's')
1932 cmp = has_cleanups (TREE_OPERAND (exp, i));
1933 if (cmp)
1934 return cmp;
1938 return 0;
1941 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1942 return a tree with all occurrences of references to F in a
1943 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1944 contains only arithmetic expressions or a CALL_EXPR with a
1945 PLACEHOLDER_EXPR occurring only in its arglist. */
1947 tree
1948 substitute_in_expr (tree exp, tree f, tree r)
1950 enum tree_code code = TREE_CODE (exp);
1951 tree op0, op1, op2;
1952 tree new;
1953 tree inner;
1955 /* We handle TREE_LIST and COMPONENT_REF separately. */
1956 if (code == TREE_LIST)
1958 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1959 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1960 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1961 return exp;
1963 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1965 else if (code == COMPONENT_REF)
1967 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1968 and it is the right field, replace it with R. */
1969 for (inner = TREE_OPERAND (exp, 0);
1970 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1971 inner = TREE_OPERAND (inner, 0))
1973 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1974 && TREE_OPERAND (exp, 1) == f)
1975 return r;
1977 /* If this expression hasn't been completed let, leave it
1978 alone. */
1979 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1980 return exp;
1982 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1983 if (op0 == TREE_OPERAND (exp, 0))
1984 return exp;
1986 new = fold (build (code, TREE_TYPE (exp), op0, TREE_OPERAND (exp, 1)));
1988 else
1989 switch (TREE_CODE_CLASS (code))
1991 case 'c':
1992 case 'd':
1993 return exp;
1995 case 'x':
1996 case '1':
1997 case '2':
1998 case '<':
1999 case 'e':
2000 case 'r':
2001 switch (first_rtl_op (code))
2003 case 0:
2004 return exp;
2006 case 1:
2007 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2008 if (op0 == TREE_OPERAND (exp, 0))
2009 return exp;
2011 new = fold (build1 (code, TREE_TYPE (exp), op0));
2012 break;
2014 case 2:
2015 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2016 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2018 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2019 return exp;
2021 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2022 break;
2024 case 3:
2025 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2026 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2027 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2029 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2030 && op2 == TREE_OPERAND (exp, 2))
2031 return exp;
2033 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2034 break;
2036 default:
2037 abort ();
2039 break;
2041 default:
2042 abort ();
2045 TREE_READONLY (new) = TREE_READONLY (exp);
2046 return new;
2049 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2050 for it within OBJ, a tree that is an object or a chain of references. */
2052 tree
2053 substitute_placeholder_in_expr (tree exp, tree obj)
2055 enum tree_code code = TREE_CODE (exp);
2056 tree op0, op1, op2, op3;
2058 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2059 in the chain of OBJ. */
2060 if (code == PLACEHOLDER_EXPR)
2062 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2063 tree elt;
2065 for (elt = obj; elt != 0;
2066 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2067 || TREE_CODE (elt) == COND_EXPR)
2068 ? TREE_OPERAND (elt, 1)
2069 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
2070 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
2071 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
2072 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
2073 ? TREE_OPERAND (elt, 0) : 0))
2074 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2075 return elt;
2077 for (elt = obj; elt != 0;
2078 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2079 || TREE_CODE (elt) == COND_EXPR)
2080 ? TREE_OPERAND (elt, 1)
2081 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
2082 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
2083 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
2084 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
2085 ? TREE_OPERAND (elt, 0) : 0))
2086 if (POINTER_TYPE_P (TREE_TYPE (elt))
2087 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2088 == need_type))
2089 return fold (build1 (INDIRECT_REF, need_type, elt));
2091 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2092 survives until RTL generation, there will be an error. */
2093 return exp;
2096 /* TREE_LIST is special because we need to look at TREE_VALUE
2097 and TREE_CHAIN, not TREE_OPERANDS. */
2098 else if (code == TREE_LIST)
2100 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2101 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2102 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2103 return exp;
2105 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2107 else
2108 switch (TREE_CODE_CLASS (code))
2110 case 'c':
2111 case 'd':
2112 case 'b':
2113 return exp;
2115 case 'x':
2116 case '1':
2117 case '2':
2118 case '<':
2119 case 'e':
2120 case 'r':
2121 case 's':
2122 switch (first_rtl_op (code))
2124 case 0:
2125 return exp;
2127 case 1:
2128 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2129 if (op0 == TREE_OPERAND (exp, 0))
2130 return exp;
2131 else
2132 return fold (build1 (code, TREE_TYPE (exp), op0));
2134 case 2:
2135 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2136 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2138 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2139 return exp;
2140 else
2141 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2143 case 3:
2144 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2145 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2146 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2148 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2149 && op2 == TREE_OPERAND (exp, 2))
2150 return exp;
2151 else
2152 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2154 case 4:
2155 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2156 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2157 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2158 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2160 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2161 && op2 == TREE_OPERAND (exp, 2)
2162 && op3 == TREE_OPERAND (exp, 3))
2163 return exp;
2164 else
2165 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2167 default:
2168 abort ();
2170 break;
2172 default:
2173 abort ();
2177 /* Stabilize a reference so that we can use it any number of times
2178 without causing its operands to be evaluated more than once.
2179 Returns the stabilized reference. This works by means of save_expr,
2180 so see the caveats in the comments about save_expr.
2182 Also allows conversion expressions whose operands are references.
2183 Any other kind of expression is returned unchanged. */
2185 tree
2186 stabilize_reference (tree ref)
2188 tree result;
2189 enum tree_code code = TREE_CODE (ref);
2191 switch (code)
2193 case VAR_DECL:
2194 case PARM_DECL:
2195 case RESULT_DECL:
2196 /* No action is needed in this case. */
2197 return ref;
2199 case NOP_EXPR:
2200 case CONVERT_EXPR:
2201 case FLOAT_EXPR:
2202 case FIX_TRUNC_EXPR:
2203 case FIX_FLOOR_EXPR:
2204 case FIX_ROUND_EXPR:
2205 case FIX_CEIL_EXPR:
2206 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2207 break;
2209 case INDIRECT_REF:
2210 result = build_nt (INDIRECT_REF,
2211 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2212 break;
2214 case COMPONENT_REF:
2215 result = build_nt (COMPONENT_REF,
2216 stabilize_reference (TREE_OPERAND (ref, 0)),
2217 TREE_OPERAND (ref, 1));
2218 break;
2220 case BIT_FIELD_REF:
2221 result = build_nt (BIT_FIELD_REF,
2222 stabilize_reference (TREE_OPERAND (ref, 0)),
2223 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2224 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2225 break;
2227 case ARRAY_REF:
2228 result = build_nt (ARRAY_REF,
2229 stabilize_reference (TREE_OPERAND (ref, 0)),
2230 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2231 break;
2233 case ARRAY_RANGE_REF:
2234 result = build_nt (ARRAY_RANGE_REF,
2235 stabilize_reference (TREE_OPERAND (ref, 0)),
2236 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2237 break;
2239 case COMPOUND_EXPR:
2240 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2241 it wouldn't be ignored. This matters when dealing with
2242 volatiles. */
2243 return stabilize_reference_1 (ref);
2245 case RTL_EXPR:
2246 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2247 save_expr (build1 (ADDR_EXPR,
2248 build_pointer_type (TREE_TYPE (ref)),
2249 ref)));
2250 break;
2252 /* If arg isn't a kind of lvalue we recognize, make no change.
2253 Caller should recognize the error for an invalid lvalue. */
2254 default:
2255 return ref;
2257 case ERROR_MARK:
2258 return error_mark_node;
2261 TREE_TYPE (result) = TREE_TYPE (ref);
2262 TREE_READONLY (result) = TREE_READONLY (ref);
2263 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2264 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2266 return result;
2269 /* Subroutine of stabilize_reference; this is called for subtrees of
2270 references. Any expression with side-effects must be put in a SAVE_EXPR
2271 to ensure that it is only evaluated once.
2273 We don't put SAVE_EXPR nodes around everything, because assigning very
2274 simple expressions to temporaries causes us to miss good opportunities
2275 for optimizations. Among other things, the opportunity to fold in the
2276 addition of a constant into an addressing mode often gets lost, e.g.
2277 "y[i+1] += x;". In general, we take the approach that we should not make
2278 an assignment unless we are forced into it - i.e., that any non-side effect
2279 operator should be allowed, and that cse should take care of coalescing
2280 multiple utterances of the same expression should that prove fruitful. */
2282 tree
2283 stabilize_reference_1 (tree e)
2285 tree result;
2286 enum tree_code code = TREE_CODE (e);
2288 /* We cannot ignore const expressions because it might be a reference
2289 to a const array but whose index contains side-effects. But we can
2290 ignore things that are actual constant or that already have been
2291 handled by this function. */
2293 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2294 return e;
2296 switch (TREE_CODE_CLASS (code))
2298 case 'x':
2299 case 't':
2300 case 'd':
2301 case 'b':
2302 case '<':
2303 case 's':
2304 case 'e':
2305 case 'r':
2306 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2307 so that it will only be evaluated once. */
2308 /* The reference (r) and comparison (<) classes could be handled as
2309 below, but it is generally faster to only evaluate them once. */
2310 if (TREE_SIDE_EFFECTS (e))
2311 return save_expr (e);
2312 return e;
2314 case 'c':
2315 /* Constants need no processing. In fact, we should never reach
2316 here. */
2317 return e;
2319 case '2':
2320 /* Division is slow and tends to be compiled with jumps,
2321 especially the division by powers of 2 that is often
2322 found inside of an array reference. So do it just once. */
2323 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2324 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2325 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2326 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2327 return save_expr (e);
2328 /* Recursively stabilize each operand. */
2329 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2330 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2331 break;
2333 case '1':
2334 /* Recursively stabilize each operand. */
2335 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2336 break;
2338 default:
2339 abort ();
2342 TREE_TYPE (result) = TREE_TYPE (e);
2343 TREE_READONLY (result) = TREE_READONLY (e);
2344 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2345 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2347 return result;
2350 /* Low-level constructors for expressions. */
2352 /* Build an expression of code CODE, data type TYPE, and operands as
2353 specified. Expressions and reference nodes can be created this way.
2354 Constants, decls, types and misc nodes cannot be.
2356 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2357 enough for all extant tree codes. These functions can be called
2358 directly (preferably!), but can also be obtained via GCC preprocessor
2359 magic within the build macro. */
2361 tree
2362 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2364 tree t;
2366 #ifdef ENABLE_CHECKING
2367 if (TREE_CODE_LENGTH (code) != 0)
2368 abort ();
2369 #endif
2371 t = make_node_stat (code PASS_MEM_STAT);
2372 TREE_TYPE (t) = tt;
2374 return t;
2377 tree
2378 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2380 int length = sizeof (struct tree_exp);
2381 #ifdef GATHER_STATISTICS
2382 tree_node_kind kind;
2383 #endif
2384 tree t;
2386 #ifdef GATHER_STATISTICS
2387 switch (TREE_CODE_CLASS (code))
2389 case 's': /* an expression with side effects */
2390 kind = s_kind;
2391 break;
2392 case 'r': /* a reference */
2393 kind = r_kind;
2394 break;
2395 default:
2396 kind = e_kind;
2397 break;
2400 tree_node_counts[(int) kind]++;
2401 tree_node_sizes[(int) kind] += length;
2402 #endif
2404 #ifdef ENABLE_CHECKING
2405 if (TREE_CODE_LENGTH (code) != 1)
2406 abort ();
2407 #endif /* ENABLE_CHECKING */
2409 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2411 memset (t, 0, sizeof (struct tree_common));
2413 TREE_SET_CODE (t, code);
2415 TREE_TYPE (t) = type;
2416 TREE_COMPLEXITY (t) = 0;
2417 TREE_OPERAND (t, 0) = node;
2418 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2420 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2421 TREE_READONLY (t) = TREE_READONLY (node);
2424 if (TREE_CODE_CLASS (code) == 's')
2425 TREE_SIDE_EFFECTS (t) = 1;
2426 else switch (code)
2428 case INIT_EXPR:
2429 case MODIFY_EXPR:
2430 case VA_ARG_EXPR:
2431 case RTL_EXPR:
2432 case PREDECREMENT_EXPR:
2433 case PREINCREMENT_EXPR:
2434 case POSTDECREMENT_EXPR:
2435 case POSTINCREMENT_EXPR:
2436 /* All of these have side-effects, no matter what their
2437 operands are. */
2438 TREE_SIDE_EFFECTS (t) = 1;
2439 TREE_READONLY (t) = 0;
2440 break;
2442 case INDIRECT_REF:
2443 /* Whether a dereference is readonly has nothing to do with whether
2444 its operand is readonly. */
2445 TREE_READONLY (t) = 0;
2446 break;
2448 case ADDR_EXPR:
2449 if (node)
2451 /* The address of a volatile decl or reference does not have
2452 side-effects. But be careful not to ignore side-effects from
2453 other sources deeper in the expression--if node is a _REF and
2454 one of its operands has side-effects, so do we. */
2455 if (TREE_THIS_VOLATILE (node))
2457 TREE_SIDE_EFFECTS (t) = 0;
2458 if (!DECL_P (node))
2460 int i = first_rtl_op (TREE_CODE (node)) - 1;
2461 for (; i >= 0; --i)
2463 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node, i)))
2464 TREE_SIDE_EFFECTS (t) = 1;
2469 break;
2471 default:
2472 if (TREE_CODE_CLASS (code) == '1' && node && !TYPE_P (node)
2473 && TREE_CONSTANT (node))
2474 TREE_CONSTANT (t) = 1;
2475 break;
2478 return t;
2481 #define PROCESS_ARG(N) \
2482 do { \
2483 TREE_OPERAND (t, N) = arg##N; \
2484 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2486 if (TREE_SIDE_EFFECTS (arg##N)) \
2487 side_effects = 1; \
2488 if (!TREE_READONLY (arg##N)) \
2489 read_only = 0; \
2490 if (!TREE_CONSTANT (arg##N)) \
2491 constant = 0; \
2493 } while (0)
2495 tree
2496 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2498 bool constant, read_only, side_effects;
2499 tree t;
2500 int fro;
2502 #ifdef ENABLE_CHECKING
2503 if (TREE_CODE_LENGTH (code) != 2)
2504 abort ();
2505 #endif
2507 t = make_node_stat (code PASS_MEM_STAT);
2508 TREE_TYPE (t) = tt;
2510 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2511 result based on those same flags for the arguments. But if the
2512 arguments aren't really even `tree' expressions, we shouldn't be trying
2513 to do this. */
2514 fro = first_rtl_op (code);
2516 /* Expressions without side effects may be constant if their
2517 arguments are as well. */
2518 constant = (TREE_CODE_CLASS (code) == '<'
2519 || TREE_CODE_CLASS (code) == '2');
2520 read_only = 1;
2521 side_effects = TREE_SIDE_EFFECTS (t);
2523 PROCESS_ARG(0);
2524 PROCESS_ARG(1);
2526 if (code == CALL_EXPR && !side_effects)
2528 tree node;
2529 int i;
2531 /* Calls have side-effects, except those to const or
2532 pure functions. */
2533 i = call_expr_flags (t);
2534 if (!(i & (ECF_CONST | ECF_PURE)))
2535 side_effects = 1;
2537 /* And even those have side-effects if their arguments do. */
2538 else for (node = TREE_OPERAND (t, 1); node; node = TREE_CHAIN (node))
2539 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2541 side_effects = 1;
2542 break;
2546 TREE_READONLY (t) = read_only;
2547 TREE_CONSTANT (t) = constant;
2548 TREE_SIDE_EFFECTS (t) = side_effects;
2550 return t;
2553 tree
2554 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2555 tree arg2 MEM_STAT_DECL)
2557 bool constant, read_only, side_effects;
2558 tree t;
2559 int fro;
2561 /* ??? Quite a lot of existing code passes one too many arguments to
2562 CALL_EXPR. Not going to fix them, because CALL_EXPR is about to
2563 grow a new argument, so it would just mean changing them back. */
2564 if (code == CALL_EXPR)
2566 if (arg2 != NULL_TREE)
2567 abort ();
2568 return build2 (code, tt, arg0, arg1);
2571 #ifdef ENABLE_CHECKING
2572 if (TREE_CODE_LENGTH (code) != 3)
2573 abort ();
2574 #endif
2576 t = make_node_stat (code PASS_MEM_STAT);
2577 TREE_TYPE (t) = tt;
2579 fro = first_rtl_op (code);
2581 side_effects = TREE_SIDE_EFFECTS (t);
2583 PROCESS_ARG(0);
2584 PROCESS_ARG(1);
2585 PROCESS_ARG(2);
2587 TREE_SIDE_EFFECTS (t) = side_effects;
2589 return t;
2592 tree
2593 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2594 tree arg2, tree arg3 MEM_STAT_DECL)
2596 bool constant, read_only, side_effects;
2597 tree t;
2598 int fro;
2600 #ifdef ENABLE_CHECKING
2601 if (TREE_CODE_LENGTH (code) != 4)
2602 abort ();
2603 #endif
2605 t = make_node_stat (code PASS_MEM_STAT);
2606 TREE_TYPE (t) = tt;
2608 fro = first_rtl_op (code);
2610 side_effects = TREE_SIDE_EFFECTS (t);
2612 PROCESS_ARG(0);
2613 PROCESS_ARG(1);
2614 PROCESS_ARG(2);
2615 PROCESS_ARG(3);
2617 TREE_SIDE_EFFECTS (t) = side_effects;
2619 return t;
2622 /* Backup definition for non-gcc build compilers. */
2624 tree
2625 (build) (enum tree_code code, tree tt, ...)
2627 tree t, arg0, arg1, arg2, arg3;
2628 int length = TREE_CODE_LENGTH (code);
2629 va_list p;
2631 va_start (p, tt);
2632 switch (length)
2634 case 0:
2635 t = build0 (code, tt);
2636 break;
2637 case 1:
2638 arg0 = va_arg (p, tree);
2639 t = build1 (code, tt, arg0);
2640 break;
2641 case 2:
2642 arg0 = va_arg (p, tree);
2643 arg1 = va_arg (p, tree);
2644 t = build2 (code, tt, arg0, arg1);
2645 break;
2646 case 3:
2647 arg0 = va_arg (p, tree);
2648 arg1 = va_arg (p, tree);
2649 arg2 = va_arg (p, tree);
2650 t = build3 (code, tt, arg0, arg1, arg2);
2651 break;
2652 case 4:
2653 arg0 = va_arg (p, tree);
2654 arg1 = va_arg (p, tree);
2655 arg2 = va_arg (p, tree);
2656 arg3 = va_arg (p, tree);
2657 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2658 break;
2659 default:
2660 abort ();
2662 va_end (p);
2664 return t;
2667 /* Similar except don't specify the TREE_TYPE
2668 and leave the TREE_SIDE_EFFECTS as 0.
2669 It is permissible for arguments to be null,
2670 or even garbage if their values do not matter. */
2672 tree
2673 build_nt (enum tree_code code, ...)
2675 tree t;
2676 int length;
2677 int i;
2678 va_list p;
2680 va_start (p, code);
2682 t = make_node (code);
2683 length = TREE_CODE_LENGTH (code);
2685 for (i = 0; i < length; i++)
2686 TREE_OPERAND (t, i) = va_arg (p, tree);
2688 va_end (p);
2689 return t;
2692 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2693 We do NOT enter this node in any sort of symbol table.
2695 layout_decl is used to set up the decl's storage layout.
2696 Other slots are initialized to 0 or null pointers. */
2698 tree
2699 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2701 tree t;
2703 t = make_node_stat (code PASS_MEM_STAT);
2705 /* if (type == error_mark_node)
2706 type = integer_type_node; */
2707 /* That is not done, deliberately, so that having error_mark_node
2708 as the type can suppress useless errors in the use of this variable. */
2710 DECL_NAME (t) = name;
2711 TREE_TYPE (t) = type;
2713 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2714 layout_decl (t, 0);
2715 else if (code == FUNCTION_DECL)
2716 DECL_MODE (t) = FUNCTION_MODE;
2718 return t;
2721 /* BLOCK nodes are used to represent the structure of binding contours
2722 and declarations, once those contours have been exited and their contents
2723 compiled. This information is used for outputting debugging info. */
2725 tree
2726 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2727 tree supercontext, tree chain)
2729 tree block = make_node (BLOCK);
2731 BLOCK_VARS (block) = vars;
2732 BLOCK_SUBBLOCKS (block) = subblocks;
2733 BLOCK_SUPERCONTEXT (block) = supercontext;
2734 BLOCK_CHAIN (block) = chain;
2735 return block;
2738 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2739 location where an expression or an identifier were encountered. It
2740 is necessary for languages where the frontend parser will handle
2741 recursively more than one file (Java is one of them). */
2743 tree
2744 build_expr_wfl (tree node, const char *file, int line, int col)
2746 static const char *last_file = 0;
2747 static tree last_filenode = NULL_TREE;
2748 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2750 EXPR_WFL_NODE (wfl) = node;
2751 EXPR_WFL_SET_LINECOL (wfl, line, col);
2752 if (file != last_file)
2754 last_file = file;
2755 last_filenode = file ? get_identifier (file) : NULL_TREE;
2758 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2760 if (node && !TYPE_P (node))
2762 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2763 TREE_TYPE (wfl) = TREE_TYPE (node);
2766 return wfl;
2769 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2770 is ATTRIBUTE. */
2772 tree
2773 build_decl_attribute_variant (tree ddecl, tree attribute)
2775 DECL_ATTRIBUTES (ddecl) = attribute;
2776 return ddecl;
2779 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2780 is ATTRIBUTE.
2782 Record such modified types already made so we don't make duplicates. */
2784 tree
2785 build_type_attribute_variant (tree ttype, tree attribute)
2787 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2789 hashval_t hashcode = 0;
2790 tree ntype;
2791 enum tree_code code = TREE_CODE (ttype);
2793 ntype = copy_node (ttype);
2795 TYPE_POINTER_TO (ntype) = 0;
2796 TYPE_REFERENCE_TO (ntype) = 0;
2797 TYPE_ATTRIBUTES (ntype) = attribute;
2799 /* Create a new main variant of TYPE. */
2800 TYPE_MAIN_VARIANT (ntype) = ntype;
2801 TYPE_NEXT_VARIANT (ntype) = 0;
2802 set_type_quals (ntype, TYPE_UNQUALIFIED);
2804 hashcode = iterative_hash_object (code, hashcode);
2805 if (TREE_TYPE (ntype))
2806 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2807 hashcode);
2808 hashcode = attribute_hash_list (attribute, hashcode);
2810 switch (TREE_CODE (ntype))
2812 case FUNCTION_TYPE:
2813 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2814 break;
2815 case ARRAY_TYPE:
2816 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2817 hashcode);
2818 break;
2819 case INTEGER_TYPE:
2820 hashcode = iterative_hash_object
2821 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2822 hashcode = iterative_hash_object
2823 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2824 break;
2825 case REAL_TYPE:
2827 unsigned int precision = TYPE_PRECISION (ntype);
2828 hashcode = iterative_hash_object (precision, hashcode);
2830 break;
2831 default:
2832 break;
2835 ntype = type_hash_canon (hashcode, ntype);
2836 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2839 return ttype;
2842 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2843 or zero if not.
2845 We try both `text' and `__text__', ATTR may be either one. */
2846 /* ??? It might be a reasonable simplification to require ATTR to be only
2847 `text'. One might then also require attribute lists to be stored in
2848 their canonicalized form. */
2851 is_attribute_p (const char *attr, tree ident)
2853 int ident_len, attr_len;
2854 const char *p;
2856 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2857 return 0;
2859 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2860 return 1;
2862 p = IDENTIFIER_POINTER (ident);
2863 ident_len = strlen (p);
2864 attr_len = strlen (attr);
2866 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2867 if (attr[0] == '_')
2869 if (attr[1] != '_'
2870 || attr[attr_len - 2] != '_'
2871 || attr[attr_len - 1] != '_')
2872 abort ();
2873 if (ident_len == attr_len - 4
2874 && strncmp (attr + 2, p, attr_len - 4) == 0)
2875 return 1;
2877 else
2879 if (ident_len == attr_len + 4
2880 && p[0] == '_' && p[1] == '_'
2881 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2882 && strncmp (attr, p + 2, attr_len) == 0)
2883 return 1;
2886 return 0;
2889 /* Given an attribute name and a list of attributes, return a pointer to the
2890 attribute's list element if the attribute is part of the list, or NULL_TREE
2891 if not found. If the attribute appears more than once, this only
2892 returns the first occurrence; the TREE_CHAIN of the return value should
2893 be passed back in if further occurrences are wanted. */
2895 tree
2896 lookup_attribute (const char *attr_name, tree list)
2898 tree l;
2900 for (l = list; l; l = TREE_CHAIN (l))
2902 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2903 abort ();
2904 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2905 return l;
2908 return NULL_TREE;
2911 /* Return an attribute list that is the union of a1 and a2. */
2913 tree
2914 merge_attributes (tree a1, tree a2)
2916 tree attributes;
2918 /* Either one unset? Take the set one. */
2920 if ((attributes = a1) == 0)
2921 attributes = a2;
2923 /* One that completely contains the other? Take it. */
2925 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2927 if (attribute_list_contained (a2, a1))
2928 attributes = a2;
2929 else
2931 /* Pick the longest list, and hang on the other list. */
2933 if (list_length (a1) < list_length (a2))
2934 attributes = a2, a2 = a1;
2936 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2938 tree a;
2939 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2940 attributes);
2941 a != NULL_TREE;
2942 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2943 TREE_CHAIN (a)))
2945 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2946 break;
2948 if (a == NULL_TREE)
2950 a1 = copy_node (a2);
2951 TREE_CHAIN (a1) = attributes;
2952 attributes = a1;
2957 return attributes;
2960 /* Given types T1 and T2, merge their attributes and return
2961 the result. */
2963 tree
2964 merge_type_attributes (tree t1, tree t2)
2966 return merge_attributes (TYPE_ATTRIBUTES (t1),
2967 TYPE_ATTRIBUTES (t2));
2970 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2971 the result. */
2973 tree
2974 merge_decl_attributes (tree olddecl, tree newdecl)
2976 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2977 DECL_ATTRIBUTES (newdecl));
2980 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2982 /* Specialization of merge_decl_attributes for various Windows targets.
2984 This handles the following situation:
2986 __declspec (dllimport) int foo;
2987 int foo;
2989 The second instance of `foo' nullifies the dllimport. */
2991 tree
2992 merge_dllimport_decl_attributes (tree old, tree new)
2994 tree a;
2995 int delete_dllimport_p;
2997 old = DECL_ATTRIBUTES (old);
2998 new = DECL_ATTRIBUTES (new);
3000 /* What we need to do here is remove from `old' dllimport if it doesn't
3001 appear in `new'. dllimport behaves like extern: if a declaration is
3002 marked dllimport and a definition appears later, then the object
3003 is not dllimport'd. */
3004 if (lookup_attribute ("dllimport", old) != NULL_TREE
3005 && lookup_attribute ("dllimport", new) == NULL_TREE)
3006 delete_dllimport_p = 1;
3007 else
3008 delete_dllimport_p = 0;
3010 a = merge_attributes (old, new);
3012 if (delete_dllimport_p)
3014 tree prev, t;
3016 /* Scan the list for dllimport and delete it. */
3017 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3019 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3021 if (prev == NULL_TREE)
3022 a = TREE_CHAIN (a);
3023 else
3024 TREE_CHAIN (prev) = TREE_CHAIN (t);
3025 break;
3030 return a;
3033 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3035 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3036 of the various TYPE_QUAL values. */
3038 static void
3039 set_type_quals (tree type, int type_quals)
3041 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3042 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3043 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3046 /* Returns true iff cand is equivalent to base with type_quals. */
3048 bool
3049 check_qualified_type (tree cand, tree base, int type_quals)
3051 return (TYPE_QUALS (cand) == type_quals
3052 && TYPE_NAME (cand) == TYPE_NAME (base)
3053 /* Apparently this is needed for Objective-C. */
3054 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3055 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3056 TYPE_ATTRIBUTES (base)));
3059 /* Return a version of the TYPE, qualified as indicated by the
3060 TYPE_QUALS, if one exists. If no qualified version exists yet,
3061 return NULL_TREE. */
3063 tree
3064 get_qualified_type (tree type, int type_quals)
3066 tree t;
3068 if (TYPE_QUALS (type) == type_quals)
3069 return type;
3071 /* Search the chain of variants to see if there is already one there just
3072 like the one we need to have. If so, use that existing one. We must
3073 preserve the TYPE_NAME, since there is code that depends on this. */
3074 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3075 if (check_qualified_type (t, type, type_quals))
3076 return t;
3078 return NULL_TREE;
3081 /* Like get_qualified_type, but creates the type if it does not
3082 exist. This function never returns NULL_TREE. */
3084 tree
3085 build_qualified_type (tree type, int type_quals)
3087 tree t;
3089 /* See if we already have the appropriate qualified variant. */
3090 t = get_qualified_type (type, type_quals);
3092 /* If not, build it. */
3093 if (!t)
3095 t = build_type_copy (type);
3096 set_type_quals (t, type_quals);
3099 return t;
3102 /* Create a new variant of TYPE, equivalent but distinct.
3103 This is so the caller can modify it. */
3105 tree
3106 build_type_copy (tree type)
3108 tree t, m = TYPE_MAIN_VARIANT (type);
3110 t = copy_node (type);
3112 TYPE_POINTER_TO (t) = 0;
3113 TYPE_REFERENCE_TO (t) = 0;
3115 /* Add this type to the chain of variants of TYPE. */
3116 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3117 TYPE_NEXT_VARIANT (m) = t;
3119 return t;
3122 /* Hashing of types so that we don't make duplicates.
3123 The entry point is `type_hash_canon'. */
3125 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3126 with types in the TREE_VALUE slots), by adding the hash codes
3127 of the individual types. */
3129 unsigned int
3130 type_hash_list (tree list, hashval_t hashcode)
3132 tree tail;
3134 for (tail = list; tail; tail = TREE_CHAIN (tail))
3135 if (TREE_VALUE (tail) != error_mark_node)
3136 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3137 hashcode);
3139 return hashcode;
3142 /* These are the Hashtable callback functions. */
3144 /* Returns true iff the types are equivalent. */
3146 static int
3147 type_hash_eq (const void *va, const void *vb)
3149 const struct type_hash *a = va, *b = vb;
3151 /* First test the things that are the same for all types. */
3152 if (a->hash != b->hash
3153 || TREE_CODE (a->type) != TREE_CODE (b->type)
3154 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3155 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3156 TYPE_ATTRIBUTES (b->type))
3157 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3158 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3159 return 0;
3161 switch (TREE_CODE (a->type))
3163 case VOID_TYPE:
3164 case COMPLEX_TYPE:
3165 case VECTOR_TYPE:
3166 case POINTER_TYPE:
3167 case REFERENCE_TYPE:
3168 return 1;
3170 case ENUMERAL_TYPE:
3171 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3172 && !(TYPE_VALUES (a->type)
3173 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3174 && TYPE_VALUES (b->type)
3175 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3176 && type_list_equal (TYPE_VALUES (a->type),
3177 TYPE_VALUES (b->type))))
3178 return 0;
3180 /* ... fall through ... */
3182 case INTEGER_TYPE:
3183 case REAL_TYPE:
3184 case BOOLEAN_TYPE:
3185 case CHAR_TYPE:
3186 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3187 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3188 TYPE_MAX_VALUE (b->type)))
3189 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3190 && tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3191 TYPE_MIN_VALUE (b->type))));
3193 case OFFSET_TYPE:
3194 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3196 case METHOD_TYPE:
3197 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3198 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3199 || (TYPE_ARG_TYPES (a->type)
3200 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3201 && TYPE_ARG_TYPES (b->type)
3202 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3203 && type_list_equal (TYPE_ARG_TYPES (a->type),
3204 TYPE_ARG_TYPES (b->type)))));
3206 case ARRAY_TYPE:
3207 case SET_TYPE:
3208 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3210 case RECORD_TYPE:
3211 case UNION_TYPE:
3212 case QUAL_UNION_TYPE:
3213 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3214 || (TYPE_FIELDS (a->type)
3215 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3216 && TYPE_FIELDS (b->type)
3217 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3218 && type_list_equal (TYPE_FIELDS (a->type),
3219 TYPE_FIELDS (b->type))));
3221 case FUNCTION_TYPE:
3222 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3223 || (TYPE_ARG_TYPES (a->type)
3224 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3225 && TYPE_ARG_TYPES (b->type)
3226 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3227 && type_list_equal (TYPE_ARG_TYPES (a->type),
3228 TYPE_ARG_TYPES (b->type))));
3230 default:
3231 return 0;
3235 /* Return the cached hash value. */
3237 static hashval_t
3238 type_hash_hash (const void *item)
3240 return ((const struct type_hash *) item)->hash;
3243 /* Look in the type hash table for a type isomorphic to TYPE.
3244 If one is found, return it. Otherwise return 0. */
3246 tree
3247 type_hash_lookup (hashval_t hashcode, tree type)
3249 struct type_hash *h, in;
3251 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3252 must call that routine before comparing TYPE_ALIGNs. */
3253 layout_type (type);
3255 in.hash = hashcode;
3256 in.type = type;
3258 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3259 if (h)
3260 return h->type;
3261 return NULL_TREE;
3264 /* Add an entry to the type-hash-table
3265 for a type TYPE whose hash code is HASHCODE. */
3267 void
3268 type_hash_add (hashval_t hashcode, tree type)
3270 struct type_hash *h;
3271 void **loc;
3273 h = ggc_alloc (sizeof (struct type_hash));
3274 h->hash = hashcode;
3275 h->type = type;
3276 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3277 *(struct type_hash **) loc = h;
3280 /* Given TYPE, and HASHCODE its hash code, return the canonical
3281 object for an identical type if one already exists.
3282 Otherwise, return TYPE, and record it as the canonical object.
3284 To use this function, first create a type of the sort you want.
3285 Then compute its hash code from the fields of the type that
3286 make it different from other similar types.
3287 Then call this function and use the value. */
3289 tree
3290 type_hash_canon (unsigned int hashcode, tree type)
3292 tree t1;
3294 /* The hash table only contains main variants, so ensure that's what we're
3295 being passed. */
3296 if (TYPE_MAIN_VARIANT (type) != type)
3297 abort ();
3299 if (!lang_hooks.types.hash_types)
3300 return type;
3302 /* See if the type is in the hash table already. If so, return it.
3303 Otherwise, add the type. */
3304 t1 = type_hash_lookup (hashcode, type);
3305 if (t1 != 0)
3307 #ifdef GATHER_STATISTICS
3308 tree_node_counts[(int) t_kind]--;
3309 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3310 #endif
3311 return t1;
3313 else
3315 type_hash_add (hashcode, type);
3316 return type;
3320 /* See if the data pointed to by the type hash table is marked. We consider
3321 it marked if the type is marked or if a debug type number or symbol
3322 table entry has been made for the type. This reduces the amount of
3323 debugging output and eliminates that dependency of the debug output on
3324 the number of garbage collections. */
3326 static int
3327 type_hash_marked_p (const void *p)
3329 tree type = ((struct type_hash *) p)->type;
3331 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3334 static void
3335 print_type_hash_statistics (void)
3337 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3338 (long) htab_size (type_hash_table),
3339 (long) htab_elements (type_hash_table),
3340 htab_collisions (type_hash_table));
3343 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3344 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3345 by adding the hash codes of the individual attributes. */
3347 unsigned int
3348 attribute_hash_list (tree list, hashval_t hashcode)
3350 tree tail;
3352 for (tail = list; tail; tail = TREE_CHAIN (tail))
3353 /* ??? Do we want to add in TREE_VALUE too? */
3354 hashcode = iterative_hash_object
3355 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3356 return hashcode;
3359 /* Given two lists of attributes, return true if list l2 is
3360 equivalent to l1. */
3363 attribute_list_equal (tree l1, tree l2)
3365 return attribute_list_contained (l1, l2)
3366 && attribute_list_contained (l2, l1);
3369 /* Given two lists of attributes, return true if list L2 is
3370 completely contained within L1. */
3371 /* ??? This would be faster if attribute names were stored in a canonicalized
3372 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3373 must be used to show these elements are equivalent (which they are). */
3374 /* ??? It's not clear that attributes with arguments will always be handled
3375 correctly. */
3378 attribute_list_contained (tree l1, tree l2)
3380 tree t1, t2;
3382 /* First check the obvious, maybe the lists are identical. */
3383 if (l1 == l2)
3384 return 1;
3386 /* Maybe the lists are similar. */
3387 for (t1 = l1, t2 = l2;
3388 t1 != 0 && t2 != 0
3389 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3390 && TREE_VALUE (t1) == TREE_VALUE (t2);
3391 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3393 /* Maybe the lists are equal. */
3394 if (t1 == 0 && t2 == 0)
3395 return 1;
3397 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3399 tree attr;
3400 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3401 attr != NULL_TREE;
3402 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3403 TREE_CHAIN (attr)))
3405 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3406 break;
3409 if (attr == 0)
3410 return 0;
3412 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3413 return 0;
3416 return 1;
3419 /* Given two lists of types
3420 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3421 return 1 if the lists contain the same types in the same order.
3422 Also, the TREE_PURPOSEs must match. */
3425 type_list_equal (tree l1, tree l2)
3427 tree t1, t2;
3429 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3430 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3431 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3432 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3433 && (TREE_TYPE (TREE_PURPOSE (t1))
3434 == TREE_TYPE (TREE_PURPOSE (t2))))))
3435 return 0;
3437 return t1 == t2;
3440 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3441 given by TYPE. If the argument list accepts variable arguments,
3442 then this function counts only the ordinary arguments. */
3445 type_num_arguments (tree type)
3447 int i = 0;
3448 tree t;
3450 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3451 /* If the function does not take a variable number of arguments,
3452 the last element in the list will have type `void'. */
3453 if (VOID_TYPE_P (TREE_VALUE (t)))
3454 break;
3455 else
3456 ++i;
3458 return i;
3461 /* Nonzero if integer constants T1 and T2
3462 represent the same constant value. */
3465 tree_int_cst_equal (tree t1, tree t2)
3467 if (t1 == t2)
3468 return 1;
3470 if (t1 == 0 || t2 == 0)
3471 return 0;
3473 if (TREE_CODE (t1) == INTEGER_CST
3474 && TREE_CODE (t2) == INTEGER_CST
3475 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3476 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3477 return 1;
3479 return 0;
3482 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3483 The precise way of comparison depends on their data type. */
3486 tree_int_cst_lt (tree t1, tree t2)
3488 if (t1 == t2)
3489 return 0;
3491 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3493 int t1_sgn = tree_int_cst_sgn (t1);
3494 int t2_sgn = tree_int_cst_sgn (t2);
3496 if (t1_sgn < t2_sgn)
3497 return 1;
3498 else if (t1_sgn > t2_sgn)
3499 return 0;
3500 /* Otherwise, both are non-negative, so we compare them as
3501 unsigned just in case one of them would overflow a signed
3502 type. */
3504 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3505 return INT_CST_LT (t1, t2);
3507 return INT_CST_LT_UNSIGNED (t1, t2);
3510 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3513 tree_int_cst_compare (tree t1, tree t2)
3515 if (tree_int_cst_lt (t1, t2))
3516 return -1;
3517 else if (tree_int_cst_lt (t2, t1))
3518 return 1;
3519 else
3520 return 0;
3523 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3524 the host. If POS is zero, the value can be represented in a single
3525 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3526 be represented in a single unsigned HOST_WIDE_INT. */
3529 host_integerp (tree t, int pos)
3531 return (TREE_CODE (t) == INTEGER_CST
3532 && ! TREE_OVERFLOW (t)
3533 && ((TREE_INT_CST_HIGH (t) == 0
3534 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3535 || (! pos && TREE_INT_CST_HIGH (t) == -1
3536 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3537 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3538 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3541 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3542 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3543 be positive. Abort if we cannot satisfy the above conditions. */
3545 HOST_WIDE_INT
3546 tree_low_cst (tree t, int pos)
3548 if (host_integerp (t, pos))
3549 return TREE_INT_CST_LOW (t);
3550 else
3551 abort ();
3554 /* Return the most significant bit of the integer constant T. */
3557 tree_int_cst_msb (tree t)
3559 int prec;
3560 HOST_WIDE_INT h;
3561 unsigned HOST_WIDE_INT l;
3563 /* Note that using TYPE_PRECISION here is wrong. We care about the
3564 actual bits, not the (arbitrary) range of the type. */
3565 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3566 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3567 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3568 return (l & 1) == 1;
3571 /* Return an indication of the sign of the integer constant T.
3572 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3573 Note that -1 will never be returned it T's type is unsigned. */
3576 tree_int_cst_sgn (tree t)
3578 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3579 return 0;
3580 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3581 return 1;
3582 else if (TREE_INT_CST_HIGH (t) < 0)
3583 return -1;
3584 else
3585 return 1;
3588 /* Compare two constructor-element-type constants. Return 1 if the lists
3589 are known to be equal; otherwise return 0. */
3592 simple_cst_list_equal (tree l1, tree l2)
3594 while (l1 != NULL_TREE && l2 != NULL_TREE)
3596 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3597 return 0;
3599 l1 = TREE_CHAIN (l1);
3600 l2 = TREE_CHAIN (l2);
3603 return l1 == l2;
3606 /* Return truthvalue of whether T1 is the same tree structure as T2.
3607 Return 1 if they are the same.
3608 Return 0 if they are understandably different.
3609 Return -1 if either contains tree structure not understood by
3610 this function. */
3613 simple_cst_equal (tree t1, tree t2)
3615 enum tree_code code1, code2;
3616 int cmp;
3617 int i;
3619 if (t1 == t2)
3620 return 1;
3621 if (t1 == 0 || t2 == 0)
3622 return 0;
3624 code1 = TREE_CODE (t1);
3625 code2 = TREE_CODE (t2);
3627 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3629 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3630 || code2 == NON_LVALUE_EXPR)
3631 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3632 else
3633 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3636 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3637 || code2 == NON_LVALUE_EXPR)
3638 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3640 if (code1 != code2)
3641 return 0;
3643 switch (code1)
3645 case INTEGER_CST:
3646 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3647 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3649 case REAL_CST:
3650 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3652 case STRING_CST:
3653 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3654 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3655 TREE_STRING_LENGTH (t1)));
3657 case CONSTRUCTOR:
3658 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3659 return 1;
3660 else
3661 abort ();
3663 case SAVE_EXPR:
3664 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3666 case CALL_EXPR:
3667 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3668 if (cmp <= 0)
3669 return cmp;
3670 return
3671 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3673 case TARGET_EXPR:
3674 /* Special case: if either target is an unallocated VAR_DECL,
3675 it means that it's going to be unified with whatever the
3676 TARGET_EXPR is really supposed to initialize, so treat it
3677 as being equivalent to anything. */
3678 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3679 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3680 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3681 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3682 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3683 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3684 cmp = 1;
3685 else
3686 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3688 if (cmp <= 0)
3689 return cmp;
3691 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3693 case WITH_CLEANUP_EXPR:
3694 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3695 if (cmp <= 0)
3696 return cmp;
3698 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3700 case COMPONENT_REF:
3701 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3702 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3704 return 0;
3706 case VAR_DECL:
3707 case PARM_DECL:
3708 case CONST_DECL:
3709 case FUNCTION_DECL:
3710 return 0;
3712 default:
3713 break;
3716 /* This general rule works for most tree codes. All exceptions should be
3717 handled above. If this is a language-specific tree code, we can't
3718 trust what might be in the operand, so say we don't know
3719 the situation. */
3720 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3721 return -1;
3723 switch (TREE_CODE_CLASS (code1))
3725 case '1':
3726 case '2':
3727 case '<':
3728 case 'e':
3729 case 'r':
3730 case 's':
3731 cmp = 1;
3732 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3734 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3735 if (cmp <= 0)
3736 return cmp;
3739 return cmp;
3741 default:
3742 return -1;
3746 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3747 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3748 than U, respectively. */
3751 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3753 if (tree_int_cst_sgn (t) < 0)
3754 return -1;
3755 else if (TREE_INT_CST_HIGH (t) != 0)
3756 return 1;
3757 else if (TREE_INT_CST_LOW (t) == u)
3758 return 0;
3759 else if (TREE_INT_CST_LOW (t) < u)
3760 return -1;
3761 else
3762 return 1;
3765 /* Return true if CODE represents an associative tree code. Otherwise
3766 return false. */
3767 bool
3768 associative_tree_code (enum tree_code code)
3770 switch (code)
3772 case BIT_IOR_EXPR:
3773 case BIT_AND_EXPR:
3774 case BIT_XOR_EXPR:
3775 case PLUS_EXPR:
3776 case MINUS_EXPR:
3777 case MULT_EXPR:
3778 case LSHIFT_EXPR:
3779 case RSHIFT_EXPR:
3780 case MIN_EXPR:
3781 case MAX_EXPR:
3782 return true;
3784 default:
3785 break;
3787 return false;
3790 /* Return true if CODE represents an commutative tree code. Otherwise
3791 return false. */
3792 bool
3793 commutative_tree_code (enum tree_code code)
3795 switch (code)
3797 case PLUS_EXPR:
3798 case MULT_EXPR:
3799 case MIN_EXPR:
3800 case MAX_EXPR:
3801 case BIT_IOR_EXPR:
3802 case BIT_XOR_EXPR:
3803 case BIT_AND_EXPR:
3804 case NE_EXPR:
3805 case EQ_EXPR:
3806 return true;
3808 default:
3809 break;
3811 return false;
3814 /* Generate a hash value for an expression. This can be used iteratively
3815 by passing a previous result as the "val" argument.
3817 This function is intended to produce the same hash for expressions which
3818 would compare equal using operand_equal_p. */
3820 hashval_t
3821 iterative_hash_expr (tree t, hashval_t val)
3823 int i;
3824 enum tree_code code;
3825 char class;
3827 if (t == NULL_TREE)
3828 return iterative_hash_object (t, val);
3830 code = TREE_CODE (t);
3831 class = TREE_CODE_CLASS (code);
3833 if (class == 'd')
3835 /* Decls we can just compare by pointer. */
3836 val = iterative_hash_object (t, val);
3838 else if (class == 'c')
3840 /* Alas, constants aren't shared, so we can't rely on pointer
3841 identity. */
3842 if (code == INTEGER_CST)
3844 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3845 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3847 else if (code == REAL_CST)
3848 val = iterative_hash (TREE_REAL_CST_PTR (t),
3849 sizeof (REAL_VALUE_TYPE), val);
3850 else if (code == STRING_CST)
3851 val = iterative_hash (TREE_STRING_POINTER (t),
3852 TREE_STRING_LENGTH (t), val);
3853 else if (code == COMPLEX_CST)
3855 val = iterative_hash_expr (TREE_REALPART (t), val);
3856 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3858 else if (code == VECTOR_CST)
3859 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3860 else
3861 abort ();
3863 else if (IS_EXPR_CODE_CLASS (class))
3865 val = iterative_hash_object (code, val);
3867 if (code == NOP_EXPR || code == CONVERT_EXPR
3868 || code == NON_LVALUE_EXPR)
3869 val = iterative_hash_object (TREE_TYPE (t), val);
3871 if (commutative_tree_code (code))
3873 /* It's a commutative expression. We want to hash it the same
3874 however it appears. We do this by first hashing both operands
3875 and then rehashing based on the order of their independent
3876 hashes. */
3877 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3878 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3879 hashval_t t;
3881 if (one > two)
3882 t = one, one = two, two = t;
3884 val = iterative_hash_object (one, val);
3885 val = iterative_hash_object (two, val);
3887 else
3888 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3889 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3891 else if (code == TREE_LIST)
3893 /* A list of expressions, for a CALL_EXPR or as the elements of a
3894 VECTOR_CST. */
3895 for (; t; t = TREE_CHAIN (t))
3896 val = iterative_hash_expr (TREE_VALUE (t), val);
3898 else
3899 abort ();
3901 return val;
3904 /* Constructors for pointer, array and function types.
3905 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3906 constructed by language-dependent code, not here.) */
3908 /* Construct, lay out and return the type of pointers to TO_TYPE with
3909 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
3910 reference all of memory. If such a type has already been
3911 constructed, reuse it. */
3913 tree
3914 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
3915 bool can_alias_all)
3917 tree t;
3919 /* In some cases, languages will have things that aren't a POINTER_TYPE
3920 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
3921 In that case, return that type without regard to the rest of our
3922 operands.
3924 ??? This is a kludge, but consistent with the way this function has
3925 always operated and there doesn't seem to be a good way to avoid this
3926 at the moment. */
3927 if (TYPE_POINTER_TO (to_type) != 0
3928 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
3929 return TYPE_POINTER_TO (to_type);
3931 /* First, if we already have a type for pointers to TO_TYPE and it's
3932 the proper mode, use it. */
3933 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
3934 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
3935 return t;
3937 t = make_node (POINTER_TYPE);
3939 TREE_TYPE (t) = to_type;
3940 TYPE_MODE (t) = mode;
3941 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
3942 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
3943 TYPE_POINTER_TO (to_type) = t;
3945 /* Lay out the type. This function has many callers that are concerned
3946 with expression-construction, and this simplifies them all. */
3947 layout_type (t);
3949 return t;
3952 /* By default build pointers in ptr_mode. */
3954 tree
3955 build_pointer_type (tree to_type)
3957 return build_pointer_type_for_mode (to_type, ptr_mode, false);
3960 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
3962 tree
3963 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
3964 bool can_alias_all)
3966 tree t;
3968 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
3969 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
3970 In that case, return that type without regard to the rest of our
3971 operands.
3973 ??? This is a kludge, but consistent with the way this function has
3974 always operated and there doesn't seem to be a good way to avoid this
3975 at the moment. */
3976 if (TYPE_REFERENCE_TO (to_type) != 0
3977 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
3978 return TYPE_REFERENCE_TO (to_type);
3980 /* First, if we already have a type for pointers to TO_TYPE and it's
3981 the proper mode, use it. */
3982 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
3983 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
3984 return t;
3986 t = make_node (REFERENCE_TYPE);
3988 TREE_TYPE (t) = to_type;
3989 TYPE_MODE (t) = mode;
3990 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
3991 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
3992 TYPE_REFERENCE_TO (to_type) = t;
3994 layout_type (t);
3996 return t;
4000 /* Build the node for the type of references-to-TO_TYPE by default
4001 in ptr_mode. */
4003 tree
4004 build_reference_type (tree to_type)
4006 return build_reference_type_for_mode (to_type, ptr_mode, false);
4009 /* Build a type that is compatible with t but has no cv quals anywhere
4010 in its type, thus
4012 const char *const *const * -> char ***. */
4014 tree
4015 build_type_no_quals (tree t)
4017 switch (TREE_CODE (t))
4019 case POINTER_TYPE:
4020 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4021 TYPE_MODE (t),
4022 TYPE_REF_CAN_ALIAS_ALL (t));
4023 case REFERENCE_TYPE:
4024 return
4025 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4026 TYPE_MODE (t),
4027 TYPE_REF_CAN_ALIAS_ALL (t));
4028 default:
4029 return TYPE_MAIN_VARIANT (t);
4033 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4034 MAXVAL should be the maximum value in the domain
4035 (one less than the length of the array).
4037 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4038 We don't enforce this limit, that is up to caller (e.g. language front end).
4039 The limit exists because the result is a signed type and we don't handle
4040 sizes that use more than one HOST_WIDE_INT. */
4042 tree
4043 build_index_type (tree maxval)
4045 tree itype = make_node (INTEGER_TYPE);
4047 TREE_TYPE (itype) = sizetype;
4048 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4049 TYPE_MIN_VALUE (itype) = size_zero_node;
4050 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4051 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4052 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4053 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4054 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4055 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4057 if (host_integerp (maxval, 1))
4058 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4059 else
4060 return itype;
4063 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4064 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4065 low bound LOWVAL and high bound HIGHVAL.
4066 if TYPE==NULL_TREE, sizetype is used. */
4068 tree
4069 build_range_type (tree type, tree lowval, tree highval)
4071 tree itype = make_node (INTEGER_TYPE);
4073 TREE_TYPE (itype) = type;
4074 if (type == NULL_TREE)
4075 type = sizetype;
4077 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4078 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4080 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4081 TYPE_MODE (itype) = TYPE_MODE (type);
4082 TYPE_SIZE (itype) = TYPE_SIZE (type);
4083 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4084 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4085 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4087 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4088 return type_hash_canon (tree_low_cst (highval, 0)
4089 - tree_low_cst (lowval, 0),
4090 itype);
4091 else
4092 return itype;
4095 /* Just like build_index_type, but takes lowval and highval instead
4096 of just highval (maxval). */
4098 tree
4099 build_index_2_type (tree lowval, tree highval)
4101 return build_range_type (sizetype, lowval, highval);
4104 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4105 and number of elements specified by the range of values of INDEX_TYPE.
4106 If such a type has already been constructed, reuse it. */
4108 tree
4109 build_array_type (tree elt_type, tree index_type)
4111 tree t;
4112 hashval_t hashcode = 0;
4114 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4116 error ("arrays of functions are not meaningful");
4117 elt_type = integer_type_node;
4120 t = make_node (ARRAY_TYPE);
4121 TREE_TYPE (t) = elt_type;
4122 TYPE_DOMAIN (t) = index_type;
4124 if (index_type == 0)
4125 return t;
4127 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4128 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4129 t = type_hash_canon (hashcode, t);
4131 if (!COMPLETE_TYPE_P (t))
4132 layout_type (t);
4133 return t;
4136 /* Return the TYPE of the elements comprising
4137 the innermost dimension of ARRAY. */
4139 tree
4140 get_inner_array_type (tree array)
4142 tree type = TREE_TYPE (array);
4144 while (TREE_CODE (type) == ARRAY_TYPE)
4145 type = TREE_TYPE (type);
4147 return type;
4150 /* Construct, lay out and return
4151 the type of functions returning type VALUE_TYPE
4152 given arguments of types ARG_TYPES.
4153 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4154 are data type nodes for the arguments of the function.
4155 If such a type has already been constructed, reuse it. */
4157 tree
4158 build_function_type (tree value_type, tree arg_types)
4160 tree t;
4161 hashval_t hashcode = 0;
4163 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4165 error ("function return type cannot be function");
4166 value_type = integer_type_node;
4169 /* Make a node of the sort we want. */
4170 t = make_node (FUNCTION_TYPE);
4171 TREE_TYPE (t) = value_type;
4172 TYPE_ARG_TYPES (t) = arg_types;
4174 /* If we already have such a type, use the old one. */
4175 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4176 hashcode = type_hash_list (arg_types, hashcode);
4177 t = type_hash_canon (hashcode, t);
4179 if (!COMPLETE_TYPE_P (t))
4180 layout_type (t);
4181 return t;
4184 /* Build a function type. The RETURN_TYPE is the type returned by the
4185 function. If additional arguments are provided, they are
4186 additional argument types. The list of argument types must always
4187 be terminated by NULL_TREE. */
4189 tree
4190 build_function_type_list (tree return_type, ...)
4192 tree t, args, last;
4193 va_list p;
4195 va_start (p, return_type);
4197 t = va_arg (p, tree);
4198 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4199 args = tree_cons (NULL_TREE, t, args);
4201 last = args;
4202 args = nreverse (args);
4203 TREE_CHAIN (last) = void_list_node;
4204 args = build_function_type (return_type, args);
4206 va_end (p);
4207 return args;
4210 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4211 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4212 for the method. An implicit additional parameter (of type
4213 pointer-to-BASETYPE) is added to the ARGTYPES. */
4215 tree
4216 build_method_type_directly (tree basetype,
4217 tree rettype,
4218 tree argtypes)
4220 tree t;
4221 tree ptype;
4222 int hashcode = 0;
4224 /* Make a node of the sort we want. */
4225 t = make_node (METHOD_TYPE);
4227 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4228 TREE_TYPE (t) = rettype;
4229 ptype = build_pointer_type (basetype);
4231 /* The actual arglist for this function includes a "hidden" argument
4232 which is "this". Put it into the list of argument types. */
4233 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4234 TYPE_ARG_TYPES (t) = argtypes;
4236 /* If we already have such a type, use the old one. */
4237 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4238 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4239 hashcode = type_hash_list (argtypes, hashcode);
4240 t = type_hash_canon (hashcode, t);
4242 if (!COMPLETE_TYPE_P (t))
4243 layout_type (t);
4245 return t;
4248 /* Construct, lay out and return the type of methods belonging to class
4249 BASETYPE and whose arguments and values are described by TYPE.
4250 If that type exists already, reuse it.
4251 TYPE must be a FUNCTION_TYPE node. */
4253 tree
4254 build_method_type (tree basetype, tree type)
4256 if (TREE_CODE (type) != FUNCTION_TYPE)
4257 abort ();
4259 return build_method_type_directly (basetype,
4260 TREE_TYPE (type),
4261 TYPE_ARG_TYPES (type));
4264 /* Construct, lay out and return the type of offsets to a value
4265 of type TYPE, within an object of type BASETYPE.
4266 If a suitable offset type exists already, reuse it. */
4268 tree
4269 build_offset_type (tree basetype, tree type)
4271 tree t;
4272 hashval_t hashcode = 0;
4274 /* Make a node of the sort we want. */
4275 t = make_node (OFFSET_TYPE);
4277 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4278 TREE_TYPE (t) = type;
4280 /* If we already have such a type, use the old one. */
4281 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4282 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4283 t = type_hash_canon (hashcode, t);
4285 if (!COMPLETE_TYPE_P (t))
4286 layout_type (t);
4288 return t;
4291 /* Create a complex type whose components are COMPONENT_TYPE. */
4293 tree
4294 build_complex_type (tree component_type)
4296 tree t;
4297 hashval_t hashcode;
4299 /* Make a node of the sort we want. */
4300 t = make_node (COMPLEX_TYPE);
4302 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4304 /* If we already have such a type, use the old one. */
4305 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4306 t = type_hash_canon (hashcode, t);
4308 if (!COMPLETE_TYPE_P (t))
4309 layout_type (t);
4311 /* If we are writing Dwarf2 output we need to create a name,
4312 since complex is a fundamental type. */
4313 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4314 && ! TYPE_NAME (t))
4316 const char *name;
4317 if (component_type == char_type_node)
4318 name = "complex char";
4319 else if (component_type == signed_char_type_node)
4320 name = "complex signed char";
4321 else if (component_type == unsigned_char_type_node)
4322 name = "complex unsigned char";
4323 else if (component_type == short_integer_type_node)
4324 name = "complex short int";
4325 else if (component_type == short_unsigned_type_node)
4326 name = "complex short unsigned int";
4327 else if (component_type == integer_type_node)
4328 name = "complex int";
4329 else if (component_type == unsigned_type_node)
4330 name = "complex unsigned int";
4331 else if (component_type == long_integer_type_node)
4332 name = "complex long int";
4333 else if (component_type == long_unsigned_type_node)
4334 name = "complex long unsigned int";
4335 else if (component_type == long_long_integer_type_node)
4336 name = "complex long long int";
4337 else if (component_type == long_long_unsigned_type_node)
4338 name = "complex long long unsigned int";
4339 else
4340 name = 0;
4342 if (name != 0)
4343 TYPE_NAME (t) = get_identifier (name);
4346 return build_qualified_type (t, TYPE_QUALS (component_type));
4349 /* Return OP, stripped of any conversions to wider types as much as is safe.
4350 Converting the value back to OP's type makes a value equivalent to OP.
4352 If FOR_TYPE is nonzero, we return a value which, if converted to
4353 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4355 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4356 narrowest type that can hold the value, even if they don't exactly fit.
4357 Otherwise, bit-field references are changed to a narrower type
4358 only if they can be fetched directly from memory in that type.
4360 OP must have integer, real or enumeral type. Pointers are not allowed!
4362 There are some cases where the obvious value we could return
4363 would regenerate to OP if converted to OP's type,
4364 but would not extend like OP to wider types.
4365 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4366 For example, if OP is (unsigned short)(signed char)-1,
4367 we avoid returning (signed char)-1 if FOR_TYPE is int,
4368 even though extending that to an unsigned short would regenerate OP,
4369 since the result of extending (signed char)-1 to (int)
4370 is different from (int) OP. */
4372 tree
4373 get_unwidened (tree op, tree for_type)
4375 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4376 tree type = TREE_TYPE (op);
4377 unsigned final_prec
4378 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4379 int uns
4380 = (for_type != 0 && for_type != type
4381 && final_prec > TYPE_PRECISION (type)
4382 && TYPE_UNSIGNED (type));
4383 tree win = op;
4385 while (TREE_CODE (op) == NOP_EXPR)
4387 int bitschange
4388 = TYPE_PRECISION (TREE_TYPE (op))
4389 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4391 /* Truncations are many-one so cannot be removed.
4392 Unless we are later going to truncate down even farther. */
4393 if (bitschange < 0
4394 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4395 break;
4397 /* See what's inside this conversion. If we decide to strip it,
4398 we will set WIN. */
4399 op = TREE_OPERAND (op, 0);
4401 /* If we have not stripped any zero-extensions (uns is 0),
4402 we can strip any kind of extension.
4403 If we have previously stripped a zero-extension,
4404 only zero-extensions can safely be stripped.
4405 Any extension can be stripped if the bits it would produce
4406 are all going to be discarded later by truncating to FOR_TYPE. */
4408 if (bitschange > 0)
4410 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4411 win = op;
4412 /* TYPE_UNSIGNED says whether this is a zero-extension.
4413 Let's avoid computing it if it does not affect WIN
4414 and if UNS will not be needed again. */
4415 if ((uns || TREE_CODE (op) == NOP_EXPR)
4416 && TYPE_UNSIGNED (TREE_TYPE (op)))
4418 uns = 1;
4419 win = op;
4424 if (TREE_CODE (op) == COMPONENT_REF
4425 /* Since type_for_size always gives an integer type. */
4426 && TREE_CODE (type) != REAL_TYPE
4427 /* Don't crash if field not laid out yet. */
4428 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4429 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4431 unsigned int innerprec
4432 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4433 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4434 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4435 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4437 /* We can get this structure field in the narrowest type it fits in.
4438 If FOR_TYPE is 0, do this only for a field that matches the
4439 narrower type exactly and is aligned for it
4440 The resulting extension to its nominal type (a fullword type)
4441 must fit the same conditions as for other extensions. */
4443 if (type != 0
4444 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4445 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4446 && (! uns || final_prec <= innerprec || unsignedp))
4448 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4449 TREE_OPERAND (op, 1));
4450 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4451 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4455 return win;
4458 /* Return OP or a simpler expression for a narrower value
4459 which can be sign-extended or zero-extended to give back OP.
4460 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4461 or 0 if the value should be sign-extended. */
4463 tree
4464 get_narrower (tree op, int *unsignedp_ptr)
4466 int uns = 0;
4467 int first = 1;
4468 tree win = op;
4470 while (TREE_CODE (op) == NOP_EXPR)
4472 int bitschange
4473 = (TYPE_PRECISION (TREE_TYPE (op))
4474 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4476 /* Truncations are many-one so cannot be removed. */
4477 if (bitschange < 0)
4478 break;
4480 /* See what's inside this conversion. If we decide to strip it,
4481 we will set WIN. */
4483 if (bitschange > 0)
4485 op = TREE_OPERAND (op, 0);
4486 /* An extension: the outermost one can be stripped,
4487 but remember whether it is zero or sign extension. */
4488 if (first)
4489 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4490 /* Otherwise, if a sign extension has been stripped,
4491 only sign extensions can now be stripped;
4492 if a zero extension has been stripped, only zero-extensions. */
4493 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4494 break;
4495 first = 0;
4497 else /* bitschange == 0 */
4499 /* A change in nominal type can always be stripped, but we must
4500 preserve the unsignedness. */
4501 if (first)
4502 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4503 first = 0;
4504 op = TREE_OPERAND (op, 0);
4507 win = op;
4510 if (TREE_CODE (op) == COMPONENT_REF
4511 /* Since type_for_size always gives an integer type. */
4512 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4513 /* Ensure field is laid out already. */
4514 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4516 unsigned HOST_WIDE_INT innerprec
4517 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4518 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4519 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4520 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4522 /* We can get this structure field in a narrower type that fits it,
4523 but the resulting extension to its nominal type (a fullword type)
4524 must satisfy the same conditions as for other extensions.
4526 Do this only for fields that are aligned (not bit-fields),
4527 because when bit-field insns will be used there is no
4528 advantage in doing this. */
4530 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4531 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4532 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4533 && type != 0)
4535 if (first)
4536 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4537 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4538 TREE_OPERAND (op, 1));
4539 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4540 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4543 *unsignedp_ptr = uns;
4544 return win;
4547 /* Nonzero if integer constant C has a value that is permissible
4548 for type TYPE (an INTEGER_TYPE). */
4551 int_fits_type_p (tree c, tree type)
4553 tree type_low_bound = TYPE_MIN_VALUE (type);
4554 tree type_high_bound = TYPE_MAX_VALUE (type);
4555 int ok_for_low_bound, ok_for_high_bound;
4557 /* Perform some generic filtering first, which may allow making a decision
4558 even if the bounds are not constant. First, negative integers never fit
4559 in unsigned types, */
4560 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4561 /* Also, unsigned integers with top bit set never fit signed types. */
4562 || (! TYPE_UNSIGNED (type)
4563 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4564 return 0;
4566 /* If at least one bound of the type is a constant integer, we can check
4567 ourselves and maybe make a decision. If no such decision is possible, but
4568 this type is a subtype, try checking against that. Otherwise, use
4569 force_fit_type, which checks against the precision.
4571 Compute the status for each possibly constant bound, and return if we see
4572 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4573 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4574 for "constant known to fit". */
4576 ok_for_low_bound = -1;
4577 ok_for_high_bound = -1;
4579 /* Check if C >= type_low_bound. */
4580 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4582 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4583 if (! ok_for_low_bound)
4584 return 0;
4587 /* Check if c <= type_high_bound. */
4588 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4590 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4591 if (! ok_for_high_bound)
4592 return 0;
4595 /* If the constant fits both bounds, the result is known. */
4596 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4597 return 1;
4599 /* If we haven't been able to decide at this point, there nothing more we
4600 can check ourselves here. Look at the base type if we have one. */
4601 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4602 return int_fits_type_p (c, TREE_TYPE (type));
4604 /* Or to force_fit_type, if nothing else. */
4605 else
4607 c = copy_node (c);
4608 TREE_TYPE (c) = type;
4609 return !force_fit_type (c, 0);
4613 /* Returns true if T is, contains, or refers to a type with variable
4614 size. This concept is more general than that of C99 'variably
4615 modified types': in C99, a struct type is never variably modified
4616 because a VLA may not appear as a structure member. However, in
4617 GNU C code like:
4619 struct S { int i[f()]; };
4621 is valid, and other languages may define similar constructs. */
4623 bool
4624 variably_modified_type_p (tree type)
4626 tree t;
4628 if (type == error_mark_node)
4629 return false;
4631 /* If TYPE itself has variable size, it is variably modified.
4633 We do not yet have a representation of the C99 '[*]' syntax.
4634 When a representation is chosen, this function should be modified
4635 to test for that case as well. */
4636 t = TYPE_SIZE (type);
4637 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4638 return true;
4640 switch (TREE_CODE (type))
4642 case POINTER_TYPE:
4643 case REFERENCE_TYPE:
4644 case ARRAY_TYPE:
4645 case SET_TYPE:
4646 case VECTOR_TYPE:
4647 if (variably_modified_type_p (TREE_TYPE (type)))
4648 return true;
4649 break;
4651 case FUNCTION_TYPE:
4652 case METHOD_TYPE:
4653 /* If TYPE is a function type, it is variably modified if any of the
4654 parameters or the return type are variably modified. */
4655 if (variably_modified_type_p (TREE_TYPE (type)))
4656 return true;
4658 for (t = TYPE_ARG_TYPES (type);
4659 t && t != void_list_node;
4660 t = TREE_CHAIN (t))
4661 if (variably_modified_type_p (TREE_VALUE (t)))
4662 return true;
4663 break;
4665 case INTEGER_TYPE:
4666 case REAL_TYPE:
4667 case ENUMERAL_TYPE:
4668 case BOOLEAN_TYPE:
4669 case CHAR_TYPE:
4670 /* Scalar types are variably modified if their end points
4671 aren't constant. */
4672 t = TYPE_MIN_VALUE (type);
4673 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4674 return true;
4676 t = TYPE_MAX_VALUE (type);
4677 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4678 return true;
4679 break;
4681 case RECORD_TYPE:
4682 case UNION_TYPE:
4683 case QUAL_UNION_TYPE:
4684 /* We can't see if any of the field are variably-modified by the
4685 definition we normally use, since that would produce infinite
4686 recursion via pointers. */
4687 /* This is variably modified if some field's type is. */
4688 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
4689 if (TREE_CODE (t) == FIELD_DECL)
4691 tree t1 = DECL_FIELD_OFFSET (t);
4693 if (t1 && t1 != error_mark_node && TREE_CODE (t1) != INTEGER_CST)
4694 return true;
4696 t1 = DECL_SIZE (t);
4697 if (t1 && t1 != error_mark_node && TREE_CODE (t1) != INTEGER_CST)
4698 return true;
4700 break;
4702 default:
4703 break;
4706 /* The current language may have other cases to check, but in general,
4707 all other types are not variably modified. */
4708 return lang_hooks.tree_inlining.var_mod_type_p (type);
4711 /* Given a DECL or TYPE, return the scope in which it was declared, or
4712 NULL_TREE if there is no containing scope. */
4714 tree
4715 get_containing_scope (tree t)
4717 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4720 /* Return the innermost context enclosing DECL that is
4721 a FUNCTION_DECL, or zero if none. */
4723 tree
4724 decl_function_context (tree decl)
4726 tree context;
4728 if (TREE_CODE (decl) == ERROR_MARK)
4729 return 0;
4731 if (TREE_CODE (decl) == SAVE_EXPR)
4732 context = SAVE_EXPR_CONTEXT (decl);
4734 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4735 where we look up the function at runtime. Such functions always take
4736 a first argument of type 'pointer to real context'.
4738 C++ should really be fixed to use DECL_CONTEXT for the real context,
4739 and use something else for the "virtual context". */
4740 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4741 context
4742 = TYPE_MAIN_VARIANT
4743 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4744 else
4745 context = DECL_CONTEXT (decl);
4747 while (context && TREE_CODE (context) != FUNCTION_DECL)
4749 if (TREE_CODE (context) == BLOCK)
4750 context = BLOCK_SUPERCONTEXT (context);
4751 else
4752 context = get_containing_scope (context);
4755 return context;
4758 /* Return the innermost context enclosing DECL that is
4759 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4760 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4762 tree
4763 decl_type_context (tree decl)
4765 tree context = DECL_CONTEXT (decl);
4767 while (context)
4768 switch (TREE_CODE (context))
4770 case NAMESPACE_DECL:
4771 case TRANSLATION_UNIT_DECL:
4772 return NULL_TREE;
4774 case RECORD_TYPE:
4775 case UNION_TYPE:
4776 case QUAL_UNION_TYPE:
4777 return context;
4779 case TYPE_DECL:
4780 case FUNCTION_DECL:
4781 context = DECL_CONTEXT (context);
4782 break;
4784 case BLOCK:
4785 context = BLOCK_SUPERCONTEXT (context);
4786 break;
4788 default:
4789 abort ();
4792 return NULL_TREE;
4795 /* CALL is a CALL_EXPR. Return the declaration for the function
4796 called, or NULL_TREE if the called function cannot be
4797 determined. */
4799 tree
4800 get_callee_fndecl (tree call)
4802 tree addr;
4804 /* It's invalid to call this function with anything but a
4805 CALL_EXPR. */
4806 if (TREE_CODE (call) != CALL_EXPR)
4807 abort ();
4809 /* The first operand to the CALL is the address of the function
4810 called. */
4811 addr = TREE_OPERAND (call, 0);
4813 STRIP_NOPS (addr);
4815 /* If this is a readonly function pointer, extract its initial value. */
4816 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4817 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4818 && DECL_INITIAL (addr))
4819 addr = DECL_INITIAL (addr);
4821 /* If the address is just `&f' for some function `f', then we know
4822 that `f' is being called. */
4823 if (TREE_CODE (addr) == ADDR_EXPR
4824 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4825 return TREE_OPERAND (addr, 0);
4827 /* We couldn't figure out what was being called. Maybe the front
4828 end has some idea. */
4829 return lang_hooks.lang_get_callee_fndecl (call);
4832 /* Print debugging information about tree nodes generated during the compile,
4833 and any language-specific information. */
4835 void
4836 dump_tree_statistics (void)
4838 #ifdef GATHER_STATISTICS
4839 int i;
4840 int total_nodes, total_bytes;
4841 #endif
4843 fprintf (stderr, "\n??? tree nodes created\n\n");
4844 #ifdef GATHER_STATISTICS
4845 fprintf (stderr, "Kind Nodes Bytes\n");
4846 fprintf (stderr, "---------------------------------------\n");
4847 total_nodes = total_bytes = 0;
4848 for (i = 0; i < (int) all_kinds; i++)
4850 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4851 tree_node_counts[i], tree_node_sizes[i]);
4852 total_nodes += tree_node_counts[i];
4853 total_bytes += tree_node_sizes[i];
4855 fprintf (stderr, "---------------------------------------\n");
4856 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4857 fprintf (stderr, "---------------------------------------\n");
4858 #else
4859 fprintf (stderr, "(No per-node statistics)\n");
4860 #endif
4861 print_type_hash_statistics ();
4862 lang_hooks.print_statistics ();
4865 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4867 /* Generate a crc32 of a string. */
4869 unsigned
4870 crc32_string (unsigned chksum, const char *string)
4874 unsigned value = *string << 24;
4875 unsigned ix;
4877 for (ix = 8; ix--; value <<= 1)
4879 unsigned feedback;
4881 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4882 chksum <<= 1;
4883 chksum ^= feedback;
4886 while (*string++);
4887 return chksum;
4890 /* P is a string that will be used in a symbol. Mask out any characters
4891 that are not valid in that context. */
4893 void
4894 clean_symbol_name (char *p)
4896 for (; *p; p++)
4897 if (! (ISALNUM (*p)
4898 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4899 || *p == '$'
4900 #endif
4901 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4902 || *p == '.'
4903 #endif
4905 *p = '_';
4908 /* Generate a name for a function unique to this translation unit.
4909 TYPE is some string to identify the purpose of this function to the
4910 linker or collect2. */
4912 tree
4913 get_file_function_name_long (const char *type)
4915 char *buf;
4916 const char *p;
4917 char *q;
4919 if (first_global_object_name)
4920 p = first_global_object_name;
4921 else
4923 /* We don't have anything that we know to be unique to this translation
4924 unit, so use what we do have and throw in some randomness. */
4925 unsigned len;
4926 const char *name = weak_global_object_name;
4927 const char *file = main_input_filename;
4929 if (! name)
4930 name = "";
4931 if (! file)
4932 file = input_filename;
4934 len = strlen (file);
4935 q = alloca (9 * 2 + len + 1);
4936 memcpy (q, file, len + 1);
4937 clean_symbol_name (q);
4939 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4940 crc32_string (0, flag_random_seed));
4942 p = q;
4945 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4947 /* Set up the name of the file-level functions we may need.
4948 Use a global object (which is already required to be unique over
4949 the program) rather than the file name (which imposes extra
4950 constraints). */
4951 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4953 return get_identifier (buf);
4956 /* If KIND=='I', return a suitable global initializer (constructor) name.
4957 If KIND=='D', return a suitable global clean-up (destructor) name. */
4959 tree
4960 get_file_function_name (int kind)
4962 char p[2];
4964 p[0] = kind;
4965 p[1] = 0;
4967 return get_file_function_name_long (p);
4970 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4971 The result is placed in BUFFER (which has length BIT_SIZE),
4972 with one bit in each char ('\000' or '\001').
4974 If the constructor is constant, NULL_TREE is returned.
4975 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4977 tree
4978 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4980 int i;
4981 tree vals;
4982 HOST_WIDE_INT domain_min
4983 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4984 tree non_const_bits = NULL_TREE;
4986 for (i = 0; i < bit_size; i++)
4987 buffer[i] = 0;
4989 for (vals = TREE_OPERAND (init, 1);
4990 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4992 if (!host_integerp (TREE_VALUE (vals), 0)
4993 || (TREE_PURPOSE (vals) != NULL_TREE
4994 && !host_integerp (TREE_PURPOSE (vals), 0)))
4995 non_const_bits
4996 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4997 else if (TREE_PURPOSE (vals) != NULL_TREE)
4999 /* Set a range of bits to ones. */
5000 HOST_WIDE_INT lo_index
5001 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5002 HOST_WIDE_INT hi_index
5003 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5005 if (lo_index < 0 || lo_index >= bit_size
5006 || hi_index < 0 || hi_index >= bit_size)
5007 abort ();
5008 for (; lo_index <= hi_index; lo_index++)
5009 buffer[lo_index] = 1;
5011 else
5013 /* Set a single bit to one. */
5014 HOST_WIDE_INT index
5015 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5016 if (index < 0 || index >= bit_size)
5018 error ("invalid initializer for bit string");
5019 return NULL_TREE;
5021 buffer[index] = 1;
5024 return non_const_bits;
5027 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5028 The result is placed in BUFFER (which is an array of bytes).
5029 If the constructor is constant, NULL_TREE is returned.
5030 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5032 tree
5033 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5035 int i;
5036 int set_word_size = BITS_PER_UNIT;
5037 int bit_size = wd_size * set_word_size;
5038 int bit_pos = 0;
5039 unsigned char *bytep = buffer;
5040 char *bit_buffer = alloca (bit_size);
5041 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5043 for (i = 0; i < wd_size; i++)
5044 buffer[i] = 0;
5046 for (i = 0; i < bit_size; i++)
5048 if (bit_buffer[i])
5050 if (BYTES_BIG_ENDIAN)
5051 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5052 else
5053 *bytep |= 1 << bit_pos;
5055 bit_pos++;
5056 if (bit_pos >= set_word_size)
5057 bit_pos = 0, bytep++;
5059 return non_const_bits;
5062 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5064 /* Complain that the tree code of NODE does not match the expected CODE.
5065 FILE, LINE, and FUNCTION are of the caller. */
5067 void
5068 tree_check_failed (const tree node, enum tree_code code, const char *file,
5069 int line, const char *function)
5071 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
5072 tree_code_name[code], tree_code_name[TREE_CODE (node)],
5073 function, trim_filename (file), line);
5076 /* Similar to above except that we allowed the code to be one of two
5077 different codes. */
5079 void
5080 tree_check2_failed (const tree node, enum tree_code code1,
5081 enum tree_code code2, const char *file,
5082 int line, const char *function)
5084 internal_error ("tree check: expected %s or %s, have %s in %s, at %s:%d",
5085 tree_code_name[code1], tree_code_name[code2],
5086 tree_code_name[TREE_CODE (node)],
5087 function, trim_filename (file), line);
5090 /* Likewise for three different codes. */
5092 void
5093 tree_check3_failed (const tree node, enum tree_code code1,
5094 enum tree_code code2, enum tree_code code3,
5095 const char *file, int line, const char *function)
5097 internal_error ("tree check: expected %s, %s or %s; have %s in %s, at %s:%d",
5098 tree_code_name[code1], tree_code_name[code2],
5099 tree_code_name[code3], tree_code_name[TREE_CODE (node)],
5100 function, trim_filename (file), line);
5103 /* ... and for four different codes. */
5105 void
5106 tree_check4_failed (const tree node, enum tree_code code1,
5107 enum tree_code code2, enum tree_code code3,
5108 enum tree_code code4, const char *file, int line,
5109 const char *function)
5111 internal_error
5112 ("tree check: expected %s, %s, %s or %s; have %s in %s, at %s:%d",
5113 tree_code_name[code1], tree_code_name[code2], tree_code_name[code3],
5114 tree_code_name[code4], tree_code_name[TREE_CODE (node)], function,
5115 trim_filename (file), line);
5118 /* ... and for five different codes. */
5120 void
5121 tree_check5_failed (const tree node, enum tree_code code1,
5122 enum tree_code code2, enum tree_code code3,
5123 enum tree_code code4, enum tree_code code5,
5124 const char *file, int line, const char *function)
5126 internal_error
5127 ("tree check: expected %s, %s, %s, %s or %s; have %s in %s, at %s:%d",
5128 tree_code_name[code1], tree_code_name[code2], tree_code_name[code3],
5129 tree_code_name[code4], tree_code_name[code5],
5130 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5133 /* Similar to tree_check_failed, except that we check for a class of tree
5134 code, given in CL. */
5136 void
5137 tree_class_check_failed (const tree node, int cl, const char *file,
5138 int line, const char *function)
5140 internal_error
5141 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
5142 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5143 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5146 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5147 (dynamically sized) vector. */
5149 void
5150 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5151 const char *function)
5153 internal_error
5154 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5155 idx + 1, len, function, trim_filename (file), line);
5158 /* Similar to above, except that the check is for the bounds of the operand
5159 vector of an expression node. */
5161 void
5162 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5163 int line, const char *function)
5165 internal_error
5166 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5167 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5168 function, trim_filename (file), line);
5170 #endif /* ENABLE_TREE_CHECKING */
5172 /* For a new vector type node T, build the information necessary for
5173 debugging output. */
5175 static void
5176 finish_vector_type (tree t)
5178 layout_type (t);
5181 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
5182 tree array = build_array_type (TREE_TYPE (t),
5183 build_index_type (index));
5184 tree rt = make_node (RECORD_TYPE);
5186 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5187 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5188 layout_type (rt);
5189 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5190 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5191 the representation type, and we want to find that die when looking up
5192 the vector type. This is most easily achieved by making the TYPE_UID
5193 numbers equal. */
5194 TYPE_UID (rt) = TYPE_UID (t);
5198 /* Create nodes for all integer types (and error_mark_node) using the sizes
5199 of C datatypes. The caller should call set_sizetype soon after calling
5200 this function to select one of the types as sizetype. */
5202 void
5203 build_common_tree_nodes (int signed_char)
5205 error_mark_node = make_node (ERROR_MARK);
5206 TREE_TYPE (error_mark_node) = error_mark_node;
5208 initialize_sizetypes ();
5210 /* Define both `signed char' and `unsigned char'. */
5211 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5212 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5214 /* Define `char', which is like either `signed char' or `unsigned char'
5215 but not the same as either. */
5216 char_type_node
5217 = (signed_char
5218 ? make_signed_type (CHAR_TYPE_SIZE)
5219 : make_unsigned_type (CHAR_TYPE_SIZE));
5221 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5222 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5223 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5224 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5225 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5226 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5227 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5228 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5230 /* Define a boolean type. This type only represents boolean values but
5231 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5232 Front ends which want to override this size (i.e. Java) can redefine
5233 boolean_type_node before calling build_common_tree_nodes_2. */
5234 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5235 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5236 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
5237 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
5238 TYPE_PRECISION (boolean_type_node) = 1;
5240 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
5241 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
5242 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
5243 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
5244 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
5246 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
5247 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
5248 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
5249 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
5250 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
5252 access_public_node = get_identifier ("public");
5253 access_protected_node = get_identifier ("protected");
5254 access_private_node = get_identifier ("private");
5257 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5258 It will create several other common tree nodes. */
5260 void
5261 build_common_tree_nodes_2 (int short_double)
5263 /* Define these next since types below may used them. */
5264 integer_zero_node = build_int_2 (0, 0);
5265 integer_one_node = build_int_2 (1, 0);
5266 integer_minus_one_node = build_int_2 (-1, -1);
5268 size_zero_node = size_int (0);
5269 size_one_node = size_int (1);
5270 bitsize_zero_node = bitsize_int (0);
5271 bitsize_one_node = bitsize_int (1);
5272 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5274 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5275 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5277 void_type_node = make_node (VOID_TYPE);
5278 layout_type (void_type_node);
5280 /* We are not going to have real types in C with less than byte alignment,
5281 so we might as well not have any types that claim to have it. */
5282 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5283 TYPE_USER_ALIGN (void_type_node) = 0;
5285 null_pointer_node = build_int_2 (0, 0);
5286 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5287 layout_type (TREE_TYPE (null_pointer_node));
5289 ptr_type_node = build_pointer_type (void_type_node);
5290 const_ptr_type_node
5291 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5293 float_type_node = make_node (REAL_TYPE);
5294 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5295 layout_type (float_type_node);
5297 double_type_node = make_node (REAL_TYPE);
5298 if (short_double)
5299 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5300 else
5301 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5302 layout_type (double_type_node);
5304 long_double_type_node = make_node (REAL_TYPE);
5305 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5306 layout_type (long_double_type_node);
5308 float_ptr_type_node = build_pointer_type (float_type_node);
5309 double_ptr_type_node = build_pointer_type (double_type_node);
5310 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5311 integer_ptr_type_node = build_pointer_type (integer_type_node);
5313 complex_integer_type_node = make_node (COMPLEX_TYPE);
5314 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5315 layout_type (complex_integer_type_node);
5317 complex_float_type_node = make_node (COMPLEX_TYPE);
5318 TREE_TYPE (complex_float_type_node) = float_type_node;
5319 layout_type (complex_float_type_node);
5321 complex_double_type_node = make_node (COMPLEX_TYPE);
5322 TREE_TYPE (complex_double_type_node) = double_type_node;
5323 layout_type (complex_double_type_node);
5325 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5326 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5327 layout_type (complex_long_double_type_node);
5330 tree t = targetm.build_builtin_va_list ();
5332 /* Many back-ends define record types without setting TYPE_NAME.
5333 If we copied the record type here, we'd keep the original
5334 record type without a name. This breaks name mangling. So,
5335 don't copy record types and let c_common_nodes_and_builtins()
5336 declare the type to be __builtin_va_list. */
5337 if (TREE_CODE (t) != RECORD_TYPE)
5338 t = build_type_copy (t);
5340 va_list_type_node = t;
5344 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5345 better way.
5347 If we requested a pointer to a vector, build up the pointers that
5348 we stripped off while looking for the inner type. Similarly for
5349 return values from functions.
5351 The argument TYPE is the top of the chain, and BOTTOM is the
5352 new type which we will point to. */
5354 tree
5355 reconstruct_complex_type (tree type, tree bottom)
5357 tree inner, outer;
5359 if (POINTER_TYPE_P (type))
5361 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5362 outer = build_pointer_type (inner);
5364 else if (TREE_CODE (type) == ARRAY_TYPE)
5366 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5367 outer = build_array_type (inner, TYPE_DOMAIN (type));
5369 else if (TREE_CODE (type) == FUNCTION_TYPE)
5371 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5372 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5374 else if (TREE_CODE (type) == METHOD_TYPE)
5376 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5377 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5378 inner,
5379 TYPE_ARG_TYPES (type));
5381 else
5382 return bottom;
5384 TYPE_READONLY (outer) = TYPE_READONLY (type);
5385 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5387 return outer;
5390 /* Returns a vector tree node given a vector mode and inner type. */
5391 tree
5392 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5394 tree t;
5395 t = make_node (VECTOR_TYPE);
5396 TREE_TYPE (t) = innertype;
5397 TYPE_MODE (t) = mode;
5398 finish_vector_type (t);
5399 return t;
5402 /* Similarly, but takes inner type and units. */
5404 tree
5405 build_vector_type (tree innertype, int nunits)
5407 enum machine_mode innermode = TYPE_MODE (innertype);
5408 enum machine_mode mode;
5410 if (GET_MODE_CLASS (innermode) == MODE_FLOAT)
5411 mode = MIN_MODE_VECTOR_FLOAT;
5412 else
5413 mode = MIN_MODE_VECTOR_INT;
5415 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
5416 if (GET_MODE_NUNITS (mode) == nunits && GET_MODE_INNER (mode) == innermode)
5417 return build_vector_type_for_mode (innertype, mode);
5419 return NULL_TREE;
5422 /* Given an initializer INIT, return TRUE if INIT is zero or some
5423 aggregate of zeros. Otherwise return FALSE. */
5424 bool
5425 initializer_zerop (tree init)
5427 STRIP_NOPS (init);
5429 switch (TREE_CODE (init))
5431 case INTEGER_CST:
5432 return integer_zerop (init);
5433 case REAL_CST:
5434 return real_zerop (init)
5435 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5436 case COMPLEX_CST:
5437 return integer_zerop (init)
5438 || (real_zerop (init)
5439 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5440 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5441 case CONSTRUCTOR:
5443 /* Set is empty if it has no elements. */
5444 if ((TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5445 && CONSTRUCTOR_ELTS (init))
5446 return false;
5448 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5450 tree aggr_init = CONSTRUCTOR_ELTS (init);
5452 while (aggr_init)
5454 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5455 return false;
5456 aggr_init = TREE_CHAIN (aggr_init);
5458 return true;
5460 return false;
5462 default:
5463 return false;
5467 #include "gt-tree.h"