PR middle-end/25568
[official-gcc.git] / gcc / function.c
blob0ece698f859fc5c1309c1cedeb752abd215b7fb3
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
225 struct function *
226 find_function_data (tree decl)
228 struct function *p;
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
234 gcc_unreachable ();
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 struct function *p;
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
255 lang_hooks.function.enter_nested (p);
257 cfun = 0;
260 void
261 push_function_context (void)
263 push_function_context_to (current_function_decl);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 struct function *p = outer_function_chain;
274 cfun = p;
275 outer_function_chain = p->outer;
277 current_function_decl = p->decl;
279 lang_hooks.function.leave_nested (p);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
286 void
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
296 void
297 free_after_parsing (struct function *f)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks.function.final (f);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
311 void
312 free_after_compilation (struct function *f)
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
364 return get_func_frame_size (cfun);
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
376 We do not round to stack_boundary here.
378 FUNCTION specifies the function to allocate in. */
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
389 if (align == 0)
391 tree type;
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
404 alignment /= BITS_PER_UNIT;
406 else if (align == -1)
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
482 /* Try to detect frame size overflows on native platforms. */
483 #if BITS_PER_WORD >= 32
484 if ((FRAME_GROWS_DOWNWARD
485 ? (unsigned HOST_WIDE_INT) -function->x_frame_offset
486 : (unsigned HOST_WIDE_INT) function->x_frame_offset)
487 > ((unsigned HOST_WIDE_INT) 1 << (BITS_PER_WORD - 1))
488 /* Leave room for the fixed part of the frame. */
489 - 64 * UNITS_PER_WORD)
491 error ("%Jtotal size of local objects too large", function->decl);
492 /* Avoid duplicate error messages as much as possible. */
493 function->x_frame_offset = 0;
495 #endif
497 return x;
500 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
501 current function. */
504 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
506 return assign_stack_local_1 (mode, size, align, cfun);
510 /* Removes temporary slot TEMP from LIST. */
512 static void
513 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
515 if (temp->next)
516 temp->next->prev = temp->prev;
517 if (temp->prev)
518 temp->prev->next = temp->next;
519 else
520 *list = temp->next;
522 temp->prev = temp->next = NULL;
525 /* Inserts temporary slot TEMP to LIST. */
527 static void
528 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
530 temp->next = *list;
531 if (*list)
532 (*list)->prev = temp;
533 temp->prev = NULL;
534 *list = temp;
537 /* Returns the list of used temp slots at LEVEL. */
539 static struct temp_slot **
540 temp_slots_at_level (int level)
543 if (!used_temp_slots)
544 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
546 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
547 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
549 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
552 /* Returns the maximal temporary slot level. */
554 static int
555 max_slot_level (void)
557 if (!used_temp_slots)
558 return -1;
560 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
563 /* Moves temporary slot TEMP to LEVEL. */
565 static void
566 move_slot_to_level (struct temp_slot *temp, int level)
568 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
569 insert_slot_to_list (temp, temp_slots_at_level (level));
570 temp->level = level;
573 /* Make temporary slot TEMP available. */
575 static void
576 make_slot_available (struct temp_slot *temp)
578 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579 insert_slot_to_list (temp, &avail_temp_slots);
580 temp->in_use = 0;
581 temp->level = -1;
584 /* Allocate a temporary stack slot and record it for possible later
585 reuse.
587 MODE is the machine mode to be given to the returned rtx.
589 SIZE is the size in units of the space required. We do no rounding here
590 since assign_stack_local will do any required rounding.
592 KEEP is 1 if this slot is to be retained after a call to
593 free_temp_slots. Automatic variables for a block are allocated
594 with this flag. KEEP values of 2 or 3 were needed respectively
595 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
596 or for SAVE_EXPRs, but they are now unused.
598 TYPE is the type that will be used for the stack slot. */
601 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
602 int keep, tree type)
604 unsigned int align;
605 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
606 rtx slot;
608 /* If SIZE is -1 it means that somebody tried to allocate a temporary
609 of a variable size. */
610 gcc_assert (size != -1);
612 /* These are now unused. */
613 gcc_assert (keep <= 1);
615 if (mode == BLKmode)
616 align = BIGGEST_ALIGNMENT;
617 else
618 align = GET_MODE_ALIGNMENT (mode);
620 if (! type)
621 type = lang_hooks.types.type_for_mode (mode, 0);
623 if (type)
624 align = LOCAL_ALIGNMENT (type, align);
626 /* Try to find an available, already-allocated temporary of the proper
627 mode which meets the size and alignment requirements. Choose the
628 smallest one with the closest alignment. */
629 for (p = avail_temp_slots; p; p = p->next)
631 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
632 && objects_must_conflict_p (p->type, type)
633 && (best_p == 0 || best_p->size > p->size
634 || (best_p->size == p->size && best_p->align > p->align)))
636 if (p->align == align && p->size == size)
638 selected = p;
639 cut_slot_from_list (selected, &avail_temp_slots);
640 best_p = 0;
641 break;
643 best_p = p;
647 /* Make our best, if any, the one to use. */
648 if (best_p)
650 selected = best_p;
651 cut_slot_from_list (selected, &avail_temp_slots);
653 /* If there are enough aligned bytes left over, make them into a new
654 temp_slot so that the extra bytes don't get wasted. Do this only
655 for BLKmode slots, so that we can be sure of the alignment. */
656 if (GET_MODE (best_p->slot) == BLKmode)
658 int alignment = best_p->align / BITS_PER_UNIT;
659 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
661 if (best_p->size - rounded_size >= alignment)
663 p = ggc_alloc (sizeof (struct temp_slot));
664 p->in_use = p->addr_taken = 0;
665 p->size = best_p->size - rounded_size;
666 p->base_offset = best_p->base_offset + rounded_size;
667 p->full_size = best_p->full_size - rounded_size;
668 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
669 p->align = best_p->align;
670 p->address = 0;
671 p->type = best_p->type;
672 insert_slot_to_list (p, &avail_temp_slots);
674 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
675 stack_slot_list);
677 best_p->size = rounded_size;
678 best_p->full_size = rounded_size;
683 /* If we still didn't find one, make a new temporary. */
684 if (selected == 0)
686 HOST_WIDE_INT frame_offset_old = frame_offset;
688 p = ggc_alloc (sizeof (struct temp_slot));
690 /* We are passing an explicit alignment request to assign_stack_local.
691 One side effect of that is assign_stack_local will not round SIZE
692 to ensure the frame offset remains suitably aligned.
694 So for requests which depended on the rounding of SIZE, we go ahead
695 and round it now. We also make sure ALIGNMENT is at least
696 BIGGEST_ALIGNMENT. */
697 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
698 p->slot = assign_stack_local (mode,
699 (mode == BLKmode
700 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
701 : size),
702 align);
704 p->align = align;
706 /* The following slot size computation is necessary because we don't
707 know the actual size of the temporary slot until assign_stack_local
708 has performed all the frame alignment and size rounding for the
709 requested temporary. Note that extra space added for alignment
710 can be either above or below this stack slot depending on which
711 way the frame grows. We include the extra space if and only if it
712 is above this slot. */
713 if (FRAME_GROWS_DOWNWARD)
714 p->size = frame_offset_old - frame_offset;
715 else
716 p->size = size;
718 /* Now define the fields used by combine_temp_slots. */
719 if (FRAME_GROWS_DOWNWARD)
721 p->base_offset = frame_offset;
722 p->full_size = frame_offset_old - frame_offset;
724 else
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
729 p->address = 0;
731 selected = p;
734 p = selected;
735 p->in_use = 1;
736 p->addr_taken = 0;
737 p->type = type;
738 p->level = temp_slot_level;
739 p->keep = keep;
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
754 /* If a type is specified, set the relevant flags. */
755 if (type != 0)
757 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
758 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
760 MEM_NOTRAP_P (slot) = 1;
762 return slot;
765 /* Allocate a temporary stack slot and record it for possible later
766 reuse. First three arguments are same as in preceding function. */
769 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
771 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
774 /* Assign a temporary.
775 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
776 and so that should be used in error messages. In either case, we
777 allocate of the given type.
778 KEEP is as for assign_stack_temp.
779 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
780 it is 0 if a register is OK.
781 DONT_PROMOTE is 1 if we should not promote values in register
782 to wider modes. */
785 assign_temp (tree type_or_decl, int keep, int memory_required,
786 int dont_promote ATTRIBUTE_UNUSED)
788 tree type, decl;
789 enum machine_mode mode;
790 #ifdef PROMOTE_MODE
791 int unsignedp;
792 #endif
794 if (DECL_P (type_or_decl))
795 decl = type_or_decl, type = TREE_TYPE (decl);
796 else
797 decl = NULL, type = type_or_decl;
799 mode = TYPE_MODE (type);
800 #ifdef PROMOTE_MODE
801 unsignedp = TYPE_UNSIGNED (type);
802 #endif
804 if (mode == BLKmode || memory_required)
806 HOST_WIDE_INT size = int_size_in_bytes (type);
807 tree size_tree;
808 rtx tmp;
810 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
811 problems with allocating the stack space. */
812 if (size == 0)
813 size = 1;
815 /* Unfortunately, we don't yet know how to allocate variable-sized
816 temporaries. However, sometimes we have a fixed upper limit on
817 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
818 instead. This is the case for Chill variable-sized strings. */
819 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
820 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
821 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
822 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
824 /* If we still haven't been able to get a size, see if the language
825 can compute a maximum size. */
826 if (size == -1
827 && (size_tree = lang_hooks.types.max_size (type)) != 0
828 && host_integerp (size_tree, 1))
829 size = tree_low_cst (size_tree, 1);
831 /* The size of the temporary may be too large to fit into an integer. */
832 /* ??? Not sure this should happen except for user silliness, so limit
833 this to things that aren't compiler-generated temporaries. The
834 rest of the time we'll die in assign_stack_temp_for_type. */
835 if (decl && size == -1
836 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
838 error ("size of variable %q+D is too large", decl);
839 size = 1;
842 tmp = assign_stack_temp_for_type (mode, size, keep, type);
843 return tmp;
846 #ifdef PROMOTE_MODE
847 if (! dont_promote)
848 mode = promote_mode (type, mode, &unsignedp, 0);
849 #endif
851 return gen_reg_rtx (mode);
854 /* Combine temporary stack slots which are adjacent on the stack.
856 This allows for better use of already allocated stack space. This is only
857 done for BLKmode slots because we can be sure that we won't have alignment
858 problems in this case. */
860 static void
861 combine_temp_slots (void)
863 struct temp_slot *p, *q, *next, *next_q;
864 int num_slots;
866 /* We can't combine slots, because the information about which slot
867 is in which alias set will be lost. */
868 if (flag_strict_aliasing)
869 return;
871 /* If there are a lot of temp slots, don't do anything unless
872 high levels of optimization. */
873 if (! flag_expensive_optimizations)
874 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
875 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
876 return;
878 for (p = avail_temp_slots; p; p = next)
880 int delete_p = 0;
882 next = p->next;
884 if (GET_MODE (p->slot) != BLKmode)
885 continue;
887 for (q = p->next; q; q = next_q)
889 int delete_q = 0;
891 next_q = q->next;
893 if (GET_MODE (q->slot) != BLKmode)
894 continue;
896 if (p->base_offset + p->full_size == q->base_offset)
898 /* Q comes after P; combine Q into P. */
899 p->size += q->size;
900 p->full_size += q->full_size;
901 delete_q = 1;
903 else if (q->base_offset + q->full_size == p->base_offset)
905 /* P comes after Q; combine P into Q. */
906 q->size += p->size;
907 q->full_size += p->full_size;
908 delete_p = 1;
909 break;
911 if (delete_q)
912 cut_slot_from_list (q, &avail_temp_slots);
915 /* Either delete P or advance past it. */
916 if (delete_p)
917 cut_slot_from_list (p, &avail_temp_slots);
921 /* Find the temp slot corresponding to the object at address X. */
923 static struct temp_slot *
924 find_temp_slot_from_address (rtx x)
926 struct temp_slot *p;
927 rtx next;
928 int i;
930 for (i = max_slot_level (); i >= 0; i--)
931 for (p = *temp_slots_at_level (i); p; p = p->next)
933 if (XEXP (p->slot, 0) == x
934 || p->address == x
935 || (GET_CODE (x) == PLUS
936 && XEXP (x, 0) == virtual_stack_vars_rtx
937 && GET_CODE (XEXP (x, 1)) == CONST_INT
938 && INTVAL (XEXP (x, 1)) >= p->base_offset
939 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
940 return p;
942 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
943 for (next = p->address; next; next = XEXP (next, 1))
944 if (XEXP (next, 0) == x)
945 return p;
948 /* If we have a sum involving a register, see if it points to a temp
949 slot. */
950 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
951 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
952 return p;
953 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
954 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
955 return p;
957 return 0;
960 /* Indicate that NEW is an alternate way of referring to the temp slot
961 that previously was known by OLD. */
963 void
964 update_temp_slot_address (rtx old, rtx new)
966 struct temp_slot *p;
968 if (rtx_equal_p (old, new))
969 return;
971 p = find_temp_slot_from_address (old);
973 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
974 is a register, see if one operand of the PLUS is a temporary
975 location. If so, NEW points into it. Otherwise, if both OLD and
976 NEW are a PLUS and if there is a register in common between them.
977 If so, try a recursive call on those values. */
978 if (p == 0)
980 if (GET_CODE (old) != PLUS)
981 return;
983 if (REG_P (new))
985 update_temp_slot_address (XEXP (old, 0), new);
986 update_temp_slot_address (XEXP (old, 1), new);
987 return;
989 else if (GET_CODE (new) != PLUS)
990 return;
992 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
993 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
994 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
995 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
996 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
997 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
998 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
999 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1001 return;
1004 /* Otherwise add an alias for the temp's address. */
1005 else if (p->address == 0)
1006 p->address = new;
1007 else
1009 if (GET_CODE (p->address) != EXPR_LIST)
1010 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1012 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1016 /* If X could be a reference to a temporary slot, mark the fact that its
1017 address was taken. */
1019 void
1020 mark_temp_addr_taken (rtx x)
1022 struct temp_slot *p;
1024 if (x == 0)
1025 return;
1027 /* If X is not in memory or is at a constant address, it cannot be in
1028 a temporary slot. */
1029 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1030 return;
1032 p = find_temp_slot_from_address (XEXP (x, 0));
1033 if (p != 0)
1034 p->addr_taken = 1;
1037 /* If X could be a reference to a temporary slot, mark that slot as
1038 belonging to the to one level higher than the current level. If X
1039 matched one of our slots, just mark that one. Otherwise, we can't
1040 easily predict which it is, so upgrade all of them. Kept slots
1041 need not be touched.
1043 This is called when an ({...}) construct occurs and a statement
1044 returns a value in memory. */
1046 void
1047 preserve_temp_slots (rtx x)
1049 struct temp_slot *p = 0, *next;
1051 /* If there is no result, we still might have some objects whose address
1052 were taken, so we need to make sure they stay around. */
1053 if (x == 0)
1055 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1057 next = p->next;
1059 if (p->addr_taken)
1060 move_slot_to_level (p, temp_slot_level - 1);
1063 return;
1066 /* If X is a register that is being used as a pointer, see if we have
1067 a temporary slot we know it points to. To be consistent with
1068 the code below, we really should preserve all non-kept slots
1069 if we can't find a match, but that seems to be much too costly. */
1070 if (REG_P (x) && REG_POINTER (x))
1071 p = find_temp_slot_from_address (x);
1073 /* If X is not in memory or is at a constant address, it cannot be in
1074 a temporary slot, but it can contain something whose address was
1075 taken. */
1076 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1078 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1080 next = p->next;
1082 if (p->addr_taken)
1083 move_slot_to_level (p, temp_slot_level - 1);
1086 return;
1089 /* First see if we can find a match. */
1090 if (p == 0)
1091 p = find_temp_slot_from_address (XEXP (x, 0));
1093 if (p != 0)
1095 /* Move everything at our level whose address was taken to our new
1096 level in case we used its address. */
1097 struct temp_slot *q;
1099 if (p->level == temp_slot_level)
1101 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1103 next = q->next;
1105 if (p != q && q->addr_taken)
1106 move_slot_to_level (q, temp_slot_level - 1);
1109 move_slot_to_level (p, temp_slot_level - 1);
1110 p->addr_taken = 0;
1112 return;
1115 /* Otherwise, preserve all non-kept slots at this level. */
1116 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1118 next = p->next;
1120 if (!p->keep)
1121 move_slot_to_level (p, temp_slot_level - 1);
1125 /* Free all temporaries used so far. This is normally called at the
1126 end of generating code for a statement. */
1128 void
1129 free_temp_slots (void)
1131 struct temp_slot *p, *next;
1133 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1135 next = p->next;
1137 if (!p->keep)
1138 make_slot_available (p);
1141 combine_temp_slots ();
1144 /* Push deeper into the nesting level for stack temporaries. */
1146 void
1147 push_temp_slots (void)
1149 temp_slot_level++;
1152 /* Pop a temporary nesting level. All slots in use in the current level
1153 are freed. */
1155 void
1156 pop_temp_slots (void)
1158 struct temp_slot *p, *next;
1160 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1162 next = p->next;
1163 make_slot_available (p);
1166 combine_temp_slots ();
1168 temp_slot_level--;
1171 /* Initialize temporary slots. */
1173 void
1174 init_temp_slots (void)
1176 /* We have not allocated any temporaries yet. */
1177 avail_temp_slots = 0;
1178 used_temp_slots = 0;
1179 temp_slot_level = 0;
1182 /* These routines are responsible for converting virtual register references
1183 to the actual hard register references once RTL generation is complete.
1185 The following four variables are used for communication between the
1186 routines. They contain the offsets of the virtual registers from their
1187 respective hard registers. */
1189 static int in_arg_offset;
1190 static int var_offset;
1191 static int dynamic_offset;
1192 static int out_arg_offset;
1193 static int cfa_offset;
1195 /* In most machines, the stack pointer register is equivalent to the bottom
1196 of the stack. */
1198 #ifndef STACK_POINTER_OFFSET
1199 #define STACK_POINTER_OFFSET 0
1200 #endif
1202 /* If not defined, pick an appropriate default for the offset of dynamically
1203 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1204 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1206 #ifndef STACK_DYNAMIC_OFFSET
1208 /* The bottom of the stack points to the actual arguments. If
1209 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1210 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1211 stack space for register parameters is not pushed by the caller, but
1212 rather part of the fixed stack areas and hence not included in
1213 `current_function_outgoing_args_size'. Nevertheless, we must allow
1214 for it when allocating stack dynamic objects. */
1216 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1217 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1218 ((ACCUMULATE_OUTGOING_ARGS \
1219 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1220 + (STACK_POINTER_OFFSET)) \
1222 #else
1223 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1224 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1225 + (STACK_POINTER_OFFSET))
1226 #endif
1227 #endif
1230 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1231 is a virtual register, return the equivalent hard register and set the
1232 offset indirectly through the pointer. Otherwise, return 0. */
1234 static rtx
1235 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1237 rtx new;
1238 HOST_WIDE_INT offset;
1240 if (x == virtual_incoming_args_rtx)
1241 new = arg_pointer_rtx, offset = in_arg_offset;
1242 else if (x == virtual_stack_vars_rtx)
1243 new = frame_pointer_rtx, offset = var_offset;
1244 else if (x == virtual_stack_dynamic_rtx)
1245 new = stack_pointer_rtx, offset = dynamic_offset;
1246 else if (x == virtual_outgoing_args_rtx)
1247 new = stack_pointer_rtx, offset = out_arg_offset;
1248 else if (x == virtual_cfa_rtx)
1250 #ifdef FRAME_POINTER_CFA_OFFSET
1251 new = frame_pointer_rtx;
1252 #else
1253 new = arg_pointer_rtx;
1254 #endif
1255 offset = cfa_offset;
1257 else
1258 return NULL_RTX;
1260 *poffset = offset;
1261 return new;
1264 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1265 Instantiate any virtual registers present inside of *LOC. The expression
1266 is simplified, as much as possible, but is not to be considered "valid"
1267 in any sense implied by the target. If any change is made, set CHANGED
1268 to true. */
1270 static int
1271 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1273 HOST_WIDE_INT offset;
1274 bool *changed = (bool *) data;
1275 rtx x, new;
1277 x = *loc;
1278 if (x == 0)
1279 return 0;
1281 switch (GET_CODE (x))
1283 case REG:
1284 new = instantiate_new_reg (x, &offset);
1285 if (new)
1287 *loc = plus_constant (new, offset);
1288 if (changed)
1289 *changed = true;
1291 return -1;
1293 case PLUS:
1294 new = instantiate_new_reg (XEXP (x, 0), &offset);
1295 if (new)
1297 new = plus_constant (new, offset);
1298 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1299 if (changed)
1300 *changed = true;
1301 return -1;
1304 /* FIXME -- from old code */
1305 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1306 we can commute the PLUS and SUBREG because pointers into the
1307 frame are well-behaved. */
1308 break;
1310 default:
1311 break;
1314 return 0;
1317 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1318 matches the predicate for insn CODE operand OPERAND. */
1320 static int
1321 safe_insn_predicate (int code, int operand, rtx x)
1323 const struct insn_operand_data *op_data;
1325 if (code < 0)
1326 return true;
1328 op_data = &insn_data[code].operand[operand];
1329 if (op_data->predicate == NULL)
1330 return true;
1332 return op_data->predicate (x, op_data->mode);
1335 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1336 registers present inside of insn. The result will be a valid insn. */
1338 static void
1339 instantiate_virtual_regs_in_insn (rtx insn)
1341 HOST_WIDE_INT offset;
1342 int insn_code, i;
1343 bool any_change = false;
1344 rtx set, new, x, seq;
1346 /* There are some special cases to be handled first. */
1347 set = single_set (insn);
1348 if (set)
1350 /* We're allowed to assign to a virtual register. This is interpreted
1351 to mean that the underlying register gets assigned the inverse
1352 transformation. This is used, for example, in the handling of
1353 non-local gotos. */
1354 new = instantiate_new_reg (SET_DEST (set), &offset);
1355 if (new)
1357 start_sequence ();
1359 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1360 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1361 GEN_INT (-offset));
1362 x = force_operand (x, new);
1363 if (x != new)
1364 emit_move_insn (new, x);
1366 seq = get_insns ();
1367 end_sequence ();
1369 emit_insn_before (seq, insn);
1370 delete_insn (insn);
1371 return;
1374 /* Handle a straight copy from a virtual register by generating a
1375 new add insn. The difference between this and falling through
1376 to the generic case is avoiding a new pseudo and eliminating a
1377 move insn in the initial rtl stream. */
1378 new = instantiate_new_reg (SET_SRC (set), &offset);
1379 if (new && offset != 0
1380 && REG_P (SET_DEST (set))
1381 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1383 start_sequence ();
1385 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1386 new, GEN_INT (offset), SET_DEST (set),
1387 1, OPTAB_LIB_WIDEN);
1388 if (x != SET_DEST (set))
1389 emit_move_insn (SET_DEST (set), x);
1391 seq = get_insns ();
1392 end_sequence ();
1394 emit_insn_before (seq, insn);
1395 delete_insn (insn);
1396 return;
1399 extract_insn (insn);
1400 insn_code = INSN_CODE (insn);
1402 /* Handle a plus involving a virtual register by determining if the
1403 operands remain valid if they're modified in place. */
1404 if (GET_CODE (SET_SRC (set)) == PLUS
1405 && recog_data.n_operands >= 3
1406 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1407 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1408 && GET_CODE (recog_data.operand[2]) == CONST_INT
1409 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1411 offset += INTVAL (recog_data.operand[2]);
1413 /* If the sum is zero, then replace with a plain move. */
1414 if (offset == 0
1415 && REG_P (SET_DEST (set))
1416 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1418 start_sequence ();
1419 emit_move_insn (SET_DEST (set), new);
1420 seq = get_insns ();
1421 end_sequence ();
1423 emit_insn_before (seq, insn);
1424 delete_insn (insn);
1425 return;
1428 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1430 /* Using validate_change and apply_change_group here leaves
1431 recog_data in an invalid state. Since we know exactly what
1432 we want to check, do those two by hand. */
1433 if (safe_insn_predicate (insn_code, 1, new)
1434 && safe_insn_predicate (insn_code, 2, x))
1436 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1437 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1438 any_change = true;
1440 /* Fall through into the regular operand fixup loop in
1441 order to take care of operands other than 1 and 2. */
1445 else
1447 extract_insn (insn);
1448 insn_code = INSN_CODE (insn);
1451 /* In the general case, we expect virtual registers to appear only in
1452 operands, and then only as either bare registers or inside memories. */
1453 for (i = 0; i < recog_data.n_operands; ++i)
1455 x = recog_data.operand[i];
1456 switch (GET_CODE (x))
1458 case MEM:
1460 rtx addr = XEXP (x, 0);
1461 bool changed = false;
1463 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1464 if (!changed)
1465 continue;
1467 start_sequence ();
1468 x = replace_equiv_address (x, addr);
1469 seq = get_insns ();
1470 end_sequence ();
1471 if (seq)
1472 emit_insn_before (seq, insn);
1474 break;
1476 case REG:
1477 new = instantiate_new_reg (x, &offset);
1478 if (new == NULL)
1479 continue;
1480 if (offset == 0)
1481 x = new;
1482 else
1484 start_sequence ();
1486 /* Careful, special mode predicates may have stuff in
1487 insn_data[insn_code].operand[i].mode that isn't useful
1488 to us for computing a new value. */
1489 /* ??? Recognize address_operand and/or "p" constraints
1490 to see if (plus new offset) is a valid before we put
1491 this through expand_simple_binop. */
1492 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1499 break;
1501 case SUBREG:
1502 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1503 if (new == NULL)
1504 continue;
1505 if (offset != 0)
1507 start_sequence ();
1508 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1509 GEN_INT (offset), NULL_RTX,
1510 1, OPTAB_LIB_WIDEN);
1511 seq = get_insns ();
1512 end_sequence ();
1513 emit_insn_before (seq, insn);
1515 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1516 GET_MODE (new), SUBREG_BYTE (x));
1517 break;
1519 default:
1520 continue;
1523 /* At this point, X contains the new value for the operand.
1524 Validate the new value vs the insn predicate. Note that
1525 asm insns will have insn_code -1 here. */
1526 if (!safe_insn_predicate (insn_code, i, x))
1527 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1529 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1530 any_change = true;
1533 if (any_change)
1535 /* Propagate operand changes into the duplicates. */
1536 for (i = 0; i < recog_data.n_dups; ++i)
1537 *recog_data.dup_loc[i]
1538 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1540 /* Force re-recognition of the instruction for validation. */
1541 INSN_CODE (insn) = -1;
1544 if (asm_noperands (PATTERN (insn)) >= 0)
1546 if (!check_asm_operands (PATTERN (insn)))
1548 error_for_asm (insn, "impossible constraint in %<asm%>");
1549 delete_insn (insn);
1552 else
1554 if (recog_memoized (insn) < 0)
1555 fatal_insn_not_found (insn);
1559 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1560 do any instantiation required. */
1562 static void
1563 instantiate_decl (rtx x)
1565 rtx addr;
1567 if (x == 0)
1568 return;
1570 /* If this is a CONCAT, recurse for the pieces. */
1571 if (GET_CODE (x) == CONCAT)
1573 instantiate_decl (XEXP (x, 0));
1574 instantiate_decl (XEXP (x, 1));
1575 return;
1578 /* If this is not a MEM, no need to do anything. Similarly if the
1579 address is a constant or a register that is not a virtual register. */
1580 if (!MEM_P (x))
1581 return;
1583 addr = XEXP (x, 0);
1584 if (CONSTANT_P (addr)
1585 || (REG_P (addr)
1586 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1587 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1588 return;
1590 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1593 /* Subroutine of instantiate_decls: Process all decls in the given
1594 BLOCK node and all its subblocks. */
1596 static void
1597 instantiate_decls_1 (tree let)
1599 tree t;
1601 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1602 if (DECL_RTL_SET_P (t))
1603 instantiate_decl (DECL_RTL (t));
1605 /* Process all subblocks. */
1606 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1607 instantiate_decls_1 (t);
1610 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1611 all virtual registers in their DECL_RTL's. */
1613 static void
1614 instantiate_decls (tree fndecl)
1616 tree decl;
1618 /* Process all parameters of the function. */
1619 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1621 instantiate_decl (DECL_RTL (decl));
1622 instantiate_decl (DECL_INCOMING_RTL (decl));
1625 /* Now process all variables defined in the function or its subblocks. */
1626 instantiate_decls_1 (DECL_INITIAL (fndecl));
1629 /* Pass through the INSNS of function FNDECL and convert virtual register
1630 references to hard register references. */
1632 void
1633 instantiate_virtual_regs (void)
1635 rtx insn;
1637 /* Compute the offsets to use for this function. */
1638 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1639 var_offset = STARTING_FRAME_OFFSET;
1640 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1641 out_arg_offset = STACK_POINTER_OFFSET;
1642 #ifdef FRAME_POINTER_CFA_OFFSET
1643 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1644 #else
1645 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1646 #endif
1648 /* Initialize recognition, indicating that volatile is OK. */
1649 init_recog ();
1651 /* Scan through all the insns, instantiating every virtual register still
1652 present. */
1653 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1654 if (INSN_P (insn))
1656 /* These patterns in the instruction stream can never be recognized.
1657 Fortunately, they shouldn't contain virtual registers either. */
1658 if (GET_CODE (PATTERN (insn)) == USE
1659 || GET_CODE (PATTERN (insn)) == CLOBBER
1660 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1661 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1662 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1663 continue;
1665 instantiate_virtual_regs_in_insn (insn);
1667 if (INSN_DELETED_P (insn))
1668 continue;
1670 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1672 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1673 if (GET_CODE (insn) == CALL_INSN)
1674 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1675 instantiate_virtual_regs_in_rtx, NULL);
1678 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1679 instantiate_decls (current_function_decl);
1681 /* Indicate that, from now on, assign_stack_local should use
1682 frame_pointer_rtx. */
1683 virtuals_instantiated = 1;
1686 struct tree_opt_pass pass_instantiate_virtual_regs =
1688 "vregs", /* name */
1689 NULL, /* gate */
1690 instantiate_virtual_regs, /* execute */
1691 NULL, /* sub */
1692 NULL, /* next */
1693 0, /* static_pass_number */
1694 0, /* tv_id */
1695 0, /* properties_required */
1696 0, /* properties_provided */
1697 0, /* properties_destroyed */
1698 0, /* todo_flags_start */
1699 TODO_dump_func, /* todo_flags_finish */
1700 0 /* letter */
1704 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1705 This means a type for which function calls must pass an address to the
1706 function or get an address back from the function.
1707 EXP may be a type node or an expression (whose type is tested). */
1710 aggregate_value_p (tree exp, tree fntype)
1712 int i, regno, nregs;
1713 rtx reg;
1715 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1717 if (fntype)
1718 switch (TREE_CODE (fntype))
1720 case CALL_EXPR:
1721 fntype = get_callee_fndecl (fntype);
1722 fntype = fntype ? TREE_TYPE (fntype) : 0;
1723 break;
1724 case FUNCTION_DECL:
1725 fntype = TREE_TYPE (fntype);
1726 break;
1727 case FUNCTION_TYPE:
1728 case METHOD_TYPE:
1729 break;
1730 case IDENTIFIER_NODE:
1731 fntype = 0;
1732 break;
1733 default:
1734 /* We don't expect other rtl types here. */
1735 gcc_unreachable ();
1738 if (TREE_CODE (type) == VOID_TYPE)
1739 return 0;
1740 /* If the front end has decided that this needs to be passed by
1741 reference, do so. */
1742 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1743 && DECL_BY_REFERENCE (exp))
1744 return 1;
1745 if (targetm.calls.return_in_memory (type, fntype))
1746 return 1;
1747 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1748 and thus can't be returned in registers. */
1749 if (TREE_ADDRESSABLE (type))
1750 return 1;
1751 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1752 return 1;
1753 /* Make sure we have suitable call-clobbered regs to return
1754 the value in; if not, we must return it in memory. */
1755 reg = hard_function_value (type, 0, fntype, 0);
1757 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1758 it is OK. */
1759 if (!REG_P (reg))
1760 return 0;
1762 regno = REGNO (reg);
1763 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1764 for (i = 0; i < nregs; i++)
1765 if (! call_used_regs[regno + i])
1766 return 1;
1767 return 0;
1770 /* Return true if we should assign DECL a pseudo register; false if it
1771 should live on the local stack. */
1773 bool
1774 use_register_for_decl (tree decl)
1776 /* Honor volatile. */
1777 if (TREE_SIDE_EFFECTS (decl))
1778 return false;
1780 /* Honor addressability. */
1781 if (TREE_ADDRESSABLE (decl))
1782 return false;
1784 /* Only register-like things go in registers. */
1785 if (DECL_MODE (decl) == BLKmode)
1786 return false;
1788 /* If -ffloat-store specified, don't put explicit float variables
1789 into registers. */
1790 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1791 propagates values across these stores, and it probably shouldn't. */
1792 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1793 return false;
1795 /* If we're not interested in tracking debugging information for
1796 this decl, then we can certainly put it in a register. */
1797 if (DECL_IGNORED_P (decl))
1798 return true;
1800 return (optimize || DECL_REGISTER (decl));
1803 /* Return true if TYPE should be passed by invisible reference. */
1805 bool
1806 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1807 tree type, bool named_arg)
1809 if (type)
1811 /* If this type contains non-trivial constructors, then it is
1812 forbidden for the middle-end to create any new copies. */
1813 if (TREE_ADDRESSABLE (type))
1814 return true;
1816 /* GCC post 3.4 passes *all* variable sized types by reference. */
1817 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1818 return true;
1821 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1824 /* Return true if TYPE, which is passed by reference, should be callee
1825 copied instead of caller copied. */
1827 bool
1828 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1829 tree type, bool named_arg)
1831 if (type && TREE_ADDRESSABLE (type))
1832 return false;
1833 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1836 /* Structures to communicate between the subroutines of assign_parms.
1837 The first holds data persistent across all parameters, the second
1838 is cleared out for each parameter. */
1840 struct assign_parm_data_all
1842 CUMULATIVE_ARGS args_so_far;
1843 struct args_size stack_args_size;
1844 tree function_result_decl;
1845 tree orig_fnargs;
1846 rtx conversion_insns;
1847 HOST_WIDE_INT pretend_args_size;
1848 HOST_WIDE_INT extra_pretend_bytes;
1849 int reg_parm_stack_space;
1852 struct assign_parm_data_one
1854 tree nominal_type;
1855 tree passed_type;
1856 rtx entry_parm;
1857 rtx stack_parm;
1858 enum machine_mode nominal_mode;
1859 enum machine_mode passed_mode;
1860 enum machine_mode promoted_mode;
1861 struct locate_and_pad_arg_data locate;
1862 int partial;
1863 BOOL_BITFIELD named_arg : 1;
1864 BOOL_BITFIELD passed_pointer : 1;
1865 BOOL_BITFIELD on_stack : 1;
1866 BOOL_BITFIELD loaded_in_reg : 1;
1869 /* A subroutine of assign_parms. Initialize ALL. */
1871 static void
1872 assign_parms_initialize_all (struct assign_parm_data_all *all)
1874 tree fntype;
1876 memset (all, 0, sizeof (*all));
1878 fntype = TREE_TYPE (current_function_decl);
1880 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1881 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1882 #else
1883 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1884 current_function_decl, -1);
1885 #endif
1887 #ifdef REG_PARM_STACK_SPACE
1888 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1889 #endif
1892 /* If ARGS contains entries with complex types, split the entry into two
1893 entries of the component type. Return a new list of substitutions are
1894 needed, else the old list. */
1896 static tree
1897 split_complex_args (tree args)
1899 tree p;
1901 /* Before allocating memory, check for the common case of no complex. */
1902 for (p = args; p; p = TREE_CHAIN (p))
1904 tree type = TREE_TYPE (p);
1905 if (TREE_CODE (type) == COMPLEX_TYPE
1906 && targetm.calls.split_complex_arg (type))
1907 goto found;
1909 return args;
1911 found:
1912 args = copy_list (args);
1914 for (p = args; p; p = TREE_CHAIN (p))
1916 tree type = TREE_TYPE (p);
1917 if (TREE_CODE (type) == COMPLEX_TYPE
1918 && targetm.calls.split_complex_arg (type))
1920 tree decl;
1921 tree subtype = TREE_TYPE (type);
1922 bool addressable = TREE_ADDRESSABLE (p);
1924 /* Rewrite the PARM_DECL's type with its component. */
1925 TREE_TYPE (p) = subtype;
1926 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1927 DECL_MODE (p) = VOIDmode;
1928 DECL_SIZE (p) = NULL;
1929 DECL_SIZE_UNIT (p) = NULL;
1930 /* If this arg must go in memory, put it in a pseudo here.
1931 We can't allow it to go in memory as per normal parms,
1932 because the usual place might not have the imag part
1933 adjacent to the real part. */
1934 DECL_ARTIFICIAL (p) = addressable;
1935 DECL_IGNORED_P (p) = addressable;
1936 TREE_ADDRESSABLE (p) = 0;
1937 layout_decl (p, 0);
1939 /* Build a second synthetic decl. */
1940 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1941 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1942 DECL_ARTIFICIAL (decl) = addressable;
1943 DECL_IGNORED_P (decl) = addressable;
1944 layout_decl (decl, 0);
1946 /* Splice it in; skip the new decl. */
1947 TREE_CHAIN (decl) = TREE_CHAIN (p);
1948 TREE_CHAIN (p) = decl;
1949 p = decl;
1953 return args;
1956 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1957 the hidden struct return argument, and (abi willing) complex args.
1958 Return the new parameter list. */
1960 static tree
1961 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1963 tree fndecl = current_function_decl;
1964 tree fntype = TREE_TYPE (fndecl);
1965 tree fnargs = DECL_ARGUMENTS (fndecl);
1967 /* If struct value address is treated as the first argument, make it so. */
1968 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1969 && ! current_function_returns_pcc_struct
1970 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1972 tree type = build_pointer_type (TREE_TYPE (fntype));
1973 tree decl;
1975 decl = build_decl (PARM_DECL, NULL_TREE, type);
1976 DECL_ARG_TYPE (decl) = type;
1977 DECL_ARTIFICIAL (decl) = 1;
1978 DECL_IGNORED_P (decl) = 1;
1980 TREE_CHAIN (decl) = fnargs;
1981 fnargs = decl;
1982 all->function_result_decl = decl;
1985 all->orig_fnargs = fnargs;
1987 /* If the target wants to split complex arguments into scalars, do so. */
1988 if (targetm.calls.split_complex_arg)
1989 fnargs = split_complex_args (fnargs);
1991 return fnargs;
1994 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1995 data for the parameter. Incorporate ABI specifics such as pass-by-
1996 reference and type promotion. */
1998 static void
1999 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2000 struct assign_parm_data_one *data)
2002 tree nominal_type, passed_type;
2003 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2005 memset (data, 0, sizeof (*data));
2007 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2008 if (!current_function_stdarg)
2009 data->named_arg = 1; /* No varadic parms. */
2010 else if (TREE_CHAIN (parm))
2011 data->named_arg = 1; /* Not the last non-varadic parm. */
2012 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2013 data->named_arg = 1; /* Only varadic ones are unnamed. */
2014 else
2015 data->named_arg = 0; /* Treat as varadic. */
2017 nominal_type = TREE_TYPE (parm);
2018 passed_type = DECL_ARG_TYPE (parm);
2020 /* Look out for errors propagating this far. Also, if the parameter's
2021 type is void then its value doesn't matter. */
2022 if (TREE_TYPE (parm) == error_mark_node
2023 /* This can happen after weird syntax errors
2024 or if an enum type is defined among the parms. */
2025 || TREE_CODE (parm) != PARM_DECL
2026 || passed_type == NULL
2027 || VOID_TYPE_P (nominal_type))
2029 nominal_type = passed_type = void_type_node;
2030 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2031 goto egress;
2034 /* Find mode of arg as it is passed, and mode of arg as it should be
2035 during execution of this function. */
2036 passed_mode = TYPE_MODE (passed_type);
2037 nominal_mode = TYPE_MODE (nominal_type);
2039 /* If the parm is to be passed as a transparent union, use the type of
2040 the first field for the tests below. We have already verified that
2041 the modes are the same. */
2042 if (TREE_CODE (passed_type) == UNION_TYPE
2043 && TYPE_TRANSPARENT_UNION (passed_type))
2044 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2046 /* See if this arg was passed by invisible reference. */
2047 if (pass_by_reference (&all->args_so_far, passed_mode,
2048 passed_type, data->named_arg))
2050 passed_type = nominal_type = build_pointer_type (passed_type);
2051 data->passed_pointer = true;
2052 passed_mode = nominal_mode = Pmode;
2055 /* Find mode as it is passed by the ABI. */
2056 promoted_mode = passed_mode;
2057 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2059 int unsignedp = TYPE_UNSIGNED (passed_type);
2060 promoted_mode = promote_mode (passed_type, promoted_mode,
2061 &unsignedp, 1);
2064 egress:
2065 data->nominal_type = nominal_type;
2066 data->passed_type = passed_type;
2067 data->nominal_mode = nominal_mode;
2068 data->passed_mode = passed_mode;
2069 data->promoted_mode = promoted_mode;
2072 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2074 static void
2075 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2076 struct assign_parm_data_one *data, bool no_rtl)
2078 int varargs_pretend_bytes = 0;
2080 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2081 data->promoted_mode,
2082 data->passed_type,
2083 &varargs_pretend_bytes, no_rtl);
2085 /* If the back-end has requested extra stack space, record how much is
2086 needed. Do not change pretend_args_size otherwise since it may be
2087 nonzero from an earlier partial argument. */
2088 if (varargs_pretend_bytes > 0)
2089 all->pretend_args_size = varargs_pretend_bytes;
2092 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2093 the incoming location of the current parameter. */
2095 static void
2096 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2097 struct assign_parm_data_one *data)
2099 HOST_WIDE_INT pretend_bytes = 0;
2100 rtx entry_parm;
2101 bool in_regs;
2103 if (data->promoted_mode == VOIDmode)
2105 data->entry_parm = data->stack_parm = const0_rtx;
2106 return;
2109 #ifdef FUNCTION_INCOMING_ARG
2110 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2111 data->passed_type, data->named_arg);
2112 #else
2113 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2114 data->passed_type, data->named_arg);
2115 #endif
2117 if (entry_parm == 0)
2118 data->promoted_mode = data->passed_mode;
2120 /* Determine parm's home in the stack, in case it arrives in the stack
2121 or we should pretend it did. Compute the stack position and rtx where
2122 the argument arrives and its size.
2124 There is one complexity here: If this was a parameter that would
2125 have been passed in registers, but wasn't only because it is
2126 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2127 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2128 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2129 as it was the previous time. */
2130 in_regs = entry_parm != 0;
2131 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2132 in_regs = true;
2133 #endif
2134 if (!in_regs && !data->named_arg)
2136 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2138 rtx tem;
2139 #ifdef FUNCTION_INCOMING_ARG
2140 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2141 data->passed_type, true);
2142 #else
2143 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2144 data->passed_type, true);
2145 #endif
2146 in_regs = tem != NULL;
2150 /* If this parameter was passed both in registers and in the stack, use
2151 the copy on the stack. */
2152 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2153 data->passed_type))
2154 entry_parm = 0;
2156 if (entry_parm)
2158 int partial;
2160 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2161 data->promoted_mode,
2162 data->passed_type,
2163 data->named_arg);
2164 data->partial = partial;
2166 /* The caller might already have allocated stack space for the
2167 register parameters. */
2168 if (partial != 0 && all->reg_parm_stack_space == 0)
2170 /* Part of this argument is passed in registers and part
2171 is passed on the stack. Ask the prologue code to extend
2172 the stack part so that we can recreate the full value.
2174 PRETEND_BYTES is the size of the registers we need to store.
2175 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2176 stack space that the prologue should allocate.
2178 Internally, gcc assumes that the argument pointer is aligned
2179 to STACK_BOUNDARY bits. This is used both for alignment
2180 optimizations (see init_emit) and to locate arguments that are
2181 aligned to more than PARM_BOUNDARY bits. We must preserve this
2182 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2183 a stack boundary. */
2185 /* We assume at most one partial arg, and it must be the first
2186 argument on the stack. */
2187 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2189 pretend_bytes = partial;
2190 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2192 /* We want to align relative to the actual stack pointer, so
2193 don't include this in the stack size until later. */
2194 all->extra_pretend_bytes = all->pretend_args_size;
2198 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2199 entry_parm ? data->partial : 0, current_function_decl,
2200 &all->stack_args_size, &data->locate);
2202 /* Adjust offsets to include the pretend args. */
2203 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2204 data->locate.slot_offset.constant += pretend_bytes;
2205 data->locate.offset.constant += pretend_bytes;
2207 data->entry_parm = entry_parm;
2210 /* A subroutine of assign_parms. If there is actually space on the stack
2211 for this parm, count it in stack_args_size and return true. */
2213 static bool
2214 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2215 struct assign_parm_data_one *data)
2217 /* Trivially true if we've no incoming register. */
2218 if (data->entry_parm == NULL)
2220 /* Also true if we're partially in registers and partially not,
2221 since we've arranged to drop the entire argument on the stack. */
2222 else if (data->partial != 0)
2224 /* Also true if the target says that it's passed in both registers
2225 and on the stack. */
2226 else if (GET_CODE (data->entry_parm) == PARALLEL
2227 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2229 /* Also true if the target says that there's stack allocated for
2230 all register parameters. */
2231 else if (all->reg_parm_stack_space > 0)
2233 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2234 else
2235 return false;
2237 all->stack_args_size.constant += data->locate.size.constant;
2238 if (data->locate.size.var)
2239 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2241 return true;
2244 /* A subroutine of assign_parms. Given that this parameter is allocated
2245 stack space by the ABI, find it. */
2247 static void
2248 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2250 rtx offset_rtx, stack_parm;
2251 unsigned int align, boundary;
2253 /* If we're passing this arg using a reg, make its stack home the
2254 aligned stack slot. */
2255 if (data->entry_parm)
2256 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2257 else
2258 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2260 stack_parm = current_function_internal_arg_pointer;
2261 if (offset_rtx != const0_rtx)
2262 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2263 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2265 set_mem_attributes (stack_parm, parm, 1);
2267 boundary = data->locate.boundary;
2268 align = BITS_PER_UNIT;
2270 /* If we're padding upward, we know that the alignment of the slot
2271 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2272 intentionally forcing upward padding. Otherwise we have to come
2273 up with a guess at the alignment based on OFFSET_RTX. */
2274 if (data->locate.where_pad != downward || data->entry_parm)
2275 align = boundary;
2276 else if (GET_CODE (offset_rtx) == CONST_INT)
2278 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2279 align = align & -align;
2281 set_mem_align (stack_parm, align);
2283 if (data->entry_parm)
2284 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2286 data->stack_parm = stack_parm;
2289 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2290 always valid and contiguous. */
2292 static void
2293 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2295 rtx entry_parm = data->entry_parm;
2296 rtx stack_parm = data->stack_parm;
2298 /* If this parm was passed part in regs and part in memory, pretend it
2299 arrived entirely in memory by pushing the register-part onto the stack.
2300 In the special case of a DImode or DFmode that is split, we could put
2301 it together in a pseudoreg directly, but for now that's not worth
2302 bothering with. */
2303 if (data->partial != 0)
2305 /* Handle calls that pass values in multiple non-contiguous
2306 locations. The Irix 6 ABI has examples of this. */
2307 if (GET_CODE (entry_parm) == PARALLEL)
2308 emit_group_store (validize_mem (stack_parm), entry_parm,
2309 data->passed_type,
2310 int_size_in_bytes (data->passed_type));
2311 else
2313 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2314 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2315 data->partial / UNITS_PER_WORD);
2318 entry_parm = stack_parm;
2321 /* If we didn't decide this parm came in a register, by default it came
2322 on the stack. */
2323 else if (entry_parm == NULL)
2324 entry_parm = stack_parm;
2326 /* When an argument is passed in multiple locations, we can't make use
2327 of this information, but we can save some copying if the whole argument
2328 is passed in a single register. */
2329 else if (GET_CODE (entry_parm) == PARALLEL
2330 && data->nominal_mode != BLKmode
2331 && data->passed_mode != BLKmode)
2333 size_t i, len = XVECLEN (entry_parm, 0);
2335 for (i = 0; i < len; i++)
2336 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2337 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2338 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2339 == data->passed_mode)
2340 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2342 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2343 break;
2347 data->entry_parm = entry_parm;
2350 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2351 always valid and properly aligned. */
2353 static void
2354 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2356 rtx stack_parm = data->stack_parm;
2358 /* If we can't trust the parm stack slot to be aligned enough for its
2359 ultimate type, don't use that slot after entry. We'll make another
2360 stack slot, if we need one. */
2361 if (stack_parm
2362 && ((STRICT_ALIGNMENT
2363 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2364 || (data->nominal_type
2365 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2366 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2367 stack_parm = NULL;
2369 /* If parm was passed in memory, and we need to convert it on entry,
2370 don't store it back in that same slot. */
2371 else if (data->entry_parm == stack_parm
2372 && data->nominal_mode != BLKmode
2373 && data->nominal_mode != data->passed_mode)
2374 stack_parm = NULL;
2376 /* If stack protection is in effect for this function, don't leave any
2377 pointers in their passed stack slots. */
2378 else if (cfun->stack_protect_guard
2379 && (flag_stack_protect == 2
2380 || data->passed_pointer
2381 || POINTER_TYPE_P (data->nominal_type)))
2382 stack_parm = NULL;
2384 data->stack_parm = stack_parm;
2387 /* A subroutine of assign_parms. Return true if the current parameter
2388 should be stored as a BLKmode in the current frame. */
2390 static bool
2391 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2393 if (data->nominal_mode == BLKmode)
2394 return true;
2395 if (GET_CODE (data->entry_parm) == PARALLEL)
2396 return true;
2398 #ifdef BLOCK_REG_PADDING
2399 /* Only assign_parm_setup_block knows how to deal with register arguments
2400 that are padded at the least significant end. */
2401 if (REG_P (data->entry_parm)
2402 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2403 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2404 == (BYTES_BIG_ENDIAN ? upward : downward)))
2405 return true;
2406 #endif
2408 return false;
2411 /* A subroutine of assign_parms. Arrange for the parameter to be
2412 present and valid in DATA->STACK_RTL. */
2414 static void
2415 assign_parm_setup_block (struct assign_parm_data_all *all,
2416 tree parm, struct assign_parm_data_one *data)
2418 rtx entry_parm = data->entry_parm;
2419 rtx stack_parm = data->stack_parm;
2420 HOST_WIDE_INT size;
2421 HOST_WIDE_INT size_stored;
2422 rtx orig_entry_parm = entry_parm;
2424 if (GET_CODE (entry_parm) == PARALLEL)
2425 entry_parm = emit_group_move_into_temps (entry_parm);
2427 /* If we've a non-block object that's nevertheless passed in parts,
2428 reconstitute it in register operations rather than on the stack. */
2429 if (GET_CODE (entry_parm) == PARALLEL
2430 && data->nominal_mode != BLKmode)
2432 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2434 if ((XVECLEN (entry_parm, 0) > 1
2435 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2436 && use_register_for_decl (parm))
2438 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2440 push_to_sequence (all->conversion_insns);
2442 /* For values returned in multiple registers, handle possible
2443 incompatible calls to emit_group_store.
2445 For example, the following would be invalid, and would have to
2446 be fixed by the conditional below:
2448 emit_group_store ((reg:SF), (parallel:DF))
2449 emit_group_store ((reg:SI), (parallel:DI))
2451 An example of this are doubles in e500 v2:
2452 (parallel:DF (expr_list (reg:SI) (const_int 0))
2453 (expr_list (reg:SI) (const_int 4))). */
2454 if (data->nominal_mode != data->passed_mode)
2456 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2457 emit_group_store (t, entry_parm, NULL_TREE,
2458 GET_MODE_SIZE (GET_MODE (entry_parm)));
2459 convert_move (parmreg, t, 0);
2461 else
2462 emit_group_store (parmreg, entry_parm, data->nominal_type,
2463 int_size_in_bytes (data->nominal_type));
2465 all->conversion_insns = get_insns ();
2466 end_sequence ();
2468 SET_DECL_RTL (parm, parmreg);
2469 return;
2473 size = int_size_in_bytes (data->passed_type);
2474 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2475 if (stack_parm == 0)
2477 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2478 stack_parm = assign_stack_local (BLKmode, size_stored,
2479 DECL_ALIGN (parm));
2480 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2481 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2482 set_mem_attributes (stack_parm, parm, 1);
2485 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2486 calls that pass values in multiple non-contiguous locations. */
2487 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2489 rtx mem;
2491 /* Note that we will be storing an integral number of words.
2492 So we have to be careful to ensure that we allocate an
2493 integral number of words. We do this above when we call
2494 assign_stack_local if space was not allocated in the argument
2495 list. If it was, this will not work if PARM_BOUNDARY is not
2496 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2497 if it becomes a problem. Exception is when BLKmode arrives
2498 with arguments not conforming to word_mode. */
2500 if (data->stack_parm == 0)
2502 else if (GET_CODE (entry_parm) == PARALLEL)
2504 else
2505 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2507 mem = validize_mem (stack_parm);
2509 /* Handle values in multiple non-contiguous locations. */
2510 if (GET_CODE (entry_parm) == PARALLEL)
2512 push_to_sequence (all->conversion_insns);
2513 emit_group_store (mem, entry_parm, data->passed_type, size);
2514 all->conversion_insns = get_insns ();
2515 end_sequence ();
2518 else if (size == 0)
2521 /* If SIZE is that of a mode no bigger than a word, just use
2522 that mode's store operation. */
2523 else if (size <= UNITS_PER_WORD)
2525 enum machine_mode mode
2526 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2528 if (mode != BLKmode
2529 #ifdef BLOCK_REG_PADDING
2530 && (size == UNITS_PER_WORD
2531 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2532 != (BYTES_BIG_ENDIAN ? upward : downward)))
2533 #endif
2536 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2537 emit_move_insn (change_address (mem, mode, 0), reg);
2540 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2541 machine must be aligned to the left before storing
2542 to memory. Note that the previous test doesn't
2543 handle all cases (e.g. SIZE == 3). */
2544 else if (size != UNITS_PER_WORD
2545 #ifdef BLOCK_REG_PADDING
2546 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2547 == downward)
2548 #else
2549 && BYTES_BIG_ENDIAN
2550 #endif
2553 rtx tem, x;
2554 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2555 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2557 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2558 build_int_cst (NULL_TREE, by),
2559 NULL_RTX, 1);
2560 tem = change_address (mem, word_mode, 0);
2561 emit_move_insn (tem, x);
2563 else
2564 move_block_from_reg (REGNO (entry_parm), mem,
2565 size_stored / UNITS_PER_WORD);
2567 else
2568 move_block_from_reg (REGNO (entry_parm), mem,
2569 size_stored / UNITS_PER_WORD);
2571 else if (data->stack_parm == 0)
2573 push_to_sequence (all->conversion_insns);
2574 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2575 BLOCK_OP_NORMAL);
2576 all->conversion_insns = get_insns ();
2577 end_sequence ();
2580 data->stack_parm = stack_parm;
2581 SET_DECL_RTL (parm, stack_parm);
2584 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2585 parameter. Get it there. Perform all ABI specified conversions. */
2587 static void
2588 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2589 struct assign_parm_data_one *data)
2591 rtx parmreg;
2592 enum machine_mode promoted_nominal_mode;
2593 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2594 bool did_conversion = false;
2596 /* Store the parm in a pseudoregister during the function, but we may
2597 need to do it in a wider mode. */
2599 promoted_nominal_mode
2600 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2602 parmreg = gen_reg_rtx (promoted_nominal_mode);
2604 if (!DECL_ARTIFICIAL (parm))
2605 mark_user_reg (parmreg);
2607 /* If this was an item that we received a pointer to,
2608 set DECL_RTL appropriately. */
2609 if (data->passed_pointer)
2611 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2612 set_mem_attributes (x, parm, 1);
2613 SET_DECL_RTL (parm, x);
2615 else
2616 SET_DECL_RTL (parm, parmreg);
2618 /* Copy the value into the register. */
2619 if (data->nominal_mode != data->passed_mode
2620 || promoted_nominal_mode != data->promoted_mode)
2622 int save_tree_used;
2624 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2625 mode, by the caller. We now have to convert it to
2626 NOMINAL_MODE, if different. However, PARMREG may be in
2627 a different mode than NOMINAL_MODE if it is being stored
2628 promoted.
2630 If ENTRY_PARM is a hard register, it might be in a register
2631 not valid for operating in its mode (e.g., an odd-numbered
2632 register for a DFmode). In that case, moves are the only
2633 thing valid, so we can't do a convert from there. This
2634 occurs when the calling sequence allow such misaligned
2635 usages.
2637 In addition, the conversion may involve a call, which could
2638 clobber parameters which haven't been copied to pseudo
2639 registers yet. Therefore, we must first copy the parm to
2640 a pseudo reg here, and save the conversion until after all
2641 parameters have been moved. */
2643 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2645 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2647 push_to_sequence (all->conversion_insns);
2648 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2650 if (GET_CODE (tempreg) == SUBREG
2651 && GET_MODE (tempreg) == data->nominal_mode
2652 && REG_P (SUBREG_REG (tempreg))
2653 && data->nominal_mode == data->passed_mode
2654 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2655 && GET_MODE_SIZE (GET_MODE (tempreg))
2656 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2658 /* The argument is already sign/zero extended, so note it
2659 into the subreg. */
2660 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2661 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2664 /* TREE_USED gets set erroneously during expand_assignment. */
2665 save_tree_used = TREE_USED (parm);
2666 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2667 TREE_USED (parm) = save_tree_used;
2668 all->conversion_insns = get_insns ();
2669 end_sequence ();
2671 did_conversion = true;
2673 else
2674 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2676 /* If we were passed a pointer but the actual value can safely live
2677 in a register, put it in one. */
2678 if (data->passed_pointer
2679 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2680 /* If by-reference argument was promoted, demote it. */
2681 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2682 || use_register_for_decl (parm)))
2684 /* We can't use nominal_mode, because it will have been set to
2685 Pmode above. We must use the actual mode of the parm. */
2686 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2687 mark_user_reg (parmreg);
2689 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2691 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2692 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2694 push_to_sequence (all->conversion_insns);
2695 emit_move_insn (tempreg, DECL_RTL (parm));
2696 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2697 emit_move_insn (parmreg, tempreg);
2698 all->conversion_insns = get_insns ();
2699 end_sequence ();
2701 did_conversion = true;
2703 else
2704 emit_move_insn (parmreg, DECL_RTL (parm));
2706 SET_DECL_RTL (parm, parmreg);
2708 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2709 now the parm. */
2710 data->stack_parm = NULL;
2713 /* Mark the register as eliminable if we did no conversion and it was
2714 copied from memory at a fixed offset, and the arg pointer was not
2715 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2716 offset formed an invalid address, such memory-equivalences as we
2717 make here would screw up life analysis for it. */
2718 if (data->nominal_mode == data->passed_mode
2719 && !did_conversion
2720 && data->stack_parm != 0
2721 && MEM_P (data->stack_parm)
2722 && data->locate.offset.var == 0
2723 && reg_mentioned_p (virtual_incoming_args_rtx,
2724 XEXP (data->stack_parm, 0)))
2726 rtx linsn = get_last_insn ();
2727 rtx sinsn, set;
2729 /* Mark complex types separately. */
2730 if (GET_CODE (parmreg) == CONCAT)
2732 enum machine_mode submode
2733 = GET_MODE_INNER (GET_MODE (parmreg));
2734 int regnor = REGNO (XEXP (parmreg, 0));
2735 int regnoi = REGNO (XEXP (parmreg, 1));
2736 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2737 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2738 GET_MODE_SIZE (submode));
2740 /* Scan backwards for the set of the real and
2741 imaginary parts. */
2742 for (sinsn = linsn; sinsn != 0;
2743 sinsn = prev_nonnote_insn (sinsn))
2745 set = single_set (sinsn);
2746 if (set == 0)
2747 continue;
2749 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2750 REG_NOTES (sinsn)
2751 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2752 REG_NOTES (sinsn));
2753 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2754 REG_NOTES (sinsn)
2755 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2756 REG_NOTES (sinsn));
2759 else if ((set = single_set (linsn)) != 0
2760 && SET_DEST (set) == parmreg)
2761 REG_NOTES (linsn)
2762 = gen_rtx_EXPR_LIST (REG_EQUIV,
2763 data->stack_parm, REG_NOTES (linsn));
2766 /* For pointer data type, suggest pointer register. */
2767 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2768 mark_reg_pointer (parmreg,
2769 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2772 /* A subroutine of assign_parms. Allocate stack space to hold the current
2773 parameter. Get it there. Perform all ABI specified conversions. */
2775 static void
2776 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2777 struct assign_parm_data_one *data)
2779 /* Value must be stored in the stack slot STACK_PARM during function
2780 execution. */
2781 bool to_conversion = false;
2783 if (data->promoted_mode != data->nominal_mode)
2785 /* Conversion is required. */
2786 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2788 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2790 push_to_sequence (all->conversion_insns);
2791 to_conversion = true;
2793 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2794 TYPE_UNSIGNED (TREE_TYPE (parm)));
2796 if (data->stack_parm)
2797 /* ??? This may need a big-endian conversion on sparc64. */
2798 data->stack_parm
2799 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2802 if (data->entry_parm != data->stack_parm)
2804 rtx src, dest;
2806 if (data->stack_parm == 0)
2808 data->stack_parm
2809 = assign_stack_local (GET_MODE (data->entry_parm),
2810 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2811 TYPE_ALIGN (data->passed_type));
2812 set_mem_attributes (data->stack_parm, parm, 1);
2815 dest = validize_mem (data->stack_parm);
2816 src = validize_mem (data->entry_parm);
2818 if (MEM_P (src))
2820 /* Use a block move to handle potentially misaligned entry_parm. */
2821 if (!to_conversion)
2822 push_to_sequence (all->conversion_insns);
2823 to_conversion = true;
2825 emit_block_move (dest, src,
2826 GEN_INT (int_size_in_bytes (data->passed_type)),
2827 BLOCK_OP_NORMAL);
2829 else
2830 emit_move_insn (dest, src);
2833 if (to_conversion)
2835 all->conversion_insns = get_insns ();
2836 end_sequence ();
2839 SET_DECL_RTL (parm, data->stack_parm);
2842 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2843 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2845 static void
2846 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2848 tree parm;
2849 tree orig_fnargs = all->orig_fnargs;
2851 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2853 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2854 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2856 rtx tmp, real, imag;
2857 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2859 real = DECL_RTL (fnargs);
2860 imag = DECL_RTL (TREE_CHAIN (fnargs));
2861 if (inner != GET_MODE (real))
2863 real = gen_lowpart_SUBREG (inner, real);
2864 imag = gen_lowpart_SUBREG (inner, imag);
2867 if (TREE_ADDRESSABLE (parm))
2869 rtx rmem, imem;
2870 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2872 /* split_complex_arg put the real and imag parts in
2873 pseudos. Move them to memory. */
2874 tmp = assign_stack_local (DECL_MODE (parm), size,
2875 TYPE_ALIGN (TREE_TYPE (parm)));
2876 set_mem_attributes (tmp, parm, 1);
2877 rmem = adjust_address_nv (tmp, inner, 0);
2878 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2879 push_to_sequence (all->conversion_insns);
2880 emit_move_insn (rmem, real);
2881 emit_move_insn (imem, imag);
2882 all->conversion_insns = get_insns ();
2883 end_sequence ();
2885 else
2886 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2887 SET_DECL_RTL (parm, tmp);
2889 real = DECL_INCOMING_RTL (fnargs);
2890 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2891 if (inner != GET_MODE (real))
2893 real = gen_lowpart_SUBREG (inner, real);
2894 imag = gen_lowpart_SUBREG (inner, imag);
2896 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2897 set_decl_incoming_rtl (parm, tmp);
2898 fnargs = TREE_CHAIN (fnargs);
2900 else
2902 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2903 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2905 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2906 instead of the copy of decl, i.e. FNARGS. */
2907 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2908 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2911 fnargs = TREE_CHAIN (fnargs);
2915 /* Assign RTL expressions to the function's parameters. This may involve
2916 copying them into registers and using those registers as the DECL_RTL. */
2918 static void
2919 assign_parms (tree fndecl)
2921 struct assign_parm_data_all all;
2922 tree fnargs, parm;
2924 current_function_internal_arg_pointer
2925 = targetm.calls.internal_arg_pointer ();
2927 assign_parms_initialize_all (&all);
2928 fnargs = assign_parms_augmented_arg_list (&all);
2930 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2932 struct assign_parm_data_one data;
2934 /* Extract the type of PARM; adjust it according to ABI. */
2935 assign_parm_find_data_types (&all, parm, &data);
2937 /* Early out for errors and void parameters. */
2938 if (data.passed_mode == VOIDmode)
2940 SET_DECL_RTL (parm, const0_rtx);
2941 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2942 continue;
2945 if (current_function_stdarg && !TREE_CHAIN (parm))
2946 assign_parms_setup_varargs (&all, &data, false);
2948 /* Find out where the parameter arrives in this function. */
2949 assign_parm_find_entry_rtl (&all, &data);
2951 /* Find out where stack space for this parameter might be. */
2952 if (assign_parm_is_stack_parm (&all, &data))
2954 assign_parm_find_stack_rtl (parm, &data);
2955 assign_parm_adjust_entry_rtl (&data);
2958 /* Record permanently how this parm was passed. */
2959 set_decl_incoming_rtl (parm, data.entry_parm);
2961 /* Update info on where next arg arrives in registers. */
2962 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2963 data.passed_type, data.named_arg);
2965 assign_parm_adjust_stack_rtl (&data);
2967 if (assign_parm_setup_block_p (&data))
2968 assign_parm_setup_block (&all, parm, &data);
2969 else if (data.passed_pointer || use_register_for_decl (parm))
2970 assign_parm_setup_reg (&all, parm, &data);
2971 else
2972 assign_parm_setup_stack (&all, parm, &data);
2975 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2976 assign_parms_unsplit_complex (&all, fnargs);
2978 /* Output all parameter conversion instructions (possibly including calls)
2979 now that all parameters have been copied out of hard registers. */
2980 emit_insn (all.conversion_insns);
2982 /* If we are receiving a struct value address as the first argument, set up
2983 the RTL for the function result. As this might require code to convert
2984 the transmitted address to Pmode, we do this here to ensure that possible
2985 preliminary conversions of the address have been emitted already. */
2986 if (all.function_result_decl)
2988 tree result = DECL_RESULT (current_function_decl);
2989 rtx addr = DECL_RTL (all.function_result_decl);
2990 rtx x;
2992 if (DECL_BY_REFERENCE (result))
2993 x = addr;
2994 else
2996 addr = convert_memory_address (Pmode, addr);
2997 x = gen_rtx_MEM (DECL_MODE (result), addr);
2998 set_mem_attributes (x, result, 1);
3000 SET_DECL_RTL (result, x);
3003 /* We have aligned all the args, so add space for the pretend args. */
3004 current_function_pretend_args_size = all.pretend_args_size;
3005 all.stack_args_size.constant += all.extra_pretend_bytes;
3006 current_function_args_size = all.stack_args_size.constant;
3008 /* Adjust function incoming argument size for alignment and
3009 minimum length. */
3011 #ifdef REG_PARM_STACK_SPACE
3012 current_function_args_size = MAX (current_function_args_size,
3013 REG_PARM_STACK_SPACE (fndecl));
3014 #endif
3016 current_function_args_size = CEIL_ROUND (current_function_args_size,
3017 PARM_BOUNDARY / BITS_PER_UNIT);
3019 #ifdef ARGS_GROW_DOWNWARD
3020 current_function_arg_offset_rtx
3021 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3022 : expand_expr (size_diffop (all.stack_args_size.var,
3023 size_int (-all.stack_args_size.constant)),
3024 NULL_RTX, VOIDmode, 0));
3025 #else
3026 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3027 #endif
3029 /* See how many bytes, if any, of its args a function should try to pop
3030 on return. */
3032 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3033 current_function_args_size);
3035 /* For stdarg.h function, save info about
3036 regs and stack space used by the named args. */
3038 current_function_args_info = all.args_so_far;
3040 /* Set the rtx used for the function return value. Put this in its
3041 own variable so any optimizers that need this information don't have
3042 to include tree.h. Do this here so it gets done when an inlined
3043 function gets output. */
3045 current_function_return_rtx
3046 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3047 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3049 /* If scalar return value was computed in a pseudo-reg, or was a named
3050 return value that got dumped to the stack, copy that to the hard
3051 return register. */
3052 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3054 tree decl_result = DECL_RESULT (fndecl);
3055 rtx decl_rtl = DECL_RTL (decl_result);
3057 if (REG_P (decl_rtl)
3058 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3059 : DECL_REGISTER (decl_result))
3061 rtx real_decl_rtl;
3063 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3064 fndecl, true);
3065 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3066 /* The delay slot scheduler assumes that current_function_return_rtx
3067 holds the hard register containing the return value, not a
3068 temporary pseudo. */
3069 current_function_return_rtx = real_decl_rtl;
3074 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3075 For all seen types, gimplify their sizes. */
3077 static tree
3078 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3080 tree t = *tp;
3082 *walk_subtrees = 0;
3083 if (TYPE_P (t))
3085 if (POINTER_TYPE_P (t))
3086 *walk_subtrees = 1;
3087 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3088 && !TYPE_SIZES_GIMPLIFIED (t))
3090 gimplify_type_sizes (t, (tree *) data);
3091 *walk_subtrees = 1;
3095 return NULL;
3098 /* Gimplify the parameter list for current_function_decl. This involves
3099 evaluating SAVE_EXPRs of variable sized parameters and generating code
3100 to implement callee-copies reference parameters. Returns a list of
3101 statements to add to the beginning of the function, or NULL if nothing
3102 to do. */
3104 tree
3105 gimplify_parameters (void)
3107 struct assign_parm_data_all all;
3108 tree fnargs, parm, stmts = NULL;
3110 assign_parms_initialize_all (&all);
3111 fnargs = assign_parms_augmented_arg_list (&all);
3113 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3115 struct assign_parm_data_one data;
3117 /* Extract the type of PARM; adjust it according to ABI. */
3118 assign_parm_find_data_types (&all, parm, &data);
3120 /* Early out for errors and void parameters. */
3121 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3122 continue;
3124 /* Update info on where next arg arrives in registers. */
3125 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3126 data.passed_type, data.named_arg);
3128 /* ??? Once upon a time variable_size stuffed parameter list
3129 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3130 turned out to be less than manageable in the gimple world.
3131 Now we have to hunt them down ourselves. */
3132 walk_tree_without_duplicates (&data.passed_type,
3133 gimplify_parm_type, &stmts);
3135 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3137 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3138 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3141 if (data.passed_pointer)
3143 tree type = TREE_TYPE (data.passed_type);
3144 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3145 type, data.named_arg))
3147 tree local, t;
3149 /* For constant sized objects, this is trivial; for
3150 variable-sized objects, we have to play games. */
3151 if (TREE_CONSTANT (DECL_SIZE (parm)))
3153 local = create_tmp_var (type, get_name (parm));
3154 DECL_IGNORED_P (local) = 0;
3156 else
3158 tree ptr_type, addr, args;
3160 ptr_type = build_pointer_type (type);
3161 addr = create_tmp_var (ptr_type, get_name (parm));
3162 DECL_IGNORED_P (addr) = 0;
3163 local = build_fold_indirect_ref (addr);
3165 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3166 t = built_in_decls[BUILT_IN_ALLOCA];
3167 t = build_function_call_expr (t, args);
3168 t = fold_convert (ptr_type, t);
3169 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3170 gimplify_and_add (t, &stmts);
3173 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3174 gimplify_and_add (t, &stmts);
3176 SET_DECL_VALUE_EXPR (parm, local);
3177 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3182 return stmts;
3185 /* Indicate whether REGNO is an incoming argument to the current function
3186 that was promoted to a wider mode. If so, return the RTX for the
3187 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3188 that REGNO is promoted from and whether the promotion was signed or
3189 unsigned. */
3192 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3194 tree arg;
3196 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3197 arg = TREE_CHAIN (arg))
3198 if (REG_P (DECL_INCOMING_RTL (arg))
3199 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3200 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3202 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3203 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3205 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3206 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3207 && mode != DECL_MODE (arg))
3209 *pmode = DECL_MODE (arg);
3210 *punsignedp = unsignedp;
3211 return DECL_INCOMING_RTL (arg);
3215 return 0;
3219 /* Compute the size and offset from the start of the stacked arguments for a
3220 parm passed in mode PASSED_MODE and with type TYPE.
3222 INITIAL_OFFSET_PTR points to the current offset into the stacked
3223 arguments.
3225 The starting offset and size for this parm are returned in
3226 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3227 nonzero, the offset is that of stack slot, which is returned in
3228 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3229 padding required from the initial offset ptr to the stack slot.
3231 IN_REGS is nonzero if the argument will be passed in registers. It will
3232 never be set if REG_PARM_STACK_SPACE is not defined.
3234 FNDECL is the function in which the argument was defined.
3236 There are two types of rounding that are done. The first, controlled by
3237 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3238 list to be aligned to the specific boundary (in bits). This rounding
3239 affects the initial and starting offsets, but not the argument size.
3241 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3242 optionally rounds the size of the parm to PARM_BOUNDARY. The
3243 initial offset is not affected by this rounding, while the size always
3244 is and the starting offset may be. */
3246 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3247 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3248 callers pass in the total size of args so far as
3249 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3251 void
3252 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3253 int partial, tree fndecl ATTRIBUTE_UNUSED,
3254 struct args_size *initial_offset_ptr,
3255 struct locate_and_pad_arg_data *locate)
3257 tree sizetree;
3258 enum direction where_pad;
3259 unsigned int boundary;
3260 int reg_parm_stack_space = 0;
3261 int part_size_in_regs;
3263 #ifdef REG_PARM_STACK_SPACE
3264 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3266 /* If we have found a stack parm before we reach the end of the
3267 area reserved for registers, skip that area. */
3268 if (! in_regs)
3270 if (reg_parm_stack_space > 0)
3272 if (initial_offset_ptr->var)
3274 initial_offset_ptr->var
3275 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3276 ssize_int (reg_parm_stack_space));
3277 initial_offset_ptr->constant = 0;
3279 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3280 initial_offset_ptr->constant = reg_parm_stack_space;
3283 #endif /* REG_PARM_STACK_SPACE */
3285 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3287 sizetree
3288 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3289 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3290 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3291 locate->where_pad = where_pad;
3292 locate->boundary = boundary;
3294 /* Remember if the outgoing parameter requires extra alignment on the
3295 calling function side. */
3296 if (boundary > PREFERRED_STACK_BOUNDARY)
3297 boundary = PREFERRED_STACK_BOUNDARY;
3298 if (cfun->stack_alignment_needed < boundary)
3299 cfun->stack_alignment_needed = boundary;
3301 #ifdef ARGS_GROW_DOWNWARD
3302 locate->slot_offset.constant = -initial_offset_ptr->constant;
3303 if (initial_offset_ptr->var)
3304 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3305 initial_offset_ptr->var);
3308 tree s2 = sizetree;
3309 if (where_pad != none
3310 && (!host_integerp (sizetree, 1)
3311 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3312 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3313 SUB_PARM_SIZE (locate->slot_offset, s2);
3316 locate->slot_offset.constant += part_size_in_regs;
3318 if (!in_regs
3319 #ifdef REG_PARM_STACK_SPACE
3320 || REG_PARM_STACK_SPACE (fndecl) > 0
3321 #endif
3323 pad_to_arg_alignment (&locate->slot_offset, boundary,
3324 &locate->alignment_pad);
3326 locate->size.constant = (-initial_offset_ptr->constant
3327 - locate->slot_offset.constant);
3328 if (initial_offset_ptr->var)
3329 locate->size.var = size_binop (MINUS_EXPR,
3330 size_binop (MINUS_EXPR,
3331 ssize_int (0),
3332 initial_offset_ptr->var),
3333 locate->slot_offset.var);
3335 /* Pad_below needs the pre-rounded size to know how much to pad
3336 below. */
3337 locate->offset = locate->slot_offset;
3338 if (where_pad == downward)
3339 pad_below (&locate->offset, passed_mode, sizetree);
3341 #else /* !ARGS_GROW_DOWNWARD */
3342 if (!in_regs
3343 #ifdef REG_PARM_STACK_SPACE
3344 || REG_PARM_STACK_SPACE (fndecl) > 0
3345 #endif
3347 pad_to_arg_alignment (initial_offset_ptr, boundary,
3348 &locate->alignment_pad);
3349 locate->slot_offset = *initial_offset_ptr;
3351 #ifdef PUSH_ROUNDING
3352 if (passed_mode != BLKmode)
3353 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3354 #endif
3356 /* Pad_below needs the pre-rounded size to know how much to pad below
3357 so this must be done before rounding up. */
3358 locate->offset = locate->slot_offset;
3359 if (where_pad == downward)
3360 pad_below (&locate->offset, passed_mode, sizetree);
3362 if (where_pad != none
3363 && (!host_integerp (sizetree, 1)
3364 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3365 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3367 ADD_PARM_SIZE (locate->size, sizetree);
3369 locate->size.constant -= part_size_in_regs;
3370 #endif /* ARGS_GROW_DOWNWARD */
3373 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3374 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3376 static void
3377 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3378 struct args_size *alignment_pad)
3380 tree save_var = NULL_TREE;
3381 HOST_WIDE_INT save_constant = 0;
3382 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3383 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3385 #ifdef SPARC_STACK_BOUNDARY_HACK
3386 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3387 the real alignment of %sp. However, when it does this, the
3388 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3389 if (SPARC_STACK_BOUNDARY_HACK)
3390 sp_offset = 0;
3391 #endif
3393 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3395 save_var = offset_ptr->var;
3396 save_constant = offset_ptr->constant;
3399 alignment_pad->var = NULL_TREE;
3400 alignment_pad->constant = 0;
3402 if (boundary > BITS_PER_UNIT)
3404 if (offset_ptr->var)
3406 tree sp_offset_tree = ssize_int (sp_offset);
3407 tree offset = size_binop (PLUS_EXPR,
3408 ARGS_SIZE_TREE (*offset_ptr),
3409 sp_offset_tree);
3410 #ifdef ARGS_GROW_DOWNWARD
3411 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3412 #else
3413 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3414 #endif
3416 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3417 /* ARGS_SIZE_TREE includes constant term. */
3418 offset_ptr->constant = 0;
3419 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3420 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3421 save_var);
3423 else
3425 offset_ptr->constant = -sp_offset +
3426 #ifdef ARGS_GROW_DOWNWARD
3427 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3428 #else
3429 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3430 #endif
3431 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3432 alignment_pad->constant = offset_ptr->constant - save_constant;
3437 static void
3438 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3440 if (passed_mode != BLKmode)
3442 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3443 offset_ptr->constant
3444 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3445 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3446 - GET_MODE_SIZE (passed_mode));
3448 else
3450 if (TREE_CODE (sizetree) != INTEGER_CST
3451 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3453 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3454 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3455 /* Add it in. */
3456 ADD_PARM_SIZE (*offset_ptr, s2);
3457 SUB_PARM_SIZE (*offset_ptr, sizetree);
3462 /* Walk the tree of blocks describing the binding levels within a function
3463 and warn about variables the might be killed by setjmp or vfork.
3464 This is done after calling flow_analysis and before global_alloc
3465 clobbers the pseudo-regs to hard regs. */
3467 void
3468 setjmp_vars_warning (tree block)
3470 tree decl, sub;
3472 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3474 if (TREE_CODE (decl) == VAR_DECL
3475 && DECL_RTL_SET_P (decl)
3476 && REG_P (DECL_RTL (decl))
3477 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3478 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3479 " or %<vfork%>",
3480 decl);
3483 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3484 setjmp_vars_warning (sub);
3487 /* Do the appropriate part of setjmp_vars_warning
3488 but for arguments instead of local variables. */
3490 void
3491 setjmp_args_warning (void)
3493 tree decl;
3494 for (decl = DECL_ARGUMENTS (current_function_decl);
3495 decl; decl = TREE_CHAIN (decl))
3496 if (DECL_RTL (decl) != 0
3497 && REG_P (DECL_RTL (decl))
3498 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3499 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3500 decl);
3504 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3505 and create duplicate blocks. */
3506 /* ??? Need an option to either create block fragments or to create
3507 abstract origin duplicates of a source block. It really depends
3508 on what optimization has been performed. */
3510 void
3511 reorder_blocks (void)
3513 tree block = DECL_INITIAL (current_function_decl);
3514 VEC(tree,heap) *block_stack;
3516 if (block == NULL_TREE)
3517 return;
3519 block_stack = VEC_alloc (tree, heap, 10);
3521 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3522 clear_block_marks (block);
3524 /* Prune the old trees away, so that they don't get in the way. */
3525 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3526 BLOCK_CHAIN (block) = NULL_TREE;
3528 /* Recreate the block tree from the note nesting. */
3529 reorder_blocks_1 (get_insns (), block, &block_stack);
3530 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3532 /* Remove deleted blocks from the block fragment chains. */
3533 reorder_fix_fragments (block);
3535 VEC_free (tree, heap, block_stack);
3538 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3540 void
3541 clear_block_marks (tree block)
3543 while (block)
3545 TREE_ASM_WRITTEN (block) = 0;
3546 clear_block_marks (BLOCK_SUBBLOCKS (block));
3547 block = BLOCK_CHAIN (block);
3551 static void
3552 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3554 rtx insn;
3556 for (insn = insns; insn; insn = NEXT_INSN (insn))
3558 if (NOTE_P (insn))
3560 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3562 tree block = NOTE_BLOCK (insn);
3564 /* If we have seen this block before, that means it now
3565 spans multiple address regions. Create a new fragment. */
3566 if (TREE_ASM_WRITTEN (block))
3568 tree new_block = copy_node (block);
3569 tree origin;
3571 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3572 ? BLOCK_FRAGMENT_ORIGIN (block)
3573 : block);
3574 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3575 BLOCK_FRAGMENT_CHAIN (new_block)
3576 = BLOCK_FRAGMENT_CHAIN (origin);
3577 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3579 NOTE_BLOCK (insn) = new_block;
3580 block = new_block;
3583 BLOCK_SUBBLOCKS (block) = 0;
3584 TREE_ASM_WRITTEN (block) = 1;
3585 /* When there's only one block for the entire function,
3586 current_block == block and we mustn't do this, it
3587 will cause infinite recursion. */
3588 if (block != current_block)
3590 BLOCK_SUPERCONTEXT (block) = current_block;
3591 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3592 BLOCK_SUBBLOCKS (current_block) = block;
3593 current_block = block;
3595 VEC_safe_push (tree, heap, *p_block_stack, block);
3597 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3599 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3600 BLOCK_SUBBLOCKS (current_block)
3601 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3602 current_block = BLOCK_SUPERCONTEXT (current_block);
3608 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3609 appears in the block tree, select one of the fragments to become
3610 the new origin block. */
3612 static void
3613 reorder_fix_fragments (tree block)
3615 while (block)
3617 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3618 tree new_origin = NULL_TREE;
3620 if (dup_origin)
3622 if (! TREE_ASM_WRITTEN (dup_origin))
3624 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3626 /* Find the first of the remaining fragments. There must
3627 be at least one -- the current block. */
3628 while (! TREE_ASM_WRITTEN (new_origin))
3629 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3630 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3633 else if (! dup_origin)
3634 new_origin = block;
3636 /* Re-root the rest of the fragments to the new origin. In the
3637 case that DUP_ORIGIN was null, that means BLOCK was the origin
3638 of a chain of fragments and we want to remove those fragments
3639 that didn't make it to the output. */
3640 if (new_origin)
3642 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3643 tree chain = *pp;
3645 while (chain)
3647 if (TREE_ASM_WRITTEN (chain))
3649 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3650 *pp = chain;
3651 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3653 chain = BLOCK_FRAGMENT_CHAIN (chain);
3655 *pp = NULL_TREE;
3658 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3659 block = BLOCK_CHAIN (block);
3663 /* Reverse the order of elements in the chain T of blocks,
3664 and return the new head of the chain (old last element). */
3666 tree
3667 blocks_nreverse (tree t)
3669 tree prev = 0, decl, next;
3670 for (decl = t; decl; decl = next)
3672 next = BLOCK_CHAIN (decl);
3673 BLOCK_CHAIN (decl) = prev;
3674 prev = decl;
3676 return prev;
3679 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3680 non-NULL, list them all into VECTOR, in a depth-first preorder
3681 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3682 blocks. */
3684 static int
3685 all_blocks (tree block, tree *vector)
3687 int n_blocks = 0;
3689 while (block)
3691 TREE_ASM_WRITTEN (block) = 0;
3693 /* Record this block. */
3694 if (vector)
3695 vector[n_blocks] = block;
3697 ++n_blocks;
3699 /* Record the subblocks, and their subblocks... */
3700 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3701 vector ? vector + n_blocks : 0);
3702 block = BLOCK_CHAIN (block);
3705 return n_blocks;
3708 /* Return a vector containing all the blocks rooted at BLOCK. The
3709 number of elements in the vector is stored in N_BLOCKS_P. The
3710 vector is dynamically allocated; it is the caller's responsibility
3711 to call `free' on the pointer returned. */
3713 static tree *
3714 get_block_vector (tree block, int *n_blocks_p)
3716 tree *block_vector;
3718 *n_blocks_p = all_blocks (block, NULL);
3719 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3720 all_blocks (block, block_vector);
3722 return block_vector;
3725 static GTY(()) int next_block_index = 2;
3727 /* Set BLOCK_NUMBER for all the blocks in FN. */
3729 void
3730 number_blocks (tree fn)
3732 int i;
3733 int n_blocks;
3734 tree *block_vector;
3736 /* For SDB and XCOFF debugging output, we start numbering the blocks
3737 from 1 within each function, rather than keeping a running
3738 count. */
3739 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3740 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3741 next_block_index = 1;
3742 #endif
3744 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3746 /* The top-level BLOCK isn't numbered at all. */
3747 for (i = 1; i < n_blocks; ++i)
3748 /* We number the blocks from two. */
3749 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3751 free (block_vector);
3753 return;
3756 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3758 tree
3759 debug_find_var_in_block_tree (tree var, tree block)
3761 tree t;
3763 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3764 if (t == var)
3765 return block;
3767 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3769 tree ret = debug_find_var_in_block_tree (var, t);
3770 if (ret)
3771 return ret;
3774 return NULL_TREE;
3777 /* Allocate a function structure for FNDECL and set its contents
3778 to the defaults. */
3780 void
3781 allocate_struct_function (tree fndecl)
3783 tree result;
3784 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3786 cfun = ggc_alloc_cleared (sizeof (struct function));
3788 cfun->stack_alignment_needed = STACK_BOUNDARY;
3789 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3791 current_function_funcdef_no = funcdef_no++;
3793 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3795 init_eh_for_function ();
3797 lang_hooks.function.init (cfun);
3798 if (init_machine_status)
3799 cfun->machine = (*init_machine_status) ();
3801 if (fndecl == NULL)
3802 return;
3804 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3805 cfun->decl = fndecl;
3807 result = DECL_RESULT (fndecl);
3808 if (aggregate_value_p (result, fndecl))
3810 #ifdef PCC_STATIC_STRUCT_RETURN
3811 current_function_returns_pcc_struct = 1;
3812 #endif
3813 current_function_returns_struct = 1;
3816 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3818 current_function_stdarg
3819 = (fntype
3820 && TYPE_ARG_TYPES (fntype) != 0
3821 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3822 != void_type_node));
3824 /* Assume all registers in stdarg functions need to be saved. */
3825 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3826 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3829 /* Reset cfun, and other non-struct-function variables to defaults as
3830 appropriate for emitting rtl at the start of a function. */
3832 static void
3833 prepare_function_start (tree fndecl)
3835 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3836 cfun = DECL_STRUCT_FUNCTION (fndecl);
3837 else
3838 allocate_struct_function (fndecl);
3839 init_emit ();
3840 init_varasm_status (cfun);
3841 init_expr ();
3843 cse_not_expected = ! optimize;
3845 /* Caller save not needed yet. */
3846 caller_save_needed = 0;
3848 /* We haven't done register allocation yet. */
3849 reg_renumber = 0;
3851 /* Indicate that we have not instantiated virtual registers yet. */
3852 virtuals_instantiated = 0;
3854 /* Indicate that we want CONCATs now. */
3855 generating_concat_p = 1;
3857 /* Indicate we have no need of a frame pointer yet. */
3858 frame_pointer_needed = 0;
3861 /* Initialize the rtl expansion mechanism so that we can do simple things
3862 like generate sequences. This is used to provide a context during global
3863 initialization of some passes. */
3864 void
3865 init_dummy_function_start (void)
3867 prepare_function_start (NULL);
3870 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3871 and initialize static variables for generating RTL for the statements
3872 of the function. */
3874 void
3875 init_function_start (tree subr)
3877 prepare_function_start (subr);
3879 /* Prevent ever trying to delete the first instruction of a
3880 function. Also tell final how to output a linenum before the
3881 function prologue. Note linenums could be missing, e.g. when
3882 compiling a Java .class file. */
3883 if (! DECL_IS_BUILTIN (subr))
3884 emit_line_note (DECL_SOURCE_LOCATION (subr));
3886 /* Make sure first insn is a note even if we don't want linenums.
3887 This makes sure the first insn will never be deleted.
3888 Also, final expects a note to appear there. */
3889 emit_note (NOTE_INSN_DELETED);
3891 /* Warn if this value is an aggregate type,
3892 regardless of which calling convention we are using for it. */
3893 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3894 warning (OPT_Waggregate_return, "function returns an aggregate");
3897 /* Make sure all values used by the optimization passes have sane
3898 defaults. */
3899 void
3900 init_function_for_compilation (void)
3902 reg_renumber = 0;
3904 /* No prologue/epilogue insns yet. Make sure that these vectors are
3905 empty. */
3906 gcc_assert (VEC_length (int, prologue) == 0);
3907 gcc_assert (VEC_length (int, epilogue) == 0);
3908 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3911 struct tree_opt_pass pass_init_function =
3913 NULL, /* name */
3914 NULL, /* gate */
3915 init_function_for_compilation, /* execute */
3916 NULL, /* sub */
3917 NULL, /* next */
3918 0, /* static_pass_number */
3919 0, /* tv_id */
3920 0, /* properties_required */
3921 0, /* properties_provided */
3922 0, /* properties_destroyed */
3923 0, /* todo_flags_start */
3924 0, /* todo_flags_finish */
3925 0 /* letter */
3929 void
3930 expand_main_function (void)
3932 #if (defined(INVOKE__main) \
3933 || (!defined(HAS_INIT_SECTION) \
3934 && !defined(INIT_SECTION_ASM_OP) \
3935 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3936 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3937 #endif
3940 /* Expand code to initialize the stack_protect_guard. This is invoked at
3941 the beginning of a function to be protected. */
3943 #ifndef HAVE_stack_protect_set
3944 # define HAVE_stack_protect_set 0
3945 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3946 #endif
3948 void
3949 stack_protect_prologue (void)
3951 tree guard_decl = targetm.stack_protect_guard ();
3952 rtx x, y;
3954 /* Avoid expand_expr here, because we don't want guard_decl pulled
3955 into registers unless absolutely necessary. And we know that
3956 cfun->stack_protect_guard is a local stack slot, so this skips
3957 all the fluff. */
3958 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3959 y = validize_mem (DECL_RTL (guard_decl));
3961 /* Allow the target to copy from Y to X without leaking Y into a
3962 register. */
3963 if (HAVE_stack_protect_set)
3965 rtx insn = gen_stack_protect_set (x, y);
3966 if (insn)
3968 emit_insn (insn);
3969 return;
3973 /* Otherwise do a straight move. */
3974 emit_move_insn (x, y);
3977 /* Expand code to verify the stack_protect_guard. This is invoked at
3978 the end of a function to be protected. */
3980 #ifndef HAVE_stack_protect_test
3981 # define HAVE_stack_protect_test 0
3982 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3983 #endif
3985 void
3986 stack_protect_epilogue (void)
3988 tree guard_decl = targetm.stack_protect_guard ();
3989 rtx label = gen_label_rtx ();
3990 rtx x, y, tmp;
3992 /* Avoid expand_expr here, because we don't want guard_decl pulled
3993 into registers unless absolutely necessary. And we know that
3994 cfun->stack_protect_guard is a local stack slot, so this skips
3995 all the fluff. */
3996 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3997 y = validize_mem (DECL_RTL (guard_decl));
3999 /* Allow the target to compare Y with X without leaking either into
4000 a register. */
4001 switch (HAVE_stack_protect_test != 0)
4003 case 1:
4004 tmp = gen_stack_protect_test (x, y, label);
4005 if (tmp)
4007 emit_insn (tmp);
4008 break;
4010 /* FALLTHRU */
4012 default:
4013 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4014 break;
4017 /* The noreturn predictor has been moved to the tree level. The rtl-level
4018 predictors estimate this branch about 20%, which isn't enough to get
4019 things moved out of line. Since this is the only extant case of adding
4020 a noreturn function at the rtl level, it doesn't seem worth doing ought
4021 except adding the prediction by hand. */
4022 tmp = get_last_insn ();
4023 if (JUMP_P (tmp))
4024 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4026 expand_expr_stmt (targetm.stack_protect_fail ());
4027 emit_label (label);
4030 /* Start the RTL for a new function, and set variables used for
4031 emitting RTL.
4032 SUBR is the FUNCTION_DECL node.
4033 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4034 the function's parameters, which must be run at any return statement. */
4036 void
4037 expand_function_start (tree subr)
4039 /* Make sure volatile mem refs aren't considered
4040 valid operands of arithmetic insns. */
4041 init_recog_no_volatile ();
4043 current_function_profile
4044 = (profile_flag
4045 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4047 current_function_limit_stack
4048 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4050 /* Make the label for return statements to jump to. Do not special
4051 case machines with special return instructions -- they will be
4052 handled later during jump, ifcvt, or epilogue creation. */
4053 return_label = gen_label_rtx ();
4055 /* Initialize rtx used to return the value. */
4056 /* Do this before assign_parms so that we copy the struct value address
4057 before any library calls that assign parms might generate. */
4059 /* Decide whether to return the value in memory or in a register. */
4060 if (aggregate_value_p (DECL_RESULT (subr), subr))
4062 /* Returning something that won't go in a register. */
4063 rtx value_address = 0;
4065 #ifdef PCC_STATIC_STRUCT_RETURN
4066 if (current_function_returns_pcc_struct)
4068 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4069 value_address = assemble_static_space (size);
4071 else
4072 #endif
4074 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4075 /* Expect to be passed the address of a place to store the value.
4076 If it is passed as an argument, assign_parms will take care of
4077 it. */
4078 if (sv)
4080 value_address = gen_reg_rtx (Pmode);
4081 emit_move_insn (value_address, sv);
4084 if (value_address)
4086 rtx x = value_address;
4087 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4089 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4090 set_mem_attributes (x, DECL_RESULT (subr), 1);
4092 SET_DECL_RTL (DECL_RESULT (subr), x);
4095 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4096 /* If return mode is void, this decl rtl should not be used. */
4097 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4098 else
4100 /* Compute the return values into a pseudo reg, which we will copy
4101 into the true return register after the cleanups are done. */
4102 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4103 if (TYPE_MODE (return_type) != BLKmode
4104 && targetm.calls.return_in_msb (return_type))
4105 /* expand_function_end will insert the appropriate padding in
4106 this case. Use the return value's natural (unpadded) mode
4107 within the function proper. */
4108 SET_DECL_RTL (DECL_RESULT (subr),
4109 gen_reg_rtx (TYPE_MODE (return_type)));
4110 else
4112 /* In order to figure out what mode to use for the pseudo, we
4113 figure out what the mode of the eventual return register will
4114 actually be, and use that. */
4115 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4117 /* Structures that are returned in registers are not
4118 aggregate_value_p, so we may see a PARALLEL or a REG. */
4119 if (REG_P (hard_reg))
4120 SET_DECL_RTL (DECL_RESULT (subr),
4121 gen_reg_rtx (GET_MODE (hard_reg)));
4122 else
4124 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4125 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4129 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4130 result to the real return register(s). */
4131 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4134 /* Initialize rtx for parameters and local variables.
4135 In some cases this requires emitting insns. */
4136 assign_parms (subr);
4138 /* If function gets a static chain arg, store it. */
4139 if (cfun->static_chain_decl)
4141 tree parm = cfun->static_chain_decl;
4142 rtx local = gen_reg_rtx (Pmode);
4144 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4145 SET_DECL_RTL (parm, local);
4146 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4148 emit_move_insn (local, static_chain_incoming_rtx);
4151 /* If the function receives a non-local goto, then store the
4152 bits we need to restore the frame pointer. */
4153 if (cfun->nonlocal_goto_save_area)
4155 tree t_save;
4156 rtx r_save;
4158 /* ??? We need to do this save early. Unfortunately here is
4159 before the frame variable gets declared. Help out... */
4160 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4162 t_save = build4 (ARRAY_REF, ptr_type_node,
4163 cfun->nonlocal_goto_save_area,
4164 integer_zero_node, NULL_TREE, NULL_TREE);
4165 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4166 r_save = convert_memory_address (Pmode, r_save);
4168 emit_move_insn (r_save, virtual_stack_vars_rtx);
4169 update_nonlocal_goto_save_area ();
4172 /* The following was moved from init_function_start.
4173 The move is supposed to make sdb output more accurate. */
4174 /* Indicate the beginning of the function body,
4175 as opposed to parm setup. */
4176 emit_note (NOTE_INSN_FUNCTION_BEG);
4178 if (!NOTE_P (get_last_insn ()))
4179 emit_note (NOTE_INSN_DELETED);
4180 parm_birth_insn = get_last_insn ();
4182 if (current_function_profile)
4184 #ifdef PROFILE_HOOK
4185 PROFILE_HOOK (current_function_funcdef_no);
4186 #endif
4189 /* After the display initializations is where the tail-recursion label
4190 should go, if we end up needing one. Ensure we have a NOTE here
4191 since some things (like trampolines) get placed before this. */
4192 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4194 /* Make sure there is a line number after the function entry setup code. */
4195 force_next_line_note ();
4198 /* Undo the effects of init_dummy_function_start. */
4199 void
4200 expand_dummy_function_end (void)
4202 /* End any sequences that failed to be closed due to syntax errors. */
4203 while (in_sequence_p ())
4204 end_sequence ();
4206 /* Outside function body, can't compute type's actual size
4207 until next function's body starts. */
4209 free_after_parsing (cfun);
4210 free_after_compilation (cfun);
4211 cfun = 0;
4214 /* Call DOIT for each hard register used as a return value from
4215 the current function. */
4217 void
4218 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4220 rtx outgoing = current_function_return_rtx;
4222 if (! outgoing)
4223 return;
4225 if (REG_P (outgoing))
4226 (*doit) (outgoing, arg);
4227 else if (GET_CODE (outgoing) == PARALLEL)
4229 int i;
4231 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4233 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4235 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4236 (*doit) (x, arg);
4241 static void
4242 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4244 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4247 void
4248 clobber_return_register (void)
4250 diddle_return_value (do_clobber_return_reg, NULL);
4252 /* In case we do use pseudo to return value, clobber it too. */
4253 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4255 tree decl_result = DECL_RESULT (current_function_decl);
4256 rtx decl_rtl = DECL_RTL (decl_result);
4257 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4259 do_clobber_return_reg (decl_rtl, NULL);
4264 static void
4265 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4267 emit_insn (gen_rtx_USE (VOIDmode, reg));
4270 void
4271 use_return_register (void)
4273 diddle_return_value (do_use_return_reg, NULL);
4276 /* Possibly warn about unused parameters. */
4277 void
4278 do_warn_unused_parameter (tree fn)
4280 tree decl;
4282 for (decl = DECL_ARGUMENTS (fn);
4283 decl; decl = TREE_CHAIN (decl))
4284 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4285 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4286 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4289 static GTY(()) rtx initial_trampoline;
4291 /* Generate RTL for the end of the current function. */
4293 void
4294 expand_function_end (void)
4296 rtx clobber_after;
4298 /* If arg_pointer_save_area was referenced only from a nested
4299 function, we will not have initialized it yet. Do that now. */
4300 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4301 get_arg_pointer_save_area (cfun);
4303 /* If we are doing stack checking and this function makes calls,
4304 do a stack probe at the start of the function to ensure we have enough
4305 space for another stack frame. */
4306 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4308 rtx insn, seq;
4310 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4311 if (CALL_P (insn))
4313 start_sequence ();
4314 probe_stack_range (STACK_CHECK_PROTECT,
4315 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4316 seq = get_insns ();
4317 end_sequence ();
4318 emit_insn_before (seq, tail_recursion_reentry);
4319 break;
4323 /* Possibly warn about unused parameters.
4324 When frontend does unit-at-a-time, the warning is already
4325 issued at finalization time. */
4326 if (warn_unused_parameter
4327 && !lang_hooks.callgraph.expand_function)
4328 do_warn_unused_parameter (current_function_decl);
4330 /* End any sequences that failed to be closed due to syntax errors. */
4331 while (in_sequence_p ())
4332 end_sequence ();
4334 clear_pending_stack_adjust ();
4335 do_pending_stack_adjust ();
4337 /* Mark the end of the function body.
4338 If control reaches this insn, the function can drop through
4339 without returning a value. */
4340 emit_note (NOTE_INSN_FUNCTION_END);
4342 /* Must mark the last line number note in the function, so that the test
4343 coverage code can avoid counting the last line twice. This just tells
4344 the code to ignore the immediately following line note, since there
4345 already exists a copy of this note somewhere above. This line number
4346 note is still needed for debugging though, so we can't delete it. */
4347 if (flag_test_coverage)
4348 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4350 /* Output a linenumber for the end of the function.
4351 SDB depends on this. */
4352 force_next_line_note ();
4353 emit_line_note (input_location);
4355 /* Before the return label (if any), clobber the return
4356 registers so that they are not propagated live to the rest of
4357 the function. This can only happen with functions that drop
4358 through; if there had been a return statement, there would
4359 have either been a return rtx, or a jump to the return label.
4361 We delay actual code generation after the current_function_value_rtx
4362 is computed. */
4363 clobber_after = get_last_insn ();
4365 /* Output the label for the actual return from the function. */
4366 emit_label (return_label);
4368 if (USING_SJLJ_EXCEPTIONS)
4370 /* Let except.c know where it should emit the call to unregister
4371 the function context for sjlj exceptions. */
4372 if (flag_exceptions)
4373 sjlj_emit_function_exit_after (get_last_insn ());
4375 else
4377 /* @@@ This is a kludge. We want to ensure that instructions that
4378 may trap are not moved into the epilogue by scheduling, because
4379 we don't always emit unwind information for the epilogue.
4380 However, not all machine descriptions define a blockage insn, so
4381 emit an ASM_INPUT to act as one. */
4382 if (flag_non_call_exceptions)
4383 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4386 /* If this is an implementation of throw, do what's necessary to
4387 communicate between __builtin_eh_return and the epilogue. */
4388 expand_eh_return ();
4390 /* If scalar return value was computed in a pseudo-reg, or was a named
4391 return value that got dumped to the stack, copy that to the hard
4392 return register. */
4393 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4395 tree decl_result = DECL_RESULT (current_function_decl);
4396 rtx decl_rtl = DECL_RTL (decl_result);
4398 if (REG_P (decl_rtl)
4399 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4400 : DECL_REGISTER (decl_result))
4402 rtx real_decl_rtl = current_function_return_rtx;
4404 /* This should be set in assign_parms. */
4405 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4407 /* If this is a BLKmode structure being returned in registers,
4408 then use the mode computed in expand_return. Note that if
4409 decl_rtl is memory, then its mode may have been changed,
4410 but that current_function_return_rtx has not. */
4411 if (GET_MODE (real_decl_rtl) == BLKmode)
4412 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4414 /* If a non-BLKmode return value should be padded at the least
4415 significant end of the register, shift it left by the appropriate
4416 amount. BLKmode results are handled using the group load/store
4417 machinery. */
4418 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4419 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4421 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4422 REGNO (real_decl_rtl)),
4423 decl_rtl);
4424 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4426 /* If a named return value dumped decl_return to memory, then
4427 we may need to re-do the PROMOTE_MODE signed/unsigned
4428 extension. */
4429 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4431 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4433 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4434 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4435 &unsignedp, 1);
4437 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4439 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4441 /* If expand_function_start has created a PARALLEL for decl_rtl,
4442 move the result to the real return registers. Otherwise, do
4443 a group load from decl_rtl for a named return. */
4444 if (GET_CODE (decl_rtl) == PARALLEL)
4445 emit_group_move (real_decl_rtl, decl_rtl);
4446 else
4447 emit_group_load (real_decl_rtl, decl_rtl,
4448 TREE_TYPE (decl_result),
4449 int_size_in_bytes (TREE_TYPE (decl_result)));
4451 /* In the case of complex integer modes smaller than a word, we'll
4452 need to generate some non-trivial bitfield insertions. Do that
4453 on a pseudo and not the hard register. */
4454 else if (GET_CODE (decl_rtl) == CONCAT
4455 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4456 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4458 int old_generating_concat_p;
4459 rtx tmp;
4461 old_generating_concat_p = generating_concat_p;
4462 generating_concat_p = 0;
4463 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4464 generating_concat_p = old_generating_concat_p;
4466 emit_move_insn (tmp, decl_rtl);
4467 emit_move_insn (real_decl_rtl, tmp);
4469 else
4470 emit_move_insn (real_decl_rtl, decl_rtl);
4474 /* If returning a structure, arrange to return the address of the value
4475 in a place where debuggers expect to find it.
4477 If returning a structure PCC style,
4478 the caller also depends on this value.
4479 And current_function_returns_pcc_struct is not necessarily set. */
4480 if (current_function_returns_struct
4481 || current_function_returns_pcc_struct)
4483 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4484 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4485 rtx outgoing;
4487 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4488 type = TREE_TYPE (type);
4489 else
4490 value_address = XEXP (value_address, 0);
4492 outgoing = targetm.calls.function_value (build_pointer_type (type),
4493 current_function_decl, true);
4495 /* Mark this as a function return value so integrate will delete the
4496 assignment and USE below when inlining this function. */
4497 REG_FUNCTION_VALUE_P (outgoing) = 1;
4499 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4500 value_address = convert_memory_address (GET_MODE (outgoing),
4501 value_address);
4503 emit_move_insn (outgoing, value_address);
4505 /* Show return register used to hold result (in this case the address
4506 of the result. */
4507 current_function_return_rtx = outgoing;
4510 /* Emit the actual code to clobber return register. */
4512 rtx seq;
4514 start_sequence ();
4515 clobber_return_register ();
4516 expand_naked_return ();
4517 seq = get_insns ();
4518 end_sequence ();
4520 emit_insn_after (seq, clobber_after);
4523 /* Output the label for the naked return from the function. */
4524 emit_label (naked_return_label);
4526 /* If stack protection is enabled for this function, check the guard. */
4527 if (cfun->stack_protect_guard)
4528 stack_protect_epilogue ();
4530 /* If we had calls to alloca, and this machine needs
4531 an accurate stack pointer to exit the function,
4532 insert some code to save and restore the stack pointer. */
4533 if (! EXIT_IGNORE_STACK
4534 && current_function_calls_alloca)
4536 rtx tem = 0;
4538 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4539 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4542 /* ??? This should no longer be necessary since stupid is no longer with
4543 us, but there are some parts of the compiler (eg reload_combine, and
4544 sh mach_dep_reorg) that still try and compute their own lifetime info
4545 instead of using the general framework. */
4546 use_return_register ();
4550 get_arg_pointer_save_area (struct function *f)
4552 rtx ret = f->x_arg_pointer_save_area;
4554 if (! ret)
4556 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4557 f->x_arg_pointer_save_area = ret;
4560 if (f == cfun && ! f->arg_pointer_save_area_init)
4562 rtx seq;
4564 /* Save the arg pointer at the beginning of the function. The
4565 generated stack slot may not be a valid memory address, so we
4566 have to check it and fix it if necessary. */
4567 start_sequence ();
4568 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4569 seq = get_insns ();
4570 end_sequence ();
4572 push_topmost_sequence ();
4573 emit_insn_after (seq, entry_of_function ());
4574 pop_topmost_sequence ();
4577 return ret;
4580 /* Extend a vector that records the INSN_UIDs of INSNS
4581 (a list of one or more insns). */
4583 static void
4584 record_insns (rtx insns, VEC(int,heap) **vecp)
4586 rtx tmp;
4588 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4589 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4592 /* Set the locator of the insn chain starting at INSN to LOC. */
4593 static void
4594 set_insn_locators (rtx insn, int loc)
4596 while (insn != NULL_RTX)
4598 if (INSN_P (insn))
4599 INSN_LOCATOR (insn) = loc;
4600 insn = NEXT_INSN (insn);
4604 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4605 be running after reorg, SEQUENCE rtl is possible. */
4607 static int
4608 contains (rtx insn, VEC(int,heap) **vec)
4610 int i, j;
4612 if (NONJUMP_INSN_P (insn)
4613 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4615 int count = 0;
4616 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4617 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4618 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4619 == VEC_index (int, *vec, j))
4620 count++;
4621 return count;
4623 else
4625 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4626 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4627 return 1;
4629 return 0;
4633 prologue_epilogue_contains (rtx insn)
4635 if (contains (insn, &prologue))
4636 return 1;
4637 if (contains (insn, &epilogue))
4638 return 1;
4639 return 0;
4643 sibcall_epilogue_contains (rtx insn)
4645 if (sibcall_epilogue)
4646 return contains (insn, &sibcall_epilogue);
4647 return 0;
4650 #ifdef HAVE_return
4651 /* Insert gen_return at the end of block BB. This also means updating
4652 block_for_insn appropriately. */
4654 static void
4655 emit_return_into_block (basic_block bb, rtx line_note)
4657 emit_jump_insn_after (gen_return (), BB_END (bb));
4658 if (line_note)
4659 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4661 #endif /* HAVE_return */
4663 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4665 /* These functions convert the epilogue into a variant that does not
4666 modify the stack pointer. This is used in cases where a function
4667 returns an object whose size is not known until it is computed.
4668 The called function leaves the object on the stack, leaves the
4669 stack depressed, and returns a pointer to the object.
4671 What we need to do is track all modifications and references to the
4672 stack pointer, deleting the modifications and changing the
4673 references to point to the location the stack pointer would have
4674 pointed to had the modifications taken place.
4676 These functions need to be portable so we need to make as few
4677 assumptions about the epilogue as we can. However, the epilogue
4678 basically contains three things: instructions to reset the stack
4679 pointer, instructions to reload registers, possibly including the
4680 frame pointer, and an instruction to return to the caller.
4682 We must be sure of what a relevant epilogue insn is doing. We also
4683 make no attempt to validate the insns we make since if they are
4684 invalid, we probably can't do anything valid. The intent is that
4685 these routines get "smarter" as more and more machines start to use
4686 them and they try operating on different epilogues.
4688 We use the following structure to track what the part of the
4689 epilogue that we've already processed has done. We keep two copies
4690 of the SP equivalence, one for use during the insn we are
4691 processing and one for use in the next insn. The difference is
4692 because one part of a PARALLEL may adjust SP and the other may use
4693 it. */
4695 struct epi_info
4697 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4698 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4699 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4700 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4701 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4702 should be set to once we no longer need
4703 its value. */
4704 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4705 for registers. */
4708 static void handle_epilogue_set (rtx, struct epi_info *);
4709 static void update_epilogue_consts (rtx, rtx, void *);
4710 static void emit_equiv_load (struct epi_info *);
4712 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4713 no modifications to the stack pointer. Return the new list of insns. */
4715 static rtx
4716 keep_stack_depressed (rtx insns)
4718 int j;
4719 struct epi_info info;
4720 rtx insn, next;
4722 /* If the epilogue is just a single instruction, it must be OK as is. */
4723 if (NEXT_INSN (insns) == NULL_RTX)
4724 return insns;
4726 /* Otherwise, start a sequence, initialize the information we have, and
4727 process all the insns we were given. */
4728 start_sequence ();
4730 info.sp_equiv_reg = stack_pointer_rtx;
4731 info.sp_offset = 0;
4732 info.equiv_reg_src = 0;
4734 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4735 info.const_equiv[j] = 0;
4737 insn = insns;
4738 next = NULL_RTX;
4739 while (insn != NULL_RTX)
4741 next = NEXT_INSN (insn);
4743 if (!INSN_P (insn))
4745 add_insn (insn);
4746 insn = next;
4747 continue;
4750 /* If this insn references the register that SP is equivalent to and
4751 we have a pending load to that register, we must force out the load
4752 first and then indicate we no longer know what SP's equivalent is. */
4753 if (info.equiv_reg_src != 0
4754 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4756 emit_equiv_load (&info);
4757 info.sp_equiv_reg = 0;
4760 info.new_sp_equiv_reg = info.sp_equiv_reg;
4761 info.new_sp_offset = info.sp_offset;
4763 /* If this is a (RETURN) and the return address is on the stack,
4764 update the address and change to an indirect jump. */
4765 if (GET_CODE (PATTERN (insn)) == RETURN
4766 || (GET_CODE (PATTERN (insn)) == PARALLEL
4767 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4769 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4770 rtx base = 0;
4771 HOST_WIDE_INT offset = 0;
4772 rtx jump_insn, jump_set;
4774 /* If the return address is in a register, we can emit the insn
4775 unchanged. Otherwise, it must be a MEM and we see what the
4776 base register and offset are. In any case, we have to emit any
4777 pending load to the equivalent reg of SP, if any. */
4778 if (REG_P (retaddr))
4780 emit_equiv_load (&info);
4781 add_insn (insn);
4782 insn = next;
4783 continue;
4785 else
4787 rtx ret_ptr;
4788 gcc_assert (MEM_P (retaddr));
4790 ret_ptr = XEXP (retaddr, 0);
4792 if (REG_P (ret_ptr))
4794 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4795 offset = 0;
4797 else
4799 gcc_assert (GET_CODE (ret_ptr) == PLUS
4800 && REG_P (XEXP (ret_ptr, 0))
4801 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4802 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4803 offset = INTVAL (XEXP (ret_ptr, 1));
4807 /* If the base of the location containing the return pointer
4808 is SP, we must update it with the replacement address. Otherwise,
4809 just build the necessary MEM. */
4810 retaddr = plus_constant (base, offset);
4811 if (base == stack_pointer_rtx)
4812 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4813 plus_constant (info.sp_equiv_reg,
4814 info.sp_offset));
4816 retaddr = gen_rtx_MEM (Pmode, retaddr);
4817 MEM_NOTRAP_P (retaddr) = 1;
4819 /* If there is a pending load to the equivalent register for SP
4820 and we reference that register, we must load our address into
4821 a scratch register and then do that load. */
4822 if (info.equiv_reg_src
4823 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4825 unsigned int regno;
4826 rtx reg;
4828 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4829 if (HARD_REGNO_MODE_OK (regno, Pmode)
4830 && !fixed_regs[regno]
4831 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4832 && !REGNO_REG_SET_P
4833 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4834 && !refers_to_regno_p (regno,
4835 regno + hard_regno_nregs[regno]
4836 [Pmode],
4837 info.equiv_reg_src, NULL)
4838 && info.const_equiv[regno] == 0)
4839 break;
4841 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4843 reg = gen_rtx_REG (Pmode, regno);
4844 emit_move_insn (reg, retaddr);
4845 retaddr = reg;
4848 emit_equiv_load (&info);
4849 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4851 /* Show the SET in the above insn is a RETURN. */
4852 jump_set = single_set (jump_insn);
4853 gcc_assert (jump_set);
4854 SET_IS_RETURN_P (jump_set) = 1;
4857 /* If SP is not mentioned in the pattern and its equivalent register, if
4858 any, is not modified, just emit it. Otherwise, if neither is set,
4859 replace the reference to SP and emit the insn. If none of those are
4860 true, handle each SET individually. */
4861 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4862 && (info.sp_equiv_reg == stack_pointer_rtx
4863 || !reg_set_p (info.sp_equiv_reg, insn)))
4864 add_insn (insn);
4865 else if (! reg_set_p (stack_pointer_rtx, insn)
4866 && (info.sp_equiv_reg == stack_pointer_rtx
4867 || !reg_set_p (info.sp_equiv_reg, insn)))
4869 int changed;
4871 changed = validate_replace_rtx (stack_pointer_rtx,
4872 plus_constant (info.sp_equiv_reg,
4873 info.sp_offset),
4874 insn);
4875 gcc_assert (changed);
4877 add_insn (insn);
4879 else if (GET_CODE (PATTERN (insn)) == SET)
4880 handle_epilogue_set (PATTERN (insn), &info);
4881 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4883 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4884 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4885 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4887 else
4888 add_insn (insn);
4890 info.sp_equiv_reg = info.new_sp_equiv_reg;
4891 info.sp_offset = info.new_sp_offset;
4893 /* Now update any constants this insn sets. */
4894 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4895 insn = next;
4898 insns = get_insns ();
4899 end_sequence ();
4900 return insns;
4903 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4904 structure that contains information about what we've seen so far. We
4905 process this SET by either updating that data or by emitting one or
4906 more insns. */
4908 static void
4909 handle_epilogue_set (rtx set, struct epi_info *p)
4911 /* First handle the case where we are setting SP. Record what it is being
4912 set from, which we must be able to determine */
4913 if (reg_set_p (stack_pointer_rtx, set))
4915 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4917 if (GET_CODE (SET_SRC (set)) == PLUS)
4919 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4920 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4921 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4922 else
4924 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4925 && (REGNO (XEXP (SET_SRC (set), 1))
4926 < FIRST_PSEUDO_REGISTER)
4927 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4928 p->new_sp_offset
4929 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4932 else
4933 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4935 /* If we are adjusting SP, we adjust from the old data. */
4936 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4938 p->new_sp_equiv_reg = p->sp_equiv_reg;
4939 p->new_sp_offset += p->sp_offset;
4942 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4944 return;
4947 /* Next handle the case where we are setting SP's equivalent
4948 register. We must not already have a value to set it to. We
4949 could update, but there seems little point in handling that case.
4950 Note that we have to allow for the case where we are setting the
4951 register set in the previous part of a PARALLEL inside a single
4952 insn. But use the old offset for any updates within this insn.
4953 We must allow for the case where the register is being set in a
4954 different (usually wider) mode than Pmode). */
4955 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4957 gcc_assert (!p->equiv_reg_src
4958 && REG_P (p->new_sp_equiv_reg)
4959 && REG_P (SET_DEST (set))
4960 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4961 <= BITS_PER_WORD)
4962 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4963 p->equiv_reg_src
4964 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4965 plus_constant (p->sp_equiv_reg,
4966 p->sp_offset));
4969 /* Otherwise, replace any references to SP in the insn to its new value
4970 and emit the insn. */
4971 else
4973 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4974 plus_constant (p->sp_equiv_reg,
4975 p->sp_offset));
4976 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4977 plus_constant (p->sp_equiv_reg,
4978 p->sp_offset));
4979 emit_insn (set);
4983 /* Update the tracking information for registers set to constants. */
4985 static void
4986 update_epilogue_consts (rtx dest, rtx x, void *data)
4988 struct epi_info *p = (struct epi_info *) data;
4989 rtx new;
4991 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4992 return;
4994 /* If we are either clobbering a register or doing a partial set,
4995 show we don't know the value. */
4996 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4997 p->const_equiv[REGNO (dest)] = 0;
4999 /* If we are setting it to a constant, record that constant. */
5000 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5001 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5003 /* If this is a binary operation between a register we have been tracking
5004 and a constant, see if we can compute a new constant value. */
5005 else if (ARITHMETIC_P (SET_SRC (x))
5006 && REG_P (XEXP (SET_SRC (x), 0))
5007 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5008 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5009 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5010 && 0 != (new = simplify_binary_operation
5011 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5012 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5013 XEXP (SET_SRC (x), 1)))
5014 && GET_CODE (new) == CONST_INT)
5015 p->const_equiv[REGNO (dest)] = new;
5017 /* Otherwise, we can't do anything with this value. */
5018 else
5019 p->const_equiv[REGNO (dest)] = 0;
5022 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5024 static void
5025 emit_equiv_load (struct epi_info *p)
5027 if (p->equiv_reg_src != 0)
5029 rtx dest = p->sp_equiv_reg;
5031 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5032 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5033 REGNO (p->sp_equiv_reg));
5035 emit_move_insn (dest, p->equiv_reg_src);
5036 p->equiv_reg_src = 0;
5039 #endif
5041 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5042 this into place with notes indicating where the prologue ends and where
5043 the epilogue begins. Update the basic block information when possible. */
5045 void
5046 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5048 int inserted = 0;
5049 edge e;
5050 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5051 rtx seq;
5052 #endif
5053 #ifdef HAVE_prologue
5054 rtx prologue_end = NULL_RTX;
5055 #endif
5056 #if defined (HAVE_epilogue) || defined(HAVE_return)
5057 rtx epilogue_end = NULL_RTX;
5058 #endif
5059 edge_iterator ei;
5061 #ifdef HAVE_prologue
5062 if (HAVE_prologue)
5064 start_sequence ();
5065 seq = gen_prologue ();
5066 emit_insn (seq);
5068 /* Retain a map of the prologue insns. */
5069 record_insns (seq, &prologue);
5070 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5072 seq = get_insns ();
5073 end_sequence ();
5074 set_insn_locators (seq, prologue_locator);
5076 /* Can't deal with multiple successors of the entry block
5077 at the moment. Function should always have at least one
5078 entry point. */
5079 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5081 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5082 inserted = 1;
5084 #endif
5086 /* If the exit block has no non-fake predecessors, we don't need
5087 an epilogue. */
5088 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5089 if ((e->flags & EDGE_FAKE) == 0)
5090 break;
5091 if (e == NULL)
5092 goto epilogue_done;
5094 #ifdef HAVE_return
5095 if (optimize && HAVE_return)
5097 /* If we're allowed to generate a simple return instruction,
5098 then by definition we don't need a full epilogue. Examine
5099 the block that falls through to EXIT. If it does not
5100 contain any code, examine its predecessors and try to
5101 emit (conditional) return instructions. */
5103 basic_block last;
5104 rtx label;
5106 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5107 if (e->flags & EDGE_FALLTHRU)
5108 break;
5109 if (e == NULL)
5110 goto epilogue_done;
5111 last = e->src;
5113 /* Verify that there are no active instructions in the last block. */
5114 label = BB_END (last);
5115 while (label && !LABEL_P (label))
5117 if (active_insn_p (label))
5118 break;
5119 label = PREV_INSN (label);
5122 if (BB_HEAD (last) == label && LABEL_P (label))
5124 edge_iterator ei2;
5125 rtx epilogue_line_note = NULL_RTX;
5127 /* Locate the line number associated with the closing brace,
5128 if we can find one. */
5129 for (seq = get_last_insn ();
5130 seq && ! active_insn_p (seq);
5131 seq = PREV_INSN (seq))
5132 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5134 epilogue_line_note = seq;
5135 break;
5138 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5140 basic_block bb = e->src;
5141 rtx jump;
5143 if (bb == ENTRY_BLOCK_PTR)
5145 ei_next (&ei2);
5146 continue;
5149 jump = BB_END (bb);
5150 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5152 ei_next (&ei2);
5153 continue;
5156 /* If we have an unconditional jump, we can replace that
5157 with a simple return instruction. */
5158 if (simplejump_p (jump))
5160 emit_return_into_block (bb, epilogue_line_note);
5161 delete_insn (jump);
5164 /* If we have a conditional jump, we can try to replace
5165 that with a conditional return instruction. */
5166 else if (condjump_p (jump))
5168 if (! redirect_jump (jump, 0, 0))
5170 ei_next (&ei2);
5171 continue;
5174 /* If this block has only one successor, it both jumps
5175 and falls through to the fallthru block, so we can't
5176 delete the edge. */
5177 if (single_succ_p (bb))
5179 ei_next (&ei2);
5180 continue;
5183 else
5185 ei_next (&ei2);
5186 continue;
5189 /* Fix up the CFG for the successful change we just made. */
5190 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5193 /* Emit a return insn for the exit fallthru block. Whether
5194 this is still reachable will be determined later. */
5196 emit_barrier_after (BB_END (last));
5197 emit_return_into_block (last, epilogue_line_note);
5198 epilogue_end = BB_END (last);
5199 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5200 goto epilogue_done;
5203 #endif
5204 /* Find the edge that falls through to EXIT. Other edges may exist
5205 due to RETURN instructions, but those don't need epilogues.
5206 There really shouldn't be a mixture -- either all should have
5207 been converted or none, however... */
5209 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5210 if (e->flags & EDGE_FALLTHRU)
5211 break;
5212 if (e == NULL)
5213 goto epilogue_done;
5215 #ifdef HAVE_epilogue
5216 if (HAVE_epilogue)
5218 start_sequence ();
5219 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5221 seq = gen_epilogue ();
5223 #ifdef INCOMING_RETURN_ADDR_RTX
5224 /* If this function returns with the stack depressed and we can support
5225 it, massage the epilogue to actually do that. */
5226 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5227 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5228 seq = keep_stack_depressed (seq);
5229 #endif
5231 emit_jump_insn (seq);
5233 /* Retain a map of the epilogue insns. */
5234 record_insns (seq, &epilogue);
5235 set_insn_locators (seq, epilogue_locator);
5237 seq = get_insns ();
5238 end_sequence ();
5240 insert_insn_on_edge (seq, e);
5241 inserted = 1;
5243 else
5244 #endif
5246 basic_block cur_bb;
5248 if (! next_active_insn (BB_END (e->src)))
5249 goto epilogue_done;
5250 /* We have a fall-through edge to the exit block, the source is not
5251 at the end of the function, and there will be an assembler epilogue
5252 at the end of the function.
5253 We can't use force_nonfallthru here, because that would try to
5254 use return. Inserting a jump 'by hand' is extremely messy, so
5255 we take advantage of cfg_layout_finalize using
5256 fixup_fallthru_exit_predecessor. */
5257 cfg_layout_initialize (0);
5258 FOR_EACH_BB (cur_bb)
5259 if (cur_bb->index >= NUM_FIXED_BLOCKS
5260 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5261 cur_bb->aux = cur_bb->next_bb;
5262 cfg_layout_finalize ();
5264 epilogue_done:
5266 if (inserted)
5267 commit_edge_insertions ();
5269 #ifdef HAVE_sibcall_epilogue
5270 /* Emit sibling epilogues before any sibling call sites. */
5271 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5273 basic_block bb = e->src;
5274 rtx insn = BB_END (bb);
5276 if (!CALL_P (insn)
5277 || ! SIBLING_CALL_P (insn))
5279 ei_next (&ei);
5280 continue;
5283 start_sequence ();
5284 emit_insn (gen_sibcall_epilogue ());
5285 seq = get_insns ();
5286 end_sequence ();
5288 /* Retain a map of the epilogue insns. Used in life analysis to
5289 avoid getting rid of sibcall epilogue insns. Do this before we
5290 actually emit the sequence. */
5291 record_insns (seq, &sibcall_epilogue);
5292 set_insn_locators (seq, epilogue_locator);
5294 emit_insn_before (seq, insn);
5295 ei_next (&ei);
5297 #endif
5299 #ifdef HAVE_prologue
5300 /* This is probably all useless now that we use locators. */
5301 if (prologue_end)
5303 rtx insn, prev;
5305 /* GDB handles `break f' by setting a breakpoint on the first
5306 line note after the prologue. Which means (1) that if
5307 there are line number notes before where we inserted the
5308 prologue we should move them, and (2) we should generate a
5309 note before the end of the first basic block, if there isn't
5310 one already there.
5312 ??? This behavior is completely broken when dealing with
5313 multiple entry functions. We simply place the note always
5314 into first basic block and let alternate entry points
5315 to be missed.
5318 for (insn = prologue_end; insn; insn = prev)
5320 prev = PREV_INSN (insn);
5321 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5323 /* Note that we cannot reorder the first insn in the
5324 chain, since rest_of_compilation relies on that
5325 remaining constant. */
5326 if (prev == NULL)
5327 break;
5328 reorder_insns (insn, insn, prologue_end);
5332 /* Find the last line number note in the first block. */
5333 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5334 insn != prologue_end && insn;
5335 insn = PREV_INSN (insn))
5336 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5337 break;
5339 /* If we didn't find one, make a copy of the first line number
5340 we run across. */
5341 if (! insn)
5343 for (insn = next_active_insn (prologue_end);
5344 insn;
5345 insn = PREV_INSN (insn))
5346 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5348 emit_note_copy_after (insn, prologue_end);
5349 break;
5353 #endif
5354 #ifdef HAVE_epilogue
5355 if (epilogue_end)
5357 rtx insn, next;
5359 /* Similarly, move any line notes that appear after the epilogue.
5360 There is no need, however, to be quite so anal about the existence
5361 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5362 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5363 info generation. */
5364 for (insn = epilogue_end; insn; insn = next)
5366 next = NEXT_INSN (insn);
5367 if (NOTE_P (insn)
5368 && (NOTE_LINE_NUMBER (insn) > 0
5369 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5370 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5371 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5374 #endif
5377 /* Reposition the prologue-end and epilogue-begin notes after instruction
5378 scheduling and delayed branch scheduling. */
5380 void
5381 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5383 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5384 rtx insn, last, note;
5385 int len;
5387 if ((len = VEC_length (int, prologue)) > 0)
5389 last = 0, note = 0;
5391 /* Scan from the beginning until we reach the last prologue insn.
5392 We apparently can't depend on basic_block_{head,end} after
5393 reorg has run. */
5394 for (insn = f; insn; insn = NEXT_INSN (insn))
5396 if (NOTE_P (insn))
5398 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5399 note = insn;
5401 else if (contains (insn, &prologue))
5403 last = insn;
5404 if (--len == 0)
5405 break;
5409 if (last)
5411 /* Find the prologue-end note if we haven't already, and
5412 move it to just after the last prologue insn. */
5413 if (note == 0)
5415 for (note = last; (note = NEXT_INSN (note));)
5416 if (NOTE_P (note)
5417 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5418 break;
5421 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5422 if (LABEL_P (last))
5423 last = NEXT_INSN (last);
5424 reorder_insns (note, note, last);
5428 if ((len = VEC_length (int, epilogue)) > 0)
5430 last = 0, note = 0;
5432 /* Scan from the end until we reach the first epilogue insn.
5433 We apparently can't depend on basic_block_{head,end} after
5434 reorg has run. */
5435 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5437 if (NOTE_P (insn))
5439 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5440 note = insn;
5442 else if (contains (insn, &epilogue))
5444 last = insn;
5445 if (--len == 0)
5446 break;
5450 if (last)
5452 /* Find the epilogue-begin note if we haven't already, and
5453 move it to just before the first epilogue insn. */
5454 if (note == 0)
5456 for (note = insn; (note = PREV_INSN (note));)
5457 if (NOTE_P (note)
5458 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5459 break;
5462 if (PREV_INSN (last) != note)
5463 reorder_insns (note, note, PREV_INSN (last));
5466 #endif /* HAVE_prologue or HAVE_epilogue */
5469 /* Resets insn_block_boundaries array. */
5471 void
5472 reset_block_changes (void)
5474 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5475 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5478 /* Record the boundary for BLOCK. */
5479 void
5480 record_block_change (tree block)
5482 int i, n;
5483 tree last_block;
5485 if (!block)
5486 return;
5488 if(!cfun->ib_boundaries_block)
5489 return;
5491 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5492 VARRAY_POP (cfun->ib_boundaries_block);
5493 n = get_max_uid ();
5494 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5495 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5497 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5500 /* Finishes record of boundaries. */
5501 void finalize_block_changes (void)
5503 record_block_change (DECL_INITIAL (current_function_decl));
5506 /* For INSN return the BLOCK it belongs to. */
5507 void
5508 check_block_change (rtx insn, tree *block)
5510 unsigned uid = INSN_UID (insn);
5512 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5513 return;
5515 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5518 /* Releases the ib_boundaries_block records. */
5519 void
5520 free_block_changes (void)
5522 cfun->ib_boundaries_block = NULL;
5525 /* Returns the name of the current function. */
5526 const char *
5527 current_function_name (void)
5529 return lang_hooks.decl_printable_name (cfun->decl, 2);
5533 static void
5534 rest_of_handle_check_leaf_regs (void)
5536 #ifdef LEAF_REGISTERS
5537 current_function_uses_only_leaf_regs
5538 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5539 #endif
5542 struct tree_opt_pass pass_leaf_regs =
5544 NULL, /* name */
5545 NULL, /* gate */
5546 rest_of_handle_check_leaf_regs, /* execute */
5547 NULL, /* sub */
5548 NULL, /* next */
5549 0, /* static_pass_number */
5550 0, /* tv_id */
5551 0, /* properties_required */
5552 0, /* properties_provided */
5553 0, /* properties_destroyed */
5554 0, /* todo_flags_start */
5555 0, /* todo_flags_finish */
5556 0 /* letter */
5560 #include "gt-function.h"