* Makefile.in (ggc-common.o): Depend on genrtl.h.
[official-gcc.git] / gcc / caller-save.c
blobf53b2dd6f61be861f1972161e9569212aa964955
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 92, 94, 95, 97, 98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "rtl.h"
24 #include "insn-config.h"
25 #include "flags.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "recog.h"
29 #include "basic-block.h"
30 #include "reload.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
35 #ifndef MAX_MOVE_MAX
36 #define MAX_MOVE_MAX MOVE_MAX
37 #endif
39 #ifndef MIN_UNITS_PER_WORD
40 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
41 #endif
43 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
45 /* Modes for each hard register that we can save. The smallest mode is wide
46 enough to save the entire contents of the register. When saving the
47 register because it is live we first try to save in multi-register modes.
48 If that is not possible the save is done one register at a time. */
50 static enum machine_mode
51 regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
53 /* For each hard register, a place on the stack where it can be saved,
54 if needed. */
56 static rtx
57 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
59 /* We will only make a register eligible for caller-save if it can be
60 saved in its widest mode with a simple SET insn as long as the memory
61 address is valid. We record the INSN_CODE is those insns here since
62 when we emit them, the addresses might not be valid, so they might not
63 be recognized. */
65 static enum insn_code
66 reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
67 static enum insn_code
68 reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
70 /* Set of hard regs currently residing in save area (during insn scan). */
72 static HARD_REG_SET hard_regs_saved;
74 /* Number of registers currently in hard_regs_saved. */
76 static int n_regs_saved;
78 /* Computed by mark_referenced_regs, all regs referenced in a given
79 insn. */
80 static HARD_REG_SET referenced_regs;
82 /* Computed in mark_set_regs, holds all registers set by the current
83 instruction. */
84 static HARD_REG_SET this_insn_sets;
87 static void mark_set_regs PROTO((rtx, rtx));
88 static void mark_referenced_regs PROTO((rtx));
89 static int insert_save PROTO((struct insn_chain *, int, int,
90 HARD_REG_SET *));
91 static int insert_restore PROTO((struct insn_chain *, int, int,
92 int));
93 static void insert_one_insn PROTO((struct insn_chain *, int,
94 enum insn_code, rtx));
96 /* Initialize for caller-save.
98 Look at all the hard registers that are used by a call and for which
99 regclass.c has not already excluded from being used across a call.
101 Ensure that we can find a mode to save the register and that there is a
102 simple insn to save and restore the register. This latter check avoids
103 problems that would occur if we tried to save the MQ register of some
104 machines directly into memory. */
106 void
107 init_caller_save ()
109 char *first_obj = (char *) oballoc (0);
110 rtx addr_reg;
111 int offset;
112 rtx address;
113 int i, j;
115 /* First find all the registers that we need to deal with and all
116 the modes that they can have. If we can't find a mode to use,
117 we can't have the register live over calls. */
119 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
121 if (call_used_regs[i] && ! call_fixed_regs[i])
123 for (j = 1; j <= MOVE_MAX_WORDS; j++)
125 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j);
126 if (regno_save_mode[i][j] == VOIDmode && j == 1)
128 call_fixed_regs[i] = 1;
129 SET_HARD_REG_BIT (call_fixed_reg_set, i);
133 else
134 regno_save_mode[i][1] = VOIDmode;
137 /* The following code tries to approximate the conditions under which
138 we can easily save and restore a register without scratch registers or
139 other complexities. It will usually work, except under conditions where
140 the validity of an insn operand is dependent on the address offset.
141 No such cases are currently known.
143 We first find a typical offset from some BASE_REG_CLASS register.
144 This address is chosen by finding the first register in the class
145 and by finding the smallest power of two that is a valid offset from
146 that register in every mode we will use to save registers. */
148 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
149 if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
150 break;
152 if (i == FIRST_PSEUDO_REGISTER)
153 abort ();
155 addr_reg = gen_rtx_REG (Pmode, i);
157 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
159 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
161 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
162 if (regno_save_mode[i][1] != VOIDmode
163 && ! strict_memory_address_p (regno_save_mode[i][1], address))
164 break;
166 if (i == FIRST_PSEUDO_REGISTER)
167 break;
170 /* If we didn't find a valid address, we must use register indirect. */
171 if (offset == 0)
172 address = addr_reg;
174 /* Next we try to form an insn to save and restore the register. We
175 see if such an insn is recognized and meets its constraints. */
177 start_sequence ();
179 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
180 for (j = 1; j <= MOVE_MAX_WORDS; j++)
181 if (regno_save_mode[i][j] != VOIDmode)
183 rtx mem = gen_rtx_MEM (regno_save_mode[i][j], address);
184 rtx reg = gen_rtx_REG (regno_save_mode[i][j], i);
185 rtx savepat = gen_rtx_SET (VOIDmode, mem, reg);
186 rtx restpat = gen_rtx_SET (VOIDmode, reg, mem);
187 rtx saveinsn = emit_insn (savepat);
188 rtx restinsn = emit_insn (restpat);
189 int ok;
191 reg_save_code[i][j] = recog_memoized (saveinsn);
192 reg_restore_code[i][j] = recog_memoized (restinsn);
194 /* Now extract both insns and see if we can meet their
195 constraints. */
196 ok = (reg_save_code[i][j] != (enum insn_code)-1
197 && reg_restore_code[i][j] != (enum insn_code)-1);
198 if (ok)
200 extract_insn (saveinsn);
201 ok = constrain_operands (1);
202 extract_insn (restinsn);
203 ok &= constrain_operands (1);
206 if (! ok)
208 regno_save_mode[i][j] = VOIDmode;
209 if (j == 1)
211 call_fixed_regs[i] = 1;
212 SET_HARD_REG_BIT (call_fixed_reg_set, i);
217 end_sequence ();
219 obfree (first_obj);
222 /* Initialize save areas by showing that we haven't allocated any yet. */
224 void
225 init_save_areas ()
227 int i, j;
229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
230 for (j = 1; j <= MOVE_MAX_WORDS; j++)
231 regno_save_mem[i][j] = 0;
234 /* Allocate save areas for any hard registers that might need saving.
235 We take a conservative approach here and look for call-clobbered hard
236 registers that are assigned to pseudos that cross calls. This may
237 overestimate slightly (especially if some of these registers are later
238 used as spill registers), but it should not be significant.
240 Future work:
242 In the fallback case we should iterate backwards across all possible
243 modes for the save, choosing the largest available one instead of
244 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
246 We do not try to use "move multiple" instructions that exist
247 on some machines (such as the 68k moveml). It could be a win to try
248 and use them when possible. The hard part is doing it in a way that is
249 machine independent since they might be saving non-consecutive
250 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
252 void
253 setup_save_areas ()
255 int i, j, k;
256 HARD_REG_SET hard_regs_used;
258 /* Allocate space in the save area for the largest multi-register
259 pseudos first, then work backwards to single register
260 pseudos. */
262 /* Find and record all call-used hard-registers in this function. */
263 CLEAR_HARD_REG_SET (hard_regs_used);
264 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
265 if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
267 int regno = reg_renumber[i];
268 int endregno
269 = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
270 int nregs = endregno - regno;
272 for (j = 0; j < nregs; j++)
274 if (call_used_regs[regno+j])
275 SET_HARD_REG_BIT (hard_regs_used, regno+j);
279 /* Now run through all the call-used hard-registers and allocate
280 space for them in the caller-save area. Try to allocate space
281 in a manner which allows multi-register saves/restores to be done. */
283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
284 for (j = MOVE_MAX_WORDS; j > 0; j--)
286 int do_save = 1;
288 /* If no mode exists for this size, try another. Also break out
289 if we have already saved this hard register. */
290 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
291 continue;
293 /* See if any register in this group has been saved. */
294 for (k = 0; k < j; k++)
295 if (regno_save_mem[i + k][1])
297 do_save = 0;
298 break;
300 if (! do_save)
301 continue;
303 for (k = 0; k < j; k++)
304 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
306 do_save = 0;
307 break;
309 if (! do_save)
310 continue;
312 /* We have found an acceptable mode to store in. */
313 regno_save_mem[i][j]
314 = assign_stack_local (regno_save_mode[i][j],
315 GET_MODE_SIZE (regno_save_mode[i][j]), 0);
317 /* Setup single word save area just in case... */
318 for (k = 0; k < j; k++)
320 /* This should not depend on WORDS_BIG_ENDIAN.
321 The order of words in regs is the same as in memory. */
322 rtx temp = gen_rtx_MEM (regno_save_mode[i+k][1],
323 XEXP (regno_save_mem[i][j], 0));
325 regno_save_mem[i+k][1]
326 = adj_offsettable_operand (temp, k * UNITS_PER_WORD);
331 /* Find the places where hard regs are live across calls and save them. */
332 void
333 save_call_clobbered_regs ()
335 struct insn_chain *chain, *next;
337 CLEAR_HARD_REG_SET (hard_regs_saved);
338 n_regs_saved = 0;
340 for (chain = reload_insn_chain; chain != 0; chain = next)
342 rtx insn = chain->insn;
343 enum rtx_code code = GET_CODE (insn);
345 next = chain->next;
347 if (chain->is_caller_save_insn)
348 abort ();
350 if (GET_RTX_CLASS (code) == 'i')
352 /* If some registers have been saved, see if INSN references
353 any of them. We must restore them before the insn if so. */
355 if (n_regs_saved)
357 int regno;
359 if (code == JUMP_INSN)
360 /* Restore all registers if this is a JUMP_INSN. */
361 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
362 else
364 CLEAR_HARD_REG_SET (referenced_regs);
365 mark_referenced_regs (PATTERN (insn));
366 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
369 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
370 if (TEST_HARD_REG_BIT (referenced_regs, regno))
371 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS);
374 if (code == CALL_INSN)
376 rtx x;
377 int regno, nregs;
378 HARD_REG_SET hard_regs_to_save;
380 /* Use the register life information in CHAIN to compute which
381 regs are live before the call. */
382 REG_SET_TO_HARD_REG_SET (hard_regs_to_save, chain->live_before);
383 compute_use_by_pseudos (&hard_regs_to_save, chain->live_before);
385 /* Record all registers set in this call insn. These don't need
386 to be saved. */
387 CLEAR_HARD_REG_SET (this_insn_sets);
388 note_stores (PATTERN (insn), mark_set_regs);
390 /* Compute which hard regs must be saved before this call. */
391 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
392 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
393 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
394 AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
396 /* Registers used for function parameters need not be saved. */
397 for (x = CALL_INSN_FUNCTION_USAGE (insn); x != 0;
398 x = XEXP (x, 1))
400 rtx y;
402 if (GET_CODE (XEXP (x, 0)) != USE)
403 continue;
404 y = XEXP (XEXP (x, 0), 0);
405 if (GET_CODE (y) != REG)
406 abort ();
407 regno = REGNO (y);
408 if (REGNO (y) >= FIRST_PSEUDO_REGISTER)
409 abort ();
410 nregs = HARD_REGNO_NREGS (regno, GET_MODE (y));
411 while (nregs-- > 0)
412 CLEAR_HARD_REG_BIT (hard_regs_to_save, regno + nregs);
415 /* Neither do registers for which we find a death note. */
416 for (x = REG_NOTES (insn); x != 0; x = XEXP (x, 1))
418 rtx y = XEXP (x, 0);
420 if (REG_NOTE_KIND (x) != REG_DEAD)
421 continue;
422 if (GET_CODE (y) != REG)
423 abort ();
424 regno = REGNO (y);
426 if (regno >= FIRST_PSEUDO_REGISTER)
427 regno = reg_renumber[regno];
428 if (regno < 0)
429 continue;
430 nregs = HARD_REGNO_NREGS (regno, GET_MODE (y));
431 while (nregs-- > 0)
432 CLEAR_HARD_REG_BIT (hard_regs_to_save, regno + nregs);
435 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
436 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
437 regno += insert_save (chain, 1, regno, &hard_regs_to_save);
439 /* Must recompute n_regs_saved. */
440 n_regs_saved = 0;
441 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
442 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
443 n_regs_saved++;
447 if (chain->next == 0 || chain->next->block > chain->block)
449 int regno;
450 /* At the end of the basic block, we must restore any registers that
451 remain saved. If the last insn in the block is a JUMP_INSN, put
452 the restore before the insn, otherwise, put it after the insn. */
454 if (n_regs_saved)
455 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
456 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
457 regno += insert_restore (chain, GET_CODE (insn) == JUMP_INSN,
458 regno, MOVE_MAX_WORDS);
463 /* Here from note_stores when an insn stores a value in a register.
464 Set the proper bit or bits in this_insn_sets. All pseudos that have
465 been assigned hard regs have had their register number changed already,
466 so we can ignore pseudos. */
467 static void
468 mark_set_regs (reg, setter)
469 rtx reg;
470 rtx setter ATTRIBUTE_UNUSED;
472 register int regno, endregno, i;
473 enum machine_mode mode = GET_MODE (reg);
474 int word = 0;
476 if (GET_CODE (reg) == SUBREG)
478 word = SUBREG_WORD (reg);
479 reg = SUBREG_REG (reg);
482 if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
483 return;
485 regno = REGNO (reg) + word;
486 endregno = regno + HARD_REGNO_NREGS (regno, mode);
488 for (i = regno; i < endregno; i++)
489 SET_HARD_REG_BIT (this_insn_sets, i);
492 /* Walk X and record all referenced registers in REFERENCED_REGS. */
493 static void
494 mark_referenced_regs (x)
495 rtx x;
497 enum rtx_code code = GET_CODE (x);
498 const char *fmt;
499 int i, j;
501 if (code == SET)
502 mark_referenced_regs (SET_SRC (x));
503 if (code == SET || code == CLOBBER)
505 x = SET_DEST (x);
506 code = GET_CODE (x);
507 if (code == REG || code == PC || code == CC0
508 || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
509 return;
511 if (code == MEM || code == SUBREG)
513 x = XEXP (x, 0);
514 code = GET_CODE (x);
517 if (code == REG)
519 int regno = REGNO (x);
520 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
521 : reg_renumber[regno]);
523 if (hardregno >= 0)
525 int nregs = HARD_REGNO_NREGS (hardregno, GET_MODE (x));
526 while (nregs-- > 0)
527 SET_HARD_REG_BIT (referenced_regs, hardregno + nregs);
529 /* If this is a pseudo that did not get a hard register, scan its
530 memory location, since it might involve the use of another
531 register, which might be saved. */
532 else if (reg_equiv_mem[regno] != 0)
533 mark_referenced_regs (XEXP (reg_equiv_mem[regno], 0));
534 else if (reg_equiv_address[regno] != 0)
535 mark_referenced_regs (reg_equiv_address[regno]);
536 return;
539 fmt = GET_RTX_FORMAT (code);
540 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
542 if (fmt[i] == 'e')
543 mark_referenced_regs (XEXP (x, i));
544 else if (fmt[i] == 'E')
545 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
546 mark_referenced_regs (XVECEXP (x, i, j));
550 /* Insert a sequence of insns to restore. Place these insns in front of
551 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
552 the maximum number of registers which should be restored during this call.
553 It should never be less than 1 since we only work with entire registers.
555 Note that we have verified in init_caller_save that we can do this
556 with a simple SET, so use it. Set INSN_CODE to what we save there
557 since the address might not be valid so the insn might not be recognized.
558 These insns will be reloaded and have register elimination done by
559 find_reload, so we need not worry about that here.
561 Return the extra number of registers saved. */
563 static int
564 insert_restore (chain, before_p, regno, maxrestore)
565 struct insn_chain *chain;
566 int before_p;
567 int regno;
568 int maxrestore;
570 int i;
571 rtx pat = NULL_RTX;
572 enum insn_code code = CODE_FOR_nothing;
573 int numregs = 0;
575 /* A common failure mode if register status is not correct in the RTL
576 is for this routine to be called with a REGNO we didn't expect to
577 save. That will cause us to write an insn with a (nil) SET_DEST
578 or SET_SRC. Instead of doing so and causing a crash later, check
579 for this common case and abort here instead. This will remove one
580 step in debugging such problems. */
582 if (regno_save_mem[regno][1] == 0)
583 abort ();
585 /* Get the pattern to emit and update our status.
587 See if we can restore `maxrestore' registers at once. Work
588 backwards to the single register case. */
589 for (i = maxrestore; i > 0; i--)
591 int j, k;
592 int ok = 1;
594 if (regno_save_mem[regno][i] == 0)
595 continue;
597 for (j = 0; j < i; j++)
598 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
600 ok = 0;
601 break;
603 /* Must do this one restore at a time */
604 if (! ok)
605 continue;
607 pat = gen_rtx_SET (VOIDmode,
608 gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
609 regno),
610 regno_save_mem[regno][i]);
611 code = reg_restore_code[regno][i];
613 /* Clear status for all registers we restored. */
614 for (k = 0; k < i; k++)
616 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
617 n_regs_saved--;
620 numregs = i;
621 break;
624 insert_one_insn (chain, before_p, code, pat);
626 /* Tell our callers how many extra registers we saved/restored */
627 return numregs - 1;
630 /* Like insert_restore above, but save registers instead. */
631 static int
632 insert_save (chain, before_p, regno, to_save)
633 struct insn_chain *chain;
634 int before_p;
635 int regno;
636 HARD_REG_SET *to_save;
638 int i;
639 rtx pat = NULL_RTX;
640 enum insn_code code = CODE_FOR_nothing;
641 int numregs = 0;
643 /* A common failure mode if register status is not correct in the RTL
644 is for this routine to be called with a REGNO we didn't expect to
645 save. That will cause us to write an insn with a (nil) SET_DEST
646 or SET_SRC. Instead of doing so and causing a crash later, check
647 for this common case and abort here instead. This will remove one
648 step in debugging such problems. */
650 if (regno_save_mem[regno][1] == 0)
651 abort ();
653 /* Get the pattern to emit and update our status.
655 See if we can save several registers with a single instruction.
656 Work backwards to the single register case. */
657 for (i = MOVE_MAX_WORDS; i > 0; i--)
659 int j, k;
660 int ok = 1;
661 if (regno_save_mem[regno][i] == 0)
662 continue;
664 for (j = 0; j < i; j++)
665 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
667 ok = 0;
668 break;
670 /* Must do this one save at a time */
671 if (! ok)
672 continue;
674 pat = gen_rtx_SET (VOIDmode, regno_save_mem[regno][i],
675 gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
676 regno));
677 code = reg_save_code[regno][i];
679 /* Set hard_regs_saved for all the registers we saved. */
680 for (k = 0; k < i; k++)
682 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
683 n_regs_saved++;
686 numregs = i;
687 break;
690 insert_one_insn (chain, before_p, code, pat);
692 /* Tell our callers how many extra registers we saved/restored */
693 return numregs - 1;
696 /* Emit a new caller-save insn and set the code. */
697 static void
698 insert_one_insn (chain, before_p, code, pat)
699 struct insn_chain *chain;
700 int before_p;
701 enum insn_code code;
702 rtx pat;
704 rtx insn = chain->insn;
705 struct insn_chain *new;
707 #ifdef HAVE_cc0
708 /* If INSN references CC0, put our insns in front of the insn that sets
709 CC0. This is always safe, since the only way we could be passed an
710 insn that references CC0 is for a restore, and doing a restore earlier
711 isn't a problem. We do, however, assume here that CALL_INSNs don't
712 reference CC0. Guard against non-INSN's like CODE_LABEL. */
714 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
715 && before_p
716 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
717 chain = chain->prev, insn = chain->insn;
718 #endif
720 new = new_insn_chain ();
721 if (before_p)
723 new->prev = chain->prev;
724 if (new->prev != 0)
725 new->prev->next = new;
726 else
727 reload_insn_chain = new;
729 chain->prev = new;
730 new->next = chain;
731 new->insn = emit_insn_before (pat, insn);
732 /* ??? It would be nice if we could exclude the already / still saved
733 registers from the live sets. */
734 COPY_REG_SET (new->live_before, chain->live_before);
735 COPY_REG_SET (new->live_after, chain->live_before);
736 if (chain->insn == BLOCK_HEAD (chain->block))
737 BLOCK_HEAD (chain->block) = new->insn;
739 else
741 new->next = chain->next;
742 if (new->next != 0)
743 new->next->prev = new;
744 chain->next = new;
745 new->prev = chain;
746 new->insn = emit_insn_after (pat, insn);
747 /* ??? It would be nice if we could exclude the already / still saved
748 registers from the live sets, and observe REG_UNUSED notes. */
749 COPY_REG_SET (new->live_before, chain->live_after);
750 COPY_REG_SET (new->live_after, chain->live_after);
751 if (chain->insn == BLOCK_END (chain->block))
752 BLOCK_END (chain->block) = new->insn;
754 new->block = chain->block;
755 new->is_caller_save_insn = 1;
757 INSN_CODE (new->insn) = code;