* Makefile.in: Add dependencies.
[official-gcc.git] / gcc / reload1.c
blob7ba93a6e2f0427a53295123e4ce650fd1ab90f5b
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "obstack.h"
33 #include "insn-config.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "reload.h"
42 #include "recog.h"
43 #include "output.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "except.h"
47 #include "tree.h"
48 #include "target.h"
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
84 /* During reload_as_needed, element N contains a REG rtx for the hard reg
85 into which reg N has been reloaded (perhaps for a previous insn). */
86 static rtx *reg_last_reload_reg;
88 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
89 for an output reload that stores into reg N. */
90 static regset_head reg_has_output_reload;
92 /* Indicates which hard regs are reload-registers for an output reload
93 in the current insn. */
94 static HARD_REG_SET reg_is_output_reload;
96 /* Element N is the constant value to which pseudo reg N is equivalent,
97 or zero if pseudo reg N is not equivalent to a constant.
98 find_reloads looks at this in order to replace pseudo reg N
99 with the constant it stands for. */
100 rtx *reg_equiv_constant;
102 /* Element N is an invariant value to which pseudo reg N is equivalent.
103 eliminate_regs_in_insn uses this to replace pseudos in particular
104 contexts. */
105 rtx *reg_equiv_invariant;
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
113 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
114 collector can keep track of what is inside. */
115 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
117 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
118 This is used when the address is not valid as a memory address
119 (because its displacement is too big for the machine.) */
120 rtx *reg_equiv_address;
122 /* Element N is the memory slot to which pseudo reg N is equivalent,
123 or zero if pseudo reg N is not equivalent to a memory slot. */
124 rtx *reg_equiv_mem;
126 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
127 alternate representations of the location of pseudo reg N. */
128 rtx *reg_equiv_alt_mem_list;
130 /* Widest width in which each pseudo reg is referred to (via subreg). */
131 static unsigned int *reg_max_ref_width;
133 /* Element N is the list of insns that initialized reg N from its equivalent
134 constant or memory slot. */
135 rtx *reg_equiv_init;
136 int reg_equiv_init_size;
138 /* Vector to remember old contents of reg_renumber before spilling. */
139 static short *reg_old_renumber;
141 /* During reload_as_needed, element N contains the last pseudo regno reloaded
142 into hard register N. If that pseudo reg occupied more than one register,
143 reg_reloaded_contents points to that pseudo for each spill register in
144 use; all of these must remain set for an inheritance to occur. */
145 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
147 /* During reload_as_needed, element N contains the insn for which
148 hard register N was last used. Its contents are significant only
149 when reg_reloaded_valid is set for this register. */
150 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
152 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
153 static HARD_REG_SET reg_reloaded_valid;
154 /* Indicate if the register was dead at the end of the reload.
155 This is only valid if reg_reloaded_contents is set and valid. */
156 static HARD_REG_SET reg_reloaded_dead;
158 /* Indicate whether the register's current value is one that is not
159 safe to retain across a call, even for registers that are normally
160 call-saved. */
161 static HARD_REG_SET reg_reloaded_call_part_clobbered;
163 /* Number of spill-regs so far; number of valid elements of spill_regs. */
164 static int n_spills;
166 /* In parallel with spill_regs, contains REG rtx's for those regs.
167 Holds the last rtx used for any given reg, or 0 if it has never
168 been used for spilling yet. This rtx is reused, provided it has
169 the proper mode. */
170 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
172 /* In parallel with spill_regs, contains nonzero for a spill reg
173 that was stored after the last time it was used.
174 The precise value is the insn generated to do the store. */
175 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
177 /* This is the register that was stored with spill_reg_store. This is a
178 copy of reload_out / reload_out_reg when the value was stored; if
179 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
180 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
182 /* This table is the inverse mapping of spill_regs:
183 indexed by hard reg number,
184 it contains the position of that reg in spill_regs,
185 or -1 for something that is not in spill_regs.
187 ?!? This is no longer accurate. */
188 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
190 /* This reg set indicates registers that can't be used as spill registers for
191 the currently processed insn. These are the hard registers which are live
192 during the insn, but not allocated to pseudos, as well as fixed
193 registers. */
194 static HARD_REG_SET bad_spill_regs;
196 /* These are the hard registers that can't be used as spill register for any
197 insn. This includes registers used for user variables and registers that
198 we can't eliminate. A register that appears in this set also can't be used
199 to retry register allocation. */
200 static HARD_REG_SET bad_spill_regs_global;
202 /* Describes order of use of registers for reloading
203 of spilled pseudo-registers. `n_spills' is the number of
204 elements that are actually valid; new ones are added at the end.
206 Both spill_regs and spill_reg_order are used on two occasions:
207 once during find_reload_regs, where they keep track of the spill registers
208 for a single insn, but also during reload_as_needed where they show all
209 the registers ever used by reload. For the latter case, the information
210 is calculated during finish_spills. */
211 static short spill_regs[FIRST_PSEUDO_REGISTER];
213 /* This vector of reg sets indicates, for each pseudo, which hard registers
214 may not be used for retrying global allocation because the register was
215 formerly spilled from one of them. If we allowed reallocating a pseudo to
216 a register that it was already allocated to, reload might not
217 terminate. */
218 static HARD_REG_SET *pseudo_previous_regs;
220 /* This vector of reg sets indicates, for each pseudo, which hard
221 registers may not be used for retrying global allocation because they
222 are used as spill registers during one of the insns in which the
223 pseudo is live. */
224 static HARD_REG_SET *pseudo_forbidden_regs;
226 /* All hard regs that have been used as spill registers for any insn are
227 marked in this set. */
228 static HARD_REG_SET used_spill_regs;
230 /* Index of last register assigned as a spill register. We allocate in
231 a round-robin fashion. */
232 static int last_spill_reg;
234 /* Nonzero if indirect addressing is supported on the machine; this means
235 that spilling (REG n) does not require reloading it into a register in
236 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
237 value indicates the level of indirect addressing supported, e.g., two
238 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
239 a hard register. */
240 static char spill_indirect_levels;
242 /* Nonzero if indirect addressing is supported when the innermost MEM is
243 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
244 which these are valid is the same as spill_indirect_levels, above. */
245 char indirect_symref_ok;
247 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
248 char double_reg_address_ok;
250 /* Record the stack slot for each spilled hard register. */
251 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
253 /* Width allocated so far for that stack slot. */
254 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
256 /* Record which pseudos needed to be spilled. */
257 static regset_head spilled_pseudos;
259 /* Used for communication between order_regs_for_reload and count_pseudo.
260 Used to avoid counting one pseudo twice. */
261 static regset_head pseudos_counted;
263 /* First uid used by insns created by reload in this function.
264 Used in find_equiv_reg. */
265 int reload_first_uid;
267 /* Flag set by local-alloc or global-alloc if anything is live in
268 a call-clobbered reg across calls. */
269 int caller_save_needed;
271 /* Set to 1 while reload_as_needed is operating.
272 Required by some machines to handle any generated moves differently. */
273 int reload_in_progress = 0;
275 /* These arrays record the insn_code of insns that may be needed to
276 perform input and output reloads of special objects. They provide a
277 place to pass a scratch register. */
278 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
279 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
281 /* This obstack is used for allocation of rtl during register elimination.
282 The allocated storage can be freed once find_reloads has processed the
283 insn. */
284 static struct obstack reload_obstack;
286 /* Points to the beginning of the reload_obstack. All insn_chain structures
287 are allocated first. */
288 static char *reload_startobj;
290 /* The point after all insn_chain structures. Used to quickly deallocate
291 memory allocated in copy_reloads during calculate_needs_all_insns. */
292 static char *reload_firstobj;
294 /* This points before all local rtl generated by register elimination.
295 Used to quickly free all memory after processing one insn. */
296 static char *reload_insn_firstobj;
298 /* List of insn_chain instructions, one for every insn that reload needs to
299 examine. */
300 struct insn_chain *reload_insn_chain;
302 /* List of all insns needing reloads. */
303 static struct insn_chain *insns_need_reload;
305 /* This structure is used to record information about register eliminations.
306 Each array entry describes one possible way of eliminating a register
307 in favor of another. If there is more than one way of eliminating a
308 particular register, the most preferred should be specified first. */
310 struct elim_table
312 int from; /* Register number to be eliminated. */
313 int to; /* Register number used as replacement. */
314 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
315 int can_eliminate; /* Nonzero if this elimination can be done. */
316 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
317 insns made by reload. */
318 HOST_WIDE_INT offset; /* Current offset between the two regs. */
319 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
320 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
321 rtx from_rtx; /* REG rtx for the register to be eliminated.
322 We cannot simply compare the number since
323 we might then spuriously replace a hard
324 register corresponding to a pseudo
325 assigned to the reg to be eliminated. */
326 rtx to_rtx; /* REG rtx for the replacement. */
329 static struct elim_table *reg_eliminate = 0;
331 /* This is an intermediate structure to initialize the table. It has
332 exactly the members provided by ELIMINABLE_REGS. */
333 static const struct elim_table_1
335 const int from;
336 const int to;
337 } reg_eliminate_1[] =
339 /* If a set of eliminable registers was specified, define the table from it.
340 Otherwise, default to the normal case of the frame pointer being
341 replaced by the stack pointer. */
343 #ifdef ELIMINABLE_REGS
344 ELIMINABLE_REGS;
345 #else
346 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
347 #endif
349 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
351 /* Record the number of pending eliminations that have an offset not equal
352 to their initial offset. If nonzero, we use a new copy of each
353 replacement result in any insns encountered. */
354 int num_not_at_initial_offset;
356 /* Count the number of registers that we may be able to eliminate. */
357 static int num_eliminable;
358 /* And the number of registers that are equivalent to a constant that
359 can be eliminated to frame_pointer / arg_pointer + constant. */
360 static int num_eliminable_invariants;
362 /* For each label, we record the offset of each elimination. If we reach
363 a label by more than one path and an offset differs, we cannot do the
364 elimination. This information is indexed by the difference of the
365 number of the label and the first label number. We can't offset the
366 pointer itself as this can cause problems on machines with segmented
367 memory. The first table is an array of flags that records whether we
368 have yet encountered a label and the second table is an array of arrays,
369 one entry in the latter array for each elimination. */
371 static int first_label_num;
372 static char *offsets_known_at;
373 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
375 /* Number of labels in the current function. */
377 static int num_labels;
379 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
380 static void maybe_fix_stack_asms (void);
381 static void copy_reloads (struct insn_chain *);
382 static void calculate_needs_all_insns (int);
383 static int find_reg (struct insn_chain *, int);
384 static void find_reload_regs (struct insn_chain *);
385 static void select_reload_regs (void);
386 static void delete_caller_save_insns (void);
388 static void spill_failure (rtx, enum reg_class);
389 static void count_spilled_pseudo (int, int, int);
390 static void delete_dead_insn (rtx);
391 static void alter_reg (int, int);
392 static void set_label_offsets (rtx, rtx, int);
393 static void check_eliminable_occurrences (rtx);
394 static void elimination_effects (rtx, enum machine_mode);
395 static int eliminate_regs_in_insn (rtx, int);
396 static void update_eliminable_offsets (void);
397 static void mark_not_eliminable (rtx, rtx, void *);
398 static void set_initial_elim_offsets (void);
399 static bool verify_initial_elim_offsets (void);
400 static void set_initial_label_offsets (void);
401 static void set_offsets_for_label (rtx);
402 static void init_elim_table (void);
403 static void update_eliminables (HARD_REG_SET *);
404 static void spill_hard_reg (unsigned int, int);
405 static int finish_spills (int);
406 static void scan_paradoxical_subregs (rtx);
407 static void count_pseudo (int);
408 static void order_regs_for_reload (struct insn_chain *);
409 static void reload_as_needed (int);
410 static void forget_old_reloads_1 (rtx, rtx, void *);
411 static void forget_marked_reloads (regset);
412 static int reload_reg_class_lower (const void *, const void *);
413 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414 enum machine_mode);
415 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416 enum machine_mode);
417 static int reload_reg_free_p (unsigned int, int, enum reload_type);
418 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419 rtx, rtx, int, int);
420 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
421 rtx, rtx, int, int);
422 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
423 static int allocate_reload_reg (struct insn_chain *, int, int);
424 static int conflicts_with_override (rtx);
425 static void failed_reload (rtx, int);
426 static int set_reload_reg (int, int);
427 static void choose_reload_regs_init (struct insn_chain *, rtx *);
428 static void choose_reload_regs (struct insn_chain *);
429 static void merge_assigned_reloads (rtx);
430 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
431 rtx, int);
432 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
433 int);
434 static void do_input_reload (struct insn_chain *, struct reload *, int);
435 static void do_output_reload (struct insn_chain *, struct reload *, int);
436 static bool inherit_piecemeal_p (int, int);
437 static void emit_reload_insns (struct insn_chain *);
438 static void delete_output_reload (rtx, int, int);
439 static void delete_address_reloads (rtx, rtx);
440 static void delete_address_reloads_1 (rtx, rtx, rtx);
441 static rtx inc_for_reload (rtx, rtx, rtx, int);
442 #ifdef AUTO_INC_DEC
443 static void add_auto_inc_notes (rtx, rtx);
444 #endif
445 static void copy_eh_notes (rtx, rtx);
446 static int reloads_conflict (int, int);
447 static rtx gen_reload (rtx, rtx, int, enum reload_type);
448 static rtx emit_insn_if_valid_for_reload (rtx);
450 /* Initialize the reload pass once per compilation. */
452 void
453 init_reload (void)
455 int i;
457 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
458 Set spill_indirect_levels to the number of levels such addressing is
459 permitted, zero if it is not permitted at all. */
461 rtx tem
462 = gen_rtx_MEM (Pmode,
463 gen_rtx_PLUS (Pmode,
464 gen_rtx_REG (Pmode,
465 LAST_VIRTUAL_REGISTER + 1),
466 GEN_INT (4)));
467 spill_indirect_levels = 0;
469 while (memory_address_p (QImode, tem))
471 spill_indirect_levels++;
472 tem = gen_rtx_MEM (Pmode, tem);
475 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
477 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
478 indirect_symref_ok = memory_address_p (QImode, tem);
480 /* See if reg+reg is a valid (and offsettable) address. */
482 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 tem = gen_rtx_PLUS (Pmode,
485 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
486 gen_rtx_REG (Pmode, i));
488 /* This way, we make sure that reg+reg is an offsettable address. */
489 tem = plus_constant (tem, 4);
491 if (memory_address_p (QImode, tem))
493 double_reg_address_ok = 1;
494 break;
498 /* Initialize obstack for our rtl allocation. */
499 gcc_obstack_init (&reload_obstack);
500 reload_startobj = obstack_alloc (&reload_obstack, 0);
502 INIT_REG_SET (&spilled_pseudos);
503 INIT_REG_SET (&pseudos_counted);
506 /* List of insn chains that are currently unused. */
507 static struct insn_chain *unused_insn_chains = 0;
509 /* Allocate an empty insn_chain structure. */
510 struct insn_chain *
511 new_insn_chain (void)
513 struct insn_chain *c;
515 if (unused_insn_chains == 0)
517 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
518 INIT_REG_SET (&c->live_throughout);
519 INIT_REG_SET (&c->dead_or_set);
521 else
523 c = unused_insn_chains;
524 unused_insn_chains = c->next;
526 c->is_caller_save_insn = 0;
527 c->need_operand_change = 0;
528 c->need_reload = 0;
529 c->need_elim = 0;
530 return c;
533 /* Small utility function to set all regs in hard reg set TO which are
534 allocated to pseudos in regset FROM. */
536 void
537 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
539 unsigned int regno;
540 reg_set_iterator rsi;
542 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
544 int r = reg_renumber[regno];
545 int nregs;
547 if (r < 0)
549 /* reload_combine uses the information from
550 BASIC_BLOCK->global_live_at_start, which might still
551 contain registers that have not actually been allocated
552 since they have an equivalence. */
553 gcc_assert (reload_completed);
555 else
557 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
558 while (nregs-- > 0)
559 SET_HARD_REG_BIT (*to, r + nregs);
564 /* Replace all pseudos found in LOC with their corresponding
565 equivalences. */
567 static void
568 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
570 rtx x = *loc;
571 enum rtx_code code;
572 const char *fmt;
573 int i, j;
575 if (! x)
576 return;
578 code = GET_CODE (x);
579 if (code == REG)
581 unsigned int regno = REGNO (x);
583 if (regno < FIRST_PSEUDO_REGISTER)
584 return;
586 x = eliminate_regs (x, mem_mode, usage);
587 if (x != *loc)
589 *loc = x;
590 replace_pseudos_in (loc, mem_mode, usage);
591 return;
594 if (reg_equiv_constant[regno])
595 *loc = reg_equiv_constant[regno];
596 else if (reg_equiv_mem[regno])
597 *loc = reg_equiv_mem[regno];
598 else if (reg_equiv_address[regno])
599 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
600 else
602 gcc_assert (!REG_P (regno_reg_rtx[regno])
603 || REGNO (regno_reg_rtx[regno]) != regno);
604 *loc = regno_reg_rtx[regno];
607 return;
609 else if (code == MEM)
611 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612 return;
615 /* Process each of our operands recursively. */
616 fmt = GET_RTX_FORMAT (code);
617 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618 if (*fmt == 'e')
619 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620 else if (*fmt == 'E')
621 for (j = 0; j < XVECLEN (x, i); j++)
622 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
626 /* Global variables used by reload and its subroutines. */
628 /* Set during calculate_needs if an insn needs register elimination. */
629 static int something_needs_elimination;
630 /* Set during calculate_needs if an insn needs an operand changed. */
631 static int something_needs_operands_changed;
633 /* Nonzero means we couldn't get enough spill regs. */
634 static int failure;
636 /* Main entry point for the reload pass.
638 FIRST is the first insn of the function being compiled.
640 GLOBAL nonzero means we were called from global_alloc
641 and should attempt to reallocate any pseudoregs that we
642 displace from hard regs we will use for reloads.
643 If GLOBAL is zero, we do not have enough information to do that,
644 so any pseudo reg that is spilled must go to the stack.
646 Return value is nonzero if reload failed
647 and we must not do any more for this function. */
650 reload (rtx first, int global)
652 int i;
653 rtx insn;
654 struct elim_table *ep;
655 basic_block bb;
657 /* Make sure even insns with volatile mem refs are recognizable. */
658 init_recog ();
660 failure = 0;
662 reload_firstobj = obstack_alloc (&reload_obstack, 0);
664 /* Make sure that the last insn in the chain
665 is not something that needs reloading. */
666 emit_note (NOTE_INSN_DELETED);
668 /* Enable find_equiv_reg to distinguish insns made by reload. */
669 reload_first_uid = get_max_uid ();
671 #ifdef SECONDARY_MEMORY_NEEDED
672 /* Initialize the secondary memory table. */
673 clear_secondary_mem ();
674 #endif
676 /* We don't have a stack slot for any spill reg yet. */
677 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
678 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
680 /* Initialize the save area information for caller-save, in case some
681 are needed. */
682 init_save_areas ();
684 /* Compute which hard registers are now in use
685 as homes for pseudo registers.
686 This is done here rather than (eg) in global_alloc
687 because this point is reached even if not optimizing. */
688 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
689 mark_home_live (i);
691 /* A function that receives a nonlocal goto must save all call-saved
692 registers. */
693 if (current_function_has_nonlocal_label)
694 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
695 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
696 regs_ever_live[i] = 1;
698 /* Find all the pseudo registers that didn't get hard regs
699 but do have known equivalent constants or memory slots.
700 These include parameters (known equivalent to parameter slots)
701 and cse'd or loop-moved constant memory addresses.
703 Record constant equivalents in reg_equiv_constant
704 so they will be substituted by find_reloads.
705 Record memory equivalents in reg_mem_equiv so they can
706 be substituted eventually by altering the REG-rtx's. */
708 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
709 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
710 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
711 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
712 reg_equiv_address = XCNEWVEC (rtx, max_regno);
713 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
714 reg_old_renumber = XCNEWVEC (short, max_regno);
715 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
716 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
717 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
719 CLEAR_HARD_REG_SET (bad_spill_regs_global);
721 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
722 to. Also find all paradoxical subregs and find largest such for
723 each pseudo. */
725 num_eliminable_invariants = 0;
726 for (insn = first; insn; insn = NEXT_INSN (insn))
728 rtx set = single_set (insn);
730 /* We may introduce USEs that we want to remove at the end, so
731 we'll mark them with QImode. Make sure there are no
732 previously-marked insns left by say regmove. */
733 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
734 && GET_MODE (insn) != VOIDmode)
735 PUT_MODE (insn, VOIDmode);
737 if (INSN_P (insn))
738 scan_paradoxical_subregs (PATTERN (insn));
740 if (set != 0 && REG_P (SET_DEST (set)))
742 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
743 rtx x;
745 if (! note)
746 continue;
748 i = REGNO (SET_DEST (set));
749 x = XEXP (note, 0);
751 if (i <= LAST_VIRTUAL_REGISTER)
752 continue;
754 if (! function_invariant_p (x)
755 || ! flag_pic
756 /* A function invariant is often CONSTANT_P but may
757 include a register. We promise to only pass
758 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
759 || (CONSTANT_P (x)
760 && LEGITIMATE_PIC_OPERAND_P (x)))
762 /* It can happen that a REG_EQUIV note contains a MEM
763 that is not a legitimate memory operand. As later
764 stages of reload assume that all addresses found
765 in the reg_equiv_* arrays were originally legitimate,
766 we ignore such REG_EQUIV notes. */
767 if (memory_operand (x, VOIDmode))
769 /* Always unshare the equivalence, so we can
770 substitute into this insn without touching the
771 equivalence. */
772 reg_equiv_memory_loc[i] = copy_rtx (x);
774 else if (function_invariant_p (x))
776 if (GET_CODE (x) == PLUS)
778 /* This is PLUS of frame pointer and a constant,
779 and might be shared. Unshare it. */
780 reg_equiv_invariant[i] = copy_rtx (x);
781 num_eliminable_invariants++;
783 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
785 reg_equiv_invariant[i] = x;
786 num_eliminable_invariants++;
788 else if (LEGITIMATE_CONSTANT_P (x))
789 reg_equiv_constant[i] = x;
790 else
792 reg_equiv_memory_loc[i]
793 = force_const_mem (GET_MODE (SET_DEST (set)), x);
794 if (! reg_equiv_memory_loc[i])
795 reg_equiv_init[i] = NULL_RTX;
798 else
800 reg_equiv_init[i] = NULL_RTX;
801 continue;
804 else
805 reg_equiv_init[i] = NULL_RTX;
809 if (dump_file)
810 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
811 if (reg_equiv_init[i])
813 fprintf (dump_file, "init_insns for %u: ", i);
814 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
815 fprintf (dump_file, "\n");
818 init_elim_table ();
820 first_label_num = get_first_label_num ();
821 num_labels = max_label_num () - first_label_num;
823 /* Allocate the tables used to store offset information at labels. */
824 /* We used to use alloca here, but the size of what it would try to
825 allocate would occasionally cause it to exceed the stack limit and
826 cause a core dump. */
827 offsets_known_at = XNEWVEC (char, num_labels);
828 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
830 /* Alter each pseudo-reg rtx to contain its hard reg number.
831 Assign stack slots to the pseudos that lack hard regs or equivalents.
832 Do not touch virtual registers. */
834 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
835 alter_reg (i, -1);
837 /* If we have some registers we think can be eliminated, scan all insns to
838 see if there is an insn that sets one of these registers to something
839 other than itself plus a constant. If so, the register cannot be
840 eliminated. Doing this scan here eliminates an extra pass through the
841 main reload loop in the most common case where register elimination
842 cannot be done. */
843 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
844 if (INSN_P (insn))
845 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
847 maybe_fix_stack_asms ();
849 insns_need_reload = 0;
850 something_needs_elimination = 0;
852 /* Initialize to -1, which means take the first spill register. */
853 last_spill_reg = -1;
855 /* Spill any hard regs that we know we can't eliminate. */
856 CLEAR_HARD_REG_SET (used_spill_regs);
857 /* There can be multiple ways to eliminate a register;
858 they should be listed adjacently.
859 Elimination for any register fails only if all possible ways fail. */
860 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 int from = ep->from;
863 int can_eliminate = 0;
866 can_eliminate |= ep->can_eliminate;
867 ep++;
869 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
870 if (! can_eliminate)
871 spill_hard_reg (from, 1);
874 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
875 if (frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877 #endif
878 finish_spills (global);
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
889 int something_changed;
890 int did_spill;
892 HOST_WIDE_INT starting_frame_size;
894 /* Round size of stack frame to stack_alignment_needed. This must be done
895 here because the stack size may be a part of the offset computation
896 for register elimination, and there might have been new stack slots
897 created in the last iteration of this loop. */
898 if (cfun->stack_alignment_needed)
899 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
901 starting_frame_size = get_frame_size ();
903 set_initial_elim_offsets ();
904 set_initial_label_offsets ();
906 /* For each pseudo register that has an equivalent location defined,
907 try to eliminate any eliminable registers (such as the frame pointer)
908 assuming initial offsets for the replacement register, which
909 is the normal case.
911 If the resulting location is directly addressable, substitute
912 the MEM we just got directly for the old REG.
914 If it is not addressable but is a constant or the sum of a hard reg
915 and constant, it is probably not addressable because the constant is
916 out of range, in that case record the address; we will generate
917 hairy code to compute the address in a register each time it is
918 needed. Similarly if it is a hard register, but one that is not
919 valid as an address register.
921 If the location is not addressable, but does not have one of the
922 above forms, assign a stack slot. We have to do this to avoid the
923 potential of producing lots of reloads if, e.g., a location involves
924 a pseudo that didn't get a hard register and has an equivalent memory
925 location that also involves a pseudo that didn't get a hard register.
927 Perhaps at some point we will improve reload_when_needed handling
928 so this problem goes away. But that's very hairy. */
930 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
931 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
933 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
935 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
936 XEXP (x, 0)))
937 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
938 else if (CONSTANT_P (XEXP (x, 0))
939 || (REG_P (XEXP (x, 0))
940 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
941 || (GET_CODE (XEXP (x, 0)) == PLUS
942 && REG_P (XEXP (XEXP (x, 0), 0))
943 && (REGNO (XEXP (XEXP (x, 0), 0))
944 < FIRST_PSEUDO_REGISTER)
945 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
946 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
947 else
949 /* Make a new stack slot. Then indicate that something
950 changed so we go back and recompute offsets for
951 eliminable registers because the allocation of memory
952 below might change some offset. reg_equiv_{mem,address}
953 will be set up for this pseudo on the next pass around
954 the loop. */
955 reg_equiv_memory_loc[i] = 0;
956 reg_equiv_init[i] = 0;
957 alter_reg (i, -1);
961 if (caller_save_needed)
962 setup_save_areas ();
964 /* If we allocated another stack slot, redo elimination bookkeeping. */
965 if (starting_frame_size != get_frame_size ())
966 continue;
968 if (caller_save_needed)
970 save_call_clobbered_regs ();
971 /* That might have allocated new insn_chain structures. */
972 reload_firstobj = obstack_alloc (&reload_obstack, 0);
975 calculate_needs_all_insns (global);
977 CLEAR_REG_SET (&spilled_pseudos);
978 did_spill = 0;
980 something_changed = 0;
982 /* If we allocated any new memory locations, make another pass
983 since it might have changed elimination offsets. */
984 if (starting_frame_size != get_frame_size ())
985 something_changed = 1;
987 /* Even if the frame size remained the same, we might still have
988 changed elimination offsets, e.g. if find_reloads called
989 force_const_mem requiring the back end to allocate a constant
990 pool base register that needs to be saved on the stack. */
991 else if (!verify_initial_elim_offsets ())
992 something_changed = 1;
995 HARD_REG_SET to_spill;
996 CLEAR_HARD_REG_SET (to_spill);
997 update_eliminables (&to_spill);
998 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1000 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1001 if (TEST_HARD_REG_BIT (to_spill, i))
1003 spill_hard_reg (i, 1);
1004 did_spill = 1;
1006 /* Regardless of the state of spills, if we previously had
1007 a register that we thought we could eliminate, but now can
1008 not eliminate, we must run another pass.
1010 Consider pseudos which have an entry in reg_equiv_* which
1011 reference an eliminable register. We must make another pass
1012 to update reg_equiv_* so that we do not substitute in the
1013 old value from when we thought the elimination could be
1014 performed. */
1015 something_changed = 1;
1019 select_reload_regs ();
1020 if (failure)
1021 goto failed;
1023 if (insns_need_reload != 0 || did_spill)
1024 something_changed |= finish_spills (global);
1026 if (! something_changed)
1027 break;
1029 if (caller_save_needed)
1030 delete_caller_save_insns ();
1032 obstack_free (&reload_obstack, reload_firstobj);
1035 /* If global-alloc was run, notify it of any register eliminations we have
1036 done. */
1037 if (global)
1038 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1039 if (ep->can_eliminate)
1040 mark_elimination (ep->from, ep->to);
1042 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1043 If that insn didn't set the register (i.e., it copied the register to
1044 memory), just delete that insn instead of the equivalencing insn plus
1045 anything now dead. If we call delete_dead_insn on that insn, we may
1046 delete the insn that actually sets the register if the register dies
1047 there and that is incorrect. */
1049 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1051 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1053 rtx list;
1054 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1056 rtx equiv_insn = XEXP (list, 0);
1058 /* If we already deleted the insn or if it may trap, we can't
1059 delete it. The latter case shouldn't happen, but can
1060 if an insn has a variable address, gets a REG_EH_REGION
1061 note added to it, and then gets converted into a load
1062 from a constant address. */
1063 if (NOTE_P (equiv_insn)
1064 || can_throw_internal (equiv_insn))
1066 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1067 delete_dead_insn (equiv_insn);
1068 else
1069 SET_INSN_DELETED (equiv_insn);
1074 /* Use the reload registers where necessary
1075 by generating move instructions to move the must-be-register
1076 values into or out of the reload registers. */
1078 if (insns_need_reload != 0 || something_needs_elimination
1079 || something_needs_operands_changed)
1081 HOST_WIDE_INT old_frame_size = get_frame_size ();
1083 reload_as_needed (global);
1085 gcc_assert (old_frame_size == get_frame_size ());
1087 gcc_assert (verify_initial_elim_offsets ());
1090 /* If we were able to eliminate the frame pointer, show that it is no
1091 longer live at the start of any basic block. If it ls live by
1092 virtue of being in a pseudo, that pseudo will be marked live
1093 and hence the frame pointer will be known to be live via that
1094 pseudo. */
1096 if (! frame_pointer_needed)
1097 FOR_EACH_BB (bb)
1098 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1099 HARD_FRAME_POINTER_REGNUM);
1101 /* Come here (with failure set nonzero) if we can't get enough spill
1102 regs. */
1103 failed:
1105 CLEAR_REG_SET (&spilled_pseudos);
1106 reload_in_progress = 0;
1108 /* Now eliminate all pseudo regs by modifying them into
1109 their equivalent memory references.
1110 The REG-rtx's for the pseudos are modified in place,
1111 so all insns that used to refer to them now refer to memory.
1113 For a reg that has a reg_equiv_address, all those insns
1114 were changed by reloading so that no insns refer to it any longer;
1115 but the DECL_RTL of a variable decl may refer to it,
1116 and if so this causes the debugging info to mention the variable. */
1118 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1120 rtx addr = 0;
1122 if (reg_equiv_mem[i])
1123 addr = XEXP (reg_equiv_mem[i], 0);
1125 if (reg_equiv_address[i])
1126 addr = reg_equiv_address[i];
1128 if (addr)
1130 if (reg_renumber[i] < 0)
1132 rtx reg = regno_reg_rtx[i];
1134 REG_USERVAR_P (reg) = 0;
1135 PUT_CODE (reg, MEM);
1136 XEXP (reg, 0) = addr;
1137 if (reg_equiv_memory_loc[i])
1138 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1139 else
1141 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1142 MEM_ATTRS (reg) = 0;
1144 MEM_NOTRAP_P (reg) = 1;
1146 else if (reg_equiv_mem[i])
1147 XEXP (reg_equiv_mem[i], 0) = addr;
1151 /* We must set reload_completed now since the cleanup_subreg_operands call
1152 below will re-recognize each insn and reload may have generated insns
1153 which are only valid during and after reload. */
1154 reload_completed = 1;
1156 /* Make a pass over all the insns and delete all USEs which we inserted
1157 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1158 notes. Delete all CLOBBER insns, except those that refer to the return
1159 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1160 from misarranging variable-array code, and simplify (subreg (reg))
1161 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1162 are no longer useful or accurate. Strip and regenerate REG_INC notes
1163 that may have been moved around. */
1165 for (insn = first; insn; insn = NEXT_INSN (insn))
1166 if (INSN_P (insn))
1168 rtx *pnote;
1170 /* Clean up invalid ASMs so that they don't confuse later passes.
1171 See PR 21299. */
1172 if (asm_noperands (PATTERN (insn)) >= 0)
1174 extract_insn (insn);
1175 if (!constrain_operands (1))
1177 error_for_asm (insn,
1178 "%<asm%> operand has impossible constraints");
1179 delete_insn (insn);
1180 continue;
1184 if (CALL_P (insn))
1185 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1186 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1188 if ((GET_CODE (PATTERN (insn)) == USE
1189 /* We mark with QImode USEs introduced by reload itself. */
1190 && (GET_MODE (insn) == QImode
1191 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1192 || (GET_CODE (PATTERN (insn)) == CLOBBER
1193 && (!MEM_P (XEXP (PATTERN (insn), 0))
1194 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1195 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1196 && XEXP (XEXP (PATTERN (insn), 0), 0)
1197 != stack_pointer_rtx))
1198 && (!REG_P (XEXP (PATTERN (insn), 0))
1199 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1201 delete_insn (insn);
1202 continue;
1205 /* Some CLOBBERs may survive until here and still reference unassigned
1206 pseudos with const equivalent, which may in turn cause ICE in later
1207 passes if the reference remains in place. */
1208 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1209 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1210 VOIDmode, PATTERN (insn));
1212 /* Discard obvious no-ops, even without -O. This optimization
1213 is fast and doesn't interfere with debugging. */
1214 if (NONJUMP_INSN_P (insn)
1215 && GET_CODE (PATTERN (insn)) == SET
1216 && REG_P (SET_SRC (PATTERN (insn)))
1217 && REG_P (SET_DEST (PATTERN (insn)))
1218 && (REGNO (SET_SRC (PATTERN (insn)))
1219 == REGNO (SET_DEST (PATTERN (insn)))))
1221 delete_insn (insn);
1222 continue;
1225 pnote = &REG_NOTES (insn);
1226 while (*pnote != 0)
1228 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1229 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1230 || REG_NOTE_KIND (*pnote) == REG_INC
1231 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1232 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1233 *pnote = XEXP (*pnote, 1);
1234 else
1235 pnote = &XEXP (*pnote, 1);
1238 #ifdef AUTO_INC_DEC
1239 add_auto_inc_notes (insn, PATTERN (insn));
1240 #endif
1242 /* And simplify (subreg (reg)) if it appears as an operand. */
1243 cleanup_subreg_operands (insn);
1246 /* If we are doing stack checking, give a warning if this function's
1247 frame size is larger than we expect. */
1248 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1250 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1251 static int verbose_warned = 0;
1253 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1254 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1255 size += UNITS_PER_WORD;
1257 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1259 warning (0, "frame size too large for reliable stack checking");
1260 if (! verbose_warned)
1262 warning (0, "try reducing the number of local variables");
1263 verbose_warned = 1;
1268 /* Indicate that we no longer have known memory locations or constants. */
1269 if (reg_equiv_constant)
1270 free (reg_equiv_constant);
1271 if (reg_equiv_invariant)
1272 free (reg_equiv_invariant);
1273 reg_equiv_constant = 0;
1274 reg_equiv_invariant = 0;
1275 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1276 reg_equiv_memory_loc = 0;
1278 if (offsets_known_at)
1279 free (offsets_known_at);
1280 if (offsets_at)
1281 free (offsets_at);
1283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1284 if (reg_equiv_alt_mem_list[i])
1285 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1286 free (reg_equiv_alt_mem_list);
1288 free (reg_equiv_mem);
1289 reg_equiv_init = 0;
1290 free (reg_equiv_address);
1291 free (reg_max_ref_width);
1292 free (reg_old_renumber);
1293 free (pseudo_previous_regs);
1294 free (pseudo_forbidden_regs);
1296 CLEAR_HARD_REG_SET (used_spill_regs);
1297 for (i = 0; i < n_spills; i++)
1298 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1300 /* Free all the insn_chain structures at once. */
1301 obstack_free (&reload_obstack, reload_startobj);
1302 unused_insn_chains = 0;
1303 fixup_abnormal_edges ();
1305 /* Replacing pseudos with their memory equivalents might have
1306 created shared rtx. Subsequent passes would get confused
1307 by this, so unshare everything here. */
1308 unshare_all_rtl_again (first);
1310 #ifdef STACK_BOUNDARY
1311 /* init_emit has set the alignment of the hard frame pointer
1312 to STACK_BOUNDARY. It is very likely no longer valid if
1313 the hard frame pointer was used for register allocation. */
1314 if (!frame_pointer_needed)
1315 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1316 #endif
1318 return failure;
1321 /* Yet another special case. Unfortunately, reg-stack forces people to
1322 write incorrect clobbers in asm statements. These clobbers must not
1323 cause the register to appear in bad_spill_regs, otherwise we'll call
1324 fatal_insn later. We clear the corresponding regnos in the live
1325 register sets to avoid this.
1326 The whole thing is rather sick, I'm afraid. */
1328 static void
1329 maybe_fix_stack_asms (void)
1331 #ifdef STACK_REGS
1332 const char *constraints[MAX_RECOG_OPERANDS];
1333 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1334 struct insn_chain *chain;
1336 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1338 int i, noperands;
1339 HARD_REG_SET clobbered, allowed;
1340 rtx pat;
1342 if (! INSN_P (chain->insn)
1343 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1344 continue;
1345 pat = PATTERN (chain->insn);
1346 if (GET_CODE (pat) != PARALLEL)
1347 continue;
1349 CLEAR_HARD_REG_SET (clobbered);
1350 CLEAR_HARD_REG_SET (allowed);
1352 /* First, make a mask of all stack regs that are clobbered. */
1353 for (i = 0; i < XVECLEN (pat, 0); i++)
1355 rtx t = XVECEXP (pat, 0, i);
1356 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1357 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1360 /* Get the operand values and constraints out of the insn. */
1361 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1362 constraints, operand_mode);
1364 /* For every operand, see what registers are allowed. */
1365 for (i = 0; i < noperands; i++)
1367 const char *p = constraints[i];
1368 /* For every alternative, we compute the class of registers allowed
1369 for reloading in CLS, and merge its contents into the reg set
1370 ALLOWED. */
1371 int cls = (int) NO_REGS;
1373 for (;;)
1375 char c = *p;
1377 if (c == '\0' || c == ',' || c == '#')
1379 /* End of one alternative - mark the regs in the current
1380 class, and reset the class. */
1381 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1382 cls = NO_REGS;
1383 p++;
1384 if (c == '#')
1385 do {
1386 c = *p++;
1387 } while (c != '\0' && c != ',');
1388 if (c == '\0')
1389 break;
1390 continue;
1393 switch (c)
1395 case '=': case '+': case '*': case '%': case '?': case '!':
1396 case '0': case '1': case '2': case '3': case '4': case 'm':
1397 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1398 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1399 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1400 case 'P':
1401 break;
1403 case 'p':
1404 cls = (int) reg_class_subunion[cls]
1405 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1406 break;
1408 case 'g':
1409 case 'r':
1410 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1411 break;
1413 default:
1414 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1415 cls = (int) reg_class_subunion[cls]
1416 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1417 else
1418 cls = (int) reg_class_subunion[cls]
1419 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1421 p += CONSTRAINT_LEN (c, p);
1424 /* Those of the registers which are clobbered, but allowed by the
1425 constraints, must be usable as reload registers. So clear them
1426 out of the life information. */
1427 AND_HARD_REG_SET (allowed, clobbered);
1428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1429 if (TEST_HARD_REG_BIT (allowed, i))
1431 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1432 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1436 #endif
1439 /* Copy the global variables n_reloads and rld into the corresponding elts
1440 of CHAIN. */
1441 static void
1442 copy_reloads (struct insn_chain *chain)
1444 chain->n_reloads = n_reloads;
1445 chain->rld = obstack_alloc (&reload_obstack,
1446 n_reloads * sizeof (struct reload));
1447 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1448 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1451 /* Walk the chain of insns, and determine for each whether it needs reloads
1452 and/or eliminations. Build the corresponding insns_need_reload list, and
1453 set something_needs_elimination as appropriate. */
1454 static void
1455 calculate_needs_all_insns (int global)
1457 struct insn_chain **pprev_reload = &insns_need_reload;
1458 struct insn_chain *chain, *next = 0;
1460 something_needs_elimination = 0;
1462 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1463 for (chain = reload_insn_chain; chain != 0; chain = next)
1465 rtx insn = chain->insn;
1467 next = chain->next;
1469 /* Clear out the shortcuts. */
1470 chain->n_reloads = 0;
1471 chain->need_elim = 0;
1472 chain->need_reload = 0;
1473 chain->need_operand_change = 0;
1475 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1476 include REG_LABEL), we need to see what effects this has on the
1477 known offsets at labels. */
1479 if (LABEL_P (insn) || JUMP_P (insn)
1480 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1481 set_label_offsets (insn, insn, 0);
1483 if (INSN_P (insn))
1485 rtx old_body = PATTERN (insn);
1486 int old_code = INSN_CODE (insn);
1487 rtx old_notes = REG_NOTES (insn);
1488 int did_elimination = 0;
1489 int operands_changed = 0;
1490 rtx set = single_set (insn);
1492 /* Skip insns that only set an equivalence. */
1493 if (set && REG_P (SET_DEST (set))
1494 && reg_renumber[REGNO (SET_DEST (set))] < 0
1495 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1496 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1497 && reg_equiv_init[REGNO (SET_DEST (set))])
1498 continue;
1500 /* If needed, eliminate any eliminable registers. */
1501 if (num_eliminable || num_eliminable_invariants)
1502 did_elimination = eliminate_regs_in_insn (insn, 0);
1504 /* Analyze the instruction. */
1505 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1506 global, spill_reg_order);
1508 /* If a no-op set needs more than one reload, this is likely
1509 to be something that needs input address reloads. We
1510 can't get rid of this cleanly later, and it is of no use
1511 anyway, so discard it now.
1512 We only do this when expensive_optimizations is enabled,
1513 since this complements reload inheritance / output
1514 reload deletion, and it can make debugging harder. */
1515 if (flag_expensive_optimizations && n_reloads > 1)
1517 rtx set = single_set (insn);
1518 if (set
1519 && SET_SRC (set) == SET_DEST (set)
1520 && REG_P (SET_SRC (set))
1521 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1523 delete_insn (insn);
1524 /* Delete it from the reload chain. */
1525 if (chain->prev)
1526 chain->prev->next = next;
1527 else
1528 reload_insn_chain = next;
1529 if (next)
1530 next->prev = chain->prev;
1531 chain->next = unused_insn_chains;
1532 unused_insn_chains = chain;
1533 continue;
1536 if (num_eliminable)
1537 update_eliminable_offsets ();
1539 /* Remember for later shortcuts which insns had any reloads or
1540 register eliminations. */
1541 chain->need_elim = did_elimination;
1542 chain->need_reload = n_reloads > 0;
1543 chain->need_operand_change = operands_changed;
1545 /* Discard any register replacements done. */
1546 if (did_elimination)
1548 obstack_free (&reload_obstack, reload_insn_firstobj);
1549 PATTERN (insn) = old_body;
1550 INSN_CODE (insn) = old_code;
1551 REG_NOTES (insn) = old_notes;
1552 something_needs_elimination = 1;
1555 something_needs_operands_changed |= operands_changed;
1557 if (n_reloads != 0)
1559 copy_reloads (chain);
1560 *pprev_reload = chain;
1561 pprev_reload = &chain->next_need_reload;
1565 *pprev_reload = 0;
1568 /* Comparison function for qsort to decide which of two reloads
1569 should be handled first. *P1 and *P2 are the reload numbers. */
1571 static int
1572 reload_reg_class_lower (const void *r1p, const void *r2p)
1574 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1575 int t;
1577 /* Consider required reloads before optional ones. */
1578 t = rld[r1].optional - rld[r2].optional;
1579 if (t != 0)
1580 return t;
1582 /* Count all solitary classes before non-solitary ones. */
1583 t = ((reg_class_size[(int) rld[r2].class] == 1)
1584 - (reg_class_size[(int) rld[r1].class] == 1));
1585 if (t != 0)
1586 return t;
1588 /* Aside from solitaires, consider all multi-reg groups first. */
1589 t = rld[r2].nregs - rld[r1].nregs;
1590 if (t != 0)
1591 return t;
1593 /* Consider reloads in order of increasing reg-class number. */
1594 t = (int) rld[r1].class - (int) rld[r2].class;
1595 if (t != 0)
1596 return t;
1598 /* If reloads are equally urgent, sort by reload number,
1599 so that the results of qsort leave nothing to chance. */
1600 return r1 - r2;
1603 /* The cost of spilling each hard reg. */
1604 static int spill_cost[FIRST_PSEUDO_REGISTER];
1606 /* When spilling multiple hard registers, we use SPILL_COST for the first
1607 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1608 only the first hard reg for a multi-reg pseudo. */
1609 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1611 /* Update the spill cost arrays, considering that pseudo REG is live. */
1613 static void
1614 count_pseudo (int reg)
1616 int freq = REG_FREQ (reg);
1617 int r = reg_renumber[reg];
1618 int nregs;
1620 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1621 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1622 return;
1624 SET_REGNO_REG_SET (&pseudos_counted, reg);
1626 gcc_assert (r >= 0);
1628 spill_add_cost[r] += freq;
1630 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1631 while (nregs-- > 0)
1632 spill_cost[r + nregs] += freq;
1635 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1636 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1638 static void
1639 order_regs_for_reload (struct insn_chain *chain)
1641 unsigned i;
1642 HARD_REG_SET used_by_pseudos;
1643 HARD_REG_SET used_by_pseudos2;
1644 reg_set_iterator rsi;
1646 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1648 memset (spill_cost, 0, sizeof spill_cost);
1649 memset (spill_add_cost, 0, sizeof spill_add_cost);
1651 /* Count number of uses of each hard reg by pseudo regs allocated to it
1652 and then order them by decreasing use. First exclude hard registers
1653 that are live in or across this insn. */
1655 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1656 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1657 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1658 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1660 /* Now find out which pseudos are allocated to it, and update
1661 hard_reg_n_uses. */
1662 CLEAR_REG_SET (&pseudos_counted);
1664 EXECUTE_IF_SET_IN_REG_SET
1665 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1667 count_pseudo (i);
1669 EXECUTE_IF_SET_IN_REG_SET
1670 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1672 count_pseudo (i);
1674 CLEAR_REG_SET (&pseudos_counted);
1677 /* Vector of reload-numbers showing the order in which the reloads should
1678 be processed. */
1679 static short reload_order[MAX_RELOADS];
1681 /* This is used to keep track of the spill regs used in one insn. */
1682 static HARD_REG_SET used_spill_regs_local;
1684 /* We decided to spill hard register SPILLED, which has a size of
1685 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1686 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1687 update SPILL_COST/SPILL_ADD_COST. */
1689 static void
1690 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1692 int r = reg_renumber[reg];
1693 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1695 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1696 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1697 return;
1699 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1701 spill_add_cost[r] -= REG_FREQ (reg);
1702 while (nregs-- > 0)
1703 spill_cost[r + nregs] -= REG_FREQ (reg);
1706 /* Find reload register to use for reload number ORDER. */
1708 static int
1709 find_reg (struct insn_chain *chain, int order)
1711 int rnum = reload_order[order];
1712 struct reload *rl = rld + rnum;
1713 int best_cost = INT_MAX;
1714 int best_reg = -1;
1715 unsigned int i, j;
1716 int k;
1717 HARD_REG_SET not_usable;
1718 HARD_REG_SET used_by_other_reload;
1719 reg_set_iterator rsi;
1721 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1722 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1723 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1725 CLEAR_HARD_REG_SET (used_by_other_reload);
1726 for (k = 0; k < order; k++)
1728 int other = reload_order[k];
1730 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1731 for (j = 0; j < rld[other].nregs; j++)
1732 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1737 unsigned int regno = i;
1739 if (! TEST_HARD_REG_BIT (not_usable, regno)
1740 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1741 && HARD_REGNO_MODE_OK (regno, rl->mode))
1743 int this_cost = spill_cost[regno];
1744 int ok = 1;
1745 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1747 for (j = 1; j < this_nregs; j++)
1749 this_cost += spill_add_cost[regno + j];
1750 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1751 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1752 ok = 0;
1754 if (! ok)
1755 continue;
1756 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1757 this_cost--;
1758 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1759 this_cost--;
1760 if (this_cost < best_cost
1761 /* Among registers with equal cost, prefer caller-saved ones, or
1762 use REG_ALLOC_ORDER if it is defined. */
1763 || (this_cost == best_cost
1764 #ifdef REG_ALLOC_ORDER
1765 && (inv_reg_alloc_order[regno]
1766 < inv_reg_alloc_order[best_reg])
1767 #else
1768 && call_used_regs[regno]
1769 && ! call_used_regs[best_reg]
1770 #endif
1773 best_reg = regno;
1774 best_cost = this_cost;
1778 if (best_reg == -1)
1779 return 0;
1781 if (dump_file)
1782 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1784 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1785 rl->regno = best_reg;
1787 EXECUTE_IF_SET_IN_REG_SET
1788 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1790 count_spilled_pseudo (best_reg, rl->nregs, j);
1793 EXECUTE_IF_SET_IN_REG_SET
1794 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1796 count_spilled_pseudo (best_reg, rl->nregs, j);
1799 for (i = 0; i < rl->nregs; i++)
1801 gcc_assert (spill_cost[best_reg + i] == 0);
1802 gcc_assert (spill_add_cost[best_reg + i] == 0);
1803 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1805 return 1;
1808 /* Find more reload regs to satisfy the remaining need of an insn, which
1809 is given by CHAIN.
1810 Do it by ascending class number, since otherwise a reg
1811 might be spilled for a big class and might fail to count
1812 for a smaller class even though it belongs to that class. */
1814 static void
1815 find_reload_regs (struct insn_chain *chain)
1817 int i;
1819 /* In order to be certain of getting the registers we need,
1820 we must sort the reloads into order of increasing register class.
1821 Then our grabbing of reload registers will parallel the process
1822 that provided the reload registers. */
1823 for (i = 0; i < chain->n_reloads; i++)
1825 /* Show whether this reload already has a hard reg. */
1826 if (chain->rld[i].reg_rtx)
1828 int regno = REGNO (chain->rld[i].reg_rtx);
1829 chain->rld[i].regno = regno;
1830 chain->rld[i].nregs
1831 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1833 else
1834 chain->rld[i].regno = -1;
1835 reload_order[i] = i;
1838 n_reloads = chain->n_reloads;
1839 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1841 CLEAR_HARD_REG_SET (used_spill_regs_local);
1843 if (dump_file)
1844 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1846 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1848 /* Compute the order of preference for hard registers to spill. */
1850 order_regs_for_reload (chain);
1852 for (i = 0; i < n_reloads; i++)
1854 int r = reload_order[i];
1856 /* Ignore reloads that got marked inoperative. */
1857 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1858 && ! rld[r].optional
1859 && rld[r].regno == -1)
1860 if (! find_reg (chain, i))
1862 if (dump_file)
1863 fprintf (dump_file, "reload failure for reload %d\n", r);
1864 spill_failure (chain->insn, rld[r].class);
1865 failure = 1;
1866 return;
1870 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1871 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1873 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1876 static void
1877 select_reload_regs (void)
1879 struct insn_chain *chain;
1881 /* Try to satisfy the needs for each insn. */
1882 for (chain = insns_need_reload; chain != 0;
1883 chain = chain->next_need_reload)
1884 find_reload_regs (chain);
1887 /* Delete all insns that were inserted by emit_caller_save_insns during
1888 this iteration. */
1889 static void
1890 delete_caller_save_insns (void)
1892 struct insn_chain *c = reload_insn_chain;
1894 while (c != 0)
1896 while (c != 0 && c->is_caller_save_insn)
1898 struct insn_chain *next = c->next;
1899 rtx insn = c->insn;
1901 if (c == reload_insn_chain)
1902 reload_insn_chain = next;
1903 delete_insn (insn);
1905 if (next)
1906 next->prev = c->prev;
1907 if (c->prev)
1908 c->prev->next = next;
1909 c->next = unused_insn_chains;
1910 unused_insn_chains = c;
1911 c = next;
1913 if (c != 0)
1914 c = c->next;
1918 /* Handle the failure to find a register to spill.
1919 INSN should be one of the insns which needed this particular spill reg. */
1921 static void
1922 spill_failure (rtx insn, enum reg_class class)
1924 if (asm_noperands (PATTERN (insn)) >= 0)
1925 error_for_asm (insn, "can't find a register in class %qs while "
1926 "reloading %<asm%>",
1927 reg_class_names[class]);
1928 else
1930 error ("unable to find a register to spill in class %qs",
1931 reg_class_names[class]);
1933 if (dump_file)
1935 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1936 debug_reload_to_stream (dump_file);
1938 fatal_insn ("this is the insn:", insn);
1942 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1943 data that is dead in INSN. */
1945 static void
1946 delete_dead_insn (rtx insn)
1948 rtx prev = prev_real_insn (insn);
1949 rtx prev_dest;
1951 /* If the previous insn sets a register that dies in our insn, delete it
1952 too. */
1953 if (prev && GET_CODE (PATTERN (prev)) == SET
1954 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1955 && reg_mentioned_p (prev_dest, PATTERN (insn))
1956 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1957 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1958 delete_dead_insn (prev);
1960 SET_INSN_DELETED (insn);
1963 /* Modify the home of pseudo-reg I.
1964 The new home is present in reg_renumber[I].
1966 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1967 or it may be -1, meaning there is none or it is not relevant.
1968 This is used so that all pseudos spilled from a given hard reg
1969 can share one stack slot. */
1971 static void
1972 alter_reg (int i, int from_reg)
1974 /* When outputting an inline function, this can happen
1975 for a reg that isn't actually used. */
1976 if (regno_reg_rtx[i] == 0)
1977 return;
1979 /* If the reg got changed to a MEM at rtl-generation time,
1980 ignore it. */
1981 if (!REG_P (regno_reg_rtx[i]))
1982 return;
1984 /* Modify the reg-rtx to contain the new hard reg
1985 number or else to contain its pseudo reg number. */
1986 REGNO (regno_reg_rtx[i])
1987 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1989 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1990 allocate a stack slot for it. */
1992 if (reg_renumber[i] < 0
1993 && REG_N_REFS (i) > 0
1994 && reg_equiv_constant[i] == 0
1995 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1996 && reg_equiv_memory_loc[i] == 0)
1998 rtx x;
1999 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2000 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2001 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2002 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2003 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2004 int adjust = 0;
2006 /* Each pseudo reg has an inherent size which comes from its own mode,
2007 and a total size which provides room for paradoxical subregs
2008 which refer to the pseudo reg in wider modes.
2010 We can use a slot already allocated if it provides both
2011 enough inherent space and enough total space.
2012 Otherwise, we allocate a new slot, making sure that it has no less
2013 inherent space, and no less total space, then the previous slot. */
2014 if (from_reg == -1)
2016 /* No known place to spill from => no slot to reuse. */
2017 x = assign_stack_local (mode, total_size,
2018 min_align > inherent_align
2019 || total_size > inherent_size ? -1 : 0);
2020 if (BYTES_BIG_ENDIAN)
2021 /* Cancel the big-endian correction done in assign_stack_local.
2022 Get the address of the beginning of the slot.
2023 This is so we can do a big-endian correction unconditionally
2024 below. */
2025 adjust = inherent_size - total_size;
2027 /* Nothing can alias this slot except this pseudo. */
2028 set_mem_alias_set (x, new_alias_set ());
2031 /* Reuse a stack slot if possible. */
2032 else if (spill_stack_slot[from_reg] != 0
2033 && spill_stack_slot_width[from_reg] >= total_size
2034 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2035 >= inherent_size)
2036 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2037 x = spill_stack_slot[from_reg];
2039 /* Allocate a bigger slot. */
2040 else
2042 /* Compute maximum size needed, both for inherent size
2043 and for total size. */
2044 rtx stack_slot;
2046 if (spill_stack_slot[from_reg])
2048 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2049 > inherent_size)
2050 mode = GET_MODE (spill_stack_slot[from_reg]);
2051 if (spill_stack_slot_width[from_reg] > total_size)
2052 total_size = spill_stack_slot_width[from_reg];
2053 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2054 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2057 /* Make a slot with that size. */
2058 x = assign_stack_local (mode, total_size,
2059 min_align > inherent_align
2060 || total_size > inherent_size ? -1 : 0);
2061 stack_slot = x;
2063 /* All pseudos mapped to this slot can alias each other. */
2064 if (spill_stack_slot[from_reg])
2065 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2066 else
2067 set_mem_alias_set (x, new_alias_set ());
2069 if (BYTES_BIG_ENDIAN)
2071 /* Cancel the big-endian correction done in assign_stack_local.
2072 Get the address of the beginning of the slot.
2073 This is so we can do a big-endian correction unconditionally
2074 below. */
2075 adjust = GET_MODE_SIZE (mode) - total_size;
2076 if (adjust)
2077 stack_slot
2078 = adjust_address_nv (x, mode_for_size (total_size
2079 * BITS_PER_UNIT,
2080 MODE_INT, 1),
2081 adjust);
2084 spill_stack_slot[from_reg] = stack_slot;
2085 spill_stack_slot_width[from_reg] = total_size;
2088 /* On a big endian machine, the "address" of the slot
2089 is the address of the low part that fits its inherent mode. */
2090 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2091 adjust += (total_size - inherent_size);
2093 /* If we have any adjustment to make, or if the stack slot is the
2094 wrong mode, make a new stack slot. */
2095 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2097 /* If we have a decl for the original register, set it for the
2098 memory. If this is a shared MEM, make a copy. */
2099 if (REG_EXPR (regno_reg_rtx[i])
2100 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2102 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2104 /* We can do this only for the DECLs home pseudo, not for
2105 any copies of it, since otherwise when the stack slot
2106 is reused, nonoverlapping_memrefs_p might think they
2107 cannot overlap. */
2108 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2110 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2111 x = copy_rtx (x);
2113 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2117 /* Save the stack slot for later. */
2118 reg_equiv_memory_loc[i] = x;
2122 /* Mark the slots in regs_ever_live for the hard regs
2123 used by pseudo-reg number REGNO. */
2125 void
2126 mark_home_live (int regno)
2128 int i, lim;
2130 i = reg_renumber[regno];
2131 if (i < 0)
2132 return;
2133 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2134 while (i < lim)
2135 regs_ever_live[i++] = 1;
2138 /* This function handles the tracking of elimination offsets around branches.
2140 X is a piece of RTL being scanned.
2142 INSN is the insn that it came from, if any.
2144 INITIAL_P is nonzero if we are to set the offset to be the initial
2145 offset and zero if we are setting the offset of the label to be the
2146 current offset. */
2148 static void
2149 set_label_offsets (rtx x, rtx insn, int initial_p)
2151 enum rtx_code code = GET_CODE (x);
2152 rtx tem;
2153 unsigned int i;
2154 struct elim_table *p;
2156 switch (code)
2158 case LABEL_REF:
2159 if (LABEL_REF_NONLOCAL_P (x))
2160 return;
2162 x = XEXP (x, 0);
2164 /* ... fall through ... */
2166 case CODE_LABEL:
2167 /* If we know nothing about this label, set the desired offsets. Note
2168 that this sets the offset at a label to be the offset before a label
2169 if we don't know anything about the label. This is not correct for
2170 the label after a BARRIER, but is the best guess we can make. If
2171 we guessed wrong, we will suppress an elimination that might have
2172 been possible had we been able to guess correctly. */
2174 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2176 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2177 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2178 = (initial_p ? reg_eliminate[i].initial_offset
2179 : reg_eliminate[i].offset);
2180 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2183 /* Otherwise, if this is the definition of a label and it is
2184 preceded by a BARRIER, set our offsets to the known offset of
2185 that label. */
2187 else if (x == insn
2188 && (tem = prev_nonnote_insn (insn)) != 0
2189 && BARRIER_P (tem))
2190 set_offsets_for_label (insn);
2191 else
2192 /* If neither of the above cases is true, compare each offset
2193 with those previously recorded and suppress any eliminations
2194 where the offsets disagree. */
2196 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2197 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2198 != (initial_p ? reg_eliminate[i].initial_offset
2199 : reg_eliminate[i].offset))
2200 reg_eliminate[i].can_eliminate = 0;
2202 return;
2204 case JUMP_INSN:
2205 set_label_offsets (PATTERN (insn), insn, initial_p);
2207 /* ... fall through ... */
2209 case INSN:
2210 case CALL_INSN:
2211 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2212 and hence must have all eliminations at their initial offsets. */
2213 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2214 if (REG_NOTE_KIND (tem) == REG_LABEL)
2215 set_label_offsets (XEXP (tem, 0), insn, 1);
2216 return;
2218 case PARALLEL:
2219 case ADDR_VEC:
2220 case ADDR_DIFF_VEC:
2221 /* Each of the labels in the parallel or address vector must be
2222 at their initial offsets. We want the first field for PARALLEL
2223 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2225 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2226 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2227 insn, initial_p);
2228 return;
2230 case SET:
2231 /* We only care about setting PC. If the source is not RETURN,
2232 IF_THEN_ELSE, or a label, disable any eliminations not at
2233 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2234 isn't one of those possibilities. For branches to a label,
2235 call ourselves recursively.
2237 Note that this can disable elimination unnecessarily when we have
2238 a non-local goto since it will look like a non-constant jump to
2239 someplace in the current function. This isn't a significant
2240 problem since such jumps will normally be when all elimination
2241 pairs are back to their initial offsets. */
2243 if (SET_DEST (x) != pc_rtx)
2244 return;
2246 switch (GET_CODE (SET_SRC (x)))
2248 case PC:
2249 case RETURN:
2250 return;
2252 case LABEL_REF:
2253 set_label_offsets (SET_SRC (x), insn, initial_p);
2254 return;
2256 case IF_THEN_ELSE:
2257 tem = XEXP (SET_SRC (x), 1);
2258 if (GET_CODE (tem) == LABEL_REF)
2259 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2260 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2261 break;
2263 tem = XEXP (SET_SRC (x), 2);
2264 if (GET_CODE (tem) == LABEL_REF)
2265 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2266 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2267 break;
2268 return;
2270 default:
2271 break;
2274 /* If we reach here, all eliminations must be at their initial
2275 offset because we are doing a jump to a variable address. */
2276 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2277 if (p->offset != p->initial_offset)
2278 p->can_eliminate = 0;
2279 break;
2281 default:
2282 break;
2286 /* Scan X and replace any eliminable registers (such as fp) with a
2287 replacement (such as sp), plus an offset.
2289 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2290 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2291 MEM, we are allowed to replace a sum of a register and the constant zero
2292 with the register, which we cannot do outside a MEM. In addition, we need
2293 to record the fact that a register is referenced outside a MEM.
2295 If INSN is an insn, it is the insn containing X. If we replace a REG
2296 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2297 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2298 the REG is being modified.
2300 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2301 That's used when we eliminate in expressions stored in notes.
2302 This means, do not set ref_outside_mem even if the reference
2303 is outside of MEMs.
2305 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2306 replacements done assuming all offsets are at their initial values. If
2307 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2308 encounter, return the actual location so that find_reloads will do
2309 the proper thing. */
2311 static rtx
2312 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2313 bool may_use_invariant)
2315 enum rtx_code code = GET_CODE (x);
2316 struct elim_table *ep;
2317 int regno;
2318 rtx new;
2319 int i, j;
2320 const char *fmt;
2321 int copied = 0;
2323 if (! current_function_decl)
2324 return x;
2326 switch (code)
2328 case CONST_INT:
2329 case CONST_DOUBLE:
2330 case CONST_VECTOR:
2331 case CONST:
2332 case SYMBOL_REF:
2333 case CODE_LABEL:
2334 case PC:
2335 case CC0:
2336 case ASM_INPUT:
2337 case ADDR_VEC:
2338 case ADDR_DIFF_VEC:
2339 case RETURN:
2340 return x;
2342 case REG:
2343 regno = REGNO (x);
2345 /* First handle the case where we encounter a bare register that
2346 is eliminable. Replace it with a PLUS. */
2347 if (regno < FIRST_PSEUDO_REGISTER)
2349 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2350 ep++)
2351 if (ep->from_rtx == x && ep->can_eliminate)
2352 return plus_constant (ep->to_rtx, ep->previous_offset);
2355 else if (reg_renumber && reg_renumber[regno] < 0
2356 && reg_equiv_invariant && reg_equiv_invariant[regno])
2358 if (may_use_invariant)
2359 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2360 mem_mode, insn, true);
2361 /* There exists at least one use of REGNO that cannot be
2362 eliminated. Prevent the defining insn from being deleted. */
2363 reg_equiv_init[regno] = NULL_RTX;
2364 alter_reg (regno, -1);
2366 return x;
2368 /* You might think handling MINUS in a manner similar to PLUS is a
2369 good idea. It is not. It has been tried multiple times and every
2370 time the change has had to have been reverted.
2372 Other parts of reload know a PLUS is special (gen_reload for example)
2373 and require special code to handle code a reloaded PLUS operand.
2375 Also consider backends where the flags register is clobbered by a
2376 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2377 lea instruction comes to mind). If we try to reload a MINUS, we
2378 may kill the flags register that was holding a useful value.
2380 So, please before trying to handle MINUS, consider reload as a
2381 whole instead of this little section as well as the backend issues. */
2382 case PLUS:
2383 /* If this is the sum of an eliminable register and a constant, rework
2384 the sum. */
2385 if (REG_P (XEXP (x, 0))
2386 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2387 && CONSTANT_P (XEXP (x, 1)))
2389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2390 ep++)
2391 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2393 /* The only time we want to replace a PLUS with a REG (this
2394 occurs when the constant operand of the PLUS is the negative
2395 of the offset) is when we are inside a MEM. We won't want
2396 to do so at other times because that would change the
2397 structure of the insn in a way that reload can't handle.
2398 We special-case the commonest situation in
2399 eliminate_regs_in_insn, so just replace a PLUS with a
2400 PLUS here, unless inside a MEM. */
2401 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2402 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2403 return ep->to_rtx;
2404 else
2405 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2406 plus_constant (XEXP (x, 1),
2407 ep->previous_offset));
2410 /* If the register is not eliminable, we are done since the other
2411 operand is a constant. */
2412 return x;
2415 /* If this is part of an address, we want to bring any constant to the
2416 outermost PLUS. We will do this by doing register replacement in
2417 our operands and seeing if a constant shows up in one of them.
2419 Note that there is no risk of modifying the structure of the insn,
2420 since we only get called for its operands, thus we are either
2421 modifying the address inside a MEM, or something like an address
2422 operand of a load-address insn. */
2425 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2426 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2428 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2430 /* If one side is a PLUS and the other side is a pseudo that
2431 didn't get a hard register but has a reg_equiv_constant,
2432 we must replace the constant here since it may no longer
2433 be in the position of any operand. */
2434 if (GET_CODE (new0) == PLUS && REG_P (new1)
2435 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2436 && reg_renumber[REGNO (new1)] < 0
2437 && reg_equiv_constant != 0
2438 && reg_equiv_constant[REGNO (new1)] != 0)
2439 new1 = reg_equiv_constant[REGNO (new1)];
2440 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2441 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2442 && reg_renumber[REGNO (new0)] < 0
2443 && reg_equiv_constant[REGNO (new0)] != 0)
2444 new0 = reg_equiv_constant[REGNO (new0)];
2446 new = form_sum (new0, new1);
2448 /* As above, if we are not inside a MEM we do not want to
2449 turn a PLUS into something else. We might try to do so here
2450 for an addition of 0 if we aren't optimizing. */
2451 if (! mem_mode && GET_CODE (new) != PLUS)
2452 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2453 else
2454 return new;
2457 return x;
2459 case MULT:
2460 /* If this is the product of an eliminable register and a
2461 constant, apply the distribute law and move the constant out
2462 so that we have (plus (mult ..) ..). This is needed in order
2463 to keep load-address insns valid. This case is pathological.
2464 We ignore the possibility of overflow here. */
2465 if (REG_P (XEXP (x, 0))
2466 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2467 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2469 ep++)
2470 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2472 if (! mem_mode
2473 /* Refs inside notes don't count for this purpose. */
2474 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2475 || GET_CODE (insn) == INSN_LIST)))
2476 ep->ref_outside_mem = 1;
2478 return
2479 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2480 ep->previous_offset * INTVAL (XEXP (x, 1)));
2483 /* ... fall through ... */
2485 case CALL:
2486 case COMPARE:
2487 /* See comments before PLUS about handling MINUS. */
2488 case MINUS:
2489 case DIV: case UDIV:
2490 case MOD: case UMOD:
2491 case AND: case IOR: case XOR:
2492 case ROTATERT: case ROTATE:
2493 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2494 case NE: case EQ:
2495 case GE: case GT: case GEU: case GTU:
2496 case LE: case LT: case LEU: case LTU:
2498 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2499 rtx new1 = XEXP (x, 1)
2500 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2502 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2503 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2505 return x;
2507 case EXPR_LIST:
2508 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2509 if (XEXP (x, 0))
2511 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2512 if (new != XEXP (x, 0))
2514 /* If this is a REG_DEAD note, it is not valid anymore.
2515 Using the eliminated version could result in creating a
2516 REG_DEAD note for the stack or frame pointer. */
2517 if (GET_MODE (x) == REG_DEAD)
2518 return (XEXP (x, 1)
2519 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2520 : NULL_RTX);
2522 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2526 /* ... fall through ... */
2528 case INSN_LIST:
2529 /* Now do eliminations in the rest of the chain. If this was
2530 an EXPR_LIST, this might result in allocating more memory than is
2531 strictly needed, but it simplifies the code. */
2532 if (XEXP (x, 1))
2534 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2535 if (new != XEXP (x, 1))
2536 return
2537 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2539 return x;
2541 case PRE_INC:
2542 case POST_INC:
2543 case PRE_DEC:
2544 case POST_DEC:
2545 case STRICT_LOW_PART:
2546 case NEG: case NOT:
2547 case SIGN_EXTEND: case ZERO_EXTEND:
2548 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2549 case FLOAT: case FIX:
2550 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2551 case ABS:
2552 case SQRT:
2553 case FFS:
2554 case CLZ:
2555 case CTZ:
2556 case POPCOUNT:
2557 case PARITY:
2558 case BSWAP:
2559 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2560 if (new != XEXP (x, 0))
2561 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2562 return x;
2564 case SUBREG:
2565 /* Similar to above processing, but preserve SUBREG_BYTE.
2566 Convert (subreg (mem)) to (mem) if not paradoxical.
2567 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2568 pseudo didn't get a hard reg, we must replace this with the
2569 eliminated version of the memory location because push_reload
2570 may do the replacement in certain circumstances. */
2571 if (REG_P (SUBREG_REG (x))
2572 && (GET_MODE_SIZE (GET_MODE (x))
2573 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2574 && reg_equiv_memory_loc != 0
2575 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2577 new = SUBREG_REG (x);
2579 else
2580 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2582 if (new != SUBREG_REG (x))
2584 int x_size = GET_MODE_SIZE (GET_MODE (x));
2585 int new_size = GET_MODE_SIZE (GET_MODE (new));
2587 if (MEM_P (new)
2588 && ((x_size < new_size
2589 #ifdef WORD_REGISTER_OPERATIONS
2590 /* On these machines, combine can create rtl of the form
2591 (set (subreg:m1 (reg:m2 R) 0) ...)
2592 where m1 < m2, and expects something interesting to
2593 happen to the entire word. Moreover, it will use the
2594 (reg:m2 R) later, expecting all bits to be preserved.
2595 So if the number of words is the same, preserve the
2596 subreg so that push_reload can see it. */
2597 && ! ((x_size - 1) / UNITS_PER_WORD
2598 == (new_size -1 ) / UNITS_PER_WORD)
2599 #endif
2601 || x_size == new_size)
2603 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2604 else
2605 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2608 return x;
2610 case MEM:
2611 /* Our only special processing is to pass the mode of the MEM to our
2612 recursive call and copy the flags. While we are here, handle this
2613 case more efficiently. */
2614 return
2615 replace_equiv_address_nv (x,
2616 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2617 insn, true));
2619 case USE:
2620 /* Handle insn_list USE that a call to a pure function may generate. */
2621 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2622 if (new != XEXP (x, 0))
2623 return gen_rtx_USE (GET_MODE (x), new);
2624 return x;
2626 case CLOBBER:
2627 case ASM_OPERANDS:
2628 case SET:
2629 gcc_unreachable ();
2631 default:
2632 break;
2635 /* Process each of our operands recursively. If any have changed, make a
2636 copy of the rtx. */
2637 fmt = GET_RTX_FORMAT (code);
2638 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2640 if (*fmt == 'e')
2642 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2643 if (new != XEXP (x, i) && ! copied)
2645 x = shallow_copy_rtx (x);
2646 copied = 1;
2648 XEXP (x, i) = new;
2650 else if (*fmt == 'E')
2652 int copied_vec = 0;
2653 for (j = 0; j < XVECLEN (x, i); j++)
2655 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2656 if (new != XVECEXP (x, i, j) && ! copied_vec)
2658 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2659 XVEC (x, i)->elem);
2660 if (! copied)
2662 x = shallow_copy_rtx (x);
2663 copied = 1;
2665 XVEC (x, i) = new_v;
2666 copied_vec = 1;
2668 XVECEXP (x, i, j) = new;
2673 return x;
2677 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2679 return eliminate_regs_1 (x, mem_mode, insn, false);
2682 /* Scan rtx X for modifications of elimination target registers. Update
2683 the table of eliminables to reflect the changed state. MEM_MODE is
2684 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2686 static void
2687 elimination_effects (rtx x, enum machine_mode mem_mode)
2689 enum rtx_code code = GET_CODE (x);
2690 struct elim_table *ep;
2691 int regno;
2692 int i, j;
2693 const char *fmt;
2695 switch (code)
2697 case CONST_INT:
2698 case CONST_DOUBLE:
2699 case CONST_VECTOR:
2700 case CONST:
2701 case SYMBOL_REF:
2702 case CODE_LABEL:
2703 case PC:
2704 case CC0:
2705 case ASM_INPUT:
2706 case ADDR_VEC:
2707 case ADDR_DIFF_VEC:
2708 case RETURN:
2709 return;
2711 case REG:
2712 regno = REGNO (x);
2714 /* First handle the case where we encounter a bare register that
2715 is eliminable. Replace it with a PLUS. */
2716 if (regno < FIRST_PSEUDO_REGISTER)
2718 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2719 ep++)
2720 if (ep->from_rtx == x && ep->can_eliminate)
2722 if (! mem_mode)
2723 ep->ref_outside_mem = 1;
2724 return;
2728 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2729 && reg_equiv_constant[regno]
2730 && ! function_invariant_p (reg_equiv_constant[regno]))
2731 elimination_effects (reg_equiv_constant[regno], mem_mode);
2732 return;
2734 case PRE_INC:
2735 case POST_INC:
2736 case PRE_DEC:
2737 case POST_DEC:
2738 case POST_MODIFY:
2739 case PRE_MODIFY:
2740 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2741 if (ep->to_rtx == XEXP (x, 0))
2743 int size = GET_MODE_SIZE (mem_mode);
2745 /* If more bytes than MEM_MODE are pushed, account for them. */
2746 #ifdef PUSH_ROUNDING
2747 if (ep->to_rtx == stack_pointer_rtx)
2748 size = PUSH_ROUNDING (size);
2749 #endif
2750 if (code == PRE_DEC || code == POST_DEC)
2751 ep->offset += size;
2752 else if (code == PRE_INC || code == POST_INC)
2753 ep->offset -= size;
2754 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2755 && GET_CODE (XEXP (x, 1)) == PLUS
2756 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2757 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2758 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2761 /* These two aren't unary operators. */
2762 if (code == POST_MODIFY || code == PRE_MODIFY)
2763 break;
2765 /* Fall through to generic unary operation case. */
2766 case STRICT_LOW_PART:
2767 case NEG: case NOT:
2768 case SIGN_EXTEND: case ZERO_EXTEND:
2769 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2770 case FLOAT: case FIX:
2771 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2772 case ABS:
2773 case SQRT:
2774 case FFS:
2775 case CLZ:
2776 case CTZ:
2777 case POPCOUNT:
2778 case PARITY:
2779 case BSWAP:
2780 elimination_effects (XEXP (x, 0), mem_mode);
2781 return;
2783 case SUBREG:
2784 if (REG_P (SUBREG_REG (x))
2785 && (GET_MODE_SIZE (GET_MODE (x))
2786 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2787 && reg_equiv_memory_loc != 0
2788 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2789 return;
2791 elimination_effects (SUBREG_REG (x), mem_mode);
2792 return;
2794 case USE:
2795 /* If using a register that is the source of an eliminate we still
2796 think can be performed, note it cannot be performed since we don't
2797 know how this register is used. */
2798 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2799 if (ep->from_rtx == XEXP (x, 0))
2800 ep->can_eliminate = 0;
2802 elimination_effects (XEXP (x, 0), mem_mode);
2803 return;
2805 case CLOBBER:
2806 /* If clobbering a register that is the replacement register for an
2807 elimination we still think can be performed, note that it cannot
2808 be performed. Otherwise, we need not be concerned about it. */
2809 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2810 if (ep->to_rtx == XEXP (x, 0))
2811 ep->can_eliminate = 0;
2813 elimination_effects (XEXP (x, 0), mem_mode);
2814 return;
2816 case SET:
2817 /* Check for setting a register that we know about. */
2818 if (REG_P (SET_DEST (x)))
2820 /* See if this is setting the replacement register for an
2821 elimination.
2823 If DEST is the hard frame pointer, we do nothing because we
2824 assume that all assignments to the frame pointer are for
2825 non-local gotos and are being done at a time when they are valid
2826 and do not disturb anything else. Some machines want to
2827 eliminate a fake argument pointer (or even a fake frame pointer)
2828 with either the real frame or the stack pointer. Assignments to
2829 the hard frame pointer must not prevent this elimination. */
2831 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2832 ep++)
2833 if (ep->to_rtx == SET_DEST (x)
2834 && SET_DEST (x) != hard_frame_pointer_rtx)
2836 /* If it is being incremented, adjust the offset. Otherwise,
2837 this elimination can't be done. */
2838 rtx src = SET_SRC (x);
2840 if (GET_CODE (src) == PLUS
2841 && XEXP (src, 0) == SET_DEST (x)
2842 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2843 ep->offset -= INTVAL (XEXP (src, 1));
2844 else
2845 ep->can_eliminate = 0;
2849 elimination_effects (SET_DEST (x), 0);
2850 elimination_effects (SET_SRC (x), 0);
2851 return;
2853 case MEM:
2854 /* Our only special processing is to pass the mode of the MEM to our
2855 recursive call. */
2856 elimination_effects (XEXP (x, 0), GET_MODE (x));
2857 return;
2859 default:
2860 break;
2863 fmt = GET_RTX_FORMAT (code);
2864 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2866 if (*fmt == 'e')
2867 elimination_effects (XEXP (x, i), mem_mode);
2868 else if (*fmt == 'E')
2869 for (j = 0; j < XVECLEN (x, i); j++)
2870 elimination_effects (XVECEXP (x, i, j), mem_mode);
2874 /* Descend through rtx X and verify that no references to eliminable registers
2875 remain. If any do remain, mark the involved register as not
2876 eliminable. */
2878 static void
2879 check_eliminable_occurrences (rtx x)
2881 const char *fmt;
2882 int i;
2883 enum rtx_code code;
2885 if (x == 0)
2886 return;
2888 code = GET_CODE (x);
2890 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2892 struct elim_table *ep;
2894 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2895 if (ep->from_rtx == x)
2896 ep->can_eliminate = 0;
2897 return;
2900 fmt = GET_RTX_FORMAT (code);
2901 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2903 if (*fmt == 'e')
2904 check_eliminable_occurrences (XEXP (x, i));
2905 else if (*fmt == 'E')
2907 int j;
2908 for (j = 0; j < XVECLEN (x, i); j++)
2909 check_eliminable_occurrences (XVECEXP (x, i, j));
2914 /* Scan INSN and eliminate all eliminable registers in it.
2916 If REPLACE is nonzero, do the replacement destructively. Also
2917 delete the insn as dead it if it is setting an eliminable register.
2919 If REPLACE is zero, do all our allocations in reload_obstack.
2921 If no eliminations were done and this insn doesn't require any elimination
2922 processing (these are not identical conditions: it might be updating sp,
2923 but not referencing fp; this needs to be seen during reload_as_needed so
2924 that the offset between fp and sp can be taken into consideration), zero
2925 is returned. Otherwise, 1 is returned. */
2927 static int
2928 eliminate_regs_in_insn (rtx insn, int replace)
2930 int icode = recog_memoized (insn);
2931 rtx old_body = PATTERN (insn);
2932 int insn_is_asm = asm_noperands (old_body) >= 0;
2933 rtx old_set = single_set (insn);
2934 rtx new_body;
2935 int val = 0;
2936 int i;
2937 rtx substed_operand[MAX_RECOG_OPERANDS];
2938 rtx orig_operand[MAX_RECOG_OPERANDS];
2939 struct elim_table *ep;
2940 rtx plus_src, plus_cst_src;
2942 if (! insn_is_asm && icode < 0)
2944 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2945 || GET_CODE (PATTERN (insn)) == CLOBBER
2946 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2947 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2948 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2949 return 0;
2952 if (old_set != 0 && REG_P (SET_DEST (old_set))
2953 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2955 /* Check for setting an eliminable register. */
2956 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2957 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2959 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2960 /* If this is setting the frame pointer register to the
2961 hardware frame pointer register and this is an elimination
2962 that will be done (tested above), this insn is really
2963 adjusting the frame pointer downward to compensate for
2964 the adjustment done before a nonlocal goto. */
2965 if (ep->from == FRAME_POINTER_REGNUM
2966 && ep->to == HARD_FRAME_POINTER_REGNUM)
2968 rtx base = SET_SRC (old_set);
2969 rtx base_insn = insn;
2970 HOST_WIDE_INT offset = 0;
2972 while (base != ep->to_rtx)
2974 rtx prev_insn, prev_set;
2976 if (GET_CODE (base) == PLUS
2977 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2979 offset += INTVAL (XEXP (base, 1));
2980 base = XEXP (base, 0);
2982 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2983 && (prev_set = single_set (prev_insn)) != 0
2984 && rtx_equal_p (SET_DEST (prev_set), base))
2986 base = SET_SRC (prev_set);
2987 base_insn = prev_insn;
2989 else
2990 break;
2993 if (base == ep->to_rtx)
2995 rtx src
2996 = plus_constant (ep->to_rtx, offset - ep->offset);
2998 new_body = old_body;
2999 if (! replace)
3001 new_body = copy_insn (old_body);
3002 if (REG_NOTES (insn))
3003 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3005 PATTERN (insn) = new_body;
3006 old_set = single_set (insn);
3008 /* First see if this insn remains valid when we
3009 make the change. If not, keep the INSN_CODE
3010 the same and let reload fit it up. */
3011 validate_change (insn, &SET_SRC (old_set), src, 1);
3012 validate_change (insn, &SET_DEST (old_set),
3013 ep->to_rtx, 1);
3014 if (! apply_change_group ())
3016 SET_SRC (old_set) = src;
3017 SET_DEST (old_set) = ep->to_rtx;
3020 val = 1;
3021 goto done;
3024 #endif
3026 /* In this case this insn isn't serving a useful purpose. We
3027 will delete it in reload_as_needed once we know that this
3028 elimination is, in fact, being done.
3030 If REPLACE isn't set, we can't delete this insn, but needn't
3031 process it since it won't be used unless something changes. */
3032 if (replace)
3034 delete_dead_insn (insn);
3035 return 1;
3037 val = 1;
3038 goto done;
3042 /* We allow one special case which happens to work on all machines we
3043 currently support: a single set with the source or a REG_EQUAL
3044 note being a PLUS of an eliminable register and a constant. */
3045 plus_src = plus_cst_src = 0;
3046 if (old_set && REG_P (SET_DEST (old_set)))
3048 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3049 plus_src = SET_SRC (old_set);
3050 /* First see if the source is of the form (plus (...) CST). */
3051 if (plus_src
3052 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3053 plus_cst_src = plus_src;
3054 else if (REG_P (SET_SRC (old_set))
3055 || plus_src)
3057 /* Otherwise, see if we have a REG_EQUAL note of the form
3058 (plus (...) CST). */
3059 rtx links;
3060 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3062 if (REG_NOTE_KIND (links) == REG_EQUAL
3063 && GET_CODE (XEXP (links, 0)) == PLUS
3064 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3066 plus_cst_src = XEXP (links, 0);
3067 break;
3072 /* Check that the first operand of the PLUS is a hard reg or
3073 the lowpart subreg of one. */
3074 if (plus_cst_src)
3076 rtx reg = XEXP (plus_cst_src, 0);
3077 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3078 reg = SUBREG_REG (reg);
3080 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3081 plus_cst_src = 0;
3084 if (plus_cst_src)
3086 rtx reg = XEXP (plus_cst_src, 0);
3087 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3089 if (GET_CODE (reg) == SUBREG)
3090 reg = SUBREG_REG (reg);
3092 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3093 if (ep->from_rtx == reg && ep->can_eliminate)
3095 rtx to_rtx = ep->to_rtx;
3096 offset += ep->offset;
3098 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3099 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3100 to_rtx);
3101 /* If we have a nonzero offset, and the source is already
3102 a simple REG, the following transformation would
3103 increase the cost of the insn by replacing a simple REG
3104 with (plus (reg sp) CST). So try only when we already
3105 had a PLUS before. */
3106 if (offset == 0 || plus_src)
3108 int num_clobbers;
3109 /* We assume here that if we need a PARALLEL with
3110 CLOBBERs for this assignment, we can do with the
3111 MATCH_SCRATCHes that add_clobbers allocates.
3112 There's not much we can do if that doesn't work. */
3113 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3114 SET_DEST (old_set),
3115 plus_constant (to_rtx, offset));
3116 num_clobbers = 0;
3117 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3118 if (num_clobbers)
3120 rtvec vec = rtvec_alloc (num_clobbers + 1);
3122 vec->elem[0] = PATTERN (insn);
3123 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3124 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3126 gcc_assert (INSN_CODE (insn) >= 0);
3128 else
3129 break;
3131 val = 1;
3132 /* This can't have an effect on elimination offsets, so skip right
3133 to the end. */
3134 goto done;
3138 /* Determine the effects of this insn on elimination offsets. */
3139 elimination_effects (old_body, 0);
3141 /* Eliminate all eliminable registers occurring in operands that
3142 can be handled by reload. */
3143 extract_insn (insn);
3144 for (i = 0; i < recog_data.n_operands; i++)
3146 orig_operand[i] = recog_data.operand[i];
3147 substed_operand[i] = recog_data.operand[i];
3149 /* For an asm statement, every operand is eliminable. */
3150 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3152 bool is_set_src, in_plus;
3154 /* Check for setting a register that we know about. */
3155 if (recog_data.operand_type[i] != OP_IN
3156 && REG_P (orig_operand[i]))
3158 /* If we are assigning to a register that can be eliminated, it
3159 must be as part of a PARALLEL, since the code above handles
3160 single SETs. We must indicate that we can no longer
3161 eliminate this reg. */
3162 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3163 ep++)
3164 if (ep->from_rtx == orig_operand[i])
3165 ep->can_eliminate = 0;
3168 /* Companion to the above plus substitution, we can allow
3169 invariants as the source of a plain move. */
3170 is_set_src = false;
3171 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3172 is_set_src = true;
3173 in_plus = false;
3174 if (plus_src
3175 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3176 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3177 in_plus = true;
3179 substed_operand[i]
3180 = eliminate_regs_1 (recog_data.operand[i], 0,
3181 replace ? insn : NULL_RTX,
3182 is_set_src || in_plus);
3183 if (substed_operand[i] != orig_operand[i])
3184 val = 1;
3185 /* Terminate the search in check_eliminable_occurrences at
3186 this point. */
3187 *recog_data.operand_loc[i] = 0;
3189 /* If an output operand changed from a REG to a MEM and INSN is an
3190 insn, write a CLOBBER insn. */
3191 if (recog_data.operand_type[i] != OP_IN
3192 && REG_P (orig_operand[i])
3193 && MEM_P (substed_operand[i])
3194 && replace)
3195 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3196 insn);
3200 for (i = 0; i < recog_data.n_dups; i++)
3201 *recog_data.dup_loc[i]
3202 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3204 /* If any eliminable remain, they aren't eliminable anymore. */
3205 check_eliminable_occurrences (old_body);
3207 /* Substitute the operands; the new values are in the substed_operand
3208 array. */
3209 for (i = 0; i < recog_data.n_operands; i++)
3210 *recog_data.operand_loc[i] = substed_operand[i];
3211 for (i = 0; i < recog_data.n_dups; i++)
3212 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3214 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3215 re-recognize the insn. We do this in case we had a simple addition
3216 but now can do this as a load-address. This saves an insn in this
3217 common case.
3218 If re-recognition fails, the old insn code number will still be used,
3219 and some register operands may have changed into PLUS expressions.
3220 These will be handled by find_reloads by loading them into a register
3221 again. */
3223 if (val)
3225 /* If we aren't replacing things permanently and we changed something,
3226 make another copy to ensure that all the RTL is new. Otherwise
3227 things can go wrong if find_reload swaps commutative operands
3228 and one is inside RTL that has been copied while the other is not. */
3229 new_body = old_body;
3230 if (! replace)
3232 new_body = copy_insn (old_body);
3233 if (REG_NOTES (insn))
3234 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3236 PATTERN (insn) = new_body;
3238 /* If we had a move insn but now we don't, rerecognize it. This will
3239 cause spurious re-recognition if the old move had a PARALLEL since
3240 the new one still will, but we can't call single_set without
3241 having put NEW_BODY into the insn and the re-recognition won't
3242 hurt in this rare case. */
3243 /* ??? Why this huge if statement - why don't we just rerecognize the
3244 thing always? */
3245 if (! insn_is_asm
3246 && old_set != 0
3247 && ((REG_P (SET_SRC (old_set))
3248 && (GET_CODE (new_body) != SET
3249 || !REG_P (SET_SRC (new_body))))
3250 /* If this was a load from or store to memory, compare
3251 the MEM in recog_data.operand to the one in the insn.
3252 If they are not equal, then rerecognize the insn. */
3253 || (old_set != 0
3254 && ((MEM_P (SET_SRC (old_set))
3255 && SET_SRC (old_set) != recog_data.operand[1])
3256 || (MEM_P (SET_DEST (old_set))
3257 && SET_DEST (old_set) != recog_data.operand[0])))
3258 /* If this was an add insn before, rerecognize. */
3259 || GET_CODE (SET_SRC (old_set)) == PLUS))
3261 int new_icode = recog (PATTERN (insn), insn, 0);
3262 if (new_icode >= 0)
3263 INSN_CODE (insn) = new_icode;
3267 /* Restore the old body. If there were any changes to it, we made a copy
3268 of it while the changes were still in place, so we'll correctly return
3269 a modified insn below. */
3270 if (! replace)
3272 /* Restore the old body. */
3273 for (i = 0; i < recog_data.n_operands; i++)
3274 *recog_data.operand_loc[i] = orig_operand[i];
3275 for (i = 0; i < recog_data.n_dups; i++)
3276 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3279 /* Update all elimination pairs to reflect the status after the current
3280 insn. The changes we make were determined by the earlier call to
3281 elimination_effects.
3283 We also detect cases where register elimination cannot be done,
3284 namely, if a register would be both changed and referenced outside a MEM
3285 in the resulting insn since such an insn is often undefined and, even if
3286 not, we cannot know what meaning will be given to it. Note that it is
3287 valid to have a register used in an address in an insn that changes it
3288 (presumably with a pre- or post-increment or decrement).
3290 If anything changes, return nonzero. */
3292 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3294 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3295 ep->can_eliminate = 0;
3297 ep->ref_outside_mem = 0;
3299 if (ep->previous_offset != ep->offset)
3300 val = 1;
3303 done:
3304 /* If we changed something, perform elimination in REG_NOTES. This is
3305 needed even when REPLACE is zero because a REG_DEAD note might refer
3306 to a register that we eliminate and could cause a different number
3307 of spill registers to be needed in the final reload pass than in
3308 the pre-passes. */
3309 if (val && REG_NOTES (insn) != 0)
3310 REG_NOTES (insn)
3311 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3313 return val;
3316 /* Loop through all elimination pairs.
3317 Recalculate the number not at initial offset.
3319 Compute the maximum offset (minimum offset if the stack does not
3320 grow downward) for each elimination pair. */
3322 static void
3323 update_eliminable_offsets (void)
3325 struct elim_table *ep;
3327 num_not_at_initial_offset = 0;
3328 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3330 ep->previous_offset = ep->offset;
3331 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3332 num_not_at_initial_offset++;
3336 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3337 replacement we currently believe is valid, mark it as not eliminable if X
3338 modifies DEST in any way other than by adding a constant integer to it.
3340 If DEST is the frame pointer, we do nothing because we assume that
3341 all assignments to the hard frame pointer are nonlocal gotos and are being
3342 done at a time when they are valid and do not disturb anything else.
3343 Some machines want to eliminate a fake argument pointer with either the
3344 frame or stack pointer. Assignments to the hard frame pointer must not
3345 prevent this elimination.
3347 Called via note_stores from reload before starting its passes to scan
3348 the insns of the function. */
3350 static void
3351 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3353 unsigned int i;
3355 /* A SUBREG of a hard register here is just changing its mode. We should
3356 not see a SUBREG of an eliminable hard register, but check just in
3357 case. */
3358 if (GET_CODE (dest) == SUBREG)
3359 dest = SUBREG_REG (dest);
3361 if (dest == hard_frame_pointer_rtx)
3362 return;
3364 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3365 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3366 && (GET_CODE (x) != SET
3367 || GET_CODE (SET_SRC (x)) != PLUS
3368 || XEXP (SET_SRC (x), 0) != dest
3369 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3371 reg_eliminate[i].can_eliminate_previous
3372 = reg_eliminate[i].can_eliminate = 0;
3373 num_eliminable--;
3377 /* Verify that the initial elimination offsets did not change since the
3378 last call to set_initial_elim_offsets. This is used to catch cases
3379 where something illegal happened during reload_as_needed that could
3380 cause incorrect code to be generated if we did not check for it. */
3382 static bool
3383 verify_initial_elim_offsets (void)
3385 HOST_WIDE_INT t;
3387 if (!num_eliminable)
3388 return true;
3390 #ifdef ELIMINABLE_REGS
3392 struct elim_table *ep;
3394 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3396 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3397 if (t != ep->initial_offset)
3398 return false;
3401 #else
3402 INITIAL_FRAME_POINTER_OFFSET (t);
3403 if (t != reg_eliminate[0].initial_offset)
3404 return false;
3405 #endif
3407 return true;
3410 /* Reset all offsets on eliminable registers to their initial values. */
3412 static void
3413 set_initial_elim_offsets (void)
3415 struct elim_table *ep = reg_eliminate;
3417 #ifdef ELIMINABLE_REGS
3418 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3420 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3421 ep->previous_offset = ep->offset = ep->initial_offset;
3423 #else
3424 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3425 ep->previous_offset = ep->offset = ep->initial_offset;
3426 #endif
3428 num_not_at_initial_offset = 0;
3431 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3433 static void
3434 set_initial_eh_label_offset (rtx label)
3436 set_label_offsets (label, NULL_RTX, 1);
3439 /* Initialize the known label offsets.
3440 Set a known offset for each forced label to be at the initial offset
3441 of each elimination. We do this because we assume that all
3442 computed jumps occur from a location where each elimination is
3443 at its initial offset.
3444 For all other labels, show that we don't know the offsets. */
3446 static void
3447 set_initial_label_offsets (void)
3449 rtx x;
3450 memset (offsets_known_at, 0, num_labels);
3452 for (x = forced_labels; x; x = XEXP (x, 1))
3453 if (XEXP (x, 0))
3454 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3456 for_each_eh_label (set_initial_eh_label_offset);
3459 /* Set all elimination offsets to the known values for the code label given
3460 by INSN. */
3462 static void
3463 set_offsets_for_label (rtx insn)
3465 unsigned int i;
3466 int label_nr = CODE_LABEL_NUMBER (insn);
3467 struct elim_table *ep;
3469 num_not_at_initial_offset = 0;
3470 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3472 ep->offset = ep->previous_offset
3473 = offsets_at[label_nr - first_label_num][i];
3474 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3475 num_not_at_initial_offset++;
3479 /* See if anything that happened changes which eliminations are valid.
3480 For example, on the SPARC, whether or not the frame pointer can
3481 be eliminated can depend on what registers have been used. We need
3482 not check some conditions again (such as flag_omit_frame_pointer)
3483 since they can't have changed. */
3485 static void
3486 update_eliminables (HARD_REG_SET *pset)
3488 int previous_frame_pointer_needed = frame_pointer_needed;
3489 struct elim_table *ep;
3491 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3492 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3493 #ifdef ELIMINABLE_REGS
3494 || ! CAN_ELIMINATE (ep->from, ep->to)
3495 #endif
3497 ep->can_eliminate = 0;
3499 /* Look for the case where we have discovered that we can't replace
3500 register A with register B and that means that we will now be
3501 trying to replace register A with register C. This means we can
3502 no longer replace register C with register B and we need to disable
3503 such an elimination, if it exists. This occurs often with A == ap,
3504 B == sp, and C == fp. */
3506 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3508 struct elim_table *op;
3509 int new_to = -1;
3511 if (! ep->can_eliminate && ep->can_eliminate_previous)
3513 /* Find the current elimination for ep->from, if there is a
3514 new one. */
3515 for (op = reg_eliminate;
3516 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3517 if (op->from == ep->from && op->can_eliminate)
3519 new_to = op->to;
3520 break;
3523 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3524 disable it. */
3525 for (op = reg_eliminate;
3526 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3527 if (op->from == new_to && op->to == ep->to)
3528 op->can_eliminate = 0;
3532 /* See if any registers that we thought we could eliminate the previous
3533 time are no longer eliminable. If so, something has changed and we
3534 must spill the register. Also, recompute the number of eliminable
3535 registers and see if the frame pointer is needed; it is if there is
3536 no elimination of the frame pointer that we can perform. */
3538 frame_pointer_needed = 1;
3539 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3541 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3542 && ep->to != HARD_FRAME_POINTER_REGNUM)
3543 frame_pointer_needed = 0;
3545 if (! ep->can_eliminate && ep->can_eliminate_previous)
3547 ep->can_eliminate_previous = 0;
3548 SET_HARD_REG_BIT (*pset, ep->from);
3549 num_eliminable--;
3553 /* If we didn't need a frame pointer last time, but we do now, spill
3554 the hard frame pointer. */
3555 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3556 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3559 /* Initialize the table of registers to eliminate. */
3561 static void
3562 init_elim_table (void)
3564 struct elim_table *ep;
3565 #ifdef ELIMINABLE_REGS
3566 const struct elim_table_1 *ep1;
3567 #endif
3569 if (!reg_eliminate)
3570 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3572 /* Does this function require a frame pointer? */
3574 frame_pointer_needed = (! flag_omit_frame_pointer
3575 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3576 and restore sp for alloca. So we can't eliminate
3577 the frame pointer in that case. At some point,
3578 we should improve this by emitting the
3579 sp-adjusting insns for this case. */
3580 || (current_function_calls_alloca
3581 && EXIT_IGNORE_STACK)
3582 || current_function_accesses_prior_frames
3583 || FRAME_POINTER_REQUIRED);
3585 num_eliminable = 0;
3587 #ifdef ELIMINABLE_REGS
3588 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3589 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3591 ep->from = ep1->from;
3592 ep->to = ep1->to;
3593 ep->can_eliminate = ep->can_eliminate_previous
3594 = (CAN_ELIMINATE (ep->from, ep->to)
3595 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3597 #else
3598 reg_eliminate[0].from = reg_eliminate_1[0].from;
3599 reg_eliminate[0].to = reg_eliminate_1[0].to;
3600 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3601 = ! frame_pointer_needed;
3602 #endif
3604 /* Count the number of eliminable registers and build the FROM and TO
3605 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3606 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3607 We depend on this. */
3608 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3610 num_eliminable += ep->can_eliminate;
3611 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3612 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3616 /* Kick all pseudos out of hard register REGNO.
3618 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3619 because we found we can't eliminate some register. In the case, no pseudos
3620 are allowed to be in the register, even if they are only in a block that
3621 doesn't require spill registers, unlike the case when we are spilling this
3622 hard reg to produce another spill register.
3624 Return nonzero if any pseudos needed to be kicked out. */
3626 static void
3627 spill_hard_reg (unsigned int regno, int cant_eliminate)
3629 int i;
3631 if (cant_eliminate)
3633 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3634 regs_ever_live[regno] = 1;
3637 /* Spill every pseudo reg that was allocated to this reg
3638 or to something that overlaps this reg. */
3640 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3641 if (reg_renumber[i] >= 0
3642 && (unsigned int) reg_renumber[i] <= regno
3643 && ((unsigned int) reg_renumber[i]
3644 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3645 [PSEUDO_REGNO_MODE (i)]
3646 > regno))
3647 SET_REGNO_REG_SET (&spilled_pseudos, i);
3650 /* After find_reload_regs has been run for all insn that need reloads,
3651 and/or spill_hard_regs was called, this function is used to actually
3652 spill pseudo registers and try to reallocate them. It also sets up the
3653 spill_regs array for use by choose_reload_regs. */
3655 static int
3656 finish_spills (int global)
3658 struct insn_chain *chain;
3659 int something_changed = 0;
3660 unsigned i;
3661 reg_set_iterator rsi;
3663 /* Build the spill_regs array for the function. */
3664 /* If there are some registers still to eliminate and one of the spill regs
3665 wasn't ever used before, additional stack space may have to be
3666 allocated to store this register. Thus, we may have changed the offset
3667 between the stack and frame pointers, so mark that something has changed.
3669 One might think that we need only set VAL to 1 if this is a call-used
3670 register. However, the set of registers that must be saved by the
3671 prologue is not identical to the call-used set. For example, the
3672 register used by the call insn for the return PC is a call-used register,
3673 but must be saved by the prologue. */
3675 n_spills = 0;
3676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3677 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3679 spill_reg_order[i] = n_spills;
3680 spill_regs[n_spills++] = i;
3681 if (num_eliminable && ! regs_ever_live[i])
3682 something_changed = 1;
3683 regs_ever_live[i] = 1;
3685 else
3686 spill_reg_order[i] = -1;
3688 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3690 /* Record the current hard register the pseudo is allocated to in
3691 pseudo_previous_regs so we avoid reallocating it to the same
3692 hard reg in a later pass. */
3693 gcc_assert (reg_renumber[i] >= 0);
3695 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3696 /* Mark it as no longer having a hard register home. */
3697 reg_renumber[i] = -1;
3698 /* We will need to scan everything again. */
3699 something_changed = 1;
3702 /* Retry global register allocation if possible. */
3703 if (global)
3705 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3706 /* For every insn that needs reloads, set the registers used as spill
3707 regs in pseudo_forbidden_regs for every pseudo live across the
3708 insn. */
3709 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3711 EXECUTE_IF_SET_IN_REG_SET
3712 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3714 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3715 chain->used_spill_regs);
3717 EXECUTE_IF_SET_IN_REG_SET
3718 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3720 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3721 chain->used_spill_regs);
3725 /* Retry allocating the spilled pseudos. For each reg, merge the
3726 various reg sets that indicate which hard regs can't be used,
3727 and call retry_global_alloc.
3728 We change spill_pseudos here to only contain pseudos that did not
3729 get a new hard register. */
3730 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3731 if (reg_old_renumber[i] != reg_renumber[i])
3733 HARD_REG_SET forbidden;
3734 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3735 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3736 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3737 retry_global_alloc (i, forbidden);
3738 if (reg_renumber[i] >= 0)
3739 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3743 /* Fix up the register information in the insn chain.
3744 This involves deleting those of the spilled pseudos which did not get
3745 a new hard register home from the live_{before,after} sets. */
3746 for (chain = reload_insn_chain; chain; chain = chain->next)
3748 HARD_REG_SET used_by_pseudos;
3749 HARD_REG_SET used_by_pseudos2;
3751 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3752 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3754 /* Mark any unallocated hard regs as available for spills. That
3755 makes inheritance work somewhat better. */
3756 if (chain->need_reload)
3758 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3759 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3760 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3762 /* Save the old value for the sanity test below. */
3763 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3765 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3766 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3767 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3768 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3770 /* Make sure we only enlarge the set. */
3771 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3772 gcc_unreachable ();
3773 ok:;
3777 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3778 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3780 int regno = reg_renumber[i];
3781 if (reg_old_renumber[i] == regno)
3782 continue;
3784 alter_reg (i, reg_old_renumber[i]);
3785 reg_old_renumber[i] = regno;
3786 if (dump_file)
3788 if (regno == -1)
3789 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3790 else
3791 fprintf (dump_file, " Register %d now in %d.\n\n",
3792 i, reg_renumber[i]);
3796 return something_changed;
3799 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3801 static void
3802 scan_paradoxical_subregs (rtx x)
3804 int i;
3805 const char *fmt;
3806 enum rtx_code code = GET_CODE (x);
3808 switch (code)
3810 case REG:
3811 case CONST_INT:
3812 case CONST:
3813 case SYMBOL_REF:
3814 case LABEL_REF:
3815 case CONST_DOUBLE:
3816 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3817 case CC0:
3818 case PC:
3819 case USE:
3820 case CLOBBER:
3821 return;
3823 case SUBREG:
3824 if (REG_P (SUBREG_REG (x))
3825 && (GET_MODE_SIZE (GET_MODE (x))
3826 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3827 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3828 = GET_MODE_SIZE (GET_MODE (x));
3829 return;
3831 default:
3832 break;
3835 fmt = GET_RTX_FORMAT (code);
3836 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3838 if (fmt[i] == 'e')
3839 scan_paradoxical_subregs (XEXP (x, i));
3840 else if (fmt[i] == 'E')
3842 int j;
3843 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3844 scan_paradoxical_subregs (XVECEXP (x, i, j));
3849 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3850 examine all of the reload insns between PREV and NEXT exclusive, and
3851 annotate all that may trap. */
3853 static void
3854 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3856 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3857 unsigned int trap_count;
3858 rtx i;
3860 if (note == NULL)
3861 return;
3863 if (may_trap_p (PATTERN (insn)))
3864 trap_count = 1;
3865 else
3867 remove_note (insn, note);
3868 trap_count = 0;
3871 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3872 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3874 trap_count++;
3875 REG_NOTES (i)
3876 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3880 /* Reload pseudo-registers into hard regs around each insn as needed.
3881 Additional register load insns are output before the insn that needs it
3882 and perhaps store insns after insns that modify the reloaded pseudo reg.
3884 reg_last_reload_reg and reg_reloaded_contents keep track of
3885 which registers are already available in reload registers.
3886 We update these for the reloads that we perform,
3887 as the insns are scanned. */
3889 static void
3890 reload_as_needed (int live_known)
3892 struct insn_chain *chain;
3893 #if defined (AUTO_INC_DEC)
3894 int i;
3895 #endif
3896 rtx x;
3898 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3899 memset (spill_reg_store, 0, sizeof spill_reg_store);
3900 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
3901 INIT_REG_SET (&reg_has_output_reload);
3902 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3903 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3905 set_initial_elim_offsets ();
3907 for (chain = reload_insn_chain; chain; chain = chain->next)
3909 rtx prev = 0;
3910 rtx insn = chain->insn;
3911 rtx old_next = NEXT_INSN (insn);
3913 /* If we pass a label, copy the offsets from the label information
3914 into the current offsets of each elimination. */
3915 if (LABEL_P (insn))
3916 set_offsets_for_label (insn);
3918 else if (INSN_P (insn))
3920 regset_head regs_to_forget;
3921 INIT_REG_SET (&regs_to_forget);
3922 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
3924 /* If this is a USE and CLOBBER of a MEM, ensure that any
3925 references to eliminable registers have been removed. */
3927 if ((GET_CODE (PATTERN (insn)) == USE
3928 || GET_CODE (PATTERN (insn)) == CLOBBER)
3929 && MEM_P (XEXP (PATTERN (insn), 0)))
3930 XEXP (XEXP (PATTERN (insn), 0), 0)
3931 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3932 GET_MODE (XEXP (PATTERN (insn), 0)),
3933 NULL_RTX);
3935 /* If we need to do register elimination processing, do so.
3936 This might delete the insn, in which case we are done. */
3937 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3939 eliminate_regs_in_insn (insn, 1);
3940 if (NOTE_P (insn))
3942 update_eliminable_offsets ();
3943 CLEAR_REG_SET (&regs_to_forget);
3944 continue;
3948 /* If need_elim is nonzero but need_reload is zero, one might think
3949 that we could simply set n_reloads to 0. However, find_reloads
3950 could have done some manipulation of the insn (such as swapping
3951 commutative operands), and these manipulations are lost during
3952 the first pass for every insn that needs register elimination.
3953 So the actions of find_reloads must be redone here. */
3955 if (! chain->need_elim && ! chain->need_reload
3956 && ! chain->need_operand_change)
3957 n_reloads = 0;
3958 /* First find the pseudo regs that must be reloaded for this insn.
3959 This info is returned in the tables reload_... (see reload.h).
3960 Also modify the body of INSN by substituting RELOAD
3961 rtx's for those pseudo regs. */
3962 else
3964 CLEAR_REG_SET (&reg_has_output_reload);
3965 CLEAR_HARD_REG_SET (reg_is_output_reload);
3967 find_reloads (insn, 1, spill_indirect_levels, live_known,
3968 spill_reg_order);
3971 if (n_reloads > 0)
3973 rtx next = NEXT_INSN (insn);
3974 rtx p;
3976 prev = PREV_INSN (insn);
3978 /* Now compute which reload regs to reload them into. Perhaps
3979 reusing reload regs from previous insns, or else output
3980 load insns to reload them. Maybe output store insns too.
3981 Record the choices of reload reg in reload_reg_rtx. */
3982 choose_reload_regs (chain);
3984 /* Merge any reloads that we didn't combine for fear of
3985 increasing the number of spill registers needed but now
3986 discover can be safely merged. */
3987 if (SMALL_REGISTER_CLASSES)
3988 merge_assigned_reloads (insn);
3990 /* Generate the insns to reload operands into or out of
3991 their reload regs. */
3992 emit_reload_insns (chain);
3994 /* Substitute the chosen reload regs from reload_reg_rtx
3995 into the insn's body (or perhaps into the bodies of other
3996 load and store insn that we just made for reloading
3997 and that we moved the structure into). */
3998 subst_reloads (insn);
4000 /* Adjust the exception region notes for loads and stores. */
4001 if (flag_non_call_exceptions && !CALL_P (insn))
4002 fixup_eh_region_note (insn, prev, next);
4004 /* If this was an ASM, make sure that all the reload insns
4005 we have generated are valid. If not, give an error
4006 and delete them. */
4007 if (asm_noperands (PATTERN (insn)) >= 0)
4008 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4009 if (p != insn && INSN_P (p)
4010 && GET_CODE (PATTERN (p)) != USE
4011 && (recog_memoized (p) < 0
4012 || (extract_insn (p), ! constrain_operands (1))))
4014 error_for_asm (insn,
4015 "%<asm%> operand requires "
4016 "impossible reload");
4017 delete_insn (p);
4021 if (num_eliminable && chain->need_elim)
4022 update_eliminable_offsets ();
4024 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4025 is no longer validly lying around to save a future reload.
4026 Note that this does not detect pseudos that were reloaded
4027 for this insn in order to be stored in
4028 (obeying register constraints). That is correct; such reload
4029 registers ARE still valid. */
4030 forget_marked_reloads (&regs_to_forget);
4031 CLEAR_REG_SET (&regs_to_forget);
4033 /* There may have been CLOBBER insns placed after INSN. So scan
4034 between INSN and NEXT and use them to forget old reloads. */
4035 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4036 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4037 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4039 #ifdef AUTO_INC_DEC
4040 /* Likewise for regs altered by auto-increment in this insn.
4041 REG_INC notes have been changed by reloading:
4042 find_reloads_address_1 records substitutions for them,
4043 which have been performed by subst_reloads above. */
4044 for (i = n_reloads - 1; i >= 0; i--)
4046 rtx in_reg = rld[i].in_reg;
4047 if (in_reg)
4049 enum rtx_code code = GET_CODE (in_reg);
4050 /* PRE_INC / PRE_DEC will have the reload register ending up
4051 with the same value as the stack slot, but that doesn't
4052 hold true for POST_INC / POST_DEC. Either we have to
4053 convert the memory access to a true POST_INC / POST_DEC,
4054 or we can't use the reload register for inheritance. */
4055 if ((code == POST_INC || code == POST_DEC)
4056 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4057 REGNO (rld[i].reg_rtx))
4058 /* Make sure it is the inc/dec pseudo, and not
4059 some other (e.g. output operand) pseudo. */
4060 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4061 == REGNO (XEXP (in_reg, 0))))
4064 rtx reload_reg = rld[i].reg_rtx;
4065 enum machine_mode mode = GET_MODE (reload_reg);
4066 int n = 0;
4067 rtx p;
4069 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4071 /* We really want to ignore REG_INC notes here, so
4072 use PATTERN (p) as argument to reg_set_p . */
4073 if (reg_set_p (reload_reg, PATTERN (p)))
4074 break;
4075 n = count_occurrences (PATTERN (p), reload_reg, 0);
4076 if (! n)
4077 continue;
4078 if (n == 1)
4080 n = validate_replace_rtx (reload_reg,
4081 gen_rtx_fmt_e (code,
4082 mode,
4083 reload_reg),
4086 /* We must also verify that the constraints
4087 are met after the replacement. */
4088 extract_insn (p);
4089 if (n)
4090 n = constrain_operands (1);
4091 else
4092 break;
4094 /* If the constraints were not met, then
4095 undo the replacement. */
4096 if (!n)
4098 validate_replace_rtx (gen_rtx_fmt_e (code,
4099 mode,
4100 reload_reg),
4101 reload_reg, p);
4102 break;
4106 break;
4108 if (n == 1)
4110 REG_NOTES (p)
4111 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4112 REG_NOTES (p));
4113 /* Mark this as having an output reload so that the
4114 REG_INC processing code below won't invalidate
4115 the reload for inheritance. */
4116 SET_HARD_REG_BIT (reg_is_output_reload,
4117 REGNO (reload_reg));
4118 SET_REGNO_REG_SET (&reg_has_output_reload,
4119 REGNO (XEXP (in_reg, 0)));
4121 else
4122 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4123 NULL);
4125 else if ((code == PRE_INC || code == PRE_DEC)
4126 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4127 REGNO (rld[i].reg_rtx))
4128 /* Make sure it is the inc/dec pseudo, and not
4129 some other (e.g. output operand) pseudo. */
4130 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4131 == REGNO (XEXP (in_reg, 0))))
4133 SET_HARD_REG_BIT (reg_is_output_reload,
4134 REGNO (rld[i].reg_rtx));
4135 SET_REGNO_REG_SET (&reg_has_output_reload,
4136 REGNO (XEXP (in_reg, 0)));
4140 /* If a pseudo that got a hard register is auto-incremented,
4141 we must purge records of copying it into pseudos without
4142 hard registers. */
4143 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4144 if (REG_NOTE_KIND (x) == REG_INC)
4146 /* See if this pseudo reg was reloaded in this insn.
4147 If so, its last-reload info is still valid
4148 because it is based on this insn's reload. */
4149 for (i = 0; i < n_reloads; i++)
4150 if (rld[i].out == XEXP (x, 0))
4151 break;
4153 if (i == n_reloads)
4154 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4156 #endif
4158 /* A reload reg's contents are unknown after a label. */
4159 if (LABEL_P (insn))
4160 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4162 /* Don't assume a reload reg is still good after a call insn
4163 if it is a call-used reg, or if it contains a value that will
4164 be partially clobbered by the call. */
4165 else if (CALL_P (insn))
4167 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4168 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4172 /* Clean up. */
4173 free (reg_last_reload_reg);
4174 CLEAR_REG_SET (&reg_has_output_reload);
4177 /* Discard all record of any value reloaded from X,
4178 or reloaded in X from someplace else;
4179 unless X is an output reload reg of the current insn.
4181 X may be a hard reg (the reload reg)
4182 or it may be a pseudo reg that was reloaded from.
4184 When DATA is non-NULL just mark the registers in regset
4185 to be forgotten later. */
4187 static void
4188 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4189 void *data)
4191 unsigned int regno;
4192 unsigned int nr;
4193 regset regs = (regset) data;
4195 /* note_stores does give us subregs of hard regs,
4196 subreg_regno_offset requires a hard reg. */
4197 while (GET_CODE (x) == SUBREG)
4199 /* We ignore the subreg offset when calculating the regno,
4200 because we are using the entire underlying hard register
4201 below. */
4202 x = SUBREG_REG (x);
4205 if (!REG_P (x))
4206 return;
4208 regno = REGNO (x);
4210 if (regno >= FIRST_PSEUDO_REGISTER)
4211 nr = 1;
4212 else
4214 unsigned int i;
4216 nr = hard_regno_nregs[regno][GET_MODE (x)];
4217 /* Storing into a spilled-reg invalidates its contents.
4218 This can happen if a block-local pseudo is allocated to that reg
4219 and it wasn't spilled because this block's total need is 0.
4220 Then some insn might have an optional reload and use this reg. */
4221 if (!regs)
4222 for (i = 0; i < nr; i++)
4223 /* But don't do this if the reg actually serves as an output
4224 reload reg in the current instruction. */
4225 if (n_reloads == 0
4226 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4228 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4229 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4230 spill_reg_store[regno + i] = 0;
4234 if (regs)
4235 while (nr-- > 0)
4236 SET_REGNO_REG_SET (regs, regno + nr);
4237 else
4239 /* Since value of X has changed,
4240 forget any value previously copied from it. */
4242 while (nr-- > 0)
4243 /* But don't forget a copy if this is the output reload
4244 that establishes the copy's validity. */
4245 if (n_reloads == 0
4246 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4247 reg_last_reload_reg[regno + nr] = 0;
4251 /* Forget the reloads marked in regset by previous function. */
4252 static void
4253 forget_marked_reloads (regset regs)
4255 unsigned int reg;
4256 reg_set_iterator rsi;
4257 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4259 if (reg < FIRST_PSEUDO_REGISTER
4260 /* But don't do this if the reg actually serves as an output
4261 reload reg in the current instruction. */
4262 && (n_reloads == 0
4263 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4265 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4266 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
4267 spill_reg_store[reg] = 0;
4269 if (n_reloads == 0
4270 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4271 reg_last_reload_reg[reg] = 0;
4275 /* The following HARD_REG_SETs indicate when each hard register is
4276 used for a reload of various parts of the current insn. */
4278 /* If reg is unavailable for all reloads. */
4279 static HARD_REG_SET reload_reg_unavailable;
4280 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4281 static HARD_REG_SET reload_reg_used;
4282 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4283 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4284 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4285 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4286 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4287 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4288 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4289 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4290 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4291 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4292 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4293 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4294 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4295 static HARD_REG_SET reload_reg_used_in_op_addr;
4296 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4297 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4298 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4299 static HARD_REG_SET reload_reg_used_in_insn;
4300 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4301 static HARD_REG_SET reload_reg_used_in_other_addr;
4303 /* If reg is in use as a reload reg for any sort of reload. */
4304 static HARD_REG_SET reload_reg_used_at_all;
4306 /* If reg is use as an inherited reload. We just mark the first register
4307 in the group. */
4308 static HARD_REG_SET reload_reg_used_for_inherit;
4310 /* Records which hard regs are used in any way, either as explicit use or
4311 by being allocated to a pseudo during any point of the current insn. */
4312 static HARD_REG_SET reg_used_in_insn;
4314 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4315 TYPE. MODE is used to indicate how many consecutive regs are
4316 actually used. */
4318 static void
4319 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4320 enum machine_mode mode)
4322 unsigned int nregs = hard_regno_nregs[regno][mode];
4323 unsigned int i;
4325 for (i = regno; i < nregs + regno; i++)
4327 switch (type)
4329 case RELOAD_OTHER:
4330 SET_HARD_REG_BIT (reload_reg_used, i);
4331 break;
4333 case RELOAD_FOR_INPUT_ADDRESS:
4334 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4335 break;
4337 case RELOAD_FOR_INPADDR_ADDRESS:
4338 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4339 break;
4341 case RELOAD_FOR_OUTPUT_ADDRESS:
4342 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4343 break;
4345 case RELOAD_FOR_OUTADDR_ADDRESS:
4346 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4347 break;
4349 case RELOAD_FOR_OPERAND_ADDRESS:
4350 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4351 break;
4353 case RELOAD_FOR_OPADDR_ADDR:
4354 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4355 break;
4357 case RELOAD_FOR_OTHER_ADDRESS:
4358 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4359 break;
4361 case RELOAD_FOR_INPUT:
4362 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4363 break;
4365 case RELOAD_FOR_OUTPUT:
4366 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4367 break;
4369 case RELOAD_FOR_INSN:
4370 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4371 break;
4374 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4378 /* Similarly, but show REGNO is no longer in use for a reload. */
4380 static void
4381 clear_reload_reg_in_use (unsigned int regno, int opnum,
4382 enum reload_type type, enum machine_mode mode)
4384 unsigned int nregs = hard_regno_nregs[regno][mode];
4385 unsigned int start_regno, end_regno, r;
4386 int i;
4387 /* A complication is that for some reload types, inheritance might
4388 allow multiple reloads of the same types to share a reload register.
4389 We set check_opnum if we have to check only reloads with the same
4390 operand number, and check_any if we have to check all reloads. */
4391 int check_opnum = 0;
4392 int check_any = 0;
4393 HARD_REG_SET *used_in_set;
4395 switch (type)
4397 case RELOAD_OTHER:
4398 used_in_set = &reload_reg_used;
4399 break;
4401 case RELOAD_FOR_INPUT_ADDRESS:
4402 used_in_set = &reload_reg_used_in_input_addr[opnum];
4403 break;
4405 case RELOAD_FOR_INPADDR_ADDRESS:
4406 check_opnum = 1;
4407 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4408 break;
4410 case RELOAD_FOR_OUTPUT_ADDRESS:
4411 used_in_set = &reload_reg_used_in_output_addr[opnum];
4412 break;
4414 case RELOAD_FOR_OUTADDR_ADDRESS:
4415 check_opnum = 1;
4416 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4417 break;
4419 case RELOAD_FOR_OPERAND_ADDRESS:
4420 used_in_set = &reload_reg_used_in_op_addr;
4421 break;
4423 case RELOAD_FOR_OPADDR_ADDR:
4424 check_any = 1;
4425 used_in_set = &reload_reg_used_in_op_addr_reload;
4426 break;
4428 case RELOAD_FOR_OTHER_ADDRESS:
4429 used_in_set = &reload_reg_used_in_other_addr;
4430 check_any = 1;
4431 break;
4433 case RELOAD_FOR_INPUT:
4434 used_in_set = &reload_reg_used_in_input[opnum];
4435 break;
4437 case RELOAD_FOR_OUTPUT:
4438 used_in_set = &reload_reg_used_in_output[opnum];
4439 break;
4441 case RELOAD_FOR_INSN:
4442 used_in_set = &reload_reg_used_in_insn;
4443 break;
4444 default:
4445 gcc_unreachable ();
4447 /* We resolve conflicts with remaining reloads of the same type by
4448 excluding the intervals of reload registers by them from the
4449 interval of freed reload registers. Since we only keep track of
4450 one set of interval bounds, we might have to exclude somewhat
4451 more than what would be necessary if we used a HARD_REG_SET here.
4452 But this should only happen very infrequently, so there should
4453 be no reason to worry about it. */
4455 start_regno = regno;
4456 end_regno = regno + nregs;
4457 if (check_opnum || check_any)
4459 for (i = n_reloads - 1; i >= 0; i--)
4461 if (rld[i].when_needed == type
4462 && (check_any || rld[i].opnum == opnum)
4463 && rld[i].reg_rtx)
4465 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4466 unsigned int conflict_end
4467 = (conflict_start
4468 + hard_regno_nregs[conflict_start][rld[i].mode]);
4470 /* If there is an overlap with the first to-be-freed register,
4471 adjust the interval start. */
4472 if (conflict_start <= start_regno && conflict_end > start_regno)
4473 start_regno = conflict_end;
4474 /* Otherwise, if there is a conflict with one of the other
4475 to-be-freed registers, adjust the interval end. */
4476 if (conflict_start > start_regno && conflict_start < end_regno)
4477 end_regno = conflict_start;
4482 for (r = start_regno; r < end_regno; r++)
4483 CLEAR_HARD_REG_BIT (*used_in_set, r);
4486 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4487 specified by OPNUM and TYPE. */
4489 static int
4490 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4492 int i;
4494 /* In use for a RELOAD_OTHER means it's not available for anything. */
4495 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4496 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4497 return 0;
4499 switch (type)
4501 case RELOAD_OTHER:
4502 /* In use for anything means we can't use it for RELOAD_OTHER. */
4503 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4504 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4505 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4506 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4507 return 0;
4509 for (i = 0; i < reload_n_operands; i++)
4510 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4511 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4512 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4513 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4514 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4515 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4516 return 0;
4518 return 1;
4520 case RELOAD_FOR_INPUT:
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4522 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4523 return 0;
4525 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4526 return 0;
4528 /* If it is used for some other input, can't use it. */
4529 for (i = 0; i < reload_n_operands; i++)
4530 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4531 return 0;
4533 /* If it is used in a later operand's address, can't use it. */
4534 for (i = opnum + 1; i < reload_n_operands; i++)
4535 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4536 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4537 return 0;
4539 return 1;
4541 case RELOAD_FOR_INPUT_ADDRESS:
4542 /* Can't use a register if it is used for an input address for this
4543 operand or used as an input in an earlier one. */
4544 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4545 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4546 return 0;
4548 for (i = 0; i < opnum; i++)
4549 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4550 return 0;
4552 return 1;
4554 case RELOAD_FOR_INPADDR_ADDRESS:
4555 /* Can't use a register if it is used for an input address
4556 for this operand or used as an input in an earlier
4557 one. */
4558 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4559 return 0;
4561 for (i = 0; i < opnum; i++)
4562 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4563 return 0;
4565 return 1;
4567 case RELOAD_FOR_OUTPUT_ADDRESS:
4568 /* Can't use a register if it is used for an output address for this
4569 operand or used as an output in this or a later operand. Note
4570 that multiple output operands are emitted in reverse order, so
4571 the conflicting ones are those with lower indices. */
4572 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4573 return 0;
4575 for (i = 0; i <= opnum; i++)
4576 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4577 return 0;
4579 return 1;
4581 case RELOAD_FOR_OUTADDR_ADDRESS:
4582 /* Can't use a register if it is used for an output address
4583 for this operand or used as an output in this or a
4584 later operand. Note that multiple output operands are
4585 emitted in reverse order, so the conflicting ones are
4586 those with lower indices. */
4587 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4588 return 0;
4590 for (i = 0; i <= opnum; i++)
4591 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4592 return 0;
4594 return 1;
4596 case RELOAD_FOR_OPERAND_ADDRESS:
4597 for (i = 0; i < reload_n_operands; i++)
4598 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4599 return 0;
4601 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4602 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4604 case RELOAD_FOR_OPADDR_ADDR:
4605 for (i = 0; i < reload_n_operands; i++)
4606 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4607 return 0;
4609 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4611 case RELOAD_FOR_OUTPUT:
4612 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4613 outputs, or an operand address for this or an earlier output.
4614 Note that multiple output operands are emitted in reverse order,
4615 so the conflicting ones are those with higher indices. */
4616 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4617 return 0;
4619 for (i = 0; i < reload_n_operands; i++)
4620 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4621 return 0;
4623 for (i = opnum; i < reload_n_operands; i++)
4624 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4625 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4626 return 0;
4628 return 1;
4630 case RELOAD_FOR_INSN:
4631 for (i = 0; i < reload_n_operands; i++)
4632 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4633 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4634 return 0;
4636 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4637 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4639 case RELOAD_FOR_OTHER_ADDRESS:
4640 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4642 default:
4643 gcc_unreachable ();
4647 /* Return 1 if the value in reload reg REGNO, as used by a reload
4648 needed for the part of the insn specified by OPNUM and TYPE,
4649 is still available in REGNO at the end of the insn.
4651 We can assume that the reload reg was already tested for availability
4652 at the time it is needed, and we should not check this again,
4653 in case the reg has already been marked in use. */
4655 static int
4656 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4658 int i;
4660 switch (type)
4662 case RELOAD_OTHER:
4663 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4664 its value must reach the end. */
4665 return 1;
4667 /* If this use is for part of the insn,
4668 its value reaches if no subsequent part uses the same register.
4669 Just like the above function, don't try to do this with lots
4670 of fallthroughs. */
4672 case RELOAD_FOR_OTHER_ADDRESS:
4673 /* Here we check for everything else, since these don't conflict
4674 with anything else and everything comes later. */
4676 for (i = 0; i < reload_n_operands; i++)
4677 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4678 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4679 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4680 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4681 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4682 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4683 return 0;
4685 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4686 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4687 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4688 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4690 case RELOAD_FOR_INPUT_ADDRESS:
4691 case RELOAD_FOR_INPADDR_ADDRESS:
4692 /* Similar, except that we check only for this and subsequent inputs
4693 and the address of only subsequent inputs and we do not need
4694 to check for RELOAD_OTHER objects since they are known not to
4695 conflict. */
4697 for (i = opnum; i < reload_n_operands; i++)
4698 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4699 return 0;
4701 for (i = opnum + 1; i < reload_n_operands; i++)
4702 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4703 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4704 return 0;
4706 for (i = 0; i < reload_n_operands; i++)
4707 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4708 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4709 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4710 return 0;
4712 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4713 return 0;
4715 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4716 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4717 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4719 case RELOAD_FOR_INPUT:
4720 /* Similar to input address, except we start at the next operand for
4721 both input and input address and we do not check for
4722 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4723 would conflict. */
4725 for (i = opnum + 1; i < reload_n_operands; i++)
4726 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4727 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4728 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4729 return 0;
4731 /* ... fall through ... */
4733 case RELOAD_FOR_OPERAND_ADDRESS:
4734 /* Check outputs and their addresses. */
4736 for (i = 0; i < reload_n_operands; i++)
4737 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4738 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4739 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4740 return 0;
4742 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4744 case RELOAD_FOR_OPADDR_ADDR:
4745 for (i = 0; i < reload_n_operands; i++)
4746 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4747 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4748 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4749 return 0;
4751 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4752 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4753 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4755 case RELOAD_FOR_INSN:
4756 /* These conflict with other outputs with RELOAD_OTHER. So
4757 we need only check for output addresses. */
4759 opnum = reload_n_operands;
4761 /* ... fall through ... */
4763 case RELOAD_FOR_OUTPUT:
4764 case RELOAD_FOR_OUTPUT_ADDRESS:
4765 case RELOAD_FOR_OUTADDR_ADDRESS:
4766 /* We already know these can't conflict with a later output. So the
4767 only thing to check are later output addresses.
4768 Note that multiple output operands are emitted in reverse order,
4769 so the conflicting ones are those with lower indices. */
4770 for (i = 0; i < opnum; i++)
4771 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4772 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4773 return 0;
4775 return 1;
4777 default:
4778 gcc_unreachable ();
4783 /* Returns whether R1 and R2 are uniquely chained: the value of one
4784 is used by the other, and that value is not used by any other
4785 reload for this insn. This is used to partially undo the decision
4786 made in find_reloads when in the case of multiple
4787 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
4788 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
4789 reloads. This code tries to avoid the conflict created by that
4790 change. It might be cleaner to explicitly keep track of which
4791 RELOAD_FOR_OPADDR_ADDR reload is associated with which
4792 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
4793 this after the fact. */
4794 static bool
4795 reloads_unique_chain_p (int r1, int r2)
4797 int i;
4799 /* We only check input reloads. */
4800 if (! rld[r1].in || ! rld[r2].in)
4801 return false;
4803 /* Avoid anything with output reloads. */
4804 if (rld[r1].out || rld[r2].out)
4805 return false;
4807 /* "chained" means one reload is a component of the other reload,
4808 not the same as the other reload. */
4809 if (rld[r1].opnum != rld[r2].opnum
4810 || rtx_equal_p (rld[r1].in, rld[r2].in)
4811 || rld[r1].optional || rld[r2].optional
4812 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
4813 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
4814 return false;
4816 for (i = 0; i < n_reloads; i ++)
4817 /* Look for input reloads that aren't our two */
4818 if (i != r1 && i != r2 && rld[i].in)
4820 /* If our reload is mentioned at all, it isn't a simple chain. */
4821 if (reg_mentioned_p (rld[r1].in, rld[i].in))
4822 return false;
4824 return true;
4827 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4828 Return 0 otherwise.
4830 This function uses the same algorithm as reload_reg_free_p above. */
4832 static int
4833 reloads_conflict (int r1, int r2)
4835 enum reload_type r1_type = rld[r1].when_needed;
4836 enum reload_type r2_type = rld[r2].when_needed;
4837 int r1_opnum = rld[r1].opnum;
4838 int r2_opnum = rld[r2].opnum;
4840 /* RELOAD_OTHER conflicts with everything. */
4841 if (r2_type == RELOAD_OTHER)
4842 return 1;
4844 /* Otherwise, check conflicts differently for each type. */
4846 switch (r1_type)
4848 case RELOAD_FOR_INPUT:
4849 return (r2_type == RELOAD_FOR_INSN
4850 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4851 || r2_type == RELOAD_FOR_OPADDR_ADDR
4852 || r2_type == RELOAD_FOR_INPUT
4853 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4854 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4855 && r2_opnum > r1_opnum));
4857 case RELOAD_FOR_INPUT_ADDRESS:
4858 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4859 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4861 case RELOAD_FOR_INPADDR_ADDRESS:
4862 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4863 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4865 case RELOAD_FOR_OUTPUT_ADDRESS:
4866 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4867 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4869 case RELOAD_FOR_OUTADDR_ADDRESS:
4870 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4871 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4873 case RELOAD_FOR_OPERAND_ADDRESS:
4874 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4875 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
4876 && !reloads_unique_chain_p (r1, r2)));
4878 case RELOAD_FOR_OPADDR_ADDR:
4879 return (r2_type == RELOAD_FOR_INPUT
4880 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4882 case RELOAD_FOR_OUTPUT:
4883 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4884 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4885 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4886 && r2_opnum >= r1_opnum));
4888 case RELOAD_FOR_INSN:
4889 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4890 || r2_type == RELOAD_FOR_INSN
4891 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4893 case RELOAD_FOR_OTHER_ADDRESS:
4894 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4896 case RELOAD_OTHER:
4897 return 1;
4899 default:
4900 gcc_unreachable ();
4904 /* Indexed by reload number, 1 if incoming value
4905 inherited from previous insns. */
4906 static char reload_inherited[MAX_RELOADS];
4908 /* For an inherited reload, this is the insn the reload was inherited from,
4909 if we know it. Otherwise, this is 0. */
4910 static rtx reload_inheritance_insn[MAX_RELOADS];
4912 /* If nonzero, this is a place to get the value of the reload,
4913 rather than using reload_in. */
4914 static rtx reload_override_in[MAX_RELOADS];
4916 /* For each reload, the hard register number of the register used,
4917 or -1 if we did not need a register for this reload. */
4918 static int reload_spill_index[MAX_RELOADS];
4920 /* Subroutine of free_for_value_p, used to check a single register.
4921 START_REGNO is the starting regno of the full reload register
4922 (possibly comprising multiple hard registers) that we are considering. */
4924 static int
4925 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4926 enum reload_type type, rtx value, rtx out,
4927 int reloadnum, int ignore_address_reloads)
4929 int time1;
4930 /* Set if we see an input reload that must not share its reload register
4931 with any new earlyclobber, but might otherwise share the reload
4932 register with an output or input-output reload. */
4933 int check_earlyclobber = 0;
4934 int i;
4935 int copy = 0;
4937 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4938 return 0;
4940 if (out == const0_rtx)
4942 copy = 1;
4943 out = NULL_RTX;
4946 /* We use some pseudo 'time' value to check if the lifetimes of the
4947 new register use would overlap with the one of a previous reload
4948 that is not read-only or uses a different value.
4949 The 'time' used doesn't have to be linear in any shape or form, just
4950 monotonic.
4951 Some reload types use different 'buckets' for each operand.
4952 So there are MAX_RECOG_OPERANDS different time values for each
4953 such reload type.
4954 We compute TIME1 as the time when the register for the prospective
4955 new reload ceases to be live, and TIME2 for each existing
4956 reload as the time when that the reload register of that reload
4957 becomes live.
4958 Where there is little to be gained by exact lifetime calculations,
4959 we just make conservative assumptions, i.e. a longer lifetime;
4960 this is done in the 'default:' cases. */
4961 switch (type)
4963 case RELOAD_FOR_OTHER_ADDRESS:
4964 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4965 time1 = copy ? 0 : 1;
4966 break;
4967 case RELOAD_OTHER:
4968 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4969 break;
4970 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4971 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4972 respectively, to the time values for these, we get distinct time
4973 values. To get distinct time values for each operand, we have to
4974 multiply opnum by at least three. We round that up to four because
4975 multiply by four is often cheaper. */
4976 case RELOAD_FOR_INPADDR_ADDRESS:
4977 time1 = opnum * 4 + 2;
4978 break;
4979 case RELOAD_FOR_INPUT_ADDRESS:
4980 time1 = opnum * 4 + 3;
4981 break;
4982 case RELOAD_FOR_INPUT:
4983 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4984 executes (inclusive). */
4985 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4986 break;
4987 case RELOAD_FOR_OPADDR_ADDR:
4988 /* opnum * 4 + 4
4989 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4990 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4991 break;
4992 case RELOAD_FOR_OPERAND_ADDRESS:
4993 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4994 is executed. */
4995 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4996 break;
4997 case RELOAD_FOR_OUTADDR_ADDRESS:
4998 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4999 break;
5000 case RELOAD_FOR_OUTPUT_ADDRESS:
5001 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5002 break;
5003 default:
5004 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5007 for (i = 0; i < n_reloads; i++)
5009 rtx reg = rld[i].reg_rtx;
5010 if (reg && REG_P (reg)
5011 && ((unsigned) regno - true_regnum (reg)
5012 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5013 && i != reloadnum)
5015 rtx other_input = rld[i].in;
5017 /* If the other reload loads the same input value, that
5018 will not cause a conflict only if it's loading it into
5019 the same register. */
5020 if (true_regnum (reg) != start_regno)
5021 other_input = NULL_RTX;
5022 if (! other_input || ! rtx_equal_p (other_input, value)
5023 || rld[i].out || out)
5025 int time2;
5026 switch (rld[i].when_needed)
5028 case RELOAD_FOR_OTHER_ADDRESS:
5029 time2 = 0;
5030 break;
5031 case RELOAD_FOR_INPADDR_ADDRESS:
5032 /* find_reloads makes sure that a
5033 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5034 by at most one - the first -
5035 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5036 address reload is inherited, the address address reload
5037 goes away, so we can ignore this conflict. */
5038 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5039 && ignore_address_reloads
5040 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5041 Then the address address is still needed to store
5042 back the new address. */
5043 && ! rld[reloadnum].out)
5044 continue;
5045 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5046 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5047 reloads go away. */
5048 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5049 && ignore_address_reloads
5050 /* Unless we are reloading an auto_inc expression. */
5051 && ! rld[reloadnum].out)
5052 continue;
5053 time2 = rld[i].opnum * 4 + 2;
5054 break;
5055 case RELOAD_FOR_INPUT_ADDRESS:
5056 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5057 && ignore_address_reloads
5058 && ! rld[reloadnum].out)
5059 continue;
5060 time2 = rld[i].opnum * 4 + 3;
5061 break;
5062 case RELOAD_FOR_INPUT:
5063 time2 = rld[i].opnum * 4 + 4;
5064 check_earlyclobber = 1;
5065 break;
5066 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5067 == MAX_RECOG_OPERAND * 4 */
5068 case RELOAD_FOR_OPADDR_ADDR:
5069 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5070 && ignore_address_reloads
5071 && ! rld[reloadnum].out)
5072 continue;
5073 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5074 break;
5075 case RELOAD_FOR_OPERAND_ADDRESS:
5076 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5077 check_earlyclobber = 1;
5078 break;
5079 case RELOAD_FOR_INSN:
5080 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5081 break;
5082 case RELOAD_FOR_OUTPUT:
5083 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5084 instruction is executed. */
5085 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5086 break;
5087 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5088 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5089 value. */
5090 case RELOAD_FOR_OUTADDR_ADDRESS:
5091 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5092 && ignore_address_reloads
5093 && ! rld[reloadnum].out)
5094 continue;
5095 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5096 break;
5097 case RELOAD_FOR_OUTPUT_ADDRESS:
5098 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5099 break;
5100 case RELOAD_OTHER:
5101 /* If there is no conflict in the input part, handle this
5102 like an output reload. */
5103 if (! rld[i].in || rtx_equal_p (other_input, value))
5105 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5106 /* Earlyclobbered outputs must conflict with inputs. */
5107 if (earlyclobber_operand_p (rld[i].out))
5108 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5110 break;
5112 time2 = 1;
5113 /* RELOAD_OTHER might be live beyond instruction execution,
5114 but this is not obvious when we set time2 = 1. So check
5115 here if there might be a problem with the new reload
5116 clobbering the register used by the RELOAD_OTHER. */
5117 if (out)
5118 return 0;
5119 break;
5120 default:
5121 return 0;
5123 if ((time1 >= time2
5124 && (! rld[i].in || rld[i].out
5125 || ! rtx_equal_p (other_input, value)))
5126 || (out && rld[reloadnum].out_reg
5127 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5128 return 0;
5133 /* Earlyclobbered outputs must conflict with inputs. */
5134 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5135 return 0;
5137 return 1;
5140 /* Return 1 if the value in reload reg REGNO, as used by a reload
5141 needed for the part of the insn specified by OPNUM and TYPE,
5142 may be used to load VALUE into it.
5144 MODE is the mode in which the register is used, this is needed to
5145 determine how many hard regs to test.
5147 Other read-only reloads with the same value do not conflict
5148 unless OUT is nonzero and these other reloads have to live while
5149 output reloads live.
5150 If OUT is CONST0_RTX, this is a special case: it means that the
5151 test should not be for using register REGNO as reload register, but
5152 for copying from register REGNO into the reload register.
5154 RELOADNUM is the number of the reload we want to load this value for;
5155 a reload does not conflict with itself.
5157 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5158 reloads that load an address for the very reload we are considering.
5160 The caller has to make sure that there is no conflict with the return
5161 register. */
5163 static int
5164 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5165 enum reload_type type, rtx value, rtx out, int reloadnum,
5166 int ignore_address_reloads)
5168 int nregs = hard_regno_nregs[regno][mode];
5169 while (nregs-- > 0)
5170 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5171 value, out, reloadnum,
5172 ignore_address_reloads))
5173 return 0;
5174 return 1;
5177 /* Return nonzero if the rtx X is invariant over the current function. */
5178 /* ??? Actually, the places where we use this expect exactly what is
5179 tested here, and not everything that is function invariant. In
5180 particular, the frame pointer and arg pointer are special cased;
5181 pic_offset_table_rtx is not, and we must not spill these things to
5182 memory. */
5185 function_invariant_p (rtx x)
5187 if (CONSTANT_P (x))
5188 return 1;
5189 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5190 return 1;
5191 if (GET_CODE (x) == PLUS
5192 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5193 && CONSTANT_P (XEXP (x, 1)))
5194 return 1;
5195 return 0;
5198 /* Determine whether the reload reg X overlaps any rtx'es used for
5199 overriding inheritance. Return nonzero if so. */
5201 static int
5202 conflicts_with_override (rtx x)
5204 int i;
5205 for (i = 0; i < n_reloads; i++)
5206 if (reload_override_in[i]
5207 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5208 return 1;
5209 return 0;
5212 /* Give an error message saying we failed to find a reload for INSN,
5213 and clear out reload R. */
5214 static void
5215 failed_reload (rtx insn, int r)
5217 if (asm_noperands (PATTERN (insn)) < 0)
5218 /* It's the compiler's fault. */
5219 fatal_insn ("could not find a spill register", insn);
5221 /* It's the user's fault; the operand's mode and constraint
5222 don't match. Disable this reload so we don't crash in final. */
5223 error_for_asm (insn,
5224 "%<asm%> operand constraint incompatible with operand size");
5225 rld[r].in = 0;
5226 rld[r].out = 0;
5227 rld[r].reg_rtx = 0;
5228 rld[r].optional = 1;
5229 rld[r].secondary_p = 1;
5232 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5233 for reload R. If it's valid, get an rtx for it. Return nonzero if
5234 successful. */
5235 static int
5236 set_reload_reg (int i, int r)
5238 int regno;
5239 rtx reg = spill_reg_rtx[i];
5241 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5242 spill_reg_rtx[i] = reg
5243 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5245 regno = true_regnum (reg);
5247 /* Detect when the reload reg can't hold the reload mode.
5248 This used to be one `if', but Sequent compiler can't handle that. */
5249 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5251 enum machine_mode test_mode = VOIDmode;
5252 if (rld[r].in)
5253 test_mode = GET_MODE (rld[r].in);
5254 /* If rld[r].in has VOIDmode, it means we will load it
5255 in whatever mode the reload reg has: to wit, rld[r].mode.
5256 We have already tested that for validity. */
5257 /* Aside from that, we need to test that the expressions
5258 to reload from or into have modes which are valid for this
5259 reload register. Otherwise the reload insns would be invalid. */
5260 if (! (rld[r].in != 0 && test_mode != VOIDmode
5261 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5262 if (! (rld[r].out != 0
5263 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5265 /* The reg is OK. */
5266 last_spill_reg = i;
5268 /* Mark as in use for this insn the reload regs we use
5269 for this. */
5270 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5271 rld[r].when_needed, rld[r].mode);
5273 rld[r].reg_rtx = reg;
5274 reload_spill_index[r] = spill_regs[i];
5275 return 1;
5278 return 0;
5281 /* Find a spill register to use as a reload register for reload R.
5282 LAST_RELOAD is nonzero if this is the last reload for the insn being
5283 processed.
5285 Set rld[R].reg_rtx to the register allocated.
5287 We return 1 if successful, or 0 if we couldn't find a spill reg and
5288 we didn't change anything. */
5290 static int
5291 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5292 int last_reload)
5294 int i, pass, count;
5296 /* If we put this reload ahead, thinking it is a group,
5297 then insist on finding a group. Otherwise we can grab a
5298 reg that some other reload needs.
5299 (That can happen when we have a 68000 DATA_OR_FP_REG
5300 which is a group of data regs or one fp reg.)
5301 We need not be so restrictive if there are no more reloads
5302 for this insn.
5304 ??? Really it would be nicer to have smarter handling
5305 for that kind of reg class, where a problem like this is normal.
5306 Perhaps those classes should be avoided for reloading
5307 by use of more alternatives. */
5309 int force_group = rld[r].nregs > 1 && ! last_reload;
5311 /* If we want a single register and haven't yet found one,
5312 take any reg in the right class and not in use.
5313 If we want a consecutive group, here is where we look for it.
5315 We use two passes so we can first look for reload regs to
5316 reuse, which are already in use for other reloads in this insn,
5317 and only then use additional registers.
5318 I think that maximizing reuse is needed to make sure we don't
5319 run out of reload regs. Suppose we have three reloads, and
5320 reloads A and B can share regs. These need two regs.
5321 Suppose A and B are given different regs.
5322 That leaves none for C. */
5323 for (pass = 0; pass < 2; pass++)
5325 /* I is the index in spill_regs.
5326 We advance it round-robin between insns to use all spill regs
5327 equally, so that inherited reloads have a chance
5328 of leapfrogging each other. */
5330 i = last_spill_reg;
5332 for (count = 0; count < n_spills; count++)
5334 int class = (int) rld[r].class;
5335 int regnum;
5337 i++;
5338 if (i >= n_spills)
5339 i -= n_spills;
5340 regnum = spill_regs[i];
5342 if ((reload_reg_free_p (regnum, rld[r].opnum,
5343 rld[r].when_needed)
5344 || (rld[r].in
5345 /* We check reload_reg_used to make sure we
5346 don't clobber the return register. */
5347 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5348 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5349 rld[r].when_needed, rld[r].in,
5350 rld[r].out, r, 1)))
5351 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5352 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5353 /* Look first for regs to share, then for unshared. But
5354 don't share regs used for inherited reloads; they are
5355 the ones we want to preserve. */
5356 && (pass
5357 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5358 regnum)
5359 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5360 regnum))))
5362 int nr = hard_regno_nregs[regnum][rld[r].mode];
5363 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5364 (on 68000) got us two FP regs. If NR is 1,
5365 we would reject both of them. */
5366 if (force_group)
5367 nr = rld[r].nregs;
5368 /* If we need only one reg, we have already won. */
5369 if (nr == 1)
5371 /* But reject a single reg if we demand a group. */
5372 if (force_group)
5373 continue;
5374 break;
5376 /* Otherwise check that as many consecutive regs as we need
5377 are available here. */
5378 while (nr > 1)
5380 int regno = regnum + nr - 1;
5381 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5382 && spill_reg_order[regno] >= 0
5383 && reload_reg_free_p (regno, rld[r].opnum,
5384 rld[r].when_needed)))
5385 break;
5386 nr--;
5388 if (nr == 1)
5389 break;
5393 /* If we found something on pass 1, omit pass 2. */
5394 if (count < n_spills)
5395 break;
5398 /* We should have found a spill register by now. */
5399 if (count >= n_spills)
5400 return 0;
5402 /* I is the index in SPILL_REG_RTX of the reload register we are to
5403 allocate. Get an rtx for it and find its register number. */
5405 return set_reload_reg (i, r);
5408 /* Initialize all the tables needed to allocate reload registers.
5409 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5410 is the array we use to restore the reg_rtx field for every reload. */
5412 static void
5413 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5415 int i;
5417 for (i = 0; i < n_reloads; i++)
5418 rld[i].reg_rtx = save_reload_reg_rtx[i];
5420 memset (reload_inherited, 0, MAX_RELOADS);
5421 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5422 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5424 CLEAR_HARD_REG_SET (reload_reg_used);
5425 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5426 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5427 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5428 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5429 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5431 CLEAR_HARD_REG_SET (reg_used_in_insn);
5433 HARD_REG_SET tmp;
5434 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5435 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5436 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5437 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5438 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5439 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5442 for (i = 0; i < reload_n_operands; i++)
5444 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5445 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5446 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5447 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5448 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5449 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5452 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5454 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5456 for (i = 0; i < n_reloads; i++)
5457 /* If we have already decided to use a certain register,
5458 don't use it in another way. */
5459 if (rld[i].reg_rtx)
5460 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5461 rld[i].when_needed, rld[i].mode);
5464 /* Assign hard reg targets for the pseudo-registers we must reload
5465 into hard regs for this insn.
5466 Also output the instructions to copy them in and out of the hard regs.
5468 For machines with register classes, we are responsible for
5469 finding a reload reg in the proper class. */
5471 static void
5472 choose_reload_regs (struct insn_chain *chain)
5474 rtx insn = chain->insn;
5475 int i, j;
5476 unsigned int max_group_size = 1;
5477 enum reg_class group_class = NO_REGS;
5478 int pass, win, inheritance;
5480 rtx save_reload_reg_rtx[MAX_RELOADS];
5482 /* In order to be certain of getting the registers we need,
5483 we must sort the reloads into order of increasing register class.
5484 Then our grabbing of reload registers will parallel the process
5485 that provided the reload registers.
5487 Also note whether any of the reloads wants a consecutive group of regs.
5488 If so, record the maximum size of the group desired and what
5489 register class contains all the groups needed by this insn. */
5491 for (j = 0; j < n_reloads; j++)
5493 reload_order[j] = j;
5494 reload_spill_index[j] = -1;
5496 if (rld[j].nregs > 1)
5498 max_group_size = MAX (rld[j].nregs, max_group_size);
5499 group_class
5500 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5503 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5506 if (n_reloads > 1)
5507 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5509 /* If -O, try first with inheritance, then turning it off.
5510 If not -O, don't do inheritance.
5511 Using inheritance when not optimizing leads to paradoxes
5512 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5513 because one side of the comparison might be inherited. */
5514 win = 0;
5515 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5517 choose_reload_regs_init (chain, save_reload_reg_rtx);
5519 /* Process the reloads in order of preference just found.
5520 Beyond this point, subregs can be found in reload_reg_rtx.
5522 This used to look for an existing reloaded home for all of the
5523 reloads, and only then perform any new reloads. But that could lose
5524 if the reloads were done out of reg-class order because a later
5525 reload with a looser constraint might have an old home in a register
5526 needed by an earlier reload with a tighter constraint.
5528 To solve this, we make two passes over the reloads, in the order
5529 described above. In the first pass we try to inherit a reload
5530 from a previous insn. If there is a later reload that needs a
5531 class that is a proper subset of the class being processed, we must
5532 also allocate a spill register during the first pass.
5534 Then make a second pass over the reloads to allocate any reloads
5535 that haven't been given registers yet. */
5537 for (j = 0; j < n_reloads; j++)
5539 int r = reload_order[j];
5540 rtx search_equiv = NULL_RTX;
5542 /* Ignore reloads that got marked inoperative. */
5543 if (rld[r].out == 0 && rld[r].in == 0
5544 && ! rld[r].secondary_p)
5545 continue;
5547 /* If find_reloads chose to use reload_in or reload_out as a reload
5548 register, we don't need to chose one. Otherwise, try even if it
5549 found one since we might save an insn if we find the value lying
5550 around.
5551 Try also when reload_in is a pseudo without a hard reg. */
5552 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5553 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5554 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5555 && !MEM_P (rld[r].in)
5556 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5557 continue;
5559 #if 0 /* No longer needed for correct operation.
5560 It might give better code, or might not; worth an experiment? */
5561 /* If this is an optional reload, we can't inherit from earlier insns
5562 until we are sure that any non-optional reloads have been allocated.
5563 The following code takes advantage of the fact that optional reloads
5564 are at the end of reload_order. */
5565 if (rld[r].optional != 0)
5566 for (i = 0; i < j; i++)
5567 if ((rld[reload_order[i]].out != 0
5568 || rld[reload_order[i]].in != 0
5569 || rld[reload_order[i]].secondary_p)
5570 && ! rld[reload_order[i]].optional
5571 && rld[reload_order[i]].reg_rtx == 0)
5572 allocate_reload_reg (chain, reload_order[i], 0);
5573 #endif
5575 /* First see if this pseudo is already available as reloaded
5576 for a previous insn. We cannot try to inherit for reloads
5577 that are smaller than the maximum number of registers needed
5578 for groups unless the register we would allocate cannot be used
5579 for the groups.
5581 We could check here to see if this is a secondary reload for
5582 an object that is already in a register of the desired class.
5583 This would avoid the need for the secondary reload register.
5584 But this is complex because we can't easily determine what
5585 objects might want to be loaded via this reload. So let a
5586 register be allocated here. In `emit_reload_insns' we suppress
5587 one of the loads in the case described above. */
5589 if (inheritance)
5591 int byte = 0;
5592 int regno = -1;
5593 enum machine_mode mode = VOIDmode;
5595 if (rld[r].in == 0)
5597 else if (REG_P (rld[r].in))
5599 regno = REGNO (rld[r].in);
5600 mode = GET_MODE (rld[r].in);
5602 else if (REG_P (rld[r].in_reg))
5604 regno = REGNO (rld[r].in_reg);
5605 mode = GET_MODE (rld[r].in_reg);
5607 else if (GET_CODE (rld[r].in_reg) == SUBREG
5608 && REG_P (SUBREG_REG (rld[r].in_reg)))
5610 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5611 if (regno < FIRST_PSEUDO_REGISTER)
5612 regno = subreg_regno (rld[r].in_reg);
5613 else
5614 byte = SUBREG_BYTE (rld[r].in_reg);
5615 mode = GET_MODE (rld[r].in_reg);
5617 #ifdef AUTO_INC_DEC
5618 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5619 && REG_P (XEXP (rld[r].in_reg, 0)))
5621 regno = REGNO (XEXP (rld[r].in_reg, 0));
5622 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5623 rld[r].out = rld[r].in;
5625 #endif
5626 #if 0
5627 /* This won't work, since REGNO can be a pseudo reg number.
5628 Also, it takes much more hair to keep track of all the things
5629 that can invalidate an inherited reload of part of a pseudoreg. */
5630 else if (GET_CODE (rld[r].in) == SUBREG
5631 && REG_P (SUBREG_REG (rld[r].in)))
5632 regno = subreg_regno (rld[r].in);
5633 #endif
5635 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5637 enum reg_class class = rld[r].class, last_class;
5638 rtx last_reg = reg_last_reload_reg[regno];
5639 enum machine_mode need_mode;
5641 i = REGNO (last_reg);
5642 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5643 last_class = REGNO_REG_CLASS (i);
5645 if (byte == 0)
5646 need_mode = mode;
5647 else
5648 need_mode
5649 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5650 + byte * BITS_PER_UNIT,
5651 GET_MODE_CLASS (mode));
5653 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5654 >= GET_MODE_SIZE (need_mode))
5655 #ifdef CANNOT_CHANGE_MODE_CLASS
5656 /* Verify that the register in "i" can be obtained
5657 from LAST_REG. */
5658 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5659 GET_MODE (last_reg),
5660 mode)
5661 #endif
5662 && reg_reloaded_contents[i] == regno
5663 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5664 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5665 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5666 /* Even if we can't use this register as a reload
5667 register, we might use it for reload_override_in,
5668 if copying it to the desired class is cheap
5669 enough. */
5670 || ((REGISTER_MOVE_COST (mode, last_class, class)
5671 < MEMORY_MOVE_COST (mode, class, 1))
5672 && (secondary_reload_class (1, class, mode,
5673 last_reg)
5674 == NO_REGS)
5675 #ifdef SECONDARY_MEMORY_NEEDED
5676 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5677 mode)
5678 #endif
5681 && (rld[r].nregs == max_group_size
5682 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5684 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5685 rld[r].when_needed, rld[r].in,
5686 const0_rtx, r, 1))
5688 /* If a group is needed, verify that all the subsequent
5689 registers still have their values intact. */
5690 int nr = hard_regno_nregs[i][rld[r].mode];
5691 int k;
5693 for (k = 1; k < nr; k++)
5694 if (reg_reloaded_contents[i + k] != regno
5695 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5696 break;
5698 if (k == nr)
5700 int i1;
5701 int bad_for_class;
5703 last_reg = (GET_MODE (last_reg) == mode
5704 ? last_reg : gen_rtx_REG (mode, i));
5706 bad_for_class = 0;
5707 for (k = 0; k < nr; k++)
5708 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5709 i+k);
5711 /* We found a register that contains the
5712 value we need. If this register is the
5713 same as an `earlyclobber' operand of the
5714 current insn, just mark it as a place to
5715 reload from since we can't use it as the
5716 reload register itself. */
5718 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5719 if (reg_overlap_mentioned_for_reload_p
5720 (reg_last_reload_reg[regno],
5721 reload_earlyclobbers[i1]))
5722 break;
5724 if (i1 != n_earlyclobbers
5725 || ! (free_for_value_p (i, rld[r].mode,
5726 rld[r].opnum,
5727 rld[r].when_needed, rld[r].in,
5728 rld[r].out, r, 1))
5729 /* Don't use it if we'd clobber a pseudo reg. */
5730 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5731 && rld[r].out
5732 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5733 /* Don't clobber the frame pointer. */
5734 || (i == HARD_FRAME_POINTER_REGNUM
5735 && frame_pointer_needed
5736 && rld[r].out)
5737 /* Don't really use the inherited spill reg
5738 if we need it wider than we've got it. */
5739 || (GET_MODE_SIZE (rld[r].mode)
5740 > GET_MODE_SIZE (mode))
5741 || bad_for_class
5743 /* If find_reloads chose reload_out as reload
5744 register, stay with it - that leaves the
5745 inherited register for subsequent reloads. */
5746 || (rld[r].out && rld[r].reg_rtx
5747 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5749 if (! rld[r].optional)
5751 reload_override_in[r] = last_reg;
5752 reload_inheritance_insn[r]
5753 = reg_reloaded_insn[i];
5756 else
5758 int k;
5759 /* We can use this as a reload reg. */
5760 /* Mark the register as in use for this part of
5761 the insn. */
5762 mark_reload_reg_in_use (i,
5763 rld[r].opnum,
5764 rld[r].when_needed,
5765 rld[r].mode);
5766 rld[r].reg_rtx = last_reg;
5767 reload_inherited[r] = 1;
5768 reload_inheritance_insn[r]
5769 = reg_reloaded_insn[i];
5770 reload_spill_index[r] = i;
5771 for (k = 0; k < nr; k++)
5772 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5773 i + k);
5780 /* Here's another way to see if the value is already lying around. */
5781 if (inheritance
5782 && rld[r].in != 0
5783 && ! reload_inherited[r]
5784 && rld[r].out == 0
5785 && (CONSTANT_P (rld[r].in)
5786 || GET_CODE (rld[r].in) == PLUS
5787 || REG_P (rld[r].in)
5788 || MEM_P (rld[r].in))
5789 && (rld[r].nregs == max_group_size
5790 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5791 search_equiv = rld[r].in;
5792 /* If this is an output reload from a simple move insn, look
5793 if an equivalence for the input is available. */
5794 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5796 rtx set = single_set (insn);
5798 if (set
5799 && rtx_equal_p (rld[r].out, SET_DEST (set))
5800 && CONSTANT_P (SET_SRC (set)))
5801 search_equiv = SET_SRC (set);
5804 if (search_equiv)
5806 rtx equiv
5807 = find_equiv_reg (search_equiv, insn, rld[r].class,
5808 -1, NULL, 0, rld[r].mode);
5809 int regno = 0;
5811 if (equiv != 0)
5813 if (REG_P (equiv))
5814 regno = REGNO (equiv);
5815 else
5817 /* This must be a SUBREG of a hard register.
5818 Make a new REG since this might be used in an
5819 address and not all machines support SUBREGs
5820 there. */
5821 gcc_assert (GET_CODE (equiv) == SUBREG);
5822 regno = subreg_regno (equiv);
5823 equiv = gen_rtx_REG (rld[r].mode, regno);
5824 /* If we choose EQUIV as the reload register, but the
5825 loop below decides to cancel the inheritance, we'll
5826 end up reloading EQUIV in rld[r].mode, not the mode
5827 it had originally. That isn't safe when EQUIV isn't
5828 available as a spill register since its value might
5829 still be live at this point. */
5830 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5831 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5832 equiv = 0;
5836 /* If we found a spill reg, reject it unless it is free
5837 and of the desired class. */
5838 if (equiv != 0)
5840 int regs_used = 0;
5841 int bad_for_class = 0;
5842 int max_regno = regno + rld[r].nregs;
5844 for (i = regno; i < max_regno; i++)
5846 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5848 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5852 if ((regs_used
5853 && ! free_for_value_p (regno, rld[r].mode,
5854 rld[r].opnum, rld[r].when_needed,
5855 rld[r].in, rld[r].out, r, 1))
5856 || bad_for_class)
5857 equiv = 0;
5860 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5861 equiv = 0;
5863 /* We found a register that contains the value we need.
5864 If this register is the same as an `earlyclobber' operand
5865 of the current insn, just mark it as a place to reload from
5866 since we can't use it as the reload register itself. */
5868 if (equiv != 0)
5869 for (i = 0; i < n_earlyclobbers; i++)
5870 if (reg_overlap_mentioned_for_reload_p (equiv,
5871 reload_earlyclobbers[i]))
5873 if (! rld[r].optional)
5874 reload_override_in[r] = equiv;
5875 equiv = 0;
5876 break;
5879 /* If the equiv register we have found is explicitly clobbered
5880 in the current insn, it depends on the reload type if we
5881 can use it, use it for reload_override_in, or not at all.
5882 In particular, we then can't use EQUIV for a
5883 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5885 if (equiv != 0)
5887 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5888 switch (rld[r].when_needed)
5890 case RELOAD_FOR_OTHER_ADDRESS:
5891 case RELOAD_FOR_INPADDR_ADDRESS:
5892 case RELOAD_FOR_INPUT_ADDRESS:
5893 case RELOAD_FOR_OPADDR_ADDR:
5894 break;
5895 case RELOAD_OTHER:
5896 case RELOAD_FOR_INPUT:
5897 case RELOAD_FOR_OPERAND_ADDRESS:
5898 if (! rld[r].optional)
5899 reload_override_in[r] = equiv;
5900 /* Fall through. */
5901 default:
5902 equiv = 0;
5903 break;
5905 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5906 switch (rld[r].when_needed)
5908 case RELOAD_FOR_OTHER_ADDRESS:
5909 case RELOAD_FOR_INPADDR_ADDRESS:
5910 case RELOAD_FOR_INPUT_ADDRESS:
5911 case RELOAD_FOR_OPADDR_ADDR:
5912 case RELOAD_FOR_OPERAND_ADDRESS:
5913 case RELOAD_FOR_INPUT:
5914 break;
5915 case RELOAD_OTHER:
5916 if (! rld[r].optional)
5917 reload_override_in[r] = equiv;
5918 /* Fall through. */
5919 default:
5920 equiv = 0;
5921 break;
5925 /* If we found an equivalent reg, say no code need be generated
5926 to load it, and use it as our reload reg. */
5927 if (equiv != 0
5928 && (regno != HARD_FRAME_POINTER_REGNUM
5929 || !frame_pointer_needed))
5931 int nr = hard_regno_nregs[regno][rld[r].mode];
5932 int k;
5933 rld[r].reg_rtx = equiv;
5934 reload_inherited[r] = 1;
5936 /* If reg_reloaded_valid is not set for this register,
5937 there might be a stale spill_reg_store lying around.
5938 We must clear it, since otherwise emit_reload_insns
5939 might delete the store. */
5940 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5941 spill_reg_store[regno] = NULL_RTX;
5942 /* If any of the hard registers in EQUIV are spill
5943 registers, mark them as in use for this insn. */
5944 for (k = 0; k < nr; k++)
5946 i = spill_reg_order[regno + k];
5947 if (i >= 0)
5949 mark_reload_reg_in_use (regno, rld[r].opnum,
5950 rld[r].when_needed,
5951 rld[r].mode);
5952 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5953 regno + k);
5959 /* If we found a register to use already, or if this is an optional
5960 reload, we are done. */
5961 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5962 continue;
5964 #if 0
5965 /* No longer needed for correct operation. Might or might
5966 not give better code on the average. Want to experiment? */
5968 /* See if there is a later reload that has a class different from our
5969 class that intersects our class or that requires less register
5970 than our reload. If so, we must allocate a register to this
5971 reload now, since that reload might inherit a previous reload
5972 and take the only available register in our class. Don't do this
5973 for optional reloads since they will force all previous reloads
5974 to be allocated. Also don't do this for reloads that have been
5975 turned off. */
5977 for (i = j + 1; i < n_reloads; i++)
5979 int s = reload_order[i];
5981 if ((rld[s].in == 0 && rld[s].out == 0
5982 && ! rld[s].secondary_p)
5983 || rld[s].optional)
5984 continue;
5986 if ((rld[s].class != rld[r].class
5987 && reg_classes_intersect_p (rld[r].class,
5988 rld[s].class))
5989 || rld[s].nregs < rld[r].nregs)
5990 break;
5993 if (i == n_reloads)
5994 continue;
5996 allocate_reload_reg (chain, r, j == n_reloads - 1);
5997 #endif
6000 /* Now allocate reload registers for anything non-optional that
6001 didn't get one yet. */
6002 for (j = 0; j < n_reloads; j++)
6004 int r = reload_order[j];
6006 /* Ignore reloads that got marked inoperative. */
6007 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6008 continue;
6010 /* Skip reloads that already have a register allocated or are
6011 optional. */
6012 if (rld[r].reg_rtx != 0 || rld[r].optional)
6013 continue;
6015 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6016 break;
6019 /* If that loop got all the way, we have won. */
6020 if (j == n_reloads)
6022 win = 1;
6023 break;
6026 /* Loop around and try without any inheritance. */
6029 if (! win)
6031 /* First undo everything done by the failed attempt
6032 to allocate with inheritance. */
6033 choose_reload_regs_init (chain, save_reload_reg_rtx);
6035 /* Some sanity tests to verify that the reloads found in the first
6036 pass are identical to the ones we have now. */
6037 gcc_assert (chain->n_reloads == n_reloads);
6039 for (i = 0; i < n_reloads; i++)
6041 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6042 continue;
6043 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6044 for (j = 0; j < n_spills; j++)
6045 if (spill_regs[j] == chain->rld[i].regno)
6046 if (! set_reload_reg (j, i))
6047 failed_reload (chain->insn, i);
6051 /* If we thought we could inherit a reload, because it seemed that
6052 nothing else wanted the same reload register earlier in the insn,
6053 verify that assumption, now that all reloads have been assigned.
6054 Likewise for reloads where reload_override_in has been set. */
6056 /* If doing expensive optimizations, do one preliminary pass that doesn't
6057 cancel any inheritance, but removes reloads that have been needed only
6058 for reloads that we know can be inherited. */
6059 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6061 for (j = 0; j < n_reloads; j++)
6063 int r = reload_order[j];
6064 rtx check_reg;
6065 if (reload_inherited[r] && rld[r].reg_rtx)
6066 check_reg = rld[r].reg_rtx;
6067 else if (reload_override_in[r]
6068 && (REG_P (reload_override_in[r])
6069 || GET_CODE (reload_override_in[r]) == SUBREG))
6070 check_reg = reload_override_in[r];
6071 else
6072 continue;
6073 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6074 rld[r].opnum, rld[r].when_needed, rld[r].in,
6075 (reload_inherited[r]
6076 ? rld[r].out : const0_rtx),
6077 r, 1))
6079 if (pass)
6080 continue;
6081 reload_inherited[r] = 0;
6082 reload_override_in[r] = 0;
6084 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6085 reload_override_in, then we do not need its related
6086 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6087 likewise for other reload types.
6088 We handle this by removing a reload when its only replacement
6089 is mentioned in reload_in of the reload we are going to inherit.
6090 A special case are auto_inc expressions; even if the input is
6091 inherited, we still need the address for the output. We can
6092 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6093 If we succeeded removing some reload and we are doing a preliminary
6094 pass just to remove such reloads, make another pass, since the
6095 removal of one reload might allow us to inherit another one. */
6096 else if (rld[r].in
6097 && rld[r].out != rld[r].in
6098 && remove_address_replacements (rld[r].in) && pass)
6099 pass = 2;
6103 /* Now that reload_override_in is known valid,
6104 actually override reload_in. */
6105 for (j = 0; j < n_reloads; j++)
6106 if (reload_override_in[j])
6107 rld[j].in = reload_override_in[j];
6109 /* If this reload won't be done because it has been canceled or is
6110 optional and not inherited, clear reload_reg_rtx so other
6111 routines (such as subst_reloads) don't get confused. */
6112 for (j = 0; j < n_reloads; j++)
6113 if (rld[j].reg_rtx != 0
6114 && ((rld[j].optional && ! reload_inherited[j])
6115 || (rld[j].in == 0 && rld[j].out == 0
6116 && ! rld[j].secondary_p)))
6118 int regno = true_regnum (rld[j].reg_rtx);
6120 if (spill_reg_order[regno] >= 0)
6121 clear_reload_reg_in_use (regno, rld[j].opnum,
6122 rld[j].when_needed, rld[j].mode);
6123 rld[j].reg_rtx = 0;
6124 reload_spill_index[j] = -1;
6127 /* Record which pseudos and which spill regs have output reloads. */
6128 for (j = 0; j < n_reloads; j++)
6130 int r = reload_order[j];
6132 i = reload_spill_index[r];
6134 /* I is nonneg if this reload uses a register.
6135 If rld[r].reg_rtx is 0, this is an optional reload
6136 that we opted to ignore. */
6137 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6138 && rld[r].reg_rtx != 0)
6140 int nregno = REGNO (rld[r].out_reg);
6141 int nr = 1;
6143 if (nregno < FIRST_PSEUDO_REGISTER)
6144 nr = hard_regno_nregs[nregno][rld[r].mode];
6146 while (--nr >= 0)
6147 SET_REGNO_REG_SET (&reg_has_output_reload,
6148 nregno + nr);
6150 if (i >= 0)
6152 nr = hard_regno_nregs[i][rld[r].mode];
6153 while (--nr >= 0)
6154 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6157 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6158 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6159 || rld[r].when_needed == RELOAD_FOR_INSN);
6164 /* Deallocate the reload register for reload R. This is called from
6165 remove_address_replacements. */
6167 void
6168 deallocate_reload_reg (int r)
6170 int regno;
6172 if (! rld[r].reg_rtx)
6173 return;
6174 regno = true_regnum (rld[r].reg_rtx);
6175 rld[r].reg_rtx = 0;
6176 if (spill_reg_order[regno] >= 0)
6177 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6178 rld[r].mode);
6179 reload_spill_index[r] = -1;
6182 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6183 reloads of the same item for fear that we might not have enough reload
6184 registers. However, normally they will get the same reload register
6185 and hence actually need not be loaded twice.
6187 Here we check for the most common case of this phenomenon: when we have
6188 a number of reloads for the same object, each of which were allocated
6189 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6190 reload, and is not modified in the insn itself. If we find such,
6191 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6192 This will not increase the number of spill registers needed and will
6193 prevent redundant code. */
6195 static void
6196 merge_assigned_reloads (rtx insn)
6198 int i, j;
6200 /* Scan all the reloads looking for ones that only load values and
6201 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6202 assigned and not modified by INSN. */
6204 for (i = 0; i < n_reloads; i++)
6206 int conflicting_input = 0;
6207 int max_input_address_opnum = -1;
6208 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6210 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6211 || rld[i].out != 0 || rld[i].reg_rtx == 0
6212 || reg_set_p (rld[i].reg_rtx, insn))
6213 continue;
6215 /* Look at all other reloads. Ensure that the only use of this
6216 reload_reg_rtx is in a reload that just loads the same value
6217 as we do. Note that any secondary reloads must be of the identical
6218 class since the values, modes, and result registers are the
6219 same, so we need not do anything with any secondary reloads. */
6221 for (j = 0; j < n_reloads; j++)
6223 if (i == j || rld[j].reg_rtx == 0
6224 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6225 rld[i].reg_rtx))
6226 continue;
6228 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6229 && rld[j].opnum > max_input_address_opnum)
6230 max_input_address_opnum = rld[j].opnum;
6232 /* If the reload regs aren't exactly the same (e.g, different modes)
6233 or if the values are different, we can't merge this reload.
6234 But if it is an input reload, we might still merge
6235 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6237 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6238 || rld[j].out != 0 || rld[j].in == 0
6239 || ! rtx_equal_p (rld[i].in, rld[j].in))
6241 if (rld[j].when_needed != RELOAD_FOR_INPUT
6242 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6243 || rld[i].opnum > rld[j].opnum)
6244 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6245 break;
6246 conflicting_input = 1;
6247 if (min_conflicting_input_opnum > rld[j].opnum)
6248 min_conflicting_input_opnum = rld[j].opnum;
6252 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6253 we, in fact, found any matching reloads. */
6255 if (j == n_reloads
6256 && max_input_address_opnum <= min_conflicting_input_opnum)
6258 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6260 for (j = 0; j < n_reloads; j++)
6261 if (i != j && rld[j].reg_rtx != 0
6262 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6263 && (! conflicting_input
6264 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6265 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6267 rld[i].when_needed = RELOAD_OTHER;
6268 rld[j].in = 0;
6269 reload_spill_index[j] = -1;
6270 transfer_replacements (i, j);
6273 /* If this is now RELOAD_OTHER, look for any reloads that load
6274 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6275 if they were for inputs, RELOAD_OTHER for outputs. Note that
6276 this test is equivalent to looking for reloads for this operand
6277 number. */
6278 /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
6279 share registers with a RELOAD_FOR_INPUT, so we can not change it
6280 to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
6281 do not modify RELOAD_FOR_OUTPUT. */
6283 if (rld[i].when_needed == RELOAD_OTHER)
6284 for (j = 0; j < n_reloads; j++)
6285 if (rld[j].in != 0
6286 && rld[j].when_needed != RELOAD_OTHER
6287 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6288 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6289 && (! conflicting_input
6290 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6291 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6292 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6293 rld[i].in))
6295 int k;
6297 rld[j].when_needed
6298 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6299 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6300 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6302 /* Check to see if we accidentally converted two
6303 reloads that use the same reload register with
6304 different inputs to the same type. If so, the
6305 resulting code won't work. */
6306 if (rld[j].reg_rtx)
6307 for (k = 0; k < j; k++)
6308 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6309 || rld[k].when_needed != rld[j].when_needed
6310 || !rtx_equal_p (rld[k].reg_rtx,
6311 rld[j].reg_rtx)
6312 || rtx_equal_p (rld[k].in,
6313 rld[j].in));
6319 /* These arrays are filled by emit_reload_insns and its subroutines. */
6320 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6321 static rtx other_input_address_reload_insns = 0;
6322 static rtx other_input_reload_insns = 0;
6323 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6324 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6325 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6326 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6327 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6328 static rtx operand_reload_insns = 0;
6329 static rtx other_operand_reload_insns = 0;
6330 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6332 /* Values to be put in spill_reg_store are put here first. */
6333 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6334 static HARD_REG_SET reg_reloaded_died;
6336 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6337 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6338 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6339 adjusted register, and return true. Otherwise, return false. */
6340 static bool
6341 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6342 enum reg_class new_class,
6343 enum machine_mode new_mode)
6346 rtx reg;
6348 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6350 unsigned regno = REGNO (reg);
6352 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6353 continue;
6354 if (GET_MODE (reg) != new_mode)
6356 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6357 continue;
6358 if (hard_regno_nregs[regno][new_mode]
6359 > hard_regno_nregs[regno][GET_MODE (reg)])
6360 continue;
6361 reg = reload_adjust_reg_for_mode (reg, new_mode);
6363 *reload_reg = reg;
6364 return true;
6366 return false;
6369 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6370 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6371 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6372 adjusted register, and return true. Otherwise, return false. */
6373 static bool
6374 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6375 enum insn_code icode)
6378 enum reg_class new_class = scratch_reload_class (icode);
6379 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6381 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6382 new_class, new_mode);
6385 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6386 has the number J. OLD contains the value to be used as input. */
6388 static void
6389 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6390 rtx old, int j)
6392 rtx insn = chain->insn;
6393 rtx reloadreg = rl->reg_rtx;
6394 rtx oldequiv_reg = 0;
6395 rtx oldequiv = 0;
6396 int special = 0;
6397 enum machine_mode mode;
6398 rtx *where;
6400 /* Determine the mode to reload in.
6401 This is very tricky because we have three to choose from.
6402 There is the mode the insn operand wants (rl->inmode).
6403 There is the mode of the reload register RELOADREG.
6404 There is the intrinsic mode of the operand, which we could find
6405 by stripping some SUBREGs.
6406 It turns out that RELOADREG's mode is irrelevant:
6407 we can change that arbitrarily.
6409 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6410 then the reload reg may not support QImode moves, so use SImode.
6411 If foo is in memory due to spilling a pseudo reg, this is safe,
6412 because the QImode value is in the least significant part of a
6413 slot big enough for a SImode. If foo is some other sort of
6414 memory reference, then it is impossible to reload this case,
6415 so previous passes had better make sure this never happens.
6417 Then consider a one-word union which has SImode and one of its
6418 members is a float, being fetched as (SUBREG:SF union:SI).
6419 We must fetch that as SFmode because we could be loading into
6420 a float-only register. In this case OLD's mode is correct.
6422 Consider an immediate integer: it has VOIDmode. Here we need
6423 to get a mode from something else.
6425 In some cases, there is a fourth mode, the operand's
6426 containing mode. If the insn specifies a containing mode for
6427 this operand, it overrides all others.
6429 I am not sure whether the algorithm here is always right,
6430 but it does the right things in those cases. */
6432 mode = GET_MODE (old);
6433 if (mode == VOIDmode)
6434 mode = rl->inmode;
6436 /* delete_output_reload is only invoked properly if old contains
6437 the original pseudo register. Since this is replaced with a
6438 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6439 find the pseudo in RELOAD_IN_REG. */
6440 if (reload_override_in[j]
6441 && REG_P (rl->in_reg))
6443 oldequiv = old;
6444 old = rl->in_reg;
6446 if (oldequiv == 0)
6447 oldequiv = old;
6448 else if (REG_P (oldequiv))
6449 oldequiv_reg = oldequiv;
6450 else if (GET_CODE (oldequiv) == SUBREG)
6451 oldequiv_reg = SUBREG_REG (oldequiv);
6453 /* If we are reloading from a register that was recently stored in
6454 with an output-reload, see if we can prove there was
6455 actually no need to store the old value in it. */
6457 if (optimize && REG_P (oldequiv)
6458 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6459 && spill_reg_store[REGNO (oldequiv)]
6460 && REG_P (old)
6461 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6462 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6463 rl->out_reg)))
6464 delete_output_reload (insn, j, REGNO (oldequiv));
6466 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6467 then load RELOADREG from OLDEQUIV. Note that we cannot use
6468 gen_lowpart_common since it can do the wrong thing when
6469 RELOADREG has a multi-word mode. Note that RELOADREG
6470 must always be a REG here. */
6472 if (GET_MODE (reloadreg) != mode)
6473 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6474 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6475 oldequiv = SUBREG_REG (oldequiv);
6476 if (GET_MODE (oldequiv) != VOIDmode
6477 && mode != GET_MODE (oldequiv))
6478 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6480 /* Switch to the right place to emit the reload insns. */
6481 switch (rl->when_needed)
6483 case RELOAD_OTHER:
6484 where = &other_input_reload_insns;
6485 break;
6486 case RELOAD_FOR_INPUT:
6487 where = &input_reload_insns[rl->opnum];
6488 break;
6489 case RELOAD_FOR_INPUT_ADDRESS:
6490 where = &input_address_reload_insns[rl->opnum];
6491 break;
6492 case RELOAD_FOR_INPADDR_ADDRESS:
6493 where = &inpaddr_address_reload_insns[rl->opnum];
6494 break;
6495 case RELOAD_FOR_OUTPUT_ADDRESS:
6496 where = &output_address_reload_insns[rl->opnum];
6497 break;
6498 case RELOAD_FOR_OUTADDR_ADDRESS:
6499 where = &outaddr_address_reload_insns[rl->opnum];
6500 break;
6501 case RELOAD_FOR_OPERAND_ADDRESS:
6502 where = &operand_reload_insns;
6503 break;
6504 case RELOAD_FOR_OPADDR_ADDR:
6505 where = &other_operand_reload_insns;
6506 break;
6507 case RELOAD_FOR_OTHER_ADDRESS:
6508 where = &other_input_address_reload_insns;
6509 break;
6510 default:
6511 gcc_unreachable ();
6514 push_to_sequence (*where);
6516 /* Auto-increment addresses must be reloaded in a special way. */
6517 if (rl->out && ! rl->out_reg)
6519 /* We are not going to bother supporting the case where a
6520 incremented register can't be copied directly from
6521 OLDEQUIV since this seems highly unlikely. */
6522 gcc_assert (rl->secondary_in_reload < 0);
6524 if (reload_inherited[j])
6525 oldequiv = reloadreg;
6527 old = XEXP (rl->in_reg, 0);
6529 if (optimize && REG_P (oldequiv)
6530 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6531 && spill_reg_store[REGNO (oldequiv)]
6532 && REG_P (old)
6533 && (dead_or_set_p (insn,
6534 spill_reg_stored_to[REGNO (oldequiv)])
6535 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6536 old)))
6537 delete_output_reload (insn, j, REGNO (oldequiv));
6539 /* Prevent normal processing of this reload. */
6540 special = 1;
6541 /* Output a special code sequence for this case. */
6542 new_spill_reg_store[REGNO (reloadreg)]
6543 = inc_for_reload (reloadreg, oldequiv, rl->out,
6544 rl->inc);
6547 /* If we are reloading a pseudo-register that was set by the previous
6548 insn, see if we can get rid of that pseudo-register entirely
6549 by redirecting the previous insn into our reload register. */
6551 else if (optimize && REG_P (old)
6552 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6553 && dead_or_set_p (insn, old)
6554 /* This is unsafe if some other reload
6555 uses the same reg first. */
6556 && ! conflicts_with_override (reloadreg)
6557 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6558 rl->when_needed, old, rl->out, j, 0))
6560 rtx temp = PREV_INSN (insn);
6561 while (temp && NOTE_P (temp))
6562 temp = PREV_INSN (temp);
6563 if (temp
6564 && NONJUMP_INSN_P (temp)
6565 && GET_CODE (PATTERN (temp)) == SET
6566 && SET_DEST (PATTERN (temp)) == old
6567 /* Make sure we can access insn_operand_constraint. */
6568 && asm_noperands (PATTERN (temp)) < 0
6569 /* This is unsafe if operand occurs more than once in current
6570 insn. Perhaps some occurrences aren't reloaded. */
6571 && count_occurrences (PATTERN (insn), old, 0) == 1)
6573 rtx old = SET_DEST (PATTERN (temp));
6574 /* Store into the reload register instead of the pseudo. */
6575 SET_DEST (PATTERN (temp)) = reloadreg;
6577 /* Verify that resulting insn is valid. */
6578 extract_insn (temp);
6579 if (constrain_operands (1))
6581 /* If the previous insn is an output reload, the source is
6582 a reload register, and its spill_reg_store entry will
6583 contain the previous destination. This is now
6584 invalid. */
6585 if (REG_P (SET_SRC (PATTERN (temp)))
6586 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6588 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6589 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6592 /* If these are the only uses of the pseudo reg,
6593 pretend for GDB it lives in the reload reg we used. */
6594 if (REG_N_DEATHS (REGNO (old)) == 1
6595 && REG_N_SETS (REGNO (old)) == 1)
6597 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6598 alter_reg (REGNO (old), -1);
6600 special = 1;
6602 else
6604 SET_DEST (PATTERN (temp)) = old;
6609 /* We can't do that, so output an insn to load RELOADREG. */
6611 /* If we have a secondary reload, pick up the secondary register
6612 and icode, if any. If OLDEQUIV and OLD are different or
6613 if this is an in-out reload, recompute whether or not we
6614 still need a secondary register and what the icode should
6615 be. If we still need a secondary register and the class or
6616 icode is different, go back to reloading from OLD if using
6617 OLDEQUIV means that we got the wrong type of register. We
6618 cannot have different class or icode due to an in-out reload
6619 because we don't make such reloads when both the input and
6620 output need secondary reload registers. */
6622 if (! special && rl->secondary_in_reload >= 0)
6624 rtx second_reload_reg = 0;
6625 rtx third_reload_reg = 0;
6626 int secondary_reload = rl->secondary_in_reload;
6627 rtx real_oldequiv = oldequiv;
6628 rtx real_old = old;
6629 rtx tmp;
6630 enum insn_code icode;
6631 enum insn_code tertiary_icode = CODE_FOR_nothing;
6633 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6634 and similarly for OLD.
6635 See comments in get_secondary_reload in reload.c. */
6636 /* If it is a pseudo that cannot be replaced with its
6637 equivalent MEM, we must fall back to reload_in, which
6638 will have all the necessary substitutions registered.
6639 Likewise for a pseudo that can't be replaced with its
6640 equivalent constant.
6642 Take extra care for subregs of such pseudos. Note that
6643 we cannot use reg_equiv_mem in this case because it is
6644 not in the right mode. */
6646 tmp = oldequiv;
6647 if (GET_CODE (tmp) == SUBREG)
6648 tmp = SUBREG_REG (tmp);
6649 if (REG_P (tmp)
6650 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6651 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6652 || reg_equiv_constant[REGNO (tmp)] != 0))
6654 if (! reg_equiv_mem[REGNO (tmp)]
6655 || num_not_at_initial_offset
6656 || GET_CODE (oldequiv) == SUBREG)
6657 real_oldequiv = rl->in;
6658 else
6659 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6662 tmp = old;
6663 if (GET_CODE (tmp) == SUBREG)
6664 tmp = SUBREG_REG (tmp);
6665 if (REG_P (tmp)
6666 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6667 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6668 || reg_equiv_constant[REGNO (tmp)] != 0))
6670 if (! reg_equiv_mem[REGNO (tmp)]
6671 || num_not_at_initial_offset
6672 || GET_CODE (old) == SUBREG)
6673 real_old = rl->in;
6674 else
6675 real_old = reg_equiv_mem[REGNO (tmp)];
6678 second_reload_reg = rld[secondary_reload].reg_rtx;
6679 if (rld[secondary_reload].secondary_in_reload >= 0)
6681 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6683 third_reload_reg = rld[tertiary_reload].reg_rtx;
6684 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6685 /* We'd have to add more code for quartary reloads. */
6686 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6688 icode = rl->secondary_in_icode;
6690 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6691 || (rl->in != 0 && rl->out != 0))
6693 secondary_reload_info sri, sri2;
6694 enum reg_class new_class, new_t_class;
6696 sri.icode = CODE_FOR_nothing;
6697 sri.prev_sri = NULL;
6698 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6699 mode, &sri);
6701 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6702 second_reload_reg = 0;
6703 else if (new_class == NO_REGS)
6705 if (reload_adjust_reg_for_icode (&second_reload_reg,
6706 third_reload_reg, sri.icode))
6707 icode = sri.icode, third_reload_reg = 0;
6708 else
6709 oldequiv = old, real_oldequiv = real_old;
6711 else if (sri.icode != CODE_FOR_nothing)
6712 /* We currently lack a way to express this in reloads. */
6713 gcc_unreachable ();
6714 else
6716 sri2.icode = CODE_FOR_nothing;
6717 sri2.prev_sri = &sri;
6718 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6719 new_class, mode, &sri);
6720 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6722 if (reload_adjust_reg_for_temp (&second_reload_reg,
6723 third_reload_reg,
6724 new_class, mode))
6725 third_reload_reg = 0, tertiary_icode = sri2.icode;
6726 else
6727 oldequiv = old, real_oldequiv = real_old;
6729 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6731 rtx intermediate = second_reload_reg;
6733 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6734 new_class, mode)
6735 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6736 sri2.icode))
6738 second_reload_reg = intermediate;
6739 tertiary_icode = sri2.icode;
6741 else
6742 oldequiv = old, real_oldequiv = real_old;
6744 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6746 rtx intermediate = second_reload_reg;
6748 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6749 new_class, mode)
6750 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6751 new_t_class, mode))
6753 second_reload_reg = intermediate;
6754 tertiary_icode = sri2.icode;
6756 else
6757 oldequiv = old, real_oldequiv = real_old;
6759 else
6760 /* This could be handled more intelligently too. */
6761 oldequiv = old, real_oldequiv = real_old;
6765 /* If we still need a secondary reload register, check
6766 to see if it is being used as a scratch or intermediate
6767 register and generate code appropriately. If we need
6768 a scratch register, use REAL_OLDEQUIV since the form of
6769 the insn may depend on the actual address if it is
6770 a MEM. */
6772 if (second_reload_reg)
6774 if (icode != CODE_FOR_nothing)
6776 /* We'd have to add extra code to handle this case. */
6777 gcc_assert (!third_reload_reg);
6779 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6780 second_reload_reg));
6781 special = 1;
6783 else
6785 /* See if we need a scratch register to load the
6786 intermediate register (a tertiary reload). */
6787 if (tertiary_icode != CODE_FOR_nothing)
6789 emit_insn ((GEN_FCN (tertiary_icode)
6790 (second_reload_reg, real_oldequiv,
6791 third_reload_reg)));
6793 else if (third_reload_reg)
6795 gen_reload (third_reload_reg, real_oldequiv,
6796 rl->opnum,
6797 rl->when_needed);
6798 gen_reload (second_reload_reg, third_reload_reg,
6799 rl->opnum,
6800 rl->when_needed);
6802 else
6803 gen_reload (second_reload_reg, real_oldequiv,
6804 rl->opnum,
6805 rl->when_needed);
6807 oldequiv = second_reload_reg;
6812 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6814 rtx real_oldequiv = oldequiv;
6816 if ((REG_P (oldequiv)
6817 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6818 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6819 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6820 || (GET_CODE (oldequiv) == SUBREG
6821 && REG_P (SUBREG_REG (oldequiv))
6822 && (REGNO (SUBREG_REG (oldequiv))
6823 >= FIRST_PSEUDO_REGISTER)
6824 && ((reg_equiv_memory_loc
6825 [REGNO (SUBREG_REG (oldequiv))] != 0)
6826 || (reg_equiv_constant
6827 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6828 || (CONSTANT_P (oldequiv)
6829 && (PREFERRED_RELOAD_CLASS (oldequiv,
6830 REGNO_REG_CLASS (REGNO (reloadreg)))
6831 == NO_REGS)))
6832 real_oldequiv = rl->in;
6833 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6834 rl->when_needed);
6837 if (flag_non_call_exceptions)
6838 copy_eh_notes (insn, get_insns ());
6840 /* End this sequence. */
6841 *where = get_insns ();
6842 end_sequence ();
6844 /* Update reload_override_in so that delete_address_reloads_1
6845 can see the actual register usage. */
6846 if (oldequiv_reg)
6847 reload_override_in[j] = oldequiv;
6850 /* Generate insns to for the output reload RL, which is for the insn described
6851 by CHAIN and has the number J. */
6852 static void
6853 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6854 int j)
6856 rtx reloadreg = rl->reg_rtx;
6857 rtx insn = chain->insn;
6858 int special = 0;
6859 rtx old = rl->out;
6860 enum machine_mode mode = GET_MODE (old);
6861 rtx p;
6863 if (rl->when_needed == RELOAD_OTHER)
6864 start_sequence ();
6865 else
6866 push_to_sequence (output_reload_insns[rl->opnum]);
6868 /* Determine the mode to reload in.
6869 See comments above (for input reloading). */
6871 if (mode == VOIDmode)
6873 /* VOIDmode should never happen for an output. */
6874 if (asm_noperands (PATTERN (insn)) < 0)
6875 /* It's the compiler's fault. */
6876 fatal_insn ("VOIDmode on an output", insn);
6877 error_for_asm (insn, "output operand is constant in %<asm%>");
6878 /* Prevent crash--use something we know is valid. */
6879 mode = word_mode;
6880 old = gen_rtx_REG (mode, REGNO (reloadreg));
6883 if (GET_MODE (reloadreg) != mode)
6884 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6886 /* If we need two reload regs, set RELOADREG to the intermediate
6887 one, since it will be stored into OLD. We might need a secondary
6888 register only for an input reload, so check again here. */
6890 if (rl->secondary_out_reload >= 0)
6892 rtx real_old = old;
6893 int secondary_reload = rl->secondary_out_reload;
6894 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
6896 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6897 && reg_equiv_mem[REGNO (old)] != 0)
6898 real_old = reg_equiv_mem[REGNO (old)];
6900 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
6902 rtx second_reloadreg = reloadreg;
6903 reloadreg = rld[secondary_reload].reg_rtx;
6905 /* See if RELOADREG is to be used as a scratch register
6906 or as an intermediate register. */
6907 if (rl->secondary_out_icode != CODE_FOR_nothing)
6909 /* We'd have to add extra code to handle this case. */
6910 gcc_assert (tertiary_reload < 0);
6912 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6913 (real_old, second_reloadreg, reloadreg)));
6914 special = 1;
6916 else
6918 /* See if we need both a scratch and intermediate reload
6919 register. */
6921 enum insn_code tertiary_icode
6922 = rld[secondary_reload].secondary_out_icode;
6924 /* We'd have to add more code for quartary reloads. */
6925 gcc_assert (tertiary_reload < 0
6926 || rld[tertiary_reload].secondary_out_reload < 0);
6928 if (GET_MODE (reloadreg) != mode)
6929 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6931 if (tertiary_icode != CODE_FOR_nothing)
6933 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6934 rtx tem;
6936 /* Copy primary reload reg to secondary reload reg.
6937 (Note that these have been swapped above, then
6938 secondary reload reg to OLD using our insn.) */
6940 /* If REAL_OLD is a paradoxical SUBREG, remove it
6941 and try to put the opposite SUBREG on
6942 RELOADREG. */
6943 if (GET_CODE (real_old) == SUBREG
6944 && (GET_MODE_SIZE (GET_MODE (real_old))
6945 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6946 && 0 != (tem = gen_lowpart_common
6947 (GET_MODE (SUBREG_REG (real_old)),
6948 reloadreg)))
6949 real_old = SUBREG_REG (real_old), reloadreg = tem;
6951 gen_reload (reloadreg, second_reloadreg,
6952 rl->opnum, rl->when_needed);
6953 emit_insn ((GEN_FCN (tertiary_icode)
6954 (real_old, reloadreg, third_reloadreg)));
6955 special = 1;
6958 else
6960 /* Copy between the reload regs here and then to
6961 OUT later. */
6963 gen_reload (reloadreg, second_reloadreg,
6964 rl->opnum, rl->when_needed);
6965 if (tertiary_reload >= 0)
6967 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6969 gen_reload (third_reloadreg, reloadreg,
6970 rl->opnum, rl->when_needed);
6971 reloadreg = third_reloadreg;
6978 /* Output the last reload insn. */
6979 if (! special)
6981 rtx set;
6983 /* Don't output the last reload if OLD is not the dest of
6984 INSN and is in the src and is clobbered by INSN. */
6985 if (! flag_expensive_optimizations
6986 || !REG_P (old)
6987 || !(set = single_set (insn))
6988 || rtx_equal_p (old, SET_DEST (set))
6989 || !reg_mentioned_p (old, SET_SRC (set))
6990 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6991 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6992 gen_reload (old, reloadreg, rl->opnum,
6993 rl->when_needed);
6996 /* Look at all insns we emitted, just to be safe. */
6997 for (p = get_insns (); p; p = NEXT_INSN (p))
6998 if (INSN_P (p))
7000 rtx pat = PATTERN (p);
7002 /* If this output reload doesn't come from a spill reg,
7003 clear any memory of reloaded copies of the pseudo reg.
7004 If this output reload comes from a spill reg,
7005 reg_has_output_reload will make this do nothing. */
7006 note_stores (pat, forget_old_reloads_1, NULL);
7008 if (reg_mentioned_p (rl->reg_rtx, pat))
7010 rtx set = single_set (insn);
7011 if (reload_spill_index[j] < 0
7012 && set
7013 && SET_SRC (set) == rl->reg_rtx)
7015 int src = REGNO (SET_SRC (set));
7017 reload_spill_index[j] = src;
7018 SET_HARD_REG_BIT (reg_is_output_reload, src);
7019 if (find_regno_note (insn, REG_DEAD, src))
7020 SET_HARD_REG_BIT (reg_reloaded_died, src);
7022 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
7024 int s = rl->secondary_out_reload;
7025 set = single_set (p);
7026 /* If this reload copies only to the secondary reload
7027 register, the secondary reload does the actual
7028 store. */
7029 if (s >= 0 && set == NULL_RTX)
7030 /* We can't tell what function the secondary reload
7031 has and where the actual store to the pseudo is
7032 made; leave new_spill_reg_store alone. */
7034 else if (s >= 0
7035 && SET_SRC (set) == rl->reg_rtx
7036 && SET_DEST (set) == rld[s].reg_rtx)
7038 /* Usually the next instruction will be the
7039 secondary reload insn; if we can confirm
7040 that it is, setting new_spill_reg_store to
7041 that insn will allow an extra optimization. */
7042 rtx s_reg = rld[s].reg_rtx;
7043 rtx next = NEXT_INSN (p);
7044 rld[s].out = rl->out;
7045 rld[s].out_reg = rl->out_reg;
7046 set = single_set (next);
7047 if (set && SET_SRC (set) == s_reg
7048 && ! new_spill_reg_store[REGNO (s_reg)])
7050 SET_HARD_REG_BIT (reg_is_output_reload,
7051 REGNO (s_reg));
7052 new_spill_reg_store[REGNO (s_reg)] = next;
7055 else
7056 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
7061 if (rl->when_needed == RELOAD_OTHER)
7063 emit_insn (other_output_reload_insns[rl->opnum]);
7064 other_output_reload_insns[rl->opnum] = get_insns ();
7066 else
7067 output_reload_insns[rl->opnum] = get_insns ();
7069 if (flag_non_call_exceptions)
7070 copy_eh_notes (insn, get_insns ());
7072 end_sequence ();
7075 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7076 and has the number J. */
7077 static void
7078 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7080 rtx insn = chain->insn;
7081 rtx old = (rl->in && MEM_P (rl->in)
7082 ? rl->in_reg : rl->in);
7084 if (old != 0
7085 /* AUTO_INC reloads need to be handled even if inherited. We got an
7086 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7087 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7088 && ! rtx_equal_p (rl->reg_rtx, old)
7089 && rl->reg_rtx != 0)
7090 emit_input_reload_insns (chain, rld + j, old, j);
7092 /* When inheriting a wider reload, we have a MEM in rl->in,
7093 e.g. inheriting a SImode output reload for
7094 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7095 if (optimize && reload_inherited[j] && rl->in
7096 && MEM_P (rl->in)
7097 && MEM_P (rl->in_reg)
7098 && reload_spill_index[j] >= 0
7099 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7100 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7102 /* If we are reloading a register that was recently stored in with an
7103 output-reload, see if we can prove there was
7104 actually no need to store the old value in it. */
7106 if (optimize
7107 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
7108 that there may be multiple uses of the previous output reload.
7109 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
7110 && rl->when_needed == RELOAD_FOR_INPUT
7111 && (reload_inherited[j] || reload_override_in[j])
7112 && rl->reg_rtx
7113 && REG_P (rl->reg_rtx)
7114 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7115 #if 0
7116 /* There doesn't seem to be any reason to restrict this to pseudos
7117 and doing so loses in the case where we are copying from a
7118 register of the wrong class. */
7119 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7120 >= FIRST_PSEUDO_REGISTER)
7121 #endif
7122 /* The insn might have already some references to stackslots
7123 replaced by MEMs, while reload_out_reg still names the
7124 original pseudo. */
7125 && (dead_or_set_p (insn,
7126 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7127 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7128 rl->out_reg)))
7129 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7132 /* Do output reloading for reload RL, which is for the insn described by
7133 CHAIN and has the number J.
7134 ??? At some point we need to support handling output reloads of
7135 JUMP_INSNs or insns that set cc0. */
7136 static void
7137 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7139 rtx note, old;
7140 rtx insn = chain->insn;
7141 /* If this is an output reload that stores something that is
7142 not loaded in this same reload, see if we can eliminate a previous
7143 store. */
7144 rtx pseudo = rl->out_reg;
7146 if (pseudo
7147 && optimize
7148 && REG_P (pseudo)
7149 && ! rtx_equal_p (rl->in_reg, pseudo)
7150 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7151 && reg_last_reload_reg[REGNO (pseudo)])
7153 int pseudo_no = REGNO (pseudo);
7154 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7156 /* We don't need to test full validity of last_regno for
7157 inherit here; we only want to know if the store actually
7158 matches the pseudo. */
7159 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7160 && reg_reloaded_contents[last_regno] == pseudo_no
7161 && spill_reg_store[last_regno]
7162 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7163 delete_output_reload (insn, j, last_regno);
7166 old = rl->out_reg;
7167 if (old == 0
7168 || rl->reg_rtx == old
7169 || rl->reg_rtx == 0)
7170 return;
7172 /* An output operand that dies right away does need a reload,
7173 but need not be copied from it. Show the new location in the
7174 REG_UNUSED note. */
7175 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7176 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7178 XEXP (note, 0) = rl->reg_rtx;
7179 return;
7181 /* Likewise for a SUBREG of an operand that dies. */
7182 else if (GET_CODE (old) == SUBREG
7183 && REG_P (SUBREG_REG (old))
7184 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7185 SUBREG_REG (old))))
7187 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7188 rl->reg_rtx);
7189 return;
7191 else if (GET_CODE (old) == SCRATCH)
7192 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7193 but we don't want to make an output reload. */
7194 return;
7196 /* If is a JUMP_INSN, we can't support output reloads yet. */
7197 gcc_assert (NONJUMP_INSN_P (insn));
7199 emit_output_reload_insns (chain, rld + j, j);
7202 /* Reload number R reloads from or to a group of hard registers starting at
7203 register REGNO. Return true if it can be treated for inheritance purposes
7204 like a group of reloads, each one reloading a single hard register.
7205 The caller has already checked that the spill register and REGNO use
7206 the same number of registers to store the reload value. */
7208 static bool
7209 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7211 #ifdef CANNOT_CHANGE_MODE_CLASS
7212 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7213 GET_MODE (rld[r].reg_rtx),
7214 reg_raw_mode[reload_spill_index[r]])
7215 && !REG_CANNOT_CHANGE_MODE_P (regno,
7216 GET_MODE (rld[r].reg_rtx),
7217 reg_raw_mode[regno]));
7218 #else
7219 return true;
7220 #endif
7223 /* Output insns to reload values in and out of the chosen reload regs. */
7225 static void
7226 emit_reload_insns (struct insn_chain *chain)
7228 rtx insn = chain->insn;
7230 int j;
7232 CLEAR_HARD_REG_SET (reg_reloaded_died);
7234 for (j = 0; j < reload_n_operands; j++)
7235 input_reload_insns[j] = input_address_reload_insns[j]
7236 = inpaddr_address_reload_insns[j]
7237 = output_reload_insns[j] = output_address_reload_insns[j]
7238 = outaddr_address_reload_insns[j]
7239 = other_output_reload_insns[j] = 0;
7240 other_input_address_reload_insns = 0;
7241 other_input_reload_insns = 0;
7242 operand_reload_insns = 0;
7243 other_operand_reload_insns = 0;
7245 /* Dump reloads into the dump file. */
7246 if (dump_file)
7248 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7249 debug_reload_to_stream (dump_file);
7252 /* Now output the instructions to copy the data into and out of the
7253 reload registers. Do these in the order that the reloads were reported,
7254 since reloads of base and index registers precede reloads of operands
7255 and the operands may need the base and index registers reloaded. */
7257 for (j = 0; j < n_reloads; j++)
7259 if (rld[j].reg_rtx
7260 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7261 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7263 do_input_reload (chain, rld + j, j);
7264 do_output_reload (chain, rld + j, j);
7267 /* Now write all the insns we made for reloads in the order expected by
7268 the allocation functions. Prior to the insn being reloaded, we write
7269 the following reloads:
7271 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7273 RELOAD_OTHER reloads.
7275 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7276 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7277 RELOAD_FOR_INPUT reload for the operand.
7279 RELOAD_FOR_OPADDR_ADDRS reloads.
7281 RELOAD_FOR_OPERAND_ADDRESS reloads.
7283 After the insn being reloaded, we write the following:
7285 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7286 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7287 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7288 reloads for the operand. The RELOAD_OTHER output reloads are
7289 output in descending order by reload number. */
7291 emit_insn_before (other_input_address_reload_insns, insn);
7292 emit_insn_before (other_input_reload_insns, insn);
7294 for (j = 0; j < reload_n_operands; j++)
7296 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7297 emit_insn_before (input_address_reload_insns[j], insn);
7298 emit_insn_before (input_reload_insns[j], insn);
7301 emit_insn_before (other_operand_reload_insns, insn);
7302 emit_insn_before (operand_reload_insns, insn);
7304 for (j = 0; j < reload_n_operands; j++)
7306 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7307 x = emit_insn_after (output_address_reload_insns[j], x);
7308 x = emit_insn_after (output_reload_insns[j], x);
7309 emit_insn_after (other_output_reload_insns[j], x);
7312 /* For all the spill regs newly reloaded in this instruction,
7313 record what they were reloaded from, so subsequent instructions
7314 can inherit the reloads.
7316 Update spill_reg_store for the reloads of this insn.
7317 Copy the elements that were updated in the loop above. */
7319 for (j = 0; j < n_reloads; j++)
7321 int r = reload_order[j];
7322 int i = reload_spill_index[r];
7324 /* If this is a non-inherited input reload from a pseudo, we must
7325 clear any memory of a previous store to the same pseudo. Only do
7326 something if there will not be an output reload for the pseudo
7327 being reloaded. */
7328 if (rld[r].in_reg != 0
7329 && ! (reload_inherited[r] || reload_override_in[r]))
7331 rtx reg = rld[r].in_reg;
7333 if (GET_CODE (reg) == SUBREG)
7334 reg = SUBREG_REG (reg);
7336 if (REG_P (reg)
7337 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7338 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7340 int nregno = REGNO (reg);
7342 if (reg_last_reload_reg[nregno])
7344 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7346 if (reg_reloaded_contents[last_regno] == nregno)
7347 spill_reg_store[last_regno] = 0;
7352 /* I is nonneg if this reload used a register.
7353 If rld[r].reg_rtx is 0, this is an optional reload
7354 that we opted to ignore. */
7356 if (i >= 0 && rld[r].reg_rtx != 0)
7358 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7359 int k;
7360 int part_reaches_end = 0;
7361 int all_reaches_end = 1;
7363 /* For a multi register reload, we need to check if all or part
7364 of the value lives to the end. */
7365 for (k = 0; k < nr; k++)
7367 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7368 rld[r].when_needed))
7369 part_reaches_end = 1;
7370 else
7371 all_reaches_end = 0;
7374 /* Ignore reloads that don't reach the end of the insn in
7375 entirety. */
7376 if (all_reaches_end)
7378 /* First, clear out memory of what used to be in this spill reg.
7379 If consecutive registers are used, clear them all. */
7381 for (k = 0; k < nr; k++)
7383 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7384 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7387 /* Maybe the spill reg contains a copy of reload_out. */
7388 if (rld[r].out != 0
7389 && (REG_P (rld[r].out)
7390 #ifdef AUTO_INC_DEC
7391 || ! rld[r].out_reg
7392 #endif
7393 || REG_P (rld[r].out_reg)))
7395 rtx out = (REG_P (rld[r].out)
7396 ? rld[r].out
7397 : rld[r].out_reg
7398 ? rld[r].out_reg
7399 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7400 int nregno = REGNO (out);
7401 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7402 : hard_regno_nregs[nregno]
7403 [GET_MODE (rld[r].reg_rtx)]);
7404 bool piecemeal;
7406 spill_reg_store[i] = new_spill_reg_store[i];
7407 spill_reg_stored_to[i] = out;
7408 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7410 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7411 && nr == nnr
7412 && inherit_piecemeal_p (r, nregno));
7414 /* If NREGNO is a hard register, it may occupy more than
7415 one register. If it does, say what is in the
7416 rest of the registers assuming that both registers
7417 agree on how many words the object takes. If not,
7418 invalidate the subsequent registers. */
7420 if (nregno < FIRST_PSEUDO_REGISTER)
7421 for (k = 1; k < nnr; k++)
7422 reg_last_reload_reg[nregno + k]
7423 = (piecemeal
7424 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7425 : 0);
7427 /* Now do the inverse operation. */
7428 for (k = 0; k < nr; k++)
7430 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7431 reg_reloaded_contents[i + k]
7432 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7433 ? nregno
7434 : nregno + k);
7435 reg_reloaded_insn[i + k] = insn;
7436 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7437 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7438 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7442 /* Maybe the spill reg contains a copy of reload_in. Only do
7443 something if there will not be an output reload for
7444 the register being reloaded. */
7445 else if (rld[r].out_reg == 0
7446 && rld[r].in != 0
7447 && ((REG_P (rld[r].in)
7448 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7449 && !REGNO_REG_SET_P (&reg_has_output_reload,
7450 REGNO (rld[r].in)))
7451 || (REG_P (rld[r].in_reg)
7452 && !REGNO_REG_SET_P (&reg_has_output_reload,
7453 REGNO (rld[r].in_reg))))
7454 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7456 int nregno;
7457 int nnr;
7458 rtx in;
7459 bool piecemeal;
7461 if (REG_P (rld[r].in)
7462 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7463 in = rld[r].in;
7464 else if (REG_P (rld[r].in_reg))
7465 in = rld[r].in_reg;
7466 else
7467 in = XEXP (rld[r].in_reg, 0);
7468 nregno = REGNO (in);
7470 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7471 : hard_regno_nregs[nregno]
7472 [GET_MODE (rld[r].reg_rtx)]);
7474 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7476 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7477 && nr == nnr
7478 && inherit_piecemeal_p (r, nregno));
7480 if (nregno < FIRST_PSEUDO_REGISTER)
7481 for (k = 1; k < nnr; k++)
7482 reg_last_reload_reg[nregno + k]
7483 = (piecemeal
7484 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7485 : 0);
7487 /* Unless we inherited this reload, show we haven't
7488 recently done a store.
7489 Previous stores of inherited auto_inc expressions
7490 also have to be discarded. */
7491 if (! reload_inherited[r]
7492 || (rld[r].out && ! rld[r].out_reg))
7493 spill_reg_store[i] = 0;
7495 for (k = 0; k < nr; k++)
7497 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7498 reg_reloaded_contents[i + k]
7499 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7500 ? nregno
7501 : nregno + k);
7502 reg_reloaded_insn[i + k] = insn;
7503 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7504 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7505 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7510 /* However, if part of the reload reaches the end, then we must
7511 invalidate the old info for the part that survives to the end. */
7512 else if (part_reaches_end)
7514 for (k = 0; k < nr; k++)
7515 if (reload_reg_reaches_end_p (i + k,
7516 rld[r].opnum,
7517 rld[r].when_needed))
7518 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7522 /* The following if-statement was #if 0'd in 1.34 (or before...).
7523 It's reenabled in 1.35 because supposedly nothing else
7524 deals with this problem. */
7526 /* If a register gets output-reloaded from a non-spill register,
7527 that invalidates any previous reloaded copy of it.
7528 But forget_old_reloads_1 won't get to see it, because
7529 it thinks only about the original insn. So invalidate it here.
7530 Also do the same thing for RELOAD_OTHER constraints where the
7531 output is discarded. */
7532 if (i < 0
7533 && ((rld[r].out != 0
7534 && (REG_P (rld[r].out)
7535 || (MEM_P (rld[r].out)
7536 && REG_P (rld[r].out_reg))))
7537 || (rld[r].out == 0 && rld[r].out_reg
7538 && REG_P (rld[r].out_reg))))
7540 rtx out = ((rld[r].out && REG_P (rld[r].out))
7541 ? rld[r].out : rld[r].out_reg);
7542 int nregno = REGNO (out);
7543 if (nregno >= FIRST_PSEUDO_REGISTER)
7545 rtx src_reg, store_insn = NULL_RTX;
7547 reg_last_reload_reg[nregno] = 0;
7549 /* If we can find a hard register that is stored, record
7550 the storing insn so that we may delete this insn with
7551 delete_output_reload. */
7552 src_reg = rld[r].reg_rtx;
7554 /* If this is an optional reload, try to find the source reg
7555 from an input reload. */
7556 if (! src_reg)
7558 rtx set = single_set (insn);
7559 if (set && SET_DEST (set) == rld[r].out)
7561 int k;
7563 src_reg = SET_SRC (set);
7564 store_insn = insn;
7565 for (k = 0; k < n_reloads; k++)
7567 if (rld[k].in == src_reg)
7569 src_reg = rld[k].reg_rtx;
7570 break;
7575 else
7576 store_insn = new_spill_reg_store[REGNO (src_reg)];
7577 if (src_reg && REG_P (src_reg)
7578 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7580 int src_regno = REGNO (src_reg);
7581 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7582 /* The place where to find a death note varies with
7583 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7584 necessarily checked exactly in the code that moves
7585 notes, so just check both locations. */
7586 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7587 if (! note && store_insn)
7588 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7589 while (nr-- > 0)
7591 spill_reg_store[src_regno + nr] = store_insn;
7592 spill_reg_stored_to[src_regno + nr] = out;
7593 reg_reloaded_contents[src_regno + nr] = nregno;
7594 reg_reloaded_insn[src_regno + nr] = store_insn;
7595 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7596 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7597 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7598 GET_MODE (src_reg)))
7599 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7600 src_regno + nr);
7601 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7602 if (note)
7603 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7604 else
7605 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7607 reg_last_reload_reg[nregno] = src_reg;
7608 /* We have to set reg_has_output_reload here, or else
7609 forget_old_reloads_1 will clear reg_last_reload_reg
7610 right away. */
7611 SET_REGNO_REG_SET (&reg_has_output_reload,
7612 nregno);
7615 else
7617 int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7619 while (num_regs-- > 0)
7620 reg_last_reload_reg[nregno + num_regs] = 0;
7624 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7627 /* Go through the motions to emit INSN and test if it is strictly valid.
7628 Return the emitted insn if valid, else return NULL. */
7630 static rtx
7631 emit_insn_if_valid_for_reload (rtx insn)
7633 rtx last = get_last_insn ();
7634 int code;
7636 insn = emit_insn (insn);
7637 code = recog_memoized (insn);
7639 if (code >= 0)
7641 extract_insn (insn);
7642 /* We want constrain operands to treat this insn strictly in its
7643 validity determination, i.e., the way it would after reload has
7644 completed. */
7645 if (constrain_operands (1))
7646 return insn;
7649 delete_insns_since (last);
7650 return NULL;
7653 /* Emit code to perform a reload from IN (which may be a reload register) to
7654 OUT (which may also be a reload register). IN or OUT is from operand
7655 OPNUM with reload type TYPE.
7657 Returns first insn emitted. */
7659 static rtx
7660 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7662 rtx last = get_last_insn ();
7663 rtx tem;
7665 /* If IN is a paradoxical SUBREG, remove it and try to put the
7666 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7667 if (GET_CODE (in) == SUBREG
7668 && (GET_MODE_SIZE (GET_MODE (in))
7669 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7670 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7671 in = SUBREG_REG (in), out = tem;
7672 else if (GET_CODE (out) == SUBREG
7673 && (GET_MODE_SIZE (GET_MODE (out))
7674 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7675 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7676 out = SUBREG_REG (out), in = tem;
7678 /* How to do this reload can get quite tricky. Normally, we are being
7679 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7680 register that didn't get a hard register. In that case we can just
7681 call emit_move_insn.
7683 We can also be asked to reload a PLUS that adds a register or a MEM to
7684 another register, constant or MEM. This can occur during frame pointer
7685 elimination and while reloading addresses. This case is handled by
7686 trying to emit a single insn to perform the add. If it is not valid,
7687 we use a two insn sequence.
7689 Or we can be asked to reload an unary operand that was a fragment of
7690 an addressing mode, into a register. If it isn't recognized as-is,
7691 we try making the unop operand and the reload-register the same:
7692 (set reg:X (unop:X expr:Y))
7693 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7695 Finally, we could be called to handle an 'o' constraint by putting
7696 an address into a register. In that case, we first try to do this
7697 with a named pattern of "reload_load_address". If no such pattern
7698 exists, we just emit a SET insn and hope for the best (it will normally
7699 be valid on machines that use 'o').
7701 This entire process is made complex because reload will never
7702 process the insns we generate here and so we must ensure that
7703 they will fit their constraints and also by the fact that parts of
7704 IN might be being reloaded separately and replaced with spill registers.
7705 Because of this, we are, in some sense, just guessing the right approach
7706 here. The one listed above seems to work.
7708 ??? At some point, this whole thing needs to be rethought. */
7710 if (GET_CODE (in) == PLUS
7711 && (REG_P (XEXP (in, 0))
7712 || GET_CODE (XEXP (in, 0)) == SUBREG
7713 || MEM_P (XEXP (in, 0)))
7714 && (REG_P (XEXP (in, 1))
7715 || GET_CODE (XEXP (in, 1)) == SUBREG
7716 || CONSTANT_P (XEXP (in, 1))
7717 || MEM_P (XEXP (in, 1))))
7719 /* We need to compute the sum of a register or a MEM and another
7720 register, constant, or MEM, and put it into the reload
7721 register. The best possible way of doing this is if the machine
7722 has a three-operand ADD insn that accepts the required operands.
7724 The simplest approach is to try to generate such an insn and see if it
7725 is recognized and matches its constraints. If so, it can be used.
7727 It might be better not to actually emit the insn unless it is valid,
7728 but we need to pass the insn as an operand to `recog' and
7729 `extract_insn' and it is simpler to emit and then delete the insn if
7730 not valid than to dummy things up. */
7732 rtx op0, op1, tem, insn;
7733 int code;
7735 op0 = find_replacement (&XEXP (in, 0));
7736 op1 = find_replacement (&XEXP (in, 1));
7738 /* Since constraint checking is strict, commutativity won't be
7739 checked, so we need to do that here to avoid spurious failure
7740 if the add instruction is two-address and the second operand
7741 of the add is the same as the reload reg, which is frequently
7742 the case. If the insn would be A = B + A, rearrange it so
7743 it will be A = A + B as constrain_operands expects. */
7745 if (REG_P (XEXP (in, 1))
7746 && REGNO (out) == REGNO (XEXP (in, 1)))
7747 tem = op0, op0 = op1, op1 = tem;
7749 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7750 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7752 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7753 if (insn)
7754 return insn;
7756 /* If that failed, we must use a conservative two-insn sequence.
7758 Use a move to copy one operand into the reload register. Prefer
7759 to reload a constant, MEM or pseudo since the move patterns can
7760 handle an arbitrary operand. If OP1 is not a constant, MEM or
7761 pseudo and OP1 is not a valid operand for an add instruction, then
7762 reload OP1.
7764 After reloading one of the operands into the reload register, add
7765 the reload register to the output register.
7767 If there is another way to do this for a specific machine, a
7768 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7769 we emit below. */
7771 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7773 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7774 || (REG_P (op1)
7775 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7776 || (code != CODE_FOR_nothing
7777 && ! ((*insn_data[code].operand[2].predicate)
7778 (op1, insn_data[code].operand[2].mode))))
7779 tem = op0, op0 = op1, op1 = tem;
7781 gen_reload (out, op0, opnum, type);
7783 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7784 This fixes a problem on the 32K where the stack pointer cannot
7785 be used as an operand of an add insn. */
7787 if (rtx_equal_p (op0, op1))
7788 op1 = out;
7790 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7791 if (insn)
7793 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7794 REG_NOTES (insn)
7795 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7796 return insn;
7799 /* If that failed, copy the address register to the reload register.
7800 Then add the constant to the reload register. */
7802 gen_reload (out, op1, opnum, type);
7803 insn = emit_insn (gen_add2_insn (out, op0));
7804 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7807 #ifdef SECONDARY_MEMORY_NEEDED
7808 /* If we need a memory location to do the move, do it that way. */
7809 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7810 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7811 && (REG_P (out) || GET_CODE (out) == SUBREG)
7812 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7813 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7814 REGNO_REG_CLASS (reg_or_subregno (out)),
7815 GET_MODE (out)))
7817 /* Get the memory to use and rewrite both registers to its mode. */
7818 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7820 if (GET_MODE (loc) != GET_MODE (out))
7821 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7823 if (GET_MODE (loc) != GET_MODE (in))
7824 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7826 gen_reload (loc, in, opnum, type);
7827 gen_reload (out, loc, opnum, type);
7829 #endif
7830 else if (REG_P (out) && UNARY_P (in))
7832 rtx insn;
7833 rtx op1;
7834 rtx out_moded;
7835 rtx set;
7837 op1 = find_replacement (&XEXP (in, 0));
7838 if (op1 != XEXP (in, 0))
7839 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7841 /* First, try a plain SET. */
7842 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7843 if (set)
7844 return set;
7846 /* If that failed, move the inner operand to the reload
7847 register, and try the same unop with the inner expression
7848 replaced with the reload register. */
7850 if (GET_MODE (op1) != GET_MODE (out))
7851 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7852 else
7853 out_moded = out;
7855 gen_reload (out_moded, op1, opnum, type);
7857 insn
7858 = gen_rtx_SET (VOIDmode, out,
7859 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7860 out_moded));
7861 insn = emit_insn_if_valid_for_reload (insn);
7862 if (insn)
7864 REG_NOTES (insn)
7865 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7866 return insn;
7869 fatal_insn ("Failure trying to reload:", set);
7871 /* If IN is a simple operand, use gen_move_insn. */
7872 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7874 tem = emit_insn (gen_move_insn (out, in));
7875 /* IN may contain a LABEL_REF, if so add a REG_LABEL note. */
7876 mark_jump_label (in, tem, 0);
7879 #ifdef HAVE_reload_load_address
7880 else if (HAVE_reload_load_address)
7881 emit_insn (gen_reload_load_address (out, in));
7882 #endif
7884 /* Otherwise, just write (set OUT IN) and hope for the best. */
7885 else
7886 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7888 /* Return the first insn emitted.
7889 We can not just return get_last_insn, because there may have
7890 been multiple instructions emitted. Also note that gen_move_insn may
7891 emit more than one insn itself, so we can not assume that there is one
7892 insn emitted per emit_insn_before call. */
7894 return last ? NEXT_INSN (last) : get_insns ();
7897 /* Delete a previously made output-reload whose result we now believe
7898 is not needed. First we double-check.
7900 INSN is the insn now being processed.
7901 LAST_RELOAD_REG is the hard register number for which we want to delete
7902 the last output reload.
7903 J is the reload-number that originally used REG. The caller has made
7904 certain that reload J doesn't use REG any longer for input. */
7906 static void
7907 delete_output_reload (rtx insn, int j, int last_reload_reg)
7909 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7910 rtx reg = spill_reg_stored_to[last_reload_reg];
7911 int k;
7912 int n_occurrences;
7913 int n_inherited = 0;
7914 rtx i1;
7915 rtx substed;
7917 /* It is possible that this reload has been only used to set another reload
7918 we eliminated earlier and thus deleted this instruction too. */
7919 if (INSN_DELETED_P (output_reload_insn))
7920 return;
7922 /* Get the raw pseudo-register referred to. */
7924 while (GET_CODE (reg) == SUBREG)
7925 reg = SUBREG_REG (reg);
7926 substed = reg_equiv_memory_loc[REGNO (reg)];
7928 /* This is unsafe if the operand occurs more often in the current
7929 insn than it is inherited. */
7930 for (k = n_reloads - 1; k >= 0; k--)
7932 rtx reg2 = rld[k].in;
7933 if (! reg2)
7934 continue;
7935 if (MEM_P (reg2) || reload_override_in[k])
7936 reg2 = rld[k].in_reg;
7937 #ifdef AUTO_INC_DEC
7938 if (rld[k].out && ! rld[k].out_reg)
7939 reg2 = XEXP (rld[k].in_reg, 0);
7940 #endif
7941 while (GET_CODE (reg2) == SUBREG)
7942 reg2 = SUBREG_REG (reg2);
7943 if (rtx_equal_p (reg2, reg))
7945 if (reload_inherited[k] || reload_override_in[k] || k == j)
7947 n_inherited++;
7948 reg2 = rld[k].out_reg;
7949 if (! reg2)
7950 continue;
7951 while (GET_CODE (reg2) == SUBREG)
7952 reg2 = XEXP (reg2, 0);
7953 if (rtx_equal_p (reg2, reg))
7954 n_inherited++;
7956 else
7957 return;
7960 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7961 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
7962 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
7963 reg, 0);
7964 if (substed)
7965 n_occurrences += count_occurrences (PATTERN (insn),
7966 eliminate_regs (substed, 0,
7967 NULL_RTX), 0);
7968 for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
7970 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
7971 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
7973 if (n_occurrences > n_inherited)
7974 return;
7976 /* If the pseudo-reg we are reloading is no longer referenced
7977 anywhere between the store into it and here,
7978 and we're within the same basic block, then the value can only
7979 pass through the reload reg and end up here.
7980 Otherwise, give up--return. */
7981 for (i1 = NEXT_INSN (output_reload_insn);
7982 i1 != insn; i1 = NEXT_INSN (i1))
7984 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7985 return;
7986 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7987 && reg_mentioned_p (reg, PATTERN (i1)))
7989 /* If this is USE in front of INSN, we only have to check that
7990 there are no more references than accounted for by inheritance. */
7991 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7993 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7994 i1 = NEXT_INSN (i1);
7996 if (n_occurrences <= n_inherited && i1 == insn)
7997 break;
7998 return;
8002 /* We will be deleting the insn. Remove the spill reg information. */
8003 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8005 spill_reg_store[last_reload_reg + k] = 0;
8006 spill_reg_stored_to[last_reload_reg + k] = 0;
8009 /* The caller has already checked that REG dies or is set in INSN.
8010 It has also checked that we are optimizing, and thus some
8011 inaccuracies in the debugging information are acceptable.
8012 So we could just delete output_reload_insn. But in some cases
8013 we can improve the debugging information without sacrificing
8014 optimization - maybe even improving the code: See if the pseudo
8015 reg has been completely replaced with reload regs. If so, delete
8016 the store insn and forget we had a stack slot for the pseudo. */
8017 if (rld[j].out != rld[j].in
8018 && REG_N_DEATHS (REGNO (reg)) == 1
8019 && REG_N_SETS (REGNO (reg)) == 1
8020 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
8021 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8023 rtx i2;
8025 /* We know that it was used only between here and the beginning of
8026 the current basic block. (We also know that the last use before
8027 INSN was the output reload we are thinking of deleting, but never
8028 mind that.) Search that range; see if any ref remains. */
8029 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8031 rtx set = single_set (i2);
8033 /* Uses which just store in the pseudo don't count,
8034 since if they are the only uses, they are dead. */
8035 if (set != 0 && SET_DEST (set) == reg)
8036 continue;
8037 if (LABEL_P (i2)
8038 || JUMP_P (i2))
8039 break;
8040 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8041 && reg_mentioned_p (reg, PATTERN (i2)))
8043 /* Some other ref remains; just delete the output reload we
8044 know to be dead. */
8045 delete_address_reloads (output_reload_insn, insn);
8046 delete_insn (output_reload_insn);
8047 return;
8051 /* Delete the now-dead stores into this pseudo. Note that this
8052 loop also takes care of deleting output_reload_insn. */
8053 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8055 rtx set = single_set (i2);
8057 if (set != 0 && SET_DEST (set) == reg)
8059 delete_address_reloads (i2, insn);
8060 delete_insn (i2);
8062 if (LABEL_P (i2)
8063 || JUMP_P (i2))
8064 break;
8067 /* For the debugging info, say the pseudo lives in this reload reg. */
8068 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
8069 alter_reg (REGNO (reg), -1);
8071 else
8073 delete_address_reloads (output_reload_insn, insn);
8074 delete_insn (output_reload_insn);
8078 /* We are going to delete DEAD_INSN. Recursively delete loads of
8079 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8080 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8081 static void
8082 delete_address_reloads (rtx dead_insn, rtx current_insn)
8084 rtx set = single_set (dead_insn);
8085 rtx set2, dst, prev, next;
8086 if (set)
8088 rtx dst = SET_DEST (set);
8089 if (MEM_P (dst))
8090 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8092 /* If we deleted the store from a reloaded post_{in,de}c expression,
8093 we can delete the matching adds. */
8094 prev = PREV_INSN (dead_insn);
8095 next = NEXT_INSN (dead_insn);
8096 if (! prev || ! next)
8097 return;
8098 set = single_set (next);
8099 set2 = single_set (prev);
8100 if (! set || ! set2
8101 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8102 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8103 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8104 return;
8105 dst = SET_DEST (set);
8106 if (! rtx_equal_p (dst, SET_DEST (set2))
8107 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8108 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8109 || (INTVAL (XEXP (SET_SRC (set), 1))
8110 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8111 return;
8112 delete_related_insns (prev);
8113 delete_related_insns (next);
8116 /* Subfunction of delete_address_reloads: process registers found in X. */
8117 static void
8118 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8120 rtx prev, set, dst, i2;
8121 int i, j;
8122 enum rtx_code code = GET_CODE (x);
8124 if (code != REG)
8126 const char *fmt = GET_RTX_FORMAT (code);
8127 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8129 if (fmt[i] == 'e')
8130 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8131 else if (fmt[i] == 'E')
8133 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8134 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8135 current_insn);
8138 return;
8141 if (spill_reg_order[REGNO (x)] < 0)
8142 return;
8144 /* Scan backwards for the insn that sets x. This might be a way back due
8145 to inheritance. */
8146 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8148 code = GET_CODE (prev);
8149 if (code == CODE_LABEL || code == JUMP_INSN)
8150 return;
8151 if (!INSN_P (prev))
8152 continue;
8153 if (reg_set_p (x, PATTERN (prev)))
8154 break;
8155 if (reg_referenced_p (x, PATTERN (prev)))
8156 return;
8158 if (! prev || INSN_UID (prev) < reload_first_uid)
8159 return;
8160 /* Check that PREV only sets the reload register. */
8161 set = single_set (prev);
8162 if (! set)
8163 return;
8164 dst = SET_DEST (set);
8165 if (!REG_P (dst)
8166 || ! rtx_equal_p (dst, x))
8167 return;
8168 if (! reg_set_p (dst, PATTERN (dead_insn)))
8170 /* Check if DST was used in a later insn -
8171 it might have been inherited. */
8172 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8174 if (LABEL_P (i2))
8175 break;
8176 if (! INSN_P (i2))
8177 continue;
8178 if (reg_referenced_p (dst, PATTERN (i2)))
8180 /* If there is a reference to the register in the current insn,
8181 it might be loaded in a non-inherited reload. If no other
8182 reload uses it, that means the register is set before
8183 referenced. */
8184 if (i2 == current_insn)
8186 for (j = n_reloads - 1; j >= 0; j--)
8187 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8188 || reload_override_in[j] == dst)
8189 return;
8190 for (j = n_reloads - 1; j >= 0; j--)
8191 if (rld[j].in && rld[j].reg_rtx == dst)
8192 break;
8193 if (j >= 0)
8194 break;
8196 return;
8198 if (JUMP_P (i2))
8199 break;
8200 /* If DST is still live at CURRENT_INSN, check if it is used for
8201 any reload. Note that even if CURRENT_INSN sets DST, we still
8202 have to check the reloads. */
8203 if (i2 == current_insn)
8205 for (j = n_reloads - 1; j >= 0; j--)
8206 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8207 || reload_override_in[j] == dst)
8208 return;
8209 /* ??? We can't finish the loop here, because dst might be
8210 allocated to a pseudo in this block if no reload in this
8211 block needs any of the classes containing DST - see
8212 spill_hard_reg. There is no easy way to tell this, so we
8213 have to scan till the end of the basic block. */
8215 if (reg_set_p (dst, PATTERN (i2)))
8216 break;
8219 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8220 reg_reloaded_contents[REGNO (dst)] = -1;
8221 delete_insn (prev);
8224 /* Output reload-insns to reload VALUE into RELOADREG.
8225 VALUE is an autoincrement or autodecrement RTX whose operand
8226 is a register or memory location;
8227 so reloading involves incrementing that location.
8228 IN is either identical to VALUE, or some cheaper place to reload from.
8230 INC_AMOUNT is the number to increment or decrement by (always positive).
8231 This cannot be deduced from VALUE.
8233 Return the instruction that stores into RELOADREG. */
8235 static rtx
8236 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8238 /* REG or MEM to be copied and incremented. */
8239 rtx incloc = find_replacement (&XEXP (value, 0));
8240 /* Nonzero if increment after copying. */
8241 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8242 || GET_CODE (value) == POST_MODIFY);
8243 rtx last;
8244 rtx inc;
8245 rtx add_insn;
8246 int code;
8247 rtx store;
8248 rtx real_in = in == value ? incloc : in;
8250 /* No hard register is equivalent to this register after
8251 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8252 we could inc/dec that register as well (maybe even using it for
8253 the source), but I'm not sure it's worth worrying about. */
8254 if (REG_P (incloc))
8255 reg_last_reload_reg[REGNO (incloc)] = 0;
8257 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8259 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8260 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8262 else
8264 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8265 inc_amount = -inc_amount;
8267 inc = GEN_INT (inc_amount);
8270 /* If this is post-increment, first copy the location to the reload reg. */
8271 if (post && real_in != reloadreg)
8272 emit_insn (gen_move_insn (reloadreg, real_in));
8274 if (in == value)
8276 /* See if we can directly increment INCLOC. Use a method similar to
8277 that in gen_reload. */
8279 last = get_last_insn ();
8280 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8281 gen_rtx_PLUS (GET_MODE (incloc),
8282 incloc, inc)));
8284 code = recog_memoized (add_insn);
8285 if (code >= 0)
8287 extract_insn (add_insn);
8288 if (constrain_operands (1))
8290 /* If this is a pre-increment and we have incremented the value
8291 where it lives, copy the incremented value to RELOADREG to
8292 be used as an address. */
8294 if (! post)
8295 emit_insn (gen_move_insn (reloadreg, incloc));
8297 return add_insn;
8300 delete_insns_since (last);
8303 /* If couldn't do the increment directly, must increment in RELOADREG.
8304 The way we do this depends on whether this is pre- or post-increment.
8305 For pre-increment, copy INCLOC to the reload register, increment it
8306 there, then save back. */
8308 if (! post)
8310 if (in != reloadreg)
8311 emit_insn (gen_move_insn (reloadreg, real_in));
8312 emit_insn (gen_add2_insn (reloadreg, inc));
8313 store = emit_insn (gen_move_insn (incloc, reloadreg));
8315 else
8317 /* Postincrement.
8318 Because this might be a jump insn or a compare, and because RELOADREG
8319 may not be available after the insn in an input reload, we must do
8320 the incrementation before the insn being reloaded for.
8322 We have already copied IN to RELOADREG. Increment the copy in
8323 RELOADREG, save that back, then decrement RELOADREG so it has
8324 the original value. */
8326 emit_insn (gen_add2_insn (reloadreg, inc));
8327 store = emit_insn (gen_move_insn (incloc, reloadreg));
8328 if (GET_CODE (inc) == CONST_INT)
8329 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8330 else
8331 emit_insn (gen_sub2_insn (reloadreg, inc));
8334 return store;
8337 #ifdef AUTO_INC_DEC
8338 static void
8339 add_auto_inc_notes (rtx insn, rtx x)
8341 enum rtx_code code = GET_CODE (x);
8342 const char *fmt;
8343 int i, j;
8345 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8347 REG_NOTES (insn)
8348 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8349 return;
8352 /* Scan all the operand sub-expressions. */
8353 fmt = GET_RTX_FORMAT (code);
8354 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8356 if (fmt[i] == 'e')
8357 add_auto_inc_notes (insn, XEXP (x, i));
8358 else if (fmt[i] == 'E')
8359 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8360 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8363 #endif
8365 /* Copy EH notes from an insn to its reloads. */
8366 static void
8367 copy_eh_notes (rtx insn, rtx x)
8369 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8370 if (eh_note)
8372 for (; x != 0; x = NEXT_INSN (x))
8374 if (may_trap_p (PATTERN (x)))
8375 REG_NOTES (x)
8376 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8377 REG_NOTES (x));
8382 /* This is used by reload pass, that does emit some instructions after
8383 abnormal calls moving basic block end, but in fact it wants to emit
8384 them on the edge. Looks for abnormal call edges, find backward the
8385 proper call and fix the damage.
8387 Similar handle instructions throwing exceptions internally. */
8388 void
8389 fixup_abnormal_edges (void)
8391 bool inserted = false;
8392 basic_block bb;
8394 FOR_EACH_BB (bb)
8396 edge e;
8397 edge_iterator ei;
8399 /* Look for cases we are interested in - calls or instructions causing
8400 exceptions. */
8401 FOR_EACH_EDGE (e, ei, bb->succs)
8403 if (e->flags & EDGE_ABNORMAL_CALL)
8404 break;
8405 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8406 == (EDGE_ABNORMAL | EDGE_EH))
8407 break;
8409 if (e && !CALL_P (BB_END (bb))
8410 && !can_throw_internal (BB_END (bb)))
8412 rtx insn;
8414 /* Get past the new insns generated. Allow notes, as the insns
8415 may be already deleted. */
8416 insn = BB_END (bb);
8417 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8418 && !can_throw_internal (insn)
8419 && insn != BB_HEAD (bb))
8420 insn = PREV_INSN (insn);
8422 if (CALL_P (insn) || can_throw_internal (insn))
8424 rtx stop, next;
8426 stop = NEXT_INSN (BB_END (bb));
8427 BB_END (bb) = insn;
8428 insn = NEXT_INSN (insn);
8430 FOR_EACH_EDGE (e, ei, bb->succs)
8431 if (e->flags & EDGE_FALLTHRU)
8432 break;
8434 while (insn && insn != stop)
8436 next = NEXT_INSN (insn);
8437 if (INSN_P (insn))
8439 delete_insn (insn);
8441 /* Sometimes there's still the return value USE.
8442 If it's placed after a trapping call (i.e. that
8443 call is the last insn anyway), we have no fallthru
8444 edge. Simply delete this use and don't try to insert
8445 on the non-existent edge. */
8446 if (GET_CODE (PATTERN (insn)) != USE)
8448 /* We're not deleting it, we're moving it. */
8449 INSN_DELETED_P (insn) = 0;
8450 PREV_INSN (insn) = NULL_RTX;
8451 NEXT_INSN (insn) = NULL_RTX;
8453 insert_insn_on_edge (insn, e);
8454 inserted = true;
8457 insn = next;
8461 /* It may be that we don't find any such trapping insn. In this
8462 case we discovered quite late that the insn that had been
8463 marked as can_throw_internal in fact couldn't trap at all.
8464 So we should in fact delete the EH edges out of the block. */
8465 else
8466 purge_dead_edges (bb);
8470 /* We've possibly turned single trapping insn into multiple ones. */
8471 if (flag_non_call_exceptions)
8473 sbitmap blocks;
8474 blocks = sbitmap_alloc (last_basic_block);
8475 sbitmap_ones (blocks);
8476 find_many_sub_basic_blocks (blocks);
8479 if (inserted)
8480 commit_edge_insertions ();
8482 #ifdef ENABLE_CHECKING
8483 /* Verify that we didn't turn one trapping insn into many, and that
8484 we found and corrected all of the problems wrt fixups on the
8485 fallthru edge. */
8486 verify_flow_info ();
8487 #endif