2012-01-31 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / haifa-sched.c
blob4e1909a535fa709caf3e88c85fdb88a4ad46d96f
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "diagnostic-core.h"
132 #include "hard-reg-set.h"
133 #include "rtl.h"
134 #include "tm_p.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "recog.h"
142 #include "sched-int.h"
143 #include "target.h"
144 #include "common/common-target.h"
145 #include "output.h"
146 #include "params.h"
147 #include "vecprim.h"
148 #include "dbgcnt.h"
149 #include "cfgloop.h"
150 #include "ira.h"
151 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
152 #include "hashtab.h"
154 #ifdef INSN_SCHEDULING
156 /* issue_rate is the number of insns that can be scheduled in the same
157 machine cycle. It can be defined in the config/mach/mach.h file,
158 otherwise we set it to 1. */
160 int issue_rate;
162 /* This can be set to true by a backend if the scheduler should not
163 enable a DCE pass. */
164 bool sched_no_dce;
166 /* The current initiation interval used when modulo scheduling. */
167 static int modulo_ii;
169 /* The maximum number of stages we are prepared to handle. */
170 static int modulo_max_stages;
172 /* The number of insns that exist in each iteration of the loop. We use this
173 to detect when we've scheduled all insns from the first iteration. */
174 static int modulo_n_insns;
176 /* The current count of insns in the first iteration of the loop that have
177 already been scheduled. */
178 static int modulo_insns_scheduled;
180 /* The maximum uid of insns from the first iteration of the loop. */
181 static int modulo_iter0_max_uid;
183 /* The number of times we should attempt to backtrack when modulo scheduling.
184 Decreased each time we have to backtrack. */
185 static int modulo_backtracks_left;
187 /* The stage in which the last insn from the original loop was
188 scheduled. */
189 static int modulo_last_stage;
191 /* sched-verbose controls the amount of debugging output the
192 scheduler prints. It is controlled by -fsched-verbose=N:
193 N>0 and no -DSR : the output is directed to stderr.
194 N>=10 will direct the printouts to stderr (regardless of -dSR).
195 N=1: same as -dSR.
196 N=2: bb's probabilities, detailed ready list info, unit/insn info.
197 N=3: rtl at abort point, control-flow, regions info.
198 N=5: dependences info. */
200 int sched_verbose = 0;
202 /* Debugging file. All printouts are sent to dump, which is always set,
203 either to stderr, or to the dump listing file (-dRS). */
204 FILE *sched_dump = 0;
206 /* This is a placeholder for the scheduler parameters common
207 to all schedulers. */
208 struct common_sched_info_def *common_sched_info;
210 #define INSN_TICK(INSN) (HID (INSN)->tick)
211 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
212 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
213 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
214 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
215 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
216 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
218 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
219 then it should be recalculated from scratch. */
220 #define INVALID_TICK (-(max_insn_queue_index + 1))
221 /* The minimal value of the INSN_TICK of an instruction. */
222 #define MIN_TICK (-max_insn_queue_index)
224 /* List of important notes we must keep around. This is a pointer to the
225 last element in the list. */
226 rtx note_list;
228 static struct spec_info_def spec_info_var;
229 /* Description of the speculative part of the scheduling.
230 If NULL - no speculation. */
231 spec_info_t spec_info = NULL;
233 /* True, if recovery block was added during scheduling of current block.
234 Used to determine, if we need to fix INSN_TICKs. */
235 static bool haifa_recovery_bb_recently_added_p;
237 /* True, if recovery block was added during this scheduling pass.
238 Used to determine if we should have empty memory pools of dependencies
239 after finishing current region. */
240 bool haifa_recovery_bb_ever_added_p;
242 /* Counters of different types of speculative instructions. */
243 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
245 /* Array used in {unlink, restore}_bb_notes. */
246 static rtx *bb_header = 0;
248 /* Basic block after which recovery blocks will be created. */
249 static basic_block before_recovery;
251 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
252 created it. */
253 basic_block after_recovery;
255 /* FALSE if we add bb to another region, so we don't need to initialize it. */
256 bool adding_bb_to_current_region_p = true;
258 /* Queues, etc. */
260 /* An instruction is ready to be scheduled when all insns preceding it
261 have already been scheduled. It is important to ensure that all
262 insns which use its result will not be executed until its result
263 has been computed. An insn is maintained in one of four structures:
265 (P) the "Pending" set of insns which cannot be scheduled until
266 their dependencies have been satisfied.
267 (Q) the "Queued" set of insns that can be scheduled when sufficient
268 time has passed.
269 (R) the "Ready" list of unscheduled, uncommitted insns.
270 (S) the "Scheduled" list of insns.
272 Initially, all insns are either "Pending" or "Ready" depending on
273 whether their dependencies are satisfied.
275 Insns move from the "Ready" list to the "Scheduled" list as they
276 are committed to the schedule. As this occurs, the insns in the
277 "Pending" list have their dependencies satisfied and move to either
278 the "Ready" list or the "Queued" set depending on whether
279 sufficient time has passed to make them ready. As time passes,
280 insns move from the "Queued" set to the "Ready" list.
282 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
283 unscheduled insns, i.e., those that are ready, queued, and pending.
284 The "Queued" set (Q) is implemented by the variable `insn_queue'.
285 The "Ready" list (R) is implemented by the variables `ready' and
286 `n_ready'.
287 The "Scheduled" list (S) is the new insn chain built by this pass.
289 The transition (R->S) is implemented in the scheduling loop in
290 `schedule_block' when the best insn to schedule is chosen.
291 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
292 insns move from the ready list to the scheduled list.
293 The transition (Q->R) is implemented in 'queue_to_insn' as time
294 passes or stalls are introduced. */
296 /* Implement a circular buffer to delay instructions until sufficient
297 time has passed. For the new pipeline description interface,
298 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
299 than maximal time of instruction execution computed by genattr.c on
300 the base maximal time of functional unit reservations and getting a
301 result. This is the longest time an insn may be queued. */
303 static rtx *insn_queue;
304 static int q_ptr = 0;
305 static int q_size = 0;
306 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
307 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
309 #define QUEUE_SCHEDULED (-3)
310 #define QUEUE_NOWHERE (-2)
311 #define QUEUE_READY (-1)
312 /* QUEUE_SCHEDULED - INSN is scheduled.
313 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
314 queue or ready list.
315 QUEUE_READY - INSN is in ready list.
316 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
318 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
320 /* The following variable value refers for all current and future
321 reservations of the processor units. */
322 state_t curr_state;
324 /* The following variable value is size of memory representing all
325 current and future reservations of the processor units. */
326 size_t dfa_state_size;
328 /* The following array is used to find the best insn from ready when
329 the automaton pipeline interface is used. */
330 char *ready_try = NULL;
332 /* The ready list. */
333 struct ready_list ready = {NULL, 0, 0, 0, 0};
335 /* The pointer to the ready list (to be removed). */
336 static struct ready_list *readyp = &ready;
338 /* Scheduling clock. */
339 static int clock_var;
341 /* Clock at which the previous instruction was issued. */
342 static int last_clock_var;
344 /* Set to true if, when queuing a shadow insn, we discover that it would be
345 scheduled too late. */
346 static bool must_backtrack;
348 /* The following variable value is number of essential insns issued on
349 the current cycle. An insn is essential one if it changes the
350 processors state. */
351 int cycle_issued_insns;
353 /* This records the actual schedule. It is built up during the main phase
354 of schedule_block, and afterwards used to reorder the insns in the RTL. */
355 static VEC(rtx, heap) *scheduled_insns;
357 static int may_trap_exp (const_rtx, int);
359 /* Nonzero iff the address is comprised from at most 1 register. */
360 #define CONST_BASED_ADDRESS_P(x) \
361 (REG_P (x) \
362 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
363 || (GET_CODE (x) == LO_SUM)) \
364 && (CONSTANT_P (XEXP (x, 0)) \
365 || CONSTANT_P (XEXP (x, 1)))))
367 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
368 as found by analyzing insn's expression. */
371 static int haifa_luid_for_non_insn (rtx x);
373 /* Haifa version of sched_info hooks common to all headers. */
374 const struct common_sched_info_def haifa_common_sched_info =
376 NULL, /* fix_recovery_cfg */
377 NULL, /* add_block */
378 NULL, /* estimate_number_of_insns */
379 haifa_luid_for_non_insn, /* luid_for_non_insn */
380 SCHED_PASS_UNKNOWN /* sched_pass_id */
383 /* Mapping from instruction UID to its Logical UID. */
384 VEC (int, heap) *sched_luids = NULL;
386 /* Next LUID to assign to an instruction. */
387 int sched_max_luid = 1;
389 /* Haifa Instruction Data. */
390 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
392 void (* sched_init_only_bb) (basic_block, basic_block);
394 /* Split block function. Different schedulers might use different functions
395 to handle their internal data consistent. */
396 basic_block (* sched_split_block) (basic_block, rtx);
398 /* Create empty basic block after the specified block. */
399 basic_block (* sched_create_empty_bb) (basic_block);
401 static int
402 may_trap_exp (const_rtx x, int is_store)
404 enum rtx_code code;
406 if (x == 0)
407 return TRAP_FREE;
408 code = GET_CODE (x);
409 if (is_store)
411 if (code == MEM && may_trap_p (x))
412 return TRAP_RISKY;
413 else
414 return TRAP_FREE;
416 if (code == MEM)
418 /* The insn uses memory: a volatile load. */
419 if (MEM_VOLATILE_P (x))
420 return IRISKY;
421 /* An exception-free load. */
422 if (!may_trap_p (x))
423 return IFREE;
424 /* A load with 1 base register, to be further checked. */
425 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
426 return PFREE_CANDIDATE;
427 /* No info on the load, to be further checked. */
428 return PRISKY_CANDIDATE;
430 else
432 const char *fmt;
433 int i, insn_class = TRAP_FREE;
435 /* Neither store nor load, check if it may cause a trap. */
436 if (may_trap_p (x))
437 return TRAP_RISKY;
438 /* Recursive step: walk the insn... */
439 fmt = GET_RTX_FORMAT (code);
440 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
442 if (fmt[i] == 'e')
444 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
445 insn_class = WORST_CLASS (insn_class, tmp_class);
447 else if (fmt[i] == 'E')
449 int j;
450 for (j = 0; j < XVECLEN (x, i); j++)
452 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
453 insn_class = WORST_CLASS (insn_class, tmp_class);
454 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
455 break;
458 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
459 break;
461 return insn_class;
465 /* Classifies rtx X of an insn for the purpose of verifying that X can be
466 executed speculatively (and consequently the insn can be moved
467 speculatively), by examining X, returning:
468 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
469 TRAP_FREE: non-load insn.
470 IFREE: load from a globally safe location.
471 IRISKY: volatile load.
472 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
473 being either PFREE or PRISKY. */
475 static int
476 haifa_classify_rtx (const_rtx x)
478 int tmp_class = TRAP_FREE;
479 int insn_class = TRAP_FREE;
480 enum rtx_code code;
482 if (GET_CODE (x) == PARALLEL)
484 int i, len = XVECLEN (x, 0);
486 for (i = len - 1; i >= 0; i--)
488 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
489 insn_class = WORST_CLASS (insn_class, tmp_class);
490 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
491 break;
494 else
496 code = GET_CODE (x);
497 switch (code)
499 case CLOBBER:
500 /* Test if it is a 'store'. */
501 tmp_class = may_trap_exp (XEXP (x, 0), 1);
502 break;
503 case SET:
504 /* Test if it is a store. */
505 tmp_class = may_trap_exp (SET_DEST (x), 1);
506 if (tmp_class == TRAP_RISKY)
507 break;
508 /* Test if it is a load. */
509 tmp_class =
510 WORST_CLASS (tmp_class,
511 may_trap_exp (SET_SRC (x), 0));
512 break;
513 case COND_EXEC:
514 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
515 if (tmp_class == TRAP_RISKY)
516 break;
517 tmp_class = WORST_CLASS (tmp_class,
518 may_trap_exp (COND_EXEC_TEST (x), 0));
519 break;
520 case TRAP_IF:
521 tmp_class = TRAP_RISKY;
522 break;
523 default:;
525 insn_class = tmp_class;
528 return insn_class;
532 haifa_classify_insn (const_rtx insn)
534 return haifa_classify_rtx (PATTERN (insn));
537 /* After the scheduler initialization function has been called, this function
538 can be called to enable modulo scheduling. II is the initiation interval
539 we should use, it affects the delays for delay_pairs that were recorded as
540 separated by a given number of stages.
542 MAX_STAGES provides us with a limit
543 after which we give up scheduling; the caller must have unrolled at least
544 as many copies of the loop body and recorded delay_pairs for them.
546 INSNS is the number of real (non-debug) insns in one iteration of
547 the loop. MAX_UID can be used to test whether an insn belongs to
548 the first iteration of the loop; all of them have a uid lower than
549 MAX_UID. */
550 void
551 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
553 modulo_ii = ii;
554 modulo_max_stages = max_stages;
555 modulo_n_insns = insns;
556 modulo_iter0_max_uid = max_uid;
557 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
560 /* A structure to record a pair of insns where the first one is a real
561 insn that has delay slots, and the second is its delayed shadow.
562 I1 is scheduled normally and will emit an assembly instruction,
563 while I2 describes the side effect that takes place at the
564 transition between cycles CYCLES and (CYCLES + 1) after I1. */
565 struct delay_pair
567 struct delay_pair *next_same_i1;
568 rtx i1, i2;
569 int cycles;
570 /* When doing modulo scheduling, we a delay_pair can also be used to
571 show that I1 and I2 are the same insn in a different stage. If that
572 is the case, STAGES will be nonzero. */
573 int stages;
576 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
577 indexed by I2. */
578 static htab_t delay_htab;
579 static htab_t delay_htab_i2;
581 /* Called through htab_traverse. Walk the hashtable using I2 as
582 index, and delete all elements involving an UID higher than
583 that pointed to by *DATA. */
584 static int
585 htab_i2_traverse (void **slot, void *data)
587 int maxuid = *(int *)data;
588 struct delay_pair *p = *(struct delay_pair **)slot;
589 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
591 htab_clear_slot (delay_htab_i2, slot);
593 return 1;
596 /* Called through htab_traverse. Walk the hashtable using I2 as
597 index, and delete all elements involving an UID higher than
598 that pointed to by *DATA. */
599 static int
600 htab_i1_traverse (void **slot, void *data)
602 int maxuid = *(int *)data;
603 struct delay_pair **pslot = (struct delay_pair **)slot;
604 struct delay_pair *p, *first, **pprev;
606 if (INSN_UID ((*pslot)->i1) >= maxuid)
608 htab_clear_slot (delay_htab, slot);
609 return 1;
611 pprev = &first;
612 for (p = *pslot; p; p = p->next_same_i1)
614 if (INSN_UID (p->i2) < maxuid)
616 *pprev = p;
617 pprev = &p->next_same_i1;
620 *pprev = NULL;
621 if (first == NULL)
622 htab_clear_slot (delay_htab, slot);
623 else
624 *pslot = first;
625 return 1;
628 /* Discard all delay pairs which involve an insn with an UID higher
629 than MAX_UID. */
630 void
631 discard_delay_pairs_above (int max_uid)
633 htab_traverse (delay_htab, htab_i1_traverse, &max_uid);
634 htab_traverse (delay_htab_i2, htab_i2_traverse, &max_uid);
637 /* Returns a hash value for X (which really is a delay_pair), based on
638 hashing just I1. */
639 static hashval_t
640 delay_hash_i1 (const void *x)
642 return htab_hash_pointer (((const struct delay_pair *) x)->i1);
645 /* Returns a hash value for X (which really is a delay_pair), based on
646 hashing just I2. */
647 static hashval_t
648 delay_hash_i2 (const void *x)
650 return htab_hash_pointer (((const struct delay_pair *) x)->i2);
653 /* Return nonzero if I1 of pair X is the same as that of pair Y. */
654 static int
655 delay_i1_eq (const void *x, const void *y)
657 return ((const struct delay_pair *) x)->i1 == y;
660 /* Return nonzero if I2 of pair X is the same as that of pair Y. */
661 static int
662 delay_i2_eq (const void *x, const void *y)
664 return ((const struct delay_pair *) x)->i2 == y;
667 /* This function can be called by a port just before it starts the final
668 scheduling pass. It records the fact that an instruction with delay
669 slots has been split into two insns, I1 and I2. The first one will be
670 scheduled normally and initiates the operation. The second one is a
671 shadow which must follow a specific number of cycles after I1; its only
672 purpose is to show the side effect that occurs at that cycle in the RTL.
673 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
674 while I2 retains the original insn type.
676 There are two ways in which the number of cycles can be specified,
677 involving the CYCLES and STAGES arguments to this function. If STAGES
678 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
679 which is multiplied by MODULO_II to give the number of cycles. This is
680 only useful if the caller also calls set_modulo_params to enable modulo
681 scheduling. */
683 void
684 record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
686 struct delay_pair *p = XNEW (struct delay_pair);
687 struct delay_pair **slot;
689 p->i1 = i1;
690 p->i2 = i2;
691 p->cycles = cycles;
692 p->stages = stages;
694 if (!delay_htab)
696 delay_htab = htab_create (10, delay_hash_i1, delay_i1_eq, NULL);
697 delay_htab_i2 = htab_create (10, delay_hash_i2, delay_i2_eq, free);
699 slot = ((struct delay_pair **)
700 htab_find_slot_with_hash (delay_htab, i1, htab_hash_pointer (i1),
701 INSERT));
702 p->next_same_i1 = *slot;
703 *slot = p;
704 slot = ((struct delay_pair **)
705 htab_find_slot_with_hash (delay_htab_i2, i2, htab_hash_pointer (i2),
706 INSERT));
707 *slot = p;
710 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
711 and return the other insn if so. Return NULL otherwise. */
713 real_insn_for_shadow (rtx insn)
715 struct delay_pair *pair;
717 if (delay_htab == NULL)
718 return NULL_RTX;
720 pair
721 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
722 htab_hash_pointer (insn));
723 if (!pair || pair->stages > 0)
724 return NULL_RTX;
725 return pair->i1;
728 /* For a pair P of insns, return the fixed distance in cycles from the first
729 insn after which the second must be scheduled. */
730 static int
731 pair_delay (struct delay_pair *p)
733 if (p->stages == 0)
734 return p->cycles;
735 else
736 return p->stages * modulo_ii;
739 /* Given an insn INSN, add a dependence on its delayed shadow if it
740 has one. Also try to find situations where shadows depend on each other
741 and add dependencies to the real insns to limit the amount of backtracking
742 needed. */
743 void
744 add_delay_dependencies (rtx insn)
746 struct delay_pair *pair;
747 sd_iterator_def sd_it;
748 dep_t dep;
750 if (!delay_htab)
751 return;
753 pair
754 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
755 htab_hash_pointer (insn));
756 if (!pair)
757 return;
758 add_dependence (insn, pair->i1, REG_DEP_ANTI);
759 if (pair->stages)
760 return;
762 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
764 rtx pro = DEP_PRO (dep);
765 struct delay_pair *other_pair
766 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, pro,
767 htab_hash_pointer (pro));
768 if (!other_pair || other_pair->stages)
769 continue;
770 if (pair_delay (other_pair) >= pair_delay (pair))
772 if (sched_verbose >= 4)
774 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
775 INSN_UID (other_pair->i1),
776 INSN_UID (pair->i1));
777 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
778 INSN_UID (pair->i1),
779 INSN_UID (pair->i2),
780 pair_delay (pair));
781 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
782 INSN_UID (other_pair->i1),
783 INSN_UID (other_pair->i2),
784 pair_delay (other_pair));
786 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
791 /* Forward declarations. */
793 static int priority (rtx);
794 static int rank_for_schedule (const void *, const void *);
795 static void swap_sort (rtx *, int);
796 static void queue_insn (rtx, int, const char *);
797 static int schedule_insn (rtx);
798 static void adjust_priority (rtx);
799 static void advance_one_cycle (void);
800 static void extend_h_i_d (void);
803 /* Notes handling mechanism:
804 =========================
805 Generally, NOTES are saved before scheduling and restored after scheduling.
806 The scheduler distinguishes between two types of notes:
808 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
809 Before scheduling a region, a pointer to the note is added to the insn
810 that follows or precedes it. (This happens as part of the data dependence
811 computation). After scheduling an insn, the pointer contained in it is
812 used for regenerating the corresponding note (in reemit_notes).
814 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
815 these notes are put in a list (in rm_other_notes() and
816 unlink_other_notes ()). After scheduling the block, these notes are
817 inserted at the beginning of the block (in schedule_block()). */
819 static void ready_add (struct ready_list *, rtx, bool);
820 static rtx ready_remove_first (struct ready_list *);
821 static rtx ready_remove_first_dispatch (struct ready_list *ready);
823 static void queue_to_ready (struct ready_list *);
824 static int early_queue_to_ready (state_t, struct ready_list *);
826 static void debug_ready_list (struct ready_list *);
828 /* The following functions are used to implement multi-pass scheduling
829 on the first cycle. */
830 static rtx ready_remove (struct ready_list *, int);
831 static void ready_remove_insn (rtx);
833 static void fix_inter_tick (rtx, rtx);
834 static int fix_tick_ready (rtx);
835 static void change_queue_index (rtx, int);
837 /* The following functions are used to implement scheduling of data/control
838 speculative instructions. */
840 static void extend_h_i_d (void);
841 static void init_h_i_d (rtx);
842 static int haifa_speculate_insn (rtx, ds_t, rtx *);
843 static void generate_recovery_code (rtx);
844 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
845 static void begin_speculative_block (rtx);
846 static void add_to_speculative_block (rtx);
847 static void init_before_recovery (basic_block *);
848 static void create_check_block_twin (rtx, bool);
849 static void fix_recovery_deps (basic_block);
850 static bool haifa_change_pattern (rtx, rtx);
851 static void dump_new_block_header (int, basic_block, rtx, rtx);
852 static void restore_bb_notes (basic_block);
853 static void fix_jump_move (rtx);
854 static void move_block_after_check (rtx);
855 static void move_succs (VEC(edge,gc) **, basic_block);
856 static void sched_remove_insn (rtx);
857 static void clear_priorities (rtx, rtx_vec_t *);
858 static void calc_priorities (rtx_vec_t);
859 static void add_jump_dependencies (rtx, rtx);
861 #endif /* INSN_SCHEDULING */
863 /* Point to state used for the current scheduling pass. */
864 struct haifa_sched_info *current_sched_info;
866 #ifndef INSN_SCHEDULING
867 void
868 schedule_insns (void)
871 #else
873 /* Do register pressure sensitive insn scheduling if the flag is set
874 up. */
875 bool sched_pressure_p;
877 /* Map regno -> its pressure class. The map defined only when
878 SCHED_PRESSURE_P is true. */
879 enum reg_class *sched_regno_pressure_class;
881 /* The current register pressure. Only elements corresponding pressure
882 classes are defined. */
883 static int curr_reg_pressure[N_REG_CLASSES];
885 /* Saved value of the previous array. */
886 static int saved_reg_pressure[N_REG_CLASSES];
888 /* Register living at given scheduling point. */
889 static bitmap curr_reg_live;
891 /* Saved value of the previous array. */
892 static bitmap saved_reg_live;
894 /* Registers mentioned in the current region. */
895 static bitmap region_ref_regs;
897 /* Initiate register pressure relative info for scheduling the current
898 region. Currently it is only clearing register mentioned in the
899 current region. */
900 void
901 sched_init_region_reg_pressure_info (void)
903 bitmap_clear (region_ref_regs);
906 /* Update current register pressure related info after birth (if
907 BIRTH_P) or death of register REGNO. */
908 static void
909 mark_regno_birth_or_death (int regno, bool birth_p)
911 enum reg_class pressure_class;
913 pressure_class = sched_regno_pressure_class[regno];
914 if (regno >= FIRST_PSEUDO_REGISTER)
916 if (pressure_class != NO_REGS)
918 if (birth_p)
920 bitmap_set_bit (curr_reg_live, regno);
921 curr_reg_pressure[pressure_class]
922 += (ira_reg_class_max_nregs
923 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
925 else
927 bitmap_clear_bit (curr_reg_live, regno);
928 curr_reg_pressure[pressure_class]
929 -= (ira_reg_class_max_nregs
930 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
934 else if (pressure_class != NO_REGS
935 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
937 if (birth_p)
939 bitmap_set_bit (curr_reg_live, regno);
940 curr_reg_pressure[pressure_class]++;
942 else
944 bitmap_clear_bit (curr_reg_live, regno);
945 curr_reg_pressure[pressure_class]--;
950 /* Initiate current register pressure related info from living
951 registers given by LIVE. */
952 static void
953 initiate_reg_pressure_info (bitmap live)
955 int i;
956 unsigned int j;
957 bitmap_iterator bi;
959 for (i = 0; i < ira_pressure_classes_num; i++)
960 curr_reg_pressure[ira_pressure_classes[i]] = 0;
961 bitmap_clear (curr_reg_live);
962 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
963 if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
964 mark_regno_birth_or_death (j, true);
967 /* Mark registers in X as mentioned in the current region. */
968 static void
969 setup_ref_regs (rtx x)
971 int i, j, regno;
972 const RTX_CODE code = GET_CODE (x);
973 const char *fmt;
975 if (REG_P (x))
977 regno = REGNO (x);
978 if (HARD_REGISTER_NUM_P (regno))
979 bitmap_set_range (region_ref_regs, regno,
980 hard_regno_nregs[regno][GET_MODE (x)]);
981 else
982 bitmap_set_bit (region_ref_regs, REGNO (x));
983 return;
985 fmt = GET_RTX_FORMAT (code);
986 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
987 if (fmt[i] == 'e')
988 setup_ref_regs (XEXP (x, i));
989 else if (fmt[i] == 'E')
991 for (j = 0; j < XVECLEN (x, i); j++)
992 setup_ref_regs (XVECEXP (x, i, j));
996 /* Initiate current register pressure related info at the start of
997 basic block BB. */
998 static void
999 initiate_bb_reg_pressure_info (basic_block bb)
1001 unsigned int i ATTRIBUTE_UNUSED;
1002 rtx insn;
1004 if (current_nr_blocks > 1)
1005 FOR_BB_INSNS (bb, insn)
1006 if (NONDEBUG_INSN_P (insn))
1007 setup_ref_regs (PATTERN (insn));
1008 initiate_reg_pressure_info (df_get_live_in (bb));
1009 #ifdef EH_RETURN_DATA_REGNO
1010 if (bb_has_eh_pred (bb))
1011 for (i = 0; ; ++i)
1013 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1015 if (regno == INVALID_REGNUM)
1016 break;
1017 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1018 mark_regno_birth_or_death (regno, true);
1020 #endif
1023 /* Save current register pressure related info. */
1024 static void
1025 save_reg_pressure (void)
1027 int i;
1029 for (i = 0; i < ira_pressure_classes_num; i++)
1030 saved_reg_pressure[ira_pressure_classes[i]]
1031 = curr_reg_pressure[ira_pressure_classes[i]];
1032 bitmap_copy (saved_reg_live, curr_reg_live);
1035 /* Restore saved register pressure related info. */
1036 static void
1037 restore_reg_pressure (void)
1039 int i;
1041 for (i = 0; i < ira_pressure_classes_num; i++)
1042 curr_reg_pressure[ira_pressure_classes[i]]
1043 = saved_reg_pressure[ira_pressure_classes[i]];
1044 bitmap_copy (curr_reg_live, saved_reg_live);
1047 /* Return TRUE if the register is dying after its USE. */
1048 static bool
1049 dying_use_p (struct reg_use_data *use)
1051 struct reg_use_data *next;
1053 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1054 if (NONDEBUG_INSN_P (next->insn)
1055 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1056 return false;
1057 return true;
1060 /* Print info about the current register pressure and its excess for
1061 each pressure class. */
1062 static void
1063 print_curr_reg_pressure (void)
1065 int i;
1066 enum reg_class cl;
1068 fprintf (sched_dump, ";;\t");
1069 for (i = 0; i < ira_pressure_classes_num; i++)
1071 cl = ira_pressure_classes[i];
1072 gcc_assert (curr_reg_pressure[cl] >= 0);
1073 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1074 curr_reg_pressure[cl],
1075 curr_reg_pressure[cl] - ira_available_class_regs[cl]);
1077 fprintf (sched_dump, "\n");
1080 /* Determine if INSN has a condition that is clobbered if a register
1081 in SET_REGS is modified. */
1082 static bool
1083 cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1085 rtx pat = PATTERN (insn);
1086 gcc_assert (GET_CODE (pat) == COND_EXEC);
1087 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1089 sd_iterator_def sd_it;
1090 dep_t dep;
1091 haifa_change_pattern (insn, ORIG_PAT (insn));
1092 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1093 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1094 TODO_SPEC (insn) = HARD_DEP;
1095 if (sched_verbose >= 2)
1096 fprintf (sched_dump,
1097 ";;\t\tdequeue insn %s because of clobbered condition\n",
1098 (*current_sched_info->print_insn) (insn, 0));
1099 return true;
1102 return false;
1105 /* Look at the remaining dependencies for insn NEXT, and compute and return
1106 the TODO_SPEC value we should use for it. This is called after one of
1107 NEXT's dependencies has been resolved. */
1109 static ds_t
1110 recompute_todo_spec (rtx next)
1112 ds_t new_ds;
1113 sd_iterator_def sd_it;
1114 dep_t dep, control_dep = NULL;
1115 int n_spec = 0;
1116 int n_control = 0;
1117 bool first_p = true;
1119 if (sd_lists_empty_p (next, SD_LIST_BACK))
1120 /* NEXT has all its dependencies resolved. */
1121 return 0;
1123 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1124 return HARD_DEP;
1126 /* Now we've got NEXT with speculative deps only.
1127 1. Look at the deps to see what we have to do.
1128 2. Check if we can do 'todo'. */
1129 new_ds = 0;
1131 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1133 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1135 if (DEBUG_INSN_P (DEP_PRO (dep)) && !DEBUG_INSN_P (next))
1136 continue;
1138 if (ds)
1140 n_spec++;
1141 if (first_p)
1143 first_p = false;
1145 new_ds = ds;
1147 else
1148 new_ds = ds_merge (new_ds, ds);
1150 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1152 n_control++;
1153 control_dep = dep;
1154 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1158 if (n_control == 1 && n_spec == 0)
1160 rtx pro, other, new_pat;
1161 rtx cond = NULL_RTX;
1162 bool success;
1163 rtx prev = NULL_RTX;
1164 int i;
1165 unsigned regno;
1167 if ((current_sched_info->flags & DO_PREDICATION) == 0
1168 || (ORIG_PAT (next) != NULL_RTX
1169 && PREDICATED_PAT (next) == NULL_RTX))
1170 return HARD_DEP;
1172 pro = DEP_PRO (control_dep);
1173 other = real_insn_for_shadow (pro);
1174 if (other != NULL_RTX)
1175 pro = other;
1177 cond = sched_get_reverse_condition_uncached (pro);
1178 regno = REGNO (XEXP (cond, 0));
1180 /* Find the last scheduled insn that modifies the condition register.
1181 We can stop looking once we find the insn we depend on through the
1182 REG_DEP_CONTROL; if the condition register isn't modified after it,
1183 we know that it still has the right value. */
1184 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1185 FOR_EACH_VEC_ELT_REVERSE (rtx, scheduled_insns, i, prev)
1187 HARD_REG_SET t;
1189 find_all_hard_reg_sets (prev, &t);
1190 if (TEST_HARD_REG_BIT (t, regno))
1191 return HARD_DEP;
1192 if (prev == pro)
1193 break;
1195 if (ORIG_PAT (next) == NULL_RTX)
1197 ORIG_PAT (next) = PATTERN (next);
1199 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1200 success = haifa_change_pattern (next, new_pat);
1201 if (!success)
1202 return HARD_DEP;
1203 PREDICATED_PAT (next) = new_pat;
1205 else if (PATTERN (next) != PREDICATED_PAT (next))
1207 bool success = haifa_change_pattern (next,
1208 PREDICATED_PAT (next));
1209 gcc_assert (success);
1211 DEP_STATUS (control_dep) |= DEP_CANCELLED;
1212 return DEP_CONTROL;
1215 if (PREDICATED_PAT (next) != NULL_RTX)
1217 int tick = INSN_TICK (next);
1218 bool success = haifa_change_pattern (next,
1219 ORIG_PAT (next));
1220 INSN_TICK (next) = tick;
1221 gcc_assert (success);
1224 /* We can't handle the case where there are both speculative and control
1225 dependencies, so we return HARD_DEP in such a case. Also fail if
1226 we have speculative dependencies with not enough points, or more than
1227 one control dependency. */
1228 if ((n_spec > 0 && n_control > 0)
1229 || (n_spec > 0
1230 /* Too few points? */
1231 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1232 || (n_control > 1))
1233 return HARD_DEP;
1235 return new_ds;
1238 /* Pointer to the last instruction scheduled. */
1239 static rtx last_scheduled_insn;
1241 /* Pointer to the last nondebug instruction scheduled within the
1242 block, or the prev_head of the scheduling block. Used by
1243 rank_for_schedule, so that insns independent of the last scheduled
1244 insn will be preferred over dependent instructions. */
1245 static rtx last_nondebug_scheduled_insn;
1247 /* Pointer that iterates through the list of unscheduled insns if we
1248 have a dbg_cnt enabled. It always points at an insn prior to the
1249 first unscheduled one. */
1250 static rtx nonscheduled_insns_begin;
1252 /* Cached cost of the instruction. Use below function to get cost of the
1253 insn. -1 here means that the field is not initialized. */
1254 #define INSN_COST(INSN) (HID (INSN)->cost)
1256 /* Compute cost of executing INSN.
1257 This is the number of cycles between instruction issue and
1258 instruction results. */
1260 insn_cost (rtx insn)
1262 int cost;
1264 if (sel_sched_p ())
1266 if (recog_memoized (insn) < 0)
1267 return 0;
1269 cost = insn_default_latency (insn);
1270 if (cost < 0)
1271 cost = 0;
1273 return cost;
1276 cost = INSN_COST (insn);
1278 if (cost < 0)
1280 /* A USE insn, or something else we don't need to
1281 understand. We can't pass these directly to
1282 result_ready_cost or insn_default_latency because it will
1283 trigger a fatal error for unrecognizable insns. */
1284 if (recog_memoized (insn) < 0)
1286 INSN_COST (insn) = 0;
1287 return 0;
1289 else
1291 cost = insn_default_latency (insn);
1292 if (cost < 0)
1293 cost = 0;
1295 INSN_COST (insn) = cost;
1299 return cost;
1302 /* Compute cost of dependence LINK.
1303 This is the number of cycles between instruction issue and
1304 instruction results.
1305 ??? We also use this function to call recog_memoized on all insns. */
1307 dep_cost_1 (dep_t link, dw_t dw)
1309 rtx insn = DEP_PRO (link);
1310 rtx used = DEP_CON (link);
1311 int cost;
1313 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1314 return DEP_COST (link);
1316 if (delay_htab)
1318 struct delay_pair *delay_entry;
1319 delay_entry
1320 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, used,
1321 htab_hash_pointer (used));
1322 if (delay_entry)
1324 if (delay_entry->i1 == insn)
1326 DEP_COST (link) = pair_delay (delay_entry);
1327 return DEP_COST (link);
1332 /* A USE insn should never require the value used to be computed.
1333 This allows the computation of a function's result and parameter
1334 values to overlap the return and call. We don't care about the
1335 dependence cost when only decreasing register pressure. */
1336 if (recog_memoized (used) < 0)
1338 cost = 0;
1339 recog_memoized (insn);
1341 else
1343 enum reg_note dep_type = DEP_TYPE (link);
1345 cost = insn_cost (insn);
1347 if (INSN_CODE (insn) >= 0)
1349 if (dep_type == REG_DEP_ANTI)
1350 cost = 0;
1351 else if (dep_type == REG_DEP_OUTPUT)
1353 cost = (insn_default_latency (insn)
1354 - insn_default_latency (used));
1355 if (cost <= 0)
1356 cost = 1;
1358 else if (bypass_p (insn))
1359 cost = insn_latency (insn, used);
1363 if (targetm.sched.adjust_cost_2)
1364 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1365 dw);
1366 else if (targetm.sched.adjust_cost != NULL)
1368 /* This variable is used for backward compatibility with the
1369 targets. */
1370 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1372 /* Make it self-cycled, so that if some tries to walk over this
1373 incomplete list he/she will be caught in an endless loop. */
1374 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1376 /* Targets use only REG_NOTE_KIND of the link. */
1377 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1379 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1380 insn, cost);
1382 free_INSN_LIST_node (dep_cost_rtx_link);
1385 if (cost < 0)
1386 cost = 0;
1389 DEP_COST (link) = cost;
1390 return cost;
1393 /* Compute cost of dependence LINK.
1394 This is the number of cycles between instruction issue and
1395 instruction results. */
1397 dep_cost (dep_t link)
1399 return dep_cost_1 (link, 0);
1402 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1403 INSN_PRIORITY explicitly. */
1404 void
1405 increase_insn_priority (rtx insn, int amount)
1407 if (!sel_sched_p ())
1409 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1410 if (INSN_PRIORITY_KNOWN (insn))
1411 INSN_PRIORITY (insn) += amount;
1413 else
1415 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1416 Use EXPR_PRIORITY instead. */
1417 sel_add_to_insn_priority (insn, amount);
1421 /* Return 'true' if DEP should be included in priority calculations. */
1422 static bool
1423 contributes_to_priority_p (dep_t dep)
1425 if (DEBUG_INSN_P (DEP_CON (dep))
1426 || DEBUG_INSN_P (DEP_PRO (dep)))
1427 return false;
1429 /* Critical path is meaningful in block boundaries only. */
1430 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1431 DEP_PRO (dep)))
1432 return false;
1434 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1435 then speculative instructions will less likely be
1436 scheduled. That is because the priority of
1437 their producers will increase, and, thus, the
1438 producers will more likely be scheduled, thus,
1439 resolving the dependence. */
1440 if (sched_deps_info->generate_spec_deps
1441 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1442 && (DEP_STATUS (dep) & SPECULATIVE))
1443 return false;
1445 return true;
1448 /* Compute the number of nondebug forward deps of an insn. */
1450 static int
1451 dep_list_size (rtx insn)
1453 sd_iterator_def sd_it;
1454 dep_t dep;
1455 int dbgcount = 0, nodbgcount = 0;
1457 if (!MAY_HAVE_DEBUG_INSNS)
1458 return sd_lists_size (insn, SD_LIST_FORW);
1460 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1462 if (DEBUG_INSN_P (DEP_CON (dep)))
1463 dbgcount++;
1464 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1465 nodbgcount++;
1468 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
1470 return nodbgcount;
1473 /* Compute the priority number for INSN. */
1474 static int
1475 priority (rtx insn)
1477 if (! INSN_P (insn))
1478 return 0;
1480 /* We should not be interested in priority of an already scheduled insn. */
1481 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1483 if (!INSN_PRIORITY_KNOWN (insn))
1485 int this_priority = -1;
1487 if (dep_list_size (insn) == 0)
1488 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1489 some forward deps but all of them are ignored by
1490 contributes_to_priority hook. At the moment we set priority of
1491 such insn to 0. */
1492 this_priority = insn_cost (insn);
1493 else
1495 rtx prev_first, twin;
1496 basic_block rec;
1498 /* For recovery check instructions we calculate priority slightly
1499 different than that of normal instructions. Instead of walking
1500 through INSN_FORW_DEPS (check) list, we walk through
1501 INSN_FORW_DEPS list of each instruction in the corresponding
1502 recovery block. */
1504 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1505 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1506 if (!rec || rec == EXIT_BLOCK_PTR)
1508 prev_first = PREV_INSN (insn);
1509 twin = insn;
1511 else
1513 prev_first = NEXT_INSN (BB_HEAD (rec));
1514 twin = PREV_INSN (BB_END (rec));
1519 sd_iterator_def sd_it;
1520 dep_t dep;
1522 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1524 rtx next;
1525 int next_priority;
1527 next = DEP_CON (dep);
1529 if (BLOCK_FOR_INSN (next) != rec)
1531 int cost;
1533 if (!contributes_to_priority_p (dep))
1534 continue;
1536 if (twin == insn)
1537 cost = dep_cost (dep);
1538 else
1540 struct _dep _dep1, *dep1 = &_dep1;
1542 init_dep (dep1, insn, next, REG_DEP_ANTI);
1544 cost = dep_cost (dep1);
1547 next_priority = cost + priority (next);
1549 if (next_priority > this_priority)
1550 this_priority = next_priority;
1554 twin = PREV_INSN (twin);
1556 while (twin != prev_first);
1559 if (this_priority < 0)
1561 gcc_assert (this_priority == -1);
1563 this_priority = insn_cost (insn);
1566 INSN_PRIORITY (insn) = this_priority;
1567 INSN_PRIORITY_STATUS (insn) = 1;
1570 return INSN_PRIORITY (insn);
1573 /* Macros and functions for keeping the priority queue sorted, and
1574 dealing with queuing and dequeuing of instructions. */
1576 #define SCHED_SORT(READY, N_READY) \
1577 do { if ((N_READY) == 2) \
1578 swap_sort (READY, N_READY); \
1579 else if ((N_READY) > 2) \
1580 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1581 while (0)
1583 /* Setup info about the current register pressure impact of scheduling
1584 INSN at the current scheduling point. */
1585 static void
1586 setup_insn_reg_pressure_info (rtx insn)
1588 int i, change, before, after, hard_regno;
1589 int excess_cost_change;
1590 enum machine_mode mode;
1591 enum reg_class cl;
1592 struct reg_pressure_data *pressure_info;
1593 int *max_reg_pressure;
1594 struct reg_use_data *use;
1595 static int death[N_REG_CLASSES];
1597 gcc_checking_assert (!DEBUG_INSN_P (insn));
1599 excess_cost_change = 0;
1600 for (i = 0; i < ira_pressure_classes_num; i++)
1601 death[ira_pressure_classes[i]] = 0;
1602 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1603 if (dying_use_p (use))
1605 cl = sched_regno_pressure_class[use->regno];
1606 if (use->regno < FIRST_PSEUDO_REGISTER)
1607 death[cl]++;
1608 else
1609 death[cl]
1610 += ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
1612 pressure_info = INSN_REG_PRESSURE (insn);
1613 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1614 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1615 for (i = 0; i < ira_pressure_classes_num; i++)
1617 cl = ira_pressure_classes[i];
1618 gcc_assert (curr_reg_pressure[cl] >= 0);
1619 change = (int) pressure_info[i].set_increase - death[cl];
1620 before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
1621 after = MAX (0, max_reg_pressure[i] + change
1622 - ira_available_class_regs[cl]);
1623 hard_regno = ira_class_hard_regs[cl][0];
1624 gcc_assert (hard_regno >= 0);
1625 mode = reg_raw_mode[hard_regno];
1626 excess_cost_change += ((after - before)
1627 * (ira_memory_move_cost[mode][cl][0]
1628 + ira_memory_move_cost[mode][cl][1]));
1630 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1633 /* Returns a positive value if x is preferred; returns a negative value if
1634 y is preferred. Should never return 0, since that will make the sort
1635 unstable. */
1637 static int
1638 rank_for_schedule (const void *x, const void *y)
1640 rtx tmp = *(const rtx *) y;
1641 rtx tmp2 = *(const rtx *) x;
1642 int tmp_class, tmp2_class;
1643 int val, priority_val, info_val;
1645 if (MAY_HAVE_DEBUG_INSNS)
1647 /* Schedule debug insns as early as possible. */
1648 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
1649 return -1;
1650 else if (DEBUG_INSN_P (tmp2))
1651 return 1;
1654 /* The insn in a schedule group should be issued the first. */
1655 if (flag_sched_group_heuristic &&
1656 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
1657 return SCHED_GROUP_P (tmp2) ? 1 : -1;
1659 /* Make sure that priority of TMP and TMP2 are initialized. */
1660 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
1662 if (sched_pressure_p)
1664 int diff;
1666 /* Prefer insn whose scheduling results in the smallest register
1667 pressure excess. */
1668 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
1669 + (INSN_TICK (tmp) > clock_var
1670 ? INSN_TICK (tmp) - clock_var : 0)
1671 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
1672 - (INSN_TICK (tmp2) > clock_var
1673 ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
1674 return diff;
1678 if (sched_pressure_p
1679 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
1681 if (INSN_TICK (tmp) <= clock_var)
1682 return -1;
1683 else if (INSN_TICK (tmp2) <= clock_var)
1684 return 1;
1685 else
1686 return INSN_TICK (tmp) - INSN_TICK (tmp2);
1689 /* If we are doing backtracking in this schedule, prefer insns that
1690 have forward dependencies with negative cost against an insn that
1691 was already scheduled. */
1692 if (current_sched_info->flags & DO_BACKTRACKING)
1694 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
1695 if (priority_val)
1696 return priority_val;
1699 /* Prefer insn with higher priority. */
1700 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1702 if (flag_sched_critical_path_heuristic && priority_val)
1703 return priority_val;
1705 /* Prefer speculative insn with greater dependencies weakness. */
1706 if (flag_sched_spec_insn_heuristic && spec_info)
1708 ds_t ds1, ds2;
1709 dw_t dw1, dw2;
1710 int dw;
1712 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
1713 if (ds1)
1714 dw1 = ds_weak (ds1);
1715 else
1716 dw1 = NO_DEP_WEAK;
1718 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
1719 if (ds2)
1720 dw2 = ds_weak (ds2);
1721 else
1722 dw2 = NO_DEP_WEAK;
1724 dw = dw2 - dw1;
1725 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
1726 return dw;
1729 info_val = (*current_sched_info->rank) (tmp, tmp2);
1730 if(flag_sched_rank_heuristic && info_val)
1731 return info_val;
1733 /* Compare insns based on their relation to the last scheduled
1734 non-debug insn. */
1735 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
1737 dep_t dep1;
1738 dep_t dep2;
1739 rtx last = last_nondebug_scheduled_insn;
1741 /* Classify the instructions into three classes:
1742 1) Data dependent on last schedule insn.
1743 2) Anti/Output dependent on last scheduled insn.
1744 3) Independent of last scheduled insn, or has latency of one.
1745 Choose the insn from the highest numbered class if different. */
1746 dep1 = sd_find_dep_between (last, tmp, true);
1748 if (dep1 == NULL || dep_cost (dep1) == 1)
1749 tmp_class = 3;
1750 else if (/* Data dependence. */
1751 DEP_TYPE (dep1) == REG_DEP_TRUE)
1752 tmp_class = 1;
1753 else
1754 tmp_class = 2;
1756 dep2 = sd_find_dep_between (last, tmp2, true);
1758 if (dep2 == NULL || dep_cost (dep2) == 1)
1759 tmp2_class = 3;
1760 else if (/* Data dependence. */
1761 DEP_TYPE (dep2) == REG_DEP_TRUE)
1762 tmp2_class = 1;
1763 else
1764 tmp2_class = 2;
1766 if ((val = tmp2_class - tmp_class))
1767 return val;
1770 /* Prefer the insn which has more later insns that depend on it.
1771 This gives the scheduler more freedom when scheduling later
1772 instructions at the expense of added register pressure. */
1774 val = (dep_list_size (tmp2) - dep_list_size (tmp));
1776 if (flag_sched_dep_count_heuristic && val != 0)
1777 return val;
1779 /* If insns are equally good, sort by INSN_LUID (original insn order),
1780 so that we make the sort stable. This minimizes instruction movement,
1781 thus minimizing sched's effect on debugging and cross-jumping. */
1782 return INSN_LUID (tmp) - INSN_LUID (tmp2);
1785 /* Resort the array A in which only element at index N may be out of order. */
1787 HAIFA_INLINE static void
1788 swap_sort (rtx *a, int n)
1790 rtx insn = a[n - 1];
1791 int i = n - 2;
1793 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1795 a[i + 1] = a[i];
1796 i -= 1;
1798 a[i + 1] = insn;
1801 /* Add INSN to the insn queue so that it can be executed at least
1802 N_CYCLES after the currently executing insn. Preserve insns
1803 chain for debugging purposes. REASON will be printed in debugging
1804 output. */
1806 HAIFA_INLINE static void
1807 queue_insn (rtx insn, int n_cycles, const char *reason)
1809 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1810 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1811 int new_tick;
1813 gcc_assert (n_cycles <= max_insn_queue_index);
1814 gcc_assert (!DEBUG_INSN_P (insn));
1816 insn_queue[next_q] = link;
1817 q_size += 1;
1819 if (sched_verbose >= 2)
1821 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1822 (*current_sched_info->print_insn) (insn, 0));
1824 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
1827 QUEUE_INDEX (insn) = next_q;
1829 if (current_sched_info->flags & DO_BACKTRACKING)
1831 new_tick = clock_var + n_cycles;
1832 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
1833 INSN_TICK (insn) = new_tick;
1835 if (INSN_EXACT_TICK (insn) != INVALID_TICK
1836 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
1838 must_backtrack = true;
1839 if (sched_verbose >= 2)
1840 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
1845 /* Remove INSN from queue. */
1846 static void
1847 queue_remove (rtx insn)
1849 gcc_assert (QUEUE_INDEX (insn) >= 0);
1850 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1851 q_size--;
1852 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1855 /* Return a pointer to the bottom of the ready list, i.e. the insn
1856 with the lowest priority. */
1858 rtx *
1859 ready_lastpos (struct ready_list *ready)
1861 gcc_assert (ready->n_ready >= 1);
1862 return ready->vec + ready->first - ready->n_ready + 1;
1865 /* Add an element INSN to the ready list so that it ends up with the
1866 lowest/highest priority depending on FIRST_P. */
1868 HAIFA_INLINE static void
1869 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1871 if (!first_p)
1873 if (ready->first == ready->n_ready)
1875 memmove (ready->vec + ready->veclen - ready->n_ready,
1876 ready_lastpos (ready),
1877 ready->n_ready * sizeof (rtx));
1878 ready->first = ready->veclen - 1;
1880 ready->vec[ready->first - ready->n_ready] = insn;
1882 else
1884 if (ready->first == ready->veclen - 1)
1886 if (ready->n_ready)
1887 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1888 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1889 ready_lastpos (ready),
1890 ready->n_ready * sizeof (rtx));
1891 ready->first = ready->veclen - 2;
1893 ready->vec[++(ready->first)] = insn;
1896 ready->n_ready++;
1897 if (DEBUG_INSN_P (insn))
1898 ready->n_debug++;
1900 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1901 QUEUE_INDEX (insn) = QUEUE_READY;
1903 if (INSN_EXACT_TICK (insn) != INVALID_TICK
1904 && INSN_EXACT_TICK (insn) < clock_var)
1906 must_backtrack = true;
1910 /* Remove the element with the highest priority from the ready list and
1911 return it. */
1913 HAIFA_INLINE static rtx
1914 ready_remove_first (struct ready_list *ready)
1916 rtx t;
1918 gcc_assert (ready->n_ready);
1919 t = ready->vec[ready->first--];
1920 ready->n_ready--;
1921 if (DEBUG_INSN_P (t))
1922 ready->n_debug--;
1923 /* If the queue becomes empty, reset it. */
1924 if (ready->n_ready == 0)
1925 ready->first = ready->veclen - 1;
1927 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1928 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1930 return t;
1933 /* The following code implements multi-pass scheduling for the first
1934 cycle. In other words, we will try to choose ready insn which
1935 permits to start maximum number of insns on the same cycle. */
1937 /* Return a pointer to the element INDEX from the ready. INDEX for
1938 insn with the highest priority is 0, and the lowest priority has
1939 N_READY - 1. */
1942 ready_element (struct ready_list *ready, int index)
1944 gcc_assert (ready->n_ready && index < ready->n_ready);
1946 return ready->vec[ready->first - index];
1949 /* Remove the element INDEX from the ready list and return it. INDEX
1950 for insn with the highest priority is 0, and the lowest priority
1951 has N_READY - 1. */
1953 HAIFA_INLINE static rtx
1954 ready_remove (struct ready_list *ready, int index)
1956 rtx t;
1957 int i;
1959 if (index == 0)
1960 return ready_remove_first (ready);
1961 gcc_assert (ready->n_ready && index < ready->n_ready);
1962 t = ready->vec[ready->first - index];
1963 ready->n_ready--;
1964 if (DEBUG_INSN_P (t))
1965 ready->n_debug--;
1966 for (i = index; i < ready->n_ready; i++)
1967 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1968 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1969 return t;
1972 /* Remove INSN from the ready list. */
1973 static void
1974 ready_remove_insn (rtx insn)
1976 int i;
1978 for (i = 0; i < readyp->n_ready; i++)
1979 if (ready_element (readyp, i) == insn)
1981 ready_remove (readyp, i);
1982 return;
1984 gcc_unreachable ();
1987 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1988 macro. */
1990 void
1991 ready_sort (struct ready_list *ready)
1993 int i;
1994 rtx *first = ready_lastpos (ready);
1996 if (sched_pressure_p)
1998 for (i = 0; i < ready->n_ready; i++)
1999 if (!DEBUG_INSN_P (first[i]))
2000 setup_insn_reg_pressure_info (first[i]);
2002 SCHED_SORT (first, ready->n_ready);
2005 /* PREV is an insn that is ready to execute. Adjust its priority if that
2006 will help shorten or lengthen register lifetimes as appropriate. Also
2007 provide a hook for the target to tweak itself. */
2009 HAIFA_INLINE static void
2010 adjust_priority (rtx prev)
2012 /* ??? There used to be code here to try and estimate how an insn
2013 affected register lifetimes, but it did it by looking at REG_DEAD
2014 notes, which we removed in schedule_region. Nor did it try to
2015 take into account register pressure or anything useful like that.
2017 Revisit when we have a machine model to work with and not before. */
2019 if (targetm.sched.adjust_priority)
2020 INSN_PRIORITY (prev) =
2021 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
2024 /* Advance DFA state STATE on one cycle. */
2025 void
2026 advance_state (state_t state)
2028 if (targetm.sched.dfa_pre_advance_cycle)
2029 targetm.sched.dfa_pre_advance_cycle ();
2031 if (targetm.sched.dfa_pre_cycle_insn)
2032 state_transition (state,
2033 targetm.sched.dfa_pre_cycle_insn ());
2035 state_transition (state, NULL);
2037 if (targetm.sched.dfa_post_cycle_insn)
2038 state_transition (state,
2039 targetm.sched.dfa_post_cycle_insn ());
2041 if (targetm.sched.dfa_post_advance_cycle)
2042 targetm.sched.dfa_post_advance_cycle ();
2045 /* Advance time on one cycle. */
2046 HAIFA_INLINE static void
2047 advance_one_cycle (void)
2049 advance_state (curr_state);
2050 if (sched_verbose >= 6)
2051 fprintf (sched_dump, ";;\tAdvanced a state.\n");
2054 /* Update register pressure after scheduling INSN. */
2055 static void
2056 update_register_pressure (rtx insn)
2058 struct reg_use_data *use;
2059 struct reg_set_data *set;
2061 gcc_checking_assert (!DEBUG_INSN_P (insn));
2063 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2064 if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
2065 mark_regno_birth_or_death (use->regno, false);
2066 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
2067 mark_regno_birth_or_death (set->regno, true);
2070 /* Set up or update (if UPDATE_P) max register pressure (see its
2071 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
2072 after insn AFTER. */
2073 static void
2074 setup_insn_max_reg_pressure (rtx after, bool update_p)
2076 int i, p;
2077 bool eq_p;
2078 rtx insn;
2079 static int max_reg_pressure[N_REG_CLASSES];
2081 save_reg_pressure ();
2082 for (i = 0; i < ira_pressure_classes_num; i++)
2083 max_reg_pressure[ira_pressure_classes[i]]
2084 = curr_reg_pressure[ira_pressure_classes[i]];
2085 for (insn = NEXT_INSN (after);
2086 insn != NULL_RTX && ! BARRIER_P (insn)
2087 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
2088 insn = NEXT_INSN (insn))
2089 if (NONDEBUG_INSN_P (insn))
2091 eq_p = true;
2092 for (i = 0; i < ira_pressure_classes_num; i++)
2094 p = max_reg_pressure[ira_pressure_classes[i]];
2095 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
2097 eq_p = false;
2098 INSN_MAX_REG_PRESSURE (insn)[i]
2099 = max_reg_pressure[ira_pressure_classes[i]];
2102 if (update_p && eq_p)
2103 break;
2104 update_register_pressure (insn);
2105 for (i = 0; i < ira_pressure_classes_num; i++)
2106 if (max_reg_pressure[ira_pressure_classes[i]]
2107 < curr_reg_pressure[ira_pressure_classes[i]])
2108 max_reg_pressure[ira_pressure_classes[i]]
2109 = curr_reg_pressure[ira_pressure_classes[i]];
2111 restore_reg_pressure ();
2114 /* Update the current register pressure after scheduling INSN. Update
2115 also max register pressure for unscheduled insns of the current
2116 BB. */
2117 static void
2118 update_reg_and_insn_max_reg_pressure (rtx insn)
2120 int i;
2121 int before[N_REG_CLASSES];
2123 for (i = 0; i < ira_pressure_classes_num; i++)
2124 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
2125 update_register_pressure (insn);
2126 for (i = 0; i < ira_pressure_classes_num; i++)
2127 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
2128 break;
2129 if (i < ira_pressure_classes_num)
2130 setup_insn_max_reg_pressure (insn, true);
2133 /* Set up register pressure at the beginning of basic block BB whose
2134 insns starting after insn AFTER. Set up also max register pressure
2135 for all insns of the basic block. */
2136 void
2137 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
2139 gcc_assert (sched_pressure_p);
2140 initiate_bb_reg_pressure_info (bb);
2141 setup_insn_max_reg_pressure (after, false);
2144 /* If doing predication while scheduling, verify whether INSN, which
2145 has just been scheduled, clobbers the conditions of any
2146 instructions that must be predicated in order to break their
2147 dependencies. If so, remove them from the queues so that they will
2148 only be scheduled once their control dependency is resolved. */
2150 static void
2151 check_clobbered_conditions (rtx insn)
2153 HARD_REG_SET t;
2154 int i;
2156 if ((current_sched_info->flags & DO_PREDICATION) == 0)
2157 return;
2159 find_all_hard_reg_sets (insn, &t);
2161 restart:
2162 for (i = 0; i < ready.n_ready; i++)
2164 rtx x = ready_element (&ready, i);
2165 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
2167 ready_remove_insn (x);
2168 goto restart;
2171 for (i = 0; i <= max_insn_queue_index; i++)
2173 rtx link;
2174 int q = NEXT_Q_AFTER (q_ptr, i);
2176 restart_queue:
2177 for (link = insn_queue[q]; link; link = XEXP (link, 1))
2179 rtx x = XEXP (link, 0);
2180 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
2182 queue_remove (x);
2183 goto restart_queue;
2189 /* A structure that holds local state for the loop in schedule_block. */
2190 struct sched_block_state
2192 /* True if no real insns have been scheduled in the current cycle. */
2193 bool first_cycle_insn_p;
2194 /* True if a shadow insn has been scheduled in the current cycle, which
2195 means that no more normal insns can be issued. */
2196 bool shadows_only_p;
2197 /* True if we're winding down a modulo schedule, which means that we only
2198 issue insns with INSN_EXACT_TICK set. */
2199 bool modulo_epilogue;
2200 /* Initialized with the machine's issue rate every cycle, and updated
2201 by calls to the variable_issue hook. */
2202 int can_issue_more;
2205 /* INSN is the "currently executing insn". Launch each insn which was
2206 waiting on INSN. READY is the ready list which contains the insns
2207 that are ready to fire. CLOCK is the current cycle. The function
2208 returns necessary cycle advance after issuing the insn (it is not
2209 zero for insns in a schedule group). */
2211 static int
2212 schedule_insn (rtx insn)
2214 sd_iterator_def sd_it;
2215 dep_t dep;
2216 int i;
2217 int advance = 0;
2219 if (sched_verbose >= 1)
2221 struct reg_pressure_data *pressure_info;
2222 char buf[2048];
2224 print_insn (buf, insn, 0);
2225 buf[40] = 0;
2226 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
2228 if (recog_memoized (insn) < 0)
2229 fprintf (sched_dump, "nothing");
2230 else
2231 print_reservation (sched_dump, insn);
2232 pressure_info = INSN_REG_PRESSURE (insn);
2233 if (pressure_info != NULL)
2235 fputc (':', sched_dump);
2236 for (i = 0; i < ira_pressure_classes_num; i++)
2237 fprintf (sched_dump, "%s%+d(%d)",
2238 reg_class_names[ira_pressure_classes[i]],
2239 pressure_info[i].set_increase, pressure_info[i].change);
2241 fputc ('\n', sched_dump);
2244 if (sched_pressure_p && !DEBUG_INSN_P (insn))
2245 update_reg_and_insn_max_reg_pressure (insn);
2247 /* Scheduling instruction should have all its dependencies resolved and
2248 should have been removed from the ready list. */
2249 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
2251 /* Reset debug insns invalidated by moving this insn. */
2252 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
2253 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
2254 sd_iterator_cond (&sd_it, &dep);)
2256 rtx dbg = DEP_PRO (dep);
2257 struct reg_use_data *use, *next;
2259 if (DEP_STATUS (dep) & DEP_CANCELLED)
2261 sd_iterator_next (&sd_it);
2262 continue;
2265 gcc_assert (DEBUG_INSN_P (dbg));
2267 if (sched_verbose >= 6)
2268 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
2269 INSN_UID (dbg));
2271 /* ??? Rather than resetting the debug insn, we might be able
2272 to emit a debug temp before the just-scheduled insn, but
2273 this would involve checking that the expression at the
2274 point of the debug insn is equivalent to the expression
2275 before the just-scheduled insn. They might not be: the
2276 expression in the debug insn may depend on other insns not
2277 yet scheduled that set MEMs, REGs or even other debug
2278 insns. It's not clear that attempting to preserve debug
2279 information in these cases is worth the effort, given how
2280 uncommon these resets are and the likelihood that the debug
2281 temps introduced won't survive the schedule change. */
2282 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
2283 df_insn_rescan (dbg);
2285 /* Unknown location doesn't use any registers. */
2286 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
2288 struct reg_use_data *prev = use;
2290 /* Remove use from the cyclic next_regno_use chain first. */
2291 while (prev->next_regno_use != use)
2292 prev = prev->next_regno_use;
2293 prev->next_regno_use = use->next_regno_use;
2294 next = use->next_insn_use;
2295 free (use);
2297 INSN_REG_USE_LIST (dbg) = NULL;
2299 /* We delete rather than resolve these deps, otherwise we
2300 crash in sched_free_deps(), because forward deps are
2301 expected to be released before backward deps. */
2302 sd_delete_dep (sd_it);
2305 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
2306 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
2308 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
2309 if (INSN_TICK (insn) > clock_var)
2310 /* INSN has been prematurely moved from the queue to the ready list.
2311 This is possible only if following flag is set. */
2312 gcc_assert (flag_sched_stalled_insns);
2314 /* ??? Probably, if INSN is scheduled prematurely, we should leave
2315 INSN_TICK untouched. This is a machine-dependent issue, actually. */
2316 INSN_TICK (insn) = clock_var;
2318 check_clobbered_conditions (insn);
2320 /* Update dependent instructions. */
2321 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
2322 sd_iterator_cond (&sd_it, &dep);)
2324 rtx next = DEP_CON (dep);
2325 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
2327 /* Resolve the dependence between INSN and NEXT.
2328 sd_resolve_dep () moves current dep to another list thus
2329 advancing the iterator. */
2330 sd_resolve_dep (sd_it);
2332 if (cancelled)
2334 if (QUEUE_INDEX (next) != QUEUE_SCHEDULED)
2336 int tick = INSN_TICK (next);
2337 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2338 haifa_change_pattern (next, ORIG_PAT (next));
2339 INSN_TICK (next) = tick;
2340 if (sd_lists_empty_p (next, SD_LIST_BACK))
2341 TODO_SPEC (next) = 0;
2342 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
2343 TODO_SPEC (next) = HARD_DEP;
2345 continue;
2348 /* Don't bother trying to mark next as ready if insn is a debug
2349 insn. If insn is the last hard dependency, it will have
2350 already been discounted. */
2351 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
2352 continue;
2354 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
2356 int effective_cost;
2358 effective_cost = try_ready (next);
2360 if (effective_cost >= 0
2361 && SCHED_GROUP_P (next)
2362 && advance < effective_cost)
2363 advance = effective_cost;
2365 else
2366 /* Check always has only one forward dependence (to the first insn in
2367 the recovery block), therefore, this will be executed only once. */
2369 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
2370 fix_recovery_deps (RECOVERY_BLOCK (insn));
2374 /* Annotate the instruction with issue information -- TImode
2375 indicates that the instruction is expected not to be able
2376 to issue on the same cycle as the previous insn. A machine
2377 may use this information to decide how the instruction should
2378 be aligned. */
2379 if (issue_rate > 1
2380 && GET_CODE (PATTERN (insn)) != USE
2381 && GET_CODE (PATTERN (insn)) != CLOBBER
2382 && !DEBUG_INSN_P (insn))
2384 if (reload_completed)
2385 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
2386 last_clock_var = clock_var;
2389 return advance;
2392 /* Functions for handling of notes. */
2394 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
2395 void
2396 concat_note_lists (rtx from_end, rtx *to_endp)
2398 rtx from_start;
2400 /* It's easy when have nothing to concat. */
2401 if (from_end == NULL)
2402 return;
2404 /* It's also easy when destination is empty. */
2405 if (*to_endp == NULL)
2407 *to_endp = from_end;
2408 return;
2411 from_start = from_end;
2412 while (PREV_INSN (from_start) != NULL)
2413 from_start = PREV_INSN (from_start);
2415 PREV_INSN (from_start) = *to_endp;
2416 NEXT_INSN (*to_endp) = from_start;
2417 *to_endp = from_end;
2420 /* Delete notes between HEAD and TAIL and put them in the chain
2421 of notes ended by NOTE_LIST. */
2422 void
2423 remove_notes (rtx head, rtx tail)
2425 rtx next_tail, insn, next;
2427 note_list = 0;
2428 if (head == tail && !INSN_P (head))
2429 return;
2431 next_tail = NEXT_INSN (tail);
2432 for (insn = head; insn != next_tail; insn = next)
2434 next = NEXT_INSN (insn);
2435 if (!NOTE_P (insn))
2436 continue;
2438 switch (NOTE_KIND (insn))
2440 case NOTE_INSN_BASIC_BLOCK:
2441 continue;
2443 case NOTE_INSN_EPILOGUE_BEG:
2444 if (insn != tail)
2446 remove_insn (insn);
2447 add_reg_note (next, REG_SAVE_NOTE,
2448 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
2449 break;
2451 /* FALLTHRU */
2453 default:
2454 remove_insn (insn);
2456 /* Add the note to list that ends at NOTE_LIST. */
2457 PREV_INSN (insn) = note_list;
2458 NEXT_INSN (insn) = NULL_RTX;
2459 if (note_list)
2460 NEXT_INSN (note_list) = insn;
2461 note_list = insn;
2462 break;
2465 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
2469 /* A structure to record enough data to allow us to backtrack the scheduler to
2470 a previous state. */
2471 struct haifa_saved_data
2473 /* Next entry on the list. */
2474 struct haifa_saved_data *next;
2476 /* Backtracking is associated with scheduling insns that have delay slots.
2477 DELAY_PAIR points to the structure that contains the insns involved, and
2478 the number of cycles between them. */
2479 struct delay_pair *delay_pair;
2481 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
2482 void *fe_saved_data;
2483 /* Data used by the backend. */
2484 void *be_saved_data;
2486 /* Copies of global state. */
2487 int clock_var, last_clock_var;
2488 struct ready_list ready;
2489 state_t curr_state;
2491 rtx last_scheduled_insn;
2492 rtx last_nondebug_scheduled_insn;
2493 int cycle_issued_insns;
2495 /* Copies of state used in the inner loop of schedule_block. */
2496 struct sched_block_state sched_block;
2498 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
2499 to 0 when restoring. */
2500 int q_size;
2501 rtx *insn_queue;
2504 /* A record, in reverse order, of all scheduled insns which have delay slots
2505 and may require backtracking. */
2506 static struct haifa_saved_data *backtrack_queue;
2508 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
2509 to SET_P. */
2510 static void
2511 mark_backtrack_feeds (rtx insn, int set_p)
2513 sd_iterator_def sd_it;
2514 dep_t dep;
2515 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
2517 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
2521 /* Save the current scheduler state so that we can backtrack to it
2522 later if necessary. PAIR gives the insns that make it necessary to
2523 save this point. SCHED_BLOCK is the local state of schedule_block
2524 that need to be saved. */
2525 static void
2526 save_backtrack_point (struct delay_pair *pair,
2527 struct sched_block_state sched_block)
2529 int i;
2530 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
2532 save->curr_state = xmalloc (dfa_state_size);
2533 memcpy (save->curr_state, curr_state, dfa_state_size);
2535 save->ready.first = ready.first;
2536 save->ready.n_ready = ready.n_ready;
2537 save->ready.n_debug = ready.n_debug;
2538 save->ready.veclen = ready.veclen;
2539 save->ready.vec = XNEWVEC (rtx, ready.veclen);
2540 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
2542 save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
2543 save->q_size = q_size;
2544 for (i = 0; i <= max_insn_queue_index; i++)
2546 int q = NEXT_Q_AFTER (q_ptr, i);
2547 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
2550 save->clock_var = clock_var;
2551 save->last_clock_var = last_clock_var;
2552 save->cycle_issued_insns = cycle_issued_insns;
2553 save->last_scheduled_insn = last_scheduled_insn;
2554 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
2556 save->sched_block = sched_block;
2558 if (current_sched_info->save_state)
2559 save->fe_saved_data = (*current_sched_info->save_state) ();
2561 if (targetm.sched.alloc_sched_context)
2563 save->be_saved_data = targetm.sched.alloc_sched_context ();
2564 targetm.sched.init_sched_context (save->be_saved_data, false);
2566 else
2567 save->be_saved_data = NULL;
2569 save->delay_pair = pair;
2571 save->next = backtrack_queue;
2572 backtrack_queue = save;
2574 while (pair)
2576 mark_backtrack_feeds (pair->i2, 1);
2577 INSN_TICK (pair->i2) = INVALID_TICK;
2578 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
2579 SHADOW_P (pair->i2) = pair->stages == 0;
2580 pair = pair->next_same_i1;
2584 /* Walk the ready list and all queues. If any insns have unresolved backwards
2585 dependencies, these must be cancelled deps, broken by predication. Set or
2586 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
2588 static void
2589 toggle_cancelled_flags (bool set)
2591 int i;
2592 sd_iterator_def sd_it;
2593 dep_t dep;
2595 if (ready.n_ready > 0)
2597 rtx *first = ready_lastpos (&ready);
2598 for (i = 0; i < ready.n_ready; i++)
2599 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
2600 if (!DEBUG_INSN_P (DEP_PRO (dep)))
2602 if (set)
2603 DEP_STATUS (dep) |= DEP_CANCELLED;
2604 else
2605 DEP_STATUS (dep) &= ~DEP_CANCELLED;
2608 for (i = 0; i <= max_insn_queue_index; i++)
2610 int q = NEXT_Q_AFTER (q_ptr, i);
2611 rtx link;
2612 for (link = insn_queue[q]; link; link = XEXP (link, 1))
2614 rtx insn = XEXP (link, 0);
2615 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
2616 if (!DEBUG_INSN_P (DEP_PRO (dep)))
2618 if (set)
2619 DEP_STATUS (dep) |= DEP_CANCELLED;
2620 else
2621 DEP_STATUS (dep) &= ~DEP_CANCELLED;
2627 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
2628 Restore their dependencies to an unresolved state, and mark them as
2629 queued nowhere. */
2631 static void
2632 unschedule_insns_until (rtx insn)
2634 VEC (rtx, heap) *recompute_vec;
2636 recompute_vec = VEC_alloc (rtx, heap, 0);
2638 /* Make two passes over the insns to be unscheduled. First, we clear out
2639 dependencies and other trivial bookkeeping. */
2640 for (;;)
2642 rtx last;
2643 sd_iterator_def sd_it;
2644 dep_t dep;
2646 last = VEC_pop (rtx, scheduled_insns);
2648 /* This will be changed by restore_backtrack_point if the insn is in
2649 any queue. */
2650 QUEUE_INDEX (last) = QUEUE_NOWHERE;
2651 if (last != insn)
2652 INSN_TICK (last) = INVALID_TICK;
2654 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
2655 modulo_insns_scheduled--;
2657 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
2658 sd_iterator_cond (&sd_it, &dep);)
2660 rtx con = DEP_CON (dep);
2661 sd_unresolve_dep (sd_it);
2662 if (!MUST_RECOMPUTE_SPEC_P (con))
2664 MUST_RECOMPUTE_SPEC_P (con) = 1;
2665 VEC_safe_push (rtx, heap, recompute_vec, con);
2669 if (last == insn)
2670 break;
2673 /* A second pass, to update ready and speculation status for insns
2674 depending on the unscheduled ones. The first pass must have
2675 popped the scheduled_insns vector up to the point where we
2676 restart scheduling, as recompute_todo_spec requires it to be
2677 up-to-date. */
2678 while (!VEC_empty (rtx, recompute_vec))
2680 rtx con;
2682 con = VEC_pop (rtx, recompute_vec);
2683 MUST_RECOMPUTE_SPEC_P (con) = 0;
2684 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
2686 TODO_SPEC (con) = HARD_DEP;
2687 INSN_TICK (con) = INVALID_TICK;
2688 if (PREDICATED_PAT (con) != NULL_RTX)
2689 haifa_change_pattern (con, ORIG_PAT (con));
2691 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
2692 TODO_SPEC (con) = recompute_todo_spec (con);
2694 VEC_free (rtx, heap, recompute_vec);
2697 /* Restore scheduler state from the topmost entry on the backtracking queue.
2698 PSCHED_BLOCK_P points to the local data of schedule_block that we must
2699 overwrite with the saved data.
2700 The caller must already have called unschedule_insns_until. */
2702 static void
2703 restore_last_backtrack_point (struct sched_block_state *psched_block)
2705 rtx link;
2706 int i;
2707 struct haifa_saved_data *save = backtrack_queue;
2709 backtrack_queue = save->next;
2711 if (current_sched_info->restore_state)
2712 (*current_sched_info->restore_state) (save->fe_saved_data);
2714 if (targetm.sched.alloc_sched_context)
2716 targetm.sched.set_sched_context (save->be_saved_data);
2717 targetm.sched.free_sched_context (save->be_saved_data);
2720 /* Clear the QUEUE_INDEX of everything in the ready list or one
2721 of the queues. */
2722 if (ready.n_ready > 0)
2724 rtx *first = ready_lastpos (&ready);
2725 for (i = 0; i < ready.n_ready; i++)
2727 rtx insn = first[i];
2728 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2729 INSN_TICK (insn) = INVALID_TICK;
2732 for (i = 0; i <= max_insn_queue_index; i++)
2734 int q = NEXT_Q_AFTER (q_ptr, i);
2736 for (link = insn_queue[q]; link; link = XEXP (link, 1))
2738 rtx x = XEXP (link, 0);
2739 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2740 INSN_TICK (x) = INVALID_TICK;
2742 free_INSN_LIST_list (&insn_queue[q]);
2745 free (ready.vec);
2746 ready = save->ready;
2748 if (ready.n_ready > 0)
2750 rtx *first = ready_lastpos (&ready);
2751 for (i = 0; i < ready.n_ready; i++)
2753 rtx insn = first[i];
2754 QUEUE_INDEX (insn) = QUEUE_READY;
2755 TODO_SPEC (insn) = recompute_todo_spec (insn);
2756 INSN_TICK (insn) = save->clock_var;
2760 q_ptr = 0;
2761 q_size = save->q_size;
2762 for (i = 0; i <= max_insn_queue_index; i++)
2764 int q = NEXT_Q_AFTER (q_ptr, i);
2766 insn_queue[q] = save->insn_queue[q];
2768 for (link = insn_queue[q]; link; link = XEXP (link, 1))
2770 rtx x = XEXP (link, 0);
2771 QUEUE_INDEX (x) = i;
2772 TODO_SPEC (x) = recompute_todo_spec (x);
2773 INSN_TICK (x) = save->clock_var + i;
2776 free (save->insn_queue);
2778 toggle_cancelled_flags (true);
2780 clock_var = save->clock_var;
2781 last_clock_var = save->last_clock_var;
2782 cycle_issued_insns = save->cycle_issued_insns;
2783 last_scheduled_insn = save->last_scheduled_insn;
2784 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
2786 *psched_block = save->sched_block;
2788 memcpy (curr_state, save->curr_state, dfa_state_size);
2789 free (save->curr_state);
2791 mark_backtrack_feeds (save->delay_pair->i2, 0);
2793 free (save);
2795 for (save = backtrack_queue; save; save = save->next)
2797 mark_backtrack_feeds (save->delay_pair->i2, 1);
2801 /* Discard all data associated with the topmost entry in the backtrack
2802 queue. If RESET_TICK is false, we just want to free the data. If true,
2803 we are doing this because we discovered a reason to backtrack. In the
2804 latter case, also reset the INSN_TICK for the shadow insn. */
2805 static void
2806 free_topmost_backtrack_point (bool reset_tick)
2808 struct haifa_saved_data *save = backtrack_queue;
2809 int i;
2811 backtrack_queue = save->next;
2813 if (reset_tick)
2815 struct delay_pair *pair = save->delay_pair;
2816 while (pair)
2818 INSN_TICK (pair->i2) = INVALID_TICK;
2819 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
2820 pair = pair->next_same_i1;
2823 if (targetm.sched.free_sched_context)
2824 targetm.sched.free_sched_context (save->be_saved_data);
2825 if (current_sched_info->restore_state)
2826 free (save->fe_saved_data);
2827 for (i = 0; i <= max_insn_queue_index; i++)
2828 free_INSN_LIST_list (&save->insn_queue[i]);
2829 free (save->insn_queue);
2830 free (save->curr_state);
2831 free (save->ready.vec);
2832 free (save);
2835 /* Free the entire backtrack queue. */
2836 static void
2837 free_backtrack_queue (void)
2839 while (backtrack_queue)
2840 free_topmost_backtrack_point (false);
2843 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
2844 instructions we've previously encountered, a set bit prevents
2845 recursion. BUDGET is a limit on how far ahead we look, it is
2846 reduced on recursive calls. Return true if we produced a good
2847 estimate, or false if we exceeded the budget. */
2848 static bool
2849 estimate_insn_tick (bitmap processed, rtx insn, int budget)
2851 sd_iterator_def sd_it;
2852 dep_t dep;
2853 int earliest = INSN_TICK (insn);
2855 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
2857 rtx pro = DEP_PRO (dep);
2858 int t;
2860 if (DEP_STATUS (dep) & DEP_CANCELLED)
2861 continue;
2863 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
2864 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
2865 else
2867 int cost = dep_cost (dep);
2868 if (cost >= budget)
2869 return false;
2870 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
2872 if (!estimate_insn_tick (processed, pro, budget - cost))
2873 return false;
2875 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
2876 t = INSN_TICK_ESTIMATE (pro) + cost;
2877 if (earliest == INVALID_TICK || t > earliest)
2878 earliest = t;
2881 bitmap_set_bit (processed, INSN_LUID (insn));
2882 INSN_TICK_ESTIMATE (insn) = earliest;
2883 return true;
2886 /* Examine the pair of insns in P, and estimate (optimistically, assuming
2887 infinite resources) the cycle in which the delayed shadow can be issued.
2888 Return the number of cycles that must pass before the real insn can be
2889 issued in order to meet this constraint. */
2890 static int
2891 estimate_shadow_tick (struct delay_pair *p)
2893 bitmap_head processed;
2894 int t;
2895 bool cutoff;
2896 bitmap_initialize (&processed, 0);
2898 cutoff = !estimate_insn_tick (&processed, p->i2,
2899 max_insn_queue_index + pair_delay (p));
2900 bitmap_clear (&processed);
2901 if (cutoff)
2902 return max_insn_queue_index;
2903 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
2904 if (t > 0)
2905 return t;
2906 return 0;
2909 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
2910 recursively resolve all its forward dependencies. */
2911 static void
2912 resolve_dependencies (rtx insn)
2914 sd_iterator_def sd_it;
2915 dep_t dep;
2917 /* Don't use sd_lists_empty_p; it ignores debug insns. */
2918 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
2919 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
2920 return;
2922 if (sched_verbose >= 4)
2923 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
2925 if (QUEUE_INDEX (insn) >= 0)
2926 queue_remove (insn);
2928 VEC_safe_push (rtx, heap, scheduled_insns, insn);
2930 /* Update dependent instructions. */
2931 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
2932 sd_iterator_cond (&sd_it, &dep);)
2934 rtx next = DEP_CON (dep);
2936 if (sched_verbose >= 4)
2937 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
2938 INSN_UID (next));
2940 /* Resolve the dependence between INSN and NEXT.
2941 sd_resolve_dep () moves current dep to another list thus
2942 advancing the iterator. */
2943 sd_resolve_dep (sd_it);
2945 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
2947 resolve_dependencies (next);
2949 else
2950 /* Check always has only one forward dependence (to the first insn in
2951 the recovery block), therefore, this will be executed only once. */
2953 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
2959 /* Return the head and tail pointers of ebb starting at BEG and ending
2960 at END. */
2961 void
2962 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
2964 rtx beg_head = BB_HEAD (beg);
2965 rtx beg_tail = BB_END (beg);
2966 rtx end_head = BB_HEAD (end);
2967 rtx end_tail = BB_END (end);
2969 /* Don't include any notes or labels at the beginning of the BEG
2970 basic block, or notes at the end of the END basic blocks. */
2972 if (LABEL_P (beg_head))
2973 beg_head = NEXT_INSN (beg_head);
2975 while (beg_head != beg_tail)
2976 if (NOTE_P (beg_head))
2977 beg_head = NEXT_INSN (beg_head);
2978 else if (DEBUG_INSN_P (beg_head))
2980 rtx note, next;
2982 for (note = NEXT_INSN (beg_head);
2983 note != beg_tail;
2984 note = next)
2986 next = NEXT_INSN (note);
2987 if (NOTE_P (note))
2989 if (sched_verbose >= 9)
2990 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
2992 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
2994 if (BLOCK_FOR_INSN (note) != beg)
2995 df_insn_change_bb (note, beg);
2997 else if (!DEBUG_INSN_P (note))
2998 break;
3001 break;
3003 else
3004 break;
3006 *headp = beg_head;
3008 if (beg == end)
3009 end_head = beg_head;
3010 else if (LABEL_P (end_head))
3011 end_head = NEXT_INSN (end_head);
3013 while (end_head != end_tail)
3014 if (NOTE_P (end_tail))
3015 end_tail = PREV_INSN (end_tail);
3016 else if (DEBUG_INSN_P (end_tail))
3018 rtx note, prev;
3020 for (note = PREV_INSN (end_tail);
3021 note != end_head;
3022 note = prev)
3024 prev = PREV_INSN (note);
3025 if (NOTE_P (note))
3027 if (sched_verbose >= 9)
3028 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
3030 reorder_insns_nobb (note, note, end_tail);
3032 if (end_tail == BB_END (end))
3033 BB_END (end) = note;
3035 if (BLOCK_FOR_INSN (note) != end)
3036 df_insn_change_bb (note, end);
3038 else if (!DEBUG_INSN_P (note))
3039 break;
3042 break;
3044 else
3045 break;
3047 *tailp = end_tail;
3050 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
3053 no_real_insns_p (const_rtx head, const_rtx tail)
3055 while (head != NEXT_INSN (tail))
3057 if (!NOTE_P (head) && !LABEL_P (head))
3058 return 0;
3059 head = NEXT_INSN (head);
3061 return 1;
3064 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
3065 previously found among the insns. Insert them just before HEAD. */
3067 restore_other_notes (rtx head, basic_block head_bb)
3069 if (note_list != 0)
3071 rtx note_head = note_list;
3073 if (head)
3074 head_bb = BLOCK_FOR_INSN (head);
3075 else
3076 head = NEXT_INSN (bb_note (head_bb));
3078 while (PREV_INSN (note_head))
3080 set_block_for_insn (note_head, head_bb);
3081 note_head = PREV_INSN (note_head);
3083 /* In the above cycle we've missed this note. */
3084 set_block_for_insn (note_head, head_bb);
3086 PREV_INSN (note_head) = PREV_INSN (head);
3087 NEXT_INSN (PREV_INSN (head)) = note_head;
3088 PREV_INSN (head) = note_list;
3089 NEXT_INSN (note_list) = head;
3091 if (BLOCK_FOR_INSN (head) != head_bb)
3092 BB_END (head_bb) = note_list;
3094 head = note_head;
3097 return head;
3100 /* Move insns that became ready to fire from queue to ready list. */
3102 static void
3103 queue_to_ready (struct ready_list *ready)
3105 rtx insn;
3106 rtx link;
3107 rtx skip_insn;
3109 q_ptr = NEXT_Q (q_ptr);
3111 if (dbg_cnt (sched_insn) == false)
3113 /* If debug counter is activated do not requeue the first
3114 nonscheduled insn. */
3115 skip_insn = nonscheduled_insns_begin;
3118 skip_insn = next_nonnote_nondebug_insn (skip_insn);
3120 while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
3122 else
3123 skip_insn = NULL_RTX;
3125 /* Add all pending insns that can be scheduled without stalls to the
3126 ready list. */
3127 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
3129 insn = XEXP (link, 0);
3130 q_size -= 1;
3132 if (sched_verbose >= 2)
3133 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
3134 (*current_sched_info->print_insn) (insn, 0));
3136 /* If the ready list is full, delay the insn for 1 cycle.
3137 See the comment in schedule_block for the rationale. */
3138 if (!reload_completed
3139 && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
3140 && !SCHED_GROUP_P (insn)
3141 && insn != skip_insn)
3142 queue_insn (insn, 1, "ready full");
3143 else
3145 ready_add (ready, insn, false);
3146 if (sched_verbose >= 2)
3147 fprintf (sched_dump, "moving to ready without stalls\n");
3150 free_INSN_LIST_list (&insn_queue[q_ptr]);
3152 /* If there are no ready insns, stall until one is ready and add all
3153 of the pending insns at that point to the ready list. */
3154 if (ready->n_ready == 0)
3156 int stalls;
3158 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
3160 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
3162 for (; link; link = XEXP (link, 1))
3164 insn = XEXP (link, 0);
3165 q_size -= 1;
3167 if (sched_verbose >= 2)
3168 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
3169 (*current_sched_info->print_insn) (insn, 0));
3171 ready_add (ready, insn, false);
3172 if (sched_verbose >= 2)
3173 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
3175 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
3177 advance_one_cycle ();
3179 break;
3182 advance_one_cycle ();
3185 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
3186 clock_var += stalls;
3190 /* Used by early_queue_to_ready. Determines whether it is "ok" to
3191 prematurely move INSN from the queue to the ready list. Currently,
3192 if a target defines the hook 'is_costly_dependence', this function
3193 uses the hook to check whether there exist any dependences which are
3194 considered costly by the target, between INSN and other insns that
3195 have already been scheduled. Dependences are checked up to Y cycles
3196 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
3197 controlling this value.
3198 (Other considerations could be taken into account instead (or in
3199 addition) depending on user flags and target hooks. */
3201 static bool
3202 ok_for_early_queue_removal (rtx insn)
3204 if (targetm.sched.is_costly_dependence)
3206 rtx prev_insn;
3207 int n_cycles;
3208 int i = VEC_length (rtx, scheduled_insns);
3209 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
3211 while (i-- > 0)
3213 int cost;
3215 prev_insn = VEC_index (rtx, scheduled_insns, i);
3217 if (!NOTE_P (prev_insn))
3219 dep_t dep;
3221 dep = sd_find_dep_between (prev_insn, insn, true);
3223 if (dep != NULL)
3225 cost = dep_cost (dep);
3227 if (targetm.sched.is_costly_dependence (dep, cost,
3228 flag_sched_stalled_insns_dep - n_cycles))
3229 return false;
3233 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
3234 break;
3237 if (i == 0)
3238 break;
3242 return true;
3246 /* Remove insns from the queue, before they become "ready" with respect
3247 to FU latency considerations. */
3249 static int
3250 early_queue_to_ready (state_t state, struct ready_list *ready)
3252 rtx insn;
3253 rtx link;
3254 rtx next_link;
3255 rtx prev_link;
3256 bool move_to_ready;
3257 int cost;
3258 state_t temp_state = alloca (dfa_state_size);
3259 int stalls;
3260 int insns_removed = 0;
3263 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
3264 function:
3266 X == 0: There is no limit on how many queued insns can be removed
3267 prematurely. (flag_sched_stalled_insns = -1).
3269 X >= 1: Only X queued insns can be removed prematurely in each
3270 invocation. (flag_sched_stalled_insns = X).
3272 Otherwise: Early queue removal is disabled.
3273 (flag_sched_stalled_insns = 0)
3276 if (! flag_sched_stalled_insns)
3277 return 0;
3279 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
3281 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
3283 if (sched_verbose > 6)
3284 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
3286 prev_link = 0;
3287 while (link)
3289 next_link = XEXP (link, 1);
3290 insn = XEXP (link, 0);
3291 if (insn && sched_verbose > 6)
3292 print_rtl_single (sched_dump, insn);
3294 memcpy (temp_state, state, dfa_state_size);
3295 if (recog_memoized (insn) < 0)
3296 /* non-negative to indicate that it's not ready
3297 to avoid infinite Q->R->Q->R... */
3298 cost = 0;
3299 else
3300 cost = state_transition (temp_state, insn);
3302 if (sched_verbose >= 6)
3303 fprintf (sched_dump, "transition cost = %d\n", cost);
3305 move_to_ready = false;
3306 if (cost < 0)
3308 move_to_ready = ok_for_early_queue_removal (insn);
3309 if (move_to_ready == true)
3311 /* move from Q to R */
3312 q_size -= 1;
3313 ready_add (ready, insn, false);
3315 if (prev_link)
3316 XEXP (prev_link, 1) = next_link;
3317 else
3318 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
3320 free_INSN_LIST_node (link);
3322 if (sched_verbose >= 2)
3323 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
3324 (*current_sched_info->print_insn) (insn, 0));
3326 insns_removed++;
3327 if (insns_removed == flag_sched_stalled_insns)
3328 /* Remove no more than flag_sched_stalled_insns insns
3329 from Q at a time. */
3330 return insns_removed;
3334 if (move_to_ready == false)
3335 prev_link = link;
3337 link = next_link;
3338 } /* while link */
3339 } /* if link */
3341 } /* for stalls.. */
3343 return insns_removed;
3347 /* Print the ready list for debugging purposes. Callable from debugger. */
3349 static void
3350 debug_ready_list (struct ready_list *ready)
3352 rtx *p;
3353 int i;
3355 if (ready->n_ready == 0)
3357 fprintf (sched_dump, "\n");
3358 return;
3361 p = ready_lastpos (ready);
3362 for (i = 0; i < ready->n_ready; i++)
3364 fprintf (sched_dump, " %s:%d",
3365 (*current_sched_info->print_insn) (p[i], 0),
3366 INSN_LUID (p[i]));
3367 if (sched_pressure_p)
3368 fprintf (sched_dump, "(cost=%d",
3369 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
3370 if (INSN_TICK (p[i]) > clock_var)
3371 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
3372 if (sched_pressure_p)
3373 fprintf (sched_dump, ")");
3375 fprintf (sched_dump, "\n");
3378 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
3379 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
3380 replaces the epilogue note in the correct basic block. */
3381 void
3382 reemit_notes (rtx insn)
3384 rtx note, last = insn;
3386 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3388 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
3390 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
3392 last = emit_note_before (note_type, last);
3393 remove_note (insn, note);
3398 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
3399 static void
3400 move_insn (rtx insn, rtx last, rtx nt)
3402 if (PREV_INSN (insn) != last)
3404 basic_block bb;
3405 rtx note;
3406 int jump_p = 0;
3408 bb = BLOCK_FOR_INSN (insn);
3410 /* BB_HEAD is either LABEL or NOTE. */
3411 gcc_assert (BB_HEAD (bb) != insn);
3413 if (BB_END (bb) == insn)
3414 /* If this is last instruction in BB, move end marker one
3415 instruction up. */
3417 /* Jumps are always placed at the end of basic block. */
3418 jump_p = control_flow_insn_p (insn);
3420 gcc_assert (!jump_p
3421 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
3422 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
3423 || (common_sched_info->sched_pass_id
3424 == SCHED_EBB_PASS));
3426 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
3428 BB_END (bb) = PREV_INSN (insn);
3431 gcc_assert (BB_END (bb) != last);
3433 if (jump_p)
3434 /* We move the block note along with jump. */
3436 gcc_assert (nt);
3438 note = NEXT_INSN (insn);
3439 while (NOTE_NOT_BB_P (note) && note != nt)
3440 note = NEXT_INSN (note);
3442 if (note != nt
3443 && (LABEL_P (note)
3444 || BARRIER_P (note)))
3445 note = NEXT_INSN (note);
3447 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
3449 else
3450 note = insn;
3452 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
3453 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
3455 NEXT_INSN (note) = NEXT_INSN (last);
3456 PREV_INSN (NEXT_INSN (last)) = note;
3458 NEXT_INSN (last) = insn;
3459 PREV_INSN (insn) = last;
3461 bb = BLOCK_FOR_INSN (last);
3463 if (jump_p)
3465 fix_jump_move (insn);
3467 if (BLOCK_FOR_INSN (insn) != bb)
3468 move_block_after_check (insn);
3470 gcc_assert (BB_END (bb) == last);
3473 df_insn_change_bb (insn, bb);
3475 /* Update BB_END, if needed. */
3476 if (BB_END (bb) == last)
3477 BB_END (bb) = insn;
3480 SCHED_GROUP_P (insn) = 0;
3483 /* Return true if scheduling INSN will finish current clock cycle. */
3484 static bool
3485 insn_finishes_cycle_p (rtx insn)
3487 if (SCHED_GROUP_P (insn))
3488 /* After issuing INSN, rest of the sched_group will be forced to issue
3489 in order. Don't make any plans for the rest of cycle. */
3490 return true;
3492 /* Finishing the block will, apparently, finish the cycle. */
3493 if (current_sched_info->insn_finishes_block_p
3494 && current_sched_info->insn_finishes_block_p (insn))
3495 return true;
3497 return false;
3500 /* Define type for target data used in multipass scheduling. */
3501 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
3502 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
3503 #endif
3504 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
3506 /* The following structure describe an entry of the stack of choices. */
3507 struct choice_entry
3509 /* Ordinal number of the issued insn in the ready queue. */
3510 int index;
3511 /* The number of the rest insns whose issues we should try. */
3512 int rest;
3513 /* The number of issued essential insns. */
3514 int n;
3515 /* State after issuing the insn. */
3516 state_t state;
3517 /* Target-specific data. */
3518 first_cycle_multipass_data_t target_data;
3521 /* The following array is used to implement a stack of choices used in
3522 function max_issue. */
3523 static struct choice_entry *choice_stack;
3525 /* This holds the value of the target dfa_lookahead hook. */
3526 int dfa_lookahead;
3528 /* The following variable value is maximal number of tries of issuing
3529 insns for the first cycle multipass insn scheduling. We define
3530 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
3531 need this constraint if all real insns (with non-negative codes)
3532 had reservations because in this case the algorithm complexity is
3533 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
3534 might be incomplete and such insn might occur. For such
3535 descriptions, the complexity of algorithm (without the constraint)
3536 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
3537 static int max_lookahead_tries;
3539 /* The following value is value of hook
3540 `first_cycle_multipass_dfa_lookahead' at the last call of
3541 `max_issue'. */
3542 static int cached_first_cycle_multipass_dfa_lookahead = 0;
3544 /* The following value is value of `issue_rate' at the last call of
3545 `sched_init'. */
3546 static int cached_issue_rate = 0;
3548 /* The following function returns maximal (or close to maximal) number
3549 of insns which can be issued on the same cycle and one of which
3550 insns is insns with the best rank (the first insn in READY). To
3551 make this function tries different samples of ready insns. READY
3552 is current queue `ready'. Global array READY_TRY reflects what
3553 insns are already issued in this try. The function stops immediately,
3554 if it reached the such a solution, that all instruction can be issued.
3555 INDEX will contain index of the best insn in READY. The following
3556 function is used only for first cycle multipass scheduling.
3558 PRIVILEGED_N >= 0
3560 This function expects recognized insns only. All USEs,
3561 CLOBBERs, etc must be filtered elsewhere. */
3563 max_issue (struct ready_list *ready, int privileged_n, state_t state,
3564 bool first_cycle_insn_p, int *index)
3566 int n, i, all, n_ready, best, delay, tries_num;
3567 int more_issue;
3568 struct choice_entry *top;
3569 rtx insn;
3571 n_ready = ready->n_ready;
3572 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
3573 && privileged_n <= n_ready);
3575 /* Init MAX_LOOKAHEAD_TRIES. */
3576 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
3578 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
3579 max_lookahead_tries = 100;
3580 for (i = 0; i < issue_rate; i++)
3581 max_lookahead_tries *= dfa_lookahead;
3584 /* Init max_points. */
3585 more_issue = issue_rate - cycle_issued_insns;
3586 gcc_assert (more_issue >= 0);
3588 /* The number of the issued insns in the best solution. */
3589 best = 0;
3591 top = choice_stack;
3593 /* Set initial state of the search. */
3594 memcpy (top->state, state, dfa_state_size);
3595 top->rest = dfa_lookahead;
3596 top->n = 0;
3597 if (targetm.sched.first_cycle_multipass_begin)
3598 targetm.sched.first_cycle_multipass_begin (&top->target_data,
3599 ready_try, n_ready,
3600 first_cycle_insn_p);
3602 /* Count the number of the insns to search among. */
3603 for (all = i = 0; i < n_ready; i++)
3604 if (!ready_try [i])
3605 all++;
3607 /* I is the index of the insn to try next. */
3608 i = 0;
3609 tries_num = 0;
3610 for (;;)
3612 if (/* If we've reached a dead end or searched enough of what we have
3613 been asked... */
3614 top->rest == 0
3615 /* or have nothing else to try... */
3616 || i >= n_ready
3617 /* or should not issue more. */
3618 || top->n >= more_issue)
3620 /* ??? (... || i == n_ready). */
3621 gcc_assert (i <= n_ready);
3623 /* We should not issue more than issue_rate instructions. */
3624 gcc_assert (top->n <= more_issue);
3626 if (top == choice_stack)
3627 break;
3629 if (best < top - choice_stack)
3631 if (privileged_n)
3633 n = privileged_n;
3634 /* Try to find issued privileged insn. */
3635 while (n && !ready_try[--n])
3639 if (/* If all insns are equally good... */
3640 privileged_n == 0
3641 /* Or a privileged insn will be issued. */
3642 || ready_try[n])
3643 /* Then we have a solution. */
3645 best = top - choice_stack;
3646 /* This is the index of the insn issued first in this
3647 solution. */
3648 *index = choice_stack [1].index;
3649 if (top->n == more_issue || best == all)
3650 break;
3654 /* Set ready-list index to point to the last insn
3655 ('i++' below will advance it to the next insn). */
3656 i = top->index;
3658 /* Backtrack. */
3659 ready_try [i] = 0;
3661 if (targetm.sched.first_cycle_multipass_backtrack)
3662 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
3663 ready_try, n_ready);
3665 top--;
3666 memcpy (state, top->state, dfa_state_size);
3668 else if (!ready_try [i])
3670 tries_num++;
3671 if (tries_num > max_lookahead_tries)
3672 break;
3673 insn = ready_element (ready, i);
3674 delay = state_transition (state, insn);
3675 if (delay < 0)
3677 if (state_dead_lock_p (state)
3678 || insn_finishes_cycle_p (insn))
3679 /* We won't issue any more instructions in the next
3680 choice_state. */
3681 top->rest = 0;
3682 else
3683 top->rest--;
3685 n = top->n;
3686 if (memcmp (top->state, state, dfa_state_size) != 0)
3687 n++;
3689 /* Advance to the next choice_entry. */
3690 top++;
3691 /* Initialize it. */
3692 top->rest = dfa_lookahead;
3693 top->index = i;
3694 top->n = n;
3695 memcpy (top->state, state, dfa_state_size);
3696 ready_try [i] = 1;
3698 if (targetm.sched.first_cycle_multipass_issue)
3699 targetm.sched.first_cycle_multipass_issue (&top->target_data,
3700 ready_try, n_ready,
3701 insn,
3702 &((top - 1)
3703 ->target_data));
3705 i = -1;
3709 /* Increase ready-list index. */
3710 i++;
3713 if (targetm.sched.first_cycle_multipass_end)
3714 targetm.sched.first_cycle_multipass_end (best != 0
3715 ? &choice_stack[1].target_data
3716 : NULL);
3718 /* Restore the original state of the DFA. */
3719 memcpy (state, choice_stack->state, dfa_state_size);
3721 return best;
3724 /* The following function chooses insn from READY and modifies
3725 READY. The following function is used only for first
3726 cycle multipass scheduling.
3727 Return:
3728 -1 if cycle should be advanced,
3729 0 if INSN_PTR is set to point to the desirable insn,
3730 1 if choose_ready () should be restarted without advancing the cycle. */
3731 static int
3732 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
3733 rtx *insn_ptr)
3735 int lookahead;
3737 if (dbg_cnt (sched_insn) == false)
3739 rtx insn = nonscheduled_insns_begin;
3742 insn = next_nonnote_insn (insn);
3744 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
3746 if (QUEUE_INDEX (insn) == QUEUE_READY)
3747 /* INSN is in the ready_list. */
3749 nonscheduled_insns_begin = insn;
3750 ready_remove_insn (insn);
3751 *insn_ptr = insn;
3752 return 0;
3755 /* INSN is in the queue. Advance cycle to move it to the ready list. */
3756 return -1;
3759 lookahead = 0;
3761 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
3762 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
3763 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
3764 || DEBUG_INSN_P (ready_element (ready, 0)))
3766 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
3767 *insn_ptr = ready_remove_first_dispatch (ready);
3768 else
3769 *insn_ptr = ready_remove_first (ready);
3771 return 0;
3773 else
3775 /* Try to choose the better insn. */
3776 int index = 0, i, n;
3777 rtx insn;
3778 int try_data = 1, try_control = 1;
3779 ds_t ts;
3781 insn = ready_element (ready, 0);
3782 if (INSN_CODE (insn) < 0)
3784 *insn_ptr = ready_remove_first (ready);
3785 return 0;
3788 if (spec_info
3789 && spec_info->flags & (PREFER_NON_DATA_SPEC
3790 | PREFER_NON_CONTROL_SPEC))
3792 for (i = 0, n = ready->n_ready; i < n; i++)
3794 rtx x;
3795 ds_t s;
3797 x = ready_element (ready, i);
3798 s = TODO_SPEC (x);
3800 if (spec_info->flags & PREFER_NON_DATA_SPEC
3801 && !(s & DATA_SPEC))
3803 try_data = 0;
3804 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
3805 || !try_control)
3806 break;
3809 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
3810 && !(s & CONTROL_SPEC))
3812 try_control = 0;
3813 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
3814 break;
3819 ts = TODO_SPEC (insn);
3820 if ((ts & SPECULATIVE)
3821 && (((!try_data && (ts & DATA_SPEC))
3822 || (!try_control && (ts & CONTROL_SPEC)))
3823 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
3824 && !targetm.sched
3825 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
3826 /* Discard speculative instruction that stands first in the ready
3827 list. */
3829 change_queue_index (insn, 1);
3830 return 1;
3833 ready_try[0] = 0;
3835 for (i = 1; i < ready->n_ready; i++)
3837 insn = ready_element (ready, i);
3839 ready_try [i]
3840 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
3841 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
3844 /* Let the target filter the search space. */
3845 for (i = 1; i < ready->n_ready; i++)
3846 if (!ready_try[i])
3848 insn = ready_element (ready, i);
3850 /* If this insn is recognizable we should have already
3851 recognized it earlier.
3852 ??? Not very clear where this is supposed to be done.
3853 See dep_cost_1. */
3854 gcc_checking_assert (INSN_CODE (insn) >= 0
3855 || recog_memoized (insn) < 0);
3857 ready_try [i]
3858 = (/* INSN_CODE check can be omitted here as it is also done later
3859 in max_issue (). */
3860 INSN_CODE (insn) < 0
3861 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
3862 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
3863 (insn)));
3866 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
3868 *insn_ptr = ready_remove_first (ready);
3869 if (sched_verbose >= 4)
3870 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
3871 (*current_sched_info->print_insn) (*insn_ptr, 0));
3872 return 0;
3874 else
3876 if (sched_verbose >= 4)
3877 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
3878 (*current_sched_info->print_insn)
3879 (ready_element (ready, index), 0));
3881 *insn_ptr = ready_remove (ready, index);
3882 return 0;
3887 /* This function is called when we have successfully scheduled a
3888 block. It uses the schedule stored in the scheduled_insns vector
3889 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
3890 append the scheduled insns; TAIL is the insn after the scheduled
3891 block. TARGET_BB is the argument passed to schedule_block. */
3893 static void
3894 commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
3896 unsigned int i;
3897 rtx insn;
3899 last_scheduled_insn = prev_head;
3900 for (i = 0;
3901 VEC_iterate (rtx, scheduled_insns, i, insn);
3902 i++)
3904 if (control_flow_insn_p (last_scheduled_insn)
3905 || current_sched_info->advance_target_bb (*target_bb, insn))
3907 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
3909 if (sched_verbose)
3911 rtx x;
3913 x = next_real_insn (last_scheduled_insn);
3914 gcc_assert (x);
3915 dump_new_block_header (1, *target_bb, x, tail);
3918 last_scheduled_insn = bb_note (*target_bb);
3921 if (current_sched_info->begin_move_insn)
3922 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
3923 move_insn (insn, last_scheduled_insn,
3924 current_sched_info->next_tail);
3925 if (!DEBUG_INSN_P (insn))
3926 reemit_notes (insn);
3927 last_scheduled_insn = insn;
3930 VEC_truncate (rtx, scheduled_insns, 0);
3933 /* Examine all insns on the ready list and queue those which can't be
3934 issued in this cycle. TEMP_STATE is temporary scheduler state we
3935 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
3936 have been issued for the current cycle, which means it is valid to
3937 issue an asm statement.
3939 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
3940 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
3941 we only leave insns which have an INSN_EXACT_TICK. */
3943 static void
3944 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
3945 bool shadows_only_p, bool modulo_epilogue_p)
3947 int i;
3949 restart:
3950 for (i = 0; i < ready.n_ready; i++)
3952 rtx insn = ready_element (&ready, i);
3953 int cost = 0;
3954 const char *reason = "resource conflict";
3956 if (modulo_epilogue_p && !DEBUG_INSN_P (insn)
3957 && INSN_EXACT_TICK (insn) == INVALID_TICK)
3959 cost = max_insn_queue_index;
3960 reason = "not an epilogue insn";
3962 if (shadows_only_p && !DEBUG_INSN_P (insn) && !SHADOW_P (insn))
3964 cost = 1;
3965 reason = "not a shadow";
3967 else if (recog_memoized (insn) < 0)
3969 if (!first_cycle_insn_p
3970 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
3971 || asm_noperands (PATTERN (insn)) >= 0))
3972 cost = 1;
3973 reason = "asm";
3975 else if (sched_pressure_p)
3976 cost = 0;
3977 else
3979 int delay_cost = 0;
3981 if (delay_htab)
3983 struct delay_pair *delay_entry;
3984 delay_entry
3985 = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
3986 htab_hash_pointer (insn));
3987 while (delay_entry && delay_cost == 0)
3989 delay_cost = estimate_shadow_tick (delay_entry);
3990 if (delay_cost > max_insn_queue_index)
3991 delay_cost = max_insn_queue_index;
3992 delay_entry = delay_entry->next_same_i1;
3996 memcpy (temp_state, curr_state, dfa_state_size);
3997 cost = state_transition (temp_state, insn);
3998 if (cost < 0)
3999 cost = 0;
4000 else if (cost == 0)
4001 cost = 1;
4002 if (cost < delay_cost)
4004 cost = delay_cost;
4005 reason = "shadow tick";
4008 if (cost >= 1)
4010 ready_remove (&ready, i);
4011 queue_insn (insn, cost, reason);
4012 goto restart;
4017 /* Called when we detect that the schedule is impossible. We examine the
4018 backtrack queue to find the earliest insn that caused this condition. */
4020 static struct haifa_saved_data *
4021 verify_shadows (void)
4023 struct haifa_saved_data *save, *earliest_fail = NULL;
4024 for (save = backtrack_queue; save; save = save->next)
4026 int t;
4027 struct delay_pair *pair = save->delay_pair;
4028 rtx i1 = pair->i1;
4030 for (; pair; pair = pair->next_same_i1)
4032 rtx i2 = pair->i2;
4034 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
4035 continue;
4037 t = INSN_TICK (i1) + pair_delay (pair);
4038 if (t < clock_var)
4040 if (sched_verbose >= 2)
4041 fprintf (sched_dump,
4042 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
4043 ", not ready\n",
4044 INSN_UID (pair->i1), INSN_UID (pair->i2),
4045 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
4046 earliest_fail = save;
4047 break;
4049 if (QUEUE_INDEX (i2) >= 0)
4051 int queued_for = INSN_TICK (i2);
4053 if (t < queued_for)
4055 if (sched_verbose >= 2)
4056 fprintf (sched_dump,
4057 ";;\t\tfailed delay requirements for %d/%d"
4058 " (%d->%d), queued too late\n",
4059 INSN_UID (pair->i1), INSN_UID (pair->i2),
4060 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
4061 earliest_fail = save;
4062 break;
4068 return earliest_fail;
4071 /* Use forward list scheduling to rearrange insns of block pointed to by
4072 TARGET_BB, possibly bringing insns from subsequent blocks in the same
4073 region. */
4075 bool
4076 schedule_block (basic_block *target_bb)
4078 int i;
4079 bool success = modulo_ii == 0;
4080 struct sched_block_state ls;
4081 state_t temp_state = NULL; /* It is used for multipass scheduling. */
4082 int sort_p, advance, start_clock_var;
4084 /* Head/tail info for this block. */
4085 rtx prev_head = current_sched_info->prev_head;
4086 rtx next_tail = current_sched_info->next_tail;
4087 rtx head = NEXT_INSN (prev_head);
4088 rtx tail = PREV_INSN (next_tail);
4090 /* We used to have code to avoid getting parameters moved from hard
4091 argument registers into pseudos.
4093 However, it was removed when it proved to be of marginal benefit
4094 and caused problems because schedule_block and compute_forward_dependences
4095 had different notions of what the "head" insn was. */
4097 gcc_assert (head != tail || INSN_P (head));
4099 haifa_recovery_bb_recently_added_p = false;
4101 backtrack_queue = NULL;
4103 /* Debug info. */
4104 if (sched_verbose)
4105 dump_new_block_header (0, *target_bb, head, tail);
4107 state_reset (curr_state);
4109 /* Clear the ready list. */
4110 ready.first = ready.veclen - 1;
4111 ready.n_ready = 0;
4112 ready.n_debug = 0;
4114 /* It is used for first cycle multipass scheduling. */
4115 temp_state = alloca (dfa_state_size);
4117 if (targetm.sched.init)
4118 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
4120 /* We start inserting insns after PREV_HEAD. */
4121 last_scheduled_insn = nonscheduled_insns_begin = prev_head;
4122 last_nondebug_scheduled_insn = NULL_RTX;
4124 gcc_assert ((NOTE_P (last_scheduled_insn)
4125 || DEBUG_INSN_P (last_scheduled_insn))
4126 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
4128 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
4129 queue. */
4130 q_ptr = 0;
4131 q_size = 0;
4133 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
4134 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
4136 /* Start just before the beginning of time. */
4137 clock_var = -1;
4139 /* We need queue and ready lists and clock_var be initialized
4140 in try_ready () (which is called through init_ready_list ()). */
4141 (*current_sched_info->init_ready_list) ();
4143 /* The algorithm is O(n^2) in the number of ready insns at any given
4144 time in the worst case. Before reload we are more likely to have
4145 big lists so truncate them to a reasonable size. */
4146 if (!reload_completed
4147 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
4149 ready_sort (&ready);
4151 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
4152 If there are debug insns, we know they're first. */
4153 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
4154 if (!SCHED_GROUP_P (ready_element (&ready, i)))
4155 break;
4157 if (sched_verbose >= 2)
4159 fprintf (sched_dump,
4160 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
4161 fprintf (sched_dump,
4162 ";;\t\t before reload => truncated to %d insns\n", i);
4165 /* Delay all insns past it for 1 cycle. If debug counter is
4166 activated make an exception for the insn right after
4167 nonscheduled_insns_begin. */
4169 rtx skip_insn;
4171 if (dbg_cnt (sched_insn) == false)
4172 skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
4173 else
4174 skip_insn = NULL_RTX;
4176 while (i < ready.n_ready)
4178 rtx insn;
4180 insn = ready_remove (&ready, i);
4182 if (insn != skip_insn)
4183 queue_insn (insn, 1, "list truncated");
4185 if (skip_insn)
4186 ready_add (&ready, skip_insn, true);
4190 /* Now we can restore basic block notes and maintain precise cfg. */
4191 restore_bb_notes (*target_bb);
4193 last_clock_var = -1;
4195 advance = 0;
4197 gcc_assert (VEC_length (rtx, scheduled_insns) == 0);
4198 sort_p = TRUE;
4199 must_backtrack = false;
4200 modulo_insns_scheduled = 0;
4202 ls.modulo_epilogue = false;
4204 /* Loop until all the insns in BB are scheduled. */
4205 while ((*current_sched_info->schedule_more_p) ())
4209 start_clock_var = clock_var;
4211 clock_var++;
4213 advance_one_cycle ();
4215 /* Add to the ready list all pending insns that can be issued now.
4216 If there are no ready insns, increment clock until one
4217 is ready and add all pending insns at that point to the ready
4218 list. */
4219 queue_to_ready (&ready);
4221 gcc_assert (ready.n_ready);
4223 if (sched_verbose >= 2)
4225 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
4226 debug_ready_list (&ready);
4228 advance -= clock_var - start_clock_var;
4230 while (advance > 0);
4232 if (ls.modulo_epilogue)
4234 int stage = clock_var / modulo_ii;
4235 if (stage > modulo_last_stage * 2 + 2)
4237 if (sched_verbose >= 2)
4238 fprintf (sched_dump,
4239 ";;\t\tmodulo scheduled succeeded at II %d\n",
4240 modulo_ii);
4241 success = true;
4242 goto end_schedule;
4245 else if (modulo_ii > 0)
4247 int stage = clock_var / modulo_ii;
4248 if (stage > modulo_max_stages)
4250 if (sched_verbose >= 2)
4251 fprintf (sched_dump,
4252 ";;\t\tfailing schedule due to excessive stages\n");
4253 goto end_schedule;
4255 if (modulo_n_insns == modulo_insns_scheduled
4256 && stage > modulo_last_stage)
4258 if (sched_verbose >= 2)
4259 fprintf (sched_dump,
4260 ";;\t\tfound kernel after %d stages, II %d\n",
4261 stage, modulo_ii);
4262 ls.modulo_epilogue = true;
4266 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
4267 if (ready.n_ready == 0)
4268 continue;
4269 if (must_backtrack)
4270 goto do_backtrack;
4272 ls.first_cycle_insn_p = true;
4273 ls.shadows_only_p = false;
4274 cycle_issued_insns = 0;
4275 ls.can_issue_more = issue_rate;
4276 for (;;)
4278 rtx insn;
4279 int cost;
4280 bool asm_p;
4282 if (sort_p && ready.n_ready > 0)
4284 /* Sort the ready list based on priority. This must be
4285 done every iteration through the loop, as schedule_insn
4286 may have readied additional insns that will not be
4287 sorted correctly. */
4288 ready_sort (&ready);
4290 if (sched_verbose >= 2)
4292 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
4293 debug_ready_list (&ready);
4297 /* We don't want md sched reorder to even see debug isns, so put
4298 them out right away. */
4299 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
4300 && (*current_sched_info->schedule_more_p) ())
4302 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
4304 rtx insn = ready_remove_first (&ready);
4305 gcc_assert (DEBUG_INSN_P (insn));
4306 (*current_sched_info->begin_schedule_ready) (insn);
4307 VEC_safe_push (rtx, heap, scheduled_insns, insn);
4308 last_scheduled_insn = insn;
4309 advance = schedule_insn (insn);
4310 gcc_assert (advance == 0);
4311 if (ready.n_ready > 0)
4312 ready_sort (&ready);
4316 if (ls.first_cycle_insn_p && !ready.n_ready)
4317 break;
4319 resume_after_backtrack:
4320 /* Allow the target to reorder the list, typically for
4321 better instruction bundling. */
4322 if (sort_p
4323 && (ready.n_ready == 0
4324 || !SCHED_GROUP_P (ready_element (&ready, 0))))
4326 if (ls.first_cycle_insn_p && targetm.sched.reorder)
4327 ls.can_issue_more
4328 = targetm.sched.reorder (sched_dump, sched_verbose,
4329 ready_lastpos (&ready),
4330 &ready.n_ready, clock_var);
4331 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
4332 ls.can_issue_more
4333 = targetm.sched.reorder2 (sched_dump, sched_verbose,
4334 ready.n_ready
4335 ? ready_lastpos (&ready) : NULL,
4336 &ready.n_ready, clock_var);
4339 restart_choose_ready:
4340 if (sched_verbose >= 2)
4342 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
4343 clock_var);
4344 debug_ready_list (&ready);
4345 if (sched_pressure_p)
4346 print_curr_reg_pressure ();
4349 if (ready.n_ready == 0
4350 && ls.can_issue_more
4351 && reload_completed)
4353 /* Allow scheduling insns directly from the queue in case
4354 there's nothing better to do (ready list is empty) but
4355 there are still vacant dispatch slots in the current cycle. */
4356 if (sched_verbose >= 6)
4357 fprintf (sched_dump,";;\t\tSecond chance\n");
4358 memcpy (temp_state, curr_state, dfa_state_size);
4359 if (early_queue_to_ready (temp_state, &ready))
4360 ready_sort (&ready);
4363 if (ready.n_ready == 0
4364 || !ls.can_issue_more
4365 || state_dead_lock_p (curr_state)
4366 || !(*current_sched_info->schedule_more_p) ())
4367 break;
4369 /* Select and remove the insn from the ready list. */
4370 if (sort_p)
4372 int res;
4374 insn = NULL_RTX;
4375 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
4377 if (res < 0)
4378 /* Finish cycle. */
4379 break;
4380 if (res > 0)
4381 goto restart_choose_ready;
4383 gcc_assert (insn != NULL_RTX);
4385 else
4386 insn = ready_remove_first (&ready);
4388 if (sched_pressure_p && INSN_TICK (insn) > clock_var)
4390 ready_add (&ready, insn, true);
4391 advance = 1;
4392 break;
4395 if (targetm.sched.dfa_new_cycle
4396 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4397 insn, last_clock_var,
4398 clock_var, &sort_p))
4399 /* SORT_P is used by the target to override sorting
4400 of the ready list. This is needed when the target
4401 has modified its internal structures expecting that
4402 the insn will be issued next. As we need the insn
4403 to have the highest priority (so it will be returned by
4404 the ready_remove_first call above), we invoke
4405 ready_add (&ready, insn, true).
4406 But, still, there is one issue: INSN can be later
4407 discarded by scheduler's front end through
4408 current_sched_info->can_schedule_ready_p, hence, won't
4409 be issued next. */
4411 ready_add (&ready, insn, true);
4412 break;
4415 sort_p = TRUE;
4417 if (current_sched_info->can_schedule_ready_p
4418 && ! (*current_sched_info->can_schedule_ready_p) (insn))
4419 /* We normally get here only if we don't want to move
4420 insn from the split block. */
4422 TODO_SPEC (insn) = HARD_DEP;
4423 goto restart_choose_ready;
4426 if (delay_htab)
4428 /* If this insn is the first part of a delay-slot pair, record a
4429 backtrack point. */
4430 struct delay_pair *delay_entry;
4431 delay_entry
4432 = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
4433 htab_hash_pointer (insn));
4434 if (delay_entry)
4436 save_backtrack_point (delay_entry, ls);
4437 if (sched_verbose >= 2)
4438 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
4442 /* DECISION is made. */
4444 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
4446 modulo_insns_scheduled++;
4447 modulo_last_stage = clock_var / modulo_ii;
4449 if (TODO_SPEC (insn) & SPECULATIVE)
4450 generate_recovery_code (insn);
4452 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
4453 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
4455 /* Update counters, etc in the scheduler's front end. */
4456 (*current_sched_info->begin_schedule_ready) (insn);
4457 VEC_safe_push (rtx, heap, scheduled_insns, insn);
4458 gcc_assert (NONDEBUG_INSN_P (insn));
4459 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
4461 if (recog_memoized (insn) >= 0)
4463 memcpy (temp_state, curr_state, dfa_state_size);
4464 cost = state_transition (curr_state, insn);
4465 if (!sched_pressure_p)
4466 gcc_assert (cost < 0);
4467 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
4468 cycle_issued_insns++;
4469 asm_p = false;
4471 else
4472 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
4473 || asm_noperands (PATTERN (insn)) >= 0);
4475 if (targetm.sched.variable_issue)
4476 ls.can_issue_more =
4477 targetm.sched.variable_issue (sched_dump, sched_verbose,
4478 insn, ls.can_issue_more);
4479 /* A naked CLOBBER or USE generates no instruction, so do
4480 not count them against the issue rate. */
4481 else if (GET_CODE (PATTERN (insn)) != USE
4482 && GET_CODE (PATTERN (insn)) != CLOBBER)
4483 ls.can_issue_more--;
4484 advance = schedule_insn (insn);
4486 if (SHADOW_P (insn))
4487 ls.shadows_only_p = true;
4489 /* After issuing an asm insn we should start a new cycle. */
4490 if (advance == 0 && asm_p)
4491 advance = 1;
4493 if (must_backtrack)
4494 break;
4496 if (advance != 0)
4497 break;
4499 ls.first_cycle_insn_p = false;
4500 if (ready.n_ready > 0)
4501 prune_ready_list (temp_state, false, ls.shadows_only_p,
4502 ls.modulo_epilogue);
4505 do_backtrack:
4506 if (!must_backtrack)
4507 for (i = 0; i < ready.n_ready; i++)
4509 rtx insn = ready_element (&ready, i);
4510 if (INSN_EXACT_TICK (insn) == clock_var)
4512 must_backtrack = true;
4513 clock_var++;
4514 break;
4517 if (must_backtrack && modulo_ii > 0)
4519 if (modulo_backtracks_left == 0)
4520 goto end_schedule;
4521 modulo_backtracks_left--;
4523 while (must_backtrack)
4525 struct haifa_saved_data *failed;
4526 rtx failed_insn;
4528 must_backtrack = false;
4529 failed = verify_shadows ();
4530 gcc_assert (failed);
4532 failed_insn = failed->delay_pair->i1;
4533 toggle_cancelled_flags (false);
4534 unschedule_insns_until (failed_insn);
4535 while (failed != backtrack_queue)
4536 free_topmost_backtrack_point (true);
4537 restore_last_backtrack_point (&ls);
4538 if (sched_verbose >= 2)
4539 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
4540 /* Delay by at least a cycle. This could cause additional
4541 backtracking. */
4542 queue_insn (failed_insn, 1, "backtracked");
4543 advance = 0;
4544 if (must_backtrack)
4545 continue;
4546 if (ready.n_ready > 0)
4547 goto resume_after_backtrack;
4548 else
4550 if (clock_var == 0 && ls.first_cycle_insn_p)
4551 goto end_schedule;
4552 advance = 1;
4553 break;
4557 if (ls.modulo_epilogue)
4558 success = true;
4559 end_schedule:
4560 if (modulo_ii > 0)
4562 /* Once again, debug insn suckiness: they can be on the ready list
4563 even if they have unresolved dependencies. To make our view
4564 of the world consistent, remove such "ready" insns. */
4565 restart_debug_insn_loop:
4566 for (i = ready.n_ready - 1; i >= 0; i--)
4568 rtx x;
4570 x = ready_element (&ready, i);
4571 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
4572 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
4574 ready_remove (&ready, i);
4575 goto restart_debug_insn_loop;
4578 for (i = ready.n_ready - 1; i >= 0; i--)
4580 rtx x;
4582 x = ready_element (&ready, i);
4583 resolve_dependencies (x);
4585 for (i = 0; i <= max_insn_queue_index; i++)
4587 rtx link;
4588 while ((link = insn_queue[i]) != NULL)
4590 rtx x = XEXP (link, 0);
4591 insn_queue[i] = XEXP (link, 1);
4592 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4593 free_INSN_LIST_node (link);
4594 resolve_dependencies (x);
4599 /* Debug info. */
4600 if (sched_verbose)
4602 fprintf (sched_dump, ";;\tReady list (final): ");
4603 debug_ready_list (&ready);
4606 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
4607 /* Sanity check -- queue must be empty now. Meaningless if region has
4608 multiple bbs. */
4609 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
4610 else if (modulo_ii == 0)
4612 /* We must maintain QUEUE_INDEX between blocks in region. */
4613 for (i = ready.n_ready - 1; i >= 0; i--)
4615 rtx x;
4617 x = ready_element (&ready, i);
4618 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4619 TODO_SPEC (x) = HARD_DEP;
4622 if (q_size)
4623 for (i = 0; i <= max_insn_queue_index; i++)
4625 rtx link;
4626 for (link = insn_queue[i]; link; link = XEXP (link, 1))
4628 rtx x;
4630 x = XEXP (link, 0);
4631 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4632 TODO_SPEC (x) = HARD_DEP;
4634 free_INSN_LIST_list (&insn_queue[i]);
4638 if (success)
4640 commit_schedule (prev_head, tail, target_bb);
4641 if (sched_verbose)
4642 fprintf (sched_dump, ";; total time = %d\n", clock_var);
4644 else
4645 last_scheduled_insn = tail;
4647 VEC_truncate (rtx, scheduled_insns, 0);
4649 if (!current_sched_info->queue_must_finish_empty
4650 || haifa_recovery_bb_recently_added_p)
4652 /* INSN_TICK (minimum clock tick at which the insn becomes
4653 ready) may be not correct for the insn in the subsequent
4654 blocks of the region. We should use a correct value of
4655 `clock_var' or modify INSN_TICK. It is better to keep
4656 clock_var value equal to 0 at the start of a basic block.
4657 Therefore we modify INSN_TICK here. */
4658 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
4661 if (targetm.sched.finish)
4663 targetm.sched.finish (sched_dump, sched_verbose);
4664 /* Target might have added some instructions to the scheduled block
4665 in its md_finish () hook. These new insns don't have any data
4666 initialized and to identify them we extend h_i_d so that they'll
4667 get zero luids. */
4668 sched_extend_luids ();
4671 if (sched_verbose)
4672 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
4673 INSN_UID (head), INSN_UID (tail));
4675 /* Update head/tail boundaries. */
4676 head = NEXT_INSN (prev_head);
4677 tail = last_scheduled_insn;
4679 head = restore_other_notes (head, NULL);
4681 current_sched_info->head = head;
4682 current_sched_info->tail = tail;
4684 free_backtrack_queue ();
4686 return success;
4689 /* Set_priorities: compute priority of each insn in the block. */
4692 set_priorities (rtx head, rtx tail)
4694 rtx insn;
4695 int n_insn;
4696 int sched_max_insns_priority =
4697 current_sched_info->sched_max_insns_priority;
4698 rtx prev_head;
4700 if (head == tail && ! INSN_P (head))
4701 gcc_unreachable ();
4703 n_insn = 0;
4705 prev_head = PREV_INSN (head);
4706 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
4708 if (!INSN_P (insn))
4709 continue;
4711 n_insn++;
4712 (void) priority (insn);
4714 gcc_assert (INSN_PRIORITY_KNOWN (insn));
4716 sched_max_insns_priority = MAX (sched_max_insns_priority,
4717 INSN_PRIORITY (insn));
4720 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
4722 return n_insn;
4725 /* Set dump and sched_verbose for the desired debugging output. If no
4726 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
4727 For -fsched-verbose=N, N>=10, print everything to stderr. */
4728 void
4729 setup_sched_dump (void)
4731 sched_verbose = sched_verbose_param;
4732 if (sched_verbose_param == 0 && dump_file)
4733 sched_verbose = 1;
4734 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
4735 ? stderr : dump_file);
4738 /* Initialize some global state for the scheduler. This function works
4739 with the common data shared between all the schedulers. It is called
4740 from the scheduler specific initialization routine. */
4742 void
4743 sched_init (void)
4745 /* Disable speculative loads in their presence if cc0 defined. */
4746 #ifdef HAVE_cc0
4747 flag_schedule_speculative_load = 0;
4748 #endif
4750 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
4751 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
4753 sched_pressure_p = (flag_sched_pressure && ! reload_completed
4754 && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
4756 if (sched_pressure_p)
4757 ira_setup_eliminable_regset ();
4759 /* Initialize SPEC_INFO. */
4760 if (targetm.sched.set_sched_flags)
4762 spec_info = &spec_info_var;
4763 targetm.sched.set_sched_flags (spec_info);
4765 if (spec_info->mask != 0)
4767 spec_info->data_weakness_cutoff =
4768 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
4769 spec_info->control_weakness_cutoff =
4770 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
4771 * REG_BR_PROB_BASE) / 100;
4773 else
4774 /* So we won't read anything accidentally. */
4775 spec_info = NULL;
4778 else
4779 /* So we won't read anything accidentally. */
4780 spec_info = 0;
4782 /* Initialize issue_rate. */
4783 if (targetm.sched.issue_rate)
4784 issue_rate = targetm.sched.issue_rate ();
4785 else
4786 issue_rate = 1;
4788 if (cached_issue_rate != issue_rate)
4790 cached_issue_rate = issue_rate;
4791 /* To invalidate max_lookahead_tries: */
4792 cached_first_cycle_multipass_dfa_lookahead = 0;
4795 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
4796 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
4797 else
4798 dfa_lookahead = 0;
4800 if (targetm.sched.init_dfa_pre_cycle_insn)
4801 targetm.sched.init_dfa_pre_cycle_insn ();
4803 if (targetm.sched.init_dfa_post_cycle_insn)
4804 targetm.sched.init_dfa_post_cycle_insn ();
4806 dfa_start ();
4807 dfa_state_size = state_size ();
4809 init_alias_analysis ();
4811 if (!sched_no_dce)
4812 df_set_flags (DF_LR_RUN_DCE);
4813 df_note_add_problem ();
4815 /* More problems needed for interloop dep calculation in SMS. */
4816 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
4818 df_rd_add_problem ();
4819 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
4822 df_analyze ();
4824 /* Do not run DCE after reload, as this can kill nops inserted
4825 by bundling. */
4826 if (reload_completed)
4827 df_clear_flags (DF_LR_RUN_DCE);
4829 regstat_compute_calls_crossed ();
4831 if (targetm.sched.init_global)
4832 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
4834 if (sched_pressure_p)
4836 int i, max_regno = max_reg_num ();
4838 ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
4839 sched_regno_pressure_class
4840 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
4841 for (i = 0; i < max_regno; i++)
4842 sched_regno_pressure_class[i]
4843 = (i < FIRST_PSEUDO_REGISTER
4844 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
4845 : ira_pressure_class_translate[reg_allocno_class (i)]);
4846 curr_reg_live = BITMAP_ALLOC (NULL);
4847 saved_reg_live = BITMAP_ALLOC (NULL);
4848 region_ref_regs = BITMAP_ALLOC (NULL);
4851 curr_state = xmalloc (dfa_state_size);
4854 static void haifa_init_only_bb (basic_block, basic_block);
4856 /* Initialize data structures specific to the Haifa scheduler. */
4857 void
4858 haifa_sched_init (void)
4860 setup_sched_dump ();
4861 sched_init ();
4863 scheduled_insns = VEC_alloc (rtx, heap, 0);
4865 if (spec_info != NULL)
4867 sched_deps_info->use_deps_list = 1;
4868 sched_deps_info->generate_spec_deps = 1;
4871 /* Initialize luids, dependency caches, target and h_i_d for the
4872 whole function. */
4874 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
4875 basic_block bb;
4877 sched_init_bbs ();
4879 FOR_EACH_BB (bb)
4880 VEC_quick_push (basic_block, bbs, bb);
4881 sched_init_luids (bbs);
4882 sched_deps_init (true);
4883 sched_extend_target ();
4884 haifa_init_h_i_d (bbs);
4886 VEC_free (basic_block, heap, bbs);
4889 sched_init_only_bb = haifa_init_only_bb;
4890 sched_split_block = sched_split_block_1;
4891 sched_create_empty_bb = sched_create_empty_bb_1;
4892 haifa_recovery_bb_ever_added_p = false;
4894 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
4895 before_recovery = 0;
4896 after_recovery = 0;
4898 modulo_ii = 0;
4901 /* Finish work with the data specific to the Haifa scheduler. */
4902 void
4903 haifa_sched_finish (void)
4905 sched_create_empty_bb = NULL;
4906 sched_split_block = NULL;
4907 sched_init_only_bb = NULL;
4909 if (spec_info && spec_info->dump)
4911 char c = reload_completed ? 'a' : 'b';
4913 fprintf (spec_info->dump,
4914 ";; %s:\n", current_function_name ());
4916 fprintf (spec_info->dump,
4917 ";; Procedure %cr-begin-data-spec motions == %d\n",
4918 c, nr_begin_data);
4919 fprintf (spec_info->dump,
4920 ";; Procedure %cr-be-in-data-spec motions == %d\n",
4921 c, nr_be_in_data);
4922 fprintf (spec_info->dump,
4923 ";; Procedure %cr-begin-control-spec motions == %d\n",
4924 c, nr_begin_control);
4925 fprintf (spec_info->dump,
4926 ";; Procedure %cr-be-in-control-spec motions == %d\n",
4927 c, nr_be_in_control);
4930 VEC_free (rtx, heap, scheduled_insns);
4932 /* Finalize h_i_d, dependency caches, and luids for the whole
4933 function. Target will be finalized in md_global_finish (). */
4934 sched_deps_finish ();
4935 sched_finish_luids ();
4936 current_sched_info = NULL;
4937 sched_finish ();
4940 /* Free global data used during insn scheduling. This function works with
4941 the common data shared between the schedulers. */
4943 void
4944 sched_finish (void)
4946 haifa_finish_h_i_d ();
4947 if (sched_pressure_p)
4949 free (sched_regno_pressure_class);
4950 BITMAP_FREE (region_ref_regs);
4951 BITMAP_FREE (saved_reg_live);
4952 BITMAP_FREE (curr_reg_live);
4954 free (curr_state);
4956 if (targetm.sched.finish_global)
4957 targetm.sched.finish_global (sched_dump, sched_verbose);
4959 end_alias_analysis ();
4961 regstat_free_calls_crossed ();
4963 dfa_finish ();
4966 /* Free all delay_pair structures that were recorded. */
4967 void
4968 free_delay_pairs (void)
4970 if (delay_htab)
4972 htab_empty (delay_htab);
4973 htab_empty (delay_htab_i2);
4977 /* Fix INSN_TICKs of the instructions in the current block as well as
4978 INSN_TICKs of their dependents.
4979 HEAD and TAIL are the begin and the end of the current scheduled block. */
4980 static void
4981 fix_inter_tick (rtx head, rtx tail)
4983 /* Set of instructions with corrected INSN_TICK. */
4984 bitmap_head processed;
4985 /* ??? It is doubtful if we should assume that cycle advance happens on
4986 basic block boundaries. Basically insns that are unconditionally ready
4987 on the start of the block are more preferable then those which have
4988 a one cycle dependency over insn from the previous block. */
4989 int next_clock = clock_var + 1;
4991 bitmap_initialize (&processed, 0);
4993 /* Iterates over scheduled instructions and fix their INSN_TICKs and
4994 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
4995 across different blocks. */
4996 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
4998 if (INSN_P (head))
5000 int tick;
5001 sd_iterator_def sd_it;
5002 dep_t dep;
5004 tick = INSN_TICK (head);
5005 gcc_assert (tick >= MIN_TICK);
5007 /* Fix INSN_TICK of instruction from just scheduled block. */
5008 if (bitmap_set_bit (&processed, INSN_LUID (head)))
5010 tick -= next_clock;
5012 if (tick < MIN_TICK)
5013 tick = MIN_TICK;
5015 INSN_TICK (head) = tick;
5018 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
5020 rtx next;
5022 next = DEP_CON (dep);
5023 tick = INSN_TICK (next);
5025 if (tick != INVALID_TICK
5026 /* If NEXT has its INSN_TICK calculated, fix it.
5027 If not - it will be properly calculated from
5028 scratch later in fix_tick_ready. */
5029 && bitmap_set_bit (&processed, INSN_LUID (next)))
5031 tick -= next_clock;
5033 if (tick < MIN_TICK)
5034 tick = MIN_TICK;
5036 if (tick > INTER_TICK (next))
5037 INTER_TICK (next) = tick;
5038 else
5039 tick = INTER_TICK (next);
5041 INSN_TICK (next) = tick;
5046 bitmap_clear (&processed);
5049 /* Check if NEXT is ready to be added to the ready or queue list.
5050 If "yes", add it to the proper list.
5051 Returns:
5052 -1 - is not ready yet,
5053 0 - added to the ready list,
5054 0 < N - queued for N cycles. */
5056 try_ready (rtx next)
5058 ds_t old_ts, new_ts;
5060 old_ts = TODO_SPEC (next);
5062 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL))
5063 && ((old_ts & HARD_DEP)
5064 || (old_ts & SPECULATIVE)
5065 || (old_ts & DEP_CONTROL)));
5067 new_ts = recompute_todo_spec (next);
5069 if (new_ts & HARD_DEP)
5070 gcc_assert (new_ts == old_ts
5071 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
5072 else if (current_sched_info->new_ready)
5073 new_ts = current_sched_info->new_ready (next, new_ts);
5075 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
5076 have its original pattern or changed (speculative) one. This is due
5077 to changing ebb in region scheduling.
5078 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
5079 has speculative pattern.
5081 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
5082 control-speculative NEXT could have been discarded by sched-rgn.c
5083 (the same case as when discarded by can_schedule_ready_p ()). */
5085 if ((new_ts & SPECULATIVE)
5086 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
5087 need to change anything. */
5088 && new_ts != old_ts)
5090 int res;
5091 rtx new_pat;
5093 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
5095 res = haifa_speculate_insn (next, new_ts, &new_pat);
5097 switch (res)
5099 case -1:
5100 /* It would be nice to change DEP_STATUS of all dependences,
5101 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
5102 so we won't reanalyze anything. */
5103 new_ts = HARD_DEP;
5104 break;
5106 case 0:
5107 /* We follow the rule, that every speculative insn
5108 has non-null ORIG_PAT. */
5109 if (!ORIG_PAT (next))
5110 ORIG_PAT (next) = PATTERN (next);
5111 break;
5113 case 1:
5114 if (!ORIG_PAT (next))
5115 /* If we gonna to overwrite the original pattern of insn,
5116 save it. */
5117 ORIG_PAT (next) = PATTERN (next);
5119 res = haifa_change_pattern (next, new_pat);
5120 gcc_assert (res);
5121 break;
5123 default:
5124 gcc_unreachable ();
5128 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
5129 either correct (new_ts & SPECULATIVE),
5130 or we simply don't care (new_ts & HARD_DEP). */
5132 gcc_assert (!ORIG_PAT (next)
5133 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
5135 TODO_SPEC (next) = new_ts;
5137 if (new_ts & HARD_DEP)
5139 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
5140 control-speculative NEXT could have been discarded by sched-rgn.c
5141 (the same case as when discarded by can_schedule_ready_p ()). */
5142 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
5144 change_queue_index (next, QUEUE_NOWHERE);
5146 return -1;
5148 else if (!(new_ts & BEGIN_SPEC)
5149 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
5150 && !IS_SPECULATION_CHECK_P (next))
5151 /* We should change pattern of every previously speculative
5152 instruction - and we determine if NEXT was speculative by using
5153 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
5154 pat too, so skip them. */
5156 bool success = haifa_change_pattern (next, ORIG_PAT (next));
5157 gcc_assert (success);
5158 ORIG_PAT (next) = 0;
5161 if (sched_verbose >= 2)
5163 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
5164 (*current_sched_info->print_insn) (next, 0));
5166 if (spec_info && spec_info->dump)
5168 if (new_ts & BEGIN_DATA)
5169 fprintf (spec_info->dump, "; data-spec;");
5170 if (new_ts & BEGIN_CONTROL)
5171 fprintf (spec_info->dump, "; control-spec;");
5172 if (new_ts & BE_IN_CONTROL)
5173 fprintf (spec_info->dump, "; in-control-spec;");
5175 if (TODO_SPEC (next) & DEP_CONTROL)
5176 fprintf (sched_dump, " predicated");
5177 fprintf (sched_dump, "\n");
5180 adjust_priority (next);
5182 return fix_tick_ready (next);
5185 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
5186 static int
5187 fix_tick_ready (rtx next)
5189 int tick, delay;
5191 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
5193 int full_p;
5194 sd_iterator_def sd_it;
5195 dep_t dep;
5197 tick = INSN_TICK (next);
5198 /* if tick is not equal to INVALID_TICK, then update
5199 INSN_TICK of NEXT with the most recent resolved dependence
5200 cost. Otherwise, recalculate from scratch. */
5201 full_p = (tick == INVALID_TICK);
5203 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
5205 rtx pro = DEP_PRO (dep);
5206 int tick1;
5208 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
5210 tick1 = INSN_TICK (pro) + dep_cost (dep);
5211 if (tick1 > tick)
5212 tick = tick1;
5214 if (!full_p)
5215 break;
5218 else
5219 tick = -1;
5221 INSN_TICK (next) = tick;
5223 delay = tick - clock_var;
5224 if (delay <= 0 || sched_pressure_p)
5225 delay = QUEUE_READY;
5227 change_queue_index (next, delay);
5229 return delay;
5232 /* Move NEXT to the proper queue list with (DELAY >= 1),
5233 or add it to the ready list (DELAY == QUEUE_READY),
5234 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
5235 static void
5236 change_queue_index (rtx next, int delay)
5238 int i = QUEUE_INDEX (next);
5240 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
5241 && delay != 0);
5242 gcc_assert (i != QUEUE_SCHEDULED);
5244 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
5245 || (delay < 0 && delay == i))
5246 /* We have nothing to do. */
5247 return;
5249 /* Remove NEXT from wherever it is now. */
5250 if (i == QUEUE_READY)
5251 ready_remove_insn (next);
5252 else if (i >= 0)
5253 queue_remove (next);
5255 /* Add it to the proper place. */
5256 if (delay == QUEUE_READY)
5257 ready_add (readyp, next, false);
5258 else if (delay >= 1)
5259 queue_insn (next, delay, "change queue index");
5261 if (sched_verbose >= 2)
5263 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
5264 (*current_sched_info->print_insn) (next, 0));
5266 if (delay == QUEUE_READY)
5267 fprintf (sched_dump, " into ready\n");
5268 else if (delay >= 1)
5269 fprintf (sched_dump, " into queue with cost=%d\n", delay);
5270 else
5271 fprintf (sched_dump, " removed from ready or queue lists\n");
5275 static int sched_ready_n_insns = -1;
5277 /* Initialize per region data structures. */
5278 void
5279 sched_extend_ready_list (int new_sched_ready_n_insns)
5281 int i;
5283 if (sched_ready_n_insns == -1)
5284 /* At the first call we need to initialize one more choice_stack
5285 entry. */
5287 i = 0;
5288 sched_ready_n_insns = 0;
5289 VEC_reserve (rtx, heap, scheduled_insns, new_sched_ready_n_insns);
5291 else
5292 i = sched_ready_n_insns + 1;
5294 ready.veclen = new_sched_ready_n_insns + issue_rate;
5295 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
5297 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
5299 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
5300 sched_ready_n_insns, sizeof (*ready_try));
5302 /* We allocate +1 element to save initial state in the choice_stack[0]
5303 entry. */
5304 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
5305 new_sched_ready_n_insns + 1);
5307 for (; i <= new_sched_ready_n_insns; i++)
5309 choice_stack[i].state = xmalloc (dfa_state_size);
5311 if (targetm.sched.first_cycle_multipass_init)
5312 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
5313 .target_data));
5316 sched_ready_n_insns = new_sched_ready_n_insns;
5319 /* Free per region data structures. */
5320 void
5321 sched_finish_ready_list (void)
5323 int i;
5325 free (ready.vec);
5326 ready.vec = NULL;
5327 ready.veclen = 0;
5329 free (ready_try);
5330 ready_try = NULL;
5332 for (i = 0; i <= sched_ready_n_insns; i++)
5334 if (targetm.sched.first_cycle_multipass_fini)
5335 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
5336 .target_data));
5338 free (choice_stack [i].state);
5340 free (choice_stack);
5341 choice_stack = NULL;
5343 sched_ready_n_insns = -1;
5346 static int
5347 haifa_luid_for_non_insn (rtx x)
5349 gcc_assert (NOTE_P (x) || LABEL_P (x));
5351 return 0;
5354 /* Generates recovery code for INSN. */
5355 static void
5356 generate_recovery_code (rtx insn)
5358 if (TODO_SPEC (insn) & BEGIN_SPEC)
5359 begin_speculative_block (insn);
5361 /* Here we have insn with no dependencies to
5362 instructions other then CHECK_SPEC ones. */
5364 if (TODO_SPEC (insn) & BE_IN_SPEC)
5365 add_to_speculative_block (insn);
5368 /* Helper function.
5369 Tries to add speculative dependencies of type FS between instructions
5370 in deps_list L and TWIN. */
5371 static void
5372 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
5374 sd_iterator_def sd_it;
5375 dep_t dep;
5377 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
5379 ds_t ds;
5380 rtx consumer;
5382 consumer = DEP_CON (dep);
5384 ds = DEP_STATUS (dep);
5386 if (/* If we want to create speculative dep. */
5388 /* And we can do that because this is a true dep. */
5389 && (ds & DEP_TYPES) == DEP_TRUE)
5391 gcc_assert (!(ds & BE_IN_SPEC));
5393 if (/* If this dep can be overcome with 'begin speculation'. */
5394 ds & BEGIN_SPEC)
5395 /* Then we have a choice: keep the dep 'begin speculative'
5396 or transform it into 'be in speculative'. */
5398 if (/* In try_ready we assert that if insn once became ready
5399 it can be removed from the ready (or queue) list only
5400 due to backend decision. Hence we can't let the
5401 probability of the speculative dep to decrease. */
5402 ds_weak (ds) <= ds_weak (fs))
5404 ds_t new_ds;
5406 new_ds = (ds & ~BEGIN_SPEC) | fs;
5408 if (/* consumer can 'be in speculative'. */
5409 sched_insn_is_legitimate_for_speculation_p (consumer,
5410 new_ds))
5411 /* Transform it to be in speculative. */
5412 ds = new_ds;
5415 else
5416 /* Mark the dep as 'be in speculative'. */
5417 ds |= fs;
5421 dep_def _new_dep, *new_dep = &_new_dep;
5423 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
5424 sd_add_dep (new_dep, false);
5429 /* Generates recovery code for BEGIN speculative INSN. */
5430 static void
5431 begin_speculative_block (rtx insn)
5433 if (TODO_SPEC (insn) & BEGIN_DATA)
5434 nr_begin_data++;
5435 if (TODO_SPEC (insn) & BEGIN_CONTROL)
5436 nr_begin_control++;
5438 create_check_block_twin (insn, false);
5440 TODO_SPEC (insn) &= ~BEGIN_SPEC;
5443 static void haifa_init_insn (rtx);
5445 /* Generates recovery code for BE_IN speculative INSN. */
5446 static void
5447 add_to_speculative_block (rtx insn)
5449 ds_t ts;
5450 sd_iterator_def sd_it;
5451 dep_t dep;
5452 rtx twins = NULL;
5453 rtx_vec_t priorities_roots;
5455 ts = TODO_SPEC (insn);
5456 gcc_assert (!(ts & ~BE_IN_SPEC));
5458 if (ts & BE_IN_DATA)
5459 nr_be_in_data++;
5460 if (ts & BE_IN_CONTROL)
5461 nr_be_in_control++;
5463 TODO_SPEC (insn) &= ~BE_IN_SPEC;
5464 gcc_assert (!TODO_SPEC (insn));
5466 DONE_SPEC (insn) |= ts;
5468 /* First we convert all simple checks to branchy. */
5469 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5470 sd_iterator_cond (&sd_it, &dep);)
5472 rtx check = DEP_PRO (dep);
5474 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
5476 create_check_block_twin (check, true);
5478 /* Restart search. */
5479 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5481 else
5482 /* Continue search. */
5483 sd_iterator_next (&sd_it);
5486 priorities_roots = NULL;
5487 clear_priorities (insn, &priorities_roots);
5489 while (1)
5491 rtx check, twin;
5492 basic_block rec;
5494 /* Get the first backward dependency of INSN. */
5495 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5496 if (!sd_iterator_cond (&sd_it, &dep))
5497 /* INSN has no backward dependencies left. */
5498 break;
5500 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
5501 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
5502 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
5504 check = DEP_PRO (dep);
5506 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
5507 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
5509 rec = BLOCK_FOR_INSN (check);
5511 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
5512 haifa_init_insn (twin);
5514 sd_copy_back_deps (twin, insn, true);
5516 if (sched_verbose && spec_info->dump)
5517 /* INSN_BB (insn) isn't determined for twin insns yet.
5518 So we can't use current_sched_info->print_insn. */
5519 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
5520 INSN_UID (twin), rec->index);
5522 twins = alloc_INSN_LIST (twin, twins);
5524 /* Add dependences between TWIN and all appropriate
5525 instructions from REC. */
5526 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
5528 rtx pro = DEP_PRO (dep);
5530 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
5532 /* INSN might have dependencies from the instructions from
5533 several recovery blocks. At this iteration we process those
5534 producers that reside in REC. */
5535 if (BLOCK_FOR_INSN (pro) == rec)
5537 dep_def _new_dep, *new_dep = &_new_dep;
5539 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
5540 sd_add_dep (new_dep, false);
5544 process_insn_forw_deps_be_in_spec (insn, twin, ts);
5546 /* Remove all dependencies between INSN and insns in REC. */
5547 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5548 sd_iterator_cond (&sd_it, &dep);)
5550 rtx pro = DEP_PRO (dep);
5552 if (BLOCK_FOR_INSN (pro) == rec)
5553 sd_delete_dep (sd_it);
5554 else
5555 sd_iterator_next (&sd_it);
5559 /* We couldn't have added the dependencies between INSN and TWINS earlier
5560 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
5561 while (twins)
5563 rtx twin;
5565 twin = XEXP (twins, 0);
5568 dep_def _new_dep, *new_dep = &_new_dep;
5570 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
5571 sd_add_dep (new_dep, false);
5574 twin = XEXP (twins, 1);
5575 free_INSN_LIST_node (twins);
5576 twins = twin;
5579 calc_priorities (priorities_roots);
5580 VEC_free (rtx, heap, priorities_roots);
5583 /* Extends and fills with zeros (only the new part) array pointed to by P. */
5584 void *
5585 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
5587 gcc_assert (new_nmemb >= old_nmemb);
5588 p = XRESIZEVAR (void, p, new_nmemb * size);
5589 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
5590 return p;
5593 /* Helper function.
5594 Find fallthru edge from PRED. */
5595 edge
5596 find_fallthru_edge_from (basic_block pred)
5598 edge e;
5599 basic_block succ;
5601 succ = pred->next_bb;
5602 gcc_assert (succ->prev_bb == pred);
5604 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
5606 e = find_fallthru_edge (pred->succs);
5608 if (e)
5610 gcc_assert (e->dest == succ);
5611 return e;
5614 else
5616 e = find_fallthru_edge (succ->preds);
5618 if (e)
5620 gcc_assert (e->src == pred);
5621 return e;
5625 return NULL;
5628 /* Extend per basic block data structures. */
5629 static void
5630 sched_extend_bb (void)
5632 rtx insn;
5634 /* The following is done to keep current_sched_info->next_tail non null. */
5635 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
5636 if (NEXT_INSN (insn) == 0
5637 || (!NOTE_P (insn)
5638 && !LABEL_P (insn)
5639 /* Don't emit a NOTE if it would end up before a BARRIER. */
5640 && !BARRIER_P (NEXT_INSN (insn))))
5642 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
5643 /* Make insn appear outside BB. */
5644 set_block_for_insn (note, NULL);
5645 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
5649 /* Init per basic block data structures. */
5650 void
5651 sched_init_bbs (void)
5653 sched_extend_bb ();
5656 /* Initialize BEFORE_RECOVERY variable. */
5657 static void
5658 init_before_recovery (basic_block *before_recovery_ptr)
5660 basic_block last;
5661 edge e;
5663 last = EXIT_BLOCK_PTR->prev_bb;
5664 e = find_fallthru_edge_from (last);
5666 if (e)
5668 /* We create two basic blocks:
5669 1. Single instruction block is inserted right after E->SRC
5670 and has jump to
5671 2. Empty block right before EXIT_BLOCK.
5672 Between these two blocks recovery blocks will be emitted. */
5674 basic_block single, empty;
5675 rtx x, label;
5677 /* If the fallthrough edge to exit we've found is from the block we've
5678 created before, don't do anything more. */
5679 if (last == after_recovery)
5680 return;
5682 adding_bb_to_current_region_p = false;
5684 single = sched_create_empty_bb (last);
5685 empty = sched_create_empty_bb (single);
5687 /* Add new blocks to the root loop. */
5688 if (current_loops != NULL)
5690 add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
5691 add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
5694 single->count = last->count;
5695 empty->count = last->count;
5696 single->frequency = last->frequency;
5697 empty->frequency = last->frequency;
5698 BB_COPY_PARTITION (single, last);
5699 BB_COPY_PARTITION (empty, last);
5701 redirect_edge_succ (e, single);
5702 make_single_succ_edge (single, empty, 0);
5703 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
5704 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
5706 label = block_label (empty);
5707 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
5708 JUMP_LABEL (x) = label;
5709 LABEL_NUSES (label)++;
5710 haifa_init_insn (x);
5712 emit_barrier_after (x);
5714 sched_init_only_bb (empty, NULL);
5715 sched_init_only_bb (single, NULL);
5716 sched_extend_bb ();
5718 adding_bb_to_current_region_p = true;
5719 before_recovery = single;
5720 after_recovery = empty;
5722 if (before_recovery_ptr)
5723 *before_recovery_ptr = before_recovery;
5725 if (sched_verbose >= 2 && spec_info->dump)
5726 fprintf (spec_info->dump,
5727 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
5728 last->index, single->index, empty->index);
5730 else
5731 before_recovery = last;
5734 /* Returns new recovery block. */
5735 basic_block
5736 sched_create_recovery_block (basic_block *before_recovery_ptr)
5738 rtx label;
5739 rtx barrier;
5740 basic_block rec;
5742 haifa_recovery_bb_recently_added_p = true;
5743 haifa_recovery_bb_ever_added_p = true;
5745 init_before_recovery (before_recovery_ptr);
5747 barrier = get_last_bb_insn (before_recovery);
5748 gcc_assert (BARRIER_P (barrier));
5750 label = emit_label_after (gen_label_rtx (), barrier);
5752 rec = create_basic_block (label, label, before_recovery);
5754 /* A recovery block always ends with an unconditional jump. */
5755 emit_barrier_after (BB_END (rec));
5757 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
5758 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
5760 if (sched_verbose && spec_info->dump)
5761 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
5762 rec->index);
5764 return rec;
5767 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
5768 and emit necessary jumps. */
5769 void
5770 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
5771 basic_block second_bb)
5773 rtx label;
5774 rtx jump;
5775 int edge_flags;
5777 /* This is fixing of incoming edge. */
5778 /* ??? Which other flags should be specified? */
5779 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
5780 /* Partition type is the same, if it is "unpartitioned". */
5781 edge_flags = EDGE_CROSSING;
5782 else
5783 edge_flags = 0;
5785 make_edge (first_bb, rec, edge_flags);
5786 label = block_label (second_bb);
5787 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
5788 JUMP_LABEL (jump) = label;
5789 LABEL_NUSES (label)++;
5791 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
5792 /* Partition type is the same, if it is "unpartitioned". */
5794 /* Rewritten from cfgrtl.c. */
5795 if (flag_reorder_blocks_and_partition
5796 && targetm_common.have_named_sections)
5798 /* We don't need the same note for the check because
5799 any_condjump_p (check) == true. */
5800 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
5802 edge_flags = EDGE_CROSSING;
5804 else
5805 edge_flags = 0;
5807 make_single_succ_edge (rec, second_bb, edge_flags);
5808 if (dom_info_available_p (CDI_DOMINATORS))
5809 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
5812 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
5813 INSN is a simple check, that should be converted to branchy one. */
5814 static void
5815 create_check_block_twin (rtx insn, bool mutate_p)
5817 basic_block rec;
5818 rtx label, check, twin;
5819 ds_t fs;
5820 sd_iterator_def sd_it;
5821 dep_t dep;
5822 dep_def _new_dep, *new_dep = &_new_dep;
5823 ds_t todo_spec;
5825 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
5827 if (!mutate_p)
5828 todo_spec = TODO_SPEC (insn);
5829 else
5831 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
5832 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
5834 todo_spec = CHECK_SPEC (insn);
5837 todo_spec &= SPECULATIVE;
5839 /* Create recovery block. */
5840 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
5842 rec = sched_create_recovery_block (NULL);
5843 label = BB_HEAD (rec);
5845 else
5847 rec = EXIT_BLOCK_PTR;
5848 label = NULL_RTX;
5851 /* Emit CHECK. */
5852 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
5854 if (rec != EXIT_BLOCK_PTR)
5856 /* To have mem_reg alive at the beginning of second_bb,
5857 we emit check BEFORE insn, so insn after splitting
5858 insn will be at the beginning of second_bb, which will
5859 provide us with the correct life information. */
5860 check = emit_jump_insn_before (check, insn);
5861 JUMP_LABEL (check) = label;
5862 LABEL_NUSES (label)++;
5864 else
5865 check = emit_insn_before (check, insn);
5867 /* Extend data structures. */
5868 haifa_init_insn (check);
5870 /* CHECK is being added to current region. Extend ready list. */
5871 gcc_assert (sched_ready_n_insns != -1);
5872 sched_extend_ready_list (sched_ready_n_insns + 1);
5874 if (current_sched_info->add_remove_insn)
5875 current_sched_info->add_remove_insn (insn, 0);
5877 RECOVERY_BLOCK (check) = rec;
5879 if (sched_verbose && spec_info->dump)
5880 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
5881 (*current_sched_info->print_insn) (check, 0));
5883 gcc_assert (ORIG_PAT (insn));
5885 /* Initialize TWIN (twin is a duplicate of original instruction
5886 in the recovery block). */
5887 if (rec != EXIT_BLOCK_PTR)
5889 sd_iterator_def sd_it;
5890 dep_t dep;
5892 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
5893 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
5895 struct _dep _dep2, *dep2 = &_dep2;
5897 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
5899 sd_add_dep (dep2, true);
5902 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
5903 haifa_init_insn (twin);
5905 if (sched_verbose && spec_info->dump)
5906 /* INSN_BB (insn) isn't determined for twin insns yet.
5907 So we can't use current_sched_info->print_insn. */
5908 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
5909 INSN_UID (twin), rec->index);
5911 else
5913 ORIG_PAT (check) = ORIG_PAT (insn);
5914 HAS_INTERNAL_DEP (check) = 1;
5915 twin = check;
5916 /* ??? We probably should change all OUTPUT dependencies to
5917 (TRUE | OUTPUT). */
5920 /* Copy all resolved back dependencies of INSN to TWIN. This will
5921 provide correct value for INSN_TICK (TWIN). */
5922 sd_copy_back_deps (twin, insn, true);
5924 if (rec != EXIT_BLOCK_PTR)
5925 /* In case of branchy check, fix CFG. */
5927 basic_block first_bb, second_bb;
5928 rtx jump;
5930 first_bb = BLOCK_FOR_INSN (check);
5931 second_bb = sched_split_block (first_bb, check);
5933 sched_create_recovery_edges (first_bb, rec, second_bb);
5935 sched_init_only_bb (second_bb, first_bb);
5936 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
5938 jump = BB_END (rec);
5939 haifa_init_insn (jump);
5942 /* Move backward dependences from INSN to CHECK and
5943 move forward dependences from INSN to TWIN. */
5945 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
5946 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
5948 rtx pro = DEP_PRO (dep);
5949 ds_t ds;
5951 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
5952 check --TRUE--> producer ??? or ANTI ???
5953 twin --TRUE--> producer
5954 twin --ANTI--> check
5956 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
5957 check --ANTI--> producer
5958 twin --ANTI--> producer
5959 twin --ANTI--> check
5961 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
5962 check ~~TRUE~~> producer
5963 twin ~~TRUE~~> producer
5964 twin --ANTI--> check */
5966 ds = DEP_STATUS (dep);
5968 if (ds & BEGIN_SPEC)
5970 gcc_assert (!mutate_p);
5971 ds &= ~BEGIN_SPEC;
5974 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
5975 sd_add_dep (new_dep, false);
5977 if (rec != EXIT_BLOCK_PTR)
5979 DEP_CON (new_dep) = twin;
5980 sd_add_dep (new_dep, false);
5984 /* Second, remove backward dependencies of INSN. */
5985 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5986 sd_iterator_cond (&sd_it, &dep);)
5988 if ((DEP_STATUS (dep) & BEGIN_SPEC)
5989 || mutate_p)
5990 /* We can delete this dep because we overcome it with
5991 BEGIN_SPECULATION. */
5992 sd_delete_dep (sd_it);
5993 else
5994 sd_iterator_next (&sd_it);
5997 /* Future Speculations. Determine what BE_IN speculations will be like. */
5998 fs = 0;
6000 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
6001 here. */
6003 gcc_assert (!DONE_SPEC (insn));
6005 if (!mutate_p)
6007 ds_t ts = TODO_SPEC (insn);
6009 DONE_SPEC (insn) = ts & BEGIN_SPEC;
6010 CHECK_SPEC (check) = ts & BEGIN_SPEC;
6012 /* Luckiness of future speculations solely depends upon initial
6013 BEGIN speculation. */
6014 if (ts & BEGIN_DATA)
6015 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
6016 if (ts & BEGIN_CONTROL)
6017 fs = set_dep_weak (fs, BE_IN_CONTROL,
6018 get_dep_weak (ts, BEGIN_CONTROL));
6020 else
6021 CHECK_SPEC (check) = CHECK_SPEC (insn);
6023 /* Future speculations: call the helper. */
6024 process_insn_forw_deps_be_in_spec (insn, twin, fs);
6026 if (rec != EXIT_BLOCK_PTR)
6028 /* Which types of dependencies should we use here is,
6029 generally, machine-dependent question... But, for now,
6030 it is not. */
6032 if (!mutate_p)
6034 init_dep (new_dep, insn, check, REG_DEP_TRUE);
6035 sd_add_dep (new_dep, false);
6037 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
6038 sd_add_dep (new_dep, false);
6040 else
6042 if (spec_info->dump)
6043 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
6044 (*current_sched_info->print_insn) (insn, 0));
6046 /* Remove all dependencies of the INSN. */
6048 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
6049 | SD_LIST_BACK
6050 | SD_LIST_RES_BACK));
6051 while (sd_iterator_cond (&sd_it, &dep))
6052 sd_delete_dep (sd_it);
6055 /* If former check (INSN) already was moved to the ready (or queue)
6056 list, add new check (CHECK) there too. */
6057 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
6058 try_ready (check);
6060 /* Remove old check from instruction stream and free its
6061 data. */
6062 sched_remove_insn (insn);
6065 init_dep (new_dep, check, twin, REG_DEP_ANTI);
6066 sd_add_dep (new_dep, false);
6068 else
6070 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
6071 sd_add_dep (new_dep, false);
6074 if (!mutate_p)
6075 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
6076 because it'll be done later in add_to_speculative_block. */
6078 rtx_vec_t priorities_roots = NULL;
6080 clear_priorities (twin, &priorities_roots);
6081 calc_priorities (priorities_roots);
6082 VEC_free (rtx, heap, priorities_roots);
6086 /* Removes dependency between instructions in the recovery block REC
6087 and usual region instructions. It keeps inner dependences so it
6088 won't be necessary to recompute them. */
6089 static void
6090 fix_recovery_deps (basic_block rec)
6092 rtx note, insn, jump, ready_list = 0;
6093 bitmap_head in_ready;
6094 rtx link;
6096 bitmap_initialize (&in_ready, 0);
6098 /* NOTE - a basic block note. */
6099 note = NEXT_INSN (BB_HEAD (rec));
6100 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
6101 insn = BB_END (rec);
6102 gcc_assert (JUMP_P (insn));
6103 insn = PREV_INSN (insn);
6107 sd_iterator_def sd_it;
6108 dep_t dep;
6110 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
6111 sd_iterator_cond (&sd_it, &dep);)
6113 rtx consumer = DEP_CON (dep);
6115 if (BLOCK_FOR_INSN (consumer) != rec)
6117 sd_delete_dep (sd_it);
6119 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
6120 ready_list = alloc_INSN_LIST (consumer, ready_list);
6122 else
6124 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
6126 sd_iterator_next (&sd_it);
6130 insn = PREV_INSN (insn);
6132 while (insn != note);
6134 bitmap_clear (&in_ready);
6136 /* Try to add instructions to the ready or queue list. */
6137 for (link = ready_list; link; link = XEXP (link, 1))
6138 try_ready (XEXP (link, 0));
6139 free_INSN_LIST_list (&ready_list);
6141 /* Fixing jump's dependences. */
6142 insn = BB_HEAD (rec);
6143 jump = BB_END (rec);
6145 gcc_assert (LABEL_P (insn));
6146 insn = NEXT_INSN (insn);
6148 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
6149 add_jump_dependencies (insn, jump);
6152 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
6153 instruction data. */
6154 static bool
6155 haifa_change_pattern (rtx insn, rtx new_pat)
6157 sd_iterator_def sd_it;
6158 dep_t dep;
6159 int t;
6161 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
6162 if (!t)
6163 return false;
6164 dfa_clear_single_insn_cache (insn);
6166 sd_it = sd_iterator_start (insn,
6167 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
6168 while (sd_iterator_cond (&sd_it, &dep))
6170 DEP_COST (dep) = UNKNOWN_DEP_COST;
6171 sd_iterator_next (&sd_it);
6174 /* Invalidate INSN_COST, so it'll be recalculated. */
6175 INSN_COST (insn) = -1;
6176 /* Invalidate INSN_TICK, so it'll be recalculated. */
6177 INSN_TICK (insn) = INVALID_TICK;
6178 return true;
6181 /* -1 - can't speculate,
6182 0 - for speculation with REQUEST mode it is OK to use
6183 current instruction pattern,
6184 1 - need to change pattern for *NEW_PAT to be speculative. */
6186 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
6188 gcc_assert (current_sched_info->flags & DO_SPECULATION
6189 && (request & SPECULATIVE)
6190 && sched_insn_is_legitimate_for_speculation_p (insn, request));
6192 if ((request & spec_info->mask) != request)
6193 return -1;
6195 if (request & BE_IN_SPEC
6196 && !(request & BEGIN_SPEC))
6197 return 0;
6199 return targetm.sched.speculate_insn (insn, request, new_pat);
6202 static int
6203 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
6205 gcc_assert (sched_deps_info->generate_spec_deps
6206 && !IS_SPECULATION_CHECK_P (insn));
6208 if (HAS_INTERNAL_DEP (insn)
6209 || SCHED_GROUP_P (insn))
6210 return -1;
6212 return sched_speculate_insn (insn, request, new_pat);
6215 /* Print some information about block BB, which starts with HEAD and
6216 ends with TAIL, before scheduling it.
6217 I is zero, if scheduler is about to start with the fresh ebb. */
6218 static void
6219 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
6221 if (!i)
6222 fprintf (sched_dump,
6223 ";; ======================================================\n");
6224 else
6225 fprintf (sched_dump,
6226 ";; =====================ADVANCING TO=====================\n");
6227 fprintf (sched_dump,
6228 ";; -- basic block %d from %d to %d -- %s reload\n",
6229 bb->index, INSN_UID (head), INSN_UID (tail),
6230 (reload_completed ? "after" : "before"));
6231 fprintf (sched_dump,
6232 ";; ======================================================\n");
6233 fprintf (sched_dump, "\n");
6236 /* Unlink basic block notes and labels and saves them, so they
6237 can be easily restored. We unlink basic block notes in EBB to
6238 provide back-compatibility with the previous code, as target backends
6239 assume, that there'll be only instructions between
6240 current_sched_info->{head and tail}. We restore these notes as soon
6241 as we can.
6242 FIRST (LAST) is the first (last) basic block in the ebb.
6243 NB: In usual case (FIRST == LAST) nothing is really done. */
6244 void
6245 unlink_bb_notes (basic_block first, basic_block last)
6247 /* We DON'T unlink basic block notes of the first block in the ebb. */
6248 if (first == last)
6249 return;
6251 bb_header = XNEWVEC (rtx, last_basic_block);
6253 /* Make a sentinel. */
6254 if (last->next_bb != EXIT_BLOCK_PTR)
6255 bb_header[last->next_bb->index] = 0;
6257 first = first->next_bb;
6260 rtx prev, label, note, next;
6262 label = BB_HEAD (last);
6263 if (LABEL_P (label))
6264 note = NEXT_INSN (label);
6265 else
6266 note = label;
6267 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
6269 prev = PREV_INSN (label);
6270 next = NEXT_INSN (note);
6271 gcc_assert (prev && next);
6273 NEXT_INSN (prev) = next;
6274 PREV_INSN (next) = prev;
6276 bb_header[last->index] = label;
6278 if (last == first)
6279 break;
6281 last = last->prev_bb;
6283 while (1);
6286 /* Restore basic block notes.
6287 FIRST is the first basic block in the ebb. */
6288 static void
6289 restore_bb_notes (basic_block first)
6291 if (!bb_header)
6292 return;
6294 /* We DON'T unlink basic block notes of the first block in the ebb. */
6295 first = first->next_bb;
6296 /* Remember: FIRST is actually a second basic block in the ebb. */
6298 while (first != EXIT_BLOCK_PTR
6299 && bb_header[first->index])
6301 rtx prev, label, note, next;
6303 label = bb_header[first->index];
6304 prev = PREV_INSN (label);
6305 next = NEXT_INSN (prev);
6307 if (LABEL_P (label))
6308 note = NEXT_INSN (label);
6309 else
6310 note = label;
6311 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
6313 bb_header[first->index] = 0;
6315 NEXT_INSN (prev) = label;
6316 NEXT_INSN (note) = next;
6317 PREV_INSN (next) = note;
6319 first = first->next_bb;
6322 free (bb_header);
6323 bb_header = 0;
6326 /* Helper function.
6327 Fix CFG after both in- and inter-block movement of
6328 control_flow_insn_p JUMP. */
6329 static void
6330 fix_jump_move (rtx jump)
6332 basic_block bb, jump_bb, jump_bb_next;
6334 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
6335 jump_bb = BLOCK_FOR_INSN (jump);
6336 jump_bb_next = jump_bb->next_bb;
6338 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
6339 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
6341 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
6342 /* if jump_bb_next is not empty. */
6343 BB_END (jump_bb) = BB_END (jump_bb_next);
6345 if (BB_END (bb) != PREV_INSN (jump))
6346 /* Then there are instruction after jump that should be placed
6347 to jump_bb_next. */
6348 BB_END (jump_bb_next) = BB_END (bb);
6349 else
6350 /* Otherwise jump_bb_next is empty. */
6351 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
6353 /* To make assertion in move_insn happy. */
6354 BB_END (bb) = PREV_INSN (jump);
6356 update_bb_for_insn (jump_bb_next);
6359 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
6360 static void
6361 move_block_after_check (rtx jump)
6363 basic_block bb, jump_bb, jump_bb_next;
6364 VEC(edge,gc) *t;
6366 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
6367 jump_bb = BLOCK_FOR_INSN (jump);
6368 jump_bb_next = jump_bb->next_bb;
6370 update_bb_for_insn (jump_bb);
6372 gcc_assert (IS_SPECULATION_CHECK_P (jump)
6373 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
6375 unlink_block (jump_bb_next);
6376 link_block (jump_bb_next, bb);
6378 t = bb->succs;
6379 bb->succs = 0;
6380 move_succs (&(jump_bb->succs), bb);
6381 move_succs (&(jump_bb_next->succs), jump_bb);
6382 move_succs (&t, jump_bb_next);
6384 df_mark_solutions_dirty ();
6386 common_sched_info->fix_recovery_cfg
6387 (bb->index, jump_bb->index, jump_bb_next->index);
6390 /* Helper function for move_block_after_check.
6391 This functions attaches edge vector pointed to by SUCCSP to
6392 block TO. */
6393 static void
6394 move_succs (VEC(edge,gc) **succsp, basic_block to)
6396 edge e;
6397 edge_iterator ei;
6399 gcc_assert (to->succs == 0);
6401 to->succs = *succsp;
6403 FOR_EACH_EDGE (e, ei, to->succs)
6404 e->src = to;
6406 *succsp = 0;
6409 /* Remove INSN from the instruction stream.
6410 INSN should have any dependencies. */
6411 static void
6412 sched_remove_insn (rtx insn)
6414 sd_finish_insn (insn);
6416 change_queue_index (insn, QUEUE_NOWHERE);
6417 current_sched_info->add_remove_insn (insn, 1);
6418 remove_insn (insn);
6421 /* Clear priorities of all instructions, that are forward dependent on INSN.
6422 Store in vector pointed to by ROOTS_PTR insns on which priority () should
6423 be invoked to initialize all cleared priorities. */
6424 static void
6425 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
6427 sd_iterator_def sd_it;
6428 dep_t dep;
6429 bool insn_is_root_p = true;
6431 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
6433 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
6435 rtx pro = DEP_PRO (dep);
6437 if (INSN_PRIORITY_STATUS (pro) >= 0
6438 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
6440 /* If DEP doesn't contribute to priority then INSN itself should
6441 be added to priority roots. */
6442 if (contributes_to_priority_p (dep))
6443 insn_is_root_p = false;
6445 INSN_PRIORITY_STATUS (pro) = -1;
6446 clear_priorities (pro, roots_ptr);
6450 if (insn_is_root_p)
6451 VEC_safe_push (rtx, heap, *roots_ptr, insn);
6454 /* Recompute priorities of instructions, whose priorities might have been
6455 changed. ROOTS is a vector of instructions whose priority computation will
6456 trigger initialization of all cleared priorities. */
6457 static void
6458 calc_priorities (rtx_vec_t roots)
6460 int i;
6461 rtx insn;
6463 FOR_EACH_VEC_ELT (rtx, roots, i, insn)
6464 priority (insn);
6468 /* Add dependences between JUMP and other instructions in the recovery
6469 block. INSN is the first insn the recovery block. */
6470 static void
6471 add_jump_dependencies (rtx insn, rtx jump)
6475 insn = NEXT_INSN (insn);
6476 if (insn == jump)
6477 break;
6479 if (dep_list_size (insn) == 0)
6481 dep_def _new_dep, *new_dep = &_new_dep;
6483 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
6484 sd_add_dep (new_dep, false);
6487 while (1);
6489 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
6492 /* Extend data structures for logical insn UID. */
6493 void
6494 sched_extend_luids (void)
6496 int new_luids_max_uid = get_max_uid () + 1;
6498 VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
6501 /* Initialize LUID for INSN. */
6502 void
6503 sched_init_insn_luid (rtx insn)
6505 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
6506 int luid;
6508 if (i >= 0)
6510 luid = sched_max_luid;
6511 sched_max_luid += i;
6513 else
6514 luid = -1;
6516 SET_INSN_LUID (insn, luid);
6519 /* Initialize luids for BBS.
6520 The hook common_sched_info->luid_for_non_insn () is used to determine
6521 if notes, labels, etc. need luids. */
6522 void
6523 sched_init_luids (bb_vec_t bbs)
6525 int i;
6526 basic_block bb;
6528 sched_extend_luids ();
6529 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6531 rtx insn;
6533 FOR_BB_INSNS (bb, insn)
6534 sched_init_insn_luid (insn);
6538 /* Free LUIDs. */
6539 void
6540 sched_finish_luids (void)
6542 VEC_free (int, heap, sched_luids);
6543 sched_max_luid = 1;
6546 /* Return logical uid of INSN. Helpful while debugging. */
6548 insn_luid (rtx insn)
6550 return INSN_LUID (insn);
6553 /* Extend per insn data in the target. */
6554 void
6555 sched_extend_target (void)
6557 if (targetm.sched.h_i_d_extended)
6558 targetm.sched.h_i_d_extended ();
6561 /* Extend global scheduler structures (those, that live across calls to
6562 schedule_block) to include information about just emitted INSN. */
6563 static void
6564 extend_h_i_d (void)
6566 int reserve = (get_max_uid () + 1
6567 - VEC_length (haifa_insn_data_def, h_i_d));
6568 if (reserve > 0
6569 && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
6571 VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
6572 3 * get_max_uid () / 2);
6573 sched_extend_target ();
6577 /* Initialize h_i_d entry of the INSN with default values.
6578 Values, that are not explicitly initialized here, hold zero. */
6579 static void
6580 init_h_i_d (rtx insn)
6582 if (INSN_LUID (insn) > 0)
6584 INSN_COST (insn) = -1;
6585 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
6586 INSN_TICK (insn) = INVALID_TICK;
6587 INSN_EXACT_TICK (insn) = INVALID_TICK;
6588 INTER_TICK (insn) = INVALID_TICK;
6589 TODO_SPEC (insn) = HARD_DEP;
6593 /* Initialize haifa_insn_data for BBS. */
6594 void
6595 haifa_init_h_i_d (bb_vec_t bbs)
6597 int i;
6598 basic_block bb;
6600 extend_h_i_d ();
6601 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6603 rtx insn;
6605 FOR_BB_INSNS (bb, insn)
6606 init_h_i_d (insn);
6610 /* Finalize haifa_insn_data. */
6611 void
6612 haifa_finish_h_i_d (void)
6614 int i;
6615 haifa_insn_data_t data;
6616 struct reg_use_data *use, *next;
6618 FOR_EACH_VEC_ELT (haifa_insn_data_def, h_i_d, i, data)
6620 free (data->reg_pressure);
6621 for (use = data->reg_use_list; use != NULL; use = next)
6623 next = use->next_insn_use;
6624 free (use);
6627 VEC_free (haifa_insn_data_def, heap, h_i_d);
6630 /* Init data for the new insn INSN. */
6631 static void
6632 haifa_init_insn (rtx insn)
6634 gcc_assert (insn != NULL);
6636 sched_extend_luids ();
6637 sched_init_insn_luid (insn);
6638 sched_extend_target ();
6639 sched_deps_init (false);
6640 extend_h_i_d ();
6641 init_h_i_d (insn);
6643 if (adding_bb_to_current_region_p)
6645 sd_init_insn (insn);
6647 /* Extend dependency caches by one element. */
6648 extend_dependency_caches (1, false);
6650 if (sched_pressure_p)
6651 init_insn_reg_pressure_info (insn);
6654 /* Init data for the new basic block BB which comes after AFTER. */
6655 static void
6656 haifa_init_only_bb (basic_block bb, basic_block after)
6658 gcc_assert (bb != NULL);
6660 sched_init_bbs ();
6662 if (common_sched_info->add_block)
6663 /* This changes only data structures of the front-end. */
6664 common_sched_info->add_block (bb, after);
6667 /* A generic version of sched_split_block (). */
6668 basic_block
6669 sched_split_block_1 (basic_block first_bb, rtx after)
6671 edge e;
6673 e = split_block (first_bb, after);
6674 gcc_assert (e->src == first_bb);
6676 /* sched_split_block emits note if *check == BB_END. Probably it
6677 is better to rip that note off. */
6679 return e->dest;
6682 /* A generic version of sched_create_empty_bb (). */
6683 basic_block
6684 sched_create_empty_bb_1 (basic_block after)
6686 return create_empty_bb (after);
6689 /* Insert PAT as an INSN into the schedule and update the necessary data
6690 structures to account for it. */
6692 sched_emit_insn (rtx pat)
6694 rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
6695 haifa_init_insn (insn);
6697 if (current_sched_info->add_remove_insn)
6698 current_sched_info->add_remove_insn (insn, 0);
6700 (*current_sched_info->begin_schedule_ready) (insn);
6701 VEC_safe_push (rtx, heap, scheduled_insns, insn);
6703 last_scheduled_insn = insn;
6704 return insn;
6707 /* This function returns a candidate satisfying dispatch constraints from
6708 the ready list. */
6710 static rtx
6711 ready_remove_first_dispatch (struct ready_list *ready)
6713 int i;
6714 rtx insn = ready_element (ready, 0);
6716 if (ready->n_ready == 1
6717 || INSN_CODE (insn) < 0
6718 || !INSN_P (insn)
6719 || !active_insn_p (insn)
6720 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
6721 return ready_remove_first (ready);
6723 for (i = 1; i < ready->n_ready; i++)
6725 insn = ready_element (ready, i);
6727 if (INSN_CODE (insn) < 0
6728 || !INSN_P (insn)
6729 || !active_insn_p (insn))
6730 continue;
6732 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
6734 /* Return ith element of ready. */
6735 insn = ready_remove (ready, i);
6736 return insn;
6740 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
6741 return ready_remove_first (ready);
6743 for (i = 1; i < ready->n_ready; i++)
6745 insn = ready_element (ready, i);
6747 if (INSN_CODE (insn) < 0
6748 || !INSN_P (insn)
6749 || !active_insn_p (insn))
6750 continue;
6752 /* Return i-th element of ready. */
6753 if (targetm.sched.dispatch (insn, IS_CMP))
6754 return ready_remove (ready, i);
6757 return ready_remove_first (ready);
6760 /* Get number of ready insn in the ready list. */
6763 number_in_ready (void)
6765 return ready.n_ready;
6768 /* Get number of ready's in the ready list. */
6771 get_ready_element (int i)
6773 return ready_element (&ready, i);
6776 #endif /* INSN_SCHEDULING */