1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
44 #include "basic-block.h"
47 struct target_optabs default_target_optabs
;
48 struct target_libfuncs default_target_libfuncs
;
50 struct target_optabs
*this_target_optabs
= &default_target_optabs
;
51 struct target_libfuncs
*this_target_libfuncs
= &default_target_libfuncs
;
54 #define libfunc_hash \
55 (this_target_libfuncs->x_libfunc_hash)
57 /* Contains the optab used for each rtx code. */
58 optab code_to_optab
[NUM_RTX_CODE
+ 1];
60 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
62 static rtx
expand_unop_direct (enum machine_mode
, optab
, rtx
, rtx
, int);
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
71 #define DECIMAL_PREFIX "dpd_"
74 /* Used for libfunc_hash. */
77 hash_libfunc (const void *p
)
79 const struct libfunc_entry
*const e
= (const struct libfunc_entry
*) p
;
81 return (((int) e
->mode1
+ (int) e
->mode2
* NUM_MACHINE_MODES
)
85 /* Used for libfunc_hash. */
88 eq_libfunc (const void *p
, const void *q
)
90 const struct libfunc_entry
*const e1
= (const struct libfunc_entry
*) p
;
91 const struct libfunc_entry
*const e2
= (const struct libfunc_entry
*) q
;
93 return (e1
->optab
== e2
->optab
94 && e1
->mode1
== e2
->mode1
95 && e1
->mode2
== e2
->mode2
);
98 /* Return libfunc corresponding operation defined by OPTAB converting
99 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
100 if no libfunc is available. */
102 convert_optab_libfunc (convert_optab optab
, enum machine_mode mode1
,
103 enum machine_mode mode2
)
105 struct libfunc_entry e
;
106 struct libfunc_entry
**slot
;
108 e
.optab
= (size_t) (optab
- &convert_optab_table
[0]);
111 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, NO_INSERT
);
114 if (optab
->libcall_gen
)
116 optab
->libcall_gen (optab
, optab
->libcall_basename
, mode1
, mode2
);
117 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, NO_INSERT
);
119 return (*slot
)->libfunc
;
125 return (*slot
)->libfunc
;
128 /* Return libfunc corresponding operation defined by OPTAB in MODE.
129 Trigger lazy initialization if needed, return NULL if no libfunc is
132 optab_libfunc (optab optab
, enum machine_mode mode
)
134 struct libfunc_entry e
;
135 struct libfunc_entry
**slot
;
137 e
.optab
= (size_t) (optab
- &optab_table
[0]);
140 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, NO_INSERT
);
143 if (optab
->libcall_gen
)
145 optab
->libcall_gen (optab
, optab
->libcall_basename
,
146 optab
->libcall_suffix
, mode
);
147 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
,
150 return (*slot
)->libfunc
;
156 return (*slot
)->libfunc
;
160 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
161 the result of operation CODE applied to OP0 (and OP1 if it is a binary
164 If the last insn does not set TARGET, don't do anything, but return 1.
166 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
167 don't add the REG_EQUAL note but return 0. Our caller can then try
168 again, ensuring that TARGET is not one of the operands. */
171 add_equal_note (rtx insns
, rtx target
, enum rtx_code code
, rtx op0
, rtx op1
)
173 rtx last_insn
, insn
, set
;
176 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
178 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
179 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
180 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
181 && GET_RTX_CLASS (code
) != RTX_COMPARE
182 && GET_RTX_CLASS (code
) != RTX_UNARY
)
185 if (GET_CODE (target
) == ZERO_EXTRACT
)
188 for (last_insn
= insns
;
189 NEXT_INSN (last_insn
) != NULL_RTX
;
190 last_insn
= NEXT_INSN (last_insn
))
193 set
= single_set (last_insn
);
197 if (! rtx_equal_p (SET_DEST (set
), target
)
198 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
199 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
200 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
203 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
204 besides the last insn. */
205 if (reg_overlap_mentioned_p (target
, op0
)
206 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
208 insn
= PREV_INSN (last_insn
);
209 while (insn
!= NULL_RTX
)
211 if (reg_set_p (target
, insn
))
214 insn
= PREV_INSN (insn
);
218 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
228 if (GET_MODE (op0
) != VOIDmode
&& GET_MODE (target
) != GET_MODE (op0
))
230 note
= gen_rtx_fmt_e (code
, GET_MODE (op0
), copy_rtx (op0
));
231 if (GET_MODE_SIZE (GET_MODE (op0
))
232 > GET_MODE_SIZE (GET_MODE (target
)))
233 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
234 note
, GET_MODE (op0
));
236 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
237 note
, GET_MODE (op0
));
242 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
246 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
248 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
253 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
254 for a widening operation would be. In most cases this would be OP0, but if
255 that's a constant it'll be VOIDmode, which isn't useful. */
257 static enum machine_mode
258 widened_mode (enum machine_mode to_mode
, rtx op0
, rtx op1
)
260 enum machine_mode m0
= GET_MODE (op0
);
261 enum machine_mode m1
= GET_MODE (op1
);
262 enum machine_mode result
;
264 if (m0
== VOIDmode
&& m1
== VOIDmode
)
266 else if (m0
== VOIDmode
|| GET_MODE_SIZE (m0
) < GET_MODE_SIZE (m1
))
271 if (GET_MODE_SIZE (result
) > GET_MODE_SIZE (to_mode
))
277 /* Find a widening optab even if it doesn't widen as much as we want.
278 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
279 direct HI->SI insn, then return SI->DI, if that exists.
280 If PERMIT_NON_WIDENING is non-zero then this can be used with
281 non-widening optabs also. */
284 find_widening_optab_handler_and_mode (optab op
, enum machine_mode to_mode
,
285 enum machine_mode from_mode
,
286 int permit_non_widening
,
287 enum machine_mode
*found_mode
)
289 for (; (permit_non_widening
|| from_mode
!= to_mode
)
290 && GET_MODE_SIZE (from_mode
) <= GET_MODE_SIZE (to_mode
)
291 && from_mode
!= VOIDmode
;
292 from_mode
= GET_MODE_WIDER_MODE (from_mode
))
294 enum insn_code handler
= widening_optab_handler (op
, to_mode
,
297 if (handler
!= CODE_FOR_nothing
)
300 *found_mode
= from_mode
;
305 return CODE_FOR_nothing
;
308 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
309 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
310 not actually do a sign-extend or zero-extend, but can leave the
311 higher-order bits of the result rtx undefined, for example, in the case
312 of logical operations, but not right shifts. */
315 widen_operand (rtx op
, enum machine_mode mode
, enum machine_mode oldmode
,
316 int unsignedp
, int no_extend
)
320 /* If we don't have to extend and this is a constant, return it. */
321 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
324 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
325 extend since it will be more efficient to do so unless the signedness of
326 a promoted object differs from our extension. */
328 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
329 && SUBREG_PROMOTED_UNSIGNED_P (op
) == unsignedp
))
330 return convert_modes (mode
, oldmode
, op
, unsignedp
);
332 /* If MODE is no wider than a single word, we return a paradoxical
334 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
335 return gen_rtx_SUBREG (mode
, force_reg (GET_MODE (op
), op
), 0);
337 /* Otherwise, get an object of MODE, clobber it, and set the low-order
340 result
= gen_reg_rtx (mode
);
341 emit_clobber (result
);
342 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
346 /* Return the optab used for computing the operation given by the tree code,
347 CODE and the tree EXP. This function is not always usable (for example, it
348 cannot give complete results for multiplication or division) but probably
349 ought to be relied on more widely throughout the expander. */
351 optab_for_tree_code (enum tree_code code
, const_tree type
,
352 enum optab_subtype subtype
)
364 return one_cmpl_optab
;
373 return TYPE_UNSIGNED (type
) ? umod_optab
: smod_optab
;
381 if (TYPE_SATURATING(type
))
382 return TYPE_UNSIGNED(type
) ? usdiv_optab
: ssdiv_optab
;
383 return TYPE_UNSIGNED (type
) ? udiv_optab
: sdiv_optab
;
386 if (TREE_CODE (type
) == VECTOR_TYPE
)
388 if (subtype
== optab_vector
)
389 return TYPE_SATURATING (type
) ? NULL
: vashl_optab
;
391 gcc_assert (subtype
== optab_scalar
);
393 if (TYPE_SATURATING(type
))
394 return TYPE_UNSIGNED(type
) ? usashl_optab
: ssashl_optab
;
398 if (TREE_CODE (type
) == VECTOR_TYPE
)
400 if (subtype
== optab_vector
)
401 return TYPE_UNSIGNED (type
) ? vlshr_optab
: vashr_optab
;
403 gcc_assert (subtype
== optab_scalar
);
405 return TYPE_UNSIGNED (type
) ? lshr_optab
: ashr_optab
;
408 if (TREE_CODE (type
) == VECTOR_TYPE
)
410 if (subtype
== optab_vector
)
413 gcc_assert (subtype
== optab_scalar
);
418 if (TREE_CODE (type
) == VECTOR_TYPE
)
420 if (subtype
== optab_vector
)
423 gcc_assert (subtype
== optab_scalar
);
428 return TYPE_UNSIGNED (type
) ? umax_optab
: smax_optab
;
431 return TYPE_UNSIGNED (type
) ? umin_optab
: smin_optab
;
433 case REALIGN_LOAD_EXPR
:
434 return vec_realign_load_optab
;
437 return TYPE_UNSIGNED (type
) ? usum_widen_optab
: ssum_widen_optab
;
440 return TYPE_UNSIGNED (type
) ? udot_prod_optab
: sdot_prod_optab
;
442 case WIDEN_MULT_PLUS_EXPR
:
443 return (TYPE_UNSIGNED (type
)
444 ? (TYPE_SATURATING (type
)
445 ? usmadd_widen_optab
: umadd_widen_optab
)
446 : (TYPE_SATURATING (type
)
447 ? ssmadd_widen_optab
: smadd_widen_optab
));
449 case WIDEN_MULT_MINUS_EXPR
:
450 return (TYPE_UNSIGNED (type
)
451 ? (TYPE_SATURATING (type
)
452 ? usmsub_widen_optab
: umsub_widen_optab
)
453 : (TYPE_SATURATING (type
)
454 ? ssmsub_widen_optab
: smsub_widen_optab
));
460 return TYPE_UNSIGNED (type
) ? reduc_umax_optab
: reduc_smax_optab
;
463 return TYPE_UNSIGNED (type
) ? reduc_umin_optab
: reduc_smin_optab
;
465 case REDUC_PLUS_EXPR
:
466 return TYPE_UNSIGNED (type
) ? reduc_uplus_optab
: reduc_splus_optab
;
468 case VEC_LSHIFT_EXPR
:
469 return vec_shl_optab
;
471 case VEC_RSHIFT_EXPR
:
472 return vec_shr_optab
;
474 case VEC_WIDEN_MULT_HI_EXPR
:
475 return TYPE_UNSIGNED (type
) ?
476 vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
478 case VEC_WIDEN_MULT_LO_EXPR
:
479 return TYPE_UNSIGNED (type
) ?
480 vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
482 case VEC_WIDEN_LSHIFT_HI_EXPR
:
483 return TYPE_UNSIGNED (type
) ?
484 vec_widen_ushiftl_hi_optab
: vec_widen_sshiftl_hi_optab
;
486 case VEC_WIDEN_LSHIFT_LO_EXPR
:
487 return TYPE_UNSIGNED (type
) ?
488 vec_widen_ushiftl_lo_optab
: vec_widen_sshiftl_lo_optab
;
490 case VEC_UNPACK_HI_EXPR
:
491 return TYPE_UNSIGNED (type
) ?
492 vec_unpacku_hi_optab
: vec_unpacks_hi_optab
;
494 case VEC_UNPACK_LO_EXPR
:
495 return TYPE_UNSIGNED (type
) ?
496 vec_unpacku_lo_optab
: vec_unpacks_lo_optab
;
498 case VEC_UNPACK_FLOAT_HI_EXPR
:
499 /* The signedness is determined from input operand. */
500 return TYPE_UNSIGNED (type
) ?
501 vec_unpacku_float_hi_optab
: vec_unpacks_float_hi_optab
;
503 case VEC_UNPACK_FLOAT_LO_EXPR
:
504 /* The signedness is determined from input operand. */
505 return TYPE_UNSIGNED (type
) ?
506 vec_unpacku_float_lo_optab
: vec_unpacks_float_lo_optab
;
508 case VEC_PACK_TRUNC_EXPR
:
509 return vec_pack_trunc_optab
;
511 case VEC_PACK_SAT_EXPR
:
512 return TYPE_UNSIGNED (type
) ? vec_pack_usat_optab
: vec_pack_ssat_optab
;
514 case VEC_PACK_FIX_TRUNC_EXPR
:
515 /* The signedness is determined from output operand. */
516 return TYPE_UNSIGNED (type
) ?
517 vec_pack_ufix_trunc_optab
: vec_pack_sfix_trunc_optab
;
523 trapv
= INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_TRAPS (type
);
526 case POINTER_PLUS_EXPR
:
528 if (TYPE_SATURATING(type
))
529 return TYPE_UNSIGNED(type
) ? usadd_optab
: ssadd_optab
;
530 return trapv
? addv_optab
: add_optab
;
533 if (TYPE_SATURATING(type
))
534 return TYPE_UNSIGNED(type
) ? ussub_optab
: sssub_optab
;
535 return trapv
? subv_optab
: sub_optab
;
538 if (TYPE_SATURATING(type
))
539 return TYPE_UNSIGNED(type
) ? usmul_optab
: ssmul_optab
;
540 return trapv
? smulv_optab
: smul_optab
;
543 if (TYPE_SATURATING(type
))
544 return TYPE_UNSIGNED(type
) ? usneg_optab
: ssneg_optab
;
545 return trapv
? negv_optab
: neg_optab
;
548 return trapv
? absv_optab
: abs_optab
;
556 /* Expand vector widening operations.
558 There are two different classes of operations handled here:
559 1) Operations whose result is wider than all the arguments to the operation.
560 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
561 In this case OP0 and optionally OP1 would be initialized,
562 but WIDE_OP wouldn't (not relevant for this case).
563 2) Operations whose result is of the same size as the last argument to the
564 operation, but wider than all the other arguments to the operation.
565 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
566 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
568 E.g, when called to expand the following operations, this is how
569 the arguments will be initialized:
571 widening-sum 2 oprnd0 - oprnd1
572 widening-dot-product 3 oprnd0 oprnd1 oprnd2
573 widening-mult 2 oprnd0 oprnd1 -
574 type-promotion (vec-unpack) 1 oprnd0 - - */
577 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
578 rtx target
, int unsignedp
)
580 struct expand_operand eops
[4];
581 tree oprnd0
, oprnd1
, oprnd2
;
582 enum machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
583 optab widen_pattern_optab
;
584 enum insn_code icode
;
585 int nops
= TREE_CODE_LENGTH (ops
->code
);
589 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
590 widen_pattern_optab
=
591 optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
592 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
593 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
594 icode
= find_widening_optab_handler (widen_pattern_optab
,
595 TYPE_MODE (TREE_TYPE (ops
->op2
)),
598 icode
= optab_handler (widen_pattern_optab
, tmode0
);
599 gcc_assert (icode
!= CODE_FOR_nothing
);
604 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
607 /* The last operand is of a wider mode than the rest of the operands. */
612 gcc_assert (tmode1
== tmode0
);
615 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
619 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
620 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
622 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
624 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
625 expand_insn (icode
, op
, eops
);
626 return eops
[0].value
;
629 /* Generate code to perform an operation specified by TERNARY_OPTAB
630 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
632 UNSIGNEDP is for the case where we have to widen the operands
633 to perform the operation. It says to use zero-extension.
635 If TARGET is nonzero, the value
636 is generated there, if it is convenient to do so.
637 In all cases an rtx is returned for the locus of the value;
638 this may or may not be TARGET. */
641 expand_ternary_op (enum machine_mode mode
, optab ternary_optab
, rtx op0
,
642 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
644 struct expand_operand ops
[4];
645 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
647 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
649 create_output_operand (&ops
[0], target
, mode
);
650 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
651 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
652 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
653 expand_insn (icode
, 4, ops
);
658 /* Like expand_binop, but return a constant rtx if the result can be
659 calculated at compile time. The arguments and return value are
660 otherwise the same as for expand_binop. */
663 simplify_expand_binop (enum machine_mode mode
, optab binoptab
,
664 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
665 enum optab_methods methods
)
667 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
669 rtx x
= simplify_binary_operation (binoptab
->code
, mode
, op0
, op1
);
675 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
678 /* Like simplify_expand_binop, but always put the result in TARGET.
679 Return true if the expansion succeeded. */
682 force_expand_binop (enum machine_mode mode
, optab binoptab
,
683 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
684 enum optab_methods methods
)
686 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
687 target
, unsignedp
, methods
);
691 emit_move_insn (target
, x
);
695 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
698 expand_vec_shift_expr (sepops ops
, rtx target
)
700 struct expand_operand eops
[3];
701 enum insn_code icode
;
702 rtx rtx_op1
, rtx_op2
;
703 enum machine_mode mode
= TYPE_MODE (ops
->type
);
704 tree vec_oprnd
= ops
->op0
;
705 tree shift_oprnd
= ops
->op1
;
710 case VEC_RSHIFT_EXPR
:
711 shift_optab
= vec_shr_optab
;
713 case VEC_LSHIFT_EXPR
:
714 shift_optab
= vec_shl_optab
;
720 icode
= optab_handler (shift_optab
, mode
);
721 gcc_assert (icode
!= CODE_FOR_nothing
);
723 rtx_op1
= expand_normal (vec_oprnd
);
724 rtx_op2
= expand_normal (shift_oprnd
);
726 create_output_operand (&eops
[0], target
, mode
);
727 create_input_operand (&eops
[1], rtx_op1
, GET_MODE (rtx_op1
));
728 create_convert_operand_from_type (&eops
[2], rtx_op2
, TREE_TYPE (shift_oprnd
));
729 expand_insn (icode
, 3, eops
);
731 return eops
[0].value
;
734 /* Create a new vector value in VMODE with all elements set to OP. The
735 mode of OP must be the element mode of VMODE. If OP is a constant,
736 then the return value will be a constant. */
739 expand_vector_broadcast (enum machine_mode vmode
, rtx op
)
741 enum insn_code icode
;
746 gcc_checking_assert (VECTOR_MODE_P (vmode
));
748 n
= GET_MODE_NUNITS (vmode
);
749 vec
= rtvec_alloc (n
);
750 for (i
= 0; i
< n
; ++i
)
751 RTVEC_ELT (vec
, i
) = op
;
754 return gen_rtx_CONST_VECTOR (vmode
, vec
);
756 /* ??? If the target doesn't have a vec_init, then we have no easy way
757 of performing this operation. Most of this sort of generic support
758 is hidden away in the vector lowering support in gimple. */
759 icode
= optab_handler (vec_init_optab
, vmode
);
760 if (icode
== CODE_FOR_nothing
)
763 ret
= gen_reg_rtx (vmode
);
764 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
769 /* This subroutine of expand_doubleword_shift handles the cases in which
770 the effective shift value is >= BITS_PER_WORD. The arguments and return
771 value are the same as for the parent routine, except that SUPERWORD_OP1
772 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
773 INTO_TARGET may be null if the caller has decided to calculate it. */
776 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
777 rtx outof_target
, rtx into_target
,
778 int unsignedp
, enum optab_methods methods
)
780 if (into_target
!= 0)
781 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
782 into_target
, unsignedp
, methods
))
785 if (outof_target
!= 0)
787 /* For a signed right shift, we must fill OUTOF_TARGET with copies
788 of the sign bit, otherwise we must fill it with zeros. */
789 if (binoptab
!= ashr_optab
)
790 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
792 if (!force_expand_binop (word_mode
, binoptab
,
793 outof_input
, GEN_INT (BITS_PER_WORD
- 1),
794 outof_target
, unsignedp
, methods
))
800 /* This subroutine of expand_doubleword_shift handles the cases in which
801 the effective shift value is < BITS_PER_WORD. The arguments and return
802 value are the same as for the parent routine. */
805 expand_subword_shift (enum machine_mode op1_mode
, optab binoptab
,
806 rtx outof_input
, rtx into_input
, rtx op1
,
807 rtx outof_target
, rtx into_target
,
808 int unsignedp
, enum optab_methods methods
,
809 unsigned HOST_WIDE_INT shift_mask
)
811 optab reverse_unsigned_shift
, unsigned_shift
;
814 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
815 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
817 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
818 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
819 the opposite direction to BINOPTAB. */
820 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
822 carries
= outof_input
;
823 tmp
= immed_double_const (BITS_PER_WORD
, 0, op1_mode
);
824 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
829 /* We must avoid shifting by BITS_PER_WORD bits since that is either
830 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
831 has unknown behavior. Do a single shift first, then shift by the
832 remainder. It's OK to use ~OP1 as the remainder if shift counts
833 are truncated to the mode size. */
834 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
835 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
836 if (shift_mask
== BITS_PER_WORD
- 1)
838 tmp
= immed_double_const (-1, -1, op1_mode
);
839 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
844 tmp
= immed_double_const (BITS_PER_WORD
- 1, 0, op1_mode
);
845 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
849 if (tmp
== 0 || carries
== 0)
851 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
852 carries
, tmp
, 0, unsignedp
, methods
);
856 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
857 so the result can go directly into INTO_TARGET if convenient. */
858 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
859 into_target
, unsignedp
, methods
);
863 /* Now OR in the bits carried over from OUTOF_INPUT. */
864 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
865 into_target
, unsignedp
, methods
))
868 /* Use a standard word_mode shift for the out-of half. */
869 if (outof_target
!= 0)
870 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
871 outof_target
, unsignedp
, methods
))
878 #ifdef HAVE_conditional_move
879 /* Try implementing expand_doubleword_shift using conditional moves.
880 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
881 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
882 are the shift counts to use in the former and latter case. All other
883 arguments are the same as the parent routine. */
886 expand_doubleword_shift_condmove (enum machine_mode op1_mode
, optab binoptab
,
887 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
888 rtx outof_input
, rtx into_input
,
889 rtx subword_op1
, rtx superword_op1
,
890 rtx outof_target
, rtx into_target
,
891 int unsignedp
, enum optab_methods methods
,
892 unsigned HOST_WIDE_INT shift_mask
)
894 rtx outof_superword
, into_superword
;
896 /* Put the superword version of the output into OUTOF_SUPERWORD and
898 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
899 if (outof_target
!= 0 && subword_op1
== superword_op1
)
901 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
902 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
903 into_superword
= outof_target
;
904 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
905 outof_superword
, 0, unsignedp
, methods
))
910 into_superword
= gen_reg_rtx (word_mode
);
911 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
912 outof_superword
, into_superword
,
917 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
918 if (!expand_subword_shift (op1_mode
, binoptab
,
919 outof_input
, into_input
, subword_op1
,
920 outof_target
, into_target
,
921 unsignedp
, methods
, shift_mask
))
924 /* Select between them. Do the INTO half first because INTO_SUPERWORD
925 might be the current value of OUTOF_TARGET. */
926 if (!emit_conditional_move (into_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
927 into_target
, into_superword
, word_mode
, false))
930 if (outof_target
!= 0)
931 if (!emit_conditional_move (outof_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
932 outof_target
, outof_superword
,
940 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
941 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
942 input operand; the shift moves bits in the direction OUTOF_INPUT->
943 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
944 of the target. OP1 is the shift count and OP1_MODE is its mode.
945 If OP1 is constant, it will have been truncated as appropriate
946 and is known to be nonzero.
948 If SHIFT_MASK is zero, the result of word shifts is undefined when the
949 shift count is outside the range [0, BITS_PER_WORD). This routine must
950 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
952 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
953 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
954 fill with zeros or sign bits as appropriate.
956 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
957 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
958 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
959 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
962 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
963 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
964 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
965 function wants to calculate it itself.
967 Return true if the shift could be successfully synthesized. */
970 expand_doubleword_shift (enum machine_mode op1_mode
, optab binoptab
,
971 rtx outof_input
, rtx into_input
, rtx op1
,
972 rtx outof_target
, rtx into_target
,
973 int unsignedp
, enum optab_methods methods
,
974 unsigned HOST_WIDE_INT shift_mask
)
976 rtx superword_op1
, tmp
, cmp1
, cmp2
;
977 rtx subword_label
, done_label
;
978 enum rtx_code cmp_code
;
980 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
981 fill the result with sign or zero bits as appropriate. If so, the value
982 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
983 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
984 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
986 This isn't worthwhile for constant shifts since the optimizers will
987 cope better with in-range shift counts. */
988 if (shift_mask
>= BITS_PER_WORD
990 && !CONSTANT_P (op1
))
992 if (!expand_doubleword_shift (op1_mode
, binoptab
,
993 outof_input
, into_input
, op1
,
995 unsignedp
, methods
, shift_mask
))
997 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
998 outof_target
, unsignedp
, methods
))
1003 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1004 is true when the effective shift value is less than BITS_PER_WORD.
1005 Set SUPERWORD_OP1 to the shift count that should be used to shift
1006 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1007 tmp
= immed_double_const (BITS_PER_WORD
, 0, op1_mode
);
1008 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
1010 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1011 is a subword shift count. */
1012 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
1014 cmp2
= CONST0_RTX (op1_mode
);
1016 superword_op1
= op1
;
1020 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1021 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
1023 cmp2
= CONST0_RTX (op1_mode
);
1025 superword_op1
= cmp1
;
1030 /* If we can compute the condition at compile time, pick the
1031 appropriate subroutine. */
1032 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
1033 if (tmp
!= 0 && CONST_INT_P (tmp
))
1035 if (tmp
== const0_rtx
)
1036 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
1037 outof_target
, into_target
,
1038 unsignedp
, methods
);
1040 return expand_subword_shift (op1_mode
, binoptab
,
1041 outof_input
, into_input
, op1
,
1042 outof_target
, into_target
,
1043 unsignedp
, methods
, shift_mask
);
1046 #ifdef HAVE_conditional_move
1047 /* Try using conditional moves to generate straight-line code. */
1049 rtx start
= get_last_insn ();
1050 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
1051 cmp_code
, cmp1
, cmp2
,
1052 outof_input
, into_input
,
1054 outof_target
, into_target
,
1055 unsignedp
, methods
, shift_mask
))
1057 delete_insns_since (start
);
1061 /* As a last resort, use branches to select the correct alternative. */
1062 subword_label
= gen_label_rtx ();
1063 done_label
= gen_label_rtx ();
1066 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
1067 0, 0, subword_label
, -1);
1070 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
1071 outof_target
, into_target
,
1072 unsignedp
, methods
))
1075 emit_jump_insn (gen_jump (done_label
));
1077 emit_label (subword_label
);
1079 if (!expand_subword_shift (op1_mode
, binoptab
,
1080 outof_input
, into_input
, op1
,
1081 outof_target
, into_target
,
1082 unsignedp
, methods
, shift_mask
))
1085 emit_label (done_label
);
1089 /* Subroutine of expand_binop. Perform a double word multiplication of
1090 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1091 as the target's word_mode. This function return NULL_RTX if anything
1092 goes wrong, in which case it may have already emitted instructions
1093 which need to be deleted.
1095 If we want to multiply two two-word values and have normal and widening
1096 multiplies of single-word values, we can do this with three smaller
1099 The multiplication proceeds as follows:
1100 _______________________
1101 [__op0_high_|__op0_low__]
1102 _______________________
1103 * [__op1_high_|__op1_low__]
1104 _______________________________________________
1105 _______________________
1106 (1) [__op0_low__*__op1_low__]
1107 _______________________
1108 (2a) [__op0_low__*__op1_high_]
1109 _______________________
1110 (2b) [__op0_high_*__op1_low__]
1111 _______________________
1112 (3) [__op0_high_*__op1_high_]
1115 This gives a 4-word result. Since we are only interested in the
1116 lower 2 words, partial result (3) and the upper words of (2a) and
1117 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1118 calculated using non-widening multiplication.
1120 (1), however, needs to be calculated with an unsigned widening
1121 multiplication. If this operation is not directly supported we
1122 try using a signed widening multiplication and adjust the result.
1123 This adjustment works as follows:
1125 If both operands are positive then no adjustment is needed.
1127 If the operands have different signs, for example op0_low < 0 and
1128 op1_low >= 0, the instruction treats the most significant bit of
1129 op0_low as a sign bit instead of a bit with significance
1130 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1131 with 2**BITS_PER_WORD - op0_low, and two's complements the
1132 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1135 Similarly, if both operands are negative, we need to add
1136 (op0_low + op1_low) * 2**BITS_PER_WORD.
1138 We use a trick to adjust quickly. We logically shift op0_low right
1139 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1140 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1141 logical shift exists, we do an arithmetic right shift and subtract
1145 expand_doubleword_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
1146 bool umulp
, enum optab_methods methods
)
1148 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
1149 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
1150 rtx wordm1
= umulp
? NULL_RTX
: GEN_INT (BITS_PER_WORD
- 1);
1151 rtx product
, adjust
, product_high
, temp
;
1153 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
1154 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
1155 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
1156 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
1158 /* If we're using an unsigned multiply to directly compute the product
1159 of the low-order words of the operands and perform any required
1160 adjustments of the operands, we begin by trying two more multiplications
1161 and then computing the appropriate sum.
1163 We have checked above that the required addition is provided.
1164 Full-word addition will normally always succeed, especially if
1165 it is provided at all, so we don't worry about its failure. The
1166 multiplication may well fail, however, so we do handle that. */
1170 /* ??? This could be done with emit_store_flag where available. */
1171 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
1172 NULL_RTX
, 1, methods
);
1174 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
1175 NULL_RTX
, 0, OPTAB_DIRECT
);
1178 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
1179 NULL_RTX
, 0, methods
);
1182 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
1183 NULL_RTX
, 0, OPTAB_DIRECT
);
1190 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
1191 NULL_RTX
, 0, OPTAB_DIRECT
);
1195 /* OP0_HIGH should now be dead. */
1199 /* ??? This could be done with emit_store_flag where available. */
1200 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
1201 NULL_RTX
, 1, methods
);
1203 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
1204 NULL_RTX
, 0, OPTAB_DIRECT
);
1207 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
1208 NULL_RTX
, 0, methods
);
1211 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
1212 NULL_RTX
, 0, OPTAB_DIRECT
);
1219 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
1220 NULL_RTX
, 0, OPTAB_DIRECT
);
1224 /* OP1_HIGH should now be dead. */
1226 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
1227 NULL_RTX
, 0, OPTAB_DIRECT
);
1229 if (target
&& !REG_P (target
))
1233 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
1234 target
, 1, OPTAB_DIRECT
);
1236 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
1237 target
, 1, OPTAB_DIRECT
);
1242 product_high
= operand_subword (product
, high
, 1, mode
);
1243 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
1244 NULL_RTX
, 0, OPTAB_DIRECT
);
1245 emit_move_insn (product_high
, adjust
);
1249 /* Wrapper around expand_binop which takes an rtx code to specify
1250 the operation to perform, not an optab pointer. All other
1251 arguments are the same. */
1253 expand_simple_binop (enum machine_mode mode
, enum rtx_code code
, rtx op0
,
1254 rtx op1
, rtx target
, int unsignedp
,
1255 enum optab_methods methods
)
1257 optab binop
= code_to_optab
[(int) code
];
1260 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
1263 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1264 binop. Order them according to commutative_operand_precedence and, if
1265 possible, try to put TARGET or a pseudo first. */
1267 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
1269 int op0_prec
= commutative_operand_precedence (op0
);
1270 int op1_prec
= commutative_operand_precedence (op1
);
1272 if (op0_prec
< op1_prec
)
1275 if (op0_prec
> op1_prec
)
1278 /* With equal precedence, both orders are ok, but it is better if the
1279 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1280 if (target
== 0 || REG_P (target
))
1281 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
1283 return rtx_equal_p (op1
, target
);
1286 /* Return true if BINOPTAB implements a shift operation. */
1289 shift_optab_p (optab binoptab
)
1291 switch (binoptab
->code
)
1307 /* Return true if BINOPTAB implements a commutative binary operation. */
1310 commutative_optab_p (optab binoptab
)
1312 return (GET_RTX_CLASS (binoptab
->code
) == RTX_COMM_ARITH
1313 || binoptab
== smul_widen_optab
1314 || binoptab
== umul_widen_optab
1315 || binoptab
== smul_highpart_optab
1316 || binoptab
== umul_highpart_optab
);
1319 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1320 optimizing, and if the operand is a constant that costs more than
1321 1 instruction, force the constant into a register and return that
1322 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1325 avoid_expensive_constant (enum machine_mode mode
, optab binoptab
,
1326 int opn
, rtx x
, bool unsignedp
)
1328 bool speed
= optimize_insn_for_speed_p ();
1330 if (mode
!= VOIDmode
1333 && rtx_cost (x
, binoptab
->code
, opn
, speed
) > set_src_cost (x
, speed
))
1335 if (CONST_INT_P (x
))
1337 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
1338 if (intval
!= INTVAL (x
))
1339 x
= GEN_INT (intval
);
1342 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
1343 x
= force_reg (mode
, x
);
1348 /* Helper function for expand_binop: handle the case where there
1349 is an insn that directly implements the indicated operation.
1350 Returns null if this is not possible. */
1352 expand_binop_directly (enum machine_mode mode
, optab binoptab
,
1354 rtx target
, int unsignedp
, enum optab_methods methods
,
1357 enum machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
1358 enum insn_code icode
= find_widening_optab_handler (binoptab
, mode
,
1360 enum machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
1361 enum machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
1362 enum machine_mode mode0
, mode1
, tmp_mode
;
1363 struct expand_operand ops
[3];
1366 rtx xop0
= op0
, xop1
= op1
;
1369 /* If it is a commutative operator and the modes would match
1370 if we would swap the operands, we can save the conversions. */
1371 commutative_p
= commutative_optab_p (binoptab
);
1373 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1374 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode1
)
1381 /* If we are optimizing, force expensive constants into a register. */
1382 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1383 if (!shift_optab_p (binoptab
))
1384 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1386 /* In case the insn wants input operands in modes different from
1387 those of the actual operands, convert the operands. It would
1388 seem that we don't need to convert CONST_INTs, but we do, so
1389 that they're properly zero-extended, sign-extended or truncated
1392 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1393 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1395 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1399 mode1
= GET_MODE (xop1
) != VOIDmode
? GET_MODE (xop1
) : mode
;
1400 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1402 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1406 /* If operation is commutative,
1407 try to make the first operand a register.
1408 Even better, try to make it the same as the target.
1409 Also try to make the last operand a constant. */
1411 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1418 /* Now, if insn's predicates don't allow our operands, put them into
1421 if (binoptab
== vec_pack_trunc_optab
1422 || binoptab
== vec_pack_usat_optab
1423 || binoptab
== vec_pack_ssat_optab
1424 || binoptab
== vec_pack_ufix_trunc_optab
1425 || binoptab
== vec_pack_sfix_trunc_optab
)
1427 /* The mode of the result is different then the mode of the
1429 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1430 if (GET_MODE_NUNITS (tmp_mode
) != 2 * GET_MODE_NUNITS (mode
))
1432 delete_insns_since (last
);
1439 create_output_operand (&ops
[0], target
, tmp_mode
);
1440 create_input_operand (&ops
[1], xop0
, mode0
);
1441 create_input_operand (&ops
[2], xop1
, mode1
);
1442 pat
= maybe_gen_insn (icode
, 3, ops
);
1445 /* If PAT is composed of more than one insn, try to add an appropriate
1446 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1447 operand, call expand_binop again, this time without a target. */
1448 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1449 && ! add_equal_note (pat
, ops
[0].value
, binoptab
->code
,
1450 ops
[1].value
, ops
[2].value
))
1452 delete_insns_since (last
);
1453 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1454 unsignedp
, methods
);
1458 return ops
[0].value
;
1460 delete_insns_since (last
);
1464 /* Generate code to perform an operation specified by BINOPTAB
1465 on operands OP0 and OP1, with result having machine-mode MODE.
1467 UNSIGNEDP is for the case where we have to widen the operands
1468 to perform the operation. It says to use zero-extension.
1470 If TARGET is nonzero, the value
1471 is generated there, if it is convenient to do so.
1472 In all cases an rtx is returned for the locus of the value;
1473 this may or may not be TARGET. */
1476 expand_binop (enum machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1477 rtx target
, int unsignedp
, enum optab_methods methods
)
1479 enum optab_methods next_methods
1480 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1481 ? OPTAB_WIDEN
: methods
);
1482 enum mode_class mclass
;
1483 enum machine_mode wider_mode
;
1486 rtx entry_last
= get_last_insn ();
1489 mclass
= GET_MODE_CLASS (mode
);
1491 /* If subtracting an integer constant, convert this into an addition of
1492 the negated constant. */
1494 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1496 op1
= negate_rtx (mode
, op1
);
1497 binoptab
= add_optab
;
1500 /* Record where to delete back to if we backtrack. */
1501 last
= get_last_insn ();
1503 /* If we can do it with a three-operand insn, do so. */
1505 if (methods
!= OPTAB_MUST_WIDEN
1506 && find_widening_optab_handler (binoptab
, mode
,
1507 widened_mode (mode
, op0
, op1
), 1)
1508 != CODE_FOR_nothing
)
1510 temp
= expand_binop_directly (mode
, binoptab
, op0
, op1
, target
,
1511 unsignedp
, methods
, last
);
1516 /* If we were trying to rotate, and that didn't work, try rotating
1517 the other direction before falling back to shifts and bitwise-or. */
1518 if (((binoptab
== rotl_optab
1519 && optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
1520 || (binoptab
== rotr_optab
1521 && optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
))
1522 && mclass
== MODE_INT
)
1524 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1526 unsigned int bits
= GET_MODE_PRECISION (mode
);
1528 if (CONST_INT_P (op1
))
1529 newop1
= GEN_INT (bits
- INTVAL (op1
));
1530 else if (targetm
.shift_truncation_mask (mode
) == bits
- 1)
1531 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1533 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1534 GEN_INT (bits
), op1
,
1535 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1537 temp
= expand_binop_directly (mode
, otheroptab
, op0
, newop1
,
1538 target
, unsignedp
, methods
, last
);
1543 /* If this is a multiply, see if we can do a widening operation that
1544 takes operands of this mode and makes a wider mode. */
1546 if (binoptab
== smul_optab
1547 && GET_MODE_2XWIDER_MODE (mode
) != VOIDmode
1548 && (widening_optab_handler ((unsignedp
? umul_widen_optab
1549 : smul_widen_optab
),
1550 GET_MODE_2XWIDER_MODE (mode
), mode
)
1551 != CODE_FOR_nothing
))
1553 temp
= expand_binop (GET_MODE_2XWIDER_MODE (mode
),
1554 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1555 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1559 if (GET_MODE_CLASS (mode
) == MODE_INT
1560 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1561 return gen_lowpart (mode
, temp
);
1563 return convert_to_mode (mode
, temp
, unsignedp
);
1567 /* If this is a vector shift by a scalar, see if we can do a vector
1568 shift by a vector. If so, broadcast the scalar into a vector. */
1569 if (mclass
== MODE_VECTOR_INT
)
1571 optab otheroptab
= NULL
;
1573 if (binoptab
== ashl_optab
)
1574 otheroptab
= vashl_optab
;
1575 else if (binoptab
== ashr_optab
)
1576 otheroptab
= vashr_optab
;
1577 else if (binoptab
== lshr_optab
)
1578 otheroptab
= vlshr_optab
;
1579 else if (binoptab
== rotl_optab
)
1580 otheroptab
= vrotl_optab
;
1581 else if (binoptab
== rotr_optab
)
1582 otheroptab
= vrotr_optab
;
1584 if (otheroptab
&& optab_handler (otheroptab
, mode
) != CODE_FOR_nothing
)
1586 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1589 temp
= expand_binop_directly (mode
, otheroptab
, op0
, vop1
,
1590 target
, unsignedp
, methods
, last
);
1597 /* Look for a wider mode of the same class for which we think we
1598 can open-code the operation. Check for a widening multiply at the
1599 wider mode as well. */
1601 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1602 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1603 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
1604 wider_mode
!= VOIDmode
;
1605 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1607 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1608 || (binoptab
== smul_optab
1609 && GET_MODE_WIDER_MODE (wider_mode
) != VOIDmode
1610 && (find_widening_optab_handler ((unsignedp
1612 : smul_widen_optab
),
1613 GET_MODE_WIDER_MODE (wider_mode
),
1615 != CODE_FOR_nothing
)))
1617 rtx xop0
= op0
, xop1
= op1
;
1620 /* For certain integer operations, we need not actually extend
1621 the narrow operands, as long as we will truncate
1622 the results to the same narrowness. */
1624 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1625 || binoptab
== xor_optab
1626 || binoptab
== add_optab
|| binoptab
== sub_optab
1627 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1628 && mclass
== MODE_INT
)
1631 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1633 if (binoptab
!= ashl_optab
)
1634 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1638 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1640 /* The second operand of a shift must always be extended. */
1641 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1642 no_extend
&& binoptab
!= ashl_optab
);
1644 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1645 unsignedp
, OPTAB_DIRECT
);
1648 if (mclass
!= MODE_INT
1649 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1652 target
= gen_reg_rtx (mode
);
1653 convert_move (target
, temp
, 0);
1657 return gen_lowpart (mode
, temp
);
1660 delete_insns_since (last
);
1664 /* If operation is commutative,
1665 try to make the first operand a register.
1666 Even better, try to make it the same as the target.
1667 Also try to make the last operand a constant. */
1668 if (commutative_optab_p (binoptab
)
1669 && swap_commutative_operands_with_target (target
, op0
, op1
))
1676 /* These can be done a word at a time. */
1677 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1678 && mclass
== MODE_INT
1679 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
1680 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1685 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1686 won't be accurate, so use a new target. */
1690 || !valid_multiword_target_p (target
))
1691 target
= gen_reg_rtx (mode
);
1695 /* Do the actual arithmetic. */
1696 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
1698 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
1699 rtx x
= expand_binop (word_mode
, binoptab
,
1700 operand_subword_force (op0
, i
, mode
),
1701 operand_subword_force (op1
, i
, mode
),
1702 target_piece
, unsignedp
, next_methods
);
1707 if (target_piece
!= x
)
1708 emit_move_insn (target_piece
, x
);
1711 insns
= get_insns ();
1714 if (i
== GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
)
1721 /* Synthesize double word shifts from single word shifts. */
1722 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1723 || binoptab
== ashr_optab
)
1724 && mclass
== MODE_INT
1725 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1726 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1727 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
)
1728 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1729 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1730 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1732 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1733 enum machine_mode op1_mode
;
1735 double_shift_mask
= targetm
.shift_truncation_mask (mode
);
1736 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1737 op1_mode
= GET_MODE (op1
) != VOIDmode
? GET_MODE (op1
) : word_mode
;
1739 /* Apply the truncation to constant shifts. */
1740 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1741 op1
= GEN_INT (INTVAL (op1
) & double_shift_mask
);
1743 if (op1
== CONST0_RTX (op1_mode
))
1746 /* Make sure that this is a combination that expand_doubleword_shift
1747 can handle. See the comments there for details. */
1748 if (double_shift_mask
== 0
1749 || (shift_mask
== BITS_PER_WORD
- 1
1750 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1753 rtx into_target
, outof_target
;
1754 rtx into_input
, outof_input
;
1755 int left_shift
, outof_word
;
1757 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1758 won't be accurate, so use a new target. */
1762 || !valid_multiword_target_p (target
))
1763 target
= gen_reg_rtx (mode
);
1767 /* OUTOF_* is the word we are shifting bits away from, and
1768 INTO_* is the word that we are shifting bits towards, thus
1769 they differ depending on the direction of the shift and
1770 WORDS_BIG_ENDIAN. */
1772 left_shift
= binoptab
== ashl_optab
;
1773 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1775 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1776 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1778 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1779 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1781 if (expand_doubleword_shift (op1_mode
, binoptab
,
1782 outof_input
, into_input
, op1
,
1783 outof_target
, into_target
,
1784 unsignedp
, next_methods
, shift_mask
))
1786 insns
= get_insns ();
1796 /* Synthesize double word rotates from single word shifts. */
1797 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1798 && mclass
== MODE_INT
1799 && CONST_INT_P (op1
)
1800 && GET_MODE_PRECISION (mode
) == 2 * BITS_PER_WORD
1801 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1802 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1805 rtx into_target
, outof_target
;
1806 rtx into_input
, outof_input
;
1808 int shift_count
, left_shift
, outof_word
;
1810 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1811 won't be accurate, so use a new target. Do this also if target is not
1812 a REG, first because having a register instead may open optimization
1813 opportunities, and second because if target and op0 happen to be MEMs
1814 designating the same location, we would risk clobbering it too early
1815 in the code sequence we generate below. */
1820 || !valid_multiword_target_p (target
))
1821 target
= gen_reg_rtx (mode
);
1825 shift_count
= INTVAL (op1
);
1827 /* OUTOF_* is the word we are shifting bits away from, and
1828 INTO_* is the word that we are shifting bits towards, thus
1829 they differ depending on the direction of the shift and
1830 WORDS_BIG_ENDIAN. */
1832 left_shift
= (binoptab
== rotl_optab
);
1833 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1835 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1836 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1838 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1839 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1841 if (shift_count
== BITS_PER_WORD
)
1843 /* This is just a word swap. */
1844 emit_move_insn (outof_target
, into_input
);
1845 emit_move_insn (into_target
, outof_input
);
1850 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1851 rtx first_shift_count
, second_shift_count
;
1852 optab reverse_unsigned_shift
, unsigned_shift
;
1854 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1855 ? lshr_optab
: ashl_optab
);
1857 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1858 ? ashl_optab
: lshr_optab
);
1860 if (shift_count
> BITS_PER_WORD
)
1862 first_shift_count
= GEN_INT (shift_count
- BITS_PER_WORD
);
1863 second_shift_count
= GEN_INT (2 * BITS_PER_WORD
- shift_count
);
1867 first_shift_count
= GEN_INT (BITS_PER_WORD
- shift_count
);
1868 second_shift_count
= GEN_INT (shift_count
);
1871 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1872 outof_input
, first_shift_count
,
1873 NULL_RTX
, unsignedp
, next_methods
);
1874 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1875 into_input
, second_shift_count
,
1876 NULL_RTX
, unsignedp
, next_methods
);
1878 if (into_temp1
!= 0 && into_temp2
!= 0)
1879 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1880 into_target
, unsignedp
, next_methods
);
1884 if (inter
!= 0 && inter
!= into_target
)
1885 emit_move_insn (into_target
, inter
);
1887 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1888 into_input
, first_shift_count
,
1889 NULL_RTX
, unsignedp
, next_methods
);
1890 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1891 outof_input
, second_shift_count
,
1892 NULL_RTX
, unsignedp
, next_methods
);
1894 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1895 inter
= expand_binop (word_mode
, ior_optab
,
1896 outof_temp1
, outof_temp2
,
1897 outof_target
, unsignedp
, next_methods
);
1899 if (inter
!= 0 && inter
!= outof_target
)
1900 emit_move_insn (outof_target
, inter
);
1903 insns
= get_insns ();
1913 /* These can be done a word at a time by propagating carries. */
1914 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1915 && mclass
== MODE_INT
1916 && GET_MODE_SIZE (mode
) >= 2 * UNITS_PER_WORD
1917 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1920 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1921 const unsigned int nwords
= GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
;
1922 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1923 rtx xop0
, xop1
, xtarget
;
1925 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1926 value is one of those, use it. Otherwise, use 1 since it is the
1927 one easiest to get. */
1928 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1929 int normalizep
= STORE_FLAG_VALUE
;
1934 /* Prepare the operands. */
1935 xop0
= force_reg (mode
, op0
);
1936 xop1
= force_reg (mode
, op1
);
1938 xtarget
= gen_reg_rtx (mode
);
1940 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1943 /* Indicate for flow that the entire target reg is being set. */
1945 emit_clobber (xtarget
);
1947 /* Do the actual arithmetic. */
1948 for (i
= 0; i
< nwords
; i
++)
1950 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1951 rtx target_piece
= operand_subword (xtarget
, index
, 1, mode
);
1952 rtx op0_piece
= operand_subword_force (xop0
, index
, mode
);
1953 rtx op1_piece
= operand_subword_force (xop1
, index
, mode
);
1956 /* Main add/subtract of the input operands. */
1957 x
= expand_binop (word_mode
, binoptab
,
1958 op0_piece
, op1_piece
,
1959 target_piece
, unsignedp
, next_methods
);
1965 /* Store carry from main add/subtract. */
1966 carry_out
= gen_reg_rtx (word_mode
);
1967 carry_out
= emit_store_flag_force (carry_out
,
1968 (binoptab
== add_optab
1971 word_mode
, 1, normalizep
);
1978 /* Add/subtract previous carry to main result. */
1979 newx
= expand_binop (word_mode
,
1980 normalizep
== 1 ? binoptab
: otheroptab
,
1982 NULL_RTX
, 1, next_methods
);
1986 /* Get out carry from adding/subtracting carry in. */
1987 rtx carry_tmp
= gen_reg_rtx (word_mode
);
1988 carry_tmp
= emit_store_flag_force (carry_tmp
,
1989 (binoptab
== add_optab
1992 word_mode
, 1, normalizep
);
1994 /* Logical-ior the two poss. carry together. */
1995 carry_out
= expand_binop (word_mode
, ior_optab
,
1996 carry_out
, carry_tmp
,
1997 carry_out
, 0, next_methods
);
2001 emit_move_insn (target_piece
, newx
);
2005 if (x
!= target_piece
)
2006 emit_move_insn (target_piece
, x
);
2009 carry_in
= carry_out
;
2012 if (i
== GET_MODE_BITSIZE (mode
) / (unsigned) BITS_PER_WORD
)
2014 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
2015 || ! rtx_equal_p (target
, xtarget
))
2017 rtx temp
= emit_move_insn (target
, xtarget
);
2019 set_dst_reg_note (temp
, REG_EQUAL
,
2020 gen_rtx_fmt_ee (binoptab
->code
, mode
,
2032 delete_insns_since (last
);
2035 /* Attempt to synthesize double word multiplies using a sequence of word
2036 mode multiplications. We first attempt to generate a sequence using a
2037 more efficient unsigned widening multiply, and if that fails we then
2038 try using a signed widening multiply. */
2040 if (binoptab
== smul_optab
2041 && mclass
== MODE_INT
2042 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2043 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
2044 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
2046 rtx product
= NULL_RTX
;
2047 if (widening_optab_handler (umul_widen_optab
, mode
, word_mode
)
2048 != CODE_FOR_nothing
)
2050 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
2053 delete_insns_since (last
);
2056 if (product
== NULL_RTX
2057 && widening_optab_handler (smul_widen_optab
, mode
, word_mode
)
2058 != CODE_FOR_nothing
)
2060 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
2063 delete_insns_since (last
);
2066 if (product
!= NULL_RTX
)
2068 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
)
2070 temp
= emit_move_insn (target
? target
: product
, product
);
2071 set_dst_reg_note (temp
,
2073 gen_rtx_fmt_ee (MULT
, mode
,
2076 target
? target
: product
);
2082 /* It can't be open-coded in this mode.
2083 Use a library call if one is available and caller says that's ok. */
2085 libfunc
= optab_libfunc (binoptab
, mode
);
2087 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
2091 enum machine_mode op1_mode
= mode
;
2096 if (shift_optab_p (binoptab
))
2098 op1_mode
= targetm
.libgcc_shift_count_mode ();
2099 /* Specify unsigned here,
2100 since negative shift counts are meaningless. */
2101 op1x
= convert_to_mode (op1_mode
, op1
, 1);
2104 if (GET_MODE (op0
) != VOIDmode
2105 && GET_MODE (op0
) != mode
)
2106 op0
= convert_to_mode (mode
, op0
, unsignedp
);
2108 /* Pass 1 for NO_QUEUE so we don't lose any increments
2109 if the libcall is cse'd or moved. */
2110 value
= emit_library_call_value (libfunc
,
2111 NULL_RTX
, LCT_CONST
, mode
, 2,
2112 op0
, mode
, op1x
, op1_mode
);
2114 insns
= get_insns ();
2117 target
= gen_reg_rtx (mode
);
2118 emit_libcall_block (insns
, target
, value
,
2119 gen_rtx_fmt_ee (binoptab
->code
, mode
, op0
, op1
));
2124 delete_insns_since (last
);
2126 /* It can't be done in this mode. Can we do it in a wider mode? */
2128 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
2129 || methods
== OPTAB_MUST_WIDEN
))
2131 /* Caller says, don't even try. */
2132 delete_insns_since (entry_last
);
2136 /* Compute the value of METHODS to pass to recursive calls.
2137 Don't allow widening to be tried recursively. */
2139 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
2141 /* Look for a wider mode of the same class for which it appears we can do
2144 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2146 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2147 wider_mode
!= VOIDmode
;
2148 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2150 if (find_widening_optab_handler (binoptab
, wider_mode
, mode
, 1)
2152 || (methods
== OPTAB_LIB
2153 && optab_libfunc (binoptab
, wider_mode
)))
2155 rtx xop0
= op0
, xop1
= op1
;
2158 /* For certain integer operations, we need not actually extend
2159 the narrow operands, as long as we will truncate
2160 the results to the same narrowness. */
2162 if ((binoptab
== ior_optab
|| binoptab
== and_optab
2163 || binoptab
== xor_optab
2164 || binoptab
== add_optab
|| binoptab
== sub_optab
2165 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
2166 && mclass
== MODE_INT
)
2169 xop0
= widen_operand (xop0
, wider_mode
, mode
,
2170 unsignedp
, no_extend
);
2172 /* The second operand of a shift must always be extended. */
2173 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
2174 no_extend
&& binoptab
!= ashl_optab
);
2176 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
2177 unsignedp
, methods
);
2180 if (mclass
!= MODE_INT
2181 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2184 target
= gen_reg_rtx (mode
);
2185 convert_move (target
, temp
, 0);
2189 return gen_lowpart (mode
, temp
);
2192 delete_insns_since (last
);
2197 delete_insns_since (entry_last
);
2201 /* Expand a binary operator which has both signed and unsigned forms.
2202 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2205 If we widen unsigned operands, we may use a signed wider operation instead
2206 of an unsigned wider operation, since the result would be the same. */
2209 sign_expand_binop (enum machine_mode mode
, optab uoptab
, optab soptab
,
2210 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
2211 enum optab_methods methods
)
2214 optab direct_optab
= unsignedp
? uoptab
: soptab
;
2215 struct optab_d wide_soptab
;
2217 /* Do it without widening, if possible. */
2218 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2219 unsignedp
, OPTAB_DIRECT
);
2220 if (temp
|| methods
== OPTAB_DIRECT
)
2223 /* Try widening to a signed int. Make a fake signed optab that
2224 hides any signed insn for direct use. */
2225 wide_soptab
= *soptab
;
2226 set_optab_handler (&wide_soptab
, mode
, CODE_FOR_nothing
);
2227 /* We don't want to generate new hash table entries from this fake
2229 wide_soptab
.libcall_gen
= NULL
;
2231 temp
= expand_binop (mode
, &wide_soptab
, op0
, op1
, target
,
2232 unsignedp
, OPTAB_WIDEN
);
2234 /* For unsigned operands, try widening to an unsigned int. */
2235 if (temp
== 0 && unsignedp
)
2236 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2237 unsignedp
, OPTAB_WIDEN
);
2238 if (temp
|| methods
== OPTAB_WIDEN
)
2241 /* Use the right width libcall if that exists. */
2242 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
, unsignedp
, OPTAB_LIB
);
2243 if (temp
|| methods
== OPTAB_LIB
)
2246 /* Must widen and use a libcall, use either signed or unsigned. */
2247 temp
= expand_binop (mode
, &wide_soptab
, op0
, op1
, target
,
2248 unsignedp
, methods
);
2252 return expand_binop (mode
, uoptab
, op0
, op1
, target
,
2253 unsignedp
, methods
);
2257 /* Generate code to perform an operation specified by UNOPPTAB
2258 on operand OP0, with two results to TARG0 and TARG1.
2259 We assume that the order of the operands for the instruction
2260 is TARG0, TARG1, OP0.
2262 Either TARG0 or TARG1 may be zero, but what that means is that
2263 the result is not actually wanted. We will generate it into
2264 a dummy pseudo-reg and discard it. They may not both be zero.
2266 Returns 1 if this operation can be performed; 0 if not. */
2269 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
2272 enum machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2273 enum mode_class mclass
;
2274 enum machine_mode wider_mode
;
2275 rtx entry_last
= get_last_insn ();
2278 mclass
= GET_MODE_CLASS (mode
);
2281 targ0
= gen_reg_rtx (mode
);
2283 targ1
= gen_reg_rtx (mode
);
2285 /* Record where to go back to if we fail. */
2286 last
= get_last_insn ();
2288 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2290 struct expand_operand ops
[3];
2291 enum insn_code icode
= optab_handler (unoptab
, mode
);
2293 create_fixed_operand (&ops
[0], targ0
);
2294 create_fixed_operand (&ops
[1], targ1
);
2295 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
2296 if (maybe_expand_insn (icode
, 3, ops
))
2300 /* It can't be done in this mode. Can we do it in a wider mode? */
2302 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2304 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2305 wider_mode
!= VOIDmode
;
2306 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2308 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2310 rtx t0
= gen_reg_rtx (wider_mode
);
2311 rtx t1
= gen_reg_rtx (wider_mode
);
2312 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2314 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
2316 convert_move (targ0
, t0
, unsignedp
);
2317 convert_move (targ1
, t1
, unsignedp
);
2321 delete_insns_since (last
);
2326 delete_insns_since (entry_last
);
2330 /* Generate code to perform an operation specified by BINOPTAB
2331 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2332 We assume that the order of the operands for the instruction
2333 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2334 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2336 Either TARG0 or TARG1 may be zero, but what that means is that
2337 the result is not actually wanted. We will generate it into
2338 a dummy pseudo-reg and discard it. They may not both be zero.
2340 Returns 1 if this operation can be performed; 0 if not. */
2343 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
2346 enum machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2347 enum mode_class mclass
;
2348 enum machine_mode wider_mode
;
2349 rtx entry_last
= get_last_insn ();
2352 mclass
= GET_MODE_CLASS (mode
);
2355 targ0
= gen_reg_rtx (mode
);
2357 targ1
= gen_reg_rtx (mode
);
2359 /* Record where to go back to if we fail. */
2360 last
= get_last_insn ();
2362 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2364 struct expand_operand ops
[4];
2365 enum insn_code icode
= optab_handler (binoptab
, mode
);
2366 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2367 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2368 rtx xop0
= op0
, xop1
= op1
;
2370 /* If we are optimizing, force expensive constants into a register. */
2371 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2372 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2374 create_fixed_operand (&ops
[0], targ0
);
2375 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2376 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
2377 create_fixed_operand (&ops
[3], targ1
);
2378 if (maybe_expand_insn (icode
, 4, ops
))
2380 delete_insns_since (last
);
2383 /* It can't be done in this mode. Can we do it in a wider mode? */
2385 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2387 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2388 wider_mode
!= VOIDmode
;
2389 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2391 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2393 rtx t0
= gen_reg_rtx (wider_mode
);
2394 rtx t1
= gen_reg_rtx (wider_mode
);
2395 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2396 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2398 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2401 convert_move (targ0
, t0
, unsignedp
);
2402 convert_move (targ1
, t1
, unsignedp
);
2406 delete_insns_since (last
);
2411 delete_insns_since (entry_last
);
2415 /* Expand the two-valued library call indicated by BINOPTAB, but
2416 preserve only one of the values. If TARG0 is non-NULL, the first
2417 value is placed into TARG0; otherwise the second value is placed
2418 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2419 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2420 This routine assumes that the value returned by the library call is
2421 as if the return value was of an integral mode twice as wide as the
2422 mode of OP0. Returns 1 if the call was successful. */
2425 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2426 rtx targ0
, rtx targ1
, enum rtx_code code
)
2428 enum machine_mode mode
;
2429 enum machine_mode libval_mode
;
2434 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2435 gcc_assert (!targ0
!= !targ1
);
2437 mode
= GET_MODE (op0
);
2438 libfunc
= optab_libfunc (binoptab
, mode
);
2442 /* The value returned by the library function will have twice as
2443 many bits as the nominal MODE. */
2444 libval_mode
= smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode
),
2447 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2451 /* Get the part of VAL containing the value that we want. */
2452 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2453 targ0
? 0 : GET_MODE_SIZE (mode
));
2454 insns
= get_insns ();
2456 /* Move the into the desired location. */
2457 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2458 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2464 /* Wrapper around expand_unop which takes an rtx code to specify
2465 the operation to perform, not an optab pointer. All other
2466 arguments are the same. */
2468 expand_simple_unop (enum machine_mode mode
, enum rtx_code code
, rtx op0
,
2469 rtx target
, int unsignedp
)
2471 optab unop
= code_to_optab
[(int) code
];
2474 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2480 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2482 A similar operation can be used for clrsb. UNOPTAB says which operation
2483 we are trying to expand. */
2485 widen_leading (enum machine_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2487 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2488 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2490 enum machine_mode wider_mode
;
2491 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2492 wider_mode
!= VOIDmode
;
2493 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2495 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2497 rtx xop0
, temp
, last
;
2499 last
= get_last_insn ();
2502 target
= gen_reg_rtx (mode
);
2503 xop0
= widen_operand (op0
, wider_mode
, mode
,
2504 unoptab
!= clrsb_optab
, false);
2505 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2506 unoptab
!= clrsb_optab
);
2508 temp
= expand_binop (wider_mode
, sub_optab
, temp
,
2509 GEN_INT (GET_MODE_PRECISION (wider_mode
)
2510 - GET_MODE_PRECISION (mode
)),
2511 target
, true, OPTAB_DIRECT
);
2513 delete_insns_since (last
);
2522 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2523 quantities, choosing which based on whether the high word is nonzero. */
2525 expand_doubleword_clz (enum machine_mode mode
, rtx op0
, rtx target
)
2527 rtx xop0
= force_reg (mode
, op0
);
2528 rtx subhi
= gen_highpart (word_mode
, xop0
);
2529 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2530 rtx hi0_label
= gen_label_rtx ();
2531 rtx after_label
= gen_label_rtx ();
2532 rtx seq
, temp
, result
;
2534 /* If we were not given a target, use a word_mode register, not a
2535 'mode' register. The result will fit, and nobody is expecting
2536 anything bigger (the return type of __builtin_clz* is int). */
2538 target
= gen_reg_rtx (word_mode
);
2540 /* In any case, write to a word_mode scratch in both branches of the
2541 conditional, so we can ensure there is a single move insn setting
2542 'target' to tag a REG_EQUAL note on. */
2543 result
= gen_reg_rtx (word_mode
);
2547 /* If the high word is not equal to zero,
2548 then clz of the full value is clz of the high word. */
2549 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2550 word_mode
, true, hi0_label
);
2552 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2557 convert_move (result
, temp
, true);
2559 emit_jump_insn (gen_jump (after_label
));
2562 /* Else clz of the full value is clz of the low word plus the number
2563 of bits in the high word. */
2564 emit_label (hi0_label
);
2566 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2569 temp
= expand_binop (word_mode
, add_optab
, temp
,
2570 GEN_INT (GET_MODE_BITSIZE (word_mode
)),
2571 result
, true, OPTAB_DIRECT
);
2575 convert_move (result
, temp
, true);
2577 emit_label (after_label
);
2578 convert_move (target
, result
, true);
2583 add_equal_note (seq
, target
, CLZ
, xop0
, 0);
2595 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2597 widen_bswap (enum machine_mode mode
, rtx op0
, rtx target
)
2599 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2600 enum machine_mode wider_mode
;
2603 if (!CLASS_HAS_WIDER_MODES_P (mclass
))
2606 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
2607 wider_mode
!= VOIDmode
;
2608 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2609 if (optab_handler (bswap_optab
, wider_mode
) != CODE_FOR_nothing
)
2614 last
= get_last_insn ();
2616 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2617 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2619 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2620 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2622 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2623 GET_MODE_BITSIZE (wider_mode
)
2624 - GET_MODE_BITSIZE (mode
),
2630 target
= gen_reg_rtx (mode
);
2631 emit_move_insn (target
, gen_lowpart (mode
, x
));
2634 delete_insns_since (last
);
2639 /* Try calculating bswap as two bswaps of two word-sized operands. */
2642 expand_doubleword_bswap (enum machine_mode mode
, rtx op
, rtx target
)
2646 t1
= expand_unop (word_mode
, bswap_optab
,
2647 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2648 t0
= expand_unop (word_mode
, bswap_optab
,
2649 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2651 if (target
== 0 || !valid_multiword_target_p (target
))
2652 target
= gen_reg_rtx (mode
);
2654 emit_clobber (target
);
2655 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2656 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2661 /* Try calculating (parity x) as (and (popcount x) 1), where
2662 popcount can also be done in a wider mode. */
2664 expand_parity (enum machine_mode mode
, rtx op0
, rtx target
)
2666 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2667 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2669 enum machine_mode wider_mode
;
2670 for (wider_mode
= mode
; wider_mode
!= VOIDmode
;
2671 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2673 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2675 rtx xop0
, temp
, last
;
2677 last
= get_last_insn ();
2680 target
= gen_reg_rtx (mode
);
2681 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2682 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2685 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2686 target
, true, OPTAB_DIRECT
);
2688 delete_insns_since (last
);
2697 /* Try calculating ctz(x) as K - clz(x & -x) ,
2698 where K is GET_MODE_PRECISION(mode) - 1.
2700 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2701 don't have to worry about what the hardware does in that case. (If
2702 the clz instruction produces the usual value at 0, which is K, the
2703 result of this code sequence will be -1; expand_ffs, below, relies
2704 on this. It might be nice to have it be K instead, for consistency
2705 with the (very few) processors that provide a ctz with a defined
2706 value, but that would take one more instruction, and it would be
2707 less convenient for expand_ffs anyway. */
2710 expand_ctz (enum machine_mode mode
, rtx op0
, rtx target
)
2714 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2719 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2721 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2722 true, OPTAB_DIRECT
);
2724 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2726 temp
= expand_binop (mode
, sub_optab
, GEN_INT (GET_MODE_PRECISION (mode
) - 1),
2728 true, OPTAB_DIRECT
);
2738 add_equal_note (seq
, temp
, CTZ
, op0
, 0);
2744 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2745 else with the sequence used by expand_clz.
2747 The ffs builtin promises to return zero for a zero value and ctz/clz
2748 may have an undefined value in that case. If they do not give us a
2749 convenient value, we have to generate a test and branch. */
2751 expand_ffs (enum machine_mode mode
, rtx op0
, rtx target
)
2753 HOST_WIDE_INT val
= 0;
2754 bool defined_at_zero
= false;
2757 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2761 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2765 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2767 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2770 temp
= expand_ctz (mode
, op0
, 0);
2774 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
2776 defined_at_zero
= true;
2777 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
2783 if (defined_at_zero
&& val
== -1)
2784 /* No correction needed at zero. */;
2787 /* We don't try to do anything clever with the situation found
2788 on some processors (eg Alpha) where ctz(0:mode) ==
2789 bitsize(mode). If someone can think of a way to send N to -1
2790 and leave alone all values in the range 0..N-1 (where N is a
2791 power of two), cheaper than this test-and-branch, please add it.
2793 The test-and-branch is done after the operation itself, in case
2794 the operation sets condition codes that can be recycled for this.
2795 (This is true on i386, for instance.) */
2797 rtx nonzero_label
= gen_label_rtx ();
2798 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
2799 mode
, true, nonzero_label
);
2801 convert_move (temp
, GEN_INT (-1), false);
2802 emit_label (nonzero_label
);
2805 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2806 to produce a value in the range 0..bitsize. */
2807 temp
= expand_binop (mode
, add_optab
, temp
, GEN_INT (1),
2808 target
, false, OPTAB_DIRECT
);
2815 add_equal_note (seq
, temp
, FFS
, op0
, 0);
2824 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2825 conditions, VAL may already be a SUBREG against which we cannot generate
2826 a further SUBREG. In this case, we expect forcing the value into a
2827 register will work around the situation. */
2830 lowpart_subreg_maybe_copy (enum machine_mode omode
, rtx val
,
2831 enum machine_mode imode
)
2834 ret
= lowpart_subreg (omode
, val
, imode
);
2837 val
= force_reg (imode
, val
);
2838 ret
= lowpart_subreg (omode
, val
, imode
);
2839 gcc_assert (ret
!= NULL
);
2844 /* Expand a floating point absolute value or negation operation via a
2845 logical operation on the sign bit. */
2848 expand_absneg_bit (enum rtx_code code
, enum machine_mode mode
,
2849 rtx op0
, rtx target
)
2851 const struct real_format
*fmt
;
2852 int bitpos
, word
, nwords
, i
;
2853 enum machine_mode imode
;
2857 /* The format has to have a simple sign bit. */
2858 fmt
= REAL_MODE_FORMAT (mode
);
2862 bitpos
= fmt
->signbit_rw
;
2866 /* Don't create negative zeros if the format doesn't support them. */
2867 if (code
== NEG
&& !fmt
->has_signed_zero
)
2870 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
2872 imode
= int_mode_for_mode (mode
);
2873 if (imode
== BLKmode
)
2882 if (FLOAT_WORDS_BIG_ENDIAN
)
2883 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
2885 word
= bitpos
/ BITS_PER_WORD
;
2886 bitpos
= bitpos
% BITS_PER_WORD
;
2887 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
2890 mask
= double_int_setbit (double_int_zero
, bitpos
);
2892 mask
= double_int_not (mask
);
2896 || (nwords
> 1 && !valid_multiword_target_p (target
)))
2897 target
= gen_reg_rtx (mode
);
2903 for (i
= 0; i
< nwords
; ++i
)
2905 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
2906 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
2910 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2912 immed_double_int_const (mask
, imode
),
2913 targ_piece
, 1, OPTAB_LIB_WIDEN
);
2914 if (temp
!= targ_piece
)
2915 emit_move_insn (targ_piece
, temp
);
2918 emit_move_insn (targ_piece
, op0_piece
);
2921 insns
= get_insns ();
2928 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2929 gen_lowpart (imode
, op0
),
2930 immed_double_int_const (mask
, imode
),
2931 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
2932 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
2934 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
2935 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
2942 /* As expand_unop, but will fail rather than attempt the operation in a
2943 different mode or with a libcall. */
2945 expand_unop_direct (enum machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2948 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2950 struct expand_operand ops
[2];
2951 enum insn_code icode
= optab_handler (unoptab
, mode
);
2952 rtx last
= get_last_insn ();
2955 create_output_operand (&ops
[0], target
, mode
);
2956 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2957 pat
= maybe_gen_insn (icode
, 2, ops
);
2960 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
2961 && ! add_equal_note (pat
, ops
[0].value
, unoptab
->code
,
2962 ops
[1].value
, NULL_RTX
))
2964 delete_insns_since (last
);
2965 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
2970 return ops
[0].value
;
2976 /* Generate code to perform an operation specified by UNOPTAB
2977 on operand OP0, with result having machine-mode MODE.
2979 UNSIGNEDP is for the case where we have to widen the operands
2980 to perform the operation. It says to use zero-extension.
2982 If TARGET is nonzero, the value
2983 is generated there, if it is convenient to do so.
2984 In all cases an rtx is returned for the locus of the value;
2985 this may or may not be TARGET. */
2988 expand_unop (enum machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2991 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2992 enum machine_mode wider_mode
;
2996 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
3000 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3002 /* Widening (or narrowing) clz needs special treatment. */
3003 if (unoptab
== clz_optab
)
3005 temp
= widen_leading (mode
, op0
, target
, unoptab
);
3009 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
3010 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3012 temp
= expand_doubleword_clz (mode
, op0
, target
);
3020 if (unoptab
== clrsb_optab
)
3022 temp
= widen_leading (mode
, op0
, target
, unoptab
);
3028 /* Widening (or narrowing) bswap needs special treatment. */
3029 if (unoptab
== bswap_optab
)
3031 temp
= widen_bswap (mode
, op0
, target
);
3035 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
3036 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3038 temp
= expand_doubleword_bswap (mode
, op0
, target
);
3046 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3047 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
3048 wider_mode
!= VOIDmode
;
3049 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
3051 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
3054 rtx last
= get_last_insn ();
3056 /* For certain operations, we need not actually extend
3057 the narrow operand, as long as we will truncate the
3058 results to the same narrowness. */
3060 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3061 (unoptab
== neg_optab
3062 || unoptab
== one_cmpl_optab
)
3063 && mclass
== MODE_INT
);
3065 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3070 if (mclass
!= MODE_INT
3071 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
3074 target
= gen_reg_rtx (mode
);
3075 convert_move (target
, temp
, 0);
3079 return gen_lowpart (mode
, temp
);
3082 delete_insns_since (last
);
3086 /* These can be done a word at a time. */
3087 if (unoptab
== one_cmpl_optab
3088 && mclass
== MODE_INT
3089 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
3090 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3095 if (target
== 0 || target
== op0
|| !valid_multiword_target_p (target
))
3096 target
= gen_reg_rtx (mode
);
3100 /* Do the actual arithmetic. */
3101 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
3103 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
3104 rtx x
= expand_unop (word_mode
, unoptab
,
3105 operand_subword_force (op0
, i
, mode
),
3106 target_piece
, unsignedp
);
3108 if (target_piece
!= x
)
3109 emit_move_insn (target_piece
, x
);
3112 insns
= get_insns ();
3119 if (unoptab
->code
== NEG
)
3121 /* Try negating floating point values by flipping the sign bit. */
3122 if (SCALAR_FLOAT_MODE_P (mode
))
3124 temp
= expand_absneg_bit (NEG
, mode
, op0
, target
);
3129 /* If there is no negation pattern, and we have no negative zero,
3130 try subtracting from zero. */
3131 if (!HONOR_SIGNED_ZEROS (mode
))
3133 temp
= expand_binop (mode
, (unoptab
== negv_optab
3134 ? subv_optab
: sub_optab
),
3135 CONST0_RTX (mode
), op0
, target
,
3136 unsignedp
, OPTAB_DIRECT
);
3142 /* Try calculating parity (x) as popcount (x) % 2. */
3143 if (unoptab
== parity_optab
)
3145 temp
= expand_parity (mode
, op0
, target
);
3150 /* Try implementing ffs (x) in terms of clz (x). */
3151 if (unoptab
== ffs_optab
)
3153 temp
= expand_ffs (mode
, op0
, target
);
3158 /* Try implementing ctz (x) in terms of clz (x). */
3159 if (unoptab
== ctz_optab
)
3161 temp
= expand_ctz (mode
, op0
, target
);
3167 /* Now try a library call in this mode. */
3168 libfunc
= optab_libfunc (unoptab
, mode
);
3174 enum machine_mode outmode
= mode
;
3176 /* All of these functions return small values. Thus we choose to
3177 have them return something that isn't a double-word. */
3178 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
3179 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
3180 || unoptab
== parity_optab
)
3182 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
3183 optab_libfunc (unoptab
, mode
)));
3187 /* Pass 1 for NO_QUEUE so we don't lose any increments
3188 if the libcall is cse'd or moved. */
3189 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
3191 insns
= get_insns ();
3194 target
= gen_reg_rtx (outmode
);
3195 eq_value
= gen_rtx_fmt_e (unoptab
->code
, mode
, op0
);
3196 if (GET_MODE_SIZE (outmode
) < GET_MODE_SIZE (mode
))
3197 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
3198 else if (GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (mode
))
3199 eq_value
= simplify_gen_unary (ZERO_EXTEND
, outmode
, eq_value
, mode
);
3200 emit_libcall_block (insns
, target
, value
, eq_value
);
3205 /* It can't be done in this mode. Can we do it in a wider mode? */
3207 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3209 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
3210 wider_mode
!= VOIDmode
;
3211 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
3213 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
3214 || optab_libfunc (unoptab
, wider_mode
))
3217 rtx last
= get_last_insn ();
3219 /* For certain operations, we need not actually extend
3220 the narrow operand, as long as we will truncate the
3221 results to the same narrowness. */
3223 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3224 (unoptab
== neg_optab
3225 || unoptab
== one_cmpl_optab
)
3226 && mclass
== MODE_INT
);
3228 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3231 /* If we are generating clz using wider mode, adjust the
3232 result. Similarly for clrsb. */
3233 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3235 temp
= expand_binop (wider_mode
, sub_optab
, temp
,
3236 GEN_INT (GET_MODE_PRECISION (wider_mode
)
3237 - GET_MODE_PRECISION (mode
)),
3238 target
, true, OPTAB_DIRECT
);
3242 if (mclass
!= MODE_INT
)
3245 target
= gen_reg_rtx (mode
);
3246 convert_move (target
, temp
, 0);
3250 return gen_lowpart (mode
, temp
);
3253 delete_insns_since (last
);
3258 /* One final attempt at implementing negation via subtraction,
3259 this time allowing widening of the operand. */
3260 if (unoptab
->code
== NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3263 temp
= expand_binop (mode
,
3264 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3265 CONST0_RTX (mode
), op0
,
3266 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3274 /* Emit code to compute the absolute value of OP0, with result to
3275 TARGET if convenient. (TARGET may be 0.) The return value says
3276 where the result actually is to be found.
3278 MODE is the mode of the operand; the mode of the result is
3279 different but can be deduced from MODE.
3284 expand_abs_nojump (enum machine_mode mode
, rtx op0
, rtx target
,
3285 int result_unsignedp
)
3290 result_unsignedp
= 1;
3292 /* First try to do it with a special abs instruction. */
3293 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3298 /* For floating point modes, try clearing the sign bit. */
3299 if (SCALAR_FLOAT_MODE_P (mode
))
3301 temp
= expand_absneg_bit (ABS
, mode
, op0
, target
);
3306 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3307 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3308 && !HONOR_SIGNED_ZEROS (mode
))
3310 rtx last
= get_last_insn ();
3312 temp
= expand_unop (mode
, neg_optab
, op0
, NULL_RTX
, 0);
3314 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3320 delete_insns_since (last
);
3323 /* If this machine has expensive jumps, we can do integer absolute
3324 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3325 where W is the width of MODE. */
3327 if (GET_MODE_CLASS (mode
) == MODE_INT
3328 && BRANCH_COST (optimize_insn_for_speed_p (),
3331 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3332 GET_MODE_PRECISION (mode
) - 1,
3335 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3338 temp
= expand_binop (mode
, result_unsignedp
? sub_optab
: subv_optab
,
3339 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3349 expand_abs (enum machine_mode mode
, rtx op0
, rtx target
,
3350 int result_unsignedp
, int safe
)
3355 result_unsignedp
= 1;
3357 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3361 /* If that does not win, use conditional jump and negate. */
3363 /* It is safe to use the target if it is the same
3364 as the source if this is also a pseudo register */
3365 if (op0
== target
&& REG_P (op0
)
3366 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3369 op1
= gen_label_rtx ();
3370 if (target
== 0 || ! safe
3371 || GET_MODE (target
) != mode
3372 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3374 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3375 target
= gen_reg_rtx (mode
);
3377 emit_move_insn (target
, op0
);
3380 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3381 NULL_RTX
, NULL_RTX
, op1
, -1);
3383 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3386 emit_move_insn (target
, op0
);
3392 /* Emit code to compute the one's complement absolute value of OP0
3393 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3394 (TARGET may be NULL_RTX.) The return value says where the result
3395 actually is to be found.
3397 MODE is the mode of the operand; the mode of the result is
3398 different but can be deduced from MODE. */
3401 expand_one_cmpl_abs_nojump (enum machine_mode mode
, rtx op0
, rtx target
)
3405 /* Not applicable for floating point modes. */
3406 if (FLOAT_MODE_P (mode
))
3409 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3410 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3412 rtx last
= get_last_insn ();
3414 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3416 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3422 delete_insns_since (last
);
3425 /* If this machine has expensive jumps, we can do one's complement
3426 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3428 if (GET_MODE_CLASS (mode
) == MODE_INT
3429 && BRANCH_COST (optimize_insn_for_speed_p (),
3432 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3433 GET_MODE_PRECISION (mode
) - 1,
3436 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3446 /* A subroutine of expand_copysign, perform the copysign operation using the
3447 abs and neg primitives advertised to exist on the target. The assumption
3448 is that we have a split register file, and leaving op0 in fp registers,
3449 and not playing with subregs so much, will help the register allocator. */
3452 expand_copysign_absneg (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3453 int bitpos
, bool op0_is_abs
)
3455 enum machine_mode imode
;
3456 enum insn_code icode
;
3462 /* Check if the back end provides an insn that handles signbit for the
3464 icode
= optab_handler (signbit_optab
, mode
);
3465 if (icode
!= CODE_FOR_nothing
)
3467 imode
= insn_data
[(int) icode
].operand
[0].mode
;
3468 sign
= gen_reg_rtx (imode
);
3469 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3475 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3477 imode
= int_mode_for_mode (mode
);
3478 if (imode
== BLKmode
)
3480 op1
= gen_lowpart (imode
, op1
);
3487 if (FLOAT_WORDS_BIG_ENDIAN
)
3488 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3490 word
= bitpos
/ BITS_PER_WORD
;
3491 bitpos
= bitpos
% BITS_PER_WORD
;
3492 op1
= operand_subword_force (op1
, word
, mode
);
3495 mask
= double_int_setbit (double_int_zero
, bitpos
);
3497 sign
= expand_binop (imode
, and_optab
, op1
,
3498 immed_double_int_const (mask
, imode
),
3499 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3504 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3511 if (target
== NULL_RTX
)
3512 target
= copy_to_reg (op0
);
3514 emit_move_insn (target
, op0
);
3517 label
= gen_label_rtx ();
3518 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3520 if (GET_CODE (op0
) == CONST_DOUBLE
)
3521 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3523 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3525 emit_move_insn (target
, op0
);
3533 /* A subroutine of expand_copysign, perform the entire copysign operation
3534 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3535 is true if op0 is known to have its sign bit clear. */
3538 expand_copysign_bit (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3539 int bitpos
, bool op0_is_abs
)
3541 enum machine_mode imode
;
3543 int word
, nwords
, i
;
3546 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3548 imode
= int_mode_for_mode (mode
);
3549 if (imode
== BLKmode
)
3558 if (FLOAT_WORDS_BIG_ENDIAN
)
3559 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3561 word
= bitpos
/ BITS_PER_WORD
;
3562 bitpos
= bitpos
% BITS_PER_WORD
;
3563 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3566 mask
= double_int_setbit (double_int_zero
, bitpos
);
3571 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3572 target
= gen_reg_rtx (mode
);
3578 for (i
= 0; i
< nwords
; ++i
)
3580 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3581 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3587 = expand_binop (imode
, and_optab
, op0_piece
,
3588 immed_double_int_const (double_int_not (mask
),
3590 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3592 op1
= expand_binop (imode
, and_optab
,
3593 operand_subword_force (op1
, i
, mode
),
3594 immed_double_int_const (mask
, imode
),
3595 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3597 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3598 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3599 if (temp
!= targ_piece
)
3600 emit_move_insn (targ_piece
, temp
);
3603 emit_move_insn (targ_piece
, op0_piece
);
3606 insns
= get_insns ();
3613 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3614 immed_double_int_const (mask
, imode
),
3615 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3617 op0
= gen_lowpart (imode
, op0
);
3619 op0
= expand_binop (imode
, and_optab
, op0
,
3620 immed_double_int_const (double_int_not (mask
),
3622 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3624 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3625 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3626 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3632 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3633 scalar floating point mode. Return NULL if we do not know how to
3634 expand the operation inline. */
3637 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3639 enum machine_mode mode
= GET_MODE (op0
);
3640 const struct real_format
*fmt
;
3644 gcc_assert (SCALAR_FLOAT_MODE_P (mode
));
3645 gcc_assert (GET_MODE (op1
) == mode
);
3647 /* First try to do it with a special instruction. */
3648 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
3649 target
, 0, OPTAB_DIRECT
);
3653 fmt
= REAL_MODE_FORMAT (mode
);
3654 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
3658 if (GET_CODE (op0
) == CONST_DOUBLE
)
3660 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
3661 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
3665 if (fmt
->signbit_ro
>= 0
3666 && (GET_CODE (op0
) == CONST_DOUBLE
3667 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
3668 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
3670 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
3671 fmt
->signbit_ro
, op0_is_abs
);
3676 if (fmt
->signbit_rw
< 0)
3678 return expand_copysign_bit (mode
, op0
, op1
, target
,
3679 fmt
->signbit_rw
, op0_is_abs
);
3682 /* Generate an instruction whose insn-code is INSN_CODE,
3683 with two operands: an output TARGET and an input OP0.
3684 TARGET *must* be nonzero, and the output is always stored there.
3685 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3686 the value that is stored into TARGET.
3688 Return false if expansion failed. */
3691 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
3694 struct expand_operand ops
[2];
3697 create_output_operand (&ops
[0], target
, GET_MODE (target
));
3698 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
3699 pat
= maybe_gen_insn (icode
, 2, ops
);
3703 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
&& code
!= UNKNOWN
)
3704 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
);
3708 if (ops
[0].value
!= target
)
3709 emit_move_insn (target
, ops
[0].value
);
3712 /* Generate an instruction whose insn-code is INSN_CODE,
3713 with two operands: an output TARGET and an input OP0.
3714 TARGET *must* be nonzero, and the output is always stored there.
3715 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3716 the value that is stored into TARGET. */
3719 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
3721 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
3725 struct no_conflict_data
3727 rtx target
, first
, insn
;
3731 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3732 the currently examined clobber / store has to stay in the list of
3733 insns that constitute the actual libcall block. */
3735 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
3737 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
3739 /* If this inns directly contributes to setting the target, it must stay. */
3740 if (reg_overlap_mentioned_p (p
->target
, dest
))
3741 p
->must_stay
= true;
3742 /* If we haven't committed to keeping any other insns in the list yet,
3743 there is nothing more to check. */
3744 else if (p
->insn
== p
->first
)
3746 /* If this insn sets / clobbers a register that feeds one of the insns
3747 already in the list, this insn has to stay too. */
3748 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
3749 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
3750 || reg_used_between_p (dest
, p
->first
, p
->insn
)
3751 /* Likewise if this insn depends on a register set by a previous
3752 insn in the list, or if it sets a result (presumably a hard
3753 register) that is set or clobbered by a previous insn.
3754 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3755 SET_DEST perform the former check on the address, and the latter
3756 check on the MEM. */
3757 || (GET_CODE (set
) == SET
3758 && (modified_in_p (SET_SRC (set
), p
->first
)
3759 || modified_in_p (SET_DEST (set
), p
->first
)
3760 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
3761 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
3762 p
->must_stay
= true;
3766 /* Emit code to make a call to a constant function or a library call.
3768 INSNS is a list containing all insns emitted in the call.
3769 These insns leave the result in RESULT. Our block is to copy RESULT
3770 to TARGET, which is logically equivalent to EQUIV.
3772 We first emit any insns that set a pseudo on the assumption that these are
3773 loading constants into registers; doing so allows them to be safely cse'ed
3774 between blocks. Then we emit all the other insns in the block, followed by
3775 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3776 note with an operand of EQUIV. */
3779 emit_libcall_block (rtx insns
, rtx target
, rtx result
, rtx equiv
)
3781 rtx final_dest
= target
;
3782 rtx next
, last
, insn
;
3784 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3785 into a MEM later. Protect the libcall block from this change. */
3786 if (! REG_P (target
) || REG_USERVAR_P (target
))
3787 target
= gen_reg_rtx (GET_MODE (target
));
3789 /* If we're using non-call exceptions, a libcall corresponding to an
3790 operation that may trap may also trap. */
3791 /* ??? See the comment in front of make_reg_eh_region_note. */
3792 if (cfun
->can_throw_non_call_exceptions
&& may_trap_p (equiv
))
3794 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3797 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3800 int lp_nr
= INTVAL (XEXP (note
, 0));
3801 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
3802 remove_note (insn
, note
);
3808 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3809 reg note to indicate that this call cannot throw or execute a nonlocal
3810 goto (unless there is already a REG_EH_REGION note, in which case
3812 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3814 make_reg_eh_region_note_nothrow_nononlocal (insn
);
3817 /* First emit all insns that set pseudos. Remove them from the list as
3818 we go. Avoid insns that set pseudos which were referenced in previous
3819 insns. These can be generated by move_by_pieces, for example,
3820 to update an address. Similarly, avoid insns that reference things
3821 set in previous insns. */
3823 for (insn
= insns
; insn
; insn
= next
)
3825 rtx set
= single_set (insn
);
3827 next
= NEXT_INSN (insn
);
3829 if (set
!= 0 && REG_P (SET_DEST (set
))
3830 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3832 struct no_conflict_data data
;
3834 data
.target
= const0_rtx
;
3838 note_stores (PATTERN (insn
), no_conflict_move_test
, &data
);
3839 if (! data
.must_stay
)
3841 if (PREV_INSN (insn
))
3842 NEXT_INSN (PREV_INSN (insn
)) = next
;
3847 PREV_INSN (next
) = PREV_INSN (insn
);
3853 /* Some ports use a loop to copy large arguments onto the stack.
3854 Don't move anything outside such a loop. */
3859 /* Write the remaining insns followed by the final copy. */
3860 for (insn
= insns
; insn
; insn
= next
)
3862 next
= NEXT_INSN (insn
);
3867 last
= emit_move_insn (target
, result
);
3868 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
3870 if (final_dest
!= target
)
3871 emit_move_insn (final_dest
, target
);
3874 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3875 PURPOSE describes how this comparison will be used. CODE is the rtx
3876 comparison code we will be using.
3878 ??? Actually, CODE is slightly weaker than that. A target is still
3879 required to implement all of the normal bcc operations, but not
3880 required to implement all (or any) of the unordered bcc operations. */
3883 can_compare_p (enum rtx_code code
, enum machine_mode mode
,
3884 enum can_compare_purpose purpose
)
3887 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
3890 enum insn_code icode
;
3892 if (purpose
== ccp_jump
3893 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
3894 && insn_operand_matches (icode
, 0, test
))
3896 if (purpose
== ccp_store_flag
3897 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
3898 && insn_operand_matches (icode
, 1, test
))
3900 if (purpose
== ccp_cmov
3901 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
3904 mode
= GET_MODE_WIDER_MODE (mode
);
3905 PUT_MODE (test
, mode
);
3907 while (mode
!= VOIDmode
);
3912 /* This function is called when we are going to emit a compare instruction that
3913 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3915 *PMODE is the mode of the inputs (in case they are const_int).
3916 *PUNSIGNEDP nonzero says that the operands are unsigned;
3917 this matters if they need to be widened (as given by METHODS).
3919 If they have mode BLKmode, then SIZE specifies the size of both operands.
3921 This function performs all the setup necessary so that the caller only has
3922 to emit a single comparison insn. This setup can involve doing a BLKmode
3923 comparison or emitting a library call to perform the comparison if no insn
3924 is available to handle it.
3925 The values which are passed in through pointers can be modified; the caller
3926 should perform the comparison on the modified values. Constant
3927 comparisons must have already been folded. */
3930 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
3931 int unsignedp
, enum optab_methods methods
,
3932 rtx
*ptest
, enum machine_mode
*pmode
)
3934 enum machine_mode mode
= *pmode
;
3936 enum machine_mode cmp_mode
;
3937 enum mode_class mclass
;
3939 /* The other methods are not needed. */
3940 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
3941 || methods
== OPTAB_LIB_WIDEN
);
3943 /* If we are optimizing, force expensive constants into a register. */
3944 if (CONSTANT_P (x
) && optimize
3945 && (rtx_cost (x
, COMPARE
, 0, optimize_insn_for_speed_p ())
3946 > COSTS_N_INSNS (1)))
3947 x
= force_reg (mode
, x
);
3949 if (CONSTANT_P (y
) && optimize
3950 && (rtx_cost (y
, COMPARE
, 1, optimize_insn_for_speed_p ())
3951 > COSTS_N_INSNS (1)))
3952 y
= force_reg (mode
, y
);
3955 /* Make sure if we have a canonical comparison. The RTL
3956 documentation states that canonical comparisons are required only
3957 for targets which have cc0. */
3958 gcc_assert (!CONSTANT_P (x
) || CONSTANT_P (y
));
3961 /* Don't let both operands fail to indicate the mode. */
3962 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
3963 x
= force_reg (mode
, x
);
3964 if (mode
== VOIDmode
)
3965 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
3967 /* Handle all BLKmode compares. */
3969 if (mode
== BLKmode
)
3971 enum machine_mode result_mode
;
3972 enum insn_code cmp_code
;
3977 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
3981 /* Try to use a memory block compare insn - either cmpstr
3982 or cmpmem will do. */
3983 for (cmp_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
3984 cmp_mode
!= VOIDmode
;
3985 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
))
3987 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
3988 if (cmp_code
== CODE_FOR_nothing
)
3989 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
3990 if (cmp_code
== CODE_FOR_nothing
)
3991 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
3992 if (cmp_code
== CODE_FOR_nothing
)
3995 /* Must make sure the size fits the insn's mode. */
3996 if ((CONST_INT_P (size
)
3997 && INTVAL (size
) >= (1 << GET_MODE_BITSIZE (cmp_mode
)))
3998 || (GET_MODE_BITSIZE (GET_MODE (size
))
3999 > GET_MODE_BITSIZE (cmp_mode
)))
4002 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
4003 result
= gen_reg_rtx (result_mode
);
4004 size
= convert_to_mode (cmp_mode
, size
, 1);
4005 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
4007 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
4008 *pmode
= result_mode
;
4012 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
4015 /* Otherwise call a library function, memcmp. */
4016 libfunc
= memcmp_libfunc
;
4017 length_type
= sizetype
;
4018 result_mode
= TYPE_MODE (integer_type_node
);
4019 cmp_mode
= TYPE_MODE (length_type
);
4020 size
= convert_to_mode (TYPE_MODE (length_type
), size
,
4021 TYPE_UNSIGNED (length_type
));
4023 result
= emit_library_call_value (libfunc
, 0, LCT_PURE
,
4029 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
4030 *pmode
= result_mode
;
4034 /* Don't allow operands to the compare to trap, as that can put the
4035 compare and branch in different basic blocks. */
4036 if (cfun
->can_throw_non_call_exceptions
)
4039 x
= force_reg (mode
, x
);
4041 y
= force_reg (mode
, y
);
4044 if (GET_MODE_CLASS (mode
) == MODE_CC
)
4046 gcc_assert (can_compare_p (comparison
, CCmode
, ccp_jump
));
4047 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4051 mclass
= GET_MODE_CLASS (mode
);
4052 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4056 enum insn_code icode
;
4057 icode
= optab_handler (cbranch_optab
, cmp_mode
);
4058 if (icode
!= CODE_FOR_nothing
4059 && insn_operand_matches (icode
, 0, test
))
4061 rtx last
= get_last_insn ();
4062 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
4063 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
4065 && insn_operand_matches (icode
, 1, op0
)
4066 && insn_operand_matches (icode
, 2, op1
))
4068 XEXP (test
, 0) = op0
;
4069 XEXP (test
, 1) = op1
;
4074 delete_insns_since (last
);
4077 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
4079 cmp_mode
= GET_MODE_WIDER_MODE (cmp_mode
);
4081 while (cmp_mode
!= VOIDmode
);
4083 if (methods
!= OPTAB_LIB_WIDEN
)
4086 if (!SCALAR_FLOAT_MODE_P (mode
))
4090 /* Handle a libcall just for the mode we are using. */
4091 libfunc
= optab_libfunc (cmp_optab
, mode
);
4092 gcc_assert (libfunc
);
4094 /* If we want unsigned, and this mode has a distinct unsigned
4095 comparison routine, use that. */
4098 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
4103 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4104 targetm
.libgcc_cmp_return_mode (),
4105 2, x
, mode
, y
, mode
);
4107 /* There are two kinds of comparison routines. Biased routines
4108 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4109 of gcc expect that the comparison operation is equivalent
4110 to the modified comparison. For signed comparisons compare the
4111 result against 1 in the biased case, and zero in the unbiased
4112 case. For unsigned comparisons always compare against 1 after
4113 biasing the unbiased result by adding 1. This gives us a way to
4115 The comparisons in the fixed-point helper library are always
4120 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
4123 x
= plus_constant (result
, 1);
4129 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
4133 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
4141 /* Before emitting an insn with code ICODE, make sure that X, which is going
4142 to be used for operand OPNUM of the insn, is converted from mode MODE to
4143 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4144 that it is accepted by the operand predicate. Return the new value. */
4147 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, enum machine_mode mode
,
4148 enum machine_mode wider_mode
, int unsignedp
)
4150 if (mode
!= wider_mode
)
4151 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
4153 if (!insn_operand_matches (icode
, opnum
, x
))
4155 if (reload_completed
)
4157 x
= copy_to_mode_reg (insn_data
[(int) icode
].operand
[opnum
].mode
, x
);
4163 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4164 we can do the branch. */
4167 emit_cmp_and_jump_insn_1 (rtx test
, enum machine_mode mode
, rtx label
)
4169 enum machine_mode optab_mode
;
4170 enum mode_class mclass
;
4171 enum insn_code icode
;
4173 mclass
= GET_MODE_CLASS (mode
);
4174 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
4175 icode
= optab_handler (cbranch_optab
, optab_mode
);
4177 gcc_assert (icode
!= CODE_FOR_nothing
);
4178 gcc_assert (insn_operand_matches (icode
, 0, test
));
4179 emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0), XEXP (test
, 1), label
));
4182 /* Generate code to compare X with Y so that the condition codes are
4183 set and to jump to LABEL if the condition is true. If X is a
4184 constant and Y is not a constant, then the comparison is swapped to
4185 ensure that the comparison RTL has the canonical form.
4187 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4188 need to be widened. UNSIGNEDP is also used to select the proper
4189 branch condition code.
4191 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4193 MODE is the mode of the inputs (in case they are const_int).
4195 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4196 It will be potentially converted into an unsigned variant based on
4197 UNSIGNEDP to select a proper jump instruction. */
4200 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4201 enum machine_mode mode
, int unsignedp
, rtx label
)
4203 rtx op0
= x
, op1
= y
;
4206 /* Swap operands and condition to ensure canonical RTL. */
4207 if (swap_commutative_operands_p (x
, y
)
4208 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4211 comparison
= swap_condition (comparison
);
4214 /* If OP0 is still a constant, then both X and Y must be constants
4215 or the opposite comparison is not supported. Force X into a register
4216 to create canonical RTL. */
4217 if (CONSTANT_P (op0
))
4218 op0
= force_reg (mode
, op0
);
4221 comparison
= unsigned_condition (comparison
);
4223 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4225 emit_cmp_and_jump_insn_1 (test
, mode
, label
);
4229 /* Emit a library call comparison between floating point X and Y.
4230 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4233 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4234 rtx
*ptest
, enum machine_mode
*pmode
)
4236 enum rtx_code swapped
= swap_condition (comparison
);
4237 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4238 enum machine_mode orig_mode
= GET_MODE (x
);
4239 enum machine_mode mode
, cmp_mode
;
4240 rtx true_rtx
, false_rtx
;
4241 rtx value
, target
, insns
, equiv
;
4243 bool reversed_p
= false;
4244 cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4246 for (mode
= orig_mode
;
4248 mode
= GET_MODE_WIDER_MODE (mode
))
4250 if (code_to_optab
[comparison
]
4251 && (libfunc
= optab_libfunc (code_to_optab
[comparison
], mode
)))
4254 if (code_to_optab
[swapped
]
4255 && (libfunc
= optab_libfunc (code_to_optab
[swapped
], mode
)))
4258 tmp
= x
; x
= y
; y
= tmp
;
4259 comparison
= swapped
;
4263 if (code_to_optab
[reversed
]
4264 && (libfunc
= optab_libfunc (code_to_optab
[reversed
], mode
)))
4266 comparison
= reversed
;
4272 gcc_assert (mode
!= VOIDmode
);
4274 if (mode
!= orig_mode
)
4276 x
= convert_to_mode (mode
, x
, 0);
4277 y
= convert_to_mode (mode
, y
, 0);
4280 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4281 the RTL. The allows the RTL optimizers to delete the libcall if the
4282 condition can be determined at compile-time. */
4283 if (comparison
== UNORDERED
4284 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4286 true_rtx
= const_true_rtx
;
4287 false_rtx
= const0_rtx
;
4294 true_rtx
= const0_rtx
;
4295 false_rtx
= const_true_rtx
;
4299 true_rtx
= const_true_rtx
;
4300 false_rtx
= const0_rtx
;
4304 true_rtx
= const1_rtx
;
4305 false_rtx
= const0_rtx
;
4309 true_rtx
= const0_rtx
;
4310 false_rtx
= constm1_rtx
;
4314 true_rtx
= constm1_rtx
;
4315 false_rtx
= const0_rtx
;
4319 true_rtx
= const0_rtx
;
4320 false_rtx
= const1_rtx
;
4328 if (comparison
== UNORDERED
)
4330 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4331 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4332 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4333 temp
, const_true_rtx
, equiv
);
4337 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4338 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4339 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4340 equiv
, true_rtx
, false_rtx
);
4344 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4345 cmp_mode
, 2, x
, mode
, y
, mode
);
4346 insns
= get_insns ();
4349 target
= gen_reg_rtx (cmp_mode
);
4350 emit_libcall_block (insns
, target
, value
, equiv
);
4352 if (comparison
== UNORDERED
4353 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4355 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4357 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4362 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4365 emit_indirect_jump (rtx loc
)
4367 struct expand_operand ops
[1];
4369 create_address_operand (&ops
[0], loc
);
4370 expand_jump_insn (CODE_FOR_indirect_jump
, 1, ops
);
4374 #ifdef HAVE_conditional_move
4376 /* Emit a conditional move instruction if the machine supports one for that
4377 condition and machine mode.
4379 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4380 the mode to use should they be constants. If it is VOIDmode, they cannot
4383 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4384 should be stored there. MODE is the mode to use should they be constants.
4385 If it is VOIDmode, they cannot both be constants.
4387 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4388 is not supported. */
4391 emit_conditional_move (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4392 enum machine_mode cmode
, rtx op2
, rtx op3
,
4393 enum machine_mode mode
, int unsignedp
)
4395 rtx tem
, comparison
, last
;
4396 enum insn_code icode
;
4397 enum rtx_code reversed
;
4399 /* If one operand is constant, make it the second one. Only do this
4400 if the other operand is not constant as well. */
4402 if (swap_commutative_operands_p (op0
, op1
))
4407 code
= swap_condition (code
);
4410 /* get_condition will prefer to generate LT and GT even if the old
4411 comparison was against zero, so undo that canonicalization here since
4412 comparisons against zero are cheaper. */
4413 if (code
== LT
&& op1
== const1_rtx
)
4414 code
= LE
, op1
= const0_rtx
;
4415 else if (code
== GT
&& op1
== constm1_rtx
)
4416 code
= GE
, op1
= const0_rtx
;
4418 if (cmode
== VOIDmode
)
4419 cmode
= GET_MODE (op0
);
4421 if (swap_commutative_operands_p (op2
, op3
)
4422 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4431 if (mode
== VOIDmode
)
4432 mode
= GET_MODE (op2
);
4434 icode
= direct_optab_handler (movcc_optab
, mode
);
4436 if (icode
== CODE_FOR_nothing
)
4440 target
= gen_reg_rtx (mode
);
4442 code
= unsignedp
? unsigned_condition (code
) : code
;
4443 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4445 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4446 return NULL and let the caller figure out how best to deal with this
4448 if (!COMPARISON_P (comparison
))
4451 do_pending_stack_adjust ();
4452 last
= get_last_insn ();
4453 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4454 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4455 &comparison
, &cmode
);
4458 struct expand_operand ops
[4];
4460 create_output_operand (&ops
[0], target
, mode
);
4461 create_fixed_operand (&ops
[1], comparison
);
4462 create_input_operand (&ops
[2], op2
, mode
);
4463 create_input_operand (&ops
[3], op3
, mode
);
4464 if (maybe_expand_insn (icode
, 4, ops
))
4466 if (ops
[0].value
!= target
)
4467 convert_move (target
, ops
[0].value
, false);
4471 delete_insns_since (last
);
4475 /* Return nonzero if a conditional move of mode MODE is supported.
4477 This function is for combine so it can tell whether an insn that looks
4478 like a conditional move is actually supported by the hardware. If we
4479 guess wrong we lose a bit on optimization, but that's it. */
4480 /* ??? sparc64 supports conditionally moving integers values based on fp
4481 comparisons, and vice versa. How do we handle them? */
4484 can_conditionally_move_p (enum machine_mode mode
)
4486 if (direct_optab_handler (movcc_optab
, mode
) != CODE_FOR_nothing
)
4492 #endif /* HAVE_conditional_move */
4494 /* Emit a conditional addition instruction if the machine supports one for that
4495 condition and machine mode.
4497 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4498 the mode to use should they be constants. If it is VOIDmode, they cannot
4501 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4502 should be stored there. MODE is the mode to use should they be constants.
4503 If it is VOIDmode, they cannot both be constants.
4505 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4506 is not supported. */
4509 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4510 enum machine_mode cmode
, rtx op2
, rtx op3
,
4511 enum machine_mode mode
, int unsignedp
)
4513 rtx tem
, comparison
, last
;
4514 enum insn_code icode
;
4515 enum rtx_code reversed
;
4517 /* If one operand is constant, make it the second one. Only do this
4518 if the other operand is not constant as well. */
4520 if (swap_commutative_operands_p (op0
, op1
))
4525 code
= swap_condition (code
);
4528 /* get_condition will prefer to generate LT and GT even if the old
4529 comparison was against zero, so undo that canonicalization here since
4530 comparisons against zero are cheaper. */
4531 if (code
== LT
&& op1
== const1_rtx
)
4532 code
= LE
, op1
= const0_rtx
;
4533 else if (code
== GT
&& op1
== constm1_rtx
)
4534 code
= GE
, op1
= const0_rtx
;
4536 if (cmode
== VOIDmode
)
4537 cmode
= GET_MODE (op0
);
4539 if (swap_commutative_operands_p (op2
, op3
)
4540 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4549 if (mode
== VOIDmode
)
4550 mode
= GET_MODE (op2
);
4552 icode
= optab_handler (addcc_optab
, mode
);
4554 if (icode
== CODE_FOR_nothing
)
4558 target
= gen_reg_rtx (mode
);
4560 code
= unsignedp
? unsigned_condition (code
) : code
;
4561 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4563 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4564 return NULL and let the caller figure out how best to deal with this
4566 if (!COMPARISON_P (comparison
))
4569 do_pending_stack_adjust ();
4570 last
= get_last_insn ();
4571 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4572 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4573 &comparison
, &cmode
);
4576 struct expand_operand ops
[4];
4578 create_output_operand (&ops
[0], target
, mode
);
4579 create_fixed_operand (&ops
[1], comparison
);
4580 create_input_operand (&ops
[2], op2
, mode
);
4581 create_input_operand (&ops
[3], op3
, mode
);
4582 if (maybe_expand_insn (icode
, 4, ops
))
4584 if (ops
[0].value
!= target
)
4585 convert_move (target
, ops
[0].value
, false);
4589 delete_insns_since (last
);
4593 /* These functions attempt to generate an insn body, rather than
4594 emitting the insn, but if the gen function already emits them, we
4595 make no attempt to turn them back into naked patterns. */
4597 /* Generate and return an insn body to add Y to X. */
4600 gen_add2_insn (rtx x
, rtx y
)
4602 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
4604 gcc_assert (insn_operand_matches (icode
, 0, x
));
4605 gcc_assert (insn_operand_matches (icode
, 1, x
));
4606 gcc_assert (insn_operand_matches (icode
, 2, y
));
4608 return GEN_FCN (icode
) (x
, x
, y
);
4611 /* Generate and return an insn body to add r1 and c,
4612 storing the result in r0. */
4615 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
4617 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
4619 if (icode
== CODE_FOR_nothing
4620 || !insn_operand_matches (icode
, 0, r0
)
4621 || !insn_operand_matches (icode
, 1, r1
)
4622 || !insn_operand_matches (icode
, 2, c
))
4625 return GEN_FCN (icode
) (r0
, r1
, c
);
4629 have_add2_insn (rtx x
, rtx y
)
4631 enum insn_code icode
;
4633 gcc_assert (GET_MODE (x
) != VOIDmode
);
4635 icode
= optab_handler (add_optab
, GET_MODE (x
));
4637 if (icode
== CODE_FOR_nothing
)
4640 if (!insn_operand_matches (icode
, 0, x
)
4641 || !insn_operand_matches (icode
, 1, x
)
4642 || !insn_operand_matches (icode
, 2, y
))
4648 /* Generate and return an insn body to subtract Y from X. */
4651 gen_sub2_insn (rtx x
, rtx y
)
4653 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
4655 gcc_assert (insn_operand_matches (icode
, 0, x
));
4656 gcc_assert (insn_operand_matches (icode
, 1, x
));
4657 gcc_assert (insn_operand_matches (icode
, 2, y
));
4659 return GEN_FCN (icode
) (x
, x
, y
);
4662 /* Generate and return an insn body to subtract r1 and c,
4663 storing the result in r0. */
4666 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
4668 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
4670 if (icode
== CODE_FOR_nothing
4671 || !insn_operand_matches (icode
, 0, r0
)
4672 || !insn_operand_matches (icode
, 1, r1
)
4673 || !insn_operand_matches (icode
, 2, c
))
4676 return GEN_FCN (icode
) (r0
, r1
, c
);
4680 have_sub2_insn (rtx x
, rtx y
)
4682 enum insn_code icode
;
4684 gcc_assert (GET_MODE (x
) != VOIDmode
);
4686 icode
= optab_handler (sub_optab
, GET_MODE (x
));
4688 if (icode
== CODE_FOR_nothing
)
4691 if (!insn_operand_matches (icode
, 0, x
)
4692 || !insn_operand_matches (icode
, 1, x
)
4693 || !insn_operand_matches (icode
, 2, y
))
4699 /* Generate the body of an instruction to copy Y into X.
4700 It may be a list of insns, if one insn isn't enough. */
4703 gen_move_insn (rtx x
, rtx y
)
4708 emit_move_insn_1 (x
, y
);
4714 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4715 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4716 no such operation exists, CODE_FOR_nothing will be returned. */
4719 can_extend_p (enum machine_mode to_mode
, enum machine_mode from_mode
,
4723 #ifdef HAVE_ptr_extend
4725 return CODE_FOR_ptr_extend
;
4728 tab
= unsignedp
? zext_optab
: sext_optab
;
4729 return convert_optab_handler (tab
, to_mode
, from_mode
);
4732 /* Generate the body of an insn to extend Y (with mode MFROM)
4733 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4736 gen_extend_insn (rtx x
, rtx y
, enum machine_mode mto
,
4737 enum machine_mode mfrom
, int unsignedp
)
4739 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
4740 return GEN_FCN (icode
) (x
, y
);
4743 /* can_fix_p and can_float_p say whether the target machine
4744 can directly convert a given fixed point type to
4745 a given floating point type, or vice versa.
4746 The returned value is the CODE_FOR_... value to use,
4747 or CODE_FOR_nothing if these modes cannot be directly converted.
4749 *TRUNCP_PTR is set to 1 if it is necessary to output
4750 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4752 static enum insn_code
4753 can_fix_p (enum machine_mode fixmode
, enum machine_mode fltmode
,
4754 int unsignedp
, int *truncp_ptr
)
4757 enum insn_code icode
;
4759 tab
= unsignedp
? ufixtrunc_optab
: sfixtrunc_optab
;
4760 icode
= convert_optab_handler (tab
, fixmode
, fltmode
);
4761 if (icode
!= CODE_FOR_nothing
)
4767 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4768 for this to work. We need to rework the fix* and ftrunc* patterns
4769 and documentation. */
4770 tab
= unsignedp
? ufix_optab
: sfix_optab
;
4771 icode
= convert_optab_handler (tab
, fixmode
, fltmode
);
4772 if (icode
!= CODE_FOR_nothing
4773 && optab_handler (ftrunc_optab
, fltmode
) != CODE_FOR_nothing
)
4780 return CODE_FOR_nothing
;
4784 can_float_p (enum machine_mode fltmode
, enum machine_mode fixmode
,
4789 tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4790 return convert_optab_handler (tab
, fltmode
, fixmode
);
4793 /* Function supportable_convert_operation
4795 Check whether an operation represented by the code CODE is a
4796 convert operation that is supported by the target platform in
4797 vector form (i.e., when operating on arguments of type VECTYPE_IN
4798 producing a result of type VECTYPE_OUT).
4800 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4801 This function checks if these operations are supported
4802 by the target platform either directly (via vector tree-codes), or via
4806 - CODE1 is code of vector operation to be used when
4807 vectorizing the operation, if available.
4808 - DECL is decl of target builtin functions to be used
4809 when vectorizing the operation, if available. In this case,
4810 CODE1 is CALL_EXPR. */
4813 supportable_convert_operation (enum tree_code code
,
4814 tree vectype_out
, tree vectype_in
,
4815 tree
*decl
, enum tree_code
*code1
)
4817 enum machine_mode m1
,m2
;
4820 m1
= TYPE_MODE (vectype_out
);
4821 m2
= TYPE_MODE (vectype_in
);
4823 /* First check if we can done conversion directly. */
4824 if ((code
== FIX_TRUNC_EXPR
4825 && can_fix_p (m1
,m2
,TYPE_UNSIGNED (vectype_out
), &truncp
)
4826 != CODE_FOR_nothing
)
4827 || (code
== FLOAT_EXPR
4828 && can_float_p (m1
,m2
,TYPE_UNSIGNED (vectype_in
))
4829 != CODE_FOR_nothing
))
4835 /* Now check for builtin. */
4836 if (targetm
.vectorize
.builtin_conversion
4837 && targetm
.vectorize
.builtin_conversion (code
, vectype_out
, vectype_in
))
4840 *decl
= targetm
.vectorize
.builtin_conversion (code
, vectype_out
, vectype_in
);
4847 /* Generate code to convert FROM to floating point
4848 and store in TO. FROM must be fixed point and not VOIDmode.
4849 UNSIGNEDP nonzero means regard FROM as unsigned.
4850 Normally this is done by correcting the final value
4851 if it is negative. */
4854 expand_float (rtx to
, rtx from
, int unsignedp
)
4856 enum insn_code icode
;
4858 enum machine_mode fmode
, imode
;
4859 bool can_do_signed
= false;
4861 /* Crash now, because we won't be able to decide which mode to use. */
4862 gcc_assert (GET_MODE (from
) != VOIDmode
);
4864 /* Look for an insn to do the conversion. Do it in the specified
4865 modes if possible; otherwise convert either input, output or both to
4866 wider mode. If the integer mode is wider than the mode of FROM,
4867 we can do the conversion signed even if the input is unsigned. */
4869 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4870 fmode
= GET_MODE_WIDER_MODE (fmode
))
4871 for (imode
= GET_MODE (from
); imode
!= VOIDmode
;
4872 imode
= GET_MODE_WIDER_MODE (imode
))
4874 int doing_unsigned
= unsignedp
;
4876 if (fmode
!= GET_MODE (to
)
4877 && significand_size (fmode
) < GET_MODE_PRECISION (GET_MODE (from
)))
4880 icode
= can_float_p (fmode
, imode
, unsignedp
);
4881 if (icode
== CODE_FOR_nothing
&& unsignedp
)
4883 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
4884 if (scode
!= CODE_FOR_nothing
)
4885 can_do_signed
= true;
4886 if (imode
!= GET_MODE (from
))
4887 icode
= scode
, doing_unsigned
= 0;
4890 if (icode
!= CODE_FOR_nothing
)
4892 if (imode
!= GET_MODE (from
))
4893 from
= convert_to_mode (imode
, from
, unsignedp
);
4895 if (fmode
!= GET_MODE (to
))
4896 target
= gen_reg_rtx (fmode
);
4898 emit_unop_insn (icode
, target
, from
,
4899 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
4902 convert_move (to
, target
, 0);
4907 /* Unsigned integer, and no way to convert directly. Convert as signed,
4908 then unconditionally adjust the result. */
4909 if (unsignedp
&& can_do_signed
)
4911 rtx label
= gen_label_rtx ();
4913 REAL_VALUE_TYPE offset
;
4915 /* Look for a usable floating mode FMODE wider than the source and at
4916 least as wide as the target. Using FMODE will avoid rounding woes
4917 with unsigned values greater than the signed maximum value. */
4919 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4920 fmode
= GET_MODE_WIDER_MODE (fmode
))
4921 if (GET_MODE_PRECISION (GET_MODE (from
)) < GET_MODE_BITSIZE (fmode
)
4922 && can_float_p (fmode
, GET_MODE (from
), 0) != CODE_FOR_nothing
)
4925 if (fmode
== VOIDmode
)
4927 /* There is no such mode. Pretend the target is wide enough. */
4928 fmode
= GET_MODE (to
);
4930 /* Avoid double-rounding when TO is narrower than FROM. */
4931 if ((significand_size (fmode
) + 1)
4932 < GET_MODE_PRECISION (GET_MODE (from
)))
4935 rtx neglabel
= gen_label_rtx ();
4937 /* Don't use TARGET if it isn't a register, is a hard register,
4938 or is the wrong mode. */
4940 || REGNO (target
) < FIRST_PSEUDO_REGISTER
4941 || GET_MODE (target
) != fmode
)
4942 target
= gen_reg_rtx (fmode
);
4944 imode
= GET_MODE (from
);
4945 do_pending_stack_adjust ();
4947 /* Test whether the sign bit is set. */
4948 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
4951 /* The sign bit is not set. Convert as signed. */
4952 expand_float (target
, from
, 0);
4953 emit_jump_insn (gen_jump (label
));
4956 /* The sign bit is set.
4957 Convert to a usable (positive signed) value by shifting right
4958 one bit, while remembering if a nonzero bit was shifted
4959 out; i.e., compute (from & 1) | (from >> 1). */
4961 emit_label (neglabel
);
4962 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
4963 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4964 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
4965 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
4967 expand_float (target
, temp
, 0);
4969 /* Multiply by 2 to undo the shift above. */
4970 temp
= expand_binop (fmode
, add_optab
, target
, target
,
4971 target
, 0, OPTAB_LIB_WIDEN
);
4973 emit_move_insn (target
, temp
);
4975 do_pending_stack_adjust ();
4981 /* If we are about to do some arithmetic to correct for an
4982 unsigned operand, do it in a pseudo-register. */
4984 if (GET_MODE (to
) != fmode
4985 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
4986 target
= gen_reg_rtx (fmode
);
4988 /* Convert as signed integer to floating. */
4989 expand_float (target
, from
, 0);
4991 /* If FROM is negative (and therefore TO is negative),
4992 correct its value by 2**bitwidth. */
4994 do_pending_stack_adjust ();
4995 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, GET_MODE (from
),
4999 real_2expN (&offset
, GET_MODE_PRECISION (GET_MODE (from
)), fmode
);
5000 temp
= expand_binop (fmode
, add_optab
, target
,
5001 CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
),
5002 target
, 0, OPTAB_LIB_WIDEN
);
5004 emit_move_insn (target
, temp
);
5006 do_pending_stack_adjust ();
5011 /* No hardware instruction available; call a library routine. */
5016 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
5018 if (GET_MODE_SIZE (GET_MODE (from
)) < GET_MODE_SIZE (SImode
))
5019 from
= convert_to_mode (SImode
, from
, unsignedp
);
5021 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5022 gcc_assert (libfunc
);
5026 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5027 GET_MODE (to
), 1, from
,
5029 insns
= get_insns ();
5032 emit_libcall_block (insns
, target
, value
,
5033 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
5034 GET_MODE (to
), from
));
5039 /* Copy result to requested destination
5040 if we have been computing in a temp location. */
5044 if (GET_MODE (target
) == GET_MODE (to
))
5045 emit_move_insn (to
, target
);
5047 convert_move (to
, target
, 0);
5051 /* Generate code to convert FROM to fixed point and store in TO. FROM
5052 must be floating point. */
5055 expand_fix (rtx to
, rtx from
, int unsignedp
)
5057 enum insn_code icode
;
5059 enum machine_mode fmode
, imode
;
5062 /* We first try to find a pair of modes, one real and one integer, at
5063 least as wide as FROM and TO, respectively, in which we can open-code
5064 this conversion. If the integer mode is wider than the mode of TO,
5065 we can do the conversion either signed or unsigned. */
5067 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5068 fmode
= GET_MODE_WIDER_MODE (fmode
))
5069 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
5070 imode
= GET_MODE_WIDER_MODE (imode
))
5072 int doing_unsigned
= unsignedp
;
5074 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
5075 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
5076 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
5078 if (icode
!= CODE_FOR_nothing
)
5080 rtx last
= get_last_insn ();
5081 if (fmode
!= GET_MODE (from
))
5082 from
= convert_to_mode (fmode
, from
, 0);
5086 rtx temp
= gen_reg_rtx (GET_MODE (from
));
5087 from
= expand_unop (GET_MODE (from
), ftrunc_optab
, from
,
5091 if (imode
!= GET_MODE (to
))
5092 target
= gen_reg_rtx (imode
);
5094 if (maybe_emit_unop_insn (icode
, target
, from
,
5095 doing_unsigned
? UNSIGNED_FIX
: FIX
))
5098 convert_move (to
, target
, unsignedp
);
5101 delete_insns_since (last
);
5105 /* For an unsigned conversion, there is one more way to do it.
5106 If we have a signed conversion, we generate code that compares
5107 the real value to the largest representable positive number. If if
5108 is smaller, the conversion is done normally. Otherwise, subtract
5109 one plus the highest signed number, convert, and add it back.
5111 We only need to check all real modes, since we know we didn't find
5112 anything with a wider integer mode.
5114 This code used to extend FP value into mode wider than the destination.
5115 This is needed for decimal float modes which cannot accurately
5116 represent one plus the highest signed number of the same size, but
5117 not for binary modes. Consider, for instance conversion from SFmode
5120 The hot path through the code is dealing with inputs smaller than 2^63
5121 and doing just the conversion, so there is no bits to lose.
5123 In the other path we know the value is positive in the range 2^63..2^64-1
5124 inclusive. (as for other input overflow happens and result is undefined)
5125 So we know that the most important bit set in mantissa corresponds to
5126 2^63. The subtraction of 2^63 should not generate any rounding as it
5127 simply clears out that bit. The rest is trivial. */
5129 if (unsignedp
&& GET_MODE_PRECISION (GET_MODE (to
)) <= HOST_BITS_PER_WIDE_INT
)
5130 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5131 fmode
= GET_MODE_WIDER_MODE (fmode
))
5132 if (CODE_FOR_nothing
!= can_fix_p (GET_MODE (to
), fmode
, 0, &must_trunc
)
5133 && (!DECIMAL_FLOAT_MODE_P (fmode
)
5134 || GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (GET_MODE (to
))))
5137 REAL_VALUE_TYPE offset
;
5138 rtx limit
, lab1
, lab2
, insn
;
5140 bitsize
= GET_MODE_PRECISION (GET_MODE (to
));
5141 real_2expN (&offset
, bitsize
- 1, fmode
);
5142 limit
= CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
);
5143 lab1
= gen_label_rtx ();
5144 lab2
= gen_label_rtx ();
5146 if (fmode
!= GET_MODE (from
))
5147 from
= convert_to_mode (fmode
, from
, 0);
5149 /* See if we need to do the subtraction. */
5150 do_pending_stack_adjust ();
5151 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
, GET_MODE (from
),
5154 /* If not, do the signed "fix" and branch around fixup code. */
5155 expand_fix (to
, from
, 0);
5156 emit_jump_insn (gen_jump (lab2
));
5159 /* Otherwise, subtract 2**(N-1), convert to signed number,
5160 then add 2**(N-1). Do the addition using XOR since this
5161 will often generate better code. */
5163 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
5164 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5165 expand_fix (to
, target
, 0);
5166 target
= expand_binop (GET_MODE (to
), xor_optab
, to
,
5168 ((HOST_WIDE_INT
) 1 << (bitsize
- 1),
5170 to
, 1, OPTAB_LIB_WIDEN
);
5173 emit_move_insn (to
, target
);
5177 if (optab_handler (mov_optab
, GET_MODE (to
)) != CODE_FOR_nothing
)
5179 /* Make a place for a REG_NOTE and add it. */
5180 insn
= emit_move_insn (to
, to
);
5181 set_dst_reg_note (insn
, REG_EQUAL
,
5182 gen_rtx_fmt_e (UNSIGNED_FIX
, GET_MODE (to
),
5190 /* We can't do it with an insn, so use a library call. But first ensure
5191 that the mode of TO is at least as wide as SImode, since those are the
5192 only library calls we know about. */
5194 if (GET_MODE_SIZE (GET_MODE (to
)) < GET_MODE_SIZE (SImode
))
5196 target
= gen_reg_rtx (SImode
);
5198 expand_fix (target
, from
, unsignedp
);
5206 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
5207 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5208 gcc_assert (libfunc
);
5212 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5213 GET_MODE (to
), 1, from
,
5215 insns
= get_insns ();
5218 emit_libcall_block (insns
, target
, value
,
5219 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
5220 GET_MODE (to
), from
));
5225 if (GET_MODE (to
) == GET_MODE (target
))
5226 emit_move_insn (to
, target
);
5228 convert_move (to
, target
, 0);
5232 /* Generate code to convert FROM or TO a fixed-point.
5233 If UINTP is true, either TO or FROM is an unsigned integer.
5234 If SATP is true, we need to saturate the result. */
5237 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5239 enum machine_mode to_mode
= GET_MODE (to
);
5240 enum machine_mode from_mode
= GET_MODE (from
);
5242 enum rtx_code this_code
;
5243 enum insn_code code
;
5247 if (to_mode
== from_mode
)
5249 emit_move_insn (to
, from
);
5255 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5256 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5260 tab
= satp
? satfract_optab
: fract_optab
;
5261 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5263 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5264 if (code
!= CODE_FOR_nothing
)
5266 emit_unop_insn (code
, to
, from
, this_code
);
5270 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5271 gcc_assert (libfunc
);
5274 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5275 1, from
, from_mode
);
5276 insns
= get_insns ();
5279 emit_libcall_block (insns
, to
, value
,
5280 gen_rtx_fmt_e (tab
->code
, to_mode
, from
));
5283 /* Generate code to convert FROM to fixed point and store in TO. FROM
5284 must be floating point, TO must be signed. Use the conversion optab
5285 TAB to do the conversion. */
5288 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5290 enum insn_code icode
;
5292 enum machine_mode fmode
, imode
;
5294 /* We first try to find a pair of modes, one real and one integer, at
5295 least as wide as FROM and TO, respectively, in which we can open-code
5296 this conversion. If the integer mode is wider than the mode of TO,
5297 we can do the conversion either signed or unsigned. */
5299 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
5300 fmode
= GET_MODE_WIDER_MODE (fmode
))
5301 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
5302 imode
= GET_MODE_WIDER_MODE (imode
))
5304 icode
= convert_optab_handler (tab
, imode
, fmode
);
5305 if (icode
!= CODE_FOR_nothing
)
5307 rtx last
= get_last_insn ();
5308 if (fmode
!= GET_MODE (from
))
5309 from
= convert_to_mode (fmode
, from
, 0);
5311 if (imode
!= GET_MODE (to
))
5312 target
= gen_reg_rtx (imode
);
5314 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5316 delete_insns_since (last
);
5320 convert_move (to
, target
, 0);
5328 /* Report whether we have an instruction to perform the operation
5329 specified by CODE on operands of mode MODE. */
5331 have_insn_for (enum rtx_code code
, enum machine_mode mode
)
5333 return (code_to_optab
[(int) code
] != 0
5334 && (optab_handler (code_to_optab
[(int) code
], mode
)
5335 != CODE_FOR_nothing
));
5338 /* Set all insn_code fields to CODE_FOR_nothing. */
5341 init_insn_codes (void)
5343 memset (optab_table
, 0, sizeof (optab_table
));
5344 memset (convert_optab_table
, 0, sizeof (convert_optab_table
));
5345 memset (direct_optab_table
, 0, sizeof (direct_optab_table
));
5348 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5350 init_optab (optab op
, enum rtx_code code
)
5353 code_to_optab
[(int) code
] = op
;
5356 /* Same, but fill in its code as CODE, and do _not_ write it into
5357 the code_to_optab table. */
5359 init_optabv (optab op
, enum rtx_code code
)
5364 /* Conversion optabs never go in the code_to_optab table. */
5366 init_convert_optab (convert_optab op
, enum rtx_code code
)
5371 /* Initialize the libfunc fields of an entire group of entries in some
5372 optab. Each entry is set equal to a string consisting of a leading
5373 pair of underscores followed by a generic operation name followed by
5374 a mode name (downshifted to lowercase) followed by a single character
5375 representing the number of operands for the given operation (which is
5376 usually one of the characters '2', '3', or '4').
5378 OPTABLE is the table in which libfunc fields are to be initialized.
5379 OPNAME is the generic (string) name of the operation.
5380 SUFFIX is the character which specifies the number of operands for
5381 the given generic operation.
5382 MODE is the mode to generate for.
5386 gen_libfunc (optab optable
, const char *opname
, int suffix
, enum machine_mode mode
)
5388 unsigned opname_len
= strlen (opname
);
5389 const char *mname
= GET_MODE_NAME (mode
);
5390 unsigned mname_len
= strlen (mname
);
5391 int prefix_len
= targetm
.libfunc_gnu_prefix
? 6 : 2;
5392 int len
= prefix_len
+ opname_len
+ mname_len
+ 1 + 1;
5393 char *libfunc_name
= XALLOCAVEC (char, len
);
5400 if (targetm
.libfunc_gnu_prefix
)
5407 for (q
= opname
; *q
; )
5409 for (q
= mname
; *q
; q
++)
5410 *p
++ = TOLOWER (*q
);
5414 set_optab_libfunc (optable
, mode
,
5415 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5418 /* Like gen_libfunc, but verify that integer operation is involved. */
5421 gen_int_libfunc (optab optable
, const char *opname
, char suffix
,
5422 enum machine_mode mode
)
5424 int maxsize
= 2 * BITS_PER_WORD
;
5426 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5428 if (maxsize
< LONG_LONG_TYPE_SIZE
)
5429 maxsize
= LONG_LONG_TYPE_SIZE
;
5430 if (GET_MODE_CLASS (mode
) != MODE_INT
5431 || mode
< word_mode
|| GET_MODE_BITSIZE (mode
) > maxsize
)
5433 gen_libfunc (optable
, opname
, suffix
, mode
);
5436 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5439 gen_fp_libfunc (optab optable
, const char *opname
, char suffix
,
5440 enum machine_mode mode
)
5444 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5445 gen_libfunc (optable
, opname
, suffix
, mode
);
5446 if (DECIMAL_FLOAT_MODE_P (mode
))
5448 dec_opname
= XALLOCAVEC (char, sizeof (DECIMAL_PREFIX
) + strlen (opname
));
5449 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5450 depending on the low level floating format used. */
5451 memcpy (dec_opname
, DECIMAL_PREFIX
, sizeof (DECIMAL_PREFIX
) - 1);
5452 strcpy (dec_opname
+ sizeof (DECIMAL_PREFIX
) - 1, opname
);
5453 gen_libfunc (optable
, dec_opname
, suffix
, mode
);
5457 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5460 gen_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5461 enum machine_mode mode
)
5463 if (!ALL_FIXED_POINT_MODE_P (mode
))
5465 gen_libfunc (optable
, opname
, suffix
, mode
);
5468 /* Like gen_libfunc, but verify that signed fixed-point operation is
5472 gen_signed_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5473 enum machine_mode mode
)
5475 if (!SIGNED_FIXED_POINT_MODE_P (mode
))
5477 gen_libfunc (optable
, opname
, suffix
, mode
);
5480 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5484 gen_unsigned_fixed_libfunc (optab optable
, const char *opname
, char suffix
,
5485 enum machine_mode mode
)
5487 if (!UNSIGNED_FIXED_POINT_MODE_P (mode
))
5489 gen_libfunc (optable
, opname
, suffix
, mode
);
5492 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5495 gen_int_fp_libfunc (optab optable
, const char *name
, char suffix
,
5496 enum machine_mode mode
)
5498 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5499 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5500 if (INTEGRAL_MODE_P (mode
))
5501 gen_int_libfunc (optable
, name
, suffix
, mode
);
5504 /* Like gen_libfunc, but verify that FP or INT operation is involved
5505 and add 'v' suffix for integer operation. */
5508 gen_intv_fp_libfunc (optab optable
, const char *name
, char suffix
,
5509 enum machine_mode mode
)
5511 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5512 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5513 if (GET_MODE_CLASS (mode
) == MODE_INT
)
5515 int len
= strlen (name
);
5516 char *v_name
= XALLOCAVEC (char, len
+ 2);
5517 strcpy (v_name
, name
);
5519 v_name
[len
+ 1] = 0;
5520 gen_int_libfunc (optable
, v_name
, suffix
, mode
);
5524 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5528 gen_int_fp_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5529 enum machine_mode mode
)
5531 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5532 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5533 if (INTEGRAL_MODE_P (mode
))
5534 gen_int_libfunc (optable
, name
, suffix
, mode
);
5535 if (ALL_FIXED_POINT_MODE_P (mode
))
5536 gen_fixed_libfunc (optable
, name
, suffix
, mode
);
5539 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5543 gen_int_fp_signed_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5544 enum machine_mode mode
)
5546 if (DECIMAL_FLOAT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5547 gen_fp_libfunc (optable
, name
, suffix
, mode
);
5548 if (INTEGRAL_MODE_P (mode
))
5549 gen_int_libfunc (optable
, name
, suffix
, mode
);
5550 if (SIGNED_FIXED_POINT_MODE_P (mode
))
5551 gen_signed_fixed_libfunc (optable
, name
, suffix
, mode
);
5554 /* Like gen_libfunc, but verify that INT or FIXED operation is
5558 gen_int_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5559 enum machine_mode mode
)
5561 if (INTEGRAL_MODE_P (mode
))
5562 gen_int_libfunc (optable
, name
, suffix
, mode
);
5563 if (ALL_FIXED_POINT_MODE_P (mode
))
5564 gen_fixed_libfunc (optable
, name
, suffix
, mode
);
5567 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5571 gen_int_signed_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5572 enum machine_mode mode
)
5574 if (INTEGRAL_MODE_P (mode
))
5575 gen_int_libfunc (optable
, name
, suffix
, mode
);
5576 if (SIGNED_FIXED_POINT_MODE_P (mode
))
5577 gen_signed_fixed_libfunc (optable
, name
, suffix
, mode
);
5580 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5584 gen_int_unsigned_fixed_libfunc (optab optable
, const char *name
, char suffix
,
5585 enum machine_mode mode
)
5587 if (INTEGRAL_MODE_P (mode
))
5588 gen_int_libfunc (optable
, name
, suffix
, mode
);
5589 if (UNSIGNED_FIXED_POINT_MODE_P (mode
))
5590 gen_unsigned_fixed_libfunc (optable
, name
, suffix
, mode
);
5593 /* Initialize the libfunc fields of an entire group of entries of an
5594 inter-mode-class conversion optab. The string formation rules are
5595 similar to the ones for init_libfuncs, above, but instead of having
5596 a mode name and an operand count these functions have two mode names
5597 and no operand count. */
5600 gen_interclass_conv_libfunc (convert_optab tab
,
5602 enum machine_mode tmode
,
5603 enum machine_mode fmode
)
5605 size_t opname_len
= strlen (opname
);
5606 size_t mname_len
= 0;
5608 const char *fname
, *tname
;
5610 int prefix_len
= targetm
.libfunc_gnu_prefix
? 6 : 2;
5611 char *libfunc_name
, *suffix
;
5612 char *nondec_name
, *dec_name
, *nondec_suffix
, *dec_suffix
;
5615 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5616 depends on which underlying decimal floating point format is used. */
5617 const size_t dec_len
= sizeof (DECIMAL_PREFIX
) - 1;
5619 mname_len
= strlen (GET_MODE_NAME (tmode
)) + strlen (GET_MODE_NAME (fmode
));
5621 nondec_name
= XALLOCAVEC (char, prefix_len
+ opname_len
+ mname_len
+ 1 + 1);
5622 nondec_name
[0] = '_';
5623 nondec_name
[1] = '_';
5624 if (targetm
.libfunc_gnu_prefix
)
5626 nondec_name
[2] = 'g';
5627 nondec_name
[3] = 'n';
5628 nondec_name
[4] = 'u';
5629 nondec_name
[5] = '_';
5632 memcpy (&nondec_name
[prefix_len
], opname
, opname_len
);
5633 nondec_suffix
= nondec_name
+ opname_len
+ prefix_len
;
5635 dec_name
= XALLOCAVEC (char, 2 + dec_len
+ opname_len
+ mname_len
+ 1 + 1);
5638 memcpy (&dec_name
[2], DECIMAL_PREFIX
, dec_len
);
5639 memcpy (&dec_name
[2+dec_len
], opname
, opname_len
);
5640 dec_suffix
= dec_name
+ dec_len
+ opname_len
+ 2;
5642 fname
= GET_MODE_NAME (fmode
);
5643 tname
= GET_MODE_NAME (tmode
);
5645 if (DECIMAL_FLOAT_MODE_P(fmode
) || DECIMAL_FLOAT_MODE_P(tmode
))
5647 libfunc_name
= dec_name
;
5648 suffix
= dec_suffix
;
5652 libfunc_name
= nondec_name
;
5653 suffix
= nondec_suffix
;
5657 for (q
= fname
; *q
; p
++, q
++)
5659 for (q
= tname
; *q
; p
++, q
++)
5664 set_conv_libfunc (tab
, tmode
, fmode
,
5665 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5668 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5669 int->fp conversion. */
5672 gen_int_to_fp_conv_libfunc (convert_optab tab
,
5674 enum machine_mode tmode
,
5675 enum machine_mode fmode
)
5677 if (GET_MODE_CLASS (fmode
) != MODE_INT
)
5679 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5681 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5684 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5688 gen_ufloat_conv_libfunc (convert_optab tab
,
5689 const char *opname ATTRIBUTE_UNUSED
,
5690 enum machine_mode tmode
,
5691 enum machine_mode fmode
)
5693 if (DECIMAL_FLOAT_MODE_P (tmode
))
5694 gen_int_to_fp_conv_libfunc (tab
, "floatuns", tmode
, fmode
);
5696 gen_int_to_fp_conv_libfunc (tab
, "floatun", tmode
, fmode
);
5699 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5700 fp->int conversion. */
5703 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab
,
5705 enum machine_mode tmode
,
5706 enum machine_mode fmode
)
5708 if (GET_MODE_CLASS (fmode
) != MODE_INT
)
5710 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
)
5712 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5715 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5716 fp->int conversion with no decimal floating point involved. */
5719 gen_fp_to_int_conv_libfunc (convert_optab tab
,
5721 enum machine_mode tmode
,
5722 enum machine_mode fmode
)
5724 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5726 if (GET_MODE_CLASS (tmode
) != MODE_INT
)
5728 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5731 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5732 The string formation rules are
5733 similar to the ones for init_libfunc, above. */
5736 gen_intraclass_conv_libfunc (convert_optab tab
, const char *opname
,
5737 enum machine_mode tmode
, enum machine_mode fmode
)
5739 size_t opname_len
= strlen (opname
);
5740 size_t mname_len
= 0;
5742 const char *fname
, *tname
;
5744 int prefix_len
= targetm
.libfunc_gnu_prefix
? 6 : 2;
5745 char *nondec_name
, *dec_name
, *nondec_suffix
, *dec_suffix
;
5746 char *libfunc_name
, *suffix
;
5749 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5750 depends on which underlying decimal floating point format is used. */
5751 const size_t dec_len
= sizeof (DECIMAL_PREFIX
) - 1;
5753 mname_len
= strlen (GET_MODE_NAME (tmode
)) + strlen (GET_MODE_NAME (fmode
));
5755 nondec_name
= XALLOCAVEC (char, 2 + opname_len
+ mname_len
+ 1 + 1);
5756 nondec_name
[0] = '_';
5757 nondec_name
[1] = '_';
5758 if (targetm
.libfunc_gnu_prefix
)
5760 nondec_name
[2] = 'g';
5761 nondec_name
[3] = 'n';
5762 nondec_name
[4] = 'u';
5763 nondec_name
[5] = '_';
5765 memcpy (&nondec_name
[prefix_len
], opname
, opname_len
);
5766 nondec_suffix
= nondec_name
+ opname_len
+ prefix_len
;
5768 dec_name
= XALLOCAVEC (char, 2 + dec_len
+ opname_len
+ mname_len
+ 1 + 1);
5771 memcpy (&dec_name
[2], DECIMAL_PREFIX
, dec_len
);
5772 memcpy (&dec_name
[2 + dec_len
], opname
, opname_len
);
5773 dec_suffix
= dec_name
+ dec_len
+ opname_len
+ 2;
5775 fname
= GET_MODE_NAME (fmode
);
5776 tname
= GET_MODE_NAME (tmode
);
5778 if (DECIMAL_FLOAT_MODE_P(fmode
) || DECIMAL_FLOAT_MODE_P(tmode
))
5780 libfunc_name
= dec_name
;
5781 suffix
= dec_suffix
;
5785 libfunc_name
= nondec_name
;
5786 suffix
= nondec_suffix
;
5790 for (q
= fname
; *q
; p
++, q
++)
5792 for (q
= tname
; *q
; p
++, q
++)
5798 set_conv_libfunc (tab
, tmode
, fmode
,
5799 ggc_alloc_string (libfunc_name
, p
- libfunc_name
));
5802 /* Pick proper libcall for trunc_optab. We need to chose if we do
5803 truncation or extension and interclass or intraclass. */
5806 gen_trunc_conv_libfunc (convert_optab tab
,
5808 enum machine_mode tmode
,
5809 enum machine_mode fmode
)
5811 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5813 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5818 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (fmode
))
5819 || (GET_MODE_CLASS (fmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (tmode
)))
5820 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5822 if (GET_MODE_PRECISION (fmode
) <= GET_MODE_PRECISION (tmode
))
5825 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
5826 && GET_MODE_CLASS (fmode
) == MODE_FLOAT
)
5827 || (DECIMAL_FLOAT_MODE_P (fmode
) && DECIMAL_FLOAT_MODE_P (tmode
)))
5828 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5831 /* Pick proper libcall for extend_optab. We need to chose if we do
5832 truncation or extension and interclass or intraclass. */
5835 gen_extend_conv_libfunc (convert_optab tab
,
5836 const char *opname ATTRIBUTE_UNUSED
,
5837 enum machine_mode tmode
,
5838 enum machine_mode fmode
)
5840 if (GET_MODE_CLASS (tmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (tmode
))
5842 if (GET_MODE_CLASS (fmode
) != MODE_FLOAT
&& !DECIMAL_FLOAT_MODE_P (fmode
))
5847 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (fmode
))
5848 || (GET_MODE_CLASS (fmode
) == MODE_FLOAT
&& DECIMAL_FLOAT_MODE_P (tmode
)))
5849 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5851 if (GET_MODE_PRECISION (fmode
) > GET_MODE_PRECISION (tmode
))
5854 if ((GET_MODE_CLASS (tmode
) == MODE_FLOAT
5855 && GET_MODE_CLASS (fmode
) == MODE_FLOAT
)
5856 || (DECIMAL_FLOAT_MODE_P (fmode
) && DECIMAL_FLOAT_MODE_P (tmode
)))
5857 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5860 /* Pick proper libcall for fract_optab. We need to chose if we do
5861 interclass or intraclass. */
5864 gen_fract_conv_libfunc (convert_optab tab
,
5866 enum machine_mode tmode
,
5867 enum machine_mode fmode
)
5871 if (!(ALL_FIXED_POINT_MODE_P (tmode
) || ALL_FIXED_POINT_MODE_P (fmode
)))
5874 if (GET_MODE_CLASS (tmode
) == GET_MODE_CLASS (fmode
))
5875 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5877 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5880 /* Pick proper libcall for fractuns_optab. */
5883 gen_fractuns_conv_libfunc (convert_optab tab
,
5885 enum machine_mode tmode
,
5886 enum machine_mode fmode
)
5890 /* One mode must be a fixed-point mode, and the other must be an integer
5892 if (!((ALL_FIXED_POINT_MODE_P (tmode
) && GET_MODE_CLASS (fmode
) == MODE_INT
)
5893 || (ALL_FIXED_POINT_MODE_P (fmode
)
5894 && GET_MODE_CLASS (tmode
) == MODE_INT
)))
5897 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5900 /* Pick proper libcall for satfract_optab. We need to chose if we do
5901 interclass or intraclass. */
5904 gen_satfract_conv_libfunc (convert_optab tab
,
5906 enum machine_mode tmode
,
5907 enum machine_mode fmode
)
5911 /* TMODE must be a fixed-point mode. */
5912 if (!ALL_FIXED_POINT_MODE_P (tmode
))
5915 if (GET_MODE_CLASS (tmode
) == GET_MODE_CLASS (fmode
))
5916 gen_intraclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5918 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5921 /* Pick proper libcall for satfractuns_optab. */
5924 gen_satfractuns_conv_libfunc (convert_optab tab
,
5926 enum machine_mode tmode
,
5927 enum machine_mode fmode
)
5931 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5932 if (!(ALL_FIXED_POINT_MODE_P (tmode
) && GET_MODE_CLASS (fmode
) == MODE_INT
))
5935 gen_interclass_conv_libfunc (tab
, opname
, tmode
, fmode
);
5938 /* A table of previously-created libfuncs, hashed by name. */
5939 static GTY ((param_is (union tree_node
))) htab_t libfunc_decls
;
5941 /* Hashtable callbacks for libfunc_decls. */
5944 libfunc_decl_hash (const void *entry
)
5946 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree
) entry
));
5950 libfunc_decl_eq (const void *entry1
, const void *entry2
)
5952 return DECL_NAME ((const_tree
) entry1
) == (const_tree
) entry2
;
5955 /* Build a decl for a libfunc named NAME. */
5958 build_libfunc_function (const char *name
)
5960 tree decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
5961 get_identifier (name
),
5962 build_function_type (integer_type_node
, NULL_TREE
));
5963 /* ??? We don't have any type information except for this is
5964 a function. Pretend this is "int foo()". */
5965 DECL_ARTIFICIAL (decl
) = 1;
5966 DECL_EXTERNAL (decl
) = 1;
5967 TREE_PUBLIC (decl
) = 1;
5968 gcc_assert (DECL_ASSEMBLER_NAME (decl
));
5970 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5971 are the flags assigned by targetm.encode_section_info. */
5972 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
5978 init_one_libfunc (const char *name
)
5984 if (libfunc_decls
== NULL
)
5985 libfunc_decls
= htab_create_ggc (37, libfunc_decl_hash
,
5986 libfunc_decl_eq
, NULL
);
5988 /* See if we have already created a libfunc decl for this function. */
5989 id
= get_identifier (name
);
5990 hash
= IDENTIFIER_HASH_VALUE (id
);
5991 slot
= htab_find_slot_with_hash (libfunc_decls
, id
, hash
, INSERT
);
5992 decl
= (tree
) *slot
;
5995 /* Create a new decl, so that it can be passed to
5996 targetm.encode_section_info. */
5997 decl
= build_libfunc_function (name
);
6000 return XEXP (DECL_RTL (decl
), 0);
6003 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6006 set_user_assembler_libfunc (const char *name
, const char *asmspec
)
6012 id
= get_identifier (name
);
6013 hash
= IDENTIFIER_HASH_VALUE (id
);
6014 slot
= htab_find_slot_with_hash (libfunc_decls
, id
, hash
, NO_INSERT
);
6016 decl
= (tree
) *slot
;
6017 set_user_assembler_name (decl
, asmspec
);
6018 return XEXP (DECL_RTL (decl
), 0);
6021 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6022 MODE to NAME, which should be either 0 or a string constant. */
6024 set_optab_libfunc (optab optable
, enum machine_mode mode
, const char *name
)
6027 struct libfunc_entry e
;
6028 struct libfunc_entry
**slot
;
6029 e
.optab
= (size_t) (optable
- &optab_table
[0]);
6034 val
= init_one_libfunc (name
);
6037 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, INSERT
);
6039 *slot
= ggc_alloc_libfunc_entry ();
6040 (*slot
)->optab
= (size_t) (optable
- &optab_table
[0]);
6041 (*slot
)->mode1
= mode
;
6042 (*slot
)->mode2
= VOIDmode
;
6043 (*slot
)->libfunc
= val
;
6046 /* Call this to reset the function entry for one conversion optab
6047 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6048 either 0 or a string constant. */
6050 set_conv_libfunc (convert_optab optable
, enum machine_mode tmode
,
6051 enum machine_mode fmode
, const char *name
)
6054 struct libfunc_entry e
;
6055 struct libfunc_entry
**slot
;
6056 e
.optab
= (size_t) (optable
- &convert_optab_table
[0]);
6061 val
= init_one_libfunc (name
);
6064 slot
= (struct libfunc_entry
**) htab_find_slot (libfunc_hash
, &e
, INSERT
);
6066 *slot
= ggc_alloc_libfunc_entry ();
6067 (*slot
)->optab
= (size_t) (optable
- &convert_optab_table
[0]);
6068 (*slot
)->mode1
= tmode
;
6069 (*slot
)->mode2
= fmode
;
6070 (*slot
)->libfunc
= val
;
6073 /* Call this to initialize the contents of the optabs
6074 appropriately for the current target machine. */
6081 htab_empty (libfunc_hash
);
6082 /* We statically initialize the insn_codes with the equivalent of
6083 CODE_FOR_nothing. Repeat the process if reinitialising. */
6087 libfunc_hash
= htab_create_ggc (10, hash_libfunc
, eq_libfunc
, NULL
);
6089 init_optab (add_optab
, PLUS
);
6090 init_optabv (addv_optab
, PLUS
);
6091 init_optab (sub_optab
, MINUS
);
6092 init_optabv (subv_optab
, MINUS
);
6093 init_optab (ssadd_optab
, SS_PLUS
);
6094 init_optab (usadd_optab
, US_PLUS
);
6095 init_optab (sssub_optab
, SS_MINUS
);
6096 init_optab (ussub_optab
, US_MINUS
);
6097 init_optab (smul_optab
, MULT
);
6098 init_optab (ssmul_optab
, SS_MULT
);
6099 init_optab (usmul_optab
, US_MULT
);
6100 init_optabv (smulv_optab
, MULT
);
6101 init_optab (smul_highpart_optab
, UNKNOWN
);
6102 init_optab (umul_highpart_optab
, UNKNOWN
);
6103 init_optab (smul_widen_optab
, UNKNOWN
);
6104 init_optab (umul_widen_optab
, UNKNOWN
);
6105 init_optab (usmul_widen_optab
, UNKNOWN
);
6106 init_optab (smadd_widen_optab
, UNKNOWN
);
6107 init_optab (umadd_widen_optab
, UNKNOWN
);
6108 init_optab (ssmadd_widen_optab
, UNKNOWN
);
6109 init_optab (usmadd_widen_optab
, UNKNOWN
);
6110 init_optab (smsub_widen_optab
, UNKNOWN
);
6111 init_optab (umsub_widen_optab
, UNKNOWN
);
6112 init_optab (ssmsub_widen_optab
, UNKNOWN
);
6113 init_optab (usmsub_widen_optab
, UNKNOWN
);
6114 init_optab (sdiv_optab
, DIV
);
6115 init_optab (ssdiv_optab
, SS_DIV
);
6116 init_optab (usdiv_optab
, US_DIV
);
6117 init_optabv (sdivv_optab
, DIV
);
6118 init_optab (sdivmod_optab
, UNKNOWN
);
6119 init_optab (udiv_optab
, UDIV
);
6120 init_optab (udivmod_optab
, UNKNOWN
);
6121 init_optab (smod_optab
, MOD
);
6122 init_optab (umod_optab
, UMOD
);
6123 init_optab (fmod_optab
, UNKNOWN
);
6124 init_optab (remainder_optab
, UNKNOWN
);
6125 init_optab (ftrunc_optab
, UNKNOWN
);
6126 init_optab (and_optab
, AND
);
6127 init_optab (ior_optab
, IOR
);
6128 init_optab (xor_optab
, XOR
);
6129 init_optab (ashl_optab
, ASHIFT
);
6130 init_optab (ssashl_optab
, SS_ASHIFT
);
6131 init_optab (usashl_optab
, US_ASHIFT
);
6132 init_optab (ashr_optab
, ASHIFTRT
);
6133 init_optab (lshr_optab
, LSHIFTRT
);
6134 init_optabv (vashl_optab
, ASHIFT
);
6135 init_optabv (vashr_optab
, ASHIFTRT
);
6136 init_optabv (vlshr_optab
, LSHIFTRT
);
6137 init_optab (rotl_optab
, ROTATE
);
6138 init_optab (rotr_optab
, ROTATERT
);
6139 init_optab (smin_optab
, SMIN
);
6140 init_optab (smax_optab
, SMAX
);
6141 init_optab (umin_optab
, UMIN
);
6142 init_optab (umax_optab
, UMAX
);
6143 init_optab (pow_optab
, UNKNOWN
);
6144 init_optab (atan2_optab
, UNKNOWN
);
6145 init_optab (fma_optab
, FMA
);
6146 init_optab (fms_optab
, UNKNOWN
);
6147 init_optab (fnma_optab
, UNKNOWN
);
6148 init_optab (fnms_optab
, UNKNOWN
);
6150 /* These three have codes assigned exclusively for the sake of
6152 init_optab (mov_optab
, SET
);
6153 init_optab (movstrict_optab
, STRICT_LOW_PART
);
6154 init_optab (cbranch_optab
, COMPARE
);
6156 init_optab (cmov_optab
, UNKNOWN
);
6157 init_optab (cstore_optab
, UNKNOWN
);
6158 init_optab (ctrap_optab
, UNKNOWN
);
6160 init_optab (storent_optab
, UNKNOWN
);
6162 init_optab (cmp_optab
, UNKNOWN
);
6163 init_optab (ucmp_optab
, UNKNOWN
);
6165 init_optab (eq_optab
, EQ
);
6166 init_optab (ne_optab
, NE
);
6167 init_optab (gt_optab
, GT
);
6168 init_optab (ge_optab
, GE
);
6169 init_optab (lt_optab
, LT
);
6170 init_optab (le_optab
, LE
);
6171 init_optab (unord_optab
, UNORDERED
);
6173 init_optab (neg_optab
, NEG
);
6174 init_optab (ssneg_optab
, SS_NEG
);
6175 init_optab (usneg_optab
, US_NEG
);
6176 init_optabv (negv_optab
, NEG
);
6177 init_optab (abs_optab
, ABS
);
6178 init_optabv (absv_optab
, ABS
);
6179 init_optab (addcc_optab
, UNKNOWN
);
6180 init_optab (one_cmpl_optab
, NOT
);
6181 init_optab (bswap_optab
, BSWAP
);
6182 init_optab (ffs_optab
, FFS
);
6183 init_optab (clz_optab
, CLZ
);
6184 init_optab (ctz_optab
, CTZ
);
6185 init_optab (clrsb_optab
, CLRSB
);
6186 init_optab (popcount_optab
, POPCOUNT
);
6187 init_optab (parity_optab
, PARITY
);
6188 init_optab (sqrt_optab
, SQRT
);
6189 init_optab (floor_optab
, UNKNOWN
);
6190 init_optab (ceil_optab
, UNKNOWN
);
6191 init_optab (round_optab
, UNKNOWN
);
6192 init_optab (btrunc_optab
, UNKNOWN
);
6193 init_optab (nearbyint_optab
, UNKNOWN
);
6194 init_optab (rint_optab
, UNKNOWN
);
6195 init_optab (sincos_optab
, UNKNOWN
);
6196 init_optab (sin_optab
, UNKNOWN
);
6197 init_optab (asin_optab
, UNKNOWN
);
6198 init_optab (cos_optab
, UNKNOWN
);
6199 init_optab (acos_optab
, UNKNOWN
);
6200 init_optab (exp_optab
, UNKNOWN
);
6201 init_optab (exp10_optab
, UNKNOWN
);
6202 init_optab (exp2_optab
, UNKNOWN
);
6203 init_optab (expm1_optab
, UNKNOWN
);
6204 init_optab (ldexp_optab
, UNKNOWN
);
6205 init_optab (scalb_optab
, UNKNOWN
);
6206 init_optab (significand_optab
, UNKNOWN
);
6207 init_optab (logb_optab
, UNKNOWN
);
6208 init_optab (ilogb_optab
, UNKNOWN
);
6209 init_optab (log_optab
, UNKNOWN
);
6210 init_optab (log10_optab
, UNKNOWN
);
6211 init_optab (log2_optab
, UNKNOWN
);
6212 init_optab (log1p_optab
, UNKNOWN
);
6213 init_optab (tan_optab
, UNKNOWN
);
6214 init_optab (atan_optab
, UNKNOWN
);
6215 init_optab (copysign_optab
, UNKNOWN
);
6216 init_optab (signbit_optab
, UNKNOWN
);
6218 init_optab (isinf_optab
, UNKNOWN
);
6220 init_optab (strlen_optab
, UNKNOWN
);
6221 init_optab (push_optab
, UNKNOWN
);
6223 init_optab (reduc_smax_optab
, UNKNOWN
);
6224 init_optab (reduc_umax_optab
, UNKNOWN
);
6225 init_optab (reduc_smin_optab
, UNKNOWN
);
6226 init_optab (reduc_umin_optab
, UNKNOWN
);
6227 init_optab (reduc_splus_optab
, UNKNOWN
);
6228 init_optab (reduc_uplus_optab
, UNKNOWN
);
6230 init_optab (ssum_widen_optab
, UNKNOWN
);
6231 init_optab (usum_widen_optab
, UNKNOWN
);
6232 init_optab (sdot_prod_optab
, UNKNOWN
);
6233 init_optab (udot_prod_optab
, UNKNOWN
);
6235 init_optab (vec_extract_optab
, UNKNOWN
);
6236 init_optab (vec_set_optab
, UNKNOWN
);
6237 init_optab (vec_init_optab
, UNKNOWN
);
6238 init_optab (vec_shl_optab
, UNKNOWN
);
6239 init_optab (vec_shr_optab
, UNKNOWN
);
6240 init_optab (vec_realign_load_optab
, UNKNOWN
);
6241 init_optab (movmisalign_optab
, UNKNOWN
);
6242 init_optab (vec_widen_umult_hi_optab
, UNKNOWN
);
6243 init_optab (vec_widen_umult_lo_optab
, UNKNOWN
);
6244 init_optab (vec_widen_smult_hi_optab
, UNKNOWN
);
6245 init_optab (vec_widen_smult_lo_optab
, UNKNOWN
);
6246 init_optab (vec_widen_ushiftl_hi_optab
, UNKNOWN
);
6247 init_optab (vec_widen_ushiftl_lo_optab
, UNKNOWN
);
6248 init_optab (vec_widen_sshiftl_hi_optab
, UNKNOWN
);
6249 init_optab (vec_widen_sshiftl_lo_optab
, UNKNOWN
);
6250 init_optab (vec_unpacks_hi_optab
, UNKNOWN
);
6251 init_optab (vec_unpacks_lo_optab
, UNKNOWN
);
6252 init_optab (vec_unpacku_hi_optab
, UNKNOWN
);
6253 init_optab (vec_unpacku_lo_optab
, UNKNOWN
);
6254 init_optab (vec_unpacks_float_hi_optab
, UNKNOWN
);
6255 init_optab (vec_unpacks_float_lo_optab
, UNKNOWN
);
6256 init_optab (vec_unpacku_float_hi_optab
, UNKNOWN
);
6257 init_optab (vec_unpacku_float_lo_optab
, UNKNOWN
);
6258 init_optab (vec_pack_trunc_optab
, UNKNOWN
);
6259 init_optab (vec_pack_usat_optab
, UNKNOWN
);
6260 init_optab (vec_pack_ssat_optab
, UNKNOWN
);
6261 init_optab (vec_pack_ufix_trunc_optab
, UNKNOWN
);
6262 init_optab (vec_pack_sfix_trunc_optab
, UNKNOWN
);
6264 init_optab (powi_optab
, UNKNOWN
);
6267 init_convert_optab (sext_optab
, SIGN_EXTEND
);
6268 init_convert_optab (zext_optab
, ZERO_EXTEND
);
6269 init_convert_optab (trunc_optab
, TRUNCATE
);
6270 init_convert_optab (sfix_optab
, FIX
);
6271 init_convert_optab (ufix_optab
, UNSIGNED_FIX
);
6272 init_convert_optab (sfixtrunc_optab
, UNKNOWN
);
6273 init_convert_optab (ufixtrunc_optab
, UNKNOWN
);
6274 init_convert_optab (sfloat_optab
, FLOAT
);
6275 init_convert_optab (ufloat_optab
, UNSIGNED_FLOAT
);
6276 init_convert_optab (lrint_optab
, UNKNOWN
);
6277 init_convert_optab (lround_optab
, UNKNOWN
);
6278 init_convert_optab (lfloor_optab
, UNKNOWN
);
6279 init_convert_optab (lceil_optab
, UNKNOWN
);
6281 init_convert_optab (fract_optab
, FRACT_CONVERT
);
6282 init_convert_optab (fractuns_optab
, UNSIGNED_FRACT_CONVERT
);
6283 init_convert_optab (satfract_optab
, SAT_FRACT
);
6284 init_convert_optab (satfractuns_optab
, UNSIGNED_SAT_FRACT
);
6286 /* Fill in the optabs with the insns we support. */
6289 /* Initialize the optabs with the names of the library functions. */
6290 add_optab
->libcall_basename
= "add";
6291 add_optab
->libcall_suffix
= '3';
6292 add_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6293 addv_optab
->libcall_basename
= "add";
6294 addv_optab
->libcall_suffix
= '3';
6295 addv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6296 ssadd_optab
->libcall_basename
= "ssadd";
6297 ssadd_optab
->libcall_suffix
= '3';
6298 ssadd_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6299 usadd_optab
->libcall_basename
= "usadd";
6300 usadd_optab
->libcall_suffix
= '3';
6301 usadd_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6302 sub_optab
->libcall_basename
= "sub";
6303 sub_optab
->libcall_suffix
= '3';
6304 sub_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6305 subv_optab
->libcall_basename
= "sub";
6306 subv_optab
->libcall_suffix
= '3';
6307 subv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6308 sssub_optab
->libcall_basename
= "sssub";
6309 sssub_optab
->libcall_suffix
= '3';
6310 sssub_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6311 ussub_optab
->libcall_basename
= "ussub";
6312 ussub_optab
->libcall_suffix
= '3';
6313 ussub_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6314 smul_optab
->libcall_basename
= "mul";
6315 smul_optab
->libcall_suffix
= '3';
6316 smul_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6317 smulv_optab
->libcall_basename
= "mul";
6318 smulv_optab
->libcall_suffix
= '3';
6319 smulv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6320 ssmul_optab
->libcall_basename
= "ssmul";
6321 ssmul_optab
->libcall_suffix
= '3';
6322 ssmul_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6323 usmul_optab
->libcall_basename
= "usmul";
6324 usmul_optab
->libcall_suffix
= '3';
6325 usmul_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6326 sdiv_optab
->libcall_basename
= "div";
6327 sdiv_optab
->libcall_suffix
= '3';
6328 sdiv_optab
->libcall_gen
= gen_int_fp_signed_fixed_libfunc
;
6329 sdivv_optab
->libcall_basename
= "divv";
6330 sdivv_optab
->libcall_suffix
= '3';
6331 sdivv_optab
->libcall_gen
= gen_int_libfunc
;
6332 ssdiv_optab
->libcall_basename
= "ssdiv";
6333 ssdiv_optab
->libcall_suffix
= '3';
6334 ssdiv_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6335 udiv_optab
->libcall_basename
= "udiv";
6336 udiv_optab
->libcall_suffix
= '3';
6337 udiv_optab
->libcall_gen
= gen_int_unsigned_fixed_libfunc
;
6338 usdiv_optab
->libcall_basename
= "usdiv";
6339 usdiv_optab
->libcall_suffix
= '3';
6340 usdiv_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6341 sdivmod_optab
->libcall_basename
= "divmod";
6342 sdivmod_optab
->libcall_suffix
= '4';
6343 sdivmod_optab
->libcall_gen
= gen_int_libfunc
;
6344 udivmod_optab
->libcall_basename
= "udivmod";
6345 udivmod_optab
->libcall_suffix
= '4';
6346 udivmod_optab
->libcall_gen
= gen_int_libfunc
;
6347 smod_optab
->libcall_basename
= "mod";
6348 smod_optab
->libcall_suffix
= '3';
6349 smod_optab
->libcall_gen
= gen_int_libfunc
;
6350 umod_optab
->libcall_basename
= "umod";
6351 umod_optab
->libcall_suffix
= '3';
6352 umod_optab
->libcall_gen
= gen_int_libfunc
;
6353 ftrunc_optab
->libcall_basename
= "ftrunc";
6354 ftrunc_optab
->libcall_suffix
= '2';
6355 ftrunc_optab
->libcall_gen
= gen_fp_libfunc
;
6356 and_optab
->libcall_basename
= "and";
6357 and_optab
->libcall_suffix
= '3';
6358 and_optab
->libcall_gen
= gen_int_libfunc
;
6359 ior_optab
->libcall_basename
= "ior";
6360 ior_optab
->libcall_suffix
= '3';
6361 ior_optab
->libcall_gen
= gen_int_libfunc
;
6362 xor_optab
->libcall_basename
= "xor";
6363 xor_optab
->libcall_suffix
= '3';
6364 xor_optab
->libcall_gen
= gen_int_libfunc
;
6365 ashl_optab
->libcall_basename
= "ashl";
6366 ashl_optab
->libcall_suffix
= '3';
6367 ashl_optab
->libcall_gen
= gen_int_fixed_libfunc
;
6368 ssashl_optab
->libcall_basename
= "ssashl";
6369 ssashl_optab
->libcall_suffix
= '3';
6370 ssashl_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6371 usashl_optab
->libcall_basename
= "usashl";
6372 usashl_optab
->libcall_suffix
= '3';
6373 usashl_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6374 ashr_optab
->libcall_basename
= "ashr";
6375 ashr_optab
->libcall_suffix
= '3';
6376 ashr_optab
->libcall_gen
= gen_int_signed_fixed_libfunc
;
6377 lshr_optab
->libcall_basename
= "lshr";
6378 lshr_optab
->libcall_suffix
= '3';
6379 lshr_optab
->libcall_gen
= gen_int_unsigned_fixed_libfunc
;
6380 smin_optab
->libcall_basename
= "min";
6381 smin_optab
->libcall_suffix
= '3';
6382 smin_optab
->libcall_gen
= gen_int_fp_libfunc
;
6383 smax_optab
->libcall_basename
= "max";
6384 smax_optab
->libcall_suffix
= '3';
6385 smax_optab
->libcall_gen
= gen_int_fp_libfunc
;
6386 umin_optab
->libcall_basename
= "umin";
6387 umin_optab
->libcall_suffix
= '3';
6388 umin_optab
->libcall_gen
= gen_int_libfunc
;
6389 umax_optab
->libcall_basename
= "umax";
6390 umax_optab
->libcall_suffix
= '3';
6391 umax_optab
->libcall_gen
= gen_int_libfunc
;
6392 neg_optab
->libcall_basename
= "neg";
6393 neg_optab
->libcall_suffix
= '2';
6394 neg_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6395 ssneg_optab
->libcall_basename
= "ssneg";
6396 ssneg_optab
->libcall_suffix
= '2';
6397 ssneg_optab
->libcall_gen
= gen_signed_fixed_libfunc
;
6398 usneg_optab
->libcall_basename
= "usneg";
6399 usneg_optab
->libcall_suffix
= '2';
6400 usneg_optab
->libcall_gen
= gen_unsigned_fixed_libfunc
;
6401 negv_optab
->libcall_basename
= "neg";
6402 negv_optab
->libcall_suffix
= '2';
6403 negv_optab
->libcall_gen
= gen_intv_fp_libfunc
;
6404 one_cmpl_optab
->libcall_basename
= "one_cmpl";
6405 one_cmpl_optab
->libcall_suffix
= '2';
6406 one_cmpl_optab
->libcall_gen
= gen_int_libfunc
;
6407 ffs_optab
->libcall_basename
= "ffs";
6408 ffs_optab
->libcall_suffix
= '2';
6409 ffs_optab
->libcall_gen
= gen_int_libfunc
;
6410 clz_optab
->libcall_basename
= "clz";
6411 clz_optab
->libcall_suffix
= '2';
6412 clz_optab
->libcall_gen
= gen_int_libfunc
;
6413 ctz_optab
->libcall_basename
= "ctz";
6414 ctz_optab
->libcall_suffix
= '2';
6415 ctz_optab
->libcall_gen
= gen_int_libfunc
;
6416 clrsb_optab
->libcall_basename
= "clrsb";
6417 clrsb_optab
->libcall_suffix
= '2';
6418 clrsb_optab
->libcall_gen
= gen_int_libfunc
;
6419 popcount_optab
->libcall_basename
= "popcount";
6420 popcount_optab
->libcall_suffix
= '2';
6421 popcount_optab
->libcall_gen
= gen_int_libfunc
;
6422 parity_optab
->libcall_basename
= "parity";
6423 parity_optab
->libcall_suffix
= '2';
6424 parity_optab
->libcall_gen
= gen_int_libfunc
;
6426 /* Comparison libcalls for integers MUST come in pairs,
6428 cmp_optab
->libcall_basename
= "cmp";
6429 cmp_optab
->libcall_suffix
= '2';
6430 cmp_optab
->libcall_gen
= gen_int_fp_fixed_libfunc
;
6431 ucmp_optab
->libcall_basename
= "ucmp";
6432 ucmp_optab
->libcall_suffix
= '2';
6433 ucmp_optab
->libcall_gen
= gen_int_libfunc
;
6435 /* EQ etc are floating point only. */
6436 eq_optab
->libcall_basename
= "eq";
6437 eq_optab
->libcall_suffix
= '2';
6438 eq_optab
->libcall_gen
= gen_fp_libfunc
;
6439 ne_optab
->libcall_basename
= "ne";
6440 ne_optab
->libcall_suffix
= '2';
6441 ne_optab
->libcall_gen
= gen_fp_libfunc
;
6442 gt_optab
->libcall_basename
= "gt";
6443 gt_optab
->libcall_suffix
= '2';
6444 gt_optab
->libcall_gen
= gen_fp_libfunc
;
6445 ge_optab
->libcall_basename
= "ge";
6446 ge_optab
->libcall_suffix
= '2';
6447 ge_optab
->libcall_gen
= gen_fp_libfunc
;
6448 lt_optab
->libcall_basename
= "lt";
6449 lt_optab
->libcall_suffix
= '2';
6450 lt_optab
->libcall_gen
= gen_fp_libfunc
;
6451 le_optab
->libcall_basename
= "le";
6452 le_optab
->libcall_suffix
= '2';
6453 le_optab
->libcall_gen
= gen_fp_libfunc
;
6454 unord_optab
->libcall_basename
= "unord";
6455 unord_optab
->libcall_suffix
= '2';
6456 unord_optab
->libcall_gen
= gen_fp_libfunc
;
6458 powi_optab
->libcall_basename
= "powi";
6459 powi_optab
->libcall_suffix
= '2';
6460 powi_optab
->libcall_gen
= gen_fp_libfunc
;
6463 sfloat_optab
->libcall_basename
= "float";
6464 sfloat_optab
->libcall_gen
= gen_int_to_fp_conv_libfunc
;
6465 ufloat_optab
->libcall_gen
= gen_ufloat_conv_libfunc
;
6466 sfix_optab
->libcall_basename
= "fix";
6467 sfix_optab
->libcall_gen
= gen_fp_to_int_conv_libfunc
;
6468 ufix_optab
->libcall_basename
= "fixuns";
6469 ufix_optab
->libcall_gen
= gen_fp_to_int_conv_libfunc
;
6470 lrint_optab
->libcall_basename
= "lrint";
6471 lrint_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6472 lround_optab
->libcall_basename
= "lround";
6473 lround_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6474 lfloor_optab
->libcall_basename
= "lfloor";
6475 lfloor_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6476 lceil_optab
->libcall_basename
= "lceil";
6477 lceil_optab
->libcall_gen
= gen_int_to_fp_nondecimal_conv_libfunc
;
6479 /* trunc_optab is also used for FLOAT_EXTEND. */
6480 sext_optab
->libcall_basename
= "extend";
6481 sext_optab
->libcall_gen
= gen_extend_conv_libfunc
;
6482 trunc_optab
->libcall_basename
= "trunc";
6483 trunc_optab
->libcall_gen
= gen_trunc_conv_libfunc
;
6485 /* Conversions for fixed-point modes and other modes. */
6486 fract_optab
->libcall_basename
= "fract";
6487 fract_optab
->libcall_gen
= gen_fract_conv_libfunc
;
6488 satfract_optab
->libcall_basename
= "satfract";
6489 satfract_optab
->libcall_gen
= gen_satfract_conv_libfunc
;
6490 fractuns_optab
->libcall_basename
= "fractuns";
6491 fractuns_optab
->libcall_gen
= gen_fractuns_conv_libfunc
;
6492 satfractuns_optab
->libcall_basename
= "satfractuns";
6493 satfractuns_optab
->libcall_gen
= gen_satfractuns_conv_libfunc
;
6495 /* The ffs function operates on `int'. Fall back on it if we do not
6496 have a libgcc2 function for that width. */
6497 if (INT_TYPE_SIZE
< BITS_PER_WORD
)
6498 set_optab_libfunc (ffs_optab
, mode_for_size (INT_TYPE_SIZE
, MODE_INT
, 0),
6501 /* Explicitly initialize the bswap libfuncs since we need them to be
6502 valid for things other than word_mode. */
6503 if (targetm
.libfunc_gnu_prefix
)
6505 set_optab_libfunc (bswap_optab
, SImode
, "__gnu_bswapsi2");
6506 set_optab_libfunc (bswap_optab
, DImode
, "__gnu_bswapdi2");
6510 set_optab_libfunc (bswap_optab
, SImode
, "__bswapsi2");
6511 set_optab_libfunc (bswap_optab
, DImode
, "__bswapdi2");
6514 /* Use cabs for double complex abs, since systems generally have cabs.
6515 Don't define any libcall for float complex, so that cabs will be used. */
6516 if (complex_double_type_node
)
6517 set_optab_libfunc (abs_optab
, TYPE_MODE (complex_double_type_node
), "cabs");
6519 abort_libfunc
= init_one_libfunc ("abort");
6520 memcpy_libfunc
= init_one_libfunc ("memcpy");
6521 memmove_libfunc
= init_one_libfunc ("memmove");
6522 memcmp_libfunc
= init_one_libfunc ("memcmp");
6523 memset_libfunc
= init_one_libfunc ("memset");
6524 setbits_libfunc
= init_one_libfunc ("__setbits");
6526 #ifndef DONT_USE_BUILTIN_SETJMP
6527 setjmp_libfunc
= init_one_libfunc ("__builtin_setjmp");
6528 longjmp_libfunc
= init_one_libfunc ("__builtin_longjmp");
6530 setjmp_libfunc
= init_one_libfunc ("setjmp");
6531 longjmp_libfunc
= init_one_libfunc ("longjmp");
6533 unwind_sjlj_register_libfunc
= init_one_libfunc ("_Unwind_SjLj_Register");
6534 unwind_sjlj_unregister_libfunc
6535 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6537 /* For function entry/exit instrumentation. */
6538 profile_function_entry_libfunc
6539 = init_one_libfunc ("__cyg_profile_func_enter");
6540 profile_function_exit_libfunc
6541 = init_one_libfunc ("__cyg_profile_func_exit");
6543 gcov_flush_libfunc
= init_one_libfunc ("__gcov_flush");
6545 /* Allow the target to add more libcalls or rename some, etc. */
6546 targetm
.init_libfuncs ();
6549 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6550 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6553 init_sync_libfuncs_1 (optab tab
, const char *base
, int max
)
6555 enum machine_mode mode
;
6557 size_t len
= strlen (base
);
6560 gcc_assert (max
<= 8);
6561 gcc_assert (len
+ 3 < sizeof (buf
));
6563 memcpy (buf
, base
, len
);
6566 buf
[len
+ 2] = '\0';
6569 for (i
= 1; i
<= max
; i
*= 2)
6571 buf
[len
+ 1] = '0' + i
;
6572 set_optab_libfunc (tab
, mode
, buf
);
6573 mode
= GET_MODE_2XWIDER_MODE (mode
);
6578 init_sync_libfuncs (int max
)
6580 init_sync_libfuncs_1 (sync_compare_and_swap_optab
,
6581 "__sync_val_compare_and_swap", max
);
6582 init_sync_libfuncs_1 (sync_lock_test_and_set_optab
,
6583 "__sync_lock_test_and_set", max
);
6585 init_sync_libfuncs_1 (sync_old_add_optab
, "__sync_fetch_and_add", max
);
6586 init_sync_libfuncs_1 (sync_old_sub_optab
, "__sync_fetch_and_sub", max
);
6587 init_sync_libfuncs_1 (sync_old_ior_optab
, "__sync_fetch_and_or", max
);
6588 init_sync_libfuncs_1 (sync_old_and_optab
, "__sync_fetch_and_and", max
);
6589 init_sync_libfuncs_1 (sync_old_xor_optab
, "__sync_fetch_and_xor", max
);
6590 init_sync_libfuncs_1 (sync_old_nand_optab
, "__sync_fetch_and_nand", max
);
6592 init_sync_libfuncs_1 (sync_new_add_optab
, "__sync_add_and_fetch", max
);
6593 init_sync_libfuncs_1 (sync_new_sub_optab
, "__sync_sub_and_fetch", max
);
6594 init_sync_libfuncs_1 (sync_new_ior_optab
, "__sync_or_and_fetch", max
);
6595 init_sync_libfuncs_1 (sync_new_and_optab
, "__sync_and_and_fetch", max
);
6596 init_sync_libfuncs_1 (sync_new_xor_optab
, "__sync_xor_and_fetch", max
);
6597 init_sync_libfuncs_1 (sync_new_nand_optab
, "__sync_nand_and_fetch", max
);
6600 /* Print information about the current contents of the optabs on
6604 debug_optab_libfuncs (void)
6610 /* Dump the arithmetic optabs. */
6611 for (i
= 0; i
!= (int) OTI_MAX
; i
++)
6612 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6617 o
= &optab_table
[i
];
6618 l
= optab_libfunc (o
, (enum machine_mode
) j
);
6621 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6622 fprintf (stderr
, "%s\t%s:\t%s\n",
6623 GET_RTX_NAME (o
->code
),
6629 /* Dump the conversion optabs. */
6630 for (i
= 0; i
< (int) COI_MAX
; ++i
)
6631 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
6632 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
6637 o
= &convert_optab_table
[i
];
6638 l
= convert_optab_libfunc (o
, (enum machine_mode
) j
,
6639 (enum machine_mode
) k
);
6642 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
6643 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
6644 GET_RTX_NAME (o
->code
),
6653 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6654 CODE. Return 0 on failure. */
6657 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
6659 enum machine_mode mode
= GET_MODE (op1
);
6660 enum insn_code icode
;
6664 if (mode
== VOIDmode
)
6667 icode
= optab_handler (ctrap_optab
, mode
);
6668 if (icode
== CODE_FOR_nothing
)
6671 /* Some targets only accept a zero trap code. */
6672 if (!insn_operand_matches (icode
, 3, tcode
))
6675 do_pending_stack_adjust ();
6677 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
6682 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
6685 /* If that failed, then give up. */
6693 insn
= get_insns ();
6698 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6699 or unsigned operation code. */
6701 static enum rtx_code
6702 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
6714 code
= unsignedp
? LTU
: LT
;
6717 code
= unsignedp
? LEU
: LE
;
6720 code
= unsignedp
? GTU
: GT
;
6723 code
= unsignedp
? GEU
: GE
;
6726 case UNORDERED_EXPR
:
6757 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6758 unsigned operators. Do not generate compare instruction. */
6761 vector_compare_rtx (tree cond
, bool unsignedp
, enum insn_code icode
)
6763 struct expand_operand ops
[2];
6764 enum rtx_code rcode
;
6766 rtx rtx_op0
, rtx_op1
;
6768 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6769 ensures that condition is a relational operation. */
6770 gcc_assert (COMPARISON_CLASS_P (cond
));
6772 rcode
= get_rtx_code (TREE_CODE (cond
), unsignedp
);
6773 t_op0
= TREE_OPERAND (cond
, 0);
6774 t_op1
= TREE_OPERAND (cond
, 1);
6776 /* Expand operands. */
6777 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
6779 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
6782 create_input_operand (&ops
[0], rtx_op0
, GET_MODE (rtx_op0
));
6783 create_input_operand (&ops
[1], rtx_op1
, GET_MODE (rtx_op1
));
6784 if (!maybe_legitimize_operands (icode
, 4, 2, ops
))
6786 return gen_rtx_fmt_ee (rcode
, VOIDmode
, ops
[0].value
, ops
[1].value
);
6789 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6790 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6793 can_vec_perm_p (enum machine_mode mode
, bool variable
,
6794 const unsigned char *sel
)
6796 enum machine_mode qimode
;
6798 /* If the target doesn't implement a vector mode for the vector type,
6799 then no operations are supported. */
6800 if (!VECTOR_MODE_P (mode
))
6805 if (direct_optab_handler (vec_perm_const_optab
, mode
) != CODE_FOR_nothing
6807 || targetm
.vectorize
.vec_perm_const_ok
== NULL
6808 || targetm
.vectorize
.vec_perm_const_ok (mode
, sel
)))
6812 if (direct_optab_handler (vec_perm_optab
, mode
) != CODE_FOR_nothing
)
6815 /* We allow fallback to a QI vector mode, and adjust the mask. */
6816 if (GET_MODE_INNER (mode
) == QImode
)
6818 qimode
= mode_for_vector (QImode
, GET_MODE_SIZE (mode
));
6819 if (!VECTOR_MODE_P (qimode
))
6822 /* ??? For completeness, we ought to check the QImode version of
6823 vec_perm_const_optab. But all users of this implicit lowering
6824 feature implement the variable vec_perm_optab. */
6825 if (direct_optab_handler (vec_perm_optab
, qimode
) == CODE_FOR_nothing
)
6828 /* In order to support the lowering of variable permutations,
6829 we need to support shifts and adds. */
6832 if (GET_MODE_UNIT_SIZE (mode
) > 2
6833 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
6834 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
)
6836 if (optab_handler (add_optab
, qimode
) == CODE_FOR_nothing
)
6843 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6846 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
6847 rtx v0
, rtx v1
, rtx sel
)
6849 enum machine_mode tmode
= GET_MODE (target
);
6850 enum machine_mode smode
= GET_MODE (sel
);
6851 struct expand_operand ops
[4];
6853 create_output_operand (&ops
[0], target
, tmode
);
6854 create_input_operand (&ops
[3], sel
, smode
);
6856 /* Make an effort to preserve v0 == v1. The target expander is able to
6857 rely on this to determine if we're permuting a single input operand. */
6858 if (rtx_equal_p (v0
, v1
))
6860 if (!insn_operand_matches (icode
, 1, v0
))
6861 v0
= force_reg (tmode
, v0
);
6862 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
6863 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
6865 create_fixed_operand (&ops
[1], v0
);
6866 create_fixed_operand (&ops
[2], v0
);
6870 create_input_operand (&ops
[1], v0
, tmode
);
6871 create_input_operand (&ops
[2], v1
, tmode
);
6874 if (maybe_expand_insn (icode
, 4, ops
))
6875 return ops
[0].value
;
6879 /* Generate instructions for vec_perm optab given its mode
6880 and three operands. */
6883 expand_vec_perm (enum machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
6885 enum insn_code icode
;
6886 enum machine_mode qimode
;
6887 unsigned int i
, w
, e
, u
;
6888 rtx tmp
, sel_qi
= NULL
;
6891 if (!target
|| GET_MODE (target
) != mode
)
6892 target
= gen_reg_rtx (mode
);
6894 w
= GET_MODE_SIZE (mode
);
6895 e
= GET_MODE_NUNITS (mode
);
6896 u
= GET_MODE_UNIT_SIZE (mode
);
6898 /* Set QIMODE to a different vector mode with byte elements.
6899 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6901 if (GET_MODE_INNER (mode
) != QImode
)
6903 qimode
= mode_for_vector (QImode
, w
);
6904 if (!VECTOR_MODE_P (qimode
))
6908 /* If the input is a constant, expand it specially. */
6909 gcc_assert (GET_MODE_CLASS (GET_MODE (sel
)) == MODE_VECTOR_INT
);
6910 if (GET_CODE (sel
) == CONST_VECTOR
)
6912 icode
= direct_optab_handler (vec_perm_const_optab
, mode
);
6913 if (icode
!= CODE_FOR_nothing
)
6915 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
6920 /* Fall back to a constant byte-based permutation. */
6921 if (qimode
!= VOIDmode
)
6923 vec
= rtvec_alloc (w
);
6924 for (i
= 0; i
< e
; ++i
)
6926 unsigned int j
, this_e
;
6928 this_e
= INTVAL (CONST_VECTOR_ELT (sel
, i
));
6929 this_e
&= 2 * e
- 1;
6932 for (j
= 0; j
< u
; ++j
)
6933 RTVEC_ELT (vec
, i
* u
+ j
) = GEN_INT (this_e
+ j
);
6935 sel_qi
= gen_rtx_CONST_VECTOR (qimode
, vec
);
6937 icode
= direct_optab_handler (vec_perm_const_optab
, qimode
);
6938 if (icode
!= CODE_FOR_nothing
)
6940 tmp
= expand_vec_perm_1 (icode
, gen_lowpart (qimode
, target
),
6941 gen_lowpart (qimode
, v0
),
6942 gen_lowpart (qimode
, v1
), sel_qi
);
6944 return gen_lowpart (mode
, tmp
);
6949 /* Otherwise expand as a fully variable permuation. */
6950 icode
= direct_optab_handler (vec_perm_optab
, mode
);
6951 if (icode
!= CODE_FOR_nothing
)
6953 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
6958 /* As a special case to aid several targets, lower the element-based
6959 permutation to a byte-based permutation and try again. */
6960 if (qimode
== VOIDmode
)
6962 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
6963 if (icode
== CODE_FOR_nothing
)
6968 /* Multiply each element by its byte size. */
6969 enum machine_mode selmode
= GET_MODE (sel
);
6971 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
6972 sel
, 0, OPTAB_DIRECT
);
6974 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
6975 GEN_INT (exact_log2 (u
)),
6976 sel
, 0, OPTAB_DIRECT
);
6977 gcc_assert (sel
!= NULL
);
6979 /* Broadcast the low byte each element into each of its bytes. */
6980 vec
= rtvec_alloc (w
);
6981 for (i
= 0; i
< w
; ++i
)
6983 int this_e
= i
/ u
* u
;
6984 if (BYTES_BIG_ENDIAN
)
6986 RTVEC_ELT (vec
, i
) = GEN_INT (this_e
);
6988 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
6989 sel
= gen_lowpart (qimode
, sel
);
6990 sel
= expand_vec_perm (qimode
, sel
, sel
, tmp
, NULL
);
6991 gcc_assert (sel
!= NULL
);
6993 /* Add the byte offset to each byte element. */
6994 /* Note that the definition of the indicies here is memory ordering,
6995 so there should be no difference between big and little endian. */
6996 vec
= rtvec_alloc (w
);
6997 for (i
= 0; i
< w
; ++i
)
6998 RTVEC_ELT (vec
, i
) = GEN_INT (i
% u
);
6999 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
7000 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
7001 sel
, 0, OPTAB_DIRECT
);
7002 gcc_assert (sel_qi
!= NULL
);
7005 tmp
= expand_vec_perm_1 (icode
, gen_lowpart (qimode
, target
),
7006 gen_lowpart (qimode
, v0
),
7007 gen_lowpart (qimode
, v1
), sel_qi
);
7009 tmp
= gen_lowpart (mode
, tmp
);
7013 /* Return insn code for a conditional operator with a comparison in
7014 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
7016 static inline enum insn_code
7017 get_vcond_icode (enum machine_mode vmode
, enum machine_mode cmode
, bool uns
)
7019 enum insn_code icode
= CODE_FOR_nothing
;
7021 icode
= convert_optab_handler (vcondu_optab
, vmode
, cmode
);
7023 icode
= convert_optab_handler (vcond_optab
, vmode
, cmode
);
7027 /* Return TRUE iff, appropriate vector insns are available
7028 for vector cond expr with vector type VALUE_TYPE and a comparison
7029 with operand vector types in CMP_OP_TYPE. */
7032 expand_vec_cond_expr_p (tree value_type
, tree cmp_op_type
)
7034 enum machine_mode value_mode
= TYPE_MODE (value_type
);
7035 enum machine_mode cmp_op_mode
= TYPE_MODE (cmp_op_type
);
7036 if (GET_MODE_SIZE (value_mode
) != GET_MODE_SIZE (cmp_op_mode
)
7037 || GET_MODE_NUNITS (value_mode
) != GET_MODE_NUNITS (cmp_op_mode
)
7038 || get_vcond_icode (TYPE_MODE (value_type
), TYPE_MODE (cmp_op_type
),
7039 TYPE_UNSIGNED (cmp_op_type
)) == CODE_FOR_nothing
)
7044 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
7048 expand_vec_cond_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
7051 struct expand_operand ops
[6];
7052 enum insn_code icode
;
7053 rtx comparison
, rtx_op1
, rtx_op2
;
7054 enum machine_mode mode
= TYPE_MODE (vec_cond_type
);
7055 enum machine_mode cmp_op_mode
;
7058 gcc_assert (COMPARISON_CLASS_P (op0
));
7060 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0
, 0)));
7061 cmp_op_mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (op0
, 0)));
7063 gcc_assert (GET_MODE_SIZE (mode
) == GET_MODE_SIZE (cmp_op_mode
)
7064 && GET_MODE_NUNITS (mode
) == GET_MODE_NUNITS (cmp_op_mode
));
7066 icode
= get_vcond_icode (mode
, cmp_op_mode
, unsignedp
);
7067 if (icode
== CODE_FOR_nothing
)
7070 comparison
= vector_compare_rtx (op0
, unsignedp
, icode
);
7071 rtx_op1
= expand_normal (op1
);
7072 rtx_op2
= expand_normal (op2
);
7074 create_output_operand (&ops
[0], target
, mode
);
7075 create_input_operand (&ops
[1], rtx_op1
, mode
);
7076 create_input_operand (&ops
[2], rtx_op2
, mode
);
7077 create_fixed_operand (&ops
[3], comparison
);
7078 create_fixed_operand (&ops
[4], XEXP (comparison
, 0));
7079 create_fixed_operand (&ops
[5], XEXP (comparison
, 1));
7080 expand_insn (icode
, 6, ops
);
7081 return ops
[0].value
;
7085 /* Return true if there is a compare_and_swap pattern. */
7088 can_compare_and_swap_p (enum machine_mode mode
, bool allow_libcall
)
7090 enum insn_code icode
;
7092 /* Check for __atomic_compare_and_swap. */
7093 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
7094 if (icode
!= CODE_FOR_nothing
)
7097 /* Check for __sync_compare_and_swap. */
7098 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
7099 if (icode
!= CODE_FOR_nothing
)
7101 if (allow_libcall
&& optab_libfunc (sync_compare_and_swap_optab
, mode
))
7104 /* No inline compare and swap. */
7108 /* Return true if an atomic exchange can be performed. */
7111 can_atomic_exchange_p (enum machine_mode mode
, bool allow_libcall
)
7113 enum insn_code icode
;
7115 /* Check for __atomic_exchange. */
7116 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
7117 if (icode
!= CODE_FOR_nothing
)
7120 /* Don't check __sync_test_and_set, as on some platforms that
7121 has reduced functionality. Targets that really do support
7122 a proper exchange should simply be updated to the __atomics. */
7124 return can_compare_and_swap_p (mode
, allow_libcall
);
7128 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7132 find_cc_set (rtx x
, const_rtx pat
, void *data
)
7134 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
7135 && GET_CODE (pat
) == SET
)
7137 rtx
*p_cc_reg
= (rtx
*) data
;
7138 gcc_assert (!*p_cc_reg
);
7143 /* This is a helper function for the other atomic operations. This function
7144 emits a loop that contains SEQ that iterates until a compare-and-swap
7145 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7146 a set of instructions that takes a value from OLD_REG as an input and
7147 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7148 set to the current contents of MEM. After SEQ, a compare-and-swap will
7149 attempt to update MEM with NEW_REG. The function returns true when the
7150 loop was generated successfully. */
7153 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
7155 enum machine_mode mode
= GET_MODE (mem
);
7156 rtx label
, cmp_reg
, success
, oldval
;
7158 /* The loop we want to generate looks like
7164 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7168 Note that we only do the plain load from memory once. Subsequent
7169 iterations use the value loaded by the compare-and-swap pattern. */
7171 label
= gen_label_rtx ();
7172 cmp_reg
= gen_reg_rtx (mode
);
7174 emit_move_insn (cmp_reg
, mem
);
7176 emit_move_insn (old_reg
, cmp_reg
);
7182 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
7183 new_reg
, false, MEMMODEL_SEQ_CST
,
7187 if (oldval
!= cmp_reg
)
7188 emit_move_insn (cmp_reg
, oldval
);
7190 /* ??? Mark this jump predicted not taken? */
7191 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
7192 GET_MODE (success
), 1, label
);
7197 /* This function tries to emit an atomic_exchange intruction. VAL is written
7198 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7199 using TARGET if possible. */
7202 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
7204 enum machine_mode mode
= GET_MODE (mem
);
7205 enum insn_code icode
;
7207 /* If the target supports the exchange directly, great. */
7208 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
7209 if (icode
!= CODE_FOR_nothing
)
7211 struct expand_operand ops
[4];
7213 create_output_operand (&ops
[0], target
, mode
);
7214 create_fixed_operand (&ops
[1], mem
);
7215 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7216 create_convert_operand_to (&ops
[2], val
, mode
, true);
7217 create_integer_operand (&ops
[3], model
);
7218 if (maybe_expand_insn (icode
, 4, ops
))
7219 return ops
[0].value
;
7225 /* This function tries to implement an atomic exchange operation using
7226 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7227 The previous contents of *MEM are returned, using TARGET if possible.
7228 Since this instructionn is an acquire barrier only, stronger memory
7229 models may require additional barriers to be emitted. */
7232 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
7233 enum memmodel model
)
7235 enum machine_mode mode
= GET_MODE (mem
);
7236 enum insn_code icode
;
7237 rtx last_insn
= get_last_insn ();
7239 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
7241 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7242 exists, and the memory model is stronger than acquire, add a release
7243 barrier before the instruction. */
7245 if (model
== MEMMODEL_SEQ_CST
7246 || model
== MEMMODEL_RELEASE
7247 || model
== MEMMODEL_ACQ_REL
)
7248 expand_mem_thread_fence (model
);
7250 if (icode
!= CODE_FOR_nothing
)
7252 struct expand_operand ops
[3];
7253 create_output_operand (&ops
[0], target
, mode
);
7254 create_fixed_operand (&ops
[1], mem
);
7255 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7256 create_convert_operand_to (&ops
[2], val
, mode
, true);
7257 if (maybe_expand_insn (icode
, 3, ops
))
7258 return ops
[0].value
;
7261 /* If an external test-and-set libcall is provided, use that instead of
7262 any external compare-and-swap that we might get from the compare-and-
7263 swap-loop expansion later. */
7264 if (!can_compare_and_swap_p (mode
, false))
7266 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
7267 if (libfunc
!= NULL
)
7271 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7272 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
7273 mode
, 2, addr
, ptr_mode
,
7278 /* If the test_and_set can't be emitted, eliminate any barrier that might
7279 have been emitted. */
7280 delete_insns_since (last_insn
);
7284 /* This function tries to implement an atomic exchange operation using a
7285 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7286 *MEM are returned, using TARGET if possible. No memory model is required
7287 since a compare_and_swap loop is seq-cst. */
7290 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
7292 enum machine_mode mode
= GET_MODE (mem
);
7294 if (can_compare_and_swap_p (mode
, true))
7296 if (!target
|| !register_operand (target
, mode
))
7297 target
= gen_reg_rtx (mode
);
7298 if (GET_MODE (val
) != VOIDmode
&& GET_MODE (val
) != mode
)
7299 val
= convert_modes (mode
, GET_MODE (val
), val
, 1);
7300 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
7307 /* This function tries to implement an atomic test-and-set operation
7308 using the atomic_test_and_set instruction pattern. A boolean value
7309 is returned from the operation, using TARGET if possible. */
7311 #ifndef HAVE_atomic_test_and_set
7312 #define HAVE_atomic_test_and_set 0
7313 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7317 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
7319 enum machine_mode pat_bool_mode
;
7320 struct expand_operand ops
[3];
7322 if (!HAVE_atomic_test_and_set
)
7325 /* While we always get QImode from __atomic_test_and_set, we get
7326 other memory modes from __sync_lock_test_and_set. Note that we
7327 use no endian adjustment here. This matches the 4.6 behavior
7328 in the Sparc backend. */
7330 (insn_data
[CODE_FOR_atomic_test_and_set
].operand
[1].mode
== QImode
);
7331 if (GET_MODE (mem
) != QImode
)
7332 mem
= adjust_address_nv (mem
, QImode
, 0);
7334 pat_bool_mode
= insn_data
[CODE_FOR_atomic_test_and_set
].operand
[0].mode
;
7335 create_output_operand (&ops
[0], target
, pat_bool_mode
);
7336 create_fixed_operand (&ops
[1], mem
);
7337 create_integer_operand (&ops
[2], model
);
7339 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set
, 3, ops
))
7340 return ops
[0].value
;
7344 /* This function expands the legacy _sync_lock test_and_set operation which is
7345 generally an atomic exchange. Some limited targets only allow the
7346 constant 1 to be stored. This is an ACQUIRE operation.
7348 TARGET is an optional place to stick the return value.
7349 MEM is where VAL is stored. */
7352 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
7356 /* Try an atomic_exchange first. */
7357 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_ACQUIRE
);
7361 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
, MEMMODEL_ACQUIRE
);
7365 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
7369 /* If there are no other options, try atomic_test_and_set if the value
7370 being stored is 1. */
7371 if (val
== const1_rtx
)
7372 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_ACQUIRE
);
7377 /* This function expands the atomic test_and_set operation:
7378 atomically store a boolean TRUE into MEM and return the previous value.
7380 MEMMODEL is the memory model variant to use.
7381 TARGET is an optional place to stick the return value. */
7384 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
7386 enum machine_mode mode
= GET_MODE (mem
);
7389 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
7393 if (target
== NULL_RTX
)
7394 target
= gen_reg_rtx (mode
);
7396 /* If there is no test and set, try exchange, then a compare_and_swap loop,
7397 then __sync_test_and_set. */
7398 ret
= maybe_emit_atomic_exchange (target
, mem
, const1_rtx
, model
);
7402 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, const1_rtx
);
7406 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, const1_rtx
, model
);
7410 /* Failing all else, assume a single threaded environment and simply perform
7412 emit_move_insn (target
, mem
);
7413 emit_move_insn (mem
, const1_rtx
);
7417 /* This function expands the atomic exchange operation:
7418 atomically store VAL in MEM and return the previous value in MEM.
7420 MEMMODEL is the memory model variant to use.
7421 TARGET is an optional place to stick the return value. */
7424 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
7428 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7430 /* Next try a compare-and-swap loop for the exchange. */
7432 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
7437 /* This function expands the atomic compare exchange operation:
7439 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7440 *PTARGET_OVAL is an optional place to store the old value from memory.
7441 Both target parameters may be NULL to indicate that we do not care about
7442 that return value. Both target parameters are updated on success to
7443 the actual location of the corresponding result.
7445 MEMMODEL is the memory model variant to use.
7447 The return value of the function is true for success. */
7450 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
7451 rtx mem
, rtx expected
, rtx desired
,
7452 bool is_weak
, enum memmodel succ_model
,
7453 enum memmodel fail_model
)
7455 enum machine_mode mode
= GET_MODE (mem
);
7456 struct expand_operand ops
[8];
7457 enum insn_code icode
;
7458 rtx target_oval
, target_bool
= NULL_RTX
;
7461 /* Load expected into a register for the compare and swap. */
7462 if (MEM_P (expected
))
7463 expected
= copy_to_reg (expected
);
7465 /* Make sure we always have some place to put the return oldval.
7466 Further, make sure that place is distinct from the input expected,
7467 just in case we need that path down below. */
7468 if (ptarget_oval
== NULL
7469 || (target_oval
= *ptarget_oval
) == NULL
7470 || reg_overlap_mentioned_p (expected
, target_oval
))
7471 target_oval
= gen_reg_rtx (mode
);
7473 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
7474 if (icode
!= CODE_FOR_nothing
)
7476 enum machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
7478 /* Make sure we always have a place for the bool operand. */
7479 if (ptarget_bool
== NULL
7480 || (target_bool
= *ptarget_bool
) == NULL
7481 || GET_MODE (target_bool
) != bool_mode
)
7482 target_bool
= gen_reg_rtx (bool_mode
);
7484 /* Emit the compare_and_swap. */
7485 create_output_operand (&ops
[0], target_bool
, bool_mode
);
7486 create_output_operand (&ops
[1], target_oval
, mode
);
7487 create_fixed_operand (&ops
[2], mem
);
7488 create_convert_operand_to (&ops
[3], expected
, mode
, true);
7489 create_convert_operand_to (&ops
[4], desired
, mode
, true);
7490 create_integer_operand (&ops
[5], is_weak
);
7491 create_integer_operand (&ops
[6], succ_model
);
7492 create_integer_operand (&ops
[7], fail_model
);
7493 expand_insn (icode
, 8, ops
);
7495 /* Return success/failure. */
7496 target_bool
= ops
[0].value
;
7497 target_oval
= ops
[1].value
;
7501 /* Otherwise fall back to the original __sync_val_compare_and_swap
7502 which is always seq-cst. */
7503 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
7504 if (icode
!= CODE_FOR_nothing
)
7508 create_output_operand (&ops
[0], target_oval
, mode
);
7509 create_fixed_operand (&ops
[1], mem
);
7510 create_convert_operand_to (&ops
[2], expected
, mode
, true);
7511 create_convert_operand_to (&ops
[3], desired
, mode
, true);
7512 if (!maybe_expand_insn (icode
, 4, ops
))
7515 target_oval
= ops
[0].value
;
7517 /* If the caller isn't interested in the boolean return value,
7518 skip the computation of it. */
7519 if (ptarget_bool
== NULL
)
7522 /* Otherwise, work out if the compare-and-swap succeeded. */
7524 if (have_insn_for (COMPARE
, CCmode
))
7525 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
7528 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
7529 const0_rtx
, VOIDmode
, 0, 1);
7532 goto success_bool_from_val
;
7535 /* Also check for library support for __sync_val_compare_and_swap. */
7536 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
7537 if (libfunc
!= NULL
)
7539 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7540 target_oval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
7541 mode
, 3, addr
, ptr_mode
,
7542 expected
, mode
, desired
, mode
);
7544 /* Compute the boolean return value only if requested. */
7546 goto success_bool_from_val
;
7554 success_bool_from_val
:
7555 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
7556 expected
, VOIDmode
, 1, 1);
7558 /* Make sure that the oval output winds up where the caller asked. */
7560 *ptarget_oval
= target_oval
;
7562 *ptarget_bool
= target_bool
;
7566 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7569 expand_asm_memory_barrier (void)
7573 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, empty_string
, empty_string
, 0,
7574 rtvec_alloc (0), rtvec_alloc (0),
7575 rtvec_alloc (0), UNKNOWN_LOCATION
);
7576 MEM_VOLATILE_P (asm_op
) = 1;
7578 clob
= gen_rtx_SCRATCH (VOIDmode
);
7579 clob
= gen_rtx_MEM (BLKmode
, clob
);
7580 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
7582 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
7585 /* This routine will either emit the mem_thread_fence pattern or issue a
7586 sync_synchronize to generate a fence for memory model MEMMODEL. */
7588 #ifndef HAVE_mem_thread_fence
7589 # define HAVE_mem_thread_fence 0
7590 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7592 #ifndef HAVE_memory_barrier
7593 # define HAVE_memory_barrier 0
7594 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7598 expand_mem_thread_fence (enum memmodel model
)
7600 if (HAVE_mem_thread_fence
)
7601 emit_insn (gen_mem_thread_fence (GEN_INT (model
)));
7602 else if (model
!= MEMMODEL_RELAXED
)
7604 if (HAVE_memory_barrier
)
7605 emit_insn (gen_memory_barrier ());
7606 else if (synchronize_libfunc
!= NULL_RTX
)
7607 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
, 0);
7609 expand_asm_memory_barrier ();
7613 /* This routine will either emit the mem_signal_fence pattern or issue a
7614 sync_synchronize to generate a fence for memory model MEMMODEL. */
7616 #ifndef HAVE_mem_signal_fence
7617 # define HAVE_mem_signal_fence 0
7618 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7622 expand_mem_signal_fence (enum memmodel model
)
7624 if (HAVE_mem_signal_fence
)
7625 emit_insn (gen_mem_signal_fence (GEN_INT (model
)));
7626 else if (model
!= MEMMODEL_RELAXED
)
7628 /* By default targets are coherent between a thread and the signal
7629 handler running on the same thread. Thus this really becomes a
7630 compiler barrier, in that stores must not be sunk past
7631 (or raised above) a given point. */
7632 expand_asm_memory_barrier ();
7636 /* This function expands the atomic load operation:
7637 return the atomically loaded value in MEM.
7639 MEMMODEL is the memory model variant to use.
7640 TARGET is an option place to stick the return value. */
7643 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
7645 enum machine_mode mode
= GET_MODE (mem
);
7646 enum insn_code icode
;
7648 /* If the target supports the load directly, great. */
7649 icode
= direct_optab_handler (atomic_load_optab
, mode
);
7650 if (icode
!= CODE_FOR_nothing
)
7652 struct expand_operand ops
[3];
7654 create_output_operand (&ops
[0], target
, mode
);
7655 create_fixed_operand (&ops
[1], mem
);
7656 create_integer_operand (&ops
[2], model
);
7657 if (maybe_expand_insn (icode
, 3, ops
))
7658 return ops
[0].value
;
7661 /* If the size of the object is greater than word size on this target,
7662 then we assume that a load will not be atomic. */
7663 if (GET_MODE_PRECISION (mode
) > BITS_PER_WORD
)
7665 /* Issue val = compare_and_swap (mem, 0, 0).
7666 This may cause the occasional harmless store of 0 when the value is
7667 already 0, but it seems to be OK according to the standards guys. */
7668 expand_atomic_compare_and_swap (NULL
, &target
, mem
, const0_rtx
,
7669 const0_rtx
, false, model
, model
);
7673 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7674 if (!target
|| target
== const0_rtx
)
7675 target
= gen_reg_rtx (mode
);
7677 /* Emit the appropriate barrier before the load. */
7678 expand_mem_thread_fence (model
);
7680 emit_move_insn (target
, mem
);
7682 /* For SEQ_CST, also emit a barrier after the load. */
7683 if (model
== MEMMODEL_SEQ_CST
)
7684 expand_mem_thread_fence (model
);
7689 /* This function expands the atomic store operation:
7690 Atomically store VAL in MEM.
7691 MEMMODEL is the memory model variant to use.
7692 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7693 function returns const0_rtx if a pattern was emitted. */
7696 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
7698 enum machine_mode mode
= GET_MODE (mem
);
7699 enum insn_code icode
;
7700 struct expand_operand ops
[3];
7702 /* If the target supports the store directly, great. */
7703 icode
= direct_optab_handler (atomic_store_optab
, mode
);
7704 if (icode
!= CODE_FOR_nothing
)
7706 create_fixed_operand (&ops
[0], mem
);
7707 create_input_operand (&ops
[1], val
, mode
);
7708 create_integer_operand (&ops
[2], model
);
7709 if (maybe_expand_insn (icode
, 3, ops
))
7713 /* If using __sync_lock_release is a viable alternative, try it. */
7716 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
7717 if (icode
!= CODE_FOR_nothing
)
7719 create_fixed_operand (&ops
[0], mem
);
7720 create_input_operand (&ops
[1], const0_rtx
, mode
);
7721 if (maybe_expand_insn (icode
, 2, ops
))
7723 /* lock_release is only a release barrier. */
7724 if (model
== MEMMODEL_SEQ_CST
)
7725 expand_mem_thread_fence (model
);
7731 /* If the size of the object is greater than word size on this target,
7732 a default store will not be atomic, Try a mem_exchange and throw away
7733 the result. If that doesn't work, don't do anything. */
7734 if (GET_MODE_PRECISION(mode
) > BITS_PER_WORD
)
7736 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
7738 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
, val
);
7745 /* If there is no mem_store, default to a move with barriers */
7746 if (model
== MEMMODEL_SEQ_CST
|| model
== MEMMODEL_RELEASE
)
7747 expand_mem_thread_fence (model
);
7749 emit_move_insn (mem
, val
);
7751 /* For SEQ_CST, also emit a barrier after the load. */
7752 if (model
== MEMMODEL_SEQ_CST
)
7753 expand_mem_thread_fence (model
);
7759 /* Structure containing the pointers and values required to process the
7760 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7762 struct atomic_op_functions
7764 direct_optab mem_fetch_before
;
7765 direct_optab mem_fetch_after
;
7766 direct_optab mem_no_result
;
7769 direct_optab no_result
;
7770 enum rtx_code reverse_code
;
7774 /* Fill in structure pointed to by OP with the various optab entries for an
7775 operation of type CODE. */
7778 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
7780 gcc_assert (op
!= NULL
);
7782 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7783 in the source code during compilation, and the optab entries are not
7784 computable until runtime. Fill in the values at runtime. */
7788 op
->mem_fetch_before
= atomic_fetch_add_optab
;
7789 op
->mem_fetch_after
= atomic_add_fetch_optab
;
7790 op
->mem_no_result
= atomic_add_optab
;
7791 op
->fetch_before
= sync_old_add_optab
;
7792 op
->fetch_after
= sync_new_add_optab
;
7793 op
->no_result
= sync_add_optab
;
7794 op
->reverse_code
= MINUS
;
7797 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
7798 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
7799 op
->mem_no_result
= atomic_sub_optab
;
7800 op
->fetch_before
= sync_old_sub_optab
;
7801 op
->fetch_after
= sync_new_sub_optab
;
7802 op
->no_result
= sync_sub_optab
;
7803 op
->reverse_code
= PLUS
;
7806 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
7807 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
7808 op
->mem_no_result
= atomic_xor_optab
;
7809 op
->fetch_before
= sync_old_xor_optab
;
7810 op
->fetch_after
= sync_new_xor_optab
;
7811 op
->no_result
= sync_xor_optab
;
7812 op
->reverse_code
= XOR
;
7815 op
->mem_fetch_before
= atomic_fetch_and_optab
;
7816 op
->mem_fetch_after
= atomic_and_fetch_optab
;
7817 op
->mem_no_result
= atomic_and_optab
;
7818 op
->fetch_before
= sync_old_and_optab
;
7819 op
->fetch_after
= sync_new_and_optab
;
7820 op
->no_result
= sync_and_optab
;
7821 op
->reverse_code
= UNKNOWN
;
7824 op
->mem_fetch_before
= atomic_fetch_or_optab
;
7825 op
->mem_fetch_after
= atomic_or_fetch_optab
;
7826 op
->mem_no_result
= atomic_or_optab
;
7827 op
->fetch_before
= sync_old_ior_optab
;
7828 op
->fetch_after
= sync_new_ior_optab
;
7829 op
->no_result
= sync_ior_optab
;
7830 op
->reverse_code
= UNKNOWN
;
7833 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
7834 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
7835 op
->mem_no_result
= atomic_nand_optab
;
7836 op
->fetch_before
= sync_old_nand_optab
;
7837 op
->fetch_after
= sync_new_nand_optab
;
7838 op
->no_result
= sync_nand_optab
;
7839 op
->reverse_code
= UNKNOWN
;
7846 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7847 using memory order MODEL. If AFTER is true the operation needs to return
7848 the value of *MEM after the operation, otherwise the previous value.
7849 TARGET is an optional place to place the result. The result is unused if
7851 Return the result if there is a better sequence, otherwise NULL_RTX. */
7854 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
7855 enum memmodel model
, bool after
)
7857 /* If the value is prefetched, or not used, it may be possible to replace
7858 the sequence with a native exchange operation. */
7859 if (!after
|| target
== const0_rtx
)
7861 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7862 if (code
== AND
&& val
== const0_rtx
)
7864 if (target
== const0_rtx
)
7865 target
= gen_reg_rtx (GET_MODE (mem
));
7866 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7869 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7870 if (code
== IOR
&& val
== constm1_rtx
)
7872 if (target
== const0_rtx
)
7873 target
= gen_reg_rtx (GET_MODE (mem
));
7874 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7881 /* Try to emit an instruction for a specific operation varaition.
7882 OPTAB contains the OP functions.
7883 TARGET is an optional place to return the result. const0_rtx means unused.
7884 MEM is the memory location to operate on.
7885 VAL is the value to use in the operation.
7886 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7887 MODEL is the memory model, if used.
7888 AFTER is true if the returned result is the value after the operation. */
7891 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
7892 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
7894 enum machine_mode mode
= GET_MODE (mem
);
7895 struct expand_operand ops
[4];
7896 enum insn_code icode
;
7900 /* Check to see if there is a result returned. */
7901 if (target
== const0_rtx
)
7905 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
7906 create_integer_operand (&ops
[2], model
);
7911 icode
= direct_optab_handler (optab
->no_result
, mode
);
7915 /* Otherwise, we need to generate a result. */
7920 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
7921 : optab
->mem_fetch_before
, mode
);
7922 create_integer_operand (&ops
[3], model
);
7927 icode
= optab_handler (after
? optab
->fetch_after
7928 : optab
->fetch_before
, mode
);
7931 create_output_operand (&ops
[op_counter
++], target
, mode
);
7933 if (icode
== CODE_FOR_nothing
)
7936 create_fixed_operand (&ops
[op_counter
++], mem
);
7937 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7938 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
7940 if (maybe_expand_insn (icode
, num_ops
, ops
))
7941 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
7947 /* This function expands an atomic fetch_OP or OP_fetch operation:
7948 TARGET is an option place to stick the return value. const0_rtx indicates
7949 the result is unused.
7950 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7951 CODE is the operation being performed (OP)
7952 MEMMODEL is the memory model variant to use.
7953 AFTER is true to return the result of the operation (OP_fetch).
7954 AFTER is false to return the value before the operation (fetch_OP). */
7956 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
7957 enum memmodel model
, bool after
)
7959 enum machine_mode mode
= GET_MODE (mem
);
7960 struct atomic_op_functions optab
;
7962 bool unused_result
= (target
== const0_rtx
);
7964 get_atomic_op_for_code (&optab
, code
);
7966 /* Check to see if there are any better instructions. */
7967 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
7971 /* Check for the case where the result isn't used and try those patterns. */
7974 /* Try the memory model variant first. */
7975 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
7979 /* Next try the old style withuot a memory model. */
7980 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
7984 /* There is no no-result pattern, so try patterns with a result. */
7988 /* Try the __atomic version. */
7989 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
7993 /* Try the older __sync version. */
7994 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
7998 /* If the fetch value can be calculated from the other variation of fetch,
7999 try that operation. */
8000 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
8002 /* Try the __atomic version, then the older __sync version. */
8003 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
8005 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
8009 /* If the result isn't used, no need to do compensation code. */
8013 /* Issue compensation code. Fetch_after == fetch_before OP val.
8014 Fetch_before == after REVERSE_OP val. */
8016 code
= optab
.reverse_code
;
8019 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
8020 true, OPTAB_LIB_WIDEN
);
8021 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
8024 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
8025 true, OPTAB_LIB_WIDEN
);
8030 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8031 if (!can_compare_and_swap_p (mode
, false))
8036 libfunc
= optab_libfunc (after
? optab
.fetch_after
8037 : optab
.fetch_before
, mode
);
8039 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
8043 code
= optab
.reverse_code
;
8044 libfunc
= optab_libfunc (after
? optab
.fetch_before
8045 : optab
.fetch_after
, mode
);
8047 if (libfunc
!= NULL
)
8049 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
8050 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
8051 2, addr
, ptr_mode
, val
, mode
);
8053 if (!unused_result
&& fixup
)
8054 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
8055 true, OPTAB_LIB_WIDEN
);
8060 /* If nothing else has succeeded, default to a compare and swap loop. */
8061 if (can_compare_and_swap_p (mode
, true))
8064 rtx t0
= gen_reg_rtx (mode
), t1
;
8068 /* If the result is used, get a register for it. */
8071 if (!target
|| !register_operand (target
, mode
))
8072 target
= gen_reg_rtx (mode
);
8073 /* If fetch_before, copy the value now. */
8075 emit_move_insn (target
, t0
);
8078 target
= const0_rtx
;
8083 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
8084 true, OPTAB_LIB_WIDEN
);
8085 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
8088 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
8091 /* For after, copy the value now. */
8092 if (!unused_result
&& after
)
8093 emit_move_insn (target
, t1
);
8094 insn
= get_insns ();
8097 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
8104 /* Return true if OPERAND is suitable for operand number OPNO of
8105 instruction ICODE. */
8108 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
8110 return (!insn_data
[(int) icode
].operand
[opno
].predicate
8111 || (insn_data
[(int) icode
].operand
[opno
].predicate
8112 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
8115 /* TARGET is a target of a multiword operation that we are going to
8116 implement as a series of word-mode operations. Return true if
8117 TARGET is suitable for this purpose. */
8120 valid_multiword_target_p (rtx target
)
8122 enum machine_mode mode
;
8125 mode
= GET_MODE (target
);
8126 for (i
= 0; i
< GET_MODE_SIZE (mode
); i
+= UNITS_PER_WORD
)
8127 if (!validate_subreg (word_mode
, mode
, target
, i
))
8132 /* Like maybe_legitimize_operand, but do not change the code of the
8133 current rtx value. */
8136 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
8137 struct expand_operand
*op
)
8139 /* See if the operand matches in its current form. */
8140 if (insn_operand_matches (icode
, opno
, op
->value
))
8143 /* If the operand is a memory whose address has no side effects,
8144 try forcing the address into a non-virtual pseudo register.
8145 The check for side effects is important because copy_to_mode_reg
8146 cannot handle things like auto-modified addresses. */
8147 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
8152 addr
= XEXP (mem
, 0);
8153 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
8154 && !side_effects_p (addr
))
8157 enum machine_mode mode
;
8159 last
= get_last_insn ();
8160 mode
= targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
8161 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
8162 if (insn_operand_matches (icode
, opno
, mem
))
8167 delete_insns_since (last
);
8174 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8175 on success, storing the new operand value back in OP. */
8178 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
8179 struct expand_operand
*op
)
8181 enum machine_mode mode
, imode
;
8182 bool old_volatile_ok
, result
;
8188 old_volatile_ok
= volatile_ok
;
8190 result
= maybe_legitimize_operand_same_code (icode
, opno
, op
);
8191 volatile_ok
= old_volatile_ok
;
8195 gcc_assert (mode
!= VOIDmode
);
8197 && op
->value
!= const0_rtx
8198 && GET_MODE (op
->value
) == mode
8199 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
8202 op
->value
= gen_reg_rtx (mode
);
8207 gcc_assert (mode
!= VOIDmode
);
8208 gcc_assert (GET_MODE (op
->value
) == VOIDmode
8209 || GET_MODE (op
->value
) == mode
);
8210 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
8213 op
->value
= copy_to_mode_reg (mode
, op
->value
);
8216 case EXPAND_CONVERT_TO
:
8217 gcc_assert (mode
!= VOIDmode
);
8218 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
8221 case EXPAND_CONVERT_FROM
:
8222 if (GET_MODE (op
->value
) != VOIDmode
)
8223 mode
= GET_MODE (op
->value
);
8225 /* The caller must tell us what mode this value has. */
8226 gcc_assert (mode
!= VOIDmode
);
8228 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
8229 if (imode
!= VOIDmode
&& imode
!= mode
)
8231 op
->value
= convert_modes (imode
, mode
, op
->value
, op
->unsigned_p
);
8236 case EXPAND_ADDRESS
:
8237 gcc_assert (mode
!= VOIDmode
);
8238 op
->value
= convert_memory_address (mode
, op
->value
);
8241 case EXPAND_INTEGER
:
8242 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
8243 if (mode
!= VOIDmode
&& const_int_operand (op
->value
, mode
))
8247 return insn_operand_matches (icode
, opno
, op
->value
);
8250 /* Make OP describe an input operand that should have the same value
8251 as VALUE, after any mode conversion that the target might request.
8252 TYPE is the type of VALUE. */
8255 create_convert_operand_from_type (struct expand_operand
*op
,
8256 rtx value
, tree type
)
8258 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
8259 TYPE_UNSIGNED (type
));
8262 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8263 of instruction ICODE. Return true on success, leaving the new operand
8264 values in the OPS themselves. Emit no code on failure. */
8267 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
8268 unsigned int nops
, struct expand_operand
*ops
)
8273 last
= get_last_insn ();
8274 for (i
= 0; i
< nops
; i
++)
8275 if (!maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
8277 delete_insns_since (last
);
8283 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8284 as its operands. Return the instruction pattern on success,
8285 and emit any necessary set-up code. Return null and emit no
8289 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
8290 struct expand_operand
*ops
)
8292 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
8293 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
8299 return GEN_FCN (icode
) (ops
[0].value
);
8301 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
8303 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
8305 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8308 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8309 ops
[3].value
, ops
[4].value
);
8311 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8312 ops
[3].value
, ops
[4].value
, ops
[5].value
);
8314 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8315 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8318 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
8319 ops
[3].value
, ops
[4].value
, ops
[5].value
,
8320 ops
[6].value
, ops
[7].value
);
8325 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8326 as its operands. Return true on success and emit no code on failure. */
8329 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
8330 struct expand_operand
*ops
)
8332 rtx pat
= maybe_gen_insn (icode
, nops
, ops
);
8341 /* Like maybe_expand_insn, but for jumps. */
8344 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8345 struct expand_operand
*ops
)
8347 rtx pat
= maybe_gen_insn (icode
, nops
, ops
);
8350 emit_jump_insn (pat
);
8356 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8360 expand_insn (enum insn_code icode
, unsigned int nops
,
8361 struct expand_operand
*ops
)
8363 if (!maybe_expand_insn (icode
, nops
, ops
))
8367 /* Like expand_insn, but for jumps. */
8370 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8371 struct expand_operand
*ops
)
8373 if (!maybe_expand_jump_insn (icode
, nops
, ops
))
8377 #include "gt-optabs.h"